*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
1654program. For example, you can list the arguments given to your program
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
1821that process run your program. (In environments without processes,
1822@code{run} jumps to the start of your program.)
1823
1824The execution of a program is affected by certain information it
1825receives from its superior. @value{GDBN} provides ways to specify this
1826information, which you must do @emph{before} starting your program. (You
1827can change it after starting your program, but such changes only affect
1828your program the next time you start it.) This information may be
1829divided into four categories:
1830
1831@table @asis
1832@item The @emph{arguments.}
1833Specify the arguments to give your program as the arguments of the
1834@code{run} command. If a shell is available on your target, the shell
1835is used to pass the arguments, so that you may use normal conventions
1836(such as wildcard expansion or variable substitution) in describing
1837the arguments.
1838In Unix systems, you can control which shell is used with the
1839@code{SHELL} environment variable.
79a6e687 1840@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1841
1842@item The @emph{environment.}
1843Your program normally inherits its environment from @value{GDBN}, but you can
1844use the @value{GDBN} commands @code{set environment} and @code{unset
1845environment} to change parts of the environment that affect
79a6e687 1846your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1847
1848@item The @emph{working directory.}
1849Your program inherits its working directory from @value{GDBN}. You can set
1850the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1851@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1852
1853@item The @emph{standard input and output.}
1854Your program normally uses the same device for standard input and
1855standard output as @value{GDBN} is using. You can redirect input and output
1856in the @code{run} command line, or you can use the @code{tty} command to
1857set a different device for your program.
79a6e687 1858@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1859
1860@cindex pipes
1861@emph{Warning:} While input and output redirection work, you cannot use
1862pipes to pass the output of the program you are debugging to another
1863program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1864wrong program.
1865@end table
c906108c
SS
1866
1867When you issue the @code{run} command, your program begins to execute
79a6e687 1868immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1869of how to arrange for your program to stop. Once your program has
1870stopped, you may call functions in your program, using the @code{print}
1871or @code{call} commands. @xref{Data, ,Examining Data}.
1872
1873If the modification time of your symbol file has changed since the last
1874time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1875table, and reads it again. When it does this, @value{GDBN} tries to retain
1876your current breakpoints.
1877
4e8b0763
JB
1878@table @code
1879@kindex start
1880@item start
1881@cindex run to main procedure
1882The name of the main procedure can vary from language to language.
1883With C or C@t{++}, the main procedure name is always @code{main}, but
1884other languages such as Ada do not require a specific name for their
1885main procedure. The debugger provides a convenient way to start the
1886execution of the program and to stop at the beginning of the main
1887procedure, depending on the language used.
1888
1889The @samp{start} command does the equivalent of setting a temporary
1890breakpoint at the beginning of the main procedure and then invoking
1891the @samp{run} command.
1892
f018e82f
EZ
1893@cindex elaboration phase
1894Some programs contain an @dfn{elaboration} phase where some startup code is
1895executed before the main procedure is called. This depends on the
1896languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1897constructors for static and global objects are executed before
1898@code{main} is called. It is therefore possible that the debugger stops
1899before reaching the main procedure. However, the temporary breakpoint
1900will remain to halt execution.
1901
1902Specify the arguments to give to your program as arguments to the
1903@samp{start} command. These arguments will be given verbatim to the
1904underlying @samp{run} command. Note that the same arguments will be
1905reused if no argument is provided during subsequent calls to
1906@samp{start} or @samp{run}.
1907
1908It is sometimes necessary to debug the program during elaboration. In
1909these cases, using the @code{start} command would stop the execution of
1910your program too late, as the program would have already completed the
1911elaboration phase. Under these circumstances, insert breakpoints in your
1912elaboration code before running your program.
1913@end table
1914
6d2ebf8b 1915@node Arguments
79a6e687 1916@section Your Program's Arguments
c906108c
SS
1917
1918@cindex arguments (to your program)
1919The arguments to your program can be specified by the arguments of the
5d161b24 1920@code{run} command.
c906108c
SS
1921They are passed to a shell, which expands wildcard characters and
1922performs redirection of I/O, and thence to your program. Your
1923@code{SHELL} environment variable (if it exists) specifies what shell
1924@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1925the default shell (@file{/bin/sh} on Unix).
1926
1927On non-Unix systems, the program is usually invoked directly by
1928@value{GDBN}, which emulates I/O redirection via the appropriate system
1929calls, and the wildcard characters are expanded by the startup code of
1930the program, not by the shell.
c906108c
SS
1931
1932@code{run} with no arguments uses the same arguments used by the previous
1933@code{run}, or those set by the @code{set args} command.
1934
c906108c 1935@table @code
41afff9a 1936@kindex set args
c906108c
SS
1937@item set args
1938Specify the arguments to be used the next time your program is run. If
1939@code{set args} has no arguments, @code{run} executes your program
1940with no arguments. Once you have run your program with arguments,
1941using @code{set args} before the next @code{run} is the only way to run
1942it again without arguments.
1943
1944@kindex show args
1945@item show args
1946Show the arguments to give your program when it is started.
1947@end table
1948
6d2ebf8b 1949@node Environment
79a6e687 1950@section Your Program's Environment
c906108c
SS
1951
1952@cindex environment (of your program)
1953The @dfn{environment} consists of a set of environment variables and
1954their values. Environment variables conventionally record such things as
1955your user name, your home directory, your terminal type, and your search
1956path for programs to run. Usually you set up environment variables with
1957the shell and they are inherited by all the other programs you run. When
1958debugging, it can be useful to try running your program with a modified
1959environment without having to start @value{GDBN} over again.
1960
1961@table @code
1962@kindex path
1963@item path @var{directory}
1964Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
1965(the search path for executables) that will be passed to your program.
1966The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
1967You may specify several directory names, separated by whitespace or by a
1968system-dependent separator character (@samp{:} on Unix, @samp{;} on
1969MS-DOS and MS-Windows). If @var{directory} is already in the path, it
1970is moved to the front, so it is searched sooner.
c906108c
SS
1971
1972You can use the string @samp{$cwd} to refer to whatever is the current
1973working directory at the time @value{GDBN} searches the path. If you
1974use @samp{.} instead, it refers to the directory where you executed the
1975@code{path} command. @value{GDBN} replaces @samp{.} in the
1976@var{directory} argument (with the current path) before adding
1977@var{directory} to the search path.
1978@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
1979@c document that, since repeating it would be a no-op.
1980
1981@kindex show paths
1982@item show paths
1983Display the list of search paths for executables (the @code{PATH}
1984environment variable).
1985
1986@kindex show environment
1987@item show environment @r{[}@var{varname}@r{]}
1988Print the value of environment variable @var{varname} to be given to
1989your program when it starts. If you do not supply @var{varname},
1990print the names and values of all environment variables to be given to
1991your program. You can abbreviate @code{environment} as @code{env}.
1992
1993@kindex set environment
53a5351d 1994@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
1995Set environment variable @var{varname} to @var{value}. The value
1996changes for your program only, not for @value{GDBN} itself. @var{value} may
1997be any string; the values of environment variables are just strings, and
1998any interpretation is supplied by your program itself. The @var{value}
1999parameter is optional; if it is eliminated, the variable is set to a
2000null value.
2001@c "any string" here does not include leading, trailing
2002@c blanks. Gnu asks: does anyone care?
2003
2004For example, this command:
2005
474c8240 2006@smallexample
c906108c 2007set env USER = foo
474c8240 2008@end smallexample
c906108c
SS
2009
2010@noindent
d4f3574e 2011tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2012@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2013are not actually required.)
2014
2015@kindex unset environment
2016@item unset environment @var{varname}
2017Remove variable @var{varname} from the environment to be passed to your
2018program. This is different from @samp{set env @var{varname} =};
2019@code{unset environment} removes the variable from the environment,
2020rather than assigning it an empty value.
2021@end table
2022
d4f3574e
SS
2023@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2024the shell indicated
c906108c
SS
2025by your @code{SHELL} environment variable if it exists (or
2026@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2027that runs an initialization file---such as @file{.cshrc} for C-shell, or
2028@file{.bashrc} for BASH---any variables you set in that file affect
2029your program. You may wish to move setting of environment variables to
2030files that are only run when you sign on, such as @file{.login} or
2031@file{.profile}.
2032
6d2ebf8b 2033@node Working Directory
79a6e687 2034@section Your Program's Working Directory
c906108c
SS
2035
2036@cindex working directory (of your program)
2037Each time you start your program with @code{run}, it inherits its
2038working directory from the current working directory of @value{GDBN}.
2039The @value{GDBN} working directory is initially whatever it inherited
2040from its parent process (typically the shell), but you can specify a new
2041working directory in @value{GDBN} with the @code{cd} command.
2042
2043The @value{GDBN} working directory also serves as a default for the commands
2044that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2045Specify Files}.
c906108c
SS
2046
2047@table @code
2048@kindex cd
721c2651 2049@cindex change working directory
c906108c
SS
2050@item cd @var{directory}
2051Set the @value{GDBN} working directory to @var{directory}.
2052
2053@kindex pwd
2054@item pwd
2055Print the @value{GDBN} working directory.
2056@end table
2057
60bf7e09
EZ
2058It is generally impossible to find the current working directory of
2059the process being debugged (since a program can change its directory
2060during its run). If you work on a system where @value{GDBN} is
2061configured with the @file{/proc} support, you can use the @code{info
2062proc} command (@pxref{SVR4 Process Information}) to find out the
2063current working directory of the debuggee.
2064
6d2ebf8b 2065@node Input/Output
79a6e687 2066@section Your Program's Input and Output
c906108c
SS
2067
2068@cindex redirection
2069@cindex i/o
2070@cindex terminal
2071By default, the program you run under @value{GDBN} does input and output to
5d161b24 2072the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2073to its own terminal modes to interact with you, but it records the terminal
2074modes your program was using and switches back to them when you continue
2075running your program.
2076
2077@table @code
2078@kindex info terminal
2079@item info terminal
2080Displays information recorded by @value{GDBN} about the terminal modes your
2081program is using.
2082@end table
2083
2084You can redirect your program's input and/or output using shell
2085redirection with the @code{run} command. For example,
2086
474c8240 2087@smallexample
c906108c 2088run > outfile
474c8240 2089@end smallexample
c906108c
SS
2090
2091@noindent
2092starts your program, diverting its output to the file @file{outfile}.
2093
2094@kindex tty
2095@cindex controlling terminal
2096Another way to specify where your program should do input and output is
2097with the @code{tty} command. This command accepts a file name as
2098argument, and causes this file to be the default for future @code{run}
2099commands. It also resets the controlling terminal for the child
2100process, for future @code{run} commands. For example,
2101
474c8240 2102@smallexample
c906108c 2103tty /dev/ttyb
474c8240 2104@end smallexample
c906108c
SS
2105
2106@noindent
2107directs that processes started with subsequent @code{run} commands
2108default to do input and output on the terminal @file{/dev/ttyb} and have
2109that as their controlling terminal.
2110
2111An explicit redirection in @code{run} overrides the @code{tty} command's
2112effect on the input/output device, but not its effect on the controlling
2113terminal.
2114
2115When you use the @code{tty} command or redirect input in the @code{run}
2116command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2117for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2118for @code{set inferior-tty}.
2119
2120@cindex inferior tty
2121@cindex set inferior controlling terminal
2122You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2123display the name of the terminal that will be used for future runs of your
2124program.
2125
2126@table @code
2127@item set inferior-tty /dev/ttyb
2128@kindex set inferior-tty
2129Set the tty for the program being debugged to /dev/ttyb.
2130
2131@item show inferior-tty
2132@kindex show inferior-tty
2133Show the current tty for the program being debugged.
2134@end table
c906108c 2135
6d2ebf8b 2136@node Attach
79a6e687 2137@section Debugging an Already-running Process
c906108c
SS
2138@kindex attach
2139@cindex attach
2140
2141@table @code
2142@item attach @var{process-id}
2143This command attaches to a running process---one that was started
2144outside @value{GDBN}. (@code{info files} shows your active
2145targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2146find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2147or with the @samp{jobs -l} shell command.
2148
2149@code{attach} does not repeat if you press @key{RET} a second time after
2150executing the command.
2151@end table
2152
2153To use @code{attach}, your program must be running in an environment
2154which supports processes; for example, @code{attach} does not work for
2155programs on bare-board targets that lack an operating system. You must
2156also have permission to send the process a signal.
2157
2158When you use @code{attach}, the debugger finds the program running in
2159the process first by looking in the current working directory, then (if
2160the program is not found) by using the source file search path
79a6e687 2161(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2162the @code{file} command to load the program. @xref{Files, ,Commands to
2163Specify Files}.
2164
2165The first thing @value{GDBN} does after arranging to debug the specified
2166process is to stop it. You can examine and modify an attached process
53a5351d
JM
2167with all the @value{GDBN} commands that are ordinarily available when
2168you start processes with @code{run}. You can insert breakpoints; you
2169can step and continue; you can modify storage. If you would rather the
2170process continue running, you may use the @code{continue} command after
c906108c
SS
2171attaching @value{GDBN} to the process.
2172
2173@table @code
2174@kindex detach
2175@item detach
2176When you have finished debugging the attached process, you can use the
2177@code{detach} command to release it from @value{GDBN} control. Detaching
2178the process continues its execution. After the @code{detach} command,
2179that process and @value{GDBN} become completely independent once more, and you
2180are ready to @code{attach} another process or start one with @code{run}.
2181@code{detach} does not repeat if you press @key{RET} again after
2182executing the command.
2183@end table
2184
159fcc13
JK
2185If you exit @value{GDBN} while you have an attached process, you detach
2186that process. If you use the @code{run} command, you kill that process.
2187By default, @value{GDBN} asks for confirmation if you try to do either of these
2188things; you can control whether or not you need to confirm by using the
2189@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2190Messages}).
c906108c 2191
6d2ebf8b 2192@node Kill Process
79a6e687 2193@section Killing the Child Process
c906108c
SS
2194
2195@table @code
2196@kindex kill
2197@item kill
2198Kill the child process in which your program is running under @value{GDBN}.
2199@end table
2200
2201This command is useful if you wish to debug a core dump instead of a
2202running process. @value{GDBN} ignores any core dump file while your program
2203is running.
2204
2205On some operating systems, a program cannot be executed outside @value{GDBN}
2206while you have breakpoints set on it inside @value{GDBN}. You can use the
2207@code{kill} command in this situation to permit running your program
2208outside the debugger.
2209
2210The @code{kill} command is also useful if you wish to recompile and
2211relink your program, since on many systems it is impossible to modify an
2212executable file while it is running in a process. In this case, when you
2213next type @code{run}, @value{GDBN} notices that the file has changed, and
2214reads the symbol table again (while trying to preserve your current
2215breakpoint settings).
2216
6d2ebf8b 2217@node Threads
79a6e687 2218@section Debugging Programs with Multiple Threads
c906108c
SS
2219
2220@cindex threads of execution
2221@cindex multiple threads
2222@cindex switching threads
2223In some operating systems, such as HP-UX and Solaris, a single program
2224may have more than one @dfn{thread} of execution. The precise semantics
2225of threads differ from one operating system to another, but in general
2226the threads of a single program are akin to multiple processes---except
2227that they share one address space (that is, they can all examine and
2228modify the same variables). On the other hand, each thread has its own
2229registers and execution stack, and perhaps private memory.
2230
2231@value{GDBN} provides these facilities for debugging multi-thread
2232programs:
2233
2234@itemize @bullet
2235@item automatic notification of new threads
2236@item @samp{thread @var{threadno}}, a command to switch among threads
2237@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2238@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2239a command to apply a command to a list of threads
2240@item thread-specific breakpoints
2241@end itemize
2242
c906108c
SS
2243@quotation
2244@emph{Warning:} These facilities are not yet available on every
2245@value{GDBN} configuration where the operating system supports threads.
2246If your @value{GDBN} does not support threads, these commands have no
2247effect. For example, a system without thread support shows no output
2248from @samp{info threads}, and always rejects the @code{thread} command,
2249like this:
2250
2251@smallexample
2252(@value{GDBP}) info threads
2253(@value{GDBP}) thread 1
2254Thread ID 1 not known. Use the "info threads" command to
2255see the IDs of currently known threads.
2256@end smallexample
2257@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2258@c doesn't support threads"?
2259@end quotation
c906108c
SS
2260
2261@cindex focus of debugging
2262@cindex current thread
2263The @value{GDBN} thread debugging facility allows you to observe all
2264threads while your program runs---but whenever @value{GDBN} takes
2265control, one thread in particular is always the focus of debugging.
2266This thread is called the @dfn{current thread}. Debugging commands show
2267program information from the perspective of the current thread.
2268
41afff9a 2269@cindex @code{New} @var{systag} message
c906108c
SS
2270@cindex thread identifier (system)
2271@c FIXME-implementors!! It would be more helpful if the [New...] message
2272@c included GDB's numeric thread handle, so you could just go to that
2273@c thread without first checking `info threads'.
2274Whenever @value{GDBN} detects a new thread in your program, it displays
2275the target system's identification for the thread with a message in the
2276form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2277whose form varies depending on the particular system. For example, on
8807d78b 2278@sc{gnu}/Linux, you might see
c906108c 2279
474c8240 2280@smallexample
8807d78b 2281[New Thread 46912507313328 (LWP 25582)]
474c8240 2282@end smallexample
c906108c
SS
2283
2284@noindent
2285when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2286the @var{systag} is simply something like @samp{process 368}, with no
2287further qualifier.
2288
2289@c FIXME!! (1) Does the [New...] message appear even for the very first
2290@c thread of a program, or does it only appear for the
6ca652b0 2291@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2292@c program?
2293@c (2) *Is* there necessarily a first thread always? Or do some
2294@c multithread systems permit starting a program with multiple
5d161b24 2295@c threads ab initio?
c906108c
SS
2296
2297@cindex thread number
2298@cindex thread identifier (GDB)
2299For debugging purposes, @value{GDBN} associates its own thread
2300number---always a single integer---with each thread in your program.
2301
2302@table @code
2303@kindex info threads
2304@item info threads
2305Display a summary of all threads currently in your
2306program. @value{GDBN} displays for each thread (in this order):
2307
2308@enumerate
09d4efe1
EZ
2309@item
2310the thread number assigned by @value{GDBN}
c906108c 2311
09d4efe1
EZ
2312@item
2313the target system's thread identifier (@var{systag})
c906108c 2314
09d4efe1
EZ
2315@item
2316the current stack frame summary for that thread
c906108c
SS
2317@end enumerate
2318
2319@noindent
2320An asterisk @samp{*} to the left of the @value{GDBN} thread number
2321indicates the current thread.
2322
5d161b24 2323For example,
c906108c
SS
2324@end table
2325@c end table here to get a little more width for example
2326
2327@smallexample
2328(@value{GDBP}) info threads
2329 3 process 35 thread 27 0x34e5 in sigpause ()
2330 2 process 35 thread 23 0x34e5 in sigpause ()
2331* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2332 at threadtest.c:68
2333@end smallexample
53a5351d
JM
2334
2335On HP-UX systems:
c906108c 2336
4644b6e3
EZ
2337@cindex debugging multithreaded programs (on HP-UX)
2338@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2339For debugging purposes, @value{GDBN} associates its own thread
2340number---a small integer assigned in thread-creation order---with each
2341thread in your program.
2342
41afff9a
EZ
2343@cindex @code{New} @var{systag} message, on HP-UX
2344@cindex thread identifier (system), on HP-UX
c906108c
SS
2345@c FIXME-implementors!! It would be more helpful if the [New...] message
2346@c included GDB's numeric thread handle, so you could just go to that
2347@c thread without first checking `info threads'.
2348Whenever @value{GDBN} detects a new thread in your program, it displays
2349both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2350form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2351whose form varies depending on the particular system. For example, on
2352HP-UX, you see
2353
474c8240 2354@smallexample
c906108c 2355[New thread 2 (system thread 26594)]
474c8240 2356@end smallexample
c906108c
SS
2357
2358@noindent
5d161b24 2359when @value{GDBN} notices a new thread.
c906108c
SS
2360
2361@table @code
4644b6e3 2362@kindex info threads (HP-UX)
c906108c
SS
2363@item info threads
2364Display a summary of all threads currently in your
2365program. @value{GDBN} displays for each thread (in this order):
2366
2367@enumerate
2368@item the thread number assigned by @value{GDBN}
2369
2370@item the target system's thread identifier (@var{systag})
2371
2372@item the current stack frame summary for that thread
2373@end enumerate
2374
2375@noindent
2376An asterisk @samp{*} to the left of the @value{GDBN} thread number
2377indicates the current thread.
2378
5d161b24 2379For example,
c906108c
SS
2380@end table
2381@c end table here to get a little more width for example
2382
474c8240 2383@smallexample
c906108c 2384(@value{GDBP}) info threads
6d2ebf8b
SS
2385 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2386 at quicksort.c:137
2387 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2388 from /usr/lib/libc.2
2389 1 system thread 27905 0x7b003498 in _brk () \@*
2390 from /usr/lib/libc.2
474c8240 2391@end smallexample
c906108c 2392
c45da7e6
EZ
2393On Solaris, you can display more information about user threads with a
2394Solaris-specific command:
2395
2396@table @code
2397@item maint info sol-threads
2398@kindex maint info sol-threads
2399@cindex thread info (Solaris)
2400Display info on Solaris user threads.
2401@end table
2402
c906108c
SS
2403@table @code
2404@kindex thread @var{threadno}
2405@item thread @var{threadno}
2406Make thread number @var{threadno} the current thread. The command
2407argument @var{threadno} is the internal @value{GDBN} thread number, as
2408shown in the first field of the @samp{info threads} display.
2409@value{GDBN} responds by displaying the system identifier of the thread
2410you selected, and its current stack frame summary:
2411
2412@smallexample
2413@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2414(@value{GDBP}) thread 2
c906108c 2415[Switching to process 35 thread 23]
c906108c
SS
24160x34e5 in sigpause ()
2417@end smallexample
2418
2419@noindent
2420As with the @samp{[New @dots{}]} message, the form of the text after
2421@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2422threads.
c906108c 2423
9c16f35a 2424@kindex thread apply
638ac427 2425@cindex apply command to several threads
839c27b7
EZ
2426@item thread apply [@var{threadno}] [@var{all}] @var{command}
2427The @code{thread apply} command allows you to apply the named
2428@var{command} to one or more threads. Specify the numbers of the
2429threads that you want affected with the command argument
2430@var{threadno}. It can be a single thread number, one of the numbers
2431shown in the first field of the @samp{info threads} display; or it
2432could be a range of thread numbers, as in @code{2-4}. To apply a
2433command to all threads, type @kbd{thread apply all @var{command}}.
c906108c
SS
2434@end table
2435
2436@cindex automatic thread selection
2437@cindex switching threads automatically
2438@cindex threads, automatic switching
2439Whenever @value{GDBN} stops your program, due to a breakpoint or a
2440signal, it automatically selects the thread where that breakpoint or
2441signal happened. @value{GDBN} alerts you to the context switch with a
2442message of the form @samp{[Switching to @var{systag}]} to identify the
2443thread.
2444
79a6e687 2445@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2446more information about how @value{GDBN} behaves when you stop and start
2447programs with multiple threads.
2448
79a6e687 2449@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2450watchpoints in programs with multiple threads.
c906108c 2451
6d2ebf8b 2452@node Processes
79a6e687 2453@section Debugging Programs with Multiple Processes
c906108c
SS
2454
2455@cindex fork, debugging programs which call
2456@cindex multiple processes
2457@cindex processes, multiple
53a5351d
JM
2458On most systems, @value{GDBN} has no special support for debugging
2459programs which create additional processes using the @code{fork}
2460function. When a program forks, @value{GDBN} will continue to debug the
2461parent process and the child process will run unimpeded. If you have
2462set a breakpoint in any code which the child then executes, the child
2463will get a @code{SIGTRAP} signal which (unless it catches the signal)
2464will cause it to terminate.
c906108c
SS
2465
2466However, if you want to debug the child process there is a workaround
2467which isn't too painful. Put a call to @code{sleep} in the code which
2468the child process executes after the fork. It may be useful to sleep
2469only if a certain environment variable is set, or a certain file exists,
2470so that the delay need not occur when you don't want to run @value{GDBN}
2471on the child. While the child is sleeping, use the @code{ps} program to
2472get its process ID. Then tell @value{GDBN} (a new invocation of
2473@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2474the child process (@pxref{Attach}). From that point on you can debug
c906108c 2475the child process just like any other process which you attached to.
c906108c 2476
b51970ac
DJ
2477On some systems, @value{GDBN} provides support for debugging programs that
2478create additional processes using the @code{fork} or @code{vfork} functions.
2479Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2480only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2481
2482By default, when a program forks, @value{GDBN} will continue to debug
2483the parent process and the child process will run unimpeded.
2484
2485If you want to follow the child process instead of the parent process,
2486use the command @w{@code{set follow-fork-mode}}.
2487
2488@table @code
2489@kindex set follow-fork-mode
2490@item set follow-fork-mode @var{mode}
2491Set the debugger response to a program call of @code{fork} or
2492@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2493process. The @var{mode} argument can be:
c906108c
SS
2494
2495@table @code
2496@item parent
2497The original process is debugged after a fork. The child process runs
2df3850c 2498unimpeded. This is the default.
c906108c
SS
2499
2500@item child
2501The new process is debugged after a fork. The parent process runs
2502unimpeded.
2503
c906108c
SS
2504@end table
2505
9c16f35a 2506@kindex show follow-fork-mode
c906108c 2507@item show follow-fork-mode
2df3850c 2508Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2509@end table
2510
5c95884b
MS
2511@cindex debugging multiple processes
2512On Linux, if you want to debug both the parent and child processes, use the
2513command @w{@code{set detach-on-fork}}.
2514
2515@table @code
2516@kindex set detach-on-fork
2517@item set detach-on-fork @var{mode}
2518Tells gdb whether to detach one of the processes after a fork, or
2519retain debugger control over them both.
2520
2521@table @code
2522@item on
2523The child process (or parent process, depending on the value of
2524@code{follow-fork-mode}) will be detached and allowed to run
2525independently. This is the default.
2526
2527@item off
2528Both processes will be held under the control of @value{GDBN}.
2529One process (child or parent, depending on the value of
2530@code{follow-fork-mode}) is debugged as usual, while the other
2531is held suspended.
2532
2533@end table
2534
2535@kindex show detach-on-follow
2536@item show detach-on-follow
2537Show whether detach-on-follow mode is on/off.
2538@end table
2539
2540If you choose to set @var{detach-on-follow} mode off, then
2541@value{GDBN} will retain control of all forked processes (including
2542nested forks). You can list the forked processes under the control of
2543@value{GDBN} by using the @w{@code{info forks}} command, and switch
2544from one fork to another by using the @w{@code{fork}} command.
2545
2546@table @code
2547@kindex info forks
2548@item info forks
2549Print a list of all forked processes under the control of @value{GDBN}.
2550The listing will include a fork id, a process id, and the current
2551position (program counter) of the process.
2552
2553
2554@kindex fork @var{fork-id}
2555@item fork @var{fork-id}
2556Make fork number @var{fork-id} the current process. The argument
2557@var{fork-id} is the internal fork number assigned by @value{GDBN},
2558as shown in the first field of the @samp{info forks} display.
2559
2560@end table
2561
2562To quit debugging one of the forked processes, you can either detach
f73adfeb 2563from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2564run independently), or delete (and kill) it using the
b8db102d 2565@w{@code{delete fork}} command.
5c95884b
MS
2566
2567@table @code
f73adfeb
AS
2568@kindex detach fork @var{fork-id}
2569@item detach fork @var{fork-id}
5c95884b
MS
2570Detach from the process identified by @value{GDBN} fork number
2571@var{fork-id}, and remove it from the fork list. The process will be
2572allowed to run independently.
2573
b8db102d
MS
2574@kindex delete fork @var{fork-id}
2575@item delete fork @var{fork-id}
5c95884b
MS
2576Kill the process identified by @value{GDBN} fork number @var{fork-id},
2577and remove it from the fork list.
2578
2579@end table
2580
c906108c
SS
2581If you ask to debug a child process and a @code{vfork} is followed by an
2582@code{exec}, @value{GDBN} executes the new target up to the first
2583breakpoint in the new target. If you have a breakpoint set on
2584@code{main} in your original program, the breakpoint will also be set on
2585the child process's @code{main}.
2586
2587When a child process is spawned by @code{vfork}, you cannot debug the
2588child or parent until an @code{exec} call completes.
2589
2590If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2591call executes, the new target restarts. To restart the parent process,
2592use the @code{file} command with the parent executable name as its
2593argument.
2594
2595You can use the @code{catch} command to make @value{GDBN} stop whenever
2596a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2597Catchpoints, ,Setting Catchpoints}.
c906108c 2598
5c95884b 2599@node Checkpoint/Restart
79a6e687 2600@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2601
2602@cindex checkpoint
2603@cindex restart
2604@cindex bookmark
2605@cindex snapshot of a process
2606@cindex rewind program state
2607
2608On certain operating systems@footnote{Currently, only
2609@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2610program's state, called a @dfn{checkpoint}, and come back to it
2611later.
2612
2613Returning to a checkpoint effectively undoes everything that has
2614happened in the program since the @code{checkpoint} was saved. This
2615includes changes in memory, registers, and even (within some limits)
2616system state. Effectively, it is like going back in time to the
2617moment when the checkpoint was saved.
2618
2619Thus, if you're stepping thru a program and you think you're
2620getting close to the point where things go wrong, you can save
2621a checkpoint. Then, if you accidentally go too far and miss
2622the critical statement, instead of having to restart your program
2623from the beginning, you can just go back to the checkpoint and
2624start again from there.
2625
2626This can be especially useful if it takes a lot of time or
2627steps to reach the point where you think the bug occurs.
2628
2629To use the @code{checkpoint}/@code{restart} method of debugging:
2630
2631@table @code
2632@kindex checkpoint
2633@item checkpoint
2634Save a snapshot of the debugged program's current execution state.
2635The @code{checkpoint} command takes no arguments, but each checkpoint
2636is assigned a small integer id, similar to a breakpoint id.
2637
2638@kindex info checkpoints
2639@item info checkpoints
2640List the checkpoints that have been saved in the current debugging
2641session. For each checkpoint, the following information will be
2642listed:
2643
2644@table @code
2645@item Checkpoint ID
2646@item Process ID
2647@item Code Address
2648@item Source line, or label
2649@end table
2650
2651@kindex restart @var{checkpoint-id}
2652@item restart @var{checkpoint-id}
2653Restore the program state that was saved as checkpoint number
2654@var{checkpoint-id}. All program variables, registers, stack frames
2655etc.@: will be returned to the values that they had when the checkpoint
2656was saved. In essence, gdb will ``wind back the clock'' to the point
2657in time when the checkpoint was saved.
2658
2659Note that breakpoints, @value{GDBN} variables, command history etc.
2660are not affected by restoring a checkpoint. In general, a checkpoint
2661only restores things that reside in the program being debugged, not in
2662the debugger.
2663
b8db102d
MS
2664@kindex delete checkpoint @var{checkpoint-id}
2665@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2666Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2667
2668@end table
2669
2670Returning to a previously saved checkpoint will restore the user state
2671of the program being debugged, plus a significant subset of the system
2672(OS) state, including file pointers. It won't ``un-write'' data from
2673a file, but it will rewind the file pointer to the previous location,
2674so that the previously written data can be overwritten. For files
2675opened in read mode, the pointer will also be restored so that the
2676previously read data can be read again.
2677
2678Of course, characters that have been sent to a printer (or other
2679external device) cannot be ``snatched back'', and characters received
2680from eg.@: a serial device can be removed from internal program buffers,
2681but they cannot be ``pushed back'' into the serial pipeline, ready to
2682be received again. Similarly, the actual contents of files that have
2683been changed cannot be restored (at this time).
2684
2685However, within those constraints, you actually can ``rewind'' your
2686program to a previously saved point in time, and begin debugging it
2687again --- and you can change the course of events so as to debug a
2688different execution path this time.
2689
2690@cindex checkpoints and process id
2691Finally, there is one bit of internal program state that will be
2692different when you return to a checkpoint --- the program's process
2693id. Each checkpoint will have a unique process id (or @var{pid}),
2694and each will be different from the program's original @var{pid}.
2695If your program has saved a local copy of its process id, this could
2696potentially pose a problem.
2697
79a6e687 2698@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2699
2700On some systems such as @sc{gnu}/Linux, address space randomization
2701is performed on new processes for security reasons. This makes it
2702difficult or impossible to set a breakpoint, or watchpoint, on an
2703absolute address if you have to restart the program, since the
2704absolute location of a symbol will change from one execution to the
2705next.
2706
2707A checkpoint, however, is an @emph{identical} copy of a process.
2708Therefore if you create a checkpoint at (eg.@:) the start of main,
2709and simply return to that checkpoint instead of restarting the
2710process, you can avoid the effects of address randomization and
2711your symbols will all stay in the same place.
2712
6d2ebf8b 2713@node Stopping
c906108c
SS
2714@chapter Stopping and Continuing
2715
2716The principal purposes of using a debugger are so that you can stop your
2717program before it terminates; or so that, if your program runs into
2718trouble, you can investigate and find out why.
2719
7a292a7a
SS
2720Inside @value{GDBN}, your program may stop for any of several reasons,
2721such as a signal, a breakpoint, or reaching a new line after a
2722@value{GDBN} command such as @code{step}. You may then examine and
2723change variables, set new breakpoints or remove old ones, and then
2724continue execution. Usually, the messages shown by @value{GDBN} provide
2725ample explanation of the status of your program---but you can also
2726explicitly request this information at any time.
c906108c
SS
2727
2728@table @code
2729@kindex info program
2730@item info program
2731Display information about the status of your program: whether it is
7a292a7a 2732running or not, what process it is, and why it stopped.
c906108c
SS
2733@end table
2734
2735@menu
2736* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2737* Continuing and Stepping:: Resuming execution
c906108c 2738* Signals:: Signals
c906108c 2739* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2740@end menu
2741
6d2ebf8b 2742@node Breakpoints
79a6e687 2743@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2744
2745@cindex breakpoints
2746A @dfn{breakpoint} makes your program stop whenever a certain point in
2747the program is reached. For each breakpoint, you can add conditions to
2748control in finer detail whether your program stops. You can set
2749breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2750Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2751should stop by line number, function name or exact address in the
2752program.
2753
09d4efe1
EZ
2754On some systems, you can set breakpoints in shared libraries before
2755the executable is run. There is a minor limitation on HP-UX systems:
2756you must wait until the executable is run in order to set breakpoints
2757in shared library routines that are not called directly by the program
2758(for example, routines that are arguments in a @code{pthread_create}
2759call).
c906108c
SS
2760
2761@cindex watchpoints
fd60e0df 2762@cindex data breakpoints
c906108c
SS
2763@cindex memory tracing
2764@cindex breakpoint on memory address
2765@cindex breakpoint on variable modification
2766A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2767when the value of an expression changes. The expression may be a value
0ced0c34 2768of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2769combined by operators, such as @samp{a + b}. This is sometimes called
2770@dfn{data breakpoints}. You must use a different command to set
79a6e687 2771watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2772from that, you can manage a watchpoint like any other breakpoint: you
2773enable, disable, and delete both breakpoints and watchpoints using the
2774same commands.
c906108c
SS
2775
2776You can arrange to have values from your program displayed automatically
2777whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2778Automatic Display}.
c906108c
SS
2779
2780@cindex catchpoints
2781@cindex breakpoint on events
2782A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2783when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2784exception or the loading of a library. As with watchpoints, you use a
2785different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2786Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2787other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2788@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2789
2790@cindex breakpoint numbers
2791@cindex numbers for breakpoints
2792@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2793catchpoint when you create it; these numbers are successive integers
2794starting with one. In many of the commands for controlling various
2795features of breakpoints you use the breakpoint number to say which
2796breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2797@dfn{disabled}; if disabled, it has no effect on your program until you
2798enable it again.
2799
c5394b80
JM
2800@cindex breakpoint ranges
2801@cindex ranges of breakpoints
2802Some @value{GDBN} commands accept a range of breakpoints on which to
2803operate. A breakpoint range is either a single breakpoint number, like
2804@samp{5}, or two such numbers, in increasing order, separated by a
2805hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2806all breakpoints in that range are operated on.
c5394b80 2807
c906108c
SS
2808@menu
2809* Set Breaks:: Setting breakpoints
2810* Set Watchpoints:: Setting watchpoints
2811* Set Catchpoints:: Setting catchpoints
2812* Delete Breaks:: Deleting breakpoints
2813* Disabling:: Disabling breakpoints
2814* Conditions:: Break conditions
2815* Break Commands:: Breakpoint command lists
c906108c 2816* Breakpoint Menus:: Breakpoint menus
d4f3574e 2817* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2818* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2819@end menu
2820
6d2ebf8b 2821@node Set Breaks
79a6e687 2822@subsection Setting Breakpoints
c906108c 2823
5d161b24 2824@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2825@c consider in particular declaration with/without initialization.
2826@c
2827@c FIXME 2 is there stuff on this already? break at fun start, already init?
2828
2829@kindex break
41afff9a
EZ
2830@kindex b @r{(@code{break})}
2831@vindex $bpnum@r{, convenience variable}
c906108c
SS
2832@cindex latest breakpoint
2833Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2834@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2835number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2836Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2837convenience variables.
2838
2839You have several ways to say where the breakpoint should go.
2840
2841@table @code
2842@item break @var{function}
5d161b24 2843Set a breakpoint at entry to function @var{function}.
c906108c 2844When using source languages that permit overloading of symbols, such as
b37052ae 2845C@t{++}, @var{function} may refer to more than one possible place to break.
79a6e687 2846@xref{Breakpoint Menus,,Breakpoint Menus}, for a discussion of that situation.
c906108c
SS
2847
2848@item break +@var{offset}
2849@itemx break -@var{offset}
2850Set a breakpoint some number of lines forward or back from the position
d4f3574e 2851at which execution stopped in the currently selected @dfn{stack frame}.
2df3850c 2852(@xref{Frames, ,Frames}, for a description of stack frames.)
c906108c
SS
2853
2854@item break @var{linenum}
2855Set a breakpoint at line @var{linenum} in the current source file.
d4f3574e
SS
2856The current source file is the last file whose source text was printed.
2857The breakpoint will stop your program just before it executes any of the
c906108c
SS
2858code on that line.
2859
2860@item break @var{filename}:@var{linenum}
2861Set a breakpoint at line @var{linenum} in source file @var{filename}.
2862
2863@item break @var{filename}:@var{function}
2864Set a breakpoint at entry to function @var{function} found in file
2865@var{filename}. Specifying a file name as well as a function name is
2866superfluous except when multiple files contain similarly named
2867functions.
2868
2869@item break *@var{address}
2870Set a breakpoint at address @var{address}. You can use this to set
2871breakpoints in parts of your program which do not have debugging
2872information or source files.
2873
2874@item break
2875When called without any arguments, @code{break} sets a breakpoint at
2876the next instruction to be executed in the selected stack frame
2877(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2878innermost, this makes your program stop as soon as control
2879returns to that frame. This is similar to the effect of a
2880@code{finish} command in the frame inside the selected frame---except
2881that @code{finish} does not leave an active breakpoint. If you use
2882@code{break} without an argument in the innermost frame, @value{GDBN} stops
2883the next time it reaches the current location; this may be useful
2884inside loops.
2885
2886@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2887least one instruction has been executed. If it did not do this, you
2888would be unable to proceed past a breakpoint without first disabling the
2889breakpoint. This rule applies whether or not the breakpoint already
2890existed when your program stopped.
2891
2892@item break @dots{} if @var{cond}
2893Set a breakpoint with condition @var{cond}; evaluate the expression
2894@var{cond} each time the breakpoint is reached, and stop only if the
2895value is nonzero---that is, if @var{cond} evaluates as true.
2896@samp{@dots{}} stands for one of the possible arguments described
2897above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2898,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2899
2900@kindex tbreak
2901@item tbreak @var{args}
2902Set a breakpoint enabled only for one stop. @var{args} are the
2903same as for the @code{break} command, and the breakpoint is set in the same
2904way, but the breakpoint is automatically deleted after the first time your
79a6e687 2905program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2906
c906108c 2907@kindex hbreak
ba04e063 2908@cindex hardware breakpoints
c906108c 2909@item hbreak @var{args}
d4f3574e
SS
2910Set a hardware-assisted breakpoint. @var{args} are the same as for the
2911@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2912breakpoint requires hardware support and some target hardware may not
2913have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2914debugging, so you can set a breakpoint at an instruction without
2915changing the instruction. This can be used with the new trap-generation
09d4efe1 2916provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2917will generate traps when a program accesses some data or instruction
2918address that is assigned to the debug registers. However the hardware
2919breakpoint registers can take a limited number of breakpoints. For
2920example, on the DSU, only two data breakpoints can be set at a time, and
2921@value{GDBN} will reject this command if more than two are used. Delete
2922or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2923(@pxref{Disabling, ,Disabling Breakpoints}).
2924@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2925For remote targets, you can restrict the number of hardware
2926breakpoints @value{GDBN} will use, see @ref{set remote
2927hardware-breakpoint-limit}.
501eef12 2928
c906108c
SS
2929
2930@kindex thbreak
2931@item thbreak @var{args}
2932Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2933are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2934the same way. However, like the @code{tbreak} command,
c906108c
SS
2935the breakpoint is automatically deleted after the
2936first time your program stops there. Also, like the @code{hbreak}
5d161b24 2937command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2938may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2939See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2940
2941@kindex rbreak
2942@cindex regular expression
c45da7e6
EZ
2943@cindex breakpoints in functions matching a regexp
2944@cindex set breakpoints in many functions
c906108c 2945@item rbreak @var{regex}
c906108c 2946Set breakpoints on all functions matching the regular expression
11cf8741
JM
2947@var{regex}. This command sets an unconditional breakpoint on all
2948matches, printing a list of all breakpoints it set. Once these
2949breakpoints are set, they are treated just like the breakpoints set with
2950the @code{break} command. You can delete them, disable them, or make
2951them conditional the same way as any other breakpoint.
2952
2953The syntax of the regular expression is the standard one used with tools
2954like @file{grep}. Note that this is different from the syntax used by
2955shells, so for instance @code{foo*} matches all functions that include
2956an @code{fo} followed by zero or more @code{o}s. There is an implicit
2957@code{.*} leading and trailing the regular expression you supply, so to
2958match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2959
f7dc1244 2960@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 2961When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
2962breakpoints on overloaded functions that are not members of any special
2963classes.
c906108c 2964
f7dc1244
EZ
2965@cindex set breakpoints on all functions
2966The @code{rbreak} command can be used to set breakpoints in
2967@strong{all} the functions in a program, like this:
2968
2969@smallexample
2970(@value{GDBP}) rbreak .
2971@end smallexample
2972
c906108c
SS
2973@kindex info breakpoints
2974@cindex @code{$_} and @code{info breakpoints}
2975@item info breakpoints @r{[}@var{n}@r{]}
2976@itemx info break @r{[}@var{n}@r{]}
2977@itemx info watchpoints @r{[}@var{n}@r{]}
2978Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
2979not deleted. Optional argument @var{n} means print information only
2980about the specified breakpoint (or watchpoint or catchpoint). For
2981each breakpoint, following columns are printed:
c906108c
SS
2982
2983@table @emph
2984@item Breakpoint Numbers
2985@item Type
2986Breakpoint, watchpoint, or catchpoint.
2987@item Disposition
2988Whether the breakpoint is marked to be disabled or deleted when hit.
2989@item Enabled or Disabled
2990Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
fe6fbf8b 2991that are not enabled. An optional @samp{(p)} suffix marks pending
3b784c4f 2992breakpoints---breakpoints for which address is either not yet
fe6fbf8b
VP
2993resolved, pending load of a shared library, or for which address was
2994in a shared library that was since unloaded. Such breakpoint won't
2995fire until a shared library that has the symbol or line referred by
2996breakpoint is loaded. See below for details.
c906108c 2997@item Address
fe6fbf8b
VP
2998Where the breakpoint is in your program, as a memory address. For a
2999pending breakpoint whose address is not yet known, this field will
3000contain @samp{<PENDING>}. A breakpoint with several locations will
3b784c4f 3001have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3002@item What
3003Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3004line number. For a pending breakpoint, the original string passed to
3005the breakpoint command will be listed as it cannot be resolved until
3006the appropriate shared library is loaded in the future.
c906108c
SS
3007@end table
3008
3009@noindent
3010If a breakpoint is conditional, @code{info break} shows the condition on
3011the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3012are listed after that. A pending breakpoint is allowed to have a condition
3013specified for it. The condition is not parsed for validity until a shared
3014library is loaded that allows the pending breakpoint to resolve to a
3015valid location.
c906108c
SS
3016
3017@noindent
3018@code{info break} with a breakpoint
3019number @var{n} as argument lists only that breakpoint. The
3020convenience variable @code{$_} and the default examining-address for
3021the @code{x} command are set to the address of the last breakpoint
79a6e687 3022listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3023
3024@noindent
3025@code{info break} displays a count of the number of times the breakpoint
3026has been hit. This is especially useful in conjunction with the
3027@code{ignore} command. You can ignore a large number of breakpoint
3028hits, look at the breakpoint info to see how many times the breakpoint
3029was hit, and then run again, ignoring one less than that number. This
3030will get you quickly to the last hit of that breakpoint.
3031@end table
3032
3033@value{GDBN} allows you to set any number of breakpoints at the same place in
3034your program. There is nothing silly or meaningless about this. When
3035the breakpoints are conditional, this is even useful
79a6e687 3036(@pxref{Conditions, ,Break Conditions}).
c906108c 3037
fcda367b 3038It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3039in your program. Examples of this situation are:
3040
3041@itemize @bullet
3042
3043@item
3044For a C@t{++} constructor, the @value{NGCC} compiler generates several
3045instances of the function body, used in different cases.
3046
3047@item
3048For a C@t{++} template function, a given line in the function can
3049correspond to any number of instantiations.
3050
3051@item
3052For an inlined function, a given source line can correspond to
3053several places where that function is inlined.
3054
3055@end itemize
3056
3057In all those cases, @value{GDBN} will insert a breakpoint at all
3058the relevant locations.
3059
3b784c4f
EZ
3060A breakpoint with multiple locations is displayed in the breakpoint
3061table using several rows---one header row, followed by one row for
3062each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3063address column. The rows for individual locations contain the actual
3064addresses for locations, and show the functions to which those
3065locations belong. The number column for a location is of the form
fe6fbf8b
VP
3066@var{breakpoint-number}.@var{location-number}.
3067
3068For example:
3b784c4f 3069
fe6fbf8b
VP
3070@smallexample
3071Num Type Disp Enb Address What
30721 breakpoint keep y <MULTIPLE>
3073 stop only if i==1
3074 breakpoint already hit 1 time
30751.1 y 0x080486a2 in void foo<int>() at t.cc:8
30761.2 y 0x080486ca in void foo<double>() at t.cc:8
3077@end smallexample
3078
3079Each location can be individually enabled or disabled by passing
3080@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3081@code{enable} and @code{disable} commands. Note that you cannot
3082delete the individual locations from the list, you can only delete the
16bfc218 3083entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3084the @kbd{delete @var{num}} command, where @var{num} is the number of
3085the parent breakpoint, 1 in the above example). Disabling or enabling
3086the parent breakpoint (@pxref{Disabling}) affects all of the locations
3087that belong to that breakpoint.
fe6fbf8b 3088
2650777c 3089@cindex pending breakpoints
fe6fbf8b 3090It's quite common to have a breakpoint inside a shared library.
3b784c4f 3091Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3092and possibly repeatedly, as the program is executed. To support
3093this use case, @value{GDBN} updates breakpoint locations whenever
3094any shared library is loaded or unloaded. Typically, you would
fcda367b 3095set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3096debugging session, when the library is not loaded, and when the
3097symbols from the library are not available. When you try to set
3098breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3099a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3100is not yet resolved.
3101
3102After the program is run, whenever a new shared library is loaded,
3103@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3104shared library contains the symbol or line referred to by some
3105pending breakpoint, that breakpoint is resolved and becomes an
3106ordinary breakpoint. When a library is unloaded, all breakpoints
3107that refer to its symbols or source lines become pending again.
3108
3109This logic works for breakpoints with multiple locations, too. For
3110example, if you have a breakpoint in a C@t{++} template function, and
3111a newly loaded shared library has an instantiation of that template,
3112a new location is added to the list of locations for the breakpoint.
3113
3114Except for having unresolved address, pending breakpoints do not
3115differ from regular breakpoints. You can set conditions or commands,
3116enable and disable them and perform other breakpoint operations.
3117
3118@value{GDBN} provides some additional commands for controlling what
3119happens when the @samp{break} command cannot resolve breakpoint
3120address specification to an address:
dd79a6cf
JJ
3121
3122@kindex set breakpoint pending
3123@kindex show breakpoint pending
3124@table @code
3125@item set breakpoint pending auto
3126This is the default behavior. When @value{GDBN} cannot find the breakpoint
3127location, it queries you whether a pending breakpoint should be created.
3128
3129@item set breakpoint pending on
3130This indicates that an unrecognized breakpoint location should automatically
3131result in a pending breakpoint being created.
3132
3133@item set breakpoint pending off
3134This indicates that pending breakpoints are not to be created. Any
3135unrecognized breakpoint location results in an error. This setting does
3136not affect any pending breakpoints previously created.
3137
3138@item show breakpoint pending
3139Show the current behavior setting for creating pending breakpoints.
3140@end table
2650777c 3141
fe6fbf8b
VP
3142The settings above only affect the @code{break} command and its
3143variants. Once breakpoint is set, it will be automatically updated
3144as shared libraries are loaded and unloaded.
2650777c 3145
765dc015
VP
3146@cindex automatic hardware breakpoints
3147For some targets, @value{GDBN} can automatically decide if hardware or
3148software breakpoints should be used, depending on whether the
3149breakpoint address is read-only or read-write. This applies to
3150breakpoints set with the @code{break} command as well as to internal
3151breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3152breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3153breakpoints.
3154
3155You can control this automatic behaviour with the following commands::
3156
3157@kindex set breakpoint auto-hw
3158@kindex show breakpoint auto-hw
3159@table @code
3160@item set breakpoint auto-hw on
3161This is the default behavior. When @value{GDBN} sets a breakpoint, it
3162will try to use the target memory map to decide if software or hardware
3163breakpoint must be used.
3164
3165@item set breakpoint auto-hw off
3166This indicates @value{GDBN} should not automatically select breakpoint
3167type. If the target provides a memory map, @value{GDBN} will warn when
3168trying to set software breakpoint at a read-only address.
3169@end table
3170
3171
c906108c
SS
3172@cindex negative breakpoint numbers
3173@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3174@value{GDBN} itself sometimes sets breakpoints in your program for
3175special purposes, such as proper handling of @code{longjmp} (in C
3176programs). These internal breakpoints are assigned negative numbers,
3177starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3178You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3179@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3180
3181
6d2ebf8b 3182@node Set Watchpoints
79a6e687 3183@subsection Setting Watchpoints
c906108c
SS
3184
3185@cindex setting watchpoints
c906108c
SS
3186You can use a watchpoint to stop execution whenever the value of an
3187expression changes, without having to predict a particular place where
fd60e0df
EZ
3188this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3189The expression may be as simple as the value of a single variable, or
3190as complex as many variables combined by operators. Examples include:
3191
3192@itemize @bullet
3193@item
3194A reference to the value of a single variable.
3195
3196@item
3197An address cast to an appropriate data type. For example,
3198@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3199address (assuming an @code{int} occupies 4 bytes).
3200
3201@item
3202An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3203expression can use any operators valid in the program's native
3204language (@pxref{Languages}).
3205@end itemize
c906108c 3206
82f2d802
EZ
3207@cindex software watchpoints
3208@cindex hardware watchpoints
c906108c 3209Depending on your system, watchpoints may be implemented in software or
2df3850c 3210hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3211program and testing the variable's value each time, which is hundreds of
3212times slower than normal execution. (But this may still be worth it, to
3213catch errors where you have no clue what part of your program is the
3214culprit.)
3215
37e4754d 3216On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3217x86-based targets, @value{GDBN} includes support for hardware
3218watchpoints, which do not slow down the running of your program.
c906108c
SS
3219
3220@table @code
3221@kindex watch
d8b2a693 3222@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3223Set a watchpoint for an expression. @value{GDBN} will break when the
3224expression @var{expr} is written into by the program and its value
3225changes. The simplest (and the most popular) use of this command is
3226to watch the value of a single variable:
3227
3228@smallexample
3229(@value{GDBP}) watch foo
3230@end smallexample
c906108c 3231
d8b2a693
JB
3232If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3233clause, @value{GDBN} breaks only when the thread identified by
3234@var{threadnum} changes the value of @var{expr}. If any other threads
3235change the value of @var{expr}, @value{GDBN} will not break. Note
3236that watchpoints restricted to a single thread in this way only work
3237with Hardware Watchpoints.
3238
c906108c 3239@kindex rwatch
d8b2a693 3240@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3241Set a watchpoint that will break when the value of @var{expr} is read
3242by the program.
c906108c
SS
3243
3244@kindex awatch
d8b2a693 3245@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3246Set a watchpoint that will break when @var{expr} is either read from
3247or written into by the program.
c906108c 3248
45ac1734 3249@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3250@item info watchpoints
3251This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3252it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3253@end table
3254
3255@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3256watchpoints execute very quickly, and the debugger reports a change in
3257value at the exact instruction where the change occurs. If @value{GDBN}
3258cannot set a hardware watchpoint, it sets a software watchpoint, which
3259executes more slowly and reports the change in value at the next
82f2d802
EZ
3260@emph{statement}, not the instruction, after the change occurs.
3261
82f2d802
EZ
3262@cindex use only software watchpoints
3263You can force @value{GDBN} to use only software watchpoints with the
3264@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3265zero, @value{GDBN} will never try to use hardware watchpoints, even if
3266the underlying system supports them. (Note that hardware-assisted
3267watchpoints that were set @emph{before} setting
3268@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3269mechanism of watching expression values.)
c906108c 3270
9c16f35a
EZ
3271@table @code
3272@item set can-use-hw-watchpoints
3273@kindex set can-use-hw-watchpoints
3274Set whether or not to use hardware watchpoints.
3275
3276@item show can-use-hw-watchpoints
3277@kindex show can-use-hw-watchpoints
3278Show the current mode of using hardware watchpoints.
3279@end table
3280
3281For remote targets, you can restrict the number of hardware
3282watchpoints @value{GDBN} will use, see @ref{set remote
3283hardware-breakpoint-limit}.
3284
c906108c
SS
3285When you issue the @code{watch} command, @value{GDBN} reports
3286
474c8240 3287@smallexample
c906108c 3288Hardware watchpoint @var{num}: @var{expr}
474c8240 3289@end smallexample
c906108c
SS
3290
3291@noindent
3292if it was able to set a hardware watchpoint.
3293
7be570e7
JM
3294Currently, the @code{awatch} and @code{rwatch} commands can only set
3295hardware watchpoints, because accesses to data that don't change the
3296value of the watched expression cannot be detected without examining
3297every instruction as it is being executed, and @value{GDBN} does not do
3298that currently. If @value{GDBN} finds that it is unable to set a
3299hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3300will print a message like this:
3301
3302@smallexample
3303Expression cannot be implemented with read/access watchpoint.
3304@end smallexample
3305
3306Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3307data type of the watched expression is wider than what a hardware
3308watchpoint on the target machine can handle. For example, some systems
3309can only watch regions that are up to 4 bytes wide; on such systems you
3310cannot set hardware watchpoints for an expression that yields a
3311double-precision floating-point number (which is typically 8 bytes
3312wide). As a work-around, it might be possible to break the large region
3313into a series of smaller ones and watch them with separate watchpoints.
3314
3315If you set too many hardware watchpoints, @value{GDBN} might be unable
3316to insert all of them when you resume the execution of your program.
3317Since the precise number of active watchpoints is unknown until such
3318time as the program is about to be resumed, @value{GDBN} might not be
3319able to warn you about this when you set the watchpoints, and the
3320warning will be printed only when the program is resumed:
3321
3322@smallexample
3323Hardware watchpoint @var{num}: Could not insert watchpoint
3324@end smallexample
3325
3326@noindent
3327If this happens, delete or disable some of the watchpoints.
3328
fd60e0df
EZ
3329Watching complex expressions that reference many variables can also
3330exhaust the resources available for hardware-assisted watchpoints.
3331That's because @value{GDBN} needs to watch every variable in the
3332expression with separately allocated resources.
3333
7be570e7
JM
3334The SPARClite DSU will generate traps when a program accesses some data
3335or instruction address that is assigned to the debug registers. For the
3336data addresses, DSU facilitates the @code{watch} command. However the
3337hardware breakpoint registers can only take two data watchpoints, and
3338both watchpoints must be the same kind. For example, you can set two
3339watchpoints with @code{watch} commands, two with @code{rwatch} commands,
3340@strong{or} two with @code{awatch} commands, but you cannot set one
3341watchpoint with one command and the other with a different command.
c906108c
SS
3342@value{GDBN} will reject the command if you try to mix watchpoints.
3343Delete or disable unused watchpoint commands before setting new ones.
3344
3345If you call a function interactively using @code{print} or @code{call},
2df3850c 3346any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3347kind of breakpoint or the call completes.
3348
7be570e7
JM
3349@value{GDBN} automatically deletes watchpoints that watch local
3350(automatic) variables, or expressions that involve such variables, when
3351they go out of scope, that is, when the execution leaves the block in
3352which these variables were defined. In particular, when the program
3353being debugged terminates, @emph{all} local variables go out of scope,
3354and so only watchpoints that watch global variables remain set. If you
3355rerun the program, you will need to set all such watchpoints again. One
3356way of doing that would be to set a code breakpoint at the entry to the
3357@code{main} function and when it breaks, set all the watchpoints.
3358
c906108c
SS
3359@cindex watchpoints and threads
3360@cindex threads and watchpoints
d983da9c
DJ
3361In multi-threaded programs, watchpoints will detect changes to the
3362watched expression from every thread.
3363
3364@quotation
3365@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3366have only limited usefulness. If @value{GDBN} creates a software
3367watchpoint, it can only watch the value of an expression @emph{in a
3368single thread}. If you are confident that the expression can only
3369change due to the current thread's activity (and if you are also
3370confident that no other thread can become current), then you can use
3371software watchpoints as usual. However, @value{GDBN} may not notice
3372when a non-current thread's activity changes the expression. (Hardware
3373watchpoints, in contrast, watch an expression in all threads.)
c906108c 3374@end quotation
c906108c 3375
501eef12
AC
3376@xref{set remote hardware-watchpoint-limit}.
3377
6d2ebf8b 3378@node Set Catchpoints
79a6e687 3379@subsection Setting Catchpoints
d4f3574e 3380@cindex catchpoints, setting
c906108c
SS
3381@cindex exception handlers
3382@cindex event handling
3383
3384You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3385kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3386shared library. Use the @code{catch} command to set a catchpoint.
3387
3388@table @code
3389@kindex catch
3390@item catch @var{event}
3391Stop when @var{event} occurs. @var{event} can be any of the following:
3392@table @code
3393@item throw
4644b6e3 3394@cindex stop on C@t{++} exceptions
b37052ae 3395The throwing of a C@t{++} exception.
c906108c
SS
3396
3397@item catch
b37052ae 3398The catching of a C@t{++} exception.
c906108c 3399
8936fcda
JB
3400@item exception
3401@cindex Ada exception catching
3402@cindex catch Ada exceptions
3403An Ada exception being raised. If an exception name is specified
3404at the end of the command (eg @code{catch exception Program_Error}),
3405the debugger will stop only when this specific exception is raised.
3406Otherwise, the debugger stops execution when any Ada exception is raised.
3407
3408@item exception unhandled
3409An exception that was raised but is not handled by the program.
3410
3411@item assert
3412A failed Ada assertion.
3413
c906108c 3414@item exec
4644b6e3 3415@cindex break on fork/exec
c906108c
SS
3416A call to @code{exec}. This is currently only available for HP-UX.
3417
3418@item fork
c906108c
SS
3419A call to @code{fork}. This is currently only available for HP-UX.
3420
3421@item vfork
c906108c
SS
3422A call to @code{vfork}. This is currently only available for HP-UX.
3423
3424@item load
3425@itemx load @var{libname}
4644b6e3 3426@cindex break on load/unload of shared library
c906108c
SS
3427The dynamic loading of any shared library, or the loading of the library
3428@var{libname}. This is currently only available for HP-UX.
3429
3430@item unload
3431@itemx unload @var{libname}
c906108c
SS
3432The unloading of any dynamically loaded shared library, or the unloading
3433of the library @var{libname}. This is currently only available for HP-UX.
3434@end table
3435
3436@item tcatch @var{event}
3437Set a catchpoint that is enabled only for one stop. The catchpoint is
3438automatically deleted after the first time the event is caught.
3439
3440@end table
3441
3442Use the @code{info break} command to list the current catchpoints.
3443
b37052ae 3444There are currently some limitations to C@t{++} exception handling
c906108c
SS
3445(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3446
3447@itemize @bullet
3448@item
3449If you call a function interactively, @value{GDBN} normally returns
3450control to you when the function has finished executing. If the call
3451raises an exception, however, the call may bypass the mechanism that
3452returns control to you and cause your program either to abort or to
3453simply continue running until it hits a breakpoint, catches a signal
3454that @value{GDBN} is listening for, or exits. This is the case even if
3455you set a catchpoint for the exception; catchpoints on exceptions are
3456disabled within interactive calls.
3457
3458@item
3459You cannot raise an exception interactively.
3460
3461@item
3462You cannot install an exception handler interactively.
3463@end itemize
3464
3465@cindex raise exceptions
3466Sometimes @code{catch} is not the best way to debug exception handling:
3467if you need to know exactly where an exception is raised, it is better to
3468stop @emph{before} the exception handler is called, since that way you
3469can see the stack before any unwinding takes place. If you set a
3470breakpoint in an exception handler instead, it may not be easy to find
3471out where the exception was raised.
3472
3473To stop just before an exception handler is called, you need some
b37052ae 3474knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3475raised by calling a library function named @code{__raise_exception}
3476which has the following ANSI C interface:
3477
474c8240 3478@smallexample
c906108c 3479 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3480 @var{id} is the exception identifier. */
3481 void __raise_exception (void **addr, void *id);
474c8240 3482@end smallexample
c906108c
SS
3483
3484@noindent
3485To make the debugger catch all exceptions before any stack
3486unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3487(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3488
79a6e687 3489With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3490that depends on the value of @var{id}, you can stop your program when
3491a specific exception is raised. You can use multiple conditional
3492breakpoints to stop your program when any of a number of exceptions are
3493raised.
3494
3495
6d2ebf8b 3496@node Delete Breaks
79a6e687 3497@subsection Deleting Breakpoints
c906108c
SS
3498
3499@cindex clearing breakpoints, watchpoints, catchpoints
3500@cindex deleting breakpoints, watchpoints, catchpoints
3501It is often necessary to eliminate a breakpoint, watchpoint, or
3502catchpoint once it has done its job and you no longer want your program
3503to stop there. This is called @dfn{deleting} the breakpoint. A
3504breakpoint that has been deleted no longer exists; it is forgotten.
3505
3506With the @code{clear} command you can delete breakpoints according to
3507where they are in your program. With the @code{delete} command you can
3508delete individual breakpoints, watchpoints, or catchpoints by specifying
3509their breakpoint numbers.
3510
3511It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3512automatically ignores breakpoints on the first instruction to be executed
3513when you continue execution without changing the execution address.
3514
3515@table @code
3516@kindex clear
3517@item clear
3518Delete any breakpoints at the next instruction to be executed in the
79a6e687 3519selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3520the innermost frame is selected, this is a good way to delete a
3521breakpoint where your program just stopped.
3522
3523@item clear @var{function}
3524@itemx clear @var{filename}:@var{function}
09d4efe1 3525Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3526
3527@item clear @var{linenum}
3528@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3529Delete any breakpoints set at or within the code of the specified
3530@var{linenum} of the specified @var{filename}.
c906108c
SS
3531
3532@cindex delete breakpoints
3533@kindex delete
41afff9a 3534@kindex d @r{(@code{delete})}
c5394b80
JM
3535@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3536Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3537ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3538breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3539confirm off}). You can abbreviate this command as @code{d}.
3540@end table
3541
6d2ebf8b 3542@node Disabling
79a6e687 3543@subsection Disabling Breakpoints
c906108c 3544
4644b6e3 3545@cindex enable/disable a breakpoint
c906108c
SS
3546Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3547prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3548it had been deleted, but remembers the information on the breakpoint so
3549that you can @dfn{enable} it again later.
3550
3551You disable and enable breakpoints, watchpoints, and catchpoints with
3552the @code{enable} and @code{disable} commands, optionally specifying one
3553or more breakpoint numbers as arguments. Use @code{info break} or
3554@code{info watch} to print a list of breakpoints, watchpoints, and
3555catchpoints if you do not know which numbers to use.
3556
3b784c4f
EZ
3557Disabling and enabling a breakpoint that has multiple locations
3558affects all of its locations.
3559
c906108c
SS
3560A breakpoint, watchpoint, or catchpoint can have any of four different
3561states of enablement:
3562
3563@itemize @bullet
3564@item
3565Enabled. The breakpoint stops your program. A breakpoint set
3566with the @code{break} command starts out in this state.
3567@item
3568Disabled. The breakpoint has no effect on your program.
3569@item
3570Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3571disabled.
c906108c
SS
3572@item
3573Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3574immediately after it does so it is deleted permanently. A breakpoint
3575set with the @code{tbreak} command starts out in this state.
c906108c
SS
3576@end itemize
3577
3578You can use the following commands to enable or disable breakpoints,
3579watchpoints, and catchpoints:
3580
3581@table @code
c906108c 3582@kindex disable
41afff9a 3583@kindex dis @r{(@code{disable})}
c5394b80 3584@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3585Disable the specified breakpoints---or all breakpoints, if none are
3586listed. A disabled breakpoint has no effect but is not forgotten. All
3587options such as ignore-counts, conditions and commands are remembered in
3588case the breakpoint is enabled again later. You may abbreviate
3589@code{disable} as @code{dis}.
3590
c906108c 3591@kindex enable
c5394b80 3592@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3593Enable the specified breakpoints (or all defined breakpoints). They
3594become effective once again in stopping your program.
3595
c5394b80 3596@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3597Enable the specified breakpoints temporarily. @value{GDBN} disables any
3598of these breakpoints immediately after stopping your program.
3599
c5394b80 3600@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3601Enable the specified breakpoints to work once, then die. @value{GDBN}
3602deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3603Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3604@end table
3605
d4f3574e
SS
3606@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3607@c confusing: tbreak is also initially enabled.
c906108c 3608Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3609,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3610subsequently, they become disabled or enabled only when you use one of
3611the commands above. (The command @code{until} can set and delete a
3612breakpoint of its own, but it does not change the state of your other
3613breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3614Stepping}.)
c906108c 3615
6d2ebf8b 3616@node Conditions
79a6e687 3617@subsection Break Conditions
c906108c
SS
3618@cindex conditional breakpoints
3619@cindex breakpoint conditions
3620
3621@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3622@c in particular for a watchpoint?
c906108c
SS
3623The simplest sort of breakpoint breaks every time your program reaches a
3624specified place. You can also specify a @dfn{condition} for a
3625breakpoint. A condition is just a Boolean expression in your
3626programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3627a condition evaluates the expression each time your program reaches it,
3628and your program stops only if the condition is @emph{true}.
3629
3630This is the converse of using assertions for program validation; in that
3631situation, you want to stop when the assertion is violated---that is,
3632when the condition is false. In C, if you want to test an assertion expressed
3633by the condition @var{assert}, you should set the condition
3634@samp{! @var{assert}} on the appropriate breakpoint.
3635
3636Conditions are also accepted for watchpoints; you may not need them,
3637since a watchpoint is inspecting the value of an expression anyhow---but
3638it might be simpler, say, to just set a watchpoint on a variable name,
3639and specify a condition that tests whether the new value is an interesting
3640one.
3641
3642Break conditions can have side effects, and may even call functions in
3643your program. This can be useful, for example, to activate functions
3644that log program progress, or to use your own print functions to
3645format special data structures. The effects are completely predictable
3646unless there is another enabled breakpoint at the same address. (In
3647that case, @value{GDBN} might see the other breakpoint first and stop your
3648program without checking the condition of this one.) Note that
d4f3574e
SS
3649breakpoint commands are usually more convenient and flexible than break
3650conditions for the
c906108c 3651purpose of performing side effects when a breakpoint is reached
79a6e687 3652(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3653
3654Break conditions can be specified when a breakpoint is set, by using
3655@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3656Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3657with the @code{condition} command.
53a5351d 3658
c906108c
SS
3659You can also use the @code{if} keyword with the @code{watch} command.
3660The @code{catch} command does not recognize the @code{if} keyword;
3661@code{condition} is the only way to impose a further condition on a
3662catchpoint.
c906108c
SS
3663
3664@table @code
3665@kindex condition
3666@item condition @var{bnum} @var{expression}
3667Specify @var{expression} as the break condition for breakpoint,
3668watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3669breakpoint @var{bnum} stops your program only if the value of
3670@var{expression} is true (nonzero, in C). When you use
3671@code{condition}, @value{GDBN} checks @var{expression} immediately for
3672syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3673referents in the context of your breakpoint. If @var{expression} uses
3674symbols not referenced in the context of the breakpoint, @value{GDBN}
3675prints an error message:
3676
474c8240 3677@smallexample
d4f3574e 3678No symbol "foo" in current context.
474c8240 3679@end smallexample
d4f3574e
SS
3680
3681@noindent
c906108c
SS
3682@value{GDBN} does
3683not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3684command (or a command that sets a breakpoint with a condition, like
3685@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3686
3687@item condition @var{bnum}
3688Remove the condition from breakpoint number @var{bnum}. It becomes
3689an ordinary unconditional breakpoint.
3690@end table
3691
3692@cindex ignore count (of breakpoint)
3693A special case of a breakpoint condition is to stop only when the
3694breakpoint has been reached a certain number of times. This is so
3695useful that there is a special way to do it, using the @dfn{ignore
3696count} of the breakpoint. Every breakpoint has an ignore count, which
3697is an integer. Most of the time, the ignore count is zero, and
3698therefore has no effect. But if your program reaches a breakpoint whose
3699ignore count is positive, then instead of stopping, it just decrements
3700the ignore count by one and continues. As a result, if the ignore count
3701value is @var{n}, the breakpoint does not stop the next @var{n} times
3702your program reaches it.
3703
3704@table @code
3705@kindex ignore
3706@item ignore @var{bnum} @var{count}
3707Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3708The next @var{count} times the breakpoint is reached, your program's
3709execution does not stop; other than to decrement the ignore count, @value{GDBN}
3710takes no action.
3711
3712To make the breakpoint stop the next time it is reached, specify
3713a count of zero.
3714
3715When you use @code{continue} to resume execution of your program from a
3716breakpoint, you can specify an ignore count directly as an argument to
3717@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3718Stepping,,Continuing and Stepping}.
c906108c
SS
3719
3720If a breakpoint has a positive ignore count and a condition, the
3721condition is not checked. Once the ignore count reaches zero,
3722@value{GDBN} resumes checking the condition.
3723
3724You could achieve the effect of the ignore count with a condition such
3725as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3726is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3727Variables}.
c906108c
SS
3728@end table
3729
3730Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3731
3732
6d2ebf8b 3733@node Break Commands
79a6e687 3734@subsection Breakpoint Command Lists
c906108c
SS
3735
3736@cindex breakpoint commands
3737You can give any breakpoint (or watchpoint or catchpoint) a series of
3738commands to execute when your program stops due to that breakpoint. For
3739example, you might want to print the values of certain expressions, or
3740enable other breakpoints.
3741
3742@table @code
3743@kindex commands
ca91424e 3744@kindex end@r{ (breakpoint commands)}
c906108c
SS
3745@item commands @r{[}@var{bnum}@r{]}
3746@itemx @dots{} @var{command-list} @dots{}
3747@itemx end
3748Specify a list of commands for breakpoint number @var{bnum}. The commands
3749themselves appear on the following lines. Type a line containing just
3750@code{end} to terminate the commands.
3751
3752To remove all commands from a breakpoint, type @code{commands} and
3753follow it immediately with @code{end}; that is, give no commands.
3754
3755With no @var{bnum} argument, @code{commands} refers to the last
3756breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3757recently encountered).
3758@end table
3759
3760Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3761disabled within a @var{command-list}.
3762
3763You can use breakpoint commands to start your program up again. Simply
3764use the @code{continue} command, or @code{step}, or any other command
3765that resumes execution.
3766
3767Any other commands in the command list, after a command that resumes
3768execution, are ignored. This is because any time you resume execution
3769(even with a simple @code{next} or @code{step}), you may encounter
3770another breakpoint---which could have its own command list, leading to
3771ambiguities about which list to execute.
3772
3773@kindex silent
3774If the first command you specify in a command list is @code{silent}, the
3775usual message about stopping at a breakpoint is not printed. This may
3776be desirable for breakpoints that are to print a specific message and
3777then continue. If none of the remaining commands print anything, you
3778see no sign that the breakpoint was reached. @code{silent} is
3779meaningful only at the beginning of a breakpoint command list.
3780
3781The commands @code{echo}, @code{output}, and @code{printf} allow you to
3782print precisely controlled output, and are often useful in silent
79a6e687 3783breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3784
3785For example, here is how you could use breakpoint commands to print the
3786value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3787
474c8240 3788@smallexample
c906108c
SS
3789break foo if x>0
3790commands
3791silent
3792printf "x is %d\n",x
3793cont
3794end
474c8240 3795@end smallexample
c906108c
SS
3796
3797One application for breakpoint commands is to compensate for one bug so
3798you can test for another. Put a breakpoint just after the erroneous line
3799of code, give it a condition to detect the case in which something
3800erroneous has been done, and give it commands to assign correct values
3801to any variables that need them. End with the @code{continue} command
3802so that your program does not stop, and start with the @code{silent}
3803command so that no output is produced. Here is an example:
3804
474c8240 3805@smallexample
c906108c
SS
3806break 403
3807commands
3808silent
3809set x = y + 4
3810cont
3811end
474c8240 3812@end smallexample
c906108c 3813
6d2ebf8b 3814@node Breakpoint Menus
79a6e687 3815@subsection Breakpoint Menus
c906108c
SS
3816@cindex overloading
3817@cindex symbol overloading
3818
b383017d 3819Some programming languages (notably C@t{++} and Objective-C) permit a
b37303ee 3820single function name
c906108c
SS
3821to be defined several times, for application in different contexts.
3822This is called @dfn{overloading}. When a function name is overloaded,
3823@samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3b784c4f
EZ
3824a breakpoint. You can use explicit signature of the function, as in
3825@samp{break @var{function}(@var{types})}, to specify which
c906108c
SS
3826particular version of the function you want. Otherwise, @value{GDBN} offers
3827you a menu of numbered choices for different possible breakpoints, and
3828waits for your selection with the prompt @samp{>}. The first two
3829options are always @samp{[0] cancel} and @samp{[1] all}. Typing @kbd{1}
3830sets a breakpoint at each definition of @var{function}, and typing
3831@kbd{0} aborts the @code{break} command without setting any new
3832breakpoints.
3833
3834For example, the following session excerpt shows an attempt to set a
3835breakpoint at the overloaded symbol @code{String::after}.
3836We choose three particular definitions of that function name:
3837
3838@c FIXME! This is likely to change to show arg type lists, at least
3839@smallexample
3840@group
3841(@value{GDBP}) b String::after
3842[0] cancel
3843[1] all
3844[2] file:String.cc; line number:867
3845[3] file:String.cc; line number:860
3846[4] file:String.cc; line number:875
3847[5] file:String.cc; line number:853
3848[6] file:String.cc; line number:846
3849[7] file:String.cc; line number:735
3850> 2 4 6
3851Breakpoint 1 at 0xb26c: file String.cc, line 867.
3852Breakpoint 2 at 0xb344: file String.cc, line 875.
3853Breakpoint 3 at 0xafcc: file String.cc, line 846.
3854Multiple breakpoints were set.
3855Use the "delete" command to delete unwanted
3856 breakpoints.
3857(@value{GDBP})
3858@end group
3859@end smallexample
c906108c
SS
3860
3861@c @ifclear BARETARGET
6d2ebf8b 3862@node Error in Breakpoints
d4f3574e 3863@subsection ``Cannot insert breakpoints''
c906108c
SS
3864@c
3865@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3866@c
d4f3574e
SS
3867Under some operating systems, breakpoints cannot be used in a program if
3868any other process is running that program. In this situation,
5d161b24 3869attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3870@value{GDBN} to print an error message:
3871
474c8240 3872@smallexample
d4f3574e
SS
3873Cannot insert breakpoints.
3874The same program may be running in another process.
474c8240 3875@end smallexample
d4f3574e
SS
3876
3877When this happens, you have three ways to proceed:
3878
3879@enumerate
3880@item
3881Remove or disable the breakpoints, then continue.
3882
3883@item
5d161b24 3884Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3885name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3886that @value{GDBN} should run your program under that name.
d4f3574e
SS
3887Then start your program again.
3888
3889@item
3890Relink your program so that the text segment is nonsharable, using the
3891linker option @samp{-N}. The operating system limitation may not apply
3892to nonsharable executables.
3893@end enumerate
c906108c
SS
3894@c @end ifclear
3895
d4f3574e
SS
3896A similar message can be printed if you request too many active
3897hardware-assisted breakpoints and watchpoints:
3898
3899@c FIXME: the precise wording of this message may change; the relevant
3900@c source change is not committed yet (Sep 3, 1999).
3901@smallexample
3902Stopped; cannot insert breakpoints.
3903You may have requested too many hardware breakpoints and watchpoints.
3904@end smallexample
3905
3906@noindent
3907This message is printed when you attempt to resume the program, since
3908only then @value{GDBN} knows exactly how many hardware breakpoints and
3909watchpoints it needs to insert.
3910
3911When this message is printed, you need to disable or remove some of the
3912hardware-assisted breakpoints and watchpoints, and then continue.
3913
79a6e687 3914@node Breakpoint-related Warnings
1485d690
KB
3915@subsection ``Breakpoint address adjusted...''
3916@cindex breakpoint address adjusted
3917
3918Some processor architectures place constraints on the addresses at
3919which breakpoints may be placed. For architectures thus constrained,
3920@value{GDBN} will attempt to adjust the breakpoint's address to comply
3921with the constraints dictated by the architecture.
3922
3923One example of such an architecture is the Fujitsu FR-V. The FR-V is
3924a VLIW architecture in which a number of RISC-like instructions may be
3925bundled together for parallel execution. The FR-V architecture
3926constrains the location of a breakpoint instruction within such a
3927bundle to the instruction with the lowest address. @value{GDBN}
3928honors this constraint by adjusting a breakpoint's address to the
3929first in the bundle.
3930
3931It is not uncommon for optimized code to have bundles which contain
3932instructions from different source statements, thus it may happen that
3933a breakpoint's address will be adjusted from one source statement to
3934another. Since this adjustment may significantly alter @value{GDBN}'s
3935breakpoint related behavior from what the user expects, a warning is
3936printed when the breakpoint is first set and also when the breakpoint
3937is hit.
3938
3939A warning like the one below is printed when setting a breakpoint
3940that's been subject to address adjustment:
3941
3942@smallexample
3943warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3944@end smallexample
3945
3946Such warnings are printed both for user settable and @value{GDBN}'s
3947internal breakpoints. If you see one of these warnings, you should
3948verify that a breakpoint set at the adjusted address will have the
3949desired affect. If not, the breakpoint in question may be removed and
b383017d 3950other breakpoints may be set which will have the desired behavior.
1485d690
KB
3951E.g., it may be sufficient to place the breakpoint at a later
3952instruction. A conditional breakpoint may also be useful in some
3953cases to prevent the breakpoint from triggering too often.
3954
3955@value{GDBN} will also issue a warning when stopping at one of these
3956adjusted breakpoints:
3957
3958@smallexample
3959warning: Breakpoint 1 address previously adjusted from 0x00010414
3960to 0x00010410.
3961@end smallexample
3962
3963When this warning is encountered, it may be too late to take remedial
3964action except in cases where the breakpoint is hit earlier or more
3965frequently than expected.
d4f3574e 3966
6d2ebf8b 3967@node Continuing and Stepping
79a6e687 3968@section Continuing and Stepping
c906108c
SS
3969
3970@cindex stepping
3971@cindex continuing
3972@cindex resuming execution
3973@dfn{Continuing} means resuming program execution until your program
3974completes normally. In contrast, @dfn{stepping} means executing just
3975one more ``step'' of your program, where ``step'' may mean either one
3976line of source code, or one machine instruction (depending on what
7a292a7a
SS
3977particular command you use). Either when continuing or when stepping,
3978your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
3979it stops due to a signal, you may want to use @code{handle}, or use
3980@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
3981
3982@table @code
3983@kindex continue
41afff9a
EZ
3984@kindex c @r{(@code{continue})}
3985@kindex fg @r{(resume foreground execution)}
c906108c
SS
3986@item continue @r{[}@var{ignore-count}@r{]}
3987@itemx c @r{[}@var{ignore-count}@r{]}
3988@itemx fg @r{[}@var{ignore-count}@r{]}
3989Resume program execution, at the address where your program last stopped;
3990any breakpoints set at that address are bypassed. The optional argument
3991@var{ignore-count} allows you to specify a further number of times to
3992ignore a breakpoint at this location; its effect is like that of
79a6e687 3993@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
3994
3995The argument @var{ignore-count} is meaningful only when your program
3996stopped due to a breakpoint. At other times, the argument to
3997@code{continue} is ignored.
3998
d4f3574e
SS
3999The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4000debugged program is deemed to be the foreground program) are provided
4001purely for convenience, and have exactly the same behavior as
4002@code{continue}.
c906108c
SS
4003@end table
4004
4005To resume execution at a different place, you can use @code{return}
79a6e687 4006(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4007calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4008Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4009
4010A typical technique for using stepping is to set a breakpoint
79a6e687 4011(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4012beginning of the function or the section of your program where a problem
4013is believed to lie, run your program until it stops at that breakpoint,
4014and then step through the suspect area, examining the variables that are
4015interesting, until you see the problem happen.
4016
4017@table @code
4018@kindex step
41afff9a 4019@kindex s @r{(@code{step})}
c906108c
SS
4020@item step
4021Continue running your program until control reaches a different source
4022line, then stop it and return control to @value{GDBN}. This command is
4023abbreviated @code{s}.
4024
4025@quotation
4026@c "without debugging information" is imprecise; actually "without line
4027@c numbers in the debugging information". (gcc -g1 has debugging info but
4028@c not line numbers). But it seems complex to try to make that
4029@c distinction here.
4030@emph{Warning:} If you use the @code{step} command while control is
4031within a function that was compiled without debugging information,
4032execution proceeds until control reaches a function that does have
4033debugging information. Likewise, it will not step into a function which
4034is compiled without debugging information. To step through functions
4035without debugging information, use the @code{stepi} command, described
4036below.
4037@end quotation
4038
4a92d011
EZ
4039The @code{step} command only stops at the first instruction of a source
4040line. This prevents the multiple stops that could otherwise occur in
4041@code{switch} statements, @code{for} loops, etc. @code{step} continues
4042to stop if a function that has debugging information is called within
4043the line. In other words, @code{step} @emph{steps inside} any functions
4044called within the line.
c906108c 4045
d4f3574e
SS
4046Also, the @code{step} command only enters a function if there is line
4047number information for the function. Otherwise it acts like the
5d161b24 4048@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4049on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4050was any debugging information about the routine.
c906108c
SS
4051
4052@item step @var{count}
4053Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4054breakpoint is reached, or a signal not related to stepping occurs before
4055@var{count} steps, stepping stops right away.
c906108c
SS
4056
4057@kindex next
41afff9a 4058@kindex n @r{(@code{next})}
c906108c
SS
4059@item next @r{[}@var{count}@r{]}
4060Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4061This is similar to @code{step}, but function calls that appear within
4062the line of code are executed without stopping. Execution stops when
4063control reaches a different line of code at the original stack level
4064that was executing when you gave the @code{next} command. This command
4065is abbreviated @code{n}.
c906108c
SS
4066
4067An argument @var{count} is a repeat count, as for @code{step}.
4068
4069
4070@c FIX ME!! Do we delete this, or is there a way it fits in with
4071@c the following paragraph? --- Vctoria
4072@c
4073@c @code{next} within a function that lacks debugging information acts like
4074@c @code{step}, but any function calls appearing within the code of the
4075@c function are executed without stopping.
4076
d4f3574e
SS
4077The @code{next} command only stops at the first instruction of a
4078source line. This prevents multiple stops that could otherwise occur in
4a92d011 4079@code{switch} statements, @code{for} loops, etc.
c906108c 4080
b90a5f51
CF
4081@kindex set step-mode
4082@item set step-mode
4083@cindex functions without line info, and stepping
4084@cindex stepping into functions with no line info
4085@itemx set step-mode on
4a92d011 4086The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4087stop at the first instruction of a function which contains no debug line
4088information rather than stepping over it.
4089
4a92d011
EZ
4090This is useful in cases where you may be interested in inspecting the
4091machine instructions of a function which has no symbolic info and do not
4092want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4093
4094@item set step-mode off
4a92d011 4095Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4096debug information. This is the default.
4097
9c16f35a
EZ
4098@item show step-mode
4099Show whether @value{GDBN} will stop in or step over functions without
4100source line debug information.
4101
c906108c
SS
4102@kindex finish
4103@item finish
4104Continue running until just after function in the selected stack frame
4105returns. Print the returned value (if any).
4106
4107Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4108,Returning from a Function}).
c906108c
SS
4109
4110@kindex until
41afff9a 4111@kindex u @r{(@code{until})}
09d4efe1 4112@cindex run until specified location
c906108c
SS
4113@item until
4114@itemx u
4115Continue running until a source line past the current line, in the
4116current stack frame, is reached. This command is used to avoid single
4117stepping through a loop more than once. It is like the @code{next}
4118command, except that when @code{until} encounters a jump, it
4119automatically continues execution until the program counter is greater
4120than the address of the jump.
4121
4122This means that when you reach the end of a loop after single stepping
4123though it, @code{until} makes your program continue execution until it
4124exits the loop. In contrast, a @code{next} command at the end of a loop
4125simply steps back to the beginning of the loop, which forces you to step
4126through the next iteration.
4127
4128@code{until} always stops your program if it attempts to exit the current
4129stack frame.
4130
4131@code{until} may produce somewhat counterintuitive results if the order
4132of machine code does not match the order of the source lines. For
4133example, in the following excerpt from a debugging session, the @code{f}
4134(@code{frame}) command shows that execution is stopped at line
4135@code{206}; yet when we use @code{until}, we get to line @code{195}:
4136
474c8240 4137@smallexample
c906108c
SS
4138(@value{GDBP}) f
4139#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4140206 expand_input();
4141(@value{GDBP}) until
4142195 for ( ; argc > 0; NEXTARG) @{
474c8240 4143@end smallexample
c906108c
SS
4144
4145This happened because, for execution efficiency, the compiler had
4146generated code for the loop closure test at the end, rather than the
4147start, of the loop---even though the test in a C @code{for}-loop is
4148written before the body of the loop. The @code{until} command appeared
4149to step back to the beginning of the loop when it advanced to this
4150expression; however, it has not really gone to an earlier
4151statement---not in terms of the actual machine code.
4152
4153@code{until} with no argument works by means of single
4154instruction stepping, and hence is slower than @code{until} with an
4155argument.
4156
4157@item until @var{location}
4158@itemx u @var{location}
4159Continue running your program until either the specified location is
4160reached, or the current stack frame returns. @var{location} is any of
4161the forms of argument acceptable to @code{break} (@pxref{Set Breaks,
79a6e687 4162,Setting Breakpoints}). This form of the command uses breakpoints, and
c60eb6f1
EZ
4163hence is quicker than @code{until} without an argument. The specified
4164location is actually reached only if it is in the current frame. This
4165implies that @code{until} can be used to skip over recursive function
4166invocations. For instance in the code below, if the current location is
4167line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4168line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4169invocations have returned.
4170
4171@smallexample
417294 int factorial (int value)
417395 @{
417496 if (value > 1) @{
417597 value *= factorial (value - 1);
417698 @}
417799 return (value);
4178100 @}
4179@end smallexample
4180
4181
4182@kindex advance @var{location}
4183@itemx advance @var{location}
09d4efe1
EZ
4184Continue running the program up to the given @var{location}. An argument is
4185required, which should be of the same form as arguments for the @code{break}
c60eb6f1
EZ
4186command. Execution will also stop upon exit from the current stack
4187frame. This command is similar to @code{until}, but @code{advance} will
4188not skip over recursive function calls, and the target location doesn't
4189have to be in the same frame as the current one.
4190
c906108c
SS
4191
4192@kindex stepi
41afff9a 4193@kindex si @r{(@code{stepi})}
c906108c 4194@item stepi
96a2c332 4195@itemx stepi @var{arg}
c906108c
SS
4196@itemx si
4197Execute one machine instruction, then stop and return to the debugger.
4198
4199It is often useful to do @samp{display/i $pc} when stepping by machine
4200instructions. This makes @value{GDBN} automatically display the next
4201instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4202Display,, Automatic Display}.
c906108c
SS
4203
4204An argument is a repeat count, as in @code{step}.
4205
4206@need 750
4207@kindex nexti
41afff9a 4208@kindex ni @r{(@code{nexti})}
c906108c 4209@item nexti
96a2c332 4210@itemx nexti @var{arg}
c906108c
SS
4211@itemx ni
4212Execute one machine instruction, but if it is a function call,
4213proceed until the function returns.
4214
4215An argument is a repeat count, as in @code{next}.
4216@end table
4217
6d2ebf8b 4218@node Signals
c906108c
SS
4219@section Signals
4220@cindex signals
4221
4222A signal is an asynchronous event that can happen in a program. The
4223operating system defines the possible kinds of signals, and gives each
4224kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4225signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4226@code{SIGSEGV} is the signal a program gets from referencing a place in
4227memory far away from all the areas in use; @code{SIGALRM} occurs when
4228the alarm clock timer goes off (which happens only if your program has
4229requested an alarm).
4230
4231@cindex fatal signals
4232Some signals, including @code{SIGALRM}, are a normal part of the
4233functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4234errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4235program has not specified in advance some other way to handle the signal.
4236@code{SIGINT} does not indicate an error in your program, but it is normally
4237fatal so it can carry out the purpose of the interrupt: to kill the program.
4238
4239@value{GDBN} has the ability to detect any occurrence of a signal in your
4240program. You can tell @value{GDBN} in advance what to do for each kind of
4241signal.
4242
4243@cindex handling signals
24f93129
EZ
4244Normally, @value{GDBN} is set up to let the non-erroneous signals like
4245@code{SIGALRM} be silently passed to your program
4246(so as not to interfere with their role in the program's functioning)
c906108c
SS
4247but to stop your program immediately whenever an error signal happens.
4248You can change these settings with the @code{handle} command.
4249
4250@table @code
4251@kindex info signals
09d4efe1 4252@kindex info handle
c906108c 4253@item info signals
96a2c332 4254@itemx info handle
c906108c
SS
4255Print a table of all the kinds of signals and how @value{GDBN} has been told to
4256handle each one. You can use this to see the signal numbers of all
4257the defined types of signals.
4258
45ac1734
EZ
4259@item info signals @var{sig}
4260Similar, but print information only about the specified signal number.
4261
d4f3574e 4262@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4263
4264@kindex handle
45ac1734 4265@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4266Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4267can be the number of a signal or its name (with or without the
24f93129 4268@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4269@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4270known signals. Optional arguments @var{keywords}, described below,
4271say what change to make.
c906108c
SS
4272@end table
4273
4274@c @group
4275The keywords allowed by the @code{handle} command can be abbreviated.
4276Their full names are:
4277
4278@table @code
4279@item nostop
4280@value{GDBN} should not stop your program when this signal happens. It may
4281still print a message telling you that the signal has come in.
4282
4283@item stop
4284@value{GDBN} should stop your program when this signal happens. This implies
4285the @code{print} keyword as well.
4286
4287@item print
4288@value{GDBN} should print a message when this signal happens.
4289
4290@item noprint
4291@value{GDBN} should not mention the occurrence of the signal at all. This
4292implies the @code{nostop} keyword as well.
4293
4294@item pass
5ece1a18 4295@itemx noignore
c906108c
SS
4296@value{GDBN} should allow your program to see this signal; your program
4297can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4298and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4299
4300@item nopass
5ece1a18 4301@itemx ignore
c906108c 4302@value{GDBN} should not allow your program to see this signal.
5ece1a18 4303@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4304@end table
4305@c @end group
4306
d4f3574e
SS
4307When a signal stops your program, the signal is not visible to the
4308program until you
c906108c
SS
4309continue. Your program sees the signal then, if @code{pass} is in
4310effect for the signal in question @emph{at that time}. In other words,
4311after @value{GDBN} reports a signal, you can use the @code{handle}
4312command with @code{pass} or @code{nopass} to control whether your
4313program sees that signal when you continue.
4314
24f93129
EZ
4315The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4316non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4317@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4318erroneous signals.
4319
c906108c
SS
4320You can also use the @code{signal} command to prevent your program from
4321seeing a signal, or cause it to see a signal it normally would not see,
4322or to give it any signal at any time. For example, if your program stopped
4323due to some sort of memory reference error, you might store correct
4324values into the erroneous variables and continue, hoping to see more
4325execution; but your program would probably terminate immediately as
4326a result of the fatal signal once it saw the signal. To prevent this,
4327you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4328Program a Signal}.
c906108c 4329
6d2ebf8b 4330@node Thread Stops
79a6e687 4331@section Stopping and Starting Multi-thread Programs
c906108c
SS
4332
4333When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4334Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4335breakpoints on all threads, or on a particular thread.
4336
4337@table @code
4338@cindex breakpoints and threads
4339@cindex thread breakpoints
4340@kindex break @dots{} thread @var{threadno}
4341@item break @var{linespec} thread @var{threadno}
4342@itemx break @var{linespec} thread @var{threadno} if @dots{}
4343@var{linespec} specifies source lines; there are several ways of
4344writing them, but the effect is always to specify some source line.
4345
4346Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4347to specify that you only want @value{GDBN} to stop the program when a
4348particular thread reaches this breakpoint. @var{threadno} is one of the
4349numeric thread identifiers assigned by @value{GDBN}, shown in the first
4350column of the @samp{info threads} display.
4351
4352If you do not specify @samp{thread @var{threadno}} when you set a
4353breakpoint, the breakpoint applies to @emph{all} threads of your
4354program.
4355
4356You can use the @code{thread} qualifier on conditional breakpoints as
4357well; in this case, place @samp{thread @var{threadno}} before the
4358breakpoint condition, like this:
4359
4360@smallexample
2df3850c 4361(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4362@end smallexample
4363
4364@end table
4365
4366@cindex stopped threads
4367@cindex threads, stopped
4368Whenever your program stops under @value{GDBN} for any reason,
4369@emph{all} threads of execution stop, not just the current thread. This
4370allows you to examine the overall state of the program, including
4371switching between threads, without worrying that things may change
4372underfoot.
4373
36d86913
MC
4374@cindex thread breakpoints and system calls
4375@cindex system calls and thread breakpoints
4376@cindex premature return from system calls
4377There is an unfortunate side effect. If one thread stops for a
4378breakpoint, or for some other reason, and another thread is blocked in a
4379system call, then the system call may return prematurely. This is a
4380consequence of the interaction between multiple threads and the signals
4381that @value{GDBN} uses to implement breakpoints and other events that
4382stop execution.
4383
4384To handle this problem, your program should check the return value of
4385each system call and react appropriately. This is good programming
4386style anyways.
4387
4388For example, do not write code like this:
4389
4390@smallexample
4391 sleep (10);
4392@end smallexample
4393
4394The call to @code{sleep} will return early if a different thread stops
4395at a breakpoint or for some other reason.
4396
4397Instead, write this:
4398
4399@smallexample
4400 int unslept = 10;
4401 while (unslept > 0)
4402 unslept = sleep (unslept);
4403@end smallexample
4404
4405A system call is allowed to return early, so the system is still
4406conforming to its specification. But @value{GDBN} does cause your
4407multi-threaded program to behave differently than it would without
4408@value{GDBN}.
4409
4410Also, @value{GDBN} uses internal breakpoints in the thread library to
4411monitor certain events such as thread creation and thread destruction.
4412When such an event happens, a system call in another thread may return
4413prematurely, even though your program does not appear to stop.
4414
c906108c
SS
4415@cindex continuing threads
4416@cindex threads, continuing
4417Conversely, whenever you restart the program, @emph{all} threads start
4418executing. @emph{This is true even when single-stepping} with commands
5d161b24 4419like @code{step} or @code{next}.
c906108c
SS
4420
4421In particular, @value{GDBN} cannot single-step all threads in lockstep.
4422Since thread scheduling is up to your debugging target's operating
4423system (not controlled by @value{GDBN}), other threads may
4424execute more than one statement while the current thread completes a
4425single step. Moreover, in general other threads stop in the middle of a
4426statement, rather than at a clean statement boundary, when the program
4427stops.
4428
4429You might even find your program stopped in another thread after
4430continuing or even single-stepping. This happens whenever some other
4431thread runs into a breakpoint, a signal, or an exception before the
4432first thread completes whatever you requested.
4433
4434On some OSes, you can lock the OS scheduler and thus allow only a single
4435thread to run.
4436
4437@table @code
4438@item set scheduler-locking @var{mode}
9c16f35a
EZ
4439@cindex scheduler locking mode
4440@cindex lock scheduler
c906108c
SS
4441Set the scheduler locking mode. If it is @code{off}, then there is no
4442locking and any thread may run at any time. If @code{on}, then only the
4443current thread may run when the inferior is resumed. The @code{step}
4444mode optimizes for single-stepping. It stops other threads from
4445``seizing the prompt'' by preempting the current thread while you are
4446stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4447when you step. They are more likely to run when you @samp{next} over a
c906108c 4448function call, and they are completely free to run when you use commands
d4f3574e 4449like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4450thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4451@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4452
4453@item show scheduler-locking
4454Display the current scheduler locking mode.
4455@end table
4456
c906108c 4457
6d2ebf8b 4458@node Stack
c906108c
SS
4459@chapter Examining the Stack
4460
4461When your program has stopped, the first thing you need to know is where it
4462stopped and how it got there.
4463
4464@cindex call stack
5d161b24
DB
4465Each time your program performs a function call, information about the call
4466is generated.
4467That information includes the location of the call in your program,
4468the arguments of the call,
c906108c 4469and the local variables of the function being called.
5d161b24 4470The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4471The stack frames are allocated in a region of memory called the @dfn{call
4472stack}.
4473
4474When your program stops, the @value{GDBN} commands for examining the
4475stack allow you to see all of this information.
4476
4477@cindex selected frame
4478One of the stack frames is @dfn{selected} by @value{GDBN} and many
4479@value{GDBN} commands refer implicitly to the selected frame. In
4480particular, whenever you ask @value{GDBN} for the value of a variable in
4481your program, the value is found in the selected frame. There are
4482special @value{GDBN} commands to select whichever frame you are
79a6e687 4483interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4484
4485When your program stops, @value{GDBN} automatically selects the
5d161b24 4486currently executing frame and describes it briefly, similar to the
79a6e687 4487@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4488
4489@menu
4490* Frames:: Stack frames
4491* Backtrace:: Backtraces
4492* Selection:: Selecting a frame
4493* Frame Info:: Information on a frame
c906108c
SS
4494
4495@end menu
4496
6d2ebf8b 4497@node Frames
79a6e687 4498@section Stack Frames
c906108c 4499
d4f3574e 4500@cindex frame, definition
c906108c
SS
4501@cindex stack frame
4502The call stack is divided up into contiguous pieces called @dfn{stack
4503frames}, or @dfn{frames} for short; each frame is the data associated
4504with one call to one function. The frame contains the arguments given
4505to the function, the function's local variables, and the address at
4506which the function is executing.
4507
4508@cindex initial frame
4509@cindex outermost frame
4510@cindex innermost frame
4511When your program is started, the stack has only one frame, that of the
4512function @code{main}. This is called the @dfn{initial} frame or the
4513@dfn{outermost} frame. Each time a function is called, a new frame is
4514made. Each time a function returns, the frame for that function invocation
4515is eliminated. If a function is recursive, there can be many frames for
4516the same function. The frame for the function in which execution is
4517actually occurring is called the @dfn{innermost} frame. This is the most
4518recently created of all the stack frames that still exist.
4519
4520@cindex frame pointer
4521Inside your program, stack frames are identified by their addresses. A
4522stack frame consists of many bytes, each of which has its own address; each
4523kind of computer has a convention for choosing one byte whose
4524address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4525in a register called the @dfn{frame pointer register}
4526(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4527
4528@cindex frame number
4529@value{GDBN} assigns numbers to all existing stack frames, starting with
4530zero for the innermost frame, one for the frame that called it,
4531and so on upward. These numbers do not really exist in your program;
4532they are assigned by @value{GDBN} to give you a way of designating stack
4533frames in @value{GDBN} commands.
4534
6d2ebf8b
SS
4535@c The -fomit-frame-pointer below perennially causes hbox overflow
4536@c underflow problems.
c906108c
SS
4537@cindex frameless execution
4538Some compilers provide a way to compile functions so that they operate
e22ea452 4539without stack frames. (For example, the @value{NGCC} option
474c8240 4540@smallexample
6d2ebf8b 4541@samp{-fomit-frame-pointer}
474c8240 4542@end smallexample
6d2ebf8b 4543generates functions without a frame.)
c906108c
SS
4544This is occasionally done with heavily used library functions to save
4545the frame setup time. @value{GDBN} has limited facilities for dealing
4546with these function invocations. If the innermost function invocation
4547has no stack frame, @value{GDBN} nevertheless regards it as though
4548it had a separate frame, which is numbered zero as usual, allowing
4549correct tracing of the function call chain. However, @value{GDBN} has
4550no provision for frameless functions elsewhere in the stack.
4551
4552@table @code
d4f3574e 4553@kindex frame@r{, command}
41afff9a 4554@cindex current stack frame
c906108c 4555@item frame @var{args}
5d161b24 4556The @code{frame} command allows you to move from one stack frame to another,
c906108c 4557and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4558address of the frame or the stack frame number. Without an argument,
4559@code{frame} prints the current stack frame.
c906108c
SS
4560
4561@kindex select-frame
41afff9a 4562@cindex selecting frame silently
c906108c
SS
4563@item select-frame
4564The @code{select-frame} command allows you to move from one stack frame
4565to another without printing the frame. This is the silent version of
4566@code{frame}.
4567@end table
4568
6d2ebf8b 4569@node Backtrace
c906108c
SS
4570@section Backtraces
4571
09d4efe1
EZ
4572@cindex traceback
4573@cindex call stack traces
c906108c
SS
4574A backtrace is a summary of how your program got where it is. It shows one
4575line per frame, for many frames, starting with the currently executing
4576frame (frame zero), followed by its caller (frame one), and on up the
4577stack.
4578
4579@table @code
4580@kindex backtrace
41afff9a 4581@kindex bt @r{(@code{backtrace})}
c906108c
SS
4582@item backtrace
4583@itemx bt
4584Print a backtrace of the entire stack: one line per frame for all
4585frames in the stack.
4586
4587You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4588character, normally @kbd{Ctrl-c}.
c906108c
SS
4589
4590@item backtrace @var{n}
4591@itemx bt @var{n}
4592Similar, but print only the innermost @var{n} frames.
4593
4594@item backtrace -@var{n}
4595@itemx bt -@var{n}
4596Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4597
4598@item backtrace full
0f061b69 4599@itemx bt full
dd74f6ae
NR
4600@itemx bt full @var{n}
4601@itemx bt full -@var{n}
e7109c7e 4602Print the values of the local variables also. @var{n} specifies the
286ba84d 4603number of frames to print, as described above.
c906108c
SS
4604@end table
4605
4606@kindex where
4607@kindex info stack
c906108c
SS
4608The names @code{where} and @code{info stack} (abbreviated @code{info s})
4609are additional aliases for @code{backtrace}.
4610
839c27b7
EZ
4611@cindex multiple threads, backtrace
4612In a multi-threaded program, @value{GDBN} by default shows the
4613backtrace only for the current thread. To display the backtrace for
4614several or all of the threads, use the command @code{thread apply}
4615(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4616apply all backtrace}, @value{GDBN} will display the backtrace for all
4617the threads; this is handy when you debug a core dump of a
4618multi-threaded program.
4619
c906108c
SS
4620Each line in the backtrace shows the frame number and the function name.
4621The program counter value is also shown---unless you use @code{set
4622print address off}. The backtrace also shows the source file name and
4623line number, as well as the arguments to the function. The program
4624counter value is omitted if it is at the beginning of the code for that
4625line number.
4626
4627Here is an example of a backtrace. It was made with the command
4628@samp{bt 3}, so it shows the innermost three frames.
4629
4630@smallexample
4631@group
5d161b24 4632#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4633 at builtin.c:993
4634#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4635#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4636 at macro.c:71
4637(More stack frames follow...)
4638@end group
4639@end smallexample
4640
4641@noindent
4642The display for frame zero does not begin with a program counter
4643value, indicating that your program has stopped at the beginning of the
4644code for line @code{993} of @code{builtin.c}.
4645
18999be5
EZ
4646@cindex value optimized out, in backtrace
4647@cindex function call arguments, optimized out
4648If your program was compiled with optimizations, some compilers will
4649optimize away arguments passed to functions if those arguments are
4650never used after the call. Such optimizations generate code that
4651passes arguments through registers, but doesn't store those arguments
4652in the stack frame. @value{GDBN} has no way of displaying such
4653arguments in stack frames other than the innermost one. Here's what
4654such a backtrace might look like:
4655
4656@smallexample
4657@group
4658#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4659 at builtin.c:993
4660#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4661#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4662 at macro.c:71
4663(More stack frames follow...)
4664@end group
4665@end smallexample
4666
4667@noindent
4668The values of arguments that were not saved in their stack frames are
4669shown as @samp{<value optimized out>}.
4670
4671If you need to display the values of such optimized-out arguments,
4672either deduce that from other variables whose values depend on the one
4673you are interested in, or recompile without optimizations.
4674
a8f24a35
EZ
4675@cindex backtrace beyond @code{main} function
4676@cindex program entry point
4677@cindex startup code, and backtrace
25d29d70
AC
4678Most programs have a standard user entry point---a place where system
4679libraries and startup code transition into user code. For C this is
d416eeec
EZ
4680@code{main}@footnote{
4681Note that embedded programs (the so-called ``free-standing''
4682environment) are not required to have a @code{main} function as the
4683entry point. They could even have multiple entry points.}.
4684When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4685it will terminate the backtrace, to avoid tracing into highly
4686system-specific (and generally uninteresting) code.
4687
4688If you need to examine the startup code, or limit the number of levels
4689in a backtrace, you can change this behavior:
95f90d25
DJ
4690
4691@table @code
25d29d70
AC
4692@item set backtrace past-main
4693@itemx set backtrace past-main on
4644b6e3 4694@kindex set backtrace
25d29d70
AC
4695Backtraces will continue past the user entry point.
4696
4697@item set backtrace past-main off
95f90d25
DJ
4698Backtraces will stop when they encounter the user entry point. This is the
4699default.
