* options.h (class General_options): Add --noinhibit-exec option.
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
cda4ce5a 1654program. For example, you can show the arguments passed to a function
c906108c
SS
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
8edfe269
DJ
1821that process run your program. In some environments without processes,
1822@code{run} jumps to the start of your program. Other targets,
1823like @samp{remote}, are always running. If you get an error
1824message like this one:
1825
1826@smallexample
1827The "remote" target does not support "run".
1828Try "help target" or "continue".
1829@end smallexample
1830
1831@noindent
1832then use @code{continue} to run your program. You may need @code{load}
1833first (@pxref{load}).
c906108c
SS
1834
1835The execution of a program is affected by certain information it
1836receives from its superior. @value{GDBN} provides ways to specify this
1837information, which you must do @emph{before} starting your program. (You
1838can change it after starting your program, but such changes only affect
1839your program the next time you start it.) This information may be
1840divided into four categories:
1841
1842@table @asis
1843@item The @emph{arguments.}
1844Specify the arguments to give your program as the arguments of the
1845@code{run} command. If a shell is available on your target, the shell
1846is used to pass the arguments, so that you may use normal conventions
1847(such as wildcard expansion or variable substitution) in describing
1848the arguments.
1849In Unix systems, you can control which shell is used with the
1850@code{SHELL} environment variable.
79a6e687 1851@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1852
1853@item The @emph{environment.}
1854Your program normally inherits its environment from @value{GDBN}, but you can
1855use the @value{GDBN} commands @code{set environment} and @code{unset
1856environment} to change parts of the environment that affect
79a6e687 1857your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1858
1859@item The @emph{working directory.}
1860Your program inherits its working directory from @value{GDBN}. You can set
1861the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1862@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1863
1864@item The @emph{standard input and output.}
1865Your program normally uses the same device for standard input and
1866standard output as @value{GDBN} is using. You can redirect input and output
1867in the @code{run} command line, or you can use the @code{tty} command to
1868set a different device for your program.
79a6e687 1869@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1870
1871@cindex pipes
1872@emph{Warning:} While input and output redirection work, you cannot use
1873pipes to pass the output of the program you are debugging to another
1874program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1875wrong program.
1876@end table
c906108c
SS
1877
1878When you issue the @code{run} command, your program begins to execute
79a6e687 1879immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1880of how to arrange for your program to stop. Once your program has
1881stopped, you may call functions in your program, using the @code{print}
1882or @code{call} commands. @xref{Data, ,Examining Data}.
1883
1884If the modification time of your symbol file has changed since the last
1885time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1886table, and reads it again. When it does this, @value{GDBN} tries to retain
1887your current breakpoints.
1888
4e8b0763
JB
1889@table @code
1890@kindex start
1891@item start
1892@cindex run to main procedure
1893The name of the main procedure can vary from language to language.
1894With C or C@t{++}, the main procedure name is always @code{main}, but
1895other languages such as Ada do not require a specific name for their
1896main procedure. The debugger provides a convenient way to start the
1897execution of the program and to stop at the beginning of the main
1898procedure, depending on the language used.
1899
1900The @samp{start} command does the equivalent of setting a temporary
1901breakpoint at the beginning of the main procedure and then invoking
1902the @samp{run} command.
1903
f018e82f
EZ
1904@cindex elaboration phase
1905Some programs contain an @dfn{elaboration} phase where some startup code is
1906executed before the main procedure is called. This depends on the
1907languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1908constructors for static and global objects are executed before
1909@code{main} is called. It is therefore possible that the debugger stops
1910before reaching the main procedure. However, the temporary breakpoint
1911will remain to halt execution.
1912
1913Specify the arguments to give to your program as arguments to the
1914@samp{start} command. These arguments will be given verbatim to the
1915underlying @samp{run} command. Note that the same arguments will be
1916reused if no argument is provided during subsequent calls to
1917@samp{start} or @samp{run}.
1918
1919It is sometimes necessary to debug the program during elaboration. In
1920these cases, using the @code{start} command would stop the execution of
1921your program too late, as the program would have already completed the
1922elaboration phase. Under these circumstances, insert breakpoints in your
1923elaboration code before running your program.
ccd213ac
DJ
1924
1925@kindex set exec-wrapper
1926@item set exec-wrapper @var{wrapper}
1927@itemx show exec-wrapper
1928@itemx unset exec-wrapper
1929When @samp{exec-wrapper} is set, the specified wrapper is used to
1930launch programs for debugging. @value{GDBN} starts your program
1931with a shell command of the form @kbd{exec @var{wrapper}
1932@var{program}}. Quoting is added to @var{program} and its
1933arguments, but not to @var{wrapper}, so you should add quotes if
1934appropriate for your shell. The wrapper runs until it executes
1935your program, and then @value{GDBN} takes control.
1936
1937You can use any program that eventually calls @code{execve} with
1938its arguments as a wrapper. Several standard Unix utilities do
1939this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
1940with @code{exec "$@@"} will also work.
1941
1942For example, you can use @code{env} to pass an environment variable to
1943the debugged program, without setting the variable in your shell's
1944environment:
1945
1946@smallexample
1947(@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
1948(@value{GDBP}) run
1949@end smallexample
1950
1951This command is available when debugging locally on most targets, excluding
1952@sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
1953
4e8b0763
JB
1954@end table
1955
6d2ebf8b 1956@node Arguments
79a6e687 1957@section Your Program's Arguments
c906108c
SS
1958
1959@cindex arguments (to your program)
1960The arguments to your program can be specified by the arguments of the
5d161b24 1961@code{run} command.
c906108c
SS
1962They are passed to a shell, which expands wildcard characters and
1963performs redirection of I/O, and thence to your program. Your
1964@code{SHELL} environment variable (if it exists) specifies what shell
1965@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1966the default shell (@file{/bin/sh} on Unix).
1967
1968On non-Unix systems, the program is usually invoked directly by
1969@value{GDBN}, which emulates I/O redirection via the appropriate system
1970calls, and the wildcard characters are expanded by the startup code of
1971the program, not by the shell.
c906108c
SS
1972
1973@code{run} with no arguments uses the same arguments used by the previous
1974@code{run}, or those set by the @code{set args} command.
1975
c906108c 1976@table @code
41afff9a 1977@kindex set args
c906108c
SS
1978@item set args
1979Specify the arguments to be used the next time your program is run. If
1980@code{set args} has no arguments, @code{run} executes your program
1981with no arguments. Once you have run your program with arguments,
1982using @code{set args} before the next @code{run} is the only way to run
1983it again without arguments.
1984
1985@kindex show args
1986@item show args
1987Show the arguments to give your program when it is started.
1988@end table
1989
6d2ebf8b 1990@node Environment
79a6e687 1991@section Your Program's Environment
c906108c
SS
1992
1993@cindex environment (of your program)
1994The @dfn{environment} consists of a set of environment variables and
1995their values. Environment variables conventionally record such things as
1996your user name, your home directory, your terminal type, and your search
1997path for programs to run. Usually you set up environment variables with
1998the shell and they are inherited by all the other programs you run. When
1999debugging, it can be useful to try running your program with a modified
2000environment without having to start @value{GDBN} over again.
2001
2002@table @code
2003@kindex path
2004@item path @var{directory}
2005Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
2006(the search path for executables) that will be passed to your program.
2007The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
2008You may specify several directory names, separated by whitespace or by a
2009system-dependent separator character (@samp{:} on Unix, @samp{;} on
2010MS-DOS and MS-Windows). If @var{directory} is already in the path, it
2011is moved to the front, so it is searched sooner.
c906108c
SS
2012
2013You can use the string @samp{$cwd} to refer to whatever is the current
2014working directory at the time @value{GDBN} searches the path. If you
2015use @samp{.} instead, it refers to the directory where you executed the
2016@code{path} command. @value{GDBN} replaces @samp{.} in the
2017@var{directory} argument (with the current path) before adding
2018@var{directory} to the search path.
2019@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2020@c document that, since repeating it would be a no-op.
2021
2022@kindex show paths
2023@item show paths
2024Display the list of search paths for executables (the @code{PATH}
2025environment variable).
2026
2027@kindex show environment
2028@item show environment @r{[}@var{varname}@r{]}
2029Print the value of environment variable @var{varname} to be given to
2030your program when it starts. If you do not supply @var{varname},
2031print the names and values of all environment variables to be given to
2032your program. You can abbreviate @code{environment} as @code{env}.
2033
2034@kindex set environment
53a5351d 2035@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
2036Set environment variable @var{varname} to @var{value}. The value
2037changes for your program only, not for @value{GDBN} itself. @var{value} may
2038be any string; the values of environment variables are just strings, and
2039any interpretation is supplied by your program itself. The @var{value}
2040parameter is optional; if it is eliminated, the variable is set to a
2041null value.
2042@c "any string" here does not include leading, trailing
2043@c blanks. Gnu asks: does anyone care?
2044
2045For example, this command:
2046
474c8240 2047@smallexample
c906108c 2048set env USER = foo
474c8240 2049@end smallexample
c906108c
SS
2050
2051@noindent
d4f3574e 2052tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2053@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2054are not actually required.)
2055
2056@kindex unset environment
2057@item unset environment @var{varname}
2058Remove variable @var{varname} from the environment to be passed to your
2059program. This is different from @samp{set env @var{varname} =};
2060@code{unset environment} removes the variable from the environment,
2061rather than assigning it an empty value.
2062@end table
2063
d4f3574e
SS
2064@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2065the shell indicated
c906108c
SS
2066by your @code{SHELL} environment variable if it exists (or
2067@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2068that runs an initialization file---such as @file{.cshrc} for C-shell, or
2069@file{.bashrc} for BASH---any variables you set in that file affect
2070your program. You may wish to move setting of environment variables to
2071files that are only run when you sign on, such as @file{.login} or
2072@file{.profile}.
2073
6d2ebf8b 2074@node Working Directory
79a6e687 2075@section Your Program's Working Directory
c906108c
SS
2076
2077@cindex working directory (of your program)
2078Each time you start your program with @code{run}, it inherits its
2079working directory from the current working directory of @value{GDBN}.
2080The @value{GDBN} working directory is initially whatever it inherited
2081from its parent process (typically the shell), but you can specify a new
2082working directory in @value{GDBN} with the @code{cd} command.
2083
2084The @value{GDBN} working directory also serves as a default for the commands
2085that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2086Specify Files}.
c906108c
SS
2087
2088@table @code
2089@kindex cd
721c2651 2090@cindex change working directory
c906108c
SS
2091@item cd @var{directory}
2092Set the @value{GDBN} working directory to @var{directory}.
2093
2094@kindex pwd
2095@item pwd
2096Print the @value{GDBN} working directory.
2097@end table
2098
60bf7e09
EZ
2099It is generally impossible to find the current working directory of
2100the process being debugged (since a program can change its directory
2101during its run). If you work on a system where @value{GDBN} is
2102configured with the @file{/proc} support, you can use the @code{info
2103proc} command (@pxref{SVR4 Process Information}) to find out the
2104current working directory of the debuggee.
2105
6d2ebf8b 2106@node Input/Output
79a6e687 2107@section Your Program's Input and Output
c906108c
SS
2108
2109@cindex redirection
2110@cindex i/o
2111@cindex terminal
2112By default, the program you run under @value{GDBN} does input and output to
5d161b24 2113the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2114to its own terminal modes to interact with you, but it records the terminal
2115modes your program was using and switches back to them when you continue
2116running your program.
2117
2118@table @code
2119@kindex info terminal
2120@item info terminal
2121Displays information recorded by @value{GDBN} about the terminal modes your
2122program is using.
2123@end table
2124
2125You can redirect your program's input and/or output using shell
2126redirection with the @code{run} command. For example,
2127
474c8240 2128@smallexample
c906108c 2129run > outfile
474c8240 2130@end smallexample
c906108c
SS
2131
2132@noindent
2133starts your program, diverting its output to the file @file{outfile}.
2134
2135@kindex tty
2136@cindex controlling terminal
2137Another way to specify where your program should do input and output is
2138with the @code{tty} command. This command accepts a file name as
2139argument, and causes this file to be the default for future @code{run}
2140commands. It also resets the controlling terminal for the child
2141process, for future @code{run} commands. For example,
2142
474c8240 2143@smallexample
c906108c 2144tty /dev/ttyb
474c8240 2145@end smallexample
c906108c
SS
2146
2147@noindent
2148directs that processes started with subsequent @code{run} commands
2149default to do input and output on the terminal @file{/dev/ttyb} and have
2150that as their controlling terminal.
2151
2152An explicit redirection in @code{run} overrides the @code{tty} command's
2153effect on the input/output device, but not its effect on the controlling
2154terminal.
2155
2156When you use the @code{tty} command or redirect input in the @code{run}
2157command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2158for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2159for @code{set inferior-tty}.
2160
2161@cindex inferior tty
2162@cindex set inferior controlling terminal
2163You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2164display the name of the terminal that will be used for future runs of your
2165program.
2166
2167@table @code
2168@item set inferior-tty /dev/ttyb
2169@kindex set inferior-tty
2170Set the tty for the program being debugged to /dev/ttyb.
2171
2172@item show inferior-tty
2173@kindex show inferior-tty
2174Show the current tty for the program being debugged.
2175@end table
c906108c 2176
6d2ebf8b 2177@node Attach
79a6e687 2178@section Debugging an Already-running Process
c906108c
SS
2179@kindex attach
2180@cindex attach
2181
2182@table @code
2183@item attach @var{process-id}
2184This command attaches to a running process---one that was started
2185outside @value{GDBN}. (@code{info files} shows your active
2186targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2187find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2188or with the @samp{jobs -l} shell command.
2189
2190@code{attach} does not repeat if you press @key{RET} a second time after
2191executing the command.
2192@end table
2193
2194To use @code{attach}, your program must be running in an environment
2195which supports processes; for example, @code{attach} does not work for
2196programs on bare-board targets that lack an operating system. You must
2197also have permission to send the process a signal.
2198
2199When you use @code{attach}, the debugger finds the program running in
2200the process first by looking in the current working directory, then (if
2201the program is not found) by using the source file search path
79a6e687 2202(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2203the @code{file} command to load the program. @xref{Files, ,Commands to
2204Specify Files}.
2205
2206The first thing @value{GDBN} does after arranging to debug the specified
2207process is to stop it. You can examine and modify an attached process
53a5351d
JM
2208with all the @value{GDBN} commands that are ordinarily available when
2209you start processes with @code{run}. You can insert breakpoints; you
2210can step and continue; you can modify storage. If you would rather the
2211process continue running, you may use the @code{continue} command after
c906108c
SS
2212attaching @value{GDBN} to the process.
2213
2214@table @code
2215@kindex detach
2216@item detach
2217When you have finished debugging the attached process, you can use the
2218@code{detach} command to release it from @value{GDBN} control. Detaching
2219the process continues its execution. After the @code{detach} command,
2220that process and @value{GDBN} become completely independent once more, and you
2221are ready to @code{attach} another process or start one with @code{run}.
2222@code{detach} does not repeat if you press @key{RET} again after
2223executing the command.
2224@end table
2225
159fcc13
JK
2226If you exit @value{GDBN} while you have an attached process, you detach
2227that process. If you use the @code{run} command, you kill that process.
2228By default, @value{GDBN} asks for confirmation if you try to do either of these
2229things; you can control whether or not you need to confirm by using the
2230@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2231Messages}).
c906108c 2232
6d2ebf8b 2233@node Kill Process
79a6e687 2234@section Killing the Child Process
c906108c
SS
2235
2236@table @code
2237@kindex kill
2238@item kill
2239Kill the child process in which your program is running under @value{GDBN}.
2240@end table
2241
2242This command is useful if you wish to debug a core dump instead of a
2243running process. @value{GDBN} ignores any core dump file while your program
2244is running.
2245
2246On some operating systems, a program cannot be executed outside @value{GDBN}
2247while you have breakpoints set on it inside @value{GDBN}. You can use the
2248@code{kill} command in this situation to permit running your program
2249outside the debugger.
2250
2251The @code{kill} command is also useful if you wish to recompile and
2252relink your program, since on many systems it is impossible to modify an
2253executable file while it is running in a process. In this case, when you
2254next type @code{run}, @value{GDBN} notices that the file has changed, and
2255reads the symbol table again (while trying to preserve your current
2256breakpoint settings).
2257
6d2ebf8b 2258@node Threads
79a6e687 2259@section Debugging Programs with Multiple Threads
c906108c
SS
2260
2261@cindex threads of execution
2262@cindex multiple threads
2263@cindex switching threads
2264In some operating systems, such as HP-UX and Solaris, a single program
2265may have more than one @dfn{thread} of execution. The precise semantics
2266of threads differ from one operating system to another, but in general
2267the threads of a single program are akin to multiple processes---except
2268that they share one address space (that is, they can all examine and
2269modify the same variables). On the other hand, each thread has its own
2270registers and execution stack, and perhaps private memory.
2271
2272@value{GDBN} provides these facilities for debugging multi-thread
2273programs:
2274
2275@itemize @bullet
2276@item automatic notification of new threads
2277@item @samp{thread @var{threadno}}, a command to switch among threads
2278@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2279@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2280a command to apply a command to a list of threads
2281@item thread-specific breakpoints
93815fbf
VP
2282@item @samp{set print thread-events}, which controls printing of
2283messages on thread start and exit.
c906108c
SS
2284@end itemize
2285
c906108c
SS
2286@quotation
2287@emph{Warning:} These facilities are not yet available on every
2288@value{GDBN} configuration where the operating system supports threads.
2289If your @value{GDBN} does not support threads, these commands have no
2290effect. For example, a system without thread support shows no output
2291from @samp{info threads}, and always rejects the @code{thread} command,
2292like this:
2293
2294@smallexample
2295(@value{GDBP}) info threads
2296(@value{GDBP}) thread 1
2297Thread ID 1 not known. Use the "info threads" command to
2298see the IDs of currently known threads.
2299@end smallexample
2300@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2301@c doesn't support threads"?
2302@end quotation
c906108c
SS
2303
2304@cindex focus of debugging
2305@cindex current thread
2306The @value{GDBN} thread debugging facility allows you to observe all
2307threads while your program runs---but whenever @value{GDBN} takes
2308control, one thread in particular is always the focus of debugging.
2309This thread is called the @dfn{current thread}. Debugging commands show
2310program information from the perspective of the current thread.
2311
41afff9a 2312@cindex @code{New} @var{systag} message
c906108c
SS
2313@cindex thread identifier (system)
2314@c FIXME-implementors!! It would be more helpful if the [New...] message
2315@c included GDB's numeric thread handle, so you could just go to that
2316@c thread without first checking `info threads'.
2317Whenever @value{GDBN} detects a new thread in your program, it displays
2318the target system's identification for the thread with a message in the
2319form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2320whose form varies depending on the particular system. For example, on
8807d78b 2321@sc{gnu}/Linux, you might see
c906108c 2322
474c8240 2323@smallexample
8807d78b 2324[New Thread 46912507313328 (LWP 25582)]
474c8240 2325@end smallexample
c906108c
SS
2326
2327@noindent
2328when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2329the @var{systag} is simply something like @samp{process 368}, with no
2330further qualifier.
2331
2332@c FIXME!! (1) Does the [New...] message appear even for the very first
2333@c thread of a program, or does it only appear for the
6ca652b0 2334@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2335@c program?
2336@c (2) *Is* there necessarily a first thread always? Or do some
2337@c multithread systems permit starting a program with multiple
5d161b24 2338@c threads ab initio?
c906108c
SS
2339
2340@cindex thread number
2341@cindex thread identifier (GDB)
2342For debugging purposes, @value{GDBN} associates its own thread
2343number---always a single integer---with each thread in your program.
2344
2345@table @code
2346@kindex info threads
2347@item info threads
2348Display a summary of all threads currently in your
2349program. @value{GDBN} displays for each thread (in this order):
2350
2351@enumerate
09d4efe1
EZ
2352@item
2353the thread number assigned by @value{GDBN}
c906108c 2354
09d4efe1
EZ
2355@item
2356the target system's thread identifier (@var{systag})
c906108c 2357
09d4efe1
EZ
2358@item
2359the current stack frame summary for that thread
c906108c
SS
2360@end enumerate
2361
2362@noindent
2363An asterisk @samp{*} to the left of the @value{GDBN} thread number
2364indicates the current thread.
2365
5d161b24 2366For example,
c906108c
SS
2367@end table
2368@c end table here to get a little more width for example
2369
2370@smallexample
2371(@value{GDBP}) info threads
2372 3 process 35 thread 27 0x34e5 in sigpause ()
2373 2 process 35 thread 23 0x34e5 in sigpause ()
2374* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2375 at threadtest.c:68
2376@end smallexample
53a5351d
JM
2377
2378On HP-UX systems:
c906108c 2379
4644b6e3
EZ
2380@cindex debugging multithreaded programs (on HP-UX)
2381@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2382For debugging purposes, @value{GDBN} associates its own thread
2383number---a small integer assigned in thread-creation order---with each
2384thread in your program.
2385
41afff9a
EZ
2386@cindex @code{New} @var{systag} message, on HP-UX
2387@cindex thread identifier (system), on HP-UX
c906108c
SS
2388@c FIXME-implementors!! It would be more helpful if the [New...] message
2389@c included GDB's numeric thread handle, so you could just go to that
2390@c thread without first checking `info threads'.
2391Whenever @value{GDBN} detects a new thread in your program, it displays
2392both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2393form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2394whose form varies depending on the particular system. For example, on
2395HP-UX, you see
2396
474c8240 2397@smallexample
c906108c 2398[New thread 2 (system thread 26594)]
474c8240 2399@end smallexample
c906108c
SS
2400
2401@noindent
5d161b24 2402when @value{GDBN} notices a new thread.
c906108c
SS
2403
2404@table @code
4644b6e3 2405@kindex info threads (HP-UX)
c906108c
SS
2406@item info threads
2407Display a summary of all threads currently in your
2408program. @value{GDBN} displays for each thread (in this order):
2409
2410@enumerate
2411@item the thread number assigned by @value{GDBN}
2412
2413@item the target system's thread identifier (@var{systag})
2414
2415@item the current stack frame summary for that thread
2416@end enumerate
2417
2418@noindent
2419An asterisk @samp{*} to the left of the @value{GDBN} thread number
2420indicates the current thread.
2421
5d161b24 2422For example,
c906108c
SS
2423@end table
2424@c end table here to get a little more width for example
2425
474c8240 2426@smallexample
c906108c 2427(@value{GDBP}) info threads
6d2ebf8b
SS
2428 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2429 at quicksort.c:137
2430 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2431 from /usr/lib/libc.2
2432 1 system thread 27905 0x7b003498 in _brk () \@*
2433 from /usr/lib/libc.2
474c8240 2434@end smallexample
c906108c 2435
c45da7e6
EZ
2436On Solaris, you can display more information about user threads with a
2437Solaris-specific command:
2438
2439@table @code
2440@item maint info sol-threads
2441@kindex maint info sol-threads
2442@cindex thread info (Solaris)
2443Display info on Solaris user threads.
2444@end table
2445
c906108c
SS
2446@table @code
2447@kindex thread @var{threadno}
2448@item thread @var{threadno}
2449Make thread number @var{threadno} the current thread. The command
2450argument @var{threadno} is the internal @value{GDBN} thread number, as
2451shown in the first field of the @samp{info threads} display.
2452@value{GDBN} responds by displaying the system identifier of the thread
2453you selected, and its current stack frame summary:
2454
2455@smallexample
2456@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2457(@value{GDBP}) thread 2
c906108c 2458[Switching to process 35 thread 23]
c906108c
SS
24590x34e5 in sigpause ()
2460@end smallexample
2461
2462@noindent
2463As with the @samp{[New @dots{}]} message, the form of the text after
2464@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2465threads.
c906108c 2466
9c16f35a 2467@kindex thread apply
638ac427 2468@cindex apply command to several threads
839c27b7
EZ
2469@item thread apply [@var{threadno}] [@var{all}] @var{command}
2470The @code{thread apply} command allows you to apply the named
2471@var{command} to one or more threads. Specify the numbers of the
2472threads that you want affected with the command argument
2473@var{threadno}. It can be a single thread number, one of the numbers
2474shown in the first field of the @samp{info threads} display; or it
2475could be a range of thread numbers, as in @code{2-4}. To apply a
2476command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2477
2478@kindex set print thread-events
2479@cindex print messages on thread start and exit
2480@item set print thread-events
2481@itemx set print thread-events on
2482@itemx set print thread-events off
2483The @code{set print thread-events} command allows you to enable or
2484disable printing of messages when @value{GDBN} notices that new threads have
2485started or that threads have exited. By default, these messages will
2486be printed if detection of these events is supported by the target.
2487Note that these messages cannot be disabled on all targets.
2488
2489@kindex show print thread-events
2490@item show print thread-events
2491Show whether messages will be printed when @value{GDBN} detects that threads
2492have started and exited.
c906108c
SS
2493@end table
2494
2495@cindex automatic thread selection
2496@cindex switching threads automatically
2497@cindex threads, automatic switching
2498Whenever @value{GDBN} stops your program, due to a breakpoint or a
2499signal, it automatically selects the thread where that breakpoint or
2500signal happened. @value{GDBN} alerts you to the context switch with a
2501message of the form @samp{[Switching to @var{systag}]} to identify the
2502thread.
2503
79a6e687 2504@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2505more information about how @value{GDBN} behaves when you stop and start
2506programs with multiple threads.
2507
79a6e687 2508@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2509watchpoints in programs with multiple threads.
c906108c 2510
6d2ebf8b 2511@node Processes
79a6e687 2512@section Debugging Programs with Multiple Processes
c906108c
SS
2513
2514@cindex fork, debugging programs which call
2515@cindex multiple processes
2516@cindex processes, multiple
53a5351d
JM
2517On most systems, @value{GDBN} has no special support for debugging
2518programs which create additional processes using the @code{fork}
2519function. When a program forks, @value{GDBN} will continue to debug the
2520parent process and the child process will run unimpeded. If you have
2521set a breakpoint in any code which the child then executes, the child
2522will get a @code{SIGTRAP} signal which (unless it catches the signal)
2523will cause it to terminate.
c906108c
SS
2524
2525However, if you want to debug the child process there is a workaround
2526which isn't too painful. Put a call to @code{sleep} in the code which
2527the child process executes after the fork. It may be useful to sleep
2528only if a certain environment variable is set, or a certain file exists,
2529so that the delay need not occur when you don't want to run @value{GDBN}
2530on the child. While the child is sleeping, use the @code{ps} program to
2531get its process ID. Then tell @value{GDBN} (a new invocation of
2532@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2533the child process (@pxref{Attach}). From that point on you can debug
c906108c 2534the child process just like any other process which you attached to.
c906108c 2535
b51970ac
DJ
2536On some systems, @value{GDBN} provides support for debugging programs that
2537create additional processes using the @code{fork} or @code{vfork} functions.
2538Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2539only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2540
2541By default, when a program forks, @value{GDBN} will continue to debug
2542the parent process and the child process will run unimpeded.
2543
2544If you want to follow the child process instead of the parent process,
2545use the command @w{@code{set follow-fork-mode}}.
2546
2547@table @code
2548@kindex set follow-fork-mode
2549@item set follow-fork-mode @var{mode}
2550Set the debugger response to a program call of @code{fork} or
2551@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2552process. The @var{mode} argument can be:
c906108c
SS
2553
2554@table @code
2555@item parent
2556The original process is debugged after a fork. The child process runs
2df3850c 2557unimpeded. This is the default.
c906108c
SS
2558
2559@item child
2560The new process is debugged after a fork. The parent process runs
2561unimpeded.
2562
c906108c
SS
2563@end table
2564
9c16f35a 2565@kindex show follow-fork-mode
c906108c 2566@item show follow-fork-mode
2df3850c 2567Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2568@end table
2569
5c95884b
MS
2570@cindex debugging multiple processes
2571On Linux, if you want to debug both the parent and child processes, use the
2572command @w{@code{set detach-on-fork}}.
2573
2574@table @code
2575@kindex set detach-on-fork
2576@item set detach-on-fork @var{mode}
2577Tells gdb whether to detach one of the processes after a fork, or
2578retain debugger control over them both.
2579
2580@table @code
2581@item on
2582The child process (or parent process, depending on the value of
2583@code{follow-fork-mode}) will be detached and allowed to run
2584independently. This is the default.
2585
2586@item off
2587Both processes will be held under the control of @value{GDBN}.
2588One process (child or parent, depending on the value of
2589@code{follow-fork-mode}) is debugged as usual, while the other
2590is held suspended.
2591
2592@end table
2593
11310833
NR
2594@kindex show detach-on-fork
2595@item show detach-on-fork
2596Show whether detach-on-fork mode is on/off.
5c95884b
MS
2597@end table
2598
11310833 2599If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2600@value{GDBN} will retain control of all forked processes (including
2601nested forks). You can list the forked processes under the control of
2602@value{GDBN} by using the @w{@code{info forks}} command, and switch
2603from one fork to another by using the @w{@code{fork}} command.
2604
2605@table @code
2606@kindex info forks
2607@item info forks
2608Print a list of all forked processes under the control of @value{GDBN}.
2609The listing will include a fork id, a process id, and the current
2610position (program counter) of the process.
2611
5c95884b
MS
2612@kindex fork @var{fork-id}
2613@item fork @var{fork-id}
2614Make fork number @var{fork-id} the current process. The argument
2615@var{fork-id} is the internal fork number assigned by @value{GDBN},
2616as shown in the first field of the @samp{info forks} display.
2617
11310833
NR
2618@kindex process @var{process-id}
2619@item process @var{process-id}
2620Make process number @var{process-id} the current process. The
2621argument @var{process-id} must be one that is listed in the output of
2622@samp{info forks}.
2623
5c95884b
MS
2624@end table
2625
2626To quit debugging one of the forked processes, you can either detach
f73adfeb 2627from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2628run independently), or delete (and kill) it using the
b8db102d 2629@w{@code{delete fork}} command.
5c95884b
MS
2630
2631@table @code
f73adfeb
AS
2632@kindex detach fork @var{fork-id}
2633@item detach fork @var{fork-id}
5c95884b
MS
2634Detach from the process identified by @value{GDBN} fork number
2635@var{fork-id}, and remove it from the fork list. The process will be
2636allowed to run independently.
2637
b8db102d
MS
2638@kindex delete fork @var{fork-id}
2639@item delete fork @var{fork-id}
5c95884b
MS
2640Kill the process identified by @value{GDBN} fork number @var{fork-id},
2641and remove it from the fork list.
2642
2643@end table
2644
c906108c
SS
2645If you ask to debug a child process and a @code{vfork} is followed by an
2646@code{exec}, @value{GDBN} executes the new target up to the first
2647breakpoint in the new target. If you have a breakpoint set on
2648@code{main} in your original program, the breakpoint will also be set on
2649the child process's @code{main}.
2650
2651When a child process is spawned by @code{vfork}, you cannot debug the
2652child or parent until an @code{exec} call completes.
2653
2654If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2655call executes, the new target restarts. To restart the parent process,
2656use the @code{file} command with the parent executable name as its
2657argument.
2658
2659You can use the @code{catch} command to make @value{GDBN} stop whenever
2660a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2661Catchpoints, ,Setting Catchpoints}.
c906108c 2662
5c95884b 2663@node Checkpoint/Restart
79a6e687 2664@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2665
2666@cindex checkpoint
2667@cindex restart
2668@cindex bookmark
2669@cindex snapshot of a process
2670@cindex rewind program state
2671
2672On certain operating systems@footnote{Currently, only
2673@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2674program's state, called a @dfn{checkpoint}, and come back to it
2675later.
2676
2677Returning to a checkpoint effectively undoes everything that has
2678happened in the program since the @code{checkpoint} was saved. This
2679includes changes in memory, registers, and even (within some limits)
2680system state. Effectively, it is like going back in time to the
2681moment when the checkpoint was saved.
2682
2683Thus, if you're stepping thru a program and you think you're
2684getting close to the point where things go wrong, you can save
2685a checkpoint. Then, if you accidentally go too far and miss
2686the critical statement, instead of having to restart your program
2687from the beginning, you can just go back to the checkpoint and
2688start again from there.
2689
2690This can be especially useful if it takes a lot of time or
2691steps to reach the point where you think the bug occurs.
2692
2693To use the @code{checkpoint}/@code{restart} method of debugging:
2694
2695@table @code
2696@kindex checkpoint
2697@item checkpoint
2698Save a snapshot of the debugged program's current execution state.
2699The @code{checkpoint} command takes no arguments, but each checkpoint
2700is assigned a small integer id, similar to a breakpoint id.
2701
2702@kindex info checkpoints
2703@item info checkpoints
2704List the checkpoints that have been saved in the current debugging
2705session. For each checkpoint, the following information will be
2706listed:
2707
2708@table @code
2709@item Checkpoint ID
2710@item Process ID
2711@item Code Address
2712@item Source line, or label
2713@end table
2714
2715@kindex restart @var{checkpoint-id}
2716@item restart @var{checkpoint-id}
2717Restore the program state that was saved as checkpoint number
2718@var{checkpoint-id}. All program variables, registers, stack frames
2719etc.@: will be returned to the values that they had when the checkpoint
2720was saved. In essence, gdb will ``wind back the clock'' to the point
2721in time when the checkpoint was saved.
2722
2723Note that breakpoints, @value{GDBN} variables, command history etc.
2724are not affected by restoring a checkpoint. In general, a checkpoint
2725only restores things that reside in the program being debugged, not in
2726the debugger.
2727
b8db102d
MS
2728@kindex delete checkpoint @var{checkpoint-id}
2729@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2730Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2731
2732@end table
2733
2734Returning to a previously saved checkpoint will restore the user state
2735of the program being debugged, plus a significant subset of the system
2736(OS) state, including file pointers. It won't ``un-write'' data from
2737a file, but it will rewind the file pointer to the previous location,
2738so that the previously written data can be overwritten. For files
2739opened in read mode, the pointer will also be restored so that the
2740previously read data can be read again.
2741
2742Of course, characters that have been sent to a printer (or other
2743external device) cannot be ``snatched back'', and characters received
2744from eg.@: a serial device can be removed from internal program buffers,
2745but they cannot be ``pushed back'' into the serial pipeline, ready to
2746be received again. Similarly, the actual contents of files that have
2747been changed cannot be restored (at this time).
2748
2749However, within those constraints, you actually can ``rewind'' your
2750program to a previously saved point in time, and begin debugging it
2751again --- and you can change the course of events so as to debug a
2752different execution path this time.
2753
2754@cindex checkpoints and process id
2755Finally, there is one bit of internal program state that will be
2756different when you return to a checkpoint --- the program's process
2757id. Each checkpoint will have a unique process id (or @var{pid}),
2758and each will be different from the program's original @var{pid}.
2759If your program has saved a local copy of its process id, this could
2760potentially pose a problem.
2761
79a6e687 2762@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2763
2764On some systems such as @sc{gnu}/Linux, address space randomization
2765is performed on new processes for security reasons. This makes it
2766difficult or impossible to set a breakpoint, or watchpoint, on an
2767absolute address if you have to restart the program, since the
2768absolute location of a symbol will change from one execution to the
2769next.
2770
2771A checkpoint, however, is an @emph{identical} copy of a process.
2772Therefore if you create a checkpoint at (eg.@:) the start of main,
2773and simply return to that checkpoint instead of restarting the
2774process, you can avoid the effects of address randomization and
2775your symbols will all stay in the same place.
2776
6d2ebf8b 2777@node Stopping
c906108c
SS
2778@chapter Stopping and Continuing
2779
2780The principal purposes of using a debugger are so that you can stop your
2781program before it terminates; or so that, if your program runs into
2782trouble, you can investigate and find out why.
2783
7a292a7a
SS
2784Inside @value{GDBN}, your program may stop for any of several reasons,
2785such as a signal, a breakpoint, or reaching a new line after a
2786@value{GDBN} command such as @code{step}. You may then examine and
2787change variables, set new breakpoints or remove old ones, and then
2788continue execution. Usually, the messages shown by @value{GDBN} provide
2789ample explanation of the status of your program---but you can also
2790explicitly request this information at any time.
c906108c
SS
2791
2792@table @code
2793@kindex info program
2794@item info program
2795Display information about the status of your program: whether it is
7a292a7a 2796running or not, what process it is, and why it stopped.
c906108c
SS
2797@end table
2798
2799@menu
2800* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2801* Continuing and Stepping:: Resuming execution
c906108c 2802* Signals:: Signals
c906108c 2803* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2804@end menu
2805
6d2ebf8b 2806@node Breakpoints
79a6e687 2807@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2808
2809@cindex breakpoints
2810A @dfn{breakpoint} makes your program stop whenever a certain point in
2811the program is reached. For each breakpoint, you can add conditions to
2812control in finer detail whether your program stops. You can set
2813breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2814Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2815should stop by line number, function name or exact address in the
2816program.
2817
09d4efe1
EZ
2818On some systems, you can set breakpoints in shared libraries before
2819the executable is run. There is a minor limitation on HP-UX systems:
2820you must wait until the executable is run in order to set breakpoints
2821in shared library routines that are not called directly by the program
2822(for example, routines that are arguments in a @code{pthread_create}
2823call).
c906108c
SS
2824
2825@cindex watchpoints
fd60e0df 2826@cindex data breakpoints
c906108c
SS
2827@cindex memory tracing
2828@cindex breakpoint on memory address
2829@cindex breakpoint on variable modification
2830A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2831when the value of an expression changes. The expression may be a value
0ced0c34 2832of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2833combined by operators, such as @samp{a + b}. This is sometimes called
2834@dfn{data breakpoints}. You must use a different command to set
79a6e687 2835watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2836from that, you can manage a watchpoint like any other breakpoint: you
2837enable, disable, and delete both breakpoints and watchpoints using the
2838same commands.
c906108c
SS
2839
2840You can arrange to have values from your program displayed automatically
2841whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2842Automatic Display}.
c906108c
SS
2843
2844@cindex catchpoints
2845@cindex breakpoint on events
2846A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2847when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2848exception or the loading of a library. As with watchpoints, you use a
2849different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2850Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2851other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2852@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2853
2854@cindex breakpoint numbers
2855@cindex numbers for breakpoints
2856@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2857catchpoint when you create it; these numbers are successive integers
2858starting with one. In many of the commands for controlling various
2859features of breakpoints you use the breakpoint number to say which
2860breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2861@dfn{disabled}; if disabled, it has no effect on your program until you
2862enable it again.
2863
c5394b80
JM
2864@cindex breakpoint ranges
2865@cindex ranges of breakpoints
2866Some @value{GDBN} commands accept a range of breakpoints on which to
2867operate. A breakpoint range is either a single breakpoint number, like
2868@samp{5}, or two such numbers, in increasing order, separated by a
2869hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2870all breakpoints in that range are operated on.
c5394b80 2871
c906108c
SS
2872@menu
2873* Set Breaks:: Setting breakpoints
2874* Set Watchpoints:: Setting watchpoints
2875* Set Catchpoints:: Setting catchpoints
2876* Delete Breaks:: Deleting breakpoints
2877* Disabling:: Disabling breakpoints
2878* Conditions:: Break conditions
2879* Break Commands:: Breakpoint command lists
d4f3574e 2880* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2881* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2882@end menu
2883
6d2ebf8b 2884@node Set Breaks
79a6e687 2885@subsection Setting Breakpoints
c906108c 2886
5d161b24 2887@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2888@c consider in particular declaration with/without initialization.
2889@c
2890@c FIXME 2 is there stuff on this already? break at fun start, already init?
2891
2892@kindex break
41afff9a
EZ
2893@kindex b @r{(@code{break})}
2894@vindex $bpnum@r{, convenience variable}
c906108c
SS
2895@cindex latest breakpoint
2896Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2897@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2898number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2899Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2900convenience variables.
2901
c906108c 2902@table @code
2a25a5ba
EZ
2903@item break @var{location}
2904Set a breakpoint at the given @var{location}, which can specify a
2905function name, a line number, or an address of an instruction.
2906(@xref{Specify Location}, for a list of all the possible ways to
2907specify a @var{location}.) The breakpoint will stop your program just
2908before it executes any of the code in the specified @var{location}.
2909
c906108c 2910When using source languages that permit overloading of symbols, such as
2a25a5ba 2911C@t{++}, a function name may refer to more than one possible place to break.
6ba66d6a
JB
2912@xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
2913that situation.
c906108c 2914
c906108c
SS
2915@item break
2916When called without any arguments, @code{break} sets a breakpoint at
2917the next instruction to be executed in the selected stack frame
2918(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2919innermost, this makes your program stop as soon as control
2920returns to that frame. This is similar to the effect of a
2921@code{finish} command in the frame inside the selected frame---except
2922that @code{finish} does not leave an active breakpoint. If you use
2923@code{break} without an argument in the innermost frame, @value{GDBN} stops
2924the next time it reaches the current location; this may be useful
2925inside loops.
2926
2927@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2928least one instruction has been executed. If it did not do this, you
2929would be unable to proceed past a breakpoint without first disabling the
2930breakpoint. This rule applies whether or not the breakpoint already
2931existed when your program stopped.
2932
2933@item break @dots{} if @var{cond}
2934Set a breakpoint with condition @var{cond}; evaluate the expression
2935@var{cond} each time the breakpoint is reached, and stop only if the
2936value is nonzero---that is, if @var{cond} evaluates as true.
2937@samp{@dots{}} stands for one of the possible arguments described
2938above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2939,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2940
2941@kindex tbreak
2942@item tbreak @var{args}
2943Set a breakpoint enabled only for one stop. @var{args} are the
2944same as for the @code{break} command, and the breakpoint is set in the same
2945way, but the breakpoint is automatically deleted after the first time your
79a6e687 2946program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2947
c906108c 2948@kindex hbreak
ba04e063 2949@cindex hardware breakpoints
c906108c 2950@item hbreak @var{args}
d4f3574e
SS
2951Set a hardware-assisted breakpoint. @var{args} are the same as for the
2952@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2953breakpoint requires hardware support and some target hardware may not
2954have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2955debugging, so you can set a breakpoint at an instruction without
2956changing the instruction. This can be used with the new trap-generation
09d4efe1 2957provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2958will generate traps when a program accesses some data or instruction
2959address that is assigned to the debug registers. However the hardware
2960breakpoint registers can take a limited number of breakpoints. For
2961example, on the DSU, only two data breakpoints can be set at a time, and
2962@value{GDBN} will reject this command if more than two are used. Delete
2963or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2964(@pxref{Disabling, ,Disabling Breakpoints}).
2965@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2966For remote targets, you can restrict the number of hardware
2967breakpoints @value{GDBN} will use, see @ref{set remote
2968hardware-breakpoint-limit}.
501eef12 2969
c906108c
SS
2970@kindex thbreak
2971@item thbreak @var{args}
2972Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2973are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2974the same way. However, like the @code{tbreak} command,
c906108c
SS
2975the breakpoint is automatically deleted after the
2976first time your program stops there. Also, like the @code{hbreak}
5d161b24 2977command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2978may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2979See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2980
2981@kindex rbreak
2982@cindex regular expression
c45da7e6
EZ
2983@cindex breakpoints in functions matching a regexp
2984@cindex set breakpoints in many functions
c906108c 2985@item rbreak @var{regex}
c906108c 2986Set breakpoints on all functions matching the regular expression
11cf8741
JM
2987@var{regex}. This command sets an unconditional breakpoint on all
2988matches, printing a list of all breakpoints it set. Once these
2989breakpoints are set, they are treated just like the breakpoints set with
2990the @code{break} command. You can delete them, disable them, or make
2991them conditional the same way as any other breakpoint.
2992
2993The syntax of the regular expression is the standard one used with tools
2994like @file{grep}. Note that this is different from the syntax used by
2995shells, so for instance @code{foo*} matches all functions that include
2996an @code{fo} followed by zero or more @code{o}s. There is an implicit
2997@code{.*} leading and trailing the regular expression you supply, so to
2998match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2999
f7dc1244 3000@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 3001When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
3002breakpoints on overloaded functions that are not members of any special
3003classes.
c906108c 3004
f7dc1244
EZ
3005@cindex set breakpoints on all functions
3006The @code{rbreak} command can be used to set breakpoints in
3007@strong{all} the functions in a program, like this:
3008
3009@smallexample
3010(@value{GDBP}) rbreak .
3011@end smallexample
3012
c906108c
SS
3013@kindex info breakpoints
3014@cindex @code{$_} and @code{info breakpoints}
3015@item info breakpoints @r{[}@var{n}@r{]}
3016@itemx info break @r{[}@var{n}@r{]}
3017@itemx info watchpoints @r{[}@var{n}@r{]}
3018Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
3019not deleted. Optional argument @var{n} means print information only
3020about the specified breakpoint (or watchpoint or catchpoint). For
3021each breakpoint, following columns are printed:
c906108c
SS
3022
3023@table @emph
3024@item Breakpoint Numbers
3025@item Type
3026Breakpoint, watchpoint, or catchpoint.
3027@item Disposition
3028Whether the breakpoint is marked to be disabled or deleted when hit.
3029@item Enabled or Disabled
3030Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
b3db7447 3031that are not enabled.
c906108c 3032@item Address
fe6fbf8b 3033Where the breakpoint is in your program, as a memory address. For a
b3db7447
NR
3034pending breakpoint whose address is not yet known, this field will
3035contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
3036library that has the symbol or line referred by breakpoint is loaded.
3037See below for details. A breakpoint with several locations will
3b784c4f 3038have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3039@item What
3040Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3041line number. For a pending breakpoint, the original string passed to
3042the breakpoint command will be listed as it cannot be resolved until
3043the appropriate shared library is loaded in the future.
c906108c
SS
3044@end table
3045
3046@noindent
3047If a breakpoint is conditional, @code{info break} shows the condition on
3048the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3049are listed after that. A pending breakpoint is allowed to have a condition
3050specified for it. The condition is not parsed for validity until a shared
3051library is loaded that allows the pending breakpoint to resolve to a
3052valid location.
c906108c
SS
3053
3054@noindent
3055@code{info break} with a breakpoint
3056number @var{n} as argument lists only that breakpoint. The
3057convenience variable @code{$_} and the default examining-address for
3058the @code{x} command are set to the address of the last breakpoint
79a6e687 3059listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3060
3061@noindent
3062@code{info break} displays a count of the number of times the breakpoint
3063has been hit. This is especially useful in conjunction with the
3064@code{ignore} command. You can ignore a large number of breakpoint
3065hits, look at the breakpoint info to see how many times the breakpoint
3066was hit, and then run again, ignoring one less than that number. This
3067will get you quickly to the last hit of that breakpoint.
3068@end table
3069
3070@value{GDBN} allows you to set any number of breakpoints at the same place in
3071your program. There is nothing silly or meaningless about this. When
3072the breakpoints are conditional, this is even useful
79a6e687 3073(@pxref{Conditions, ,Break Conditions}).
c906108c 3074
fcda367b 3075It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3076in your program. Examples of this situation are:
3077
3078@itemize @bullet
3079
3080@item
3081For a C@t{++} constructor, the @value{NGCC} compiler generates several
3082instances of the function body, used in different cases.
3083
3084@item
3085For a C@t{++} template function, a given line in the function can
3086correspond to any number of instantiations.
3087
3088@item
3089For an inlined function, a given source line can correspond to
3090several places where that function is inlined.
3091
3092@end itemize
3093
3094In all those cases, @value{GDBN} will insert a breakpoint at all
3095the relevant locations.
3096
3b784c4f
EZ
3097A breakpoint with multiple locations is displayed in the breakpoint
3098table using several rows---one header row, followed by one row for
3099each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3100address column. The rows for individual locations contain the actual
3101addresses for locations, and show the functions to which those
3102locations belong. The number column for a location is of the form
fe6fbf8b
VP
3103@var{breakpoint-number}.@var{location-number}.
3104
3105For example:
3b784c4f 3106
fe6fbf8b
VP
3107@smallexample
3108Num Type Disp Enb Address What
31091 breakpoint keep y <MULTIPLE>
3110 stop only if i==1
3111 breakpoint already hit 1 time
31121.1 y 0x080486a2 in void foo<int>() at t.cc:8
31131.2 y 0x080486ca in void foo<double>() at t.cc:8
3114@end smallexample
3115
3116Each location can be individually enabled or disabled by passing
3117@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3118@code{enable} and @code{disable} commands. Note that you cannot
3119delete the individual locations from the list, you can only delete the
16bfc218 3120entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3121the @kbd{delete @var{num}} command, where @var{num} is the number of
3122the parent breakpoint, 1 in the above example). Disabling or enabling
3123the parent breakpoint (@pxref{Disabling}) affects all of the locations
3124that belong to that breakpoint.
fe6fbf8b 3125
2650777c 3126@cindex pending breakpoints
fe6fbf8b 3127It's quite common to have a breakpoint inside a shared library.
3b784c4f 3128Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3129and possibly repeatedly, as the program is executed. To support
3130this use case, @value{GDBN} updates breakpoint locations whenever
3131any shared library is loaded or unloaded. Typically, you would
fcda367b 3132set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3133debugging session, when the library is not loaded, and when the
3134symbols from the library are not available. When you try to set
3135breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3136a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3137is not yet resolved.
3138
3139After the program is run, whenever a new shared library is loaded,
3140@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3141shared library contains the symbol or line referred to by some
3142pending breakpoint, that breakpoint is resolved and becomes an
3143ordinary breakpoint. When a library is unloaded, all breakpoints
3144that refer to its symbols or source lines become pending again.
3145
3146This logic works for breakpoints with multiple locations, too. For
3147example, if you have a breakpoint in a C@t{++} template function, and
3148a newly loaded shared library has an instantiation of that template,
3149a new location is added to the list of locations for the breakpoint.
3150
3151Except for having unresolved address, pending breakpoints do not
3152differ from regular breakpoints. You can set conditions or commands,
3153enable and disable them and perform other breakpoint operations.
3154
3155@value{GDBN} provides some additional commands for controlling what
3156happens when the @samp{break} command cannot resolve breakpoint
3157address specification to an address:
dd79a6cf
JJ
3158
3159@kindex set breakpoint pending
3160@kindex show breakpoint pending
3161@table @code
3162@item set breakpoint pending auto
3163This is the default behavior. When @value{GDBN} cannot find the breakpoint
3164location, it queries you whether a pending breakpoint should be created.
3165
3166@item set breakpoint pending on
3167This indicates that an unrecognized breakpoint location should automatically
3168result in a pending breakpoint being created.
3169
3170@item set breakpoint pending off
3171This indicates that pending breakpoints are not to be created. Any
3172unrecognized breakpoint location results in an error. This setting does
3173not affect any pending breakpoints previously created.
3174
3175@item show breakpoint pending
3176Show the current behavior setting for creating pending breakpoints.
3177@end table
2650777c 3178
fe6fbf8b
VP
3179The settings above only affect the @code{break} command and its
3180variants. Once breakpoint is set, it will be automatically updated
3181as shared libraries are loaded and unloaded.
2650777c 3182
765dc015
VP
3183@cindex automatic hardware breakpoints
3184For some targets, @value{GDBN} can automatically decide if hardware or
3185software breakpoints should be used, depending on whether the
3186breakpoint address is read-only or read-write. This applies to
3187breakpoints set with the @code{break} command as well as to internal
3188breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3189breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3190breakpoints.
3191
3192You can control this automatic behaviour with the following commands::
3193
3194@kindex set breakpoint auto-hw
3195@kindex show breakpoint auto-hw
3196@table @code
3197@item set breakpoint auto-hw on
3198This is the default behavior. When @value{GDBN} sets a breakpoint, it
3199will try to use the target memory map to decide if software or hardware
3200breakpoint must be used.
3201
3202@item set breakpoint auto-hw off
3203This indicates @value{GDBN} should not automatically select breakpoint
3204type. If the target provides a memory map, @value{GDBN} will warn when
3205trying to set software breakpoint at a read-only address.
3206@end table
3207
3208
c906108c
SS
3209@cindex negative breakpoint numbers
3210@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3211@value{GDBN} itself sometimes sets breakpoints in your program for
3212special purposes, such as proper handling of @code{longjmp} (in C
3213programs). These internal breakpoints are assigned negative numbers,
3214starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3215You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3216@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3217
3218
6d2ebf8b 3219@node Set Watchpoints
79a6e687 3220@subsection Setting Watchpoints
c906108c
SS
3221
3222@cindex setting watchpoints
c906108c
SS
3223You can use a watchpoint to stop execution whenever the value of an
3224expression changes, without having to predict a particular place where
fd60e0df
EZ
3225this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3226The expression may be as simple as the value of a single variable, or
3227as complex as many variables combined by operators. Examples include:
3228
3229@itemize @bullet
3230@item
3231A reference to the value of a single variable.
3232
3233@item
3234An address cast to an appropriate data type. For example,
3235@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3236address (assuming an @code{int} occupies 4 bytes).
3237
3238@item
3239An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3240expression can use any operators valid in the program's native
3241language (@pxref{Languages}).
3242@end itemize
c906108c 3243
fa4727a6
DJ
3244You can set a watchpoint on an expression even if the expression can
3245not be evaluated yet. For instance, you can set a watchpoint on
3246@samp{*global_ptr} before @samp{global_ptr} is initialized.
3247@value{GDBN} will stop when your program sets @samp{global_ptr} and
3248the expression produces a valid value. If the expression becomes
3249valid in some other way than changing a variable (e.g.@: if the memory
3250pointed to by @samp{*global_ptr} becomes readable as the result of a
3251@code{malloc} call), @value{GDBN} may not stop until the next time
3252the expression changes.
3253
82f2d802
EZ
3254@cindex software watchpoints
3255@cindex hardware watchpoints
c906108c 3256Depending on your system, watchpoints may be implemented in software or
2df3850c 3257hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3258program and testing the variable's value each time, which is hundreds of
3259times slower than normal execution. (But this may still be worth it, to
3260catch errors where you have no clue what part of your program is the
3261culprit.)
3262
37e4754d 3263On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3264x86-based targets, @value{GDBN} includes support for hardware
3265watchpoints, which do not slow down the running of your program.
c906108c
SS
3266
3267@table @code
3268@kindex watch
d8b2a693 3269@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3270Set a watchpoint for an expression. @value{GDBN} will break when the
3271expression @var{expr} is written into by the program and its value
3272changes. The simplest (and the most popular) use of this command is
3273to watch the value of a single variable:
3274
3275@smallexample
3276(@value{GDBP}) watch foo
3277@end smallexample
c906108c 3278
d8b2a693
JB
3279If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3280clause, @value{GDBN} breaks only when the thread identified by
3281@var{threadnum} changes the value of @var{expr}. If any other threads
3282change the value of @var{expr}, @value{GDBN} will not break. Note
3283that watchpoints restricted to a single thread in this way only work
3284with Hardware Watchpoints.
3285
c906108c 3286@kindex rwatch
d8b2a693 3287@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3288Set a watchpoint that will break when the value of @var{expr} is read
3289by the program.
c906108c
SS
3290
3291@kindex awatch
d8b2a693 3292@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3293Set a watchpoint that will break when @var{expr} is either read from
3294or written into by the program.
c906108c 3295
45ac1734 3296@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3297@item info watchpoints
3298This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3299it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3300@end table
3301
3302@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3303watchpoints execute very quickly, and the debugger reports a change in
3304value at the exact instruction where the change occurs. If @value{GDBN}
3305cannot set a hardware watchpoint, it sets a software watchpoint, which
3306executes more slowly and reports the change in value at the next
82f2d802
EZ
3307@emph{statement}, not the instruction, after the change occurs.
3308
82f2d802
EZ
3309@cindex use only software watchpoints
3310You can force @value{GDBN} to use only software watchpoints with the
3311@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3312zero, @value{GDBN} will never try to use hardware watchpoints, even if
3313the underlying system supports them. (Note that hardware-assisted
3314watchpoints that were set @emph{before} setting
3315@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3316mechanism of watching expression values.)
c906108c 3317
9c16f35a
EZ
3318@table @code
3319@item set can-use-hw-watchpoints
3320@kindex set can-use-hw-watchpoints
3321Set whether or not to use hardware watchpoints.
3322
3323@item show can-use-hw-watchpoints
3324@kindex show can-use-hw-watchpoints
3325Show the current mode of using hardware watchpoints.
3326@end table
3327
3328For remote targets, you can restrict the number of hardware
3329watchpoints @value{GDBN} will use, see @ref{set remote
3330hardware-breakpoint-limit}.
3331
c906108c
SS
3332When you issue the @code{watch} command, @value{GDBN} reports
3333
474c8240 3334@smallexample
c906108c 3335Hardware watchpoint @var{num}: @var{expr}
474c8240 3336@end smallexample
c906108c
SS
3337
3338@noindent
3339if it was able to set a hardware watchpoint.
3340
7be570e7
JM
3341Currently, the @code{awatch} and @code{rwatch} commands can only set
3342hardware watchpoints, because accesses to data that don't change the
3343value of the watched expression cannot be detected without examining
3344every instruction as it is being executed, and @value{GDBN} does not do
3345that currently. If @value{GDBN} finds that it is unable to set a
3346hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3347will print a message like this:
3348
3349@smallexample
3350Expression cannot be implemented with read/access watchpoint.
3351@end smallexample
3352
3353Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3354data type of the watched expression is wider than what a hardware
3355watchpoint on the target machine can handle. For example, some systems
3356can only watch regions that are up to 4 bytes wide; on such systems you
3357cannot set hardware watchpoints for an expression that yields a
3358double-precision floating-point number (which is typically 8 bytes
3359wide). As a work-around, it might be possible to break the large region
3360into a series of smaller ones and watch them with separate watchpoints.
3361
3362If you set too many hardware watchpoints, @value{GDBN} might be unable
3363to insert all of them when you resume the execution of your program.
3364Since the precise number of active watchpoints is unknown until such
3365time as the program is about to be resumed, @value{GDBN} might not be
3366able to warn you about this when you set the watchpoints, and the
3367warning will be printed only when the program is resumed:
3368
3369@smallexample
3370Hardware watchpoint @var{num}: Could not insert watchpoint
3371@end smallexample
3372
3373@noindent
3374If this happens, delete or disable some of the watchpoints.
3375
fd60e0df
EZ
3376Watching complex expressions that reference many variables can also
3377exhaust the resources available for hardware-assisted watchpoints.
3378That's because @value{GDBN} needs to watch every variable in the
3379expression with separately allocated resources.
3380
c906108c 3381If you call a function interactively using @code{print} or @code{call},
2df3850c 3382any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3383kind of breakpoint or the call completes.
3384
7be570e7
JM
3385@value{GDBN} automatically deletes watchpoints that watch local
3386(automatic) variables, or expressions that involve such variables, when
3387they go out of scope, that is, when the execution leaves the block in
3388which these variables were defined. In particular, when the program
3389being debugged terminates, @emph{all} local variables go out of scope,
3390and so only watchpoints that watch global variables remain set. If you
3391rerun the program, you will need to set all such watchpoints again. One
3392way of doing that would be to set a code breakpoint at the entry to the
3393@code{main} function and when it breaks, set all the watchpoints.
3394
c906108c
SS
3395@cindex watchpoints and threads
3396@cindex threads and watchpoints
d983da9c
DJ
3397In multi-threaded programs, watchpoints will detect changes to the
3398watched expression from every thread.
3399
3400@quotation
3401@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3402have only limited usefulness. If @value{GDBN} creates a software
3403watchpoint, it can only watch the value of an expression @emph{in a
3404single thread}. If you are confident that the expression can only
3405change due to the current thread's activity (and if you are also
3406confident that no other thread can become current), then you can use
3407software watchpoints as usual. However, @value{GDBN} may not notice
3408when a non-current thread's activity changes the expression. (Hardware
3409watchpoints, in contrast, watch an expression in all threads.)
c906108c 3410@end quotation
c906108c 3411
501eef12
AC
3412@xref{set remote hardware-watchpoint-limit}.
3413
6d2ebf8b 3414@node Set Catchpoints
79a6e687 3415@subsection Setting Catchpoints
d4f3574e 3416@cindex catchpoints, setting
c906108c
SS
3417@cindex exception handlers
3418@cindex event handling
3419
3420You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3421kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3422shared library. Use the @code{catch} command to set a catchpoint.
3423
3424@table @code
3425@kindex catch
3426@item catch @var{event}
3427Stop when @var{event} occurs. @var{event} can be any of the following:
3428@table @code
3429@item throw
4644b6e3 3430@cindex stop on C@t{++} exceptions
b37052ae 3431The throwing of a C@t{++} exception.
c906108c
SS
3432
3433@item catch
b37052ae 3434The catching of a C@t{++} exception.
c906108c 3435
8936fcda
JB
3436@item exception
3437@cindex Ada exception catching
3438@cindex catch Ada exceptions
3439An Ada exception being raised. If an exception name is specified
3440at the end of the command (eg @code{catch exception Program_Error}),
3441the debugger will stop only when this specific exception is raised.
3442Otherwise, the debugger stops execution when any Ada exception is raised.
3443
3444@item exception unhandled
3445An exception that was raised but is not handled by the program.
3446
3447@item assert
3448A failed Ada assertion.
3449
c906108c 3450@item exec
4644b6e3 3451@cindex break on fork/exec
5ee187d7
DJ
3452A call to @code{exec}. This is currently only available for HP-UX
3453and @sc{gnu}/Linux.
c906108c
SS
3454
3455@item fork
5ee187d7
DJ
3456A call to @code{fork}. This is currently only available for HP-UX
3457and @sc{gnu}/Linux.
c906108c
SS
3458
3459@item vfork
5ee187d7
DJ
3460A call to @code{vfork}. This is currently only available for HP-UX
3461and @sc{gnu}/Linux.
c906108c
SS
3462
3463@item load
3464@itemx load @var{libname}
4644b6e3 3465@cindex break on load/unload of shared library
c906108c
SS
3466The dynamic loading of any shared library, or the loading of the library
3467@var{libname}. This is currently only available for HP-UX.
3468
3469@item unload
3470@itemx unload @var{libname}
c906108c
SS
3471The unloading of any dynamically loaded shared library, or the unloading
3472of the library @var{libname}. This is currently only available for HP-UX.
3473@end table
3474
3475@item tcatch @var{event}
3476Set a catchpoint that is enabled only for one stop. The catchpoint is
3477automatically deleted after the first time the event is caught.
3478
3479@end table
3480
3481Use the @code{info break} command to list the current catchpoints.
3482
b37052ae 3483There are currently some limitations to C@t{++} exception handling
c906108c
SS
3484(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3485
3486@itemize @bullet
3487@item
3488If you call a function interactively, @value{GDBN} normally returns
3489control to you when the function has finished executing. If the call
3490raises an exception, however, the call may bypass the mechanism that
3491returns control to you and cause your program either to abort or to
3492simply continue running until it hits a breakpoint, catches a signal
3493that @value{GDBN} is listening for, or exits. This is the case even if
3494you set a catchpoint for the exception; catchpoints on exceptions are
3495disabled within interactive calls.
3496
3497@item
3498You cannot raise an exception interactively.
3499
3500@item
3501You cannot install an exception handler interactively.
3502@end itemize
3503
3504@cindex raise exceptions
3505Sometimes @code{catch} is not the best way to debug exception handling:
3506if you need to know exactly where an exception is raised, it is better to
3507stop @emph{before} the exception handler is called, since that way you
3508can see the stack before any unwinding takes place. If you set a
3509breakpoint in an exception handler instead, it may not be easy to find
3510out where the exception was raised.
3511
3512To stop just before an exception handler is called, you need some
b37052ae 3513knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3514raised by calling a library function named @code{__raise_exception}
3515which has the following ANSI C interface:
3516
474c8240 3517@smallexample
c906108c 3518 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3519 @var{id} is the exception identifier. */
3520 void __raise_exception (void **addr, void *id);
474c8240 3521@end smallexample
c906108c
SS
3522
3523@noindent
3524To make the debugger catch all exceptions before any stack
3525unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3526(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3527
79a6e687 3528With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3529that depends on the value of @var{id}, you can stop your program when
3530a specific exception is raised. You can use multiple conditional
3531breakpoints to stop your program when any of a number of exceptions are
3532raised.
3533
3534
6d2ebf8b 3535@node Delete Breaks
79a6e687 3536@subsection Deleting Breakpoints
c906108c
SS
3537
3538@cindex clearing breakpoints, watchpoints, catchpoints
3539@cindex deleting breakpoints, watchpoints, catchpoints
3540It is often necessary to eliminate a breakpoint, watchpoint, or
3541catchpoint once it has done its job and you no longer want your program
3542to stop there. This is called @dfn{deleting} the breakpoint. A
3543breakpoint that has been deleted no longer exists; it is forgotten.
3544
3545With the @code{clear} command you can delete breakpoints according to
3546where they are in your program. With the @code{delete} command you can
3547delete individual breakpoints, watchpoints, or catchpoints by specifying
3548their breakpoint numbers.
3549
3550It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3551automatically ignores breakpoints on the first instruction to be executed
3552when you continue execution without changing the execution address.
3553
3554@table @code
3555@kindex clear
3556@item clear
3557Delete any breakpoints at the next instruction to be executed in the
79a6e687 3558selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3559the innermost frame is selected, this is a good way to delete a
3560breakpoint where your program just stopped.
3561
2a25a5ba
EZ
3562@item clear @var{location}
3563Delete any breakpoints set at the specified @var{location}.
3564@xref{Specify Location}, for the various forms of @var{location}; the
3565most useful ones are listed below:
3566
3567@table @code
c906108c
SS
3568@item clear @var{function}
3569@itemx clear @var{filename}:@var{function}
09d4efe1 3570Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3571
3572@item clear @var{linenum}
3573@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3574Delete any breakpoints set at or within the code of the specified
3575@var{linenum} of the specified @var{filename}.
2a25a5ba 3576@end table
c906108c
SS
3577
3578@cindex delete breakpoints
3579@kindex delete
41afff9a 3580@kindex d @r{(@code{delete})}
c5394b80
JM
3581@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3582Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3583ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3584breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3585confirm off}). You can abbreviate this command as @code{d}.
3586@end table
3587
6d2ebf8b 3588@node Disabling
79a6e687 3589@subsection Disabling Breakpoints
c906108c 3590
4644b6e3 3591@cindex enable/disable a breakpoint
c906108c
SS
3592Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3593prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3594it had been deleted, but remembers the information on the breakpoint so
3595that you can @dfn{enable} it again later.
3596
3597You disable and enable breakpoints, watchpoints, and catchpoints with
3598the @code{enable} and @code{disable} commands, optionally specifying one
3599or more breakpoint numbers as arguments. Use @code{info break} or
3600@code{info watch} to print a list of breakpoints, watchpoints, and
3601catchpoints if you do not know which numbers to use.
3602
3b784c4f
EZ
3603Disabling and enabling a breakpoint that has multiple locations
3604affects all of its locations.
3605
c906108c
SS
3606A breakpoint, watchpoint, or catchpoint can have any of four different
3607states of enablement:
3608
3609@itemize @bullet
3610@item
3611Enabled. The breakpoint stops your program. A breakpoint set
3612with the @code{break} command starts out in this state.
3613@item
3614Disabled. The breakpoint has no effect on your program.
3615@item
3616Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3617disabled.
c906108c
SS
3618@item
3619Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3620immediately after it does so it is deleted permanently. A breakpoint
3621set with the @code{tbreak} command starts out in this state.
c906108c
SS
3622@end itemize
3623
3624You can use the following commands to enable or disable breakpoints,
3625watchpoints, and catchpoints:
3626
3627@table @code
c906108c 3628@kindex disable
41afff9a 3629@kindex dis @r{(@code{disable})}
c5394b80 3630@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3631Disable the specified breakpoints---or all breakpoints, if none are
3632listed. A disabled breakpoint has no effect but is not forgotten. All
3633options such as ignore-counts, conditions and commands are remembered in
3634case the breakpoint is enabled again later. You may abbreviate
3635@code{disable} as @code{dis}.
3636
c906108c 3637@kindex enable
c5394b80 3638@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3639Enable the specified breakpoints (or all defined breakpoints). They
3640become effective once again in stopping your program.
3641
c5394b80 3642@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3643Enable the specified breakpoints temporarily. @value{GDBN} disables any
3644of these breakpoints immediately after stopping your program.
3645
c5394b80 3646@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3647Enable the specified breakpoints to work once, then die. @value{GDBN}
3648deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3649Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3650@end table
3651
d4f3574e
SS
3652@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3653@c confusing: tbreak is also initially enabled.
c906108c 3654Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3655,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3656subsequently, they become disabled or enabled only when you use one of
3657the commands above. (The command @code{until} can set and delete a
3658breakpoint of its own, but it does not change the state of your other
3659breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3660Stepping}.)
c906108c 3661
6d2ebf8b 3662@node Conditions
79a6e687 3663@subsection Break Conditions
c906108c
SS
3664@cindex conditional breakpoints
3665@cindex breakpoint conditions
3666
3667@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3668@c in particular for a watchpoint?
c906108c
SS
3669The simplest sort of breakpoint breaks every time your program reaches a
3670specified place. You can also specify a @dfn{condition} for a
3671breakpoint. A condition is just a Boolean expression in your
3672programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3673a condition evaluates the expression each time your program reaches it,
3674and your program stops only if the condition is @emph{true}.
3675
3676This is the converse of using assertions for program validation; in that
3677situation, you want to stop when the assertion is violated---that is,
3678when the condition is false. In C, if you want to test an assertion expressed
3679by the condition @var{assert}, you should set the condition
3680@samp{! @var{assert}} on the appropriate breakpoint.
3681
3682Conditions are also accepted for watchpoints; you may not need them,
3683since a watchpoint is inspecting the value of an expression anyhow---but
3684it might be simpler, say, to just set a watchpoint on a variable name,
3685and specify a condition that tests whether the new value is an interesting
3686one.
3687
3688Break conditions can have side effects, and may even call functions in
3689your program. This can be useful, for example, to activate functions
3690that log program progress, or to use your own print functions to
3691format special data structures. The effects are completely predictable
3692unless there is another enabled breakpoint at the same address. (In
3693that case, @value{GDBN} might see the other breakpoint first and stop your
3694program without checking the condition of this one.) Note that
d4f3574e
SS
3695breakpoint commands are usually more convenient and flexible than break
3696conditions for the
c906108c 3697purpose of performing side effects when a breakpoint is reached
79a6e687 3698(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3699
3700Break conditions can be specified when a breakpoint is set, by using
3701@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3702Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3703with the @code{condition} command.
53a5351d 3704
c906108c
SS
3705You can also use the @code{if} keyword with the @code{watch} command.
3706The @code{catch} command does not recognize the @code{if} keyword;
3707@code{condition} is the only way to impose a further condition on a
3708catchpoint.
c906108c
SS
3709
3710@table @code
3711@kindex condition
3712@item condition @var{bnum} @var{expression}
3713Specify @var{expression} as the break condition for breakpoint,
3714watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3715breakpoint @var{bnum} stops your program only if the value of
3716@var{expression} is true (nonzero, in C). When you use
3717@code{condition}, @value{GDBN} checks @var{expression} immediately for
3718syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3719referents in the context of your breakpoint. If @var{expression} uses
3720symbols not referenced in the context of the breakpoint, @value{GDBN}
3721prints an error message:
3722
474c8240 3723@smallexample
d4f3574e 3724No symbol "foo" in current context.
474c8240 3725@end smallexample
d4f3574e
SS
3726
3727@noindent
c906108c
SS
3728@value{GDBN} does
3729not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3730command (or a command that sets a breakpoint with a condition, like
3731@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3732
3733@item condition @var{bnum}
3734Remove the condition from breakpoint number @var{bnum}. It becomes
3735an ordinary unconditional breakpoint.
3736@end table
3737
3738@cindex ignore count (of breakpoint)
3739A special case of a breakpoint condition is to stop only when the
3740breakpoint has been reached a certain number of times. This is so
3741useful that there is a special way to do it, using the @dfn{ignore
3742count} of the breakpoint. Every breakpoint has an ignore count, which
3743is an integer. Most of the time, the ignore count is zero, and
3744therefore has no effect. But if your program reaches a breakpoint whose
3745ignore count is positive, then instead of stopping, it just decrements
3746the ignore count by one and continues. As a result, if the ignore count
3747value is @var{n}, the breakpoint does not stop the next @var{n} times
3748your program reaches it.
3749
3750@table @code
3751@kindex ignore
3752@item ignore @var{bnum} @var{count}
3753Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3754The next @var{count} times the breakpoint is reached, your program's
3755execution does not stop; other than to decrement the ignore count, @value{GDBN}
3756takes no action.
3757
3758To make the breakpoint stop the next time it is reached, specify
3759a count of zero.
3760
3761When you use @code{continue} to resume execution of your program from a
3762breakpoint, you can specify an ignore count directly as an argument to
3763@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3764Stepping,,Continuing and Stepping}.
c906108c
SS
3765
3766If a breakpoint has a positive ignore count and a condition, the
3767condition is not checked. Once the ignore count reaches zero,
3768@value{GDBN} resumes checking the condition.
3769
3770You could achieve the effect of the ignore count with a condition such
3771as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3772is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3773Variables}.
c906108c
SS
3774@end table
3775
3776Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3777
3778
6d2ebf8b 3779@node Break Commands
79a6e687 3780@subsection Breakpoint Command Lists
c906108c
SS
3781
3782@cindex breakpoint commands
3783You can give any breakpoint (or watchpoint or catchpoint) a series of
3784commands to execute when your program stops due to that breakpoint. For
3785example, you might want to print the values of certain expressions, or
3786enable other breakpoints.
3787
3788@table @code
3789@kindex commands
ca91424e 3790@kindex end@r{ (breakpoint commands)}
c906108c
SS
3791@item commands @r{[}@var{bnum}@r{]}
3792@itemx @dots{} @var{command-list} @dots{}
3793@itemx end
3794Specify a list of commands for breakpoint number @var{bnum}. The commands
3795themselves appear on the following lines. Type a line containing just
3796@code{end} to terminate the commands.
3797
3798To remove all commands from a breakpoint, type @code{commands} and
3799follow it immediately with @code{end}; that is, give no commands.
3800
3801With no @var{bnum} argument, @code{commands} refers to the last
3802breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3803recently encountered).
3804@end table
3805
3806Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3807disabled within a @var{command-list}.
3808
3809You can use breakpoint commands to start your program up again. Simply
3810use the @code{continue} command, or @code{step}, or any other command
3811that resumes execution.
3812
3813Any other commands in the command list, after a command that resumes
3814execution, are ignored. This is because any time you resume execution
3815(even with a simple @code{next} or @code{step}), you may encounter
3816another breakpoint---which could have its own command list, leading to
3817ambiguities about which list to execute.