4700
25d29d70 4701@item show backtrace past-main
4644b6e3 4702@kindex show backtrace
25d29d70
AC
4703Display the current user entry point backtrace policy.
4704
2315ffec
RC
4705@item set backtrace past-entry
4706@itemx set backtrace past-entry on
a8f24a35 4707Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4708This entry point is encoded by the linker when the application is built,
4709and is likely before the user entry point @code{main} (or equivalent) is called.
4710
4711@item set backtrace past-entry off
d3e8051b 4712Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4713application. This is the default.
4714
4715@item show backtrace past-entry
4716Display the current internal entry point backtrace policy.
4717
25d29d70
AC
4718@item set backtrace limit @var{n}
4719@itemx set backtrace limit 0
4720@cindex backtrace limit
4721Limit the backtrace to @var{n} levels. A value of zero means
4722unlimited.
95f90d25 4723
25d29d70
AC
4724@item show backtrace limit
4725Display the current limit on backtrace levels.
95f90d25
DJ
4726@end table
4727
6d2ebf8b 4728@node Selection
79a6e687 4729@section Selecting a Frame
c906108c
SS
4730
4731Most commands for examining the stack and other data in your program work on
4732whichever stack frame is selected at the moment. Here are the commands for
4733selecting a stack frame; all of them finish by printing a brief description
4734of the stack frame just selected.
4735
4736@table @code
d4f3574e 4737@kindex frame@r{, selecting}
41afff9a 4738@kindex f @r{(@code{frame})}
c906108c
SS
4739@item frame @var{n}
4740@itemx f @var{n}
4741Select frame number @var{n}. Recall that frame zero is the innermost
4742(currently executing) frame, frame one is the frame that called the
4743innermost one, and so on. The highest-numbered frame is the one for
4744@code{main}.
4745
4746@item frame @var{addr}
4747@itemx f @var{addr}
4748Select the frame at address @var{addr}. This is useful mainly if the
4749chaining of stack frames has been damaged by a bug, making it
4750impossible for @value{GDBN} to assign numbers properly to all frames. In
4751addition, this can be useful when your program has multiple stacks and
4752switches between them.
4753
c906108c
SS
4754On the SPARC architecture, @code{frame} needs two addresses to
4755select an arbitrary frame: a frame pointer and a stack pointer.
4756
4757On the MIPS and Alpha architecture, it needs two addresses: a stack
4758pointer and a program counter.
4759
4760On the 29k architecture, it needs three addresses: a register stack
4761pointer, a program counter, and a memory stack pointer.
c906108c
SS
4762
4763@kindex up
4764@item up @var{n}
4765Move @var{n} frames up the stack. For positive numbers @var{n}, this
4766advances toward the outermost frame, to higher frame numbers, to frames
4767that have existed longer. @var{n} defaults to one.
4768
4769@kindex down
41afff9a 4770@kindex do @r{(@code{down})}
c906108c
SS
4771@item down @var{n}
4772Move @var{n} frames down the stack. For positive numbers @var{n}, this
4773advances toward the innermost frame, to lower frame numbers, to frames
4774that were created more recently. @var{n} defaults to one. You may
4775abbreviate @code{down} as @code{do}.
4776@end table
4777
4778All of these commands end by printing two lines of output describing the
4779frame. The first line shows the frame number, the function name, the
4780arguments, and the source file and line number of execution in that
5d161b24 4781frame. The second line shows the text of that source line.
c906108c
SS
4782
4783@need 1000
4784For example:
4785
4786@smallexample
4787@group
4788(@value{GDBP}) up
4789#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4790 at env.c:10
479110 read_input_file (argv[i]);
4792@end group
4793@end smallexample
4794
4795After such a printout, the @code{list} command with no arguments
4796prints ten lines centered on the point of execution in the frame.
87885426
FN
4797You can also edit the program at the point of execution with your favorite
4798editing program by typing @code{edit}.
79a6e687 4799@xref{List, ,Printing Source Lines},
87885426 4800for details.
c906108c
SS
4801
4802@table @code
4803@kindex down-silently
4804@kindex up-silently
4805@item up-silently @var{n}
4806@itemx down-silently @var{n}
4807These two commands are variants of @code{up} and @code{down},
4808respectively; they differ in that they do their work silently, without
4809causing display of the new frame. They are intended primarily for use
4810in @value{GDBN} command scripts, where the output might be unnecessary and
4811distracting.
4812@end table
4813
6d2ebf8b 4814@node Frame Info
79a6e687 4815@section Information About a Frame
c906108c
SS
4816
4817There are several other commands to print information about the selected
4818stack frame.
4819
4820@table @code
4821@item frame
4822@itemx f
4823When used without any argument, this command does not change which
4824frame is selected, but prints a brief description of the currently
4825selected stack frame. It can be abbreviated @code{f}. With an
4826argument, this command is used to select a stack frame.
79a6e687 4827@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4828
4829@kindex info frame
41afff9a 4830@kindex info f @r{(@code{info frame})}
c906108c
SS
4831@item info frame
4832@itemx info f
4833This command prints a verbose description of the selected stack frame,
4834including:
4835
4836@itemize @bullet
5d161b24
DB
4837@item
4838the address of the frame
c906108c
SS
4839@item
4840the address of the next frame down (called by this frame)
4841@item
4842the address of the next frame up (caller of this frame)
4843@item
4844the language in which the source code corresponding to this frame is written
4845@item
4846the address of the frame's arguments
4847@item
d4f3574e
SS
4848the address of the frame's local variables
4849@item
c906108c
SS
4850the program counter saved in it (the address of execution in the caller frame)
4851@item
4852which registers were saved in the frame
4853@end itemize
4854
4855@noindent The verbose description is useful when
4856something has gone wrong that has made the stack format fail to fit
4857the usual conventions.
4858
4859@item info frame @var{addr}
4860@itemx info f @var{addr}
4861Print a verbose description of the frame at address @var{addr}, without
4862selecting that frame. The selected frame remains unchanged by this
4863command. This requires the same kind of address (more than one for some
4864architectures) that you specify in the @code{frame} command.
79a6e687 4865@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4866
4867@kindex info args
4868@item info args
4869Print the arguments of the selected frame, each on a separate line.
4870
4871@item info locals
4872@kindex info locals
4873Print the local variables of the selected frame, each on a separate
4874line. These are all variables (declared either static or automatic)
4875accessible at the point of execution of the selected frame.
4876
c906108c 4877@kindex info catch
d4f3574e
SS
4878@cindex catch exceptions, list active handlers
4879@cindex exception handlers, how to list
c906108c
SS
4880@item info catch
4881Print a list of all the exception handlers that are active in the
4882current stack frame at the current point of execution. To see other
4883exception handlers, visit the associated frame (using the @code{up},
4884@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4885@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4886
c906108c
SS
4887@end table
4888
c906108c 4889
6d2ebf8b 4890@node Source
c906108c
SS
4891@chapter Examining Source Files
4892
4893@value{GDBN} can print parts of your program's source, since the debugging
4894information recorded in the program tells @value{GDBN} what source files were
4895used to build it. When your program stops, @value{GDBN} spontaneously prints
4896the line where it stopped. Likewise, when you select a stack frame
79a6e687 4897(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4898execution in that frame has stopped. You can print other portions of
4899source files by explicit command.
4900
7a292a7a 4901If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4902prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4903@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4904
4905@menu
4906* List:: Printing source lines
87885426 4907* Edit:: Editing source files
c906108c 4908* Search:: Searching source files
c906108c
SS
4909* Source Path:: Specifying source directories
4910* Machine Code:: Source and machine code
4911@end menu
4912
6d2ebf8b 4913@node List
79a6e687 4914@section Printing Source Lines
c906108c
SS
4915
4916@kindex list
41afff9a 4917@kindex l @r{(@code{list})}
c906108c 4918To print lines from a source file, use the @code{list} command
5d161b24 4919(abbreviated @code{l}). By default, ten lines are printed.
c906108c
SS
4920There are several ways to specify what part of the file you want to print.
4921
4922Here are the forms of the @code{list} command most commonly used:
4923
4924@table @code
4925@item list @var{linenum}
4926Print lines centered around line number @var{linenum} in the
4927current source file.
4928
4929@item list @var{function}
4930Print lines centered around the beginning of function
4931@var{function}.
4932
4933@item list
4934Print more lines. If the last lines printed were printed with a
4935@code{list} command, this prints lines following the last lines
4936printed; however, if the last line printed was a solitary line printed
4937as part of displaying a stack frame (@pxref{Stack, ,Examining the
4938Stack}), this prints lines centered around that line.
4939
4940@item list -
4941Print lines just before the lines last printed.
4942@end table
4943
9c16f35a 4944@cindex @code{list}, how many lines to display
c906108c
SS
4945By default, @value{GDBN} prints ten source lines with any of these forms of
4946the @code{list} command. You can change this using @code{set listsize}:
4947
4948@table @code
4949@kindex set listsize
4950@item set listsize @var{count}
4951Make the @code{list} command display @var{count} source lines (unless
4952the @code{list} argument explicitly specifies some other number).
4953
4954@kindex show listsize
4955@item show listsize
4956Display the number of lines that @code{list} prints.
4957@end table
4958
4959Repeating a @code{list} command with @key{RET} discards the argument,
4960so it is equivalent to typing just @code{list}. This is more useful
4961than listing the same lines again. An exception is made for an
4962argument of @samp{-}; that argument is preserved in repetition so that
4963each repetition moves up in the source file.
4964
4965@cindex linespec
4966In general, the @code{list} command expects you to supply zero, one or two
4967@dfn{linespecs}. Linespecs specify source lines; there are several ways
d4f3574e 4968of writing them, but the effect is always to specify some source line.
c906108c
SS
4969Here is a complete description of the possible arguments for @code{list}:
4970
4971@table @code
4972@item list @var{linespec}
4973Print lines centered around the line specified by @var{linespec}.
4974
4975@item list @var{first},@var{last}
4976Print lines from @var{first} to @var{last}. Both arguments are
4977linespecs.
4978
4979@item list ,@var{last}
4980Print lines ending with @var{last}.
4981
4982@item list @var{first},
4983Print lines starting with @var{first}.
4984
4985@item list +
4986Print lines just after the lines last printed.
4987
4988@item list -
4989Print lines just before the lines last printed.
4990
4991@item list
4992As described in the preceding table.
4993@end table
4994
4995Here are the ways of specifying a single source line---all the
4996kinds of linespec.
4997
4998@table @code
4999@item @var{number}
5000Specifies line @var{number} of the current source file.
5001When a @code{list} command has two linespecs, this refers to
5002the same source file as the first linespec.
5003
5004@item +@var{offset}
5005Specifies the line @var{offset} lines after the last line printed.
5006When used as the second linespec in a @code{list} command that has
5007two, this specifies the line @var{offset} lines down from the
5008first linespec.
5009
5010@item -@var{offset}
5011Specifies the line @var{offset} lines before the last line printed.
5012
5013@item @var{filename}:@var{number}
5014Specifies line @var{number} in the source file @var{filename}.
5015
5016@item @var{function}
5017Specifies the line that begins the body of the function @var{function}.
5018For example: in C, this is the line with the open brace.
5019
5020@item @var{filename}:@var{function}
5021Specifies the line of the open-brace that begins the body of the
5022function @var{function} in the file @var{filename}. You only need the
5023file name with a function name to avoid ambiguity when there are
5024identically named functions in different source files.
5025
5026@item *@var{address}
5027Specifies the line containing the program address @var{address}.
5028@var{address} may be any expression.
5029@end table
5030
87885426 5031@node Edit
79a6e687 5032@section Editing Source Files
87885426
FN
5033@cindex editing source files
5034
5035@kindex edit
5036@kindex e @r{(@code{edit})}
5037To edit the lines in a source file, use the @code{edit} command.
5038The editing program of your choice
5039is invoked with the current line set to
5040the active line in the program.
5041Alternatively, there are several ways to specify what part of the file you
5042want to print if you want to see other parts of the program.
5043
5044Here are the forms of the @code{edit} command most commonly used:
5045
5046@table @code
5047@item edit
5048Edit the current source file at the active line number in the program.
5049
5050@item edit @var{number}
5051Edit the current source file with @var{number} as the active line number.
5052
5053@item edit @var{function}
5054Edit the file containing @var{function} at the beginning of its definition.
5055
5056@item edit @var{filename}:@var{number}
5057Specifies line @var{number} in the source file @var{filename}.
5058
5059@item edit @var{filename}:@var{function}
5060Specifies the line that begins the body of the
5061function @var{function} in the file @var{filename}. You only need the
5062file name with a function name to avoid ambiguity when there are
5063identically named functions in different source files.
5064
5065@item edit *@var{address}
5066Specifies the line containing the program address @var{address}.
5067@var{address} may be any expression.
5068@end table
5069
79a6e687 5070@subsection Choosing your Editor
87885426
FN
5071You can customize @value{GDBN} to use any editor you want
5072@footnote{
5073The only restriction is that your editor (say @code{ex}), recognizes the
5074following command-line syntax:
10998722 5075@smallexample
87885426 5076ex +@var{number} file
10998722 5077@end smallexample
15387254
EZ
5078The optional numeric value +@var{number} specifies the number of the line in
5079the file where to start editing.}.
5080By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5081by setting the environment variable @code{EDITOR} before using
5082@value{GDBN}. For example, to configure @value{GDBN} to use the
5083@code{vi} editor, you could use these commands with the @code{sh} shell:
5084@smallexample
87885426
FN
5085EDITOR=/usr/bin/vi
5086export EDITOR
15387254 5087gdb @dots{}
10998722 5088@end smallexample
87885426 5089or in the @code{csh} shell,
10998722 5090@smallexample
87885426 5091setenv EDITOR /usr/bin/vi
15387254 5092gdb @dots{}
10998722 5093@end smallexample
87885426 5094
6d2ebf8b 5095@node Search
79a6e687 5096@section Searching Source Files
15387254 5097@cindex searching source files
c906108c
SS
5098
5099There are two commands for searching through the current source file for a
5100regular expression.
5101
5102@table @code
5103@kindex search
5104@kindex forward-search
5105@item forward-search @var{regexp}
5106@itemx search @var{regexp}
5107The command @samp{forward-search @var{regexp}} checks each line,
5108starting with the one following the last line listed, for a match for
5d161b24 5109@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5110synonym @samp{search @var{regexp}} or abbreviate the command name as
5111@code{fo}.
5112
09d4efe1 5113@kindex reverse-search
c906108c
SS
5114@item reverse-search @var{regexp}
5115The command @samp{reverse-search @var{regexp}} checks each line, starting
5116with the one before the last line listed and going backward, for a match
5117for @var{regexp}. It lists the line that is found. You can abbreviate
5118this command as @code{rev}.
5119@end table
c906108c 5120
6d2ebf8b 5121@node Source Path
79a6e687 5122@section Specifying Source Directories
c906108c
SS
5123
5124@cindex source path
5125@cindex directories for source files
5126Executable programs sometimes do not record the directories of the source
5127files from which they were compiled, just the names. Even when they do,
5128the directories could be moved between the compilation and your debugging
5129session. @value{GDBN} has a list of directories to search for source files;
5130this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5131it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5132in the list, until it finds a file with the desired name.
5133
5134For example, suppose an executable references the file
5135@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5136@file{/mnt/cross}. The file is first looked up literally; if this
5137fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5138fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5139message is printed. @value{GDBN} does not look up the parts of the
5140source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5141Likewise, the subdirectories of the source path are not searched: if
5142the source path is @file{/mnt/cross}, and the binary refers to
5143@file{foo.c}, @value{GDBN} would not find it under
5144@file{/mnt/cross/usr/src/foo-1.0/lib}.
5145
5146Plain file names, relative file names with leading directories, file
5147names containing dots, etc.@: are all treated as described above; for
5148instance, if the source path is @file{/mnt/cross}, and the source file
5149is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5150@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5151that---@file{/mnt/cross/foo.c}.
5152
5153Note that the executable search path is @emph{not} used to locate the
cd852561 5154source files.
c906108c
SS
5155
5156Whenever you reset or rearrange the source path, @value{GDBN} clears out
5157any information it has cached about where source files are found and where
5158each line is in the file.
5159
5160@kindex directory
5161@kindex dir
d4f3574e
SS
5162When you start @value{GDBN}, its source path includes only @samp{cdir}
5163and @samp{cwd}, in that order.
c906108c
SS
5164To add other directories, use the @code{directory} command.
5165
4b505b12
AS
5166The search path is used to find both program source files and @value{GDBN}
5167script files (read using the @samp{-command} option and @samp{source} command).
5168
30daae6c
JB
5169In addition to the source path, @value{GDBN} provides a set of commands
5170that manage a list of source path substitution rules. A @dfn{substitution
5171rule} specifies how to rewrite source directories stored in the program's
5172debug information in case the sources were moved to a different
5173directory between compilation and debugging. A rule is made of
5174two strings, the first specifying what needs to be rewritten in
5175the path, and the second specifying how it should be rewritten.
5176In @ref{set substitute-path}, we name these two parts @var{from} and
5177@var{to} respectively. @value{GDBN} does a simple string replacement
5178of @var{from} with @var{to} at the start of the directory part of the
5179source file name, and uses that result instead of the original file
5180name to look up the sources.
5181
5182Using the previous example, suppose the @file{foo-1.0} tree has been
5183moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5184@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5185@file{/mnt/cross}. The first lookup will then be
5186@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5187of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5188substitution rule, use the @code{set substitute-path} command
5189(@pxref{set substitute-path}).
5190
5191To avoid unexpected substitution results, a rule is applied only if the
5192@var{from} part of the directory name ends at a directory separator.
5193For instance, a rule substituting @file{/usr/source} into
5194@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5195not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5196is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5197not be applied to @file{/root/usr/source/baz.c} either.
5198
5199In many cases, you can achieve the same result using the @code{directory}
5200command. However, @code{set substitute-path} can be more efficient in
5201the case where the sources are organized in a complex tree with multiple
5202subdirectories. With the @code{directory} command, you need to add each
5203subdirectory of your project. If you moved the entire tree while
5204preserving its internal organization, then @code{set substitute-path}
5205allows you to direct the debugger to all the sources with one single
5206command.
5207
5208@code{set substitute-path} is also more than just a shortcut command.
5209The source path is only used if the file at the original location no
5210longer exists. On the other hand, @code{set substitute-path} modifies
5211the debugger behavior to look at the rewritten location instead. So, if
5212for any reason a source file that is not relevant to your executable is
5213located at the original location, a substitution rule is the only
3f94c067 5214method available to point @value{GDBN} at the new location.
30daae6c 5215
c906108c
SS
5216@table @code
5217@item directory @var{dirname} @dots{}
5218@item dir @var{dirname} @dots{}
5219Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5220directory names may be given to this command, separated by @samp{:}
5221(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5222part of absolute file names) or
c906108c
SS
5223whitespace. You may specify a directory that is already in the source
5224path; this moves it forward, so @value{GDBN} searches it sooner.
5225
5226@kindex cdir
5227@kindex cwd
41afff9a 5228@vindex $cdir@r{, convenience variable}
d3e8051b 5229@vindex $cwd@r{, convenience variable}
c906108c
SS
5230@cindex compilation directory
5231@cindex current directory
5232@cindex working directory
5233@cindex directory, current
5234@cindex directory, compilation
5235You can use the string @samp{$cdir} to refer to the compilation
5236directory (if one is recorded), and @samp{$cwd} to refer to the current
5237working directory. @samp{$cwd} is not the same as @samp{.}---the former
5238tracks the current working directory as it changes during your @value{GDBN}
5239session, while the latter is immediately expanded to the current
5240directory at the time you add an entry to the source path.
5241
5242@item directory
cd852561 5243Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5244
5245@c RET-repeat for @code{directory} is explicitly disabled, but since
5246@c repeating it would be a no-op we do not say that. (thanks to RMS)
5247
5248@item show directories
5249@kindex show directories
5250Print the source path: show which directories it contains.
30daae6c
JB
5251
5252@anchor{set substitute-path}
5253@item set substitute-path @var{from} @var{to}
5254@kindex set substitute-path
5255Define a source path substitution rule, and add it at the end of the
5256current list of existing substitution rules. If a rule with the same
5257@var{from} was already defined, then the old rule is also deleted.
5258
5259For example, if the file @file{/foo/bar/baz.c} was moved to
5260@file{/mnt/cross/baz.c}, then the command
5261
5262@smallexample
5263(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5264@end smallexample
5265
5266@noindent
5267will tell @value{GDBN} to replace @samp{/usr/src} with
5268@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5269@file{baz.c} even though it was moved.
5270
5271In the case when more than one substitution rule have been defined,
5272the rules are evaluated one by one in the order where they have been
5273defined. The first one matching, if any, is selected to perform
5274the substitution.
5275
5276For instance, if we had entered the following commands:
5277
5278@smallexample
5279(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5280(@value{GDBP}) set substitute-path /usr/src /mnt/src
5281@end smallexample
5282
5283@noindent
5284@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5285@file{/mnt/include/defs.h} by using the first rule. However, it would
5286use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5287@file{/mnt/src/lib/foo.c}.
5288
5289
5290@item unset substitute-path [path]
5291@kindex unset substitute-path
5292If a path is specified, search the current list of substitution rules
5293for a rule that would rewrite that path. Delete that rule if found.
5294A warning is emitted by the debugger if no rule could be found.
5295
5296If no path is specified, then all substitution rules are deleted.
5297
5298@item show substitute-path [path]
5299@kindex show substitute-path
5300If a path is specified, then print the source path substitution rule
5301which would rewrite that path, if any.
5302
5303If no path is specified, then print all existing source path substitution
5304rules.
5305
c906108c
SS
5306@end table
5307
5308If your source path is cluttered with directories that are no longer of
5309interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5310versions of source. You can correct the situation as follows:
5311
5312@enumerate
5313@item
cd852561 5314Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5315
5316@item
5317Use @code{directory} with suitable arguments to reinstall the
5318directories you want in the source path. You can add all the
5319directories in one command.
5320@end enumerate
5321
6d2ebf8b 5322@node Machine Code
79a6e687 5323@section Source and Machine Code
15387254 5324@cindex source line and its code address
c906108c
SS
5325
5326You can use the command @code{info line} to map source lines to program
5327addresses (and vice versa), and the command @code{disassemble} to display
5328a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5329mode, the @code{info line} command causes the arrow to point to the
5d161b24 5330line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5331well as hex.
5332
5333@table @code
5334@kindex info line
5335@item info line @var{linespec}
5336Print the starting and ending addresses of the compiled code for
5337source line @var{linespec}. You can specify source lines in any of
5338the ways understood by the @code{list} command (@pxref{List, ,Printing
79a6e687 5339Source Lines}).
c906108c
SS
5340@end table
5341
5342For example, we can use @code{info line} to discover the location of
5343the object code for the first line of function
5344@code{m4_changequote}:
5345
d4f3574e
SS
5346@c FIXME: I think this example should also show the addresses in
5347@c symbolic form, as they usually would be displayed.
c906108c 5348@smallexample
96a2c332 5349(@value{GDBP}) info line m4_changequote
c906108c
SS
5350Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5351@end smallexample
5352
5353@noindent
15387254 5354@cindex code address and its source line
c906108c
SS
5355We can also inquire (using @code{*@var{addr}} as the form for
5356@var{linespec}) what source line covers a particular address:
5357@smallexample
5358(@value{GDBP}) info line *0x63ff
5359Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5360@end smallexample
5361
5362@cindex @code{$_} and @code{info line}
15387254 5363@cindex @code{x} command, default address
41afff9a 5364@kindex x@r{(examine), and} info line
c906108c
SS
5365After @code{info line}, the default address for the @code{x} command
5366is changed to the starting address of the line, so that @samp{x/i} is
5367sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5368,Examining Memory}). Also, this address is saved as the value of the
c906108c 5369convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5370Variables}).
c906108c
SS
5371
5372@table @code
5373@kindex disassemble
5374@cindex assembly instructions
5375@cindex instructions, assembly
5376@cindex machine instructions
5377@cindex listing machine instructions
5378@item disassemble
5379This specialized command dumps a range of memory as machine
5380instructions. The default memory range is the function surrounding the
5381program counter of the selected frame. A single argument to this
5382command is a program counter value; @value{GDBN} dumps the function
5383surrounding this value. Two arguments specify a range of addresses
5384(first inclusive, second exclusive) to dump.
5385@end table
5386
c906108c
SS
5387The following example shows the disassembly of a range of addresses of
5388HP PA-RISC 2.0 code:
5389
5390@smallexample
5391(@value{GDBP}) disas 0x32c4 0x32e4
5392Dump of assembler code from 0x32c4 to 0x32e4:
53930x32c4 <main+204>: addil 0,dp
53940x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
53950x32cc <main+212>: ldil 0x3000,r31
53960x32d0 <main+216>: ble 0x3f8(sr4,r31)
53970x32d4 <main+220>: ldo 0(r31),rp
53980x32d8 <main+224>: addil -0x800,dp
53990x32dc <main+228>: ldo 0x588(r1),r26
54000x32e0 <main+232>: ldil 0x3000,r31
5401End of assembler dump.
5402@end smallexample
c906108c
SS
5403
5404Some architectures have more than one commonly-used set of instruction
5405mnemonics or other syntax.
5406
76d17f34
EZ
5407For programs that were dynamically linked and use shared libraries,
5408instructions that call functions or branch to locations in the shared
5409libraries might show a seemingly bogus location---it's actually a
5410location of the relocation table. On some architectures, @value{GDBN}
5411might be able to resolve these to actual function names.
5412
c906108c 5413@table @code
d4f3574e 5414@kindex set disassembly-flavor
d4f3574e
SS
5415@cindex Intel disassembly flavor
5416@cindex AT&T disassembly flavor
5417@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5418Select the instruction set to use when disassembling the
5419program via the @code{disassemble} or @code{x/i} commands.
5420
5421Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5422can set @var{instruction-set} to either @code{intel} or @code{att}.
5423The default is @code{att}, the AT&T flavor used by default by Unix
5424assemblers for x86-based targets.
9c16f35a
EZ
5425
5426@kindex show disassembly-flavor
5427@item show disassembly-flavor
5428Show the current setting of the disassembly flavor.
c906108c
SS
5429@end table
5430
5431
6d2ebf8b 5432@node Data
c906108c
SS
5433@chapter Examining Data
5434
5435@cindex printing data
5436@cindex examining data
5437@kindex print
5438@kindex inspect
5439@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5440@c document because it is nonstandard... Under Epoch it displays in a
5441@c different window or something like that.
5442The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5443command (abbreviated @code{p}), or its synonym @code{inspect}. It
5444evaluates and prints the value of an expression of the language your
5445program is written in (@pxref{Languages, ,Using @value{GDBN} with
5446Different Languages}).
c906108c
SS
5447
5448@table @code
d4f3574e
SS
5449@item print @var{expr}
5450@itemx print /@var{f} @var{expr}
5451@var{expr} is an expression (in the source language). By default the
5452value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5453you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5454@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5455Formats}.
c906108c
SS
5456
5457@item print
5458@itemx print /@var{f}
15387254 5459@cindex reprint the last value
d4f3574e 5460If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5461@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5462conveniently inspect the same value in an alternative format.
5463@end table
5464
5465A more low-level way of examining data is with the @code{x} command.
5466It examines data in memory at a specified address and prints it in a
79a6e687 5467specified format. @xref{Memory, ,Examining Memory}.
c906108c 5468
7a292a7a 5469If you are interested in information about types, or about how the
d4f3574e
SS
5470fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5471command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5472Table}.
c906108c
SS
5473
5474@menu
5475* Expressions:: Expressions
5476* Variables:: Program variables
5477* Arrays:: Artificial arrays
5478* Output Formats:: Output formats
5479* Memory:: Examining memory
5480* Auto Display:: Automatic display
5481* Print Settings:: Print settings
5482* Value History:: Value history
5483* Convenience Vars:: Convenience variables
5484* Registers:: Registers
c906108c 5485* Floating Point Hardware:: Floating point hardware
53c69bd7 5486* Vector Unit:: Vector Unit
721c2651 5487* OS Information:: Auxiliary data provided by operating system
29e57380 5488* Memory Region Attributes:: Memory region attributes
16d9dec6 5489* Dump/Restore Files:: Copy between memory and a file
384ee23f 5490* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5491* Character Sets:: Debugging programs that use a different
5492 character set than GDB does
09d4efe1 5493* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5494@end menu
5495
6d2ebf8b 5496@node Expressions
c906108c
SS
5497@section Expressions
5498
5499@cindex expressions
5500@code{print} and many other @value{GDBN} commands accept an expression and
5501compute its value. Any kind of constant, variable or operator defined
5502by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5503@value{GDBN}. This includes conditional expressions, function calls,
5504casts, and string constants. It also includes preprocessor macros, if
5505you compiled your program to include this information; see
5506@ref{Compilation}.
c906108c 5507
15387254 5508@cindex arrays in expressions
d4f3574e
SS
5509@value{GDBN} supports array constants in expressions input by
5510the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
5d161b24 5511you can use the command @code{print @{1, 2, 3@}} to build up an array in
d4f3574e 5512memory that is @code{malloc}ed in the target program.
c906108c 5513
c906108c
SS
5514Because C is so widespread, most of the expressions shown in examples in
5515this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5516Languages}, for information on how to use expressions in other
5517languages.
5518
5519In this section, we discuss operators that you can use in @value{GDBN}
5520expressions regardless of your programming language.
5521
15387254 5522@cindex casts, in expressions
c906108c
SS
5523Casts are supported in all languages, not just in C, because it is so
5524useful to cast a number into a pointer in order to examine a structure
5525at that address in memory.
5526@c FIXME: casts supported---Mod2 true?
c906108c
SS
5527
5528@value{GDBN} supports these operators, in addition to those common
5529to programming languages:
5530
5531@table @code
5532@item @@
5533@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5534@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5535
5536@item ::
5537@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5538function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5539
5540@cindex @{@var{type}@}
5541@cindex type casting memory
5542@cindex memory, viewing as typed object
5543@cindex casts, to view memory
5544@item @{@var{type}@} @var{addr}
5545Refers to an object of type @var{type} stored at address @var{addr} in
5546memory. @var{addr} may be any expression whose value is an integer or
5547pointer (but parentheses are required around binary operators, just as in
5548a cast). This construct is allowed regardless of what kind of data is
5549normally supposed to reside at @var{addr}.
5550@end table
5551
6d2ebf8b 5552@node Variables
79a6e687 5553@section Program Variables
c906108c
SS
5554
5555The most common kind of expression to use is the name of a variable
5556in your program.
5557
5558Variables in expressions are understood in the selected stack frame
79a6e687 5559(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5560
5561@itemize @bullet
5562@item
5563global (or file-static)
5564@end itemize
5565
5d161b24 5566@noindent or
c906108c
SS
5567
5568@itemize @bullet
5569@item
5570visible according to the scope rules of the
5571programming language from the point of execution in that frame
5d161b24 5572@end itemize
c906108c
SS
5573
5574@noindent This means that in the function
5575
474c8240 5576@smallexample
c906108c
SS
5577foo (a)
5578 int a;
5579@{
5580 bar (a);
5581 @{
5582 int b = test ();
5583 bar (b);
5584 @}
5585@}
474c8240 5586@end smallexample
c906108c
SS
5587
5588@noindent
5589you can examine and use the variable @code{a} whenever your program is
5590executing within the function @code{foo}, but you can only use or
5591examine the variable @code{b} while your program is executing inside
5592the block where @code{b} is declared.
5593
5594@cindex variable name conflict
5595There is an exception: you can refer to a variable or function whose
5596scope is a single source file even if the current execution point is not
5597in this file. But it is possible to have more than one such variable or
5598function with the same name (in different source files). If that
5599happens, referring to that name has unpredictable effects. If you wish,
5600you can specify a static variable in a particular function or file,
15387254 5601using the colon-colon (@code{::}) notation:
c906108c 5602
d4f3574e 5603@cindex colon-colon, context for variables/functions
12c27660 5604@ifnotinfo
c906108c 5605@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5606@cindex @code{::}, context for variables/functions
12c27660 5607@end ifnotinfo
474c8240 5608@smallexample
c906108c
SS
5609@var{file}::@var{variable}
5610@var{function}::@var{variable}
474c8240 5611@end smallexample
c906108c
SS
5612
5613@noindent
5614Here @var{file} or @var{function} is the name of the context for the
5615static @var{variable}. In the case of file names, you can use quotes to
5616make sure @value{GDBN} parses the file name as a single word---for example,
5617to print a global value of @code{x} defined in @file{f2.c}:
5618
474c8240 5619@smallexample
c906108c 5620(@value{GDBP}) p 'f2.c'::x
474c8240 5621@end smallexample
c906108c 5622
b37052ae 5623@cindex C@t{++} scope resolution
c906108c 5624This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5625use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5626scope resolution operator in @value{GDBN} expressions.
5627@c FIXME: Um, so what happens in one of those rare cases where it's in
5628@c conflict?? --mew
c906108c
SS
5629
5630@cindex wrong values
5631@cindex variable values, wrong
15387254
EZ
5632@cindex function entry/exit, wrong values of variables
5633@cindex optimized code, wrong values of variables
c906108c
SS
5634@quotation
5635@emph{Warning:} Occasionally, a local variable may appear to have the
5636wrong value at certain points in a function---just after entry to a new
5637scope, and just before exit.
5638@end quotation
5639You may see this problem when you are stepping by machine instructions.
5640This is because, on most machines, it takes more than one instruction to
5641set up a stack frame (including local variable definitions); if you are
5642stepping by machine instructions, variables may appear to have the wrong
5643values until the stack frame is completely built. On exit, it usually
5644also takes more than one machine instruction to destroy a stack frame;
5645after you begin stepping through that group of instructions, local
5646variable definitions may be gone.
5647
5648This may also happen when the compiler does significant optimizations.
5649To be sure of always seeing accurate values, turn off all optimization
5650when compiling.
5651
d4f3574e
SS
5652@cindex ``No symbol "foo" in current context''
5653Another possible effect of compiler optimizations is to optimize
5654unused variables out of existence, or assign variables to registers (as
5655opposed to memory addresses). Depending on the support for such cases
5656offered by the debug info format used by the compiler, @value{GDBN}
5657might not be able to display values for such local variables. If that
5658happens, @value{GDBN} will print a message like this:
5659
474c8240 5660@smallexample
d4f3574e 5661No symbol "foo" in current context.
474c8240 5662@end smallexample
d4f3574e
SS
5663
5664To solve such problems, either recompile without optimizations, or use a
5665different debug info format, if the compiler supports several such
15387254 5666formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5667usually supports the @option{-gstabs+} option. @option{-gstabs+}
5668produces debug info in a format that is superior to formats such as
5669COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5670an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5671for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5672Compiler Collection (GCC)}.
79a6e687 5673@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5674that are best suited to C@t{++} programs.
d4f3574e 5675
ab1adacd
EZ
5676If you ask to print an object whose contents are unknown to
5677@value{GDBN}, e.g., because its data type is not completely specified
5678by the debug information, @value{GDBN} will say @samp{<incomplete
5679type>}. @xref{Symbols, incomplete type}, for more about this.
5680
3a60f64e
JK
5681Strings are identified as arrays of @code{char} values without specified
5682signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5683printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5684@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5685defines literal string type @code{"char"} as @code{char} without a sign.
5686For program code
5687
5688@smallexample
5689char var0[] = "A";
5690signed char var1[] = "A";
5691@end smallexample
5692
5693You get during debugging
5694@smallexample
5695(gdb) print var0
5696$1 = "A"
5697(gdb) print var1
5698$2 = @{65 'A', 0 '\0'@}
5699@end smallexample
5700
6d2ebf8b 5701@node Arrays
79a6e687 5702@section Artificial Arrays
c906108c
SS
5703
5704@cindex artificial array
15387254 5705@cindex arrays
41afff9a 5706@kindex @@@r{, referencing memory as an array}
c906108c
SS
5707It is often useful to print out several successive objects of the
5708same type in memory; a section of an array, or an array of
5709dynamically determined size for which only a pointer exists in the
5710program.
5711
5712You can do this by referring to a contiguous span of memory as an
5713@dfn{artificial array}, using the binary operator @samp{@@}. The left
5714operand of @samp{@@} should be the first element of the desired array
5715and be an individual object. The right operand should be the desired length
5716of the array. The result is an array value whose elements are all of
5717the type of the left argument. The first element is actually the left
5718argument; the second element comes from bytes of memory immediately
5719following those that hold the first element, and so on. Here is an
5720example. If a program says
5721
474c8240 5722@smallexample
c906108c 5723int *array = (int *) malloc (len * sizeof (int));
474c8240 5724@end smallexample
c906108c
SS
5725
5726@noindent
5727you can print the contents of @code{array} with
5728
474c8240 5729@smallexample
c906108c 5730p *array@@len
474c8240 5731@end smallexample
c906108c
SS
5732
5733The left operand of @samp{@@} must reside in memory. Array values made
5734with @samp{@@} in this way behave just like other arrays in terms of
5735subscripting, and are coerced to pointers when used in expressions.
5736Artificial arrays most often appear in expressions via the value history
79a6e687 5737(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5738
5739Another way to create an artificial array is to use a cast.
5740This re-interprets a value as if it were an array.
5741The value need not be in memory:
474c8240 5742@smallexample
c906108c
SS
5743(@value{GDBP}) p/x (short[2])0x12345678
5744$1 = @{0x1234, 0x5678@}
474c8240 5745@end smallexample
c906108c
SS
5746
5747As a convenience, if you leave the array length out (as in
c3f6f71d 5748@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5749the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5750@smallexample
c906108c
SS
5751(@value{GDBP}) p/x (short[])0x12345678
5752$2 = @{0x1234, 0x5678@}
474c8240 5753@end smallexample
c906108c
SS
5754
5755Sometimes the artificial array mechanism is not quite enough; in
5756moderately complex data structures, the elements of interest may not
5757actually be adjacent---for example, if you are interested in the values
5758of pointers in an array. One useful work-around in this situation is
5759to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5760Variables}) as a counter in an expression that prints the first
c906108c
SS
5761interesting value, and then repeat that expression via @key{RET}. For
5762instance, suppose you have an array @code{dtab} of pointers to
5763structures, and you are interested in the values of a field @code{fv}
5764in each structure. Here is an example of what you might type:
5765
474c8240 5766@smallexample
c906108c
SS
5767set $i = 0
5768p dtab[$i++]->fv
5769@key{RET}
5770@key{RET}
5771@dots{}
474c8240 5772@end smallexample
c906108c 5773
6d2ebf8b 5774@node Output Formats
79a6e687 5775@section Output Formats
c906108c
SS
5776
5777@cindex formatted output
5778@cindex output formats
5779By default, @value{GDBN} prints a value according to its data type. Sometimes
5780this is not what you want. For example, you might want to print a number
5781in hex, or a pointer in decimal. Or you might want to view data in memory
5782at a certain address as a character string or as an instruction. To do
5783these things, specify an @dfn{output format} when you print a value.
5784
5785The simplest use of output formats is to say how to print a value
5786already computed. This is done by starting the arguments of the
5787@code{print} command with a slash and a format letter. The format
5788letters supported are:
5789
5790@table @code
5791@item x
5792Regard the bits of the value as an integer, and print the integer in
5793hexadecimal.
5794
5795@item d
5796Print as integer in signed decimal.
5797
5798@item u
5799Print as integer in unsigned decimal.
5800
5801@item o
5802Print as integer in octal.
5803
5804@item t
5805Print as integer in binary. The letter @samp{t} stands for ``two''.
5806@footnote{@samp{b} cannot be used because these format letters are also
5807used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5808see @ref{Memory,,Examining Memory}.}
c906108c
SS
5809
5810@item a
5811@cindex unknown address, locating
3d67e040 5812@cindex locate address
c906108c
SS
5813Print as an address, both absolute in hexadecimal and as an offset from
5814the nearest preceding symbol. You can use this format used to discover
5815where (in what function) an unknown address is located:
5816
474c8240 5817@smallexample
c906108c
SS
5818(@value{GDBP}) p/a 0x54320
5819$3 = 0x54320 <_initialize_vx+396>
474c8240 5820@end smallexample
c906108c 5821
3d67e040
EZ
5822@noindent
5823The command @code{info symbol 0x54320} yields similar results.
5824@xref{Symbols, info symbol}.
5825
c906108c 5826@item c
51274035
EZ
5827Regard as an integer and print it as a character constant. This
5828prints both the numerical value and its character representation. The
5829character representation is replaced with the octal escape @samp{\nnn}
5830for characters outside the 7-bit @sc{ascii} range.
c906108c 5831
ea37ba09
DJ
5832Without this format, @value{GDBN} displays @code{char},
5833@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5834constants. Single-byte members of vectors are displayed as integer
5835data.
5836
c906108c
SS
5837@item f
5838Regard the bits of the value as a floating point number and print
5839using typical floating point syntax.
ea37ba09
DJ
5840
5841@item s
5842@cindex printing strings
5843@cindex printing byte arrays
5844Regard as a string, if possible. With this format, pointers to single-byte
5845data are displayed as null-terminated strings and arrays of single-byte data
5846are displayed as fixed-length strings. Other values are displayed in their
5847natural types.
5848
5849Without this format, @value{GDBN} displays pointers to and arrays of
5850@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5851strings. Single-byte members of a vector are displayed as an integer
5852array.
c906108c
SS
5853@end table
5854
5855For example, to print the program counter in hex (@pxref{Registers}), type
5856
474c8240 5857@smallexample
c906108c 5858p/x $pc
474c8240 5859@end smallexample
c906108c
SS
5860
5861@noindent
5862Note that no space is required before the slash; this is because command
5863names in @value{GDBN} cannot contain a slash.
5864
5865To reprint the last value in the value history with a different format,
5866you can use the @code{print} command with just a format and no
5867expression. For example, @samp{p/x} reprints the last value in hex.
5868
6d2ebf8b 5869@node Memory
79a6e687 5870@section Examining Memory
c906108c
SS
5871
5872You can use the command @code{x} (for ``examine'') to examine memory in
5873any of several formats, independently of your program's data types.
5874
5875@cindex examining memory
5876@table @code
41afff9a 5877@kindex x @r{(examine memory)}
c906108c
SS
5878@item x/@var{nfu} @var{addr}
5879@itemx x @var{addr}
5880@itemx x
5881Use the @code{x} command to examine memory.
5882@end table
5883
5884@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
5885much memory to display and how to format it; @var{addr} is an
5886expression giving the address where you want to start displaying memory.
5887If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
5888Several commands set convenient defaults for @var{addr}.
5889
5890@table @r
5891@item @var{n}, the repeat count
5892The repeat count is a decimal integer; the default is 1. It specifies
5893how much memory (counting by units @var{u}) to display.
5894@c This really is **decimal**; unaffected by 'set radix' as of GDB
5895@c 4.1.2.
5896
5897@item @var{f}, the display format
51274035
EZ
5898The display format is one of the formats used by @code{print}
5899(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
5900@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
5901The default is @samp{x} (hexadecimal) initially. The default changes
5902each time you use either @code{x} or @code{print}.
c906108c
SS
5903
5904@item @var{u}, the unit size
5905The unit size is any of
5906
5907@table @code
5908@item b
5909Bytes.
5910@item h
5911Halfwords (two bytes).
5912@item w
5913Words (four bytes). This is the initial default.
5914@item g
5915Giant words (eight bytes).
5916@end table
5917
5918Each time you specify a unit size with @code{x}, that size becomes the
5919default unit the next time you use @code{x}. (For the @samp{s} and
5920@samp{i} formats, the unit size is ignored and is normally not written.)
5921
5922@item @var{addr}, starting display address
5923@var{addr} is the address where you want @value{GDBN} to begin displaying
5924memory. The expression need not have a pointer value (though it may);
5925it is always interpreted as an integer address of a byte of memory.
5926@xref{Expressions, ,Expressions}, for more information on expressions. The default for
5927@var{addr} is usually just after the last address examined---but several
5928other commands also set the default address: @code{info breakpoints} (to
5929the address of the last breakpoint listed), @code{info line} (to the
5930starting address of a line), and @code{print} (if you use it to display
5931a value from memory).
5932@end table
5933
5934For example, @samp{x/3uh 0x54320} is a request to display three halfwords
5935(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
5936starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
5937words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 5938@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
5939
5940Since the letters indicating unit sizes are all distinct from the
5941letters specifying output formats, you do not have to remember whether
5942unit size or format comes first; either order works. The output
5943specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
5944(However, the count @var{n} must come first; @samp{wx4} does not work.)
5945
5946Even though the unit size @var{u} is ignored for the formats @samp{s}
5947and @samp{i}, you might still want to use a count @var{n}; for example,
5948@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
5949including any operands. For convenience, especially when used with
5950the @code{display} command, the @samp{i} format also prints branch delay
5951slot instructions, if any, beyond the count specified, which immediately
5952follow the last instruction that is within the count. The command
5953@code{disassemble} gives an alternative way of inspecting machine
5954instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
5955
5956All the defaults for the arguments to @code{x} are designed to make it
5957easy to continue scanning memory with minimal specifications each time
5958you use @code{x}. For example, after you have inspected three machine
5959instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
5960with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
5961the repeat count @var{n} is used again; the other arguments default as
5962for successive uses of @code{x}.
5963
5964@cindex @code{$_}, @code{$__}, and value history
5965The addresses and contents printed by the @code{x} command are not saved
5966in the value history because there is often too much of them and they
5967would get in the way. Instead, @value{GDBN} makes these values available for
5968subsequent use in expressions as values of the convenience variables
5969@code{$_} and @code{$__}. After an @code{x} command, the last address
5970examined is available for use in expressions in the convenience variable
5971@code{$_}. The contents of that address, as examined, are available in
5972the convenience variable @code{$__}.
5973
5974If the @code{x} command has a repeat count, the address and contents saved
5975are from the last memory unit printed; this is not the same as the last
5976address printed if several units were printed on the last line of output.
5977
09d4efe1
EZ
5978@cindex remote memory comparison
5979@cindex verify remote memory image
5980When you are debugging a program running on a remote target machine
ea35711c 5981(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
5982remote machine's memory against the executable file you downloaded to
5983the target. The @code{compare-sections} command is provided for such
5984situations.
5985
5986@table @code
5987@kindex compare-sections
5988@item compare-sections @r{[}@var{section-name}@r{]}
5989Compare the data of a loadable section @var{section-name} in the
5990executable file of the program being debugged with the same section in
5991the remote machine's memory, and report any mismatches. With no
5992arguments, compares all loadable sections. This command's
5993availability depends on the target's support for the @code{"qCRC"}
5994remote request.
5995@end table
5996
6d2ebf8b 5997@node Auto Display
79a6e687 5998@section Automatic Display
c906108c
SS
5999@cindex automatic display
6000@cindex display of expressions
6001
6002If you find that you want to print the value of an expression frequently
6003(to see how it changes), you might want to add it to the @dfn{automatic
6004display list} so that @value{GDBN} prints its value each time your program stops.
6005Each expression added to the list is given a number to identify it;
6006to remove an expression from the list, you specify that number.
6007The automatic display looks like this:
6008
474c8240 6009@smallexample
c906108c
SS
60102: foo = 38
60113: bar[5] = (struct hack *) 0x3804
474c8240 6012@end smallexample
c906108c
SS
6013
6014@noindent
6015This display shows item numbers, expressions and their current values. As with
6016displays you request manually using @code{x} or @code{print}, you can
6017specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6018whether to use @code{print} or @code{x} depending your format
6019specification---it uses @code{x} if you specify either the @samp{i}
6020or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6021
6022@table @code
6023@kindex display
d4f3574e
SS
6024@item display @var{expr}
6025Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6026each time your program stops. @xref{Expressions, ,Expressions}.
6027
6028@code{display} does not repeat if you press @key{RET} again after using it.
6029
d4f3574e 6030@item display/@var{fmt} @var{expr}
c906108c 6031For @var{fmt} specifying only a display format and not a size or
d4f3574e 6032count, add the expression @var{expr} to the auto-display list but
c906108c 6033arrange to display it each time in the specified format @var{fmt}.
79a6e687 6034@xref{Output Formats,,Output Formats}.
c906108c
SS
6035
6036@item display/@var{fmt} @var{addr}
6037For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6038number of units, add the expression @var{addr} as a memory address to
6039be examined each time your program stops. Examining means in effect
79a6e687 6040doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6041@end table
6042
6043For example, @samp{display/i $pc} can be helpful, to see the machine
6044instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6045is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6046
6047@table @code
6048@kindex delete display
6049@kindex undisplay
6050@item undisplay @var{dnums}@dots{}
6051@itemx delete display @var{dnums}@dots{}
6052Remove item numbers @var{dnums} from the list of expressions to display.
6053
6054@code{undisplay} does not repeat if you press @key{RET} after using it.
6055(Otherwise you would just get the error @samp{No display number @dots{}}.)
6056
6057@kindex disable display
6058@item disable display @var{dnums}@dots{}
6059Disable the display of item numbers @var{dnums}. A disabled display
6060item is not printed automatically, but is not forgotten. It may be
6061enabled again later.
6062
6063@kindex enable display
6064@item enable display @var{dnums}@dots{}
6065Enable display of item numbers @var{dnums}. It becomes effective once
6066again in auto display of its expression, until you specify otherwise.
6067
6068@item display
6069Display the current values of the expressions on the list, just as is
6070done when your program stops.
6071
6072@kindex info display
6073@item info display
6074Print the list of expressions previously set up to display
6075automatically, each one with its item number, but without showing the
6076values. This includes disabled expressions, which are marked as such.
6077It also includes expressions which would not be displayed right now
6078because they refer to automatic variables not currently available.
6079@end table
6080
15387254 6081@cindex display disabled out of scope
c906108c
SS
6082If a display expression refers to local variables, then it does not make
6083sense outside the lexical context for which it was set up. Such an
6084expression is disabled when execution enters a context where one of its
6085variables is not defined. For example, if you give the command
6086@code{display last_char} while inside a function with an argument
6087@code{last_char}, @value{GDBN} displays this argument while your program
6088continues to stop inside that function. When it stops elsewhere---where
6089there is no variable @code{last_char}---the display is disabled
6090automatically. The next time your program stops where @code{last_char}
6091is meaningful, you can enable the display expression once again.
6092
6d2ebf8b 6093@node Print Settings
79a6e687 6094@section Print Settings
c906108c
SS
6095
6096@cindex format options
6097@cindex print settings
6098@value{GDBN} provides the following ways to control how arrays, structures,
6099and symbols are printed.
6100
6101@noindent
6102These settings are useful for debugging programs in any language:
6103
6104@table @code
4644b6e3 6105@kindex set print
c906108c
SS
6106@item set print address
6107@itemx set print address on
4644b6e3 6108@cindex print/don't print memory addresses
c906108c
SS
6109@value{GDBN} prints memory addresses showing the location of stack
6110traces, structure values, pointer values, breakpoints, and so forth,
6111even when it also displays the contents of those addresses. The default
6112is @code{on}. For example, this is what a stack frame display looks like with
6113@code{set print address on}:
6114
6115@smallexample
6116@group
6117(@value{GDBP}) f
6118#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6119 at input.c:530
6120530 if (lquote != def_lquote)
6121@end group
6122@end smallexample
6123
6124@item set print address off
6125Do not print addresses when displaying their contents. For example,
6126this is the same stack frame displayed with @code{set print address off}:
6127
6128@smallexample
6129@group
6130(@value{GDBP}) set print addr off
6131(@value{GDBP}) f
6132#0 set_quotes (lq="<<", rq=">>") at input.c:530
6133530 if (lquote != def_lquote)
6134@end group
6135@end smallexample
6136
6137You can use @samp{set print address off} to eliminate all machine
6138dependent displays from the @value{GDBN} interface. For example, with
6139@code{print address off}, you should get the same text for backtraces on
6140all machines---whether or not they involve pointer arguments.
6141
4644b6e3 6142@kindex show print
c906108c
SS
6143@item show print address
6144Show whether or not addresses are to be printed.
6145@end table
6146
6147When @value{GDBN} prints a symbolic address, it normally prints the
6148closest earlier symbol plus an offset. If that symbol does not uniquely
6149identify the address (for example, it is a name whose scope is a single
6150source file), you may need to clarify. One way to do this is with
6151@code{info line}, for example @samp{info line *0x4537}. Alternately,
6152you can set @value{GDBN} to print the source file and line number when
6153it prints a symbolic address:
6154
6155@table @code
c906108c 6156@item set print symbol-filename on
9c16f35a
EZ
6157@cindex source file and line of a symbol
6158@cindex symbol, source file and line
c906108c
SS
6159Tell @value{GDBN} to print the source file name and line number of a
6160symbol in the symbolic form of an address.
6161
6162@item set print symbol-filename off
6163Do not print source file name and line number of a symbol. This is the
6164default.
6165
c906108c
SS
6166@item show print symbol-filename
6167Show whether or not @value{GDBN} will print the source file name and
6168line number of a symbol in the symbolic form of an address.
6169@end table
6170
6171Another situation where it is helpful to show symbol filenames and line
6172numbers is when disassembling code; @value{GDBN} shows you the line
6173number and source file that corresponds to each instruction.
6174
6175Also, you may wish to see the symbolic form only if the address being
6176printed is reasonably close to the closest earlier symbol:
6177
6178@table @code
c906108c 6179@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6180@cindex maximum value for offset of closest symbol
c906108c
SS
6181Tell @value{GDBN} to only display the symbolic form of an address if the
6182offset between the closest earlier symbol and the address is less than
5d161b24 6183@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6184to always print the symbolic form of an address if any symbol precedes it.
6185
c906108c
SS
6186@item show print max-symbolic-offset
6187Ask how large the maximum offset is that @value{GDBN} prints in a
6188symbolic address.
6189@end table
6190
6191@cindex wild pointer, interpreting
6192@cindex pointer, finding referent
6193If you have a pointer and you are not sure where it points, try
6194@samp{set print symbol-filename on}. Then you can determine the name
6195and source file location of the variable where it points, using
6196@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6197For example, here @value{GDBN} shows that a variable @code{ptt} points
6198at another variable @code{t}, defined in @file{hi2.c}:
6199
474c8240 6200@smallexample
c906108c
SS
6201(@value{GDBP}) set print symbol-filename on
6202(@value{GDBP}) p/a ptt
6203$4 = 0xe008 <t in hi2.c>
474c8240 6204@end smallexample
c906108c
SS
6205
6206@quotation
6207@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6208does not show the symbol name and filename of the referent, even with
6209the appropriate @code{set print} options turned on.
6210@end quotation
6211
6212Other settings control how different kinds of objects are printed:
6213
6214@table @code
c906108c
SS
6215@item set print array
6216@itemx set print array on
4644b6e3 6217@cindex pretty print arrays
c906108c
SS
6218Pretty print arrays. This format is more convenient to read,
6219but uses more space. The default is off.
6220
6221@item set print array off
6222Return to compressed format for arrays.
6223
c906108c
SS
6224@item show print array
6225Show whether compressed or pretty format is selected for displaying
6226arrays.
6227
3c9c013a
JB
6228@cindex print array indexes
6229@item set print array-indexes
6230@itemx set print array-indexes on
6231Print the index of each element when displaying arrays. May be more
6232convenient to locate a given element in the array or quickly find the
6233index of a given element in that printed array. The default is off.
6234
6235@item set print array-indexes off
6236Stop printing element indexes when displaying arrays.
6237
6238@item show print array-indexes
6239Show whether the index of each element is printed when displaying
6240arrays.
6241
c906108c 6242@item set print elements @var{number-of-elements}
4644b6e3 6243@cindex number of array elements to print
9c16f35a 6244@cindex limit on number of printed array elements
c906108c
SS
6245Set a limit on how many elements of an array @value{GDBN} will print.
6246If @value{GDBN} is printing a large array, it stops printing after it has
6247printed the number of elements set by the @code{set print elements} command.
6248This limit also applies to the display of strings.
d4f3574e 6249When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6250Setting @var{number-of-elements} to zero means that the printing is unlimited.
6251
c906108c
SS
6252@item show print elements
6253Display the number of elements of a large array that @value{GDBN} will print.
6254If the number is 0, then the printing is unlimited.
6255
b4740add
JB
6256@item set print frame-arguments @var{value}
6257@cindex printing frame argument values
6258@cindex print all frame argument values
6259@cindex print frame argument values for scalars only
6260@cindex do not print frame argument values
6261This command allows to control how the values of arguments are printed
6262when the debugger prints a frame (@pxref{Frames}). The possible
6263values are:
6264
6265@table @code
6266@item all
6267The values of all arguments are printed. This is the default.
6268
6269@item scalars
6270Print the value of an argument only if it is a scalar. The value of more
6271complex arguments such as arrays, structures, unions, etc, is replaced
6272by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6273
6274@smallexample
6275#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6276 at frame-args.c:23
6277@end smallexample
6278
6279@item none
6280None of the argument values are printed. Instead, the value of each argument
6281is replaced by @code{@dots{}}. In this case, the example above now becomes:
6282
6283@smallexample
6284#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6285 at frame-args.c:23
6286@end smallexample
6287@end table
6288
6289By default, all argument values are always printed. But this command
6290can be useful in several cases. For instance, it can be used to reduce
6291the amount of information printed in each frame, making the backtrace
6292more readable. Also, this command can be used to improve performance
6293when displaying Ada frames, because the computation of large arguments
6294can sometimes be CPU-intensive, especiallly in large applications.
6295Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6296avoids this computation, thus speeding up the display of each Ada frame.
6297
6298@item show print frame-arguments
6299Show how the value of arguments should be displayed when printing a frame.
6300
9c16f35a
EZ
6301@item set print repeats
6302@cindex repeated array elements
6303Set the threshold for suppressing display of repeated array
d3e8051b 6304elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6305array exceeds the threshold, @value{GDBN} prints the string
6306@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6307identical repetitions, instead of displaying the identical elements
6308themselves. Setting the threshold to zero will cause all elements to
6309be individually printed. The default threshold is 10.
6310
6311@item show print repeats
6312Display the current threshold for printing repeated identical
6313elements.
6314
c906108c 6315@item set print null-stop
4644b6e3 6316@cindex @sc{null} elements in arrays
c906108c 6317Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6318@sc{null} is encountered. This is useful when large arrays actually
c906108c 6319contain only short strings.
d4f3574e 6320The default is off.
c906108c 6321
9c16f35a
EZ
6322@item show print null-stop
6323Show whether @value{GDBN} stops printing an array on the first
6324@sc{null} character.
6325
c906108c 6326@item set print pretty on
9c16f35a
EZ
6327@cindex print structures in indented form
6328@cindex indentation in structure display
5d161b24 6329Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6330per line, like this:
6331
6332@smallexample
6333@group
6334$1 = @{
6335 next = 0x0,
6336 flags = @{
6337 sweet = 1,
6338 sour = 1
6339 @},
6340 meat = 0x54 "Pork"
6341@}
6342@end group
6343@end smallexample
6344
6345@item set print pretty off
6346Cause @value{GDBN} to print structures in a compact format, like this:
6347
6348@smallexample
6349@group
6350$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6351meat = 0x54 "Pork"@}
6352@end group
6353@end smallexample
6354
6355@noindent
6356This is the default format.
6357
c906108c
SS
6358@item show print pretty
6359Show which format @value{GDBN} is using to print structures.
6360
c906108c 6361@item set print sevenbit-strings on
4644b6e3
EZ
6362@cindex eight-bit characters in strings
6363@cindex octal escapes in strings
c906108c
SS
6364Print using only seven-bit characters; if this option is set,
6365@value{GDBN} displays any eight-bit characters (in strings or
6366character values) using the notation @code{\}@var{nnn}. This setting is
6367best if you are working in English (@sc{ascii}) and you use the
6368high-order bit of characters as a marker or ``meta'' bit.
6369
6370@item set print sevenbit-strings off
6371Print full eight-bit characters. This allows the use of more
6372international character sets, and is the default.
6373
c906108c
SS
6374@item show print sevenbit-strings
6375Show whether or not @value{GDBN} is printing only seven-bit characters.
6376
c906108c 6377@item set print union on
4644b6e3 6378@cindex unions in structures, printing
9c16f35a
EZ
6379Tell @value{GDBN} to print unions which are contained in structures
6380and other unions. This is the default setting.
c906108c
SS
6381
6382@item set print union off
9c16f35a
EZ
6383Tell @value{GDBN} not to print unions which are contained in
6384structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6385instead.
c906108c 6386
c906108c
SS
6387@item show print union
6388Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6389structures and other unions.
c906108c
SS
6390
6391For example, given the declarations
6392
6393@smallexample
6394typedef enum @{Tree, Bug@} Species;
6395typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6396typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6397 Bug_forms;
6398
6399struct thing @{
6400 Species it;
6401 union @{
6402 Tree_forms tree;
6403 Bug_forms bug;
6404 @} form;
6405@};
6406
6407struct thing foo = @{Tree, @{Acorn@}@};
6408@end smallexample
6409
6410@noindent
6411with @code{set print union on} in effect @samp{p foo} would print
6412
6413@smallexample
6414$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6415@end smallexample
6416
6417@noindent
6418and with @code{set print union off} in effect it would print
6419
6420@smallexample
6421$1 = @{it = Tree, form = @{...@}@}
6422@end smallexample
9c16f35a
EZ
6423
6424@noindent
6425@code{set print union} affects programs written in C-like languages
6426and in Pascal.
c906108c
SS
6427@end table
6428
c906108c
SS
6429@need 1000
6430@noindent
b37052ae 6431These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6432
6433@table @code
4644b6e3 6434@cindex demangling C@t{++} names
c906108c
SS
6435@item set print demangle
6436@itemx set print demangle on
b37052ae 6437Print C@t{++} names in their source form rather than in the encoded
c906108c 6438(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6439linkage. The default is on.
c906108c 6440
c906108c 6441@item show print demangle
b37052ae 6442Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6443
c906108c
SS
6444@item set print asm-demangle
6445@itemx set print asm-demangle on
b37052ae 6446Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6447in assembler code printouts such as instruction disassemblies.
6448The default is off.
6449
c906108c 6450@item show print asm-demangle
b37052ae 6451Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6452or demangled form.
6453
b37052ae
EZ
6454@cindex C@t{++} symbol decoding style
6455@cindex symbol decoding style, C@t{++}
a8f24a35 6456@kindex set demangle-style
c906108c
SS
6457@item set demangle-style @var{style}
6458Choose among several encoding schemes used by different compilers to
b37052ae 6459represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6460
6461@table @code
6462@item auto
6463Allow @value{GDBN} to choose a decoding style by inspecting your program.
6464
6465@item gnu
b37052ae 6466Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6467This is the default.
c906108c
SS
6468
6469@item hp
b37052ae 6470Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6471
6472@item lucid
b37052ae 6473Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6474
6475@item arm
b37052ae 6476Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6477@strong{Warning:} this setting alone is not sufficient to allow
6478debugging @code{cfront}-generated executables. @value{GDBN} would
6479require further enhancement to permit that.
6480
6481@end table
6482If you omit @var{style}, you will see a list of possible formats.
6483
c906108c 6484@item show demangle-style
b37052ae 6485Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6486
c906108c
SS
6487@item set print object
6488@itemx set print object on
4644b6e3 6489@cindex derived type of an object, printing
9c16f35a 6490@cindex display derived types
c906108c
SS
6491When displaying a pointer to an object, identify the @emph{actual}
6492(derived) type of the object rather than the @emph{declared} type, using
6493the virtual function table.
6494
6495@item set print object off
6496Display only the declared type of objects, without reference to the
6497virtual function table. This is the default setting.
6498
c906108c
SS
6499@item show print object
6500Show whether actual, or declared, object types are displayed.
6501
c906108c
SS
6502@item set print static-members
6503@itemx set print static-members on
4644b6e3 6504@cindex static members of C@t{++} objects
b37052ae 6505Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6506
6507@item set print static-members off
b37052ae 6508Do not print static members when displaying a C@t{++} object.
c906108c 6509
c906108c 6510@item show print static-members
9c16f35a
EZ
6511Show whether C@t{++} static members are printed or not.
6512
6513@item set print pascal_static-members
6514@itemx set print pascal_static-members on
d3e8051b
EZ
6515@cindex static members of Pascal objects
6516@cindex Pascal objects, static members display
9c16f35a
EZ
6517Print static members when displaying a Pascal object. The default is on.
6518
6519@item set print pascal_static-members off
6520Do not print static members when displaying a Pascal object.
6521
6522@item show print pascal_static-members
6523Show whether Pascal static members are printed or not.
c906108c
SS
6524
6525@c These don't work with HP ANSI C++ yet.
c906108c
SS
6526@item set print vtbl
6527@itemx set print vtbl on
4644b6e3 6528@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6529@cindex virtual functions (C@t{++}) display
6530@cindex VTBL display
b37052ae 6531Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6532(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6533ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6534
6535@item set print vtbl off
b37052ae 6536Do not pretty print C@t{++} virtual function tables.
c906108c 6537
c906108c 6538@item show print vtbl
b37052ae 6539Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6540@end table
c906108c 6541
6d2ebf8b 6542@node Value History
79a6e687 6543@section Value History
c906108c
SS
6544
6545@cindex value history
9c16f35a 6546@cindex history of values printed by @value{GDBN}
5d161b24
DB
6547Values printed by the @code{print} command are saved in the @value{GDBN}
6548@dfn{value history}. This allows you to refer to them in other expressions.
6549Values are kept until the symbol table is re-read or discarded
6550(for example with the @code{file} or @code{symbol-file} commands).
6551When the symbol table changes, the value history is discarded,
6552since the values may contain pointers back to the types defined in the
c906108c
SS
6553symbol table.
6554
6555@cindex @code{$}
6556@cindex @code{$$}
6557@cindex history number
6558The values printed are given @dfn{history numbers} by which you can
6559refer to them. These are successive integers starting with one.
6560@code{print} shows you the history number assigned to a value by
6561printing @samp{$@var{num} = } before the value; here @var{num} is the
6562history number.
6563
6564To refer to any previous value, use @samp{$} followed by the value's
6565history number. The way @code{print} labels its output is designed to
6566remind you of this. Just @code{$} refers to the most recent value in
6567the history, and @code{$$} refers to the value before that.
6568@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6569is the value just prior to @code{$$}, @code{$$1} is equivalent to
6570@code{$$}, and @code{$$0} is equivalent to @code{$}.
6571
6572For example, suppose you have just printed a pointer to a structure and
6573want to see the contents of the structure. It suffices to type
6574
474c8240 6575@smallexample
c906108c 6576p *$
474c8240 6577@end smallexample
c906108c
SS
6578
6579If you have a chain of structures where the component @code{next} points
6580to the next one, you can print the contents of the next one with this:
6581
474c8240 6582@smallexample
c906108c 6583p *$.next
474c8240 6584@end smallexample
c906108c
SS
6585
6586@noindent
6587You can print successive links in the chain by repeating this
6588command---which you can do by just typing @key{RET}.
6589
6590Note that the history records values, not expressions. If the value of
6591@code{x} is 4 and you type these commands:
6592
474c8240 6593@smallexample
c906108c
SS
6594print x
6595set x=5
474c8240 6596@end smallexample
c906108c
SS
6597
6598@noindent
6599then the value recorded in the value history by the @code{print} command
6600remains 4 even though the value of @code{x} has changed.
6601
6602@table @code
6603@kindex show values
6604@item show values
6605Print the last ten values in the value history, with their item numbers.
6606This is like @samp{p@ $$9} repeated ten times, except that @code{show
6607values} does not change the history.
6608
6609@item show values @var{n}
6610Print ten history values centered on history item number @var{n}.
6611
6612@item show values +
6613Print ten history values just after the values last printed. If no more
6614values are available, @code{show values +} produces no display.
6615@end table
6616
6617Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6618same effect as @samp{show values +}.
6619
6d2ebf8b 6620@node Convenience Vars
79a6e687 6621@section Convenience Variables
c906108c
SS
6622
6623@cindex convenience variables
9c16f35a 6624@cindex user-defined variables
c906108c
SS
6625@value{GDBN} provides @dfn{convenience variables} that you can use within
6626@value{GDBN} to hold on to a value and refer to it later. These variables
6627exist entirely within @value{GDBN}; they are not part of your program, and
6628setting a convenience variable has no direct effect on further execution
6629of your program. That is why you can use them freely.
6630
6631Convenience variables are prefixed with @samp{$}. Any name preceded by
6632@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6633the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6634(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6635by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6636
6637You can save a value in a convenience variable with an assignment
6638expression, just as you would set a variable in your program.
6639For example:
6640
474c8240 6641@smallexample
c906108c 6642set $foo = *object_ptr
474c8240 6643@end smallexample
c906108c
SS
6644
6645@noindent
6646would save in @code{$foo} the value contained in the object pointed to by
6647@code{object_ptr}.
6648
6649Using a convenience variable for the first time creates it, but its
6650value is @code{void} until you assign a new value. You can alter the
6651value with another assignment at any time.
6652
6653Convenience variables have no fixed types. You can assign a convenience
6654variable any type of value, including structures and arrays, even if
6655that variable already has a value of a different type. The convenience
6656variable, when used as an expression, has the type of its current value.
6657
6658@table @code
6659@kindex show convenience
9c16f35a 6660@cindex show all user variables
c906108c
SS
6661@item show convenience
6662Print a list of convenience variables used so far, and their values.
d4f3574e 6663Abbreviated @code{show conv}.
53e5f3cf
AS
6664
6665@kindex init-if-undefined
6666@cindex convenience variables, initializing
6667@item init-if-undefined $@var{variable} = @var{expression}
6668Set a convenience variable if it has not already been set. This is useful
6669for user-defined commands that keep some state. It is similar, in concept,
6670to using local static variables with initializers in C (except that
6671convenience variables are global). It can also be used to allow users to
6672override default values used in a command script.
6673
6674If the variable is already defined then the expression is not evaluated so
6675any side-effects do not occur.
c906108c
SS
6676@end table
6677
6678One of the ways to use a convenience variable is as a counter to be
6679incremented or a pointer to be advanced. For example, to print
6680a field from successive elements of an array of structures:
6681
474c8240 6682@smallexample
c906108c
SS
6683set $i = 0
6684print bar[$i++]->contents
474c8240 6685@end smallexample
c906108c 6686
d4f3574e
SS
6687@noindent
6688Repeat that command by typing @key{RET}.
c906108c
SS
6689
6690Some convenience variables are created automatically by @value{GDBN} and given
6691values likely to be useful.
6692
6693@table @code
41afff9a 6694@vindex $_@r{, convenience variable}
c906108c
SS
6695@item $_
6696The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6697the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6698commands which provide a default address for @code{x} to examine also
6699set @code{$_} to that address; these commands include @code{info line}
6700and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6701except when set by the @code{x} command, in which case it is a pointer
6702to the type of @code{$__}.
6703
41afff9a 6704@vindex $__@r{, convenience variable}
c906108c
SS
6705@item $__
6706The variable @code{$__} is automatically set by the @code{x} command
6707to the value found in the last address examined. Its type is chosen
6708to match the format in which the data was printed.
6709
6710@item $_exitcode
41afff9a 6711@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6712The variable @code{$_exitcode} is automatically set to the exit code when
6713the program being debugged terminates.
6714@end table
6715
53a5351d
JM
6716On HP-UX systems, if you refer to a function or variable name that
6717begins with a dollar sign, @value{GDBN} searches for a user or system
6718name first, before it searches for a convenience variable.
c906108c 6719
6d2ebf8b 6720@node Registers
c906108c
SS
6721@section Registers
6722
6723@cindex registers
6724You can refer to machine register contents, in expressions, as variables
6725with names starting with @samp{$}. The names of registers are different
6726for each machine; use @code{info registers} to see the names used on
6727your machine.
6728
6729@table @code
6730@kindex info registers
6731@item info registers
6732Print the names and values of all registers except floating-point
c85508ee 6733and vector registers (in the selected stack frame).
c906108c
SS
6734
6735@kindex info all-registers
6736@cindex floating point registers
6737@item info all-registers
6738Print the names and values of all registers, including floating-point
c85508ee 6739and vector registers (in the selected stack frame).
c906108c
SS
6740
6741@item info registers @var{regname} @dots{}
6742Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6743As discussed in detail below, register values are normally relative to
6744the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6745the machine you are using, with or without the initial @samp{$}.
6746@end table
6747
e09f16f9
EZ
6748@cindex stack pointer register
6749@cindex program counter register
6750@cindex process status register
6751@cindex frame pointer register
6752@cindex standard registers
c906108c
SS
6753@value{GDBN} has four ``standard'' register names that are available (in
6754expressions) on most machines---whenever they do not conflict with an
6755architecture's canonical mnemonics for registers. The register names
6756@code{$pc} and @code{$sp} are used for the program counter register and
6757the stack pointer. @code{$fp} is used for a register that contains a
6758pointer to the current stack frame, and @code{$ps} is used for a
6759register that contains the processor status. For example,
6760you could print the program counter in hex with
6761
474c8240 6762@smallexample
c906108c 6763p/x $pc
474c8240 6764@end smallexample
c906108c
SS
6765
6766@noindent
6767or print the instruction to be executed next with
6768
474c8240 6769@smallexample
c906108c 6770x/i $pc
474c8240 6771@end smallexample
c906108c
SS
6772
6773@noindent
6774or add four to the stack pointer@footnote{This is a way of removing
6775one word from the stack, on machines where stacks grow downward in
6776memory (most machines, nowadays). This assumes that the innermost
6777stack frame is selected; setting @code{$sp} is not allowed when other
6778stack frames are selected. To pop entire frames off the stack,
6779regardless of machine architecture, use @code{return};
79a6e687 6780see @ref{Returning, ,Returning from a Function}.} with
c906108c 6781
474c8240 6782@smallexample
c906108c 6783set $sp += 4
474c8240 6784@end smallexample
c906108c
SS
6785
6786Whenever possible, these four standard register names are available on
6787your machine even though the machine has different canonical mnemonics,
6788so long as there is no conflict. The @code{info registers} command
6789shows the canonical names. For example, on the SPARC, @code{info
6790registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6791can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6792is an alias for the @sc{eflags} register.
c906108c
SS
6793
6794@value{GDBN} always considers the contents of an ordinary register as an
6795integer when the register is examined in this way. Some machines have
6796special registers which can hold nothing but floating point; these
6797registers are considered to have floating point values. There is no way
6798to refer to the contents of an ordinary register as floating point value
6799(although you can @emph{print} it as a floating point value with
6800@samp{print/f $@var{regname}}).
6801
6802Some registers have distinct ``raw'' and ``virtual'' data formats. This
6803means that the data format in which the register contents are saved by
6804the operating system is not the same one that your program normally
6805sees. For example, the registers of the 68881 floating point
6806coprocessor are always saved in ``extended'' (raw) format, but all C
6807programs expect to work with ``double'' (virtual) format. In such
5d161b24 6808cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6809that makes sense for your program), but the @code{info registers} command
6810prints the data in both formats.
6811
36b80e65
EZ
6812@cindex SSE registers (x86)
6813@cindex MMX registers (x86)
6814Some machines have special registers whose contents can be interpreted
6815in several different ways. For example, modern x86-based machines
6816have SSE and MMX registers that can hold several values packed
6817together in several different formats. @value{GDBN} refers to such
6818registers in @code{struct} notation:
6819
6820@smallexample
6821(@value{GDBP}) print $xmm1
6822$1 = @{
6823 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6824 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6825 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6826 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6827 v4_int32 = @{0, 20657912, 11, 13@},
6828 v2_int64 = @{88725056443645952, 55834574859@},
6829 uint128 = 0x0000000d0000000b013b36f800000000
6830@}
6831@end smallexample
6832
6833@noindent
6834To set values of such registers, you need to tell @value{GDBN} which
6835view of the register you wish to change, as if you were assigning
6836value to a @code{struct} member:
6837
6838@smallexample
6839 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6840@end smallexample
6841
c906108c 6842Normally, register values are relative to the selected stack frame
79a6e687 6843(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6844value that the register would contain if all stack frames farther in
6845were exited and their saved registers restored. In order to see the
6846true contents of hardware registers, you must select the innermost
6847frame (with @samp{frame 0}).
6848
6849However, @value{GDBN} must deduce where registers are saved, from the machine
6850code generated by your compiler. If some registers are not saved, or if
6851@value{GDBN} is unable to locate the saved registers, the selected stack
6852frame makes no difference.
6853
6d2ebf8b 6854@node Floating Point Hardware
79a6e687 6855@section Floating Point Hardware
c906108c
SS
6856@cindex floating point
6857
6858Depending on the configuration, @value{GDBN} may be able to give
6859you more information about the status of the floating point hardware.
6860
6861@table @code
6862@kindex info float
6863@item info float
6864Display hardware-dependent information about the floating
6865point unit. The exact contents and layout vary depending on the
6866floating point chip. Currently, @samp{info float} is supported on
6867the ARM and x86 machines.
6868@end table
c906108c 6869
e76f1f2e
AC
6870@node Vector Unit
6871@section Vector Unit
6872@cindex vector unit
6873
6874Depending on the configuration, @value{GDBN} may be able to give you
6875more information about the status of the vector unit.
6876
6877@table @code
6878@kindex info vector
6879@item info vector
6880Display information about the vector unit. The exact contents and
6881layout vary depending on the hardware.
6882@end table
6883
721c2651 6884@node OS Information
79a6e687 6885@section Operating System Auxiliary Information
721c2651
EZ
6886@cindex OS information
6887
6888@value{GDBN} provides interfaces to useful OS facilities that can help
6889you debug your program.
6890
6891@cindex @code{ptrace} system call
6892@cindex @code{struct user} contents
6893When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
6894machines), it interfaces with the inferior via the @code{ptrace}
6895system call. The operating system creates a special sata structure,
6896called @code{struct user}, for this interface. You can use the
6897command @code{info udot} to display the contents of this data
6898structure.
6899
6900@table @code
6901@item info udot
6902@kindex info udot
6903Display the contents of the @code{struct user} maintained by the OS
6904kernel for the program being debugged. @value{GDBN} displays the
6905contents of @code{struct user} as a list of hex numbers, similar to
6906the @code{examine} command.
6907@end table
6908
b383017d
RM
6909@cindex auxiliary vector
6910@cindex vector, auxiliary
b383017d
RM
6911Some operating systems supply an @dfn{auxiliary vector} to programs at
6912startup. This is akin to the arguments and environment that you
6913specify for a program, but contains a system-dependent variety of
6914binary values that tell system libraries important details about the
6915hardware, operating system, and process. Each value's purpose is
6916identified by an integer tag; the meanings are well-known but system-specific.
6917Depending on the configuration and operating system facilities,
9c16f35a
EZ
6918@value{GDBN} may be able to show you this information. For remote
6919targets, this functionality may further depend on the remote stub's
427c3a89
DJ
6920support of the @samp{qXfer:auxv:read} packet, see
6921@ref{qXfer auxiliary vector read}.
b383017d
RM
6922
6923@table @code
6924@kindex info auxv
6925@item info auxv
6926Display the auxiliary vector of the inferior, which can be either a
e4937fc1 6927live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
6928numerically, and also shows names and text descriptions for recognized
6929tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 6930pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
6931most appropriate form for a recognized tag, and in hexadecimal for
6932an unrecognized tag.
6933@end table
6934
721c2651 6935
29e57380 6936@node Memory Region Attributes
79a6e687 6937@section Memory Region Attributes
29e57380
C
6938@cindex memory region attributes
6939
b383017d 6940@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
6941required by regions of your target's memory. @value{GDBN} uses
6942attributes to determine whether to allow certain types of memory
6943accesses; whether to use specific width accesses; and whether to cache
6944target memory. By default the description of memory regions is
6945fetched from the target (if the current target supports this), but the
6946user can override the fetched regions.
29e57380
C
6947
6948Defined memory regions can be individually enabled and disabled. When a
6949memory region is disabled, @value{GDBN} uses the default attributes when
6950accessing memory in that region. Similarly, if no memory regions have
6951been defined, @value{GDBN} uses the default attributes when accessing
6952all memory.
6953
b383017d 6954When a memory region is defined, it is given a number to identify it;
29e57380
C
6955to enable, disable, or remove a memory region, you specify that number.
6956
6957@table @code
6958@kindex mem
bfac230e 6959@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
6960Define a memory region bounded by @var{lower} and @var{upper} with
6961attributes @var{attributes}@dots{}, and add it to the list of regions
6962monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 6963case: it is treated as the target's maximum memory address.
bfac230e 6964(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 6965
fd79ecee
DJ
6966@item mem auto
6967Discard any user changes to the memory regions and use target-supplied
6968regions, if available, or no regions if the target does not support.
6969
29e57380
C
6970@kindex delete mem
6971@item delete mem @var{nums}@dots{}
09d4efe1
EZ
6972Remove memory regions @var{nums}@dots{} from the list of regions
6973monitored by @value{GDBN}.
29e57380
C
6974
6975@kindex disable mem
6976@item disable mem @var{nums}@dots{}
09d4efe1 6977Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 6978A disabled memory region is not forgotten.
29e57380
C
6979It may be enabled again later.
6980
6981@kindex enable mem
6982@item enable mem @var{nums}@dots{}
09d4efe1 6983Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
6984
6985@kindex info mem
6986@item info mem
6987Print a table of all defined memory regions, with the following columns
09d4efe1 6988for each region:
29e57380
C
6989
6990@table @emph
6991@item Memory Region Number
6992@item Enabled or Disabled.
b383017d 6993Enabled memory regions are marked with @samp{y}.
29e57380
C
6994Disabled memory regions are marked with @samp{n}.
6995
6996@item Lo Address
6997The address defining the inclusive lower bound of the memory region.
6998
6999@item Hi Address
7000The address defining the exclusive upper bound of the memory region.
7001
7002@item Attributes
7003The list of attributes set for this memory region.
7004@end table
7005@end table
7006
7007
7008@subsection Attributes
7009
b383017d 7010@subsubsection Memory Access Mode
29e57380
C
7011The access mode attributes set whether @value{GDBN} may make read or
7012write accesses to a memory region.
7013
7014While these attributes prevent @value{GDBN} from performing invalid
7015memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7016etc.@: from accessing memory.
29e57380
C
7017
7018@table @code
7019@item ro
7020Memory is read only.
7021@item wo
7022Memory is write only.
7023@item rw
6ca652b0 7024Memory is read/write. This is the default.
29e57380
C
7025@end table
7026
7027@subsubsection Memory Access Size
d3e8051b 7028The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7029accesses in the memory region. Often memory mapped device registers
7030require specific sized accesses. If no access size attribute is
7031specified, @value{GDBN} may use accesses of any size.
7032
7033@table @code
7034@item 8
7035Use 8 bit memory accesses.
7036@item 16
7037Use 16 bit memory accesses.
7038@item 32
7039Use 32 bit memory accesses.
7040@item 64
7041Use 64 bit memory accesses.
7042@end table
7043
7044@c @subsubsection Hardware/Software Breakpoints
7045@c The hardware/software breakpoint attributes set whether @value{GDBN}
7046@c will use hardware or software breakpoints for the internal breakpoints
7047@c used by the step, next, finish, until, etc. commands.
7048@c
7049@c @table @code
7050@c @item hwbreak
b383017d 7051@c Always use hardware breakpoints
29e57380
C
7052@c @item swbreak (default)
7053@c @end table
7054
7055@subsubsection Data Cache
7056The data cache attributes set whether @value{GDBN} will cache target
7057memory. While this generally improves performance by reducing debug
7058protocol overhead, it can lead to incorrect results because @value{GDBN}
7059does not know about volatile variables or memory mapped device
7060registers.
7061
7062@table @code
7063@item cache
b383017d 7064Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7065@item nocache
7066Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7067@end table
7068
4b5752d0
VP
7069@subsection Memory Access Checking
7070@value{GDBN} can be instructed to refuse accesses to memory that is
7071not explicitly described. This can be useful if accessing such
7072regions has undesired effects for a specific target, or to provide
7073better error checking. The following commands control this behaviour.
7074
7075@table @code
7076@kindex set mem inaccessible-by-default
7077@item set mem inaccessible-by-default [on|off]
7078If @code{on} is specified, make @value{GDBN} treat memory not
7079explicitly described by the memory ranges as non-existent and refuse accesses
7080to such memory. The checks are only performed if there's at least one
7081memory range defined. If @code{off} is specified, make @value{GDBN}
7082treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7083The default value is @code{on}.
4b5752d0
VP
7084@kindex show mem inaccessible-by-default
7085@item show mem inaccessible-by-default
7086Show the current handling of accesses to unknown memory.
7087@end table
7088
7089
29e57380 7090@c @subsubsection Memory Write Verification
b383017d 7091@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7092@c will re-reads data after each write to verify the write was successful.
7093@c
7094@c @table @code
7095@c @item verify
7096@c @item noverify (default)
7097@c @end table
7098
16d9dec6 7099@node Dump/Restore Files
79a6e687 7100@section Copy Between Memory and a File
16d9dec6
MS
7101@cindex dump/restore files
7102@cindex append data to a file
7103@cindex dump data to a file
7104@cindex restore data from a file
16d9dec6 7105
df5215a6
JB
7106You can use the commands @code{dump}, @code{append}, and
7107@code{restore} to copy data between target memory and a file. The
7108@code{dump} and @code{append} commands write data to a file, and the
7109@code{restore} command reads data from a file back into the inferior's
7110memory. Files may be in binary, Motorola S-record, Intel hex, or
7111Tektronix Hex format; however, @value{GDBN} can only append to binary
7112files.
7113
7114@table @code
7115
7116@kindex dump
7117@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7118@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7119Dump the contents of memory from @var{start_addr} to @var{end_addr},
7120or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7121
df5215a6 7122The @var{format} parameter may be any one of:
16d9dec6 7123@table @code
df5215a6
JB
7124@item binary
7125Raw binary form.
7126@item ihex
7127Intel hex format.
7128@item srec
7129Motorola S-record format.
7130@item tekhex
7131Tektronix Hex format.
7132@end table
7133
7134@value{GDBN} uses the same definitions of these formats as the
7135@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7136@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7137form.
7138
7139@kindex append
7140@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7141@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7142Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7143or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7144(@value{GDBN} can only append data to files in raw binary form.)
7145
7146@kindex restore
7147@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7148Restore the contents of file @var{filename} into memory. The
7149@code{restore} command can automatically recognize any known @sc{bfd}
7150file format, except for raw binary. To restore a raw binary file you
7151must specify the optional keyword @code{binary} after the filename.
16d9dec6 7152
b383017d 7153If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7154contained in the file. Binary files always start at address zero, so
7155they will be restored at address @var{bias}. Other bfd files have
7156a built-in location; they will be restored at offset @var{bias}
7157from that location.
7158
7159If @var{start} and/or @var{end} are non-zero, then only data between
7160file offset @var{start} and file offset @var{end} will be restored.
b383017d 7161These offsets are relative to the addresses in the file, before
16d9dec6
MS
7162the @var{bias} argument is applied.
7163
7164@end table
7165
384ee23f
EZ
7166@node Core File Generation
7167@section How to Produce a Core File from Your Program
7168@cindex dump core from inferior
7169
7170A @dfn{core file} or @dfn{core dump} is a file that records the memory
7171image of a running process and its process status (register values
7172etc.). Its primary use is post-mortem debugging of a program that
7173crashed while it ran outside a debugger. A program that crashes
7174automatically produces a core file, unless this feature is disabled by
7175the user. @xref{Files}, for information on invoking @value{GDBN} in
7176the post-mortem debugging mode.
7177
7178Occasionally, you may wish to produce a core file of the program you
7179are debugging in order to preserve a snapshot of its state.
7180@value{GDBN} has a special command for that.
7181
7182@table @code
7183@kindex gcore
7184@kindex generate-core-file
7185@item generate-core-file [@var{file}]
7186@itemx gcore [@var{file}]
7187Produce a core dump of the inferior process. The optional argument
7188@var{file} specifies the file name where to put the core dump. If not
7189specified, the file name defaults to @file{core.@var{pid}}, where
7190@var{pid} is the inferior process ID.
7191
7192Note that this command is implemented only for some systems (as of
7193this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7194@end table
7195
a0eb71c5
KB
7196@node Character Sets
7197@section Character Sets
7198@cindex character sets
7199@cindex charset
7200@cindex translating between character sets
7201@cindex host character set
7202@cindex target character set
7203
7204If the program you are debugging uses a different character set to
7205represent characters and strings than the one @value{GDBN} uses itself,
7206@value{GDBN} can automatically translate between the character sets for
7207you. The character set @value{GDBN} uses we call the @dfn{host
7208character set}; the one the inferior program uses we call the
7209@dfn{target character set}.
7210
7211For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7212uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7213remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7214running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7215then the host character set is Latin-1, and the target character set is
7216@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7217target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7218@sc{ebcdic} and Latin 1 as you print character or string values, or use
7219character and string literals in expressions.
7220
7221@value{GDBN} has no way to automatically recognize which character set
7222the inferior program uses; you must tell it, using the @code{set
7223target-charset} command, described below.
7224
7225Here are the commands for controlling @value{GDBN}'s character set
7226support:
7227
7228@table @code
7229@item set target-charset @var{charset}
7230@kindex set target-charset
7231Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7232character set names @value{GDBN} recognizes below, but if you type
7233@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7234list the target character sets it supports.
a0eb71c5
KB
7235@end table
7236
7237@table @code
7238@item set host-charset @var{charset}
7239@kindex set host-charset
7240Set the current host character set to @var{charset}.
7241
7242By default, @value{GDBN} uses a host character set appropriate to the
7243system it is running on; you can override that default using the
7244@code{set host-charset} command.
7245
7246@value{GDBN} can only use certain character sets as its host character
7247set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7248indicate which can be host character sets, but if you type
7249@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7250list the host character sets it supports.
a0eb71c5
KB
7251
7252@item set charset @var{charset}
7253@kindex set charset
e33d66ec
EZ
7254Set the current host and target character sets to @var{charset}. As
7255above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7256@value{GDBN} will list the name of the character sets that can be used
7257for both host and target.
7258
a0eb71c5
KB
7259
7260@item show charset
a0eb71c5 7261@kindex show charset
b383017d 7262Show the names of the current host and target charsets.
e33d66ec
EZ
7263
7264@itemx show host-charset
a0eb71c5 7265@kindex show host-charset
b383017d 7266Show the name of the current host charset.
e33d66ec
EZ
7267
7268@itemx show target-charset
a0eb71c5 7269@kindex show target-charset
b383017d 7270Show the name of the current target charset.
a0eb71c5
KB
7271
7272@end table
7273
7274@value{GDBN} currently includes support for the following character
7275sets:
7276
7277@table @code
7278
7279@item ASCII
7280@cindex ASCII character set
7281Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7282character set.
7283
7284@item ISO-8859-1
7285@cindex ISO 8859-1 character set
7286@cindex ISO Latin 1 character set
e33d66ec 7287The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7288characters needed for French, German, and Spanish. @value{GDBN} can use
7289this as its host character set.
7290
7291@item EBCDIC-US
7292@itemx IBM1047
7293@cindex EBCDIC character set
7294@cindex IBM1047 character set
7295Variants of the @sc{ebcdic} character set, used on some of IBM's
7296mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7297@value{GDBN} cannot use these as its host character set.
7298
7299@end table
7300
7301Note that these are all single-byte character sets. More work inside
3f94c067 7302@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7303encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7304
7305Here is an example of @value{GDBN}'s character set support in action.
7306Assume that the following source code has been placed in the file
7307@file{charset-test.c}:
7308
7309@smallexample
7310#include <stdio.h>
7311
7312char ascii_hello[]
7313 = @{72, 101, 108, 108, 111, 44, 32, 119,
7314 111, 114, 108, 100, 33, 10, 0@};
7315char ibm1047_hello[]
7316 = @{200, 133, 147, 147, 150, 107, 64, 166,
7317 150, 153, 147, 132, 90, 37, 0@};
7318
7319main ()
7320@{
7321 printf ("Hello, world!\n");
7322@}
10998722 7323@end smallexample
a0eb71c5
KB
7324
7325In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7326containing the string @samp{Hello, world!} followed by a newline,
7327encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7328
7329We compile the program, and invoke the debugger on it:
7330
7331@smallexample
7332$ gcc -g charset-test.c -o charset-test
7333$ gdb -nw charset-test
7334GNU gdb 2001-12-19-cvs
7335Copyright 2001 Free Software Foundation, Inc.
7336@dots{}
f7dc1244 7337(@value{GDBP})
10998722 7338@end smallexample
a0eb71c5
KB
7339
7340We can use the @code{show charset} command to see what character sets
7341@value{GDBN} is currently using to interpret and display characters and
7342strings:
7343
7344@smallexample
f7dc1244 7345(@value{GDBP}) show charset
e33d66ec 7346The current host and target character set is `ISO-8859-1'.
f7dc1244 7347(@value{GDBP})
10998722 7348@end smallexample
a0eb71c5
KB
7349
7350For the sake of printing this manual, let's use @sc{ascii} as our
7351initial character set:
7352@smallexample
f7dc1244
EZ
7353(@value{GDBP}) set charset ASCII
7354(@value{GDBP}) show charset
e33d66ec 7355The current host and target character set is `ASCII'.
f7dc1244 7356(@value{GDBP})
10998722 7357@end smallexample
a0eb71c5
KB
7358
7359Let's assume that @sc{ascii} is indeed the correct character set for our
7360host system --- in other words, let's assume that if @value{GDBN} prints
7361characters using the @sc{ascii} character set, our terminal will display
7362them properly. Since our current target character set is also
7363@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7364
7365@smallexample
f7dc1244 7366(@value{GDBP}) print ascii_hello
a0eb71c5 7367$1 = 0x401698 "Hello, world!\n"
f7dc1244 7368(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7369$2 = 72 'H'
f7dc1244 7370(@value{GDBP})
10998722 7371@end smallexample
a0eb71c5
KB
7372
7373@value{GDBN} uses the target character set for character and string
7374literals you use in expressions:
7375
7376@smallexample
f7dc1244 7377(@value{GDBP}) print '+'
a0eb71c5 7378$3 = 43 '+'
f7dc1244 7379(@value{GDBP})
10998722 7380@end smallexample
a0eb71c5
KB
7381
7382The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7383character.
7384
7385@value{GDBN} relies on the user to tell it which character set the
7386target program uses. If we print @code{ibm1047_hello} while our target
7387character set is still @sc{ascii}, we get jibberish:
7388
7389@smallexample
f7dc1244 7390(@value{GDBP}) print ibm1047_hello
a0eb71c5 7391$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7392(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7393$5 = 200 '\310'
f7dc1244 7394(@value{GDBP})
10998722 7395@end smallexample
a0eb71c5 7396
e33d66ec 7397If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7398@value{GDBN} tells us the character sets it supports:
7399
7400@smallexample
f7dc1244 7401(@value{GDBP}) set target-charset
b383017d 7402ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7403(@value{GDBP}) set target-charset
10998722 7404@end smallexample
a0eb71c5
KB
7405
7406We can select @sc{ibm1047} as our target character set, and examine the
7407program's strings again. Now the @sc{ascii} string is wrong, but
7408@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7409target character set, @sc{ibm1047}, to the host character set,
7410@sc{ascii}, and they display correctly:
7411
7412@smallexample
f7dc1244
EZ
7413(@value{GDBP}) set target-charset IBM1047
7414(@value{GDBP}) show charset
e33d66ec
EZ
7415The current host character set is `ASCII'.
7416The current target character set is `IBM1047'.
f7dc1244 7417(@value{GDBP}) print ascii_hello
a0eb71c5 7418$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7419(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7420$7 = 72 '\110'
f7dc1244 7421(@value{GDBP}) print ibm1047_hello
a0eb71c5 7422$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7423(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7424$9 = 200 'H'
f7dc1244 7425(@value{GDBP})
10998722 7426@end smallexample
a0eb71c5
KB
7427
7428As above, @value{GDBN} uses the target character set for character and
7429string literals you use in expressions:
7430
7431@smallexample
f7dc1244 7432(@value{GDBP}) print '+'
a0eb71c5 7433$10 = 78 '+'
f7dc1244 7434(@value{GDBP})
10998722 7435@end smallexample
a0eb71c5 7436
e33d66ec 7437The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7438character.
7439
09d4efe1
EZ
7440@node Caching Remote Data
7441@section Caching Data of Remote Targets
7442@cindex caching data of remote targets
7443
7444@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7445remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7446performance, because it reduces the overhead of the remote protocol by
7447bundling memory reads and writes into large chunks. Unfortunately,
7448@value{GDBN} does not currently know anything about volatile
7449registers, and thus data caching will produce incorrect results when
7450volatile registers are in use.
7451
7452@table @code
7453@kindex set remotecache
7454@item set remotecache on
7455@itemx set remotecache off
7456Set caching state for remote targets. When @code{ON}, use data
7457caching. By default, this option is @code{OFF}.
7458
7459@kindex show remotecache
7460@item show remotecache
7461Show the current state of data caching for remote targets.
7462
7463@kindex info dcache
7464@item info dcache
7465Print the information about the data cache performance. The
7466information displayed includes: the dcache width and depth; and for
7467each cache line, how many times it was referenced, and its data and
7468state (dirty, bad, ok, etc.). This command is useful for debugging
7469the data cache operation.
7470@end table
7471
a0eb71c5 7472
e2e0bcd1
JB
7473@node Macros
7474@chapter C Preprocessor Macros
7475
49efadf5 7476Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7477``preprocessor macros'' which expand into strings of tokens.
7478@value{GDBN} can evaluate expressions containing macro invocations, show
7479the result of macro expansion, and show a macro's definition, including
7480where it was defined.
7481
7482You may need to compile your program specially to provide @value{GDBN}
7483with information about preprocessor macros. Most compilers do not
7484include macros in their debugging information, even when you compile
7485with the @option{-g} flag. @xref{Compilation}.
7486
7487A program may define a macro at one point, remove that definition later,
7488and then provide a different definition after that. Thus, at different
7489points in the program, a macro may have different definitions, or have
7490no definition at all. If there is a current stack frame, @value{GDBN}
7491uses the macros in scope at that frame's source code line. Otherwise,
7492@value{GDBN} uses the macros in scope at the current listing location;
7493see @ref{List}.
7494
7495At the moment, @value{GDBN} does not support the @code{##}
7496token-splicing operator, the @code{#} stringification operator, or
7497variable-arity macros.
7498
7499Whenever @value{GDBN} evaluates an expression, it always expands any
7500macro invocations present in the expression. @value{GDBN} also provides
7501the following commands for working with macros explicitly.
7502
7503@table @code
7504
7505@kindex macro expand
7506@cindex macro expansion, showing the results of preprocessor
7507@cindex preprocessor macro expansion, showing the results of
7508@cindex expanding preprocessor macros
7509@item macro expand @var{expression}
7510@itemx macro exp @var{expression}
7511Show the results of expanding all preprocessor macro invocations in
7512@var{expression}. Since @value{GDBN} simply expands macros, but does
7513not parse the result, @var{expression} need not be a valid expression;
7514it can be any string of tokens.
7515
09d4efe1 7516@kindex macro exp1
e2e0bcd1
JB
7517@item macro expand-once @var{expression}
7518@itemx macro exp1 @var{expression}
4644b6e3 7519@cindex expand macro once
e2e0bcd1
JB
7520@i{(This command is not yet implemented.)} Show the results of
7521expanding those preprocessor macro invocations that appear explicitly in
7522@var{expression}. Macro invocations appearing in that expansion are
7523left unchanged. This command allows you to see the effect of a
7524particular macro more clearly, without being confused by further
7525expansions. Since @value{GDBN} simply expands macros, but does not
7526parse the result, @var{expression} need not be a valid expression; it
7527can be any string of tokens.
7528
475b0867 7529@kindex info macro
e2e0bcd1
JB
7530@cindex macro definition, showing
7531@cindex definition, showing a macro's
475b0867 7532@item info macro @var{macro}
e2e0bcd1
JB
7533Show the definition of the macro named @var{macro}, and describe the
7534source location where that definition was established.
7535
7536@kindex macro define
7537@cindex user-defined macros
7538@cindex defining macros interactively
7539@cindex macros, user-defined
7540@item macro define @var{macro} @var{replacement-list}
7541@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7542@i{(This command is not yet implemented.)} Introduce a definition for a
7543preprocessor macro named @var{macro}, invocations of which are replaced
7544by the tokens given in @var{replacement-list}. The first form of this
7545command defines an ``object-like'' macro, which takes no arguments; the
7546second form defines a ``function-like'' macro, which takes the arguments
7547given in @var{arglist}.
7548
7549A definition introduced by this command is in scope in every expression
7550evaluated in @value{GDBN}, until it is removed with the @command{macro
7551undef} command, described below. The definition overrides all
7552definitions for @var{macro} present in the program being debugged, as
7553well as any previous user-supplied definition.
7554
7555@kindex macro undef
7556@item macro undef @var{macro}
7557@i{(This command is not yet implemented.)} Remove any user-supplied
7558definition for the macro named @var{macro}. This command only affects
7559definitions provided with the @command{macro define} command, described
7560above; it cannot remove definitions present in the program being
7561debugged.
7562
09d4efe1
EZ
7563@kindex macro list
7564@item macro list
7565@i{(This command is not yet implemented.)} List all the macros
7566defined using the @code{macro define} command.
e2e0bcd1
JB
7567@end table
7568
7569@cindex macros, example of debugging with
7570Here is a transcript showing the above commands in action. First, we
7571show our source files:
7572
7573@smallexample
7574$ cat sample.c
7575#include <stdio.h>
7576#include "sample.h"
7577
7578#define M 42
7579#define ADD(x) (M + x)
7580
7581main ()
7582@{
7583#define N 28
7584 printf ("Hello, world!\n");
7585#undef N
7586 printf ("We're so creative.\n");
7587#define N 1729
7588 printf ("Goodbye, world!\n");
7589@}
7590$ cat sample.h
7591#define Q <
7592$
7593@end smallexample
7594
7595Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7596We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7597compiler includes information about preprocessor macros in the debugging
7598information.
7599
7600@smallexample
7601$ gcc -gdwarf-2 -g3 sample.c -o sample
7602$
7603@end smallexample
7604
7605Now, we start @value{GDBN} on our sample program:
7606
7607@smallexample
7608$ gdb -nw sample
7609GNU gdb 2002-05-06-cvs
7610Copyright 2002 Free Software Foundation, Inc.
7611GDB is free software, @dots{}
f7dc1244 7612(@value{GDBP})
e2e0bcd1
JB
7613@end smallexample
7614
7615We can expand macros and examine their definitions, even when the
7616program is not running. @value{GDBN} uses the current listing position
7617to decide which macro definitions are in scope:
7618
7619@smallexample
f7dc1244 7620(@value{GDBP}) list main
e2e0bcd1
JB
76213
76224 #define M 42
76235 #define ADD(x) (M + x)
76246
76257 main ()
76268 @{
76279 #define N 28
762810 printf ("Hello, world!\n");
762911 #undef N
763012 printf ("We're so creative.\n");
f7dc1244 7631(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7632Defined at /home/jimb/gdb/macros/play/sample.c:5
7633#define ADD(x) (M + x)
f7dc1244 7634(@value{GDBP}) info macro Q
e2e0bcd1
JB
7635Defined at /home/jimb/gdb/macros/play/sample.h:1
7636 included at /home/jimb/gdb/macros/play/sample.c:2
7637#define Q <
f7dc1244 7638(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7639expands to: (42 + 1)
f7dc1244 7640(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7641expands to: once (M + 1)
f7dc1244 7642(@value{GDBP})
e2e0bcd1
JB
7643@end smallexample
7644
7645In the example above, note that @command{macro expand-once} expands only
7646the macro invocation explicit in the original text --- the invocation of
7647@code{ADD} --- but does not expand the invocation of the macro @code{M},
7648which was introduced by @code{ADD}.
7649
3f94c067
BW
7650Once the program is running, @value{GDBN} uses the macro definitions in
7651force at the source line of the current stack frame:
e2e0bcd1
JB
7652
7653@smallexample
f7dc1244 7654(@value{GDBP}) break main
e2e0bcd1 7655Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7656(@value{GDBP}) run
b383017d 7657Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7658
7659Breakpoint 1, main () at sample.c:10
766010 printf ("Hello, world!\n");
f7dc1244 7661(@value{GDBP})
e2e0bcd1
JB
7662@end smallexample
7663
7664At line 10, the definition of the macro @code{N} at line 9 is in force:
7665
7666@smallexample
f7dc1244 7667(@value{GDBP}) info macro N
e2e0bcd1
JB
7668Defined at /home/jimb/gdb/macros/play/sample.c:9
7669#define N 28
f7dc1244 7670(@value{GDBP}) macro expand N Q M
e2e0bcd1 7671expands to: 28 < 42
f7dc1244 7672(@value{GDBP}) print N Q M
e2e0bcd1 7673$1 = 1
f7dc1244 7674(@value{GDBP})
e2e0bcd1
JB
7675@end smallexample
7676
7677As we step over directives that remove @code{N}'s definition, and then
7678give it a new definition, @value{GDBN} finds the definition (or lack
7679thereof) in force at each point:
7680
7681@smallexample
f7dc1244 7682(@value{GDBP}) next
e2e0bcd1
JB
7683Hello, world!
768412 printf ("We're so creative.\n");
f7dc1244 7685(@value{GDBP}) info macro N
e2e0bcd1
JB
7686The symbol `N' has no definition as a C/C++ preprocessor macro
7687at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7688(@value{GDBP}) next
e2e0bcd1
JB
7689We're so creative.
769014 printf ("Goodbye, world!\n");
f7dc1244 7691(@value{GDBP}) info macro N
e2e0bcd1
JB
7692Defined at /home/jimb/gdb/macros/play/sample.c:13
7693#define N 1729
f7dc1244 7694(@value{GDBP}) macro expand N Q M
e2e0bcd1 7695expands to: 1729 < 42
f7dc1244 7696(@value{GDBP}) print N Q M
e2e0bcd1 7697$2 = 0
f7dc1244 7698(@value{GDBP})
e2e0bcd1
JB
7699@end smallexample
7700
7701
b37052ae
EZ
7702@node Tracepoints
7703@chapter Tracepoints
7704@c This chapter is based on the documentation written by Michael
7705@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7706
7707@cindex tracepoints
7708In some applications, it is not feasible for the debugger to interrupt
7709the program's execution long enough for the developer to learn
7710anything helpful about its behavior. If the program's correctness
7711depends on its real-time behavior, delays introduced by a debugger
7712might cause the program to change its behavior drastically, or perhaps
7713fail, even when the code itself is correct. It is useful to be able
7714to observe the program's behavior without interrupting it.
7715
7716Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7717specify locations in the program, called @dfn{tracepoints}, and
7718arbitrary expressions to evaluate when those tracepoints are reached.
7719Later, using the @code{tfind} command, you can examine the values
7720those expressions had when the program hit the tracepoints. The
7721expressions may also denote objects in memory---structures or arrays,
7722for example---whose values @value{GDBN} should record; while visiting
7723a particular tracepoint, you may inspect those objects as if they were
7724in memory at that moment. However, because @value{GDBN} records these
7725values without interacting with you, it can do so quickly and
7726unobtrusively, hopefully not disturbing the program's behavior.
7727
7728The tracepoint facility is currently available only for remote
9d29849a
JB
7729targets. @xref{Targets}. In addition, your remote target must know
7730how to collect trace data. This functionality is implemented in the
7731remote stub; however, none of the stubs distributed with @value{GDBN}
7732support tracepoints as of this writing. The format of the remote
7733packets used to implement tracepoints are described in @ref{Tracepoint
7734Packets}.
b37052ae
EZ
7735
7736This chapter describes the tracepoint commands and features.