3818
3819@kindex silent
3820If the first command you specify in a command list is @code{silent}, the
3821usual message about stopping at a breakpoint is not printed. This may
3822be desirable for breakpoints that are to print a specific message and
3823then continue. If none of the remaining commands print anything, you
3824see no sign that the breakpoint was reached. @code{silent} is
3825meaningful only at the beginning of a breakpoint command list.
3826
3827The commands @code{echo}, @code{output}, and @code{printf} allow you to
3828print precisely controlled output, and are often useful in silent
79a6e687 3829breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3830
3831For example, here is how you could use breakpoint commands to print the
3832value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3833
474c8240 3834@smallexample
c906108c
SS
3835break foo if x>0
3836commands
3837silent
3838printf "x is %d\n",x
3839cont
3840end
474c8240 3841@end smallexample
c906108c
SS
3842
3843One application for breakpoint commands is to compensate for one bug so
3844you can test for another. Put a breakpoint just after the erroneous line
3845of code, give it a condition to detect the case in which something
3846erroneous has been done, and give it commands to assign correct values
3847to any variables that need them. End with the @code{continue} command
3848so that your program does not stop, and start with the @code{silent}
3849command so that no output is produced. Here is an example:
3850
474c8240 3851@smallexample
c906108c
SS
3852break 403
3853commands
3854silent
3855set x = y + 4
3856cont
3857end
474c8240 3858@end smallexample
c906108c 3859
c906108c 3860@c @ifclear BARETARGET
6d2ebf8b 3861@node Error in Breakpoints
d4f3574e 3862@subsection ``Cannot insert breakpoints''
c906108c
SS
3863@c
3864@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3865@c
d4f3574e
SS
3866Under some operating systems, breakpoints cannot be used in a program if
3867any other process is running that program. In this situation,
5d161b24 3868attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3869@value{GDBN} to print an error message:
3870
474c8240 3871@smallexample
d4f3574e
SS
3872Cannot insert breakpoints.
3873The same program may be running in another process.
474c8240 3874@end smallexample
d4f3574e
SS
3875
3876When this happens, you have three ways to proceed:
3877
3878@enumerate
3879@item
3880Remove or disable the breakpoints, then continue.
3881
3882@item
5d161b24 3883Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3884name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3885that @value{GDBN} should run your program under that name.
d4f3574e
SS
3886Then start your program again.
3887
3888@item
3889Relink your program so that the text segment is nonsharable, using the
3890linker option @samp{-N}. The operating system limitation may not apply
3891to nonsharable executables.
3892@end enumerate
c906108c
SS
3893@c @end ifclear
3894
d4f3574e
SS
3895A similar message can be printed if you request too many active
3896hardware-assisted breakpoints and watchpoints:
3897
3898@c FIXME: the precise wording of this message may change; the relevant
3899@c source change is not committed yet (Sep 3, 1999).
3900@smallexample
3901Stopped; cannot insert breakpoints.
3902You may have requested too many hardware breakpoints and watchpoints.
3903@end smallexample
3904
3905@noindent
3906This message is printed when you attempt to resume the program, since
3907only then @value{GDBN} knows exactly how many hardware breakpoints and
3908watchpoints it needs to insert.
3909
3910When this message is printed, you need to disable or remove some of the
3911hardware-assisted breakpoints and watchpoints, and then continue.
3912
79a6e687 3913@node Breakpoint-related Warnings
1485d690
KB
3914@subsection ``Breakpoint address adjusted...''
3915@cindex breakpoint address adjusted
3916
3917Some processor architectures place constraints on the addresses at
3918which breakpoints may be placed. For architectures thus constrained,
3919@value{GDBN} will attempt to adjust the breakpoint's address to comply
3920with the constraints dictated by the architecture.
3921
3922One example of such an architecture is the Fujitsu FR-V. The FR-V is
3923a VLIW architecture in which a number of RISC-like instructions may be
3924bundled together for parallel execution. The FR-V architecture
3925constrains the location of a breakpoint instruction within such a
3926bundle to the instruction with the lowest address. @value{GDBN}
3927honors this constraint by adjusting a breakpoint's address to the
3928first in the bundle.
3929
3930It is not uncommon for optimized code to have bundles which contain
3931instructions from different source statements, thus it may happen that
3932a breakpoint's address will be adjusted from one source statement to
3933another. Since this adjustment may significantly alter @value{GDBN}'s
3934breakpoint related behavior from what the user expects, a warning is
3935printed when the breakpoint is first set and also when the breakpoint
3936is hit.
3937
3938A warning like the one below is printed when setting a breakpoint
3939that's been subject to address adjustment:
3940
3941@smallexample
3942warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3943@end smallexample
3944
3945Such warnings are printed both for user settable and @value{GDBN}'s
3946internal breakpoints. If you see one of these warnings, you should
3947verify that a breakpoint set at the adjusted address will have the
3948desired affect. If not, the breakpoint in question may be removed and
b383017d 3949other breakpoints may be set which will have the desired behavior.
1485d690
KB
3950E.g., it may be sufficient to place the breakpoint at a later
3951instruction. A conditional breakpoint may also be useful in some
3952cases to prevent the breakpoint from triggering too often.
3953
3954@value{GDBN} will also issue a warning when stopping at one of these
3955adjusted breakpoints:
3956
3957@smallexample
3958warning: Breakpoint 1 address previously adjusted from 0x00010414
3959to 0x00010410.
3960@end smallexample
3961
3962When this warning is encountered, it may be too late to take remedial
3963action except in cases where the breakpoint is hit earlier or more
3964frequently than expected.
d4f3574e 3965
6d2ebf8b 3966@node Continuing and Stepping
79a6e687 3967@section Continuing and Stepping
c906108c
SS
3968
3969@cindex stepping
3970@cindex continuing
3971@cindex resuming execution
3972@dfn{Continuing} means resuming program execution until your program
3973completes normally. In contrast, @dfn{stepping} means executing just
3974one more ``step'' of your program, where ``step'' may mean either one
3975line of source code, or one machine instruction (depending on what
7a292a7a
SS
3976particular command you use). Either when continuing or when stepping,
3977your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
3978it stops due to a signal, you may want to use @code{handle}, or use
3979@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
3980
3981@table @code
3982@kindex continue
41afff9a
EZ
3983@kindex c @r{(@code{continue})}
3984@kindex fg @r{(resume foreground execution)}
c906108c
SS
3985@item continue @r{[}@var{ignore-count}@r{]}
3986@itemx c @r{[}@var{ignore-count}@r{]}
3987@itemx fg @r{[}@var{ignore-count}@r{]}
3988Resume program execution, at the address where your program last stopped;
3989any breakpoints set at that address are bypassed. The optional argument
3990@var{ignore-count} allows you to specify a further number of times to
3991ignore a breakpoint at this location; its effect is like that of
79a6e687 3992@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
3993
3994The argument @var{ignore-count} is meaningful only when your program
3995stopped due to a breakpoint. At other times, the argument to
3996@code{continue} is ignored.
3997
d4f3574e
SS
3998The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
3999debugged program is deemed to be the foreground program) are provided
4000purely for convenience, and have exactly the same behavior as
4001@code{continue}.
c906108c
SS
4002@end table
4003
4004To resume execution at a different place, you can use @code{return}
79a6e687 4005(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4006calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4007Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4008
4009A typical technique for using stepping is to set a breakpoint
79a6e687 4010(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4011beginning of the function or the section of your program where a problem
4012is believed to lie, run your program until it stops at that breakpoint,
4013and then step through the suspect area, examining the variables that are
4014interesting, until you see the problem happen.
4015
4016@table @code
4017@kindex step
41afff9a 4018@kindex s @r{(@code{step})}
c906108c
SS
4019@item step
4020Continue running your program until control reaches a different source
4021line, then stop it and return control to @value{GDBN}. This command is
4022abbreviated @code{s}.
4023
4024@quotation
4025@c "without debugging information" is imprecise; actually "without line
4026@c numbers in the debugging information". (gcc -g1 has debugging info but
4027@c not line numbers). But it seems complex to try to make that
4028@c distinction here.
4029@emph{Warning:} If you use the @code{step} command while control is
4030within a function that was compiled without debugging information,
4031execution proceeds until control reaches a function that does have
4032debugging information. Likewise, it will not step into a function which
4033is compiled without debugging information. To step through functions
4034without debugging information, use the @code{stepi} command, described
4035below.
4036@end quotation
4037
4a92d011
EZ
4038The @code{step} command only stops at the first instruction of a source
4039line. This prevents the multiple stops that could otherwise occur in
4040@code{switch} statements, @code{for} loops, etc. @code{step} continues
4041to stop if a function that has debugging information is called within
4042the line. In other words, @code{step} @emph{steps inside} any functions
4043called within the line.
c906108c 4044
d4f3574e
SS
4045Also, the @code{step} command only enters a function if there is line
4046number information for the function. Otherwise it acts like the
5d161b24 4047@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4048on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4049was any debugging information about the routine.
c906108c
SS
4050
4051@item step @var{count}
4052Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4053breakpoint is reached, or a signal not related to stepping occurs before
4054@var{count} steps, stepping stops right away.
c906108c
SS
4055
4056@kindex next
41afff9a 4057@kindex n @r{(@code{next})}
c906108c
SS
4058@item next @r{[}@var{count}@r{]}
4059Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4060This is similar to @code{step}, but function calls that appear within
4061the line of code are executed without stopping. Execution stops when
4062control reaches a different line of code at the original stack level
4063that was executing when you gave the @code{next} command. This command
4064is abbreviated @code{n}.
c906108c
SS
4065
4066An argument @var{count} is a repeat count, as for @code{step}.
4067
4068
4069@c FIX ME!! Do we delete this, or is there a way it fits in with
4070@c the following paragraph? --- Vctoria
4071@c
4072@c @code{next} within a function that lacks debugging information acts like
4073@c @code{step}, but any function calls appearing within the code of the
4074@c function are executed without stopping.
4075
d4f3574e
SS
4076The @code{next} command only stops at the first instruction of a
4077source line. This prevents multiple stops that could otherwise occur in
4a92d011 4078@code{switch} statements, @code{for} loops, etc.
c906108c 4079
b90a5f51
CF
4080@kindex set step-mode
4081@item set step-mode
4082@cindex functions without line info, and stepping
4083@cindex stepping into functions with no line info
4084@itemx set step-mode on
4a92d011 4085The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4086stop at the first instruction of a function which contains no debug line
4087information rather than stepping over it.
4088
4a92d011
EZ
4089This is useful in cases where you may be interested in inspecting the
4090machine instructions of a function which has no symbolic info and do not
4091want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4092
4093@item set step-mode off
4a92d011 4094Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4095debug information. This is the default.
4096
9c16f35a
EZ
4097@item show step-mode
4098Show whether @value{GDBN} will stop in or step over functions without
4099source line debug information.
4100
c906108c
SS
4101@kindex finish
4102@item finish
4103Continue running until just after function in the selected stack frame
4104returns. Print the returned value (if any).
4105
4106Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4107,Returning from a Function}).
c906108c
SS
4108
4109@kindex until
41afff9a 4110@kindex u @r{(@code{until})}
09d4efe1 4111@cindex run until specified location
c906108c
SS
4112@item until
4113@itemx u
4114Continue running until a source line past the current line, in the
4115current stack frame, is reached. This command is used to avoid single
4116stepping through a loop more than once. It is like the @code{next}
4117command, except that when @code{until} encounters a jump, it
4118automatically continues execution until the program counter is greater
4119than the address of the jump.
4120
4121This means that when you reach the end of a loop after single stepping
4122though it, @code{until} makes your program continue execution until it
4123exits the loop. In contrast, a @code{next} command at the end of a loop
4124simply steps back to the beginning of the loop, which forces you to step
4125through the next iteration.
4126
4127@code{until} always stops your program if it attempts to exit the current
4128stack frame.
4129
4130@code{until} may produce somewhat counterintuitive results if the order
4131of machine code does not match the order of the source lines. For
4132example, in the following excerpt from a debugging session, the @code{f}
4133(@code{frame}) command shows that execution is stopped at line
4134@code{206}; yet when we use @code{until}, we get to line @code{195}:
4135
474c8240 4136@smallexample
c906108c
SS
4137(@value{GDBP}) f
4138#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4139206 expand_input();
4140(@value{GDBP}) until
4141195 for ( ; argc > 0; NEXTARG) @{
474c8240 4142@end smallexample
c906108c
SS
4143
4144This happened because, for execution efficiency, the compiler had
4145generated code for the loop closure test at the end, rather than the
4146start, of the loop---even though the test in a C @code{for}-loop is
4147written before the body of the loop. The @code{until} command appeared
4148to step back to the beginning of the loop when it advanced to this
4149expression; however, it has not really gone to an earlier
4150statement---not in terms of the actual machine code.
4151
4152@code{until} with no argument works by means of single
4153instruction stepping, and hence is slower than @code{until} with an
4154argument.
4155
4156@item until @var{location}
4157@itemx u @var{location}
4158Continue running your program until either the specified location is
4159reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4160the forms described in @ref{Specify Location}.
4161This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4162hence is quicker than @code{until} without an argument. The specified
4163location is actually reached only if it is in the current frame. This
4164implies that @code{until} can be used to skip over recursive function
4165invocations. For instance in the code below, if the current location is
4166line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4167line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4168invocations have returned.
4169
4170@smallexample
417194 int factorial (int value)
417295 @{
417396 if (value > 1) @{
417497 value *= factorial (value - 1);
417598 @}
417699 return (value);
4177100 @}
4178@end smallexample
4179
4180
4181@kindex advance @var{location}
4182@itemx advance @var{location}
09d4efe1 4183Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4184required, which should be of one of the forms described in
4185@ref{Specify Location}.
4186Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4187frame. This command is similar to @code{until}, but @code{advance} will
4188not skip over recursive function calls, and the target location doesn't
4189have to be in the same frame as the current one.
4190
c906108c
SS
4191
4192@kindex stepi
41afff9a 4193@kindex si @r{(@code{stepi})}
c906108c 4194@item stepi
96a2c332 4195@itemx stepi @var{arg}
c906108c
SS
4196@itemx si
4197Execute one machine instruction, then stop and return to the debugger.
4198
4199It is often useful to do @samp{display/i $pc} when stepping by machine
4200instructions. This makes @value{GDBN} automatically display the next
4201instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4202Display,, Automatic Display}.
c906108c
SS
4203
4204An argument is a repeat count, as in @code{step}.
4205
4206@need 750
4207@kindex nexti
41afff9a 4208@kindex ni @r{(@code{nexti})}
c906108c 4209@item nexti
96a2c332 4210@itemx nexti @var{arg}
c906108c
SS
4211@itemx ni
4212Execute one machine instruction, but if it is a function call,
4213proceed until the function returns.
4214
4215An argument is a repeat count, as in @code{next}.
4216@end table
4217
6d2ebf8b 4218@node Signals
c906108c
SS
4219@section Signals
4220@cindex signals
4221
4222A signal is an asynchronous event that can happen in a program. The
4223operating system defines the possible kinds of signals, and gives each
4224kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4225signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4226@code{SIGSEGV} is the signal a program gets from referencing a place in
4227memory far away from all the areas in use; @code{SIGALRM} occurs when
4228the alarm clock timer goes off (which happens only if your program has
4229requested an alarm).
4230
4231@cindex fatal signals
4232Some signals, including @code{SIGALRM}, are a normal part of the
4233functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4234errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4235program has not specified in advance some other way to handle the signal.
4236@code{SIGINT} does not indicate an error in your program, but it is normally
4237fatal so it can carry out the purpose of the interrupt: to kill the program.
4238
4239@value{GDBN} has the ability to detect any occurrence of a signal in your
4240program. You can tell @value{GDBN} in advance what to do for each kind of
4241signal.
4242
4243@cindex handling signals
24f93129
EZ
4244Normally, @value{GDBN} is set up to let the non-erroneous signals like
4245@code{SIGALRM} be silently passed to your program
4246(so as not to interfere with their role in the program's functioning)
c906108c
SS
4247but to stop your program immediately whenever an error signal happens.
4248You can change these settings with the @code{handle} command.
4249
4250@table @code
4251@kindex info signals
09d4efe1 4252@kindex info handle
c906108c 4253@item info signals
96a2c332 4254@itemx info handle
c906108c
SS
4255Print a table of all the kinds of signals and how @value{GDBN} has been told to
4256handle each one. You can use this to see the signal numbers of all
4257the defined types of signals.
4258
45ac1734
EZ
4259@item info signals @var{sig}
4260Similar, but print information only about the specified signal number.
4261
d4f3574e 4262@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4263
4264@kindex handle
45ac1734 4265@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4266Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4267can be the number of a signal or its name (with or without the
24f93129 4268@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4269@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4270known signals. Optional arguments @var{keywords}, described below,
4271say what change to make.
c906108c
SS
4272@end table
4273
4274@c @group
4275The keywords allowed by the @code{handle} command can be abbreviated.
4276Their full names are:
4277
4278@table @code
4279@item nostop
4280@value{GDBN} should not stop your program when this signal happens. It may
4281still print a message telling you that the signal has come in.
4282
4283@item stop
4284@value{GDBN} should stop your program when this signal happens. This implies
4285the @code{print} keyword as well.
4286
4287@item print
4288@value{GDBN} should print a message when this signal happens.
4289
4290@item noprint
4291@value{GDBN} should not mention the occurrence of the signal at all. This
4292implies the @code{nostop} keyword as well.
4293
4294@item pass
5ece1a18 4295@itemx noignore
c906108c
SS
4296@value{GDBN} should allow your program to see this signal; your program
4297can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4298and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4299
4300@item nopass
5ece1a18 4301@itemx ignore
c906108c 4302@value{GDBN} should not allow your program to see this signal.
5ece1a18 4303@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4304@end table
4305@c @end group
4306
d4f3574e
SS
4307When a signal stops your program, the signal is not visible to the
4308program until you
c906108c
SS
4309continue. Your program sees the signal then, if @code{pass} is in
4310effect for the signal in question @emph{at that time}. In other words,
4311after @value{GDBN} reports a signal, you can use the @code{handle}
4312command with @code{pass} or @code{nopass} to control whether your
4313program sees that signal when you continue.
4314
24f93129
EZ
4315The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4316non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4317@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4318erroneous signals.
4319
c906108c
SS
4320You can also use the @code{signal} command to prevent your program from
4321seeing a signal, or cause it to see a signal it normally would not see,
4322or to give it any signal at any time. For example, if your program stopped
4323due to some sort of memory reference error, you might store correct
4324values into the erroneous variables and continue, hoping to see more
4325execution; but your program would probably terminate immediately as
4326a result of the fatal signal once it saw the signal. To prevent this,
4327you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4328Program a Signal}.
c906108c 4329
6d2ebf8b 4330@node Thread Stops
79a6e687 4331@section Stopping and Starting Multi-thread Programs
c906108c
SS
4332
4333When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4334Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4335breakpoints on all threads, or on a particular thread.
4336
4337@table @code
4338@cindex breakpoints and threads
4339@cindex thread breakpoints
4340@kindex break @dots{} thread @var{threadno}
4341@item break @var{linespec} thread @var{threadno}
4342@itemx break @var{linespec} thread @var{threadno} if @dots{}
4343@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4344writing them (@pxref{Specify Location}), but the effect is always to
4345specify some source line.
c906108c
SS
4346
4347Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4348to specify that you only want @value{GDBN} to stop the program when a
4349particular thread reaches this breakpoint. @var{threadno} is one of the
4350numeric thread identifiers assigned by @value{GDBN}, shown in the first
4351column of the @samp{info threads} display.
4352
4353If you do not specify @samp{thread @var{threadno}} when you set a
4354breakpoint, the breakpoint applies to @emph{all} threads of your
4355program.
4356
4357You can use the @code{thread} qualifier on conditional breakpoints as
4358well; in this case, place @samp{thread @var{threadno}} before the
4359breakpoint condition, like this:
4360
4361@smallexample
2df3850c 4362(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4363@end smallexample
4364
4365@end table
4366
4367@cindex stopped threads
4368@cindex threads, stopped
4369Whenever your program stops under @value{GDBN} for any reason,
4370@emph{all} threads of execution stop, not just the current thread. This
4371allows you to examine the overall state of the program, including
4372switching between threads, without worrying that things may change
4373underfoot.
4374
36d86913
MC
4375@cindex thread breakpoints and system calls
4376@cindex system calls and thread breakpoints
4377@cindex premature return from system calls
4378There is an unfortunate side effect. If one thread stops for a
4379breakpoint, or for some other reason, and another thread is blocked in a
4380system call, then the system call may return prematurely. This is a
4381consequence of the interaction between multiple threads and the signals
4382that @value{GDBN} uses to implement breakpoints and other events that
4383stop execution.
4384
4385To handle this problem, your program should check the return value of
4386each system call and react appropriately. This is good programming
4387style anyways.
4388
4389For example, do not write code like this:
4390
4391@smallexample
4392 sleep (10);
4393@end smallexample
4394
4395The call to @code{sleep} will return early if a different thread stops
4396at a breakpoint or for some other reason.
4397
4398Instead, write this:
4399
4400@smallexample
4401 int unslept = 10;
4402 while (unslept > 0)
4403 unslept = sleep (unslept);
4404@end smallexample
4405
4406A system call is allowed to return early, so the system is still
4407conforming to its specification. But @value{GDBN} does cause your
4408multi-threaded program to behave differently than it would without
4409@value{GDBN}.
4410
4411Also, @value{GDBN} uses internal breakpoints in the thread library to
4412monitor certain events such as thread creation and thread destruction.
4413When such an event happens, a system call in another thread may return
4414prematurely, even though your program does not appear to stop.
4415
c906108c
SS
4416@cindex continuing threads
4417@cindex threads, continuing
4418Conversely, whenever you restart the program, @emph{all} threads start
4419executing. @emph{This is true even when single-stepping} with commands
5d161b24 4420like @code{step} or @code{next}.
c906108c
SS
4421
4422In particular, @value{GDBN} cannot single-step all threads in lockstep.
4423Since thread scheduling is up to your debugging target's operating
4424system (not controlled by @value{GDBN}), other threads may
4425execute more than one statement while the current thread completes a
4426single step. Moreover, in general other threads stop in the middle of a
4427statement, rather than at a clean statement boundary, when the program
4428stops.
4429
4430You might even find your program stopped in another thread after
4431continuing or even single-stepping. This happens whenever some other
4432thread runs into a breakpoint, a signal, or an exception before the
4433first thread completes whatever you requested.
4434
4435On some OSes, you can lock the OS scheduler and thus allow only a single
4436thread to run.
4437
4438@table @code
4439@item set scheduler-locking @var{mode}
9c16f35a
EZ
4440@cindex scheduler locking mode
4441@cindex lock scheduler
c906108c
SS
4442Set the scheduler locking mode. If it is @code{off}, then there is no
4443locking and any thread may run at any time. If @code{on}, then only the
4444current thread may run when the inferior is resumed. The @code{step}
4445mode optimizes for single-stepping. It stops other threads from
4446``seizing the prompt'' by preempting the current thread while you are
4447stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4448when you step. They are more likely to run when you @samp{next} over a
c906108c 4449function call, and they are completely free to run when you use commands
d4f3574e 4450like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4451thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4452@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4453
4454@item show scheduler-locking
4455Display the current scheduler locking mode.
4456@end table
4457
c906108c 4458
6d2ebf8b 4459@node Stack
c906108c
SS
4460@chapter Examining the Stack
4461
4462When your program has stopped, the first thing you need to know is where it
4463stopped and how it got there.
4464
4465@cindex call stack
5d161b24
DB
4466Each time your program performs a function call, information about the call
4467is generated.
4468That information includes the location of the call in your program,
4469the arguments of the call,
c906108c 4470and the local variables of the function being called.
5d161b24 4471The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4472The stack frames are allocated in a region of memory called the @dfn{call
4473stack}.
4474
4475When your program stops, the @value{GDBN} commands for examining the
4476stack allow you to see all of this information.
4477
4478@cindex selected frame
4479One of the stack frames is @dfn{selected} by @value{GDBN} and many
4480@value{GDBN} commands refer implicitly to the selected frame. In
4481particular, whenever you ask @value{GDBN} for the value of a variable in
4482your program, the value is found in the selected frame. There are
4483special @value{GDBN} commands to select whichever frame you are
79a6e687 4484interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4485
4486When your program stops, @value{GDBN} automatically selects the
5d161b24 4487currently executing frame and describes it briefly, similar to the
79a6e687 4488@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4489
4490@menu
4491* Frames:: Stack frames
4492* Backtrace:: Backtraces
4493* Selection:: Selecting a frame
4494* Frame Info:: Information on a frame
c906108c
SS
4495
4496@end menu
4497
6d2ebf8b 4498@node Frames
79a6e687 4499@section Stack Frames
c906108c 4500
d4f3574e 4501@cindex frame, definition
c906108c
SS
4502@cindex stack frame
4503The call stack is divided up into contiguous pieces called @dfn{stack
4504frames}, or @dfn{frames} for short; each frame is the data associated
4505with one call to one function. The frame contains the arguments given
4506to the function, the function's local variables, and the address at
4507which the function is executing.
4508
4509@cindex initial frame
4510@cindex outermost frame
4511@cindex innermost frame
4512When your program is started, the stack has only one frame, that of the
4513function @code{main}. This is called the @dfn{initial} frame or the
4514@dfn{outermost} frame. Each time a function is called, a new frame is
4515made. Each time a function returns, the frame for that function invocation
4516is eliminated. If a function is recursive, there can be many frames for
4517the same function. The frame for the function in which execution is
4518actually occurring is called the @dfn{innermost} frame. This is the most
4519recently created of all the stack frames that still exist.
4520
4521@cindex frame pointer
4522Inside your program, stack frames are identified by their addresses. A
4523stack frame consists of many bytes, each of which has its own address; each
4524kind of computer has a convention for choosing one byte whose
4525address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4526in a register called the @dfn{frame pointer register}
4527(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4528
4529@cindex frame number
4530@value{GDBN} assigns numbers to all existing stack frames, starting with
4531zero for the innermost frame, one for the frame that called it,
4532and so on upward. These numbers do not really exist in your program;
4533they are assigned by @value{GDBN} to give you a way of designating stack
4534frames in @value{GDBN} commands.
4535
6d2ebf8b
SS
4536@c The -fomit-frame-pointer below perennially causes hbox overflow
4537@c underflow problems.
c906108c
SS
4538@cindex frameless execution
4539Some compilers provide a way to compile functions so that they operate
e22ea452 4540without stack frames. (For example, the @value{NGCC} option
474c8240 4541@smallexample
6d2ebf8b 4542@samp{-fomit-frame-pointer}
474c8240 4543@end smallexample
6d2ebf8b 4544generates functions without a frame.)
c906108c
SS
4545This is occasionally done with heavily used library functions to save
4546the frame setup time. @value{GDBN} has limited facilities for dealing
4547with these function invocations. If the innermost function invocation
4548has no stack frame, @value{GDBN} nevertheless regards it as though
4549it had a separate frame, which is numbered zero as usual, allowing
4550correct tracing of the function call chain. However, @value{GDBN} has
4551no provision for frameless functions elsewhere in the stack.
4552
4553@table @code
d4f3574e 4554@kindex frame@r{, command}
41afff9a 4555@cindex current stack frame
c906108c 4556@item frame @var{args}
5d161b24 4557The @code{frame} command allows you to move from one stack frame to another,
c906108c 4558and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4559address of the frame or the stack frame number. Without an argument,
4560@code{frame} prints the current stack frame.
c906108c
SS
4561
4562@kindex select-frame
41afff9a 4563@cindex selecting frame silently
c906108c
SS
4564@item select-frame
4565The @code{select-frame} command allows you to move from one stack frame
4566to another without printing the frame. This is the silent version of
4567@code{frame}.
4568@end table
4569
6d2ebf8b 4570@node Backtrace
c906108c
SS
4571@section Backtraces
4572
09d4efe1
EZ
4573@cindex traceback
4574@cindex call stack traces
c906108c
SS
4575A backtrace is a summary of how your program got where it is. It shows one
4576line per frame, for many frames, starting with the currently executing
4577frame (frame zero), followed by its caller (frame one), and on up the
4578stack.
4579
4580@table @code
4581@kindex backtrace
41afff9a 4582@kindex bt @r{(@code{backtrace})}
c906108c
SS
4583@item backtrace
4584@itemx bt
4585Print a backtrace of the entire stack: one line per frame for all
4586frames in the stack.
4587
4588You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4589character, normally @kbd{Ctrl-c}.
c906108c
SS
4590
4591@item backtrace @var{n}
4592@itemx bt @var{n}
4593Similar, but print only the innermost @var{n} frames.
4594
4595@item backtrace -@var{n}
4596@itemx bt -@var{n}
4597Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4598
4599@item backtrace full
0f061b69 4600@itemx bt full
dd74f6ae
NR
4601@itemx bt full @var{n}
4602@itemx bt full -@var{n}
e7109c7e 4603Print the values of the local variables also. @var{n} specifies the
286ba84d 4604number of frames to print, as described above.
c906108c
SS
4605@end table
4606
4607@kindex where
4608@kindex info stack
c906108c
SS
4609The names @code{where} and @code{info stack} (abbreviated @code{info s})
4610are additional aliases for @code{backtrace}.
4611
839c27b7
EZ
4612@cindex multiple threads, backtrace
4613In a multi-threaded program, @value{GDBN} by default shows the
4614backtrace only for the current thread. To display the backtrace for
4615several or all of the threads, use the command @code{thread apply}
4616(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4617apply all backtrace}, @value{GDBN} will display the backtrace for all
4618the threads; this is handy when you debug a core dump of a
4619multi-threaded program.
4620
c906108c
SS
4621Each line in the backtrace shows the frame number and the function name.
4622The program counter value is also shown---unless you use @code{set
4623print address off}. The backtrace also shows the source file name and
4624line number, as well as the arguments to the function. The program
4625counter value is omitted if it is at the beginning of the code for that
4626line number.
4627
4628Here is an example of a backtrace. It was made with the command
4629@samp{bt 3}, so it shows the innermost three frames.
4630
4631@smallexample
4632@group
5d161b24 4633#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4634 at builtin.c:993
4635#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4636#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4637 at macro.c:71
4638(More stack frames follow...)
4639@end group
4640@end smallexample
4641
4642@noindent
4643The display for frame zero does not begin with a program counter
4644value, indicating that your program has stopped at the beginning of the
4645code for line @code{993} of @code{builtin.c}.
4646
18999be5
EZ
4647@cindex value optimized out, in backtrace
4648@cindex function call arguments, optimized out
4649If your program was compiled with optimizations, some compilers will
4650optimize away arguments passed to functions if those arguments are
4651never used after the call. Such optimizations generate code that
4652passes arguments through registers, but doesn't store those arguments
4653in the stack frame. @value{GDBN} has no way of displaying such
4654arguments in stack frames other than the innermost one. Here's what
4655such a backtrace might look like:
4656
4657@smallexample
4658@group
4659#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4660 at builtin.c:993
4661#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4662#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4663 at macro.c:71
4664(More stack frames follow...)
4665@end group
4666@end smallexample
4667
4668@noindent
4669The values of arguments that were not saved in their stack frames are
4670shown as @samp{<value optimized out>}.
4671
4672If you need to display the values of such optimized-out arguments,
4673either deduce that from other variables whose values depend on the one
4674you are interested in, or recompile without optimizations.
4675
a8f24a35
EZ
4676@cindex backtrace beyond @code{main} function
4677@cindex program entry point
4678@cindex startup code, and backtrace
25d29d70
AC
4679Most programs have a standard user entry point---a place where system
4680libraries and startup code transition into user code. For C this is
d416eeec
EZ
4681@code{main}@footnote{
4682Note that embedded programs (the so-called ``free-standing''
4683environment) are not required to have a @code{main} function as the
4684entry point. They could even have multiple entry points.}.
4685When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4686it will terminate the backtrace, to avoid tracing into highly
4687system-specific (and generally uninteresting) code.
4688
4689If you need to examine the startup code, or limit the number of levels
4690in a backtrace, you can change this behavior:
95f90d25
DJ
4691
4692@table @code
25d29d70
AC
4693@item set backtrace past-main
4694@itemx set backtrace past-main on
4644b6e3 4695@kindex set backtrace
25d29d70
AC
4696Backtraces will continue past the user entry point.
4697
4698@item set backtrace past-main off
95f90d25
DJ
4699Backtraces will stop when they encounter the user entry point. This is the
4700default.
4701
25d29d70 4702@item show backtrace past-main
4644b6e3 4703@kindex show backtrace
25d29d70
AC
4704Display the current user entry point backtrace policy.
4705
2315ffec
RC
4706@item set backtrace past-entry
4707@itemx set backtrace past-entry on
a8f24a35 4708Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4709This entry point is encoded by the linker when the application is built,
4710and is likely before the user entry point @code{main} (or equivalent) is called.
4711
4712@item set backtrace past-entry off
d3e8051b 4713Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4714application. This is the default.
4715
4716@item show backtrace past-entry
4717Display the current internal entry point backtrace policy.
4718
25d29d70
AC
4719@item set backtrace limit @var{n}
4720@itemx set backtrace limit 0
4721@cindex backtrace limit
4722Limit the backtrace to @var{n} levels. A value of zero means
4723unlimited.
95f90d25 4724
25d29d70
AC
4725@item show backtrace limit
4726Display the current limit on backtrace levels.
95f90d25
DJ
4727@end table
4728
6d2ebf8b 4729@node Selection
79a6e687 4730@section Selecting a Frame
c906108c
SS
4731
4732Most commands for examining the stack and other data in your program work on
4733whichever stack frame is selected at the moment. Here are the commands for
4734selecting a stack frame; all of them finish by printing a brief description
4735of the stack frame just selected.
4736
4737@table @code
d4f3574e 4738@kindex frame@r{, selecting}
41afff9a 4739@kindex f @r{(@code{frame})}
c906108c
SS
4740@item frame @var{n}
4741@itemx f @var{n}
4742Select frame number @var{n}. Recall that frame zero is the innermost
4743(currently executing) frame, frame one is the frame that called the
4744innermost one, and so on. The highest-numbered frame is the one for
4745@code{main}.
4746
4747@item frame @var{addr}
4748@itemx f @var{addr}
4749Select the frame at address @var{addr}. This is useful mainly if the
4750chaining of stack frames has been damaged by a bug, making it
4751impossible for @value{GDBN} to assign numbers properly to all frames. In
4752addition, this can be useful when your program has multiple stacks and
4753switches between them.
4754
c906108c
SS
4755On the SPARC architecture, @code{frame} needs two addresses to
4756select an arbitrary frame: a frame pointer and a stack pointer.
4757
4758On the MIPS and Alpha architecture, it needs two addresses: a stack
4759pointer and a program counter.
4760
4761On the 29k architecture, it needs three addresses: a register stack
4762pointer, a program counter, and a memory stack pointer.
c906108c
SS
4763
4764@kindex up
4765@item up @var{n}
4766Move @var{n} frames up the stack. For positive numbers @var{n}, this
4767advances toward the outermost frame, to higher frame numbers, to frames
4768that have existed longer. @var{n} defaults to one.
4769
4770@kindex down
41afff9a 4771@kindex do @r{(@code{down})}
c906108c
SS
4772@item down @var{n}
4773Move @var{n} frames down the stack. For positive numbers @var{n}, this
4774advances toward the innermost frame, to lower frame numbers, to frames
4775that were created more recently. @var{n} defaults to one. You may
4776abbreviate @code{down} as @code{do}.
4777@end table
4778
4779All of these commands end by printing two lines of output describing the
4780frame. The first line shows the frame number, the function name, the
4781arguments, and the source file and line number of execution in that
5d161b24 4782frame. The second line shows the text of that source line.
c906108c
SS
4783
4784@need 1000
4785For example:
4786
4787@smallexample
4788@group
4789(@value{GDBP}) up
4790#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4791 at env.c:10
479210 read_input_file (argv[i]);
4793@end group
4794@end smallexample
4795
4796After such a printout, the @code{list} command with no arguments
4797prints ten lines centered on the point of execution in the frame.
87885426
FN
4798You can also edit the program at the point of execution with your favorite
4799editing program by typing @code{edit}.
79a6e687 4800@xref{List, ,Printing Source Lines},
87885426 4801for details.
c906108c
SS
4802
4803@table @code
4804@kindex down-silently
4805@kindex up-silently
4806@item up-silently @var{n}
4807@itemx down-silently @var{n}
4808These two commands are variants of @code{up} and @code{down},
4809respectively; they differ in that they do their work silently, without
4810causing display of the new frame. They are intended primarily for use
4811in @value{GDBN} command scripts, where the output might be unnecessary and
4812distracting.
4813@end table
4814
6d2ebf8b 4815@node Frame Info
79a6e687 4816@section Information About a Frame
c906108c
SS
4817
4818There are several other commands to print information about the selected
4819stack frame.
4820
4821@table @code
4822@item frame
4823@itemx f
4824When used without any argument, this command does not change which
4825frame is selected, but prints a brief description of the currently
4826selected stack frame. It can be abbreviated @code{f}. With an
4827argument, this command is used to select a stack frame.
79a6e687 4828@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4829
4830@kindex info frame
41afff9a 4831@kindex info f @r{(@code{info frame})}
c906108c
SS
4832@item info frame
4833@itemx info f
4834This command prints a verbose description of the selected stack frame,
4835including:
4836
4837@itemize @bullet
5d161b24
DB
4838@item
4839the address of the frame
c906108c
SS
4840@item
4841the address of the next frame down (called by this frame)
4842@item
4843the address of the next frame up (caller of this frame)
4844@item
4845the language in which the source code corresponding to this frame is written
4846@item
4847the address of the frame's arguments
4848@item
d4f3574e
SS
4849the address of the frame's local variables
4850@item
c906108c
SS
4851the program counter saved in it (the address of execution in the caller frame)
4852@item
4853which registers were saved in the frame
4854@end itemize
4855
4856@noindent The verbose description is useful when
4857something has gone wrong that has made the stack format fail to fit
4858the usual conventions.
4859
4860@item info frame @var{addr}
4861@itemx info f @var{addr}
4862Print a verbose description of the frame at address @var{addr}, without
4863selecting that frame. The selected frame remains unchanged by this
4864command. This requires the same kind of address (more than one for some
4865architectures) that you specify in the @code{frame} command.
79a6e687 4866@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4867
4868@kindex info args
4869@item info args
4870Print the arguments of the selected frame, each on a separate line.
4871
4872@item info locals
4873@kindex info locals
4874Print the local variables of the selected frame, each on a separate
4875line. These are all variables (declared either static or automatic)
4876accessible at the point of execution of the selected frame.
4877
c906108c 4878@kindex info catch
d4f3574e
SS
4879@cindex catch exceptions, list active handlers
4880@cindex exception handlers, how to list
c906108c
SS
4881@item info catch
4882Print a list of all the exception handlers that are active in the
4883current stack frame at the current point of execution. To see other
4884exception handlers, visit the associated frame (using the @code{up},
4885@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4886@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4887
c906108c
SS
4888@end table
4889
c906108c 4890
6d2ebf8b 4891@node Source
c906108c
SS
4892@chapter Examining Source Files
4893
4894@value{GDBN} can print parts of your program's source, since the debugging
4895information recorded in the program tells @value{GDBN} what source files were
4896used to build it. When your program stops, @value{GDBN} spontaneously prints
4897the line where it stopped. Likewise, when you select a stack frame
79a6e687 4898(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4899execution in that frame has stopped. You can print other portions of
4900source files by explicit command.
4901
7a292a7a 4902If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4903prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4904@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4905
4906@menu
4907* List:: Printing source lines
2a25a5ba 4908* Specify Location:: How to specify code locations
87885426 4909* Edit:: Editing source files
c906108c 4910* Search:: Searching source files
c906108c
SS
4911* Source Path:: Specifying source directories
4912* Machine Code:: Source and machine code
4913@end menu
4914
6d2ebf8b 4915@node List
79a6e687 4916@section Printing Source Lines
c906108c
SS
4917
4918@kindex list
41afff9a 4919@kindex l @r{(@code{list})}
c906108c 4920To print lines from a source file, use the @code{list} command
5d161b24 4921(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4922There are several ways to specify what part of the file you want to
4923print; see @ref{Specify Location}, for the full list.
c906108c
SS
4924
4925Here are the forms of the @code{list} command most commonly used:
4926
4927@table @code
4928@item list @var{linenum}
4929Print lines centered around line number @var{linenum} in the
4930current source file.
4931
4932@item list @var{function}
4933Print lines centered around the beginning of function
4934@var{function}.
4935
4936@item list
4937Print more lines. If the last lines printed were printed with a
4938@code{list} command, this prints lines following the last lines
4939printed; however, if the last line printed was a solitary line printed
4940as part of displaying a stack frame (@pxref{Stack, ,Examining the
4941Stack}), this prints lines centered around that line.
4942
4943@item list -
4944Print lines just before the lines last printed.
4945@end table
4946
9c16f35a 4947@cindex @code{list}, how many lines to display
c906108c
SS
4948By default, @value{GDBN} prints ten source lines with any of these forms of
4949the @code{list} command. You can change this using @code{set listsize}:
4950
4951@table @code
4952@kindex set listsize
4953@item set listsize @var{count}
4954Make the @code{list} command display @var{count} source lines (unless
4955the @code{list} argument explicitly specifies some other number).
4956
4957@kindex show listsize
4958@item show listsize
4959Display the number of lines that @code{list} prints.
4960@end table
4961
4962Repeating a @code{list} command with @key{RET} discards the argument,
4963so it is equivalent to typing just @code{list}. This is more useful
4964than listing the same lines again. An exception is made for an
4965argument of @samp{-}; that argument is preserved in repetition so that
4966each repetition moves up in the source file.
4967
c906108c
SS
4968In general, the @code{list} command expects you to supply zero, one or two
4969@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
4970of writing them (@pxref{Specify Location}), but the effect is always
4971to specify some source line.
4972
c906108c
SS
4973Here is a complete description of the possible arguments for @code{list}:
4974
4975@table @code
4976@item list @var{linespec}
4977Print lines centered around the line specified by @var{linespec}.
4978
4979@item list @var{first},@var{last}
4980Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
4981linespecs. When a @code{list} command has two linespecs, and the
4982source file of the second linespec is omitted, this refers to
4983the same source file as the first linespec.
c906108c
SS
4984
4985@item list ,@var{last}
4986Print lines ending with @var{last}.
4987
4988@item list @var{first},
4989Print lines starting with @var{first}.
4990
4991@item list +
4992Print lines just after the lines last printed.
4993
4994@item list -
4995Print lines just before the lines last printed.
4996
4997@item list
4998As described in the preceding table.
4999@end table
5000
2a25a5ba
EZ
5001@node Specify Location
5002@section Specifying a Location
5003@cindex specifying location
5004@cindex linespec
c906108c 5005
2a25a5ba
EZ
5006Several @value{GDBN} commands accept arguments that specify a location
5007of your program's code. Since @value{GDBN} is a source-level
5008debugger, a location usually specifies some line in the source code;
5009for that reason, locations are also known as @dfn{linespecs}.
c906108c 5010
2a25a5ba
EZ
5011Here are all the different ways of specifying a code location that
5012@value{GDBN} understands:
c906108c 5013
2a25a5ba
EZ
5014@table @code
5015@item @var{linenum}
5016Specifies the line number @var{linenum} of the current source file.
c906108c 5017
2a25a5ba
EZ
5018@item -@var{offset}
5019@itemx +@var{offset}
5020Specifies the line @var{offset} lines before or after the @dfn{current
5021line}. For the @code{list} command, the current line is the last one
5022printed; for the breakpoint commands, this is the line at which
5023execution stopped in the currently selected @dfn{stack frame}
5024(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5025used as the second of the two linespecs in a @code{list} command,
5026this specifies the line @var{offset} lines up or down from the first
5027linespec.
5028
5029@item @var{filename}:@var{linenum}
5030Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5031
5032@item @var{function}
5033Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5034For example, in C, this is the line with the open brace.
c906108c
SS
5035
5036@item @var{filename}:@var{function}
2a25a5ba
EZ
5037Specifies the line that begins the body of the function @var{function}
5038in the file @var{filename}. You only need the file name with a
5039function name to avoid ambiguity when there are identically named
5040functions in different source files.
c906108c
SS
5041
5042@item *@var{address}
2a25a5ba
EZ
5043Specifies the program address @var{address}. For line-oriented
5044commands, such as @code{list} and @code{edit}, this specifies a source
5045line that contains @var{address}. For @code{break} and other
5046breakpoint oriented commands, this can be used to set breakpoints in
5047parts of your program which do not have debugging information or
5048source files.
5049
5050Here @var{address} may be any expression valid in the current working
5051language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5052address. In addition, as a convenience, @value{GDBN} extends the
5053semantics of expressions used in locations to cover the situations
5054that frequently happen during debugging. Here are the various forms
5055of @var{address}:
2a25a5ba
EZ
5056
5057@table @code
5058@item @var{expression}
5059Any expression valid in the current working language.
5060
5061@item @var{funcaddr}
5062An address of a function or procedure derived from its name. In C,
5063C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5064simply the function's name @var{function} (and actually a special case
5065of a valid expression). In Pascal and Modula-2, this is
5066@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5067(although the Pascal form also works).
5068
5069This form specifies the address of the function's first instruction,
5070before the stack frame and arguments have been set up.
5071
5072@item '@var{filename}'::@var{funcaddr}
5073Like @var{funcaddr} above, but also specifies the name of the source
5074file explicitly. This is useful if the name of the function does not
5075specify the function unambiguously, e.g., if there are several
5076functions with identical names in different source files.
c906108c
SS
5077@end table
5078
2a25a5ba
EZ
5079@end table
5080
5081
87885426 5082@node Edit
79a6e687 5083@section Editing Source Files
87885426
FN
5084@cindex editing source files
5085
5086@kindex edit
5087@kindex e @r{(@code{edit})}
5088To edit the lines in a source file, use the @code{edit} command.
5089The editing program of your choice
5090is invoked with the current line set to
5091the active line in the program.
5092Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5093want to print if you want to see other parts of the program:
87885426
FN
5094
5095@table @code
2a25a5ba
EZ
5096@item edit @var{location}
5097Edit the source file specified by @code{location}. Editing starts at
5098that @var{location}, e.g., at the specified source line of the
5099specified file. @xref{Specify Location}, for all the possible forms
5100of the @var{location} argument; here are the forms of the @code{edit}
5101command most commonly used:
87885426 5102
2a25a5ba 5103@table @code
87885426
FN
5104@item edit @var{number}
5105Edit the current source file with @var{number} as the active line number.
5106
5107@item edit @var{function}
5108Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5109@end table
87885426 5110
87885426
FN
5111@end table
5112
79a6e687 5113@subsection Choosing your Editor
87885426
FN
5114You can customize @value{GDBN} to use any editor you want
5115@footnote{
5116The only restriction is that your editor (say @code{ex}), recognizes the
5117following command-line syntax:
10998722 5118@smallexample
87885426 5119ex +@var{number} file
10998722 5120@end smallexample
15387254
EZ
5121The optional numeric value +@var{number} specifies the number of the line in
5122the file where to start editing.}.
5123By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5124by setting the environment variable @code{EDITOR} before using
5125@value{GDBN}. For example, to configure @value{GDBN} to use the
5126@code{vi} editor, you could use these commands with the @code{sh} shell:
5127@smallexample
87885426
FN
5128EDITOR=/usr/bin/vi
5129export EDITOR
15387254 5130gdb @dots{}
10998722 5131@end smallexample
87885426 5132or in the @code{csh} shell,
10998722 5133@smallexample
87885426 5134setenv EDITOR /usr/bin/vi
15387254 5135gdb @dots{}
10998722 5136@end smallexample
87885426 5137
6d2ebf8b 5138@node Search
79a6e687 5139@section Searching Source Files
15387254 5140@cindex searching source files
c906108c
SS
5141
5142There are two commands for searching through the current source file for a
5143regular expression.
5144
5145@table @code
5146@kindex search
5147@kindex forward-search
5148@item forward-search @var{regexp}
5149@itemx search @var{regexp}
5150The command @samp{forward-search @var{regexp}} checks each line,
5151starting with the one following the last line listed, for a match for
5d161b24 5152@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5153synonym @samp{search @var{regexp}} or abbreviate the command name as
5154@code{fo}.
5155
09d4efe1 5156@kindex reverse-search
c906108c
SS
5157@item reverse-search @var{regexp}
5158The command @samp{reverse-search @var{regexp}} checks each line, starting
5159with the one before the last line listed and going backward, for a match
5160for @var{regexp}. It lists the line that is found. You can abbreviate
5161this command as @code{rev}.
5162@end table
c906108c 5163
6d2ebf8b 5164@node Source Path
79a6e687 5165@section Specifying Source Directories
c906108c
SS
5166
5167@cindex source path
5168@cindex directories for source files
5169Executable programs sometimes do not record the directories of the source
5170files from which they were compiled, just the names. Even when they do,
5171the directories could be moved between the compilation and your debugging
5172session. @value{GDBN} has a list of directories to search for source files;
5173this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5174it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5175in the list, until it finds a file with the desired name.
5176
5177For example, suppose an executable references the file
5178@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5179@file{/mnt/cross}. The file is first looked up literally; if this
5180fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5181fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5182message is printed. @value{GDBN} does not look up the parts of the
5183source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5184Likewise, the subdirectories of the source path are not searched: if
5185the source path is @file{/mnt/cross}, and the binary refers to
5186@file{foo.c}, @value{GDBN} would not find it under
5187@file{/mnt/cross/usr/src/foo-1.0/lib}.
5188
5189Plain file names, relative file names with leading directories, file
5190names containing dots, etc.@: are all treated as described above; for
5191instance, if the source path is @file{/mnt/cross}, and the source file
5192is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5193@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5194that---@file{/mnt/cross/foo.c}.
5195
5196Note that the executable search path is @emph{not} used to locate the
cd852561 5197source files.
c906108c
SS
5198
5199Whenever you reset or rearrange the source path, @value{GDBN} clears out
5200any information it has cached about where source files are found and where
5201each line is in the file.
5202
5203@kindex directory
5204@kindex dir
d4f3574e
SS
5205When you start @value{GDBN}, its source path includes only @samp{cdir}
5206and @samp{cwd}, in that order.
c906108c
SS
5207To add other directories, use the @code{directory} command.
5208
4b505b12
AS
5209The search path is used to find both program source files and @value{GDBN}
5210script files (read using the @samp{-command} option and @samp{source} command).
5211
30daae6c
JB
5212In addition to the source path, @value{GDBN} provides a set of commands
5213that manage a list of source path substitution rules. A @dfn{substitution
5214rule} specifies how to rewrite source directories stored in the program's
5215debug information in case the sources were moved to a different
5216directory between compilation and debugging. A rule is made of
5217two strings, the first specifying what needs to be rewritten in
5218the path, and the second specifying how it should be rewritten.
5219In @ref{set substitute-path}, we name these two parts @var{from} and
5220@var{to} respectively. @value{GDBN} does a simple string replacement
5221of @var{from} with @var{to} at the start of the directory part of the
5222source file name, and uses that result instead of the original file
5223name to look up the sources.
5224
5225Using the previous example, suppose the @file{foo-1.0} tree has been
5226moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5227@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5228@file{/mnt/cross}. The first lookup will then be
5229@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5230of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5231substitution rule, use the @code{set substitute-path} command
5232(@pxref{set substitute-path}).
5233
5234To avoid unexpected substitution results, a rule is applied only if the
5235@var{from} part of the directory name ends at a directory separator.
5236For instance, a rule substituting @file{/usr/source} into
5237@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5238not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5239is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5240not be applied to @file{/root/usr/source/baz.c} either.
5241
5242In many cases, you can achieve the same result using the @code{directory}
5243command. However, @code{set substitute-path} can be more efficient in
5244the case where the sources are organized in a complex tree with multiple
5245subdirectories. With the @code{directory} command, you need to add each
5246subdirectory of your project. If you moved the entire tree while
5247preserving its internal organization, then @code{set substitute-path}
5248allows you to direct the debugger to all the sources with one single
5249command.
5250
5251@code{set substitute-path} is also more than just a shortcut command.
5252The source path is only used if the file at the original location no
5253longer exists. On the other hand, @code{set substitute-path} modifies
5254the debugger behavior to look at the rewritten location instead. So, if
5255for any reason a source file that is not relevant to your executable is
5256located at the original location, a substitution rule is the only
3f94c067 5257method available to point @value{GDBN} at the new location.
30daae6c 5258
c906108c
SS
5259@table @code
5260@item directory @var{dirname} @dots{}
5261@item dir @var{dirname} @dots{}
5262Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5263directory names may be given to this command, separated by @samp{:}
5264(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5265part of absolute file names) or
c906108c
SS
5266whitespace. You may specify a directory that is already in the source
5267path; this moves it forward, so @value{GDBN} searches it sooner.
5268
5269@kindex cdir
5270@kindex cwd
41afff9a 5271@vindex $cdir@r{, convenience variable}
d3e8051b 5272@vindex $cwd@r{, convenience variable}
c906108c
SS
5273@cindex compilation directory
5274@cindex current directory
5275@cindex working directory
5276@cindex directory, current
5277@cindex directory, compilation
5278You can use the string @samp{$cdir} to refer to the compilation
5279directory (if one is recorded), and @samp{$cwd} to refer to the current
5280working directory. @samp{$cwd} is not the same as @samp{.}---the former
5281tracks the current working directory as it changes during your @value{GDBN}
5282session, while the latter is immediately expanded to the current
5283directory at the time you add an entry to the source path.
5284
5285@item directory
cd852561 5286Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5287
5288@c RET-repeat for @code{directory} is explicitly disabled, but since
5289@c repeating it would be a no-op we do not say that. (thanks to RMS)
5290
5291@item show directories
5292@kindex show directories
5293Print the source path: show which directories it contains.
30daae6c
JB
5294
5295@anchor{set substitute-path}
5296@item set substitute-path @var{from} @var{to}
5297@kindex set substitute-path
5298Define a source path substitution rule, and add it at the end of the
5299current list of existing substitution rules. If a rule with the same
5300@var{from} was already defined, then the old rule is also deleted.
5301
5302For example, if the file @file{/foo/bar/baz.c} was moved to
5303@file{/mnt/cross/baz.c}, then the command
5304
5305@smallexample
5306(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5307@end smallexample
5308
5309@noindent
5310will tell @value{GDBN} to replace @samp{/usr/src} with
5311@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5312@file{baz.c} even though it was moved.
5313
5314In the case when more than one substitution rule have been defined,
5315the rules are evaluated one by one in the order where they have been
5316defined. The first one matching, if any, is selected to perform
5317the substitution.
5318
5319For instance, if we had entered the following commands:
5320
5321@smallexample
5322(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5323(@value{GDBP}) set substitute-path /usr/src /mnt/src
5324@end smallexample
5325
5326@noindent
5327@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5328@file{/mnt/include/defs.h} by using the first rule. However, it would
5329use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5330@file{/mnt/src/lib/foo.c}.
5331
5332
5333@item unset substitute-path [path]
5334@kindex unset substitute-path
5335If a path is specified, search the current list of substitution rules
5336for a rule that would rewrite that path. Delete that rule if found.
5337A warning is emitted by the debugger if no rule could be found.
5338
5339If no path is specified, then all substitution rules are deleted.
5340
5341@item show substitute-path [path]
5342@kindex show substitute-path
5343If a path is specified, then print the source path substitution rule
5344which would rewrite that path, if any.
5345
5346If no path is specified, then print all existing source path substitution
5347rules.
5348
c906108c
SS
5349@end table
5350
5351If your source path is cluttered with directories that are no longer of
5352interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5353versions of source. You can correct the situation as follows:
5354
5355@enumerate
5356@item
cd852561 5357Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5358
5359@item
5360Use @code{directory} with suitable arguments to reinstall the
5361directories you want in the source path. You can add all the
5362directories in one command.
5363@end enumerate
5364
6d2ebf8b 5365@node Machine Code
79a6e687 5366@section Source and Machine Code
15387254 5367@cindex source line and its code address
c906108c
SS
5368
5369You can use the command @code{info line} to map source lines to program
5370addresses (and vice versa), and the command @code{disassemble} to display
5371a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5372mode, the @code{info line} command causes the arrow to point to the
5d161b24 5373line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5374well as hex.
5375
5376@table @code
5377@kindex info line
5378@item info line @var{linespec}
5379Print the starting and ending addresses of the compiled code for
5380source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5381the ways documented in @ref{Specify Location}.
c906108c
SS
5382@end table
5383
5384For example, we can use @code{info line} to discover the location of
5385the object code for the first line of function
5386@code{m4_changequote}:
5387
d4f3574e
SS
5388@c FIXME: I think this example should also show the addresses in
5389@c symbolic form, as they usually would be displayed.
c906108c 5390@smallexample
96a2c332 5391(@value{GDBP}) info line m4_changequote
c906108c
SS
5392Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5393@end smallexample
5394
5395@noindent
15387254 5396@cindex code address and its source line
c906108c
SS
5397We can also inquire (using @code{*@var{addr}} as the form for
5398@var{linespec}) what source line covers a particular address:
5399@smallexample
5400(@value{GDBP}) info line *0x63ff
5401Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5402@end smallexample
5403
5404@cindex @code{$_} and @code{info line}
15387254 5405@cindex @code{x} command, default address
41afff9a 5406@kindex x@r{(examine), and} info line
c906108c
SS
5407After @code{info line}, the default address for the @code{x} command
5408is changed to the starting address of the line, so that @samp{x/i} is
5409sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5410,Examining Memory}). Also, this address is saved as the value of the
c906108c 5411convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5412Variables}).
c906108c
SS
5413
5414@table @code
5415@kindex disassemble
5416@cindex assembly instructions
5417@cindex instructions, assembly
5418@cindex machine instructions
5419@cindex listing machine instructions
5420@item disassemble
5421This specialized command dumps a range of memory as machine
5422instructions. The default memory range is the function surrounding the
5423program counter of the selected frame. A single argument to this
5424command is a program counter value; @value{GDBN} dumps the function
5425surrounding this value. Two arguments specify a range of addresses
5426(first inclusive, second exclusive) to dump.
5427@end table
5428
c906108c
SS
5429The following example shows the disassembly of a range of addresses of
5430HP PA-RISC 2.0 code:
5431
5432@smallexample
5433(@value{GDBP}) disas 0x32c4 0x32e4
5434Dump of assembler code from 0x32c4 to 0x32e4:
54350x32c4 <main+204>: addil 0,dp
54360x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54370x32cc <main+212>: ldil 0x3000,r31
54380x32d0 <main+216>: ble 0x3f8(sr4,r31)
54390x32d4 <main+220>: ldo 0(r31),rp
54400x32d8 <main+224>: addil -0x800,dp
54410x32dc <main+228>: ldo 0x588(r1),r26
54420x32e0 <main+232>: ldil 0x3000,r31
5443End of assembler dump.
5444@end smallexample
c906108c
SS
5445
5446Some architectures have more than one commonly-used set of instruction
5447mnemonics or other syntax.
5448
76d17f34
EZ
5449For programs that were dynamically linked and use shared libraries,
5450instructions that call functions or branch to locations in the shared
5451libraries might show a seemingly bogus location---it's actually a
5452location of the relocation table. On some architectures, @value{GDBN}
5453might be able to resolve these to actual function names.
5454
c906108c 5455@table @code
d4f3574e 5456@kindex set disassembly-flavor
d4f3574e
SS
5457@cindex Intel disassembly flavor
5458@cindex AT&T disassembly flavor
5459@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5460Select the instruction set to use when disassembling the
5461program via the @code{disassemble} or @code{x/i} commands.
5462
5463Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5464can set @var{instruction-set} to either @code{intel} or @code{att}.
5465The default is @code{att}, the AT&T flavor used by default by Unix
5466assemblers for x86-based targets.
9c16f35a
EZ
5467
5468@kindex show disassembly-flavor
5469@item show disassembly-flavor
5470Show the current setting of the disassembly flavor.
c906108c
SS
5471@end table
5472
5473
6d2ebf8b 5474@node Data
c906108c
SS
5475@chapter Examining Data
5476
5477@cindex printing data
5478@cindex examining data
5479@kindex print
5480@kindex inspect
5481@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5482@c document because it is nonstandard... Under Epoch it displays in a
5483@c different window or something like that.
5484The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5485command (abbreviated @code{p}), or its synonym @code{inspect}. It
5486evaluates and prints the value of an expression of the language your
5487program is written in (@pxref{Languages, ,Using @value{GDBN} with
5488Different Languages}).
c906108c
SS
5489
5490@table @code
d4f3574e
SS
5491@item print @var{expr}
5492@itemx print /@var{f} @var{expr}
5493@var{expr} is an expression (in the source language). By default the
5494value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5495you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5496@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5497Formats}.
c906108c
SS
5498
5499@item print
5500@itemx print /@var{f}
15387254 5501@cindex reprint the last value
d4f3574e 5502If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5503@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5504conveniently inspect the same value in an alternative format.
5505@end table
5506
5507A more low-level way of examining data is with the @code{x} command.
5508It examines data in memory at a specified address and prints it in a
79a6e687 5509specified format. @xref{Memory, ,Examining Memory}.
c906108c 5510
7a292a7a 5511If you are interested in information about types, or about how the
d4f3574e
SS
5512fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5513command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5514Table}.
c906108c
SS
5515
5516@menu
5517* Expressions:: Expressions
6ba66d6a 5518* Ambiguous Expressions:: Ambiguous Expressions
c906108c
SS
5519* Variables:: Program variables
5520* Arrays:: Artificial arrays
5521* Output Formats:: Output formats
5522* Memory:: Examining memory
5523* Auto Display:: Automatic display
5524* Print Settings:: Print settings
5525* Value History:: Value history
5526* Convenience Vars:: Convenience variables
5527* Registers:: Registers
c906108c 5528* Floating Point Hardware:: Floating point hardware
53c69bd7 5529* Vector Unit:: Vector Unit
721c2651 5530* OS Information:: Auxiliary data provided by operating system
29e57380 5531* Memory Region Attributes:: Memory region attributes
16d9dec6 5532* Dump/Restore Files:: Copy between memory and a file
384ee23f 5533* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5534* Character Sets:: Debugging programs that use a different
5535 character set than GDB does
09d4efe1 5536* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5537@end menu
5538
6d2ebf8b 5539@node Expressions
c906108c
SS
5540@section Expressions
5541
5542@cindex expressions
5543@code{print} and many other @value{GDBN} commands accept an expression and
5544compute its value. Any kind of constant, variable or operator defined
5545by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5546@value{GDBN}. This includes conditional expressions, function calls,
5547casts, and string constants. It also includes preprocessor macros, if
5548you compiled your program to include this information; see
5549@ref{Compilation}.
c906108c 5550
15387254 5551@cindex arrays in expressions
d4f3574e
SS
5552@value{GDBN} supports array constants in expressions input by
5553the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
63092375
DJ
5554you can use the command @code{print @{1, 2, 3@}} to create an array
5555of three integers. If you pass an array to a function or assign it
5556to a program variable, @value{GDBN} copies the array to memory that
5557is @code{malloc}ed in the target program.
c906108c 5558
c906108c
SS
5559Because C is so widespread, most of the expressions shown in examples in
5560this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5561Languages}, for information on how to use expressions in other
5562languages.
5563
5564In this section, we discuss operators that you can use in @value{GDBN}
5565expressions regardless of your programming language.
5566
15387254 5567@cindex casts, in expressions
c906108c
SS
5568Casts are supported in all languages, not just in C, because it is so
5569useful to cast a number into a pointer in order to examine a structure
5570at that address in memory.
5571@c FIXME: casts supported---Mod2 true?
c906108c
SS
5572
5573@value{GDBN} supports these operators, in addition to those common
5574to programming languages:
5575
5576@table @code
5577@item @@
5578@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5579@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5580
5581@item ::
5582@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5583function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5584
5585@cindex @{@var{type}@}
5586@cindex type casting memory
5587@cindex memory, viewing as typed object
5588@cindex casts, to view memory
5589@item @{@var{type}@} @var{addr}
5590Refers to an object of type @var{type} stored at address @var{addr} in
5591memory. @var{addr} may be any expression whose value is an integer or
5592pointer (but parentheses are required around binary operators, just as in
5593a cast). This construct is allowed regardless of what kind of data is
5594normally supposed to reside at @var{addr}.
5595@end table
5596
6ba66d6a
JB
5597@node Ambiguous Expressions
5598@section Ambiguous Expressions
5599@cindex ambiguous expressions
5600
5601Expressions can sometimes contain some ambiguous elements. For instance,
5602some programming languages (notably Ada, C@t{++} and Objective-C) permit
5603a single function name to be defined several times, for application in
5604different contexts. This is called @dfn{overloading}. Another example
5605involving Ada is generics. A @dfn{generic package} is similar to C@t{++}
5606templates and is typically instantiated several times, resulting in
5607the same function name being defined in different contexts.
5608
5609In some cases and depending on the language, it is possible to adjust
5610the expression to remove the ambiguity. For instance in C@t{++}, you
5611can specify the signature of the function you want to break on, as in
5612@kbd{break @var{function}(@var{types})}. In Ada, using the fully
5613qualified name of your function often makes the expression unambiguous
5614as well.
5615
5616When an ambiguity that needs to be resolved is detected, the debugger
5617has the capability to display a menu of numbered choices for each
5618possibility, and then waits for the selection with the prompt @samp{>}.
5619The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
5620aborts the current command. If the command in which the expression was
5621used allows more than one choice to be selected, the next option in the
5622menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
5623choices.
5624
5625For example, the following session excerpt shows an attempt to set a
5626breakpoint at the overloaded symbol @code{String::after}.
5627We choose three particular definitions of that function name:
5628
5629@c FIXME! This is likely to change to show arg type lists, at least
5630@smallexample
5631@group
5632(@value{GDBP}) b String::after
5633[0] cancel
5634[1] all
5635[2] file:String.cc; line number:867
5636[3] file:String.cc; line number:860
5637[4] file:String.cc; line number:875
5638[5] file:String.cc; line number:853
5639[6] file:String.cc; line number:846
5640[7] file:String.cc; line number:735
5641> 2 4 6
5642Breakpoint 1 at 0xb26c: file String.cc, line 867.
5643Breakpoint 2 at 0xb344: file String.cc, line 875.
5644Breakpoint 3 at 0xafcc: file String.cc, line 846.
5645Multiple breakpoints were set.
5646Use the "delete" command to delete unwanted
5647 breakpoints.
5648(@value{GDBP})
5649@end group
5650@end smallexample
5651
5652@table @code
5653@kindex set multiple-symbols
5654@item set multiple-symbols @var{mode}
5655@cindex multiple-symbols menu
5656
5657This option allows you to adjust the debugger behavior when an expression
5658is ambiguous.
5659
5660By default, @var{mode} is set to @code{all}. If the command with which
5661the expression is used allows more than one choice, then @value{GDBN}
5662automatically selects all possible choices. For instance, inserting
5663a breakpoint on a function using an ambiguous name results in a breakpoint
5664inserted on each possible match. However, if a unique choice must be made,
5665then @value{GDBN} uses the menu to help you disambiguate the expression.
5666For instance, printing the address of an overloaded function will result
5667in the use of the menu.
5668
5669When @var{mode} is set to @code{ask}, the debugger always uses the menu
5670when an ambiguity is detected.
5671
5672Finally, when @var{mode} is set to @code{cancel}, the debugger reports
5673an error due to the ambiguity and the command is aborted.
5674
5675@kindex show multiple-symbols
5676@item show multiple-symbols
5677Show the current value of the @code{multiple-symbols} setting.
5678@end table
5679
6d2ebf8b 5680@node Variables
79a6e687 5681@section Program Variables
c906108c
SS
5682
5683The most common kind of expression to use is the name of a variable
5684in your program.
5685
5686Variables in expressions are understood in the selected stack frame
79a6e687 5687(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5688
5689@itemize @bullet
5690@item
5691global (or file-static)
5692@end itemize
5693
5d161b24 5694@noindent or
c906108c
SS
5695
5696@itemize @bullet
5697@item
5698visible according to the scope rules of the
5699programming language from the point of execution in that frame
5d161b24 5700@end itemize
c906108c
SS
5701
5702@noindent This means that in the function
5703
474c8240 5704@smallexample
c906108c
SS
5705foo (a)
5706 int a;
5707@{
5708 bar (a);
5709 @{
5710 int b = test ();
5711 bar (b);
5712 @}
5713@}
474c8240 5714@end smallexample
c906108c
SS
5715
5716@noindent
5717you can examine and use the variable @code{a} whenever your program is
5718executing within the function @code{foo}, but you can only use or
5719examine the variable @code{b} while your program is executing inside
5720the block where @code{b} is declared.
5721
5722@cindex variable name conflict
5723There is an exception: you can refer to a variable or function whose
5724scope is a single source file even if the current execution point is not
5725in this file. But it is possible to have more than one such variable or
5726function with the same name (in different source files). If that
5727happens, referring to that name has unpredictable effects. If you wish,
5728you can specify a static variable in a particular function or file,
15387254 5729using the colon-colon (@code{::}) notation:
c906108c 5730
d4f3574e 5731@cindex colon-colon, context for variables/functions
12c27660 5732@ifnotinfo
c906108c 5733@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5734@cindex @code{::}, context for variables/functions
12c27660 5735@end ifnotinfo
474c8240 5736@smallexample
c906108c
SS
5737@var{file}::@var{variable}
5738@var{function}::@var{variable}
474c8240 5739@end smallexample
c906108c
SS
5740
5741@noindent
5742Here @var{file} or @var{function} is the name of the context for the
5743static @var{variable}. In the case of file names, you can use quotes to
5744make sure @value{GDBN} parses the file name as a single word---for example,
5745to print a global value of @code{x} defined in @file{f2.c}:
5746
474c8240 5747@smallexample
c906108c 5748(@value{GDBP}) p 'f2.c'::x
474c8240 5749@end smallexample
c906108c 5750
b37052ae 5751@cindex C@t{++} scope resolution
c906108c 5752This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5753use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5754scope resolution operator in @value{GDBN} expressions.
5755@c FIXME: Um, so what happens in one of those rare cases where it's in
5756@c conflict?? --mew
c906108c
SS
5757
5758@cindex wrong values
5759@cindex variable values, wrong
15387254
EZ
5760@cindex function entry/exit, wrong values of variables
5761@cindex optimized code, wrong values of variables
c906108c
SS
5762@quotation
5763@emph{Warning:} Occasionally, a local variable may appear to have the
5764wrong value at certain points in a function---just after entry to a new
5765scope, and just before exit.
5766@end quotation
5767You may see this problem when you are stepping by machine instructions.
5768This is because, on most machines, it takes more than one instruction to
5769set up a stack frame (including local variable definitions); if you are
5770stepping by machine instructions, variables may appear to have the wrong
5771values until the stack frame is completely built. On exit, it usually
5772also takes more than one machine instruction to destroy a stack frame;
5773after you begin stepping through that group of instructions, local
5774variable definitions may be gone.
5775
5776This may also happen when the compiler does significant optimizations.
5777To be sure of always seeing accurate values, turn off all optimization
5778when compiling.
5779
d4f3574e
SS
5780@cindex ``No symbol "foo" in current context''
5781Another possible effect of compiler optimizations is to optimize
5782unused variables out of existence, or assign variables to registers (as
5783opposed to memory addresses). Depending on the support for such cases
5784offered by the debug info format used by the compiler, @value{GDBN}
5785might not be able to display values for such local variables. If that
5786happens, @value{GDBN} will print a message like this:
5787
474c8240 5788@smallexample
d4f3574e 5789No symbol "foo" in current context.
474c8240 5790@end smallexample
d4f3574e
SS
5791
5792To solve such problems, either recompile without optimizations, or use a
5793different debug info format, if the compiler supports several such
15387254 5794formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5795usually supports the @option{-gstabs+} option. @option{-gstabs+}
5796produces debug info in a format that is superior to formats such as
5797COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5798an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5799for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5800Compiler Collection (GCC)}.
79a6e687 5801@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5802that are best suited to C@t{++} programs.
d4f3574e 5803
ab1adacd
EZ
5804If you ask to print an object whose contents are unknown to
5805@value{GDBN}, e.g., because its data type is not completely specified
5806by the debug information, @value{GDBN} will say @samp{<incomplete
5807type>}. @xref{Symbols, incomplete type}, for more about this.
5808
3a60f64e
JK
5809Strings are identified as arrays of @code{char} values without specified
5810signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5811printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5812@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5813defines literal string type @code{"char"} as @code{char} without a sign.
5814For program code
5815
5816@smallexample
5817char var0[] = "A";
5818signed char var1[] = "A";
5819@end smallexample
5820
5821You get during debugging
5822@smallexample
5823(gdb) print var0
5824$1 = "A"
5825(gdb) print var1
5826$2 = @{65 'A', 0 '\0'@}
5827@end smallexample
5828
6d2ebf8b 5829@node Arrays
79a6e687 5830@section Artificial Arrays
c906108c
SS
5831
5832@cindex artificial array
15387254 5833@cindex arrays
41afff9a 5834@kindex @@@r{, referencing memory as an array}
c906108c
SS
5835It is often useful to print out several successive objects of the
5836same type in memory; a section of an array, or an array of
5837dynamically determined size for which only a pointer exists in the
5838program.
5839
5840You can do this by referring to a contiguous span of memory as an
5841@dfn{artificial array}, using the binary operator @samp{@@}. The left
5842operand of @samp{@@} should be the first element of the desired array
5843and be an individual object. The right operand should be the desired length
5844of the array. The result is an array value whose elements are all of
5845the type of the left argument. The first element is actually the left
5846argument; the second element comes from bytes of memory immediately
5847following those that hold the first element, and so on. Here is an
5848example. If a program says
5849
474c8240 5850@smallexample
c906108c 5851int *array = (int *) malloc (len * sizeof (int));
474c8240 5852@end smallexample
c906108c
SS
5853
5854@noindent
5855you can print the contents of @code{array} with
5856
474c8240 5857@smallexample
c906108c 5858p *array@@len
474c8240 5859@end smallexample
c906108c
SS
5860
5861The left operand of @samp{@@} must reside in memory. Array values made
5862with @samp{@@} in this way behave just like other arrays in terms of
5863subscripting, and are coerced to pointers when used in expressions.
5864Artificial arrays most often appear in expressions via the value history
79a6e687 5865(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5866
5867Another way to create an artificial array is to use a cast.