7737
7738@menu
b383017d
RM
7739* Set Tracepoints::
7740* Analyze Collected Data::
7741* Tracepoint Variables::
b37052ae
EZ
7742@end menu
7743
7744@node Set Tracepoints
7745@section Commands to Set Tracepoints
7746
7747Before running such a @dfn{trace experiment}, an arbitrary number of
7748tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7749tracepoint has a number assigned to it by @value{GDBN}. Like with
7750breakpoints, tracepoint numbers are successive integers starting from
7751one. Many of the commands associated with tracepoints take the
7752tracepoint number as their argument, to identify which tracepoint to
7753work on.
7754
7755For each tracepoint, you can specify, in advance, some arbitrary set
7756of data that you want the target to collect in the trace buffer when
7757it hits that tracepoint. The collected data can include registers,
7758local variables, or global data. Later, you can use @value{GDBN}
7759commands to examine the values these data had at the time the
7760tracepoint was hit.
7761
7762This section describes commands to set tracepoints and associated
7763conditions and actions.
7764
7765@menu
b383017d
RM
7766* Create and Delete Tracepoints::
7767* Enable and Disable Tracepoints::
7768* Tracepoint Passcounts::
7769* Tracepoint Actions::
7770* Listing Tracepoints::
79a6e687 7771* Starting and Stopping Trace Experiments::
b37052ae
EZ
7772@end menu
7773
7774@node Create and Delete Tracepoints
7775@subsection Create and Delete Tracepoints
7776
7777@table @code
7778@cindex set tracepoint
7779@kindex trace
7780@item trace
7781The @code{trace} command is very similar to the @code{break} command.
7782Its argument can be a source line, a function name, or an address in
7783the target program. @xref{Set Breaks}. The @code{trace} command
7784defines a tracepoint, which is a point in the target program where the
7785debugger will briefly stop, collect some data, and then allow the
7786program to continue. Setting a tracepoint or changing its commands
7787doesn't take effect until the next @code{tstart} command; thus, you
7788cannot change the tracepoint attributes once a trace experiment is
7789running.
7790
7791Here are some examples of using the @code{trace} command:
7792
7793@smallexample
7794(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7795
7796(@value{GDBP}) @b{trace +2} // 2 lines forward
7797
7798(@value{GDBP}) @b{trace my_function} // first source line of function
7799
7800(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7801
7802(@value{GDBP}) @b{trace *0x2117c4} // an address
7803@end smallexample
7804
7805@noindent
7806You can abbreviate @code{trace} as @code{tr}.
7807
7808@vindex $tpnum
7809@cindex last tracepoint number
7810@cindex recent tracepoint number
7811@cindex tracepoint number
7812The convenience variable @code{$tpnum} records the tracepoint number
7813of the most recently set tracepoint.
7814
7815@kindex delete tracepoint
7816@cindex tracepoint deletion
7817@item delete tracepoint @r{[}@var{num}@r{]}
7818Permanently delete one or more tracepoints. With no argument, the
7819default is to delete all tracepoints.
7820
7821Examples:
7822
7823@smallexample
7824(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7825
7826(@value{GDBP}) @b{delete trace} // remove all tracepoints
7827@end smallexample
7828
7829@noindent
7830You can abbreviate this command as @code{del tr}.
7831@end table
7832
7833@node Enable and Disable Tracepoints
7834@subsection Enable and Disable Tracepoints
7835
7836@table @code
7837@kindex disable tracepoint
7838@item disable tracepoint @r{[}@var{num}@r{]}
7839Disable tracepoint @var{num}, or all tracepoints if no argument
7840@var{num} is given. A disabled tracepoint will have no effect during
7841the next trace experiment, but it is not forgotten. You can re-enable
7842a disabled tracepoint using the @code{enable tracepoint} command.
7843
7844@kindex enable tracepoint
7845@item enable tracepoint @r{[}@var{num}@r{]}
7846Enable tracepoint @var{num}, or all tracepoints. The enabled
7847tracepoints will become effective the next time a trace experiment is
7848run.
7849@end table
7850
7851@node Tracepoint Passcounts
7852@subsection Tracepoint Passcounts
7853
7854@table @code
7855@kindex passcount
7856@cindex tracepoint pass count
7857@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7858Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7859automatically stop a trace experiment. If a tracepoint's passcount is
7860@var{n}, then the trace experiment will be automatically stopped on
7861the @var{n}'th time that tracepoint is hit. If the tracepoint number
7862@var{num} is not specified, the @code{passcount} command sets the
7863passcount of the most recently defined tracepoint. If no passcount is
7864given, the trace experiment will run until stopped explicitly by the
7865user.
7866
7867Examples:
7868
7869@smallexample
b383017d 7870(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 7871@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
7872
7873(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 7874@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
7875(@value{GDBP}) @b{trace foo}
7876(@value{GDBP}) @b{pass 3}
7877(@value{GDBP}) @b{trace bar}
7878(@value{GDBP}) @b{pass 2}
7879(@value{GDBP}) @b{trace baz}
7880(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
7881@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
7882@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
7883@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
7884@end smallexample
7885@end table
7886
7887@node Tracepoint Actions
7888@subsection Tracepoint Action Lists
7889
7890@table @code
7891@kindex actions
7892@cindex tracepoint actions
7893@item actions @r{[}@var{num}@r{]}
7894This command will prompt for a list of actions to be taken when the
7895tracepoint is hit. If the tracepoint number @var{num} is not
7896specified, this command sets the actions for the one that was most
7897recently defined (so that you can define a tracepoint and then say
7898@code{actions} without bothering about its number). You specify the
7899actions themselves on the following lines, one action at a time, and
7900terminate the actions list with a line containing just @code{end}. So
7901far, the only defined actions are @code{collect} and
7902@code{while-stepping}.
7903
7904@cindex remove actions from a tracepoint
7905To remove all actions from a tracepoint, type @samp{actions @var{num}}
7906and follow it immediately with @samp{end}.
7907
7908@smallexample
7909(@value{GDBP}) @b{collect @var{data}} // collect some data
7910
6826cf00 7911(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 7912
6826cf00 7913(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
7914@end smallexample
7915
7916In the following example, the action list begins with @code{collect}
7917commands indicating the things to be collected when the tracepoint is
7918hit. Then, in order to single-step and collect additional data
7919following the tracepoint, a @code{while-stepping} command is used,
7920followed by the list of things to be collected while stepping. The
7921@code{while-stepping} command is terminated by its own separate
7922@code{end} command. Lastly, the action list is terminated by an
7923@code{end} command.
7924
7925@smallexample
7926(@value{GDBP}) @b{trace foo}
7927(@value{GDBP}) @b{actions}
7928Enter actions for tracepoint 1, one per line:
7929> collect bar,baz
7930> collect $regs
7931> while-stepping 12
7932 > collect $fp, $sp
7933 > end
7934end
7935@end smallexample
7936
7937@kindex collect @r{(tracepoints)}
7938@item collect @var{expr1}, @var{expr2}, @dots{}
7939Collect values of the given expressions when the tracepoint is hit.
7940This command accepts a comma-separated list of any valid expressions.
7941In addition to global, static, or local variables, the following
7942special arguments are supported:
7943
7944@table @code
7945@item $regs
7946collect all registers
7947
7948@item $args
7949collect all function arguments
7950
7951@item $locals
7952collect all local variables.
7953@end table
7954
7955You can give several consecutive @code{collect} commands, each one
7956with a single argument, or one @code{collect} command with several
7957arguments separated by commas: the effect is the same.
7958
f5c37c66
EZ
7959The command @code{info scope} (@pxref{Symbols, info scope}) is
7960particularly useful for figuring out what data to collect.
7961
b37052ae
EZ
7962@kindex while-stepping @r{(tracepoints)}
7963@item while-stepping @var{n}
7964Perform @var{n} single-step traces after the tracepoint, collecting
7965new data at each step. The @code{while-stepping} command is
7966followed by the list of what to collect while stepping (followed by
7967its own @code{end} command):
7968
7969@smallexample
7970> while-stepping 12
7971 > collect $regs, myglobal
7972 > end
7973>
7974@end smallexample
7975
7976@noindent
7977You may abbreviate @code{while-stepping} as @code{ws} or
7978@code{stepping}.
7979@end table
7980
7981@node Listing Tracepoints
7982@subsection Listing Tracepoints
7983
7984@table @code
7985@kindex info tracepoints
09d4efe1 7986@kindex info tp
b37052ae
EZ
7987@cindex information about tracepoints
7988@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 7989Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 7990a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
7991defined so far. For each tracepoint, the following information is
7992shown:
7993
7994@itemize @bullet
7995@item
7996its number
7997@item
7998whether it is enabled or disabled
7999@item
8000its address
8001@item
8002its passcount as given by the @code{passcount @var{n}} command
8003@item
8004its step count as given by the @code{while-stepping @var{n}} command
8005@item
8006where in the source files is the tracepoint set
8007@item
8008its action list as given by the @code{actions} command
8009@end itemize
8010
8011@smallexample
8012(@value{GDBP}) @b{info trace}
8013Num Enb Address PassC StepC What
80141 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
80152 y 0x0020dc64 0 0 in g_test at g_test.c:1375
80163 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8017(@value{GDBP})
8018@end smallexample
8019
8020@noindent
8021This command can be abbreviated @code{info tp}.
8022@end table
8023
79a6e687
BW
8024@node Starting and Stopping Trace Experiments
8025@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8026
8027@table @code
8028@kindex tstart
8029@cindex start a new trace experiment
8030@cindex collected data discarded
8031@item tstart
8032This command takes no arguments. It starts the trace experiment, and
8033begins collecting data. This has the side effect of discarding all
8034the data collected in the trace buffer during the previous trace
8035experiment.
8036
8037@kindex tstop
8038@cindex stop a running trace experiment
8039@item tstop
8040This command takes no arguments. It ends the trace experiment, and
8041stops collecting data.
8042
68c71a2e 8043@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8044automatically if any tracepoint's passcount is reached
8045(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8046
8047@kindex tstatus
8048@cindex status of trace data collection
8049@cindex trace experiment, status of
8050@item tstatus
8051This command displays the status of the current trace data
8052collection.
8053@end table
8054
8055Here is an example of the commands we described so far:
8056
8057@smallexample
8058(@value{GDBP}) @b{trace gdb_c_test}
8059(@value{GDBP}) @b{actions}
8060Enter actions for tracepoint #1, one per line.
8061> collect $regs,$locals,$args
8062> while-stepping 11
8063 > collect $regs
8064 > end
8065> end
8066(@value{GDBP}) @b{tstart}
8067 [time passes @dots{}]
8068(@value{GDBP}) @b{tstop}
8069@end smallexample
8070
8071
8072@node Analyze Collected Data
79a6e687 8073@section Using the Collected Data
b37052ae
EZ
8074
8075After the tracepoint experiment ends, you use @value{GDBN} commands
8076for examining the trace data. The basic idea is that each tracepoint
8077collects a trace @dfn{snapshot} every time it is hit and another
8078snapshot every time it single-steps. All these snapshots are
8079consecutively numbered from zero and go into a buffer, and you can
8080examine them later. The way you examine them is to @dfn{focus} on a
8081specific trace snapshot. When the remote stub is focused on a trace
8082snapshot, it will respond to all @value{GDBN} requests for memory and
8083registers by reading from the buffer which belongs to that snapshot,
8084rather than from @emph{real} memory or registers of the program being
8085debugged. This means that @strong{all} @value{GDBN} commands
8086(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8087behave as if we were currently debugging the program state as it was
8088when the tracepoint occurred. Any requests for data that are not in
8089the buffer will fail.
8090
8091@menu
8092* tfind:: How to select a trace snapshot
8093* tdump:: How to display all data for a snapshot
8094* save-tracepoints:: How to save tracepoints for a future run
8095@end menu
8096
8097@node tfind
8098@subsection @code{tfind @var{n}}
8099
8100@kindex tfind
8101@cindex select trace snapshot
8102@cindex find trace snapshot
8103The basic command for selecting a trace snapshot from the buffer is
8104@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8105counting from zero. If no argument @var{n} is given, the next
8106snapshot is selected.
8107
8108Here are the various forms of using the @code{tfind} command.
8109
8110@table @code
8111@item tfind start
8112Find the first snapshot in the buffer. This is a synonym for
8113@code{tfind 0} (since 0 is the number of the first snapshot).
8114
8115@item tfind none
8116Stop debugging trace snapshots, resume @emph{live} debugging.
8117
8118@item tfind end
8119Same as @samp{tfind none}.
8120
8121@item tfind
8122No argument means find the next trace snapshot.
8123
8124@item tfind -
8125Find the previous trace snapshot before the current one. This permits
8126retracing earlier steps.
8127
8128@item tfind tracepoint @var{num}
8129Find the next snapshot associated with tracepoint @var{num}. Search
8130proceeds forward from the last examined trace snapshot. If no
8131argument @var{num} is given, it means find the next snapshot collected
8132for the same tracepoint as the current snapshot.
8133
8134@item tfind pc @var{addr}
8135Find the next snapshot associated with the value @var{addr} of the
8136program counter. Search proceeds forward from the last examined trace
8137snapshot. If no argument @var{addr} is given, it means find the next
8138snapshot with the same value of PC as the current snapshot.
8139
8140@item tfind outside @var{addr1}, @var{addr2}
8141Find the next snapshot whose PC is outside the given range of
8142addresses.
8143
8144@item tfind range @var{addr1}, @var{addr2}
8145Find the next snapshot whose PC is between @var{addr1} and
8146@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8147
8148@item tfind line @r{[}@var{file}:@r{]}@var{n}
8149Find the next snapshot associated with the source line @var{n}. If
8150the optional argument @var{file} is given, refer to line @var{n} in
8151that source file. Search proceeds forward from the last examined
8152trace snapshot. If no argument @var{n} is given, it means find the
8153next line other than the one currently being examined; thus saying
8154@code{tfind line} repeatedly can appear to have the same effect as
8155stepping from line to line in a @emph{live} debugging session.
8156@end table
8157
8158The default arguments for the @code{tfind} commands are specifically
8159designed to make it easy to scan through the trace buffer. For
8160instance, @code{tfind} with no argument selects the next trace
8161snapshot, and @code{tfind -} with no argument selects the previous
8162trace snapshot. So, by giving one @code{tfind} command, and then
8163simply hitting @key{RET} repeatedly you can examine all the trace
8164snapshots in order. Or, by saying @code{tfind -} and then hitting
8165@key{RET} repeatedly you can examine the snapshots in reverse order.
8166The @code{tfind line} command with no argument selects the snapshot
8167for the next source line executed. The @code{tfind pc} command with
8168no argument selects the next snapshot with the same program counter
8169(PC) as the current frame. The @code{tfind tracepoint} command with
8170no argument selects the next trace snapshot collected by the same
8171tracepoint as the current one.
8172
8173In addition to letting you scan through the trace buffer manually,
8174these commands make it easy to construct @value{GDBN} scripts that
8175scan through the trace buffer and print out whatever collected data
8176you are interested in. Thus, if we want to examine the PC, FP, and SP
8177registers from each trace frame in the buffer, we can say this:
8178
8179@smallexample
8180(@value{GDBP}) @b{tfind start}
8181(@value{GDBP}) @b{while ($trace_frame != -1)}
8182> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8183 $trace_frame, $pc, $sp, $fp
8184> tfind
8185> end
8186
8187Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8188Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8189Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8190Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8191Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8192Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8193Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8194Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8195Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8196Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8197Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8198@end smallexample
8199
8200Or, if we want to examine the variable @code{X} at each source line in
8201the buffer:
8202
8203@smallexample
8204(@value{GDBP}) @b{tfind start}
8205(@value{GDBP}) @b{while ($trace_frame != -1)}
8206> printf "Frame %d, X == %d\n", $trace_frame, X
8207> tfind line
8208> end
8209
8210Frame 0, X = 1
8211Frame 7, X = 2
8212Frame 13, X = 255
8213@end smallexample
8214
8215@node tdump
8216@subsection @code{tdump}
8217@kindex tdump
8218@cindex dump all data collected at tracepoint
8219@cindex tracepoint data, display
8220
8221This command takes no arguments. It prints all the data collected at
8222the current trace snapshot.
8223
8224@smallexample
8225(@value{GDBP}) @b{trace 444}
8226(@value{GDBP}) @b{actions}
8227Enter actions for tracepoint #2, one per line:
8228> collect $regs, $locals, $args, gdb_long_test
8229> end
8230
8231(@value{GDBP}) @b{tstart}
8232
8233(@value{GDBP}) @b{tfind line 444}
8234#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8235at gdb_test.c:444
8236444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8237
8238(@value{GDBP}) @b{tdump}
8239Data collected at tracepoint 2, trace frame 1:
8240d0 0xc4aa0085 -995491707
8241d1 0x18 24
8242d2 0x80 128
8243d3 0x33 51
8244d4 0x71aea3d 119204413
8245d5 0x22 34
8246d6 0xe0 224
8247d7 0x380035 3670069
8248a0 0x19e24a 1696330
8249a1 0x3000668 50333288
8250a2 0x100 256
8251a3 0x322000 3284992
8252a4 0x3000698 50333336
8253a5 0x1ad3cc 1758156
8254fp 0x30bf3c 0x30bf3c
8255sp 0x30bf34 0x30bf34
8256ps 0x0 0
8257pc 0x20b2c8 0x20b2c8
8258fpcontrol 0x0 0
8259fpstatus 0x0 0
8260fpiaddr 0x0 0
8261p = 0x20e5b4 "gdb-test"
8262p1 = (void *) 0x11
8263p2 = (void *) 0x22
8264p3 = (void *) 0x33
8265p4 = (void *) 0x44
8266p5 = (void *) 0x55
8267p6 = (void *) 0x66
8268gdb_long_test = 17 '\021'
8269
8270(@value{GDBP})
8271@end smallexample
8272
8273@node save-tracepoints
8274@subsection @code{save-tracepoints @var{filename}}
8275@kindex save-tracepoints
8276@cindex save tracepoints for future sessions
8277
8278This command saves all current tracepoint definitions together with
8279their actions and passcounts, into a file @file{@var{filename}}
8280suitable for use in a later debugging session. To read the saved
8281tracepoint definitions, use the @code{source} command (@pxref{Command
8282Files}).
8283
8284@node Tracepoint Variables
8285@section Convenience Variables for Tracepoints
8286@cindex tracepoint variables
8287@cindex convenience variables for tracepoints
8288
8289@table @code
8290@vindex $trace_frame
8291@item (int) $trace_frame
8292The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8293snapshot is selected.
8294
8295@vindex $tracepoint
8296@item (int) $tracepoint
8297The tracepoint for the current trace snapshot.
8298
8299@vindex $trace_line
8300@item (int) $trace_line
8301The line number for the current trace snapshot.
8302
8303@vindex $trace_file
8304@item (char []) $trace_file
8305The source file for the current trace snapshot.
8306
8307@vindex $trace_func
8308@item (char []) $trace_func
8309The name of the function containing @code{$tracepoint}.
8310@end table
8311
8312Note: @code{$trace_file} is not suitable for use in @code{printf},
8313use @code{output} instead.
8314
8315Here's a simple example of using these convenience variables for
8316stepping through all the trace snapshots and printing some of their
8317data.
8318
8319@smallexample
8320(@value{GDBP}) @b{tfind start}
8321
8322(@value{GDBP}) @b{while $trace_frame != -1}
8323> output $trace_file
8324> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8325> tfind
8326> end
8327@end smallexample
8328
df0cd8c5
JB
8329@node Overlays
8330@chapter Debugging Programs That Use Overlays
8331@cindex overlays
8332
8333If your program is too large to fit completely in your target system's
8334memory, you can sometimes use @dfn{overlays} to work around this
8335problem. @value{GDBN} provides some support for debugging programs that
8336use overlays.
8337
8338@menu
8339* How Overlays Work:: A general explanation of overlays.
8340* Overlay Commands:: Managing overlays in @value{GDBN}.
8341* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8342 mapped by asking the inferior.
8343* Overlay Sample Program:: A sample program using overlays.
8344@end menu
8345
8346@node How Overlays Work
8347@section How Overlays Work
8348@cindex mapped overlays
8349@cindex unmapped overlays
8350@cindex load address, overlay's
8351@cindex mapped address
8352@cindex overlay area
8353
8354Suppose you have a computer whose instruction address space is only 64
8355kilobytes long, but which has much more memory which can be accessed by
8356other means: special instructions, segment registers, or memory
8357management hardware, for example. Suppose further that you want to
8358adapt a program which is larger than 64 kilobytes to run on this system.
8359
8360One solution is to identify modules of your program which are relatively
8361independent, and need not call each other directly; call these modules
8362@dfn{overlays}. Separate the overlays from the main program, and place
8363their machine code in the larger memory. Place your main program in
8364instruction memory, but leave at least enough space there to hold the
8365largest overlay as well.
8366
8367Now, to call a function located in an overlay, you must first copy that
8368overlay's machine code from the large memory into the space set aside
8369for it in the instruction memory, and then jump to its entry point
8370there.
8371
c928edc0
AC
8372@c NB: In the below the mapped area's size is greater or equal to the
8373@c size of all overlays. This is intentional to remind the developer
8374@c that overlays don't necessarily need to be the same size.
8375
474c8240 8376@smallexample
df0cd8c5 8377@group
c928edc0
AC
8378 Data Instruction Larger
8379Address Space Address Space Address Space
8380+-----------+ +-----------+ +-----------+
8381| | | | | |
8382+-----------+ +-----------+ +-----------+<-- overlay 1
8383| program | | main | .----| overlay 1 | load address
8384| variables | | program | | +-----------+
8385| and heap | | | | | |
8386+-----------+ | | | +-----------+<-- overlay 2
8387| | +-----------+ | | | load address
8388+-----------+ | | | .-| overlay 2 |
8389 | | | | | |
8390 mapped --->+-----------+ | | +-----------+
8391 address | | | | | |
8392 | overlay | <-' | | |
8393 | area | <---' +-----------+<-- overlay 3
8394 | | <---. | | load address
8395 +-----------+ `--| overlay 3 |
8396 | | | |
8397 +-----------+ | |
8398 +-----------+
8399 | |
8400 +-----------+
8401
8402 @anchor{A code overlay}A code overlay
df0cd8c5 8403@end group
474c8240 8404@end smallexample
df0cd8c5 8405
c928edc0
AC
8406The diagram (@pxref{A code overlay}) shows a system with separate data
8407and instruction address spaces. To map an overlay, the program copies
8408its code from the larger address space to the instruction address space.
8409Since the overlays shown here all use the same mapped address, only one
8410may be mapped at a time. For a system with a single address space for
8411data and instructions, the diagram would be similar, except that the
8412program variables and heap would share an address space with the main
8413program and the overlay area.
df0cd8c5
JB
8414
8415An overlay loaded into instruction memory and ready for use is called a
8416@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8417instruction memory. An overlay not present (or only partially present)
8418in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8419is its address in the larger memory. The mapped address is also called
8420the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8421called the @dfn{load memory address}, or @dfn{LMA}.
8422
8423Unfortunately, overlays are not a completely transparent way to adapt a
8424program to limited instruction memory. They introduce a new set of
8425global constraints you must keep in mind as you design your program:
8426
8427@itemize @bullet
8428
8429@item
8430Before calling or returning to a function in an overlay, your program
8431must make sure that overlay is actually mapped. Otherwise, the call or
8432return will transfer control to the right address, but in the wrong
8433overlay, and your program will probably crash.
8434
8435@item
8436If the process of mapping an overlay is expensive on your system, you
8437will need to choose your overlays carefully to minimize their effect on
8438your program's performance.
8439
8440@item
8441The executable file you load onto your system must contain each
8442overlay's instructions, appearing at the overlay's load address, not its
8443mapped address. However, each overlay's instructions must be relocated
8444and its symbols defined as if the overlay were at its mapped address.
8445You can use GNU linker scripts to specify different load and relocation
8446addresses for pieces of your program; see @ref{Overlay Description,,,
8447ld.info, Using ld: the GNU linker}.
8448
8449@item
8450The procedure for loading executable files onto your system must be able
8451to load their contents into the larger address space as well as the
8452instruction and data spaces.
8453
8454@end itemize
8455
8456The overlay system described above is rather simple, and could be
8457improved in many ways:
8458
8459@itemize @bullet
8460
8461@item
8462If your system has suitable bank switch registers or memory management
8463hardware, you could use those facilities to make an overlay's load area
8464contents simply appear at their mapped address in instruction space.
8465This would probably be faster than copying the overlay to its mapped
8466area in the usual way.
8467
8468@item
8469If your overlays are small enough, you could set aside more than one
8470overlay area, and have more than one overlay mapped at a time.
8471
8472@item
8473You can use overlays to manage data, as well as instructions. In
8474general, data overlays are even less transparent to your design than
8475code overlays: whereas code overlays only require care when you call or
8476return to functions, data overlays require care every time you access
8477the data. Also, if you change the contents of a data overlay, you
8478must copy its contents back out to its load address before you can copy a
8479different data overlay into the same mapped area.
8480
8481@end itemize
8482
8483
8484@node Overlay Commands
8485@section Overlay Commands
8486
8487To use @value{GDBN}'s overlay support, each overlay in your program must
8488correspond to a separate section of the executable file. The section's
8489virtual memory address and load memory address must be the overlay's
8490mapped and load addresses. Identifying overlays with sections allows
8491@value{GDBN} to determine the appropriate address of a function or
8492variable, depending on whether the overlay is mapped or not.
8493
8494@value{GDBN}'s overlay commands all start with the word @code{overlay};
8495you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8496
8497@table @code
8498@item overlay off
4644b6e3 8499@kindex overlay
df0cd8c5
JB
8500Disable @value{GDBN}'s overlay support. When overlay support is
8501disabled, @value{GDBN} assumes that all functions and variables are
8502always present at their mapped addresses. By default, @value{GDBN}'s
8503overlay support is disabled.
8504
8505@item overlay manual
df0cd8c5
JB
8506@cindex manual overlay debugging
8507Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8508relies on you to tell it which overlays are mapped, and which are not,
8509using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8510commands described below.
8511
8512@item overlay map-overlay @var{overlay}
8513@itemx overlay map @var{overlay}
df0cd8c5
JB
8514@cindex map an overlay
8515Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8516be the name of the object file section containing the overlay. When an
8517overlay is mapped, @value{GDBN} assumes it can find the overlay's
8518functions and variables at their mapped addresses. @value{GDBN} assumes
8519that any other overlays whose mapped ranges overlap that of
8520@var{overlay} are now unmapped.
8521
8522@item overlay unmap-overlay @var{overlay}
8523@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8524@cindex unmap an overlay
8525Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8526must be the name of the object file section containing the overlay.
8527When an overlay is unmapped, @value{GDBN} assumes it can find the
8528overlay's functions and variables at their load addresses.
8529
8530@item overlay auto
df0cd8c5
JB
8531Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8532consults a data structure the overlay manager maintains in the inferior
8533to see which overlays are mapped. For details, see @ref{Automatic
8534Overlay Debugging}.
8535
8536@item overlay load-target
8537@itemx overlay load
df0cd8c5
JB
8538@cindex reloading the overlay table
8539Re-read the overlay table from the inferior. Normally, @value{GDBN}
8540re-reads the table @value{GDBN} automatically each time the inferior
8541stops, so this command should only be necessary if you have changed the
8542overlay mapping yourself using @value{GDBN}. This command is only
8543useful when using automatic overlay debugging.
8544
8545@item overlay list-overlays
8546@itemx overlay list
8547@cindex listing mapped overlays
8548Display a list of the overlays currently mapped, along with their mapped
8549addresses, load addresses, and sizes.
8550
8551@end table
8552
8553Normally, when @value{GDBN} prints a code address, it includes the name
8554of the function the address falls in:
8555
474c8240 8556@smallexample
f7dc1244 8557(@value{GDBP}) print main
df0cd8c5 8558$3 = @{int ()@} 0x11a0 <main>
474c8240 8559@end smallexample
df0cd8c5
JB
8560@noindent
8561When overlay debugging is enabled, @value{GDBN} recognizes code in
8562unmapped overlays, and prints the names of unmapped functions with
8563asterisks around them. For example, if @code{foo} is a function in an
8564unmapped overlay, @value{GDBN} prints it this way:
8565
474c8240 8566@smallexample
f7dc1244 8567(@value{GDBP}) overlay list
df0cd8c5 8568No sections are mapped.
f7dc1244 8569(@value{GDBP}) print foo
df0cd8c5 8570$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8571@end smallexample
df0cd8c5
JB
8572@noindent
8573When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8574name normally:
8575
474c8240 8576@smallexample
f7dc1244 8577(@value{GDBP}) overlay list
b383017d 8578Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8579 mapped at 0x1016 - 0x104a
f7dc1244 8580(@value{GDBP}) print foo
df0cd8c5 8581$6 = @{int (int)@} 0x1016 <foo>
474c8240 8582@end smallexample
df0cd8c5
JB
8583
8584When overlay debugging is enabled, @value{GDBN} can find the correct
8585address for functions and variables in an overlay, whether or not the
8586overlay is mapped. This allows most @value{GDBN} commands, like
8587@code{break} and @code{disassemble}, to work normally, even on unmapped
8588code. However, @value{GDBN}'s breakpoint support has some limitations:
8589
8590@itemize @bullet
8591@item
8592@cindex breakpoints in overlays
8593@cindex overlays, setting breakpoints in
8594You can set breakpoints in functions in unmapped overlays, as long as
8595@value{GDBN} can write to the overlay at its load address.
8596@item
8597@value{GDBN} can not set hardware or simulator-based breakpoints in
8598unmapped overlays. However, if you set a breakpoint at the end of your
8599overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8600you are using manual overlay management), @value{GDBN} will re-set its
8601breakpoints properly.
8602@end itemize
8603
8604
8605@node Automatic Overlay Debugging
8606@section Automatic Overlay Debugging
8607@cindex automatic overlay debugging
8608
8609@value{GDBN} can automatically track which overlays are mapped and which
8610are not, given some simple co-operation from the overlay manager in the
8611inferior. If you enable automatic overlay debugging with the
8612@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8613looks in the inferior's memory for certain variables describing the
8614current state of the overlays.
8615
8616Here are the variables your overlay manager must define to support
8617@value{GDBN}'s automatic overlay debugging:
8618
8619@table @asis
8620
8621@item @code{_ovly_table}:
8622This variable must be an array of the following structures:
8623
474c8240 8624@smallexample
df0cd8c5
JB
8625struct
8626@{
8627 /* The overlay's mapped address. */
8628 unsigned long vma;
8629
8630 /* The size of the overlay, in bytes. */
8631 unsigned long size;
8632
8633 /* The overlay's load address. */
8634 unsigned long lma;
8635
8636 /* Non-zero if the overlay is currently mapped;
8637 zero otherwise. */
8638 unsigned long mapped;
8639@}
474c8240 8640@end smallexample
df0cd8c5
JB
8641
8642@item @code{_novlys}:
8643This variable must be a four-byte signed integer, holding the total
8644number of elements in @code{_ovly_table}.
8645
8646@end table
8647
8648To decide whether a particular overlay is mapped or not, @value{GDBN}
8649looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8650@code{lma} members equal the VMA and LMA of the overlay's section in the
8651executable file. When @value{GDBN} finds a matching entry, it consults
8652the entry's @code{mapped} member to determine whether the overlay is
8653currently mapped.
8654
81d46470 8655In addition, your overlay manager may define a function called
def71bfa 8656@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8657will silently set a breakpoint there. If the overlay manager then
8658calls this function whenever it has changed the overlay table, this
8659will enable @value{GDBN} to accurately keep track of which overlays
8660are in program memory, and update any breakpoints that may be set
b383017d 8661in overlays. This will allow breakpoints to work even if the
81d46470
MS
8662overlays are kept in ROM or other non-writable memory while they
8663are not being executed.
df0cd8c5
JB
8664
8665@node Overlay Sample Program
8666@section Overlay Sample Program
8667@cindex overlay example program
8668
8669When linking a program which uses overlays, you must place the overlays
8670at their load addresses, while relocating them to run at their mapped
8671addresses. To do this, you must write a linker script (@pxref{Overlay
8672Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8673since linker scripts are specific to a particular host system, target
8674architecture, and target memory layout, this manual cannot provide
8675portable sample code demonstrating @value{GDBN}'s overlay support.
8676
8677However, the @value{GDBN} source distribution does contain an overlaid
8678program, with linker scripts for a few systems, as part of its test
8679suite. The program consists of the following files from
8680@file{gdb/testsuite/gdb.base}:
8681
8682@table @file
8683@item overlays.c
8684The main program file.
8685@item ovlymgr.c
8686A simple overlay manager, used by @file{overlays.c}.
8687@item foo.c
8688@itemx bar.c
8689@itemx baz.c
8690@itemx grbx.c
8691Overlay modules, loaded and used by @file{overlays.c}.
8692@item d10v.ld
8693@itemx m32r.ld
8694Linker scripts for linking the test program on the @code{d10v-elf}
8695and @code{m32r-elf} targets.
8696@end table
8697
8698You can build the test program using the @code{d10v-elf} GCC
8699cross-compiler like this:
8700
474c8240 8701@smallexample
df0cd8c5
JB
8702$ d10v-elf-gcc -g -c overlays.c
8703$ d10v-elf-gcc -g -c ovlymgr.c
8704$ d10v-elf-gcc -g -c foo.c
8705$ d10v-elf-gcc -g -c bar.c
8706$ d10v-elf-gcc -g -c baz.c
8707$ d10v-elf-gcc -g -c grbx.c
8708$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8709 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8710@end smallexample
df0cd8c5
JB
8711
8712The build process is identical for any other architecture, except that
8713you must substitute the appropriate compiler and linker script for the
8714target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8715
8716
6d2ebf8b 8717@node Languages
c906108c
SS
8718@chapter Using @value{GDBN} with Different Languages
8719@cindex languages
8720
c906108c
SS
8721Although programming languages generally have common aspects, they are
8722rarely expressed in the same manner. For instance, in ANSI C,
8723dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8724Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8725represented (and displayed) differently. Hex numbers in C appear as
c906108c 8726@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8727
8728@cindex working language
8729Language-specific information is built into @value{GDBN} for some languages,
8730allowing you to express operations like the above in your program's
8731native language, and allowing @value{GDBN} to output values in a manner
8732consistent with the syntax of your program's native language. The
8733language you use to build expressions is called the @dfn{working
8734language}.
8735
8736@menu
8737* Setting:: Switching between source languages
8738* Show:: Displaying the language
c906108c 8739* Checks:: Type and range checks
79a6e687
BW
8740* Supported Languages:: Supported languages
8741* Unsupported Languages:: Unsupported languages
c906108c
SS
8742@end menu
8743
6d2ebf8b 8744@node Setting
79a6e687 8745@section Switching Between Source Languages
c906108c
SS
8746
8747There are two ways to control the working language---either have @value{GDBN}
8748set it automatically, or select it manually yourself. You can use the
8749@code{set language} command for either purpose. On startup, @value{GDBN}
8750defaults to setting the language automatically. The working language is
8751used to determine how expressions you type are interpreted, how values
8752are printed, etc.
8753
8754In addition to the working language, every source file that
8755@value{GDBN} knows about has its own working language. For some object
8756file formats, the compiler might indicate which language a particular
8757source file is in. However, most of the time @value{GDBN} infers the
8758language from the name of the file. The language of a source file
b37052ae 8759controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8760show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8761set the language of a source file from within @value{GDBN}, but you can
8762set the language associated with a filename extension. @xref{Show, ,
79a6e687 8763Displaying the Language}.
c906108c
SS
8764
8765This is most commonly a problem when you use a program, such
5d161b24 8766as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8767another language. In that case, make the
8768program use @code{#line} directives in its C output; that way
8769@value{GDBN} will know the correct language of the source code of the original
8770program, and will display that source code, not the generated C code.
8771
8772@menu
8773* Filenames:: Filename extensions and languages.
8774* Manually:: Setting the working language manually
8775* Automatically:: Having @value{GDBN} infer the source language
8776@end menu
8777
6d2ebf8b 8778@node Filenames
79a6e687 8779@subsection List of Filename Extensions and Languages
c906108c
SS
8780
8781If a source file name ends in one of the following extensions, then
8782@value{GDBN} infers that its language is the one indicated.
8783
8784@table @file
e07c999f
PH
8785@item .ada
8786@itemx .ads
8787@itemx .adb
8788@itemx .a
8789Ada source file.
c906108c
SS
8790
8791@item .c
8792C source file
8793
8794@item .C
8795@itemx .cc
8796@itemx .cp
8797@itemx .cpp
8798@itemx .cxx
8799@itemx .c++
b37052ae 8800C@t{++} source file
c906108c 8801
b37303ee
AF
8802@item .m
8803Objective-C source file
8804
c906108c
SS
8805@item .f
8806@itemx .F
8807Fortran source file
8808
c906108c
SS
8809@item .mod
8810Modula-2 source file
c906108c
SS
8811
8812@item .s
8813@itemx .S
8814Assembler source file. This actually behaves almost like C, but
8815@value{GDBN} does not skip over function prologues when stepping.
8816@end table
8817
8818In addition, you may set the language associated with a filename
79a6e687 8819extension. @xref{Show, , Displaying the Language}.
c906108c 8820
6d2ebf8b 8821@node Manually
79a6e687 8822@subsection Setting the Working Language
c906108c
SS
8823
8824If you allow @value{GDBN} to set the language automatically,
8825expressions are interpreted the same way in your debugging session and
8826your program.
8827
8828@kindex set language
8829If you wish, you may set the language manually. To do this, issue the
8830command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8831a language, such as
c906108c 8832@code{c} or @code{modula-2}.
c906108c
SS
8833For a list of the supported languages, type @samp{set language}.
8834
c906108c
SS
8835Setting the language manually prevents @value{GDBN} from updating the working
8836language automatically. This can lead to confusion if you try
8837to debug a program when the working language is not the same as the
8838source language, when an expression is acceptable to both
8839languages---but means different things. For instance, if the current
8840source file were written in C, and @value{GDBN} was parsing Modula-2, a
8841command such as:
8842
474c8240 8843@smallexample
c906108c 8844print a = b + c
474c8240 8845@end smallexample
c906108c
SS
8846
8847@noindent
8848might not have the effect you intended. In C, this means to add
8849@code{b} and @code{c} and place the result in @code{a}. The result
8850printed would be the value of @code{a}. In Modula-2, this means to compare
8851@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8852
6d2ebf8b 8853@node Automatically
79a6e687 8854@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8855
8856To have @value{GDBN} set the working language automatically, use
8857@samp{set language local} or @samp{set language auto}. @value{GDBN}
8858then infers the working language. That is, when your program stops in a
8859frame (usually by encountering a breakpoint), @value{GDBN} sets the
8860working language to the language recorded for the function in that
8861frame. If the language for a frame is unknown (that is, if the function
8862or block corresponding to the frame was defined in a source file that
8863does not have a recognized extension), the current working language is
8864not changed, and @value{GDBN} issues a warning.
8865
8866This may not seem necessary for most programs, which are written
8867entirely in one source language. However, program modules and libraries
8868written in one source language can be used by a main program written in
8869a different source language. Using @samp{set language auto} in this
8870case frees you from having to set the working language manually.
8871
6d2ebf8b 8872@node Show
79a6e687 8873@section Displaying the Language
c906108c
SS
8874
8875The following commands help you find out which language is the
8876working language, and also what language source files were written in.
8877
c906108c
SS
8878@table @code
8879@item show language
9c16f35a 8880@kindex show language
c906108c
SS
8881Display the current working language. This is the
8882language you can use with commands such as @code{print} to
8883build and compute expressions that may involve variables in your program.
8884
8885@item info frame
4644b6e3 8886@kindex info frame@r{, show the source language}
5d161b24 8887Display the source language for this frame. This language becomes the
c906108c 8888working language if you use an identifier from this frame.
79a6e687 8889@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
8890information listed here.
8891
8892@item info source
4644b6e3 8893@kindex info source@r{, show the source language}
c906108c 8894Display the source language of this source file.
5d161b24 8895@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
8896information listed here.
8897@end table
8898
8899In unusual circumstances, you may have source files with extensions
8900not in the standard list. You can then set the extension associated
8901with a language explicitly:
8902
c906108c 8903@table @code
09d4efe1 8904@item set extension-language @var{ext} @var{language}
9c16f35a 8905@kindex set extension-language
09d4efe1
EZ
8906Tell @value{GDBN} that source files with extension @var{ext} are to be
8907assumed as written in the source language @var{language}.
c906108c
SS
8908
8909@item info extensions
9c16f35a 8910@kindex info extensions
c906108c
SS
8911List all the filename extensions and the associated languages.
8912@end table
8913
6d2ebf8b 8914@node Checks
79a6e687 8915@section Type and Range Checking
c906108c
SS
8916
8917@quotation
8918@emph{Warning:} In this release, the @value{GDBN} commands for type and range
8919checking are included, but they do not yet have any effect. This
8920section documents the intended facilities.
8921@end quotation
8922@c FIXME remove warning when type/range code added
8923
8924Some languages are designed to guard you against making seemingly common
8925errors through a series of compile- and run-time checks. These include
8926checking the type of arguments to functions and operators, and making
8927sure mathematical overflows are caught at run time. Checks such as
8928these help to ensure a program's correctness once it has been compiled
8929by eliminating type mismatches, and providing active checks for range
8930errors when your program is running.
8931
8932@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
8933Although @value{GDBN} does not check the statements in your program,
8934it can check expressions entered directly into @value{GDBN} for
8935evaluation via the @code{print} command, for example. As with the
8936working language, @value{GDBN} can also decide whether or not to check
8937automatically based on your program's source language.
79a6e687 8938@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 8939settings of supported languages.
c906108c
SS
8940
8941@menu
8942* Type Checking:: An overview of type checking
8943* Range Checking:: An overview of range checking
8944@end menu
8945
8946@cindex type checking
8947@cindex checks, type
6d2ebf8b 8948@node Type Checking
79a6e687 8949@subsection An Overview of Type Checking
c906108c
SS
8950
8951Some languages, such as Modula-2, are strongly typed, meaning that the
8952arguments to operators and functions have to be of the correct type,
8953otherwise an error occurs. These checks prevent type mismatch
8954errors from ever causing any run-time problems. For example,
8955
8956@smallexample
89571 + 2 @result{} 3
8958@exdent but
8959@error{} 1 + 2.3
8960@end smallexample
8961
8962The second example fails because the @code{CARDINAL} 1 is not
8963type-compatible with the @code{REAL} 2.3.
8964
5d161b24
DB
8965For the expressions you use in @value{GDBN} commands, you can tell the
8966@value{GDBN} type checker to skip checking;
8967to treat any mismatches as errors and abandon the expression;
8968or to only issue warnings when type mismatches occur,
c906108c
SS
8969but evaluate the expression anyway. When you choose the last of
8970these, @value{GDBN} evaluates expressions like the second example above, but
8971also issues a warning.
8972
5d161b24
DB
8973Even if you turn type checking off, there may be other reasons
8974related to type that prevent @value{GDBN} from evaluating an expression.
8975For instance, @value{GDBN} does not know how to add an @code{int} and
8976a @code{struct foo}. These particular type errors have nothing to do
8977with the language in use, and usually arise from expressions, such as
c906108c
SS
8978the one described above, which make little sense to evaluate anyway.
8979
8980Each language defines to what degree it is strict about type. For
8981instance, both Modula-2 and C require the arguments to arithmetical
8982operators to be numbers. In C, enumerated types and pointers can be
8983represented as numbers, so that they are valid arguments to mathematical
79a6e687 8984operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
8985details on specific languages.
8986
8987@value{GDBN} provides some additional commands for controlling the type checker:
8988
c906108c
SS
8989@kindex set check type
8990@kindex show check type
8991@table @code
8992@item set check type auto
8993Set type checking on or off based on the current working language.
79a6e687 8994@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
8995each language.
8996
8997@item set check type on
8998@itemx set check type off
8999Set type checking on or off, overriding the default setting for the
9000current working language. Issue a warning if the setting does not
9001match the language default. If any type mismatches occur in
d4f3574e 9002evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9003message and aborts evaluation of the expression.
9004
9005@item set check type warn
9006Cause the type checker to issue warnings, but to always attempt to
9007evaluate the expression. Evaluating the expression may still
9008be impossible for other reasons. For example, @value{GDBN} cannot add
9009numbers and structures.
9010
9011@item show type
5d161b24 9012Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9013is setting it automatically.
9014@end table
9015
9016@cindex range checking
9017@cindex checks, range
6d2ebf8b 9018@node Range Checking
79a6e687 9019@subsection An Overview of Range Checking
c906108c
SS
9020
9021In some languages (such as Modula-2), it is an error to exceed the
9022bounds of a type; this is enforced with run-time checks. Such range
9023checking is meant to ensure program correctness by making sure
9024computations do not overflow, or indices on an array element access do
9025not exceed the bounds of the array.
9026
9027For expressions you use in @value{GDBN} commands, you can tell
9028@value{GDBN} to treat range errors in one of three ways: ignore them,
9029always treat them as errors and abandon the expression, or issue
9030warnings but evaluate the expression anyway.
9031
9032A range error can result from numerical overflow, from exceeding an
9033array index bound, or when you type a constant that is not a member
9034of any type. Some languages, however, do not treat overflows as an
9035error. In many implementations of C, mathematical overflow causes the
9036result to ``wrap around'' to lower values---for example, if @var{m} is
9037the largest integer value, and @var{s} is the smallest, then
9038
474c8240 9039@smallexample
c906108c 9040@var{m} + 1 @result{} @var{s}
474c8240 9041@end smallexample
c906108c
SS
9042
9043This, too, is specific to individual languages, and in some cases
79a6e687
BW
9044specific to individual compilers or machines. @xref{Supported Languages, ,
9045Supported Languages}, for further details on specific languages.
c906108c
SS
9046
9047@value{GDBN} provides some additional commands for controlling the range checker:
9048
c906108c
SS
9049@kindex set check range
9050@kindex show check range
9051@table @code
9052@item set check range auto
9053Set range checking on or off based on the current working language.
79a6e687 9054@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9055each language.
9056
9057@item set check range on
9058@itemx set check range off
9059Set range checking on or off, overriding the default setting for the
9060current working language. A warning is issued if the setting does not
c3f6f71d
JM
9061match the language default. If a range error occurs and range checking is on,
9062then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9063
9064@item set check range warn
9065Output messages when the @value{GDBN} range checker detects a range error,
9066but attempt to evaluate the expression anyway. Evaluating the
9067expression may still be impossible for other reasons, such as accessing
9068memory that the process does not own (a typical example from many Unix
9069systems).
9070
9071@item show range
9072Show the current setting of the range checker, and whether or not it is
9073being set automatically by @value{GDBN}.
9074@end table
c906108c 9075
79a6e687
BW
9076@node Supported Languages
9077@section Supported Languages
c906108c 9078
9c16f35a
EZ
9079@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9080assembly, Modula-2, and Ada.
cce74817 9081@c This is false ...
c906108c
SS
9082Some @value{GDBN} features may be used in expressions regardless of the
9083language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9084and the @samp{@{type@}addr} construct (@pxref{Expressions,
9085,Expressions}) can be used with the constructs of any supported
9086language.
9087
9088The following sections detail to what degree each source language is
9089supported by @value{GDBN}. These sections are not meant to be language
9090tutorials or references, but serve only as a reference guide to what the
9091@value{GDBN} expression parser accepts, and what input and output
9092formats should look like for different languages. There are many good
9093books written on each of these languages; please look to these for a
9094language reference or tutorial.
9095
c906108c 9096@menu
b37303ee 9097* C:: C and C@t{++}
b383017d 9098* Objective-C:: Objective-C
09d4efe1 9099* Fortran:: Fortran
9c16f35a 9100* Pascal:: Pascal
b37303ee 9101* Modula-2:: Modula-2
e07c999f 9102* Ada:: Ada
c906108c
SS
9103@end menu
9104
6d2ebf8b 9105@node C
b37052ae 9106@subsection C and C@t{++}
7a292a7a 9107
b37052ae
EZ
9108@cindex C and C@t{++}
9109@cindex expressions in C or C@t{++}
c906108c 9110
b37052ae 9111Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9112to both languages. Whenever this is the case, we discuss those languages
9113together.
9114
41afff9a
EZ
9115@cindex C@t{++}
9116@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9117@cindex @sc{gnu} C@t{++}
9118The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9119compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9120effectively, you must compile your C@t{++} programs with a supported
9121C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9122compiler (@code{aCC}).
9123
0179ffac
DC
9124For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9125format; if it doesn't work on your system, try the stabs+ debugging
9126format. You can select those formats explicitly with the @code{g++}
9127command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9128@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9129gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9130
c906108c 9131@menu
b37052ae
EZ
9132* C Operators:: C and C@t{++} operators
9133* C Constants:: C and C@t{++} constants
79a6e687 9134* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9135* C Defaults:: Default settings for C and C@t{++}
9136* C Checks:: C and C@t{++} type and range checks
c906108c 9137* Debugging C:: @value{GDBN} and C
79a6e687 9138* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9139* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9140@end menu
c906108c 9141
6d2ebf8b 9142@node C Operators
79a6e687 9143@subsubsection C and C@t{++} Operators
7a292a7a 9144
b37052ae 9145@cindex C and C@t{++} operators
c906108c
SS
9146
9147Operators must be defined on values of specific types. For instance,
9148@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9149often defined on groups of types.
c906108c 9150
b37052ae 9151For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9152
9153@itemize @bullet
53a5351d 9154
c906108c 9155@item
c906108c 9156@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9157specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9158
9159@item
d4f3574e
SS
9160@emph{Floating-point types} include @code{float}, @code{double}, and
9161@code{long double} (if supported by the target platform).
c906108c
SS
9162
9163@item
53a5351d 9164@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9165
9166@item
9167@emph{Scalar types} include all of the above.
53a5351d 9168
c906108c
SS
9169@end itemize
9170
9171@noindent
9172The following operators are supported. They are listed here
9173in order of increasing precedence:
9174
9175@table @code
9176@item ,
9177The comma or sequencing operator. Expressions in a comma-separated list
9178are evaluated from left to right, with the result of the entire
9179expression being the last expression evaluated.
9180
9181@item =
9182Assignment. The value of an assignment expression is the value
9183assigned. Defined on scalar types.
9184
9185@item @var{op}=
9186Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9187and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9188@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9189@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9190@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9191
9192@item ?:
9193The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9194of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9195integral type.
9196
9197@item ||
9198Logical @sc{or}. Defined on integral types.
9199
9200@item &&
9201Logical @sc{and}. Defined on integral types.
9202
9203@item |
9204Bitwise @sc{or}. Defined on integral types.
9205
9206@item ^
9207Bitwise exclusive-@sc{or}. Defined on integral types.
9208
9209@item &
9210Bitwise @sc{and}. Defined on integral types.
9211
9212@item ==@r{, }!=
9213Equality and inequality. Defined on scalar types. The value of these
9214expressions is 0 for false and non-zero for true.
9215
9216@item <@r{, }>@r{, }<=@r{, }>=
9217Less than, greater than, less than or equal, greater than or equal.
9218Defined on scalar types. The value of these expressions is 0 for false
9219and non-zero for true.
9220
9221@item <<@r{, }>>
9222left shift, and right shift. Defined on integral types.
9223
9224@item @@
9225The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9226
9227@item +@r{, }-
9228Addition and subtraction. Defined on integral types, floating-point types and
9229pointer types.
9230
9231@item *@r{, }/@r{, }%
9232Multiplication, division, and modulus. Multiplication and division are
9233defined on integral and floating-point types. Modulus is defined on
9234integral types.
9235
9236@item ++@r{, }--
9237Increment and decrement. When appearing before a variable, the
9238operation is performed before the variable is used in an expression;
9239when appearing after it, the variable's value is used before the
9240operation takes place.
9241
9242@item *
9243Pointer dereferencing. Defined on pointer types. Same precedence as
9244@code{++}.
9245
9246@item &
9247Address operator. Defined on variables. Same precedence as @code{++}.
9248
b37052ae
EZ
9249For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9250allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
c906108c 9251(or, if you prefer, simply @samp{&&@var{ref}}) to examine the address
b37052ae 9252where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9253stored.
c906108c
SS
9254
9255@item -
9256Negative. Defined on integral and floating-point types. Same
9257precedence as @code{++}.
9258
9259@item !
9260Logical negation. Defined on integral types. Same precedence as
9261@code{++}.
9262
9263@item ~
9264Bitwise complement operator. Defined on integral types. Same precedence as
9265@code{++}.
9266
9267
9268@item .@r{, }->
9269Structure member, and pointer-to-structure member. For convenience,
9270@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9271pointer based on the stored type information.
9272Defined on @code{struct} and @code{union} data.
9273
c906108c
SS
9274@item .*@r{, }->*
9275Dereferences of pointers to members.
c906108c
SS
9276
9277@item []
9278Array indexing. @code{@var{a}[@var{i}]} is defined as
9279@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9280
9281@item ()
9282Function parameter list. Same precedence as @code{->}.
9283
c906108c 9284@item ::
b37052ae 9285C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9286and @code{class} types.
c906108c
SS
9287
9288@item ::
7a292a7a
SS
9289Doubled colons also represent the @value{GDBN} scope operator
9290(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9291above.
c906108c
SS
9292@end table
9293
c906108c
SS
9294If an operator is redefined in the user code, @value{GDBN} usually
9295attempts to invoke the redefined version instead of using the operator's
9296predefined meaning.
c906108c 9297
6d2ebf8b 9298@node C Constants
79a6e687 9299@subsubsection C and C@t{++} Constants
c906108c 9300
b37052ae 9301@cindex C and C@t{++} constants
c906108c 9302
b37052ae 9303@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9304following ways:
c906108c
SS
9305
9306@itemize @bullet
9307@item
9308Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9309specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9310by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9311@samp{l}, specifying that the constant should be treated as a
9312@code{long} value.
9313
9314@item
9315Floating point constants are a sequence of digits, followed by a decimal
9316point, followed by a sequence of digits, and optionally followed by an
9317exponent. An exponent is of the form:
9318@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9319sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9320A floating-point constant may also end with a letter @samp{f} or
9321@samp{F}, specifying that the constant should be treated as being of
9322the @code{float} (as opposed to the default @code{double}) type; or with
9323a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9324constant.
c906108c
SS
9325
9326@item
9327Enumerated constants consist of enumerated identifiers, or their
9328integral equivalents.
9329
9330@item
9331Character constants are a single character surrounded by single quotes
9332(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9333(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9334be represented by a letter or by @dfn{escape sequences}, which are of
9335the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9336of the character's ordinal value; or of the form @samp{\@var{x}}, where
9337@samp{@var{x}} is a predefined special character---for example,
9338@samp{\n} for newline.
9339
9340@item
96a2c332
SS
9341String constants are a sequence of character constants surrounded by
9342double quotes (@code{"}). Any valid character constant (as described
9343above) may appear. Double quotes within the string must be preceded by
9344a backslash, so for instance @samp{"a\"b'c"} is a string of five
9345characters.
c906108c
SS
9346
9347@item
9348Pointer constants are an integral value. You can also write pointers
9349to constants using the C operator @samp{&}.
9350
9351@item
9352Array constants are comma-separated lists surrounded by braces @samp{@{}
9353and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9354integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9355and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9356@end itemize
9357
79a6e687
BW
9358@node C Plus Plus Expressions
9359@subsubsection C@t{++} Expressions
b37052ae
EZ
9360
9361@cindex expressions in C@t{++}
9362@value{GDBN} expression handling can interpret most C@t{++} expressions.
9363
0179ffac
DC
9364@cindex debugging C@t{++} programs
9365@cindex C@t{++} compilers
9366@cindex debug formats and C@t{++}
9367@cindex @value{NGCC} and C@t{++}
c906108c 9368@quotation
b37052ae 9369@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9370proper compiler and the proper debug format. Currently, @value{GDBN}
9371works best when debugging C@t{++} code that is compiled with
9372@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9373@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9374stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9375stabs+ as their default debug format, so you usually don't need to
9376specify a debug format explicitly. Other compilers and/or debug formats
9377are likely to work badly or not at all when using @value{GDBN} to debug
9378C@t{++} code.
c906108c 9379@end quotation
c906108c
SS
9380
9381@enumerate
9382
9383@cindex member functions
9384@item
9385Member function calls are allowed; you can use expressions like
9386
474c8240 9387@smallexample
c906108c 9388count = aml->GetOriginal(x, y)
474c8240 9389@end smallexample
c906108c 9390
41afff9a 9391@vindex this@r{, inside C@t{++} member functions}
b37052ae 9392@cindex namespace in C@t{++}
c906108c
SS
9393@item
9394While a member function is active (in the selected stack frame), your
9395expressions have the same namespace available as the member function;
9396that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9397pointer @code{this} following the same rules as C@t{++}.
c906108c 9398
c906108c 9399@cindex call overloaded functions
d4f3574e 9400@cindex overloaded functions, calling
b37052ae 9401@cindex type conversions in C@t{++}
c906108c
SS
9402@item
9403You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9404call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9405perform overload resolution involving user-defined type conversions,
9406calls to constructors, or instantiations of templates that do not exist
9407in the program. It also cannot handle ellipsis argument lists or
9408default arguments.
9409
9410It does perform integral conversions and promotions, floating-point
9411promotions, arithmetic conversions, pointer conversions, conversions of
9412class objects to base classes, and standard conversions such as those of
9413functions or arrays to pointers; it requires an exact match on the
9414number of function arguments.
9415
9416Overload resolution is always performed, unless you have specified
79a6e687
BW
9417@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9418,@value{GDBN} Features for C@t{++}}.
c906108c 9419
d4f3574e 9420You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9421explicit function signature to call an overloaded function, as in
9422@smallexample
9423p 'foo(char,int)'('x', 13)
9424@end smallexample
d4f3574e 9425
c906108c 9426The @value{GDBN} command-completion facility can simplify this;
79a6e687 9427see @ref{Completion, ,Command Completion}.
c906108c 9428
c906108c
SS
9429@cindex reference declarations
9430@item
b37052ae
EZ
9431@value{GDBN} understands variables declared as C@t{++} references; you can use
9432them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9433dereferenced.
9434
9435In the parameter list shown when @value{GDBN} displays a frame, the values of
9436reference variables are not displayed (unlike other variables); this
9437avoids clutter, since references are often used for large structures.
9438The @emph{address} of a reference variable is always shown, unless
9439you have specified @samp{set print address off}.
9440
9441@item
b37052ae 9442@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9443expressions can use it just as expressions in your program do. Since
9444one scope may be defined in another, you can use @code{::} repeatedly if
9445necessary, for example in an expression like
9446@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9447resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9448debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9449@end enumerate
9450
b37052ae 9451In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9452calling virtual functions correctly, printing out virtual bases of
9453objects, calling functions in a base subobject, casting objects, and
9454invoking user-defined operators.
c906108c 9455
6d2ebf8b 9456@node C Defaults
79a6e687 9457@subsubsection C and C@t{++} Defaults
7a292a7a 9458
b37052ae 9459@cindex C and C@t{++} defaults
c906108c 9460
c906108c
SS
9461If you allow @value{GDBN} to set type and range checking automatically, they
9462both default to @code{off} whenever the working language changes to
b37052ae 9463C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9464selects the working language.
c906108c
SS
9465
9466If you allow @value{GDBN} to set the language automatically, it
9467recognizes source files whose names end with @file{.c}, @file{.C}, or
9468@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9469these files, it sets the working language to C or C@t{++}.
79a6e687 9470@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9471for further details.
9472
c906108c
SS
9473@c Type checking is (a) primarily motivated by Modula-2, and (b)
9474@c unimplemented. If (b) changes, it might make sense to let this node
9475@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9476
6d2ebf8b 9477@node C Checks
79a6e687 9478@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9479
b37052ae 9480@cindex C and C@t{++} checks
c906108c 9481
b37052ae 9482By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9483is not used. However, if you turn type checking on, @value{GDBN}
9484considers two variables type equivalent if:
9485
9486@itemize @bullet
9487@item
9488The two variables are structured and have the same structure, union, or
9489enumerated tag.
9490
9491@item
9492The two variables have the same type name, or types that have been
9493declared equivalent through @code{typedef}.
9494
9495@ignore
9496@c leaving this out because neither J Gilmore nor R Pesch understand it.
9497@c FIXME--beers?
9498@item
9499The two @code{struct}, @code{union}, or @code{enum} variables are
9500declared in the same declaration. (Note: this may not be true for all C
9501compilers.)
9502@end ignore
9503@end itemize
9504
9505Range checking, if turned on, is done on mathematical operations. Array
9506indices are not checked, since they are often used to index a pointer
9507that is not itself an array.
c906108c 9508
6d2ebf8b 9509@node Debugging C
c906108c 9510@subsubsection @value{GDBN} and C
c906108c
SS
9511
9512The @code{set print union} and @code{show print union} commands apply to
9513the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9514inside a @code{struct} or @code{class} is also printed. Otherwise, it
9515appears as @samp{@{...@}}.
c906108c
SS
9516
9517The @code{@@} operator aids in the debugging of dynamic arrays, formed
9518with pointers and a memory allocation function. @xref{Expressions,
9519,Expressions}.
9520
79a6e687
BW
9521@node Debugging C Plus Plus
9522@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9523
b37052ae 9524@cindex commands for C@t{++}
7a292a7a 9525
b37052ae
EZ
9526Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9527designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9528
9529@table @code
9530@cindex break in overloaded functions
9531@item @r{breakpoint menus}
9532When you want a breakpoint in a function whose name is overloaded,
9533@value{GDBN} breakpoint menus help you specify which function definition
79a6e687 9534you want. @xref{Breakpoint Menus,,Breakpoint Menus}.
c906108c 9535
b37052ae 9536@cindex overloading in C@t{++}
c906108c
SS
9537@item rbreak @var{regex}
9538Setting breakpoints using regular expressions is helpful for setting
9539breakpoints on overloaded functions that are not members of any special
9540classes.
79a6e687 9541@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9542
b37052ae 9543@cindex C@t{++} exception handling
c906108c
SS
9544@item catch throw
9545@itemx catch catch
b37052ae 9546Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9547Catchpoints, , Setting Catchpoints}.
c906108c
SS
9548
9549@cindex inheritance
9550@item ptype @var{typename}
9551Print inheritance relationships as well as other information for type
9552@var{typename}.
9553@xref{Symbols, ,Examining the Symbol Table}.
9554
b37052ae 9555@cindex C@t{++} symbol display
c906108c
SS
9556@item set print demangle
9557@itemx show print demangle
9558@itemx set print asm-demangle
9559@itemx show print asm-demangle
b37052ae
EZ
9560Control whether C@t{++} symbols display in their source form, both when
9561displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9562@xref{Print Settings, ,Print Settings}.
c906108c
SS
9563
9564@item set print object
9565@itemx show print object
9566Choose whether to print derived (actual) or declared types of objects.
79a6e687 9567@xref{Print Settings, ,Print Settings}.
c906108c
SS
9568
9569@item set print vtbl
9570@itemx show print vtbl
9571Control the format for printing virtual function tables.
79a6e687 9572@xref{Print Settings, ,Print Settings}.
c906108c 9573(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9574ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9575
9576@kindex set overload-resolution
d4f3574e 9577@cindex overloaded functions, overload resolution
c906108c 9578@item set overload-resolution on
b37052ae 9579Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9580is on. For overloaded functions, @value{GDBN} evaluates the arguments
9581and searches for a function whose signature matches the argument types,
79a6e687
BW
9582using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9583Expressions, ,C@t{++} Expressions}, for details).
9584If it cannot find a match, it emits a message.
c906108c
SS
9585
9586@item set overload-resolution off
b37052ae 9587Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9588overloaded functions that are not class member functions, @value{GDBN}
9589chooses the first function of the specified name that it finds in the
9590symbol table, whether or not its arguments are of the correct type. For
9591overloaded functions that are class member functions, @value{GDBN}
9592searches for a function whose signature @emph{exactly} matches the
9593argument types.
c906108c 9594
9c16f35a
EZ
9595@kindex show overload-resolution
9596@item show overload-resolution
9597Show the current setting of overload resolution.
9598
c906108c
SS
9599@item @r{Overloaded symbol names}
9600You can specify a particular definition of an overloaded symbol, using
b37052ae 9601the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9602@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9603also use the @value{GDBN} command-line word completion facilities to list the
9604available choices, or to finish the type list for you.
79a6e687 9605@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9606@end table
c906108c 9607
febe4383
TJB
9608@node Decimal Floating Point
9609@subsubsection Decimal Floating Point format
9610@cindex decimal floating point format
9611
9612@value{GDBN} can examine, set and perform computations with numbers in
9613decimal floating point format, which in the C language correspond to the
9614@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9615specified by the extension to support decimal floating-point arithmetic.
9616
9617There are two encodings in use, depending on the architecture: BID (Binary
9618Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9619PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9620target.
9621
9622Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9623to manipulate decimal floating point numbers, it is not possible to convert
9624(using a cast, for example) integers wider than 32-bit to decimal float.
9625
9626In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9627point computations, error checking in decimal float operations ignores
9628underflow, overflow and divide by zero exceptions.
9629
b37303ee
AF
9630@node Objective-C
9631@subsection Objective-C
9632
9633@cindex Objective-C
9634This section provides information about some commands and command
721c2651
EZ
9635options that are useful for debugging Objective-C code. See also
9636@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9637few more commands specific to Objective-C support.
b37303ee
AF
9638
9639@menu
b383017d
RM
9640* Method Names in Commands::
9641* The Print Command with Objective-C::
b37303ee
AF
9642@end menu
9643
c8f4133a 9644@node Method Names in Commands
b37303ee
AF
9645@subsubsection Method Names in Commands
9646
9647The following commands have been extended to accept Objective-C method
9648names as line specifications:
9649
9650@kindex clear@r{, and Objective-C}
9651@kindex break@r{, and Objective-C}
9652@kindex info line@r{, and Objective-C}
9653@kindex jump@r{, and Objective-C}
9654@kindex list@r{, and Objective-C}
9655@itemize
9656@item @code{clear}
9657@item @code{break}
9658@item @code{info line}
9659@item @code{jump}
9660@item @code{list}
9661@end itemize
9662
9663A fully qualified Objective-C method name is specified as
9664
9665@smallexample
9666-[@var{Class} @var{methodName}]
9667@end smallexample
9668
c552b3bb
JM
9669where the minus sign is used to indicate an instance method and a
9670plus sign (not shown) is used to indicate a class method. The class
9671name @var{Class} and method name @var{methodName} are enclosed in
9672brackets, similar to the way messages are specified in Objective-C
9673source code. For example, to set a breakpoint at the @code{create}
9674instance method of class @code{Fruit} in the program currently being
9675debugged, enter:
b37303ee
AF
9676
9677@smallexample
9678break -[Fruit create]
9679@end smallexample
9680
9681To list ten program lines around the @code{initialize} class method,
9682enter:
9683
9684@smallexample
9685list +[NSText initialize]
9686@end smallexample
9687
c552b3bb
JM
9688In the current version of @value{GDBN}, the plus or minus sign is
9689required. In future versions of @value{GDBN}, the plus or minus
9690sign will be optional, but you can use it to narrow the search. It
9691is also possible to specify just a method name:
b37303ee
AF
9692
9693@smallexample
9694break create
9695@end smallexample
9696
9697You must specify the complete method name, including any colons. If
9698your program's source files contain more than one @code{create} method,
9699you'll be presented with a numbered list of classes that implement that
9700method. Indicate your choice by number, or type @samp{0} to exit if
9701none apply.
9702
9703As another example, to clear a breakpoint established at the
9704@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9705
9706@smallexample
9707clear -[NSWindow makeKeyAndOrderFront:]
9708@end smallexample
9709
9710@node The Print Command with Objective-C
9711@subsubsection The Print Command With Objective-C
721c2651 9712@cindex Objective-C, print objects
c552b3bb
JM
9713@kindex print-object
9714@kindex po @r{(@code{print-object})}
b37303ee 9715
c552b3bb 9716The print command has also been extended to accept methods. For example:
b37303ee
AF
9717
9718@smallexample
c552b3bb 9719print -[@var{object} hash]
b37303ee
AF
9720@end smallexample
9721
9722@cindex print an Objective-C object description
c552b3bb
JM
9723@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9724@noindent
9725will tell @value{GDBN} to send the @code{hash} message to @var{object}
9726and print the result. Also, an additional command has been added,
9727@code{print-object} or @code{po} for short, which is meant to print
9728the description of an object. However, this command may only work
9729with certain Objective-C libraries that have a particular hook
9730function, @code{_NSPrintForDebugger}, defined.
b37303ee 9731
09d4efe1
EZ
9732@node Fortran
9733@subsection Fortran
9734@cindex Fortran-specific support in @value{GDBN}
9735
814e32d7
WZ
9736@value{GDBN} can be used to debug programs written in Fortran, but it
9737currently supports only the features of Fortran 77 language.
9738
9739@cindex trailing underscore, in Fortran symbols
9740Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9741among them) append an underscore to the names of variables and
9742functions. When you debug programs compiled by those compilers, you
9743will need to refer to variables and functions with a trailing
9744underscore.
9745
9746@menu
9747* Fortran Operators:: Fortran operators and expressions
9748* Fortran Defaults:: Default settings for Fortran
79a6e687 9749* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9750@end menu
9751
9752@node Fortran Operators
79a6e687 9753@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9754
9755@cindex Fortran operators and expressions
9756
9757Operators must be defined on values of specific types. For instance,
9758@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9759arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9760
9761@table @code
9762@item **
9763The exponentiation operator. It raises the first operand to the power
9764of the second one.
9765
9766@item :
9767The range operator. Normally used in the form of array(low:high) to
9768represent a section of array.
9769@end table
9770
9771@node Fortran Defaults
9772@subsubsection Fortran Defaults
9773
9774@cindex Fortran Defaults
9775
9776Fortran symbols are usually case-insensitive, so @value{GDBN} by
9777default uses case-insensitive matches for Fortran symbols. You can
9778change that with the @samp{set case-insensitive} command, see
9779@ref{Symbols}, for the details.
9780
79a6e687
BW
9781@node Special Fortran Commands
9782@subsubsection Special Fortran Commands
814e32d7
WZ
9783
9784@cindex Special Fortran commands
9785
db2e3e2e
BW
9786@value{GDBN} has some commands to support Fortran-specific features,
9787such as displaying common blocks.
814e32d7 9788
09d4efe1
EZ
9789@table @code
9790@cindex @code{COMMON} blocks, Fortran
9791@kindex info common
9792@item info common @r{[}@var{common-name}@r{]}
9793This command prints the values contained in the Fortran @code{COMMON}
9794block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9795all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9796printed.
9797@end table
9798
9c16f35a
EZ
9799@node Pascal
9800@subsection Pascal
9801
9802@cindex Pascal support in @value{GDBN}, limitations
9803Debugging Pascal programs which use sets, subranges, file variables, or
9804nested functions does not currently work. @value{GDBN} does not support
9805entering expressions, printing values, or similar features using Pascal
9806syntax.
9807
9808The Pascal-specific command @code{set print pascal_static-members}
9809controls whether static members of Pascal objects are displayed.
9810@xref{Print Settings, pascal_static-members}.
9811
09d4efe1 9812@node Modula-2
c906108c 9813@subsection Modula-2
7a292a7a 9814
d4f3574e 9815@cindex Modula-2, @value{GDBN} support
c906108c
SS
9816
9817The extensions made to @value{GDBN} to support Modula-2 only support
9818output from the @sc{gnu} Modula-2 compiler (which is currently being
9819developed). Other Modula-2 compilers are not currently supported, and
9820attempting to debug executables produced by them is most likely
9821to give an error as @value{GDBN} reads in the executable's symbol
9822table.
9823
9824@cindex expressions in Modula-2
9825@menu
9826* M2 Operators:: Built-in operators
9827* Built-In Func/Proc:: Built-in functions and procedures
9828* M2 Constants:: Modula-2 constants
72019c9c 9829* M2 Types:: Modula-2 types
c906108c
SS
9830* M2 Defaults:: Default settings for Modula-2
9831* Deviations:: Deviations from standard Modula-2
9832* M2 Checks:: Modula-2 type and range checks
9833* M2 Scope:: The scope operators @code{::} and @code{.}
9834* GDB/M2:: @value{GDBN} and Modula-2
9835@end menu
9836
6d2ebf8b 9837@node M2 Operators
c906108c
SS
9838@subsubsection Operators
9839@cindex Modula-2 operators
9840
9841Operators must be defined on values of specific types. For instance,
9842@code{+} is defined on numbers, but not on structures. Operators are
9843often defined on groups of types. For the purposes of Modula-2, the
9844following definitions hold:
9845
9846@itemize @bullet
9847
9848@item
9849@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9850their subranges.
9851
9852@item
9853@emph{Character types} consist of @code{CHAR} and its subranges.
9854
9855@item
9856@emph{Floating-point types} consist of @code{REAL}.
9857
9858@item
9859@emph{Pointer types} consist of anything declared as @code{POINTER TO
9860@var{type}}.
9861
9862@item
9863@emph{Scalar types} consist of all of the above.
9864
9865@item
9866@emph{Set types} consist of @code{SET} and @code{BITSET} types.
9867
9868@item
9869@emph{Boolean types} consist of @code{BOOLEAN}.
9870@end itemize
9871
9872@noindent
9873The following operators are supported, and appear in order of
9874increasing precedence:
9875
9876@table @code
9877@item ,
9878Function argument or array index separator.
9879
9880@item :=
9881Assignment. The value of @var{var} @code{:=} @var{value} is
9882@var{value}.
9883
9884@item <@r{, }>
9885Less than, greater than on integral, floating-point, or enumerated
9886types.
9887
9888@item <=@r{, }>=
96a2c332 9889Less than or equal to, greater than or equal to
c906108c
SS
9890on integral, floating-point and enumerated types, or set inclusion on
9891set types. Same precedence as @code{<}.
9892
9893@item =@r{, }<>@r{, }#
9894Equality and two ways of expressing inequality, valid on scalar types.
9895Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
9896available for inequality, since @code{#} conflicts with the script
9897comment character.
9898
9899@item IN
9900Set membership. Defined on set types and the types of their members.
9901Same precedence as @code{<}.
9902
9903@item OR
9904Boolean disjunction. Defined on boolean types.
9905
9906@item AND@r{, }&
d4f3574e 9907Boolean conjunction. Defined on boolean types.
c906108c
SS
9908
9909@item @@
9910The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9911
9912@item +@r{, }-
9913Addition and subtraction on integral and floating-point types, or union
9914and difference on set types.
9915
9916@item *
9917Multiplication on integral and floating-point types, or set intersection
9918on set types.
9919
9920@item /
9921Division on floating-point types, or symmetric set difference on set
9922types. Same precedence as @code{*}.
9923
9924@item DIV@r{, }MOD
9925Integer division and remainder. Defined on integral types. Same
9926precedence as @code{*}.
9927
9928@item -
9929Negative. Defined on @code{INTEGER} and @code{REAL} data.
9930
9931@item ^
9932Pointer dereferencing. Defined on pointer types.
9933
9934@item NOT
9935Boolean negation. Defined on boolean types. Same precedence as
9936@code{^}.
9937
9938@item .
9939@code{RECORD} field selector. Defined on @code{RECORD} data. Same
9940precedence as @code{^}.
9941
9942@item []
9943Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
9944
9945@item ()
9946Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
9947as @code{^}.
9948
9949@item ::@r{, }.
9950@value{GDBN} and Modula-2 scope operators.
9951@end table
9952
9953@quotation
72019c9c 9954@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
9955treats the use of the operator @code{IN}, or the use of operators
9956@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
9957@code{<=}, and @code{>=} on sets as an error.
9958@end quotation
9959
cb51c4e0 9960
6d2ebf8b 9961@node Built-In Func/Proc
79a6e687 9962@subsubsection Built-in Functions and Procedures
cb51c4e0 9963@cindex Modula-2 built-ins
c906108c
SS
9964
9965Modula-2 also makes available several built-in procedures and functions.
9966In describing these, the following metavariables are used:
9967
9968@table @var
9969
9970@item a
9971represents an @code{ARRAY} variable.
9972
9973@item c
9974represents a @code{CHAR} constant or variable.
9975
9976@item i
9977represents a variable or constant of integral type.
9978
9979@item m
9980represents an identifier that belongs to a set. Generally used in the
9981same function with the metavariable @var{s}. The type of @var{s} should
9982be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
9983
9984@item n
9985represents a variable or constant of integral or floating-point type.
9986
9987@item r
9988represents a variable or constant of floating-point type.
9989
9990@item t
9991represents a type.
9992
9993@item v
9994represents a variable.
9995
9996@item x
9997represents a variable or constant of one of many types. See the
9998explanation of the function for details.
9999@end table
10000
10001All Modula-2 built-in procedures also return a result, described below.
10002
10003@table @code
10004@item ABS(@var{n})
10005Returns the absolute value of @var{n}.
10006
10007@item CAP(@var{c})
10008If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10009equivalent, otherwise it returns its argument.
c906108c
SS
10010
10011@item CHR(@var{i})
10012Returns the character whose ordinal value is @var{i}.
10013
10014@item DEC(@var{v})
c3f6f71d 10015Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10016
10017@item DEC(@var{v},@var{i})
10018Decrements the value in the variable @var{v} by @var{i}. Returns the
10019new value.
10020
10021@item EXCL(@var{m},@var{s})
10022Removes the element @var{m} from the set @var{s}. Returns the new
10023set.
10024
10025@item FLOAT(@var{i})
10026Returns the floating point equivalent of the integer @var{i}.
10027
10028@item HIGH(@var{a})
10029Returns the index of the last member of @var{a}.
10030
10031@item INC(@var{v})
c3f6f71d 10032Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10033
10034@item INC(@var{v},@var{i})
10035Increments the value in the variable @var{v} by @var{i}. Returns the
10036new value.
10037
10038@item INCL(@var{m},@var{s})
10039Adds the element @var{m} to the set @var{s} if it is not already
10040there. Returns the new set.
10041
10042@item MAX(@var{t})
10043Returns the maximum value of the type @var{t}.
10044
10045@item MIN(@var{t})
10046Returns the minimum value of the type @var{t}.
10047
10048@item ODD(@var{i})
10049Returns boolean TRUE if @var{i} is an odd number.
10050
10051@item ORD(@var{x})
10052Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10053value of a character is its @sc{ascii} value (on machines supporting the
10054@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10055integral, character and enumerated types.
10056
10057@item SIZE(@var{x})
10058Returns the size of its argument. @var{x} can be a variable or a type.
10059
10060@item TRUNC(@var{r})
10061Returns the integral part of @var{r}.
10062
844781a1
GM
10063@item TSIZE(@var{x})
10064Returns the size of its argument. @var{x} can be a variable or a type.
10065
c906108c
SS
10066@item VAL(@var{t},@var{i})
10067Returns the member of the type @var{t} whose ordinal value is @var{i}.
10068@end table
10069
10070@quotation
10071@emph{Warning:} Sets and their operations are not yet supported, so
10072@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10073an error.
10074@end quotation
10075
10076@cindex Modula-2 constants
6d2ebf8b 10077@node M2 Constants
c906108c
SS
10078@subsubsection Constants
10079
10080@value{GDBN} allows you to express the constants of Modula-2 in the following
10081ways:
10082
10083@itemize @bullet
10084
10085@item
10086Integer constants are simply a sequence of digits. When used in an
10087expression, a constant is interpreted to be type-compatible with the
10088rest of the expression. Hexadecimal integers are specified by a
10089trailing @samp{H}, and octal integers by a trailing @samp{B}.
10090
10091@item
10092Floating point constants appear as a sequence of digits, followed by a
10093decimal point and another sequence of digits. An optional exponent can
10094then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10095@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10096digits of the floating point constant must be valid decimal (base 10)
10097digits.
10098
10099@item
10100Character constants consist of a single character enclosed by a pair of
10101like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10102also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10103followed by a @samp{C}.
10104
10105@item
10106String constants consist of a sequence of characters enclosed by a
10107pair of like quotes, either single (@code{'}) or double (@code{"}).
10108Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10109Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10110sequences.
10111
10112@item
10113Enumerated constants consist of an enumerated identifier.
10114
10115@item
10116Boolean constants consist of the identifiers @code{TRUE} and
10117@code{FALSE}.
10118
10119@item
10120Pointer constants consist of integral values only.
10121
10122@item
10123Set constants are not yet supported.
10124@end itemize
10125
72019c9c
GM
10126@node M2 Types
10127@subsubsection Modula-2 Types
10128@cindex Modula-2 types
10129
10130Currently @value{GDBN} can print the following data types in Modula-2
10131syntax: array types, record types, set types, pointer types, procedure
10132types, enumerated types, subrange types and base types. You can also
10133print the contents of variables declared using these type.
10134This section gives a number of simple source code examples together with
10135sample @value{GDBN} sessions.
10136
10137The first example contains the following section of code:
10138
10139@smallexample
10140VAR
10141 s: SET OF CHAR ;
10142 r: [20..40] ;
10143@end smallexample
10144
10145@noindent
10146and you can request @value{GDBN} to interrogate the type and value of
10147@code{r} and @code{s}.
10148
10149@smallexample
10150(@value{GDBP}) print s
10151@{'A'..'C', 'Z'@}
10152(@value{GDBP}) ptype s
10153SET OF CHAR
10154(@value{GDBP}) print r
1015521
10156(@value{GDBP}) ptype r
10157[20..40]
10158@end smallexample
10159
10160@noindent
10161Likewise if your source code declares @code{s} as:
10162
10163@smallexample
10164VAR
10165 s: SET ['A'..'Z'] ;
10166@end smallexample
10167
10168@noindent
10169then you may query the type of @code{s} by:
10170
10171@smallexample
10172(@value{GDBP}) ptype s
10173type = SET ['A'..'Z']
10174@end smallexample
10175
10176@noindent
10177Note that at present you cannot interactively manipulate set
10178expressions using the debugger.
10179
10180The following example shows how you might declare an array in Modula-2
10181and how you can interact with @value{GDBN} to print its type and contents:
10182
10183@smallexample
10184VAR
10185 s: ARRAY [-10..10] OF CHAR ;
10186@end smallexample
10187
10188@smallexample
10189(@value{GDBP}) ptype s
10190ARRAY [-10..10] OF CHAR
10191@end smallexample
10192
10193Note that the array handling is not yet complete and although the type
10194is printed correctly, expression handling still assumes that all
10195arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10196above.
72019c9c
GM
10197
10198Here are some more type related Modula-2 examples:
10199
10200@smallexample
10201TYPE
10202 colour = (blue, red, yellow, green) ;
10203 t = [blue..yellow] ;
10204VAR
10205 s: t ;
10206BEGIN
10207 s := blue ;
10208@end smallexample
10209
10210@noindent
10211The @value{GDBN} interaction shows how you can query the data type
10212and value of a variable.
10213
10214@smallexample
10215(@value{GDBP}) print s
10216$1 = blue
10217(@value{GDBP}) ptype t
10218type = [blue..yellow]
10219@end smallexample
10220
10221@noindent
10222In this example a Modula-2 array is declared and its contents
10223displayed. Observe that the contents are written in the same way as
10224their @code{C} counterparts.
10225
10226@smallexample
10227VAR
10228 s: ARRAY [1..5] OF CARDINAL ;
10229BEGIN
10230 s[1] := 1 ;
10231@end smallexample
10232
10233@smallexample
10234(@value{GDBP}) print s
10235$1 = @{1, 0, 0, 0, 0@}
10236(@value{GDBP}) ptype s
10237type = ARRAY [1..5] OF CARDINAL
10238@end smallexample
10239
10240The Modula-2 language interface to @value{GDBN} also understands
10241pointer types as shown in this example:
10242
10243@smallexample
10244VAR
10245 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10246BEGIN
10247 NEW(s) ;
10248 s^[1] := 1 ;
10249@end smallexample
10250
10251@noindent
10252and you can request that @value{GDBN} describes the type of @code{s}.
10253
10254@smallexample
10255(@value{GDBP}) ptype s
10256type = POINTER TO ARRAY [1..5] OF CARDINAL
10257@end smallexample
10258
10259@value{GDBN} handles compound types as we can see in this example.
10260Here we combine array types, record types, pointer types and subrange
10261types:
10262
10263@smallexample
10264TYPE
10265 foo = RECORD
10266 f1: CARDINAL ;
10267 f2: CHAR ;
10268 f3: myarray ;
10269 END ;
10270
10271 myarray = ARRAY myrange OF CARDINAL ;
10272 myrange = [-2..2] ;
10273VAR
10274 s: POINTER TO ARRAY myrange OF foo ;
10275@end smallexample
10276
10277@noindent
10278and you can ask @value{GDBN} to describe the type of @code{s} as shown
10279below.
10280
10281@smallexample
10282(@value{GDBP}) ptype s
10283type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10284 f1 : CARDINAL;
10285 f2 : CHAR;
10286 f3 : ARRAY [-2..2] OF CARDINAL;
10287END
10288@end smallexample
10289
6d2ebf8b 10290@node M2 Defaults
79a6e687 10291@subsubsection Modula-2 Defaults
c906108c
SS
10292@cindex Modula-2 defaults
10293
10294If type and range checking are set automatically by @value{GDBN}, they
10295both default to @code{on} whenever the working language changes to
d4f3574e 10296Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10297selected the working language.
10298
10299If you allow @value{GDBN} to set the language automatically, then entering
10300code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10301working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10302Infer the Source Language}, for further details.
c906108c 10303
6d2ebf8b 10304@node Deviations
79a6e687 10305@subsubsection Deviations from Standard Modula-2
c906108c
SS
10306@cindex Modula-2, deviations from
10307
10308A few changes have been made to make Modula-2 programs easier to debug.
10309This is done primarily via loosening its type strictness:
10310
10311@itemize @bullet
10312@item
10313Unlike in standard Modula-2, pointer constants can be formed by
10314integers. This allows you to modify pointer variables during
10315debugging. (In standard Modula-2, the actual address contained in a
10316pointer variable is hidden from you; it can only be modified
10317through direct assignment to another pointer variable or expression that
10318returned a pointer.)
10319
10320@item
10321C escape sequences can be used in strings and characters to represent
10322non-printable characters. @value{GDBN} prints out strings with these
10323escape sequences embedded. Single non-printable characters are
10324printed using the @samp{CHR(@var{nnn})} format.
10325
10326@item
10327The assignment operator (@code{:=}) returns the value of its right-hand
10328argument.
10329
10330@item
10331All built-in procedures both modify @emph{and} return their argument.
10332@end itemize
10333
6d2ebf8b 10334@node M2 Checks
79a6e687 10335@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10336@cindex Modula-2 checks
10337
10338@quotation
10339@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10340range checking.
10341@end quotation
10342@c FIXME remove warning when type/range checks added
10343
10344@value{GDBN} considers two Modula-2 variables type equivalent if:
10345
10346@itemize @bullet
10347@item
10348They are of types that have been declared equivalent via a @code{TYPE
10349@var{t1} = @var{t2}} statement
10350
10351@item
10352They have been declared on the same line. (Note: This is true of the
10353@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10354@end itemize
10355
10356As long as type checking is enabled, any attempt to combine variables
10357whose types are not equivalent is an error.
10358
10359Range checking is done on all mathematical operations, assignment, array
10360index bounds, and all built-in functions and procedures.
10361
6d2ebf8b 10362@node M2 Scope
79a6e687 10363@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10364@cindex scope
41afff9a 10365@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10366@cindex colon, doubled as scope operator
10367@ifinfo
41afff9a 10368@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10369@c Info cannot handle :: but TeX can.
10370@end ifinfo
10371@iftex
41afff9a 10372@vindex ::@r{, in Modula-2}
c906108c
SS
10373@end iftex
10374
10375There are a few subtle differences between the Modula-2 scope operator
10376(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10377similar syntax:
10378
474c8240 10379@smallexample
c906108c
SS
10380
10381@var{module} . @var{id}
10382@var{scope} :: @var{id}
474c8240 10383@end smallexample
c906108c
SS
10384
10385@noindent
10386where @var{scope} is the name of a module or a procedure,
10387@var{module} the name of a module, and @var{id} is any declared
10388identifier within your program, except another module.
10389
10390Using the @code{::} operator makes @value{GDBN} search the scope
10391specified by @var{scope} for the identifier @var{id}. If it is not
10392found in the specified scope, then @value{GDBN} searches all scopes
10393enclosing the one specified by @var{scope}.
10394
10395Using the @code{.} operator makes @value{GDBN} search the current scope for
10396the identifier specified by @var{id} that was imported from the
10397definition module specified by @var{module}. With this operator, it is
10398an error if the identifier @var{id} was not imported from definition
10399module @var{module}, or if @var{id} is not an identifier in
10400@var{module}.
10401
6d2ebf8b 10402@node GDB/M2
c906108c
SS
10403@subsubsection @value{GDBN} and Modula-2
10404
10405Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10406Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10407specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10408@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10409apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10410analogue in Modula-2.
10411
10412The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10413with any language, is not useful with Modula-2. Its
c906108c 10414intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10415created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10416address can be specified by an integral constant, the construct
d4f3574e 10417@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10418
10419@cindex @code{#} in Modula-2
10420In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10421interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10422
e07c999f
PH
10423@node Ada
10424@subsection Ada
10425@cindex Ada
10426
10427The extensions made to @value{GDBN} for Ada only support
10428output from the @sc{gnu} Ada (GNAT) compiler.
10429Other Ada compilers are not currently supported, and
10430attempting to debug executables produced by them is most likely
10431to be difficult.
10432
10433
10434@cindex expressions in Ada
10435@menu
10436* Ada Mode Intro:: General remarks on the Ada syntax
10437 and semantics supported by Ada mode
10438 in @value{GDBN}.
10439* Omissions from Ada:: Restrictions on the Ada expression syntax.
10440* Additions to Ada:: Extensions of the Ada expression syntax.
10441* Stopping Before Main Program:: Debugging the program during elaboration.
10442* Ada Glitches:: Known peculiarities of Ada mode.
10443@end menu
10444
10445@node Ada Mode Intro
10446@subsubsection Introduction
10447@cindex Ada mode, general
10448
10449The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10450syntax, with some extensions.
10451The philosophy behind the design of this subset is
10452
10453@itemize @bullet
10454@item
10455That @value{GDBN} should provide basic literals and access to operations for
10456arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10457leaving more sophisticated computations to subprograms written into the
10458program (which therefore may be called from @value{GDBN}).
10459
10460@item
10461That type safety and strict adherence to Ada language restrictions
10462are not particularly important to the @value{GDBN} user.
10463
10464@item
10465That brevity is important to the @value{GDBN} user.
10466@end itemize
10467
10468Thus, for brevity, the debugger acts as if there were
10469implicit @code{with} and @code{use} clauses in effect for all user-written
10470packages, making it unnecessary to fully qualify most names with
10471their packages, regardless of context. Where this causes ambiguity,
10472@value{GDBN} asks the user's intent.
10473
10474The debugger will start in Ada mode if it detects an Ada main program.
10475As for other languages, it will enter Ada mode when stopped in a program that
10476was translated from an Ada source file.
10477
10478While in Ada mode, you may use `@t{--}' for comments. This is useful
10479mostly for documenting command files. The standard @value{GDBN} comment
10480(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10481middle (to allow based literals).
10482
10483The debugger supports limited overloading. Given a subprogram call in which
10484the function symbol has multiple definitions, it will use the number of
10485actual parameters and some information about their types to attempt to narrow
10486the set of definitions. It also makes very limited use of context, preferring
10487procedures to functions in the context of the @code{call} command, and
10488functions to procedures elsewhere.
10489
10490@node Omissions from Ada
10491@subsubsection Omissions from Ada
10492@cindex Ada, omissions from
10493
10494Here are the notable omissions from the subset:
10495
10496@itemize @bullet
10497@item
10498Only a subset of the attributes are supported:
10499
10500@itemize @minus
10501@item
10502@t{'First}, @t{'Last}, and @t{'Length}
10503 on array objects (not on types and subtypes).
10504
10505@item
10506@t{'Min} and @t{'Max}.
10507
10508@item
10509@t{'Pos} and @t{'Val}.
10510
10511@item
10512@t{'Tag}.
10513
10514@item
10515@t{'Range} on array objects (not subtypes), but only as the right
10516operand of the membership (@code{in}) operator.
10517
10518@item
10519@t{'Access}, @t{'Unchecked_Access}, and
10520@t{'Unrestricted_Access} (a GNAT extension).
10521
10522@item
10523@t{'Address}.
10524@end itemize
10525
10526@item
10527The names in
10528@code{Characters.Latin_1} are not available and
10529concatenation is not implemented. Thus, escape characters in strings are
10530not currently available.
10531
10532@item
10533Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10534equality of representations. They will generally work correctly
10535for strings and arrays whose elements have integer or enumeration types.
10536They may not work correctly for arrays whose element
10537types have user-defined equality, for arrays of real values
10538(in particular, IEEE-conformant floating point, because of negative
10539zeroes and NaNs), and for arrays whose elements contain unused bits with
10540indeterminate values.
10541
10542@item
10543The other component-by-component array operations (@code{and}, @code{or},
10544@code{xor}, @code{not}, and relational tests other than equality)
10545are not implemented.
10546
10547@item
860701dc
PH
10548@cindex array aggregates (Ada)
10549@cindex record aggregates (Ada)
10550@cindex aggregates (Ada)
10551There is limited support for array and record aggregates. They are
10552permitted only on the right sides of assignments, as in these examples:
10553
10554@smallexample
10555set An_Array := (1, 2, 3, 4, 5, 6)
10556set An_Array := (1, others => 0)
10557set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10558set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10559set A_Record := (1, "Peter", True);
10560set A_Record := (Name => "Peter", Id => 1, Alive => True)
10561@end smallexample
10562
10563Changing a
10564discriminant's value by assigning an aggregate has an
10565undefined effect if that discriminant is used within the record.
10566However, you can first modify discriminants by directly assigning to
10567them (which normally would not be allowed in Ada), and then performing an
10568aggregate assignment. For example, given a variable @code{A_Rec}
10569declared to have a type such as:
10570
10571@smallexample
10572type Rec (Len : Small_Integer := 0) is record
10573 Id : Integer;
10574 Vals : IntArray (1 .. Len);
10575end record;
10576@end smallexample
10577
10578you can assign a value with a different size of @code{Vals} with two
10579assignments:
10580
10581@smallexample
10582set A_Rec.Len := 4
10583set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10584@end smallexample
10585
10586As this example also illustrates, @value{GDBN} is very loose about the usual
10587rules concerning aggregates. You may leave out some of the
10588components of an array or record aggregate (such as the @code{Len}
10589component in the assignment to @code{A_Rec} above); they will retain their
10590original values upon assignment. You may freely use dynamic values as
10591indices in component associations. You may even use overlapping or
10592redundant component associations, although which component values are
10593assigned in such cases is not defined.
e07c999f
PH
10594
10595@item
10596Calls to dispatching subprograms are not implemented.
10597
10598@item
10599The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10600than that of real Ada. It makes only limited use of the context in
10601which a subexpression appears to resolve its meaning, and it is much
10602looser in its rules for allowing type matches. As a result, some
10603function calls will be ambiguous, and the user will be asked to choose
10604the proper resolution.
e07c999f
PH
10605
10606@item
10607The @code{new} operator is not implemented.
10608
10609@item
10610Entry calls are not implemented.
10611
10612@item
10613Aside from printing, arithmetic operations on the native VAX floating-point
10614formats are not supported.
10615
10616@item
10617It is not possible to slice a packed array.
10618@end itemize
10619
10620@node Additions to Ada
10621@subsubsection Additions to Ada
10622@cindex Ada, deviations from
10623
10624As it does for other languages, @value{GDBN} makes certain generic
10625extensions to Ada (@pxref{Expressions}):
10626
10627@itemize @bullet
10628@item
ae21e955
BW
10629If the expression @var{E} is a variable residing in memory (typically
10630a local variable or array element) and @var{N} is a positive integer,
10631then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10632@var{N}-1 adjacent variables following it in memory as an array. In
10633Ada, this operator is generally not necessary, since its prime use is
10634in displaying parts of an array, and slicing will usually do this in
10635Ada. However, there are occasional uses when debugging programs in
10636which certain debugging information has been optimized away.
e07c999f
PH
10637
10638@item
ae21e955
BW
10639@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10640appears in function or file @var{B}.'' When @var{B} is a file name,
10641you must typically surround it in single quotes.
e07c999f
PH
10642
10643@item
10644The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10645@var{type} that appears at address @var{addr}.''
10646
10647@item
10648A name starting with @samp{$} is a convenience variable
10649(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10650@end itemize
10651
ae21e955
BW
10652In addition, @value{GDBN} provides a few other shortcuts and outright
10653additions specific to Ada:
e07c999f
PH
10654
10655@itemize @bullet
10656@item
10657The assignment statement is allowed as an expression, returning
10658its right-hand operand as its value. Thus, you may enter
10659
10660@smallexample
10661set x := y + 3
10662print A(tmp := y + 1)
10663@end smallexample
10664
10665@item
10666The semicolon is allowed as an ``operator,'' returning as its value
10667the value of its right-hand operand.
10668This allows, for example,
10669complex conditional breaks:
10670
10671@smallexample
10672break f
10673condition 1 (report(i); k += 1; A(k) > 100)
10674@end smallexample
10675
10676@item
10677Rather than use catenation and symbolic character names to introduce special
10678characters into strings, one may instead use a special bracket notation,
10679which is also used to print strings. A sequence of characters of the form
10680@samp{["@var{XX}"]} within a string or character literal denotes the
10681(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10682sequence of characters @samp{["""]} also denotes a single quotation mark
10683in strings. For example,
10684@smallexample
10685 "One line.["0a"]Next line.["0a"]"
10686@end smallexample
10687@noindent
ae21e955
BW
10688contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10689after each period.
e07c999f
PH
10690
10691@item
10692The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10693@t{'Max} is optional (and is ignored in any case). For example, it is valid
10694to write
10695
10696@smallexample
10697print 'max(x, y)
10698@end smallexample
10699
10700@item
10701When printing arrays, @value{GDBN} uses positional notation when the
10702array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10703For example, a one-dimensional array of three integers with a lower bound
10704of 3 might print as
e07c999f
PH
10705
10706@smallexample
10707(3 => 10, 17, 1)
10708@end smallexample
10709
10710@noindent
10711That is, in contrast to valid Ada, only the first component has a @code{=>}
10712clause.
10713
10714@item
10715You may abbreviate attributes in expressions with any unique,
10716multi-character subsequence of
10717their names (an exact match gets preference).
10718For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10719in place of @t{a'length}.
10720
10721@item
10722@cindex quoting Ada internal identifiers
10723Since Ada is case-insensitive, the debugger normally maps identifiers you type
10724to lower case. The GNAT compiler uses upper-case characters for
10725some of its internal identifiers, which are normally of no interest to users.
10726For the rare occasions when you actually have to look at them,
10727enclose them in angle brackets to avoid the lower-case mapping.
10728For example,
10729@smallexample
10730@value{GDBP} print <JMPBUF_SAVE>[0]
10731@end smallexample
10732
10733@item
10734Printing an object of class-wide type or dereferencing an
10735access-to-class-wide value will display all the components of the object's
10736specific type (as indicated by its run-time tag). Likewise, component
10737selection on such a value will operate on the specific type of the
10738object.
10739
10740@end itemize
10741
10742@node Stopping Before Main Program
10743@subsubsection Stopping at the Very Beginning
10744
10745@cindex breakpointing Ada elaboration code
10746It is sometimes necessary to debug the program during elaboration, and
10747before reaching the main procedure.
10748As defined in the Ada Reference
10749Manual, the elaboration code is invoked from a procedure called
10750@code{adainit}. To run your program up to the beginning of
10751elaboration, simply use the following two commands:
10752@code{tbreak adainit} and @code{run}.
10753
10754@node Ada Glitches
10755@subsubsection Known Peculiarities of Ada Mode
10756@cindex Ada, problems
10757
10758Besides the omissions listed previously (@pxref{Omissions from Ada}),
10759we know of several problems with and limitations of Ada mode in
10760@value{GDBN},
10761some of which will be fixed with planned future releases of the debugger
10762and the GNU Ada compiler.
10763
10764@itemize @bullet
10765@item
10766Currently, the debugger
10767has insufficient information to determine whether certain pointers represent
10768pointers to objects or the objects themselves.
10769Thus, the user may have to tack an extra @code{.all} after an expression
10770to get it printed properly.
10771
10772@item
10773Static constants that the compiler chooses not to materialize as objects in
10774storage are invisible to the debugger.
10775
10776@item
10777Named parameter associations in function argument lists are ignored (the
10778argument lists are treated as positional).
10779
10780@item
10781Many useful library packages are currently invisible to the debugger.
10782
10783@item
10784Fixed-point arithmetic, conversions, input, and output is carried out using
10785floating-point arithmetic, and may give results that only approximate those on
10786the host machine.
10787
10788@item
10789The type of the @t{'Address} attribute may not be @code{System.Address}.
10790
10791@item
10792The GNAT compiler never generates the prefix @code{Standard} for any of
10793the standard symbols defined by the Ada language. @value{GDBN} knows about
10794this: it will strip the prefix from names when you use it, and will never
10795look for a name you have so qualified among local symbols, nor match against
10796symbols in other packages or subprograms. If you have
10797defined entities anywhere in your program other than parameters and
10798local variables whose simple names match names in @code{Standard},
10799GNAT's lack of qualification here can cause confusion. When this happens,
10800you can usually resolve the confusion
10801by qualifying the problematic names with package
10802@code{Standard} explicitly.
10803@end itemize
10804
79a6e687
BW
10805@node Unsupported Languages
10806@section Unsupported Languages
4e562065
JB
10807
10808@cindex unsupported languages
10809@cindex minimal language
10810In addition to the other fully-supported programming languages,
10811@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10812It does not represent a real programming language, but provides a set
10813of capabilities close to what the C or assembly languages provide.
10814This should allow most simple operations to be performed while debugging
10815an application that uses a language currently not supported by @value{GDBN}.
10816
10817If the language is set to @code{auto}, @value{GDBN} will automatically
10818select this language if the current frame corresponds to an unsupported
10819language.
10820
6d2ebf8b 10821@node Symbols
c906108c
SS
10822@chapter Examining the Symbol Table
10823
d4f3574e 10824The commands described in this chapter allow you to inquire about the
c906108c
SS
10825symbols (names of variables, functions and types) defined in your
10826program. This information is inherent in the text of your program and
10827does not change as your program executes. @value{GDBN} finds it in your
10828program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10829(@pxref{File Options, ,Choosing Files}), or by one of the
10830file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10831
10832@cindex symbol names
10833@cindex names of symbols
10834@cindex quoting names
10835Occasionally, you may need to refer to symbols that contain unusual
10836characters, which @value{GDBN} ordinarily treats as word delimiters. The
10837most frequent case is in referring to static variables in other
79a6e687 10838source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10839are recorded in object files as debugging symbols, but @value{GDBN} would
10840ordinarily parse a typical file name, like @file{foo.c}, as the three words
10841@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10842@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10843
474c8240 10844@smallexample
c906108c 10845p 'foo.c'::x
474c8240 10846@end smallexample
c906108c
SS
10847
10848@noindent
10849looks up the value of @code{x} in the scope of the file @file{foo.c}.
10850
10851@table @code
a8f24a35
EZ
10852@cindex case-insensitive symbol names
10853@cindex case sensitivity in symbol names
10854@kindex set case-sensitive
10855@item set case-sensitive on
10856@itemx set case-sensitive off
10857@itemx set case-sensitive auto
10858Normally, when @value{GDBN} looks up symbols, it matches their names
10859with case sensitivity determined by the current source language.
10860Occasionally, you may wish to control that. The command @code{set
10861case-sensitive} lets you do that by specifying @code{on} for
10862case-sensitive matches or @code{off} for case-insensitive ones. If
10863you specify @code{auto}, case sensitivity is reset to the default
10864suitable for the source language. The default is case-sensitive
10865matches for all languages except for Fortran, for which the default is
10866case-insensitive matches.
10867
9c16f35a
EZ
10868@kindex show case-sensitive
10869@item show case-sensitive
a8f24a35
EZ
10870This command shows the current setting of case sensitivity for symbols
10871lookups.
10872
c906108c 10873@kindex info address
b37052ae 10874@cindex address of a symbol
c906108c
SS
10875@item info address @var{symbol}
10876Describe where the data for @var{symbol} is stored. For a register
10877variable, this says which register it is kept in. For a non-register
10878local variable, this prints the stack-frame offset at which the variable
10879is always stored.
10880
10881Note the contrast with @samp{print &@var{symbol}}, which does not work
10882at all for a register variable, and for a stack local variable prints
10883the exact address of the current instantiation of the variable.
10884
3d67e040 10885@kindex info symbol
b37052ae 10886@cindex symbol from address
9c16f35a 10887@cindex closest symbol and offset for an address
3d67e040
EZ
10888@item info symbol @var{addr}
10889Print the name of a symbol which is stored at the address @var{addr}.
10890If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
10891nearest symbol and an offset from it:
10892
474c8240 10893@smallexample
3d67e040
EZ
10894(@value{GDBP}) info symbol 0x54320
10895_initialize_vx + 396 in section .text
474c8240 10896@end smallexample
3d67e040
EZ
10897
10898@noindent
10899This is the opposite of the @code{info address} command. You can use
10900it to find out the name of a variable or a function given its address.
10901
c906108c 10902@kindex whatis
62f3a2ba
FF
10903@item whatis [@var{arg}]
10904Print the data type of @var{arg}, which can be either an expression or
10905a data type. With no argument, print the data type of @code{$}, the
10906last value in the value history. If @var{arg} is an expression, it is
10907not actually evaluated, and any side-effecting operations (such as
10908assignments or function calls) inside it do not take place. If
10909@var{arg} is a type name, it may be the name of a type or typedef, or
10910for C code it may have the form @samp{class @var{class-name}},
10911@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
10912@samp{enum @var{enum-tag}}.
c906108c
SS
10913@xref{Expressions, ,Expressions}.
10914
c906108c 10915@kindex ptype
62f3a2ba
FF
10916@item ptype [@var{arg}]
10917@code{ptype} accepts the same arguments as @code{whatis}, but prints a
10918detailed description of the type, instead of just the name of the type.
10919@xref{Expressions, ,Expressions}.
c906108c
SS
10920
10921For example, for this variable declaration:
10922
474c8240 10923@smallexample
c906108c 10924struct complex @{double real; double imag;@} v;
474c8240 10925@end smallexample
c906108c
SS
10926
10927@noindent
10928the two commands give this output:
10929
474c8240 10930@smallexample
c906108c
SS
10931@group
10932(@value{GDBP}) whatis v
10933type = struct complex
10934(@value{GDBP}) ptype v
10935type = struct complex @{
10936 double real;
10937 double imag;
10938@}
10939@end group
474c8240 10940@end smallexample
c906108c
SS
10941
10942@noindent
10943As with @code{whatis}, using @code{ptype} without an argument refers to
10944the type of @code{$}, the last value in the value history.
10945
ab1adacd
EZ
10946@cindex incomplete type
10947Sometimes, programs use opaque data types or incomplete specifications
10948of complex data structure. If the debug information included in the
10949program does not allow @value{GDBN} to display a full declaration of
10950the data type, it will say @samp{<incomplete type>}. For example,
10951given these declarations:
10952
10953@smallexample
10954 struct foo;
10955 struct foo *fooptr;
10956@end smallexample
10957
10958@noindent
10959but no definition for @code{struct foo} itself, @value{GDBN} will say:
10960
10961@smallexample
ddb50cd7 10962 (@value{GDBP}) ptype foo
ab1adacd
EZ
10963 $1 = <incomplete type>
10964@end smallexample
10965
10966@noindent
10967``Incomplete type'' is C terminology for data types that are not
10968completely specified.