5868This re-interprets a value as if it were an array.
5869The value need not be in memory:
474c8240 5870@smallexample
c906108c
SS
5871(@value{GDBP}) p/x (short[2])0x12345678
5872$1 = @{0x1234, 0x5678@}
474c8240 5873@end smallexample
c906108c
SS
5874
5875As a convenience, if you leave the array length out (as in
c3f6f71d 5876@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5877the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5878@smallexample
c906108c
SS
5879(@value{GDBP}) p/x (short[])0x12345678
5880$2 = @{0x1234, 0x5678@}
474c8240 5881@end smallexample
c906108c
SS
5882
5883Sometimes the artificial array mechanism is not quite enough; in
5884moderately complex data structures, the elements of interest may not
5885actually be adjacent---for example, if you are interested in the values
5886of pointers in an array. One useful work-around in this situation is
5887to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5888Variables}) as a counter in an expression that prints the first
c906108c
SS
5889interesting value, and then repeat that expression via @key{RET}. For
5890instance, suppose you have an array @code{dtab} of pointers to
5891structures, and you are interested in the values of a field @code{fv}
5892in each structure. Here is an example of what you might type:
5893
474c8240 5894@smallexample
c906108c
SS
5895set $i = 0
5896p dtab[$i++]->fv
5897@key{RET}
5898@key{RET}
5899@dots{}
474c8240 5900@end smallexample
c906108c 5901
6d2ebf8b 5902@node Output Formats
79a6e687 5903@section Output Formats
c906108c
SS
5904
5905@cindex formatted output
5906@cindex output formats
5907By default, @value{GDBN} prints a value according to its data type. Sometimes
5908this is not what you want. For example, you might want to print a number
5909in hex, or a pointer in decimal. Or you might want to view data in memory
5910at a certain address as a character string or as an instruction. To do
5911these things, specify an @dfn{output format} when you print a value.
5912
5913The simplest use of output formats is to say how to print a value
5914already computed. This is done by starting the arguments of the
5915@code{print} command with a slash and a format letter. The format
5916letters supported are:
5917
5918@table @code
5919@item x
5920Regard the bits of the value as an integer, and print the integer in
5921hexadecimal.
5922
5923@item d
5924Print as integer in signed decimal.
5925
5926@item u
5927Print as integer in unsigned decimal.
5928
5929@item o
5930Print as integer in octal.
5931
5932@item t
5933Print as integer in binary. The letter @samp{t} stands for ``two''.
5934@footnote{@samp{b} cannot be used because these format letters are also
5935used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5936see @ref{Memory,,Examining Memory}.}
c906108c
SS
5937
5938@item a
5939@cindex unknown address, locating
3d67e040 5940@cindex locate address
c906108c
SS
5941Print as an address, both absolute in hexadecimal and as an offset from
5942the nearest preceding symbol. You can use this format used to discover
5943where (in what function) an unknown address is located:
5944
474c8240 5945@smallexample
c906108c
SS
5946(@value{GDBP}) p/a 0x54320
5947$3 = 0x54320 <_initialize_vx+396>
474c8240 5948@end smallexample
c906108c 5949
3d67e040
EZ
5950@noindent
5951The command @code{info symbol 0x54320} yields similar results.
5952@xref{Symbols, info symbol}.
5953
c906108c 5954@item c
51274035
EZ
5955Regard as an integer and print it as a character constant. This
5956prints both the numerical value and its character representation. The
5957character representation is replaced with the octal escape @samp{\nnn}
5958for characters outside the 7-bit @sc{ascii} range.
c906108c 5959
ea37ba09
DJ
5960Without this format, @value{GDBN} displays @code{char},
5961@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5962constants. Single-byte members of vectors are displayed as integer
5963data.
5964
c906108c
SS
5965@item f
5966Regard the bits of the value as a floating point number and print
5967using typical floating point syntax.
ea37ba09
DJ
5968
5969@item s
5970@cindex printing strings
5971@cindex printing byte arrays
5972Regard as a string, if possible. With this format, pointers to single-byte
5973data are displayed as null-terminated strings and arrays of single-byte data
5974are displayed as fixed-length strings. Other values are displayed in their
5975natural types.
5976
5977Without this format, @value{GDBN} displays pointers to and arrays of
5978@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5979strings. Single-byte members of a vector are displayed as an integer
5980array.
c906108c
SS
5981@end table
5982
5983For example, to print the program counter in hex (@pxref{Registers}), type
5984
474c8240 5985@smallexample
c906108c 5986p/x $pc
474c8240 5987@end smallexample
c906108c
SS
5988
5989@noindent
5990Note that no space is required before the slash; this is because command
5991names in @value{GDBN} cannot contain a slash.
5992
5993To reprint the last value in the value history with a different format,
5994you can use the @code{print} command with just a format and no
5995expression. For example, @samp{p/x} reprints the last value in hex.
5996
6d2ebf8b 5997@node Memory
79a6e687 5998@section Examining Memory
c906108c
SS
5999
6000You can use the command @code{x} (for ``examine'') to examine memory in
6001any of several formats, independently of your program's data types.
6002
6003@cindex examining memory
6004@table @code
41afff9a 6005@kindex x @r{(examine memory)}
c906108c
SS
6006@item x/@var{nfu} @var{addr}
6007@itemx x @var{addr}
6008@itemx x
6009Use the @code{x} command to examine memory.
6010@end table
6011
6012@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
6013much memory to display and how to format it; @var{addr} is an
6014expression giving the address where you want to start displaying memory.
6015If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
6016Several commands set convenient defaults for @var{addr}.
6017
6018@table @r
6019@item @var{n}, the repeat count
6020The repeat count is a decimal integer; the default is 1. It specifies
6021how much memory (counting by units @var{u}) to display.
6022@c This really is **decimal**; unaffected by 'set radix' as of GDB
6023@c 4.1.2.
6024
6025@item @var{f}, the display format
51274035
EZ
6026The display format is one of the formats used by @code{print}
6027(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
6028@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
6029The default is @samp{x} (hexadecimal) initially. The default changes
6030each time you use either @code{x} or @code{print}.
c906108c
SS
6031
6032@item @var{u}, the unit size
6033The unit size is any of
6034
6035@table @code
6036@item b
6037Bytes.
6038@item h
6039Halfwords (two bytes).
6040@item w
6041Words (four bytes). This is the initial default.
6042@item g
6043Giant words (eight bytes).
6044@end table
6045
6046Each time you specify a unit size with @code{x}, that size becomes the
6047default unit the next time you use @code{x}. (For the @samp{s} and
6048@samp{i} formats, the unit size is ignored and is normally not written.)
6049
6050@item @var{addr}, starting display address
6051@var{addr} is the address where you want @value{GDBN} to begin displaying
6052memory. The expression need not have a pointer value (though it may);
6053it is always interpreted as an integer address of a byte of memory.
6054@xref{Expressions, ,Expressions}, for more information on expressions. The default for
6055@var{addr} is usually just after the last address examined---but several
6056other commands also set the default address: @code{info breakpoints} (to
6057the address of the last breakpoint listed), @code{info line} (to the
6058starting address of a line), and @code{print} (if you use it to display
6059a value from memory).
6060@end table
6061
6062For example, @samp{x/3uh 0x54320} is a request to display three halfwords
6063(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
6064starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
6065words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 6066@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
6067
6068Since the letters indicating unit sizes are all distinct from the
6069letters specifying output formats, you do not have to remember whether
6070unit size or format comes first; either order works. The output
6071specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
6072(However, the count @var{n} must come first; @samp{wx4} does not work.)
6073
6074Even though the unit size @var{u} is ignored for the formats @samp{s}
6075and @samp{i}, you might still want to use a count @var{n}; for example,
6076@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
6077including any operands. For convenience, especially when used with
6078the @code{display} command, the @samp{i} format also prints branch delay
6079slot instructions, if any, beyond the count specified, which immediately
6080follow the last instruction that is within the count. The command
6081@code{disassemble} gives an alternative way of inspecting machine
6082instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6083
6084All the defaults for the arguments to @code{x} are designed to make it
6085easy to continue scanning memory with minimal specifications each time
6086you use @code{x}. For example, after you have inspected three machine
6087instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6088with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6089the repeat count @var{n} is used again; the other arguments default as
6090for successive uses of @code{x}.
6091
6092@cindex @code{$_}, @code{$__}, and value history
6093The addresses and contents printed by the @code{x} command are not saved
6094in the value history because there is often too much of them and they
6095would get in the way. Instead, @value{GDBN} makes these values available for
6096subsequent use in expressions as values of the convenience variables
6097@code{$_} and @code{$__}. After an @code{x} command, the last address
6098examined is available for use in expressions in the convenience variable
6099@code{$_}. The contents of that address, as examined, are available in
6100the convenience variable @code{$__}.
6101
6102If the @code{x} command has a repeat count, the address and contents saved
6103are from the last memory unit printed; this is not the same as the last
6104address printed if several units were printed on the last line of output.
6105
09d4efe1
EZ
6106@cindex remote memory comparison
6107@cindex verify remote memory image
6108When you are debugging a program running on a remote target machine
ea35711c 6109(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6110remote machine's memory against the executable file you downloaded to
6111the target. The @code{compare-sections} command is provided for such
6112situations.
6113
6114@table @code
6115@kindex compare-sections
6116@item compare-sections @r{[}@var{section-name}@r{]}
6117Compare the data of a loadable section @var{section-name} in the
6118executable file of the program being debugged with the same section in
6119the remote machine's memory, and report any mismatches. With no
6120arguments, compares all loadable sections. This command's
6121availability depends on the target's support for the @code{"qCRC"}
6122remote request.
6123@end table
6124
6d2ebf8b 6125@node Auto Display
79a6e687 6126@section Automatic Display
c906108c
SS
6127@cindex automatic display
6128@cindex display of expressions
6129
6130If you find that you want to print the value of an expression frequently
6131(to see how it changes), you might want to add it to the @dfn{automatic
6132display list} so that @value{GDBN} prints its value each time your program stops.
6133Each expression added to the list is given a number to identify it;
6134to remove an expression from the list, you specify that number.
6135The automatic display looks like this:
6136
474c8240 6137@smallexample
c906108c
SS
61382: foo = 38
61393: bar[5] = (struct hack *) 0x3804
474c8240 6140@end smallexample
c906108c
SS
6141
6142@noindent
6143This display shows item numbers, expressions and their current values. As with
6144displays you request manually using @code{x} or @code{print}, you can
6145specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6146whether to use @code{print} or @code{x} depending your format
6147specification---it uses @code{x} if you specify either the @samp{i}
6148or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6149
6150@table @code
6151@kindex display
d4f3574e
SS
6152@item display @var{expr}
6153Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6154each time your program stops. @xref{Expressions, ,Expressions}.
6155
6156@code{display} does not repeat if you press @key{RET} again after using it.
6157
d4f3574e 6158@item display/@var{fmt} @var{expr}
c906108c 6159For @var{fmt} specifying only a display format and not a size or
d4f3574e 6160count, add the expression @var{expr} to the auto-display list but
c906108c 6161arrange to display it each time in the specified format @var{fmt}.
79a6e687 6162@xref{Output Formats,,Output Formats}.
c906108c
SS
6163
6164@item display/@var{fmt} @var{addr}
6165For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6166number of units, add the expression @var{addr} as a memory address to
6167be examined each time your program stops. Examining means in effect
79a6e687 6168doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6169@end table
6170
6171For example, @samp{display/i $pc} can be helpful, to see the machine
6172instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6173is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6174
6175@table @code
6176@kindex delete display
6177@kindex undisplay
6178@item undisplay @var{dnums}@dots{}
6179@itemx delete display @var{dnums}@dots{}
6180Remove item numbers @var{dnums} from the list of expressions to display.
6181
6182@code{undisplay} does not repeat if you press @key{RET} after using it.
6183(Otherwise you would just get the error @samp{No display number @dots{}}.)
6184
6185@kindex disable display
6186@item disable display @var{dnums}@dots{}
6187Disable the display of item numbers @var{dnums}. A disabled display
6188item is not printed automatically, but is not forgotten. It may be
6189enabled again later.
6190
6191@kindex enable display
6192@item enable display @var{dnums}@dots{}
6193Enable display of item numbers @var{dnums}. It becomes effective once
6194again in auto display of its expression, until you specify otherwise.
6195
6196@item display
6197Display the current values of the expressions on the list, just as is
6198done when your program stops.
6199
6200@kindex info display
6201@item info display
6202Print the list of expressions previously set up to display
6203automatically, each one with its item number, but without showing the
6204values. This includes disabled expressions, which are marked as such.
6205It also includes expressions which would not be displayed right now
6206because they refer to automatic variables not currently available.
6207@end table
6208
15387254 6209@cindex display disabled out of scope
c906108c
SS
6210If a display expression refers to local variables, then it does not make
6211sense outside the lexical context for which it was set up. Such an
6212expression is disabled when execution enters a context where one of its
6213variables is not defined. For example, if you give the command
6214@code{display last_char} while inside a function with an argument
6215@code{last_char}, @value{GDBN} displays this argument while your program
6216continues to stop inside that function. When it stops elsewhere---where
6217there is no variable @code{last_char}---the display is disabled
6218automatically. The next time your program stops where @code{last_char}
6219is meaningful, you can enable the display expression once again.
6220
6d2ebf8b 6221@node Print Settings
79a6e687 6222@section Print Settings
c906108c
SS
6223
6224@cindex format options
6225@cindex print settings
6226@value{GDBN} provides the following ways to control how arrays, structures,
6227and symbols are printed.
6228
6229@noindent
6230These settings are useful for debugging programs in any language:
6231
6232@table @code
4644b6e3 6233@kindex set print
c906108c
SS
6234@item set print address
6235@itemx set print address on
4644b6e3 6236@cindex print/don't print memory addresses
c906108c
SS
6237@value{GDBN} prints memory addresses showing the location of stack
6238traces, structure values, pointer values, breakpoints, and so forth,
6239even when it also displays the contents of those addresses. The default
6240is @code{on}. For example, this is what a stack frame display looks like with
6241@code{set print address on}:
6242
6243@smallexample
6244@group
6245(@value{GDBP}) f
6246#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6247 at input.c:530
6248530 if (lquote != def_lquote)
6249@end group
6250@end smallexample
6251
6252@item set print address off
6253Do not print addresses when displaying their contents. For example,
6254this is the same stack frame displayed with @code{set print address off}:
6255
6256@smallexample
6257@group
6258(@value{GDBP}) set print addr off
6259(@value{GDBP}) f
6260#0 set_quotes (lq="<<", rq=">>") at input.c:530
6261530 if (lquote != def_lquote)
6262@end group
6263@end smallexample
6264
6265You can use @samp{set print address off} to eliminate all machine
6266dependent displays from the @value{GDBN} interface. For example, with
6267@code{print address off}, you should get the same text for backtraces on
6268all machines---whether or not they involve pointer arguments.
6269
4644b6e3 6270@kindex show print
c906108c
SS
6271@item show print address
6272Show whether or not addresses are to be printed.
6273@end table
6274
6275When @value{GDBN} prints a symbolic address, it normally prints the
6276closest earlier symbol plus an offset. If that symbol does not uniquely
6277identify the address (for example, it is a name whose scope is a single
6278source file), you may need to clarify. One way to do this is with
6279@code{info line}, for example @samp{info line *0x4537}. Alternately,
6280you can set @value{GDBN} to print the source file and line number when
6281it prints a symbolic address:
6282
6283@table @code
c906108c 6284@item set print symbol-filename on
9c16f35a
EZ
6285@cindex source file and line of a symbol
6286@cindex symbol, source file and line
c906108c
SS
6287Tell @value{GDBN} to print the source file name and line number of a
6288symbol in the symbolic form of an address.
6289
6290@item set print symbol-filename off
6291Do not print source file name and line number of a symbol. This is the
6292default.
6293
c906108c
SS
6294@item show print symbol-filename
6295Show whether or not @value{GDBN} will print the source file name and
6296line number of a symbol in the symbolic form of an address.
6297@end table
6298
6299Another situation where it is helpful to show symbol filenames and line
6300numbers is when disassembling code; @value{GDBN} shows you the line
6301number and source file that corresponds to each instruction.
6302
6303Also, you may wish to see the symbolic form only if the address being
6304printed is reasonably close to the closest earlier symbol:
6305
6306@table @code
c906108c 6307@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6308@cindex maximum value for offset of closest symbol
c906108c
SS
6309Tell @value{GDBN} to only display the symbolic form of an address if the
6310offset between the closest earlier symbol and the address is less than
5d161b24 6311@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6312to always print the symbolic form of an address if any symbol precedes it.
6313
c906108c
SS
6314@item show print max-symbolic-offset
6315Ask how large the maximum offset is that @value{GDBN} prints in a
6316symbolic address.
6317@end table
6318
6319@cindex wild pointer, interpreting
6320@cindex pointer, finding referent
6321If you have a pointer and you are not sure where it points, try
6322@samp{set print symbol-filename on}. Then you can determine the name
6323and source file location of the variable where it points, using
6324@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6325For example, here @value{GDBN} shows that a variable @code{ptt} points
6326at another variable @code{t}, defined in @file{hi2.c}:
6327
474c8240 6328@smallexample
c906108c
SS
6329(@value{GDBP}) set print symbol-filename on
6330(@value{GDBP}) p/a ptt
6331$4 = 0xe008 <t in hi2.c>
474c8240 6332@end smallexample
c906108c
SS
6333
6334@quotation
6335@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6336does not show the symbol name and filename of the referent, even with
6337the appropriate @code{set print} options turned on.
6338@end quotation
6339
6340Other settings control how different kinds of objects are printed:
6341
6342@table @code
c906108c
SS
6343@item set print array
6344@itemx set print array on
4644b6e3 6345@cindex pretty print arrays
c906108c
SS
6346Pretty print arrays. This format is more convenient to read,
6347but uses more space. The default is off.
6348
6349@item set print array off
6350Return to compressed format for arrays.
6351
c906108c
SS
6352@item show print array
6353Show whether compressed or pretty format is selected for displaying
6354arrays.
6355
3c9c013a
JB
6356@cindex print array indexes
6357@item set print array-indexes
6358@itemx set print array-indexes on
6359Print the index of each element when displaying arrays. May be more
6360convenient to locate a given element in the array or quickly find the
6361index of a given element in that printed array. The default is off.
6362
6363@item set print array-indexes off
6364Stop printing element indexes when displaying arrays.
6365
6366@item show print array-indexes
6367Show whether the index of each element is printed when displaying
6368arrays.
6369
c906108c 6370@item set print elements @var{number-of-elements}
4644b6e3 6371@cindex number of array elements to print
9c16f35a 6372@cindex limit on number of printed array elements
c906108c
SS
6373Set a limit on how many elements of an array @value{GDBN} will print.
6374If @value{GDBN} is printing a large array, it stops printing after it has
6375printed the number of elements set by the @code{set print elements} command.
6376This limit also applies to the display of strings.
d4f3574e 6377When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6378Setting @var{number-of-elements} to zero means that the printing is unlimited.
6379
c906108c
SS
6380@item show print elements
6381Display the number of elements of a large array that @value{GDBN} will print.
6382If the number is 0, then the printing is unlimited.
6383
b4740add
JB
6384@item set print frame-arguments @var{value}
6385@cindex printing frame argument values
6386@cindex print all frame argument values
6387@cindex print frame argument values for scalars only
6388@cindex do not print frame argument values
6389This command allows to control how the values of arguments are printed
6390when the debugger prints a frame (@pxref{Frames}). The possible
6391values are:
6392
6393@table @code
6394@item all
6395The values of all arguments are printed. This is the default.
6396
6397@item scalars
6398Print the value of an argument only if it is a scalar. The value of more
6399complex arguments such as arrays, structures, unions, etc, is replaced
6400by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6401
6402@smallexample
6403#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6404 at frame-args.c:23
6405@end smallexample
6406
6407@item none
6408None of the argument values are printed. Instead, the value of each argument
6409is replaced by @code{@dots{}}. In this case, the example above now becomes:
6410
6411@smallexample
6412#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6413 at frame-args.c:23
6414@end smallexample
6415@end table
6416
6417By default, all argument values are always printed. But this command
6418can be useful in several cases. For instance, it can be used to reduce
6419the amount of information printed in each frame, making the backtrace
6420more readable. Also, this command can be used to improve performance
6421when displaying Ada frames, because the computation of large arguments
6422can sometimes be CPU-intensive, especiallly in large applications.
6423Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6424avoids this computation, thus speeding up the display of each Ada frame.
6425
6426@item show print frame-arguments
6427Show how the value of arguments should be displayed when printing a frame.
6428
9c16f35a
EZ
6429@item set print repeats
6430@cindex repeated array elements
6431Set the threshold for suppressing display of repeated array
d3e8051b 6432elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6433array exceeds the threshold, @value{GDBN} prints the string
6434@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6435identical repetitions, instead of displaying the identical elements
6436themselves. Setting the threshold to zero will cause all elements to
6437be individually printed. The default threshold is 10.
6438
6439@item show print repeats
6440Display the current threshold for printing repeated identical
6441elements.
6442
c906108c 6443@item set print null-stop
4644b6e3 6444@cindex @sc{null} elements in arrays
c906108c 6445Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6446@sc{null} is encountered. This is useful when large arrays actually
c906108c 6447contain only short strings.
d4f3574e 6448The default is off.
c906108c 6449
9c16f35a
EZ
6450@item show print null-stop
6451Show whether @value{GDBN} stops printing an array on the first
6452@sc{null} character.
6453
c906108c 6454@item set print pretty on
9c16f35a
EZ
6455@cindex print structures in indented form
6456@cindex indentation in structure display
5d161b24 6457Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6458per line, like this:
6459
6460@smallexample
6461@group
6462$1 = @{
6463 next = 0x0,
6464 flags = @{
6465 sweet = 1,
6466 sour = 1
6467 @},
6468 meat = 0x54 "Pork"
6469@}
6470@end group
6471@end smallexample
6472
6473@item set print pretty off
6474Cause @value{GDBN} to print structures in a compact format, like this:
6475
6476@smallexample
6477@group
6478$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6479meat = 0x54 "Pork"@}
6480@end group
6481@end smallexample
6482
6483@noindent
6484This is the default format.
6485
c906108c
SS
6486@item show print pretty
6487Show which format @value{GDBN} is using to print structures.
6488
c906108c 6489@item set print sevenbit-strings on
4644b6e3
EZ
6490@cindex eight-bit characters in strings
6491@cindex octal escapes in strings
c906108c
SS
6492Print using only seven-bit characters; if this option is set,
6493@value{GDBN} displays any eight-bit characters (in strings or
6494character values) using the notation @code{\}@var{nnn}. This setting is
6495best if you are working in English (@sc{ascii}) and you use the
6496high-order bit of characters as a marker or ``meta'' bit.
6497
6498@item set print sevenbit-strings off
6499Print full eight-bit characters. This allows the use of more
6500international character sets, and is the default.
6501
c906108c
SS
6502@item show print sevenbit-strings
6503Show whether or not @value{GDBN} is printing only seven-bit characters.
6504
c906108c 6505@item set print union on
4644b6e3 6506@cindex unions in structures, printing
9c16f35a
EZ
6507Tell @value{GDBN} to print unions which are contained in structures
6508and other unions. This is the default setting.
c906108c
SS
6509
6510@item set print union off
9c16f35a
EZ
6511Tell @value{GDBN} not to print unions which are contained in
6512structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6513instead.
c906108c 6514
c906108c
SS
6515@item show print union
6516Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6517structures and other unions.
c906108c
SS
6518
6519For example, given the declarations
6520
6521@smallexample
6522typedef enum @{Tree, Bug@} Species;
6523typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6524typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6525 Bug_forms;
6526
6527struct thing @{
6528 Species it;
6529 union @{
6530 Tree_forms tree;
6531 Bug_forms bug;
6532 @} form;
6533@};
6534
6535struct thing foo = @{Tree, @{Acorn@}@};
6536@end smallexample
6537
6538@noindent
6539with @code{set print union on} in effect @samp{p foo} would print
6540
6541@smallexample
6542$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6543@end smallexample
6544
6545@noindent
6546and with @code{set print union off} in effect it would print
6547
6548@smallexample
6549$1 = @{it = Tree, form = @{...@}@}
6550@end smallexample
9c16f35a
EZ
6551
6552@noindent
6553@code{set print union} affects programs written in C-like languages
6554and in Pascal.
c906108c
SS
6555@end table
6556
c906108c
SS
6557@need 1000
6558@noindent
b37052ae 6559These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6560
6561@table @code
4644b6e3 6562@cindex demangling C@t{++} names
c906108c
SS
6563@item set print demangle
6564@itemx set print demangle on
b37052ae 6565Print C@t{++} names in their source form rather than in the encoded
c906108c 6566(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6567linkage. The default is on.
c906108c 6568
c906108c 6569@item show print demangle
b37052ae 6570Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6571
c906108c
SS
6572@item set print asm-demangle
6573@itemx set print asm-demangle on
b37052ae 6574Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6575in assembler code printouts such as instruction disassemblies.
6576The default is off.
6577
c906108c 6578@item show print asm-demangle
b37052ae 6579Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6580or demangled form.
6581
b37052ae
EZ
6582@cindex C@t{++} symbol decoding style
6583@cindex symbol decoding style, C@t{++}
a8f24a35 6584@kindex set demangle-style
c906108c
SS
6585@item set demangle-style @var{style}
6586Choose among several encoding schemes used by different compilers to
b37052ae 6587represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6588
6589@table @code
6590@item auto
6591Allow @value{GDBN} to choose a decoding style by inspecting your program.
6592
6593@item gnu
b37052ae 6594Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6595This is the default.
c906108c
SS
6596
6597@item hp
b37052ae 6598Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6599
6600@item lucid
b37052ae 6601Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6602
6603@item arm
b37052ae 6604Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6605@strong{Warning:} this setting alone is not sufficient to allow
6606debugging @code{cfront}-generated executables. @value{GDBN} would
6607require further enhancement to permit that.
6608
6609@end table
6610If you omit @var{style}, you will see a list of possible formats.
6611
c906108c 6612@item show demangle-style
b37052ae 6613Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6614
c906108c
SS
6615@item set print object
6616@itemx set print object on
4644b6e3 6617@cindex derived type of an object, printing
9c16f35a 6618@cindex display derived types
c906108c
SS
6619When displaying a pointer to an object, identify the @emph{actual}
6620(derived) type of the object rather than the @emph{declared} type, using
6621the virtual function table.
6622
6623@item set print object off
6624Display only the declared type of objects, without reference to the
6625virtual function table. This is the default setting.
6626
c906108c
SS
6627@item show print object
6628Show whether actual, or declared, object types are displayed.
6629
c906108c
SS
6630@item set print static-members
6631@itemx set print static-members on
4644b6e3 6632@cindex static members of C@t{++} objects
b37052ae 6633Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6634
6635@item set print static-members off
b37052ae 6636Do not print static members when displaying a C@t{++} object.
c906108c 6637
c906108c 6638@item show print static-members
9c16f35a
EZ
6639Show whether C@t{++} static members are printed or not.
6640
6641@item set print pascal_static-members
6642@itemx set print pascal_static-members on
d3e8051b
EZ
6643@cindex static members of Pascal objects
6644@cindex Pascal objects, static members display
9c16f35a
EZ
6645Print static members when displaying a Pascal object. The default is on.
6646
6647@item set print pascal_static-members off
6648Do not print static members when displaying a Pascal object.
6649
6650@item show print pascal_static-members
6651Show whether Pascal static members are printed or not.
c906108c
SS
6652
6653@c These don't work with HP ANSI C++ yet.
c906108c
SS
6654@item set print vtbl
6655@itemx set print vtbl on
4644b6e3 6656@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6657@cindex virtual functions (C@t{++}) display
6658@cindex VTBL display
b37052ae 6659Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6660(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6661ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6662
6663@item set print vtbl off
b37052ae 6664Do not pretty print C@t{++} virtual function tables.
c906108c 6665
c906108c 6666@item show print vtbl
b37052ae 6667Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6668@end table
c906108c 6669
6d2ebf8b 6670@node Value History
79a6e687 6671@section Value History
c906108c
SS
6672
6673@cindex value history
9c16f35a 6674@cindex history of values printed by @value{GDBN}
5d161b24
DB
6675Values printed by the @code{print} command are saved in the @value{GDBN}
6676@dfn{value history}. This allows you to refer to them in other expressions.
6677Values are kept until the symbol table is re-read or discarded
6678(for example with the @code{file} or @code{symbol-file} commands).
6679When the symbol table changes, the value history is discarded,
6680since the values may contain pointers back to the types defined in the
c906108c
SS
6681symbol table.
6682
6683@cindex @code{$}
6684@cindex @code{$$}
6685@cindex history number
6686The values printed are given @dfn{history numbers} by which you can
6687refer to them. These are successive integers starting with one.
6688@code{print} shows you the history number assigned to a value by
6689printing @samp{$@var{num} = } before the value; here @var{num} is the
6690history number.
6691
6692To refer to any previous value, use @samp{$} followed by the value's
6693history number. The way @code{print} labels its output is designed to
6694remind you of this. Just @code{$} refers to the most recent value in
6695the history, and @code{$$} refers to the value before that.
6696@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6697is the value just prior to @code{$$}, @code{$$1} is equivalent to
6698@code{$$}, and @code{$$0} is equivalent to @code{$}.
6699
6700For example, suppose you have just printed a pointer to a structure and
6701want to see the contents of the structure. It suffices to type
6702
474c8240 6703@smallexample
c906108c 6704p *$
474c8240 6705@end smallexample
c906108c
SS
6706
6707If you have a chain of structures where the component @code{next} points
6708to the next one, you can print the contents of the next one with this:
6709
474c8240 6710@smallexample
c906108c 6711p *$.next
474c8240 6712@end smallexample
c906108c
SS
6713
6714@noindent
6715You can print successive links in the chain by repeating this
6716command---which you can do by just typing @key{RET}.
6717
6718Note that the history records values, not expressions. If the value of
6719@code{x} is 4 and you type these commands:
6720
474c8240 6721@smallexample
c906108c
SS
6722print x
6723set x=5
474c8240 6724@end smallexample
c906108c
SS
6725
6726@noindent
6727then the value recorded in the value history by the @code{print} command
6728remains 4 even though the value of @code{x} has changed.
6729
6730@table @code
6731@kindex show values
6732@item show values
6733Print the last ten values in the value history, with their item numbers.
6734This is like @samp{p@ $$9} repeated ten times, except that @code{show
6735values} does not change the history.
6736
6737@item show values @var{n}
6738Print ten history values centered on history item number @var{n}.
6739
6740@item show values +
6741Print ten history values just after the values last printed. If no more
6742values are available, @code{show values +} produces no display.
6743@end table
6744
6745Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6746same effect as @samp{show values +}.
6747
6d2ebf8b 6748@node Convenience Vars
79a6e687 6749@section Convenience Variables
c906108c
SS
6750
6751@cindex convenience variables
9c16f35a 6752@cindex user-defined variables
c906108c
SS
6753@value{GDBN} provides @dfn{convenience variables} that you can use within
6754@value{GDBN} to hold on to a value and refer to it later. These variables
6755exist entirely within @value{GDBN}; they are not part of your program, and
6756setting a convenience variable has no direct effect on further execution
6757of your program. That is why you can use them freely.
6758
6759Convenience variables are prefixed with @samp{$}. Any name preceded by
6760@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6761the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6762(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6763by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6764
6765You can save a value in a convenience variable with an assignment
6766expression, just as you would set a variable in your program.
6767For example:
6768
474c8240 6769@smallexample
c906108c 6770set $foo = *object_ptr
474c8240 6771@end smallexample
c906108c
SS
6772
6773@noindent
6774would save in @code{$foo} the value contained in the object pointed to by
6775@code{object_ptr}.
6776
6777Using a convenience variable for the first time creates it, but its
6778value is @code{void} until you assign a new value. You can alter the
6779value with another assignment at any time.
6780
6781Convenience variables have no fixed types. You can assign a convenience
6782variable any type of value, including structures and arrays, even if
6783that variable already has a value of a different type. The convenience
6784variable, when used as an expression, has the type of its current value.
6785
6786@table @code
6787@kindex show convenience
9c16f35a 6788@cindex show all user variables
c906108c
SS
6789@item show convenience
6790Print a list of convenience variables used so far, and their values.
d4f3574e 6791Abbreviated @code{show conv}.
53e5f3cf
AS
6792
6793@kindex init-if-undefined
6794@cindex convenience variables, initializing
6795@item init-if-undefined $@var{variable} = @var{expression}
6796Set a convenience variable if it has not already been set. This is useful
6797for user-defined commands that keep some state. It is similar, in concept,
6798to using local static variables with initializers in C (except that
6799convenience variables are global). It can also be used to allow users to
6800override default values used in a command script.
6801
6802If the variable is already defined then the expression is not evaluated so
6803any side-effects do not occur.
c906108c
SS
6804@end table
6805
6806One of the ways to use a convenience variable is as a counter to be
6807incremented or a pointer to be advanced. For example, to print
6808a field from successive elements of an array of structures:
6809
474c8240 6810@smallexample
c906108c
SS
6811set $i = 0
6812print bar[$i++]->contents
474c8240 6813@end smallexample
c906108c 6814
d4f3574e
SS
6815@noindent
6816Repeat that command by typing @key{RET}.
c906108c
SS
6817
6818Some convenience variables are created automatically by @value{GDBN} and given
6819values likely to be useful.
6820
6821@table @code
41afff9a 6822@vindex $_@r{, convenience variable}
c906108c
SS
6823@item $_
6824The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6825the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6826commands which provide a default address for @code{x} to examine also
6827set @code{$_} to that address; these commands include @code{info line}
6828and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6829except when set by the @code{x} command, in which case it is a pointer
6830to the type of @code{$__}.
6831
41afff9a 6832@vindex $__@r{, convenience variable}
c906108c
SS
6833@item $__
6834The variable @code{$__} is automatically set by the @code{x} command
6835to the value found in the last address examined. Its type is chosen
6836to match the format in which the data was printed.
6837
6838@item $_exitcode
41afff9a 6839@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6840The variable @code{$_exitcode} is automatically set to the exit code when
6841the program being debugged terminates.
6842@end table
6843
53a5351d
JM
6844On HP-UX systems, if you refer to a function or variable name that
6845begins with a dollar sign, @value{GDBN} searches for a user or system
6846name first, before it searches for a convenience variable.
c906108c 6847
6d2ebf8b 6848@node Registers
c906108c
SS
6849@section Registers
6850
6851@cindex registers
6852You can refer to machine register contents, in expressions, as variables
6853with names starting with @samp{$}. The names of registers are different
6854for each machine; use @code{info registers} to see the names used on
6855your machine.
6856
6857@table @code
6858@kindex info registers
6859@item info registers
6860Print the names and values of all registers except floating-point
c85508ee 6861and vector registers (in the selected stack frame).
c906108c
SS
6862
6863@kindex info all-registers
6864@cindex floating point registers
6865@item info all-registers
6866Print the names and values of all registers, including floating-point
c85508ee 6867and vector registers (in the selected stack frame).
c906108c
SS
6868
6869@item info registers @var{regname} @dots{}
6870Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6871As discussed in detail below, register values are normally relative to
6872the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6873the machine you are using, with or without the initial @samp{$}.
6874@end table
6875
e09f16f9
EZ
6876@cindex stack pointer register
6877@cindex program counter register
6878@cindex process status register
6879@cindex frame pointer register
6880@cindex standard registers
c906108c
SS
6881@value{GDBN} has four ``standard'' register names that are available (in
6882expressions) on most machines---whenever they do not conflict with an
6883architecture's canonical mnemonics for registers. The register names
6884@code{$pc} and @code{$sp} are used for the program counter register and
6885the stack pointer. @code{$fp} is used for a register that contains a
6886pointer to the current stack frame, and @code{$ps} is used for a
6887register that contains the processor status. For example,
6888you could print the program counter in hex with
6889
474c8240 6890@smallexample
c906108c 6891p/x $pc
474c8240 6892@end smallexample
c906108c
SS
6893
6894@noindent
6895or print the instruction to be executed next with
6896
474c8240 6897@smallexample
c906108c 6898x/i $pc
474c8240 6899@end smallexample
c906108c
SS
6900
6901@noindent
6902or add four to the stack pointer@footnote{This is a way of removing
6903one word from the stack, on machines where stacks grow downward in
6904memory (most machines, nowadays). This assumes that the innermost
6905stack frame is selected; setting @code{$sp} is not allowed when other
6906stack frames are selected. To pop entire frames off the stack,
6907regardless of machine architecture, use @code{return};
79a6e687 6908see @ref{Returning, ,Returning from a Function}.} with
c906108c 6909
474c8240 6910@smallexample
c906108c 6911set $sp += 4
474c8240 6912@end smallexample
c906108c
SS
6913
6914Whenever possible, these four standard register names are available on
6915your machine even though the machine has different canonical mnemonics,
6916so long as there is no conflict. The @code{info registers} command
6917shows the canonical names. For example, on the SPARC, @code{info
6918registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6919can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6920is an alias for the @sc{eflags} register.
c906108c
SS
6921
6922@value{GDBN} always considers the contents of an ordinary register as an
6923integer when the register is examined in this way. Some machines have
6924special registers which can hold nothing but floating point; these
6925registers are considered to have floating point values. There is no way
6926to refer to the contents of an ordinary register as floating point value
6927(although you can @emph{print} it as a floating point value with
6928@samp{print/f $@var{regname}}).