10969
c906108c
SS
10970@kindex info types
10971@item info types @var{regexp}
10972@itemx info types
09d4efe1
EZ
10973Print a brief description of all types whose names match the regular
10974expression @var{regexp} (or all types in your program, if you supply
10975no argument). Each complete typename is matched as though it were a
10976complete line; thus, @samp{i type value} gives information on all
10977types in your program whose names include the string @code{value}, but
10978@samp{i type ^value$} gives information only on types whose complete
10979name is @code{value}.
c906108c
SS
10980
10981This command differs from @code{ptype} in two ways: first, like
10982@code{whatis}, it does not print a detailed description; second, it
10983lists all source files where a type is defined.
10984
b37052ae
EZ
10985@kindex info scope
10986@cindex local variables
09d4efe1 10987@item info scope @var{location}
b37052ae 10988List all the variables local to a particular scope. This command
09d4efe1
EZ
10989accepts a @var{location} argument---a function name, a source line, or
10990an address preceded by a @samp{*}, and prints all the variables local
10991to the scope defined by that location. For example:
b37052ae
EZ
10992
10993@smallexample
10994(@value{GDBP}) @b{info scope command_line_handler}
10995Scope for command_line_handler:
10996Symbol rl is an argument at stack/frame offset 8, length 4.
10997Symbol linebuffer is in static storage at address 0x150a18, length 4.
10998Symbol linelength is in static storage at address 0x150a1c, length 4.
10999Symbol p is a local variable in register $esi, length 4.
11000Symbol p1 is a local variable in register $ebx, length 4.
11001Symbol nline is a local variable in register $edx, length 4.
11002Symbol repeat is a local variable at frame offset -8, length 4.
11003@end smallexample
11004
f5c37c66
EZ
11005@noindent
11006This command is especially useful for determining what data to collect
11007during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11008collect}.
11009
c906108c
SS
11010@kindex info source
11011@item info source
919d772c
JB
11012Show information about the current source file---that is, the source file for
11013the function containing the current point of execution:
11014@itemize @bullet
11015@item
11016the name of the source file, and the directory containing it,
11017@item
11018the directory it was compiled in,
11019@item
11020its length, in lines,
11021@item
11022which programming language it is written in,
11023@item
11024whether the executable includes debugging information for that file, and
11025if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11026@item
11027whether the debugging information includes information about
11028preprocessor macros.
11029@end itemize
11030
c906108c
SS
11031
11032@kindex info sources
11033@item info sources
11034Print the names of all source files in your program for which there is
11035debugging information, organized into two lists: files whose symbols
11036have already been read, and files whose symbols will be read when needed.
11037
11038@kindex info functions
11039@item info functions
11040Print the names and data types of all defined functions.
11041
11042@item info functions @var{regexp}
11043Print the names and data types of all defined functions
11044whose names contain a match for regular expression @var{regexp}.
11045Thus, @samp{info fun step} finds all functions whose names
11046include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11047start with @code{step}. If a function name contains characters
c1468174 11048that conflict with the regular expression language (e.g.@:
1c5dfdad 11049@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11050
11051@kindex info variables
11052@item info variables
11053Print the names and data types of all variables that are declared
6ca652b0 11054outside of functions (i.e.@: excluding local variables).
c906108c
SS
11055
11056@item info variables @var{regexp}
11057Print the names and data types of all variables (except for local
11058variables) whose names contain a match for regular expression
11059@var{regexp}.
11060
b37303ee 11061@kindex info classes
721c2651 11062@cindex Objective-C, classes and selectors
b37303ee
AF
11063@item info classes
11064@itemx info classes @var{regexp}
11065Display all Objective-C classes in your program, or
11066(with the @var{regexp} argument) all those matching a particular regular
11067expression.
11068
11069@kindex info selectors
11070@item info selectors
11071@itemx info selectors @var{regexp}
11072Display all Objective-C selectors in your program, or
11073(with the @var{regexp} argument) all those matching a particular regular
11074expression.
11075
c906108c
SS
11076@ignore
11077This was never implemented.
11078@kindex info methods
11079@item info methods
11080@itemx info methods @var{regexp}
11081The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11082methods within C@t{++} program, or (with the @var{regexp} argument) a
11083specific set of methods found in the various C@t{++} classes. Many
11084C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11085from the @code{ptype} command can be overwhelming and hard to use. The
11086@code{info-methods} command filters the methods, printing only those
11087which match the regular-expression @var{regexp}.
11088@end ignore
11089
c906108c
SS
11090@cindex reloading symbols
11091Some systems allow individual object files that make up your program to
7a292a7a
SS
11092be replaced without stopping and restarting your program. For example,
11093in VxWorks you can simply recompile a defective object file and keep on
11094running. If you are running on one of these systems, you can allow
11095@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11096
11097@table @code
11098@kindex set symbol-reloading
11099@item set symbol-reloading on
11100Replace symbol definitions for the corresponding source file when an
11101object file with a particular name is seen again.
11102
11103@item set symbol-reloading off
6d2ebf8b
SS
11104Do not replace symbol definitions when encountering object files of the
11105same name more than once. This is the default state; if you are not
11106running on a system that permits automatic relinking of modules, you
11107should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11108may discard symbols when linking large programs, that may contain
11109several modules (from different directories or libraries) with the same
11110name.
c906108c
SS
11111
11112@kindex show symbol-reloading
11113@item show symbol-reloading
11114Show the current @code{on} or @code{off} setting.
11115@end table
c906108c 11116
9c16f35a 11117@cindex opaque data types
c906108c
SS
11118@kindex set opaque-type-resolution
11119@item set opaque-type-resolution on
11120Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11121declared as a pointer to a @code{struct}, @code{class}, or
11122@code{union}---for example, @code{struct MyType *}---that is used in one
11123source file although the full declaration of @code{struct MyType} is in
11124another source file. The default is on.
11125
11126A change in the setting of this subcommand will not take effect until
11127the next time symbols for a file are loaded.
11128
11129@item set opaque-type-resolution off
11130Tell @value{GDBN} not to resolve opaque types. In this case, the type
11131is printed as follows:
11132@smallexample
11133@{<no data fields>@}
11134@end smallexample
11135
11136@kindex show opaque-type-resolution
11137@item show opaque-type-resolution
11138Show whether opaque types are resolved or not.
c906108c
SS
11139
11140@kindex maint print symbols
11141@cindex symbol dump
11142@kindex maint print psymbols
11143@cindex partial symbol dump
11144@item maint print symbols @var{filename}
11145@itemx maint print psymbols @var{filename}
11146@itemx maint print msymbols @var{filename}
11147Write a dump of debugging symbol data into the file @var{filename}.
11148These commands are used to debug the @value{GDBN} symbol-reading code. Only
11149symbols with debugging data are included. If you use @samp{maint print
11150symbols}, @value{GDBN} includes all the symbols for which it has already
11151collected full details: that is, @var{filename} reflects symbols for
11152only those files whose symbols @value{GDBN} has read. You can use the
11153command @code{info sources} to find out which files these are. If you
11154use @samp{maint print psymbols} instead, the dump shows information about
11155symbols that @value{GDBN} only knows partially---that is, symbols defined in
11156files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11157@samp{maint print msymbols} dumps just the minimal symbol information
11158required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11159@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11160@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11161
5e7b2f39
JB
11162@kindex maint info symtabs
11163@kindex maint info psymtabs
44ea7b70
JB
11164@cindex listing @value{GDBN}'s internal symbol tables
11165@cindex symbol tables, listing @value{GDBN}'s internal
11166@cindex full symbol tables, listing @value{GDBN}'s internal
11167@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11168@item maint info symtabs @r{[} @var{regexp} @r{]}
11169@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11170
11171List the @code{struct symtab} or @code{struct partial_symtab}
11172structures whose names match @var{regexp}. If @var{regexp} is not
11173given, list them all. The output includes expressions which you can
11174copy into a @value{GDBN} debugging this one to examine a particular
11175structure in more detail. For example:
11176
11177@smallexample
5e7b2f39 11178(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11179@{ objfile /home/gnu/build/gdb/gdb
11180 ((struct objfile *) 0x82e69d0)
b383017d 11181 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11182 ((struct partial_symtab *) 0x8474b10)
11183 readin no
11184 fullname (null)
11185 text addresses 0x814d3c8 -- 0x8158074
11186 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11187 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11188 dependencies (none)
11189 @}
11190@}
5e7b2f39 11191(@value{GDBP}) maint info symtabs
44ea7b70
JB
11192(@value{GDBP})
11193@end smallexample
11194@noindent
11195We see that there is one partial symbol table whose filename contains
11196the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11197and we see that @value{GDBN} has not read in any symtabs yet at all.
11198If we set a breakpoint on a function, that will cause @value{GDBN} to
11199read the symtab for the compilation unit containing that function:
11200
11201@smallexample
11202(@value{GDBP}) break dwarf2_psymtab_to_symtab
11203Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11204line 1574.
5e7b2f39 11205(@value{GDBP}) maint info symtabs
b383017d 11206@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11207 ((struct objfile *) 0x82e69d0)
b383017d 11208 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11209 ((struct symtab *) 0x86c1f38)
11210 dirname (null)
11211 fullname (null)
11212 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11213 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11214 debugformat DWARF 2
11215 @}
11216@}
b383017d 11217(@value{GDBP})
44ea7b70 11218@end smallexample
c906108c
SS
11219@end table
11220
44ea7b70 11221
6d2ebf8b 11222@node Altering
c906108c
SS
11223@chapter Altering Execution
11224
11225Once you think you have found an error in your program, you might want to
11226find out for certain whether correcting the apparent error would lead to
11227correct results in the rest of the run. You can find the answer by
11228experiment, using the @value{GDBN} features for altering execution of the
11229program.
11230
11231For example, you can store new values into variables or memory
7a292a7a
SS
11232locations, give your program a signal, restart it at a different
11233address, or even return prematurely from a function.
c906108c
SS
11234
11235@menu
11236* Assignment:: Assignment to variables
11237* Jumping:: Continuing at a different address
c906108c 11238* Signaling:: Giving your program a signal
c906108c
SS
11239* Returning:: Returning from a function
11240* Calling:: Calling your program's functions
11241* Patching:: Patching your program
11242@end menu
11243
6d2ebf8b 11244@node Assignment
79a6e687 11245@section Assignment to Variables
c906108c
SS
11246
11247@cindex assignment
11248@cindex setting variables
11249To alter the value of a variable, evaluate an assignment expression.
11250@xref{Expressions, ,Expressions}. For example,
11251
474c8240 11252@smallexample
c906108c 11253print x=4
474c8240 11254@end smallexample
c906108c
SS
11255
11256@noindent
11257stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11258value of the assignment expression (which is 4).
c906108c
SS
11259@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11260information on operators in supported languages.
c906108c
SS
11261
11262@kindex set variable
11263@cindex variables, setting
11264If you are not interested in seeing the value of the assignment, use the
11265@code{set} command instead of the @code{print} command. @code{set} is
11266really the same as @code{print} except that the expression's value is
11267not printed and is not put in the value history (@pxref{Value History,
79a6e687 11268,Value History}). The expression is evaluated only for its effects.
c906108c 11269
c906108c
SS
11270If the beginning of the argument string of the @code{set} command
11271appears identical to a @code{set} subcommand, use the @code{set
11272variable} command instead of just @code{set}. This command is identical
11273to @code{set} except for its lack of subcommands. For example, if your
11274program has a variable @code{width}, you get an error if you try to set
11275a new value with just @samp{set width=13}, because @value{GDBN} has the
11276command @code{set width}:
11277
474c8240 11278@smallexample
c906108c
SS
11279(@value{GDBP}) whatis width
11280type = double
11281(@value{GDBP}) p width
11282$4 = 13
11283(@value{GDBP}) set width=47
11284Invalid syntax in expression.
474c8240 11285@end smallexample
c906108c
SS
11286
11287@noindent
11288The invalid expression, of course, is @samp{=47}. In
11289order to actually set the program's variable @code{width}, use
11290
474c8240 11291@smallexample
c906108c 11292(@value{GDBP}) set var width=47
474c8240 11293@end smallexample
53a5351d 11294
c906108c
SS
11295Because the @code{set} command has many subcommands that can conflict
11296with the names of program variables, it is a good idea to use the
11297@code{set variable} command instead of just @code{set}. For example, if
11298your program has a variable @code{g}, you run into problems if you try
11299to set a new value with just @samp{set g=4}, because @value{GDBN} has
11300the command @code{set gnutarget}, abbreviated @code{set g}:
11301
474c8240 11302@smallexample
c906108c
SS
11303@group
11304(@value{GDBP}) whatis g
11305type = double
11306(@value{GDBP}) p g
11307$1 = 1
11308(@value{GDBP}) set g=4
2df3850c 11309(@value{GDBP}) p g
c906108c
SS
11310$2 = 1
11311(@value{GDBP}) r
11312The program being debugged has been started already.
11313Start it from the beginning? (y or n) y
11314Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11315"/home/smith/cc_progs/a.out": can't open to read symbols:
11316 Invalid bfd target.
c906108c
SS
11317(@value{GDBP}) show g
11318The current BFD target is "=4".
11319@end group
474c8240 11320@end smallexample
c906108c
SS
11321
11322@noindent
11323The program variable @code{g} did not change, and you silently set the
11324@code{gnutarget} to an invalid value. In order to set the variable
11325@code{g}, use
11326
474c8240 11327@smallexample
c906108c 11328(@value{GDBP}) set var g=4
474c8240 11329@end smallexample
c906108c
SS
11330
11331@value{GDBN} allows more implicit conversions in assignments than C; you can
11332freely store an integer value into a pointer variable or vice versa,
11333and you can convert any structure to any other structure that is the
11334same length or shorter.
11335@comment FIXME: how do structs align/pad in these conversions?
11336@comment /doc@cygnus.com 18dec1990
11337
11338To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11339construct to generate a value of specified type at a specified address
11340(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11341to memory location @code{0x83040} as an integer (which implies a certain size
11342and representation in memory), and
11343
474c8240 11344@smallexample
c906108c 11345set @{int@}0x83040 = 4
474c8240 11346@end smallexample
c906108c
SS
11347
11348@noindent
11349stores the value 4 into that memory location.
11350
6d2ebf8b 11351@node Jumping
79a6e687 11352@section Continuing at a Different Address
c906108c
SS
11353
11354Ordinarily, when you continue your program, you do so at the place where
11355it stopped, with the @code{continue} command. You can instead continue at
11356an address of your own choosing, with the following commands:
11357
11358@table @code
11359@kindex jump
11360@item jump @var{linespec}
11361Resume execution at line @var{linespec}. Execution stops again
11362immediately if there is a breakpoint there. @xref{List, ,Printing
79a6e687 11363Source Lines}, for a description of the different forms of
c906108c
SS
11364@var{linespec}. It is common practice to use the @code{tbreak} command
11365in conjunction with @code{jump}. @xref{Set Breaks, ,Setting
79a6e687 11366Breakpoints}.
c906108c
SS
11367
11368The @code{jump} command does not change the current stack frame, or
11369the stack pointer, or the contents of any memory location or any
11370register other than the program counter. If line @var{linespec} is in
11371a different function from the one currently executing, the results may
11372be bizarre if the two functions expect different patterns of arguments or
11373of local variables. For this reason, the @code{jump} command requests
11374confirmation if the specified line is not in the function currently
11375executing. However, even bizarre results are predictable if you are
11376well acquainted with the machine-language code of your program.
11377
11378@item jump *@var{address}
11379Resume execution at the instruction at address @var{address}.
11380@end table
11381
c906108c 11382@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11383On many systems, you can get much the same effect as the @code{jump}
11384command by storing a new value into the register @code{$pc}. The
11385difference is that this does not start your program running; it only
11386changes the address of where it @emph{will} run when you continue. For
11387example,
c906108c 11388
474c8240 11389@smallexample
c906108c 11390set $pc = 0x485
474c8240 11391@end smallexample
c906108c
SS
11392
11393@noindent
11394makes the next @code{continue} command or stepping command execute at
11395address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11396@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11397
11398The most common occasion to use the @code{jump} command is to back
11399up---perhaps with more breakpoints set---over a portion of a program
11400that has already executed, in order to examine its execution in more
11401detail.
11402
c906108c 11403@c @group
6d2ebf8b 11404@node Signaling
79a6e687 11405@section Giving your Program a Signal
9c16f35a 11406@cindex deliver a signal to a program
c906108c
SS
11407
11408@table @code
11409@kindex signal
11410@item signal @var{signal}
11411Resume execution where your program stopped, but immediately give it the
11412signal @var{signal}. @var{signal} can be the name or the number of a
11413signal. For example, on many systems @code{signal 2} and @code{signal
11414SIGINT} are both ways of sending an interrupt signal.
11415
11416Alternatively, if @var{signal} is zero, continue execution without
11417giving a signal. This is useful when your program stopped on account of
11418a signal and would ordinary see the signal when resumed with the
11419@code{continue} command; @samp{signal 0} causes it to resume without a
11420signal.
11421
11422@code{signal} does not repeat when you press @key{RET} a second time
11423after executing the command.
11424@end table
11425@c @end group
11426
11427Invoking the @code{signal} command is not the same as invoking the
11428@code{kill} utility from the shell. Sending a signal with @code{kill}
11429causes @value{GDBN} to decide what to do with the signal depending on
11430the signal handling tables (@pxref{Signals}). The @code{signal} command
11431passes the signal directly to your program.
11432
c906108c 11433
6d2ebf8b 11434@node Returning
79a6e687 11435@section Returning from a Function
c906108c
SS
11436
11437@table @code
11438@cindex returning from a function
11439@kindex return
11440@item return
11441@itemx return @var{expression}
11442You can cancel execution of a function call with the @code{return}
11443command. If you give an
11444@var{expression} argument, its value is used as the function's return
11445value.
11446@end table
11447
11448When you use @code{return}, @value{GDBN} discards the selected stack frame
11449(and all frames within it). You can think of this as making the
11450discarded frame return prematurely. If you wish to specify a value to
11451be returned, give that value as the argument to @code{return}.
11452
11453This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11454Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11455innermost remaining frame. That frame becomes selected. The
11456specified value is stored in the registers used for returning values
11457of functions.
11458
11459The @code{return} command does not resume execution; it leaves the
11460program stopped in the state that would exist if the function had just
11461returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11462and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11463selected stack frame returns naturally.
11464
6d2ebf8b 11465@node Calling
79a6e687 11466@section Calling Program Functions
c906108c 11467
f8568604 11468@table @code
c906108c 11469@cindex calling functions
f8568604
EZ
11470@cindex inferior functions, calling
11471@item print @var{expr}
d3e8051b 11472Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11473@var{expr} may include calls to functions in the program being
11474debugged.
11475
c906108c 11476@kindex call
c906108c
SS
11477@item call @var{expr}
11478Evaluate the expression @var{expr} without displaying @code{void}
11479returned values.
c906108c
SS
11480
11481You can use this variant of the @code{print} command if you want to
f8568604
EZ
11482execute a function from your program that does not return anything
11483(a.k.a.@: @dfn{a void function}), but without cluttering the output
11484with @code{void} returned values that @value{GDBN} will otherwise
11485print. If the result is not void, it is printed and saved in the
11486value history.
11487@end table
11488
9c16f35a
EZ
11489It is possible for the function you call via the @code{print} or
11490@code{call} command to generate a signal (e.g., if there's a bug in
11491the function, or if you passed it incorrect arguments). What happens
11492in that case is controlled by the @code{set unwindonsignal} command.
11493
11494@table @code
11495@item set unwindonsignal
11496@kindex set unwindonsignal
11497@cindex unwind stack in called functions
11498@cindex call dummy stack unwinding
11499Set unwinding of the stack if a signal is received while in a function
11500that @value{GDBN} called in the program being debugged. If set to on,
11501@value{GDBN} unwinds the stack it created for the call and restores
11502the context to what it was before the call. If set to off (the
11503default), @value{GDBN} stops in the frame where the signal was
11504received.
11505
11506@item show unwindonsignal
11507@kindex show unwindonsignal
11508Show the current setting of stack unwinding in the functions called by
11509@value{GDBN}.
11510@end table
11511
f8568604
EZ
11512@cindex weak alias functions
11513Sometimes, a function you wish to call is actually a @dfn{weak alias}
11514for another function. In such case, @value{GDBN} might not pick up
11515the type information, including the types of the function arguments,
11516which causes @value{GDBN} to call the inferior function incorrectly.
11517As a result, the called function will function erroneously and may
11518even crash. A solution to that is to use the name of the aliased
11519function instead.
c906108c 11520
6d2ebf8b 11521@node Patching
79a6e687 11522@section Patching Programs
7a292a7a 11523
c906108c
SS
11524@cindex patching binaries
11525@cindex writing into executables
c906108c 11526@cindex writing into corefiles
c906108c 11527
7a292a7a
SS
11528By default, @value{GDBN} opens the file containing your program's
11529executable code (or the corefile) read-only. This prevents accidental
11530alterations to machine code; but it also prevents you from intentionally
11531patching your program's binary.
c906108c
SS
11532
11533If you'd like to be able to patch the binary, you can specify that
11534explicitly with the @code{set write} command. For example, you might
11535want to turn on internal debugging flags, or even to make emergency
11536repairs.
11537
11538@table @code
11539@kindex set write
11540@item set write on
11541@itemx set write off
7a292a7a
SS
11542If you specify @samp{set write on}, @value{GDBN} opens executable and
11543core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11544off} (the default), @value{GDBN} opens them read-only.
11545
11546If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11547@code{exec-file} or @code{core-file} command) after changing @code{set
11548write}, for your new setting to take effect.
c906108c
SS
11549
11550@item show write
11551@kindex show write
7a292a7a
SS
11552Display whether executable files and core files are opened for writing
11553as well as reading.
c906108c
SS
11554@end table
11555
6d2ebf8b 11556@node GDB Files
c906108c
SS
11557@chapter @value{GDBN} Files
11558
7a292a7a
SS
11559@value{GDBN} needs to know the file name of the program to be debugged,
11560both in order to read its symbol table and in order to start your
11561program. To debug a core dump of a previous run, you must also tell
11562@value{GDBN} the name of the core dump file.
c906108c
SS
11563
11564@menu
11565* Files:: Commands to specify files
5b5d99cf 11566* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11567* Symbol Errors:: Errors reading symbol files
11568@end menu
11569
6d2ebf8b 11570@node Files
79a6e687 11571@section Commands to Specify Files
c906108c 11572
7a292a7a 11573@cindex symbol table
c906108c 11574@cindex core dump file
7a292a7a
SS
11575
11576You may want to specify executable and core dump file names. The usual
11577way to do this is at start-up time, using the arguments to
11578@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11579Out of @value{GDBN}}).
c906108c
SS
11580
11581Occasionally it is necessary to change to a different file during a
397ca115
EZ
11582@value{GDBN} session. Or you may run @value{GDBN} and forget to
11583specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11584via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11585Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11586new files are useful.
c906108c
SS
11587
11588@table @code
11589@cindex executable file
11590@kindex file
11591@item file @var{filename}
11592Use @var{filename} as the program to be debugged. It is read for its
11593symbols and for the contents of pure memory. It is also the program
11594executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11595directory and the file is not found in the @value{GDBN} working directory,
11596@value{GDBN} uses the environment variable @code{PATH} as a list of
11597directories to search, just as the shell does when looking for a program
11598to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11599and your program, using the @code{path} command.
11600
fc8be69e
EZ
11601@cindex unlinked object files
11602@cindex patching object files
11603You can load unlinked object @file{.o} files into @value{GDBN} using
11604the @code{file} command. You will not be able to ``run'' an object
11605file, but you can disassemble functions and inspect variables. Also,
11606if the underlying BFD functionality supports it, you could use
11607@kbd{gdb -write} to patch object files using this technique. Note
11608that @value{GDBN} can neither interpret nor modify relocations in this
11609case, so branches and some initialized variables will appear to go to
11610the wrong place. But this feature is still handy from time to time.
11611
c906108c
SS
11612@item file
11613@code{file} with no argument makes @value{GDBN} discard any information it
11614has on both executable file and the symbol table.
11615
11616@kindex exec-file
11617@item exec-file @r{[} @var{filename} @r{]}
11618Specify that the program to be run (but not the symbol table) is found
11619in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11620if necessary to locate your program. Omitting @var{filename} means to
11621discard information on the executable file.
11622
11623@kindex symbol-file
11624@item symbol-file @r{[} @var{filename} @r{]}
11625Read symbol table information from file @var{filename}. @code{PATH} is
11626searched when necessary. Use the @code{file} command to get both symbol
11627table and program to run from the same file.
11628
11629@code{symbol-file} with no argument clears out @value{GDBN} information on your
11630program's symbol table.
11631
ae5a43e0
DJ
11632The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11633some breakpoints and auto-display expressions. This is because they may
11634contain pointers to the internal data recording symbols and data types,
11635which are part of the old symbol table data being discarded inside
11636@value{GDBN}.
c906108c
SS
11637
11638@code{symbol-file} does not repeat if you press @key{RET} again after
11639executing it once.
11640
11641When @value{GDBN} is configured for a particular environment, it
11642understands debugging information in whatever format is the standard
11643generated for that environment; you may use either a @sc{gnu} compiler, or
11644other compilers that adhere to the local conventions.
c906108c 11645Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11646using @code{@value{NGCC}} you can generate debugging information for
c906108c 11647optimized code.
c906108c
SS
11648
11649For most kinds of object files, with the exception of old SVR3 systems
11650using COFF, the @code{symbol-file} command does not normally read the
11651symbol table in full right away. Instead, it scans the symbol table
11652quickly to find which source files and which symbols are present. The
11653details are read later, one source file at a time, as they are needed.
11654
11655The purpose of this two-stage reading strategy is to make @value{GDBN}
11656start up faster. For the most part, it is invisible except for
11657occasional pauses while the symbol table details for a particular source
11658file are being read. (The @code{set verbose} command can turn these
11659pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11660Warnings and Messages}.)
c906108c 11661
c906108c
SS
11662We have not implemented the two-stage strategy for COFF yet. When the
11663symbol table is stored in COFF format, @code{symbol-file} reads the
11664symbol table data in full right away. Note that ``stabs-in-COFF''
11665still does the two-stage strategy, since the debug info is actually
11666in stabs format.
11667
11668@kindex readnow
11669@cindex reading symbols immediately
11670@cindex symbols, reading immediately
a94ab193
EZ
11671@item symbol-file @var{filename} @r{[} -readnow @r{]}
11672@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11673You can override the @value{GDBN} two-stage strategy for reading symbol
11674tables by using the @samp{-readnow} option with any of the commands that
11675load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11676entire symbol table available.
c906108c 11677
c906108c
SS
11678@c FIXME: for now no mention of directories, since this seems to be in
11679@c flux. 13mar1992 status is that in theory GDB would look either in
11680@c current dir or in same dir as myprog; but issues like competing
11681@c GDB's, or clutter in system dirs, mean that in practice right now
11682@c only current dir is used. FFish says maybe a special GDB hierarchy
11683@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11684@c files.
11685
c906108c 11686@kindex core-file
09d4efe1 11687@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11688@itemx core
c906108c
SS
11689Specify the whereabouts of a core dump file to be used as the ``contents
11690of memory''. Traditionally, core files contain only some parts of the
11691address space of the process that generated them; @value{GDBN} can access the
11692executable file itself for other parts.
11693
11694@code{core-file} with no argument specifies that no core file is
11695to be used.
11696
11697Note that the core file is ignored when your program is actually running
7a292a7a
SS
11698under @value{GDBN}. So, if you have been running your program and you
11699wish to debug a core file instead, you must kill the subprocess in which
11700the program is running. To do this, use the @code{kill} command
79a6e687 11701(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11702
c906108c
SS
11703@kindex add-symbol-file
11704@cindex dynamic linking
11705@item add-symbol-file @var{filename} @var{address}
a94ab193 11706@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11707@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11708The @code{add-symbol-file} command reads additional symbol table
11709information from the file @var{filename}. You would use this command
11710when @var{filename} has been dynamically loaded (by some other means)
11711into the program that is running. @var{address} should be the memory
11712address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11713this out for itself. You can additionally specify an arbitrary number
11714of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11715section name and base address for that section. You can specify any
11716@var{address} as an expression.
c906108c
SS
11717
11718The symbol table of the file @var{filename} is added to the symbol table
11719originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11720@code{add-symbol-file} command any number of times; the new symbol data
11721thus read keeps adding to the old. To discard all old symbol data
11722instead, use the @code{symbol-file} command without any arguments.
c906108c 11723
17d9d558
JB
11724@cindex relocatable object files, reading symbols from
11725@cindex object files, relocatable, reading symbols from
11726@cindex reading symbols from relocatable object files
11727@cindex symbols, reading from relocatable object files
11728@cindex @file{.o} files, reading symbols from
11729Although @var{filename} is typically a shared library file, an
11730executable file, or some other object file which has been fully
11731relocated for loading into a process, you can also load symbolic
11732information from relocatable @file{.o} files, as long as:
11733
11734@itemize @bullet
11735@item
11736the file's symbolic information refers only to linker symbols defined in
11737that file, not to symbols defined by other object files,
11738@item
11739every section the file's symbolic information refers to has actually
11740been loaded into the inferior, as it appears in the file, and
11741@item
11742you can determine the address at which every section was loaded, and
11743provide these to the @code{add-symbol-file} command.
11744@end itemize
11745
11746@noindent
11747Some embedded operating systems, like Sun Chorus and VxWorks, can load
11748relocatable files into an already running program; such systems
11749typically make the requirements above easy to meet. However, it's
11750important to recognize that many native systems use complex link
49efadf5 11751procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11752assembly, for example) that make the requirements difficult to meet. In
11753general, one cannot assume that using @code{add-symbol-file} to read a
11754relocatable object file's symbolic information will have the same effect
11755as linking the relocatable object file into the program in the normal
11756way.
11757
c906108c
SS
11758@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11759
c45da7e6
EZ
11760@kindex add-symbol-file-from-memory
11761@cindex @code{syscall DSO}
11762@cindex load symbols from memory
11763@item add-symbol-file-from-memory @var{address}
11764Load symbols from the given @var{address} in a dynamically loaded
11765object file whose image is mapped directly into the inferior's memory.
11766For example, the Linux kernel maps a @code{syscall DSO} into each
11767process's address space; this DSO provides kernel-specific code for
11768some system calls. The argument can be any expression whose
11769evaluation yields the address of the file's shared object file header.
11770For this command to work, you must have used @code{symbol-file} or
11771@code{exec-file} commands in advance.
11772
09d4efe1
EZ
11773@kindex add-shared-symbol-files
11774@kindex assf
11775@item add-shared-symbol-files @var{library-file}
11776@itemx assf @var{library-file}
11777The @code{add-shared-symbol-files} command can currently be used only
11778in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11779alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11780@value{GDBN} automatically looks for shared libraries, however if
11781@value{GDBN} does not find yours, you can invoke
11782@code{add-shared-symbol-files}. It takes one argument: the shared
11783library's file name. @code{assf} is a shorthand alias for
11784@code{add-shared-symbol-files}.
c906108c 11785
c906108c 11786@kindex section
09d4efe1
EZ
11787@item section @var{section} @var{addr}
11788The @code{section} command changes the base address of the named
11789@var{section} of the exec file to @var{addr}. This can be used if the
11790exec file does not contain section addresses, (such as in the
11791@code{a.out} format), or when the addresses specified in the file
11792itself are wrong. Each section must be changed separately. The
11793@code{info files} command, described below, lists all the sections and
11794their addresses.
c906108c
SS
11795
11796@kindex info files
11797@kindex info target
11798@item info files
11799@itemx info target
7a292a7a
SS
11800@code{info files} and @code{info target} are synonymous; both print the
11801current target (@pxref{Targets, ,Specifying a Debugging Target}),
11802including the names of the executable and core dump files currently in
11803use by @value{GDBN}, and the files from which symbols were loaded. The
11804command @code{help target} lists all possible targets rather than
11805current ones.
11806
fe95c787
MS
11807@kindex maint info sections
11808@item maint info sections
11809Another command that can give you extra information about program sections
11810is @code{maint info sections}. In addition to the section information
11811displayed by @code{info files}, this command displays the flags and file
11812offset of each section in the executable and core dump files. In addition,
11813@code{maint info sections} provides the following command options (which
11814may be arbitrarily combined):
11815
11816@table @code
11817@item ALLOBJ
11818Display sections for all loaded object files, including shared libraries.
11819@item @var{sections}
6600abed 11820Display info only for named @var{sections}.
fe95c787
MS
11821@item @var{section-flags}
11822Display info only for sections for which @var{section-flags} are true.
11823The section flags that @value{GDBN} currently knows about are:
11824@table @code
11825@item ALLOC
11826Section will have space allocated in the process when loaded.
11827Set for all sections except those containing debug information.
11828@item LOAD
11829Section will be loaded from the file into the child process memory.
11830Set for pre-initialized code and data, clear for @code{.bss} sections.
11831@item RELOC
11832Section needs to be relocated before loading.
11833@item READONLY
11834Section cannot be modified by the child process.
11835@item CODE
11836Section contains executable code only.
6600abed 11837@item DATA
fe95c787
MS
11838Section contains data only (no executable code).
11839@item ROM
11840Section will reside in ROM.
11841@item CONSTRUCTOR
11842Section contains data for constructor/destructor lists.
11843@item HAS_CONTENTS
11844Section is not empty.
11845@item NEVER_LOAD
11846An instruction to the linker to not output the section.
11847@item COFF_SHARED_LIBRARY
11848A notification to the linker that the section contains
11849COFF shared library information.
11850@item IS_COMMON
11851Section contains common symbols.
11852@end table
11853@end table
6763aef9 11854@kindex set trust-readonly-sections
9c16f35a 11855@cindex read-only sections
6763aef9
MS
11856@item set trust-readonly-sections on
11857Tell @value{GDBN} that readonly sections in your object file
6ca652b0 11858really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
11859In that case, @value{GDBN} can fetch values from these sections
11860out of the object file, rather than from the target program.
11861For some targets (notably embedded ones), this can be a significant
11862enhancement to debugging performance.
11863
11864The default is off.
11865
11866@item set trust-readonly-sections off
15110bc3 11867Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
11868the contents of the section might change while the program is running,
11869and must therefore be fetched from the target when needed.
9c16f35a
EZ
11870
11871@item show trust-readonly-sections
11872Show the current setting of trusting readonly sections.
c906108c
SS
11873@end table
11874
11875All file-specifying commands allow both absolute and relative file names
11876as arguments. @value{GDBN} always converts the file name to an absolute file
11877name and remembers it that way.
11878
c906108c 11879@cindex shared libraries
9cceb671
DJ
11880@anchor{Shared Libraries}
11881@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 11882and IBM RS/6000 AIX shared libraries.
53a5351d 11883
9cceb671
DJ
11884On MS-Windows @value{GDBN} must be linked with the Expat library to support
11885shared libraries. @xref{Expat}.
11886
c906108c
SS
11887@value{GDBN} automatically loads symbol definitions from shared libraries
11888when you use the @code{run} command, or when you examine a core file.
11889(Before you issue the @code{run} command, @value{GDBN} does not understand
11890references to a function in a shared library, however---unless you are
11891debugging a core file).
53a5351d
JM
11892
11893On HP-UX, if the program loads a library explicitly, @value{GDBN}
11894automatically loads the symbols at the time of the @code{shl_load} call.
11895
c906108c
SS
11896@c FIXME: some @value{GDBN} release may permit some refs to undef
11897@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
11898@c FIXME...lib; check this from time to time when updating manual
11899
b7209cb4
FF
11900There are times, however, when you may wish to not automatically load
11901symbol definitions from shared libraries, such as when they are
11902particularly large or there are many of them.
11903
11904To control the automatic loading of shared library symbols, use the
11905commands:
11906
11907@table @code
11908@kindex set auto-solib-add
11909@item set auto-solib-add @var{mode}
11910If @var{mode} is @code{on}, symbols from all shared object libraries
11911will be loaded automatically when the inferior begins execution, you
11912attach to an independently started inferior, or when the dynamic linker
11913informs @value{GDBN} that a new library has been loaded. If @var{mode}
11914is @code{off}, symbols must be loaded manually, using the
11915@code{sharedlibrary} command. The default value is @code{on}.
11916
dcaf7c2c
EZ
11917@cindex memory used for symbol tables
11918If your program uses lots of shared libraries with debug info that
11919takes large amounts of memory, you can decrease the @value{GDBN}
11920memory footprint by preventing it from automatically loading the
11921symbols from shared libraries. To that end, type @kbd{set
11922auto-solib-add off} before running the inferior, then load each
11923library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 11924@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
11925the libraries whose symbols you want to be loaded.
11926
b7209cb4
FF
11927@kindex show auto-solib-add
11928@item show auto-solib-add
11929Display the current autoloading mode.
11930@end table
11931
c45da7e6 11932@cindex load shared library
b7209cb4
FF
11933To explicitly load shared library symbols, use the @code{sharedlibrary}
11934command:
11935
c906108c
SS
11936@table @code
11937@kindex info sharedlibrary
11938@kindex info share
11939@item info share
11940@itemx info sharedlibrary
11941Print the names of the shared libraries which are currently loaded.
11942
11943@kindex sharedlibrary
11944@kindex share
11945@item sharedlibrary @var{regex}
11946@itemx share @var{regex}
c906108c
SS
11947Load shared object library symbols for files matching a
11948Unix regular expression.
11949As with files loaded automatically, it only loads shared libraries
11950required by your program for a core file or after typing @code{run}. If
11951@var{regex} is omitted all shared libraries required by your program are
11952loaded.
c45da7e6
EZ
11953
11954@item nosharedlibrary
11955@kindex nosharedlibrary
11956@cindex unload symbols from shared libraries
11957Unload all shared object library symbols. This discards all symbols
11958that have been loaded from all shared libraries. Symbols from shared
11959libraries that were loaded by explicit user requests are not
11960discarded.
c906108c
SS
11961@end table
11962
721c2651
EZ
11963Sometimes you may wish that @value{GDBN} stops and gives you control
11964when any of shared library events happen. Use the @code{set
11965stop-on-solib-events} command for this:
11966
11967@table @code
11968@item set stop-on-solib-events
11969@kindex set stop-on-solib-events
11970This command controls whether @value{GDBN} should give you control
11971when the dynamic linker notifies it about some shared library event.
11972The most common event of interest is loading or unloading of a new
11973shared library.
11974
11975@item show stop-on-solib-events
11976@kindex show stop-on-solib-events
11977Show whether @value{GDBN} stops and gives you control when shared
11978library events happen.
11979@end table
11980
f5ebfba0
DJ
11981Shared libraries are also supported in many cross or remote debugging
11982configurations. A copy of the target's libraries need to be present on the
11983host system; they need to be the same as the target libraries, although the
11984copies on the target can be stripped as long as the copies on the host are
11985not.
11986
59b7b46f
EZ
11987@cindex where to look for shared libraries
11988For remote debugging, you need to tell @value{GDBN} where the target
11989libraries are, so that it can load the correct copies---otherwise, it
11990may try to load the host's libraries. @value{GDBN} has two variables
11991to specify the search directories for target libraries.
f5ebfba0
DJ
11992
11993@table @code
59b7b46f 11994@cindex prefix for shared library file names
f822c95b 11995@cindex system root, alternate
f5ebfba0 11996@kindex set solib-absolute-prefix
f822c95b
DJ
11997@kindex set sysroot
11998@item set sysroot @var{path}
11999Use @var{path} as the system root for the program being debugged. Any
12000absolute shared library paths will be prefixed with @var{path}; many
12001runtime loaders store the absolute paths to the shared library in the
12002target program's memory. If you use @code{set sysroot} to find shared
12003libraries, they need to be laid out in the same way that they are on
12004the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12005under @var{path}.
12006
12007The @code{set solib-absolute-prefix} command is an alias for @code{set
12008sysroot}.
12009
12010@cindex default system root
59b7b46f 12011@cindex @samp{--with-sysroot}
f822c95b
DJ
12012You can set the default system root by using the configure-time
12013@samp{--with-sysroot} option. If the system root is inside
12014@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12015@samp{--exec-prefix}), then the default system root will be updated
12016automatically if the installed @value{GDBN} is moved to a new
12017location.
12018
12019@kindex show sysroot
12020@item show sysroot
f5ebfba0
DJ
12021Display the current shared library prefix.
12022
12023@kindex set solib-search-path
12024@item set solib-search-path @var{path}
f822c95b
DJ
12025If this variable is set, @var{path} is a colon-separated list of
12026directories to search for shared libraries. @samp{solib-search-path}
12027is used after @samp{sysroot} fails to locate the library, or if the
12028path to the library is relative instead of absolute. If you want to
12029use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12030@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12031finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12032it to a nonexistent directory may interfere with automatic loading
f822c95b 12033of shared library symbols.
f5ebfba0
DJ
12034
12035@kindex show solib-search-path
12036@item show solib-search-path
12037Display the current shared library search path.
12038@end table
12039
5b5d99cf
JB
12040
12041@node Separate Debug Files
12042@section Debugging Information in Separate Files
12043@cindex separate debugging information files
12044@cindex debugging information in separate files
12045@cindex @file{.debug} subdirectories
12046@cindex debugging information directory, global
12047@cindex global debugging information directory
c7e83d54
EZ
12048@cindex build ID, and separate debugging files
12049@cindex @file{.build-id} directory
5b5d99cf
JB
12050
12051@value{GDBN} allows you to put a program's debugging information in a
12052file separate from the executable itself, in a way that allows
12053@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12054Since debugging information can be very large---sometimes larger
12055than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12056information for their executables in separate files, which users can
12057install only when they need to debug a problem.
12058
c7e83d54
EZ
12059@value{GDBN} supports two ways of specifying the separate debug info
12060file:
5b5d99cf
JB
12061
12062@itemize @bullet
12063@item
c7e83d54
EZ
12064The executable contains a @dfn{debug link} that specifies the name of
12065the separate debug info file. The separate debug file's name is
12066usually @file{@var{executable}.debug}, where @var{executable} is the
12067name of the corresponding executable file without leading directories
12068(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12069debug link specifies a CRC32 checksum for the debug file, which
12070@value{GDBN} uses to validate that the executable and the debug file
12071came from the same build.
12072
12073@item
7e27a47a 12074The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12075also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12076only on some operating systems, notably those which use the ELF format
12077for binary files and the @sc{gnu} Binutils.) For more details about
12078this feature, see the description of the @option{--build-id}
12079command-line option in @ref{Options, , Command Line Options, ld.info,
12080The GNU Linker}. The debug info file's name is not specified
12081explicitly by the build ID, but can be computed from the build ID, see
12082below.
d3750b24
JK
12083@end itemize
12084
c7e83d54
EZ
12085Depending on the way the debug info file is specified, @value{GDBN}
12086uses two different methods of looking for the debug file:
d3750b24
JK
12087
12088@itemize @bullet
12089@item
c7e83d54
EZ
12090For the ``debug link'' method, @value{GDBN} looks up the named file in
12091the directory of the executable file, then in a subdirectory of that
12092directory named @file{.debug}, and finally under the global debug
12093directory, in a subdirectory whose name is identical to the leading
12094directories of the executable's absolute file name.
12095
12096@item
83f83d7f 12097For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12098@file{.build-id} subdirectory of the global debug directory for a file
12099named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12100first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12101are the rest of the bit string. (Real build ID strings are 32 or more
12102hex characters, not 10.)
c7e83d54
EZ
12103@end itemize
12104
12105So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12106@file{/usr/bin/ls}, which has a debug link that specifies the
12107file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12108@code{abcdef1234}. If the global debug directory is
12109@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12110debug information files, in the indicated order:
12111
12112@itemize @minus
12113@item
12114@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12115@item
c7e83d54 12116@file{/usr/bin/ls.debug}
5b5d99cf 12117@item
c7e83d54 12118@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12119@item
c7e83d54 12120@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12121@end itemize
5b5d99cf
JB
12122
12123You can set the global debugging info directory's name, and view the
12124name @value{GDBN} is currently using.
12125
12126@table @code
12127
12128@kindex set debug-file-directory
12129@item set debug-file-directory @var{directory}
12130Set the directory which @value{GDBN} searches for separate debugging
12131information files to @var{directory}.
12132
12133@kindex show debug-file-directory
12134@item show debug-file-directory
12135Show the directory @value{GDBN} searches for separate debugging
12136information files.
12137
12138@end table
12139
12140@cindex @code{.gnu_debuglink} sections
c7e83d54 12141@cindex debug link sections
5b5d99cf
JB
12142A debug link is a special section of the executable file named
12143@code{.gnu_debuglink}. The section must contain:
12144
12145@itemize
12146@item
12147A filename, with any leading directory components removed, followed by
12148a zero byte,
12149@item
12150zero to three bytes of padding, as needed to reach the next four-byte
12151boundary within the section, and
12152@item
12153a four-byte CRC checksum, stored in the same endianness used for the
12154executable file itself. The checksum is computed on the debugging
12155information file's full contents by the function given below, passing
12156zero as the @var{crc} argument.
12157@end itemize
12158
12159Any executable file format can carry a debug link, as long as it can
12160contain a section named @code{.gnu_debuglink} with the contents
12161described above.
12162
d3750b24 12163@cindex @code{.note.gnu.build-id} sections
c7e83d54 12164@cindex build ID sections
7e27a47a
EZ
12165The build ID is a special section in the executable file (and in other
12166ELF binary files that @value{GDBN} may consider). This section is
12167often named @code{.note.gnu.build-id}, but that name is not mandatory.
12168It contains unique identification for the built files---the ID remains
12169the same across multiple builds of the same build tree. The default
12170algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12171content for the build ID string. The same section with an identical
12172value is present in the original built binary with symbols, in its
12173stripped variant, and in the separate debugging information file.
d3750b24 12174
5b5d99cf
JB
12175The debugging information file itself should be an ordinary
12176executable, containing a full set of linker symbols, sections, and
12177debugging information. The sections of the debugging information file
c7e83d54
EZ
12178should have the same names, addresses, and sizes as the original file,
12179but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12180in an ordinary executable.
12181
7e27a47a 12182The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12183@samp{objcopy} utility that can produce
12184the separated executable / debugging information file pairs using the
12185following commands:
12186
12187@smallexample
12188@kbd{objcopy --only-keep-debug foo foo.debug}
12189@kbd{strip -g foo}
c7e83d54
EZ
12190@end smallexample
12191
12192@noindent
12193These commands remove the debugging
83f83d7f
JK
12194information from the executable file @file{foo} and place it in the file
12195@file{foo.debug}. You can use the first, second or both methods to link the
12196two files:
12197
12198@itemize @bullet
12199@item
12200The debug link method needs the following additional command to also leave
12201behind a debug link in @file{foo}:
12202
12203@smallexample
12204@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12205@end smallexample
12206
12207Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12208a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12209foo.debug} has the same functionality as the two @code{objcopy} commands and
12210the @code{ln -s} command above, together.
12211
12212@item
12213Build ID gets embedded into the main executable using @code{ld --build-id} or
12214the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12215compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12216utilities (Binutils) package since version 2.18.
83f83d7f
JK
12217@end itemize
12218
12219@noindent
d3750b24 12220
c7e83d54
EZ
12221Since there are many different ways to compute CRC's for the debug
12222link (different polynomials, reversals, byte ordering, etc.), the
12223simplest way to describe the CRC used in @code{.gnu_debuglink}
12224sections is to give the complete code for a function that computes it:
5b5d99cf 12225
4644b6e3 12226@kindex gnu_debuglink_crc32
5b5d99cf
JB
12227@smallexample
12228unsigned long
12229gnu_debuglink_crc32 (unsigned long crc,
12230 unsigned char *buf, size_t len)
12231@{
12232 static const unsigned long crc32_table[256] =
12233 @{
12234 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12235 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12236 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12237 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12238 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12239 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12240 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12241 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12242 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12243 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12244 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12245 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12246 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12247 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12248 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12249 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12250 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12251 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12252 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12253 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12254 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12255 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12256 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12257 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12258 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12259 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12260 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12261 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12262 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12263 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12264 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12265 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12266 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12267 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12268 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12269 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12270 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12271 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12272 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12273 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12274 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12275 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12276 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12277 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12278 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12279 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12280 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12281 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12282 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12283 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12284 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12285 0x2d02ef8d
12286 @};
12287 unsigned char *end;
12288
12289 crc = ~crc & 0xffffffff;
12290 for (end = buf + len; buf < end; ++buf)
12291 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12292 return ~crc & 0xffffffff;
5b5d99cf
JB
12293@}
12294@end smallexample
12295
c7e83d54
EZ
12296@noindent
12297This computation does not apply to the ``build ID'' method.
12298
5b5d99cf 12299
6d2ebf8b 12300@node Symbol Errors
79a6e687 12301@section Errors Reading Symbol Files
c906108c
SS
12302
12303While reading a symbol file, @value{GDBN} occasionally encounters problems,
12304such as symbol types it does not recognize, or known bugs in compiler
12305output. By default, @value{GDBN} does not notify you of such problems, since
12306they are relatively common and primarily of interest to people
12307debugging compilers. If you are interested in seeing information
12308about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12309only one message about each such type of problem, no matter how many
12310times the problem occurs; or you can ask @value{GDBN} to print more messages,
12311to see how many times the problems occur, with the @code{set
79a6e687
BW
12312complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12313Messages}).
c906108c
SS
12314
12315The messages currently printed, and their meanings, include:
12316
12317@table @code
12318@item inner block not inside outer block in @var{symbol}
12319
12320The symbol information shows where symbol scopes begin and end
12321(such as at the start of a function or a block of statements). This
12322error indicates that an inner scope block is not fully contained
12323in its outer scope blocks.
12324
12325@value{GDBN} circumvents the problem by treating the inner block as if it had
12326the same scope as the outer block. In the error message, @var{symbol}
12327may be shown as ``@code{(don't know)}'' if the outer block is not a
12328function.
12329
12330@item block at @var{address} out of order
12331
12332The symbol information for symbol scope blocks should occur in
12333order of increasing addresses. This error indicates that it does not
12334do so.
12335
12336@value{GDBN} does not circumvent this problem, and has trouble
12337locating symbols in the source file whose symbols it is reading. (You
12338can often determine what source file is affected by specifying
79a6e687
BW
12339@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12340Messages}.)
c906108c
SS
12341
12342@item bad block start address patched
12343
12344The symbol information for a symbol scope block has a start address
12345smaller than the address of the preceding source line. This is known
12346to occur in the SunOS 4.1.1 (and earlier) C compiler.
12347
12348@value{GDBN} circumvents the problem by treating the symbol scope block as
12349starting on the previous source line.
12350
12351@item bad string table offset in symbol @var{n}
12352
12353@cindex foo
12354Symbol number @var{n} contains a pointer into the string table which is
12355larger than the size of the string table.
12356
12357@value{GDBN} circumvents the problem by considering the symbol to have the
12358name @code{foo}, which may cause other problems if many symbols end up
12359with this name.
12360
12361@item unknown symbol type @code{0x@var{nn}}
12362
7a292a7a
SS
12363The symbol information contains new data types that @value{GDBN} does
12364not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12365uncomprehended information, in hexadecimal.
c906108c 12366
7a292a7a
SS
12367@value{GDBN} circumvents the error by ignoring this symbol information.
12368This usually allows you to debug your program, though certain symbols
c906108c 12369are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12370debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12371on @code{complain}, then go up to the function @code{read_dbx_symtab}
12372and examine @code{*bufp} to see the symbol.
c906108c
SS
12373
12374@item stub type has NULL name
c906108c 12375
7a292a7a 12376@value{GDBN} could not find the full definition for a struct or class.
c906108c 12377
7a292a7a 12378@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12379The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12380information that recent versions of the compiler should have output for
12381it.
c906108c
SS
12382
12383@item info mismatch between compiler and debugger
12384
12385@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12386
c906108c
SS
12387@end table
12388
6d2ebf8b 12389@node Targets
c906108c 12390@chapter Specifying a Debugging Target
7a292a7a 12391
c906108c 12392@cindex debugging target
c906108c 12393A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12394
12395Often, @value{GDBN} runs in the same host environment as your program;
12396in that case, the debugging target is specified as a side effect when
12397you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12398flexibility---for example, running @value{GDBN} on a physically separate
12399host, or controlling a standalone system over a serial port or a
53a5351d
JM
12400realtime system over a TCP/IP connection---you can use the @code{target}
12401command to specify one of the target types configured for @value{GDBN}
79a6e687 12402(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12403
a8f24a35
EZ
12404@cindex target architecture
12405It is possible to build @value{GDBN} for several different @dfn{target
12406architectures}. When @value{GDBN} is built like that, you can choose
12407one of the available architectures with the @kbd{set architecture}
12408command.
12409
12410@table @code
12411@kindex set architecture
12412@kindex show architecture
12413@item set architecture @var{arch}
12414This command sets the current target architecture to @var{arch}. The
12415value of @var{arch} can be @code{"auto"}, in addition to one of the
12416supported architectures.
12417
12418@item show architecture
12419Show the current target architecture.
9c16f35a
EZ
12420
12421@item set processor
12422@itemx processor
12423@kindex set processor
12424@kindex show processor
12425These are alias commands for, respectively, @code{set architecture}
12426and @code{show architecture}.
a8f24a35
EZ
12427@end table
12428
c906108c
SS
12429@menu
12430* Active Targets:: Active targets
12431* Target Commands:: Commands for managing targets
c906108c 12432* Byte Order:: Choosing target byte order
c906108c
SS
12433@end menu
12434
6d2ebf8b 12435@node Active Targets
79a6e687 12436@section Active Targets
7a292a7a 12437
c906108c
SS
12438@cindex stacking targets
12439@cindex active targets
12440@cindex multiple targets
12441
c906108c 12442There are three classes of targets: processes, core files, and
7a292a7a
SS
12443executable files. @value{GDBN} can work concurrently on up to three
12444active targets, one in each class. This allows you to (for example)
12445start a process and inspect its activity without abandoning your work on
12446a core file.
c906108c
SS
12447
12448For example, if you execute @samp{gdb a.out}, then the executable file
12449@code{a.out} is the only active target. If you designate a core file as
12450well---presumably from a prior run that crashed and coredumped---then
12451@value{GDBN} has two active targets and uses them in tandem, looking
12452first in the corefile target, then in the executable file, to satisfy
12453requests for memory addresses. (Typically, these two classes of target
12454are complementary, since core files contain only a program's
12455read-write memory---variables and so on---plus machine status, while
12456executable files contain only the program text and initialized data.)
c906108c
SS
12457
12458When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12459target as well. When a process target is active, all @value{GDBN}
12460commands requesting memory addresses refer to that target; addresses in
12461an active core file or executable file target are obscured while the
12462process target is active.
c906108c 12463
7a292a7a 12464Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12465core file or executable target (@pxref{Files, ,Commands to Specify
12466Files}). To specify as a target a process that is already running, use
12467the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12468Process}).
c906108c 12469
6d2ebf8b 12470@node Target Commands
79a6e687 12471@section Commands for Managing Targets
c906108c
SS
12472
12473@table @code
12474@item target @var{type} @var{parameters}
7a292a7a
SS
12475Connects the @value{GDBN} host environment to a target machine or
12476process. A target is typically a protocol for talking to debugging
12477facilities. You use the argument @var{type} to specify the type or
12478protocol of the target machine.
c906108c
SS
12479
12480Further @var{parameters} are interpreted by the target protocol, but
12481typically include things like device names or host names to connect
12482with, process numbers, and baud rates.
c906108c
SS
12483
12484The @code{target} command does not repeat if you press @key{RET} again
12485after executing the command.
12486
12487@kindex help target
12488@item help target
12489Displays the names of all targets available. To display targets
12490currently selected, use either @code{info target} or @code{info files}
79a6e687 12491(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12492
12493@item help target @var{name}
12494Describe a particular target, including any parameters necessary to
12495select it.
12496
12497@kindex set gnutarget
12498@item set gnutarget @var{args}
5d161b24 12499@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12500knows whether it is reading an @dfn{executable},
5d161b24
DB
12501a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12502with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12503with @code{gnutarget} the @code{target} refers to a program, not a machine.
12504
d4f3574e 12505@quotation
c906108c
SS
12506@emph{Warning:} To specify a file format with @code{set gnutarget},
12507you must know the actual BFD name.
d4f3574e 12508@end quotation
c906108c 12509
d4f3574e 12510@noindent
79a6e687 12511@xref{Files, , Commands to Specify Files}.
c906108c 12512
5d161b24 12513@kindex show gnutarget
c906108c
SS
12514@item show gnutarget
12515Use the @code{show gnutarget} command to display what file format
12516@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12517@value{GDBN} will determine the file format for each file automatically,
12518and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12519@end table
12520
4644b6e3 12521@cindex common targets
c906108c
SS
12522Here are some common targets (available, or not, depending on the GDB
12523configuration):
c906108c
SS
12524
12525@table @code
4644b6e3 12526@kindex target
c906108c 12527@item target exec @var{program}
4644b6e3 12528@cindex executable file target
c906108c
SS
12529An executable file. @samp{target exec @var{program}} is the same as
12530@samp{exec-file @var{program}}.
12531
c906108c 12532@item target core @var{filename}
4644b6e3 12533@cindex core dump file target
c906108c
SS
12534A core dump file. @samp{target core @var{filename}} is the same as
12535@samp{core-file @var{filename}}.
c906108c 12536
1a10341b 12537@item target remote @var{medium}
4644b6e3 12538@cindex remote target
1a10341b
JB
12539A remote system connected to @value{GDBN} via a serial line or network
12540connection. This command tells @value{GDBN} to use its own remote
12541protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12542
12543For example, if you have a board connected to @file{/dev/ttya} on the
12544machine running @value{GDBN}, you could say:
12545
12546@smallexample
12547target remote /dev/ttya
12548@end smallexample
12549
12550@code{target remote} supports the @code{load} command. This is only
12551useful if you have some other way of getting the stub to the target
12552system, and you can put it somewhere in memory where it won't get
12553clobbered by the download.
c906108c 12554
c906108c 12555@item target sim
4644b6e3 12556@cindex built-in simulator target
2df3850c 12557Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12558In general,
474c8240 12559@smallexample
104c1213
JM
12560 target sim
12561 load
12562 run
474c8240 12563@end smallexample
d4f3574e 12564@noindent
104c1213 12565works; however, you cannot assume that a specific memory map, device
d4f3574e 12566drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12567provide these. For info about any processor-specific simulator details,
12568see the appropriate section in @ref{Embedded Processors, ,Embedded
12569Processors}.
12570
c906108c
SS
12571@end table
12572
104c1213 12573Some configurations may include these targets as well:
c906108c
SS
12574
12575@table @code
12576
c906108c 12577@item target nrom @var{dev}
4644b6e3 12578@cindex NetROM ROM emulator target
c906108c
SS
12579NetROM ROM emulator. This target only supports downloading.
12580
c906108c
SS
12581@end table
12582
5d161b24 12583Different targets are available on different configurations of @value{GDBN};
c906108c 12584your configuration may have more or fewer targets.
c906108c 12585
721c2651
EZ
12586Many remote targets require you to download the executable's code once
12587you've successfully established a connection. You may wish to control
3d00d119
DJ
12588various aspects of this process.
12589
12590@table @code
721c2651
EZ
12591
12592@item set hash
12593@kindex set hash@r{, for remote monitors}
12594@cindex hash mark while downloading
12595This command controls whether a hash mark @samp{#} is displayed while
12596downloading a file to the remote monitor. If on, a hash mark is
12597displayed after each S-record is successfully downloaded to the
12598monitor.
12599
12600@item show hash
12601@kindex show hash@r{, for remote monitors}
12602Show the current status of displaying the hash mark.
12603
12604@item set debug monitor
12605@kindex set debug monitor
12606@cindex display remote monitor communications
12607Enable or disable display of communications messages between
12608@value{GDBN} and the remote monitor.
12609
12610@item show debug monitor
12611@kindex show debug monitor
12612Show the current status of displaying communications between
12613@value{GDBN} and the remote monitor.
a8f24a35 12614@end table
c906108c
SS
12615
12616@table @code
12617
12618@kindex load @var{filename}
12619@item load @var{filename}
c906108c
SS
12620Depending on what remote debugging facilities are configured into
12621@value{GDBN}, the @code{load} command may be available. Where it exists, it
12622is meant to make @var{filename} (an executable) available for debugging
12623on the remote system---by downloading, or dynamic linking, for example.
12624@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12625the @code{add-symbol-file} command.
12626
12627If your @value{GDBN} does not have a @code{load} command, attempting to
12628execute it gets the error message ``@code{You can't do that when your
12629target is @dots{}}''
c906108c
SS
12630
12631The file is loaded at whatever address is specified in the executable.
12632For some object file formats, you can specify the load address when you
12633link the program; for other formats, like a.out, the object file format
12634specifies a fixed address.
12635@c FIXME! This would be a good place for an xref to the GNU linker doc.
12636
68437a39
DJ
12637Depending on the remote side capabilities, @value{GDBN} may be able to
12638load programs into flash memory.
12639
c906108c
SS
12640@code{load} does not repeat if you press @key{RET} again after using it.
12641@end table
12642
6d2ebf8b 12643@node Byte Order
79a6e687 12644@section Choosing Target Byte Order
7a292a7a 12645
c906108c
SS
12646@cindex choosing target byte order
12647@cindex target byte order
c906108c 12648
172c2a43 12649Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12650offer the ability to run either big-endian or little-endian byte
12651orders. Usually the executable or symbol will include a bit to
12652designate the endian-ness, and you will not need to worry about
12653which to use. However, you may still find it useful to adjust
d4f3574e 12654@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12655
12656@table @code
4644b6e3 12657@kindex set endian
c906108c
SS
12658@item set endian big
12659Instruct @value{GDBN} to assume the target is big-endian.
12660
c906108c
SS
12661@item set endian little
12662Instruct @value{GDBN} to assume the target is little-endian.
12663
c906108c
SS
12664@item set endian auto
12665Instruct @value{GDBN} to use the byte order associated with the
12666executable.
12667
12668@item show endian
12669Display @value{GDBN}'s current idea of the target byte order.
12670
12671@end table
12672
12673Note that these commands merely adjust interpretation of symbolic
12674data on the host, and that they have absolutely no effect on the
12675target system.
12676
ea35711c
DJ
12677
12678@node Remote Debugging
12679@chapter Debugging Remote Programs
c906108c
SS
12680@cindex remote debugging
12681
12682If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12683@value{GDBN} in the usual way, it is often useful to use remote debugging.
12684For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12685or on a small system which does not have a general purpose operating system
12686powerful enough to run a full-featured debugger.
12687
12688Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12689to make this work with particular debugging targets. In addition,
5d161b24 12690@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12691but not specific to any particular target system) which you can use if you
12692write the remote stubs---the code that runs on the remote system to
12693communicate with @value{GDBN}.
12694
12695Other remote targets may be available in your
12696configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12697
6b2f586d 12698@menu
07f31aa6 12699* Connecting:: Connecting to a remote target
a6b151f1 12700* File Transfer:: Sending files to a remote system
6b2f586d 12701* Server:: Using the gdbserver program
79a6e687
BW
12702* Remote Configuration:: Remote configuration
12703* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12704@end menu
12705
07f31aa6 12706@node Connecting
79a6e687 12707@section Connecting to a Remote Target
07f31aa6
DJ
12708
12709On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12710your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12711Start up @value{GDBN} as usual, using the name of the local copy of your
12712program as the first argument.
12713
86941c27
JB
12714@cindex @code{target remote}
12715@value{GDBN} can communicate with the target over a serial line, or
12716over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12717each case, @value{GDBN} uses the same protocol for debugging your
12718program; only the medium carrying the debugging packets varies. The
12719@code{target remote} command establishes a connection to the target.
12720Its arguments indicate which medium to use:
12721
12722@table @code
12723
12724@item target remote @var{serial-device}
07f31aa6 12725@cindex serial line, @code{target remote}
86941c27
JB
12726Use @var{serial-device} to communicate with the target. For example,
12727to use a serial line connected to the device named @file{/dev/ttyb}:
12728
12729@smallexample
12730target remote /dev/ttyb
12731@end smallexample
12732
07f31aa6
DJ
12733If you're using a serial line, you may want to give @value{GDBN} the
12734@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12735(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12736@code{target} command.
07f31aa6 12737
86941c27
JB
12738@item target remote @code{@var{host}:@var{port}}
12739@itemx target remote @code{tcp:@var{host}:@var{port}}
12740@cindex @acronym{TCP} port, @code{target remote}
12741Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12742The @var{host} may be either a host name or a numeric @acronym{IP}
12743address; @var{port} must be a decimal number. The @var{host} could be
12744the target machine itself, if it is directly connected to the net, or
12745it might be a terminal server which in turn has a serial line to the
12746target.
07f31aa6 12747
86941c27
JB
12748For example, to connect to port 2828 on a terminal server named
12749@code{manyfarms}:
07f31aa6
DJ
12750
12751@smallexample
12752target remote manyfarms:2828
12753@end smallexample
12754
86941c27
JB
12755If your remote target is actually running on the same machine as your
12756debugger session (e.g.@: a simulator for your target running on the
12757same host), you can omit the hostname. For example, to connect to
12758port 1234 on your local machine:
07f31aa6
DJ
12759
12760@smallexample
12761target remote :1234
12762@end smallexample
12763@noindent
12764
12765Note that the colon is still required here.
12766
86941c27
JB
12767@item target remote @code{udp:@var{host}:@var{port}}
12768@cindex @acronym{UDP} port, @code{target remote}
12769Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12770connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12771
12772@smallexample
12773target remote udp:manyfarms:2828
12774@end smallexample
12775
86941c27
JB
12776When using a @acronym{UDP} connection for remote debugging, you should
12777keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12778can silently drop packets on busy or unreliable networks, which will
12779cause havoc with your debugging session.
12780
66b8c7f6
JB
12781@item target remote | @var{command}
12782@cindex pipe, @code{target remote} to
12783Run @var{command} in the background and communicate with it using a
12784pipe. The @var{command} is a shell command, to be parsed and expanded
12785by the system's command shell, @code{/bin/sh}; it should expect remote
12786protocol packets on its standard input, and send replies on its
12787standard output. You could use this to run a stand-alone simulator
12788that speaks the remote debugging protocol, to make net connections
12789using programs like @code{ssh}, or for other similar tricks.
12790
12791If @var{command} closes its standard output (perhaps by exiting),
12792@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12793program has already exited, this will have no effect.)
12794
86941c27 12795@end table
07f31aa6 12796
86941c27
JB
12797Once the connection has been established, you can use all the usual
12798commands to examine and change data and to step and continue the
12799remote program.
07f31aa6
DJ
12800
12801@cindex interrupting remote programs
12802@cindex remote programs, interrupting
12803Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12804interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12805program. This may or may not succeed, depending in part on the hardware
12806and the serial drivers the remote system uses. If you type the
12807interrupt character once again, @value{GDBN} displays this prompt:
12808
12809@smallexample
12810Interrupted while waiting for the program.
12811Give up (and stop debugging it)? (y or n)
12812@end smallexample
12813
12814If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12815(If you decide you want to try again later, you can use @samp{target
12816remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12817goes back to waiting.
12818
12819@table @code
12820@kindex detach (remote)
12821@item detach
12822When you have finished debugging the remote program, you can use the
12823@code{detach} command to release it from @value{GDBN} control.
12824Detaching from the target normally resumes its execution, but the results
12825will depend on your particular remote stub. After the @code{detach}
12826command, @value{GDBN} is free to connect to another target.
12827
12828@kindex disconnect
12829@item disconnect
12830The @code{disconnect} command behaves like @code{detach}, except that
12831the target is generally not resumed. It will wait for @value{GDBN}
12832(this instance or another one) to connect and continue debugging. After
12833the @code{disconnect} command, @value{GDBN} is again free to connect to
12834another target.
09d4efe1
EZ
12835
12836@cindex send command to remote monitor
fad38dfa
EZ
12837@cindex extend @value{GDBN} for remote targets
12838@cindex add new commands for external monitor
09d4efe1
EZ
12839@kindex monitor
12840@item monitor @var{cmd}
fad38dfa
EZ
12841This command allows you to send arbitrary commands directly to the
12842remote monitor. Since @value{GDBN} doesn't care about the commands it
12843sends like this, this command is the way to extend @value{GDBN}---you
12844can add new commands that only the external monitor will understand
12845and implement.
07f31aa6
DJ
12846@end table
12847
a6b151f1
DJ
12848@node File Transfer
12849@section Sending files to a remote system
12850@cindex remote target, file transfer
12851@cindex file transfer
12852@cindex sending files to remote systems
12853
12854Some remote targets offer the ability to transfer files over the same
12855connection used to communicate with @value{GDBN}. This is convenient
12856for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
12857running @code{gdbserver} over a network interface. For other targets,
12858e.g.@: embedded devices with only a single serial port, this may be
12859the only way to upload or download files.
12860
12861Not all remote targets support these commands.
12862
12863@table @code
12864@kindex remote put
12865@item remote put @var{hostfile} @var{targetfile}
12866Copy file @var{hostfile} from the host system (the machine running
12867@value{GDBN}) to @var{targetfile} on the target system.
12868
12869@kindex remote get
12870@item remote get @var{targetfile} @var{hostfile}
12871Copy file @var{targetfile} from the target system to @var{hostfile}
12872on the host system.
12873
12874@kindex remote delete
12875@item remote delete @var{targetfile}
12876Delete @var{targetfile} from the target system.
12877
12878@end table
12879
6f05cf9f 12880@node Server
79a6e687 12881@section Using the @code{gdbserver} Program
6f05cf9f
AC
12882
12883@kindex gdbserver
12884@cindex remote connection without stubs
12885@code{gdbserver} is a control program for Unix-like systems, which
12886allows you to connect your program with a remote @value{GDBN} via
12887@code{target remote}---but without linking in the usual debugging stub.
12888
12889@code{gdbserver} is not a complete replacement for the debugging stubs,
12890because it requires essentially the same operating-system facilities
12891that @value{GDBN} itself does. In fact, a system that can run
12892@code{gdbserver} to connect to a remote @value{GDBN} could also run
12893@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
12894because it is a much smaller program than @value{GDBN} itself. It is
12895also easier to port than all of @value{GDBN}, so you may be able to get
12896started more quickly on a new system by using @code{gdbserver}.
12897Finally, if you develop code for real-time systems, you may find that
12898the tradeoffs involved in real-time operation make it more convenient to
12899do as much development work as possible on another system, for example
12900by cross-compiling. You can use @code{gdbserver} to make a similar
12901choice for debugging.
12902
12903@value{GDBN} and @code{gdbserver} communicate via either a serial line
12904or a TCP connection, using the standard @value{GDBN} remote serial
12905protocol.
12906
12907@table @emph
12908@item On the target machine,
12909you need to have a copy of the program you want to debug.
12910@code{gdbserver} does not need your program's symbol table, so you can
12911strip the program if necessary to save space. @value{GDBN} on the host
12912system does all the symbol handling.
12913
12914To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 12915the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
12916syntax is:
12917
12918@smallexample
12919target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
12920@end smallexample
12921
12922@var{comm} is either a device name (to use a serial line) or a TCP
12923hostname and portnumber. For example, to debug Emacs with the argument
12924@samp{foo.txt} and communicate with @value{GDBN} over the serial port
12925@file{/dev/com1}:
12926
12927@smallexample
12928target> gdbserver /dev/com1 emacs foo.txt
12929@end smallexample
12930
12931@code{gdbserver} waits passively for the host @value{GDBN} to communicate
12932with it.
12933
12934To use a TCP connection instead of a serial line:
12935
12936@smallexample
12937target> gdbserver host:2345 emacs foo.txt
12938@end smallexample
12939
12940The only difference from the previous example is the first argument,
12941specifying that you are communicating with the host @value{GDBN} via
12942TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
12943expect a TCP connection from machine @samp{host} to local TCP port 2345.
12944(Currently, the @samp{host} part is ignored.) You can choose any number
12945you want for the port number as long as it does not conflict with any
12946TCP ports already in use on the target system (for example, @code{23} is
12947reserved for @code{telnet}).@footnote{If you choose a port number that
12948conflicts with another service, @code{gdbserver} prints an error message
12949and exits.} You must use the same port number with the host @value{GDBN}
12950@code{target remote} command.
12951
56460a61
DJ
12952On some targets, @code{gdbserver} can also attach to running programs.
12953This is accomplished via the @code{--attach} argument. The syntax is:
12954
12955@smallexample
12956target> gdbserver @var{comm} --attach @var{pid}
12957@end smallexample
12958
12959@var{pid} is the process ID of a currently running process. It isn't necessary
12960to point @code{gdbserver} at a binary for the running process.
12961
b1fe9455
DJ
12962@pindex pidof
12963@cindex attach to a program by name
12964You can debug processes by name instead of process ID if your target has the
12965@code{pidof} utility:
12966
12967@smallexample
f822c95b 12968target> gdbserver @var{comm} --attach `pidof @var{program}`
b1fe9455
DJ
12969@end smallexample
12970
f822c95b 12971In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
12972has multiple threads, most versions of @code{pidof} support the
12973@code{-s} option to only return the first process ID.
12974
07f31aa6 12975@item On the host machine,
f822c95b
DJ
12976first make sure you have the necessary symbol files. Load symbols for
12977your application using the @code{file} command before you connect. Use
12978@code{set sysroot} to locate target libraries (unless your @value{GDBN}
12979was compiled with the correct sysroot using @code{--with-system-root}).
12980
12981The symbol file and target libraries must exactly match the executable
12982and libraries on the target, with one exception: the files on the host
12983system should not be stripped, even if the files on the target system
12984are. Mismatched or missing files will lead to confusing results
12985during debugging. On @sc{gnu}/Linux targets, mismatched or missing
12986files may also prevent @code{gdbserver} from debugging multi-threaded
12987programs.
12988
79a6e687 12989Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
12990For TCP connections, you must start up @code{gdbserver} prior to using
12991the @code{target remote} command. Otherwise you may get an error whose
12992text depends on the host system, but which usually looks something like
07f31aa6 12993@samp{Connection refused}. You don't need to use the @code{load}
397ca115 12994command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 12995already on the target.
07f31aa6 12996
6f05cf9f
AC
12997@end table
12998
79a6e687 12999@subsection Monitor Commands for @code{gdbserver}
c74d0ad8
DJ
13000@cindex monitor commands, for @code{gdbserver}
13001
13002During a @value{GDBN} session using @code{gdbserver}, you can use the
13003@code{monitor} command to send special requests to @code{gdbserver}.
13004Here are the available commands; they are only of interest when
13005debugging @value{GDBN} or @code{gdbserver}.
13006
13007@table @code
13008@item monitor help
13009List the available monitor commands.
13010
13011@item monitor set debug 0
13012@itemx monitor set debug 1
13013Disable or enable general debugging messages.
13014
13015@item monitor set remote-debug 0
13016@itemx monitor set remote-debug 1
13017Disable or enable specific debugging messages associated with the remote
13018protocol (@pxref{Remote Protocol}).
13019
13020@end table
13021
79a6e687
BW
13022@node Remote Configuration
13023@section Remote Configuration
501eef12 13024
9c16f35a
EZ
13025@kindex set remote
13026@kindex show remote
13027This section documents the configuration options available when
13028debugging remote programs. For the options related to the File I/O
fc320d37 13029extensions of the remote protocol, see @ref{system,
9c16f35a 13030system-call-allowed}.
501eef12
AC
13031
13032@table @code
9c16f35a 13033@item set remoteaddresssize @var{bits}
d3e8051b 13034@cindex address size for remote targets
9c16f35a
EZ
13035@cindex bits in remote address
13036Set the maximum size of address in a memory packet to the specified
13037number of bits. @value{GDBN} will mask off the address bits above
13038that number, when it passes addresses to the remote target. The
13039default value is the number of bits in the target's address.
13040
13041@item show remoteaddresssize
13042Show the current value of remote address size in bits.
13043
13044@item set remotebaud @var{n}
13045@cindex baud rate for remote targets
13046Set the baud rate for the remote serial I/O to @var{n} baud. The
13047value is used to set the speed of the serial port used for debugging
13048remote targets.
13049
13050@item show remotebaud
13051Show the current speed of the remote connection.
13052
13053@item set remotebreak
13054@cindex interrupt remote programs
13055@cindex BREAK signal instead of Ctrl-C
9a6253be 13056@anchor{set remotebreak}
9c16f35a 13057If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13058when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13059on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13060character instead. The default is off, since most remote systems
13061expect to see @samp{Ctrl-C} as the interrupt signal.
13062
13063@item show remotebreak
13064Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13065interrupt the remote program.
13066
23776285
MR
13067@item set remoteflow on
13068@itemx set remoteflow off
13069@kindex set remoteflow
13070Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13071on the serial port used to communicate to the remote target.
13072
13073@item show remoteflow
13074@kindex show remoteflow
13075Show the current setting of hardware flow control.
13076
9c16f35a
EZ
13077@item set remotelogbase @var{base}
13078Set the base (a.k.a.@: radix) of logging serial protocol
13079communications to @var{base}. Supported values of @var{base} are:
13080@code{ascii}, @code{octal}, and @code{hex}. The default is
13081@code{ascii}.
13082
13083@item show remotelogbase
13084Show the current setting of the radix for logging remote serial
13085protocol.
13086
13087@item set remotelogfile @var{file}
13088@cindex record serial communications on file
13089Record remote serial communications on the named @var{file}. The
13090default is not to record at all.
13091
13092@item show remotelogfile.
13093Show the current setting of the file name on which to record the
13094serial communications.
13095
13096@item set remotetimeout @var{num}
13097@cindex timeout for serial communications
13098@cindex remote timeout
13099Set the timeout limit to wait for the remote target to respond to
13100@var{num} seconds. The default is 2 seconds.
13101
13102@item show remotetimeout
13103Show the current number of seconds to wait for the remote target
13104responses.
13105
13106@cindex limit hardware breakpoints and watchpoints
13107@cindex remote target, limit break- and watchpoints
501eef12
AC
13108@anchor{set remote hardware-watchpoint-limit}
13109@anchor{set remote hardware-breakpoint-limit}
13110@item set remote hardware-watchpoint-limit @var{limit}
13111@itemx set remote hardware-breakpoint-limit @var{limit}
13112Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13113watchpoints. A limit of -1, the default, is treated as unlimited.
13114@end table
13115
427c3a89
DJ
13116@cindex remote packets, enabling and disabling
13117The @value{GDBN} remote protocol autodetects the packets supported by
13118your debugging stub. If you need to override the autodetection, you
13119can use these commands to enable or disable individual packets. Each
13120packet can be set to @samp{on} (the remote target supports this
13121packet), @samp{off} (the remote target does not support this packet),
13122or @samp{auto} (detect remote target support for this packet). They
13123all default to @samp{auto}. For more information about each packet,
13124see @ref{Remote Protocol}.
13125
13126During normal use, you should not have to use any of these commands.
13127If you do, that may be a bug in your remote debugging stub, or a bug
13128in @value{GDBN}. You may want to report the problem to the
13129@value{GDBN} developers.
13130
cfa9d6d9
DJ
13131For each packet @var{name}, the command to enable or disable the
13132packet is @code{set remote @var{name}-packet}. The available settings
13133are:
427c3a89 13134
cfa9d6d9 13135@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13136@item Command Name
13137@tab Remote Packet
13138@tab Related Features
13139
cfa9d6d9 13140@item @code{fetch-register}
427c3a89
DJ
13141@tab @code{p}
13142@tab @code{info registers}
13143
cfa9d6d9 13144@item @code{set-register}
427c3a89
DJ
13145@tab @code{P}
13146@tab @code{set}
13147
cfa9d6d9 13148@item @code{binary-download}
427c3a89
DJ
13149@tab @code{X}
13150@tab @code{load}, @code{set}
13151
cfa9d6d9 13152@item @code{read-aux-vector}
427c3a89
DJ
13153@tab @code{qXfer:auxv:read}
13154@tab @code{info auxv}
13155
cfa9d6d9 13156@item @code{symbol-lookup}
427c3a89
DJ
13157@tab @code{qSymbol}
13158@tab Detecting multiple threads
13159
cfa9d6d9 13160@item @code{verbose-resume}
427c3a89
DJ
13161@tab @code{vCont}
13162@tab Stepping or resuming multiple threads
13163
cfa9d6d9 13164@item @code{software-breakpoint}
427c3a89
DJ
13165@tab @code{Z0}
13166@tab @code{break}
13167
cfa9d6d9 13168@item @code{hardware-breakpoint}
427c3a89
DJ
13169@tab @code{Z1}
13170@tab @code{hbreak}
13171
cfa9d6d9 13172@item @code{write-watchpoint}
427c3a89
DJ
13173@tab @code{Z2}
13174@tab @code{watch}
13175
cfa9d6d9 13176@item @code{read-watchpoint}
427c3a89
DJ
13177@tab @code{Z3}
13178@tab @code{rwatch}
13179
cfa9d6d9 13180@item @code{access-watchpoint}
427c3a89
DJ
13181@tab @code{Z4}
13182@tab @code{awatch}
13183
cfa9d6d9
DJ
13184@item @code{target-features}
13185@tab @code{qXfer:features:read}
13186@tab @code{set architecture}
13187
13188@item @code{library-info}
13189@tab @code{qXfer:libraries:read}
13190@tab @code{info sharedlibrary}
13191
13192@item @code{memory-map}
13193@tab @code{qXfer:memory-map:read}
13194@tab @code{info mem}
13195
13196@item @code{read-spu-object}
13197@tab @code{qXfer:spu:read}
13198@tab @code{info spu}
13199
13200@item @code{write-spu-object}
13201@tab @code{qXfer:spu:write}
13202@tab @code{info spu}
13203
13204@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13205@tab @code{qGetTLSAddr}
13206@tab Displaying @code{__thread} variables
13207
13208@item @code{supported-packets}
13209@tab @code{qSupported}
13210@tab Remote communications parameters
13211
cfa9d6d9 13212@item @code{pass-signals}
89be2091
DJ
13213@tab @code{QPassSignals}
13214@tab @code{handle @var{signal}}
13215
a6b151f1
DJ
13216@item @code{hostio-close-packet}
13217@tab @code{vFile:close}
13218@tab @code{remote get}, @code{remote put}
13219
13220@item @code{hostio-open-packet}
13221@tab @code{vFile:open}
13222@tab @code{remote get}, @code{remote put}
13223
13224@item @code{hostio-pread-packet}
13225@tab @code{vFile:pread}
13226@tab @code{remote get}, @code{remote put}
13227
13228@item @code{hostio-pwrite-packet}
13229@tab @code{vFile:pwrite}
13230@tab @code{remote get}, @code{remote put}
13231
13232@item @code{hostio-unlink-packet}
13233@tab @code{vFile:unlink}
13234@tab @code{remote delete}
427c3a89
DJ
13235@end multitable
13236
79a6e687
BW
13237@node Remote Stub
13238@section Implementing a Remote Stub
7a292a7a 13239
8e04817f
AC
13240@cindex debugging stub, example
13241@cindex remote stub, example
13242@cindex stub example, remote debugging
13243The stub files provided with @value{GDBN} implement the target side of the
13244communication protocol, and the @value{GDBN} side is implemented in the
13245@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13246these subroutines to communicate, and ignore the details. (If you're
13247implementing your own stub file, you can still ignore the details: start
13248with one of the existing stub files. @file{sparc-stub.c} is the best
13249organized, and therefore the easiest to read.)
13250
104c1213
JM
13251@cindex remote serial debugging, overview
13252To debug a program running on another machine (the debugging
13253@dfn{target} machine), you must first arrange for all the usual
13254prerequisites for the program to run by itself. For example, for a C
13255program, you need:
c906108c 13256
104c1213
JM
13257@enumerate
13258@item
13259A startup routine to set up the C runtime environment; these usually
13260have a name like @file{crt0}. The startup routine may be supplied by
13261your hardware supplier, or you may have to write your own.
96baa820 13262
5d161b24 13263@item
d4f3574e 13264A C subroutine library to support your program's
104c1213 13265subroutine calls, notably managing input and output.
96baa820 13266
104c1213
JM
13267@item
13268A way of getting your program to the other machine---for example, a
13269download program. These are often supplied by the hardware
13270manufacturer, but you may have to write your own from hardware
13271documentation.
13272@end enumerate
96baa820 13273
104c1213
JM
13274The next step is to arrange for your program to use a serial port to
13275communicate with the machine where @value{GDBN} is running (the @dfn{host}
13276machine). In general terms, the scheme looks like this:
96baa820 13277
104c1213
JM
13278@table @emph
13279@item On the host,
13280@value{GDBN} already understands how to use this protocol; when everything
13281else is set up, you can simply use the @samp{target remote} command
13282(@pxref{Targets,,Specifying a Debugging Target}).
13283
13284@item On the target,
13285you must link with your program a few special-purpose subroutines that
13286implement the @value{GDBN} remote serial protocol. The file containing these
13287subroutines is called a @dfn{debugging stub}.
13288
13289On certain remote targets, you can use an auxiliary program
13290@code{gdbserver} instead of linking a stub into your program.
79a6e687 13291@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13292@end table
96baa820 13293
104c1213
JM
13294The debugging stub is specific to the architecture of the remote
13295machine; for example, use @file{sparc-stub.c} to debug programs on
13296@sc{sparc} boards.
96baa820 13297
104c1213
JM
13298@cindex remote serial stub list
13299These working remote stubs are distributed with @value{GDBN}:
96baa820 13300
104c1213
JM
13301@table @code
13302
13303@item i386-stub.c
41afff9a 13304@cindex @file{i386-stub.c}
104c1213
JM
13305@cindex Intel
13306@cindex i386
13307For Intel 386 and compatible architectures.
13308
13309@item m68k-stub.c
41afff9a 13310@cindex @file{m68k-stub.c}
104c1213
JM
13311@cindex Motorola 680x0
13312@cindex m680x0
13313For Motorola 680x0 architectures.
13314
13315@item sh-stub.c
41afff9a 13316@cindex @file{sh-stub.c}
172c2a43 13317@cindex Renesas
104c1213 13318@cindex SH
172c2a43 13319For Renesas SH architectures.
104c1213
JM
13320
13321@item sparc-stub.c
41afff9a 13322@cindex @file{sparc-stub.c}
104c1213
JM
13323@cindex Sparc
13324For @sc{sparc} architectures.
13325
13326@item sparcl-stub.c
41afff9a 13327@cindex @file{sparcl-stub.c}
104c1213
JM
13328@cindex Fujitsu
13329@cindex SparcLite
13330For Fujitsu @sc{sparclite} architectures.
13331
13332@end table
13333
13334The @file{README} file in the @value{GDBN} distribution may list other
13335recently added stubs.
13336
13337@menu
13338* Stub Contents:: What the stub can do for you
13339* Bootstrapping:: What you must do for the stub
13340* Debug Session:: Putting it all together
104c1213
JM
13341@end menu
13342
6d2ebf8b 13343@node Stub Contents
79a6e687 13344@subsection What the Stub Can Do for You
104c1213
JM
13345
13346@cindex remote serial stub
13347The debugging stub for your architecture supplies these three
13348subroutines:
13349
13350@table @code
13351@item set_debug_traps
4644b6e3 13352@findex set_debug_traps
104c1213
JM
13353@cindex remote serial stub, initialization
13354This routine arranges for @code{handle_exception} to run when your
13355program stops. You must call this subroutine explicitly near the
13356beginning of your program.
13357
13358@item handle_exception
4644b6e3 13359@findex handle_exception
104c1213
JM
13360@cindex remote serial stub, main routine
13361This is the central workhorse, but your program never calls it
13362explicitly---the setup code arranges for @code{handle_exception} to
13363run when a trap is triggered.
13364
13365@code{handle_exception} takes control when your program stops during
13366execution (for example, on a breakpoint), and mediates communications
13367with @value{GDBN} on the host machine. This is where the communications
13368protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13369representative on the target machine. It begins by sending summary
104c1213
JM
13370information on the state of your program, then continues to execute,
13371retrieving and transmitting any information @value{GDBN} needs, until you
13372execute a @value{GDBN} command that makes your program resume; at that point,
13373@code{handle_exception} returns control to your own code on the target
5d161b24 13374machine.
104c1213
JM
13375
13376@item breakpoint
13377@cindex @code{breakpoint} subroutine, remote
13378Use this auxiliary subroutine to make your program contain a
13379breakpoint. Depending on the particular situation, this may be the only
13380way for @value{GDBN} to get control. For instance, if your target
13381machine has some sort of interrupt button, you won't need to call this;
13382pressing the interrupt button transfers control to
13383@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13384simply receiving characters on the serial port may also trigger a trap;
13385again, in that situation, you don't need to call @code{breakpoint} from
13386your own program---simply running @samp{target remote} from the host
5d161b24 13387@value{GDBN} session gets control.
104c1213
JM
13388
13389Call @code{breakpoint} if none of these is true, or if you simply want
13390to make certain your program stops at a predetermined point for the
13391start of your debugging session.
13392@end table
13393
6d2ebf8b 13394@node Bootstrapping
79a6e687 13395@subsection What You Must Do for the Stub
104c1213
JM
13396
13397@cindex remote stub, support routines
13398The debugging stubs that come with @value{GDBN} are set up for a particular
13399chip architecture, but they have no information about the rest of your
13400debugging target machine.
13401
13402First of all you need to tell the stub how to communicate with the
13403serial port.
13404
13405@table @code
13406@item int getDebugChar()
4644b6e3 13407@findex getDebugChar
104c1213
JM
13408Write this subroutine to read a single character from the serial port.
13409It may be identical to @code{getchar} for your target system; a
13410different name is used to allow you to distinguish the two if you wish.
13411
13412@item void putDebugChar(int)
4644b6e3 13413@findex putDebugChar
104c1213 13414Write this subroutine to write a single character to the serial port.
5d161b24 13415It may be identical to @code{putchar} for your target system; a
104c1213
JM
13416different name is used to allow you to distinguish the two if you wish.
13417@end table
13418
13419@cindex control C, and remote debugging
13420@cindex interrupting remote targets
13421If you want @value{GDBN} to be able to stop your program while it is
13422running, you need to use an interrupt-driven serial driver, and arrange
13423for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13424character). That is the character which @value{GDBN} uses to tell the
13425remote system to stop.
13426
13427Getting the debugging target to return the proper status to @value{GDBN}
13428probably requires changes to the standard stub; one quick and dirty way
13429is to just execute a breakpoint instruction (the ``dirty'' part is that
13430@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13431
13432Other routines you need to supply are:
13433
13434@table @code
13435@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13436@findex exceptionHandler
104c1213
JM
13437Write this function to install @var{exception_address} in the exception
13438handling tables. You need to do this because the stub does not have any
13439way of knowing what the exception handling tables on your target system
13440are like (for example, the processor's table might be in @sc{rom},
13441containing entries which point to a table in @sc{ram}).
13442@var{exception_number} is the exception number which should be changed;
13443its meaning is architecture-dependent (for example, different numbers
13444might represent divide by zero, misaligned access, etc). When this
13445exception occurs, control should be transferred directly to
13446@var{exception_address}, and the processor state (stack, registers,
13447and so on) should be just as it is when a processor exception occurs. So if
13448you want to use a jump instruction to reach @var{exception_address}, it
13449should be a simple jump, not a jump to subroutine.
13450
13451For the 386, @var{exception_address} should be installed as an interrupt
13452gate so that interrupts are masked while the handler runs. The gate
13453should be at privilege level 0 (the most privileged level). The
13454@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13455help from @code{exceptionHandler}.
13456
13457@item void flush_i_cache()
4644b6e3 13458@findex flush_i_cache
d4f3574e 13459On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13460instruction cache, if any, on your target machine. If there is no
13461instruction cache, this subroutine may be a no-op.
13462
13463On target machines that have instruction caches, @value{GDBN} requires this
13464function to make certain that the state of your program is stable.
13465@end table
13466
13467@noindent
13468You must also make sure this library routine is available:
13469
13470@table @code
13471@item void *memset(void *, int, int)
4644b6e3 13472@findex memset
104c1213
JM
13473This is the standard library function @code{memset} that sets an area of
13474memory to a known value. If you have one of the free versions of
13475@code{libc.a}, @code{memset} can be found there; otherwise, you must
13476either obtain it from your hardware manufacturer, or write your own.
13477@end table
13478
13479If you do not use the GNU C compiler, you may need other standard
13480library subroutines as well; this varies from one stub to another,
13481but in general the stubs are likely to use any of the common library
e22ea452 13482subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13483
13484
6d2ebf8b 13485@node Debug Session
79a6e687 13486@subsection Putting it All Together
104c1213
JM
13487
13488@cindex remote serial debugging summary
13489In summary, when your program is ready to debug, you must follow these
13490steps.
13491
13492@enumerate
13493@item
6d2ebf8b 13494Make sure you have defined the supporting low-level routines
79a6e687 13495(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13496@display
13497@code{getDebugChar}, @code{putDebugChar},
13498@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13499@end display
13500
13501@item
13502Insert these lines near the top of your program:
13503
474c8240 13504@smallexample
104c1213
JM
13505set_debug_traps();
13506breakpoint();
474c8240 13507@end smallexample
104c1213
JM
13508
13509@item
13510For the 680x0 stub only, you need to provide a variable called
13511@code{exceptionHook}. Normally you just use:
13512
474c8240 13513@smallexample
104c1213 13514void (*exceptionHook)() = 0;
474c8240 13515@end smallexample
104c1213 13516
d4f3574e 13517@noindent
104c1213 13518but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13519function in your program, that function is called when
104c1213
JM
13520@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13521error). The function indicated by @code{exceptionHook} is called with
13522one parameter: an @code{int} which is the exception number.
13523
13524@item
13525Compile and link together: your program, the @value{GDBN} debugging stub for
13526your target architecture, and the supporting subroutines.
13527
13528@item
13529Make sure you have a serial connection between your target machine and
13530the @value{GDBN} host, and identify the serial port on the host.
13531
13532@item
13533@c The "remote" target now provides a `load' command, so we should
13534@c document that. FIXME.
13535Download your program to your target machine (or get it there by
13536whatever means the manufacturer provides), and start it.
13537
13538@item
07f31aa6 13539Start @value{GDBN} on the host, and connect to the target
79a6e687 13540(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13541
104c1213
JM
13542@end enumerate
13543
8e04817f
AC
13544@node Configurations
13545@chapter Configuration-Specific Information
104c1213 13546
8e04817f
AC
13547While nearly all @value{GDBN} commands are available for all native and
13548cross versions of the debugger, there are some exceptions. This chapter
13549describes things that are only available in certain configurations.
104c1213 13550
8e04817f
AC
13551There are three major categories of configurations: native
13552configurations, where the host and target are the same, embedded
13553operating system configurations, which are usually the same for several
13554different processor architectures, and bare embedded processors, which
13555are quite different from each other.
104c1213 13556
8e04817f
AC
13557@menu
13558* Native::
13559* Embedded OS::
13560* Embedded Processors::
13561* Architectures::
13562@end menu
104c1213 13563
8e04817f
AC
13564@node Native
13565@section Native
104c1213 13566
8e04817f
AC
13567This section describes details specific to particular native
13568configurations.
6cf7e474 13569
8e04817f
AC
13570@menu
13571* HP-UX:: HP-UX
7561d450 13572* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13573* SVR4 Process Information:: SVR4 process information
13574* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13575* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13576* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13577* Neutrino:: Features specific to QNX Neutrino
8e04817f 13578@end menu
6cf7e474 13579
8e04817f
AC
13580@node HP-UX
13581@subsection HP-UX
104c1213 13582
8e04817f
AC
13583On HP-UX systems, if you refer to a function or variable name that
13584begins with a dollar sign, @value{GDBN} searches for a user or system
13585name first, before it searches for a convenience variable.
104c1213 13586
9c16f35a 13587
7561d450
MK
13588@node BSD libkvm Interface
13589@subsection BSD libkvm Interface
13590
13591@cindex libkvm
13592@cindex kernel memory image
13593@cindex kernel crash dump
13594
13595BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13596interface that provides a uniform interface for accessing kernel virtual
13597memory images, including live systems and crash dumps. @value{GDBN}
13598uses this interface to allow you to debug live kernels and kernel crash
13599dumps on many native BSD configurations. This is implemented as a
13600special @code{kvm} debugging target. For debugging a live system, load
13601the currently running kernel into @value{GDBN} and connect to the
13602@code{kvm} target:
13603
13604@smallexample
13605(@value{GDBP}) @b{target kvm}
13606@end smallexample
13607
13608For debugging crash dumps, provide the file name of the crash dump as an
13609argument:
13610
13611@smallexample
13612(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13613@end smallexample
13614
13615Once connected to the @code{kvm} target, the following commands are
13616available:
13617
13618@table @code
13619@kindex kvm
13620@item kvm pcb
721c2651 13621Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13622
13623@item kvm proc
13624Set current context from proc address. This command isn't available on
13625modern FreeBSD systems.
13626@end table
13627
8e04817f 13628@node SVR4 Process Information
79a6e687 13629@subsection SVR4 Process Information
60bf7e09
EZ
13630@cindex /proc
13631@cindex examine process image
13632@cindex process info via @file{/proc}
104c1213 13633
60bf7e09
EZ
13634Many versions of SVR4 and compatible systems provide a facility called
13635@samp{/proc} that can be used to examine the image of a running
13636process using file-system subroutines. If @value{GDBN} is configured
13637for an operating system with this facility, the command @code{info
13638proc} is available to report information about the process running
13639your program, or about any process running on your system. @code{info
13640proc} works only on SVR4 systems that include the @code{procfs} code.
13641This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13642Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13643
8e04817f
AC
13644@table @code
13645@kindex info proc
60bf7e09 13646@cindex process ID
8e04817f 13647@item info proc
60bf7e09
EZ
13648@itemx info proc @var{process-id}
13649Summarize available information about any running process. If a
13650process ID is specified by @var{process-id}, display information about
13651that process; otherwise display information about the program being
13652debugged. The summary includes the debugged process ID, the command
13653line used to invoke it, its current working directory, and its
13654executable file's absolute file name.
13655
13656On some systems, @var{process-id} can be of the form
13657@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13658within a process. If the optional @var{pid} part is missing, it means
13659a thread from the process being debugged (the leading @samp{/} still
13660needs to be present, or else @value{GDBN} will interpret the number as
13661a process ID rather than a thread ID).
6cf7e474 13662
8e04817f 13663@item info proc mappings
60bf7e09
EZ
13664@cindex memory address space mappings
13665Report the memory address space ranges accessible in the program, with
13666information on whether the process has read, write, or execute access
13667rights to each range. On @sc{gnu}/Linux systems, each memory range
13668includes the object file which is mapped to that range, instead of the
13669memory access rights to that range.
13670
13671@item info proc stat
13672@itemx info proc status
13673@cindex process detailed status information
13674These subcommands are specific to @sc{gnu}/Linux systems. They show
13675the process-related information, including the user ID and group ID;
13676how many threads are there in the process; its virtual memory usage;
13677the signals that are pending, blocked, and ignored; its TTY; its
13678consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13679value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13680(type @kbd{man 5 proc} from your shell prompt).
13681
13682@item info proc all
13683Show all the information about the process described under all of the
13684above @code{info proc} subcommands.
13685
8e04817f
AC
13686@ignore
13687@comment These sub-options of 'info proc' were not included when
13688@comment procfs.c was re-written. Keep their descriptions around
13689@comment against the day when someone finds the time to put them back in.
13690@kindex info proc times
13691@item info proc times
13692Starting time, user CPU time, and system CPU time for your program and
13693its children.
6cf7e474 13694
8e04817f
AC
13695@kindex info proc id
13696@item info proc id
13697Report on the process IDs related to your program: its own process ID,
13698the ID of its parent, the process group ID, and the session ID.
8e04817f 13699@end ignore
721c2651
EZ
13700
13701@item set procfs-trace
13702@kindex set procfs-trace
13703@cindex @code{procfs} API calls
13704This command enables and disables tracing of @code{procfs} API calls.
13705
13706@item show procfs-trace
13707@kindex show procfs-trace
13708Show the current state of @code{procfs} API call tracing.
13709
13710@item set procfs-file @var{file}
13711@kindex set procfs-file
13712Tell @value{GDBN} to write @code{procfs} API trace to the named
13713@var{file}. @value{GDBN} appends the trace info to the previous
13714contents of the file. The default is to display the trace on the
13715standard output.
13716
13717@item show procfs-file
13718@kindex show procfs-file
13719Show the file to which @code{procfs} API trace is written.
13720
13721@item proc-trace-entry
13722@itemx proc-trace-exit
13723@itemx proc-untrace-entry
13724@itemx proc-untrace-exit
13725@kindex proc-trace-entry
13726@kindex proc-trace-exit
13727@kindex proc-untrace-entry
13728@kindex proc-untrace-exit
13729These commands enable and disable tracing of entries into and exits
13730from the @code{syscall} interface.
13731
13732@item info pidlist
13733@kindex info pidlist
13734@cindex process list, QNX Neutrino
13735For QNX Neutrino only, this command displays the list of all the
13736processes and all the threads within each process.
13737
13738@item info meminfo
13739@kindex info meminfo
13740@cindex mapinfo list, QNX Neutrino
13741For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13742@end table
104c1213 13743
8e04817f
AC
13744@node DJGPP Native
13745@subsection Features for Debugging @sc{djgpp} Programs
13746@cindex @sc{djgpp} debugging
13747@cindex native @sc{djgpp} debugging
13748@cindex MS-DOS-specific commands
104c1213 13749
514c4d71
EZ
13750@cindex DPMI
13751@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13752MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13753that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13754top of real-mode DOS systems and their emulations.
104c1213 13755
8e04817f
AC
13756@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13757defines a few commands specific to the @sc{djgpp} port. This
13758subsection describes those commands.
104c1213 13759
8e04817f
AC
13760@table @code
13761@kindex info dos
13762@item info dos
13763This is a prefix of @sc{djgpp}-specific commands which print
13764information about the target system and important OS structures.
f1251bdd 13765
8e04817f
AC
13766@kindex sysinfo
13767@cindex MS-DOS system info
13768@cindex free memory information (MS-DOS)
13769@item info dos sysinfo
13770This command displays assorted information about the underlying
13771platform: the CPU type and features, the OS version and flavor, the
13772DPMI version, and the available conventional and DPMI memory.
104c1213 13773
8e04817f
AC
13774@cindex GDT
13775@cindex LDT
13776@cindex IDT
13777@cindex segment descriptor tables
13778@cindex descriptor tables display
13779@item info dos gdt
13780@itemx info dos ldt
13781@itemx info dos idt
13782These 3 commands display entries from, respectively, Global, Local,
13783and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
13784tables are data structures which store a descriptor for each segment
13785that is currently in use. The segment's selector is an index into a
13786descriptor table; the table entry for that index holds the
13787descriptor's base address and limit, and its attributes and access
13788rights.
104c1213 13789
8e04817f
AC
13790A typical @sc{djgpp} program uses 3 segments: a code segment, a data
13791segment (used for both data and the stack), and a DOS segment (which
13792allows access to DOS/BIOS data structures and absolute addresses in
13793conventional memory). However, the DPMI host will usually define
13794additional segments in order to support the DPMI environment.
d4f3574e 13795
8e04817f
AC
13796@cindex garbled pointers
13797These commands allow to display entries from the descriptor tables.
13798Without an argument, all entries from the specified table are
13799displayed. An argument, which should be an integer expression, means
13800display a single entry whose index is given by the argument. For
13801example, here's a convenient way to display information about the
13802debugged program's data segment:
104c1213 13803
8e04817f
AC
13804@smallexample
13805@exdent @code{(@value{GDBP}) info dos ldt $ds}
13806@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
13807@end smallexample
104c1213 13808
8e04817f
AC
13809@noindent
13810This comes in handy when you want to see whether a pointer is outside
13811the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 13812
8e04817f
AC
13813@cindex page tables display (MS-DOS)
13814@item info dos pde
13815@itemx info dos pte
13816These two commands display entries from, respectively, the Page
13817Directory and the Page Tables. Page Directories and Page Tables are
13818data structures which control how virtual memory addresses are mapped
13819into physical addresses. A Page Table includes an entry for every
13820page of memory that is mapped into the program's address space; there
13821may be several Page Tables, each one holding up to 4096 entries. A
13822Page Directory has up to 4096 entries, one each for every Page Table
13823that is currently in use.
104c1213 13824
8e04817f
AC
13825Without an argument, @kbd{info dos pde} displays the entire Page
13826Directory, and @kbd{info dos pte} displays all the entries in all of
13827the Page Tables. An argument, an integer expression, given to the
13828@kbd{info dos pde} command means display only that entry from the Page
13829Directory table. An argument given to the @kbd{info dos pte} command
13830means display entries from a single Page Table, the one pointed to by
13831the specified entry in the Page Directory.
104c1213 13832
8e04817f
AC
13833@cindex direct memory access (DMA) on MS-DOS
13834These commands are useful when your program uses @dfn{DMA} (Direct
13835Memory Access), which needs physical addresses to program the DMA
13836controller.
104c1213 13837
8e04817f 13838These commands are supported only with some DPMI servers.
104c1213 13839
8e04817f
AC
13840@cindex physical address from linear address
13841@item info dos address-pte @var{addr}
13842This command displays the Page Table entry for a specified linear
514c4d71
EZ
13843address. The argument @var{addr} is a linear address which should
13844already have the appropriate segment's base address added to it,
13845because this command accepts addresses which may belong to @emph{any}
13846segment. For example, here's how to display the Page Table entry for
13847the page where a variable @code{i} is stored:
104c1213 13848
b383017d 13849@smallexample
8e04817f
AC
13850@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
13851@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 13852@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 13853@end smallexample
104c1213 13854
8e04817f
AC
13855@noindent
13856This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 13857whose physical base address is @code{0x02698000}, and shows all the
8e04817f 13858attributes of that page.
104c1213 13859
8e04817f
AC
13860Note that you must cast the addresses of variables to a @code{char *},
13861since otherwise the value of @code{__djgpp_base_address}, the base
13862address of all variables and functions in a @sc{djgpp} program, will
13863be added using the rules of C pointer arithmetics: if @code{i} is
13864declared an @code{int}, @value{GDBN} will add 4 times the value of
13865@code{__djgpp_base_address} to the address of @code{i}.
104c1213 13866
8e04817f
AC
13867Here's another example, it displays the Page Table entry for the
13868transfer buffer:
104c1213 13869
8e04817f
AC
13870@smallexample
13871@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
13872@exdent @code{Page Table entry for address 0x29110:}
13873@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
13874@end smallexample
104c1213 13875
8e04817f
AC
13876@noindent
13877(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
138783rd member of the @code{_go32_info_block} structure.) The output
13879clearly shows that this DPMI server maps the addresses in conventional
13880memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
13881linear (@code{0x29110}) addresses are identical.
104c1213 13882
8e04817f
AC
13883This command is supported only with some DPMI servers.
13884@end table
104c1213 13885
c45da7e6 13886@cindex DOS serial data link, remote debugging
a8f24a35
EZ
13887In addition to native debugging, the DJGPP port supports remote
13888debugging via a serial data link. The following commands are specific
13889to remote serial debugging in the DJGPP port of @value{GDBN}.
13890
13891@table @code
13892@kindex set com1base
13893@kindex set com1irq
13894@kindex set com2base
13895@kindex set com2irq
13896@kindex set com3base
13897@kindex set com3irq
13898@kindex set com4base
13899@kindex set com4irq
13900@item set com1base @var{addr}
13901This command sets the base I/O port address of the @file{COM1} serial
13902port.
13903
13904@item set com1irq @var{irq}
13905This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
13906for the @file{COM1} serial port.
13907
13908There are similar commands @samp{set com2base}, @samp{set com3irq},
13909etc.@: for setting the port address and the @code{IRQ} lines for the
13910other 3 COM ports.
13911
13912@kindex show com1base
13913@kindex show com1irq
13914@kindex show com2base
13915@kindex show com2irq
13916@kindex show com3base
13917@kindex show com3irq
13918@kindex show com4base
13919@kindex show com4irq
13920The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
13921display the current settings of the base address and the @code{IRQ}
13922lines used by the COM ports.
c45da7e6
EZ
13923
13924@item info serial
13925@kindex info serial
13926@cindex DOS serial port status
13927This command prints the status of the 4 DOS serial ports. For each
13928port, it prints whether it's active or not, its I/O base address and
13929IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
13930counts of various errors encountered so far.
a8f24a35
EZ
13931@end table
13932
13933
78c47bea 13934@node Cygwin Native
79a6e687 13935@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
13936@cindex MS Windows debugging
13937@cindex native Cygwin debugging
13938@cindex Cygwin-specific commands
13939
be448670 13940@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
13941DLLs with and without symbolic debugging information. There are various
13942additional Cygwin-specific commands, described in this section.
13943Working with DLLs that have no debugging symbols is described in
13944@ref{Non-debug DLL Symbols}.
78c47bea
PM
13945
13946@table @code
13947@kindex info w32
13948@item info w32
db2e3e2e 13949This is a prefix of MS Windows-specific commands which print
78c47bea
PM
13950information about the target system and important OS structures.
13951
13952@item info w32 selector
13953This command displays information returned by
13954the Win32 API @code{GetThreadSelectorEntry} function.
13955It takes an optional argument that is evaluated to
13956a long value to give the information about this given selector.
13957Without argument, this command displays information
d3e8051b 13958about the six segment registers.
78c47bea
PM
13959
13960@kindex info dll
13961@item info dll
db2e3e2e 13962This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
13963
13964@kindex dll-symbols
13965@item dll-symbols
13966This command loads symbols from a dll similarly to
13967add-sym command but without the need to specify a base address.
13968
be90c084 13969@kindex set cygwin-exceptions
e16b02ee
EZ
13970@cindex debugging the Cygwin DLL
13971@cindex Cygwin DLL, debugging
be90c084 13972@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
13973If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
13974happen inside the Cygwin DLL. If @var{mode} is @code{off},
13975@value{GDBN} will delay recognition of exceptions, and may ignore some
13976exceptions which seem to be caused by internal Cygwin DLL
13977``bookkeeping''. This option is meant primarily for debugging the
13978Cygwin DLL itself; the default value is @code{off} to avoid annoying
13979@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
13980
13981@kindex show cygwin-exceptions
13982@item show cygwin-exceptions
e16b02ee
EZ
13983Displays whether @value{GDBN} will break on exceptions that happen
13984inside the Cygwin DLL itself.
be90c084 13985
b383017d 13986@kindex set new-console
78c47bea 13987@item set new-console @var{mode}
b383017d 13988If @var{mode} is @code{on} the debuggee will
78c47bea
PM
13989be started in a new console on next start.
13990If @var{mode} is @code{off}i, the debuggee will
13991be started in the same console as the debugger.
13992
13993@kindex show new-console
13994@item show new-console
13995Displays whether a new console is used
13996when the debuggee is started.
13997
13998@kindex set new-group
13999@item set new-group @var{mode}
14000This boolean value controls whether the debuggee should
14001start a new group or stay in the same group as the debugger.
14002This affects the way the Windows OS handles
c8aa23ab 14003@samp{Ctrl-C}.
78c47bea
PM
14004
14005@kindex show new-group
14006@item show new-group
14007Displays current value of new-group boolean.
14008
14009@kindex set debugevents
14010@item set debugevents
219eec71
EZ
14011This boolean value adds debug output concerning kernel events related
14012to the debuggee seen by the debugger. This includes events that
14013signal thread and process creation and exit, DLL loading and
14014unloading, console interrupts, and debugging messages produced by the
14015Windows @code{OutputDebugString} API call.
78c47bea
PM
14016
14017@kindex set debugexec
14018@item set debugexec
b383017d 14019This boolean value adds debug output concerning execute events
219eec71 14020(such as resume thread) seen by the debugger.
78c47bea
PM
14021
14022@kindex set debugexceptions
14023@item set debugexceptions
219eec71
EZ
14024This boolean value adds debug output concerning exceptions in the
14025debuggee seen by the debugger.
78c47bea
PM
14026
14027@kindex set debugmemory
14028@item set debugmemory
219eec71
EZ
14029This boolean value adds debug output concerning debuggee memory reads
14030and writes by the debugger.
78c47bea
PM
14031
14032@kindex set shell
14033@item set shell
14034This boolean values specifies whether the debuggee is called
14035via a shell or directly (default value is on).
14036
14037@kindex show shell
14038@item show shell
14039Displays if the debuggee will be started with a shell.
14040
14041@end table
14042
be448670 14043@menu
79a6e687 14044* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14045@end menu
14046
79a6e687
BW
14047@node Non-debug DLL Symbols
14048@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14049@cindex DLLs with no debugging symbols
14050@cindex Minimal symbols and DLLs
14051
14052Very often on windows, some of the DLLs that your program relies on do
14053not include symbolic debugging information (for example,
db2e3e2e 14054@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14055symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14056information contained in the DLL's export table. This section
be448670
CF
14057describes working with such symbols, known internally to @value{GDBN} as
14058``minimal symbols''.
14059
14060Note that before the debugged program has started execution, no DLLs
db2e3e2e 14061will have been loaded. The easiest way around this problem is simply to
be448670 14062start the program --- either by setting a breakpoint or letting the
db2e3e2e 14063program run once to completion. It is also possible to force
be448670 14064@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14065see the shared library information in @ref{Files}, or the
db2e3e2e 14066@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14067explicitly loading symbols from a DLL with no debugging information will
14068cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14069which may adversely affect symbol lookup performance.
14070
79a6e687 14071@subsubsection DLL Name Prefixes
be448670
CF
14072
14073In keeping with the naming conventions used by the Microsoft debugging
14074tools, DLL export symbols are made available with a prefix based on the
14075DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14076also entered into the symbol table, so @code{CreateFileA} is often
14077sufficient. In some cases there will be name clashes within a program
14078(particularly if the executable itself includes full debugging symbols)
14079necessitating the use of the fully qualified name when referring to the
14080contents of the DLL. Use single-quotes around the name to avoid the
14081exclamation mark (``!'') being interpreted as a language operator.
14082
14083Note that the internal name of the DLL may be all upper-case, even
14084though the file name of the DLL is lower-case, or vice-versa. Since
14085symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14086some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14087@code{info variables} commands or even @code{maint print msymbols}
14088(@pxref{Symbols}). Here's an example:
be448670
CF
14089
14090@smallexample
f7dc1244 14091(@value{GDBP}) info function CreateFileA
be448670
CF
14092All functions matching regular expression "CreateFileA":
14093
14094Non-debugging symbols:
140950x77e885f4 CreateFileA
140960x77e885f4 KERNEL32!CreateFileA
14097@end smallexample
14098
14099@smallexample
f7dc1244 14100(@value{GDBP}) info function !
be448670
CF
14101All functions matching regular expression "!":
14102
14103Non-debugging symbols:
141040x6100114c cygwin1!__assert
141050x61004034 cygwin1!_dll_crt0@@0
141060x61004240 cygwin1!dll_crt0(per_process *)
14107[etc...]
14108@end smallexample
14109
79a6e687 14110@subsubsection Working with Minimal Symbols
be448670
CF
14111
14112Symbols extracted from a DLL's export table do not contain very much
14113type information. All that @value{GDBN} can do is guess whether a symbol
14114refers to a function or variable depending on the linker section that
14115contains the symbol. Also note that the actual contents of the memory
14116contained in a DLL are not available unless the program is running. This
14117means that you cannot examine the contents of a variable or disassemble
14118a function within a DLL without a running program.
14119
14120Variables are generally treated as pointers and dereferenced
14121automatically. For this reason, it is often necessary to prefix a
14122variable name with the address-of operator (``&'') and provide explicit
14123type information in the command. Here's an example of the type of
14124problem:
14125
14126@smallexample
f7dc1244 14127(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14128$1 = 268572168
14129@end smallexample
14130
14131@smallexample
f7dc1244 14132(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
141330x10021610: "\230y\""
14134@end smallexample
14135
14136And two possible solutions:
14137
14138@smallexample
f7dc1244 14139(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14140$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14141@end smallexample
14142
14143@smallexample
f7dc1244 14144(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 141450x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14146(@value{GDBP}) x/x 0x10021608
be448670 141470x10021608: 0x0022fd98
f7dc1244 14148(@value{GDBP}) x/s 0x0022fd98
be448670
CF
141490x22fd98: "/cygdrive/c/mydirectory/myprogram"
14150@end smallexample
14151
14152Setting a break point within a DLL is possible even before the program
14153starts execution. However, under these circumstances, @value{GDBN} can't
14154examine the initial instructions of the function in order to skip the
14155function's frame set-up code. You can work around this by using ``*&''
14156to set the breakpoint at a raw memory address:
14157
14158@smallexample
f7dc1244 14159(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14160Breakpoint 1 at 0x1e04eff0
14161@end smallexample
14162
14163The author of these extensions is not entirely convinced that setting a
14164break point within a shared DLL like @file{kernel32.dll} is completely
14165safe.
14166
14d6dd68 14167@node Hurd Native
79a6e687 14168@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14169@cindex @sc{gnu} Hurd debugging
14170
14171This subsection describes @value{GDBN} commands specific to the
14172@sc{gnu} Hurd native debugging.
14173
14174@table @code
14175@item set signals
14176@itemx set sigs
14177@kindex set signals@r{, Hurd command}
14178@kindex set sigs@r{, Hurd command}
14179This command toggles the state of inferior signal interception by
14180@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14181affected by this command. @code{sigs} is a shorthand alias for
14182@code{signals}.
14183
14184@item show signals
14185@itemx show sigs
14186@kindex show signals@r{, Hurd command}
14187@kindex show sigs@r{, Hurd command}
14188Show the current state of intercepting inferior's signals.
14189
14190@item set signal-thread
14191@itemx set sigthread
14192@kindex set signal-thread
14193@kindex set sigthread
14194This command tells @value{GDBN} which thread is the @code{libc} signal
14195thread. That thread is run when a signal is delivered to a running
14196process. @code{set sigthread} is the shorthand alias of @code{set
14197signal-thread}.
14198
14199@item show signal-thread
14200@itemx show sigthread
14201@kindex show signal-thread
14202@kindex show sigthread
14203These two commands show which thread will run when the inferior is
14204delivered a signal.
14205
14206@item set stopped
14207@kindex set stopped@r{, Hurd command}
14208This commands tells @value{GDBN} that the inferior process is stopped,
14209as with the @code{SIGSTOP} signal. The stopped process can be
14210continued by delivering a signal to it.
14211
14212@item show stopped
14213@kindex show stopped@r{, Hurd command}
14214This command shows whether @value{GDBN} thinks the debuggee is
14215stopped.
14216
14217@item set exceptions
14218@kindex set exceptions@r{, Hurd command}
14219Use this command to turn off trapping of exceptions in the inferior.
14220When exception trapping is off, neither breakpoints nor
14221single-stepping will work. To restore the default, set exception
14222trapping on.
14223
14224@item show exceptions
14225@kindex show exceptions@r{, Hurd command}
14226Show the current state of trapping exceptions in the inferior.
14227
14228@item set task pause
14229@kindex set task@r{, Hurd commands}
14230@cindex task attributes (@sc{gnu} Hurd)
14231@cindex pause current task (@sc{gnu} Hurd)
14232This command toggles task suspension when @value{GDBN} has control.
14233Setting it to on takes effect immediately, and the task is suspended
14234whenever @value{GDBN} gets control. Setting it to off will take
14235effect the next time the inferior is continued. If this option is set
14236to off, you can use @code{set thread default pause on} or @code{set
14237thread pause on} (see below) to pause individual threads.
14238
14239@item show task pause
14240@kindex show task@r{, Hurd commands}
14241Show the current state of task suspension.
14242
14243@item set task detach-suspend-count
14244@cindex task suspend count
14245@cindex detach from task, @sc{gnu} Hurd
14246This command sets the suspend count the task will be left with when
14247@value{GDBN} detaches from it.
14248
14249@item show task detach-suspend-count
14250Show the suspend count the task will be left with when detaching.
14251
14252@item set task exception-port
14253@itemx set task excp
14254@cindex task exception port, @sc{gnu} Hurd
14255This command sets the task exception port to which @value{GDBN} will
14256forward exceptions. The argument should be the value of the @dfn{send
14257rights} of the task. @code{set task excp} is a shorthand alias.
14258
14259@item set noninvasive
14260@cindex noninvasive task options
14261This command switches @value{GDBN} to a mode that is the least
14262invasive as far as interfering with the inferior is concerned. This
14263is the same as using @code{set task pause}, @code{set exceptions}, and
14264@code{set signals} to values opposite to the defaults.
14265
14266@item info send-rights
14267@itemx info receive-rights
14268@itemx info port-rights
14269@itemx info port-sets
14270@itemx info dead-names
14271@itemx info ports
14272@itemx info psets
14273@cindex send rights, @sc{gnu} Hurd
14274@cindex receive rights, @sc{gnu} Hurd
14275@cindex port rights, @sc{gnu} Hurd
14276@cindex port sets, @sc{gnu} Hurd
14277@cindex dead names, @sc{gnu} Hurd
14278These commands display information about, respectively, send rights,
14279receive rights, port rights, port sets, and dead names of a task.
14280There are also shorthand aliases: @code{info ports} for @code{info
14281port-rights} and @code{info psets} for @code{info port-sets}.
14282
14283@item set thread pause
14284@kindex set thread@r{, Hurd command}
14285@cindex thread properties, @sc{gnu} Hurd
14286@cindex pause current thread (@sc{gnu} Hurd)
14287This command toggles current thread suspension when @value{GDBN} has
14288control. Setting it to on takes effect immediately, and the current
14289thread is suspended whenever @value{GDBN} gets control. Setting it to
14290off will take effect the next time the inferior is continued.
14291Normally, this command has no effect, since when @value{GDBN} has
14292control, the whole task is suspended. However, if you used @code{set
14293task pause off} (see above), this command comes in handy to suspend
14294only the current thread.
14295
14296@item show thread pause
14297@kindex show thread@r{, Hurd command}
14298This command shows the state of current thread suspension.
14299
14300@item set thread run
d3e8051b 14301This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14302
14303@item show thread run
14304Show whether the current thread is allowed to run.
14305
14306@item set thread detach-suspend-count
14307@cindex thread suspend count, @sc{gnu} Hurd
14308@cindex detach from thread, @sc{gnu} Hurd
14309This command sets the suspend count @value{GDBN} will leave on a
14310thread when detaching. This number is relative to the suspend count
14311found by @value{GDBN} when it notices the thread; use @code{set thread
14312takeover-suspend-count} to force it to an absolute value.
14313
14314@item show thread detach-suspend-count
14315Show the suspend count @value{GDBN} will leave on the thread when
14316detaching.
14317
14318@item set thread exception-port
14319@itemx set thread excp
14320Set the thread exception port to which to forward exceptions. This
14321overrides the port set by @code{set task exception-port} (see above).
14322@code{set thread excp} is the shorthand alias.
14323
14324@item set thread takeover-suspend-count
14325Normally, @value{GDBN}'s thread suspend counts are relative to the
14326value @value{GDBN} finds when it notices each thread. This command
14327changes the suspend counts to be absolute instead.
14328
14329@item set thread default
14330@itemx show thread default
14331@cindex thread default settings, @sc{gnu} Hurd
14332Each of the above @code{set thread} commands has a @code{set thread
14333default} counterpart (e.g., @code{set thread default pause}, @code{set
14334thread default exception-port}, etc.). The @code{thread default}
14335variety of commands sets the default thread properties for all
14336threads; you can then change the properties of individual threads with
14337the non-default commands.
14338@end table
14339
14340
a64548ea
EZ
14341@node Neutrino
14342@subsection QNX Neutrino
14343@cindex QNX Neutrino
14344
14345@value{GDBN} provides the following commands specific to the QNX
14346Neutrino target:
14347
14348@table @code
14349@item set debug nto-debug
14350@kindex set debug nto-debug
14351When set to on, enables debugging messages specific to the QNX
14352Neutrino support.
14353
14354@item show debug nto-debug
14355@kindex show debug nto-debug
14356Show the current state of QNX Neutrino messages.
14357@end table
14358
14359
8e04817f
AC
14360@node Embedded OS
14361@section Embedded Operating Systems
104c1213 14362
8e04817f
AC
14363This section describes configurations involving the debugging of
14364embedded operating systems that are available for several different
14365architectures.
d4f3574e 14366
8e04817f
AC
14367@menu
14368* VxWorks:: Using @value{GDBN} with VxWorks
14369@end menu
104c1213 14370
8e04817f
AC
14371@value{GDBN} includes the ability to debug programs running on
14372various real-time operating systems.
104c1213 14373
8e04817f
AC
14374@node VxWorks
14375@subsection Using @value{GDBN} with VxWorks
104c1213 14376
8e04817f 14377@cindex VxWorks
104c1213 14378
8e04817f 14379@table @code
104c1213 14380
8e04817f
AC
14381@kindex target vxworks
14382@item target vxworks @var{machinename}
14383A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14384is the target system's machine name or IP address.
104c1213 14385
8e04817f 14386@end table
104c1213 14387
8e04817f
AC
14388On VxWorks, @code{load} links @var{filename} dynamically on the
14389current target system as well as adding its symbols in @value{GDBN}.
104c1213 14390
8e04817f
AC
14391@value{GDBN} enables developers to spawn and debug tasks running on networked
14392VxWorks targets from a Unix host. Already-running tasks spawned from
14393the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14394both the Unix host and on the VxWorks target. The program
14395@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14396installed with the name @code{vxgdb}, to distinguish it from a
14397@value{GDBN} for debugging programs on the host itself.)
104c1213 14398
8e04817f
AC
14399@table @code
14400@item VxWorks-timeout @var{args}
14401@kindex vxworks-timeout
14402All VxWorks-based targets now support the option @code{vxworks-timeout}.
14403This option is set by the user, and @var{args} represents the number of
14404seconds @value{GDBN} waits for responses to rpc's. You might use this if
14405your VxWorks target is a slow software simulator or is on the far side
14406of a thin network line.
14407@end table
104c1213 14408
8e04817f
AC
14409The following information on connecting to VxWorks was current when
14410this manual was produced; newer releases of VxWorks may use revised
14411procedures.
104c1213 14412
4644b6e3 14413@findex INCLUDE_RDB
8e04817f
AC
14414To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14415to include the remote debugging interface routines in the VxWorks
14416library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14417VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14418kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14419source debugging task @code{tRdbTask} when VxWorks is booted. For more
14420information on configuring and remaking VxWorks, see the manufacturer's
14421manual.
14422@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14423
8e04817f
AC
14424Once you have included @file{rdb.a} in your VxWorks system image and set
14425your Unix execution search path to find @value{GDBN}, you are ready to
14426run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14427@code{vxgdb}, depending on your installation).
104c1213 14428
8e04817f 14429@value{GDBN} comes up showing the prompt:
104c1213 14430
474c8240 14431@smallexample
8e04817f 14432(vxgdb)
474c8240 14433@end smallexample
104c1213 14434
8e04817f
AC
14435@menu
14436* VxWorks Connection:: Connecting to VxWorks
14437* VxWorks Download:: VxWorks download
14438* VxWorks Attach:: Running tasks
14439@end menu
104c1213 14440
8e04817f
AC
14441@node VxWorks Connection
14442@subsubsection Connecting to VxWorks
104c1213 14443
8e04817f
AC
14444The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14445network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14446
474c8240 14447@smallexample
8e04817f 14448(vxgdb) target vxworks tt
474c8240 14449@end smallexample
104c1213 14450
8e04817f
AC
14451@need 750
14452@value{GDBN} displays messages like these:
104c1213 14453
8e04817f
AC
14454@smallexample
14455Attaching remote machine across net...
14456Connected to tt.
14457@end smallexample
104c1213 14458
8e04817f
AC
14459@need 1000
14460@value{GDBN} then attempts to read the symbol tables of any object modules
14461loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14462these files by searching the directories listed in the command search
79a6e687 14463path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14464to find an object file, it displays a message such as:
5d161b24 14465
474c8240 14466@smallexample
8e04817f 14467prog.o: No such file or directory.
474c8240 14468@end smallexample
104c1213 14469
8e04817f
AC
14470When this happens, add the appropriate directory to the search path with
14471the @value{GDBN} command @code{path}, and execute the @code{target}
14472command again.
104c1213 14473
8e04817f 14474@node VxWorks Download
79a6e687 14475@subsubsection VxWorks Download
104c1213 14476
8e04817f
AC
14477@cindex download to VxWorks
14478If you have connected to the VxWorks target and you want to debug an
14479object that has not yet been loaded, you can use the @value{GDBN}
14480@code{load} command to download a file from Unix to VxWorks
14481incrementally. The object file given as an argument to the @code{load}
14482command is actually opened twice: first by the VxWorks target in order
14483to download the code, then by @value{GDBN} in order to read the symbol
14484table. This can lead to problems if the current working directories on
14485the two systems differ. If both systems have NFS mounted the same
14486filesystems, you can avoid these problems by using absolute paths.
14487Otherwise, it is simplest to set the working directory on both systems
14488to the directory in which the object file resides, and then to reference
14489the file by its name, without any path. For instance, a program
14490@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14491and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14492program, type this on VxWorks:
104c1213 14493
474c8240 14494@smallexample
8e04817f 14495-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14496@end smallexample
104c1213 14497
8e04817f
AC
14498@noindent
14499Then, in @value{GDBN}, type:
104c1213 14500
474c8240 14501@smallexample
8e04817f
AC
14502(vxgdb) cd @var{hostpath}/vw/demo/rdb
14503(vxgdb) load prog.o
474c8240 14504@end smallexample
104c1213 14505
8e04817f 14506@value{GDBN} displays a response similar to this:
104c1213 14507
8e04817f
AC
14508@smallexample
14509Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14510@end smallexample
104c1213 14511
8e04817f
AC
14512You can also use the @code{load} command to reload an object module
14513after editing and recompiling the corresponding source file. Note that
14514this makes @value{GDBN} delete all currently-defined breakpoints,
14515auto-displays, and convenience variables, and to clear the value
14516history. (This is necessary in order to preserve the integrity of
14517debugger's data structures that reference the target system's symbol
14518table.)
104c1213 14519
8e04817f 14520@node VxWorks Attach
79a6e687 14521@subsubsection Running Tasks
104c1213
JM
14522
14523@cindex running VxWorks tasks
14524You can also attach to an existing task using the @code{attach} command as
14525follows:
14526
474c8240 14527@smallexample
104c1213 14528(vxgdb) attach @var{task}
474c8240 14529@end smallexample
104c1213
JM
14530
14531@noindent
14532where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14533or suspended when you attach to it. Running tasks are suspended at
14534the time of attachment.
14535
6d2ebf8b 14536@node Embedded Processors
104c1213
JM
14537@section Embedded Processors
14538
14539This section goes into details specific to particular embedded
14540configurations.
14541
c45da7e6
EZ
14542@cindex send command to simulator
14543Whenever a specific embedded processor has a simulator, @value{GDBN}
14544allows to send an arbitrary command to the simulator.
14545
14546@table @code
14547@item sim @var{command}
14548@kindex sim@r{, a command}
14549Send an arbitrary @var{command} string to the simulator. Consult the
14550documentation for the specific simulator in use for information about
14551acceptable commands.
14552@end table
14553
7d86b5d5 14554
104c1213 14555@menu
c45da7e6 14556* ARM:: ARM RDI
172c2a43 14557* M32R/D:: Renesas M32R/D
104c1213 14558* M68K:: Motorola M68K
104c1213 14559* MIPS Embedded:: MIPS Embedded
a37295f9 14560* OpenRISC 1000:: OpenRisc 1000
104c1213 14561* PA:: HP PA Embedded
0869d01b 14562* PowerPC:: PowerPC
104c1213
JM
14563* Sparclet:: Tsqware Sparclet
14564* Sparclite:: Fujitsu Sparclite
104c1213 14565* Z8000:: Zilog Z8000
a64548ea
EZ
14566* AVR:: Atmel AVR
14567* CRIS:: CRIS
14568* Super-H:: Renesas Super-H
104c1213
JM
14569@end menu
14570
6d2ebf8b 14571@node ARM
104c1213 14572@subsection ARM
c45da7e6 14573@cindex ARM RDI
104c1213
JM
14574
14575@table @code
8e04817f
AC
14576@kindex target rdi
14577@item target rdi @var{dev}
14578ARM Angel monitor, via RDI library interface to ADP protocol. You may
14579use this target to communicate with both boards running the Angel
14580monitor, or with the EmbeddedICE JTAG debug device.
14581
14582@kindex target rdp
14583@item target rdp @var{dev}
14584ARM Demon monitor.
14585
14586@end table
14587
e2f4edfd
EZ
14588@value{GDBN} provides the following ARM-specific commands:
14589
14590@table @code
14591@item set arm disassembler
14592@kindex set arm
14593This commands selects from a list of disassembly styles. The
14594@code{"std"} style is the standard style.
14595
14596@item show arm disassembler
14597@kindex show arm
14598Show the current disassembly style.
14599
14600@item set arm apcs32
14601@cindex ARM 32-bit mode
14602This command toggles ARM operation mode between 32-bit and 26-bit.
14603
14604@item show arm apcs32
14605Display the current usage of the ARM 32-bit mode.
14606
14607@item set arm fpu @var{fputype}
14608This command sets the ARM floating-point unit (FPU) type. The
14609argument @var{fputype} can be one of these:
14610
14611@table @code
14612@item auto
14613Determine the FPU type by querying the OS ABI.
14614@item softfpa
14615Software FPU, with mixed-endian doubles on little-endian ARM
14616processors.
14617@item fpa
14618GCC-compiled FPA co-processor.
14619@item softvfp
14620Software FPU with pure-endian doubles.
14621@item vfp
14622VFP co-processor.
14623@end table
14624
14625@item show arm fpu
14626Show the current type of the FPU.
14627
14628@item set arm abi
14629This command forces @value{GDBN} to use the specified ABI.
14630
14631@item show arm abi
14632Show the currently used ABI.
14633
14634@item set debug arm
14635Toggle whether to display ARM-specific debugging messages from the ARM
14636target support subsystem.
14637
14638@item show debug arm
14639Show whether ARM-specific debugging messages are enabled.
14640@end table
14641
c45da7e6
EZ
14642The following commands are available when an ARM target is debugged
14643using the RDI interface:
14644
14645@table @code
14646@item rdilogfile @r{[}@var{file}@r{]}
14647@kindex rdilogfile
14648@cindex ADP (Angel Debugger Protocol) logging
14649Set the filename for the ADP (Angel Debugger Protocol) packet log.
14650With an argument, sets the log file to the specified @var{file}. With
14651no argument, show the current log file name. The default log file is
14652@file{rdi.log}.
14653
14654@item rdilogenable @r{[}@var{arg}@r{]}
14655@kindex rdilogenable
14656Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14657enables logging, with an argument 0 or @code{"no"} disables it. With
14658no arguments displays the current setting. When logging is enabled,
14659ADP packets exchanged between @value{GDBN} and the RDI target device
14660are logged to a file.
14661
14662@item set rdiromatzero
14663@kindex set rdiromatzero
14664@cindex ROM at zero address, RDI
14665Tell @value{GDBN} whether the target has ROM at address 0. If on,
14666vector catching is disabled, so that zero address can be used. If off
14667(the default), vector catching is enabled. For this command to take
14668effect, it needs to be invoked prior to the @code{target rdi} command.
14669
14670@item show rdiromatzero
14671@kindex show rdiromatzero
14672Show the current setting of ROM at zero address.
14673
14674@item set rdiheartbeat
14675@kindex set rdiheartbeat
14676@cindex RDI heartbeat
14677Enable or disable RDI heartbeat packets. It is not recommended to
14678turn on this option, since it confuses ARM and EPI JTAG interface, as
14679well as the Angel monitor.
14680
14681@item show rdiheartbeat
14682@kindex show rdiheartbeat
14683Show the setting of RDI heartbeat packets.
14684@end table
14685
e2f4edfd 14686
8e04817f 14687@node M32R/D
ba04e063 14688@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14689
14690@table @code
8e04817f
AC
14691@kindex target m32r
14692@item target m32r @var{dev}
172c2a43 14693Renesas M32R/D ROM monitor.
8e04817f 14694
fb3e19c0
KI
14695@kindex target m32rsdi
14696@item target m32rsdi @var{dev}
14697Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14698@end table
14699
14700The following @value{GDBN} commands are specific to the M32R monitor:
14701
14702@table @code
14703@item set download-path @var{path}
14704@kindex set download-path
14705@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14706Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14707
14708@item show download-path
14709@kindex show download-path
14710Show the default path for downloadable @sc{srec} files.
fb3e19c0 14711
721c2651
EZ
14712@item set board-address @var{addr}
14713@kindex set board-address
14714@cindex M32-EVA target board address
14715Set the IP address for the M32R-EVA target board.
14716
14717@item show board-address
14718@kindex show board-address
14719Show the current IP address of the target board.
14720
14721@item set server-address @var{addr}
14722@kindex set server-address
14723@cindex download server address (M32R)
14724Set the IP address for the download server, which is the @value{GDBN}'s
14725host machine.
14726
14727@item show server-address
14728@kindex show server-address
14729Display the IP address of the download server.
14730
14731@item upload @r{[}@var{file}@r{]}
14732@kindex upload@r{, M32R}
14733Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14734upload capability. If no @var{file} argument is given, the current
14735executable file is uploaded.
14736
14737@item tload @r{[}@var{file}@r{]}
14738@kindex tload@r{, M32R}
14739Test the @code{upload} command.
8e04817f
AC
14740@end table
14741
ba04e063
EZ
14742The following commands are available for M32R/SDI:
14743
14744@table @code
14745@item sdireset
14746@kindex sdireset
14747@cindex reset SDI connection, M32R
14748This command resets the SDI connection.
14749
14750@item sdistatus
14751@kindex sdistatus
14752This command shows the SDI connection status.
14753
14754@item debug_chaos
14755@kindex debug_chaos
14756@cindex M32R/Chaos debugging
14757Instructs the remote that M32R/Chaos debugging is to be used.
14758
14759@item use_debug_dma
14760@kindex use_debug_dma
14761Instructs the remote to use the DEBUG_DMA method of accessing memory.
14762
14763@item use_mon_code
14764@kindex use_mon_code
14765Instructs the remote to use the MON_CODE method of accessing memory.
14766
14767@item use_ib_break
14768@kindex use_ib_break
14769Instructs the remote to set breakpoints by IB break.
14770
14771@item use_dbt_break
14772@kindex use_dbt_break
14773Instructs the remote to set breakpoints by DBT.
14774@end table
14775
8e04817f
AC
14776@node M68K
14777@subsection M68k
14778
7ce59000
DJ
14779The Motorola m68k configuration includes ColdFire support, and a
14780target command for the following ROM monitor.
8e04817f
AC
14781
14782@table @code
14783
8e04817f
AC
14784@kindex target dbug
14785@item target dbug @var{dev}
14786dBUG ROM monitor for Motorola ColdFire.
14787
8e04817f
AC
14788@end table
14789
8e04817f
AC
14790@node MIPS Embedded
14791@subsection MIPS Embedded
14792
14793@cindex MIPS boards
14794@value{GDBN} can use the MIPS remote debugging protocol to talk to a
14795MIPS board attached to a serial line. This is available when
14796you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 14797
8e04817f
AC
14798@need 1000
14799Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 14800
8e04817f
AC
14801@table @code
14802@item target mips @var{port}
14803@kindex target mips @var{port}
14804To run a program on the board, start up @code{@value{GDBP}} with the
14805name of your program as the argument. To connect to the board, use the
14806command @samp{target mips @var{port}}, where @var{port} is the name of
14807the serial port connected to the board. If the program has not already
14808been downloaded to the board, you may use the @code{load} command to
14809download it. You can then use all the usual @value{GDBN} commands.
104c1213 14810
8e04817f
AC
14811For example, this sequence connects to the target board through a serial
14812port, and loads and runs a program called @var{prog} through the
14813debugger:
104c1213 14814
474c8240 14815@smallexample
8e04817f
AC
14816host$ @value{GDBP} @var{prog}
14817@value{GDBN} is free software and @dots{}
14818(@value{GDBP}) target mips /dev/ttyb
14819(@value{GDBP}) load @var{prog}
14820(@value{GDBP}) run
474c8240 14821@end smallexample
104c1213 14822
8e04817f
AC
14823@item target mips @var{hostname}:@var{portnumber}
14824On some @value{GDBN} host configurations, you can specify a TCP
14825connection (for instance, to a serial line managed by a terminal
14826concentrator) instead of a serial port, using the syntax
14827@samp{@var{hostname}:@var{portnumber}}.
104c1213 14828
8e04817f
AC
14829@item target pmon @var{port}
14830@kindex target pmon @var{port}
14831PMON ROM monitor.
104c1213 14832
8e04817f
AC
14833@item target ddb @var{port}
14834@kindex target ddb @var{port}
14835NEC's DDB variant of PMON for Vr4300.
104c1213 14836
8e04817f
AC
14837@item target lsi @var{port}
14838@kindex target lsi @var{port}
14839LSI variant of PMON.
104c1213 14840
8e04817f
AC
14841@kindex target r3900
14842@item target r3900 @var{dev}
14843Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 14844
8e04817f
AC
14845@kindex target array
14846@item target array @var{dev}
14847Array Tech LSI33K RAID controller board.
104c1213 14848
8e04817f 14849@end table
104c1213 14850
104c1213 14851
8e04817f
AC
14852@noindent
14853@value{GDBN} also supports these special commands for MIPS targets:
104c1213 14854
8e04817f 14855@table @code
8e04817f
AC
14856@item set mipsfpu double
14857@itemx set mipsfpu single
14858@itemx set mipsfpu none
a64548ea 14859@itemx set mipsfpu auto
8e04817f
AC
14860@itemx show mipsfpu
14861@kindex set mipsfpu
14862@kindex show mipsfpu
14863@cindex MIPS remote floating point
14864@cindex floating point, MIPS remote
14865If your target board does not support the MIPS floating point
14866coprocessor, you should use the command @samp{set mipsfpu none} (if you
14867need this, you may wish to put the command in your @value{GDBN} init
14868file). This tells @value{GDBN} how to find the return value of
14869functions which return floating point values. It also allows
14870@value{GDBN} to avoid saving the floating point registers when calling
14871functions on the board. If you are using a floating point coprocessor
14872with only single precision floating point support, as on the @sc{r4650}
14873processor, use the command @samp{set mipsfpu single}. The default
14874double precision floating point coprocessor may be selected using
14875@samp{set mipsfpu double}.
104c1213 14876
8e04817f
AC
14877In previous versions the only choices were double precision or no
14878floating point, so @samp{set mipsfpu on} will select double precision
14879and @samp{set mipsfpu off} will select no floating point.
104c1213 14880
8e04817f
AC
14881As usual, you can inquire about the @code{mipsfpu} variable with
14882@samp{show mipsfpu}.
104c1213 14883
8e04817f
AC
14884@item set timeout @var{seconds}
14885@itemx set retransmit-timeout @var{seconds}
14886@itemx show timeout
14887@itemx show retransmit-timeout
14888@cindex @code{timeout}, MIPS protocol
14889@cindex @code{retransmit-timeout}, MIPS protocol
14890@kindex set timeout
14891@kindex show timeout
14892@kindex set retransmit-timeout
14893@kindex show retransmit-timeout
14894You can control the timeout used while waiting for a packet, in the MIPS
14895remote protocol, with the @code{set timeout @var{seconds}} command. The
14896default is 5 seconds. Similarly, you can control the timeout used while
14897waiting for an acknowledgement of a packet with the @code{set
14898retransmit-timeout @var{seconds}} command. The default is 3 seconds.
14899You can inspect both values with @code{show timeout} and @code{show
14900retransmit-timeout}. (These commands are @emph{only} available when
14901@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 14902
8e04817f
AC
14903The timeout set by @code{set timeout} does not apply when @value{GDBN}
14904is waiting for your program to stop. In that case, @value{GDBN} waits
14905forever because it has no way of knowing how long the program is going
14906to run before stopping.
ba04e063
EZ
14907
14908@item set syn-garbage-limit @var{num}
14909@kindex set syn-garbage-limit@r{, MIPS remote}
14910@cindex synchronize with remote MIPS target
14911Limit the maximum number of characters @value{GDBN} should ignore when
14912it tries to synchronize with the remote target. The default is 10
14913characters. Setting the limit to -1 means there's no limit.
14914
14915@item show syn-garbage-limit
14916@kindex show syn-garbage-limit@r{, MIPS remote}
14917Show the current limit on the number of characters to ignore when
14918trying to synchronize with the remote system.
14919
14920@item set monitor-prompt @var{prompt}
14921@kindex set monitor-prompt@r{, MIPS remote}
14922@cindex remote monitor prompt
14923Tell @value{GDBN} to expect the specified @var{prompt} string from the
14924remote monitor. The default depends on the target:
14925@table @asis
14926@item pmon target
14927@samp{PMON}
14928@item ddb target
14929@samp{NEC010}
14930@item lsi target
14931@samp{PMON>}
14932@end table
14933
14934@item show monitor-prompt
14935@kindex show monitor-prompt@r{, MIPS remote}
14936Show the current strings @value{GDBN} expects as the prompt from the
14937remote monitor.
14938
14939@item set monitor-warnings
14940@kindex set monitor-warnings@r{, MIPS remote}
14941Enable or disable monitor warnings about hardware breakpoints. This
14942has effect only for the @code{lsi} target. When on, @value{GDBN} will
14943display warning messages whose codes are returned by the @code{lsi}
14944PMON monitor for breakpoint commands.
14945
14946@item show monitor-warnings
14947@kindex show monitor-warnings@r{, MIPS remote}
14948Show the current setting of printing monitor warnings.
14949
14950@item pmon @var{command}
14951@kindex pmon@r{, MIPS remote}
14952@cindex send PMON command
14953This command allows sending an arbitrary @var{command} string to the
14954monitor. The monitor must be in debug mode for this to work.
8e04817f 14955@end table
104c1213 14956
a37295f9
MM
14957@node OpenRISC 1000
14958@subsection OpenRISC 1000
14959@cindex OpenRISC 1000
14960
14961@cindex or1k boards
14962See OR1k Architecture document (@uref{www.opencores.org}) for more information
14963about platform and commands.
14964
14965@table @code
14966
14967@kindex target jtag
14968@item target jtag jtag://@var{host}:@var{port}
14969
14970Connects to remote JTAG server.
14971JTAG remote server can be either an or1ksim or JTAG server,
14972connected via parallel port to the board.
14973
14974Example: @code{target jtag jtag://localhost:9999}
14975
14976@kindex or1ksim
14977@item or1ksim @var{command}
14978If connected to @code{or1ksim} OpenRISC 1000 Architectural
14979Simulator, proprietary commands can be executed.
14980
14981@kindex info or1k spr
14982@item info or1k spr
14983Displays spr groups.
14984
14985@item info or1k spr @var{group}
14986@itemx info or1k spr @var{groupno}
14987Displays register names in selected group.
14988
14989@item info or1k spr @var{group} @var{register}
14990@itemx info or1k spr @var{register}
14991@itemx info or1k spr @var{groupno} @var{registerno}
14992@itemx info or1k spr @var{registerno}
14993Shows information about specified spr register.
14994
14995@kindex spr
14996@item spr @var{group} @var{register} @var{value}
14997@itemx spr @var{register @var{value}}
14998@itemx spr @var{groupno} @var{registerno @var{value}}
14999@itemx spr @var{registerno @var{value}}
15000Writes @var{value} to specified spr register.
15001@end table
15002
15003Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15004It is very similar to @value{GDBN} trace, except it does not interfere with normal
15005program execution and is thus much faster. Hardware breakpoints/watchpoint
15006triggers can be set using:
15007@table @code
15008@item $LEA/$LDATA
15009Load effective address/data
15010@item $SEA/$SDATA
15011Store effective address/data
15012@item $AEA/$ADATA
15013Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15014@item $FETCH
15015Fetch data
15016@end table
15017
15018When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15019@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15020
15021@code{htrace} commands:
15022@cindex OpenRISC 1000 htrace
15023@table @code
15024@kindex hwatch
15025@item hwatch @var{conditional}
d3e8051b 15026Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15027or Data. For example:
15028
15029@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15030
15031@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15032
4644b6e3 15033@kindex htrace
a37295f9
MM
15034@item htrace info
15035Display information about current HW trace configuration.
15036
a37295f9
MM
15037@item htrace trigger @var{conditional}
15038Set starting criteria for HW trace.
15039
a37295f9
MM
15040@item htrace qualifier @var{conditional}
15041Set acquisition qualifier for HW trace.
15042
a37295f9
MM
15043@item htrace stop @var{conditional}
15044Set HW trace stopping criteria.
15045
f153cc92 15046@item htrace record [@var{data}]*
a37295f9
MM
15047Selects the data to be recorded, when qualifier is met and HW trace was
15048triggered.
15049
a37295f9 15050@item htrace enable
a37295f9
MM
15051@itemx htrace disable
15052Enables/disables the HW trace.
15053
f153cc92 15054@item htrace rewind [@var{filename}]
a37295f9
MM
15055Clears currently recorded trace data.
15056
15057If filename is specified, new trace file is made and any newly collected data
15058will be written there.
15059
f153cc92 15060@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15061Prints trace buffer, using current record configuration.
15062
a37295f9
MM
15063@item htrace mode continuous
15064Set continuous trace mode.
15065
a37295f9
MM
15066@item htrace mode suspend
15067Set suspend trace mode.
15068
15069@end table
15070
8e04817f
AC
15071@node PowerPC
15072@subsection PowerPC
104c1213 15073
55eddb0f
DJ
15074@value{GDBN} provides the following PowerPC-specific commands:
15075
104c1213 15076@table @code
55eddb0f
DJ
15077@kindex set powerpc
15078@item set powerpc soft-float
15079@itemx show powerpc soft-float
15080Force @value{GDBN} to use (or not use) a software floating point calling
15081convention. By default, @value{GDBN} selects the calling convention based
15082on the selected architecture and the provided executable file.
15083
15084@item set powerpc vector-abi
15085@itemx show powerpc vector-abi
15086Force @value{GDBN} to use the specified calling convention for vector
15087arguments and return values. The valid options are @samp{auto};
15088@samp{generic}, to avoid vector registers even if they are present;
15089@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15090registers. By default, @value{GDBN} selects the calling convention
15091based on the selected architecture and the provided executable file.
15092
8e04817f
AC
15093@kindex target dink32
15094@item target dink32 @var{dev}
15095DINK32 ROM monitor.
104c1213 15096
8e04817f
AC
15097@kindex target ppcbug
15098@item target ppcbug @var{dev}
15099@kindex target ppcbug1
15100@item target ppcbug1 @var{dev}
15101PPCBUG ROM monitor for PowerPC.
104c1213 15102
8e04817f
AC
15103@kindex target sds
15104@item target sds @var{dev}
15105SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15106@end table
8e04817f 15107
c45da7e6 15108@cindex SDS protocol
d52fb0e9 15109The following commands specific to the SDS protocol are supported
55eddb0f 15110by @value{GDBN}:
c45da7e6
EZ
15111
15112@table @code
15113@item set sdstimeout @var{nsec}
15114@kindex set sdstimeout
15115Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15116default is 2 seconds.
15117
15118@item show sdstimeout
15119@kindex show sdstimeout
15120Show the current value of the SDS timeout.
15121
15122@item sds @var{command}
15123@kindex sds@r{, a command}
15124Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15125@end table
15126
c45da7e6 15127
8e04817f
AC
15128@node PA
15129@subsection HP PA Embedded
104c1213
JM
15130
15131@table @code
15132
8e04817f
AC
15133@kindex target op50n
15134@item target op50n @var{dev}
15135OP50N monitor, running on an OKI HPPA board.
15136
15137@kindex target w89k
15138@item target w89k @var{dev}
15139W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15140
15141@end table
15142
8e04817f
AC
15143@node Sparclet
15144@subsection Tsqware Sparclet
104c1213 15145
8e04817f
AC
15146@cindex Sparclet
15147
15148@value{GDBN} enables developers to debug tasks running on
15149Sparclet targets from a Unix host.
15150@value{GDBN} uses code that runs on
15151both the Unix host and on the Sparclet target. The program
15152@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15153
8e04817f
AC
15154@table @code
15155@item remotetimeout @var{args}
15156@kindex remotetimeout
15157@value{GDBN} supports the option @code{remotetimeout}.
15158This option is set by the user, and @var{args} represents the number of
15159seconds @value{GDBN} waits for responses.
104c1213
JM
15160@end table
15161
8e04817f
AC
15162@cindex compiling, on Sparclet
15163When compiling for debugging, include the options @samp{-g} to get debug
15164information and @samp{-Ttext} to relocate the program to where you wish to
15165load it on the target. You may also want to add the options @samp{-n} or
15166@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15167
474c8240 15168@smallexample
8e04817f 15169sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15170@end smallexample
104c1213 15171
8e04817f 15172You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15173
474c8240 15174@smallexample
8e04817f 15175sparclet-aout-objdump --headers --syms prog
474c8240 15176@end smallexample
104c1213 15177
8e04817f
AC
15178@cindex running, on Sparclet
15179Once you have set
15180your Unix execution search path to find @value{GDBN}, you are ready to
15181run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15182(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15183
8e04817f
AC
15184@value{GDBN} comes up showing the prompt:
15185
474c8240 15186@smallexample
8e04817f 15187(gdbslet)
474c8240 15188@end smallexample
104c1213
JM
15189
15190@menu
8e04817f
AC
15191* Sparclet File:: Setting the file to debug
15192* Sparclet Connection:: Connecting to Sparclet
15193* Sparclet Download:: Sparclet download
15194* Sparclet Execution:: Running and debugging
104c1213
JM
15195@end menu
15196
8e04817f 15197@node Sparclet File
79a6e687 15198@subsubsection Setting File to Debug
104c1213 15199
8e04817f 15200The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15201
474c8240 15202@smallexample
8e04817f 15203(gdbslet) file prog
474c8240 15204@end smallexample
104c1213 15205
8e04817f
AC
15206@need 1000
15207@value{GDBN} then attempts to read the symbol table of @file{prog}.
15208@value{GDBN} locates
15209the file by searching the directories listed in the command search
15210path.
12c27660 15211If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15212files will be searched as well.
15213@value{GDBN} locates
15214the source files by searching the directories listed in the directory search
79a6e687 15215path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15216If it fails
15217to find a file, it displays a message such as:
104c1213 15218
474c8240 15219@smallexample
8e04817f 15220prog: No such file or directory.
474c8240 15221@end smallexample
104c1213 15222
8e04817f
AC
15223When this happens, add the appropriate directories to the search paths with
15224the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15225@code{target} command again.
104c1213 15226
8e04817f
AC
15227@node Sparclet Connection
15228@subsubsection Connecting to Sparclet
104c1213 15229
8e04817f
AC
15230The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15231To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15232
474c8240 15233@smallexample
8e04817f
AC
15234(gdbslet) target sparclet /dev/ttya
15235Remote target sparclet connected to /dev/ttya
15236main () at ../prog.c:3
474c8240 15237@end smallexample
104c1213 15238
8e04817f
AC
15239@need 750
15240@value{GDBN} displays messages like these:
104c1213 15241
474c8240 15242@smallexample
8e04817f 15243Connected to ttya.
474c8240 15244@end smallexample
104c1213 15245
8e04817f 15246@node Sparclet Download
79a6e687 15247@subsubsection Sparclet Download
104c1213 15248
8e04817f
AC
15249@cindex download to Sparclet
15250Once connected to the Sparclet target,
15251you can use the @value{GDBN}
15252@code{load} command to download the file from the host to the target.
15253The file name and load offset should be given as arguments to the @code{load}
15254command.
15255Since the file format is aout, the program must be loaded to the starting
15256address. You can use @code{objdump} to find out what this value is. The load
15257offset is an offset which is added to the VMA (virtual memory address)
15258of each of the file's sections.
15259For instance, if the program
15260@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15261and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15262
474c8240 15263@smallexample
8e04817f
AC
15264(gdbslet) load prog 0x12010000
15265Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15266@end smallexample
104c1213 15267
8e04817f
AC
15268If the code is loaded at a different address then what the program was linked
15269to, you may need to use the @code{section} and @code{add-symbol-file} commands
15270to tell @value{GDBN} where to map the symbol table.
15271
15272@node Sparclet Execution
79a6e687 15273@subsubsection Running and Debugging
8e04817f
AC
15274
15275@cindex running and debugging Sparclet programs
15276You can now begin debugging the task using @value{GDBN}'s execution control
15277commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15278manual for the list of commands.
15279
474c8240 15280@smallexample
8e04817f
AC
15281(gdbslet) b main
15282Breakpoint 1 at 0x12010000: file prog.c, line 3.
15283(gdbslet) run
15284Starting program: prog
15285Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
152863 char *symarg = 0;
15287(gdbslet) step
152884 char *execarg = "hello!";
15289(gdbslet)
474c8240 15290@end smallexample
8e04817f
AC
15291
15292@node Sparclite
15293@subsection Fujitsu Sparclite
104c1213
JM
15294
15295@table @code
15296
8e04817f
AC
15297@kindex target sparclite
15298@item target sparclite @var{dev}
15299Fujitsu sparclite boards, used only for the purpose of loading.
15300You must use an additional command to debug the program.
15301For example: target remote @var{dev} using @value{GDBN} standard
15302remote protocol.
104c1213
JM
15303
15304@end table
15305
8e04817f
AC
15306@node Z8000
15307@subsection Zilog Z8000
104c1213 15308
8e04817f
AC
15309@cindex Z8000
15310@cindex simulator, Z8000
15311@cindex Zilog Z8000 simulator
104c1213 15312
8e04817f
AC
15313When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15314a Z8000 simulator.
15315
15316For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15317unsegmented variant of the Z8000 architecture) or the Z8001 (the
15318segmented variant). The simulator recognizes which architecture is
15319appropriate by inspecting the object code.
104c1213 15320
8e04817f
AC
15321@table @code
15322@item target sim @var{args}
15323@kindex sim
15324@kindex target sim@r{, with Z8000}
15325Debug programs on a simulated CPU. If the simulator supports setup
15326options, specify them via @var{args}.
104c1213
JM
15327@end table
15328
8e04817f
AC
15329@noindent
15330After specifying this target, you can debug programs for the simulated
15331CPU in the same style as programs for your host computer; use the
15332@code{file} command to load a new program image, the @code{run} command
15333to run your program, and so on.
15334
15335As well as making available all the usual machine registers
15336(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15337additional items of information as specially named registers:
104c1213
JM
15338
15339@table @code
15340
8e04817f
AC
15341@item cycles
15342Counts clock-ticks in the simulator.
104c1213 15343
8e04817f
AC
15344@item insts
15345Counts instructions run in the simulator.
104c1213 15346
8e04817f
AC
15347@item time
15348Execution time in 60ths of a second.
104c1213 15349
8e04817f 15350@end table
104c1213 15351
8e04817f
AC
15352You can refer to these values in @value{GDBN} expressions with the usual
15353conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15354conditional breakpoint that suspends only after at least 5000
15355simulated clock ticks.
104c1213 15356
a64548ea
EZ
15357@node AVR
15358@subsection Atmel AVR
15359@cindex AVR
15360
15361When configured for debugging the Atmel AVR, @value{GDBN} supports the
15362following AVR-specific commands:
15363
15364@table @code
15365@item info io_registers
15366@kindex info io_registers@r{, AVR}
15367@cindex I/O registers (Atmel AVR)
15368This command displays information about the AVR I/O registers. For
15369each register, @value{GDBN} prints its number and value.
15370@end table
15371
15372@node CRIS
15373@subsection CRIS
15374@cindex CRIS
15375
15376When configured for debugging CRIS, @value{GDBN} provides the
15377following CRIS-specific commands:
15378
15379@table @code
15380@item set cris-version @var{ver}
15381@cindex CRIS version
e22e55c9
OF
15382Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15383The CRIS version affects register names and sizes. This command is useful in
15384case autodetection of the CRIS version fails.
a64548ea
EZ
15385
15386@item show cris-version
15387Show the current CRIS version.
15388
15389@item set cris-dwarf2-cfi
15390@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15391Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15392Change to @samp{off} when using @code{gcc-cris} whose version is below
15393@code{R59}.
a64548ea
EZ
15394
15395@item show cris-dwarf2-cfi
15396Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15397
15398@item set cris-mode @var{mode}
15399@cindex CRIS mode
15400Set the current CRIS mode to @var{mode}. It should only be changed when
15401debugging in guru mode, in which case it should be set to
15402@samp{guru} (the default is @samp{normal}).
15403
15404@item show cris-mode
15405Show the current CRIS mode.
a64548ea
EZ
15406@end table
15407
15408@node Super-H
15409@subsection Renesas Super-H
15410@cindex Super-H
15411
15412For the Renesas Super-H processor, @value{GDBN} provides these
15413commands:
15414
15415@table @code
15416@item regs
15417@kindex regs@r{, Super-H}
15418Show the values of all Super-H registers.
15419@end table
15420
15421
8e04817f
AC
15422@node Architectures
15423@section Architectures
104c1213 15424
8e04817f
AC
15425This section describes characteristics of architectures that affect
15426all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15427
8e04817f 15428@menu
9c16f35a 15429* i386::
8e04817f
AC
15430* A29K::
15431* Alpha::
15432* MIPS::
a64548ea 15433* HPPA:: HP PA architecture
23d964e7 15434* SPU:: Cell Broadband Engine SPU architecture
8e04817f 15435@end menu
104c1213 15436
9c16f35a 15437@node i386
db2e3e2e 15438@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15439
15440@table @code
15441@item set struct-convention @var{mode}
15442@kindex set struct-convention
15443@cindex struct return convention
15444@cindex struct/union returned in registers
15445Set the convention used by the inferior to return @code{struct}s and
15446@code{union}s from functions to @var{mode}. Possible values of
15447@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15448default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15449are returned on the stack, while @code{"reg"} means that a
15450@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15451be returned in a register.
15452
15453@item show struct-convention
15454@kindex show struct-convention
15455Show the current setting of the convention to return @code{struct}s
15456from functions.
15457@end table
15458
8e04817f
AC
15459@node A29K
15460@subsection A29K
104c1213
JM
15461
15462@table @code
104c1213 15463
8e04817f
AC
15464@kindex set rstack_high_address
15465@cindex AMD 29K register stack
15466@cindex register stack, AMD29K
15467@item set rstack_high_address @var{address}
15468On AMD 29000 family processors, registers are saved in a separate
15469@dfn{register stack}. There is no way for @value{GDBN} to determine the
15470extent of this stack. Normally, @value{GDBN} just assumes that the
15471stack is ``large enough''. This may result in @value{GDBN} referencing
15472memory locations that do not exist. If necessary, you can get around
15473this problem by specifying the ending address of the register stack with
15474the @code{set rstack_high_address} command. The argument should be an
15475address, which you probably want to precede with @samp{0x} to specify in
15476hexadecimal.
104c1213 15477
8e04817f
AC
15478@kindex show rstack_high_address
15479@item show rstack_high_address
15480Display the current limit of the register stack, on AMD 29000 family
15481processors.
104c1213 15482
8e04817f 15483@end table
104c1213 15484
8e04817f
AC
15485@node Alpha
15486@subsection Alpha
104c1213 15487
8e04817f 15488See the following section.
104c1213 15489
8e04817f
AC
15490@node MIPS
15491@subsection MIPS
104c1213 15492
8e04817f
AC
15493@cindex stack on Alpha
15494@cindex stack on MIPS
15495@cindex Alpha stack
15496@cindex MIPS stack
15497Alpha- and MIPS-based computers use an unusual stack frame, which
15498sometimes requires @value{GDBN} to search backward in the object code to
15499find the beginning of a function.
104c1213 15500
8e04817f
AC
15501@cindex response time, MIPS debugging
15502To improve response time (especially for embedded applications, where
15503@value{GDBN} may be restricted to a slow serial line for this search)
15504you may want to limit the size of this search, using one of these
15505commands:
104c1213 15506
8e04817f
AC
15507@table @code
15508@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15509@item set heuristic-fence-post @var{limit}
15510Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15511search for the beginning of a function. A value of @var{0} (the
15512default) means there is no limit. However, except for @var{0}, the
15513larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15514and therefore the longer it takes to run. You should only need to use
15515this command when debugging a stripped executable.
104c1213 15516
8e04817f
AC
15517@item show heuristic-fence-post
15518Display the current limit.
15519@end table
104c1213
JM
15520
15521@noindent
8e04817f
AC
15522These commands are available @emph{only} when @value{GDBN} is configured
15523for debugging programs on Alpha or MIPS processors.
104c1213 15524
a64548ea
EZ
15525Several MIPS-specific commands are available when debugging MIPS
15526programs:
15527
15528@table @code
a64548ea
EZ
15529@item set mips abi @var{arg}
15530@kindex set mips abi
15531@cindex set ABI for MIPS
15532Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15533values of @var{arg} are:
15534
15535@table @samp
15536@item auto
15537The default ABI associated with the current binary (this is the
15538default).
15539@item o32
15540@item o64
15541@item n32
15542@item n64
15543@item eabi32
15544@item eabi64
15545@item auto
15546@end table
15547
15548@item show mips abi
15549@kindex show mips abi
15550Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15551
15552@item set mipsfpu
15553@itemx show mipsfpu
15554@xref{MIPS Embedded, set mipsfpu}.
15555
15556@item set mips mask-address @var{arg}
15557@kindex set mips mask-address
15558@cindex MIPS addresses, masking
15559This command determines whether the most-significant 32 bits of 64-bit
15560MIPS addresses are masked off. The argument @var{arg} can be
15561@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15562setting, which lets @value{GDBN} determine the correct value.
15563
15564@item show mips mask-address
15565@kindex show mips mask-address
15566Show whether the upper 32 bits of MIPS addresses are masked off or
15567not.
15568
15569@item set remote-mips64-transfers-32bit-regs
15570@kindex set remote-mips64-transfers-32bit-regs
15571This command controls compatibility with 64-bit MIPS targets that
15572transfer data in 32-bit quantities. If you have an old MIPS 64 target
15573that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15574and 64 bits for other registers, set this option to @samp{on}.
15575
15576@item show remote-mips64-transfers-32bit-regs
15577@kindex show remote-mips64-transfers-32bit-regs
15578Show the current setting of compatibility with older MIPS 64 targets.
15579
15580@item set debug mips
15581@kindex set debug mips
15582This command turns on and off debugging messages for the MIPS-specific
15583target code in @value{GDBN}.
15584
15585@item show debug mips
15586@kindex show debug mips
15587Show the current setting of MIPS debugging messages.
15588@end table
15589
15590
15591@node HPPA
15592@subsection HPPA
15593@cindex HPPA support
15594
d3e8051b 15595When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15596following special commands:
15597
15598@table @code
15599@item set debug hppa
15600@kindex set debug hppa
db2e3e2e 15601This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15602messages are to be displayed.
15603
15604@item show debug hppa
15605Show whether HPPA debugging messages are displayed.
15606
15607@item maint print unwind @var{address}
15608@kindex maint print unwind@r{, HPPA}
15609This command displays the contents of the unwind table entry at the
15610given @var{address}.
15611
15612@end table
15613
104c1213 15614
23d964e7
UW
15615@node SPU
15616@subsection Cell Broadband Engine SPU architecture
15617@cindex Cell Broadband Engine
15618@cindex SPU
15619
15620When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15621it provides the following special commands:
15622
15623@table @code
15624@item info spu event
15625@kindex info spu
15626Display SPU event facility status. Shows current event mask
15627and pending event status.
15628
15629@item info spu signal
15630Display SPU signal notification facility status. Shows pending
15631signal-control word and signal notification mode of both signal
15632notification channels.
15633
15634@item info spu mailbox
15635Display SPU mailbox facility status. Shows all pending entries,
15636in order of processing, in each of the SPU Write Outbound,
15637SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15638
15639@item info spu dma
15640Display MFC DMA status. Shows all pending commands in the MFC
15641DMA queue. For each entry, opcode, tag, class IDs, effective
15642and local store addresses and transfer size are shown.
15643
15644@item info spu proxydma
15645Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15646Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15647and local store addresses and transfer size are shown.
15648
15649@end table
15650
15651
8e04817f
AC
15652@node Controlling GDB
15653@chapter Controlling @value{GDBN}
15654
15655You can alter the way @value{GDBN} interacts with you by using the
15656@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15657data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15658described here.
15659
15660@menu
15661* Prompt:: Prompt
15662* Editing:: Command editing
d620b259 15663* Command History:: Command history
8e04817f
AC
15664* Screen Size:: Screen size
15665* Numbers:: Numbers
1e698235 15666* ABI:: Configuring the current ABI
8e04817f
AC
15667* Messages/Warnings:: Optional warnings and messages
15668* Debugging Output:: Optional messages about internal happenings
15669@end menu
15670
15671@node Prompt
15672@section Prompt
104c1213 15673
8e04817f 15674@cindex prompt
104c1213 15675
8e04817f
AC
15676@value{GDBN} indicates its readiness to read a command by printing a string
15677called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15678can change the prompt string with the @code{set prompt} command. For
15679instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15680the prompt in one of the @value{GDBN} sessions so that you can always tell
15681which one you are talking to.
104c1213 15682
8e04817f
AC
15683@emph{Note:} @code{set prompt} does not add a space for you after the
15684prompt you set. This allows you to set a prompt which ends in a space
15685or a prompt that does not.
104c1213 15686
8e04817f
AC
15687@table @code
15688@kindex set prompt
15689@item set prompt @var{newprompt}
15690Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15691
8e04817f
AC
15692@kindex show prompt
15693@item show prompt
15694Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15695@end table
15696
8e04817f 15697@node Editing
79a6e687 15698@section Command Editing
8e04817f
AC
15699@cindex readline
15700@cindex command line editing
104c1213 15701
703663ab 15702@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15703@sc{gnu} library provides consistent behavior for programs which provide a
15704command line interface to the user. Advantages are @sc{gnu} Emacs-style
15705or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15706substitution, and a storage and recall of command history across
15707debugging sessions.
104c1213 15708
8e04817f
AC
15709You may control the behavior of command line editing in @value{GDBN} with the
15710command @code{set}.
104c1213 15711
8e04817f
AC
15712@table @code
15713@kindex set editing
15714@cindex editing
15715@item set editing
15716@itemx set editing on
15717Enable command line editing (enabled by default).
104c1213 15718
8e04817f
AC
15719@item set editing off
15720Disable command line editing.
104c1213 15721
8e04817f
AC
15722@kindex show editing
15723@item show editing
15724Show whether command line editing is enabled.
104c1213
JM
15725@end table
15726
703663ab
EZ
15727@xref{Command Line Editing}, for more details about the Readline
15728interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15729encouraged to read that chapter.
15730
d620b259 15731@node Command History
79a6e687 15732@section Command History
703663ab 15733@cindex command history
8e04817f
AC
15734
15735@value{GDBN} can keep track of the commands you type during your
15736debugging sessions, so that you can be certain of precisely what
15737happened. Use these commands to manage the @value{GDBN} command
15738history facility.
104c1213 15739
703663ab
EZ
15740@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15741package, to provide the history facility. @xref{Using History
15742Interactively}, for the detailed description of the History library.
15743
d620b259 15744To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15745the state which is seen by users, prefix it with @samp{server }
15746(@pxref{Server Prefix}). This
d620b259
NR
15747means that this command will not affect the command history, nor will it
15748affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15749pressed on a line by itself.
15750
15751@cindex @code{server}, command prefix
15752The server prefix does not affect the recording of values into the value
15753history; to print a value without recording it into the value history,
15754use the @code{output} command instead of the @code{print} command.
15755
703663ab
EZ
15756Here is the description of @value{GDBN} commands related to command
15757history.
15758
104c1213 15759@table @code
8e04817f
AC
15760@cindex history substitution
15761@cindex history file
15762@kindex set history filename
4644b6e3 15763@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
15764@item set history filename @var{fname}
15765Set the name of the @value{GDBN} command history file to @var{fname}.
15766This is the file where @value{GDBN} reads an initial command history
15767list, and where it writes the command history from this session when it
15768exits. You can access this list through history expansion or through
15769the history command editing characters listed below. This file defaults
15770to the value of the environment variable @code{GDBHISTFILE}, or to
15771@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
15772is not set.
104c1213 15773
9c16f35a
EZ
15774@cindex save command history
15775@kindex set history save
8e04817f
AC
15776@item set history save
15777@itemx set history save on
15778Record command history in a file, whose name may be specified with the
15779@code{set history filename} command. By default, this option is disabled.
104c1213 15780
8e04817f
AC
15781@item set history save off
15782Stop recording command history in a file.
104c1213 15783
8e04817f 15784@cindex history size
9c16f35a 15785@kindex set history size
6fc08d32 15786@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
15787@item set history size @var{size}
15788Set the number of commands which @value{GDBN} keeps in its history list.
15789This defaults to the value of the environment variable
15790@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
15791@end table
15792
8e04817f 15793History expansion assigns special meaning to the character @kbd{!}.
703663ab 15794@xref{Event Designators}, for more details.
8e04817f 15795
703663ab 15796@cindex history expansion, turn on/off
8e04817f
AC
15797Since @kbd{!} is also the logical not operator in C, history expansion
15798is off by default. If you decide to enable history expansion with the
15799@code{set history expansion on} command, you may sometimes need to
15800follow @kbd{!} (when it is used as logical not, in an expression) with
15801a space or a tab to prevent it from being expanded. The readline
15802history facilities do not attempt substitution on the strings
15803@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
15804
15805The commands to control history expansion are:
104c1213
JM
15806
15807@table @code
8e04817f
AC
15808@item set history expansion on
15809@itemx set history expansion
703663ab 15810@kindex set history expansion
8e04817f 15811Enable history expansion. History expansion is off by default.
104c1213 15812
8e04817f
AC
15813@item set history expansion off
15814Disable history expansion.
104c1213 15815
8e04817f
AC
15816@c @group
15817@kindex show history
15818@item show history
15819@itemx show history filename
15820@itemx show history save
15821@itemx show history size
15822@itemx show history expansion
15823These commands display the state of the @value{GDBN} history parameters.
15824@code{show history} by itself displays all four states.
15825@c @end group
15826@end table
15827
15828@table @code
9c16f35a
EZ
15829@kindex show commands
15830@cindex show last commands
15831@cindex display command history
8e04817f
AC
15832@item show commands
15833Display the last ten commands in the command history.
104c1213 15834
8e04817f
AC
15835@item show commands @var{n}
15836Print ten commands centered on command number @var{n}.
15837
15838@item show commands +
15839Print ten commands just after the commands last printed.
104c1213
JM
15840@end table
15841
8e04817f 15842@node Screen Size
79a6e687 15843@section Screen Size
8e04817f
AC
15844@cindex size of screen
15845@cindex pauses in output
104c1213 15846
8e04817f
AC
15847Certain commands to @value{GDBN} may produce large amounts of
15848information output to the screen. To help you read all of it,
15849@value{GDBN} pauses and asks you for input at the end of each page of
15850output. Type @key{RET} when you want to continue the output, or @kbd{q}
15851to discard the remaining output. Also, the screen width setting
15852determines when to wrap lines of output. Depending on what is being
15853printed, @value{GDBN} tries to break the line at a readable place,
15854rather than simply letting it overflow onto the following line.
15855
15856Normally @value{GDBN} knows the size of the screen from the terminal
15857driver software. For example, on Unix @value{GDBN} uses the termcap data base
15858together with the value of the @code{TERM} environment variable and the
15859@code{stty rows} and @code{stty cols} settings. If this is not correct,
15860you can override it with the @code{set height} and @code{set
15861width} commands:
15862
15863@table @code
15864@kindex set height
15865@kindex set width
15866@kindex show width
15867@kindex show height
15868@item set height @var{lpp}
15869@itemx show height
15870@itemx set width @var{cpl}
15871@itemx show width
15872These @code{set} commands specify a screen height of @var{lpp} lines and
15873a screen width of @var{cpl} characters. The associated @code{show}
15874commands display the current settings.
104c1213 15875
8e04817f
AC
15876If you specify a height of zero lines, @value{GDBN} does not pause during
15877output no matter how long the output is. This is useful if output is to a
15878file or to an editor buffer.
104c1213 15879
8e04817f
AC
15880Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
15881from wrapping its output.
9c16f35a
EZ
15882
15883@item set pagination on
15884@itemx set pagination off
15885@kindex set pagination
15886Turn the output pagination on or off; the default is on. Turning
15887pagination off is the alternative to @code{set height 0}.
15888
15889@item show pagination
15890@kindex show pagination
15891Show the current pagination mode.
104c1213
JM
15892@end table
15893
8e04817f
AC
15894@node Numbers
15895@section Numbers
15896@cindex number representation
15897@cindex entering numbers
104c1213 15898
8e04817f
AC
15899You can always enter numbers in octal, decimal, or hexadecimal in
15900@value{GDBN} by the usual conventions: octal numbers begin with
15901@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
15902begin with @samp{0x}. Numbers that neither begin with @samp{0} or
15903@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1590410; likewise, the default display for numbers---when no particular
15905format is specified---is base 10. You can change the default base for
15906both input and output with the commands described below.
104c1213 15907
8e04817f
AC
15908@table @code
15909@kindex set input-radix
15910@item set input-radix @var{base}
15911Set the default base for numeric input. Supported choices
15912for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 15913specified either unambiguously or using the current input radix; for
8e04817f 15914example, any of
104c1213 15915
8e04817f 15916@smallexample
9c16f35a
EZ
15917set input-radix 012
15918set input-radix 10.
15919set input-radix 0xa
8e04817f 15920@end smallexample
104c1213 15921
8e04817f 15922@noindent
9c16f35a 15923sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
15924leaves the input radix unchanged, no matter what it was, since
15925@samp{10}, being without any leading or trailing signs of its base, is
15926interpreted in the current radix. Thus, if the current radix is 16,
15927@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
15928change the radix.
104c1213 15929
8e04817f
AC
15930@kindex set output-radix
15931@item set output-radix @var{base}
15932Set the default base for numeric display. Supported choices
15933for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 15934specified either unambiguously or using the current input radix.
104c1213 15935
8e04817f
AC
15936@kindex show input-radix
15937@item show input-radix
15938Display the current default base for numeric input.
104c1213 15939
8e04817f
AC
15940@kindex show output-radix
15941@item show output-radix
15942Display the current default base for numeric display.
9c16f35a
EZ
15943
15944@item set radix @r{[}@var{base}@r{]}
15945@itemx show radix
15946@kindex set radix
15947@kindex show radix
15948These commands set and show the default base for both input and output
15949of numbers. @code{set radix} sets the radix of input and output to
15950the same base; without an argument, it resets the radix back to its
15951default value of 10.
15952
8e04817f 15953@end table
104c1213 15954
1e698235 15955@node ABI
79a6e687 15956@section Configuring the Current ABI
1e698235
DJ
15957
15958@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
15959application automatically. However, sometimes you need to override its
15960conclusions. Use these commands to manage @value{GDBN}'s view of the
15961current ABI.
15962
98b45e30
DJ
15963@cindex OS ABI
15964@kindex set osabi
b4e9345d 15965@kindex show osabi
98b45e30
DJ
15966
15967One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 15968system targets, either via remote debugging or native emulation.
98b45e30
DJ
15969@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
15970but you can override its conclusion using the @code{set osabi} command.
15971One example where this is useful is in debugging of binaries which use
15972an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
15973not have the same identifying marks that the standard C library for your
15974platform provides.
15975
15976@table @code
15977@item show osabi
15978Show the OS ABI currently in use.
15979
15980@item set osabi
15981With no argument, show the list of registered available OS ABI's.
15982
15983@item set osabi @var{abi}
15984Set the current OS ABI to @var{abi}.
15985@end table
15986
1e698235 15987@cindex float promotion
1e698235
DJ
15988
15989Generally, the way that an argument of type @code{float} is passed to a
15990function depends on whether the function is prototyped. For a prototyped
15991(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
15992according to the architecture's convention for @code{float}. For unprototyped
15993(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
15994@code{double} and then passed.
15995
15996Unfortunately, some forms of debug information do not reliably indicate whether
15997a function is prototyped. If @value{GDBN} calls a function that is not marked
15998as prototyped, it consults @kbd{set coerce-float-to-double}.
15999
16000@table @code
a8f24a35 16001@kindex set coerce-float-to-double
1e698235
DJ
16002@item set coerce-float-to-double
16003@itemx set coerce-float-to-double on
16004Arguments of type @code{float} will be promoted to @code{double} when passed
16005to an unprototyped function. This is the default setting.
16006
16007@item set coerce-float-to-double off
16008Arguments of type @code{float} will be passed directly to unprototyped
16009functions.
9c16f35a
EZ
16010
16011@kindex show coerce-float-to-double
16012@item show coerce-float-to-double
16013Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16014@end table
16015
f1212245
DJ
16016@kindex set cp-abi
16017@kindex show cp-abi
16018@value{GDBN} needs to know the ABI used for your program's C@t{++}
16019objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16020used to build your application. @value{GDBN} only fully supports
16021programs with a single C@t{++} ABI; if your program contains code using
16022multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16023program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16024Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16025before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16026``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16027use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16028``auto''.
16029
16030@table @code
16031@item show cp-abi
16032Show the C@t{++} ABI currently in use.
16033
16034@item set cp-abi
16035With no argument, show the list of supported C@t{++} ABI's.
16036
16037@item set cp-abi @var{abi}
16038@itemx set cp-abi auto
16039Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16040@end table
16041
8e04817f 16042@node Messages/Warnings
79a6e687 16043@section Optional Warnings and Messages
104c1213 16044
9c16f35a
EZ
16045@cindex verbose operation
16046@cindex optional warnings
8e04817f
AC
16047By default, @value{GDBN} is silent about its inner workings. If you are
16048running on a slow machine, you may want to use the @code{set verbose}
16049command. This makes @value{GDBN} tell you when it does a lengthy
16050internal operation, so you will not think it has crashed.
104c1213 16051
8e04817f
AC
16052Currently, the messages controlled by @code{set verbose} are those
16053which announce that the symbol table for a source file is being read;
79a6e687 16054see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16055
8e04817f
AC
16056@table @code
16057@kindex set verbose
16058@item set verbose on
16059Enables @value{GDBN} output of certain informational messages.
104c1213 16060
8e04817f
AC
16061@item set verbose off
16062Disables @value{GDBN} output of certain informational messages.
104c1213 16063
8e04817f
AC
16064@kindex show verbose
16065@item show verbose
16066Displays whether @code{set verbose} is on or off.
16067@end table
104c1213 16068
8e04817f
AC
16069By default, if @value{GDBN} encounters bugs in the symbol table of an
16070object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16071find this information useful (@pxref{Symbol Errors, ,Errors Reading
16072Symbol Files}).
104c1213 16073
8e04817f 16074@table @code
104c1213 16075
8e04817f
AC
16076@kindex set complaints
16077@item set complaints @var{limit}
16078Permits @value{GDBN} to output @var{limit} complaints about each type of
16079unusual symbols before becoming silent about the problem. Set
16080@var{limit} to zero to suppress all complaints; set it to a large number
16081to prevent complaints from being suppressed.
104c1213 16082
8e04817f
AC
16083@kindex show complaints
16084@item show complaints
16085Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16086
8e04817f 16087@end table
104c1213 16088
8e04817f
AC
16089By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16090lot of stupid questions to confirm certain commands. For example, if
16091you try to run a program which is already running:
104c1213 16092
474c8240 16093@smallexample
8e04817f
AC
16094(@value{GDBP}) run
16095The program being debugged has been started already.
16096Start it from the beginning? (y or n)
474c8240 16097@end smallexample
104c1213 16098
8e04817f
AC
16099If you are willing to unflinchingly face the consequences of your own
16100commands, you can disable this ``feature'':
104c1213 16101
8e04817f 16102@table @code
104c1213 16103
8e04817f
AC
16104@kindex set confirm
16105@cindex flinching
16106@cindex confirmation
16107@cindex stupid questions
16108@item set confirm off
16109Disables confirmation requests.
104c1213 16110
8e04817f
AC
16111@item set confirm on
16112Enables confirmation requests (the default).
104c1213 16113
8e04817f
AC
16114@kindex show confirm
16115@item show confirm
16116Displays state of confirmation requests.
16117
16118@end table
104c1213 16119
16026cd7
AS
16120@cindex command tracing
16121If you need to debug user-defined commands or sourced files you may find it
16122useful to enable @dfn{command tracing}. In this mode each command will be
16123printed as it is executed, prefixed with one or more @samp{+} symbols, the
16124quantity denoting the call depth of each command.
16125
16126@table @code
16127@kindex set trace-commands
16128@cindex command scripts, debugging
16129@item set trace-commands on
16130Enable command tracing.
16131@item set trace-commands off
16132Disable command tracing.
16133@item show trace-commands
16134Display the current state of command tracing.
16135@end table
16136
8e04817f 16137@node Debugging Output
79a6e687 16138@section Optional Messages about Internal Happenings
4644b6e3
EZ
16139@cindex optional debugging messages
16140
da316a69
EZ
16141@value{GDBN} has commands that enable optional debugging messages from
16142various @value{GDBN} subsystems; normally these commands are of
16143interest to @value{GDBN} maintainers, or when reporting a bug. This
16144section documents those commands.
16145
104c1213 16146@table @code
a8f24a35
EZ
16147@kindex set exec-done-display
16148@item set exec-done-display
16149Turns on or off the notification of asynchronous commands'
16150completion. When on, @value{GDBN} will print a message when an
16151asynchronous command finishes its execution. The default is off.
16152@kindex show exec-done-display
16153@item show exec-done-display
16154Displays the current setting of asynchronous command completion
16155notification.
4644b6e3
EZ
16156@kindex set debug
16157@cindex gdbarch debugging info
a8f24a35 16158@cindex architecture debugging info
8e04817f 16159@item set debug arch
a8f24a35 16160Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16161@kindex show debug
8e04817f
AC
16162@item show debug arch
16163Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16164@item set debug aix-thread
16165@cindex AIX threads
16166Display debugging messages about inner workings of the AIX thread
16167module.
16168@item show debug aix-thread
16169Show the current state of AIX thread debugging info display.
8e04817f 16170@item set debug event
4644b6e3 16171@cindex event debugging info
a8f24a35 16172Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16173default is off.
8e04817f
AC
16174@item show debug event
16175Displays the current state of displaying @value{GDBN} event debugging
16176info.
8e04817f 16177@item set debug expression
4644b6e3 16178@cindex expression debugging info
721c2651
EZ
16179Turns on or off display of debugging info about @value{GDBN}
16180expression parsing. The default is off.
8e04817f 16181@item show debug expression
721c2651
EZ
16182Displays the current state of displaying debugging info about
16183@value{GDBN} expression parsing.
7453dc06 16184@item set debug frame
4644b6e3 16185@cindex frame debugging info
7453dc06
AC
16186Turns on or off display of @value{GDBN} frame debugging info. The
16187default is off.
7453dc06
AC
16188@item show debug frame
16189Displays the current state of displaying @value{GDBN} frame debugging
16190info.
30e91e0b
RC
16191@item set debug infrun
16192@cindex inferior debugging info
16193Turns on or off display of @value{GDBN} debugging info for running the inferior.
16194The default is off. @file{infrun.c} contains GDB's runtime state machine used
16195for implementing operations such as single-stepping the inferior.
16196@item show debug infrun
16197Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16198@item set debug lin-lwp
16199@cindex @sc{gnu}/Linux LWP debug messages
16200@cindex Linux lightweight processes
721c2651 16201Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16202@item show debug lin-lwp
16203Show the current state of Linux LWP debugging messages.
2b4855ab 16204@item set debug observer
4644b6e3 16205@cindex observer debugging info
2b4855ab
AC
16206Turns on or off display of @value{GDBN} observer debugging. This
16207includes info such as the notification of observable events.
2b4855ab
AC
16208@item show debug observer
16209Displays the current state of observer debugging.
8e04817f 16210@item set debug overload
4644b6e3 16211@cindex C@t{++} overload debugging info
8e04817f 16212Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16213info. This includes info such as ranking of functions, etc. The default
8e04817f 16214is off.
8e04817f
AC
16215@item show debug overload
16216Displays the current state of displaying @value{GDBN} C@t{++} overload
16217debugging info.
8e04817f
AC
16218@cindex packets, reporting on stdout
16219@cindex serial connections, debugging
605a56cb
DJ
16220@cindex debug remote protocol
16221@cindex remote protocol debugging
16222@cindex display remote packets
8e04817f
AC
16223@item set debug remote
16224Turns on or off display of reports on all packets sent back and forth across
16225the serial line to the remote machine. The info is printed on the
16226@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16227@item show debug remote
16228Displays the state of display of remote packets.
8e04817f
AC
16229@item set debug serial
16230Turns on or off display of @value{GDBN} serial debugging info. The
16231default is off.
8e04817f
AC
16232@item show debug serial
16233Displays the current state of displaying @value{GDBN} serial debugging
16234info.
c45da7e6
EZ
16235@item set debug solib-frv
16236@cindex FR-V shared-library debugging
16237Turns on or off debugging messages for FR-V shared-library code.
16238@item show debug solib-frv
16239Display the current state of FR-V shared-library code debugging
16240messages.
8e04817f 16241@item set debug target
4644b6e3 16242@cindex target debugging info
8e04817f
AC
16243Turns on or off display of @value{GDBN} target debugging info. This info
16244includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16245default is 0. Set it to 1 to track events, and to 2 to also track the
16246value of large memory transfers. Changes to this flag do not take effect
16247until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16248@item show debug target
16249Displays the current state of displaying @value{GDBN} target debugging
16250info.
c45da7e6 16251@item set debugvarobj
4644b6e3 16252@cindex variable object debugging info
8e04817f
AC
16253Turns on or off display of @value{GDBN} variable object debugging
16254info. The default is off.
c45da7e6 16255@item show debugvarobj
8e04817f
AC
16256Displays the current state of displaying @value{GDBN} variable object
16257debugging info.
e776119f
DJ
16258@item set debug xml
16259@cindex XML parser debugging
16260Turns on or off debugging messages for built-in XML parsers.
16261@item show debug xml
16262Displays the current state of XML debugging messages.
8e04817f 16263@end table
104c1213 16264
8e04817f
AC
16265@node Sequences
16266@chapter Canned Sequences of Commands
104c1213 16267
8e04817f 16268Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16269Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16270commands for execution as a unit: user-defined commands and command
16271files.
104c1213 16272
8e04817f 16273@menu
fcc73fe3
EZ
16274* Define:: How to define your own commands
16275* Hooks:: Hooks for user-defined commands
16276* Command Files:: How to write scripts of commands to be stored in a file
16277* Output:: Commands for controlled output
8e04817f 16278@end menu
104c1213 16279
8e04817f 16280@node Define
79a6e687 16281@section User-defined Commands
104c1213 16282
8e04817f 16283@cindex user-defined command
fcc73fe3 16284@cindex arguments, to user-defined commands
8e04817f
AC
16285A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16286which you assign a new name as a command. This is done with the
16287@code{define} command. User commands may accept up to 10 arguments
16288separated by whitespace. Arguments are accessed within the user command
c03c782f 16289via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16290
8e04817f
AC
16291@smallexample
16292define adder
16293 print $arg0 + $arg1 + $arg2
c03c782f 16294end
8e04817f 16295@end smallexample
104c1213
JM
16296
16297@noindent
8e04817f 16298To execute the command use:
104c1213 16299
8e04817f
AC
16300@smallexample
16301adder 1 2 3
16302@end smallexample
104c1213 16303
8e04817f
AC
16304@noindent
16305This defines the command @code{adder}, which prints the sum of
16306its three arguments. Note the arguments are text substitutions, so they may
16307reference variables, use complex expressions, or even perform inferior
16308functions calls.
104c1213 16309
fcc73fe3
EZ
16310@cindex argument count in user-defined commands
16311@cindex how many arguments (user-defined commands)
c03c782f
AS
16312In addition, @code{$argc} may be used to find out how many arguments have
16313been passed. This expands to a number in the range 0@dots{}10.
16314
16315@smallexample
16316define adder
16317 if $argc == 2
16318 print $arg0 + $arg1
16319 end
16320 if $argc == 3
16321 print $arg0 + $arg1 + $arg2
16322 end
16323end
16324@end smallexample
16325
104c1213 16326@table @code
104c1213 16327
8e04817f
AC
16328@kindex define
16329@item define @var{commandname}
16330Define a command named @var{commandname}. If there is already a command
16331by that name, you are asked to confirm that you want to redefine it.
104c1213 16332
8e04817f
AC
16333The definition of the command is made up of other @value{GDBN} command lines,
16334which are given following the @code{define} command. The end of these
16335commands is marked by a line containing @code{end}.
104c1213 16336
8e04817f 16337@kindex document
ca91424e 16338@kindex end@r{ (user-defined commands)}
8e04817f
AC
16339@item document @var{commandname}
16340Document the user-defined command @var{commandname}, so that it can be
16341accessed by @code{help}. The command @var{commandname} must already be
16342defined. This command reads lines of documentation just as @code{define}
16343reads the lines of the command definition, ending with @code{end}.
16344After the @code{document} command is finished, @code{help} on command
16345@var{commandname} displays the documentation you have written.
104c1213 16346
8e04817f
AC
16347You may use the @code{document} command again to change the
16348documentation of a command. Redefining the command with @code{define}
16349does not change the documentation.
104c1213 16350
c45da7e6
EZ
16351@kindex dont-repeat
16352@cindex don't repeat command
16353@item dont-repeat
16354Used inside a user-defined command, this tells @value{GDBN} that this
16355command should not be repeated when the user hits @key{RET}
16356(@pxref{Command Syntax, repeat last command}).
16357
8e04817f
AC
16358@kindex help user-defined
16359@item help user-defined
16360List all user-defined commands, with the first line of the documentation
16361(if any) for each.
104c1213 16362
8e04817f
AC
16363@kindex show user
16364@item show user
16365@itemx show user @var{commandname}
16366Display the @value{GDBN} commands used to define @var{commandname} (but
16367not its documentation). If no @var{commandname} is given, display the
16368definitions for all user-defined commands.
104c1213 16369
fcc73fe3 16370@cindex infinite recursion in user-defined commands
20f01a46
DH
16371@kindex show max-user-call-depth
16372@kindex set max-user-call-depth
16373@item show max-user-call-depth
5ca0cb28
DH
16374@itemx set max-user-call-depth
16375The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16376levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16377infinite recursion and aborts the command.
104c1213
JM
16378@end table
16379
fcc73fe3
EZ
16380In addition to the above commands, user-defined commands frequently
16381use control flow commands, described in @ref{Command Files}.
16382
8e04817f
AC
16383When user-defined commands are executed, the
16384commands of the definition are not printed. An error in any command
16385stops execution of the user-defined command.
104c1213 16386
8e04817f
AC
16387If used interactively, commands that would ask for confirmation proceed
16388without asking when used inside a user-defined command. Many @value{GDBN}
16389commands that normally print messages to say what they are doing omit the
16390messages when used in a user-defined command.
104c1213 16391
8e04817f 16392@node Hooks
79a6e687 16393@section User-defined Command Hooks
8e04817f
AC
16394@cindex command hooks
16395@cindex hooks, for commands
16396@cindex hooks, pre-command
104c1213 16397
8e04817f 16398@kindex hook
8e04817f
AC
16399You may define @dfn{hooks}, which are a special kind of user-defined
16400command. Whenever you run the command @samp{foo}, if the user-defined
16401command @samp{hook-foo} exists, it is executed (with no arguments)
16402before that command.
104c1213 16403
8e04817f
AC
16404@cindex hooks, post-command
16405@kindex hookpost
8e04817f
AC
16406A hook may also be defined which is run after the command you executed.
16407Whenever you run the command @samp{foo}, if the user-defined command
16408@samp{hookpost-foo} exists, it is executed (with no arguments) after
16409that command. Post-execution hooks may exist simultaneously with
16410pre-execution hooks, for the same command.
104c1213 16411
8e04817f 16412It is valid for a hook to call the command which it hooks. If this
9f1c6395 16413occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16414
8e04817f
AC
16415@c It would be nice if hookpost could be passed a parameter indicating
16416@c if the command it hooks executed properly or not. FIXME!
104c1213 16417
8e04817f
AC
16418@kindex stop@r{, a pseudo-command}
16419In addition, a pseudo-command, @samp{stop} exists. Defining
16420(@samp{hook-stop}) makes the associated commands execute every time
16421execution stops in your program: before breakpoint commands are run,
16422displays are printed, or the stack frame is printed.
104c1213 16423
8e04817f
AC
16424For example, to ignore @code{SIGALRM} signals while
16425single-stepping, but treat them normally during normal execution,
16426you could define:
104c1213 16427
474c8240 16428@smallexample
8e04817f
AC
16429define hook-stop
16430handle SIGALRM nopass
16431end
104c1213 16432
8e04817f
AC
16433define hook-run
16434handle SIGALRM pass
16435end
104c1213 16436
8e04817f 16437define hook-continue
d3e8051b 16438handle SIGALRM pass
8e04817f 16439end
474c8240 16440@end smallexample
104c1213 16441
d3e8051b 16442As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16443command, and to add extra text to the beginning and end of the message,
8e04817f 16444you could define:
104c1213 16445
474c8240 16446@smallexample
8e04817f
AC
16447define hook-echo
16448echo <<<---
16449end
104c1213 16450
8e04817f
AC
16451define hookpost-echo
16452echo --->>>\n
16453end
104c1213 16454
8e04817f
AC
16455(@value{GDBP}) echo Hello World
16456<<<---Hello World--->>>
16457(@value{GDBP})
104c1213 16458
474c8240 16459@end smallexample
104c1213 16460
8e04817f
AC
16461You can define a hook for any single-word command in @value{GDBN}, but
16462not for command aliases; you should define a hook for the basic command
c1468174 16463name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16464@c FIXME! So how does Joe User discover whether a command is an alias
16465@c or not?
16466If an error occurs during the execution of your hook, execution of
16467@value{GDBN} commands stops and @value{GDBN} issues a prompt
16468(before the command that you actually typed had a chance to run).
104c1213 16469
8e04817f
AC
16470If you try to define a hook which does not match any known command, you
16471get a warning from the @code{define} command.
c906108c 16472
8e04817f 16473@node Command Files
79a6e687 16474@section Command Files
c906108c 16475
8e04817f 16476@cindex command files
fcc73fe3 16477@cindex scripting commands
6fc08d32
EZ
16478A command file for @value{GDBN} is a text file made of lines that are
16479@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16480also be included. An empty line in a command file does nothing; it
16481does not mean to repeat the last command, as it would from the
16482terminal.
c906108c 16483
6fc08d32
EZ
16484You can request the execution of a command file with the @code{source}
16485command:
c906108c 16486
8e04817f
AC
16487@table @code
16488@kindex source
ca91424e 16489@cindex execute commands from a file
16026cd7 16490@item source [@code{-v}] @var{filename}
8e04817f 16491Execute the command file @var{filename}.
c906108c
SS
16492@end table
16493
fcc73fe3
EZ
16494The lines in a command file are generally executed sequentially,
16495unless the order of execution is changed by one of the
16496@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16497printed as they are executed. An error in any command terminates
16498execution of the command file and control is returned to the console.
c906108c 16499
4b505b12
AS
16500@value{GDBN} searches for @var{filename} in the current directory and then
16501on the search path (specified with the @samp{directory} command).
16502
16026cd7
AS
16503If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16504each command as it is executed. The option must be given before
16505@var{filename}, and is interpreted as part of the filename anywhere else.
16506
8e04817f
AC
16507Commands that would ask for confirmation if used interactively proceed
16508without asking when used in a command file. Many @value{GDBN} commands that
16509normally print messages to say what they are doing omit the messages
16510when called from command files.
c906108c 16511
8e04817f
AC
16512@value{GDBN} also accepts command input from standard input. In this
16513mode, normal output goes to standard output and error output goes to
16514standard error. Errors in a command file supplied on standard input do
6fc08d32 16515not terminate execution of the command file---execution continues with
8e04817f 16516the next command.
c906108c 16517
474c8240 16518@smallexample
8e04817f 16519gdb < cmds > log 2>&1
474c8240 16520@end smallexample
c906108c 16521
8e04817f
AC
16522(The syntax above will vary depending on the shell used.) This example
16523will execute commands from the file @file{cmds}. All output and errors
16524would be directed to @file{log}.
c906108c 16525
fcc73fe3
EZ
16526Since commands stored on command files tend to be more general than
16527commands typed interactively, they frequently need to deal with
16528complicated situations, such as different or unexpected values of
16529variables and symbols, changes in how the program being debugged is
16530built, etc. @value{GDBN} provides a set of flow-control commands to
16531deal with these complexities. Using these commands, you can write
16532complex scripts that loop over data structures, execute commands
16533conditionally, etc.
16534
16535@table @code
16536@kindex if
16537@kindex else
16538@item if
16539@itemx else
16540This command allows to include in your script conditionally executed
16541commands. The @code{if} command takes a single argument, which is an
16542expression to evaluate. It is followed by a series of commands that
16543are executed only if the expression is true (its value is nonzero).
16544There can then optionally be an @code{else} line, followed by a series
16545of commands that are only executed if the expression was false. The
16546end of the list is marked by a line containing @code{end}.
16547
16548@kindex while
16549@item while
16550This command allows to write loops. Its syntax is similar to
16551@code{if}: the command takes a single argument, which is an expression
16552to evaluate, and must be followed by the commands to execute, one per
16553line, terminated by an @code{end}. These commands are called the
16554@dfn{body} of the loop. The commands in the body of @code{while} are
16555executed repeatedly as long as the expression evaluates to true.
16556
16557@kindex loop_break
16558@item loop_break
16559This command exits the @code{while} loop in whose body it is included.
16560Execution of the script continues after that @code{while}s @code{end}
16561line.
16562
16563@kindex loop_continue
16564@item loop_continue
16565This command skips the execution of the rest of the body of commands
16566in the @code{while} loop in whose body it is included. Execution
16567branches to the beginning of the @code{while} loop, where it evaluates
16568the controlling expression.
ca91424e
EZ
16569
16570@kindex end@r{ (if/else/while commands)}
16571@item end
16572Terminate the block of commands that are the body of @code{if},
16573@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16574@end table
16575
16576
8e04817f 16577@node Output
79a6e687 16578@section Commands for Controlled Output
c906108c 16579
8e04817f
AC
16580During the execution of a command file or a user-defined command, normal
16581@value{GDBN} output is suppressed; the only output that appears is what is
16582explicitly printed by the commands in the definition. This section
16583describes three commands useful for generating exactly the output you
16584want.
c906108c
SS
16585
16586@table @code
8e04817f
AC
16587@kindex echo
16588@item echo @var{text}
16589@c I do not consider backslash-space a standard C escape sequence
16590@c because it is not in ANSI.
16591Print @var{text}. Nonprinting characters can be included in
16592@var{text} using C escape sequences, such as @samp{\n} to print a
16593newline. @strong{No newline is printed unless you specify one.}
16594In addition to the standard C escape sequences, a backslash followed
16595by a space stands for a space. This is useful for displaying a
16596string with spaces at the beginning or the end, since leading and
16597trailing spaces are otherwise trimmed from all arguments.
16598To print @samp{@w{ }and foo =@w{ }}, use the command
16599@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16600
8e04817f
AC
16601A backslash at the end of @var{text} can be used, as in C, to continue
16602the command onto subsequent lines. For example,
c906108c 16603
474c8240 16604@smallexample
8e04817f
AC
16605echo This is some text\n\
16606which is continued\n\
16607onto several lines.\n
474c8240 16608@end smallexample
c906108c 16609
8e04817f 16610produces the same output as
c906108c 16611
474c8240 16612@smallexample
8e04817f
AC
16613echo This is some text\n
16614echo which is continued\n
16615echo onto several lines.\n
474c8240 16616@end smallexample
c906108c 16617
8e04817f
AC
16618@kindex output
16619@item output @var{expression}
16620Print the value of @var{expression} and nothing but that value: no
16621newlines, no @samp{$@var{nn} = }. The value is not entered in the
16622value history either. @xref{Expressions, ,Expressions}, for more information
16623on expressions.
c906108c 16624
8e04817f
AC
16625@item output/@var{fmt} @var{expression}
16626Print the value of @var{expression} in format @var{fmt}. You can use
16627the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16628Formats}, for more information.
c906108c 16629
8e04817f 16630@kindex printf
82160952
EZ
16631@item printf @var{template}, @var{expressions}@dots{}
16632Print the values of one or more @var{expressions} under the control of
16633the string @var{template}. To print several values, make
16634@var{expressions} be a comma-separated list of individual expressions,
16635which may be either numbers or pointers. Their values are printed as
16636specified by @var{template}, exactly as a C program would do by
16637executing the code below:
c906108c 16638
474c8240 16639@smallexample
82160952 16640printf (@var{template}, @var{expressions}@dots{});
474c8240 16641@end smallexample
c906108c 16642
82160952
EZ
16643As in @code{C} @code{printf}, ordinary characters in @var{template}
16644are printed verbatim, while @dfn{conversion specification} introduced
16645by the @samp{%} character cause subsequent @var{expressions} to be
16646evaluated, their values converted and formatted according to type and
16647style information encoded in the conversion specifications, and then
16648printed.
16649
8e04817f 16650For example, you can print two values in hex like this:
c906108c 16651
8e04817f
AC
16652@smallexample
16653printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16654@end smallexample
c906108c 16655
82160952
EZ
16656@code{printf} supports all the standard @code{C} conversion
16657specifications, including the flags and modifiers between the @samp{%}
16658character and the conversion letter, with the following exceptions:
16659
16660@itemize @bullet
16661@item
16662The argument-ordering modifiers, such as @samp{2$}, are not supported.
16663
16664@item
16665The modifier @samp{*} is not supported for specifying precision or
16666width.
16667
16668@item
16669The @samp{'} flag (for separation of digits into groups according to
16670@code{LC_NUMERIC'}) is not supported.
16671
16672@item
16673The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16674supported.
16675
16676@item
16677The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16678
16679@item
16680The conversion letters @samp{a} and @samp{A} are not supported.
16681@end itemize
16682
16683@noindent
16684Note that the @samp{ll} type modifier is supported only if the
16685underlying @code{C} implementation used to build @value{GDBN} supports
16686the @code{long long int} type, and the @samp{L} type modifier is
16687supported only if @code{long double} type is available.
16688
16689As in @code{C}, @code{printf} supports simple backslash-escape
16690sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16691@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16692single character. Octal and hexadecimal escape sequences are not
16693supported.
1a619819
LM
16694
16695Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
16696(@dfn{Decimal Floating Point}) types using the following length modifiers
16697together with a floating point specifier.
1a619819
LM
16698letters:
16699
16700@itemize @bullet
16701@item
16702@samp{H} for printing @code{Decimal32} types.
16703
16704@item
16705@samp{D} for printing @code{Decimal64} types.
16706
16707@item
16708@samp{DD} for printing @code{Decimal128} types.
16709@end itemize
16710
16711If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 16712support for the three length modifiers for DFP types, other modifiers
3b784c4f 16713such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16714
16715In case there is no such @code{C} support, no additional modifiers will be
16716available and the value will be printed in the standard way.
16717
16718Here's an example of printing DFP types using the above conversion letters:
16719@smallexample
0aea4bf3 16720printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
16721@end smallexample
16722
c906108c
SS
16723@end table
16724
21c294e6
AC
16725@node Interpreters
16726@chapter Command Interpreters
16727@cindex command interpreters
16728
16729@value{GDBN} supports multiple command interpreters, and some command
16730infrastructure to allow users or user interface writers to switch
16731between interpreters or run commands in other interpreters.
16732
16733@value{GDBN} currently supports two command interpreters, the console
16734interpreter (sometimes called the command-line interpreter or @sc{cli})
16735and the machine interface interpreter (or @sc{gdb/mi}). This manual
16736describes both of these interfaces in great detail.
16737
16738By default, @value{GDBN} will start with the console interpreter.
16739However, the user may choose to start @value{GDBN} with another
16740interpreter by specifying the @option{-i} or @option{--interpreter}
16741startup options. Defined interpreters include:
16742
16743@table @code
16744@item console
16745@cindex console interpreter
16746The traditional console or command-line interpreter. This is the most often
16747used interpreter with @value{GDBN}. With no interpreter specified at runtime,
16748@value{GDBN} will use this interpreter.
16749
16750@item mi
16751@cindex mi interpreter
16752The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
16753by programs wishing to use @value{GDBN} as a backend for a debugger GUI
16754or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
16755Interface}.
16756
16757@item mi2
16758@cindex mi2 interpreter
16759The current @sc{gdb/mi} interface.
16760
16761@item mi1
16762@cindex mi1 interpreter
16763The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
16764
16765@end table
16766
16767@cindex invoke another interpreter
16768The interpreter being used by @value{GDBN} may not be dynamically
16769switched at runtime. Although possible, this could lead to a very
16770precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
16771enters the command "interpreter-set console" in a console view,
16772@value{GDBN} would switch to using the console interpreter, rendering
16773the IDE inoperable!
16774
16775@kindex interpreter-exec
16776Although you may only choose a single interpreter at startup, you may execute
16777commands in any interpreter from the current interpreter using the appropriate
16778command. If you are running the console interpreter, simply use the
16779@code{interpreter-exec} command:
16780
16781@smallexample
16782interpreter-exec mi "-data-list-register-names"
16783@end smallexample
16784
16785@sc{gdb/mi} has a similar command, although it is only available in versions of
16786@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
16787
8e04817f
AC
16788@node TUI
16789@chapter @value{GDBN} Text User Interface
16790@cindex TUI
d0d5df6f 16791@cindex Text User Interface
c906108c 16792
8e04817f
AC
16793@menu
16794* TUI Overview:: TUI overview
16795* TUI Keys:: TUI key bindings
7cf36c78 16796* TUI Single Key Mode:: TUI single key mode
db2e3e2e 16797* TUI Commands:: TUI-specific commands
8e04817f
AC
16798* TUI Configuration:: TUI configuration variables
16799@end menu
c906108c 16800
46ba6afa 16801The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
16802interface which uses the @code{curses} library to show the source
16803file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
16804commands in separate text windows. The TUI mode is supported only
16805on platforms where a suitable version of the @code{curses} library
16806is available.
d0d5df6f 16807
46ba6afa
BW
16808@pindex @value{GDBTUI}
16809The TUI mode is enabled by default when you invoke @value{GDBN} as
16810either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
16811You can also switch in and out of TUI mode while @value{GDBN} runs by
16812using various TUI commands and key bindings, such as @kbd{C-x C-a}.
16813@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 16814
8e04817f 16815@node TUI Overview
79a6e687 16816@section TUI Overview
c906108c 16817
46ba6afa 16818In TUI mode, @value{GDBN} can display several text windows:
c906108c 16819
8e04817f
AC
16820@table @emph
16821@item command
16822This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
16823prompt and the @value{GDBN} output. The @value{GDBN} input is still
16824managed using readline.
c906108c 16825
8e04817f
AC
16826@item source
16827The source window shows the source file of the program. The current
46ba6afa 16828line and active breakpoints are displayed in this window.
c906108c 16829
8e04817f
AC
16830@item assembly
16831The assembly window shows the disassembly output of the program.
c906108c 16832
8e04817f 16833@item register
46ba6afa
BW
16834This window shows the processor registers. Registers are highlighted
16835when their values change.
c906108c
SS
16836@end table
16837
269c21fe 16838The source and assembly windows show the current program position
46ba6afa
BW
16839by highlighting the current line and marking it with a @samp{>} marker.
16840Breakpoints are indicated with two markers. The first marker
269c21fe
SC
16841indicates the breakpoint type:
16842
16843@table @code
16844@item B
16845Breakpoint which was hit at least once.
16846
16847@item b
16848Breakpoint which was never hit.
16849
16850@item H
16851Hardware breakpoint which was hit at least once.
16852
16853@item h
16854Hardware breakpoint which was never hit.
269c21fe
SC
16855@end table
16856
16857The second marker indicates whether the breakpoint is enabled or not:
16858
16859@table @code
16860@item +
16861Breakpoint is enabled.
16862
16863@item -
16864Breakpoint is disabled.
269c21fe
SC
16865@end table
16866
46ba6afa
BW
16867The source, assembly and register windows are updated when the current
16868thread changes, when the frame changes, or when the program counter
16869changes.
16870
16871These windows are not all visible at the same time. The command
16872window is always visible. The others can be arranged in several
16873layouts:
c906108c 16874
8e04817f
AC
16875@itemize @bullet
16876@item
46ba6afa 16877source only,
2df3850c 16878
8e04817f 16879@item
46ba6afa 16880assembly only,
8e04817f
AC
16881
16882@item
46ba6afa 16883source and assembly,
8e04817f
AC
16884
16885@item
46ba6afa 16886source and registers, or
c906108c 16887
8e04817f 16888@item
46ba6afa 16889assembly and registers.
8e04817f 16890@end itemize
c906108c 16891
46ba6afa 16892A status line above the command window shows the following information:
b7bb15bc
SC
16893
16894@table @emph
16895@item target
46ba6afa 16896Indicates the current @value{GDBN} target.
b7bb15bc
SC
16897(@pxref{Targets, ,Specifying a Debugging Target}).
16898
16899@item process
46ba6afa 16900Gives the current process or thread number.
b7bb15bc
SC
16901When no process is being debugged, this field is set to @code{No process}.
16902
16903@item function
16904Gives the current function name for the selected frame.
16905The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 16906When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
16907the string @code{??} is displayed.
16908
16909@item line
16910Indicates the current line number for the selected frame.
46ba6afa 16911When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
16912
16913@item pc
16914Indicates the current program counter address.
b7bb15bc
SC
16915@end table
16916
8e04817f
AC
16917@node TUI Keys
16918@section TUI Key Bindings
16919@cindex TUI key bindings
c906108c 16920
8e04817f 16921The TUI installs several key bindings in the readline keymaps
46ba6afa 16922(@pxref{Command Line Editing}). The following key bindings
8e04817f 16923are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 16924
8e04817f
AC
16925@table @kbd
16926@kindex C-x C-a
16927@item C-x C-a
16928@kindex C-x a
16929@itemx C-x a
16930@kindex C-x A
16931@itemx C-x A
46ba6afa
BW
16932Enter or leave the TUI mode. When leaving the TUI mode,
16933the curses window management stops and @value{GDBN} operates using
16934its standard mode, writing on the terminal directly. When reentering
16935the TUI mode, control is given back to the curses windows.
8e04817f 16936The screen is then refreshed.
c906108c 16937
8e04817f
AC
16938@kindex C-x 1
16939@item C-x 1
16940Use a TUI layout with only one window. The layout will
16941either be @samp{source} or @samp{assembly}. When the TUI mode
16942is not active, it will switch to the TUI mode.
2df3850c 16943
8e04817f 16944Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 16945
8e04817f
AC
16946@kindex C-x 2
16947@item C-x 2
16948Use a TUI layout with at least two windows. When the current
46ba6afa 16949layout already has two windows, the next layout with two windows is used.