6929
6930Some registers have distinct ``raw'' and ``virtual'' data formats. This
6931means that the data format in which the register contents are saved by
6932the operating system is not the same one that your program normally
6933sees. For example, the registers of the 68881 floating point
6934coprocessor are always saved in ``extended'' (raw) format, but all C
6935programs expect to work with ``double'' (virtual) format. In such
5d161b24 6936cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6937that makes sense for your program), but the @code{info registers} command
6938prints the data in both formats.
6939
36b80e65
EZ
6940@cindex SSE registers (x86)
6941@cindex MMX registers (x86)
6942Some machines have special registers whose contents can be interpreted
6943in several different ways. For example, modern x86-based machines
6944have SSE and MMX registers that can hold several values packed
6945together in several different formats. @value{GDBN} refers to such
6946registers in @code{struct} notation:
6947
6948@smallexample
6949(@value{GDBP}) print $xmm1
6950$1 = @{
6951 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6952 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6953 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6954 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6955 v4_int32 = @{0, 20657912, 11, 13@},
6956 v2_int64 = @{88725056443645952, 55834574859@},
6957 uint128 = 0x0000000d0000000b013b36f800000000
6958@}
6959@end smallexample
6960
6961@noindent
6962To set values of such registers, you need to tell @value{GDBN} which
6963view of the register you wish to change, as if you were assigning
6964value to a @code{struct} member:
6965
6966@smallexample
6967 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6968@end smallexample
6969
c906108c 6970Normally, register values are relative to the selected stack frame
79a6e687 6971(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6972value that the register would contain if all stack frames farther in
6973were exited and their saved registers restored. In order to see the
6974true contents of hardware registers, you must select the innermost
6975frame (with @samp{frame 0}).
6976
6977However, @value{GDBN} must deduce where registers are saved, from the machine
6978code generated by your compiler. If some registers are not saved, or if
6979@value{GDBN} is unable to locate the saved registers, the selected stack
6980frame makes no difference.
6981
6d2ebf8b 6982@node Floating Point Hardware
79a6e687 6983@section Floating Point Hardware
c906108c
SS
6984@cindex floating point
6985
6986Depending on the configuration, @value{GDBN} may be able to give
6987you more information about the status of the floating point hardware.
6988
6989@table @code
6990@kindex info float
6991@item info float
6992Display hardware-dependent information about the floating
6993point unit. The exact contents and layout vary depending on the
6994floating point chip. Currently, @samp{info float} is supported on
6995the ARM and x86 machines.
6996@end table
c906108c 6997
e76f1f2e
AC
6998@node Vector Unit
6999@section Vector Unit
7000@cindex vector unit
7001
7002Depending on the configuration, @value{GDBN} may be able to give you
7003more information about the status of the vector unit.
7004
7005@table @code
7006@kindex info vector
7007@item info vector
7008Display information about the vector unit. The exact contents and
7009layout vary depending on the hardware.
7010@end table
7011
721c2651 7012@node OS Information
79a6e687 7013@section Operating System Auxiliary Information
721c2651
EZ
7014@cindex OS information
7015
7016@value{GDBN} provides interfaces to useful OS facilities that can help
7017you debug your program.
7018
7019@cindex @code{ptrace} system call
7020@cindex @code{struct user} contents
7021When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
7022machines), it interfaces with the inferior via the @code{ptrace}
7023system call. The operating system creates a special sata structure,
7024called @code{struct user}, for this interface. You can use the
7025command @code{info udot} to display the contents of this data
7026structure.
7027
7028@table @code
7029@item info udot
7030@kindex info udot
7031Display the contents of the @code{struct user} maintained by the OS
7032kernel for the program being debugged. @value{GDBN} displays the
7033contents of @code{struct user} as a list of hex numbers, similar to
7034the @code{examine} command.
7035@end table
7036
b383017d
RM
7037@cindex auxiliary vector
7038@cindex vector, auxiliary
b383017d
RM
7039Some operating systems supply an @dfn{auxiliary vector} to programs at
7040startup. This is akin to the arguments and environment that you
7041specify for a program, but contains a system-dependent variety of
7042binary values that tell system libraries important details about the
7043hardware, operating system, and process. Each value's purpose is
7044identified by an integer tag; the meanings are well-known but system-specific.
7045Depending on the configuration and operating system facilities,
9c16f35a
EZ
7046@value{GDBN} may be able to show you this information. For remote
7047targets, this functionality may further depend on the remote stub's
427c3a89
DJ
7048support of the @samp{qXfer:auxv:read} packet, see
7049@ref{qXfer auxiliary vector read}.
b383017d
RM
7050
7051@table @code
7052@kindex info auxv
7053@item info auxv
7054Display the auxiliary vector of the inferior, which can be either a
e4937fc1 7055live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
7056numerically, and also shows names and text descriptions for recognized
7057tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 7058pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
7059most appropriate form for a recognized tag, and in hexadecimal for
7060an unrecognized tag.
7061@end table
7062
721c2651 7063
29e57380 7064@node Memory Region Attributes
79a6e687 7065@section Memory Region Attributes
29e57380
C
7066@cindex memory region attributes
7067
b383017d 7068@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
7069required by regions of your target's memory. @value{GDBN} uses
7070attributes to determine whether to allow certain types of memory
7071accesses; whether to use specific width accesses; and whether to cache
7072target memory. By default the description of memory regions is
7073fetched from the target (if the current target supports this), but the
7074user can override the fetched regions.
29e57380
C
7075
7076Defined memory regions can be individually enabled and disabled. When a
7077memory region is disabled, @value{GDBN} uses the default attributes when
7078accessing memory in that region. Similarly, if no memory regions have
7079been defined, @value{GDBN} uses the default attributes when accessing
7080all memory.
7081
b383017d 7082When a memory region is defined, it is given a number to identify it;
29e57380
C
7083to enable, disable, or remove a memory region, you specify that number.
7084
7085@table @code
7086@kindex mem
bfac230e 7087@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7088Define a memory region bounded by @var{lower} and @var{upper} with
7089attributes @var{attributes}@dots{}, and add it to the list of regions
7090monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7091case: it is treated as the target's maximum memory address.
bfac230e 7092(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7093
fd79ecee
DJ
7094@item mem auto
7095Discard any user changes to the memory regions and use target-supplied
7096regions, if available, or no regions if the target does not support.
7097
29e57380
C
7098@kindex delete mem
7099@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7100Remove memory regions @var{nums}@dots{} from the list of regions
7101monitored by @value{GDBN}.
29e57380
C
7102
7103@kindex disable mem
7104@item disable mem @var{nums}@dots{}
09d4efe1 7105Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7106A disabled memory region is not forgotten.
29e57380
C
7107It may be enabled again later.
7108
7109@kindex enable mem
7110@item enable mem @var{nums}@dots{}
09d4efe1 7111Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7112
7113@kindex info mem
7114@item info mem
7115Print a table of all defined memory regions, with the following columns
09d4efe1 7116for each region:
29e57380
C
7117
7118@table @emph
7119@item Memory Region Number
7120@item Enabled or Disabled.
b383017d 7121Enabled memory regions are marked with @samp{y}.
29e57380
C
7122Disabled memory regions are marked with @samp{n}.
7123
7124@item Lo Address
7125The address defining the inclusive lower bound of the memory region.
7126
7127@item Hi Address
7128The address defining the exclusive upper bound of the memory region.
7129
7130@item Attributes
7131The list of attributes set for this memory region.
7132@end table
7133@end table
7134
7135
7136@subsection Attributes
7137
b383017d 7138@subsubsection Memory Access Mode
29e57380
C
7139The access mode attributes set whether @value{GDBN} may make read or
7140write accesses to a memory region.
7141
7142While these attributes prevent @value{GDBN} from performing invalid
7143memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7144etc.@: from accessing memory.
29e57380
C
7145
7146@table @code
7147@item ro
7148Memory is read only.
7149@item wo
7150Memory is write only.
7151@item rw
6ca652b0 7152Memory is read/write. This is the default.
29e57380
C
7153@end table
7154
7155@subsubsection Memory Access Size
d3e8051b 7156The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7157accesses in the memory region. Often memory mapped device registers
7158require specific sized accesses. If no access size attribute is
7159specified, @value{GDBN} may use accesses of any size.
7160
7161@table @code
7162@item 8
7163Use 8 bit memory accesses.
7164@item 16
7165Use 16 bit memory accesses.
7166@item 32
7167Use 32 bit memory accesses.
7168@item 64
7169Use 64 bit memory accesses.
7170@end table
7171
7172@c @subsubsection Hardware/Software Breakpoints
7173@c The hardware/software breakpoint attributes set whether @value{GDBN}
7174@c will use hardware or software breakpoints for the internal breakpoints
7175@c used by the step, next, finish, until, etc. commands.
7176@c
7177@c @table @code
7178@c @item hwbreak
b383017d 7179@c Always use hardware breakpoints
29e57380
C
7180@c @item swbreak (default)
7181@c @end table
7182
7183@subsubsection Data Cache
7184The data cache attributes set whether @value{GDBN} will cache target
7185memory. While this generally improves performance by reducing debug
7186protocol overhead, it can lead to incorrect results because @value{GDBN}
7187does not know about volatile variables or memory mapped device
7188registers.
7189
7190@table @code
7191@item cache
b383017d 7192Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7193@item nocache
7194Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7195@end table
7196
4b5752d0
VP
7197@subsection Memory Access Checking
7198@value{GDBN} can be instructed to refuse accesses to memory that is
7199not explicitly described. This can be useful if accessing such
7200regions has undesired effects for a specific target, or to provide
7201better error checking. The following commands control this behaviour.
7202
7203@table @code
7204@kindex set mem inaccessible-by-default
7205@item set mem inaccessible-by-default [on|off]
7206If @code{on} is specified, make @value{GDBN} treat memory not
7207explicitly described by the memory ranges as non-existent and refuse accesses
7208to such memory. The checks are only performed if there's at least one
7209memory range defined. If @code{off} is specified, make @value{GDBN}
7210treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7211The default value is @code{on}.
4b5752d0
VP
7212@kindex show mem inaccessible-by-default
7213@item show mem inaccessible-by-default
7214Show the current handling of accesses to unknown memory.
7215@end table
7216
7217
29e57380 7218@c @subsubsection Memory Write Verification
b383017d 7219@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7220@c will re-reads data after each write to verify the write was successful.
7221@c
7222@c @table @code
7223@c @item verify
7224@c @item noverify (default)
7225@c @end table
7226
16d9dec6 7227@node Dump/Restore Files
79a6e687 7228@section Copy Between Memory and a File
16d9dec6
MS
7229@cindex dump/restore files
7230@cindex append data to a file
7231@cindex dump data to a file
7232@cindex restore data from a file
16d9dec6 7233
df5215a6
JB
7234You can use the commands @code{dump}, @code{append}, and
7235@code{restore} to copy data between target memory and a file. The
7236@code{dump} and @code{append} commands write data to a file, and the
7237@code{restore} command reads data from a file back into the inferior's
7238memory. Files may be in binary, Motorola S-record, Intel hex, or
7239Tektronix Hex format; however, @value{GDBN} can only append to binary
7240files.
7241
7242@table @code
7243
7244@kindex dump
7245@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7246@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7247Dump the contents of memory from @var{start_addr} to @var{end_addr},
7248or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7249
df5215a6 7250The @var{format} parameter may be any one of:
16d9dec6 7251@table @code
df5215a6
JB
7252@item binary
7253Raw binary form.
7254@item ihex
7255Intel hex format.
7256@item srec
7257Motorola S-record format.
7258@item tekhex
7259Tektronix Hex format.
7260@end table
7261
7262@value{GDBN} uses the same definitions of these formats as the
7263@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7264@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7265form.
7266
7267@kindex append
7268@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7269@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7270Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7271or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7272(@value{GDBN} can only append data to files in raw binary form.)
7273
7274@kindex restore
7275@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7276Restore the contents of file @var{filename} into memory. The
7277@code{restore} command can automatically recognize any known @sc{bfd}
7278file format, except for raw binary. To restore a raw binary file you
7279must specify the optional keyword @code{binary} after the filename.
16d9dec6 7280
b383017d 7281If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7282contained in the file. Binary files always start at address zero, so
7283they will be restored at address @var{bias}. Other bfd files have
7284a built-in location; they will be restored at offset @var{bias}
7285from that location.
7286
7287If @var{start} and/or @var{end} are non-zero, then only data between
7288file offset @var{start} and file offset @var{end} will be restored.
b383017d 7289These offsets are relative to the addresses in the file, before
16d9dec6
MS
7290the @var{bias} argument is applied.
7291
7292@end table
7293
384ee23f
EZ
7294@node Core File Generation
7295@section How to Produce a Core File from Your Program
7296@cindex dump core from inferior
7297
7298A @dfn{core file} or @dfn{core dump} is a file that records the memory
7299image of a running process and its process status (register values
7300etc.). Its primary use is post-mortem debugging of a program that
7301crashed while it ran outside a debugger. A program that crashes
7302automatically produces a core file, unless this feature is disabled by
7303the user. @xref{Files}, for information on invoking @value{GDBN} in
7304the post-mortem debugging mode.
7305
7306Occasionally, you may wish to produce a core file of the program you
7307are debugging in order to preserve a snapshot of its state.
7308@value{GDBN} has a special command for that.
7309
7310@table @code
7311@kindex gcore
7312@kindex generate-core-file
7313@item generate-core-file [@var{file}]
7314@itemx gcore [@var{file}]
7315Produce a core dump of the inferior process. The optional argument
7316@var{file} specifies the file name where to put the core dump. If not
7317specified, the file name defaults to @file{core.@var{pid}}, where
7318@var{pid} is the inferior process ID.
7319
7320Note that this command is implemented only for some systems (as of
7321this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7322@end table
7323
a0eb71c5
KB
7324@node Character Sets
7325@section Character Sets
7326@cindex character sets
7327@cindex charset
7328@cindex translating between character sets
7329@cindex host character set
7330@cindex target character set
7331
7332If the program you are debugging uses a different character set to
7333represent characters and strings than the one @value{GDBN} uses itself,
7334@value{GDBN} can automatically translate between the character sets for
7335you. The character set @value{GDBN} uses we call the @dfn{host
7336character set}; the one the inferior program uses we call the
7337@dfn{target character set}.
7338
7339For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7340uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7341remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7342running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7343then the host character set is Latin-1, and the target character set is
7344@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7345target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7346@sc{ebcdic} and Latin 1 as you print character or string values, or use
7347character and string literals in expressions.
7348
7349@value{GDBN} has no way to automatically recognize which character set
7350the inferior program uses; you must tell it, using the @code{set
7351target-charset} command, described below.
7352
7353Here are the commands for controlling @value{GDBN}'s character set
7354support:
7355
7356@table @code
7357@item set target-charset @var{charset}
7358@kindex set target-charset
7359Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7360character set names @value{GDBN} recognizes below, but if you type
7361@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7362list the target character sets it supports.
a0eb71c5
KB
7363@end table
7364
7365@table @code
7366@item set host-charset @var{charset}
7367@kindex set host-charset
7368Set the current host character set to @var{charset}.
7369
7370By default, @value{GDBN} uses a host character set appropriate to the
7371system it is running on; you can override that default using the
7372@code{set host-charset} command.
7373
7374@value{GDBN} can only use certain character sets as its host character
7375set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7376indicate which can be host character sets, but if you type
7377@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7378list the host character sets it supports.
a0eb71c5
KB
7379
7380@item set charset @var{charset}
7381@kindex set charset
e33d66ec
EZ
7382Set the current host and target character sets to @var{charset}. As
7383above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7384@value{GDBN} will list the name of the character sets that can be used
7385for both host and target.
7386
a0eb71c5
KB
7387
7388@item show charset
a0eb71c5 7389@kindex show charset
b383017d 7390Show the names of the current host and target charsets.
e33d66ec
EZ
7391
7392@itemx show host-charset
a0eb71c5 7393@kindex show host-charset
b383017d 7394Show the name of the current host charset.
e33d66ec
EZ
7395
7396@itemx show target-charset
a0eb71c5 7397@kindex show target-charset
b383017d 7398Show the name of the current target charset.
a0eb71c5
KB
7399
7400@end table
7401
7402@value{GDBN} currently includes support for the following character
7403sets:
7404
7405@table @code
7406
7407@item ASCII
7408@cindex ASCII character set
7409Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7410character set.
7411
7412@item ISO-8859-1
7413@cindex ISO 8859-1 character set
7414@cindex ISO Latin 1 character set
e33d66ec 7415The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7416characters needed for French, German, and Spanish. @value{GDBN} can use
7417this as its host character set.
7418
7419@item EBCDIC-US
7420@itemx IBM1047
7421@cindex EBCDIC character set
7422@cindex IBM1047 character set
7423Variants of the @sc{ebcdic} character set, used on some of IBM's
7424mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7425@value{GDBN} cannot use these as its host character set.
7426
7427@end table
7428
7429Note that these are all single-byte character sets. More work inside
3f94c067 7430@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7431encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7432
7433Here is an example of @value{GDBN}'s character set support in action.
7434Assume that the following source code has been placed in the file
7435@file{charset-test.c}:
7436
7437@smallexample
7438#include <stdio.h>
7439
7440char ascii_hello[]
7441 = @{72, 101, 108, 108, 111, 44, 32, 119,
7442 111, 114, 108, 100, 33, 10, 0@};
7443char ibm1047_hello[]
7444 = @{200, 133, 147, 147, 150, 107, 64, 166,
7445 150, 153, 147, 132, 90, 37, 0@};
7446
7447main ()
7448@{
7449 printf ("Hello, world!\n");
7450@}
10998722 7451@end smallexample
a0eb71c5
KB
7452
7453In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7454containing the string @samp{Hello, world!} followed by a newline,
7455encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7456
7457We compile the program, and invoke the debugger on it:
7458
7459@smallexample
7460$ gcc -g charset-test.c -o charset-test
7461$ gdb -nw charset-test
7462GNU gdb 2001-12-19-cvs
7463Copyright 2001 Free Software Foundation, Inc.
7464@dots{}
f7dc1244 7465(@value{GDBP})
10998722 7466@end smallexample
a0eb71c5
KB
7467
7468We can use the @code{show charset} command to see what character sets
7469@value{GDBN} is currently using to interpret and display characters and
7470strings:
7471
7472@smallexample
f7dc1244 7473(@value{GDBP}) show charset
e33d66ec 7474The current host and target character set is `ISO-8859-1'.
f7dc1244 7475(@value{GDBP})
10998722 7476@end smallexample
a0eb71c5
KB
7477
7478For the sake of printing this manual, let's use @sc{ascii} as our
7479initial character set:
7480@smallexample
f7dc1244
EZ
7481(@value{GDBP}) set charset ASCII
7482(@value{GDBP}) show charset
e33d66ec 7483The current host and target character set is `ASCII'.
f7dc1244 7484(@value{GDBP})
10998722 7485@end smallexample
a0eb71c5
KB
7486
7487Let's assume that @sc{ascii} is indeed the correct character set for our
7488host system --- in other words, let's assume that if @value{GDBN} prints
7489characters using the @sc{ascii} character set, our terminal will display
7490them properly. Since our current target character set is also
7491@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7492
7493@smallexample
f7dc1244 7494(@value{GDBP}) print ascii_hello
a0eb71c5 7495$1 = 0x401698 "Hello, world!\n"
f7dc1244 7496(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7497$2 = 72 'H'
f7dc1244 7498(@value{GDBP})
10998722 7499@end smallexample
a0eb71c5
KB
7500
7501@value{GDBN} uses the target character set for character and string
7502literals you use in expressions:
7503
7504@smallexample
f7dc1244 7505(@value{GDBP}) print '+'
a0eb71c5 7506$3 = 43 '+'
f7dc1244 7507(@value{GDBP})
10998722 7508@end smallexample
a0eb71c5
KB
7509
7510The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7511character.
7512
7513@value{GDBN} relies on the user to tell it which character set the
7514target program uses. If we print @code{ibm1047_hello} while our target
7515character set is still @sc{ascii}, we get jibberish:
7516
7517@smallexample
f7dc1244 7518(@value{GDBP}) print ibm1047_hello
a0eb71c5 7519$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7520(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7521$5 = 200 '\310'
f7dc1244 7522(@value{GDBP})
10998722 7523@end smallexample
a0eb71c5 7524
e33d66ec 7525If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7526@value{GDBN} tells us the character sets it supports:
7527
7528@smallexample
f7dc1244 7529(@value{GDBP}) set target-charset
b383017d 7530ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7531(@value{GDBP}) set target-charset
10998722 7532@end smallexample
a0eb71c5
KB
7533
7534We can select @sc{ibm1047} as our target character set, and examine the
7535program's strings again. Now the @sc{ascii} string is wrong, but
7536@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7537target character set, @sc{ibm1047}, to the host character set,
7538@sc{ascii}, and they display correctly:
7539
7540@smallexample
f7dc1244
EZ
7541(@value{GDBP}) set target-charset IBM1047
7542(@value{GDBP}) show charset
e33d66ec
EZ
7543The current host character set is `ASCII'.
7544The current target character set is `IBM1047'.
f7dc1244 7545(@value{GDBP}) print ascii_hello
a0eb71c5 7546$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7547(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7548$7 = 72 '\110'
f7dc1244 7549(@value{GDBP}) print ibm1047_hello
a0eb71c5 7550$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7551(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7552$9 = 200 'H'
f7dc1244 7553(@value{GDBP})
10998722 7554@end smallexample
a0eb71c5
KB
7555
7556As above, @value{GDBN} uses the target character set for character and
7557string literals you use in expressions:
7558
7559@smallexample
f7dc1244 7560(@value{GDBP}) print '+'
a0eb71c5 7561$10 = 78 '+'
f7dc1244 7562(@value{GDBP})
10998722 7563@end smallexample
a0eb71c5 7564
e33d66ec 7565The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7566character.
7567
09d4efe1
EZ
7568@node Caching Remote Data
7569@section Caching Data of Remote Targets
7570@cindex caching data of remote targets
7571
7572@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7573remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7574performance, because it reduces the overhead of the remote protocol by
7575bundling memory reads and writes into large chunks. Unfortunately,
7576@value{GDBN} does not currently know anything about volatile
7577registers, and thus data caching will produce incorrect results when
7578volatile registers are in use.
7579
7580@table @code
7581@kindex set remotecache
7582@item set remotecache on
7583@itemx set remotecache off
7584Set caching state for remote targets. When @code{ON}, use data
7585caching. By default, this option is @code{OFF}.
7586
7587@kindex show remotecache
7588@item show remotecache
7589Show the current state of data caching for remote targets.
7590
7591@kindex info dcache
7592@item info dcache
7593Print the information about the data cache performance. The
7594information displayed includes: the dcache width and depth; and for
7595each cache line, how many times it was referenced, and its data and
7596state (dirty, bad, ok, etc.). This command is useful for debugging
7597the data cache operation.
7598@end table
7599
a0eb71c5 7600
e2e0bcd1
JB
7601@node Macros
7602@chapter C Preprocessor Macros
7603
49efadf5 7604Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7605``preprocessor macros'' which expand into strings of tokens.
7606@value{GDBN} can evaluate expressions containing macro invocations, show
7607the result of macro expansion, and show a macro's definition, including
7608where it was defined.
7609
7610You may need to compile your program specially to provide @value{GDBN}
7611with information about preprocessor macros. Most compilers do not
7612include macros in their debugging information, even when you compile
7613with the @option{-g} flag. @xref{Compilation}.
7614
7615A program may define a macro at one point, remove that definition later,
7616and then provide a different definition after that. Thus, at different
7617points in the program, a macro may have different definitions, or have
7618no definition at all. If there is a current stack frame, @value{GDBN}
7619uses the macros in scope at that frame's source code line. Otherwise,
7620@value{GDBN} uses the macros in scope at the current listing location;
7621see @ref{List}.
7622
7623At the moment, @value{GDBN} does not support the @code{##}
7624token-splicing operator, the @code{#} stringification operator, or
7625variable-arity macros.
7626
7627Whenever @value{GDBN} evaluates an expression, it always expands any
7628macro invocations present in the expression. @value{GDBN} also provides
7629the following commands for working with macros explicitly.
7630
7631@table @code
7632
7633@kindex macro expand
7634@cindex macro expansion, showing the results of preprocessor
7635@cindex preprocessor macro expansion, showing the results of
7636@cindex expanding preprocessor macros
7637@item macro expand @var{expression}
7638@itemx macro exp @var{expression}
7639Show the results of expanding all preprocessor macro invocations in
7640@var{expression}. Since @value{GDBN} simply expands macros, but does
7641not parse the result, @var{expression} need not be a valid expression;
7642it can be any string of tokens.
7643
09d4efe1 7644@kindex macro exp1
e2e0bcd1
JB
7645@item macro expand-once @var{expression}
7646@itemx macro exp1 @var{expression}
4644b6e3 7647@cindex expand macro once
e2e0bcd1
JB
7648@i{(This command is not yet implemented.)} Show the results of
7649expanding those preprocessor macro invocations that appear explicitly in
7650@var{expression}. Macro invocations appearing in that expansion are
7651left unchanged. This command allows you to see the effect of a
7652particular macro more clearly, without being confused by further
7653expansions. Since @value{GDBN} simply expands macros, but does not
7654parse the result, @var{expression} need not be a valid expression; it
7655can be any string of tokens.
7656
475b0867 7657@kindex info macro
e2e0bcd1
JB
7658@cindex macro definition, showing
7659@cindex definition, showing a macro's
475b0867 7660@item info macro @var{macro}
e2e0bcd1
JB
7661Show the definition of the macro named @var{macro}, and describe the
7662source location where that definition was established.
7663
7664@kindex macro define
7665@cindex user-defined macros
7666@cindex defining macros interactively
7667@cindex macros, user-defined
7668@item macro define @var{macro} @var{replacement-list}
7669@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7670@i{(This command is not yet implemented.)} Introduce a definition for a
7671preprocessor macro named @var{macro}, invocations of which are replaced
7672by the tokens given in @var{replacement-list}. The first form of this
7673command defines an ``object-like'' macro, which takes no arguments; the
7674second form defines a ``function-like'' macro, which takes the arguments
7675given in @var{arglist}.
7676
7677A definition introduced by this command is in scope in every expression
7678evaluated in @value{GDBN}, until it is removed with the @command{macro
7679undef} command, described below. The definition overrides all
7680definitions for @var{macro} present in the program being debugged, as
7681well as any previous user-supplied definition.
7682
7683@kindex macro undef
7684@item macro undef @var{macro}
7685@i{(This command is not yet implemented.)} Remove any user-supplied
7686definition for the macro named @var{macro}. This command only affects
7687definitions provided with the @command{macro define} command, described
7688above; it cannot remove definitions present in the program being
7689debugged.
7690
09d4efe1
EZ
7691@kindex macro list
7692@item macro list
7693@i{(This command is not yet implemented.)} List all the macros
7694defined using the @code{macro define} command.
e2e0bcd1
JB
7695@end table
7696
7697@cindex macros, example of debugging with
7698Here is a transcript showing the above commands in action. First, we
7699show our source files:
7700
7701@smallexample
7702$ cat sample.c
7703#include <stdio.h>
7704#include "sample.h"
7705
7706#define M 42
7707#define ADD(x) (M + x)
7708
7709main ()
7710@{
7711#define N 28
7712 printf ("Hello, world!\n");
7713#undef N
7714 printf ("We're so creative.\n");
7715#define N 1729
7716 printf ("Goodbye, world!\n");
7717@}
7718$ cat sample.h
7719#define Q <
7720$
7721@end smallexample
7722
7723Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7724We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7725compiler includes information about preprocessor macros in the debugging
7726information.
7727
7728@smallexample
7729$ gcc -gdwarf-2 -g3 sample.c -o sample
7730$
7731@end smallexample
7732
7733Now, we start @value{GDBN} on our sample program:
7734
7735@smallexample
7736$ gdb -nw sample
7737GNU gdb 2002-05-06-cvs
7738Copyright 2002 Free Software Foundation, Inc.
7739GDB is free software, @dots{}
f7dc1244 7740(@value{GDBP})
e2e0bcd1
JB
7741@end smallexample
7742
7743We can expand macros and examine their definitions, even when the
7744program is not running. @value{GDBN} uses the current listing position
7745to decide which macro definitions are in scope:
7746
7747@smallexample
f7dc1244 7748(@value{GDBP}) list main
e2e0bcd1
JB
77493
77504 #define M 42
77515 #define ADD(x) (M + x)
77526
77537 main ()
77548 @{
77559 #define N 28
775610 printf ("Hello, world!\n");
775711 #undef N
775812 printf ("We're so creative.\n");
f7dc1244 7759(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7760Defined at /home/jimb/gdb/macros/play/sample.c:5
7761#define ADD(x) (M + x)
f7dc1244 7762(@value{GDBP}) info macro Q
e2e0bcd1
JB
7763Defined at /home/jimb/gdb/macros/play/sample.h:1
7764 included at /home/jimb/gdb/macros/play/sample.c:2
7765#define Q <
f7dc1244 7766(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7767expands to: (42 + 1)
f7dc1244 7768(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7769expands to: once (M + 1)
f7dc1244 7770(@value{GDBP})
e2e0bcd1
JB
7771@end smallexample
7772
7773In the example above, note that @command{macro expand-once} expands only
7774the macro invocation explicit in the original text --- the invocation of
7775@code{ADD} --- but does not expand the invocation of the macro @code{M},
7776which was introduced by @code{ADD}.
7777
3f94c067
BW
7778Once the program is running, @value{GDBN} uses the macro definitions in
7779force at the source line of the current stack frame:
e2e0bcd1
JB
7780
7781@smallexample
f7dc1244 7782(@value{GDBP}) break main
e2e0bcd1 7783Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7784(@value{GDBP}) run
b383017d 7785Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7786
7787Breakpoint 1, main () at sample.c:10
778810 printf ("Hello, world!\n");
f7dc1244 7789(@value{GDBP})
e2e0bcd1
JB
7790@end smallexample
7791
7792At line 10, the definition of the macro @code{N} at line 9 is in force:
7793
7794@smallexample
f7dc1244 7795(@value{GDBP}) info macro N
e2e0bcd1
JB
7796Defined at /home/jimb/gdb/macros/play/sample.c:9
7797#define N 28
f7dc1244 7798(@value{GDBP}) macro expand N Q M
e2e0bcd1 7799expands to: 28 < 42
f7dc1244 7800(@value{GDBP}) print N Q M
e2e0bcd1 7801$1 = 1
f7dc1244 7802(@value{GDBP})
e2e0bcd1
JB
7803@end smallexample
7804
7805As we step over directives that remove @code{N}'s definition, and then
7806give it a new definition, @value{GDBN} finds the definition (or lack
7807thereof) in force at each point:
7808
7809@smallexample
f7dc1244 7810(@value{GDBP}) next
e2e0bcd1
JB
7811Hello, world!
781212 printf ("We're so creative.\n");
f7dc1244 7813(@value{GDBP}) info macro N
e2e0bcd1
JB
7814The symbol `N' has no definition as a C/C++ preprocessor macro
7815at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7816(@value{GDBP}) next
e2e0bcd1
JB
7817We're so creative.
781814 printf ("Goodbye, world!\n");
f7dc1244 7819(@value{GDBP}) info macro N
e2e0bcd1
JB
7820Defined at /home/jimb/gdb/macros/play/sample.c:13
7821#define N 1729
f7dc1244 7822(@value{GDBP}) macro expand N Q M
e2e0bcd1 7823expands to: 1729 < 42
f7dc1244 7824(@value{GDBP}) print N Q M
e2e0bcd1 7825$2 = 0
f7dc1244 7826(@value{GDBP})
e2e0bcd1
JB
7827@end smallexample
7828
7829
b37052ae
EZ
7830@node Tracepoints
7831@chapter Tracepoints
7832@c This chapter is based on the documentation written by Michael
7833@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7834
7835@cindex tracepoints
7836In some applications, it is not feasible for the debugger to interrupt
7837the program's execution long enough for the developer to learn
7838anything helpful about its behavior. If the program's correctness
7839depends on its real-time behavior, delays introduced by a debugger
7840might cause the program to change its behavior drastically, or perhaps
7841fail, even when the code itself is correct. It is useful to be able
7842to observe the program's behavior without interrupting it.
7843
7844Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7845specify locations in the program, called @dfn{tracepoints}, and
7846arbitrary expressions to evaluate when those tracepoints are reached.
7847Later, using the @code{tfind} command, you can examine the values
7848those expressions had when the program hit the tracepoints. The
7849expressions may also denote objects in memory---structures or arrays,
7850for example---whose values @value{GDBN} should record; while visiting
7851a particular tracepoint, you may inspect those objects as if they were
7852in memory at that moment. However, because @value{GDBN} records these
7853values without interacting with you, it can do so quickly and
7854unobtrusively, hopefully not disturbing the program's behavior.
7855
7856The tracepoint facility is currently available only for remote
9d29849a
JB
7857targets. @xref{Targets}. In addition, your remote target must know
7858how to collect trace data. This functionality is implemented in the
7859remote stub; however, none of the stubs distributed with @value{GDBN}
7860support tracepoints as of this writing. The format of the remote
7861packets used to implement tracepoints are described in @ref{Tracepoint
7862Packets}.
b37052ae
EZ
7863
7864This chapter describes the tracepoint commands and features.
7865
7866@menu
b383017d
RM
7867* Set Tracepoints::
7868* Analyze Collected Data::
7869* Tracepoint Variables::
b37052ae
EZ
7870@end menu
7871
7872@node Set Tracepoints
7873@section Commands to Set Tracepoints
7874
7875Before running such a @dfn{trace experiment}, an arbitrary number of
7876tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7877tracepoint has a number assigned to it by @value{GDBN}. Like with
7878breakpoints, tracepoint numbers are successive integers starting from
7879one. Many of the commands associated with tracepoints take the
7880tracepoint number as their argument, to identify which tracepoint to
7881work on.
7882
7883For each tracepoint, you can specify, in advance, some arbitrary set
7884of data that you want the target to collect in the trace buffer when
7885it hits that tracepoint. The collected data can include registers,
7886local variables, or global data. Later, you can use @value{GDBN}
7887commands to examine the values these data had at the time the
7888tracepoint was hit.
7889
7890This section describes commands to set tracepoints and associated
7891conditions and actions.
7892
7893@menu
b383017d
RM
7894* Create and Delete Tracepoints::
7895* Enable and Disable Tracepoints::
7896* Tracepoint Passcounts::
7897* Tracepoint Actions::
7898* Listing Tracepoints::
79a6e687 7899* Starting and Stopping Trace Experiments::
b37052ae
EZ
7900@end menu
7901
7902@node Create and Delete Tracepoints
7903@subsection Create and Delete Tracepoints
7904
7905@table @code
7906@cindex set tracepoint
7907@kindex trace
7908@item trace
7909The @code{trace} command is very similar to the @code{break} command.
7910Its argument can be a source line, a function name, or an address in
7911the target program. @xref{Set Breaks}. The @code{trace} command
7912defines a tracepoint, which is a point in the target program where the
7913debugger will briefly stop, collect some data, and then allow the
7914program to continue. Setting a tracepoint or changing its commands
7915doesn't take effect until the next @code{tstart} command; thus, you
7916cannot change the tracepoint attributes once a trace experiment is
7917running.
7918
7919Here are some examples of using the @code{trace} command:
7920
7921@smallexample
7922(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7923
7924(@value{GDBP}) @b{trace +2} // 2 lines forward
7925
7926(@value{GDBP}) @b{trace my_function} // first source line of function
7927
7928(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7929
7930(@value{GDBP}) @b{trace *0x2117c4} // an address
7931@end smallexample
7932
7933@noindent
7934You can abbreviate @code{trace} as @code{tr}.
7935
7936@vindex $tpnum
7937@cindex last tracepoint number
7938@cindex recent tracepoint number
7939@cindex tracepoint number
7940The convenience variable @code{$tpnum} records the tracepoint number
7941of the most recently set tracepoint.
7942
7943@kindex delete tracepoint
7944@cindex tracepoint deletion
7945@item delete tracepoint @r{[}@var{num}@r{]}
7946Permanently delete one or more tracepoints. With no argument, the
7947default is to delete all tracepoints.
7948
7949Examples:
7950
7951@smallexample
7952(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7953
7954(@value{GDBP}) @b{delete trace} // remove all tracepoints
7955@end smallexample
7956
7957@noindent
7958You can abbreviate this command as @code{del tr}.
7959@end table
7960
7961@node Enable and Disable Tracepoints
7962@subsection Enable and Disable Tracepoints
7963
7964@table @code
7965@kindex disable tracepoint
7966@item disable tracepoint @r{[}@var{num}@r{]}
7967Disable tracepoint @var{num}, or all tracepoints if no argument
7968@var{num} is given. A disabled tracepoint will have no effect during
7969the next trace experiment, but it is not forgotten. You can re-enable
7970a disabled tracepoint using the @code{enable tracepoint} command.
7971
7972@kindex enable tracepoint
7973@item enable tracepoint @r{[}@var{num}@r{]}
7974Enable tracepoint @var{num}, or all tracepoints. The enabled
7975tracepoints will become effective the next time a trace experiment is
7976run.