8e04817f
AC
16950When a new layout is chosen, one window will always be common to the
16951previous layout and the new one.
c906108c 16952
8e04817f 16953Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 16954
72ffddc9
SC
16955@kindex C-x o
16956@item C-x o
16957Change the active window. The TUI associates several key bindings
46ba6afa 16958(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
16959gives the focus to the next TUI window.
16960
16961Think of it as the Emacs @kbd{C-x o} binding.
16962
7cf36c78
SC
16963@kindex C-x s
16964@item C-x s
46ba6afa
BW
16965Switch in and out of the TUI SingleKey mode that binds single
16966keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
16967@end table
16968
46ba6afa 16969The following key bindings only work in the TUI mode:
5d161b24 16970
46ba6afa 16971@table @asis
8e04817f 16972@kindex PgUp
46ba6afa 16973@item @key{PgUp}
8e04817f 16974Scroll the active window one page up.
c906108c 16975
8e04817f 16976@kindex PgDn
46ba6afa 16977@item @key{PgDn}
8e04817f 16978Scroll the active window one page down.
c906108c 16979
8e04817f 16980@kindex Up
46ba6afa 16981@item @key{Up}
8e04817f 16982Scroll the active window one line up.
c906108c 16983
8e04817f 16984@kindex Down
46ba6afa 16985@item @key{Down}
8e04817f 16986Scroll the active window one line down.
c906108c 16987
8e04817f 16988@kindex Left
46ba6afa 16989@item @key{Left}
8e04817f 16990Scroll the active window one column left.
c906108c 16991
8e04817f 16992@kindex Right
46ba6afa 16993@item @key{Right}
8e04817f 16994Scroll the active window one column right.
c906108c 16995
8e04817f 16996@kindex C-L
46ba6afa 16997@item @kbd{C-L}
8e04817f 16998Refresh the screen.
8e04817f 16999@end table
c906108c 17000
46ba6afa
BW
17001Because the arrow keys scroll the active window in the TUI mode, they
17002are not available for their normal use by readline unless the command
17003window has the focus. When another window is active, you must use
17004other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17005and @kbd{C-f} to control the command window.
8e04817f 17006
7cf36c78
SC
17007@node TUI Single Key Mode
17008@section TUI Single Key Mode
17009@cindex TUI single key mode
17010
46ba6afa
BW
17011The TUI also provides a @dfn{SingleKey} mode, which binds several
17012frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17013switch into this mode, where the following key bindings are used:
7cf36c78
SC
17014
17015@table @kbd
17016@kindex c @r{(SingleKey TUI key)}
17017@item c
17018continue
17019
17020@kindex d @r{(SingleKey TUI key)}
17021@item d
17022down
17023
17024@kindex f @r{(SingleKey TUI key)}
17025@item f
17026finish
17027
17028@kindex n @r{(SingleKey TUI key)}
17029@item n
17030next
17031
17032@kindex q @r{(SingleKey TUI key)}
17033@item q
46ba6afa 17034exit the SingleKey mode.
7cf36c78
SC
17035
17036@kindex r @r{(SingleKey TUI key)}
17037@item r
17038run
17039
17040@kindex s @r{(SingleKey TUI key)}
17041@item s
17042step
17043
17044@kindex u @r{(SingleKey TUI key)}
17045@item u
17046up
17047
17048@kindex v @r{(SingleKey TUI key)}
17049@item v
17050info locals
17051
17052@kindex w @r{(SingleKey TUI key)}
17053@item w
17054where
7cf36c78
SC
17055@end table
17056
17057Other keys temporarily switch to the @value{GDBN} command prompt.
17058The key that was pressed is inserted in the editing buffer so that
17059it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17060with the TUI SingleKey mode. Once the command is entered the TUI
17061SingleKey mode is restored. The only way to permanently leave
7f9087cb 17062this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17063
17064
8e04817f 17065@node TUI Commands
db2e3e2e 17066@section TUI-specific Commands
8e04817f
AC
17067@cindex TUI commands
17068
17069The TUI has specific commands to control the text windows.
46ba6afa
BW
17070These commands are always available, even when @value{GDBN} is not in
17071the TUI mode. When @value{GDBN} is in the standard mode, most
17072of these commands will automatically switch to the TUI mode.
c906108c
SS
17073
17074@table @code
3d757584
SC
17075@item info win
17076@kindex info win
17077List and give the size of all displayed windows.
17078
8e04817f 17079@item layout next
4644b6e3 17080@kindex layout
8e04817f 17081Display the next layout.
2df3850c 17082
8e04817f 17083@item layout prev
8e04817f 17084Display the previous layout.
c906108c 17085
8e04817f 17086@item layout src
8e04817f 17087Display the source window only.
c906108c 17088
8e04817f 17089@item layout asm
8e04817f 17090Display the assembly window only.
c906108c 17091
8e04817f 17092@item layout split
8e04817f 17093Display the source and assembly window.
c906108c 17094
8e04817f 17095@item layout regs
8e04817f
AC
17096Display the register window together with the source or assembly window.
17097
46ba6afa 17098@item focus next
8e04817f 17099@kindex focus
46ba6afa
BW
17100Make the next window active for scrolling.
17101
17102@item focus prev
17103Make the previous window active for scrolling.
17104
17105@item focus src
17106Make the source window active for scrolling.
17107
17108@item focus asm
17109Make the assembly window active for scrolling.
17110
17111@item focus regs
17112Make the register window active for scrolling.
17113
17114@item focus cmd
17115Make the command window active for scrolling.
c906108c 17116
8e04817f
AC
17117@item refresh
17118@kindex refresh
7f9087cb 17119Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17120
6a1b180d
SC
17121@item tui reg float
17122@kindex tui reg
17123Show the floating point registers in the register window.
17124
17125@item tui reg general
17126Show the general registers in the register window.
17127
17128@item tui reg next
17129Show the next register group. The list of register groups as well as
17130their order is target specific. The predefined register groups are the
17131following: @code{general}, @code{float}, @code{system}, @code{vector},
17132@code{all}, @code{save}, @code{restore}.
17133
17134@item tui reg system
17135Show the system registers in the register window.
17136
8e04817f
AC
17137@item update
17138@kindex update
17139Update the source window and the current execution point.
c906108c 17140
8e04817f
AC
17141@item winheight @var{name} +@var{count}
17142@itemx winheight @var{name} -@var{count}
17143@kindex winheight
17144Change the height of the window @var{name} by @var{count}
17145lines. Positive counts increase the height, while negative counts
17146decrease it.
2df3850c 17147
46ba6afa
BW
17148@item tabset @var{nchars}
17149@kindex tabset
c45da7e6 17150Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17151@end table
17152
8e04817f 17153@node TUI Configuration
79a6e687 17154@section TUI Configuration Variables
8e04817f 17155@cindex TUI configuration variables
c906108c 17156
46ba6afa 17157Several configuration variables control the appearance of TUI windows.
c906108c 17158
8e04817f
AC
17159@table @code
17160@item set tui border-kind @var{kind}
17161@kindex set tui border-kind
17162Select the border appearance for the source, assembly and register windows.
17163The possible values are the following:
17164@table @code
17165@item space
17166Use a space character to draw the border.
c906108c 17167
8e04817f 17168@item ascii
46ba6afa 17169Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17170
8e04817f
AC
17171@item acs
17172Use the Alternate Character Set to draw the border. The border is
17173drawn using character line graphics if the terminal supports them.
8e04817f 17174@end table
c78b4128 17175
8e04817f
AC
17176@item set tui border-mode @var{mode}
17177@kindex set tui border-mode
46ba6afa
BW
17178@itemx set tui active-border-mode @var{mode}
17179@kindex set tui active-border-mode
17180Select the display attributes for the borders of the inactive windows
17181or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17182@table @code
17183@item normal
17184Use normal attributes to display the border.
c906108c 17185
8e04817f
AC
17186@item standout
17187Use standout mode.
c906108c 17188
8e04817f
AC
17189@item reverse
17190Use reverse video mode.
c906108c 17191
8e04817f
AC
17192@item half
17193Use half bright mode.
c906108c 17194
8e04817f
AC
17195@item half-standout
17196Use half bright and standout mode.
c906108c 17197
8e04817f
AC
17198@item bold
17199Use extra bright or bold mode.
c78b4128 17200
8e04817f
AC
17201@item bold-standout
17202Use extra bright or bold and standout mode.
8e04817f 17203@end table
8e04817f 17204@end table
c78b4128 17205
8e04817f
AC
17206@node Emacs
17207@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17208
8e04817f
AC
17209@cindex Emacs
17210@cindex @sc{gnu} Emacs
17211A special interface allows you to use @sc{gnu} Emacs to view (and
17212edit) the source files for the program you are debugging with
17213@value{GDBN}.
c906108c 17214
8e04817f
AC
17215To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17216executable file you want to debug as an argument. This command starts
17217@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17218created Emacs buffer.
17219@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17220
5e252a2e 17221Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17222things:
c906108c 17223
8e04817f
AC
17224@itemize @bullet
17225@item
5e252a2e
NR
17226All ``terminal'' input and output goes through an Emacs buffer, called
17227the GUD buffer.
c906108c 17228
8e04817f
AC
17229This applies both to @value{GDBN} commands and their output, and to the input
17230and output done by the program you are debugging.
bf0184be 17231
8e04817f
AC
17232This is useful because it means that you can copy the text of previous
17233commands and input them again; you can even use parts of the output
17234in this way.
bf0184be 17235
8e04817f
AC
17236All the facilities of Emacs' Shell mode are available for interacting
17237with your program. In particular, you can send signals the usual
17238way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17239stop.
bf0184be
ND
17240
17241@item
8e04817f 17242@value{GDBN} displays source code through Emacs.
bf0184be 17243
8e04817f
AC
17244Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17245source file for that frame and puts an arrow (@samp{=>}) at the
17246left margin of the current line. Emacs uses a separate buffer for
17247source display, and splits the screen to show both your @value{GDBN} session
17248and the source.
bf0184be 17249
8e04817f
AC
17250Explicit @value{GDBN} @code{list} or search commands still produce output as
17251usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17252@end itemize
17253
17254We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17255a graphical mode, enabled by default, which provides further buffers
17256that can control the execution and describe the state of your program.
17257@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17258
64fabec2
AC
17259If you specify an absolute file name when prompted for the @kbd{M-x
17260gdb} argument, then Emacs sets your current working directory to where
17261your program resides. If you only specify the file name, then Emacs
17262sets your current working directory to to the directory associated
17263with the previous buffer. In this case, @value{GDBN} may find your
17264program by searching your environment's @code{PATH} variable, but on
17265some operating systems it might not find the source. So, although the
17266@value{GDBN} input and output session proceeds normally, the auxiliary
17267buffer does not display the current source and line of execution.
17268
17269The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17270line of the GUD buffer and this serves as a default for the commands
17271that specify files for @value{GDBN} to operate on. @xref{Files,
17272,Commands to Specify Files}.
64fabec2
AC
17273
17274By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17275need to call @value{GDBN} by a different name (for example, if you
17276keep several configurations around, with different names) you can
17277customize the Emacs variable @code{gud-gdb-command-name} to run the
17278one you want.
8e04817f 17279
5e252a2e 17280In the GUD buffer, you can use these special Emacs commands in
8e04817f 17281addition to the standard Shell mode commands:
c906108c 17282
8e04817f
AC
17283@table @kbd
17284@item C-h m
5e252a2e 17285Describe the features of Emacs' GUD Mode.
c906108c 17286
64fabec2 17287@item C-c C-s
8e04817f
AC
17288Execute to another source line, like the @value{GDBN} @code{step} command; also
17289update the display window to show the current file and location.
c906108c 17290
64fabec2 17291@item C-c C-n
8e04817f
AC
17292Execute to next source line in this function, skipping all function
17293calls, like the @value{GDBN} @code{next} command. Then update the display window
17294to show the current file and location.
c906108c 17295
64fabec2 17296@item C-c C-i
8e04817f
AC
17297Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17298display window accordingly.
c906108c 17299
8e04817f
AC
17300@item C-c C-f
17301Execute until exit from the selected stack frame, like the @value{GDBN}
17302@code{finish} command.
c906108c 17303
64fabec2 17304@item C-c C-r
8e04817f
AC
17305Continue execution of your program, like the @value{GDBN} @code{continue}
17306command.
b433d00b 17307
64fabec2 17308@item C-c <
8e04817f
AC
17309Go up the number of frames indicated by the numeric argument
17310(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17311like the @value{GDBN} @code{up} command.
b433d00b 17312
64fabec2 17313@item C-c >
8e04817f
AC
17314Go down the number of frames indicated by the numeric argument, like the
17315@value{GDBN} @code{down} command.
8e04817f 17316@end table
c906108c 17317
7f9087cb 17318In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17319tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17320
5e252a2e
NR
17321In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17322separate frame which shows a backtrace when the GUD buffer is current.
17323Move point to any frame in the stack and type @key{RET} to make it
17324become the current frame and display the associated source in the
17325source buffer. Alternatively, click @kbd{Mouse-2} to make the
17326selected frame become the current one. In graphical mode, the
17327speedbar displays watch expressions.
64fabec2 17328
8e04817f
AC
17329If you accidentally delete the source-display buffer, an easy way to get
17330it back is to type the command @code{f} in the @value{GDBN} buffer, to
17331request a frame display; when you run under Emacs, this recreates
17332the source buffer if necessary to show you the context of the current
17333frame.
c906108c 17334
8e04817f
AC
17335The source files displayed in Emacs are in ordinary Emacs buffers
17336which are visiting the source files in the usual way. You can edit
17337the files with these buffers if you wish; but keep in mind that @value{GDBN}
17338communicates with Emacs in terms of line numbers. If you add or
17339delete lines from the text, the line numbers that @value{GDBN} knows cease
17340to correspond properly with the code.
b383017d 17341
5e252a2e
NR
17342A more detailed description of Emacs' interaction with @value{GDBN} is
17343given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17344Emacs Manual}).
c906108c 17345
8e04817f
AC
17346@c The following dropped because Epoch is nonstandard. Reactivate
17347@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17348@ignore
17349@kindex Emacs Epoch environment
17350@kindex Epoch
17351@kindex inspect
c906108c 17352
8e04817f
AC
17353Version 18 of @sc{gnu} Emacs has a built-in window system
17354called the @code{epoch}
17355environment. Users of this environment can use a new command,
17356@code{inspect} which performs identically to @code{print} except that
17357each value is printed in its own window.
17358@end ignore
c906108c 17359
922fbb7b
AC
17360
17361@node GDB/MI
17362@chapter The @sc{gdb/mi} Interface
17363
17364@unnumberedsec Function and Purpose
17365
17366@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17367@sc{gdb/mi} is a line based machine oriented text interface to
17368@value{GDBN} and is activated by specifying using the
17369@option{--interpreter} command line option (@pxref{Mode Options}). It
17370is specifically intended to support the development of systems which
17371use the debugger as just one small component of a larger system.
922fbb7b
AC
17372
17373This chapter is a specification of the @sc{gdb/mi} interface. It is written
17374in the form of a reference manual.
17375
17376Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17377features described below are incomplete and subject to change
17378(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17379
17380@unnumberedsec Notation and Terminology
17381
17382@cindex notational conventions, for @sc{gdb/mi}
17383This chapter uses the following notation:
17384
17385@itemize @bullet
17386@item
17387@code{|} separates two alternatives.
17388
17389@item
17390@code{[ @var{something} ]} indicates that @var{something} is optional:
17391it may or may not be given.
17392
17393@item
17394@code{( @var{group} )*} means that @var{group} inside the parentheses
17395may repeat zero or more times.
17396
17397@item
17398@code{( @var{group} )+} means that @var{group} inside the parentheses
17399may repeat one or more times.
17400
17401@item
17402@code{"@var{string}"} means a literal @var{string}.
17403@end itemize
17404
17405@ignore
17406@heading Dependencies
17407@end ignore
17408
922fbb7b
AC
17409@menu
17410* GDB/MI Command Syntax::
17411* GDB/MI Compatibility with CLI::
af6eff6f 17412* GDB/MI Development and Front Ends::
922fbb7b 17413* GDB/MI Output Records::
ef21caaf 17414* GDB/MI Simple Examples::
922fbb7b 17415* GDB/MI Command Description Format::
ef21caaf 17416* GDB/MI Breakpoint Commands::
a2c02241
NR
17417* GDB/MI Program Context::
17418* GDB/MI Thread Commands::
17419* GDB/MI Program Execution::
17420* GDB/MI Stack Manipulation::
17421* GDB/MI Variable Objects::
922fbb7b 17422* GDB/MI Data Manipulation::
a2c02241
NR
17423* GDB/MI Tracepoint Commands::
17424* GDB/MI Symbol Query::
351ff01a 17425* GDB/MI File Commands::
922fbb7b
AC
17426@ignore
17427* GDB/MI Kod Commands::
17428* GDB/MI Memory Overlay Commands::
17429* GDB/MI Signal Handling Commands::
17430@end ignore
922fbb7b 17431* GDB/MI Target Manipulation::
a6b151f1 17432* GDB/MI File Transfer Commands::
ef21caaf 17433* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17434@end menu
17435
17436@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17437@node GDB/MI Command Syntax
17438@section @sc{gdb/mi} Command Syntax
17439
17440@menu
17441* GDB/MI Input Syntax::
17442* GDB/MI Output Syntax::
922fbb7b
AC
17443@end menu
17444
17445@node GDB/MI Input Syntax
17446@subsection @sc{gdb/mi} Input Syntax
17447
17448@cindex input syntax for @sc{gdb/mi}
17449@cindex @sc{gdb/mi}, input syntax
17450@table @code
17451@item @var{command} @expansion{}
17452@code{@var{cli-command} | @var{mi-command}}
17453
17454@item @var{cli-command} @expansion{}
17455@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17456@var{cli-command} is any existing @value{GDBN} CLI command.
17457
17458@item @var{mi-command} @expansion{}
17459@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17460@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17461
17462@item @var{token} @expansion{}
17463"any sequence of digits"
17464
17465@item @var{option} @expansion{}
17466@code{"-" @var{parameter} [ " " @var{parameter} ]}
17467
17468@item @var{parameter} @expansion{}
17469@code{@var{non-blank-sequence} | @var{c-string}}
17470
17471@item @var{operation} @expansion{}
17472@emph{any of the operations described in this chapter}
17473
17474@item @var{non-blank-sequence} @expansion{}
17475@emph{anything, provided it doesn't contain special characters such as
17476"-", @var{nl}, """ and of course " "}
17477
17478@item @var{c-string} @expansion{}
17479@code{""" @var{seven-bit-iso-c-string-content} """}
17480
17481@item @var{nl} @expansion{}
17482@code{CR | CR-LF}
17483@end table
17484
17485@noindent
17486Notes:
17487
17488@itemize @bullet
17489@item
17490The CLI commands are still handled by the @sc{mi} interpreter; their
17491output is described below.
17492
17493@item
17494The @code{@var{token}}, when present, is passed back when the command
17495finishes.
17496
17497@item
17498Some @sc{mi} commands accept optional arguments as part of the parameter
17499list. Each option is identified by a leading @samp{-} (dash) and may be
17500followed by an optional argument parameter. Options occur first in the
17501parameter list and can be delimited from normal parameters using
17502@samp{--} (this is useful when some parameters begin with a dash).
17503@end itemize
17504
17505Pragmatics:
17506
17507@itemize @bullet
17508@item
17509We want easy access to the existing CLI syntax (for debugging).
17510
17511@item
17512We want it to be easy to spot a @sc{mi} operation.
17513@end itemize
17514
17515@node GDB/MI Output Syntax
17516@subsection @sc{gdb/mi} Output Syntax
17517
17518@cindex output syntax of @sc{gdb/mi}
17519@cindex @sc{gdb/mi}, output syntax
17520The output from @sc{gdb/mi} consists of zero or more out-of-band records
17521followed, optionally, by a single result record. This result record
17522is for the most recent command. The sequence of output records is
594fe323 17523terminated by @samp{(gdb)}.
922fbb7b
AC
17524
17525If an input command was prefixed with a @code{@var{token}} then the
17526corresponding output for that command will also be prefixed by that same
17527@var{token}.
17528
17529@table @code
17530@item @var{output} @expansion{}
594fe323 17531@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17532
17533@item @var{result-record} @expansion{}
17534@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17535
17536@item @var{out-of-band-record} @expansion{}
17537@code{@var{async-record} | @var{stream-record}}
17538
17539@item @var{async-record} @expansion{}
17540@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17541
17542@item @var{exec-async-output} @expansion{}
17543@code{[ @var{token} ] "*" @var{async-output}}
17544
17545@item @var{status-async-output} @expansion{}
17546@code{[ @var{token} ] "+" @var{async-output}}
17547
17548@item @var{notify-async-output} @expansion{}
17549@code{[ @var{token} ] "=" @var{async-output}}
17550
17551@item @var{async-output} @expansion{}
17552@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17553
17554@item @var{result-class} @expansion{}
17555@code{"done" | "running" | "connected" | "error" | "exit"}
17556
17557@item @var{async-class} @expansion{}
17558@code{"stopped" | @var{others}} (where @var{others} will be added
17559depending on the needs---this is still in development).
17560
17561@item @var{result} @expansion{}
17562@code{ @var{variable} "=" @var{value}}
17563
17564@item @var{variable} @expansion{}
17565@code{ @var{string} }
17566
17567@item @var{value} @expansion{}
17568@code{ @var{const} | @var{tuple} | @var{list} }
17569
17570@item @var{const} @expansion{}
17571@code{@var{c-string}}
17572
17573@item @var{tuple} @expansion{}
17574@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17575
17576@item @var{list} @expansion{}
17577@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17578@var{result} ( "," @var{result} )* "]" }
17579
17580@item @var{stream-record} @expansion{}
17581@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17582
17583@item @var{console-stream-output} @expansion{}
17584@code{"~" @var{c-string}}
17585
17586@item @var{target-stream-output} @expansion{}
17587@code{"@@" @var{c-string}}
17588
17589@item @var{log-stream-output} @expansion{}
17590@code{"&" @var{c-string}}
17591
17592@item @var{nl} @expansion{}
17593@code{CR | CR-LF}
17594
17595@item @var{token} @expansion{}
17596@emph{any sequence of digits}.
17597@end table
17598
17599@noindent
17600Notes:
17601
17602@itemize @bullet
17603@item
17604All output sequences end in a single line containing a period.
17605
17606@item
17607The @code{@var{token}} is from the corresponding request. If an execution
17608command is interrupted by the @samp{-exec-interrupt} command, the
17609@var{token} associated with the @samp{*stopped} message is the one of the
17610original execution command, not the one of the interrupt command.
17611
17612@item
17613@cindex status output in @sc{gdb/mi}
17614@var{status-async-output} contains on-going status information about the
17615progress of a slow operation. It can be discarded. All status output is
17616prefixed by @samp{+}.
17617
17618@item
17619@cindex async output in @sc{gdb/mi}
17620@var{exec-async-output} contains asynchronous state change on the target
17621(stopped, started, disappeared). All async output is prefixed by
17622@samp{*}.
17623
17624@item
17625@cindex notify output in @sc{gdb/mi}
17626@var{notify-async-output} contains supplementary information that the
17627client should handle (e.g., a new breakpoint information). All notify
17628output is prefixed by @samp{=}.
17629
17630@item
17631@cindex console output in @sc{gdb/mi}
17632@var{console-stream-output} is output that should be displayed as is in the
17633console. It is the textual response to a CLI command. All the console
17634output is prefixed by @samp{~}.
17635
17636@item
17637@cindex target output in @sc{gdb/mi}
17638@var{target-stream-output} is the output produced by the target program.
17639All the target output is prefixed by @samp{@@}.
17640
17641@item
17642@cindex log output in @sc{gdb/mi}
17643@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17644instance messages that should be displayed as part of an error log. All
17645the log output is prefixed by @samp{&}.
17646
17647@item
17648@cindex list output in @sc{gdb/mi}
17649New @sc{gdb/mi} commands should only output @var{lists} containing
17650@var{values}.
17651
17652
17653@end itemize
17654
17655@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17656details about the various output records.
17657
922fbb7b
AC
17658@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17659@node GDB/MI Compatibility with CLI
17660@section @sc{gdb/mi} Compatibility with CLI
17661
17662@cindex compatibility, @sc{gdb/mi} and CLI
17663@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17664
a2c02241
NR
17665For the developers convenience CLI commands can be entered directly,
17666but there may be some unexpected behaviour. For example, commands
17667that query the user will behave as if the user replied yes, breakpoint
17668command lists are not executed and some CLI commands, such as
17669@code{if}, @code{when} and @code{define}, prompt for further input with
17670@samp{>}, which is not valid MI output.
ef21caaf
NR
17671
17672This feature may be removed at some stage in the future and it is
a2c02241
NR
17673recommended that front ends use the @code{-interpreter-exec} command
17674(@pxref{-interpreter-exec}).
922fbb7b 17675
af6eff6f
NR
17676@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17677@node GDB/MI Development and Front Ends
17678@section @sc{gdb/mi} Development and Front Ends
17679@cindex @sc{gdb/mi} development
17680
17681The application which takes the MI output and presents the state of the
17682program being debugged to the user is called a @dfn{front end}.
17683
17684Although @sc{gdb/mi} is still incomplete, it is currently being used
17685by a variety of front ends to @value{GDBN}. This makes it difficult
17686to introduce new functionality without breaking existing usage. This
17687section tries to minimize the problems by describing how the protocol
17688might change.
17689
17690Some changes in MI need not break a carefully designed front end, and
17691for these the MI version will remain unchanged. The following is a
17692list of changes that may occur within one level, so front ends should
17693parse MI output in a way that can handle them:
17694
17695@itemize @bullet
17696@item
17697New MI commands may be added.
17698
17699@item
17700New fields may be added to the output of any MI command.
17701
36ece8b3
NR
17702@item
17703The range of values for fields with specified values, e.g.,
9f708cb2 17704@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17705
af6eff6f
NR
17706@c The format of field's content e.g type prefix, may change so parse it
17707@c at your own risk. Yes, in general?
17708
17709@c The order of fields may change? Shouldn't really matter but it might
17710@c resolve inconsistencies.
17711@end itemize
17712
17713If the changes are likely to break front ends, the MI version level
17714will be increased by one. This will allow the front end to parse the
17715output according to the MI version. Apart from mi0, new versions of
17716@value{GDBN} will not support old versions of MI and it will be the
17717responsibility of the front end to work with the new one.
17718
17719@c Starting with mi3, add a new command -mi-version that prints the MI
17720@c version?
17721
17722The best way to avoid unexpected changes in MI that might break your front
17723end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17724follow development on @email{gdb@@sourceware.org} and
17725@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17726@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17727Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17728called Debugger Machine Interface (DMI) that will become a standard
17729for all debuggers, not just @value{GDBN}.
17730@cindex mailing lists
17731
922fbb7b
AC
17732@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17733@node GDB/MI Output Records
17734@section @sc{gdb/mi} Output Records
17735
17736@menu
17737* GDB/MI Result Records::
17738* GDB/MI Stream Records::
17739* GDB/MI Out-of-band Records::
17740@end menu
17741
17742@node GDB/MI Result Records
17743@subsection @sc{gdb/mi} Result Records
17744
17745@cindex result records in @sc{gdb/mi}
17746@cindex @sc{gdb/mi}, result records
17747In addition to a number of out-of-band notifications, the response to a
17748@sc{gdb/mi} command includes one of the following result indications:
17749
17750@table @code
17751@findex ^done
17752@item "^done" [ "," @var{results} ]
17753The synchronous operation was successful, @code{@var{results}} are the return
17754values.
17755
17756@item "^running"
17757@findex ^running
17758@c Is this one correct? Should it be an out-of-band notification?
17759The asynchronous operation was successfully started. The target is
17760running.
17761
ef21caaf
NR
17762@item "^connected"
17763@findex ^connected
3f94c067 17764@value{GDBN} has connected to a remote target.
ef21caaf 17765
922fbb7b
AC
17766@item "^error" "," @var{c-string}
17767@findex ^error
17768The operation failed. The @code{@var{c-string}} contains the corresponding
17769error message.
ef21caaf
NR
17770
17771@item "^exit"
17772@findex ^exit
3f94c067 17773@value{GDBN} has terminated.
ef21caaf 17774
922fbb7b
AC
17775@end table
17776
17777@node GDB/MI Stream Records
17778@subsection @sc{gdb/mi} Stream Records
17779
17780@cindex @sc{gdb/mi}, stream records
17781@cindex stream records in @sc{gdb/mi}
17782@value{GDBN} internally maintains a number of output streams: the console, the
17783target, and the log. The output intended for each of these streams is
17784funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
17785
17786Each stream record begins with a unique @dfn{prefix character} which
17787identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
17788Syntax}). In addition to the prefix, each stream record contains a
17789@code{@var{string-output}}. This is either raw text (with an implicit new
17790line) or a quoted C string (which does not contain an implicit newline).
17791
17792@table @code
17793@item "~" @var{string-output}
17794The console output stream contains text that should be displayed in the
17795CLI console window. It contains the textual responses to CLI commands.
17796
17797@item "@@" @var{string-output}
17798The target output stream contains any textual output from the running
ef21caaf
NR
17799target. This is only present when GDB's event loop is truly
17800asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
17801
17802@item "&" @var{string-output}
17803The log stream contains debugging messages being produced by @value{GDBN}'s
17804internals.
17805@end table
17806
17807@node GDB/MI Out-of-band Records
17808@subsection @sc{gdb/mi} Out-of-band Records
17809
17810@cindex out-of-band records in @sc{gdb/mi}
17811@cindex @sc{gdb/mi}, out-of-band records
17812@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
17813additional changes that have occurred. Those changes can either be a
17814consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
17815target activity (e.g., target stopped).
17816
17817The following is a preliminary list of possible out-of-band records.
034dad6f 17818In particular, the @var{exec-async-output} records.
922fbb7b
AC
17819
17820@table @code
034dad6f
BR
17821@item *stopped,reason="@var{reason}"
17822@end table
17823
17824@var{reason} can be one of the following:
17825
17826@table @code
17827@item breakpoint-hit
17828A breakpoint was reached.
17829@item watchpoint-trigger
17830A watchpoint was triggered.
17831@item read-watchpoint-trigger
17832A read watchpoint was triggered.
17833@item access-watchpoint-trigger
17834An access watchpoint was triggered.
17835@item function-finished
17836An -exec-finish or similar CLI command was accomplished.
17837@item location-reached
17838An -exec-until or similar CLI command was accomplished.
17839@item watchpoint-scope
17840A watchpoint has gone out of scope.
17841@item end-stepping-range
17842An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
17843similar CLI command was accomplished.
17844@item exited-signalled
17845The inferior exited because of a signal.
17846@item exited
17847The inferior exited.
17848@item exited-normally
17849The inferior exited normally.
17850@item signal-received
17851A signal was received by the inferior.
922fbb7b
AC
17852@end table
17853
17854
ef21caaf
NR
17855@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17856@node GDB/MI Simple Examples
17857@section Simple Examples of @sc{gdb/mi} Interaction
17858@cindex @sc{gdb/mi}, simple examples
17859
17860This subsection presents several simple examples of interaction using
17861the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
17862following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
17863the output received from @sc{gdb/mi}.
17864
d3e8051b 17865Note the line breaks shown in the examples are here only for
ef21caaf
NR
17866readability, they don't appear in the real output.
17867
79a6e687 17868@subheading Setting a Breakpoint
ef21caaf
NR
17869
17870Setting a breakpoint generates synchronous output which contains detailed
17871information of the breakpoint.
17872
17873@smallexample
17874-> -break-insert main
17875<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
17876 enabled="y",addr="0x08048564",func="main",file="myprog.c",
17877 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
17878<- (gdb)
17879@end smallexample
17880
17881@subheading Program Execution
17882
17883Program execution generates asynchronous records and MI gives the
17884reason that execution stopped.
17885
17886@smallexample
17887-> -exec-run
17888<- ^running
17889<- (gdb)
17890<- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
17891 frame=@{addr="0x08048564",func="main",
17892 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
17893 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
17894<- (gdb)
17895-> -exec-continue
17896<- ^running
17897<- (gdb)
17898<- *stopped,reason="exited-normally"
17899<- (gdb)
17900@end smallexample
17901
3f94c067 17902@subheading Quitting @value{GDBN}
ef21caaf 17903
3f94c067 17904Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
17905
17906@smallexample
17907-> (gdb)
17908<- -gdb-exit
17909<- ^exit
17910@end smallexample
17911
a2c02241 17912@subheading A Bad Command
ef21caaf
NR
17913
17914Here's what happens if you pass a non-existent command:
17915
17916@smallexample
17917-> -rubbish
17918<- ^error,msg="Undefined MI command: rubbish"
594fe323 17919<- (gdb)
ef21caaf
NR
17920@end smallexample
17921
17922
922fbb7b
AC
17923@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17924@node GDB/MI Command Description Format
17925@section @sc{gdb/mi} Command Description Format
17926
17927The remaining sections describe blocks of commands. Each block of
17928commands is laid out in a fashion similar to this section.
17929
922fbb7b
AC
17930@subheading Motivation
17931
17932The motivation for this collection of commands.
17933
17934@subheading Introduction
17935
17936A brief introduction to this collection of commands as a whole.
17937
17938@subheading Commands
17939
17940For each command in the block, the following is described:
17941
17942@subsubheading Synopsis
17943
17944@smallexample
17945 -command @var{args}@dots{}
17946@end smallexample
17947
922fbb7b
AC
17948@subsubheading Result
17949
265eeb58 17950@subsubheading @value{GDBN} Command
922fbb7b 17951
265eeb58 17952The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
17953
17954@subsubheading Example
17955
ef21caaf
NR
17956Example(s) formatted for readability. Some of the described commands have
17957not been implemented yet and these are labeled N.A.@: (not available).
17958
17959
922fbb7b 17960@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
17961@node GDB/MI Breakpoint Commands
17962@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
17963
17964@cindex breakpoint commands for @sc{gdb/mi}
17965@cindex @sc{gdb/mi}, breakpoint commands
17966This section documents @sc{gdb/mi} commands for manipulating
17967breakpoints.
17968
17969@subheading The @code{-break-after} Command
17970@findex -break-after
17971
17972@subsubheading Synopsis
17973
17974@smallexample
17975 -break-after @var{number} @var{count}
17976@end smallexample
17977
17978The breakpoint number @var{number} is not in effect until it has been
17979hit @var{count} times. To see how this is reflected in the output of
17980the @samp{-break-list} command, see the description of the
17981@samp{-break-list} command below.
17982
17983@subsubheading @value{GDBN} Command
17984
17985The corresponding @value{GDBN} command is @samp{ignore}.
17986
17987@subsubheading Example
17988
17989@smallexample
594fe323 17990(gdb)
922fbb7b 17991-break-insert main
948d5102
NR
17992^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
17993fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 17994(gdb)
922fbb7b
AC
17995-break-after 1 3
17996~
17997^done
594fe323 17998(gdb)
922fbb7b
AC
17999-break-list
18000^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18001hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18002@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18003@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18004@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18005@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18006@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18007body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18008addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18009line="5",times="0",ignore="3"@}]@}
594fe323 18010(gdb)
922fbb7b
AC
18011@end smallexample
18012
18013@ignore
18014@subheading The @code{-break-catch} Command
18015@findex -break-catch
18016
18017@subheading The @code{-break-commands} Command
18018@findex -break-commands
18019@end ignore
18020
18021
18022@subheading The @code{-break-condition} Command
18023@findex -break-condition
18024
18025@subsubheading Synopsis
18026
18027@smallexample
18028 -break-condition @var{number} @var{expr}
18029@end smallexample
18030
18031Breakpoint @var{number} will stop the program only if the condition in
18032@var{expr} is true. The condition becomes part of the
18033@samp{-break-list} output (see the description of the @samp{-break-list}
18034command below).
18035
18036@subsubheading @value{GDBN} Command
18037
18038The corresponding @value{GDBN} command is @samp{condition}.
18039
18040@subsubheading Example
18041
18042@smallexample
594fe323 18043(gdb)
922fbb7b
AC
18044-break-condition 1 1
18045^done
594fe323 18046(gdb)
922fbb7b
AC
18047-break-list
18048^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18049hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18050@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18051@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18052@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18053@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18054@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18055body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18056addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18057line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18058(gdb)
922fbb7b
AC
18059@end smallexample
18060
18061@subheading The @code{-break-delete} Command
18062@findex -break-delete
18063
18064@subsubheading Synopsis
18065
18066@smallexample
18067 -break-delete ( @var{breakpoint} )+
18068@end smallexample
18069
18070Delete the breakpoint(s) whose number(s) are specified in the argument
18071list. This is obviously reflected in the breakpoint list.
18072
79a6e687 18073@subsubheading @value{GDBN} Command
922fbb7b
AC
18074
18075The corresponding @value{GDBN} command is @samp{delete}.
18076
18077@subsubheading Example
18078
18079@smallexample
594fe323 18080(gdb)
922fbb7b
AC
18081-break-delete 1
18082^done
594fe323 18083(gdb)
922fbb7b
AC
18084-break-list
18085^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18086hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18087@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18088@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18089@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18090@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18091@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18092body=[]@}
594fe323 18093(gdb)
922fbb7b
AC
18094@end smallexample
18095
18096@subheading The @code{-break-disable} Command
18097@findex -break-disable
18098
18099@subsubheading Synopsis
18100
18101@smallexample
18102 -break-disable ( @var{breakpoint} )+
18103@end smallexample
18104
18105Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18106break list is now set to @samp{n} for the named @var{breakpoint}(s).
18107
18108@subsubheading @value{GDBN} Command
18109
18110The corresponding @value{GDBN} command is @samp{disable}.
18111
18112@subsubheading Example
18113
18114@smallexample
594fe323 18115(gdb)
922fbb7b
AC
18116-break-disable 2
18117^done
594fe323 18118(gdb)
922fbb7b
AC
18119-break-list
18120^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18121hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18122@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18123@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18124@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18125@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18126@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18127body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18128addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18129line="5",times="0"@}]@}
594fe323 18130(gdb)
922fbb7b
AC
18131@end smallexample
18132
18133@subheading The @code{-break-enable} Command
18134@findex -break-enable
18135
18136@subsubheading Synopsis
18137
18138@smallexample
18139 -break-enable ( @var{breakpoint} )+
18140@end smallexample
18141
18142Enable (previously disabled) @var{breakpoint}(s).
18143
18144@subsubheading @value{GDBN} Command
18145
18146The corresponding @value{GDBN} command is @samp{enable}.
18147
18148@subsubheading Example
18149
18150@smallexample
594fe323 18151(gdb)
922fbb7b
AC
18152-break-enable 2
18153^done
594fe323 18154(gdb)
922fbb7b
AC
18155-break-list
18156^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18157hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18158@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18159@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18160@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18161@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18162@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18163body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18164addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18165line="5",times="0"@}]@}
594fe323 18166(gdb)
922fbb7b
AC
18167@end smallexample
18168
18169@subheading The @code{-break-info} Command
18170@findex -break-info
18171
18172@subsubheading Synopsis
18173
18174@smallexample
18175 -break-info @var{breakpoint}
18176@end smallexample
18177
18178@c REDUNDANT???
18179Get information about a single breakpoint.
18180
79a6e687 18181@subsubheading @value{GDBN} Command
922fbb7b
AC
18182
18183The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18184
18185@subsubheading Example
18186N.A.
18187
18188@subheading The @code{-break-insert} Command
18189@findex -break-insert
18190
18191@subsubheading Synopsis
18192
18193@smallexample
afe8ab22 18194 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18195 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18196 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18197@end smallexample
18198
18199@noindent
afe8ab22 18200If specified, @var{location}, can be one of:
922fbb7b
AC
18201
18202@itemize @bullet
18203@item function
18204@c @item +offset
18205@c @item -offset
18206@c @item linenum
18207@item filename:linenum
18208@item filename:function
18209@item *address
18210@end itemize
18211
18212The possible optional parameters of this command are:
18213
18214@table @samp
18215@item -t
948d5102 18216Insert a temporary breakpoint.
922fbb7b
AC
18217@item -h
18218Insert a hardware breakpoint.
18219@item -c @var{condition}
18220Make the breakpoint conditional on @var{condition}.
18221@item -i @var{ignore-count}
18222Initialize the @var{ignore-count}.
afe8ab22
VP
18223@item -f
18224If @var{location} cannot be parsed (for example if it
18225refers to unknown files or functions), create a pending
18226breakpoint. Without this flag, @value{GDBN} will report
18227an error, and won't create a breakpoint, if @var{location}
18228cannot be parsed.
922fbb7b
AC
18229@end table
18230
18231@subsubheading Result
18232
18233The result is in the form:
18234
18235@smallexample
948d5102
NR
18236^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18237enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18238fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18239times="@var{times}"@}
922fbb7b
AC
18240@end smallexample
18241
18242@noindent
948d5102
NR
18243where @var{number} is the @value{GDBN} number for this breakpoint,
18244@var{funcname} is the name of the function where the breakpoint was
18245inserted, @var{filename} is the name of the source file which contains
18246this function, @var{lineno} is the source line number within that file
18247and @var{times} the number of times that the breakpoint has been hit
18248(always 0 for -break-insert but may be greater for -break-info or -break-list
18249which use the same output).
922fbb7b
AC
18250
18251Note: this format is open to change.
18252@c An out-of-band breakpoint instead of part of the result?
18253
18254@subsubheading @value{GDBN} Command
18255
18256The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18257@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18258
18259@subsubheading Example
18260
18261@smallexample
594fe323 18262(gdb)
922fbb7b 18263-break-insert main
948d5102
NR
18264^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18265fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18266(gdb)
922fbb7b 18267-break-insert -t foo
948d5102
NR
18268^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18269fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18270(gdb)
922fbb7b
AC
18271-break-list
18272^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18273hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18274@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18275@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18276@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18277@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18278@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18279body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18280addr="0x0001072c", func="main",file="recursive2.c",
18281fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18282bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18283addr="0x00010774",func="foo",file="recursive2.c",
18284fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18285(gdb)
922fbb7b
AC
18286-break-insert -r foo.*
18287~int foo(int, int);
948d5102
NR
18288^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18289"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18290(gdb)
922fbb7b
AC
18291@end smallexample
18292
18293@subheading The @code{-break-list} Command
18294@findex -break-list
18295
18296@subsubheading Synopsis
18297
18298@smallexample
18299 -break-list
18300@end smallexample
18301
18302Displays the list of inserted breakpoints, showing the following fields:
18303
18304@table @samp
18305@item Number
18306number of the breakpoint
18307@item Type
18308type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18309@item Disposition
18310should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18311or @samp{nokeep}
18312@item Enabled
18313is the breakpoint enabled or no: @samp{y} or @samp{n}
18314@item Address
18315memory location at which the breakpoint is set
18316@item What
18317logical location of the breakpoint, expressed by function name, file
18318name, line number
18319@item Times
18320number of times the breakpoint has been hit
18321@end table
18322
18323If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18324@code{body} field is an empty list.
18325
18326@subsubheading @value{GDBN} Command
18327
18328The corresponding @value{GDBN} command is @samp{info break}.
18329
18330@subsubheading Example
18331
18332@smallexample
594fe323 18333(gdb)
922fbb7b
AC
18334-break-list
18335^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18336hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18337@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18338@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18339@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18340@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18341@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18342body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18343addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18344bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18345addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18346line="13",times="0"@}]@}
594fe323 18347(gdb)
922fbb7b
AC
18348@end smallexample
18349
18350Here's an example of the result when there are no breakpoints:
18351
18352@smallexample
594fe323 18353(gdb)
922fbb7b
AC
18354-break-list
18355^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18356hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18357@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18358@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18359@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18360@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18361@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18362body=[]@}
594fe323 18363(gdb)
922fbb7b
AC
18364@end smallexample
18365
18366@subheading The @code{-break-watch} Command
18367@findex -break-watch
18368
18369@subsubheading Synopsis
18370
18371@smallexample
18372 -break-watch [ -a | -r ]
18373@end smallexample
18374
18375Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18376@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18377read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18378option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18379trigger only when the memory location is accessed for reading. Without
18380either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18381i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18382@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18383
18384Note that @samp{-break-list} will report a single list of watchpoints and
18385breakpoints inserted.
18386
18387@subsubheading @value{GDBN} Command
18388
18389The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18390@samp{rwatch}.
18391
18392@subsubheading Example
18393
18394Setting a watchpoint on a variable in the @code{main} function:
18395
18396@smallexample
594fe323 18397(gdb)
922fbb7b
AC
18398-break-watch x
18399^done,wpt=@{number="2",exp="x"@}
594fe323 18400(gdb)
922fbb7b
AC
18401-exec-continue
18402^running
0869d01b
NR
18403(gdb)
18404*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18405value=@{old="-268439212",new="55"@},
76ff342d 18406frame=@{func="main",args=[],file="recursive2.c",
948d5102 18407fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18408(gdb)
922fbb7b
AC
18409@end smallexample
18410
18411Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18412the program execution twice: first for the variable changing value, then
18413for the watchpoint going out of scope.
18414
18415@smallexample
594fe323 18416(gdb)
922fbb7b
AC
18417-break-watch C
18418^done,wpt=@{number="5",exp="C"@}
594fe323 18419(gdb)
922fbb7b
AC
18420-exec-continue
18421^running
0869d01b
NR
18422(gdb)
18423*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18424wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18425frame=@{func="callee4",args=[],
76ff342d
DJ
18426file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18427fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18428(gdb)
922fbb7b
AC
18429-exec-continue
18430^running
0869d01b
NR
18431(gdb)
18432*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18433frame=@{func="callee3",args=[@{name="strarg",
18434value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18435file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18436fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18437(gdb)
922fbb7b
AC
18438@end smallexample
18439
18440Listing breakpoints and watchpoints, at different points in the program
18441execution. Note that once the watchpoint goes out of scope, it is
18442deleted.
18443
18444@smallexample
594fe323 18445(gdb)
922fbb7b
AC
18446-break-watch C
18447^done,wpt=@{number="2",exp="C"@}
594fe323 18448(gdb)
922fbb7b
AC
18449-break-list
18450^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18451hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18452@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18453@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18454@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18455@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18456@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18457body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18458addr="0x00010734",func="callee4",
948d5102
NR
18459file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18460fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18461bkpt=@{number="2",type="watchpoint",disp="keep",
18462enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18463(gdb)
922fbb7b
AC
18464-exec-continue
18465^running
0869d01b
NR
18466(gdb)
18467*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18468value=@{old="-276895068",new="3"@},
18469frame=@{func="callee4",args=[],
76ff342d
DJ
18470file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18471fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18472(gdb)
922fbb7b
AC
18473-break-list
18474^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18475hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18476@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18477@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18478@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18479@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18480@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18481body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18482addr="0x00010734",func="callee4",
948d5102
NR
18483file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18484fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18485bkpt=@{number="2",type="watchpoint",disp="keep",
18486enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18487(gdb)
922fbb7b
AC
18488-exec-continue
18489^running
18490^done,reason="watchpoint-scope",wpnum="2",
18491frame=@{func="callee3",args=[@{name="strarg",
18492value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18493file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18494fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18495(gdb)
922fbb7b
AC
18496-break-list
18497^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18498hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18499@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18500@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18501@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18502@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18503@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18504body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18505addr="0x00010734",func="callee4",
948d5102
NR
18506file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18507fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18508times="1"@}]@}
594fe323 18509(gdb)
922fbb7b
AC
18510@end smallexample
18511
18512@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18513@node GDB/MI Program Context
18514@section @sc{gdb/mi} Program Context
922fbb7b 18515
a2c02241
NR
18516@subheading The @code{-exec-arguments} Command
18517@findex -exec-arguments
922fbb7b 18518
922fbb7b
AC
18519
18520@subsubheading Synopsis
18521
18522@smallexample
a2c02241 18523 -exec-arguments @var{args}
922fbb7b
AC
18524@end smallexample
18525
a2c02241
NR
18526Set the inferior program arguments, to be used in the next
18527@samp{-exec-run}.
922fbb7b 18528
a2c02241 18529@subsubheading @value{GDBN} Command
922fbb7b 18530
a2c02241 18531The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18532
a2c02241 18533@subsubheading Example
922fbb7b 18534
a2c02241
NR
18535@c FIXME!
18536Don't have one around.
922fbb7b 18537
a2c02241
NR
18538
18539@subheading The @code{-exec-show-arguments} Command
18540@findex -exec-show-arguments
18541
18542@subsubheading Synopsis
18543
18544@smallexample
18545 -exec-show-arguments
18546@end smallexample
18547
18548Print the arguments of the program.
922fbb7b
AC
18549
18550@subsubheading @value{GDBN} Command
18551
a2c02241 18552The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18553
18554@subsubheading Example
a2c02241 18555N.A.
922fbb7b 18556
922fbb7b 18557
a2c02241
NR
18558@subheading The @code{-environment-cd} Command
18559@findex -environment-cd
922fbb7b 18560
a2c02241 18561@subsubheading Synopsis
922fbb7b
AC
18562
18563@smallexample
a2c02241 18564 -environment-cd @var{pathdir}
922fbb7b
AC
18565@end smallexample
18566
a2c02241 18567Set @value{GDBN}'s working directory.
922fbb7b 18568
a2c02241 18569@subsubheading @value{GDBN} Command
922fbb7b 18570
a2c02241
NR
18571The corresponding @value{GDBN} command is @samp{cd}.
18572
18573@subsubheading Example
922fbb7b
AC
18574
18575@smallexample
594fe323 18576(gdb)
a2c02241
NR
18577-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18578^done
594fe323 18579(gdb)
922fbb7b
AC
18580@end smallexample
18581
18582
a2c02241
NR
18583@subheading The @code{-environment-directory} Command
18584@findex -environment-directory
922fbb7b
AC
18585
18586@subsubheading Synopsis
18587
18588@smallexample
a2c02241 18589 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18590@end smallexample
18591
a2c02241
NR
18592Add directories @var{pathdir} to beginning of search path for source files.
18593If the @samp{-r} option is used, the search path is reset to the default
18594search path. If directories @var{pathdir} are supplied in addition to the
18595@samp{-r} option, the search path is first reset and then addition
18596occurs as normal.
18597Multiple directories may be specified, separated by blanks. Specifying
18598multiple directories in a single command
18599results in the directories added to the beginning of the
18600search path in the same order they were presented in the command.
18601If blanks are needed as
18602part of a directory name, double-quotes should be used around
18603the name. In the command output, the path will show up separated
d3e8051b 18604by the system directory-separator character. The directory-separator
a2c02241
NR
18605character must not be used
18606in any directory name.
18607If no directories are specified, the current search path is displayed.
922fbb7b
AC
18608
18609@subsubheading @value{GDBN} Command
18610
a2c02241 18611The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18612
18613@subsubheading Example
18614
922fbb7b 18615@smallexample
594fe323 18616(gdb)
a2c02241
NR
18617-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18618^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18619(gdb)
a2c02241
NR
18620-environment-directory ""
18621^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18622(gdb)
a2c02241
NR
18623-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18624^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18625(gdb)
a2c02241
NR
18626-environment-directory -r
18627^done,source-path="$cdir:$cwd"
594fe323 18628(gdb)
922fbb7b
AC
18629@end smallexample
18630
18631
a2c02241
NR
18632@subheading The @code{-environment-path} Command
18633@findex -environment-path
922fbb7b
AC
18634
18635@subsubheading Synopsis
18636
18637@smallexample
a2c02241 18638 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18639@end smallexample
18640
a2c02241
NR
18641Add directories @var{pathdir} to beginning of search path for object files.
18642If the @samp{-r} option is used, the search path is reset to the original
18643search path that existed at gdb start-up. If directories @var{pathdir} are
18644supplied in addition to the
18645@samp{-r} option, the search path is first reset and then addition
18646occurs as normal.
18647Multiple directories may be specified, separated by blanks. Specifying
18648multiple directories in a single command
18649results in the directories added to the beginning of the
18650search path in the same order they were presented in the command.
18651If blanks are needed as
18652part of a directory name, double-quotes should be used around
18653the name. In the command output, the path will show up separated
d3e8051b 18654by the system directory-separator character. The directory-separator
a2c02241
NR
18655character must not be used
18656in any directory name.
18657If no directories are specified, the current path is displayed.
18658
922fbb7b
AC
18659
18660@subsubheading @value{GDBN} Command
18661
a2c02241 18662The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18663
18664@subsubheading Example
18665
922fbb7b 18666@smallexample
594fe323 18667(gdb)
a2c02241
NR
18668-environment-path
18669^done,path="/usr/bin"
594fe323 18670(gdb)
a2c02241
NR
18671-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18672^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18673(gdb)
a2c02241
NR
18674-environment-path -r /usr/local/bin
18675^done,path="/usr/local/bin:/usr/bin"
594fe323 18676(gdb)
922fbb7b
AC
18677@end smallexample
18678
18679
a2c02241
NR
18680@subheading The @code{-environment-pwd} Command
18681@findex -environment-pwd
922fbb7b
AC
18682
18683@subsubheading Synopsis
18684
18685@smallexample
a2c02241 18686 -environment-pwd
922fbb7b
AC
18687@end smallexample
18688
a2c02241 18689Show the current working directory.
922fbb7b 18690
79a6e687 18691@subsubheading @value{GDBN} Command
922fbb7b 18692
a2c02241 18693The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18694
18695@subsubheading Example
18696
922fbb7b 18697@smallexample
594fe323 18698(gdb)
a2c02241
NR
18699-environment-pwd
18700^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18701(gdb)
922fbb7b
AC
18702@end smallexample
18703
a2c02241
NR
18704@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18705@node GDB/MI Thread Commands
18706@section @sc{gdb/mi} Thread Commands
18707
18708
18709@subheading The @code{-thread-info} Command
18710@findex -thread-info
922fbb7b
AC
18711
18712@subsubheading Synopsis
18713
18714@smallexample
a2c02241 18715 -thread-info
922fbb7b
AC
18716@end smallexample
18717
79a6e687 18718@subsubheading @value{GDBN} Command
922fbb7b 18719
a2c02241 18720No equivalent.
922fbb7b
AC
18721
18722@subsubheading Example
a2c02241 18723N.A.
922fbb7b
AC
18724
18725
a2c02241
NR
18726@subheading The @code{-thread-list-all-threads} Command
18727@findex -thread-list-all-threads
922fbb7b
AC
18728
18729@subsubheading Synopsis
18730
18731@smallexample
a2c02241 18732 -thread-list-all-threads
922fbb7b
AC
18733@end smallexample
18734
a2c02241 18735@subsubheading @value{GDBN} Command
922fbb7b 18736
a2c02241 18737The equivalent @value{GDBN} command is @samp{info threads}.
922fbb7b 18738
a2c02241
NR
18739@subsubheading Example
18740N.A.
922fbb7b 18741
922fbb7b 18742
a2c02241
NR
18743@subheading The @code{-thread-list-ids} Command
18744@findex -thread-list-ids
922fbb7b 18745
a2c02241 18746@subsubheading Synopsis
922fbb7b 18747
a2c02241
NR
18748@smallexample
18749 -thread-list-ids
18750@end smallexample
922fbb7b 18751
a2c02241
NR
18752Produces a list of the currently known @value{GDBN} thread ids. At the
18753end of the list it also prints the total number of such threads.
922fbb7b
AC
18754
18755@subsubheading @value{GDBN} Command
18756
a2c02241 18757Part of @samp{info threads} supplies the same information.
922fbb7b
AC
18758
18759@subsubheading Example
18760
a2c02241 18761No threads present, besides the main process:
922fbb7b
AC
18762
18763@smallexample
594fe323 18764(gdb)
a2c02241
NR
18765-thread-list-ids
18766^done,thread-ids=@{@},number-of-threads="0"
594fe323 18767(gdb)
922fbb7b
AC
18768@end smallexample
18769
922fbb7b 18770
a2c02241 18771Several threads:
922fbb7b
AC
18772
18773@smallexample
594fe323 18774(gdb)
a2c02241
NR
18775-thread-list-ids
18776^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18777number-of-threads="3"
594fe323 18778(gdb)
922fbb7b
AC
18779@end smallexample
18780
a2c02241
NR
18781
18782@subheading The @code{-thread-select} Command
18783@findex -thread-select
922fbb7b
AC
18784
18785@subsubheading Synopsis
18786
18787@smallexample
a2c02241 18788 -thread-select @var{threadnum}
922fbb7b
AC
18789@end smallexample
18790
a2c02241
NR
18791Make @var{threadnum} the current thread. It prints the number of the new
18792current thread, and the topmost frame for that thread.
922fbb7b
AC
18793
18794@subsubheading @value{GDBN} Command
18795
a2c02241 18796The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
18797
18798@subsubheading Example
922fbb7b
AC
18799
18800@smallexample
594fe323 18801(gdb)
a2c02241
NR
18802-exec-next
18803^running
594fe323 18804(gdb)
a2c02241
NR
18805*stopped,reason="end-stepping-range",thread-id="2",line="187",
18806file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 18807(gdb)
a2c02241
NR
18808-thread-list-ids
18809^done,
18810thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18811number-of-threads="3"
594fe323 18812(gdb)
a2c02241
NR
18813-thread-select 3
18814^done,new-thread-id="3",
18815frame=@{level="0",func="vprintf",
18816args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
18817@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 18818(gdb)
922fbb7b
AC
18819@end smallexample
18820
a2c02241
NR
18821@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18822@node GDB/MI Program Execution
18823@section @sc{gdb/mi} Program Execution
922fbb7b 18824
ef21caaf 18825These are the asynchronous commands which generate the out-of-band
3f94c067 18826record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
18827asynchronously with remote targets and this interaction is mimicked in
18828other cases.
922fbb7b 18829
922fbb7b
AC
18830@subheading The @code{-exec-continue} Command
18831@findex -exec-continue
18832
18833@subsubheading Synopsis
18834
18835@smallexample
18836 -exec-continue
18837@end smallexample
18838
ef21caaf
NR
18839Resumes the execution of the inferior program until a breakpoint is
18840encountered, or until the inferior exits.
922fbb7b
AC
18841
18842@subsubheading @value{GDBN} Command
18843
18844The corresponding @value{GDBN} corresponding is @samp{continue}.
18845
18846@subsubheading Example
18847
18848@smallexample
18849-exec-continue
18850^running
594fe323 18851(gdb)
922fbb7b
AC
18852@@Hello world
18853*stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
948d5102 18854file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
594fe323 18855(gdb)
922fbb7b
AC
18856@end smallexample
18857
18858
18859@subheading The @code{-exec-finish} Command
18860@findex -exec-finish
18861
18862@subsubheading Synopsis
18863
18864@smallexample
18865 -exec-finish
18866@end smallexample
18867
ef21caaf
NR
18868Resumes the execution of the inferior program until the current
18869function is exited. Displays the results returned by the function.
922fbb7b
AC
18870
18871@subsubheading @value{GDBN} Command
18872
18873The corresponding @value{GDBN} command is @samp{finish}.
18874
18875@subsubheading Example
18876
18877Function returning @code{void}.
18878
18879@smallexample
18880-exec-finish
18881^running
594fe323 18882(gdb)
922fbb7b
AC
18883@@hello from foo
18884*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 18885file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 18886(gdb)
922fbb7b
AC
18887@end smallexample
18888
18889Function returning other than @code{void}. The name of the internal
18890@value{GDBN} variable storing the result is printed, together with the
18891value itself.
18892
18893@smallexample
18894-exec-finish
18895^running
594fe323 18896(gdb)
922fbb7b
AC
18897*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
18898args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 18899file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 18900gdb-result-var="$1",return-value="0"
594fe323 18901(gdb)
922fbb7b
AC
18902@end smallexample
18903
18904
18905@subheading The @code{-exec-interrupt} Command
18906@findex -exec-interrupt
18907
18908@subsubheading Synopsis
18909
18910@smallexample
18911 -exec-interrupt
18912@end smallexample
18913
ef21caaf
NR
18914Interrupts the background execution of the target. Note how the token
18915associated with the stop message is the one for the execution command
18916that has been interrupted. The token for the interrupt itself only
18917appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
18918interrupt a non-running program, an error message will be printed.
18919
18920@subsubheading @value{GDBN} Command
18921
18922The corresponding @value{GDBN} command is @samp{interrupt}.
18923
18924@subsubheading Example
18925
18926@smallexample
594fe323 18927(gdb)
922fbb7b
AC
18928111-exec-continue
18929111^running
18930
594fe323 18931(gdb)
922fbb7b
AC
18932222-exec-interrupt
18933222^done
594fe323 18934(gdb)
922fbb7b 18935111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 18936frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 18937fullname="/home/foo/bar/try.c",line="13"@}
594fe323 18938(gdb)
922fbb7b 18939
594fe323 18940(gdb)
922fbb7b
AC
18941-exec-interrupt
18942^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 18943(gdb)
922fbb7b
AC
18944@end smallexample
18945
18946
18947@subheading The @code{-exec-next} Command
18948@findex -exec-next
18949
18950@subsubheading Synopsis
18951
18952@smallexample
18953 -exec-next
18954@end smallexample
18955
ef21caaf
NR
18956Resumes execution of the inferior program, stopping when the beginning
18957of the next source line is reached.
922fbb7b
AC
18958
18959@subsubheading @value{GDBN} Command
18960
18961The corresponding @value{GDBN} command is @samp{next}.
18962
18963@subsubheading Example
18964
18965@smallexample
18966-exec-next
18967^running
594fe323 18968(gdb)
922fbb7b 18969*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 18970(gdb)
922fbb7b
AC
18971@end smallexample
18972
18973
18974@subheading The @code{-exec-next-instruction} Command
18975@findex -exec-next-instruction
18976
18977@subsubheading Synopsis
18978
18979@smallexample
18980 -exec-next-instruction
18981@end smallexample
18982
ef21caaf
NR
18983Executes one machine instruction. If the instruction is a function
18984call, continues until the function returns. If the program stops at an
18985instruction in the middle of a source line, the address will be
18986printed as well.
922fbb7b
AC
18987
18988@subsubheading @value{GDBN} Command
18989
18990The corresponding @value{GDBN} command is @samp{nexti}.
18991
18992@subsubheading Example
18993
18994@smallexample
594fe323 18995(gdb)
922fbb7b
AC
18996-exec-next-instruction
18997^running
18998
594fe323 18999(gdb)
922fbb7b
AC
19000*stopped,reason="end-stepping-range",
19001addr="0x000100d4",line="5",file="hello.c"
594fe323 19002(gdb)
922fbb7b
AC
19003@end smallexample
19004
19005
19006@subheading The @code{-exec-return} Command
19007@findex -exec-return
19008
19009@subsubheading Synopsis
19010
19011@smallexample
19012 -exec-return
19013@end smallexample
19014
19015Makes current function return immediately. Doesn't execute the inferior.
19016Displays the new current frame.
19017
19018@subsubheading @value{GDBN} Command
19019
19020The corresponding @value{GDBN} command is @samp{return}.
19021
19022@subsubheading Example
19023
19024@smallexample
594fe323 19025(gdb)
922fbb7b
AC
19026200-break-insert callee4
19027200^done,bkpt=@{number="1",addr="0x00010734",
19028file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19029(gdb)
922fbb7b
AC
19030000-exec-run
19031000^running
594fe323 19032(gdb)
922fbb7b
AC
19033000*stopped,reason="breakpoint-hit",bkptno="1",
19034frame=@{func="callee4",args=[],
76ff342d
DJ
19035file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19036fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19037(gdb)
922fbb7b
AC
19038205-break-delete
19039205^done
594fe323 19040(gdb)
922fbb7b
AC
19041111-exec-return
19042111^done,frame=@{level="0",func="callee3",
19043args=[@{name="strarg",
19044value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19045file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19046fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19047(gdb)
922fbb7b
AC
19048@end smallexample
19049
19050
19051@subheading The @code{-exec-run} Command
19052@findex -exec-run
19053
19054@subsubheading Synopsis
19055
19056@smallexample
19057 -exec-run
19058@end smallexample
19059
ef21caaf
NR
19060Starts execution of the inferior from the beginning. The inferior
19061executes until either a breakpoint is encountered or the program
19062exits. In the latter case the output will include an exit code, if
19063the program has exited exceptionally.
922fbb7b
AC
19064
19065@subsubheading @value{GDBN} Command
19066
19067The corresponding @value{GDBN} command is @samp{run}.
19068
ef21caaf 19069@subsubheading Examples
922fbb7b
AC
19070
19071@smallexample
594fe323 19072(gdb)
922fbb7b
AC
19073-break-insert main
19074^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19075(gdb)
922fbb7b
AC
19076-exec-run
19077^running
594fe323 19078(gdb)
922fbb7b 19079*stopped,reason="breakpoint-hit",bkptno="1",
76ff342d 19080frame=@{func="main",args=[],file="recursive2.c",
948d5102 19081fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19082(gdb)
922fbb7b
AC
19083@end smallexample
19084
ef21caaf
NR
19085@noindent
19086Program exited normally:
19087
19088@smallexample
594fe323 19089(gdb)
ef21caaf
NR
19090-exec-run
19091^running
594fe323 19092(gdb)
ef21caaf
NR
19093x = 55
19094*stopped,reason="exited-normally"
594fe323 19095(gdb)
ef21caaf
NR
19096@end smallexample
19097
19098@noindent
19099Program exited exceptionally:
19100
19101@smallexample
594fe323 19102(gdb)
ef21caaf
NR
19103-exec-run
19104^running
594fe323 19105(gdb)
ef21caaf
NR
19106x = 55
19107*stopped,reason="exited",exit-code="01"
594fe323 19108(gdb)
ef21caaf
NR
19109@end smallexample
19110
19111Another way the program can terminate is if it receives a signal such as
19112@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19113
19114@smallexample
594fe323 19115(gdb)
ef21caaf
NR
19116*stopped,reason="exited-signalled",signal-name="SIGINT",
19117signal-meaning="Interrupt"
19118@end smallexample
19119
922fbb7b 19120
a2c02241
NR
19121@c @subheading -exec-signal
19122
19123
19124@subheading The @code{-exec-step} Command
19125@findex -exec-step
922fbb7b
AC
19126
19127@subsubheading Synopsis
19128
19129@smallexample
a2c02241 19130 -exec-step
922fbb7b
AC
19131@end smallexample
19132
a2c02241
NR
19133Resumes execution of the inferior program, stopping when the beginning
19134of the next source line is reached, if the next source line is not a
19135function call. If it is, stop at the first instruction of the called
19136function.
922fbb7b
AC
19137
19138@subsubheading @value{GDBN} Command
19139
a2c02241 19140The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19141
19142@subsubheading Example
19143
19144Stepping into a function:
19145
19146@smallexample
19147-exec-step
19148^running
594fe323 19149(gdb)
922fbb7b
AC
19150*stopped,reason="end-stepping-range",
19151frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19152@{name="b",value="0"@}],file="recursive2.c",
948d5102 19153fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19154(gdb)
922fbb7b
AC
19155@end smallexample
19156
19157Regular stepping:
19158
19159@smallexample
19160-exec-step
19161^running
594fe323 19162(gdb)
922fbb7b 19163*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19164(gdb)
922fbb7b
AC
19165@end smallexample
19166
19167
19168@subheading The @code{-exec-step-instruction} Command
19169@findex -exec-step-instruction
19170
19171@subsubheading Synopsis
19172
19173@smallexample
19174 -exec-step-instruction
19175@end smallexample
19176
ef21caaf
NR
19177Resumes the inferior which executes one machine instruction. The
19178output, once @value{GDBN} has stopped, will vary depending on whether
19179we have stopped in the middle of a source line or not. In the former
19180case, the address at which the program stopped will be printed as
922fbb7b
AC
19181well.
19182
19183@subsubheading @value{GDBN} Command
19184
19185The corresponding @value{GDBN} command is @samp{stepi}.
19186
19187@subsubheading Example
19188
19189@smallexample
594fe323 19190(gdb)
922fbb7b
AC
19191-exec-step-instruction
19192^running
19193
594fe323 19194(gdb)
922fbb7b 19195*stopped,reason="end-stepping-range",
76ff342d 19196frame=@{func="foo",args=[],file="try.c",
948d5102 19197fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19198(gdb)
922fbb7b
AC
19199-exec-step-instruction
19200^running
19201
594fe323 19202(gdb)
922fbb7b 19203*stopped,reason="end-stepping-range",
76ff342d 19204frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19205fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19206(gdb)
922fbb7b
AC
19207@end smallexample
19208
19209
19210@subheading The @code{-exec-until} Command
19211@findex -exec-until
19212
19213@subsubheading Synopsis
19214
19215@smallexample
19216 -exec-until [ @var{location} ]
19217@end smallexample
19218
ef21caaf
NR
19219Executes the inferior until the @var{location} specified in the
19220argument is reached. If there is no argument, the inferior executes
19221until a source line greater than the current one is reached. The
19222reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19223
19224@subsubheading @value{GDBN} Command
19225
19226The corresponding @value{GDBN} command is @samp{until}.
19227
19228@subsubheading Example
19229
19230@smallexample
594fe323 19231(gdb)
922fbb7b
AC
19232-exec-until recursive2.c:6
19233^running
594fe323 19234(gdb)
922fbb7b
AC
19235x = 55
19236*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19237file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19238(gdb)
922fbb7b
AC
19239@end smallexample
19240
19241@ignore
19242@subheading -file-clear
19243Is this going away????
19244@end ignore
19245
351ff01a 19246@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19247@node GDB/MI Stack Manipulation
19248@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19249
922fbb7b 19250
a2c02241
NR
19251@subheading The @code{-stack-info-frame} Command
19252@findex -stack-info-frame
922fbb7b
AC
19253
19254@subsubheading Synopsis
19255
19256@smallexample
a2c02241 19257 -stack-info-frame
922fbb7b
AC
19258@end smallexample
19259
a2c02241 19260Get info on the selected frame.
922fbb7b
AC
19261
19262@subsubheading @value{GDBN} Command
19263
a2c02241
NR
19264The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19265(without arguments).
922fbb7b
AC
19266
19267@subsubheading Example
19268
19269@smallexample
594fe323 19270(gdb)
a2c02241
NR
19271-stack-info-frame
19272^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19273file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19274fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19275(gdb)
922fbb7b
AC
19276@end smallexample
19277
a2c02241
NR
19278@subheading The @code{-stack-info-depth} Command
19279@findex -stack-info-depth
922fbb7b
AC
19280
19281@subsubheading Synopsis
19282
19283@smallexample
a2c02241 19284 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19285@end smallexample
19286
a2c02241
NR
19287Return the depth of the stack. If the integer argument @var{max-depth}
19288is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19289
19290@subsubheading @value{GDBN} Command
19291
a2c02241 19292There's no equivalent @value{GDBN} command.
922fbb7b
AC
19293
19294@subsubheading Example
19295
a2c02241
NR
19296For a stack with frame levels 0 through 11:
19297
922fbb7b 19298@smallexample
594fe323 19299(gdb)
a2c02241
NR
19300-stack-info-depth
19301^done,depth="12"
594fe323 19302(gdb)
a2c02241
NR
19303-stack-info-depth 4
19304^done,depth="4"
594fe323 19305(gdb)
a2c02241
NR
19306-stack-info-depth 12
19307^done,depth="12"
594fe323 19308(gdb)
a2c02241
NR
19309-stack-info-depth 11
19310^done,depth="11"
594fe323 19311(gdb)
a2c02241
NR
19312-stack-info-depth 13
19313^done,depth="12"
594fe323 19314(gdb)
922fbb7b
AC
19315@end smallexample
19316
a2c02241
NR
19317@subheading The @code{-stack-list-arguments} Command
19318@findex -stack-list-arguments
922fbb7b
AC
19319
19320@subsubheading Synopsis
19321
19322@smallexample
a2c02241
NR
19323 -stack-list-arguments @var{show-values}
19324 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19325@end smallexample
19326
a2c02241
NR
19327Display a list of the arguments for the frames between @var{low-frame}
19328and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19329@var{high-frame} are not provided, list the arguments for the whole
19330call stack. If the two arguments are equal, show the single frame
19331at the corresponding level. It is an error if @var{low-frame} is
19332larger than the actual number of frames. On the other hand,
19333@var{high-frame} may be larger than the actual number of frames, in
19334which case only existing frames will be returned.
a2c02241
NR
19335
19336The @var{show-values} argument must have a value of 0 or 1. A value of
193370 means that only the names of the arguments are listed, a value of 1
19338means that both names and values of the arguments are printed.
922fbb7b
AC
19339
19340@subsubheading @value{GDBN} Command
19341
a2c02241
NR
19342@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19343@samp{gdb_get_args} command which partially overlaps with the
19344functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19345
19346@subsubheading Example
922fbb7b 19347
a2c02241 19348@smallexample
594fe323 19349(gdb)
a2c02241
NR
19350-stack-list-frames
19351^done,
19352stack=[
19353frame=@{level="0",addr="0x00010734",func="callee4",
19354file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19355fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19356frame=@{level="1",addr="0x0001076c",func="callee3",
19357file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19358fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19359frame=@{level="2",addr="0x0001078c",func="callee2",
19360file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19361fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19362frame=@{level="3",addr="0x000107b4",func="callee1",
19363file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19364fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19365frame=@{level="4",addr="0x000107e0",func="main",
19366file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19367fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19368(gdb)
a2c02241
NR
19369-stack-list-arguments 0
19370^done,
19371stack-args=[
19372frame=@{level="0",args=[]@},
19373frame=@{level="1",args=[name="strarg"]@},
19374frame=@{level="2",args=[name="intarg",name="strarg"]@},
19375frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19376frame=@{level="4",args=[]@}]
594fe323 19377(gdb)
a2c02241
NR
19378-stack-list-arguments 1
19379^done,
19380stack-args=[
19381frame=@{level="0",args=[]@},
19382frame=@{level="1",
19383 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19384frame=@{level="2",args=[
19385@{name="intarg",value="2"@},
19386@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19387@{frame=@{level="3",args=[
19388@{name="intarg",value="2"@},
19389@{name="strarg",value="0x11940 \"A string argument.\""@},
19390@{name="fltarg",value="3.5"@}]@},
19391frame=@{level="4",args=[]@}]
594fe323 19392(gdb)
a2c02241
NR
19393-stack-list-arguments 0 2 2
19394^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19395(gdb)
a2c02241
NR
19396-stack-list-arguments 1 2 2
19397^done,stack-args=[frame=@{level="2",
19398args=[@{name="intarg",value="2"@},
19399@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19400(gdb)
a2c02241
NR
19401@end smallexample
19402
19403@c @subheading -stack-list-exception-handlers
922fbb7b 19404
a2c02241
NR
19405
19406@subheading The @code{-stack-list-frames} Command
19407@findex -stack-list-frames
1abaf70c
BR
19408
19409@subsubheading Synopsis
19410
19411@smallexample
a2c02241 19412 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19413@end smallexample
19414
a2c02241
NR
19415List the frames currently on the stack. For each frame it displays the
19416following info:
19417
19418@table @samp
19419@item @var{level}
d3e8051b 19420The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19421@item @var{addr}
19422The @code{$pc} value for that frame.
19423@item @var{func}
19424Function name.
19425@item @var{file}
19426File name of the source file where the function lives.
19427@item @var{line}
19428Line number corresponding to the @code{$pc}.
19429@end table
19430
19431If invoked without arguments, this command prints a backtrace for the
19432whole stack. If given two integer arguments, it shows the frames whose
19433levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19434are equal, it shows the single frame at the corresponding level. It is
19435an error if @var{low-frame} is larger than the actual number of
a5451f4e 19436frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19437actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19438
19439@subsubheading @value{GDBN} Command
19440
a2c02241 19441The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19442
19443@subsubheading Example
19444
a2c02241
NR
19445Full stack backtrace:
19446
1abaf70c 19447@smallexample
594fe323 19448(gdb)
a2c02241
NR
19449-stack-list-frames
19450^done,stack=
19451[frame=@{level="0",addr="0x0001076c",func="foo",
19452 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19453frame=@{level="1",addr="0x000107a4",func="foo",
19454 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19455frame=@{level="2",addr="0x000107a4",func="foo",
19456 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19457frame=@{level="3",addr="0x000107a4",func="foo",
19458 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19459frame=@{level="4",addr="0x000107a4",func="foo",
19460 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19461frame=@{level="5",addr="0x000107a4",func="foo",
19462 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19463frame=@{level="6",addr="0x000107a4",func="foo",
19464 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19465frame=@{level="7",addr="0x000107a4",func="foo",
19466 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19467frame=@{level="8",addr="0x000107a4",func="foo",
19468 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19469frame=@{level="9",addr="0x000107a4",func="foo",
19470 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19471frame=@{level="10",addr="0x000107a4",func="foo",
19472 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19473frame=@{level="11",addr="0x00010738",func="main",
19474 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19475(gdb)
1abaf70c
BR
19476@end smallexample
19477
a2c02241 19478Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19479
a2c02241 19480@smallexample
594fe323 19481(gdb)
a2c02241
NR
19482-stack-list-frames 3 5
19483^done,stack=
19484[frame=@{level="3",addr="0x000107a4",func="foo",
19485 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19486frame=@{level="4",addr="0x000107a4",func="foo",
19487 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19488frame=@{level="5",addr="0x000107a4",func="foo",
19489 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19490(gdb)
a2c02241 19491@end smallexample
922fbb7b 19492
a2c02241 19493Show a single frame:
922fbb7b
AC
19494
19495@smallexample
594fe323 19496(gdb)
a2c02241
NR
19497-stack-list-frames 3 3
19498^done,stack=
19499[frame=@{level="3",addr="0x000107a4",func="foo",
19500 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19501(gdb)
922fbb7b
AC
19502@end smallexample
19503
922fbb7b 19504
a2c02241
NR
19505@subheading The @code{-stack-list-locals} Command
19506@findex -stack-list-locals
57c22c6c 19507
a2c02241 19508@subsubheading Synopsis
922fbb7b
AC
19509
19510@smallexample
a2c02241 19511 -stack-list-locals @var{print-values}
922fbb7b
AC
19512@end smallexample
19513
a2c02241
NR
19514Display the local variable names for the selected frame. If
19515@var{print-values} is 0 or @code{--no-values}, print only the names of
19516the variables; if it is 1 or @code{--all-values}, print also their
19517values; and if it is 2 or @code{--simple-values}, print the name,
19518type and value for simple data types and the name and type for arrays,
19519structures and unions. In this last case, a frontend can immediately
19520display the value of simple data types and create variable objects for
d3e8051b 19521other data types when the user wishes to explore their values in
a2c02241 19522more detail.
922fbb7b
AC
19523
19524@subsubheading @value{GDBN} Command
19525
a2c02241 19526@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19527
19528@subsubheading Example
922fbb7b
AC
19529
19530@smallexample
594fe323 19531(gdb)
a2c02241
NR
19532-stack-list-locals 0
19533^done,locals=[name="A",name="B",name="C"]
594fe323 19534(gdb)
a2c02241
NR
19535-stack-list-locals --all-values
19536^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19537 @{name="C",value="@{1, 2, 3@}"@}]
19538-stack-list-locals --simple-values
19539^done,locals=[@{name="A",type="int",value="1"@},
19540 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19541(gdb)
922fbb7b
AC
19542@end smallexample
19543
922fbb7b 19544
a2c02241
NR
19545@subheading The @code{-stack-select-frame} Command
19546@findex -stack-select-frame
922fbb7b
AC
19547
19548@subsubheading Synopsis
19549
19550@smallexample
a2c02241 19551 -stack-select-frame @var{framenum}
922fbb7b
AC
19552@end smallexample
19553
a2c02241
NR
19554Change the selected frame. Select a different frame @var{framenum} on
19555the stack.
922fbb7b
AC
19556
19557@subsubheading @value{GDBN} Command
19558
a2c02241
NR
19559The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19560@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19561
19562@subsubheading Example
19563
19564@smallexample
594fe323 19565(gdb)
a2c02241 19566-stack-select-frame 2
922fbb7b 19567^done
594fe323 19568(gdb)
922fbb7b
AC
19569@end smallexample
19570
19571@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19572@node GDB/MI Variable Objects
19573@section @sc{gdb/mi} Variable Objects
922fbb7b 19574
a1b5960f 19575@ignore
922fbb7b 19576
a2c02241 19577@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19578
a2c02241
NR
19579For the implementation of a variable debugger window (locals, watched
19580expressions, etc.), we are proposing the adaptation of the existing code
19581used by @code{Insight}.
922fbb7b 19582
a2c02241 19583The two main reasons for that are:
922fbb7b 19584
a2c02241
NR
19585@enumerate 1
19586@item
19587It has been proven in practice (it is already on its second generation).
922fbb7b 19588
a2c02241
NR
19589@item
19590It will shorten development time (needless to say how important it is
19591now).
19592@end enumerate
922fbb7b 19593
a2c02241
NR
19594The original interface was designed to be used by Tcl code, so it was
19595slightly changed so it could be used through @sc{gdb/mi}. This section
19596describes the @sc{gdb/mi} operations that will be available and gives some
19597hints about their use.
922fbb7b 19598
a2c02241
NR
19599@emph{Note}: In addition to the set of operations described here, we
19600expect the @sc{gui} implementation of a variable window to require, at
19601least, the following operations:
922fbb7b 19602
a2c02241
NR
19603@itemize @bullet
19604@item @code{-gdb-show} @code{output-radix}
19605@item @code{-stack-list-arguments}
19606@item @code{-stack-list-locals}
19607@item @code{-stack-select-frame}
19608@end itemize
922fbb7b 19609
a1b5960f
VP
19610@end ignore
19611
c8b2f53c 19612@subheading Introduction to Variable Objects
922fbb7b 19613
a2c02241 19614@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19615
19616Variable objects are "object-oriented" MI interface for examining and
19617changing values of expressions. Unlike some other MI interfaces that
19618work with expressions, variable objects are specifically designed for
19619simple and efficient presentation in the frontend. A variable object
19620is identified by string name. When a variable object is created, the
19621frontend specifies the expression for that variable object. The
19622expression can be a simple variable, or it can be an arbitrary complex
19623expression, and can even involve CPU registers. After creating a
19624variable object, the frontend can invoke other variable object
19625operations---for example to obtain or change the value of a variable
19626object, or to change display format.
19627
19628Variable objects have hierarchical tree structure. Any variable object
19629that corresponds to a composite type, such as structure in C, has
19630a number of child variable objects, for example corresponding to each
19631element of a structure. A child variable object can itself have
19632children, recursively. Recursion ends when we reach
25d5ea92
VP
19633leaf variable objects, which always have built-in types. Child variable
19634objects are created only by explicit request, so if a frontend
19635is not interested in the children of a particular variable object, no
19636child will be created.
c8b2f53c
VP
19637
19638For a leaf variable object it is possible to obtain its value as a
19639string, or set the value from a string. String value can be also
19640obtained for a non-leaf variable object, but it's generally a string
19641that only indicates the type of the object, and does not list its
19642contents. Assignment to a non-leaf variable object is not allowed.
19643
19644A frontend does not need to read the values of all variable objects each time
19645the program stops. Instead, MI provides an update command that lists all
19646variable objects whose values has changed since the last update
19647operation. This considerably reduces the amount of data that must
25d5ea92
VP
19648be transferred to the frontend. As noted above, children variable
19649objects are created on demand, and only leaf variable objects have a
19650real value. As result, gdb will read target memory only for leaf
19651variables that frontend has created.
19652
19653The automatic update is not always desirable. For example, a frontend
19654might want to keep a value of some expression for future reference,
19655and never update it. For another example, fetching memory is
19656relatively slow for embedded targets, so a frontend might want
19657to disable automatic update for the variables that are either not
19658visible on the screen, or ``closed''. This is possible using so
19659called ``frozen variable objects''. Such variable objects are never
19660implicitly updated.
922fbb7b 19661
a2c02241
NR
19662The following is the complete set of @sc{gdb/mi} operations defined to
19663access this functionality:
922fbb7b 19664
a2c02241
NR
19665@multitable @columnfractions .4 .6
19666@item @strong{Operation}
19667@tab @strong{Description}
922fbb7b 19668
a2c02241
NR
19669@item @code{-var-create}
19670@tab create a variable object
19671@item @code{-var-delete}
22d8a470 19672@tab delete the variable object and/or its children
a2c02241
NR
19673@item @code{-var-set-format}
19674@tab set the display format of this variable
19675@item @code{-var-show-format}
19676@tab show the display format of this variable
19677@item @code{-var-info-num-children}
19678@tab tells how many children this object has
19679@item @code{-var-list-children}
19680@tab return a list of the object's children
19681@item @code{-var-info-type}
19682@tab show the type of this variable object
19683@item @code{-var-info-expression}
02142340
VP
19684@tab print parent-relative expression that this variable object represents
19685@item @code{-var-info-path-expression}
19686@tab print full expression that this variable object represents
a2c02241
NR
19687@item @code{-var-show-attributes}
19688@tab is this variable editable? does it exist here?
19689@item @code{-var-evaluate-expression}
19690@tab get the value of this variable
19691@item @code{-var-assign}
19692@tab set the value of this variable
19693@item @code{-var-update}
19694@tab update the variable and its children
25d5ea92
VP
19695@item @code{-var-set-frozen}
19696@tab set frozeness attribute
a2c02241 19697@end multitable
922fbb7b 19698
a2c02241
NR
19699In the next subsection we describe each operation in detail and suggest
19700how it can be used.
922fbb7b 19701
a2c02241 19702@subheading Description And Use of Operations on Variable Objects
922fbb7b 19703
a2c02241
NR
19704@subheading The @code{-var-create} Command
19705@findex -var-create
ef21caaf 19706
a2c02241 19707@subsubheading Synopsis
ef21caaf 19708
a2c02241
NR
19709@smallexample
19710 -var-create @{@var{name} | "-"@}
19711 @{@var{frame-addr} | "*"@} @var{expression}
19712@end smallexample
19713
19714This operation creates a variable object, which allows the monitoring of
19715a variable, the result of an expression, a memory cell or a CPU
19716register.
ef21caaf 19717
a2c02241
NR
19718The @var{name} parameter is the string by which the object can be
19719referenced. It must be unique. If @samp{-} is specified, the varobj
19720system will generate a string ``varNNNNNN'' automatically. It will be
19721unique provided that one does not specify @var{name} on that format.
19722The command fails if a duplicate name is found.
ef21caaf 19723
a2c02241
NR
19724The frame under which the expression should be evaluated can be
19725specified by @var{frame-addr}. A @samp{*} indicates that the current
19726frame should be used.
922fbb7b 19727
a2c02241
NR
19728@var{expression} is any expression valid on the current language set (must not
19729begin with a @samp{*}), or one of the following:
922fbb7b 19730
a2c02241
NR
19731@itemize @bullet
19732@item
19733@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 19734
a2c02241
NR
19735@item
19736@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 19737
a2c02241
NR
19738@item
19739@samp{$@var{regname}} --- a CPU register name
19740@end itemize
922fbb7b 19741
a2c02241 19742@subsubheading Result
922fbb7b 19743
a2c02241
NR
19744This operation returns the name, number of children and the type of the
19745object created. Type is returned as a string as the ones generated by
19746the @value{GDBN} CLI:
922fbb7b
AC
19747
19748@smallexample
a2c02241 19749 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
19750@end smallexample
19751
a2c02241
NR
19752
19753@subheading The @code{-var-delete} Command
19754@findex -var-delete
922fbb7b
AC
19755
19756@subsubheading Synopsis
19757
19758@smallexample
22d8a470 19759 -var-delete [ -c ] @var{name}
922fbb7b
AC
19760@end smallexample
19761
a2c02241 19762Deletes a previously created variable object and all of its children.
22d8a470 19763With the @samp{-c} option, just deletes the children.
922fbb7b 19764
a2c02241 19765Returns an error if the object @var{name} is not found.
922fbb7b 19766
922fbb7b 19767
a2c02241
NR
19768@subheading The @code{-var-set-format} Command
19769@findex -var-set-format
922fbb7b 19770
a2c02241 19771@subsubheading Synopsis
922fbb7b
AC
19772
19773@smallexample
a2c02241 19774 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
19775@end smallexample
19776
a2c02241
NR
19777Sets the output format for the value of the object @var{name} to be
19778@var{format-spec}.
19779
19780The syntax for the @var{format-spec} is as follows:
19781
19782@smallexample
19783 @var{format-spec} @expansion{}
19784 @{binary | decimal | hexadecimal | octal | natural@}
19785@end smallexample
19786
c8b2f53c
VP
19787The natural format is the default format choosen automatically
19788based on the variable type (like decimal for an @code{int}, hex
19789for pointers, etc.).
19790
19791For a variable with children, the format is set only on the
19792variable itself, and the children are not affected.
a2c02241
NR
19793
19794@subheading The @code{-var-show-format} Command
19795@findex -var-show-format
922fbb7b
AC
19796
19797@subsubheading Synopsis
19798
19799@smallexample
a2c02241 19800 -var-show-format @var{name}
922fbb7b
AC
19801@end smallexample
19802
a2c02241 19803Returns the format used to display the value of the object @var{name}.
922fbb7b 19804
a2c02241
NR
19805@smallexample
19806 @var{format} @expansion{}
19807 @var{format-spec}
19808@end smallexample
922fbb7b 19809
922fbb7b 19810
a2c02241
NR
19811@subheading The @code{-var-info-num-children} Command
19812@findex -var-info-num-children
19813
19814@subsubheading Synopsis
19815
19816@smallexample
19817 -var-info-num-children @var{name}
19818@end smallexample
19819
19820Returns the number of children of a variable object @var{name}:
19821
19822@smallexample
19823 numchild=@var{n}
19824@end smallexample
19825
19826
19827@subheading The @code{-var-list-children} Command
19828@findex -var-list-children
19829
19830@subsubheading Synopsis
19831
19832@smallexample
19833 -var-list-children [@var{print-values}] @var{name}
19834@end smallexample
19835@anchor{-var-list-children}
19836
19837Return a list of the children of the specified variable object and
19838create variable objects for them, if they do not already exist. With
19839a single argument or if @var{print-values} has a value for of 0 or
19840@code{--no-values}, print only the names of the variables; if
19841@var{print-values} is 1 or @code{--all-values}, also print their
19842values; and if it is 2 or @code{--simple-values} print the name and
19843value for simple data types and just the name for arrays, structures
19844and unions.
922fbb7b
AC
19845
19846@subsubheading Example
19847
19848@smallexample
594fe323 19849(gdb)
a2c02241
NR
19850 -var-list-children n
19851 ^done,numchild=@var{n},children=[@{name=@var{name},
19852 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 19853(gdb)
a2c02241
NR
19854 -var-list-children --all-values n
19855 ^done,numchild=@var{n},children=[@{name=@var{name},
19856 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
19857@end smallexample
19858
922fbb7b 19859
a2c02241
NR
19860@subheading The @code{-var-info-type} Command
19861@findex -var-info-type
922fbb7b 19862
a2c02241
NR
19863@subsubheading Synopsis
19864
19865@smallexample
19866 -var-info-type @var{name}
19867@end smallexample
19868
19869Returns the type of the specified variable @var{name}. The type is
19870returned as a string in the same format as it is output by the
19871@value{GDBN} CLI:
19872
19873@smallexample
19874 type=@var{typename}
19875@end smallexample
19876
19877
19878@subheading The @code{-var-info-expression} Command
19879@findex -var-info-expression
922fbb7b
AC
19880
19881@subsubheading Synopsis
19882
19883@smallexample
a2c02241 19884 -var-info-expression @var{name}
922fbb7b
AC
19885@end smallexample
19886
02142340
VP
19887Returns a string that is suitable for presenting this
19888variable object in user interface. The string is generally
19889not valid expression in the current language, and cannot be evaluated.
19890
19891For example, if @code{a} is an array, and variable object
19892@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 19893
a2c02241 19894@smallexample
02142340
VP
19895(gdb) -var-info-expression A.1
19896^done,lang="C",exp="1"
a2c02241 19897@end smallexample
922fbb7b 19898
a2c02241 19899@noindent
02142340
VP
19900Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
19901
19902Note that the output of the @code{-var-list-children} command also
19903includes those expressions, so the @code{-var-info-expression} command
19904is of limited use.
19905
19906@subheading The @code{-var-info-path-expression} Command
19907@findex -var-info-path-expression
19908
19909@subsubheading Synopsis
19910
19911@smallexample
19912 -var-info-path-expression @var{name}
19913@end smallexample
19914
19915Returns an expression that can be evaluated in the current
19916context and will yield the same value that a variable object has.
19917Compare this with the @code{-var-info-expression} command, which
19918result can be used only for UI presentation. Typical use of
19919the @code{-var-info-path-expression} command is creating a
19920watchpoint from a variable object.
19921
19922For example, suppose @code{C} is a C@t{++} class, derived from class
19923@code{Base}, and that the @code{Base} class has a member called
19924@code{m_size}. Assume a variable @code{c} is has the type of
19925@code{C} and a variable object @code{C} was created for variable
19926@code{c}. Then, we'll get this output:
19927@smallexample
19928(gdb) -var-info-path-expression C.Base.public.m_size
19929^done,path_expr=((Base)c).m_size)
19930@end smallexample
922fbb7b 19931
a2c02241
NR
19932@subheading The @code{-var-show-attributes} Command
19933@findex -var-show-attributes
922fbb7b 19934
a2c02241 19935@subsubheading Synopsis
922fbb7b 19936
a2c02241
NR
19937@smallexample
19938 -var-show-attributes @var{name}
19939@end smallexample
922fbb7b 19940
a2c02241 19941List attributes of the specified variable object @var{name}:
922fbb7b
AC
19942
19943@smallexample
a2c02241 19944 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
19945@end smallexample
19946
a2c02241
NR
19947@noindent
19948where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
19949
19950@subheading The @code{-var-evaluate-expression} Command
19951@findex -var-evaluate-expression
19952
19953@subsubheading Synopsis
19954
19955@smallexample
19956 -var-evaluate-expression @var{name}
19957@end smallexample
19958
19959Evaluates the expression that is represented by the specified variable
c8b2f53c
VP
19960object and returns its value as a string. The format of the
19961string can be changed using the @code{-var-set-format} command.
a2c02241
NR
19962
19963@smallexample
19964 value=@var{value}
19965@end smallexample
19966
19967Note that one must invoke @code{-var-list-children} for a variable
19968before the value of a child variable can be evaluated.
19969
19970@subheading The @code{-var-assign} Command
19971@findex -var-assign
19972
19973@subsubheading Synopsis
19974
19975@smallexample
19976 -var-assign @var{name} @var{expression}
19977@end smallexample
19978
19979Assigns the value of @var{expression} to the variable object specified
19980by @var{name}. The object must be @samp{editable}. If the variable's
19981value is altered by the assign, the variable will show up in any
19982subsequent @code{-var-update} list.
19983
19984@subsubheading Example
922fbb7b
AC
19985
19986@smallexample
594fe323 19987(gdb)
a2c02241
NR
19988-var-assign var1 3
19989^done,value="3"
594fe323 19990(gdb)
a2c02241
NR
19991-var-update *
19992^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 19993(gdb)
922fbb7b
AC
19994@end smallexample
19995
a2c02241
NR
19996@subheading The @code{-var-update} Command
19997@findex -var-update
19998
19999@subsubheading Synopsis
20000
20001@smallexample
20002 -var-update [@var{print-values}] @{@var{name} | "*"@}
20003@end smallexample
20004
c8b2f53c
VP
20005Reevaluate the expressions corresponding to the variable object
20006@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20007list of variable objects whose values have changed; @var{name} must
20008be a root variable object. Here, ``changed'' means that the result of
20009@code{-var-evaluate-expression} before and after the
20010@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20011object names, all existing variable objects are updated, except
20012for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3
NR
20013@var{print-values} determines whether both names and values, or just
20014names are printed. The possible values of this options are the same
20015as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20016recommended to use the @samp{--all-values} option, to reduce the
20017number of MI commands needed on each program stop.
c8b2f53c 20018
a2c02241
NR
20019
20020@subsubheading Example
922fbb7b
AC
20021
20022@smallexample
594fe323 20023(gdb)
a2c02241
NR
20024-var-assign var1 3
20025^done,value="3"
594fe323 20026(gdb)
a2c02241
NR
20027-var-update --all-values var1
20028^done,changelist=[@{name="var1",value="3",in_scope="true",
20029type_changed="false"@}]
594fe323 20030(gdb)
922fbb7b
AC
20031@end smallexample
20032
9f708cb2 20033@anchor{-var-update}
36ece8b3
NR
20034The field in_scope may take three values:
20035
20036@table @code
20037@item "true"
20038The variable object's current value is valid.
20039
20040@item "false"
20041The variable object does not currently hold a valid value but it may
20042hold one in the future if its associated expression comes back into
20043scope.
20044
20045@item "invalid"
20046The variable object no longer holds a valid value.
20047This can occur when the executable file being debugged has changed,
20048either through recompilation or by using the @value{GDBN} @code{file}
20049command. The front end should normally choose to delete these variable
20050objects.
20051@end table
20052
20053In the future new values may be added to this list so the front should
20054be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20055
25d5ea92
VP
20056@subheading The @code{-var-set-frozen} Command
20057@findex -var-set-frozen
9f708cb2 20058@anchor{-var-set-frozen}
25d5ea92
VP
20059
20060@subsubheading Synopsis
20061
20062@smallexample
9f708cb2 20063 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20064@end smallexample
20065
9f708cb2 20066Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20067@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20068frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20069frozen, then neither itself, nor any of its children, are
9f708cb2 20070implicitly updated by @code{-var-update} of
25d5ea92
VP
20071a parent variable or by @code{-var-update *}. Only
20072@code{-var-update} of the variable itself will update its value and
20073values of its children. After a variable object is unfrozen, it is
20074implicitly updated by all subsequent @code{-var-update} operations.
20075Unfreezing a variable does not update it, only subsequent
20076@code{-var-update} does.
20077
20078@subsubheading Example
20079
20080@smallexample
20081(gdb)
20082-var-set-frozen V 1
20083^done
20084(gdb)
20085@end smallexample
20086
20087
a2c02241
NR
20088@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20089@node GDB/MI Data Manipulation
20090@section @sc{gdb/mi} Data Manipulation
922fbb7b 20091
a2c02241
NR
20092@cindex data manipulation, in @sc{gdb/mi}
20093@cindex @sc{gdb/mi}, data manipulation
20094This section describes the @sc{gdb/mi} commands that manipulate data:
20095examine memory and registers, evaluate expressions, etc.
20096
20097@c REMOVED FROM THE INTERFACE.
20098@c @subheading -data-assign
20099@c Change the value of a program variable. Plenty of side effects.
79a6e687 20100@c @subsubheading GDB Command
a2c02241
NR
20101@c set variable
20102@c @subsubheading Example
20103@c N.A.
20104
20105@subheading The @code{-data-disassemble} Command
20106@findex -data-disassemble
922fbb7b
AC
20107
20108@subsubheading Synopsis
20109
20110@smallexample
a2c02241
NR
20111 -data-disassemble
20112 [ -s @var{start-addr} -e @var{end-addr} ]
20113 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20114 -- @var{mode}
922fbb7b
AC
20115@end smallexample
20116
a2c02241
NR
20117@noindent
20118Where:
20119
20120@table @samp
20121@item @var{start-addr}
20122is the beginning address (or @code{$pc})
20123@item @var{end-addr}
20124is the end address
20125@item @var{filename}
20126is the name of the file to disassemble
20127@item @var{linenum}
20128is the line number to disassemble around
20129@item @var{lines}
d3e8051b 20130is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20131the whole function will be disassembled, in case no @var{end-addr} is
20132specified. If @var{end-addr} is specified as a non-zero value, and
20133@var{lines} is lower than the number of disassembly lines between
20134@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20135displayed; if @var{lines} is higher than the number of lines between
20136@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20137are displayed.
20138@item @var{mode}
20139is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20140disassembly).
20141@end table
20142
20143@subsubheading Result
20144
20145The output for each instruction is composed of four fields:
20146
20147@itemize @bullet
20148@item Address
20149@item Func-name
20150@item Offset
20151@item Instruction
20152@end itemize
20153
20154Note that whatever included in the instruction field, is not manipulated
d3e8051b 20155directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20156
20157@subsubheading @value{GDBN} Command
20158
a2c02241 20159There's no direct mapping from this command to the CLI.
922fbb7b
AC
20160
20161@subsubheading Example
20162
a2c02241
NR
20163Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20164
922fbb7b 20165@smallexample
594fe323 20166(gdb)
a2c02241
NR
20167-data-disassemble -s $pc -e "$pc + 20" -- 0
20168^done,
20169asm_insns=[
20170@{address="0x000107c0",func-name="main",offset="4",
20171inst="mov 2, %o0"@},
20172@{address="0x000107c4",func-name="main",offset="8",
20173inst="sethi %hi(0x11800), %o2"@},
20174@{address="0x000107c8",func-name="main",offset="12",
20175inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20176@{address="0x000107cc",func-name="main",offset="16",
20177inst="sethi %hi(0x11800), %o2"@},
20178@{address="0x000107d0",func-name="main",offset="20",
20179inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20180(gdb)
a2c02241
NR
20181@end smallexample
20182
20183Disassemble the whole @code{main} function. Line 32 is part of
20184@code{main}.
20185
20186@smallexample
20187-data-disassemble -f basics.c -l 32 -- 0
20188^done,asm_insns=[
20189@{address="0x000107bc",func-name="main",offset="0",
20190inst="save %sp, -112, %sp"@},
20191@{address="0x000107c0",func-name="main",offset="4",
20192inst="mov 2, %o0"@},
20193@{address="0x000107c4",func-name="main",offset="8",
20194inst="sethi %hi(0x11800), %o2"@},
20195[@dots{}]
20196@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20197@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20198(gdb)
922fbb7b
AC
20199@end smallexample
20200
a2c02241 20201Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20202
a2c02241 20203@smallexample
594fe323 20204(gdb)
a2c02241
NR
20205-data-disassemble -f basics.c -l 32 -n 3 -- 0
20206^done,asm_insns=[
20207@{address="0x000107bc",func-name="main",offset="0",
20208inst="save %sp, -112, %sp"@},
20209@{address="0x000107c0",func-name="main",offset="4",
20210inst="mov 2, %o0"@},
20211@{address="0x000107c4",func-name="main",offset="8",
20212inst="sethi %hi(0x11800), %o2"@}]
594fe323 20213(gdb)
a2c02241
NR
20214@end smallexample
20215
20216Disassemble 3 instructions from the start of @code{main} in mixed mode:
20217
20218@smallexample
594fe323 20219(gdb)
a2c02241
NR
20220-data-disassemble -f basics.c -l 32 -n 3 -- 1
20221^done,asm_insns=[
20222src_and_asm_line=@{line="31",
20223file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20224 testsuite/gdb.mi/basics.c",line_asm_insn=[
20225@{address="0x000107bc",func-name="main",offset="0",
20226inst="save %sp, -112, %sp"@}]@},
20227src_and_asm_line=@{line="32",
20228file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20229 testsuite/gdb.mi/basics.c",line_asm_insn=[
20230@{address="0x000107c0",func-name="main",offset="4",
20231inst="mov 2, %o0"@},
20232@{address="0x000107c4",func-name="main",offset="8",
20233inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20234(gdb)
a2c02241
NR
20235@end smallexample
20236
20237
20238@subheading The @code{-data-evaluate-expression} Command
20239@findex -data-evaluate-expression
922fbb7b
AC
20240
20241@subsubheading Synopsis
20242
20243@smallexample
a2c02241 20244 -data-evaluate-expression @var{expr}
922fbb7b
AC
20245@end smallexample
20246
a2c02241
NR
20247Evaluate @var{expr} as an expression. The expression could contain an
20248inferior function call. The function call will execute synchronously.
20249If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20250
20251@subsubheading @value{GDBN} Command
20252
a2c02241
NR
20253The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20254@samp{call}. In @code{gdbtk} only, there's a corresponding
20255@samp{gdb_eval} command.
922fbb7b
AC
20256
20257@subsubheading Example
20258
a2c02241
NR
20259In the following example, the numbers that precede the commands are the
20260@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20261Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20262output.
20263
922fbb7b 20264@smallexample
a2c02241
NR
20265211-data-evaluate-expression A
20266211^done,value="1"
594fe323 20267(gdb)
a2c02241
NR
20268311-data-evaluate-expression &A
20269311^done,value="0xefffeb7c"
594fe323 20270(gdb)
a2c02241
NR
20271411-data-evaluate-expression A+3
20272411^done,value="4"
594fe323 20273(gdb)
a2c02241
NR
20274511-data-evaluate-expression "A + 3"
20275511^done,value="4"
594fe323 20276(gdb)
a2c02241 20277@end smallexample
922fbb7b
AC
20278
20279
a2c02241
NR
20280@subheading The @code{-data-list-changed-registers} Command
20281@findex -data-list-changed-registers
922fbb7b
AC
20282
20283@subsubheading Synopsis
20284
20285@smallexample
a2c02241 20286 -data-list-changed-registers
922fbb7b
AC
20287@end smallexample
20288
a2c02241 20289Display a list of the registers that have changed.
922fbb7b
AC
20290
20291@subsubheading @value{GDBN} Command
20292
a2c02241
NR
20293@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20294has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20295
20296@subsubheading Example
922fbb7b 20297
a2c02241 20298On a PPC MBX board:
922fbb7b
AC
20299
20300@smallexample
594fe323 20301(gdb)
a2c02241
NR
20302-exec-continue
20303^running
922fbb7b 20304
594fe323 20305(gdb)
a2c02241
NR
20306*stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20307args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
594fe323 20308(gdb)
a2c02241
NR
20309-data-list-changed-registers
20310^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20311"10","11","13","14","15","16","17","18","19","20","21","22","23",
20312"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20313(gdb)
a2c02241 20314@end smallexample
922fbb7b
AC
20315
20316
a2c02241
NR
20317@subheading The @code{-data-list-register-names} Command
20318@findex -data-list-register-names
922fbb7b
AC
20319
20320@subsubheading Synopsis
20321
20322@smallexample
a2c02241 20323 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20324@end smallexample
20325
a2c02241
NR
20326Show a list of register names for the current target. If no arguments
20327are given, it shows a list of the names of all the registers. If
20328integer numbers are given as arguments, it will print a list of the
20329names of the registers corresponding to the arguments. To ensure
20330consistency between a register name and its number, the output list may
20331include empty register names.
922fbb7b
AC
20332
20333@subsubheading @value{GDBN} Command
20334
a2c02241
NR
20335@value{GDBN} does not have a command which corresponds to
20336@samp{-data-list-register-names}. In @code{gdbtk} there is a
20337corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20338
20339@subsubheading Example
922fbb7b 20340
a2c02241
NR
20341For the PPC MBX board:
20342@smallexample
594fe323 20343(gdb)
a2c02241
NR
20344-data-list-register-names
20345^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20346"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20347"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20348"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20349"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20350"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20351"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20352(gdb)
a2c02241
NR
20353-data-list-register-names 1 2 3
20354^done,register-names=["r1","r2","r3"]
594fe323 20355(gdb)
a2c02241 20356@end smallexample
922fbb7b 20357
a2c02241
NR
20358@subheading The @code{-data-list-register-values} Command
20359@findex -data-list-register-values
922fbb7b
AC
20360
20361@subsubheading Synopsis
20362
20363@smallexample
a2c02241 20364 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20365@end smallexample
20366
a2c02241
NR
20367Display the registers' contents. @var{fmt} is the format according to
20368which the registers' contents are to be returned, followed by an optional
20369list of numbers specifying the registers to display. A missing list of
20370numbers indicates that the contents of all the registers must be returned.
20371
20372Allowed formats for @var{fmt} are:
20373
20374@table @code
20375@item x
20376Hexadecimal
20377@item o
20378Octal
20379@item t
20380Binary
20381@item d
20382Decimal
20383@item r
20384Raw
20385@item N
20386Natural
20387@end table
922fbb7b
AC
20388
20389@subsubheading @value{GDBN} Command
20390
a2c02241
NR
20391The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20392all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20393
20394@subsubheading Example
922fbb7b 20395
a2c02241
NR
20396For a PPC MBX board (note: line breaks are for readability only, they
20397don't appear in the actual output):
20398
20399@smallexample
594fe323 20400(gdb)
a2c02241
NR
20401-data-list-register-values r 64 65
20402^done,register-values=[@{number="64",value="0xfe00a300"@},
20403@{number="65",value="0x00029002"@}]
594fe323 20404(gdb)
a2c02241
NR
20405-data-list-register-values x
20406^done,register-values=[@{number="0",value="0xfe0043c8"@},
20407@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20408@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20409@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20410@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20411@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20412@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20413@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20414@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20415@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20416@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20417@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20418@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20419@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20420@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20421@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20422@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20423@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20424@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20425@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20426@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20427@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20428@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20429@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20430@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20431@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20432@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20433@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20434@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20435@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20436@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20437@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20438@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20439@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20440@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20441@{number="69",value="0x20002b03"@}]
594fe323 20442(gdb)
a2c02241 20443@end smallexample
922fbb7b 20444
a2c02241
NR
20445
20446@subheading The @code{-data-read-memory} Command
20447@findex -data-read-memory
922fbb7b
AC
20448
20449@subsubheading Synopsis
20450
20451@smallexample
a2c02241
NR
20452 -data-read-memory [ -o @var{byte-offset} ]
20453 @var{address} @var{word-format} @var{word-size}
20454 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20455@end smallexample
20456
a2c02241
NR
20457@noindent
20458where:
922fbb7b 20459
a2c02241
NR
20460@table @samp
20461@item @var{address}
20462An expression specifying the address of the first memory word to be
20463read. Complex expressions containing embedded white space should be
20464quoted using the C convention.
922fbb7b 20465
a2c02241
NR
20466@item @var{word-format}
20467The format to be used to print the memory words. The notation is the
20468same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20469,Output Formats}).
922fbb7b 20470
a2c02241
NR
20471@item @var{word-size}
20472The size of each memory word in bytes.
922fbb7b 20473
a2c02241
NR
20474@item @var{nr-rows}
20475The number of rows in the output table.
922fbb7b 20476
a2c02241
NR
20477@item @var{nr-cols}
20478The number of columns in the output table.
922fbb7b 20479
a2c02241
NR
20480@item @var{aschar}
20481If present, indicates that each row should include an @sc{ascii} dump. The
20482value of @var{aschar} is used as a padding character when a byte is not a
20483member of the printable @sc{ascii} character set (printable @sc{ascii}
20484characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20485
a2c02241
NR
20486@item @var{byte-offset}
20487An offset to add to the @var{address} before fetching memory.
20488@end table
922fbb7b 20489
a2c02241
NR
20490This command displays memory contents as a table of @var{nr-rows} by
20491@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20492@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20493(returned as @samp{total-bytes}). Should less than the requested number
20494of bytes be returned by the target, the missing words are identified
20495using @samp{N/A}. The number of bytes read from the target is returned
20496in @samp{nr-bytes} and the starting address used to read memory in
20497@samp{addr}.
20498
20499The address of the next/previous row or page is available in
20500@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20501@samp{prev-page}.
922fbb7b
AC
20502
20503@subsubheading @value{GDBN} Command
20504
a2c02241
NR
20505The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20506@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20507
20508@subsubheading Example
32e7087d 20509
a2c02241
NR
20510Read six bytes of memory starting at @code{bytes+6} but then offset by
20511@code{-6} bytes. Format as three rows of two columns. One byte per
20512word. Display each word in hex.
32e7087d
JB
20513
20514@smallexample
594fe323 20515(gdb)
a2c02241
NR
205169-data-read-memory -o -6 -- bytes+6 x 1 3 2
205179^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20518next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20519prev-page="0x0000138a",memory=[
20520@{addr="0x00001390",data=["0x00","0x01"]@},
20521@{addr="0x00001392",data=["0x02","0x03"]@},
20522@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20523(gdb)
32e7087d
JB
20524@end smallexample
20525
a2c02241
NR
20526Read two bytes of memory starting at address @code{shorts + 64} and
20527display as a single word formatted in decimal.
32e7087d 20528
32e7087d 20529@smallexample
594fe323 20530(gdb)
a2c02241
NR
205315-data-read-memory shorts+64 d 2 1 1
205325^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20533next-row="0x00001512",prev-row="0x0000150e",
20534next-page="0x00001512",prev-page="0x0000150e",memory=[
20535@{addr="0x00001510",data=["128"]@}]
594fe323 20536(gdb)
32e7087d
JB
20537@end smallexample
20538
a2c02241
NR
20539Read thirty two bytes of memory starting at @code{bytes+16} and format
20540as eight rows of four columns. Include a string encoding with @samp{x}
20541used as the non-printable character.
922fbb7b
AC
20542
20543@smallexample
594fe323 20544(gdb)
a2c02241
NR
205454-data-read-memory bytes+16 x 1 8 4 x
205464^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20547next-row="0x000013c0",prev-row="0x0000139c",
20548next-page="0x000013c0",prev-page="0x00001380",memory=[
20549@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20550@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20551@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20552@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20553@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20554@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20555@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20556@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20557(gdb)
922fbb7b
AC
20558@end smallexample
20559
a2c02241
NR
20560@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20561@node GDB/MI Tracepoint Commands
20562@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20563
a2c02241 20564The tracepoint commands are not yet implemented.
922fbb7b 20565
a2c02241 20566@c @subheading -trace-actions
922fbb7b 20567
a2c02241 20568@c @subheading -trace-delete
922fbb7b 20569
a2c02241 20570@c @subheading -trace-disable
922fbb7b 20571
a2c02241 20572@c @subheading -trace-dump
922fbb7b 20573
a2c02241 20574@c @subheading -trace-enable
922fbb7b 20575
a2c02241 20576@c @subheading -trace-exists
922fbb7b 20577
a2c02241 20578@c @subheading -trace-find
922fbb7b 20579
a2c02241 20580@c @subheading -trace-frame-number
922fbb7b 20581
a2c02241 20582@c @subheading -trace-info
922fbb7b 20583
a2c02241 20584@c @subheading -trace-insert
922fbb7b 20585
a2c02241 20586@c @subheading -trace-list
922fbb7b 20587
a2c02241 20588@c @subheading -trace-pass-count
922fbb7b 20589
a2c02241 20590@c @subheading -trace-save
922fbb7b 20591
a2c02241 20592@c @subheading -trace-start
922fbb7b 20593
a2c02241 20594@c @subheading -trace-stop
922fbb7b 20595
922fbb7b 20596
a2c02241
NR
20597@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20598@node GDB/MI Symbol Query
20599@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20600
20601
a2c02241
NR
20602@subheading The @code{-symbol-info-address} Command
20603@findex -symbol-info-address
922fbb7b
AC
20604
20605@subsubheading Synopsis
20606
20607@smallexample
a2c02241 20608 -symbol-info-address @var{symbol}
922fbb7b
AC
20609@end smallexample
20610
a2c02241 20611Describe where @var{symbol} is stored.
922fbb7b
AC
20612
20613@subsubheading @value{GDBN} Command
20614
a2c02241 20615The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20616
20617@subsubheading Example
20618N.A.
20619
20620
a2c02241
NR
20621@subheading The @code{-symbol-info-file} Command
20622@findex -symbol-info-file
922fbb7b
AC
20623
20624@subsubheading Synopsis
20625
20626@smallexample
a2c02241 20627 -symbol-info-file
922fbb7b
AC
20628@end smallexample
20629
a2c02241 20630Show the file for the symbol.
922fbb7b 20631
a2c02241 20632@subsubheading @value{GDBN} Command
922fbb7b 20633
a2c02241
NR
20634There's no equivalent @value{GDBN} command. @code{gdbtk} has
20635@samp{gdb_find_file}.
922fbb7b
AC
20636
20637@subsubheading Example
20638N.A.
20639
20640
a2c02241
NR
20641@subheading The @code{-symbol-info-function} Command
20642@findex -symbol-info-function
922fbb7b
AC
20643
20644@subsubheading Synopsis
20645
20646@smallexample
a2c02241 20647 -symbol-info-function
922fbb7b
AC
20648@end smallexample
20649
a2c02241 20650Show which function the symbol lives in.
922fbb7b
AC
20651
20652@subsubheading @value{GDBN} Command
20653
a2c02241 20654@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20655
20656@subsubheading Example
20657N.A.
20658
20659
a2c02241
NR
20660@subheading The @code{-symbol-info-line} Command
20661@findex -symbol-info-line
922fbb7b
AC
20662
20663@subsubheading Synopsis
20664
20665@smallexample
a2c02241 20666 -symbol-info-line
922fbb7b
AC
20667@end smallexample
20668
a2c02241 20669Show the core addresses of the code for a source line.
922fbb7b 20670
a2c02241 20671@subsubheading @value{GDBN} Command
922fbb7b 20672
a2c02241
NR
20673The corresponding @value{GDBN} command is @samp{info line}.
20674@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20675
20676@subsubheading Example
a2c02241 20677N.A.
922fbb7b
AC
20678
20679
a2c02241
NR
20680@subheading The @code{-symbol-info-symbol} Command
20681@findex -symbol-info-symbol
07f31aa6
DJ
20682
20683@subsubheading Synopsis
20684
a2c02241
NR
20685@smallexample
20686 -symbol-info-symbol @var{addr}
20687@end smallexample
07f31aa6 20688
a2c02241 20689Describe what symbol is at location @var{addr}.
07f31aa6 20690
a2c02241 20691@subsubheading @value{GDBN} Command
07f31aa6 20692
a2c02241 20693The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20694
20695@subsubheading Example
a2c02241 20696N.A.
07f31aa6
DJ
20697
20698
a2c02241
NR
20699@subheading The @code{-symbol-list-functions} Command
20700@findex -symbol-list-functions
922fbb7b
AC
20701
20702@subsubheading Synopsis
20703
20704@smallexample
a2c02241 20705 -symbol-list-functions
922fbb7b
AC
20706@end smallexample
20707
a2c02241 20708List the functions in the executable.
922fbb7b
AC
20709
20710@subsubheading @value{GDBN} Command
20711
a2c02241
NR
20712@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20713@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20714
20715@subsubheading Example
a2c02241 20716N.A.
922fbb7b
AC
20717
20718
a2c02241
NR
20719@subheading The @code{-symbol-list-lines} Command
20720@findex -symbol-list-lines
922fbb7b
AC
20721
20722@subsubheading Synopsis
20723
20724@smallexample
a2c02241 20725 -symbol-list-lines @var{filename}
922fbb7b
AC
20726@end smallexample
20727
a2c02241
NR
20728Print the list of lines that contain code and their associated program
20729addresses for the given source filename. The entries are sorted in
20730ascending PC order.
922fbb7b
AC
20731
20732@subsubheading @value{GDBN} Command
20733
a2c02241 20734There is no corresponding @value{GDBN} command.
922fbb7b
AC
20735
20736@subsubheading Example
a2c02241 20737@smallexample
594fe323 20738(gdb)
a2c02241
NR
20739-symbol-list-lines basics.c
20740^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 20741(gdb)
a2c02241 20742@end smallexample
922fbb7b
AC
20743
20744
a2c02241
NR
20745@subheading The @code{-symbol-list-types} Command
20746@findex -symbol-list-types
922fbb7b
AC
20747
20748@subsubheading Synopsis
20749
20750@smallexample
a2c02241 20751 -symbol-list-types
922fbb7b
AC
20752@end smallexample
20753
a2c02241 20754List all the type names.
922fbb7b
AC
20755
20756@subsubheading @value{GDBN} Command
20757
a2c02241
NR
20758The corresponding commands are @samp{info types} in @value{GDBN},
20759@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20760
20761@subsubheading Example
20762N.A.
20763
20764
a2c02241
NR
20765@subheading The @code{-symbol-list-variables} Command
20766@findex -symbol-list-variables
922fbb7b
AC
20767
20768@subsubheading Synopsis
20769
20770@smallexample
a2c02241 20771 -symbol-list-variables
922fbb7b
AC
20772@end smallexample
20773
a2c02241 20774List all the global and static variable names.
922fbb7b
AC
20775
20776@subsubheading @value{GDBN} Command
20777
a2c02241 20778@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20779
20780@subsubheading Example
20781N.A.
20782
20783
a2c02241
NR
20784@subheading The @code{-symbol-locate} Command
20785@findex -symbol-locate
922fbb7b
AC
20786
20787@subsubheading Synopsis
20788
20789@smallexample
a2c02241 20790 -symbol-locate
922fbb7b
AC
20791@end smallexample
20792
922fbb7b
AC
20793@subsubheading @value{GDBN} Command
20794
a2c02241 20795@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
20796
20797@subsubheading Example
20798N.A.
20799
20800
a2c02241
NR
20801@subheading The @code{-symbol-type} Command
20802@findex -symbol-type
922fbb7b
AC
20803
20804@subsubheading Synopsis
20805
20806@smallexample
a2c02241 20807 -symbol-type @var{variable}
922fbb7b
AC
20808@end smallexample
20809
a2c02241 20810Show type of @var{variable}.
922fbb7b 20811
a2c02241 20812@subsubheading @value{GDBN} Command
922fbb7b 20813
a2c02241
NR
20814The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
20815@samp{gdb_obj_variable}.
20816
20817@subsubheading Example
20818N.A.
20819
20820
20821@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20822@node GDB/MI File Commands
20823@section @sc{gdb/mi} File Commands
20824
20825This section describes the GDB/MI commands to specify executable file names
20826and to read in and obtain symbol table information.
20827
20828@subheading The @code{-file-exec-and-symbols} Command
20829@findex -file-exec-and-symbols
20830
20831@subsubheading Synopsis
922fbb7b
AC
20832
20833@smallexample
a2c02241 20834 -file-exec-and-symbols @var{file}
922fbb7b
AC
20835@end smallexample
20836
a2c02241
NR
20837Specify the executable file to be debugged. This file is the one from
20838which the symbol table is also read. If no file is specified, the
20839command clears the executable and symbol information. If breakpoints
20840are set when using this command with no arguments, @value{GDBN} will produce
20841error messages. Otherwise, no output is produced, except a completion
20842notification.
20843
922fbb7b
AC
20844@subsubheading @value{GDBN} Command
20845
a2c02241 20846The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
20847
20848@subsubheading Example
20849
20850@smallexample
594fe323 20851(gdb)
a2c02241
NR
20852-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20853^done
594fe323 20854(gdb)
922fbb7b
AC
20855@end smallexample
20856
922fbb7b 20857
a2c02241
NR
20858@subheading The @code{-file-exec-file} Command
20859@findex -file-exec-file
922fbb7b
AC
20860
20861@subsubheading Synopsis
20862
20863@smallexample
a2c02241 20864 -file-exec-file @var{file}
922fbb7b
AC
20865@end smallexample
20866
a2c02241
NR
20867Specify the executable file to be debugged. Unlike
20868@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
20869from this file. If used without argument, @value{GDBN} clears the information
20870about the executable file. No output is produced, except a completion
20871notification.
922fbb7b 20872
a2c02241
NR
20873@subsubheading @value{GDBN} Command
20874
20875The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
20876
20877@subsubheading Example
a2c02241
NR
20878
20879@smallexample
594fe323 20880(gdb)
a2c02241
NR
20881-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20882^done
594fe323 20883(gdb)
a2c02241 20884@end smallexample
922fbb7b
AC
20885
20886
a2c02241
NR
20887@subheading The @code{-file-list-exec-sections} Command
20888@findex -file-list-exec-sections
922fbb7b
AC
20889
20890@subsubheading Synopsis
20891
20892@smallexample
a2c02241 20893 -file-list-exec-sections
922fbb7b
AC
20894@end smallexample
20895
a2c02241
NR
20896List the sections of the current executable file.
20897
922fbb7b
AC
20898@subsubheading @value{GDBN} Command
20899
a2c02241
NR
20900The @value{GDBN} command @samp{info file} shows, among the rest, the same
20901information as this command. @code{gdbtk} has a corresponding command
20902@samp{gdb_load_info}.
922fbb7b
AC
20903
20904@subsubheading Example
20905N.A.
20906
20907
a2c02241
NR
20908@subheading The @code{-file-list-exec-source-file} Command
20909@findex -file-list-exec-source-file
922fbb7b
AC
20910
20911@subsubheading Synopsis
20912
20913@smallexample
a2c02241 20914 -file-list-exec-source-file
922fbb7b
AC
20915@end smallexample
20916
a2c02241
NR
20917List the line number, the current source file, and the absolute path
20918to the current source file for the current executable.
922fbb7b
AC
20919
20920@subsubheading @value{GDBN} Command
20921
a2c02241 20922The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
20923
20924@subsubheading Example
20925
922fbb7b 20926@smallexample
594fe323 20927(gdb)
a2c02241
NR
20928123-file-list-exec-source-file
20929123^done,line="1",file="foo.c",fullname="/home/bar/foo.c"
594fe323 20930(gdb)
922fbb7b
AC
20931@end smallexample
20932
20933
a2c02241
NR
20934@subheading The @code{-file-list-exec-source-files} Command
20935@findex -file-list-exec-source-files
922fbb7b
AC
20936
20937@subsubheading Synopsis
20938
20939@smallexample
a2c02241 20940 -file-list-exec-source-files
922fbb7b
AC
20941@end smallexample
20942
a2c02241
NR
20943List the source files for the current executable.
20944
3f94c067
BW
20945It will always output the filename, but only when @value{GDBN} can find
20946the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
20947
20948@subsubheading @value{GDBN} Command
20949
a2c02241
NR
20950The @value{GDBN} equivalent is @samp{info sources}.
20951@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
20952
20953@subsubheading Example
922fbb7b 20954@smallexample
594fe323 20955(gdb)
a2c02241
NR
20956-file-list-exec-source-files
20957^done,files=[
20958@{file=foo.c,fullname=/home/foo.c@},
20959@{file=/home/bar.c,fullname=/home/bar.c@},
20960@{file=gdb_could_not_find_fullpath.c@}]
594fe323 20961(gdb)
922fbb7b
AC
20962@end smallexample
20963
a2c02241
NR
20964@subheading The @code{-file-list-shared-libraries} Command
20965@findex -file-list-shared-libraries
922fbb7b 20966
a2c02241 20967@subsubheading Synopsis
922fbb7b 20968
a2c02241
NR
20969@smallexample
20970 -file-list-shared-libraries
20971@end smallexample
922fbb7b 20972
a2c02241 20973List the shared libraries in the program.
922fbb7b 20974
a2c02241 20975@subsubheading @value{GDBN} Command
922fbb7b 20976
a2c02241 20977The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 20978
a2c02241
NR
20979@subsubheading Example
20980N.A.
922fbb7b
AC
20981
20982
a2c02241
NR
20983@subheading The @code{-file-list-symbol-files} Command
20984@findex -file-list-symbol-files
922fbb7b 20985
a2c02241 20986@subsubheading Synopsis
922fbb7b 20987
a2c02241
NR
20988@smallexample
20989 -file-list-symbol-files
20990@end smallexample
922fbb7b 20991
a2c02241 20992List symbol files.
922fbb7b 20993
a2c02241 20994@subsubheading @value{GDBN} Command
922fbb7b 20995
a2c02241 20996The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 20997
a2c02241
NR
20998@subsubheading Example
20999N.A.
922fbb7b 21000
922fbb7b 21001
a2c02241
NR
21002@subheading The @code{-file-symbol-file} Command
21003@findex -file-symbol-file
922fbb7b 21004
a2c02241 21005@subsubheading Synopsis
922fbb7b 21006
a2c02241
NR
21007@smallexample
21008 -file-symbol-file @var{file}
21009@end smallexample
922fbb7b 21010
a2c02241
NR
21011Read symbol table info from the specified @var{file} argument. When
21012used without arguments, clears @value{GDBN}'s symbol table info. No output is
21013produced, except for a completion notification.
922fbb7b 21014
a2c02241 21015@subsubheading @value{GDBN} Command
922fbb7b 21016
a2c02241 21017The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21018
a2c02241 21019@subsubheading Example
922fbb7b 21020
a2c02241 21021@smallexample
594fe323 21022(gdb)
a2c02241
NR
21023-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21024^done
594fe323 21025(gdb)
a2c02241 21026@end smallexample
922fbb7b 21027
a2c02241 21028@ignore
a2c02241
NR
21029@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21030@node GDB/MI Memory Overlay Commands
21031@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21032
a2c02241 21033The memory overlay commands are not implemented.
922fbb7b 21034
a2c02241 21035@c @subheading -overlay-auto
922fbb7b 21036
a2c02241 21037@c @subheading -overlay-list-mapping-state
922fbb7b 21038
a2c02241 21039@c @subheading -overlay-list-overlays
922fbb7b 21040
a2c02241 21041@c @subheading -overlay-map
922fbb7b 21042
a2c02241 21043@c @subheading -overlay-off
922fbb7b 21044
a2c02241 21045@c @subheading -overlay-on
922fbb7b 21046
a2c02241 21047@c @subheading -overlay-unmap
922fbb7b 21048
a2c02241
NR
21049@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21050@node GDB/MI Signal Handling Commands
21051@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21052
a2c02241 21053Signal handling commands are not implemented.
922fbb7b 21054
a2c02241 21055@c @subheading -signal-handle
922fbb7b 21056
a2c02241 21057@c @subheading -signal-list-handle-actions
922fbb7b 21058
a2c02241
NR
21059@c @subheading -signal-list-signal-types
21060@end ignore
922fbb7b 21061
922fbb7b 21062
a2c02241
NR
21063@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21064@node GDB/MI Target Manipulation
21065@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21066
21067
a2c02241
NR
21068@subheading The @code{-target-attach} Command
21069@findex -target-attach
922fbb7b
AC
21070
21071@subsubheading Synopsis
21072
21073@smallexample
a2c02241 21074 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21075@end smallexample
21076
a2c02241 21077Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21078
79a6e687 21079@subsubheading @value{GDBN} Command
922fbb7b 21080
a2c02241 21081The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21082
a2c02241
NR
21083@subsubheading Example
21084N.A.
922fbb7b 21085
a2c02241
NR
21086
21087@subheading The @code{-target-compare-sections} Command
21088@findex -target-compare-sections
922fbb7b
AC
21089
21090@subsubheading Synopsis
21091
21092@smallexample
a2c02241 21093 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21094@end smallexample
21095
a2c02241
NR
21096Compare data of section @var{section} on target to the exec file.
21097Without the argument, all sections are compared.
922fbb7b 21098
a2c02241 21099@subsubheading @value{GDBN} Command
922fbb7b 21100
a2c02241 21101The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21102
a2c02241
NR
21103@subsubheading Example
21104N.A.
21105
21106
21107@subheading The @code{-target-detach} Command
21108@findex -target-detach
922fbb7b
AC
21109
21110@subsubheading Synopsis
21111
21112@smallexample
a2c02241 21113 -target-detach
922fbb7b
AC
21114@end smallexample
21115
a2c02241
NR
21116Detach from the remote target which normally resumes its execution.
21117There's no output.
21118
79a6e687 21119@subsubheading @value{GDBN} Command
a2c02241
NR
21120
21121The corresponding @value{GDBN} command is @samp{detach}.
21122
21123@subsubheading Example
922fbb7b
AC
21124
21125@smallexample
594fe323 21126(gdb)
a2c02241
NR
21127-target-detach
21128^done
594fe323 21129(gdb)
922fbb7b
AC
21130@end smallexample
21131
21132
a2c02241
NR
21133@subheading The @code{-target-disconnect} Command
21134@findex -target-disconnect
922fbb7b
AC
21135
21136@subsubheading Synopsis
21137
123dc839 21138@smallexample
a2c02241 21139 -target-disconnect
123dc839 21140@end smallexample
922fbb7b 21141
a2c02241
NR
21142Disconnect from the remote target. There's no output and the target is
21143generally not resumed.
21144
79a6e687 21145@subsubheading @value{GDBN} Command
a2c02241
NR
21146
21147The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21148
21149@subsubheading Example
922fbb7b
AC
21150
21151@smallexample
594fe323 21152(gdb)
a2c02241
NR
21153-target-disconnect
21154^done
594fe323 21155(gdb)
922fbb7b
AC
21156@end smallexample
21157
21158
a2c02241
NR
21159@subheading The @code{-target-download} Command
21160@findex -target-download
922fbb7b
AC
21161
21162@subsubheading Synopsis
21163
21164@smallexample
a2c02241 21165 -target-download
922fbb7b
AC
21166@end smallexample
21167
a2c02241
NR
21168Loads the executable onto the remote target.
21169It prints out an update message every half second, which includes the fields:
21170
21171@table @samp
21172@item section
21173The name of the section.
21174@item section-sent
21175The size of what has been sent so far for that section.
21176@item section-size
21177The size of the section.
21178@item total-sent
21179The total size of what was sent so far (the current and the previous sections).
21180@item total-size
21181The size of the overall executable to download.
21182@end table
21183
21184@noindent
21185Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21186@sc{gdb/mi} Output Syntax}).
21187
21188In addition, it prints the name and size of the sections, as they are
21189downloaded. These messages include the following fields:
21190
21191@table @samp
21192@item section
21193The name of the section.
21194@item section-size
21195The size of the section.
21196@item total-size
21197The size of the overall executable to download.
21198@end table
21199
21200@noindent
21201At the end, a summary is printed.
21202
21203@subsubheading @value{GDBN} Command
21204
21205The corresponding @value{GDBN} command is @samp{load}.
21206
21207@subsubheading Example
21208
21209Note: each status message appears on a single line. Here the messages
21210have been broken down so that they can fit onto a page.
922fbb7b
AC
21211
21212@smallexample
594fe323 21213(gdb)
a2c02241
NR
21214-target-download
21215+download,@{section=".text",section-size="6668",total-size="9880"@}
21216+download,@{section=".text",section-sent="512",section-size="6668",
21217total-sent="512",total-size="9880"@}
21218+download,@{section=".text",section-sent="1024",section-size="6668",
21219total-sent="1024",total-size="9880"@}
21220+download,@{section=".text",section-sent="1536",section-size="6668",
21221total-sent="1536",total-size="9880"@}
21222+download,@{section=".text",section-sent="2048",section-size="6668",
21223total-sent="2048",total-size="9880"@}
21224+download,@{section=".text",section-sent="2560",section-size="6668",
21225total-sent="2560",total-size="9880"@}
21226+download,@{section=".text",section-sent="3072",section-size="6668",
21227total-sent="3072",total-size="9880"@}
21228+download,@{section=".text",section-sent="3584",section-size="6668",
21229total-sent="3584",total-size="9880"@}
21230+download,@{section=".text",section-sent="4096",section-size="6668",
21231total-sent="4096",total-size="9880"@}
21232+download,@{section=".text",section-sent="4608",section-size="6668",
21233total-sent="4608",total-size="9880"@}
21234+download,@{section=".text",section-sent="5120",section-size="6668",
21235total-sent="5120",total-size="9880"@}
21236+download,@{section=".text",section-sent="5632",section-size="6668",
21237total-sent="5632",total-size="9880"@}
21238+download,@{section=".text",section-sent="6144",section-size="6668",
21239total-sent="6144",total-size="9880"@}
21240+download,@{section=".text",section-sent="6656",section-size="6668",
21241total-sent="6656",total-size="9880"@}
21242+download,@{section=".init",section-size="28",total-size="9880"@}
21243+download,@{section=".fini",section-size="28",total-size="9880"@}
21244+download,@{section=".data",section-size="3156",total-size="9880"@}
21245+download,@{section=".data",section-sent="512",section-size="3156",
21246total-sent="7236",total-size="9880"@}
21247+download,@{section=".data",section-sent="1024",section-size="3156",
21248total-sent="7748",total-size="9880"@}
21249+download,@{section=".data",section-sent="1536",section-size="3156",
21250total-sent="8260",total-size="9880"@}
21251+download,@{section=".data",section-sent="2048",section-size="3156",
21252total-sent="8772",total-size="9880"@}
21253+download,@{section=".data",section-sent="2560",section-size="3156",
21254total-sent="9284",total-size="9880"@}
21255+download,@{section=".data",section-sent="3072",section-size="3156",
21256total-sent="9796",total-size="9880"@}
21257^done,address="0x10004",load-size="9880",transfer-rate="6586",
21258write-rate="429"
594fe323 21259(gdb)
922fbb7b
AC
21260@end smallexample
21261
21262
a2c02241
NR
21263@subheading The @code{-target-exec-status} Command
21264@findex -target-exec-status
922fbb7b
AC
21265
21266@subsubheading Synopsis
21267
21268@smallexample
a2c02241 21269 -target-exec-status
922fbb7b
AC
21270@end smallexample
21271
a2c02241
NR
21272Provide information on the state of the target (whether it is running or
21273not, for instance).
922fbb7b 21274
a2c02241 21275@subsubheading @value{GDBN} Command
922fbb7b 21276
a2c02241
NR
21277There's no equivalent @value{GDBN} command.
21278
21279@subsubheading Example
21280N.A.
922fbb7b 21281
a2c02241
NR
21282
21283@subheading The @code{-target-list-available-targets} Command
21284@findex -target-list-available-targets
922fbb7b
AC
21285
21286@subsubheading Synopsis
21287
21288@smallexample
a2c02241 21289 -target-list-available-targets
922fbb7b
AC
21290@end smallexample
21291
a2c02241 21292List the possible targets to connect to.
922fbb7b 21293
a2c02241 21294@subsubheading @value{GDBN} Command
922fbb7b 21295
a2c02241 21296The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21297
a2c02241
NR
21298@subsubheading Example
21299N.A.
21300
21301
21302@subheading The @code{-target-list-current-targets} Command
21303@findex -target-list-current-targets
922fbb7b
AC
21304
21305@subsubheading Synopsis
21306
21307@smallexample
a2c02241 21308 -target-list-current-targets
922fbb7b
AC
21309@end smallexample
21310
a2c02241 21311Describe the current target.
922fbb7b 21312
a2c02241 21313@subsubheading @value{GDBN} Command
922fbb7b 21314
a2c02241
NR
21315The corresponding information is printed by @samp{info file} (among
21316other things).
922fbb7b 21317
a2c02241
NR
21318@subsubheading Example
21319N.A.
21320
21321
21322@subheading The @code{-target-list-parameters} Command
21323@findex -target-list-parameters
922fbb7b
AC
21324
21325@subsubheading Synopsis
21326
21327@smallexample
a2c02241 21328 -target-list-parameters
922fbb7b
AC
21329@end smallexample
21330
a2c02241
NR
21331@c ????
21332
21333@subsubheading @value{GDBN} Command
21334
21335No equivalent.
922fbb7b
AC
21336
21337@subsubheading Example
a2c02241
NR
21338N.A.
21339
21340
21341@subheading The @code{-target-select} Command
21342@findex -target-select
21343
21344@subsubheading Synopsis
922fbb7b
AC
21345
21346@smallexample
a2c02241 21347 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21348@end smallexample
21349
a2c02241 21350Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21351
a2c02241
NR
21352@table @samp
21353@item @var{type}
21354The type of target, for instance @samp{async}, @samp{remote}, etc.
21355@item @var{parameters}
21356Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21357Commands for Managing Targets}, for more details.
a2c02241
NR
21358@end table
21359
21360The output is a connection notification, followed by the address at
21361which the target program is, in the following form:
922fbb7b
AC
21362
21363@smallexample
a2c02241
NR
21364^connected,addr="@var{address}",func="@var{function name}",
21365 args=[@var{arg list}]
922fbb7b
AC
21366@end smallexample
21367
a2c02241
NR
21368@subsubheading @value{GDBN} Command
21369
21370The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21371
21372@subsubheading Example
922fbb7b 21373
265eeb58 21374@smallexample
594fe323 21375(gdb)
a2c02241
NR
21376-target-select async /dev/ttya
21377^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21378(gdb)
265eeb58 21379@end smallexample
ef21caaf 21380
a6b151f1
DJ
21381@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21382@node GDB/MI File Transfer Commands
21383@section @sc{gdb/mi} File Transfer Commands
21384
21385
21386@subheading The @code{-target-file-put} Command
21387@findex -target-file-put
21388
21389@subsubheading Synopsis
21390
21391@smallexample
21392 -target-file-put @var{hostfile} @var{targetfile}
21393@end smallexample
21394
21395Copy file @var{hostfile} from the host system (the machine running
21396@value{GDBN}) to @var{targetfile} on the target system.
21397
21398@subsubheading @value{GDBN} Command
21399
21400The corresponding @value{GDBN} command is @samp{remote put}.
21401
21402@subsubheading Example
21403
21404@smallexample
21405(gdb)
21406-target-file-put localfile remotefile
21407^done
21408(gdb)
21409@end smallexample
21410
21411
21412@subheading The @code{-target-file-put} Command
21413@findex -target-file-get
21414
21415@subsubheading Synopsis
21416
21417@smallexample
21418 -target-file-get @var{targetfile} @var{hostfile}
21419@end smallexample
21420
21421Copy file @var{targetfile} from the target system to @var{hostfile}
21422on the host system.
21423
21424@subsubheading @value{GDBN} Command
21425
21426The corresponding @value{GDBN} command is @samp{remote get}.
21427
21428@subsubheading Example
21429
21430@smallexample
21431(gdb)
21432-target-file-get remotefile localfile
21433^done
21434(gdb)
21435@end smallexample
21436
21437
21438@subheading The @code{-target-file-delete} Command
21439@findex -target-file-delete
21440
21441@subsubheading Synopsis
21442
21443@smallexample
21444 -target-file-delete @var{targetfile}
21445@end smallexample
21446
21447Delete @var{targetfile} from the target system.
21448
21449@subsubheading @value{GDBN} Command
21450
21451The corresponding @value{GDBN} command is @samp{remote delete}.
21452
21453@subsubheading Example
21454
21455@smallexample
21456(gdb)
21457-target-file-delete remotefile
21458^done
21459(gdb)
21460@end smallexample
21461
21462
ef21caaf
NR
21463@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21464@node GDB/MI Miscellaneous Commands
21465@section Miscellaneous @sc{gdb/mi} Commands
21466
21467@c @subheading -gdb-complete
21468
21469@subheading The @code{-gdb-exit} Command
21470@findex -gdb-exit
21471
21472@subsubheading Synopsis
21473
21474@smallexample
21475 -gdb-exit
21476@end smallexample
21477
21478Exit @value{GDBN} immediately.
21479
21480@subsubheading @value{GDBN} Command
21481
21482Approximately corresponds to @samp{quit}.
21483
21484@subsubheading Example
21485
21486@smallexample
594fe323 21487(gdb)
ef21caaf
NR
21488-gdb-exit
21489^exit
21490@end smallexample
21491
a2c02241
NR
21492
21493@subheading The @code{-exec-abort} Command
21494@findex -exec-abort
21495
21496@subsubheading Synopsis
21497
21498@smallexample
21499 -exec-abort
21500@end smallexample
21501
21502Kill the inferior running program.
21503
21504@subsubheading @value{GDBN} Command
21505
21506The corresponding @value{GDBN} command is @samp{kill}.
21507
21508@subsubheading Example
21509N.A.
21510
21511
ef21caaf
NR
21512@subheading The @code{-gdb-set} Command
21513@findex -gdb-set
21514
21515@subsubheading Synopsis
21516
21517@smallexample
21518 -gdb-set
21519@end smallexample
21520
21521Set an internal @value{GDBN} variable.
21522@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21523
21524@subsubheading @value{GDBN} Command
21525
21526The corresponding @value{GDBN} command is @samp{set}.
21527
21528@subsubheading Example
21529
21530@smallexample
594fe323 21531(gdb)
ef21caaf
NR
21532-gdb-set $foo=3
21533^done
594fe323 21534(gdb)
ef21caaf
NR
21535@end smallexample
21536
21537
21538@subheading The @code{-gdb-show} Command
21539@findex -gdb-show
21540
21541@subsubheading Synopsis
21542
21543@smallexample
21544 -gdb-show
21545@end smallexample
21546
21547Show the current value of a @value{GDBN} variable.
21548
79a6e687 21549@subsubheading @value{GDBN} Command
ef21caaf
NR
21550
21551The corresponding @value{GDBN} command is @samp{show}.
21552
21553@subsubheading Example
21554
21555@smallexample
594fe323 21556(gdb)
ef21caaf
NR
21557-gdb-show annotate
21558^done,value="0"
594fe323 21559(gdb)
ef21caaf
NR
21560@end smallexample
21561
21562@c @subheading -gdb-source
21563
21564
21565@subheading The @code{-gdb-version} Command
21566@findex -gdb-version
21567
21568@subsubheading Synopsis
21569
21570@smallexample
21571 -gdb-version
21572@end smallexample
21573
21574Show version information for @value{GDBN}. Used mostly in testing.
21575
21576@subsubheading @value{GDBN} Command
21577
21578The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21579default shows this information when you start an interactive session.
21580
21581@subsubheading Example
21582
21583@c This example modifies the actual output from GDB to avoid overfull
21584@c box in TeX.
21585@smallexample
594fe323 21586(gdb)
ef21caaf
NR
21587-gdb-version
21588~GNU gdb 5.2.1
21589~Copyright 2000 Free Software Foundation, Inc.
21590~GDB is free software, covered by the GNU General Public License, and
21591~you are welcome to change it and/or distribute copies of it under
21592~ certain conditions.
21593~Type "show copying" to see the conditions.
21594~There is absolutely no warranty for GDB. Type "show warranty" for
21595~ details.
21596~This GDB was configured as
21597 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21598^done
594fe323 21599(gdb)
ef21caaf
NR
21600@end smallexample
21601
084344da
VP
21602@subheading The @code{-list-features} Command
21603@findex -list-features
21604
21605Returns a list of particular features of the MI protocol that
21606this version of gdb implements. A feature can be a command,
21607or a new field in an output of some command, or even an
21608important bugfix. While a frontend can sometimes detect presence
21609of a feature at runtime, it is easier to perform detection at debugger
21610startup.
21611
21612The command returns a list of strings, with each string naming an
21613available feature. Each returned string is just a name, it does not
21614have any internal structure. The list of possible feature names
21615is given below.
21616
21617Example output:
21618
21619@smallexample
21620(gdb) -list-features
21621^done,result=["feature1","feature2"]
21622@end smallexample
21623
21624The current list of features is:
21625
21626@itemize @minus
21627@item
21628@samp{frozen-varobjs}---indicates presence of the
21629@code{-var-set-frozen} command, as well as possible presense of the
21630@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
21631@item
21632@samp{pending-breakpoints}---indicates presence of the @code{-f}
21633option to the @code{-break-insert} command.
21634
084344da
VP
21635@end itemize
21636
ef21caaf
NR
21637@subheading The @code{-interpreter-exec} Command
21638@findex -interpreter-exec
21639
21640@subheading Synopsis
21641
21642@smallexample
21643-interpreter-exec @var{interpreter} @var{command}
21644@end smallexample
a2c02241 21645@anchor{-interpreter-exec}
ef21caaf
NR
21646
21647Execute the specified @var{command} in the given @var{interpreter}.
21648
21649@subheading @value{GDBN} Command
21650
21651The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21652
21653@subheading Example
21654
21655@smallexample
594fe323 21656(gdb)
ef21caaf
NR
21657-interpreter-exec console "break main"
21658&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21659&"During symbol reading, bad structure-type format.\n"
21660~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21661^done
594fe323 21662(gdb)
ef21caaf
NR
21663@end smallexample
21664
21665@subheading The @code{-inferior-tty-set} Command
21666@findex -inferior-tty-set
21667
21668@subheading Synopsis
21669
21670@smallexample
21671-inferior-tty-set /dev/pts/1
21672@end smallexample
21673
21674Set terminal for future runs of the program being debugged.
21675
21676@subheading @value{GDBN} Command
21677
21678The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21679
21680@subheading Example
21681
21682@smallexample
594fe323 21683(gdb)
ef21caaf
NR
21684-inferior-tty-set /dev/pts/1
21685^done
594fe323 21686(gdb)
ef21caaf
NR
21687@end smallexample
21688
21689@subheading The @code{-inferior-tty-show} Command
21690@findex -inferior-tty-show
21691
21692@subheading Synopsis
21693
21694@smallexample
21695-inferior-tty-show
21696@end smallexample
21697
21698Show terminal for future runs of program being debugged.
21699
21700@subheading @value{GDBN} Command
21701
21702The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21703
21704@subheading Example
21705
21706@smallexample
594fe323 21707(gdb)
ef21caaf
NR
21708-inferior-tty-set /dev/pts/1
21709^done
594fe323 21710(gdb)
ef21caaf
NR
21711-inferior-tty-show
21712^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21713(gdb)
ef21caaf 21714@end smallexample
922fbb7b 21715
a4eefcd8
NR
21716@subheading The @code{-enable-timings} Command
21717@findex -enable-timings
21718
21719@subheading Synopsis
21720
21721@smallexample
21722-enable-timings [yes | no]
21723@end smallexample
21724
21725Toggle the printing of the wallclock, user and system times for an MI
21726command as a field in its output. This command is to help frontend
21727developers optimize the performance of their code. No argument is
21728equivalent to @samp{yes}.
21729
21730@subheading @value{GDBN} Command
21731
21732No equivalent.
21733
21734@subheading Example
21735
21736@smallexample
21737(gdb)
21738-enable-timings
21739^done
21740(gdb)
21741-break-insert main
21742^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
21743addr="0x080484ed",func="main",file="myprog.c",
21744fullname="/home/nickrob/myprog.c",line="73",times="0"@},
21745time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
21746(gdb)
21747-enable-timings no
21748^done
21749(gdb)
21750-exec-run
21751^running
21752(gdb)
21753*stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
21754frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
21755@{name="argv",value="0xbfb60364"@}],file="myprog.c",
21756fullname="/home/nickrob/myprog.c",line="73"@}
21757(gdb)
21758@end smallexample
21759
922fbb7b
AC
21760@node Annotations
21761@chapter @value{GDBN} Annotations
21762
086432e2
AC
21763This chapter describes annotations in @value{GDBN}. Annotations were
21764designed to interface @value{GDBN} to graphical user interfaces or other
21765similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
21766relatively high level.
21767
d3e8051b 21768The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
21769(@pxref{GDB/MI}).
21770
922fbb7b
AC
21771@ignore
21772This is Edition @value{EDITION}, @value{DATE}.
21773@end ignore
21774
21775@menu
21776* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 21777* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
21778* Prompting:: Annotations marking @value{GDBN}'s need for input.
21779* Errors:: Annotations for error messages.
922fbb7b
AC
21780* Invalidation:: Some annotations describe things now invalid.
21781* Annotations for Running::
21782 Whether the program is running, how it stopped, etc.
21783* Source Annotations:: Annotations describing source code.
922fbb7b
AC
21784@end menu
21785
21786@node Annotations Overview
21787@section What is an Annotation?
21788@cindex annotations
21789
922fbb7b
AC
21790Annotations start with a newline character, two @samp{control-z}
21791characters, and the name of the annotation. If there is no additional
21792information associated with this annotation, the name of the annotation
21793is followed immediately by a newline. If there is additional
21794information, the name of the annotation is followed by a space, the
21795additional information, and a newline. The additional information
21796cannot contain newline characters.
21797
21798Any output not beginning with a newline and two @samp{control-z}
21799characters denotes literal output from @value{GDBN}. Currently there is
21800no need for @value{GDBN} to output a newline followed by two
21801@samp{control-z} characters, but if there was such a need, the
21802annotations could be extended with an @samp{escape} annotation which
21803means those three characters as output.
21804
086432e2
AC
21805The annotation @var{level}, which is specified using the
21806@option{--annotate} command line option (@pxref{Mode Options}), controls
21807how much information @value{GDBN} prints together with its prompt,
21808values of expressions, source lines, and other types of output. Level 0
d3e8051b 21809is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
21810subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
21811for programs that control @value{GDBN}, and level 2 annotations have
21812been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
21813Interface, annotate, GDB's Obsolete Annotations}).
21814
21815@table @code
21816@kindex set annotate
21817@item set annotate @var{level}
e09f16f9 21818The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 21819annotations to the specified @var{level}.
9c16f35a
EZ
21820
21821@item show annotate
21822@kindex show annotate
21823Show the current annotation level.
09d4efe1
EZ
21824@end table
21825
21826This chapter describes level 3 annotations.
086432e2 21827
922fbb7b
AC
21828A simple example of starting up @value{GDBN} with annotations is:
21829
21830@smallexample
086432e2
AC
21831$ @kbd{gdb --annotate=3}
21832GNU gdb 6.0
21833Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
21834GDB is free software, covered by the GNU General Public License,
21835and you are welcome to change it and/or distribute copies of it
21836under certain conditions.
21837Type "show copying" to see the conditions.
21838There is absolutely no warranty for GDB. Type "show warranty"
21839for details.
086432e2 21840This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
21841
21842^Z^Zpre-prompt
f7dc1244 21843(@value{GDBP})
922fbb7b 21844^Z^Zprompt
086432e2 21845@kbd{quit}
922fbb7b
AC
21846
21847^Z^Zpost-prompt
b383017d 21848$
922fbb7b
AC
21849@end smallexample
21850
21851Here @samp{quit} is input to @value{GDBN}; the rest is output from
21852@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
21853denotes a @samp{control-z} character) are annotations; the rest is
21854output from @value{GDBN}.
21855
9e6c4bd5
NR
21856@node Server Prefix
21857@section The Server Prefix
21858@cindex server prefix
21859
21860If you prefix a command with @samp{server } then it will not affect
21861the command history, nor will it affect @value{GDBN}'s notion of which
21862command to repeat if @key{RET} is pressed on a line by itself. This
21863means that commands can be run behind a user's back by a front-end in
21864a transparent manner.
21865
21866The server prefix does not affect the recording of values into the value
21867history; to print a value without recording it into the value history,
21868use the @code{output} command instead of the @code{print} command.
21869
922fbb7b
AC
21870@node Prompting
21871@section Annotation for @value{GDBN} Input
21872
21873@cindex annotations for prompts
21874When @value{GDBN} prompts for input, it annotates this fact so it is possible
21875to know when to send output, when the output from a given command is
21876over, etc.
21877
21878Different kinds of input each have a different @dfn{input type}. Each
21879input type has three annotations: a @code{pre-} annotation, which
21880denotes the beginning of any prompt which is being output, a plain
21881annotation, which denotes the end of the prompt, and then a @code{post-}
21882annotation which denotes the end of any echo which may (or may not) be
21883associated with the input. For example, the @code{prompt} input type
21884features the following annotations:
21885
21886@smallexample
21887^Z^Zpre-prompt
21888^Z^Zprompt
21889^Z^Zpost-prompt
21890@end smallexample
21891
21892The input types are
21893
21894@table @code
e5ac9b53
EZ
21895@findex pre-prompt annotation
21896@findex prompt annotation
21897@findex post-prompt annotation
922fbb7b
AC
21898@item prompt
21899When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
21900
e5ac9b53
EZ
21901@findex pre-commands annotation
21902@findex commands annotation
21903@findex post-commands annotation
922fbb7b
AC
21904@item commands
21905When @value{GDBN} prompts for a set of commands, like in the @code{commands}
21906command. The annotations are repeated for each command which is input.
21907
e5ac9b53
EZ
21908@findex pre-overload-choice annotation
21909@findex overload-choice annotation
21910@findex post-overload-choice annotation
922fbb7b
AC
21911@item overload-choice
21912When @value{GDBN} wants the user to select between various overloaded functions.
21913
e5ac9b53
EZ
21914@findex pre-query annotation
21915@findex query annotation
21916@findex post-query annotation
922fbb7b
AC
21917@item query
21918When @value{GDBN} wants the user to confirm a potentially dangerous operation.
21919
e5ac9b53
EZ
21920@findex pre-prompt-for-continue annotation
21921@findex prompt-for-continue annotation
21922@findex post-prompt-for-continue annotation
922fbb7b
AC
21923@item prompt-for-continue
21924When @value{GDBN} is asking the user to press return to continue. Note: Don't
21925expect this to work well; instead use @code{set height 0} to disable
21926prompting. This is because the counting of lines is buggy in the
21927presence of annotations.
21928@end table
21929
21930@node Errors
21931@section Errors
21932@cindex annotations for errors, warnings and interrupts
21933
e5ac9b53 21934@findex quit annotation
922fbb7b
AC
21935@smallexample
21936^Z^Zquit
21937@end smallexample
21938
21939This annotation occurs right before @value{GDBN} responds to an interrupt.
21940
e5ac9b53 21941@findex error annotation
922fbb7b
AC
21942@smallexample
21943^Z^Zerror
21944@end smallexample
21945
21946This annotation occurs right before @value{GDBN} responds to an error.
21947
21948Quit and error annotations indicate that any annotations which @value{GDBN} was
21949in the middle of may end abruptly. For example, if a
21950@code{value-history-begin} annotation is followed by a @code{error}, one
21951cannot expect to receive the matching @code{value-history-end}. One
21952cannot expect not to receive it either, however; an error annotation
21953does not necessarily mean that @value{GDBN} is immediately returning all the way
21954to the top level.
21955
e5ac9b53 21956@findex error-begin annotation
922fbb7b
AC
21957A quit or error annotation may be preceded by
21958
21959@smallexample
21960^Z^Zerror-begin
21961@end smallexample
21962
21963Any output between that and the quit or error annotation is the error
21964message.
21965
21966Warning messages are not yet annotated.
21967@c If we want to change that, need to fix warning(), type_error(),
21968@c range_error(), and possibly other places.
21969
922fbb7b
AC
21970@node Invalidation
21971@section Invalidation Notices
21972
21973@cindex annotations for invalidation messages
21974The following annotations say that certain pieces of state may have
21975changed.
21976
21977@table @code
e5ac9b53 21978@findex frames-invalid annotation
922fbb7b
AC
21979@item ^Z^Zframes-invalid
21980
21981The frames (for example, output from the @code{backtrace} command) may
21982have changed.
21983
e5ac9b53 21984@findex breakpoints-invalid annotation
922fbb7b
AC
21985@item ^Z^Zbreakpoints-invalid
21986
21987The breakpoints may have changed. For example, the user just added or
21988deleted a breakpoint.
21989@end table
21990
21991@node Annotations for Running
21992@section Running the Program
21993@cindex annotations for running programs
21994
e5ac9b53
EZ
21995@findex starting annotation
21996@findex stopping annotation
922fbb7b 21997When the program starts executing due to a @value{GDBN} command such as
b383017d 21998@code{step} or @code{continue},
922fbb7b
AC
21999
22000@smallexample
22001^Z^Zstarting
22002@end smallexample
22003
b383017d 22004is output. When the program stops,
922fbb7b
AC
22005
22006@smallexample
22007^Z^Zstopped
22008@end smallexample
22009
22010is output. Before the @code{stopped} annotation, a variety of
22011annotations describe how the program stopped.
22012
22013@table @code
e5ac9b53 22014@findex exited annotation
922fbb7b
AC
22015@item ^Z^Zexited @var{exit-status}
22016The program exited, and @var{exit-status} is the exit status (zero for
22017successful exit, otherwise nonzero).
22018
e5ac9b53
EZ
22019@findex signalled annotation
22020@findex signal-name annotation
22021@findex signal-name-end annotation
22022@findex signal-string annotation
22023@findex signal-string-end annotation
922fbb7b
AC
22024@item ^Z^Zsignalled
22025The program exited with a signal. After the @code{^Z^Zsignalled}, the
22026annotation continues:
22027
22028@smallexample
22029@var{intro-text}
22030^Z^Zsignal-name
22031@var{name}
22032^Z^Zsignal-name-end
22033@var{middle-text}
22034^Z^Zsignal-string
22035@var{string}
22036^Z^Zsignal-string-end
22037@var{end-text}
22038@end smallexample
22039
22040@noindent
22041where @var{name} is the name of the signal, such as @code{SIGILL} or
22042@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22043as @code{Illegal Instruction} or @code{Segmentation fault}.
22044@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22045user's benefit and have no particular format.
22046
e5ac9b53 22047@findex signal annotation
922fbb7b
AC
22048@item ^Z^Zsignal
22049The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22050just saying that the program received the signal, not that it was
22051terminated with it.
22052
e5ac9b53 22053@findex breakpoint annotation
922fbb7b
AC
22054@item ^Z^Zbreakpoint @var{number}
22055The program hit breakpoint number @var{number}.
22056
e5ac9b53 22057@findex watchpoint annotation
922fbb7b
AC
22058@item ^Z^Zwatchpoint @var{number}
22059The program hit watchpoint number @var{number}.
22060@end table
22061
22062@node Source Annotations
22063@section Displaying Source
22064@cindex annotations for source display
22065
e5ac9b53 22066@findex source annotation
922fbb7b
AC
22067The following annotation is used instead of displaying source code:
22068
22069@smallexample
22070^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22071@end smallexample
22072
22073where @var{filename} is an absolute file name indicating which source
22074file, @var{line} is the line number within that file (where 1 is the
22075first line in the file), @var{character} is the character position
22076within the file (where 0 is the first character in the file) (for most
22077debug formats this will necessarily point to the beginning of a line),
22078@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22079line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22080@var{addr} is the address in the target program associated with the
22081source which is being displayed. @var{addr} is in the form @samp{0x}
22082followed by one or more lowercase hex digits (note that this does not
22083depend on the language).
22084
8e04817f
AC
22085@node GDB Bugs
22086@chapter Reporting Bugs in @value{GDBN}
22087@cindex bugs in @value{GDBN}
22088@cindex reporting bugs in @value{GDBN}
c906108c 22089
8e04817f 22090Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22091
8e04817f
AC
22092Reporting a bug may help you by bringing a solution to your problem, or it
22093may not. But in any case the principal function of a bug report is to help
22094the entire community by making the next version of @value{GDBN} work better. Bug
22095reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22096
8e04817f
AC
22097In order for a bug report to serve its purpose, you must include the
22098information that enables us to fix the bug.
c4555f82
SC
22099
22100@menu
8e04817f
AC
22101* Bug Criteria:: Have you found a bug?
22102* Bug Reporting:: How to report bugs
c4555f82
SC
22103@end menu
22104
8e04817f 22105@node Bug Criteria
79a6e687 22106@section Have You Found a Bug?
8e04817f 22107@cindex bug criteria
c4555f82 22108
8e04817f 22109If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22110
22111@itemize @bullet
8e04817f
AC
22112@cindex fatal signal
22113@cindex debugger crash
22114@cindex crash of debugger
c4555f82 22115@item
8e04817f
AC
22116If the debugger gets a fatal signal, for any input whatever, that is a
22117@value{GDBN} bug. Reliable debuggers never crash.
22118
22119@cindex error on valid input
22120@item
22121If @value{GDBN} produces an error message for valid input, that is a
22122bug. (Note that if you're cross debugging, the problem may also be
22123somewhere in the connection to the target.)
c4555f82 22124
8e04817f 22125@cindex invalid input
c4555f82 22126@item
8e04817f
AC
22127If @value{GDBN} does not produce an error message for invalid input,
22128that is a bug. However, you should note that your idea of
22129``invalid input'' might be our idea of ``an extension'' or ``support
22130for traditional practice''.
22131
22132@item
22133If you are an experienced user of debugging tools, your suggestions
22134for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22135@end itemize
22136
8e04817f 22137@node Bug Reporting
79a6e687 22138@section How to Report Bugs
8e04817f
AC
22139@cindex bug reports
22140@cindex @value{GDBN} bugs, reporting
22141
22142A number of companies and individuals offer support for @sc{gnu} products.
22143If you obtained @value{GDBN} from a support organization, we recommend you
22144contact that organization first.
22145
22146You can find contact information for many support companies and
22147individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22148distribution.
22149@c should add a web page ref...
22150
129188f6 22151In any event, we also recommend that you submit bug reports for
d3e8051b 22152@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22153@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22154page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22155be used.
8e04817f
AC
22156
22157@strong{Do not send bug reports to @samp{info-gdb}, or to
22158@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22159not want to receive bug reports. Those that do have arranged to receive
22160@samp{bug-gdb}.
22161
22162The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22163serves as a repeater. The mailing list and the newsgroup carry exactly
22164the same messages. Often people think of posting bug reports to the
22165newsgroup instead of mailing them. This appears to work, but it has one
22166problem which can be crucial: a newsgroup posting often lacks a mail
22167path back to the sender. Thus, if we need to ask for more information,
22168we may be unable to reach you. For this reason, it is better to send
22169bug reports to the mailing list.
c4555f82 22170
8e04817f
AC
22171The fundamental principle of reporting bugs usefully is this:
22172@strong{report all the facts}. If you are not sure whether to state a
22173fact or leave it out, state it!
c4555f82 22174
8e04817f
AC
22175Often people omit facts because they think they know what causes the
22176problem and assume that some details do not matter. Thus, you might
22177assume that the name of the variable you use in an example does not matter.
22178Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22179stray memory reference which happens to fetch from the location where that
22180name is stored in memory; perhaps, if the name were different, the contents
22181of that location would fool the debugger into doing the right thing despite
22182the bug. Play it safe and give a specific, complete example. That is the
22183easiest thing for you to do, and the most helpful.
c4555f82 22184
8e04817f
AC
22185Keep in mind that the purpose of a bug report is to enable us to fix the
22186bug. It may be that the bug has been reported previously, but neither
22187you nor we can know that unless your bug report is complete and
22188self-contained.
c4555f82 22189
8e04817f
AC
22190Sometimes people give a few sketchy facts and ask, ``Does this ring a
22191bell?'' Those bug reports are useless, and we urge everyone to
22192@emph{refuse to respond to them} except to chide the sender to report
22193bugs properly.
22194
22195To enable us to fix the bug, you should include all these things:
c4555f82
SC
22196
22197@itemize @bullet
22198@item
8e04817f
AC
22199The version of @value{GDBN}. @value{GDBN} announces it if you start
22200with no arguments; you can also print it at any time using @code{show
22201version}.
c4555f82 22202
8e04817f
AC
22203Without this, we will not know whether there is any point in looking for
22204the bug in the current version of @value{GDBN}.
c4555f82
SC
22205
22206@item
8e04817f
AC
22207The type of machine you are using, and the operating system name and
22208version number.
c4555f82
SC
22209
22210@item
c1468174 22211What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22212``@value{GCC}--2.8.1''.
c4555f82
SC
22213
22214@item
8e04817f 22215What compiler (and its version) was used to compile the program you are
c1468174 22216debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22217C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22218to get this information; for other compilers, see the documentation for
22219those compilers.
c4555f82 22220
8e04817f
AC
22221@item
22222The command arguments you gave the compiler to compile your example and
22223observe the bug. For example, did you use @samp{-O}? To guarantee
22224you will not omit something important, list them all. A copy of the
22225Makefile (or the output from make) is sufficient.
c4555f82 22226
8e04817f
AC
22227If we were to try to guess the arguments, we would probably guess wrong
22228and then we might not encounter the bug.
c4555f82 22229
8e04817f
AC
22230@item
22231A complete input script, and all necessary source files, that will
22232reproduce the bug.
c4555f82 22233
8e04817f
AC
22234@item
22235A description of what behavior you observe that you believe is
22236incorrect. For example, ``It gets a fatal signal.''
c4555f82 22237
8e04817f
AC
22238Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22239will certainly notice it. But if the bug is incorrect output, we might
22240not notice unless it is glaringly wrong. You might as well not give us
22241a chance to make a mistake.
c4555f82 22242
8e04817f
AC
22243Even if the problem you experience is a fatal signal, you should still
22244say so explicitly. Suppose something strange is going on, such as, your
22245copy of @value{GDBN} is out of synch, or you have encountered a bug in
22246the C library on your system. (This has happened!) Your copy might
22247crash and ours would not. If you told us to expect a crash, then when
22248ours fails to crash, we would know that the bug was not happening for
22249us. If you had not told us to expect a crash, then we would not be able
22250to draw any conclusion from our observations.
c4555f82 22251
e0c07bf0
MC
22252@pindex script
22253@cindex recording a session script
22254To collect all this information, you can use a session recording program
22255such as @command{script}, which is available on many Unix systems.
22256Just run your @value{GDBN} session inside @command{script} and then
22257include the @file{typescript} file with your bug report.
22258
22259Another way to record a @value{GDBN} session is to run @value{GDBN}
22260inside Emacs and then save the entire buffer to a file.
22261
8e04817f
AC
22262@item
22263If you wish to suggest changes to the @value{GDBN} source, send us context
22264diffs. If you even discuss something in the @value{GDBN} source, refer to
22265it by context, not by line number.
c4555f82 22266
8e04817f
AC
22267The line numbers in our development sources will not match those in your
22268sources. Your line numbers would convey no useful information to us.
c4555f82 22269
8e04817f 22270@end itemize
c4555f82 22271
8e04817f 22272Here are some things that are not necessary:
c4555f82 22273
8e04817f
AC
22274@itemize @bullet
22275@item
22276A description of the envelope of the bug.
c4555f82 22277
8e04817f
AC
22278Often people who encounter a bug spend a lot of time investigating
22279which changes to the input file will make the bug go away and which
22280changes will not affect it.
c4555f82 22281
8e04817f
AC
22282This is often time consuming and not very useful, because the way we
22283will find the bug is by running a single example under the debugger
22284with breakpoints, not by pure deduction from a series of examples.
22285We recommend that you save your time for something else.
c4555f82 22286
8e04817f
AC
22287Of course, if you can find a simpler example to report @emph{instead}
22288of the original one, that is a convenience for us. Errors in the
22289output will be easier to spot, running under the debugger will take
22290less time, and so on.
c4555f82 22291
8e04817f
AC
22292However, simplification is not vital; if you do not want to do this,
22293report the bug anyway and send us the entire test case you used.
c4555f82 22294
8e04817f
AC
22295@item
22296A patch for the bug.
c4555f82 22297
8e04817f
AC
22298A patch for the bug does help us if it is a good one. But do not omit
22299the necessary information, such as the test case, on the assumption that
22300a patch is all we need. We might see problems with your patch and decide
22301to fix the problem another way, or we might not understand it at all.
c4555f82 22302
8e04817f
AC
22303Sometimes with a program as complicated as @value{GDBN} it is very hard to
22304construct an example that will make the program follow a certain path
22305through the code. If you do not send us the example, we will not be able
22306to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22307
8e04817f
AC
22308And if we cannot understand what bug you are trying to fix, or why your
22309patch should be an improvement, we will not install it. A test case will
22310help us to understand.
c4555f82 22311
8e04817f
AC
22312@item
22313A guess about what the bug is or what it depends on.
c4555f82 22314
8e04817f
AC
22315Such guesses are usually wrong. Even we cannot guess right about such
22316things without first using the debugger to find the facts.
22317@end itemize
c4555f82 22318
8e04817f
AC
22319@c The readline documentation is distributed with the readline code
22320@c and consists of the two following files:
22321@c rluser.texinfo
22322@c inc-hist.texinfo
22323@c Use -I with makeinfo to point to the appropriate directory,
22324@c environment var TEXINPUTS with TeX.
5bdf8622 22325@include rluser.texi
8e04817f 22326@include inc-hist.texinfo
c4555f82 22327
c4555f82 22328
8e04817f
AC
22329@node Formatting Documentation
22330@appendix Formatting Documentation
c4555f82 22331
8e04817f
AC
22332@cindex @value{GDBN} reference card
22333@cindex reference card
22334The @value{GDBN} 4 release includes an already-formatted reference card, ready
22335for printing with PostScript or Ghostscript, in the @file{gdb}
22336subdirectory of the main source directory@footnote{In
22337@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22338release.}. If you can use PostScript or Ghostscript with your printer,
22339you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22340
8e04817f
AC
22341The release also includes the source for the reference card. You
22342can format it, using @TeX{}, by typing:
c4555f82 22343
474c8240 22344@smallexample
8e04817f 22345make refcard.dvi
474c8240 22346@end smallexample
c4555f82 22347
8e04817f
AC
22348The @value{GDBN} reference card is designed to print in @dfn{landscape}
22349mode on US ``letter'' size paper;
22350that is, on a sheet 11 inches wide by 8.5 inches
22351high. You will need to specify this form of printing as an option to
22352your @sc{dvi} output program.
c4555f82 22353
8e04817f 22354@cindex documentation
c4555f82 22355
8e04817f
AC
22356All the documentation for @value{GDBN} comes as part of the machine-readable
22357distribution. The documentation is written in Texinfo format, which is
22358a documentation system that uses a single source file to produce both
22359on-line information and a printed manual. You can use one of the Info
22360formatting commands to create the on-line version of the documentation
22361and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22362
8e04817f
AC
22363@value{GDBN} includes an already formatted copy of the on-line Info
22364version of this manual in the @file{gdb} subdirectory. The main Info
22365file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22366subordinate files matching @samp{gdb.info*} in the same directory. If
22367necessary, you can print out these files, or read them with any editor;
22368but they are easier to read using the @code{info} subsystem in @sc{gnu}
22369Emacs or the standalone @code{info} program, available as part of the
22370@sc{gnu} Texinfo distribution.
c4555f82 22371
8e04817f
AC
22372If you want to format these Info files yourself, you need one of the
22373Info formatting programs, such as @code{texinfo-format-buffer} or
22374@code{makeinfo}.
c4555f82 22375
8e04817f
AC
22376If you have @code{makeinfo} installed, and are in the top level
22377@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22378version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22379
474c8240 22380@smallexample
8e04817f
AC
22381cd gdb
22382make gdb.info
474c8240 22383@end smallexample
c4555f82 22384
8e04817f
AC
22385If you want to typeset and print copies of this manual, you need @TeX{},
22386a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22387Texinfo definitions file.
c4555f82 22388
8e04817f
AC
22389@TeX{} is a typesetting program; it does not print files directly, but
22390produces output files called @sc{dvi} files. To print a typeset
22391document, you need a program to print @sc{dvi} files. If your system
22392has @TeX{} installed, chances are it has such a program. The precise
22393command to use depends on your system; @kbd{lpr -d} is common; another
22394(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22395require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22396
8e04817f
AC
22397@TeX{} also requires a macro definitions file called
22398@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22399written in Texinfo format. On its own, @TeX{} cannot either read or
22400typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22401and is located in the @file{gdb-@var{version-number}/texinfo}
22402directory.
c4555f82 22403
8e04817f 22404If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22405typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22406subdirectory of the main source directory (for example, to
22407@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22408
474c8240 22409@smallexample
8e04817f 22410make gdb.dvi
474c8240 22411@end smallexample
c4555f82 22412
8e04817f 22413Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22414
8e04817f
AC
22415@node Installing GDB
22416@appendix Installing @value{GDBN}
8e04817f 22417@cindex installation
c4555f82 22418
7fa2210b
DJ
22419@menu
22420* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22421* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22422* Separate Objdir:: Compiling @value{GDBN} in another directory
22423* Config Names:: Specifying names for hosts and targets
22424* Configure Options:: Summary of options for configure
22425@end menu
22426
22427@node Requirements
79a6e687 22428@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22429@cindex building @value{GDBN}, requirements for
22430
22431Building @value{GDBN} requires various tools and packages to be available.
22432Other packages will be used only if they are found.
22433
79a6e687 22434@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22435@table @asis
22436@item ISO C90 compiler
22437@value{GDBN} is written in ISO C90. It should be buildable with any
22438working C90 compiler, e.g.@: GCC.
22439
22440@end table
22441
79a6e687 22442@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22443@table @asis
22444@item Expat
123dc839 22445@anchor{Expat}
7fa2210b
DJ
22446@value{GDBN} can use the Expat XML parsing library. This library may be
22447included with your operating system distribution; if it is not, you
22448can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22449The @file{configure} script will search for this library in several
7fa2210b
DJ
22450standard locations; if it is installed in an unusual path, you can
22451use the @option{--with-libexpat-prefix} option to specify its location.
22452
9cceb671
DJ
22453Expat is used for:
22454
22455@itemize @bullet
22456@item
22457Remote protocol memory maps (@pxref{Memory Map Format})
22458@item
22459Target descriptions (@pxref{Target Descriptions})
22460@item
22461Remote shared library lists (@pxref{Library List Format})
22462@item
22463MS-Windows shared libraries (@pxref{Shared Libraries})
22464@end itemize
7fa2210b
DJ
22465
22466@end table
22467
22468@node Running Configure
db2e3e2e 22469@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22470@cindex configuring @value{GDBN}
db2e3e2e 22471@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22472of preparing @value{GDBN} for installation; you can then use @code{make} to
22473build the @code{gdb} program.
22474@iftex
22475@c irrelevant in info file; it's as current as the code it lives with.
22476@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22477look at the @file{README} file in the sources; we may have improved the
22478installation procedures since publishing this manual.}
22479@end iftex
c4555f82 22480
8e04817f
AC
22481The @value{GDBN} distribution includes all the source code you need for
22482@value{GDBN} in a single directory, whose name is usually composed by
22483appending the version number to @samp{gdb}.
c4555f82 22484
8e04817f
AC
22485For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22486@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22487
8e04817f
AC
22488@table @code
22489@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22490script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22491
8e04817f
AC
22492@item gdb-@value{GDBVN}/gdb
22493the source specific to @value{GDBN} itself
c4555f82 22494
8e04817f
AC
22495@item gdb-@value{GDBVN}/bfd
22496source for the Binary File Descriptor library
c906108c 22497
8e04817f
AC
22498@item gdb-@value{GDBVN}/include
22499@sc{gnu} include files
c906108c 22500
8e04817f
AC
22501@item gdb-@value{GDBVN}/libiberty
22502source for the @samp{-liberty} free software library
c906108c 22503
8e04817f
AC
22504@item gdb-@value{GDBVN}/opcodes
22505source for the library of opcode tables and disassemblers
c906108c 22506
8e04817f
AC
22507@item gdb-@value{GDBVN}/readline
22508source for the @sc{gnu} command-line interface
c906108c 22509
8e04817f
AC
22510@item gdb-@value{GDBVN}/glob
22511source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22512
8e04817f
AC
22513@item gdb-@value{GDBVN}/mmalloc
22514source for the @sc{gnu} memory-mapped malloc package
22515@end table
c906108c 22516
db2e3e2e 22517The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22518from the @file{gdb-@var{version-number}} source directory, which in
22519this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22520
8e04817f 22521First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22522if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22523identifier for the platform on which @value{GDBN} will run as an
22524argument.
c906108c 22525
8e04817f 22526For example:
c906108c 22527
474c8240 22528@smallexample
8e04817f
AC
22529cd gdb-@value{GDBVN}
22530./configure @var{host}
22531make
474c8240 22532@end smallexample
c906108c 22533
8e04817f
AC
22534@noindent
22535where @var{host} is an identifier such as @samp{sun4} or
22536@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22537(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22538correct value by examining your system.)
c906108c 22539
8e04817f
AC
22540Running @samp{configure @var{host}} and then running @code{make} builds the
22541@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22542libraries, then @code{gdb} itself. The configured source files, and the
22543binaries, are left in the corresponding source directories.
c906108c 22544
8e04817f 22545@need 750
db2e3e2e 22546@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22547system does not recognize this automatically when you run a different
22548shell, you may need to run @code{sh} on it explicitly:
c906108c 22549
474c8240 22550@smallexample
8e04817f 22551sh configure @var{host}
474c8240 22552@end smallexample
c906108c 22553
db2e3e2e 22554If you run @file{configure} from a directory that contains source
8e04817f 22555directories for multiple libraries or programs, such as the
db2e3e2e
BW
22556@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22557@file{configure}
8e04817f
AC
22558creates configuration files for every directory level underneath (unless
22559you tell it not to, with the @samp{--norecursion} option).
22560
db2e3e2e 22561You should run the @file{configure} script from the top directory in the
94e91d6d 22562source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22563@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22564that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22565if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22566of the @file{gdb-@var{version-number}} directory, you will omit the
22567configuration of @file{bfd}, @file{readline}, and other sibling
22568directories of the @file{gdb} subdirectory. This leads to build errors
22569about missing include files such as @file{bfd/bfd.h}.
c906108c 22570
8e04817f
AC
22571You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22572However, you should make sure that the shell on your path (named by
22573the @samp{SHELL} environment variable) is publicly readable. Remember
22574that @value{GDBN} uses the shell to start your program---some systems refuse to
22575let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22576
8e04817f 22577@node Separate Objdir
79a6e687 22578@section Compiling @value{GDBN} in Another Directory
c906108c 22579
8e04817f
AC
22580If you want to run @value{GDBN} versions for several host or target machines,
22581you need a different @code{gdb} compiled for each combination of
db2e3e2e 22582host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22583allowing you to generate each configuration in a separate subdirectory,
22584rather than in the source directory. If your @code{make} program
22585handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22586@code{make} in each of these directories builds the @code{gdb}
22587program specified there.
c906108c 22588
db2e3e2e 22589To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22590with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22591(You also need to specify a path to find @file{configure}
22592itself from your working directory. If the path to @file{configure}
8e04817f
AC
22593would be the same as the argument to @samp{--srcdir}, you can leave out
22594the @samp{--srcdir} option; it is assumed.)
c906108c 22595
8e04817f
AC
22596For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22597separate directory for a Sun 4 like this:
c906108c 22598
474c8240 22599@smallexample
8e04817f
AC
22600@group
22601cd gdb-@value{GDBVN}
22602mkdir ../gdb-sun4
22603cd ../gdb-sun4
22604../gdb-@value{GDBVN}/configure sun4
22605make
22606@end group
474c8240 22607@end smallexample
c906108c 22608
db2e3e2e 22609When @file{configure} builds a configuration using a remote source
8e04817f
AC
22610directory, it creates a tree for the binaries with the same structure
22611(and using the same names) as the tree under the source directory. In
22612the example, you'd find the Sun 4 library @file{libiberty.a} in the
22613directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22614@file{gdb-sun4/gdb}.
c906108c 22615
94e91d6d
MC
22616Make sure that your path to the @file{configure} script has just one
22617instance of @file{gdb} in it. If your path to @file{configure} looks
22618like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22619one subdirectory of @value{GDBN}, not the whole package. This leads to
22620build errors about missing include files such as @file{bfd/bfd.h}.
22621
8e04817f
AC
22622One popular reason to build several @value{GDBN} configurations in separate
22623directories is to configure @value{GDBN} for cross-compiling (where
22624@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22625programs that run on another machine---the @dfn{target}).
22626You specify a cross-debugging target by
db2e3e2e 22627giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22628
8e04817f
AC
22629When you run @code{make} to build a program or library, you must run
22630it in a configured directory---whatever directory you were in when you
db2e3e2e 22631called @file{configure} (or one of its subdirectories).
c906108c 22632
db2e3e2e 22633The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22634directory also runs recursively. If you type @code{make} in a source
22635directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22636directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22637will build all the required libraries, and then build GDB.
c906108c 22638
8e04817f
AC
22639When you have multiple hosts or targets configured in separate
22640directories, you can run @code{make} on them in parallel (for example,
22641if they are NFS-mounted on each of the hosts); they will not interfere
22642with each other.
c906108c 22643
8e04817f 22644@node Config Names
79a6e687 22645@section Specifying Names for Hosts and Targets
c906108c 22646
db2e3e2e 22647The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22648script are based on a three-part naming scheme, but some short predefined
22649aliases are also supported. The full naming scheme encodes three pieces
22650of information in the following pattern:
c906108c 22651
474c8240 22652@smallexample
8e04817f 22653@var{architecture}-@var{vendor}-@var{os}
474c8240 22654@end smallexample
c906108c 22655
8e04817f
AC
22656For example, you can use the alias @code{sun4} as a @var{host} argument,
22657or as the value for @var{target} in a @code{--target=@var{target}}
22658option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22659
db2e3e2e 22660The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22661any query facility to list all supported host and target names or
db2e3e2e 22662aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22663@code{config.sub} to map abbreviations to full names; you can read the
22664script, if you wish, or you can use it to test your guesses on
22665abbreviations---for example:
c906108c 22666
8e04817f
AC
22667@smallexample
22668% sh config.sub i386-linux
22669i386-pc-linux-gnu
22670% sh config.sub alpha-linux
22671alpha-unknown-linux-gnu
22672% sh config.sub hp9k700
22673hppa1.1-hp-hpux
22674% sh config.sub sun4
22675sparc-sun-sunos4.1.1
22676% sh config.sub sun3
22677m68k-sun-sunos4.1.1
22678% sh config.sub i986v
22679Invalid configuration `i986v': machine `i986v' not recognized
22680@end smallexample
c906108c 22681
8e04817f
AC
22682@noindent
22683@code{config.sub} is also distributed in the @value{GDBN} source
22684directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22685
8e04817f 22686@node Configure Options
db2e3e2e 22687@section @file{configure} Options
c906108c 22688
db2e3e2e
BW
22689Here is a summary of the @file{configure} options and arguments that
22690are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22691several other options not listed here. @inforef{What Configure
db2e3e2e 22692Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22693
474c8240 22694@smallexample
8e04817f
AC
22695configure @r{[}--help@r{]}
22696 @r{[}--prefix=@var{dir}@r{]}
22697 @r{[}--exec-prefix=@var{dir}@r{]}
22698 @r{[}--srcdir=@var{dirname}@r{]}
22699 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22700 @r{[}--target=@var{target}@r{]}
22701 @var{host}
474c8240 22702@end smallexample
c906108c 22703
8e04817f
AC
22704@noindent
22705You may introduce options with a single @samp{-} rather than
22706@samp{--} if you prefer; but you may abbreviate option names if you use
22707@samp{--}.
c906108c 22708
8e04817f
AC
22709@table @code
22710@item --help
db2e3e2e 22711Display a quick summary of how to invoke @file{configure}.
c906108c 22712
8e04817f
AC
22713@item --prefix=@var{dir}
22714Configure the source to install programs and files under directory
22715@file{@var{dir}}.
c906108c 22716
8e04817f
AC
22717@item --exec-prefix=@var{dir}
22718Configure the source to install programs under directory
22719@file{@var{dir}}.
c906108c 22720
8e04817f
AC
22721@c avoid splitting the warning from the explanation:
22722@need 2000
22723@item --srcdir=@var{dirname}
22724@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22725@code{make} that implements the @code{VPATH} feature.}@*
22726Use this option to make configurations in directories separate from the
22727@value{GDBN} source directories. Among other things, you can use this to
22728build (or maintain) several configurations simultaneously, in separate
db2e3e2e 22729directories. @file{configure} writes configuration-specific files in
8e04817f 22730the current directory, but arranges for them to use the source in the
db2e3e2e 22731directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
22732the working directory in parallel to the source directories below
22733@var{dirname}.
c906108c 22734
8e04817f 22735@item --norecursion
db2e3e2e 22736Configure only the directory level where @file{configure} is executed; do not
8e04817f 22737propagate configuration to subdirectories.
c906108c 22738
8e04817f
AC
22739@item --target=@var{target}
22740Configure @value{GDBN} for cross-debugging programs running on the specified
22741@var{target}. Without this option, @value{GDBN} is configured to debug
22742programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 22743
8e04817f 22744There is no convenient way to generate a list of all available targets.
c906108c 22745
8e04817f
AC
22746@item @var{host} @dots{}
22747Configure @value{GDBN} to run on the specified @var{host}.
c906108c 22748
8e04817f
AC
22749There is no convenient way to generate a list of all available hosts.
22750@end table
c906108c 22751
8e04817f
AC
22752There are many other options available as well, but they are generally
22753needed for special purposes only.
c906108c 22754
8e04817f
AC
22755@node Maintenance Commands
22756@appendix Maintenance Commands
22757@cindex maintenance commands
22758@cindex internal commands
c906108c 22759
8e04817f 22760In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
22761includes a number of commands intended for @value{GDBN} developers,
22762that are not documented elsewhere in this manual. These commands are
da316a69
EZ
22763provided here for reference. (For commands that turn on debugging
22764messages, see @ref{Debugging Output}.)
c906108c 22765
8e04817f 22766@table @code
09d4efe1
EZ
22767@kindex maint agent
22768@item maint agent @var{expression}
22769Translate the given @var{expression} into remote agent bytecodes.
22770This command is useful for debugging the Agent Expression mechanism
22771(@pxref{Agent Expressions}).
22772
8e04817f
AC
22773@kindex maint info breakpoints
22774@item @anchor{maint info breakpoints}maint info breakpoints
22775Using the same format as @samp{info breakpoints}, display both the
22776breakpoints you've set explicitly, and those @value{GDBN} is using for
22777internal purposes. Internal breakpoints are shown with negative
22778breakpoint numbers. The type column identifies what kind of breakpoint
22779is shown:
c906108c 22780
8e04817f
AC
22781@table @code
22782@item breakpoint
22783Normal, explicitly set breakpoint.
c906108c 22784
8e04817f
AC
22785@item watchpoint
22786Normal, explicitly set watchpoint.
c906108c 22787
8e04817f
AC
22788@item longjmp
22789Internal breakpoint, used to handle correctly stepping through
22790@code{longjmp} calls.
c906108c 22791
8e04817f
AC
22792@item longjmp resume
22793Internal breakpoint at the target of a @code{longjmp}.
c906108c 22794
8e04817f
AC
22795@item until
22796Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 22797
8e04817f
AC
22798@item finish
22799Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 22800
8e04817f
AC
22801@item shlib events
22802Shared library events.
c906108c 22803
8e04817f 22804@end table
c906108c 22805
09d4efe1
EZ
22806@kindex maint check-symtabs
22807@item maint check-symtabs
22808Check the consistency of psymtabs and symtabs.
22809
22810@kindex maint cplus first_component
22811@item maint cplus first_component @var{name}
22812Print the first C@t{++} class/namespace component of @var{name}.
22813
22814@kindex maint cplus namespace
22815@item maint cplus namespace
22816Print the list of possible C@t{++} namespaces.
22817
22818@kindex maint demangle
22819@item maint demangle @var{name}
d3e8051b 22820Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
22821
22822@kindex maint deprecate
22823@kindex maint undeprecate
22824@cindex deprecated commands
22825@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
22826@itemx maint undeprecate @var{command}
22827Deprecate or undeprecate the named @var{command}. Deprecated commands
22828cause @value{GDBN} to issue a warning when you use them. The optional
22829argument @var{replacement} says which newer command should be used in
22830favor of the deprecated one; if it is given, @value{GDBN} will mention
22831the replacement as part of the warning.
22832
22833@kindex maint dump-me
22834@item maint dump-me
721c2651 22835@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 22836Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
22837This is supported only on systems which support aborting a program
22838with the @code{SIGQUIT} signal.
09d4efe1 22839
8d30a00d
AC
22840@kindex maint internal-error
22841@kindex maint internal-warning
09d4efe1
EZ
22842@item maint internal-error @r{[}@var{message-text}@r{]}
22843@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
22844Cause @value{GDBN} to call the internal function @code{internal_error}
22845or @code{internal_warning} and hence behave as though an internal error
22846or internal warning has been detected. In addition to reporting the
22847internal problem, these functions give the user the opportunity to
22848either quit @value{GDBN} or create a core file of the current
22849@value{GDBN} session.
22850
09d4efe1
EZ
22851These commands take an optional parameter @var{message-text} that is
22852used as the text of the error or warning message.
22853
d3e8051b 22854Here's an example of using @code{internal-error}:
09d4efe1 22855
8d30a00d 22856@smallexample
f7dc1244 22857(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
22858@dots{}/maint.c:121: internal-error: testing, 1, 2
22859A problem internal to GDB has been detected. Further
22860debugging may prove unreliable.
22861Quit this debugging session? (y or n) @kbd{n}
22862Create a core file? (y or n) @kbd{n}
f7dc1244 22863(@value{GDBP})
8d30a00d
AC
22864@end smallexample
22865
09d4efe1
EZ
22866@kindex maint packet
22867@item maint packet @var{text}
22868If @value{GDBN} is talking to an inferior via the serial protocol,
22869then this command sends the string @var{text} to the inferior, and
22870displays the response packet. @value{GDBN} supplies the initial
22871@samp{$} character, the terminating @samp{#} character, and the
22872checksum.
22873
22874@kindex maint print architecture
22875@item maint print architecture @r{[}@var{file}@r{]}
22876Print the entire architecture configuration. The optional argument
22877@var{file} names the file where the output goes.
8d30a00d 22878
81adfced
DJ
22879@kindex maint print c-tdesc
22880@item maint print c-tdesc
22881Print the current target description (@pxref{Target Descriptions}) as
22882a C source file. The created source file can be used in @value{GDBN}
22883when an XML parser is not available to parse the description.
22884
00905d52
AC
22885@kindex maint print dummy-frames
22886@item maint print dummy-frames
00905d52
AC
22887Prints the contents of @value{GDBN}'s internal dummy-frame stack.
22888
22889@smallexample
f7dc1244 22890(@value{GDBP}) @kbd{b add}
00905d52 22891@dots{}
f7dc1244 22892(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
22893Breakpoint 2, add (a=2, b=3) at @dots{}
2289458 return (a + b);
22895The program being debugged stopped while in a function called from GDB.
22896@dots{}
f7dc1244 22897(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
228980x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
22899 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
22900 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 22901(@value{GDBP})
00905d52
AC
22902@end smallexample
22903
22904Takes an optional file parameter.
22905
0680b120
AC
22906@kindex maint print registers
22907@kindex maint print raw-registers
22908@kindex maint print cooked-registers
617073a9 22909@kindex maint print register-groups
09d4efe1
EZ
22910@item maint print registers @r{[}@var{file}@r{]}
22911@itemx maint print raw-registers @r{[}@var{file}@r{]}
22912@itemx maint print cooked-registers @r{[}@var{file}@r{]}
22913@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
22914Print @value{GDBN}'s internal register data structures.
22915
617073a9
AC
22916The command @code{maint print raw-registers} includes the contents of
22917the raw register cache; the command @code{maint print cooked-registers}
22918includes the (cooked) value of all registers; and the command
22919@code{maint print register-groups} includes the groups that each
22920register is a member of. @xref{Registers,, Registers, gdbint,
22921@value{GDBN} Internals}.
0680b120 22922
09d4efe1
EZ
22923These commands take an optional parameter, a file name to which to
22924write the information.
0680b120 22925
617073a9 22926@kindex maint print reggroups
09d4efe1
EZ
22927@item maint print reggroups @r{[}@var{file}@r{]}
22928Print @value{GDBN}'s internal register group data structures. The
22929optional argument @var{file} tells to what file to write the
22930information.
617073a9 22931
09d4efe1 22932The register groups info looks like this:
617073a9
AC
22933
22934@smallexample
f7dc1244 22935(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
22936 Group Type
22937 general user
22938 float user
22939 all user
22940 vector user
22941 system user
22942 save internal
22943 restore internal
617073a9
AC
22944@end smallexample
22945
09d4efe1
EZ
22946@kindex flushregs
22947@item flushregs
22948This command forces @value{GDBN} to flush its internal register cache.
22949
22950@kindex maint print objfiles
22951@cindex info for known object files
22952@item maint print objfiles
22953Print a dump of all known object files. For each object file, this
22954command prints its name, address in memory, and all of its psymtabs
22955and symtabs.
22956
22957@kindex maint print statistics
22958@cindex bcache statistics
22959@item maint print statistics
22960This command prints, for each object file in the program, various data
22961about that object file followed by the byte cache (@dfn{bcache})
22962statistics for the object file. The objfile data includes the number
d3e8051b 22963of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
22964defined by the objfile, the number of as yet unexpanded psym tables,
22965the number of line tables and string tables, and the amount of memory
22966used by the various tables. The bcache statistics include the counts,
22967sizes, and counts of duplicates of all and unique objects, max,
22968average, and median entry size, total memory used and its overhead and
22969savings, and various measures of the hash table size and chain
22970lengths.
22971
c7ba131e
JB
22972@kindex maint print target-stack
22973@cindex target stack description
22974@item maint print target-stack
22975A @dfn{target} is an interface between the debugger and a particular
22976kind of file or process. Targets can be stacked in @dfn{strata},
22977so that more than one target can potentially respond to a request.
22978In particular, memory accesses will walk down the stack of targets
22979until they find a target that is interested in handling that particular
22980address.
22981
22982This command prints a short description of each layer that was pushed on
22983the @dfn{target stack}, starting from the top layer down to the bottom one.
22984
09d4efe1
EZ
22985@kindex maint print type
22986@cindex type chain of a data type
22987@item maint print type @var{expr}
22988Print the type chain for a type specified by @var{expr}. The argument
22989can be either a type name or a symbol. If it is a symbol, the type of
22990that symbol is described. The type chain produced by this command is
22991a recursive definition of the data type as stored in @value{GDBN}'s
22992data structures, including its flags and contained types.
22993
22994@kindex maint set dwarf2 max-cache-age
22995@kindex maint show dwarf2 max-cache-age
22996@item maint set dwarf2 max-cache-age
22997@itemx maint show dwarf2 max-cache-age
22998Control the DWARF 2 compilation unit cache.
22999
23000@cindex DWARF 2 compilation units cache
23001In object files with inter-compilation-unit references, such as those
23002produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23003reader needs to frequently refer to previously read compilation units.
23004This setting controls how long a compilation unit will remain in the
23005cache if it is not referenced. A higher limit means that cached
23006compilation units will be stored in memory longer, and more total
23007memory will be used. Setting it to zero disables caching, which will
23008slow down @value{GDBN} startup, but reduce memory consumption.
23009
e7ba9c65
DJ
23010@kindex maint set profile
23011@kindex maint show profile
23012@cindex profiling GDB
23013@item maint set profile
23014@itemx maint show profile
23015Control profiling of @value{GDBN}.
23016
23017Profiling will be disabled until you use the @samp{maint set profile}
23018command to enable it. When you enable profiling, the system will begin
23019collecting timing and execution count data; when you disable profiling or
23020exit @value{GDBN}, the results will be written to a log file. Remember that
23021if you use profiling, @value{GDBN} will overwrite the profiling log file
23022(often called @file{gmon.out}). If you have a record of important profiling
23023data in a @file{gmon.out} file, be sure to move it to a safe location.
23024
23025Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23026compiled with the @samp{-pg} compiler option.
e7ba9c65 23027
09d4efe1
EZ
23028@kindex maint show-debug-regs
23029@cindex x86 hardware debug registers
23030@item maint show-debug-regs
23031Control whether to show variables that mirror the x86 hardware debug
23032registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23033enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23034removes a hardware breakpoint or watchpoint, and when the inferior
23035triggers a hardware-assisted breakpoint or watchpoint.
23036
23037@kindex maint space
23038@cindex memory used by commands
23039@item maint space
23040Control whether to display memory usage for each command. If set to a
23041nonzero value, @value{GDBN} will display how much memory each command
23042took, following the command's own output. This can also be requested
23043by invoking @value{GDBN} with the @option{--statistics} command-line
23044switch (@pxref{Mode Options}).
23045
23046@kindex maint time
23047@cindex time of command execution
23048@item maint time
23049Control whether to display the execution time for each command. If
23050set to a nonzero value, @value{GDBN} will display how much time it
23051took to execute each command, following the command's own output.
23052This can also be requested by invoking @value{GDBN} with the
23053@option{--statistics} command-line switch (@pxref{Mode Options}).
23054
23055@kindex maint translate-address
23056@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23057Find the symbol stored at the location specified by the address
23058@var{addr} and an optional section name @var{section}. If found,
23059@value{GDBN} prints the name of the closest symbol and an offset from
23060the symbol's location to the specified address. This is similar to
23061the @code{info address} command (@pxref{Symbols}), except that this
23062command also allows to find symbols in other sections.
ae038cb0 23063
8e04817f 23064@end table
c906108c 23065
9c16f35a
EZ
23066The following command is useful for non-interactive invocations of
23067@value{GDBN}, such as in the test suite.
23068
23069@table @code
23070@item set watchdog @var{nsec}
23071@kindex set watchdog
23072@cindex watchdog timer
23073@cindex timeout for commands
23074Set the maximum number of seconds @value{GDBN} will wait for the
23075target operation to finish. If this time expires, @value{GDBN}
23076reports and error and the command is aborted.
23077
23078@item show watchdog
23079Show the current setting of the target wait timeout.
23080@end table
c906108c 23081
e0ce93ac 23082@node Remote Protocol
8e04817f 23083@appendix @value{GDBN} Remote Serial Protocol
c906108c 23084
ee2d5c50
AC
23085@menu
23086* Overview::
23087* Packets::
23088* Stop Reply Packets::
23089* General Query Packets::
23090* Register Packet Format::
9d29849a 23091* Tracepoint Packets::
a6b151f1 23092* Host I/O Packets::
9a6253be 23093* Interrupts::
ee2d5c50 23094* Examples::
79a6e687 23095* File-I/O Remote Protocol Extension::
cfa9d6d9 23096* Library List Format::
79a6e687 23097* Memory Map Format::
ee2d5c50
AC
23098@end menu
23099
23100@node Overview
23101@section Overview
23102
8e04817f
AC
23103There may be occasions when you need to know something about the
23104protocol---for example, if there is only one serial port to your target
23105machine, you might want your program to do something special if it
23106recognizes a packet meant for @value{GDBN}.
c906108c 23107
d2c6833e 23108In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23109transmitted and received data, respectively.
c906108c 23110
8e04817f
AC
23111@cindex protocol, @value{GDBN} remote serial
23112@cindex serial protocol, @value{GDBN} remote
23113@cindex remote serial protocol
23114All @value{GDBN} commands and responses (other than acknowledgments) are
23115sent as a @var{packet}. A @var{packet} is introduced with the character
23116@samp{$}, the actual @var{packet-data}, and the terminating character
23117@samp{#} followed by a two-digit @var{checksum}:
c906108c 23118
474c8240 23119@smallexample
8e04817f 23120@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23121@end smallexample
8e04817f 23122@noindent
c906108c 23123
8e04817f
AC
23124@cindex checksum, for @value{GDBN} remote
23125@noindent
23126The two-digit @var{checksum} is computed as the modulo 256 sum of all
23127characters between the leading @samp{$} and the trailing @samp{#} (an
23128eight bit unsigned checksum).
c906108c 23129
8e04817f
AC
23130Implementors should note that prior to @value{GDBN} 5.0 the protocol
23131specification also included an optional two-digit @var{sequence-id}:
c906108c 23132
474c8240 23133@smallexample
8e04817f 23134@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23135@end smallexample
c906108c 23136
8e04817f
AC
23137@cindex sequence-id, for @value{GDBN} remote
23138@noindent
23139That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23140has never output @var{sequence-id}s. Stubs that handle packets added
23141since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23142
8e04817f
AC
23143@cindex acknowledgment, for @value{GDBN} remote
23144When either the host or the target machine receives a packet, the first
23145response expected is an acknowledgment: either @samp{+} (to indicate
23146the package was received correctly) or @samp{-} (to request
23147retransmission):
c906108c 23148
474c8240 23149@smallexample
d2c6833e
AC
23150-> @code{$}@var{packet-data}@code{#}@var{checksum}
23151<- @code{+}
474c8240 23152@end smallexample
8e04817f 23153@noindent
53a5351d 23154
8e04817f
AC
23155The host (@value{GDBN}) sends @var{command}s, and the target (the
23156debugging stub incorporated in your program) sends a @var{response}. In
23157the case of step and continue @var{command}s, the response is only sent
23158when the operation has completed (the target has again stopped).
c906108c 23159
8e04817f
AC
23160@var{packet-data} consists of a sequence of characters with the
23161exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23162exceptions).
c906108c 23163
ee2d5c50 23164@cindex remote protocol, field separator
0876f84a 23165Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23166@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23167@sc{hex} with leading zeros suppressed.
c906108c 23168
8e04817f
AC
23169Implementors should note that prior to @value{GDBN} 5.0, the character
23170@samp{:} could not appear as the third character in a packet (as it
23171would potentially conflict with the @var{sequence-id}).
c906108c 23172
0876f84a
DJ
23173@cindex remote protocol, binary data
23174@anchor{Binary Data}
23175Binary data in most packets is encoded either as two hexadecimal
23176digits per byte of binary data. This allowed the traditional remote
23177protocol to work over connections which were only seven-bit clean.
23178Some packets designed more recently assume an eight-bit clean
23179connection, and use a more efficient encoding to send and receive
23180binary data.
23181
23182The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23183as an escape character. Any escaped byte is transmitted as the escape
23184character followed by the original character XORed with @code{0x20}.
23185For example, the byte @code{0x7d} would be transmitted as the two
23186bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23187@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23188@samp{@}}) must always be escaped. Responses sent by the stub
23189must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23190is not interpreted as the start of a run-length encoded sequence
23191(described next).
23192
1d3811f6
DJ
23193Response @var{data} can be run-length encoded to save space.
23194Run-length encoding replaces runs of identical characters with one
23195instance of the repeated character, followed by a @samp{*} and a
23196repeat count. The repeat count is itself sent encoded, to avoid
23197binary characters in @var{data}: a value of @var{n} is sent as
23198@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23199produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23200code 32) for a repeat count of 3. (This is because run-length
23201encoding starts to win for counts 3 or more.) Thus, for example,
23202@samp{0* } is a run-length encoding of ``0000'': the space character
23203after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
232043}} more times.
23205
23206The printable characters @samp{#} and @samp{$} or with a numeric value
23207greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23208seven repeats (@samp{$}) can be expanded using a repeat count of only
23209five (@samp{"}). For example, @samp{00000000} can be encoded as
23210@samp{0*"00}.
c906108c 23211
8e04817f
AC
23212The error response returned for some packets includes a two character
23213error number. That number is not well defined.
c906108c 23214
f8da2bff 23215@cindex empty response, for unsupported packets
8e04817f
AC
23216For any @var{command} not supported by the stub, an empty response
23217(@samp{$#00}) should be returned. That way it is possible to extend the
23218protocol. A newer @value{GDBN} can tell if a packet is supported based
23219on that response.
c906108c 23220
b383017d
RM
23221A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23222@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23223optional.
c906108c 23224
ee2d5c50
AC
23225@node Packets
23226@section Packets
23227
23228The following table provides a complete list of all currently defined
23229@var{command}s and their corresponding response @var{data}.
79a6e687 23230@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23231I/O extension of the remote protocol.
ee2d5c50 23232
b8ff78ce
JB
23233Each packet's description has a template showing the packet's overall
23234syntax, followed by an explanation of the packet's meaning. We
23235include spaces in some of the templates for clarity; these are not
23236part of the packet's syntax. No @value{GDBN} packet uses spaces to
23237separate its components. For example, a template like @samp{foo
23238@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23239bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23240@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23241@samp{foo} and the @var{bar}, or between the @var{bar} and the
23242@var{baz}.
23243
8ffe2530
JB
23244Note that all packet forms beginning with an upper- or lower-case
23245letter, other than those described here, are reserved for future use.
23246
b8ff78ce 23247Here are the packet descriptions.
ee2d5c50 23248
b8ff78ce 23249@table @samp
ee2d5c50 23250
b8ff78ce
JB
23251@item !
23252@cindex @samp{!} packet
8e04817f
AC
23253Enable extended mode. In extended mode, the remote server is made
23254persistent. The @samp{R} packet is used to restart the program being
23255debugged.
ee2d5c50
AC
23256
23257Reply:
23258@table @samp
23259@item OK
8e04817f 23260The remote target both supports and has enabled extended mode.
ee2d5c50 23261@end table
c906108c 23262
b8ff78ce
JB
23263@item ?
23264@cindex @samp{?} packet
ee2d5c50
AC
23265Indicate the reason the target halted. The reply is the same as for
23266step and continue.
c906108c 23267
ee2d5c50
AC
23268Reply:
23269@xref{Stop Reply Packets}, for the reply specifications.
23270
b8ff78ce
JB
23271@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23272@cindex @samp{A} packet
23273Initialized @code{argv[]} array passed into program. @var{arglen}
23274specifies the number of bytes in the hex encoded byte stream
23275@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23276
23277Reply:
23278@table @samp
23279@item OK
b8ff78ce
JB
23280The arguments were set.
23281@item E @var{NN}
23282An error occurred.
ee2d5c50
AC
23283@end table
23284
b8ff78ce
JB
23285@item b @var{baud}
23286@cindex @samp{b} packet
23287(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23288Change the serial line speed to @var{baud}.
23289
23290JTC: @emph{When does the transport layer state change? When it's
23291received, or after the ACK is transmitted. In either case, there are
23292problems if the command or the acknowledgment packet is dropped.}
23293
23294Stan: @emph{If people really wanted to add something like this, and get
23295it working for the first time, they ought to modify ser-unix.c to send
23296some kind of out-of-band message to a specially-setup stub and have the
23297switch happen "in between" packets, so that from remote protocol's point
23298of view, nothing actually happened.}
23299
b8ff78ce
JB
23300@item B @var{addr},@var{mode}
23301@cindex @samp{B} packet
8e04817f 23302Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23303breakpoint at @var{addr}.
23304
b8ff78ce 23305Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23306(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23307
4f553f88 23308@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23309@cindex @samp{c} packet
23310Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23311resume at current address.
c906108c 23312
ee2d5c50
AC
23313Reply:
23314@xref{Stop Reply Packets}, for the reply specifications.
23315
4f553f88 23316@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23317@cindex @samp{C} packet
8e04817f 23318Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23319@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23320
ee2d5c50
AC
23321Reply:
23322@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23323
b8ff78ce
JB
23324@item d
23325@cindex @samp{d} packet
ee2d5c50
AC
23326Toggle debug flag.
23327
b8ff78ce
JB
23328Don't use this packet; instead, define a general set packet
23329(@pxref{General Query Packets}).
ee2d5c50 23330
b8ff78ce
JB
23331@item D
23332@cindex @samp{D} packet
ee2d5c50 23333Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23334before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23335
23336Reply:
23337@table @samp
10fac096
NW
23338@item OK
23339for success
b8ff78ce 23340@item E @var{NN}
10fac096 23341for an error
ee2d5c50 23342@end table
c906108c 23343
b8ff78ce
JB
23344@item F @var{RC},@var{EE},@var{CF};@var{XX}
23345@cindex @samp{F} packet
23346A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23347This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23348Remote Protocol Extension}, for the specification.
ee2d5c50 23349
b8ff78ce 23350@item g
ee2d5c50 23351@anchor{read registers packet}
b8ff78ce 23352@cindex @samp{g} packet
ee2d5c50
AC
23353Read general registers.
23354
23355Reply:
23356@table @samp
23357@item @var{XX@dots{}}
8e04817f
AC
23358Each byte of register data is described by two hex digits. The bytes
23359with the register are transmitted in target byte order. The size of
b8ff78ce 23360each register and their position within the @samp{g} packet are
4a9bb1df
UW
23361determined by the @value{GDBN} internal gdbarch functions
23362@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23363specification of several standard @samp{g} packets is specified below.
23364@item E @var{NN}
ee2d5c50
AC
23365for an error.
23366@end table
c906108c 23367
b8ff78ce
JB
23368@item G @var{XX@dots{}}
23369@cindex @samp{G} packet
23370Write general registers. @xref{read registers packet}, for a
23371description of the @var{XX@dots{}} data.
ee2d5c50
AC
23372
23373Reply:
23374@table @samp
23375@item OK
23376for success
b8ff78ce 23377@item E @var{NN}
ee2d5c50
AC
23378for an error
23379@end table
23380
b8ff78ce
JB
23381@item H @var{c} @var{t}
23382@cindex @samp{H} packet
8e04817f 23383Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23384@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23385should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23386operations. The thread designator @var{t} may be @samp{-1}, meaning all
23387the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23388
23389Reply:
23390@table @samp
23391@item OK
23392for success
b8ff78ce 23393@item E @var{NN}
ee2d5c50
AC
23394for an error
23395@end table
c906108c 23396
8e04817f
AC
23397@c FIXME: JTC:
23398@c 'H': How restrictive (or permissive) is the thread model. If a
23399@c thread is selected and stopped, are other threads allowed
23400@c to continue to execute? As I mentioned above, I think the
23401@c semantics of each command when a thread is selected must be
23402@c described. For example:
23403@c
23404@c 'g': If the stub supports threads and a specific thread is
23405@c selected, returns the register block from that thread;
23406@c otherwise returns current registers.
23407@c
23408@c 'G' If the stub supports threads and a specific thread is
23409@c selected, sets the registers of the register block of
23410@c that thread; otherwise sets current registers.
c906108c 23411
b8ff78ce 23412@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23413@anchor{cycle step packet}
b8ff78ce
JB
23414@cindex @samp{i} packet
23415Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23416present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23417step starting at that address.
c906108c 23418
b8ff78ce
JB
23419@item I
23420@cindex @samp{I} packet
23421Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23422step packet}.
ee2d5c50 23423
b8ff78ce
JB
23424@item k
23425@cindex @samp{k} packet
23426Kill request.
c906108c 23427
ac282366 23428FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23429thread context has been selected (i.e.@: does 'k' kill only that
23430thread?)}.
c906108c 23431
b8ff78ce
JB
23432@item m @var{addr},@var{length}
23433@cindex @samp{m} packet
8e04817f 23434Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23435Note that @var{addr} may not be aligned to any particular boundary.
23436
23437The stub need not use any particular size or alignment when gathering
23438data from memory for the response; even if @var{addr} is word-aligned
23439and @var{length} is a multiple of the word size, the stub is free to
23440use byte accesses, or not. For this reason, this packet may not be
23441suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23442@cindex alignment of remote memory accesses
23443@cindex size of remote memory accesses
23444@cindex memory, alignment and size of remote accesses
c906108c 23445
ee2d5c50
AC
23446Reply:
23447@table @samp
23448@item @var{XX@dots{}}
599b237a 23449Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23450number. The reply may contain fewer bytes than requested if the
23451server was able to read only part of the region of memory.
23452@item E @var{NN}
ee2d5c50
AC
23453@var{NN} is errno
23454@end table
23455
b8ff78ce
JB
23456@item M @var{addr},@var{length}:@var{XX@dots{}}
23457@cindex @samp{M} packet
8e04817f 23458Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23459@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23460hexadecimal number.
ee2d5c50
AC
23461
23462Reply:
23463@table @samp
23464@item OK
23465for success
b8ff78ce 23466@item E @var{NN}
8e04817f
AC
23467for an error (this includes the case where only part of the data was
23468written).
ee2d5c50 23469@end table
c906108c 23470
b8ff78ce
JB
23471@item p @var{n}
23472@cindex @samp{p} packet
23473Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23474@xref{read registers packet}, for a description of how the returned
23475register value is encoded.
ee2d5c50
AC
23476
23477Reply:
23478@table @samp
2e868123
AC
23479@item @var{XX@dots{}}
23480the register's value
b8ff78ce 23481@item E @var{NN}
2e868123
AC
23482for an error
23483@item
23484Indicating an unrecognized @var{query}.
ee2d5c50
AC
23485@end table
23486
b8ff78ce 23487@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23488@anchor{write register packet}
b8ff78ce
JB
23489@cindex @samp{P} packet
23490Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23491number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23492digits for each byte in the register (target byte order).
c906108c 23493
ee2d5c50
AC
23494Reply:
23495@table @samp
23496@item OK
23497for success
b8ff78ce 23498@item E @var{NN}
ee2d5c50
AC
23499for an error
23500@end table
23501
5f3bebba
JB
23502@item q @var{name} @var{params}@dots{}
23503@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23504@cindex @samp{q} packet
b8ff78ce 23505@cindex @samp{Q} packet
5f3bebba
JB
23506General query (@samp{q}) and set (@samp{Q}). These packets are
23507described fully in @ref{General Query Packets}.
c906108c 23508
b8ff78ce
JB
23509@item r
23510@cindex @samp{r} packet
8e04817f 23511Reset the entire system.
c906108c 23512
b8ff78ce 23513Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23514
b8ff78ce
JB
23515@item R @var{XX}
23516@cindex @samp{R} packet
8e04817f
AC
23517Restart the program being debugged. @var{XX}, while needed, is ignored.