7977@end table
7978
7979@node Tracepoint Passcounts
7980@subsection Tracepoint Passcounts
7981
7982@table @code
7983@kindex passcount
7984@cindex tracepoint pass count
7985@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7986Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7987automatically stop a trace experiment. If a tracepoint's passcount is
7988@var{n}, then the trace experiment will be automatically stopped on
7989the @var{n}'th time that tracepoint is hit. If the tracepoint number
7990@var{num} is not specified, the @code{passcount} command sets the
7991passcount of the most recently defined tracepoint. If no passcount is
7992given, the trace experiment will run until stopped explicitly by the
7993user.
7994
7995Examples:
7996
7997@smallexample
b383017d 7998(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 7999@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
8000
8001(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 8002@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
8003(@value{GDBP}) @b{trace foo}
8004(@value{GDBP}) @b{pass 3}
8005(@value{GDBP}) @b{trace bar}
8006(@value{GDBP}) @b{pass 2}
8007(@value{GDBP}) @b{trace baz}
8008(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
8009@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
8010@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
8011@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
8012@end smallexample
8013@end table
8014
8015@node Tracepoint Actions
8016@subsection Tracepoint Action Lists
8017
8018@table @code
8019@kindex actions
8020@cindex tracepoint actions
8021@item actions @r{[}@var{num}@r{]}
8022This command will prompt for a list of actions to be taken when the
8023tracepoint is hit. If the tracepoint number @var{num} is not
8024specified, this command sets the actions for the one that was most
8025recently defined (so that you can define a tracepoint and then say
8026@code{actions} without bothering about its number). You specify the
8027actions themselves on the following lines, one action at a time, and
8028terminate the actions list with a line containing just @code{end}. So
8029far, the only defined actions are @code{collect} and
8030@code{while-stepping}.
8031
8032@cindex remove actions from a tracepoint
8033To remove all actions from a tracepoint, type @samp{actions @var{num}}
8034and follow it immediately with @samp{end}.
8035
8036@smallexample
8037(@value{GDBP}) @b{collect @var{data}} // collect some data
8038
6826cf00 8039(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 8040
6826cf00 8041(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
8042@end smallexample
8043
8044In the following example, the action list begins with @code{collect}
8045commands indicating the things to be collected when the tracepoint is
8046hit. Then, in order to single-step and collect additional data
8047following the tracepoint, a @code{while-stepping} command is used,
8048followed by the list of things to be collected while stepping. The
8049@code{while-stepping} command is terminated by its own separate
8050@code{end} command. Lastly, the action list is terminated by an
8051@code{end} command.
8052
8053@smallexample
8054(@value{GDBP}) @b{trace foo}
8055(@value{GDBP}) @b{actions}
8056Enter actions for tracepoint 1, one per line:
8057> collect bar,baz
8058> collect $regs
8059> while-stepping 12
8060 > collect $fp, $sp
8061 > end
8062end
8063@end smallexample
8064
8065@kindex collect @r{(tracepoints)}
8066@item collect @var{expr1}, @var{expr2}, @dots{}
8067Collect values of the given expressions when the tracepoint is hit.
8068This command accepts a comma-separated list of any valid expressions.
8069In addition to global, static, or local variables, the following
8070special arguments are supported:
8071
8072@table @code
8073@item $regs
8074collect all registers
8075
8076@item $args
8077collect all function arguments
8078
8079@item $locals
8080collect all local variables.
8081@end table
8082
8083You can give several consecutive @code{collect} commands, each one
8084with a single argument, or one @code{collect} command with several
8085arguments separated by commas: the effect is the same.
8086
f5c37c66
EZ
8087The command @code{info scope} (@pxref{Symbols, info scope}) is
8088particularly useful for figuring out what data to collect.
8089
b37052ae
EZ
8090@kindex while-stepping @r{(tracepoints)}
8091@item while-stepping @var{n}
8092Perform @var{n} single-step traces after the tracepoint, collecting
8093new data at each step. The @code{while-stepping} command is
8094followed by the list of what to collect while stepping (followed by
8095its own @code{end} command):
8096
8097@smallexample
8098> while-stepping 12
8099 > collect $regs, myglobal
8100 > end
8101>
8102@end smallexample
8103
8104@noindent
8105You may abbreviate @code{while-stepping} as @code{ws} or
8106@code{stepping}.
8107@end table
8108
8109@node Listing Tracepoints
8110@subsection Listing Tracepoints
8111
8112@table @code
8113@kindex info tracepoints
09d4efe1 8114@kindex info tp
b37052ae
EZ
8115@cindex information about tracepoints
8116@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8117Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8118a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8119defined so far. For each tracepoint, the following information is
8120shown:
8121
8122@itemize @bullet
8123@item
8124its number
8125@item
8126whether it is enabled or disabled
8127@item
8128its address
8129@item
8130its passcount as given by the @code{passcount @var{n}} command
8131@item
8132its step count as given by the @code{while-stepping @var{n}} command
8133@item
8134where in the source files is the tracepoint set
8135@item
8136its action list as given by the @code{actions} command
8137@end itemize
8138
8139@smallexample
8140(@value{GDBP}) @b{info trace}
8141Num Enb Address PassC StepC What
81421 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
81432 y 0x0020dc64 0 0 in g_test at g_test.c:1375
81443 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8145(@value{GDBP})
8146@end smallexample
8147
8148@noindent
8149This command can be abbreviated @code{info tp}.
8150@end table
8151
79a6e687
BW
8152@node Starting and Stopping Trace Experiments
8153@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8154
8155@table @code
8156@kindex tstart
8157@cindex start a new trace experiment
8158@cindex collected data discarded
8159@item tstart
8160This command takes no arguments. It starts the trace experiment, and
8161begins collecting data. This has the side effect of discarding all
8162the data collected in the trace buffer during the previous trace
8163experiment.
8164
8165@kindex tstop
8166@cindex stop a running trace experiment
8167@item tstop
8168This command takes no arguments. It ends the trace experiment, and
8169stops collecting data.
8170
68c71a2e 8171@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8172automatically if any tracepoint's passcount is reached
8173(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8174
8175@kindex tstatus
8176@cindex status of trace data collection
8177@cindex trace experiment, status of
8178@item tstatus
8179This command displays the status of the current trace data
8180collection.
8181@end table
8182
8183Here is an example of the commands we described so far:
8184
8185@smallexample
8186(@value{GDBP}) @b{trace gdb_c_test}
8187(@value{GDBP}) @b{actions}
8188Enter actions for tracepoint #1, one per line.
8189> collect $regs,$locals,$args
8190> while-stepping 11
8191 > collect $regs
8192 > end
8193> end
8194(@value{GDBP}) @b{tstart}
8195 [time passes @dots{}]
8196(@value{GDBP}) @b{tstop}
8197@end smallexample
8198
8199
8200@node Analyze Collected Data
79a6e687 8201@section Using the Collected Data
b37052ae
EZ
8202
8203After the tracepoint experiment ends, you use @value{GDBN} commands
8204for examining the trace data. The basic idea is that each tracepoint
8205collects a trace @dfn{snapshot} every time it is hit and another
8206snapshot every time it single-steps. All these snapshots are
8207consecutively numbered from zero and go into a buffer, and you can
8208examine them later. The way you examine them is to @dfn{focus} on a
8209specific trace snapshot. When the remote stub is focused on a trace
8210snapshot, it will respond to all @value{GDBN} requests for memory and
8211registers by reading from the buffer which belongs to that snapshot,
8212rather than from @emph{real} memory or registers of the program being
8213debugged. This means that @strong{all} @value{GDBN} commands
8214(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8215behave as if we were currently debugging the program state as it was
8216when the tracepoint occurred. Any requests for data that are not in
8217the buffer will fail.
8218
8219@menu
8220* tfind:: How to select a trace snapshot
8221* tdump:: How to display all data for a snapshot
8222* save-tracepoints:: How to save tracepoints for a future run
8223@end menu
8224
8225@node tfind
8226@subsection @code{tfind @var{n}}
8227
8228@kindex tfind
8229@cindex select trace snapshot
8230@cindex find trace snapshot
8231The basic command for selecting a trace snapshot from the buffer is
8232@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8233counting from zero. If no argument @var{n} is given, the next
8234snapshot is selected.
8235
8236Here are the various forms of using the @code{tfind} command.
8237
8238@table @code
8239@item tfind start
8240Find the first snapshot in the buffer. This is a synonym for
8241@code{tfind 0} (since 0 is the number of the first snapshot).
8242
8243@item tfind none
8244Stop debugging trace snapshots, resume @emph{live} debugging.
8245
8246@item tfind end
8247Same as @samp{tfind none}.
8248
8249@item tfind
8250No argument means find the next trace snapshot.
8251
8252@item tfind -
8253Find the previous trace snapshot before the current one. This permits
8254retracing earlier steps.
8255
8256@item tfind tracepoint @var{num}
8257Find the next snapshot associated with tracepoint @var{num}. Search
8258proceeds forward from the last examined trace snapshot. If no
8259argument @var{num} is given, it means find the next snapshot collected
8260for the same tracepoint as the current snapshot.
8261
8262@item tfind pc @var{addr}
8263Find the next snapshot associated with the value @var{addr} of the
8264program counter. Search proceeds forward from the last examined trace
8265snapshot. If no argument @var{addr} is given, it means find the next
8266snapshot with the same value of PC as the current snapshot.
8267
8268@item tfind outside @var{addr1}, @var{addr2}
8269Find the next snapshot whose PC is outside the given range of
8270addresses.
8271
8272@item tfind range @var{addr1}, @var{addr2}
8273Find the next snapshot whose PC is between @var{addr1} and
8274@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8275
8276@item tfind line @r{[}@var{file}:@r{]}@var{n}
8277Find the next snapshot associated with the source line @var{n}. If
8278the optional argument @var{file} is given, refer to line @var{n} in
8279that source file. Search proceeds forward from the last examined
8280trace snapshot. If no argument @var{n} is given, it means find the
8281next line other than the one currently being examined; thus saying
8282@code{tfind line} repeatedly can appear to have the same effect as
8283stepping from line to line in a @emph{live} debugging session.
8284@end table
8285
8286The default arguments for the @code{tfind} commands are specifically
8287designed to make it easy to scan through the trace buffer. For
8288instance, @code{tfind} with no argument selects the next trace
8289snapshot, and @code{tfind -} with no argument selects the previous
8290trace snapshot. So, by giving one @code{tfind} command, and then
8291simply hitting @key{RET} repeatedly you can examine all the trace
8292snapshots in order. Or, by saying @code{tfind -} and then hitting
8293@key{RET} repeatedly you can examine the snapshots in reverse order.
8294The @code{tfind line} command with no argument selects the snapshot
8295for the next source line executed. The @code{tfind pc} command with
8296no argument selects the next snapshot with the same program counter
8297(PC) as the current frame. The @code{tfind tracepoint} command with
8298no argument selects the next trace snapshot collected by the same
8299tracepoint as the current one.
8300
8301In addition to letting you scan through the trace buffer manually,
8302these commands make it easy to construct @value{GDBN} scripts that
8303scan through the trace buffer and print out whatever collected data
8304you are interested in. Thus, if we want to examine the PC, FP, and SP
8305registers from each trace frame in the buffer, we can say this:
8306
8307@smallexample
8308(@value{GDBP}) @b{tfind start}
8309(@value{GDBP}) @b{while ($trace_frame != -1)}
8310> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8311 $trace_frame, $pc, $sp, $fp
8312> tfind
8313> end
8314
8315Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8316Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8317Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8318Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8319Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8320Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8321Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8322Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8323Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8324Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8325Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8326@end smallexample
8327
8328Or, if we want to examine the variable @code{X} at each source line in
8329the buffer:
8330
8331@smallexample
8332(@value{GDBP}) @b{tfind start}
8333(@value{GDBP}) @b{while ($trace_frame != -1)}
8334> printf "Frame %d, X == %d\n", $trace_frame, X
8335> tfind line
8336> end
8337
8338Frame 0, X = 1
8339Frame 7, X = 2
8340Frame 13, X = 255
8341@end smallexample
8342
8343@node tdump
8344@subsection @code{tdump}
8345@kindex tdump
8346@cindex dump all data collected at tracepoint
8347@cindex tracepoint data, display
8348
8349This command takes no arguments. It prints all the data collected at
8350the current trace snapshot.
8351
8352@smallexample
8353(@value{GDBP}) @b{trace 444}
8354(@value{GDBP}) @b{actions}
8355Enter actions for tracepoint #2, one per line:
8356> collect $regs, $locals, $args, gdb_long_test
8357> end
8358
8359(@value{GDBP}) @b{tstart}
8360
8361(@value{GDBP}) @b{tfind line 444}
8362#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8363at gdb_test.c:444
8364444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8365
8366(@value{GDBP}) @b{tdump}
8367Data collected at tracepoint 2, trace frame 1:
8368d0 0xc4aa0085 -995491707
8369d1 0x18 24
8370d2 0x80 128
8371d3 0x33 51
8372d4 0x71aea3d 119204413
8373d5 0x22 34
8374d6 0xe0 224
8375d7 0x380035 3670069
8376a0 0x19e24a 1696330
8377a1 0x3000668 50333288
8378a2 0x100 256
8379a3 0x322000 3284992
8380a4 0x3000698 50333336
8381a5 0x1ad3cc 1758156
8382fp 0x30bf3c 0x30bf3c
8383sp 0x30bf34 0x30bf34
8384ps 0x0 0
8385pc 0x20b2c8 0x20b2c8
8386fpcontrol 0x0 0
8387fpstatus 0x0 0
8388fpiaddr 0x0 0
8389p = 0x20e5b4 "gdb-test"
8390p1 = (void *) 0x11
8391p2 = (void *) 0x22
8392p3 = (void *) 0x33
8393p4 = (void *) 0x44
8394p5 = (void *) 0x55
8395p6 = (void *) 0x66
8396gdb_long_test = 17 '\021'
8397
8398(@value{GDBP})
8399@end smallexample
8400
8401@node save-tracepoints
8402@subsection @code{save-tracepoints @var{filename}}
8403@kindex save-tracepoints
8404@cindex save tracepoints for future sessions
8405
8406This command saves all current tracepoint definitions together with
8407their actions and passcounts, into a file @file{@var{filename}}
8408suitable for use in a later debugging session. To read the saved
8409tracepoint definitions, use the @code{source} command (@pxref{Command
8410Files}).
8411
8412@node Tracepoint Variables
8413@section Convenience Variables for Tracepoints
8414@cindex tracepoint variables
8415@cindex convenience variables for tracepoints
8416
8417@table @code
8418@vindex $trace_frame
8419@item (int) $trace_frame
8420The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8421snapshot is selected.
8422
8423@vindex $tracepoint
8424@item (int) $tracepoint
8425The tracepoint for the current trace snapshot.
8426
8427@vindex $trace_line
8428@item (int) $trace_line
8429The line number for the current trace snapshot.
8430
8431@vindex $trace_file
8432@item (char []) $trace_file
8433The source file for the current trace snapshot.
8434
8435@vindex $trace_func
8436@item (char []) $trace_func
8437The name of the function containing @code{$tracepoint}.
8438@end table
8439
8440Note: @code{$trace_file} is not suitable for use in @code{printf},
8441use @code{output} instead.
8442
8443Here's a simple example of using these convenience variables for
8444stepping through all the trace snapshots and printing some of their
8445data.
8446
8447@smallexample
8448(@value{GDBP}) @b{tfind start}
8449
8450(@value{GDBP}) @b{while $trace_frame != -1}
8451> output $trace_file
8452> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8453> tfind
8454> end
8455@end smallexample
8456
df0cd8c5
JB
8457@node Overlays
8458@chapter Debugging Programs That Use Overlays
8459@cindex overlays
8460
8461If your program is too large to fit completely in your target system's
8462memory, you can sometimes use @dfn{overlays} to work around this
8463problem. @value{GDBN} provides some support for debugging programs that
8464use overlays.
8465
8466@menu
8467* How Overlays Work:: A general explanation of overlays.
8468* Overlay Commands:: Managing overlays in @value{GDBN}.
8469* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8470 mapped by asking the inferior.
8471* Overlay Sample Program:: A sample program using overlays.
8472@end menu
8473
8474@node How Overlays Work
8475@section How Overlays Work
8476@cindex mapped overlays
8477@cindex unmapped overlays
8478@cindex load address, overlay's
8479@cindex mapped address
8480@cindex overlay area
8481
8482Suppose you have a computer whose instruction address space is only 64
8483kilobytes long, but which has much more memory which can be accessed by
8484other means: special instructions, segment registers, or memory
8485management hardware, for example. Suppose further that you want to
8486adapt a program which is larger than 64 kilobytes to run on this system.
8487
8488One solution is to identify modules of your program which are relatively
8489independent, and need not call each other directly; call these modules
8490@dfn{overlays}. Separate the overlays from the main program, and place
8491their machine code in the larger memory. Place your main program in
8492instruction memory, but leave at least enough space there to hold the
8493largest overlay as well.
8494
8495Now, to call a function located in an overlay, you must first copy that
8496overlay's machine code from the large memory into the space set aside
8497for it in the instruction memory, and then jump to its entry point
8498there.
8499
c928edc0
AC
8500@c NB: In the below the mapped area's size is greater or equal to the
8501@c size of all overlays. This is intentional to remind the developer
8502@c that overlays don't necessarily need to be the same size.
8503
474c8240 8504@smallexample
df0cd8c5 8505@group
c928edc0
AC
8506 Data Instruction Larger
8507Address Space Address Space Address Space
8508+-----------+ +-----------+ +-----------+
8509| | | | | |
8510+-----------+ +-----------+ +-----------+<-- overlay 1
8511| program | | main | .----| overlay 1 | load address
8512| variables | | program | | +-----------+
8513| and heap | | | | | |
8514+-----------+ | | | +-----------+<-- overlay 2
8515| | +-----------+ | | | load address
8516+-----------+ | | | .-| overlay 2 |
8517 | | | | | |
8518 mapped --->+-----------+ | | +-----------+
8519 address | | | | | |
8520 | overlay | <-' | | |
8521 | area | <---' +-----------+<-- overlay 3
8522 | | <---. | | load address
8523 +-----------+ `--| overlay 3 |
8524 | | | |
8525 +-----------+ | |
8526 +-----------+
8527 | |
8528 +-----------+
8529
8530 @anchor{A code overlay}A code overlay
df0cd8c5 8531@end group
474c8240 8532@end smallexample
df0cd8c5 8533
c928edc0
AC
8534The diagram (@pxref{A code overlay}) shows a system with separate data
8535and instruction address spaces. To map an overlay, the program copies
8536its code from the larger address space to the instruction address space.
8537Since the overlays shown here all use the same mapped address, only one
8538may be mapped at a time. For a system with a single address space for
8539data and instructions, the diagram would be similar, except that the
8540program variables and heap would share an address space with the main
8541program and the overlay area.
df0cd8c5
JB
8542
8543An overlay loaded into instruction memory and ready for use is called a
8544@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8545instruction memory. An overlay not present (or only partially present)
8546in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8547is its address in the larger memory. The mapped address is also called
8548the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8549called the @dfn{load memory address}, or @dfn{LMA}.
8550
8551Unfortunately, overlays are not a completely transparent way to adapt a
8552program to limited instruction memory. They introduce a new set of
8553global constraints you must keep in mind as you design your program:
8554
8555@itemize @bullet
8556
8557@item
8558Before calling or returning to a function in an overlay, your program
8559must make sure that overlay is actually mapped. Otherwise, the call or
8560return will transfer control to the right address, but in the wrong
8561overlay, and your program will probably crash.
8562
8563@item
8564If the process of mapping an overlay is expensive on your system, you
8565will need to choose your overlays carefully to minimize their effect on
8566your program's performance.
8567
8568@item
8569The executable file you load onto your system must contain each
8570overlay's instructions, appearing at the overlay's load address, not its
8571mapped address. However, each overlay's instructions must be relocated
8572and its symbols defined as if the overlay were at its mapped address.
8573You can use GNU linker scripts to specify different load and relocation
8574addresses for pieces of your program; see @ref{Overlay Description,,,
8575ld.info, Using ld: the GNU linker}.
8576
8577@item
8578The procedure for loading executable files onto your system must be able
8579to load their contents into the larger address space as well as the
8580instruction and data spaces.
8581
8582@end itemize
8583
8584The overlay system described above is rather simple, and could be
8585improved in many ways:
8586
8587@itemize @bullet
8588
8589@item
8590If your system has suitable bank switch registers or memory management
8591hardware, you could use those facilities to make an overlay's load area
8592contents simply appear at their mapped address in instruction space.
8593This would probably be faster than copying the overlay to its mapped
8594area in the usual way.
8595
8596@item
8597If your overlays are small enough, you could set aside more than one
8598overlay area, and have more than one overlay mapped at a time.
8599
8600@item
8601You can use overlays to manage data, as well as instructions. In
8602general, data overlays are even less transparent to your design than
8603code overlays: whereas code overlays only require care when you call or
8604return to functions, data overlays require care every time you access
8605the data. Also, if you change the contents of a data overlay, you
8606must copy its contents back out to its load address before you can copy a
8607different data overlay into the same mapped area.
8608
8609@end itemize
8610
8611
8612@node Overlay Commands
8613@section Overlay Commands
8614
8615To use @value{GDBN}'s overlay support, each overlay in your program must
8616correspond to a separate section of the executable file. The section's
8617virtual memory address and load memory address must be the overlay's
8618mapped and load addresses. Identifying overlays with sections allows
8619@value{GDBN} to determine the appropriate address of a function or
8620variable, depending on whether the overlay is mapped or not.
8621
8622@value{GDBN}'s overlay commands all start with the word @code{overlay};
8623you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8624
8625@table @code
8626@item overlay off
4644b6e3 8627@kindex overlay
df0cd8c5
JB
8628Disable @value{GDBN}'s overlay support. When overlay support is
8629disabled, @value{GDBN} assumes that all functions and variables are
8630always present at their mapped addresses. By default, @value{GDBN}'s
8631overlay support is disabled.
8632
8633@item overlay manual
df0cd8c5
JB
8634@cindex manual overlay debugging
8635Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8636relies on you to tell it which overlays are mapped, and which are not,
8637using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8638commands described below.
8639
8640@item overlay map-overlay @var{overlay}
8641@itemx overlay map @var{overlay}
df0cd8c5
JB
8642@cindex map an overlay
8643Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8644be the name of the object file section containing the overlay. When an
8645overlay is mapped, @value{GDBN} assumes it can find the overlay's
8646functions and variables at their mapped addresses. @value{GDBN} assumes
8647that any other overlays whose mapped ranges overlap that of
8648@var{overlay} are now unmapped.
8649
8650@item overlay unmap-overlay @var{overlay}
8651@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8652@cindex unmap an overlay
8653Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8654must be the name of the object file section containing the overlay.
8655When an overlay is unmapped, @value{GDBN} assumes it can find the
8656overlay's functions and variables at their load addresses.
8657
8658@item overlay auto
df0cd8c5
JB
8659Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8660consults a data structure the overlay manager maintains in the inferior
8661to see which overlays are mapped. For details, see @ref{Automatic
8662Overlay Debugging}.
8663
8664@item overlay load-target
8665@itemx overlay load
df0cd8c5
JB
8666@cindex reloading the overlay table
8667Re-read the overlay table from the inferior. Normally, @value{GDBN}
8668re-reads the table @value{GDBN} automatically each time the inferior
8669stops, so this command should only be necessary if you have changed the
8670overlay mapping yourself using @value{GDBN}. This command is only
8671useful when using automatic overlay debugging.
8672
8673@item overlay list-overlays
8674@itemx overlay list
8675@cindex listing mapped overlays
8676Display a list of the overlays currently mapped, along with their mapped
8677addresses, load addresses, and sizes.
8678
8679@end table
8680
8681Normally, when @value{GDBN} prints a code address, it includes the name
8682of the function the address falls in:
8683
474c8240 8684@smallexample
f7dc1244 8685(@value{GDBP}) print main
df0cd8c5 8686$3 = @{int ()@} 0x11a0 <main>
474c8240 8687@end smallexample
df0cd8c5
JB
8688@noindent
8689When overlay debugging is enabled, @value{GDBN} recognizes code in
8690unmapped overlays, and prints the names of unmapped functions with
8691asterisks around them. For example, if @code{foo} is a function in an
8692unmapped overlay, @value{GDBN} prints it this way:
8693
474c8240 8694@smallexample
f7dc1244 8695(@value{GDBP}) overlay list
df0cd8c5 8696No sections are mapped.
f7dc1244 8697(@value{GDBP}) print foo
df0cd8c5 8698$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8699@end smallexample
df0cd8c5
JB
8700@noindent
8701When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8702name normally:
8703
474c8240 8704@smallexample
f7dc1244 8705(@value{GDBP}) overlay list
b383017d 8706Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8707 mapped at 0x1016 - 0x104a
f7dc1244 8708(@value{GDBP}) print foo
df0cd8c5 8709$6 = @{int (int)@} 0x1016 <foo>
474c8240 8710@end smallexample
df0cd8c5
JB
8711
8712When overlay debugging is enabled, @value{GDBN} can find the correct
8713address for functions and variables in an overlay, whether or not the
8714overlay is mapped. This allows most @value{GDBN} commands, like
8715@code{break} and @code{disassemble}, to work normally, even on unmapped
8716code. However, @value{GDBN}'s breakpoint support has some limitations:
8717
8718@itemize @bullet
8719@item
8720@cindex breakpoints in overlays
8721@cindex overlays, setting breakpoints in
8722You can set breakpoints in functions in unmapped overlays, as long as
8723@value{GDBN} can write to the overlay at its load address.
8724@item
8725@value{GDBN} can not set hardware or simulator-based breakpoints in
8726unmapped overlays. However, if you set a breakpoint at the end of your
8727overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8728you are using manual overlay management), @value{GDBN} will re-set its
8729breakpoints properly.
8730@end itemize
8731
8732
8733@node Automatic Overlay Debugging
8734@section Automatic Overlay Debugging
8735@cindex automatic overlay debugging
8736
8737@value{GDBN} can automatically track which overlays are mapped and which
8738are not, given some simple co-operation from the overlay manager in the
8739inferior. If you enable automatic overlay debugging with the
8740@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8741looks in the inferior's memory for certain variables describing the
8742current state of the overlays.
8743
8744Here are the variables your overlay manager must define to support
8745@value{GDBN}'s automatic overlay debugging:
8746
8747@table @asis
8748
8749@item @code{_ovly_table}:
8750This variable must be an array of the following structures:
8751
474c8240 8752@smallexample
df0cd8c5
JB
8753struct
8754@{
8755 /* The overlay's mapped address. */
8756 unsigned long vma;
8757
8758 /* The size of the overlay, in bytes. */
8759 unsigned long size;
8760
8761 /* The overlay's load address. */
8762 unsigned long lma;
8763
8764 /* Non-zero if the overlay is currently mapped;
8765 zero otherwise. */
8766 unsigned long mapped;
8767@}
474c8240 8768@end smallexample
df0cd8c5
JB
8769
8770@item @code{_novlys}:
8771This variable must be a four-byte signed integer, holding the total
8772number of elements in @code{_ovly_table}.
8773
8774@end table
8775
8776To decide whether a particular overlay is mapped or not, @value{GDBN}
8777looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8778@code{lma} members equal the VMA and LMA of the overlay's section in the
8779executable file. When @value{GDBN} finds a matching entry, it consults
8780the entry's @code{mapped} member to determine whether the overlay is
8781currently mapped.
8782
81d46470 8783In addition, your overlay manager may define a function called
def71bfa 8784@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8785will silently set a breakpoint there. If the overlay manager then
8786calls this function whenever it has changed the overlay table, this
8787will enable @value{GDBN} to accurately keep track of which overlays
8788are in program memory, and update any breakpoints that may be set
b383017d 8789in overlays. This will allow breakpoints to work even if the
81d46470
MS
8790overlays are kept in ROM or other non-writable memory while they
8791are not being executed.
df0cd8c5
JB
8792
8793@node Overlay Sample Program
8794@section Overlay Sample Program
8795@cindex overlay example program
8796
8797When linking a program which uses overlays, you must place the overlays
8798at their load addresses, while relocating them to run at their mapped
8799addresses. To do this, you must write a linker script (@pxref{Overlay
8800Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8801since linker scripts are specific to a particular host system, target
8802architecture, and target memory layout, this manual cannot provide
8803portable sample code demonstrating @value{GDBN}'s overlay support.
8804
8805However, the @value{GDBN} source distribution does contain an overlaid
8806program, with linker scripts for a few systems, as part of its test
8807suite. The program consists of the following files from
8808@file{gdb/testsuite/gdb.base}:
8809
8810@table @file
8811@item overlays.c
8812The main program file.
8813@item ovlymgr.c
8814A simple overlay manager, used by @file{overlays.c}.
8815@item foo.c
8816@itemx bar.c
8817@itemx baz.c
8818@itemx grbx.c
8819Overlay modules, loaded and used by @file{overlays.c}.
8820@item d10v.ld
8821@itemx m32r.ld
8822Linker scripts for linking the test program on the @code{d10v-elf}
8823and @code{m32r-elf} targets.
8824@end table
8825
8826You can build the test program using the @code{d10v-elf} GCC
8827cross-compiler like this:
8828
474c8240 8829@smallexample
df0cd8c5
JB
8830$ d10v-elf-gcc -g -c overlays.c
8831$ d10v-elf-gcc -g -c ovlymgr.c
8832$ d10v-elf-gcc -g -c foo.c
8833$ d10v-elf-gcc -g -c bar.c
8834$ d10v-elf-gcc -g -c baz.c
8835$ d10v-elf-gcc -g -c grbx.c
8836$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8837 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8838@end smallexample
df0cd8c5
JB
8839
8840The build process is identical for any other architecture, except that
8841you must substitute the appropriate compiler and linker script for the
8842target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8843
8844
6d2ebf8b 8845@node Languages
c906108c
SS
8846@chapter Using @value{GDBN} with Different Languages
8847@cindex languages
8848
c906108c
SS
8849Although programming languages generally have common aspects, they are
8850rarely expressed in the same manner. For instance, in ANSI C,
8851dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8852Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8853represented (and displayed) differently. Hex numbers in C appear as
c906108c 8854@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8855
8856@cindex working language
8857Language-specific information is built into @value{GDBN} for some languages,
8858allowing you to express operations like the above in your program's
8859native language, and allowing @value{GDBN} to output values in a manner
8860consistent with the syntax of your program's native language. The
8861language you use to build expressions is called the @dfn{working
8862language}.
8863
8864@menu
8865* Setting:: Switching between source languages
8866* Show:: Displaying the language
c906108c 8867* Checks:: Type and range checks
79a6e687
BW
8868* Supported Languages:: Supported languages
8869* Unsupported Languages:: Unsupported languages
c906108c
SS
8870@end menu
8871
6d2ebf8b 8872@node Setting
79a6e687 8873@section Switching Between Source Languages
c906108c
SS
8874
8875There are two ways to control the working language---either have @value{GDBN}
8876set it automatically, or select it manually yourself. You can use the
8877@code{set language} command for either purpose. On startup, @value{GDBN}
8878defaults to setting the language automatically. The working language is
8879used to determine how expressions you type are interpreted, how values
8880are printed, etc.
8881
8882In addition to the working language, every source file that
8883@value{GDBN} knows about has its own working language. For some object
8884file formats, the compiler might indicate which language a particular
8885source file is in. However, most of the time @value{GDBN} infers the
8886language from the name of the file. The language of a source file
b37052ae 8887controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8888show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8889set the language of a source file from within @value{GDBN}, but you can
8890set the language associated with a filename extension. @xref{Show, ,
79a6e687 8891Displaying the Language}.
c906108c
SS
8892
8893This is most commonly a problem when you use a program, such
5d161b24 8894as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8895another language. In that case, make the
8896program use @code{#line} directives in its C output; that way
8897@value{GDBN} will know the correct language of the source code of the original
8898program, and will display that source code, not the generated C code.
8899
8900@menu
8901* Filenames:: Filename extensions and languages.
8902* Manually:: Setting the working language manually
8903* Automatically:: Having @value{GDBN} infer the source language
8904@end menu
8905
6d2ebf8b 8906@node Filenames
79a6e687 8907@subsection List of Filename Extensions and Languages
c906108c
SS
8908
8909If a source file name ends in one of the following extensions, then
8910@value{GDBN} infers that its language is the one indicated.
8911
8912@table @file
e07c999f
PH
8913@item .ada
8914@itemx .ads
8915@itemx .adb
8916@itemx .a
8917Ada source file.
c906108c
SS
8918
8919@item .c
8920C source file
8921
8922@item .C
8923@itemx .cc
8924@itemx .cp
8925@itemx .cpp
8926@itemx .cxx
8927@itemx .c++
b37052ae 8928C@t{++} source file
c906108c 8929
b37303ee
AF
8930@item .m
8931Objective-C source file
8932
c906108c
SS
8933@item .f
8934@itemx .F
8935Fortran source file
8936
c906108c
SS
8937@item .mod
8938Modula-2 source file
c906108c
SS
8939
8940@item .s
8941@itemx .S
8942Assembler source file. This actually behaves almost like C, but
8943@value{GDBN} does not skip over function prologues when stepping.
8944@end table
8945
8946In addition, you may set the language associated with a filename
79a6e687 8947extension. @xref{Show, , Displaying the Language}.
c906108c 8948
6d2ebf8b 8949@node Manually
79a6e687 8950@subsection Setting the Working Language
c906108c
SS
8951
8952If you allow @value{GDBN} to set the language automatically,
8953expressions are interpreted the same way in your debugging session and
8954your program.
8955
8956@kindex set language
8957If you wish, you may set the language manually. To do this, issue the
8958command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8959a language, such as
c906108c 8960@code{c} or @code{modula-2}.
c906108c
SS
8961For a list of the supported languages, type @samp{set language}.
8962
c906108c
SS
8963Setting the language manually prevents @value{GDBN} from updating the working
8964language automatically. This can lead to confusion if you try
8965to debug a program when the working language is not the same as the
8966source language, when an expression is acceptable to both
8967languages---but means different things. For instance, if the current
8968source file were written in C, and @value{GDBN} was parsing Modula-2, a
8969command such as:
8970
474c8240 8971@smallexample
c906108c 8972print a = b + c
474c8240 8973@end smallexample
c906108c
SS
8974
8975@noindent
8976might not have the effect you intended. In C, this means to add
8977@code{b} and @code{c} and place the result in @code{a}. The result
8978printed would be the value of @code{a}. In Modula-2, this means to compare
8979@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8980
6d2ebf8b 8981@node Automatically
79a6e687 8982@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8983
8984To have @value{GDBN} set the working language automatically, use
8985@samp{set language local} or @samp{set language auto}. @value{GDBN}
8986then infers the working language. That is, when your program stops in a
8987frame (usually by encountering a breakpoint), @value{GDBN} sets the
8988working language to the language recorded for the function in that
8989frame. If the language for a frame is unknown (that is, if the function
8990or block corresponding to the frame was defined in a source file that
8991does not have a recognized extension), the current working language is
8992not changed, and @value{GDBN} issues a warning.
8993
8994This may not seem necessary for most programs, which are written
8995entirely in one source language. However, program modules and libraries
8996written in one source language can be used by a main program written in
8997a different source language. Using @samp{set language auto} in this
8998case frees you from having to set the working language manually.
8999
6d2ebf8b 9000@node Show
79a6e687 9001@section Displaying the Language
c906108c
SS
9002
9003The following commands help you find out which language is the
9004working language, and also what language source files were written in.
9005
c906108c
SS
9006@table @code
9007@item show language
9c16f35a 9008@kindex show language
c906108c
SS
9009Display the current working language. This is the
9010language you can use with commands such as @code{print} to
9011build and compute expressions that may involve variables in your program.
9012
9013@item info frame
4644b6e3 9014@kindex info frame@r{, show the source language}
5d161b24 9015Display the source language for this frame. This language becomes the
c906108c 9016working language if you use an identifier from this frame.
79a6e687 9017@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
9018information listed here.
9019
9020@item info source
4644b6e3 9021@kindex info source@r{, show the source language}
c906108c 9022Display the source language of this source file.
5d161b24 9023@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
9024information listed here.
9025@end table
9026
9027In unusual circumstances, you may have source files with extensions
9028not in the standard list. You can then set the extension associated
9029with a language explicitly:
9030
c906108c 9031@table @code
09d4efe1 9032@item set extension-language @var{ext} @var{language}
9c16f35a 9033@kindex set extension-language
09d4efe1
EZ
9034Tell @value{GDBN} that source files with extension @var{ext} are to be
9035assumed as written in the source language @var{language}.
c906108c
SS
9036
9037@item info extensions
9c16f35a 9038@kindex info extensions
c906108c
SS
9039List all the filename extensions and the associated languages.
9040@end table
9041
6d2ebf8b 9042@node Checks
79a6e687 9043@section Type and Range Checking
c906108c
SS
9044
9045@quotation
9046@emph{Warning:} In this release, the @value{GDBN} commands for type and range
9047checking are included, but they do not yet have any effect. This
9048section documents the intended facilities.
9049@end quotation
9050@c FIXME remove warning when type/range code added
9051
9052Some languages are designed to guard you against making seemingly common
9053errors through a series of compile- and run-time checks. These include
9054checking the type of arguments to functions and operators, and making
9055sure mathematical overflows are caught at run time. Checks such as
9056these help to ensure a program's correctness once it has been compiled
9057by eliminating type mismatches, and providing active checks for range
9058errors when your program is running.