23518This packet is only available in extended mode.
ee2d5c50 23519
8e04817f 23520The @samp{R} packet has no reply.
ee2d5c50 23521
4f553f88 23522@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23523@cindex @samp{s} packet
23524Single step. @var{addr} is the address at which to resume. If
23525@var{addr} is omitted, resume at same address.
c906108c 23526
ee2d5c50
AC
23527Reply:
23528@xref{Stop Reply Packets}, for the reply specifications.
23529
4f553f88 23530@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23531@anchor{step with signal packet}
b8ff78ce
JB
23532@cindex @samp{S} packet
23533Step with signal. This is analogous to the @samp{C} packet, but
23534requests a single-step, rather than a normal resumption of execution.
c906108c 23535
ee2d5c50
AC
23536Reply:
23537@xref{Stop Reply Packets}, for the reply specifications.
23538
b8ff78ce
JB
23539@item t @var{addr}:@var{PP},@var{MM}
23540@cindex @samp{t} packet
8e04817f 23541Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23542@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23543@var{addr} must be at least 3 digits.
c906108c 23544
b8ff78ce
JB
23545@item T @var{XX}
23546@cindex @samp{T} packet
ee2d5c50 23547Find out if the thread XX is alive.
c906108c 23548
ee2d5c50
AC
23549Reply:
23550@table @samp
23551@item OK
23552thread is still alive
b8ff78ce 23553@item E @var{NN}
ee2d5c50
AC
23554thread is dead
23555@end table
23556
b8ff78ce
JB
23557@item v
23558Packets starting with @samp{v} are identified by a multi-letter name,
23559up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23560
b8ff78ce
JB
23561@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23562@cindex @samp{vCont} packet
23563Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23564If an action is specified with no @var{tid}, then it is applied to any
23565threads that don't have a specific action specified; if no default action is
23566specified then other threads should remain stopped. Specifying multiple
23567default actions is an error; specifying no actions is also an error.
23568Thread IDs are specified in hexadecimal. Currently supported actions are:
23569
b8ff78ce 23570@table @samp
86d30acc
DJ
23571@item c
23572Continue.
b8ff78ce 23573@item C @var{sig}
86d30acc
DJ
23574Continue with signal @var{sig}. @var{sig} should be two hex digits.
23575@item s
23576Step.
b8ff78ce 23577@item S @var{sig}
86d30acc
DJ
23578Step with signal @var{sig}. @var{sig} should be two hex digits.
23579@end table
23580
23581The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23582not supported in @samp{vCont}.
86d30acc
DJ
23583
23584Reply:
23585@xref{Stop Reply Packets}, for the reply specifications.
23586
b8ff78ce
JB
23587@item vCont?
23588@cindex @samp{vCont?} packet
d3e8051b 23589Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23590
23591Reply:
23592@table @samp
b8ff78ce
JB
23593@item vCont@r{[};@var{action}@dots{}@r{]}
23594The @samp{vCont} packet is supported. Each @var{action} is a supported
23595command in the @samp{vCont} packet.
86d30acc 23596@item
b8ff78ce 23597The @samp{vCont} packet is not supported.
86d30acc 23598@end table
ee2d5c50 23599
a6b151f1
DJ
23600@item vFile:@var{operation}:@var{parameter}@dots{}
23601@cindex @samp{vFile} packet
23602Perform a file operation on the target system. For details,
23603see @ref{Host I/O Packets}.
23604
68437a39
DJ
23605@item vFlashErase:@var{addr},@var{length}
23606@cindex @samp{vFlashErase} packet
23607Direct the stub to erase @var{length} bytes of flash starting at
23608@var{addr}. The region may enclose any number of flash blocks, but
23609its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23610flash block size appearing in the memory map (@pxref{Memory Map
23611Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23612together, and sends a @samp{vFlashDone} request after each group; the
23613stub is allowed to delay erase operation until the @samp{vFlashDone}
23614packet is received.
23615
23616Reply:
23617@table @samp
23618@item OK
23619for success
23620@item E @var{NN}
23621for an error
23622@end table
23623
23624@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23625@cindex @samp{vFlashWrite} packet
23626Direct the stub to write data to flash address @var{addr}. The data
23627is passed in binary form using the same encoding as for the @samp{X}
23628packet (@pxref{Binary Data}). The memory ranges specified by
23629@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23630not overlap, and must appear in order of increasing addresses
23631(although @samp{vFlashErase} packets for higher addresses may already
23632have been received; the ordering is guaranteed only between
23633@samp{vFlashWrite} packets). If a packet writes to an address that was
23634neither erased by a preceding @samp{vFlashErase} packet nor by some other
23635target-specific method, the results are unpredictable.
23636
23637
23638Reply:
23639@table @samp
23640@item OK
23641for success
23642@item E.memtype
23643for vFlashWrite addressing non-flash memory
23644@item E @var{NN}
23645for an error
23646@end table
23647
23648@item vFlashDone
23649@cindex @samp{vFlashDone} packet
23650Indicate to the stub that flash programming operation is finished.
23651The stub is permitted to delay or batch the effects of a group of
23652@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23653@samp{vFlashDone} packet is received. The contents of the affected
23654regions of flash memory are unpredictable until the @samp{vFlashDone}
23655request is completed.
23656
b8ff78ce 23657@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23658@anchor{X packet}
b8ff78ce
JB
23659@cindex @samp{X} packet
23660Write data to memory, where the data is transmitted in binary.
23661@var{addr} is address, @var{length} is number of bytes,
0876f84a 23662@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23663
ee2d5c50
AC
23664Reply:
23665@table @samp
23666@item OK
23667for success
b8ff78ce 23668@item E @var{NN}
ee2d5c50
AC
23669for an error
23670@end table
23671
b8ff78ce
JB
23672@item z @var{type},@var{addr},@var{length}
23673@itemx Z @var{type},@var{addr},@var{length}
2f870471 23674@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
23675@cindex @samp{z} packet
23676@cindex @samp{Z} packets
23677Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
23678watchpoint starting at address @var{address} and covering the next
23679@var{length} bytes.
ee2d5c50 23680
2f870471
AC
23681Each breakpoint and watchpoint packet @var{type} is documented
23682separately.
23683
512217c7
AC
23684@emph{Implementation notes: A remote target shall return an empty string
23685for an unrecognized breakpoint or watchpoint packet @var{type}. A
23686remote target shall support either both or neither of a given
b8ff78ce 23687@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
23688avoid potential problems with duplicate packets, the operations should
23689be implemented in an idempotent way.}
23690
b8ff78ce
JB
23691@item z0,@var{addr},@var{length}
23692@itemx Z0,@var{addr},@var{length}
23693@cindex @samp{z0} packet
23694@cindex @samp{Z0} packet
23695Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
23696@var{addr} of size @var{length}.
2f870471
AC
23697
23698A memory breakpoint is implemented by replacing the instruction at
23699@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 23700@var{length} is used by targets that indicates the size of the
2f870471
AC
23701breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
23702@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 23703
2f870471
AC
23704@emph{Implementation note: It is possible for a target to copy or move
23705code that contains memory breakpoints (e.g., when implementing
23706overlays). The behavior of this packet, in the presence of such a
23707target, is not defined.}
c906108c 23708
ee2d5c50
AC
23709Reply:
23710@table @samp
2f870471
AC
23711@item OK
23712success
23713@item
23714not supported
b8ff78ce 23715@item E @var{NN}
ee2d5c50 23716for an error
2f870471
AC
23717@end table
23718
b8ff78ce
JB
23719@item z1,@var{addr},@var{length}
23720@itemx Z1,@var{addr},@var{length}
23721@cindex @samp{z1} packet
23722@cindex @samp{Z1} packet
23723Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
23724address @var{addr} of size @var{length}.
2f870471
AC
23725
23726A hardware breakpoint is implemented using a mechanism that is not
23727dependant on being able to modify the target's memory.
23728
23729@emph{Implementation note: A hardware breakpoint is not affected by code
23730movement.}
23731
23732Reply:
23733@table @samp
ee2d5c50 23734@item OK
2f870471
AC
23735success
23736@item
23737not supported
b8ff78ce 23738@item E @var{NN}
2f870471
AC
23739for an error
23740@end table
23741
b8ff78ce
JB
23742@item z2,@var{addr},@var{length}
23743@itemx Z2,@var{addr},@var{length}
23744@cindex @samp{z2} packet
23745@cindex @samp{Z2} packet
23746Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
23747
23748Reply:
23749@table @samp
23750@item OK
23751success
23752@item
23753not supported
b8ff78ce 23754@item E @var{NN}
2f870471
AC
23755for an error
23756@end table
23757
b8ff78ce
JB
23758@item z3,@var{addr},@var{length}
23759@itemx Z3,@var{addr},@var{length}
23760@cindex @samp{z3} packet
23761@cindex @samp{Z3} packet
23762Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
23763
23764Reply:
23765@table @samp
23766@item OK
23767success
23768@item
23769not supported
b8ff78ce 23770@item E @var{NN}
2f870471
AC
23771for an error
23772@end table
23773
b8ff78ce
JB
23774@item z4,@var{addr},@var{length}
23775@itemx Z4,@var{addr},@var{length}
23776@cindex @samp{z4} packet
23777@cindex @samp{Z4} packet
23778Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
23779
23780Reply:
23781@table @samp
23782@item OK
23783success
23784@item
23785not supported
b8ff78ce 23786@item E @var{NN}
2f870471 23787for an error
ee2d5c50
AC
23788@end table
23789
23790@end table
c906108c 23791
ee2d5c50
AC
23792@node Stop Reply Packets
23793@section Stop Reply Packets
23794@cindex stop reply packets
c906108c 23795
8e04817f
AC
23796The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
23797receive any of the below as a reply. In the case of the @samp{C},
23798@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 23799when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
23800number} is defined by the header @file{include/gdb/signals.h} in the
23801@value{GDBN} source code.
c906108c 23802
b8ff78ce
JB
23803As in the description of request packets, we include spaces in the
23804reply templates for clarity; these are not part of the reply packet's
23805syntax. No @value{GDBN} stop reply packet uses spaces to separate its
23806components.
c906108c 23807
b8ff78ce 23808@table @samp
ee2d5c50 23809
b8ff78ce 23810@item S @var{AA}
599b237a 23811The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23812number). This is equivalent to a @samp{T} response with no
23813@var{n}:@var{r} pairs.
c906108c 23814
b8ff78ce
JB
23815@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
23816@cindex @samp{T} packet reply
599b237a 23817The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23818number). This is equivalent to an @samp{S} response, except that the
23819@samp{@var{n}:@var{r}} pairs can carry values of important registers
23820and other information directly in the stop reply packet, reducing
23821round-trip latency. Single-step and breakpoint traps are reported
23822this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
23823
23824@itemize @bullet
b8ff78ce 23825@item
599b237a 23826If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
23827corresponding @var{r} gives that register's value. @var{r} is a
23828series of bytes in target byte order, with each byte given by a
23829two-digit hex number.
cfa9d6d9 23830
b8ff78ce
JB
23831@item
23832If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
23833hex.
cfa9d6d9 23834
b8ff78ce 23835@item
cfa9d6d9
DJ
23836If @var{n} is a recognized @dfn{stop reason}, it describes a more
23837specific event that stopped the target. The currently defined stop
23838reasons are listed below. @var{aa} should be @samp{05}, the trap
23839signal. At most one stop reason should be present.
23840
b8ff78ce
JB
23841@item
23842Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
23843and go on to the next; this allows us to extend the protocol in the
23844future.
cfa9d6d9
DJ
23845@end itemize
23846
23847The currently defined stop reasons are:
23848
23849@table @samp
23850@item watch
23851@itemx rwatch
23852@itemx awatch
23853The packet indicates a watchpoint hit, and @var{r} is the data address, in
23854hex.
23855
23856@cindex shared library events, remote reply
23857@item library
23858The packet indicates that the loaded libraries have changed.
23859@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
23860list of loaded libraries. @var{r} is ignored.
23861@end table
ee2d5c50 23862
b8ff78ce 23863@item W @var{AA}
8e04817f 23864The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
23865applicable to certain targets.
23866
b8ff78ce 23867@item X @var{AA}
8e04817f 23868The process terminated with signal @var{AA}.
c906108c 23869
b8ff78ce
JB
23870@item O @var{XX}@dots{}
23871@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
23872written as the program's console output. This can happen at any time
23873while the program is running and the debugger should continue to wait
23874for @samp{W}, @samp{T}, etc.
0ce1b118 23875
b8ff78ce 23876@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
23877@var{call-id} is the identifier which says which host system call should
23878be called. This is just the name of the function. Translation into the
23879correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 23880@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
23881system calls.
23882
b8ff78ce
JB
23883@samp{@var{parameter}@dots{}} is a list of parameters as defined for
23884this very system call.
0ce1b118 23885
b8ff78ce
JB
23886The target replies with this packet when it expects @value{GDBN} to
23887call a host system call on behalf of the target. @value{GDBN} replies
23888with an appropriate @samp{F} packet and keeps up waiting for the next
23889reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
23890or @samp{s} action is expected to be continued. @xref{File-I/O Remote
23891Protocol Extension}, for more details.
0ce1b118 23892
ee2d5c50
AC
23893@end table
23894
23895@node General Query Packets
23896@section General Query Packets
9c16f35a 23897@cindex remote query requests
c906108c 23898
5f3bebba
JB
23899Packets starting with @samp{q} are @dfn{general query packets};
23900packets starting with @samp{Q} are @dfn{general set packets}. General
23901query and set packets are a semi-unified form for retrieving and
23902sending information to and from the stub.
23903
23904The initial letter of a query or set packet is followed by a name
23905indicating what sort of thing the packet applies to. For example,
23906@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
23907definitions with the stub. These packet names follow some
23908conventions:
23909
23910@itemize @bullet
23911@item
23912The name must not contain commas, colons or semicolons.
23913@item
23914Most @value{GDBN} query and set packets have a leading upper case
23915letter.
23916@item
23917The names of custom vendor packets should use a company prefix, in
23918lower case, followed by a period. For example, packets designed at
23919the Acme Corporation might begin with @samp{qacme.foo} (for querying
23920foos) or @samp{Qacme.bar} (for setting bars).
23921@end itemize
23922
aa56d27a
JB
23923The name of a query or set packet should be separated from any
23924parameters by a @samp{:}; the parameters themselves should be
23925separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
23926full packet name, and check for a separator or the end of the packet,
23927in case two packet names share a common prefix. New packets should not begin
23928with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
23929packets predate these conventions, and have arguments without any terminator
23930for the packet name; we suspect they are in widespread use in places that
23931are difficult to upgrade. The @samp{qC} packet has no arguments, but some
23932existing stubs (e.g.@: RedBoot) are known to not check for the end of the
23933packet.}.
c906108c 23934
b8ff78ce
JB
23935Like the descriptions of the other packets, each description here
23936has a template showing the packet's overall syntax, followed by an
23937explanation of the packet's meaning. We include spaces in some of the
23938templates for clarity; these are not part of the packet's syntax. No
23939@value{GDBN} packet uses spaces to separate its components.
23940
5f3bebba
JB
23941Here are the currently defined query and set packets:
23942
b8ff78ce 23943@table @samp
c906108c 23944
b8ff78ce 23945@item qC
9c16f35a 23946@cindex current thread, remote request
b8ff78ce 23947@cindex @samp{qC} packet
ee2d5c50
AC
23948Return the current thread id.
23949
23950Reply:
23951@table @samp
b8ff78ce 23952@item QC @var{pid}
599b237a 23953Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 23954@item @r{(anything else)}
ee2d5c50
AC
23955Any other reply implies the old pid.
23956@end table
23957
b8ff78ce 23958@item qCRC:@var{addr},@var{length}
ff2587ec 23959@cindex CRC of memory block, remote request
b8ff78ce
JB
23960@cindex @samp{qCRC} packet
23961Compute the CRC checksum of a block of memory.
ff2587ec
WZ
23962Reply:
23963@table @samp
b8ff78ce 23964@item E @var{NN}
ff2587ec 23965An error (such as memory fault)
b8ff78ce
JB
23966@item C @var{crc32}
23967The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
23968@end table
23969
b8ff78ce
JB
23970@item qfThreadInfo
23971@itemx qsThreadInfo
9c16f35a 23972@cindex list active threads, remote request
b8ff78ce
JB
23973@cindex @samp{qfThreadInfo} packet
23974@cindex @samp{qsThreadInfo} packet
23975Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
23976may be too many active threads to fit into one reply packet, this query
23977works iteratively: it may require more than one query/reply sequence to
23978obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
23979be the @samp{qfThreadInfo} query; subsequent queries in the
23980sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 23981
b8ff78ce 23982NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
23983
23984Reply:
23985@table @samp
b8ff78ce 23986@item m @var{id}
ee2d5c50 23987A single thread id
b8ff78ce 23988@item m @var{id},@var{id}@dots{}
ee2d5c50 23989a comma-separated list of thread ids
b8ff78ce
JB
23990@item l
23991(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
23992@end table
23993
23994In response to each query, the target will reply with a list of one or
e1aac25b
JB
23995more thread ids, in big-endian unsigned hex, separated by commas.
23996@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
23997ids (using the @samp{qs} form of the query), until the target responds
23998with @samp{l} (lower-case el, for @dfn{last}).
c906108c 23999
b8ff78ce 24000@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24001@cindex get thread-local storage address, remote request
b8ff78ce 24002@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24003Fetch the address associated with thread local storage specified
24004by @var{thread-id}, @var{offset}, and @var{lm}.
24005
24006@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24007thread for which to fetch the TLS address.
24008
24009@var{offset} is the (big endian, hex encoded) offset associated with the
24010thread local variable. (This offset is obtained from the debug
24011information associated with the variable.)
24012
db2e3e2e 24013@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24014the load module associated with the thread local storage. For example,
24015a @sc{gnu}/Linux system will pass the link map address of the shared
24016object associated with the thread local storage under consideration.
24017Other operating environments may choose to represent the load module
24018differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24019
24020Reply:
b8ff78ce
JB
24021@table @samp
24022@item @var{XX}@dots{}
ff2587ec
WZ
24023Hex encoded (big endian) bytes representing the address of the thread
24024local storage requested.
24025
b8ff78ce
JB
24026@item E @var{nn}
24027An error occurred. @var{nn} are hex digits.
ff2587ec 24028
b8ff78ce
JB
24029@item
24030An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24031@end table
24032
b8ff78ce 24033@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24034Obtain thread information from RTOS. Where: @var{startflag} (one hex
24035digit) is one to indicate the first query and zero to indicate a
24036subsequent query; @var{threadcount} (two hex digits) is the maximum
24037number of threads the response packet can contain; and @var{nextthread}
24038(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24039returned in the response as @var{argthread}.
ee2d5c50 24040
b8ff78ce 24041Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24042
24043Reply:
24044@table @samp
b8ff78ce 24045@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24046Where: @var{count} (two hex digits) is the number of threads being
24047returned; @var{done} (one hex digit) is zero to indicate more threads
24048and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24049digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24050is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24051digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24052@end table
c906108c 24053
b8ff78ce 24054@item qOffsets
9c16f35a 24055@cindex section offsets, remote request
b8ff78ce 24056@cindex @samp{qOffsets} packet
31d99776
DJ
24057Get section offsets that the target used when relocating the downloaded
24058image.
c906108c 24059
ee2d5c50
AC
24060Reply:
24061@table @samp
31d99776
DJ
24062@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24063Relocate the @code{Text} section by @var{xxx} from its original address.
24064Relocate the @code{Data} section by @var{yyy} from its original address.
24065If the object file format provides segment information (e.g.@: @sc{elf}
24066@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24067segments by the supplied offsets.
24068
24069@emph{Note: while a @code{Bss} offset may be included in the response,
24070@value{GDBN} ignores this and instead applies the @code{Data} offset
24071to the @code{Bss} section.}
24072
24073@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24074Relocate the first segment of the object file, which conventionally
24075contains program code, to a starting address of @var{xxx}. If
24076@samp{DataSeg} is specified, relocate the second segment, which
24077conventionally contains modifiable data, to a starting address of
24078@var{yyy}. @value{GDBN} will report an error if the object file
24079does not contain segment information, or does not contain at least
24080as many segments as mentioned in the reply. Extra segments are
24081kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24082@end table
24083
b8ff78ce 24084@item qP @var{mode} @var{threadid}
9c16f35a 24085@cindex thread information, remote request
b8ff78ce 24086@cindex @samp{qP} packet
8e04817f
AC
24087Returns information on @var{threadid}. Where: @var{mode} is a hex
24088encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24089
aa56d27a
JB
24090Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24091(see below).
24092
b8ff78ce 24093Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24094
89be2091
DJ
24095@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24096@cindex pass signals to inferior, remote request
24097@cindex @samp{QPassSignals} packet
23181151 24098@anchor{QPassSignals}
89be2091
DJ
24099Each listed @var{signal} should be passed directly to the inferior process.
24100Signals are numbered identically to continue packets and stop replies
24101(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24102strictly greater than the previous item. These signals do not need to stop
24103the inferior, or be reported to @value{GDBN}. All other signals should be
24104reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24105combine; any earlier @samp{QPassSignals} list is completely replaced by the
24106new list. This packet improves performance when using @samp{handle
24107@var{signal} nostop noprint pass}.
24108
24109Reply:
24110@table @samp
24111@item OK
24112The request succeeded.
24113
24114@item E @var{nn}
24115An error occurred. @var{nn} are hex digits.
24116
24117@item
24118An empty reply indicates that @samp{QPassSignals} is not supported by
24119the stub.
24120@end table
24121
24122Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24123command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24124This packet is not probed by default; the remote stub must request it,
24125by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24126
b8ff78ce 24127@item qRcmd,@var{command}
ff2587ec 24128@cindex execute remote command, remote request
b8ff78ce 24129@cindex @samp{qRcmd} packet
ff2587ec 24130@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24131execution. Invalid commands should be reported using the output
24132string. Before the final result packet, the target may also respond
24133with a number of intermediate @samp{O@var{output}} console output
24134packets. @emph{Implementors should note that providing access to a
24135stubs's interpreter may have security implications}.
fa93a9d8 24136
ff2587ec
WZ
24137Reply:
24138@table @samp
24139@item OK
24140A command response with no output.
24141@item @var{OUTPUT}
24142A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24143@item E @var{NN}
ff2587ec 24144Indicate a badly formed request.
b8ff78ce
JB
24145@item
24146An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24147@end table
fa93a9d8 24148
aa56d27a
JB
24149(Note that the @code{qRcmd} packet's name is separated from the
24150command by a @samp{,}, not a @samp{:}, contrary to the naming
24151conventions above. Please don't use this packet as a model for new
24152packets.)
24153
be2a5f71
DJ
24154@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24155@cindex supported packets, remote query
24156@cindex features of the remote protocol
24157@cindex @samp{qSupported} packet
0876f84a 24158@anchor{qSupported}
be2a5f71
DJ
24159Tell the remote stub about features supported by @value{GDBN}, and
24160query the stub for features it supports. This packet allows
24161@value{GDBN} and the remote stub to take advantage of each others'
24162features. @samp{qSupported} also consolidates multiple feature probes
24163at startup, to improve @value{GDBN} performance---a single larger
24164packet performs better than multiple smaller probe packets on
24165high-latency links. Some features may enable behavior which must not
24166be on by default, e.g.@: because it would confuse older clients or
24167stubs. Other features may describe packets which could be
24168automatically probed for, but are not. These features must be
24169reported before @value{GDBN} will use them. This ``default
24170unsupported'' behavior is not appropriate for all packets, but it
24171helps to keep the initial connection time under control with new
24172versions of @value{GDBN} which support increasing numbers of packets.
24173
24174Reply:
24175@table @samp
24176@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24177The stub supports or does not support each returned @var{stubfeature},
24178depending on the form of each @var{stubfeature} (see below for the
24179possible forms).
24180@item
24181An empty reply indicates that @samp{qSupported} is not recognized,
24182or that no features needed to be reported to @value{GDBN}.
24183@end table
24184
24185The allowed forms for each feature (either a @var{gdbfeature} in the
24186@samp{qSupported} packet, or a @var{stubfeature} in the response)
24187are:
24188
24189@table @samp
24190@item @var{name}=@var{value}
24191The remote protocol feature @var{name} is supported, and associated
24192with the specified @var{value}. The format of @var{value} depends
24193on the feature, but it must not include a semicolon.
24194@item @var{name}+
24195The remote protocol feature @var{name} is supported, and does not
24196need an associated value.
24197@item @var{name}-
24198The remote protocol feature @var{name} is not supported.
24199@item @var{name}?
24200The remote protocol feature @var{name} may be supported, and
24201@value{GDBN} should auto-detect support in some other way when it is
24202needed. This form will not be used for @var{gdbfeature} notifications,
24203but may be used for @var{stubfeature} responses.
24204@end table
24205
24206Whenever the stub receives a @samp{qSupported} request, the
24207supplied set of @value{GDBN} features should override any previous
24208request. This allows @value{GDBN} to put the stub in a known
24209state, even if the stub had previously been communicating with
24210a different version of @value{GDBN}.
24211
24212No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24213are defined yet. Stubs should ignore any unknown values for
24214@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24215packet supports receiving packets of unlimited length (earlier
24216versions of @value{GDBN} may reject overly long responses). Values
24217for @var{gdbfeature} may be defined in the future to let the stub take
24218advantage of new features in @value{GDBN}, e.g.@: incompatible
24219improvements in the remote protocol---support for unlimited length
24220responses would be a @var{gdbfeature} example, if it were not implied by
24221the @samp{qSupported} query. The stub's reply should be independent
24222of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24223describes all the features it supports, and then the stub replies with
24224all the features it supports.
24225
24226Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24227responses, as long as each response uses one of the standard forms.
24228
24229Some features are flags. A stub which supports a flag feature
24230should respond with a @samp{+} form response. Other features
24231require values, and the stub should respond with an @samp{=}
24232form response.
24233
24234Each feature has a default value, which @value{GDBN} will use if
24235@samp{qSupported} is not available or if the feature is not mentioned
24236in the @samp{qSupported} response. The default values are fixed; a
24237stub is free to omit any feature responses that match the defaults.
24238
24239Not all features can be probed, but for those which can, the probing
24240mechanism is useful: in some cases, a stub's internal
24241architecture may not allow the protocol layer to know some information
24242about the underlying target in advance. This is especially common in
24243stubs which may be configured for multiple targets.
24244
24245These are the currently defined stub features and their properties:
24246
cfa9d6d9 24247@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24248@c NOTE: The first row should be @headitem, but we do not yet require
24249@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24250@item Feature Name
be2a5f71
DJ
24251@tab Value Required
24252@tab Default
24253@tab Probe Allowed
24254
24255@item @samp{PacketSize}
24256@tab Yes
24257@tab @samp{-}
24258@tab No
24259
0876f84a
DJ
24260@item @samp{qXfer:auxv:read}
24261@tab No
24262@tab @samp{-}
24263@tab Yes
24264
23181151
DJ
24265@item @samp{qXfer:features:read}
24266@tab No
24267@tab @samp{-}
24268@tab Yes
24269
cfa9d6d9
DJ
24270@item @samp{qXfer:libraries:read}
24271@tab No
24272@tab @samp{-}
24273@tab Yes
24274
68437a39
DJ
24275@item @samp{qXfer:memory-map:read}
24276@tab No
24277@tab @samp{-}
24278@tab Yes
24279
0e7f50da
UW
24280@item @samp{qXfer:spu:read}
24281@tab No
24282@tab @samp{-}
24283@tab Yes
24284
24285@item @samp{qXfer:spu:write}
24286@tab No
24287@tab @samp{-}
24288@tab Yes
24289
89be2091
DJ
24290@item @samp{QPassSignals}
24291@tab No
24292@tab @samp{-}
24293@tab Yes
24294
be2a5f71
DJ
24295@end multitable
24296
24297These are the currently defined stub features, in more detail:
24298
24299@table @samp
24300@cindex packet size, remote protocol
24301@item PacketSize=@var{bytes}
24302The remote stub can accept packets up to at least @var{bytes} in
24303length. @value{GDBN} will send packets up to this size for bulk
24304transfers, and will never send larger packets. This is a limit on the
24305data characters in the packet, including the frame and checksum.
24306There is no trailing NUL byte in a remote protocol packet; if the stub
24307stores packets in a NUL-terminated format, it should allow an extra
24308byte in its buffer for the NUL. If this stub feature is not supported,
24309@value{GDBN} guesses based on the size of the @samp{g} packet response.
24310
0876f84a
DJ
24311@item qXfer:auxv:read
24312The remote stub understands the @samp{qXfer:auxv:read} packet
24313(@pxref{qXfer auxiliary vector read}).
24314
23181151
DJ
24315@item qXfer:features:read
24316The remote stub understands the @samp{qXfer:features:read} packet
24317(@pxref{qXfer target description read}).
24318
cfa9d6d9
DJ
24319@item qXfer:libraries:read
24320The remote stub understands the @samp{qXfer:libraries:read} packet
24321(@pxref{qXfer library list read}).
24322
23181151
DJ
24323@item qXfer:memory-map:read
24324The remote stub understands the @samp{qXfer:memory-map:read} packet
24325(@pxref{qXfer memory map read}).
24326
0e7f50da
UW
24327@item qXfer:spu:read
24328The remote stub understands the @samp{qXfer:spu:read} packet
24329(@pxref{qXfer spu read}).
24330
24331@item qXfer:spu:write
24332The remote stub understands the @samp{qXfer:spu:write} packet
24333(@pxref{qXfer spu write}).
24334
23181151
DJ
24335@item QPassSignals
24336The remote stub understands the @samp{QPassSignals} packet
24337(@pxref{QPassSignals}).
24338
be2a5f71
DJ
24339@end table
24340
b8ff78ce 24341@item qSymbol::
ff2587ec 24342@cindex symbol lookup, remote request
b8ff78ce 24343@cindex @samp{qSymbol} packet
ff2587ec
WZ
24344Notify the target that @value{GDBN} is prepared to serve symbol lookup
24345requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24346
24347Reply:
ff2587ec 24348@table @samp
b8ff78ce 24349@item OK
ff2587ec 24350The target does not need to look up any (more) symbols.
b8ff78ce 24351@item qSymbol:@var{sym_name}
ff2587ec
WZ
24352The target requests the value of symbol @var{sym_name} (hex encoded).
24353@value{GDBN} may provide the value by using the
b8ff78ce
JB
24354@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24355below.
ff2587ec 24356@end table
83761cbd 24357
b8ff78ce 24358@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24359Set the value of @var{sym_name} to @var{sym_value}.
24360
24361@var{sym_name} (hex encoded) is the name of a symbol whose value the
24362target has previously requested.
24363
24364@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24365@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24366will be empty.
24367
24368Reply:
24369@table @samp
b8ff78ce 24370@item OK
ff2587ec 24371The target does not need to look up any (more) symbols.
b8ff78ce 24372@item qSymbol:@var{sym_name}
ff2587ec
WZ
24373The target requests the value of a new symbol @var{sym_name} (hex
24374encoded). @value{GDBN} will continue to supply the values of symbols
24375(if available), until the target ceases to request them.
fa93a9d8 24376@end table
0abb7bc7 24377
9d29849a
JB
24378@item QTDP
24379@itemx QTFrame
24380@xref{Tracepoint Packets}.
24381
b8ff78ce 24382@item qThreadExtraInfo,@var{id}
ff2587ec 24383@cindex thread attributes info, remote request
b8ff78ce
JB
24384@cindex @samp{qThreadExtraInfo} packet
24385Obtain a printable string description of a thread's attributes from
24386the target OS. @var{id} is a thread-id in big-endian hex. This
24387string may contain anything that the target OS thinks is interesting
24388for @value{GDBN} to tell the user about the thread. The string is
24389displayed in @value{GDBN}'s @code{info threads} display. Some
24390examples of possible thread extra info strings are @samp{Runnable}, or
24391@samp{Blocked on Mutex}.
ff2587ec
WZ
24392
24393Reply:
24394@table @samp
b8ff78ce
JB
24395@item @var{XX}@dots{}
24396Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24397comprising the printable string containing the extra information about
24398the thread's attributes.
ff2587ec 24399@end table
814e32d7 24400
aa56d27a
JB
24401(Note that the @code{qThreadExtraInfo} packet's name is separated from
24402the command by a @samp{,}, not a @samp{:}, contrary to the naming
24403conventions above. Please don't use this packet as a model for new
24404packets.)
24405
9d29849a
JB
24406@item QTStart
24407@itemx QTStop
24408@itemx QTinit
24409@itemx QTro
24410@itemx qTStatus
24411@xref{Tracepoint Packets}.
24412
0876f84a
DJ
24413@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24414@cindex read special object, remote request
24415@cindex @samp{qXfer} packet
68437a39 24416@anchor{qXfer read}
0876f84a
DJ
24417Read uninterpreted bytes from the target's special data area
24418identified by the keyword @var{object}. Request @var{length} bytes
24419starting at @var{offset} bytes into the data. The content and
0e7f50da 24420encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24421additional details about what data to access.
24422
24423Here are the specific requests of this form defined so far. All
24424@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24425formats, listed below.
24426
24427@table @samp
24428@item qXfer:auxv:read::@var{offset},@var{length}
24429@anchor{qXfer auxiliary vector read}
24430Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24431auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24432
24433This packet is not probed by default; the remote stub must request it,
89be2091 24434by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24435
23181151
DJ
24436@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24437@anchor{qXfer target description read}
24438Access the @dfn{target description}. @xref{Target Descriptions}. The
24439annex specifies which XML document to access. The main description is
24440always loaded from the @samp{target.xml} annex.
24441
24442This packet is not probed by default; the remote stub must request it,
24443by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24444
cfa9d6d9
DJ
24445@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24446@anchor{qXfer library list read}
24447Access the target's list of loaded libraries. @xref{Library List Format}.
24448The annex part of the generic @samp{qXfer} packet must be empty
24449(@pxref{qXfer read}).
24450
24451Targets which maintain a list of libraries in the program's memory do
24452not need to implement this packet; it is designed for platforms where
24453the operating system manages the list of loaded libraries.
24454
24455This packet is not probed by default; the remote stub must request it,
24456by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24457
68437a39
DJ
24458@item qXfer:memory-map:read::@var{offset},@var{length}
24459@anchor{qXfer memory map read}
79a6e687 24460Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24461annex part of the generic @samp{qXfer} packet must be empty
24462(@pxref{qXfer read}).
24463
0e7f50da
UW
24464This packet is not probed by default; the remote stub must request it,
24465by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24466
24467@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24468@anchor{qXfer spu read}
24469Read contents of an @code{spufs} file on the target system. The
24470annex specifies which file to read; it must be of the form
24471@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24472in the target process, and @var{name} identifes the @code{spufs} file
24473in that context to be accessed.
24474
68437a39
DJ
24475This packet is not probed by default; the remote stub must request it,
24476by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24477@end table
24478
0876f84a
DJ
24479Reply:
24480@table @samp
24481@item m @var{data}
24482Data @var{data} (@pxref{Binary Data}) has been read from the
24483target. There may be more data at a higher address (although
24484it is permitted to return @samp{m} even for the last valid
24485block of data, as long as at least one byte of data was read).
24486@var{data} may have fewer bytes than the @var{length} in the
24487request.
24488
24489@item l @var{data}
24490Data @var{data} (@pxref{Binary Data}) has been read from the target.
24491There is no more data to be read. @var{data} may have fewer bytes
24492than the @var{length} in the request.
24493
24494@item l
24495The @var{offset} in the request is at the end of the data.
24496There is no more data to be read.
24497
24498@item E00
24499The request was malformed, or @var{annex} was invalid.
24500
24501@item E @var{nn}
24502The offset was invalid, or there was an error encountered reading the data.
24503@var{nn} is a hex-encoded @code{errno} value.
24504
24505@item
24506An empty reply indicates the @var{object} string was not recognized by
24507the stub, or that the object does not support reading.
24508@end table
24509
24510@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24511@cindex write data into object, remote request
24512Write uninterpreted bytes into the target's special data area
24513identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24514into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24515(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24516is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24517to access.
24518
0e7f50da
UW
24519Here are the specific requests of this form defined so far. All
24520@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24521formats, listed below.
24522
24523@table @samp
24524@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24525@anchor{qXfer spu write}
24526Write @var{data} to an @code{spufs} file on the target system. The
24527annex specifies which file to write; it must be of the form
24528@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24529in the target process, and @var{name} identifes the @code{spufs} file
24530in that context to be accessed.
24531
24532This packet is not probed by default; the remote stub must request it,
24533by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24534@end table
0876f84a
DJ
24535
24536Reply:
24537@table @samp
24538@item @var{nn}
24539@var{nn} (hex encoded) is the number of bytes written.
24540This may be fewer bytes than supplied in the request.
24541
24542@item E00
24543The request was malformed, or @var{annex} was invalid.
24544
24545@item E @var{nn}
24546The offset was invalid, or there was an error encountered writing the data.
24547@var{nn} is a hex-encoded @code{errno} value.
24548
24549@item
24550An empty reply indicates the @var{object} string was not
24551recognized by the stub, or that the object does not support writing.
24552@end table
24553
24554@item qXfer:@var{object}:@var{operation}:@dots{}
24555Requests of this form may be added in the future. When a stub does
24556not recognize the @var{object} keyword, or its support for
24557@var{object} does not recognize the @var{operation} keyword, the stub
24558must respond with an empty packet.
24559
ee2d5c50
AC
24560@end table
24561
24562@node Register Packet Format
24563@section Register Packet Format
eb12ee30 24564
b8ff78ce 24565The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24566In the below, some thirty-two bit registers are transferred as
24567sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24568to fill the space allocated. Register bytes are transferred in target
24569byte order. The two nibbles within a register byte are transferred
ee2d5c50 24570most-significant - least-significant.
eb12ee30 24571
ee2d5c50 24572@table @r
eb12ee30 24573
8e04817f 24574@item MIPS32
ee2d5c50 24575
599b237a 24576All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2457732 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24578registers; fsr; fir; fp.
eb12ee30 24579
8e04817f 24580@item MIPS64
ee2d5c50 24581
599b237a 24582All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24583thirty-two bit registers such as @code{sr}). The ordering is the same
24584as @code{MIPS32}.
eb12ee30 24585
ee2d5c50
AC
24586@end table
24587
9d29849a
JB
24588@node Tracepoint Packets
24589@section Tracepoint Packets
24590@cindex tracepoint packets
24591@cindex packets, tracepoint
24592
24593Here we describe the packets @value{GDBN} uses to implement
24594tracepoints (@pxref{Tracepoints}).
24595
24596@table @samp
24597
24598@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24599Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24600is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24601the tracepoint is disabled. @var{step} is the tracepoint's step
24602count, and @var{pass} is its pass count. If the trailing @samp{-} is
24603present, further @samp{QTDP} packets will follow to specify this
24604tracepoint's actions.
24605
24606Replies:
24607@table @samp
24608@item OK
24609The packet was understood and carried out.
24610@item
24611The packet was not recognized.
24612@end table
24613
24614@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24615Define actions to be taken when a tracepoint is hit. @var{n} and
24616@var{addr} must be the same as in the initial @samp{QTDP} packet for
24617this tracepoint. This packet may only be sent immediately after
24618another @samp{QTDP} packet that ended with a @samp{-}. If the
24619trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24620specifying more actions for this tracepoint.
24621
24622In the series of action packets for a given tracepoint, at most one
24623can have an @samp{S} before its first @var{action}. If such a packet
24624is sent, it and the following packets define ``while-stepping''
24625actions. Any prior packets define ordinary actions --- that is, those
24626taken when the tracepoint is first hit. If no action packet has an
24627@samp{S}, then all the packets in the series specify ordinary
24628tracepoint actions.
24629
24630The @samp{@var{action}@dots{}} portion of the packet is a series of
24631actions, concatenated without separators. Each action has one of the
24632following forms:
24633
24634@table @samp
24635
24636@item R @var{mask}
24637Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24638a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24639@var{i} should be collected. (The least significant bit is numbered
24640zero.) Note that @var{mask} may be any number of digits long; it may
24641not fit in a 32-bit word.
24642
24643@item M @var{basereg},@var{offset},@var{len}
24644Collect @var{len} bytes of memory starting at the address in register
24645number @var{basereg}, plus @var{offset}. If @var{basereg} is
24646@samp{-1}, then the range has a fixed address: @var{offset} is the
24647address of the lowest byte to collect. The @var{basereg},
599b237a 24648@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24649values (the @samp{-1} value for @var{basereg} is a special case).
24650
24651@item X @var{len},@var{expr}
24652Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24653it directs. @var{expr} is an agent expression, as described in
24654@ref{Agent Expressions}. Each byte of the expression is encoded as a
24655two-digit hex number in the packet; @var{len} is the number of bytes
24656in the expression (and thus one-half the number of hex digits in the
24657packet).
24658
24659@end table
24660
24661Any number of actions may be packed together in a single @samp{QTDP}
24662packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24663length (400 bytes, for many stubs). There may be only one @samp{R}
24664action per tracepoint, and it must precede any @samp{M} or @samp{X}
24665actions. Any registers referred to by @samp{M} and @samp{X} actions
24666must be collected by a preceding @samp{R} action. (The
24667``while-stepping'' actions are treated as if they were attached to a
24668separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
24669
24670Replies:
24671@table @samp
24672@item OK
24673The packet was understood and carried out.
24674@item
24675The packet was not recognized.
24676@end table
24677
24678@item QTFrame:@var{n}
24679Select the @var{n}'th tracepoint frame from the buffer, and use the
24680register and memory contents recorded there to answer subsequent
24681request packets from @value{GDBN}.
24682
24683A successful reply from the stub indicates that the stub has found the
24684requested frame. The response is a series of parts, concatenated
24685without separators, describing the frame we selected. Each part has
24686one of the following forms:
24687
24688@table @samp
24689@item F @var{f}
24690The selected frame is number @var{n} in the trace frame buffer;
599b237a 24691@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
24692was no frame matching the criteria in the request packet.
24693
24694@item T @var{t}
24695The selected trace frame records a hit of tracepoint number @var{t};
599b237a 24696@var{t} is a hexadecimal number.
9d29849a
JB
24697
24698@end table
24699
24700@item QTFrame:pc:@var{addr}
24701Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24702currently selected frame whose PC is @var{addr};
599b237a 24703@var{addr} is a hexadecimal number.
9d29849a
JB
24704
24705@item QTFrame:tdp:@var{t}
24706Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24707currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 24708is a hexadecimal number.
9d29849a
JB
24709
24710@item QTFrame:range:@var{start}:@var{end}
24711Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24712currently selected frame whose PC is between @var{start} (inclusive)
599b237a 24713and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
24714numbers.
24715
24716@item QTFrame:outside:@var{start}:@var{end}
24717Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
24718frame @emph{outside} the given range of addresses.
24719
24720@item QTStart
24721Begin the tracepoint experiment. Begin collecting data from tracepoint
24722hits in the trace frame buffer.
24723
24724@item QTStop
24725End the tracepoint experiment. Stop collecting trace frames.
24726
24727@item QTinit
24728Clear the table of tracepoints, and empty the trace frame buffer.
24729
24730@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
24731Establish the given ranges of memory as ``transparent''. The stub
24732will answer requests for these ranges from memory's current contents,
24733if they were not collected as part of the tracepoint hit.
24734
24735@value{GDBN} uses this to mark read-only regions of memory, like those
24736containing program code. Since these areas never change, they should
24737still have the same contents they did when the tracepoint was hit, so
24738there's no reason for the stub to refuse to provide their contents.
24739
24740@item qTStatus
24741Ask the stub if there is a trace experiment running right now.
24742
24743Replies:
24744@table @samp
24745@item T0
24746There is no trace experiment running.
24747@item T1
24748There is a trace experiment running.
24749@end table
24750
24751@end table
24752
24753
a6b151f1
DJ
24754@node Host I/O Packets
24755@section Host I/O Packets
24756@cindex Host I/O, remote protocol
24757@cindex file transfer, remote protocol
24758
24759The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
24760operations on the far side of a remote link. For example, Host I/O is
24761used to upload and download files to a remote target with its own
24762filesystem. Host I/O uses the same constant values and data structure
24763layout as the target-initiated File-I/O protocol. However, the
24764Host I/O packets are structured differently. The target-initiated
24765protocol relies on target memory to store parameters and buffers.
24766Host I/O requests are initiated by @value{GDBN}, and the
24767target's memory is not involved. @xref{File-I/O Remote Protocol
24768Extension}, for more details on the target-initiated protocol.
24769
24770The Host I/O request packets all encode a single operation along with
24771its arguments. They have this format:
24772
24773@table @samp
24774
24775@item vFile:@var{operation}: @var{parameter}@dots{}
24776@var{operation} is the name of the particular request; the target
24777should compare the entire packet name up to the second colon when checking
24778for a supported operation. The format of @var{parameter} depends on
24779the operation. Numbers are always passed in hexadecimal. Negative
24780numbers have an explicit minus sign (i.e.@: two's complement is not
24781used). Strings (e.g.@: filenames) are encoded as a series of
24782hexadecimal bytes. The last argument to a system call may be a
24783buffer of escaped binary data (@pxref{Binary Data}).
24784
24785@end table
24786
24787The valid responses to Host I/O packets are:
24788
24789@table @samp
24790
24791@item F @var{result} [, @var{errno}] [; @var{attachment}]
24792@var{result} is the integer value returned by this operation, usually
24793non-negative for success and -1 for errors. If an error has occured,
24794@var{errno} will be included in the result. @var{errno} will have a
24795value defined by the File-I/O protocol (@pxref{Errno Values}). For
24796operations which return data, @var{attachment} supplies the data as a
24797binary buffer. Binary buffers in response packets are escaped in the
24798normal way (@pxref{Binary Data}). See the individual packet
24799documentation for the interpretation of @var{result} and
24800@var{attachment}.
24801
24802@item
24803An empty response indicates that this operation is not recognized.
24804
24805@end table
24806
24807These are the supported Host I/O operations:
24808
24809@table @samp
24810@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
24811Open a file at @var{pathname} and return a file descriptor for it, or
24812return -1 if an error occurs. @var{pathname} is a string,
24813@var{flags} is an integer indicating a mask of open flags
24814(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
24815of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 24816@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
24817
24818@item vFile:close: @var{fd}
24819Close the open file corresponding to @var{fd} and return 0, or
24820-1 if an error occurs.
24821
24822@item vFile:pread: @var{fd}, @var{count}, @var{offset}
24823Read data from the open file corresponding to @var{fd}. Up to
24824@var{count} bytes will be read from the file, starting at @var{offset}
24825relative to the start of the file. The target may read fewer bytes;
24826common reasons include packet size limits and an end-of-file
24827condition. The number of bytes read is returned. Zero should only be
24828returned for a successful read at the end of the file, or if
24829@var{count} was zero.
24830
24831The data read should be returned as a binary attachment on success.
24832If zero bytes were read, the response should include an empty binary
24833attachment (i.e.@: a trailing semicolon). The return value is the
24834number of target bytes read; the binary attachment may be longer if
24835some characters were escaped.
24836
24837@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
24838Write @var{data} (a binary buffer) to the open file corresponding
24839to @var{fd}. Start the write at @var{offset} from the start of the
24840file. Unlike many @code{write} system calls, there is no
24841separate @var{count} argument; the length of @var{data} in the
24842packet is used. @samp{vFile:write} returns the number of bytes written,
24843which may be shorter than the length of @var{data}, or -1 if an
24844error occurred.
24845
24846@item vFile:unlink: @var{pathname}
24847Delete the file at @var{pathname} on the target. Return 0,
24848or -1 if an error occurs. @var{pathname} is a string.
24849
24850@end table
24851
9a6253be
KB
24852@node Interrupts
24853@section Interrupts
24854@cindex interrupts (remote protocol)
24855
24856When a program on the remote target is running, @value{GDBN} may
24857attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
24858control of which is specified via @value{GDBN}'s @samp{remotebreak}
24859setting (@pxref{set remotebreak}).
24860
24861The precise meaning of @code{BREAK} is defined by the transport
24862mechanism and may, in fact, be undefined. @value{GDBN} does
24863not currently define a @code{BREAK} mechanism for any of the network
24864interfaces.
24865
24866@samp{Ctrl-C}, on the other hand, is defined and implemented for all
24867transport mechanisms. It is represented by sending the single byte
24868@code{0x03} without any of the usual packet overhead described in
24869the Overview section (@pxref{Overview}). When a @code{0x03} byte is
24870transmitted as part of a packet, it is considered to be packet data
24871and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 24872(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
24873@code{0x03} as part of its packet.
24874
24875Stubs are not required to recognize these interrupt mechanisms and the
24876precise meaning associated with receipt of the interrupt is
24877implementation defined. If the stub is successful at interrupting the
24878running program, it is expected that it will send one of the Stop
24879Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
24880of successfully stopping the program. Interrupts received while the
24881program is stopped will be discarded.
24882
ee2d5c50
AC
24883@node Examples
24884@section Examples
eb12ee30 24885
8e04817f
AC
24886Example sequence of a target being re-started. Notice how the restart
24887does not get any direct output:
eb12ee30 24888
474c8240 24889@smallexample
d2c6833e
AC
24890-> @code{R00}
24891<- @code{+}
8e04817f 24892@emph{target restarts}
d2c6833e 24893-> @code{?}
8e04817f 24894<- @code{+}
d2c6833e
AC
24895<- @code{T001:1234123412341234}
24896-> @code{+}
474c8240 24897@end smallexample
eb12ee30 24898
8e04817f 24899Example sequence of a target being stepped by a single instruction:
eb12ee30 24900
474c8240 24901@smallexample
d2c6833e 24902-> @code{G1445@dots{}}
8e04817f 24903<- @code{+}
d2c6833e
AC
24904-> @code{s}
24905<- @code{+}
24906@emph{time passes}
24907<- @code{T001:1234123412341234}
8e04817f 24908-> @code{+}
d2c6833e 24909-> @code{g}
8e04817f 24910<- @code{+}
d2c6833e
AC
24911<- @code{1455@dots{}}
24912-> @code{+}
474c8240 24913@end smallexample
eb12ee30 24914
79a6e687
BW
24915@node File-I/O Remote Protocol Extension
24916@section File-I/O Remote Protocol Extension
0ce1b118
CV
24917@cindex File-I/O remote protocol extension
24918
24919@menu
24920* File-I/O Overview::
79a6e687
BW
24921* Protocol Basics::
24922* The F Request Packet::
24923* The F Reply Packet::
24924* The Ctrl-C Message::
0ce1b118 24925* Console I/O::
79a6e687 24926* List of Supported Calls::
db2e3e2e 24927* Protocol-specific Representation of Datatypes::
0ce1b118
CV
24928* Constants::
24929* File-I/O Examples::
24930@end menu
24931
24932@node File-I/O Overview
24933@subsection File-I/O Overview
24934@cindex file-i/o overview
24935
9c16f35a 24936The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 24937target to use the host's file system and console I/O to perform various
0ce1b118 24938system calls. System calls on the target system are translated into a
fc320d37
SL
24939remote protocol packet to the host system, which then performs the needed
24940actions and returns a response packet to the target system.
0ce1b118
CV
24941This simulates file system operations even on targets that lack file systems.
24942
fc320d37
SL
24943The protocol is defined to be independent of both the host and target systems.
24944It uses its own internal representation of datatypes and values. Both
0ce1b118 24945@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
24946translating the system-dependent value representations into the internal
24947protocol representations when data is transmitted.
0ce1b118 24948
fc320d37
SL
24949The communication is synchronous. A system call is possible only when
24950@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
24951or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 24952the target is stopped to allow deterministic access to the target's
fc320d37
SL
24953memory. Therefore File-I/O is not interruptible by target signals. On
24954the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 24955(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
24956
24957The target's request to perform a host system call does not finish
24958the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
24959after finishing the system call, the target returns to continuing the
24960previous activity (continue, step). No additional continue or step
24961request from @value{GDBN} is required.
24962
24963@smallexample
f7dc1244 24964(@value{GDBP}) continue
0ce1b118
CV
24965 <- target requests 'system call X'
24966 target is stopped, @value{GDBN} executes system call
3f94c067
BW
24967 -> @value{GDBN} returns result
24968 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
24969 <- target hits breakpoint and sends a Txx packet
24970@end smallexample
24971
fc320d37
SL
24972The protocol only supports I/O on the console and to regular files on
24973the host file system. Character or block special devices, pipes,
24974named pipes, sockets or any other communication method on the host
0ce1b118
CV
24975system are not supported by this protocol.
24976
79a6e687
BW
24977@node Protocol Basics
24978@subsection Protocol Basics
0ce1b118
CV
24979@cindex protocol basics, file-i/o
24980
fc320d37
SL
24981The File-I/O protocol uses the @code{F} packet as the request as well
24982as reply packet. Since a File-I/O system call can only occur when
24983@value{GDBN} is waiting for a response from the continuing or stepping target,
24984the File-I/O request is a reply that @value{GDBN} has to expect as a result
24985of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
24986This @code{F} packet contains all information needed to allow @value{GDBN}
24987to call the appropriate host system call:
24988
24989@itemize @bullet
b383017d 24990@item
0ce1b118
CV
24991A unique identifier for the requested system call.
24992
24993@item
24994All parameters to the system call. Pointers are given as addresses
24995in the target memory address space. Pointers to strings are given as
b383017d 24996pointer/length pair. Numerical values are given as they are.
db2e3e2e 24997Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
24998
24999@end itemize
25000
fc320d37 25001At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25002
25003@itemize @bullet
b383017d 25004@item
fc320d37
SL
25005If the parameters include pointer values to data needed as input to a
25006system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25007standard @code{m} packet request. This additional communication has to be
25008expected by the target implementation and is handled as any other @code{m}
25009packet.
25010
25011@item
25012@value{GDBN} translates all value from protocol representation to host
25013representation as needed. Datatypes are coerced into the host types.
25014
25015@item
fc320d37 25016@value{GDBN} calls the system call.
0ce1b118
CV
25017
25018@item
25019It then coerces datatypes back to protocol representation.
25020
25021@item
fc320d37
SL
25022If the system call is expected to return data in buffer space specified
25023by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25024target using a @code{M} or @code{X} packet. This packet has to be expected
25025by the target implementation and is handled as any other @code{M} or @code{X}
25026packet.
25027
25028@end itemize
25029
25030Eventually @value{GDBN} replies with another @code{F} packet which contains all
25031necessary information for the target to continue. This at least contains
25032
25033@itemize @bullet
25034@item
25035Return value.
25036
25037@item
25038@code{errno}, if has been changed by the system call.
25039
25040@item
25041``Ctrl-C'' flag.
25042
25043@end itemize
25044
25045After having done the needed type and value coercion, the target continues
25046the latest continue or step action.
25047
79a6e687
BW
25048@node The F Request Packet
25049@subsection The @code{F} Request Packet
0ce1b118
CV
25050@cindex file-i/o request packet
25051@cindex @code{F} request packet
25052
25053The @code{F} request packet has the following format:
25054
25055@table @samp
fc320d37 25056@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25057
25058@var{call-id} is the identifier to indicate the host system call to be called.
25059This is just the name of the function.
25060
fc320d37
SL
25061@var{parameter@dots{}} are the parameters to the system call.
25062Parameters are hexadecimal integer values, either the actual values in case
25063of scalar datatypes, pointers to target buffer space in case of compound
25064datatypes and unspecified memory areas, or pointer/length pairs in case
25065of string parameters. These are appended to the @var{call-id} as a
25066comma-delimited list. All values are transmitted in ASCII
25067string representation, pointer/length pairs separated by a slash.
0ce1b118 25068
b383017d 25069@end table
0ce1b118 25070
fc320d37 25071
0ce1b118 25072
79a6e687
BW
25073@node The F Reply Packet
25074@subsection The @code{F} Reply Packet
0ce1b118
CV
25075@cindex file-i/o reply packet
25076@cindex @code{F} reply packet
25077
25078The @code{F} reply packet has the following format:
25079
25080@table @samp
25081
d3bdde98 25082@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25083
25084@var{retcode} is the return code of the system call as hexadecimal value.
25085
db2e3e2e
BW
25086@var{errno} is the @code{errno} set by the call, in protocol-specific
25087representation.
0ce1b118
CV
25088This parameter can be omitted if the call was successful.
25089
fc320d37
SL
25090@var{Ctrl-C flag} is only sent if the user requested a break. In this
25091case, @var{errno} must be sent as well, even if the call was successful.
25092The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25093
25094@smallexample
25095F0,0,C
25096@end smallexample
25097
25098@noindent
fc320d37 25099or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25100
25101@smallexample
25102F-1,4,C
25103@end smallexample
25104
25105@noindent
db2e3e2e 25106assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25107
25108@end table
25109
0ce1b118 25110
79a6e687
BW
25111@node The Ctrl-C Message
25112@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25113@cindex ctrl-c message, in file-i/o protocol
25114
c8aa23ab 25115If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25116reply packet (@pxref{The F Reply Packet}),
fc320d37 25117the target should behave as if it had
0ce1b118 25118gotten a break message. The meaning for the target is ``system call
fc320d37 25119interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25120(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25121packet.
fc320d37
SL
25122
25123It's important for the target to know in which
25124state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25125
25126@itemize @bullet
25127@item
25128The system call hasn't been performed on the host yet.
25129
25130@item
25131The system call on the host has been finished.
25132
25133@end itemize
25134
25135These two states can be distinguished by the target by the value of the
25136returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25137call hasn't been performed. This is equivalent to the @code{EINTR} handling
25138on POSIX systems. In any other case, the target may presume that the
fc320d37 25139system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25140as if the break message arrived right after the system call.
25141
fc320d37 25142@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25143yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25144@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25145before the user requests a break, the full action must be finished by
25146@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25147The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25148or the full action has been completed.
25149
25150@node Console I/O
25151@subsection Console I/O
25152@cindex console i/o as part of file-i/o
25153
d3e8051b 25154By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25155descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25156on the @value{GDBN} console is handled as any other file output operation
25157(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25158by @value{GDBN} so that after the target read request from file descriptor
251590 all following typing is buffered until either one of the following
25160conditions is met:
25161
25162@itemize @bullet
25163@item
c8aa23ab 25164The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25165@code{read}
25166system call is treated as finished.
25167
25168@item
7f9087cb 25169The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25170newline.
0ce1b118
CV
25171
25172@item
c8aa23ab
EZ
25173The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25174character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25175
25176@end itemize
25177
fc320d37
SL
25178If the user has typed more characters than fit in the buffer given to
25179the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25180either another @code{read(0, @dots{})} is requested by the target, or debugging
25181is stopped at the user's request.
0ce1b118 25182
0ce1b118 25183
79a6e687
BW
25184@node List of Supported Calls
25185@subsection List of Supported Calls
0ce1b118
CV
25186@cindex list of supported file-i/o calls
25187
25188@menu
25189* open::
25190* close::
25191* read::
25192* write::
25193* lseek::
25194* rename::
25195* unlink::
25196* stat/fstat::
25197* gettimeofday::
25198* isatty::
25199* system::
25200@end menu
25201
25202@node open
25203@unnumberedsubsubsec open
25204@cindex open, file-i/o system call
25205
fc320d37
SL
25206@table @asis
25207@item Synopsis:
0ce1b118 25208@smallexample
0ce1b118
CV
25209int open(const char *pathname, int flags);
25210int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25211@end smallexample
25212
fc320d37
SL
25213@item Request:
25214@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25215
0ce1b118 25216@noindent
fc320d37 25217@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25218
25219@table @code
b383017d 25220@item O_CREAT
0ce1b118
CV
25221If the file does not exist it will be created. The host
25222rules apply as far as file ownership and time stamps
25223are concerned.
25224
b383017d 25225@item O_EXCL
fc320d37 25226When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25227an error and open() fails.
25228
b383017d 25229@item O_TRUNC
0ce1b118 25230If the file already exists and the open mode allows
fc320d37
SL
25231writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25232truncated to zero length.
0ce1b118 25233
b383017d 25234@item O_APPEND
0ce1b118
CV
25235The file is opened in append mode.
25236
b383017d 25237@item O_RDONLY
0ce1b118
CV
25238The file is opened for reading only.
25239
b383017d 25240@item O_WRONLY
0ce1b118
CV
25241The file is opened for writing only.
25242
b383017d 25243@item O_RDWR
0ce1b118 25244The file is opened for reading and writing.
fc320d37 25245@end table
0ce1b118
CV
25246
25247@noindent
fc320d37 25248Other bits are silently ignored.
0ce1b118 25249
0ce1b118
CV
25250
25251@noindent
fc320d37 25252@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25253
25254@table @code
b383017d 25255@item S_IRUSR
0ce1b118
CV
25256User has read permission.
25257
b383017d 25258@item S_IWUSR
0ce1b118
CV
25259User has write permission.
25260
b383017d 25261@item S_IRGRP
0ce1b118
CV
25262Group has read permission.
25263
b383017d 25264@item S_IWGRP
0ce1b118
CV
25265Group has write permission.
25266
b383017d 25267@item S_IROTH
0ce1b118
CV
25268Others have read permission.
25269
b383017d 25270@item S_IWOTH
0ce1b118 25271Others have write permission.
fc320d37 25272@end table
0ce1b118
CV
25273
25274@noindent
fc320d37 25275Other bits are silently ignored.
0ce1b118 25276
0ce1b118 25277
fc320d37
SL
25278@item Return value:
25279@code{open} returns the new file descriptor or -1 if an error
25280occurred.
0ce1b118 25281
fc320d37 25282@item Errors:
0ce1b118
CV
25283
25284@table @code
b383017d 25285@item EEXIST
fc320d37 25286@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25287
b383017d 25288@item EISDIR
fc320d37 25289@var{pathname} refers to a directory.
0ce1b118 25290
b383017d 25291@item EACCES
0ce1b118
CV
25292The requested access is not allowed.
25293
25294@item ENAMETOOLONG
fc320d37 25295@var{pathname} was too long.
0ce1b118 25296
b383017d 25297@item ENOENT
fc320d37 25298A directory component in @var{pathname} does not exist.
0ce1b118 25299
b383017d 25300@item ENODEV
fc320d37 25301@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25302
b383017d 25303@item EROFS
fc320d37 25304@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25305write access was requested.
25306
b383017d 25307@item EFAULT
fc320d37 25308@var{pathname} is an invalid pointer value.
0ce1b118 25309
b383017d 25310@item ENOSPC
0ce1b118
CV
25311No space on device to create the file.
25312
b383017d 25313@item EMFILE
0ce1b118
CV
25314The process already has the maximum number of files open.
25315
b383017d 25316@item ENFILE
0ce1b118
CV
25317The limit on the total number of files open on the system
25318has been reached.
25319
b383017d 25320@item EINTR
0ce1b118
CV
25321The call was interrupted by the user.
25322@end table
25323
fc320d37
SL
25324@end table
25325
0ce1b118
CV
25326@node close
25327@unnumberedsubsubsec close
25328@cindex close, file-i/o system call
25329
fc320d37
SL
25330@table @asis
25331@item Synopsis:
0ce1b118 25332@smallexample
0ce1b118 25333int close(int fd);
fc320d37 25334@end smallexample
0ce1b118 25335
fc320d37
SL
25336@item Request:
25337@samp{Fclose,@var{fd}}
0ce1b118 25338
fc320d37
SL
25339@item Return value:
25340@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25341
fc320d37 25342@item Errors:
0ce1b118
CV
25343
25344@table @code
b383017d 25345@item EBADF
fc320d37 25346@var{fd} isn't a valid open file descriptor.
0ce1b118 25347
b383017d 25348@item EINTR
0ce1b118
CV
25349The call was interrupted by the user.
25350@end table
25351
fc320d37
SL
25352@end table
25353
0ce1b118
CV
25354@node read
25355@unnumberedsubsubsec read
25356@cindex read, file-i/o system call
25357
fc320d37
SL
25358@table @asis
25359@item Synopsis:
0ce1b118 25360@smallexample
0ce1b118 25361int read(int fd, void *buf, unsigned int count);
fc320d37 25362@end smallexample
0ce1b118 25363
fc320d37
SL
25364@item Request:
25365@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25366
fc320d37 25367@item Return value:
0ce1b118
CV
25368On success, the number of bytes read is returned.
25369Zero indicates end of file. If count is zero, read
b383017d 25370returns zero as well. On error, -1 is returned.
0ce1b118 25371
fc320d37 25372@item Errors:
0ce1b118
CV
25373
25374@table @code
b383017d 25375@item EBADF
fc320d37 25376@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25377reading.
25378
b383017d 25379@item EFAULT
fc320d37 25380@var{bufptr} is an invalid pointer value.
0ce1b118 25381
b383017d 25382@item EINTR
0ce1b118
CV
25383The call was interrupted by the user.
25384@end table
25385
fc320d37
SL
25386@end table
25387
0ce1b118
CV
25388@node write
25389@unnumberedsubsubsec write
25390@cindex write, file-i/o system call
25391
fc320d37
SL
25392@table @asis
25393@item Synopsis:
0ce1b118 25394@smallexample
0ce1b118 25395int write(int fd, const void *buf, unsigned int count);
fc320d37 25396@end smallexample
0ce1b118 25397
fc320d37
SL
25398@item Request:
25399@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25400
fc320d37 25401@item Return value:
0ce1b118
CV
25402On success, the number of bytes written are returned.
25403Zero indicates nothing was written. On error, -1
25404is returned.
25405
fc320d37 25406@item Errors:
0ce1b118
CV
25407
25408@table @code
b383017d 25409@item EBADF
fc320d37 25410@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25411writing.
25412
b383017d 25413@item EFAULT
fc320d37 25414@var{bufptr} is an invalid pointer value.
0ce1b118 25415
b383017d 25416@item EFBIG
0ce1b118 25417An attempt was made to write a file that exceeds the
db2e3e2e 25418host-specific maximum file size allowed.
0ce1b118 25419
b383017d 25420@item ENOSPC
0ce1b118
CV
25421No space on device to write the data.
25422
b383017d 25423@item EINTR
0ce1b118
CV
25424The call was interrupted by the user.
25425@end table
25426
fc320d37
SL
25427@end table
25428
0ce1b118
CV
25429@node lseek
25430@unnumberedsubsubsec lseek
25431@cindex lseek, file-i/o system call
25432
fc320d37
SL
25433@table @asis
25434@item Synopsis:
0ce1b118 25435@smallexample
0ce1b118 25436long lseek (int fd, long offset, int flag);
0ce1b118
CV
25437@end smallexample
25438
fc320d37
SL
25439@item Request:
25440@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25441
25442@var{flag} is one of:
0ce1b118
CV
25443
25444@table @code
b383017d 25445@item SEEK_SET
fc320d37 25446The offset is set to @var{offset} bytes.
0ce1b118 25447
b383017d 25448@item SEEK_CUR
fc320d37 25449The offset is set to its current location plus @var{offset}
0ce1b118
CV
25450bytes.
25451
b383017d 25452@item SEEK_END
fc320d37 25453The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25454bytes.
25455@end table
25456
fc320d37 25457@item Return value:
0ce1b118
CV
25458On success, the resulting unsigned offset in bytes from
25459the beginning of the file is returned. Otherwise, a
25460value of -1 is returned.
25461
fc320d37 25462@item Errors:
0ce1b118
CV
25463
25464@table @code
b383017d 25465@item EBADF
fc320d37 25466@var{fd} is not a valid open file descriptor.
0ce1b118 25467
b383017d 25468@item ESPIPE
fc320d37 25469@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25470
b383017d 25471@item EINVAL
fc320d37 25472@var{flag} is not a proper value.
0ce1b118 25473
b383017d 25474@item EINTR
0ce1b118
CV
25475The call was interrupted by the user.
25476@end table
25477
fc320d37
SL
25478@end table
25479
0ce1b118
CV
25480@node rename
25481@unnumberedsubsubsec rename
25482@cindex rename, file-i/o system call
25483
fc320d37
SL
25484@table @asis
25485@item Synopsis:
0ce1b118 25486@smallexample
0ce1b118 25487int rename(const char *oldpath, const char *newpath);
fc320d37 25488@end smallexample
0ce1b118 25489
fc320d37
SL
25490@item Request:
25491@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25492
fc320d37 25493@item Return value:
0ce1b118
CV
25494On success, zero is returned. On error, -1 is returned.
25495
fc320d37 25496@item Errors:
0ce1b118
CV
25497
25498@table @code
b383017d 25499@item EISDIR
fc320d37 25500@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25501directory.
25502
b383017d 25503@item EEXIST
fc320d37 25504@var{newpath} is a non-empty directory.
0ce1b118 25505
b383017d 25506@item EBUSY
fc320d37 25507@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25508process.
25509
b383017d 25510@item EINVAL
0ce1b118
CV
25511An attempt was made to make a directory a subdirectory
25512of itself.
25513
b383017d 25514@item ENOTDIR
fc320d37
SL
25515A component used as a directory in @var{oldpath} or new
25516path is not a directory. Or @var{oldpath} is a directory
25517and @var{newpath} exists but is not a directory.
0ce1b118 25518
b383017d 25519@item EFAULT
fc320d37 25520@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25521
b383017d 25522@item EACCES
0ce1b118
CV
25523No access to the file or the path of the file.
25524
25525@item ENAMETOOLONG
b383017d 25526
fc320d37 25527@var{oldpath} or @var{newpath} was too long.
0ce1b118 25528
b383017d 25529@item ENOENT
fc320d37 25530A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25531
b383017d 25532@item EROFS
0ce1b118
CV
25533The file is on a read-only filesystem.
25534
b383017d 25535@item ENOSPC
0ce1b118
CV
25536The device containing the file has no room for the new
25537directory entry.
25538
b383017d 25539@item EINTR
0ce1b118
CV
25540The call was interrupted by the user.
25541@end table
25542
fc320d37
SL
25543@end table
25544
0ce1b118
CV
25545@node unlink
25546@unnumberedsubsubsec unlink
25547@cindex unlink, file-i/o system call
25548
fc320d37
SL
25549@table @asis
25550@item Synopsis:
0ce1b118 25551@smallexample
0ce1b118 25552int unlink(const char *pathname);
fc320d37 25553@end smallexample
0ce1b118 25554
fc320d37
SL
25555@item Request:
25556@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25557
fc320d37 25558@item Return value:
0ce1b118
CV
25559On success, zero is returned. On error, -1 is returned.
25560
fc320d37 25561@item Errors:
0ce1b118
CV
25562
25563@table @code
b383017d 25564@item EACCES
0ce1b118
CV
25565No access to the file or the path of the file.
25566
b383017d 25567@item EPERM
0ce1b118
CV
25568The system does not allow unlinking of directories.
25569
b383017d 25570@item EBUSY
fc320d37 25571The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25572being used by another process.
25573
b383017d 25574@item EFAULT
fc320d37 25575@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25576
25577@item ENAMETOOLONG
fc320d37 25578@var{pathname} was too long.
0ce1b118 25579
b383017d 25580@item ENOENT
fc320d37 25581A directory component in @var{pathname} does not exist.
0ce1b118 25582
b383017d 25583@item ENOTDIR
0ce1b118
CV
25584A component of the path is not a directory.
25585
b383017d 25586@item EROFS
0ce1b118
CV
25587The file is on a read-only filesystem.
25588
b383017d 25589@item EINTR
0ce1b118
CV
25590The call was interrupted by the user.
25591@end table
25592
fc320d37
SL
25593@end table
25594
0ce1b118
CV
25595@node stat/fstat
25596@unnumberedsubsubsec stat/fstat
25597@cindex fstat, file-i/o system call
25598@cindex stat, file-i/o system call
25599
fc320d37
SL
25600@table @asis
25601@item Synopsis:
0ce1b118 25602@smallexample
0ce1b118
CV
25603int stat(const char *pathname, struct stat *buf);
25604int fstat(int fd, struct stat *buf);
fc320d37 25605@end smallexample
0ce1b118 25606
fc320d37
SL
25607@item Request:
25608@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25609@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25610
fc320d37 25611@item Return value:
0ce1b118
CV
25612On success, zero is returned. On error, -1 is returned.
25613
fc320d37 25614@item Errors:
0ce1b118
CV
25615
25616@table @code
b383017d 25617@item EBADF
fc320d37 25618@var{fd} is not a valid open file.
0ce1b118 25619
b383017d 25620@item ENOENT
fc320d37 25621A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25622path is an empty string.
25623
b383017d 25624@item ENOTDIR
0ce1b118
CV
25625A component of the path is not a directory.
25626
b383017d 25627@item EFAULT
fc320d37 25628@var{pathnameptr} is an invalid pointer value.
0ce1b118 25629
b383017d 25630@item EACCES
0ce1b118
CV
25631No access to the file or the path of the file.
25632
25633@item ENAMETOOLONG
fc320d37 25634@var{pathname} was too long.
0ce1b118 25635
b383017d 25636@item EINTR
0ce1b118
CV
25637The call was interrupted by the user.
25638@end table
25639
fc320d37
SL
25640@end table
25641
0ce1b118
CV
25642@node gettimeofday
25643@unnumberedsubsubsec gettimeofday
25644@cindex gettimeofday, file-i/o system call
25645
fc320d37
SL
25646@table @asis
25647@item Synopsis:
0ce1b118 25648@smallexample
0ce1b118 25649int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25650@end smallexample
0ce1b118 25651
fc320d37
SL
25652@item Request:
25653@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25654
fc320d37 25655@item Return value:
0ce1b118
CV
25656On success, 0 is returned, -1 otherwise.
25657
fc320d37 25658@item Errors:
0ce1b118
CV
25659
25660@table @code
b383017d 25661@item EINVAL
fc320d37 25662@var{tz} is a non-NULL pointer.
0ce1b118 25663
b383017d 25664@item EFAULT
fc320d37
SL
25665@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25666@end table
25667
0ce1b118
CV
25668@end table
25669
25670@node isatty
25671@unnumberedsubsubsec isatty
25672@cindex isatty, file-i/o system call
25673
fc320d37
SL
25674@table @asis
25675@item Synopsis:
0ce1b118 25676@smallexample
0ce1b118 25677int isatty(int fd);
fc320d37 25678@end smallexample
0ce1b118 25679
fc320d37
SL
25680@item Request:
25681@samp{Fisatty,@var{fd}}
0ce1b118 25682
fc320d37
SL
25683@item Return value:
25684Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 25685
fc320d37 25686@item Errors:
0ce1b118
CV
25687
25688@table @code
b383017d 25689@item EINTR
0ce1b118
CV
25690The call was interrupted by the user.
25691@end table
25692
fc320d37
SL
25693@end table
25694
25695Note that the @code{isatty} call is treated as a special case: it returns
256961 to the target if the file descriptor is attached
25697to the @value{GDBN} console, 0 otherwise. Implementing through system calls
25698would require implementing @code{ioctl} and would be more complex than
25699needed.
25700
25701
0ce1b118
CV
25702@node system
25703@unnumberedsubsubsec system
25704@cindex system, file-i/o system call
25705
fc320d37
SL
25706@table @asis
25707@item Synopsis:
0ce1b118 25708@smallexample
0ce1b118 25709int system(const char *command);
fc320d37 25710@end smallexample
0ce1b118 25711
fc320d37
SL
25712@item Request:
25713@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 25714
fc320d37 25715@item Return value:
5600ea19
NS
25716If @var{len} is zero, the return value indicates whether a shell is
25717available. A zero return value indicates a shell is not available.
25718For non-zero @var{len}, the value returned is -1 on error and the
25719return status of the command otherwise. Only the exit status of the
25720command is returned, which is extracted from the host's @code{system}
25721return value by calling @code{WEXITSTATUS(retval)}. In case
25722@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 25723
fc320d37 25724@item Errors:
0ce1b118
CV
25725
25726@table @code
b383017d 25727@item EINTR
0ce1b118
CV
25728The call was interrupted by the user.
25729@end table
25730
fc320d37
SL
25731@end table
25732
25733@value{GDBN} takes over the full task of calling the necessary host calls
25734to perform the @code{system} call. The return value of @code{system} on
25735the host is simplified before it's returned
25736to the target. Any termination signal information from the child process
25737is discarded, and the return value consists
25738entirely of the exit status of the called command.
25739
25740Due to security concerns, the @code{system} call is by default refused
25741by @value{GDBN}. The user has to allow this call explicitly with the
25742@code{set remote system-call-allowed 1} command.
25743
25744@table @code
25745@item set remote system-call-allowed
25746@kindex set remote system-call-allowed
25747Control whether to allow the @code{system} calls in the File I/O
25748protocol for the remote target. The default is zero (disabled).
25749
25750@item show remote system-call-allowed
25751@kindex show remote system-call-allowed
25752Show whether the @code{system} calls are allowed in the File I/O
25753protocol.
25754@end table
25755
db2e3e2e
BW
25756@node Protocol-specific Representation of Datatypes
25757@subsection Protocol-specific Representation of Datatypes
25758@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
25759
25760@menu
79a6e687
BW
25761* Integral Datatypes::
25762* Pointer Values::
25763* Memory Transfer::
0ce1b118
CV
25764* struct stat::
25765* struct timeval::
25766@end menu
25767
79a6e687
BW
25768@node Integral Datatypes
25769@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
25770@cindex integral datatypes, in file-i/o protocol
25771
fc320d37
SL
25772The integral datatypes used in the system calls are @code{int},
25773@code{unsigned int}, @code{long}, @code{unsigned long},
25774@code{mode_t}, and @code{time_t}.
0ce1b118 25775
fc320d37 25776@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
25777implemented as 32 bit values in this protocol.
25778
fc320d37 25779@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 25780
0ce1b118
CV
25781@xref{Limits}, for corresponding MIN and MAX values (similar to those
25782in @file{limits.h}) to allow range checking on host and target.
25783
25784@code{time_t} datatypes are defined as seconds since the Epoch.
25785
25786All integral datatypes transferred as part of a memory read or write of a
25787structured datatype e.g.@: a @code{struct stat} have to be given in big endian
25788byte order.
25789
79a6e687
BW
25790@node Pointer Values
25791@unnumberedsubsubsec Pointer Values
0ce1b118
CV
25792@cindex pointer values, in file-i/o protocol
25793
25794Pointers to target data are transmitted as they are. An exception
25795is made for pointers to buffers for which the length isn't
25796transmitted as part of the function call, namely strings. Strings
25797are transmitted as a pointer/length pair, both as hex values, e.g.@:
25798
25799@smallexample
25800@code{1aaf/12}
25801@end smallexample
25802
25803@noindent
25804which is a pointer to data of length 18 bytes at position 0x1aaf.
25805The length is defined as the full string length in bytes, including
fc320d37
SL
25806the trailing null byte. For example, the string @code{"hello world"}
25807at address 0x123456 is transmitted as
0ce1b118
CV
25808
25809@smallexample
fc320d37 25810@code{123456/d}
0ce1b118
CV
25811@end smallexample
25812
79a6e687
BW
25813@node Memory Transfer
25814@unnumberedsubsubsec Memory Transfer
fc320d37
SL
25815@cindex memory transfer, in file-i/o protocol
25816
25817Structured data which is transferred using a memory read or write (for
db2e3e2e 25818example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
25819with all scalar multibyte datatypes being big endian. Translation to
25820this representation needs to be done both by the target before the @code{F}
25821packet is sent, and by @value{GDBN} before
25822it transfers memory to the target. Transferred pointers to structured
25823data should point to the already-coerced data at any time.
0ce1b118 25824
0ce1b118
CV
25825
25826@node struct stat
25827@unnumberedsubsubsec struct stat
25828@cindex struct stat, in file-i/o protocol
25829
fc320d37
SL
25830The buffer of type @code{struct stat} used by the target and @value{GDBN}
25831is defined as follows:
0ce1b118
CV
25832
25833@smallexample
25834struct stat @{
25835 unsigned int st_dev; /* device */
25836 unsigned int st_ino; /* inode */
25837 mode_t st_mode; /* protection */
25838 unsigned int st_nlink; /* number of hard links */
25839 unsigned int st_uid; /* user ID of owner */
25840 unsigned int st_gid; /* group ID of owner */
25841 unsigned int st_rdev; /* device type (if inode device) */
25842 unsigned long st_size; /* total size, in bytes */
25843 unsigned long st_blksize; /* blocksize for filesystem I/O */
25844 unsigned long st_blocks; /* number of blocks allocated */
25845 time_t st_atime; /* time of last access */
25846 time_t st_mtime; /* time of last modification */
25847 time_t st_ctime; /* time of last change */
25848@};
25849@end smallexample
25850
fc320d37 25851The integral datatypes conform to the definitions given in the
79a6e687 25852appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
25853structure is of size 64 bytes.
25854
25855The values of several fields have a restricted meaning and/or
25856range of values.
25857
fc320d37 25858@table @code
0ce1b118 25859
fc320d37
SL
25860@item st_dev
25861A value of 0 represents a file, 1 the console.
0ce1b118 25862
fc320d37
SL
25863@item st_ino
25864No valid meaning for the target. Transmitted unchanged.
0ce1b118 25865
fc320d37
SL
25866@item st_mode
25867Valid mode bits are described in @ref{Constants}. Any other
25868bits have currently no meaning for the target.
0ce1b118 25869
fc320d37
SL
25870@item st_uid
25871@itemx st_gid
25872@itemx st_rdev
25873No valid meaning for the target. Transmitted unchanged.
0ce1b118 25874
fc320d37
SL
25875@item st_atime
25876@itemx st_mtime
25877@itemx st_ctime
25878These values have a host and file system dependent
25879accuracy. Especially on Windows hosts, the file system may not
25880support exact timing values.
25881@end table
0ce1b118 25882
fc320d37
SL
25883The target gets a @code{struct stat} of the above representation and is
25884responsible for coercing it to the target representation before
0ce1b118
CV
25885continuing.
25886
fc320d37
SL
25887Note that due to size differences between the host, target, and protocol
25888representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
25889get truncated on the target.
25890
25891@node struct timeval
25892@unnumberedsubsubsec struct timeval
25893@cindex struct timeval, in file-i/o protocol
25894
fc320d37 25895The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
25896is defined as follows:
25897
25898@smallexample
b383017d 25899struct timeval @{
0ce1b118
CV
25900 time_t tv_sec; /* second */
25901 long tv_usec; /* microsecond */
25902@};
25903@end smallexample
25904
fc320d37 25905The integral datatypes conform to the definitions given in the
79a6e687 25906appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
25907structure is of size 8 bytes.
25908
25909@node Constants
25910@subsection Constants
25911@cindex constants, in file-i/o protocol
25912
25913The following values are used for the constants inside of the
fc320d37 25914protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
25915values before and after the call as needed.
25916
25917@menu
79a6e687
BW
25918* Open Flags::
25919* mode_t Values::
25920* Errno Values::
25921* Lseek Flags::
0ce1b118
CV
25922* Limits::
25923@end menu
25924
79a6e687
BW
25925@node Open Flags
25926@unnumberedsubsubsec Open Flags
0ce1b118
CV
25927@cindex open flags, in file-i/o protocol
25928
25929All values are given in hexadecimal representation.
25930
25931@smallexample
25932 O_RDONLY 0x0
25933 O_WRONLY 0x1
25934 O_RDWR 0x2
25935 O_APPEND 0x8
25936 O_CREAT 0x200
25937 O_TRUNC 0x400
25938 O_EXCL 0x800
25939@end smallexample
25940
79a6e687
BW
25941@node mode_t Values
25942@unnumberedsubsubsec mode_t Values
0ce1b118
CV
25943@cindex mode_t values, in file-i/o protocol
25944
25945All values are given in octal representation.
25946
25947@smallexample
25948 S_IFREG 0100000
25949 S_IFDIR 040000
25950 S_IRUSR 0400
25951 S_IWUSR 0200
25952 S_IXUSR 0100
25953 S_IRGRP 040
25954 S_IWGRP 020
25955 S_IXGRP 010
25956 S_IROTH 04
25957 S_IWOTH 02
25958 S_IXOTH 01
25959@end smallexample
25960
79a6e687
BW
25961@node Errno Values
25962@unnumberedsubsubsec Errno Values
0ce1b118
CV
25963@cindex errno values, in file-i/o protocol
25964
25965All values are given in decimal representation.
25966
25967@smallexample
25968 EPERM 1
25969 ENOENT 2
25970 EINTR 4
25971 EBADF 9
25972 EACCES 13
25973 EFAULT 14
25974 EBUSY 16
25975 EEXIST 17
25976 ENODEV 19
25977 ENOTDIR 20
25978 EISDIR 21
25979 EINVAL 22
25980 ENFILE 23
25981 EMFILE 24
25982 EFBIG 27
25983 ENOSPC 28
25984 ESPIPE 29
25985 EROFS 30
25986 ENAMETOOLONG 91
25987 EUNKNOWN 9999
25988@end smallexample
25989
fc320d37 25990 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
25991 any error value not in the list of supported error numbers.
25992
79a6e687
BW
25993@node Lseek Flags
25994@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
25995@cindex lseek flags, in file-i/o protocol
25996
25997@smallexample
25998 SEEK_SET 0
25999 SEEK_CUR 1
26000 SEEK_END 2
26001@end smallexample
26002
26003@node Limits
26004@unnumberedsubsubsec Limits
26005@cindex limits, in file-i/o protocol
26006
26007All values are given in decimal representation.
26008
26009@smallexample
26010 INT_MIN -2147483648
26011 INT_MAX 2147483647
26012 UINT_MAX 4294967295
26013 LONG_MIN -9223372036854775808
26014 LONG_MAX 9223372036854775807
26015 ULONG_MAX 18446744073709551615
26016@end smallexample
26017
26018@node File-I/O Examples
26019@subsection File-I/O Examples
26020@cindex file-i/o examples
26021
26022Example sequence of a write call, file descriptor 3, buffer is at target
26023address 0x1234, 6 bytes should be written:
26024
26025@smallexample
26026<- @code{Fwrite,3,1234,6}
26027@emph{request memory read from target}
26028-> @code{m1234,6}
26029<- XXXXXX
26030@emph{return "6 bytes written"}
26031-> @code{F6}
26032@end smallexample
26033
26034Example sequence of a read call, file descriptor 3, buffer is at target
26035address 0x1234, 6 bytes should be read:
26036
26037@smallexample
26038<- @code{Fread,3,1234,6}
26039@emph{request memory write to target}
26040-> @code{X1234,6:XXXXXX}
26041@emph{return "6 bytes read"}
26042-> @code{F6}
26043@end smallexample
26044
26045Example sequence of a read call, call fails on the host due to invalid
fc320d37 26046file descriptor (@code{EBADF}):
0ce1b118
CV
26047
26048@smallexample
26049<- @code{Fread,3,1234,6}
26050-> @code{F-1,9}
26051@end smallexample
26052
c8aa23ab 26053Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26054host is called:
26055
26056@smallexample
26057<- @code{Fread,3,1234,6}
26058-> @code{F-1,4,C}
26059<- @code{T02}
26060@end smallexample
26061
c8aa23ab 26062Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26063host is called:
26064
26065@smallexample
26066<- @code{Fread,3,1234,6}
26067-> @code{X1234,6:XXXXXX}
26068<- @code{T02}
26069@end smallexample
26070
cfa9d6d9
DJ
26071@node Library List Format
26072@section Library List Format
26073@cindex library list format, remote protocol
26074
26075On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26076same process as your application to manage libraries. In this case,
26077@value{GDBN} can use the loader's symbol table and normal memory
26078operations to maintain a list of shared libraries. On other
26079platforms, the operating system manages loaded libraries.
26080@value{GDBN} can not retrieve the list of currently loaded libraries
26081through memory operations, so it uses the @samp{qXfer:libraries:read}
26082packet (@pxref{qXfer library list read}) instead. The remote stub
26083queries the target's operating system and reports which libraries
26084are loaded.
26085
26086The @samp{qXfer:libraries:read} packet returns an XML document which
26087lists loaded libraries and their offsets. Each library has an
26088associated name and one or more segment base addresses, which report
26089where the library was loaded in memory. The segment bases are start
26090addresses, not relocation offsets; they do not depend on the library's
26091link-time base addresses.
26092
9cceb671
DJ
26093@value{GDBN} must be linked with the Expat library to support XML
26094library lists. @xref{Expat}.
26095
cfa9d6d9
DJ
26096A simple memory map, with one loaded library relocated by a single
26097offset, looks like this:
26098
26099@smallexample
26100<library-list>
26101 <library name="/lib/libc.so.6">
26102 <segment address="0x10000000"/>
26103 </library>
26104</library-list>
26105@end smallexample
26106
26107The format of a library list is described by this DTD:
26108
26109@smallexample
26110<!-- library-list: Root element with versioning -->
26111<!ELEMENT library-list (library)*>
26112<!ATTLIST library-list version CDATA #FIXED "1.0">
26113<!ELEMENT library (segment)*>
26114<!ATTLIST library name CDATA #REQUIRED>
26115<!ELEMENT segment EMPTY>
26116<!ATTLIST segment address CDATA #REQUIRED>
26117@end smallexample
26118
79a6e687
BW
26119@node Memory Map Format
26120@section Memory Map Format
68437a39
DJ
26121@cindex memory map format
26122
26123To be able to write into flash memory, @value{GDBN} needs to obtain a
26124memory map from the target. This section describes the format of the
26125memory map.
26126
26127The memory map is obtained using the @samp{qXfer:memory-map:read}
26128(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26129lists memory regions.
26130
26131@value{GDBN} must be linked with the Expat library to support XML
26132memory maps. @xref{Expat}.
26133
26134The top-level structure of the document is shown below:
68437a39
DJ
26135
26136@smallexample
26137<?xml version="1.0"?>
26138<!DOCTYPE memory-map
26139 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26140 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26141<memory-map>
26142 region...
26143</memory-map>
26144@end smallexample
26145
26146Each region can be either:
26147
26148@itemize
26149
26150@item
26151A region of RAM starting at @var{addr} and extending for @var{length}
26152bytes from there:
26153
26154@smallexample
26155<memory type="ram" start="@var{addr}" length="@var{length}"/>
26156@end smallexample
26157
26158
26159@item
26160A region of read-only memory:
26161
26162@smallexample
26163<memory type="rom" start="@var{addr}" length="@var{length}"/>
26164@end smallexample
26165
26166
26167@item
26168A region of flash memory, with erasure blocks @var{blocksize}
26169bytes in length:
26170
26171@smallexample
26172<memory type="flash" start="@var{addr}" length="@var{length}">
26173 <property name="blocksize">@var{blocksize}</property>
26174</memory>
26175@end smallexample
26176
26177@end itemize
26178
26179Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26180by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26181packets to write to addresses in such ranges.
26182
26183The formal DTD for memory map format is given below:
26184
26185@smallexample
26186<!-- ................................................... -->
26187<!-- Memory Map XML DTD ................................ -->
26188<!-- File: memory-map.dtd .............................. -->
26189<!-- .................................... .............. -->
26190<!-- memory-map.dtd -->
26191<!-- memory-map: Root element with versioning -->
26192<!ELEMENT memory-map (memory | property)>
26193<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26194<!ELEMENT memory (property)>
26195<!-- memory: Specifies a memory region,
26196 and its type, or device. -->
26197<!ATTLIST memory type CDATA #REQUIRED
26198 start CDATA #REQUIRED
26199 length CDATA #REQUIRED
26200 device CDATA #IMPLIED>
26201<!-- property: Generic attribute tag -->
26202<!ELEMENT property (#PCDATA | property)*>
26203<!ATTLIST property name CDATA #REQUIRED>
26204@end smallexample
26205
f418dd93
DJ
26206@include agentexpr.texi
26207
23181151
DJ
26208@node Target Descriptions
26209@appendix Target Descriptions
26210@cindex target descriptions
26211
26212@strong{Warning:} target descriptions are still under active development,
26213and the contents and format may change between @value{GDBN} releases.
26214The format is expected to stabilize in the future.
26215
26216One of the challenges of using @value{GDBN} to debug embedded systems
26217is that there are so many minor variants of each processor
26218architecture in use. It is common practice for vendors to start with
26219a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26220and then make changes to adapt it to a particular market niche. Some
26221architectures have hundreds of variants, available from dozens of
26222vendors. This leads to a number of problems:
26223
26224@itemize @bullet
26225@item
26226With so many different customized processors, it is difficult for
26227the @value{GDBN} maintainers to keep up with the changes.
26228@item
26229Since individual variants may have short lifetimes or limited
26230audiences, it may not be worthwhile to carry information about every
26231variant in the @value{GDBN} source tree.
26232@item
26233When @value{GDBN} does support the architecture of the embedded system
26234at hand, the task of finding the correct architecture name to give the
26235@command{set architecture} command can be error-prone.
26236@end itemize
26237
26238To address these problems, the @value{GDBN} remote protocol allows a
26239target system to not only identify itself to @value{GDBN}, but to
26240actually describe its own features. This lets @value{GDBN} support
26241processor variants it has never seen before --- to the extent that the
26242descriptions are accurate, and that @value{GDBN} understands them.
26243
9cceb671
DJ
26244@value{GDBN} must be linked with the Expat library to support XML
26245target descriptions. @xref{Expat}.
123dc839 26246
23181151
DJ
26247@menu
26248* Retrieving Descriptions:: How descriptions are fetched from a target.
26249* Target Description Format:: The contents of a target description.
123dc839
DJ
26250* Predefined Target Types:: Standard types available for target
26251 descriptions.
26252* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26253@end menu
26254
26255@node Retrieving Descriptions
26256@section Retrieving Descriptions
26257
26258Target descriptions can be read from the target automatically, or
26259specified by the user manually. The default behavior is to read the
26260description from the target. @value{GDBN} retrieves it via the remote
26261protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26262qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26263@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26264XML document, of the form described in @ref{Target Description
26265Format}.
26266
26267Alternatively, you can specify a file to read for the target description.
26268If a file is set, the target will not be queried. The commands to
26269specify a file are:
26270
26271@table @code
26272@cindex set tdesc filename
26273@item set tdesc filename @var{path}
26274Read the target description from @var{path}.
26275
26276@cindex unset tdesc filename
26277@item unset tdesc filename
26278Do not read the XML target description from a file. @value{GDBN}
26279will use the description supplied by the current target.
26280
26281@cindex show tdesc filename
26282@item show tdesc filename
26283Show the filename to read for a target description, if any.
26284@end table
26285
26286
26287@node Target Description Format
26288@section Target Description Format
26289@cindex target descriptions, XML format
26290
26291A target description annex is an @uref{http://www.w3.org/XML/, XML}
26292document which complies with the Document Type Definition provided in
26293the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26294means you can use generally available tools like @command{xmllint} to
26295check that your feature descriptions are well-formed and valid.
26296However, to help people unfamiliar with XML write descriptions for
26297their targets, we also describe the grammar here.
26298
123dc839
DJ
26299Target descriptions can identify the architecture of the remote target
26300and (for some architectures) provide information about custom register
26301sets. @value{GDBN} can use this information to autoconfigure for your
26302target, or to warn you if you connect to an unsupported target.
23181151
DJ
26303
26304Here is a simple target description:
26305
123dc839 26306@smallexample
1780a0ed 26307<target version="1.0">
23181151
DJ
26308 <architecture>i386:x86-64</architecture>
26309</target>
123dc839 26310@end smallexample
23181151
DJ
26311
26312@noindent
26313This minimal description only says that the target uses
26314the x86-64 architecture.
26315
123dc839
DJ
26316A target description has the following overall form, with [ ] marking
26317optional elements and @dots{} marking repeatable elements. The elements
26318are explained further below.
23181151 26319
123dc839 26320@smallexample
23181151
DJ
26321<?xml version="1.0"?>
26322<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26323<target version="1.0">
123dc839
DJ
26324 @r{[}@var{architecture}@r{]}
26325 @r{[}@var{feature}@dots{}@r{]}
23181151 26326</target>
123dc839 26327@end smallexample
23181151
DJ
26328
26329@noindent
26330The description is generally insensitive to whitespace and line
26331breaks, under the usual common-sense rules. The XML version
26332declaration and document type declaration can generally be omitted
26333(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26334useful for XML validation tools. The @samp{version} attribute for
26335@samp{<target>} may also be omitted, but we recommend
26336including it; if future versions of @value{GDBN} use an incompatible
26337revision of @file{gdb-target.dtd}, they will detect and report
26338the version mismatch.
23181151 26339
108546a0
DJ
26340@subsection Inclusion
26341@cindex target descriptions, inclusion
26342@cindex XInclude
26343@ifnotinfo
26344@cindex <xi:include>
26345@end ifnotinfo
26346
26347It can sometimes be valuable to split a target description up into
26348several different annexes, either for organizational purposes, or to
26349share files between different possible target descriptions. You can
26350divide a description into multiple files by replacing any element of
26351the target description with an inclusion directive of the form:
26352
123dc839 26353@smallexample
108546a0 26354<xi:include href="@var{document}"/>
123dc839 26355@end smallexample
108546a0
DJ
26356
26357@noindent
26358When @value{GDBN} encounters an element of this form, it will retrieve
26359the named XML @var{document}, and replace the inclusion directive with
26360the contents of that document. If the current description was read
26361using @samp{qXfer}, then so will be the included document;
26362@var{document} will be interpreted as the name of an annex. If the
26363current description was read from a file, @value{GDBN} will look for
26364@var{document} as a file in the same directory where it found the
26365original description.
26366
123dc839
DJ
26367@subsection Architecture
26368@cindex <architecture>
26369
26370An @samp{<architecture>} element has this form:
26371
26372@smallexample
26373 <architecture>@var{arch}</architecture>
26374@end smallexample
26375
26376@var{arch} is an architecture name from the same selection
26377accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26378Debugging Target}).
26379
26380@subsection Features
26381@cindex <feature>
26382
26383Each @samp{<feature>} describes some logical portion of the target
26384system. Features are currently used to describe available CPU
26385registers and the types of their contents. A @samp{<feature>} element
26386has this form:
26387
26388@smallexample
26389<feature name="@var{name}">
26390 @r{[}@var{type}@dots{}@r{]}
26391 @var{reg}@dots{}
26392</feature>
26393@end smallexample
26394
26395@noindent
26396Each feature's name should be unique within the description. The name
26397of a feature does not matter unless @value{GDBN} has some special
26398knowledge of the contents of that feature; if it does, the feature
26399should have its standard name. @xref{Standard Target Features}.
26400
26401@subsection Types
26402
26403Any register's value is a collection of bits which @value{GDBN} must
26404interpret. The default interpretation is a two's complement integer,
26405but other types can be requested by name in the register description.
26406Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26407Target Types}), and the description can define additional composite types.
26408
26409Each type element must have an @samp{id} attribute, which gives
26410a unique (within the containing @samp{<feature>}) name to the type.
26411Types must be defined before they are used.
26412
26413@cindex <vector>
26414Some targets offer vector registers, which can be treated as arrays
26415of scalar elements. These types are written as @samp{<vector>} elements,
26416specifying the array element type, @var{type}, and the number of elements,
26417@var{count}:
26418
26419@smallexample
26420<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26421@end smallexample
26422
26423@cindex <union>
26424If a register's value is usefully viewed in multiple ways, define it
26425with a union type containing the useful representations. The
26426@samp{<union>} element contains one or more @samp{<field>} elements,
26427each of which has a @var{name} and a @var{type}:
26428
26429@smallexample
26430<union id="@var{id}">
26431 <field name="@var{name}" type="@var{type}"/>
26432 @dots{}
26433</union>
26434@end smallexample
26435
26436@subsection Registers
26437@cindex <reg>
26438
26439Each register is represented as an element with this form:
26440
26441@smallexample
26442<reg name="@var{name}"
26443 bitsize="@var{size}"
26444 @r{[}regnum="@var{num}"@r{]}
26445 @r{[}save-restore="@var{save-restore}"@r{]}
26446 @r{[}type="@var{type}"@r{]}
26447 @r{[}group="@var{group}"@r{]}/>
26448@end smallexample
26449
26450@noindent
26451The components are as follows:
26452
26453@table @var
26454
26455@item name
26456The register's name; it must be unique within the target description.
26457
26458@item bitsize
26459The register's size, in bits.
26460
26461@item regnum
26462The register's number. If omitted, a register's number is one greater
26463than that of the previous register (either in the current feature or in
26464a preceeding feature); the first register in the target description
26465defaults to zero. This register number is used to read or write
26466the register; e.g.@: it is used in the remote @code{p} and @code{P}
26467packets, and registers appear in the @code{g} and @code{G} packets
26468in order of increasing register number.
26469
26470@item save-restore
26471Whether the register should be preserved across inferior function
26472calls; this must be either @code{yes} or @code{no}. The default is
26473@code{yes}, which is appropriate for most registers except for
26474some system control registers; this is not related to the target's
26475ABI.
26476
26477@item type
26478The type of the register. @var{type} may be a predefined type, a type
26479defined in the current feature, or one of the special types @code{int}
26480and @code{float}. @code{int} is an integer type of the correct size
26481for @var{bitsize}, and @code{float} is a floating point type (in the
26482architecture's normal floating point format) of the correct size for
26483@var{bitsize}. The default is @code{int}.
26484
26485@item group
26486The register group to which this register belongs. @var{group} must
26487be either @code{general}, @code{float}, or @code{vector}. If no
26488@var{group} is specified, @value{GDBN} will not display the register
26489in @code{info registers}.
26490
26491@end table
26492
26493@node Predefined Target Types
26494@section Predefined Target Types
26495@cindex target descriptions, predefined types
26496
26497Type definitions in the self-description can build up composite types
26498from basic building blocks, but can not define fundamental types. Instead,
26499standard identifiers are provided by @value{GDBN} for the fundamental
26500types. The currently supported types are:
26501
26502@table @code
26503
26504@item int8
26505@itemx int16
26506@itemx int32
26507@itemx int64
7cc46491 26508@itemx int128
123dc839
DJ
26509Signed integer types holding the specified number of bits.
26510
26511@item uint8
26512@itemx uint16
26513@itemx uint32
26514@itemx uint64
7cc46491 26515@itemx uint128
123dc839
DJ
26516Unsigned integer types holding the specified number of bits.
26517
26518@item code_ptr
26519@itemx data_ptr
26520Pointers to unspecified code and data. The program counter and
26521any dedicated return address register may be marked as code
26522pointers; printing a code pointer converts it into a symbolic
26523address. The stack pointer and any dedicated address registers
26524may be marked as data pointers.
26525
6e3bbd1a
PB
26526@item ieee_single
26527Single precision IEEE floating point.
26528
26529@item ieee_double
26530Double precision IEEE floating point.
26531
123dc839
DJ
26532@item arm_fpa_ext
26533The 12-byte extended precision format used by ARM FPA registers.
26534
26535@end table
26536
26537@node Standard Target Features
26538@section Standard Target Features
26539@cindex target descriptions, standard features
26540
26541A target description must contain either no registers or all the
26542target's registers. If the description contains no registers, then
26543@value{GDBN} will assume a default register layout, selected based on
26544the architecture. If the description contains any registers, the
26545default layout will not be used; the standard registers must be
26546described in the target description, in such a way that @value{GDBN}
26547can recognize them.
26548
26549This is accomplished by giving specific names to feature elements
26550which contain standard registers. @value{GDBN} will look for features
26551with those names and verify that they contain the expected registers;
26552if any known feature is missing required registers, or if any required
26553feature is missing, @value{GDBN} will reject the target
26554description. You can add additional registers to any of the
26555standard features --- @value{GDBN} will display them just as if
26556they were added to an unrecognized feature.
26557
26558This section lists the known features and their expected contents.
26559Sample XML documents for these features are included in the
26560@value{GDBN} source tree, in the directory @file{gdb/features}.
26561
26562Names recognized by @value{GDBN} should include the name of the
26563company or organization which selected the name, and the overall
26564architecture to which the feature applies; so e.g.@: the feature
26565containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26566
ff6f572f
DJ
26567The names of registers are not case sensitive for the purpose
26568of recognizing standard features, but @value{GDBN} will only display
26569registers using the capitalization used in the description.
26570
e9c17194
VP
26571@menu
26572* ARM Features::
26573* M68K Features::
26574@end menu
26575
26576
26577@node ARM Features
123dc839
DJ
26578@subsection ARM Features
26579@cindex target descriptions, ARM features
26580
26581The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26582It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26583@samp{lr}, @samp{pc}, and @samp{cpsr}.
26584
26585The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26586should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26587
ff6f572f
DJ
26588The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26589it should contain at least registers @samp{wR0} through @samp{wR15} and
26590@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26591@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26592
f8b73d13
DJ
26593@subsection MIPS Features
26594@cindex target descriptions, MIPS features
26595
26596The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26597It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26598@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26599on the target.
26600
26601The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26602contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26603registers. They may be 32-bit or 64-bit depending on the target.
26604
26605The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26606it may be optional in a future version of @value{GDBN}. It should
26607contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26608@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26609
822b6570
DJ
26610The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26611contain a single register, @samp{restart}, which is used by the
26612Linux kernel to control restartable syscalls.
26613
e9c17194
VP
26614@node M68K Features
26615@subsection M68K Features
26616@cindex target descriptions, M68K features
26617
26618@table @code
26619@item @samp{org.gnu.gdb.m68k.core}
26620@itemx @samp{org.gnu.gdb.coldfire.core}
26621@itemx @samp{org.gnu.gdb.fido.core}
26622One of those features must be always present.
26623The feature that is present determines which flavor of m86k is
26624used. The feature that is present should contain registers
26625@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26626@samp{sp}, @samp{ps} and @samp{pc}.
26627
26628@item @samp{org.gnu.gdb.coldfire.fp}
26629This feature is optional. If present, it should contain registers
26630@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26631@samp{fpiaddr}.
26632@end table
26633
7cc46491
DJ
26634@subsection PowerPC Features
26635@cindex target descriptions, PowerPC features
26636
26637The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
26638targets. It should contain registers @samp{r0} through @samp{r31},
26639@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
26640@samp{xer}. They may be 32-bit or 64-bit depending on the target.
26641
26642The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
26643contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
26644
26645The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
26646contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
26647and @samp{vrsave}.
26648
26649The @samp{org.gnu.gdb.power.spe} feature is optional. It should
26650contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
26651@samp{spefscr}. SPE targets should provide 32-bit registers in
26652@samp{org.gnu.gdb.power.core} and provide the upper halves in
26653@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
26654these to present registers @samp{ev0} through @samp{ev31} to the
26655user.
26656
aab4e0ec 26657@include gpl.texi
eb12ee30 26658
2154891a 26659@raisesections
6826cf00 26660@include fdl.texi
2154891a 26661@lowersections
6826cf00 26662
6d2ebf8b 26663@node Index
c906108c
SS
26664@unnumbered Index
26665
26666@printindex cp
26667
26668@tex
26669% I think something like @colophon should be in texinfo. In the
26670% meantime:
26671\long\def\colophon{\hbox to0pt{}\vfill
26672\centerline{The body of this manual is set in}
26673\centerline{\fontname\tenrm,}
26674\centerline{with headings in {\bf\fontname\tenbf}}
26675\centerline{and examples in {\tt\fontname\tentt}.}
26676\centerline{{\it\fontname\tenit\/},}
26677\centerline{{\bf\fontname\tenbf}, and}
26678\centerline{{\sl\fontname\tensl\/}}
26679\centerline{are used for emphasis.}\vfill}
26680\page\colophon
26681% Blame: doc@cygnus.com, 1991.
26682@end tex
26683
c906108c 26684@bye
This page took 4.07425 seconds and 4 git commands to generate.