9059
9060@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
9061Although @value{GDBN} does not check the statements in your program,
9062it can check expressions entered directly into @value{GDBN} for
9063evaluation via the @code{print} command, for example. As with the
9064working language, @value{GDBN} can also decide whether or not to check
9065automatically based on your program's source language.
79a6e687 9066@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 9067settings of supported languages.
c906108c
SS
9068
9069@menu
9070* Type Checking:: An overview of type checking
9071* Range Checking:: An overview of range checking
9072@end menu
9073
9074@cindex type checking
9075@cindex checks, type
6d2ebf8b 9076@node Type Checking
79a6e687 9077@subsection An Overview of Type Checking
c906108c
SS
9078
9079Some languages, such as Modula-2, are strongly typed, meaning that the
9080arguments to operators and functions have to be of the correct type,
9081otherwise an error occurs. These checks prevent type mismatch
9082errors from ever causing any run-time problems. For example,
9083
9084@smallexample
90851 + 2 @result{} 3
9086@exdent but
9087@error{} 1 + 2.3
9088@end smallexample
9089
9090The second example fails because the @code{CARDINAL} 1 is not
9091type-compatible with the @code{REAL} 2.3.
9092
5d161b24
DB
9093For the expressions you use in @value{GDBN} commands, you can tell the
9094@value{GDBN} type checker to skip checking;
9095to treat any mismatches as errors and abandon the expression;
9096or to only issue warnings when type mismatches occur,
c906108c
SS
9097but evaluate the expression anyway. When you choose the last of
9098these, @value{GDBN} evaluates expressions like the second example above, but
9099also issues a warning.
9100
5d161b24
DB
9101Even if you turn type checking off, there may be other reasons
9102related to type that prevent @value{GDBN} from evaluating an expression.
9103For instance, @value{GDBN} does not know how to add an @code{int} and
9104a @code{struct foo}. These particular type errors have nothing to do
9105with the language in use, and usually arise from expressions, such as
c906108c
SS
9106the one described above, which make little sense to evaluate anyway.
9107
9108Each language defines to what degree it is strict about type. For
9109instance, both Modula-2 and C require the arguments to arithmetical
9110operators to be numbers. In C, enumerated types and pointers can be
9111represented as numbers, so that they are valid arguments to mathematical
79a6e687 9112operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9113details on specific languages.
9114
9115@value{GDBN} provides some additional commands for controlling the type checker:
9116
c906108c
SS
9117@kindex set check type
9118@kindex show check type
9119@table @code
9120@item set check type auto
9121Set type checking on or off based on the current working language.
79a6e687 9122@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9123each language.
9124
9125@item set check type on
9126@itemx set check type off
9127Set type checking on or off, overriding the default setting for the
9128current working language. Issue a warning if the setting does not
9129match the language default. If any type mismatches occur in
d4f3574e 9130evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9131message and aborts evaluation of the expression.
9132
9133@item set check type warn
9134Cause the type checker to issue warnings, but to always attempt to
9135evaluate the expression. Evaluating the expression may still
9136be impossible for other reasons. For example, @value{GDBN} cannot add
9137numbers and structures.
9138
9139@item show type
5d161b24 9140Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9141is setting it automatically.
9142@end table
9143
9144@cindex range checking
9145@cindex checks, range
6d2ebf8b 9146@node Range Checking
79a6e687 9147@subsection An Overview of Range Checking
c906108c
SS
9148
9149In some languages (such as Modula-2), it is an error to exceed the
9150bounds of a type; this is enforced with run-time checks. Such range
9151checking is meant to ensure program correctness by making sure
9152computations do not overflow, or indices on an array element access do
9153not exceed the bounds of the array.
9154
9155For expressions you use in @value{GDBN} commands, you can tell
9156@value{GDBN} to treat range errors in one of three ways: ignore them,
9157always treat them as errors and abandon the expression, or issue
9158warnings but evaluate the expression anyway.
9159
9160A range error can result from numerical overflow, from exceeding an
9161array index bound, or when you type a constant that is not a member
9162of any type. Some languages, however, do not treat overflows as an
9163error. In many implementations of C, mathematical overflow causes the
9164result to ``wrap around'' to lower values---for example, if @var{m} is
9165the largest integer value, and @var{s} is the smallest, then
9166
474c8240 9167@smallexample
c906108c 9168@var{m} + 1 @result{} @var{s}
474c8240 9169@end smallexample
c906108c
SS
9170
9171This, too, is specific to individual languages, and in some cases
79a6e687
BW
9172specific to individual compilers or machines. @xref{Supported Languages, ,
9173Supported Languages}, for further details on specific languages.
c906108c
SS
9174
9175@value{GDBN} provides some additional commands for controlling the range checker:
9176
c906108c
SS
9177@kindex set check range
9178@kindex show check range
9179@table @code
9180@item set check range auto
9181Set range checking on or off based on the current working language.
79a6e687 9182@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9183each language.
9184
9185@item set check range on
9186@itemx set check range off
9187Set range checking on or off, overriding the default setting for the
9188current working language. A warning is issued if the setting does not
c3f6f71d
JM
9189match the language default. If a range error occurs and range checking is on,
9190then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9191
9192@item set check range warn
9193Output messages when the @value{GDBN} range checker detects a range error,
9194but attempt to evaluate the expression anyway. Evaluating the
9195expression may still be impossible for other reasons, such as accessing
9196memory that the process does not own (a typical example from many Unix
9197systems).
9198
9199@item show range
9200Show the current setting of the range checker, and whether or not it is
9201being set automatically by @value{GDBN}.
9202@end table
c906108c 9203
79a6e687
BW
9204@node Supported Languages
9205@section Supported Languages
c906108c 9206
9c16f35a
EZ
9207@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9208assembly, Modula-2, and Ada.
cce74817 9209@c This is false ...
c906108c
SS
9210Some @value{GDBN} features may be used in expressions regardless of the
9211language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9212and the @samp{@{type@}addr} construct (@pxref{Expressions,
9213,Expressions}) can be used with the constructs of any supported
9214language.
9215
9216The following sections detail to what degree each source language is
9217supported by @value{GDBN}. These sections are not meant to be language
9218tutorials or references, but serve only as a reference guide to what the
9219@value{GDBN} expression parser accepts, and what input and output
9220formats should look like for different languages. There are many good
9221books written on each of these languages; please look to these for a
9222language reference or tutorial.
9223
c906108c 9224@menu
b37303ee 9225* C:: C and C@t{++}
b383017d 9226* Objective-C:: Objective-C
09d4efe1 9227* Fortran:: Fortran
9c16f35a 9228* Pascal:: Pascal
b37303ee 9229* Modula-2:: Modula-2
e07c999f 9230* Ada:: Ada
c906108c
SS
9231@end menu
9232
6d2ebf8b 9233@node C
b37052ae 9234@subsection C and C@t{++}
7a292a7a 9235
b37052ae
EZ
9236@cindex C and C@t{++}
9237@cindex expressions in C or C@t{++}
c906108c 9238
b37052ae 9239Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9240to both languages. Whenever this is the case, we discuss those languages
9241together.
9242
41afff9a
EZ
9243@cindex C@t{++}
9244@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9245@cindex @sc{gnu} C@t{++}
9246The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9247compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9248effectively, you must compile your C@t{++} programs with a supported
9249C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9250compiler (@code{aCC}).
9251
0179ffac
DC
9252For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9253format; if it doesn't work on your system, try the stabs+ debugging
9254format. You can select those formats explicitly with the @code{g++}
9255command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9256@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9257gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9258
c906108c 9259@menu
b37052ae
EZ
9260* C Operators:: C and C@t{++} operators
9261* C Constants:: C and C@t{++} constants
79a6e687 9262* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9263* C Defaults:: Default settings for C and C@t{++}
9264* C Checks:: C and C@t{++} type and range checks
c906108c 9265* Debugging C:: @value{GDBN} and C
79a6e687 9266* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9267* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9268@end menu
c906108c 9269
6d2ebf8b 9270@node C Operators
79a6e687 9271@subsubsection C and C@t{++} Operators
7a292a7a 9272
b37052ae 9273@cindex C and C@t{++} operators
c906108c
SS
9274
9275Operators must be defined on values of specific types. For instance,
9276@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9277often defined on groups of types.
c906108c 9278
b37052ae 9279For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9280
9281@itemize @bullet
53a5351d 9282
c906108c 9283@item
c906108c 9284@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9285specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9286
9287@item
d4f3574e
SS
9288@emph{Floating-point types} include @code{float}, @code{double}, and
9289@code{long double} (if supported by the target platform).
c906108c
SS
9290
9291@item
53a5351d 9292@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9293
9294@item
9295@emph{Scalar types} include all of the above.
53a5351d 9296
c906108c
SS
9297@end itemize
9298
9299@noindent
9300The following operators are supported. They are listed here
9301in order of increasing precedence:
9302
9303@table @code
9304@item ,
9305The comma or sequencing operator. Expressions in a comma-separated list
9306are evaluated from left to right, with the result of the entire
9307expression being the last expression evaluated.
9308
9309@item =
9310Assignment. The value of an assignment expression is the value
9311assigned. Defined on scalar types.
9312
9313@item @var{op}=
9314Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9315and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9316@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9317@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9318@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9319
9320@item ?:
9321The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9322of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9323integral type.
9324
9325@item ||
9326Logical @sc{or}. Defined on integral types.
9327
9328@item &&
9329Logical @sc{and}. Defined on integral types.
9330
9331@item |
9332Bitwise @sc{or}. Defined on integral types.
9333
9334@item ^
9335Bitwise exclusive-@sc{or}. Defined on integral types.
9336
9337@item &
9338Bitwise @sc{and}. Defined on integral types.
9339
9340@item ==@r{, }!=
9341Equality and inequality. Defined on scalar types. The value of these
9342expressions is 0 for false and non-zero for true.
9343
9344@item <@r{, }>@r{, }<=@r{, }>=
9345Less than, greater than, less than or equal, greater than or equal.
9346Defined on scalar types. The value of these expressions is 0 for false
9347and non-zero for true.
9348
9349@item <<@r{, }>>
9350left shift, and right shift. Defined on integral types.
9351
9352@item @@
9353The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9354
9355@item +@r{, }-
9356Addition and subtraction. Defined on integral types, floating-point types and
9357pointer types.
9358
9359@item *@r{, }/@r{, }%
9360Multiplication, division, and modulus. Multiplication and division are
9361defined on integral and floating-point types. Modulus is defined on
9362integral types.
9363
9364@item ++@r{, }--
9365Increment and decrement. When appearing before a variable, the
9366operation is performed before the variable is used in an expression;
9367when appearing after it, the variable's value is used before the
9368operation takes place.
9369
9370@item *
9371Pointer dereferencing. Defined on pointer types. Same precedence as
9372@code{++}.
9373
9374@item &
9375Address operator. Defined on variables. Same precedence as @code{++}.
9376
b37052ae
EZ
9377For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9378allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9379to examine the address
b37052ae 9380where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9381stored.
c906108c
SS
9382
9383@item -
9384Negative. Defined on integral and floating-point types. Same
9385precedence as @code{++}.
9386
9387@item !
9388Logical negation. Defined on integral types. Same precedence as
9389@code{++}.
9390
9391@item ~
9392Bitwise complement operator. Defined on integral types. Same precedence as
9393@code{++}.
9394
9395
9396@item .@r{, }->
9397Structure member, and pointer-to-structure member. For convenience,
9398@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9399pointer based on the stored type information.
9400Defined on @code{struct} and @code{union} data.
9401
c906108c
SS
9402@item .*@r{, }->*
9403Dereferences of pointers to members.
c906108c
SS
9404
9405@item []
9406Array indexing. @code{@var{a}[@var{i}]} is defined as
9407@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9408
9409@item ()
9410Function parameter list. Same precedence as @code{->}.
9411
c906108c 9412@item ::
b37052ae 9413C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9414and @code{class} types.
c906108c
SS
9415
9416@item ::
7a292a7a
SS
9417Doubled colons also represent the @value{GDBN} scope operator
9418(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9419above.
c906108c
SS
9420@end table
9421
c906108c
SS
9422If an operator is redefined in the user code, @value{GDBN} usually
9423attempts to invoke the redefined version instead of using the operator's
9424predefined meaning.
c906108c 9425
6d2ebf8b 9426@node C Constants
79a6e687 9427@subsubsection C and C@t{++} Constants
c906108c 9428
b37052ae 9429@cindex C and C@t{++} constants
c906108c 9430
b37052ae 9431@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9432following ways:
c906108c
SS
9433
9434@itemize @bullet
9435@item
9436Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9437specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9438by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9439@samp{l}, specifying that the constant should be treated as a
9440@code{long} value.
9441
9442@item
9443Floating point constants are a sequence of digits, followed by a decimal
9444point, followed by a sequence of digits, and optionally followed by an
9445exponent. An exponent is of the form:
9446@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9447sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9448A floating-point constant may also end with a letter @samp{f} or
9449@samp{F}, specifying that the constant should be treated as being of
9450the @code{float} (as opposed to the default @code{double}) type; or with
9451a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9452constant.
c906108c
SS
9453
9454@item
9455Enumerated constants consist of enumerated identifiers, or their
9456integral equivalents.
9457
9458@item
9459Character constants are a single character surrounded by single quotes
9460(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9461(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9462be represented by a letter or by @dfn{escape sequences}, which are of
9463the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9464of the character's ordinal value; or of the form @samp{\@var{x}}, where
9465@samp{@var{x}} is a predefined special character---for example,
9466@samp{\n} for newline.
9467
9468@item
96a2c332
SS
9469String constants are a sequence of character constants surrounded by
9470double quotes (@code{"}). Any valid character constant (as described
9471above) may appear. Double quotes within the string must be preceded by
9472a backslash, so for instance @samp{"a\"b'c"} is a string of five
9473characters.
c906108c
SS
9474
9475@item
9476Pointer constants are an integral value. You can also write pointers
9477to constants using the C operator @samp{&}.
9478
9479@item
9480Array constants are comma-separated lists surrounded by braces @samp{@{}
9481and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9482integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9483and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9484@end itemize
9485
79a6e687
BW
9486@node C Plus Plus Expressions
9487@subsubsection C@t{++} Expressions
b37052ae
EZ
9488
9489@cindex expressions in C@t{++}
9490@value{GDBN} expression handling can interpret most C@t{++} expressions.
9491
0179ffac
DC
9492@cindex debugging C@t{++} programs
9493@cindex C@t{++} compilers
9494@cindex debug formats and C@t{++}
9495@cindex @value{NGCC} and C@t{++}
c906108c 9496@quotation
b37052ae 9497@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9498proper compiler and the proper debug format. Currently, @value{GDBN}
9499works best when debugging C@t{++} code that is compiled with
9500@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9501@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9502stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9503stabs+ as their default debug format, so you usually don't need to
9504specify a debug format explicitly. Other compilers and/or debug formats
9505are likely to work badly or not at all when using @value{GDBN} to debug
9506C@t{++} code.
c906108c 9507@end quotation
c906108c
SS
9508
9509@enumerate
9510
9511@cindex member functions
9512@item
9513Member function calls are allowed; you can use expressions like
9514
474c8240 9515@smallexample
c906108c 9516count = aml->GetOriginal(x, y)
474c8240 9517@end smallexample
c906108c 9518
41afff9a 9519@vindex this@r{, inside C@t{++} member functions}
b37052ae 9520@cindex namespace in C@t{++}
c906108c
SS
9521@item
9522While a member function is active (in the selected stack frame), your
9523expressions have the same namespace available as the member function;
9524that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9525pointer @code{this} following the same rules as C@t{++}.
c906108c 9526
c906108c 9527@cindex call overloaded functions
d4f3574e 9528@cindex overloaded functions, calling
b37052ae 9529@cindex type conversions in C@t{++}
c906108c
SS
9530@item
9531You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9532call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9533perform overload resolution involving user-defined type conversions,
9534calls to constructors, or instantiations of templates that do not exist
9535in the program. It also cannot handle ellipsis argument lists or
9536default arguments.
9537
9538It does perform integral conversions and promotions, floating-point
9539promotions, arithmetic conversions, pointer conversions, conversions of
9540class objects to base classes, and standard conversions such as those of
9541functions or arrays to pointers; it requires an exact match on the
9542number of function arguments.
9543
9544Overload resolution is always performed, unless you have specified
79a6e687
BW
9545@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9546,@value{GDBN} Features for C@t{++}}.
c906108c 9547
d4f3574e 9548You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9549explicit function signature to call an overloaded function, as in
9550@smallexample
9551p 'foo(char,int)'('x', 13)
9552@end smallexample
d4f3574e 9553
c906108c 9554The @value{GDBN} command-completion facility can simplify this;
79a6e687 9555see @ref{Completion, ,Command Completion}.
c906108c 9556
c906108c
SS
9557@cindex reference declarations
9558@item
b37052ae
EZ
9559@value{GDBN} understands variables declared as C@t{++} references; you can use
9560them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9561dereferenced.
9562
9563In the parameter list shown when @value{GDBN} displays a frame, the values of
9564reference variables are not displayed (unlike other variables); this
9565avoids clutter, since references are often used for large structures.
9566The @emph{address} of a reference variable is always shown, unless
9567you have specified @samp{set print address off}.
9568
9569@item
b37052ae 9570@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9571expressions can use it just as expressions in your program do. Since
9572one scope may be defined in another, you can use @code{::} repeatedly if
9573necessary, for example in an expression like
9574@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9575resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9576debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9577@end enumerate
9578
b37052ae 9579In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9580calling virtual functions correctly, printing out virtual bases of
9581objects, calling functions in a base subobject, casting objects, and
9582invoking user-defined operators.
c906108c 9583
6d2ebf8b 9584@node C Defaults
79a6e687 9585@subsubsection C and C@t{++} Defaults
7a292a7a 9586
b37052ae 9587@cindex C and C@t{++} defaults
c906108c 9588
c906108c
SS
9589If you allow @value{GDBN} to set type and range checking automatically, they
9590both default to @code{off} whenever the working language changes to
b37052ae 9591C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9592selects the working language.
c906108c
SS
9593
9594If you allow @value{GDBN} to set the language automatically, it
9595recognizes source files whose names end with @file{.c}, @file{.C}, or
9596@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9597these files, it sets the working language to C or C@t{++}.
79a6e687 9598@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9599for further details.
9600
c906108c
SS
9601@c Type checking is (a) primarily motivated by Modula-2, and (b)
9602@c unimplemented. If (b) changes, it might make sense to let this node
9603@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9604
6d2ebf8b 9605@node C Checks
79a6e687 9606@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9607
b37052ae 9608@cindex C and C@t{++} checks
c906108c 9609
b37052ae 9610By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9611is not used. However, if you turn type checking on, @value{GDBN}
9612considers two variables type equivalent if:
9613
9614@itemize @bullet
9615@item
9616The two variables are structured and have the same structure, union, or
9617enumerated tag.
9618
9619@item
9620The two variables have the same type name, or types that have been
9621declared equivalent through @code{typedef}.
9622
9623@ignore
9624@c leaving this out because neither J Gilmore nor R Pesch understand it.
9625@c FIXME--beers?
9626@item
9627The two @code{struct}, @code{union}, or @code{enum} variables are
9628declared in the same declaration. (Note: this may not be true for all C
9629compilers.)
9630@end ignore
9631@end itemize
9632
9633Range checking, if turned on, is done on mathematical operations. Array
9634indices are not checked, since they are often used to index a pointer
9635that is not itself an array.
c906108c 9636
6d2ebf8b 9637@node Debugging C
c906108c 9638@subsubsection @value{GDBN} and C
c906108c
SS
9639
9640The @code{set print union} and @code{show print union} commands apply to
9641the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9642inside a @code{struct} or @code{class} is also printed. Otherwise, it
9643appears as @samp{@{...@}}.
c906108c
SS
9644
9645The @code{@@} operator aids in the debugging of dynamic arrays, formed
9646with pointers and a memory allocation function. @xref{Expressions,
9647,Expressions}.
9648
79a6e687
BW
9649@node Debugging C Plus Plus
9650@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9651
b37052ae 9652@cindex commands for C@t{++}
7a292a7a 9653
b37052ae
EZ
9654Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9655designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9656
9657@table @code
9658@cindex break in overloaded functions
9659@item @r{breakpoint menus}
9660When you want a breakpoint in a function whose name is overloaded,
6ba66d6a
JB
9661@value{GDBN} has the capability to display a menu of possible breakpoint
9662locations to help you specify which function definition you want.
9663@xref{Ambiguous Expressions,,Ambiguous Expressions}.
c906108c 9664
b37052ae 9665@cindex overloading in C@t{++}
c906108c
SS
9666@item rbreak @var{regex}
9667Setting breakpoints using regular expressions is helpful for setting
9668breakpoints on overloaded functions that are not members of any special
9669classes.
79a6e687 9670@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9671
b37052ae 9672@cindex C@t{++} exception handling
c906108c
SS
9673@item catch throw
9674@itemx catch catch
b37052ae 9675Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9676Catchpoints, , Setting Catchpoints}.
c906108c
SS
9677
9678@cindex inheritance
9679@item ptype @var{typename}
9680Print inheritance relationships as well as other information for type
9681@var{typename}.
9682@xref{Symbols, ,Examining the Symbol Table}.
9683
b37052ae 9684@cindex C@t{++} symbol display
c906108c
SS
9685@item set print demangle
9686@itemx show print demangle
9687@itemx set print asm-demangle
9688@itemx show print asm-demangle
b37052ae
EZ
9689Control whether C@t{++} symbols display in their source form, both when
9690displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9691@xref{Print Settings, ,Print Settings}.
c906108c
SS
9692
9693@item set print object
9694@itemx show print object
9695Choose whether to print derived (actual) or declared types of objects.
79a6e687 9696@xref{Print Settings, ,Print Settings}.
c906108c
SS
9697
9698@item set print vtbl
9699@itemx show print vtbl
9700Control the format for printing virtual function tables.
79a6e687 9701@xref{Print Settings, ,Print Settings}.
c906108c 9702(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9703ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9704
9705@kindex set overload-resolution
d4f3574e 9706@cindex overloaded functions, overload resolution
c906108c 9707@item set overload-resolution on
b37052ae 9708Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9709is on. For overloaded functions, @value{GDBN} evaluates the arguments
9710and searches for a function whose signature matches the argument types,
79a6e687
BW
9711using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9712Expressions, ,C@t{++} Expressions}, for details).
9713If it cannot find a match, it emits a message.
c906108c
SS
9714
9715@item set overload-resolution off
b37052ae 9716Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9717overloaded functions that are not class member functions, @value{GDBN}
9718chooses the first function of the specified name that it finds in the
9719symbol table, whether or not its arguments are of the correct type. For
9720overloaded functions that are class member functions, @value{GDBN}
9721searches for a function whose signature @emph{exactly} matches the
9722argument types.
c906108c 9723
9c16f35a
EZ
9724@kindex show overload-resolution
9725@item show overload-resolution
9726Show the current setting of overload resolution.
9727
c906108c
SS
9728@item @r{Overloaded symbol names}
9729You can specify a particular definition of an overloaded symbol, using
b37052ae 9730the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9731@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9732also use the @value{GDBN} command-line word completion facilities to list the
9733available choices, or to finish the type list for you.
79a6e687 9734@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9735@end table
c906108c 9736
febe4383
TJB
9737@node Decimal Floating Point
9738@subsubsection Decimal Floating Point format
9739@cindex decimal floating point format
9740
9741@value{GDBN} can examine, set and perform computations with numbers in
9742decimal floating point format, which in the C language correspond to the
9743@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9744specified by the extension to support decimal floating-point arithmetic.
9745
9746There are two encodings in use, depending on the architecture: BID (Binary
9747Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9748PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9749target.
9750
9751Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9752to manipulate decimal floating point numbers, it is not possible to convert
9753(using a cast, for example) integers wider than 32-bit to decimal float.
9754
9755In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9756point computations, error checking in decimal float operations ignores
9757underflow, overflow and divide by zero exceptions.
9758
4acd40f3
TJB
9759In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
9760to inspect @code{_Decimal128} values stored in floating point registers. See
9761@ref{PowerPC,,PowerPC} for more details.
9762
b37303ee
AF
9763@node Objective-C
9764@subsection Objective-C
9765
9766@cindex Objective-C
9767This section provides information about some commands and command
721c2651
EZ
9768options that are useful for debugging Objective-C code. See also
9769@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9770few more commands specific to Objective-C support.
b37303ee
AF
9771
9772@menu
b383017d
RM
9773* Method Names in Commands::
9774* The Print Command with Objective-C::
b37303ee
AF
9775@end menu
9776
c8f4133a 9777@node Method Names in Commands
b37303ee
AF
9778@subsubsection Method Names in Commands
9779
9780The following commands have been extended to accept Objective-C method
9781names as line specifications:
9782
9783@kindex clear@r{, and Objective-C}
9784@kindex break@r{, and Objective-C}
9785@kindex info line@r{, and Objective-C}
9786@kindex jump@r{, and Objective-C}
9787@kindex list@r{, and Objective-C}
9788@itemize
9789@item @code{clear}
9790@item @code{break}
9791@item @code{info line}
9792@item @code{jump}
9793@item @code{list}
9794@end itemize
9795
9796A fully qualified Objective-C method name is specified as
9797
9798@smallexample
9799-[@var{Class} @var{methodName}]
9800@end smallexample
9801
c552b3bb
JM
9802where the minus sign is used to indicate an instance method and a
9803plus sign (not shown) is used to indicate a class method. The class
9804name @var{Class} and method name @var{methodName} are enclosed in
9805brackets, similar to the way messages are specified in Objective-C
9806source code. For example, to set a breakpoint at the @code{create}
9807instance method of class @code{Fruit} in the program currently being
9808debugged, enter:
b37303ee
AF
9809
9810@smallexample
9811break -[Fruit create]
9812@end smallexample
9813
9814To list ten program lines around the @code{initialize} class method,
9815enter:
9816
9817@smallexample
9818list +[NSText initialize]
9819@end smallexample
9820
c552b3bb
JM
9821In the current version of @value{GDBN}, the plus or minus sign is
9822required. In future versions of @value{GDBN}, the plus or minus
9823sign will be optional, but you can use it to narrow the search. It
9824is also possible to specify just a method name:
b37303ee
AF
9825
9826@smallexample
9827break create
9828@end smallexample
9829
9830You must specify the complete method name, including any colons. If
9831your program's source files contain more than one @code{create} method,
9832you'll be presented with a numbered list of classes that implement that
9833method. Indicate your choice by number, or type @samp{0} to exit if
9834none apply.
9835
9836As another example, to clear a breakpoint established at the
9837@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9838
9839@smallexample
9840clear -[NSWindow makeKeyAndOrderFront:]
9841@end smallexample
9842
9843@node The Print Command with Objective-C
9844@subsubsection The Print Command With Objective-C
721c2651 9845@cindex Objective-C, print objects
c552b3bb
JM
9846@kindex print-object
9847@kindex po @r{(@code{print-object})}
b37303ee 9848
c552b3bb 9849The print command has also been extended to accept methods. For example:
b37303ee
AF
9850
9851@smallexample
c552b3bb 9852print -[@var{object} hash]
b37303ee
AF
9853@end smallexample
9854
9855@cindex print an Objective-C object description
c552b3bb
JM
9856@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9857@noindent
9858will tell @value{GDBN} to send the @code{hash} message to @var{object}
9859and print the result. Also, an additional command has been added,
9860@code{print-object} or @code{po} for short, which is meant to print
9861the description of an object. However, this command may only work
9862with certain Objective-C libraries that have a particular hook
9863function, @code{_NSPrintForDebugger}, defined.
b37303ee 9864
09d4efe1
EZ
9865@node Fortran
9866@subsection Fortran
9867@cindex Fortran-specific support in @value{GDBN}
9868
814e32d7
WZ
9869@value{GDBN} can be used to debug programs written in Fortran, but it
9870currently supports only the features of Fortran 77 language.
9871
9872@cindex trailing underscore, in Fortran symbols
9873Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9874among them) append an underscore to the names of variables and
9875functions. When you debug programs compiled by those compilers, you
9876will need to refer to variables and functions with a trailing
9877underscore.
9878
9879@menu
9880* Fortran Operators:: Fortran operators and expressions
9881* Fortran Defaults:: Default settings for Fortran
79a6e687 9882* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9883@end menu
9884
9885@node Fortran Operators
79a6e687 9886@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9887
9888@cindex Fortran operators and expressions
9889
9890Operators must be defined on values of specific types. For instance,
9891@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9892arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9893
9894@table @code
9895@item **
9896The exponentiation operator. It raises the first operand to the power
9897of the second one.
9898
9899@item :
9900The range operator. Normally used in the form of array(low:high) to
9901represent a section of array.
9902@end table
9903
9904@node Fortran Defaults
9905@subsubsection Fortran Defaults
9906
9907@cindex Fortran Defaults
9908
9909Fortran symbols are usually case-insensitive, so @value{GDBN} by
9910default uses case-insensitive matches for Fortran symbols. You can
9911change that with the @samp{set case-insensitive} command, see
9912@ref{Symbols}, for the details.
9913
79a6e687
BW
9914@node Special Fortran Commands
9915@subsubsection Special Fortran Commands
814e32d7
WZ
9916
9917@cindex Special Fortran commands
9918
db2e3e2e
BW
9919@value{GDBN} has some commands to support Fortran-specific features,
9920such as displaying common blocks.
814e32d7 9921
09d4efe1
EZ
9922@table @code
9923@cindex @code{COMMON} blocks, Fortran
9924@kindex info common
9925@item info common @r{[}@var{common-name}@r{]}
9926This command prints the values contained in the Fortran @code{COMMON}
9927block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9928all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9929printed.
9930@end table
9931
9c16f35a
EZ
9932@node Pascal
9933@subsection Pascal
9934
9935@cindex Pascal support in @value{GDBN}, limitations
9936Debugging Pascal programs which use sets, subranges, file variables, or
9937nested functions does not currently work. @value{GDBN} does not support
9938entering expressions, printing values, or similar features using Pascal
9939syntax.
9940
9941The Pascal-specific command @code{set print pascal_static-members}
9942controls whether static members of Pascal objects are displayed.
9943@xref{Print Settings, pascal_static-members}.
9944
09d4efe1 9945@node Modula-2
c906108c 9946@subsection Modula-2
7a292a7a 9947
d4f3574e 9948@cindex Modula-2, @value{GDBN} support
c906108c
SS
9949
9950The extensions made to @value{GDBN} to support Modula-2 only support
9951output from the @sc{gnu} Modula-2 compiler (which is currently being
9952developed). Other Modula-2 compilers are not currently supported, and
9953attempting to debug executables produced by them is most likely
9954to give an error as @value{GDBN} reads in the executable's symbol
9955table.
9956
9957@cindex expressions in Modula-2
9958@menu
9959* M2 Operators:: Built-in operators
9960* Built-In Func/Proc:: Built-in functions and procedures
9961* M2 Constants:: Modula-2 constants
72019c9c 9962* M2 Types:: Modula-2 types
c906108c
SS
9963* M2 Defaults:: Default settings for Modula-2
9964* Deviations:: Deviations from standard Modula-2
9965* M2 Checks:: Modula-2 type and range checks
9966* M2 Scope:: The scope operators @code{::} and @code{.}
9967* GDB/M2:: @value{GDBN} and Modula-2
9968@end menu
9969
6d2ebf8b 9970@node M2 Operators
c906108c
SS
9971@subsubsection Operators
9972@cindex Modula-2 operators
9973
9974Operators must be defined on values of specific types. For instance,
9975@code{+} is defined on numbers, but not on structures. Operators are
9976often defined on groups of types. For the purposes of Modula-2, the
9977following definitions hold:
9978
9979@itemize @bullet
9980
9981@item
9982@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9983their subranges.
9984
9985@item
9986@emph{Character types} consist of @code{CHAR} and its subranges.
9987
9988@item
9989@emph{Floating-point types} consist of @code{REAL}.
9990
9991@item
9992@emph{Pointer types} consist of anything declared as @code{POINTER TO
9993@var{type}}.
9994
9995@item
9996@emph{Scalar types} consist of all of the above.
9997
9998@item
9999@emph{Set types} consist of @code{SET} and @code{BITSET} types.
10000
10001@item
10002@emph{Boolean types} consist of @code{BOOLEAN}.
10003@end itemize
10004
10005@noindent
10006The following operators are supported, and appear in order of
10007increasing precedence:
10008
10009@table @code
10010@item ,
10011Function argument or array index separator.
10012
10013@item :=
10014Assignment. The value of @var{var} @code{:=} @var{value} is
10015@var{value}.
10016
10017@item <@r{, }>
10018Less than, greater than on integral, floating-point, or enumerated
10019types.
10020
10021@item <=@r{, }>=
96a2c332 10022Less than or equal to, greater than or equal to
c906108c
SS
10023on integral, floating-point and enumerated types, or set inclusion on
10024set types. Same precedence as @code{<}.
10025
10026@item =@r{, }<>@r{, }#
10027Equality and two ways of expressing inequality, valid on scalar types.
10028Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
10029available for inequality, since @code{#} conflicts with the script
10030comment character.
10031
10032@item IN
10033Set membership. Defined on set types and the types of their members.
10034Same precedence as @code{<}.
10035
10036@item OR
10037Boolean disjunction. Defined on boolean types.
10038
10039@item AND@r{, }&
d4f3574e 10040Boolean conjunction. Defined on boolean types.
c906108c
SS
10041
10042@item @@
10043The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
10044
10045@item +@r{, }-
10046Addition and subtraction on integral and floating-point types, or union
10047and difference on set types.
10048
10049@item *
10050Multiplication on integral and floating-point types, or set intersection
10051on set types.
10052
10053@item /
10054Division on floating-point types, or symmetric set difference on set
10055types. Same precedence as @code{*}.
10056
10057@item DIV@r{, }MOD
10058Integer division and remainder. Defined on integral types. Same
10059precedence as @code{*}.
10060
10061@item -
10062Negative. Defined on @code{INTEGER} and @code{REAL} data.
10063
10064@item ^
10065Pointer dereferencing. Defined on pointer types.
10066
10067@item NOT
10068Boolean negation. Defined on boolean types. Same precedence as
10069@code{^}.
10070
10071@item .
10072@code{RECORD} field selector. Defined on @code{RECORD} data. Same
10073precedence as @code{^}.
10074
10075@item []
10076Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
10077
10078@item ()
10079Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10080as @code{^}.
10081
10082@item ::@r{, }.
10083@value{GDBN} and Modula-2 scope operators.
10084@end table
10085
10086@quotation
72019c9c 10087@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10088treats the use of the operator @code{IN}, or the use of operators
10089@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10090@code{<=}, and @code{>=} on sets as an error.
10091@end quotation
10092
cb51c4e0 10093
6d2ebf8b 10094@node Built-In Func/Proc
79a6e687 10095@subsubsection Built-in Functions and Procedures
cb51c4e0 10096@cindex Modula-2 built-ins
c906108c
SS
10097
10098Modula-2 also makes available several built-in procedures and functions.
10099In describing these, the following metavariables are used:
10100
10101@table @var
10102
10103@item a
10104represents an @code{ARRAY} variable.
10105
10106@item c
10107represents a @code{CHAR} constant or variable.
10108
10109@item i
10110represents a variable or constant of integral type.
10111
10112@item m
10113represents an identifier that belongs to a set. Generally used in the
10114same function with the metavariable @var{s}. The type of @var{s} should
10115be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10116
10117@item n
10118represents a variable or constant of integral or floating-point type.
10119
10120@item r
10121represents a variable or constant of floating-point type.
10122
10123@item t
10124represents a type.
10125
10126@item v
10127represents a variable.
10128
10129@item x
10130represents a variable or constant of one of many types. See the
10131explanation of the function for details.
10132@end table
10133
10134All Modula-2 built-in procedures also return a result, described below.
10135
10136@table @code
10137@item ABS(@var{n})
10138Returns the absolute value of @var{n}.
10139
10140@item CAP(@var{c})
10141If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10142equivalent, otherwise it returns its argument.
c906108c
SS
10143
10144@item CHR(@var{i})
10145Returns the character whose ordinal value is @var{i}.
10146
10147@item DEC(@var{v})
c3f6f71d 10148Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10149
10150@item DEC(@var{v},@var{i})
10151Decrements the value in the variable @var{v} by @var{i}. Returns the
10152new value.
10153
10154@item EXCL(@var{m},@var{s})
10155Removes the element @var{m} from the set @var{s}. Returns the new
10156set.
10157
10158@item FLOAT(@var{i})
10159Returns the floating point equivalent of the integer @var{i}.
10160
10161@item HIGH(@var{a})
10162Returns the index of the last member of @var{a}.
10163
10164@item INC(@var{v})
c3f6f71d 10165Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10166
10167@item INC(@var{v},@var{i})
10168Increments the value in the variable @var{v} by @var{i}. Returns the
10169new value.
10170
10171@item INCL(@var{m},@var{s})
10172Adds the element @var{m} to the set @var{s} if it is not already
10173there. Returns the new set.
10174
10175@item MAX(@var{t})
10176Returns the maximum value of the type @var{t}.
10177
10178@item MIN(@var{t})
10179Returns the minimum value of the type @var{t}.
10180
10181@item ODD(@var{i})
10182Returns boolean TRUE if @var{i} is an odd number.
10183
10184@item ORD(@var{x})
10185Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10186value of a character is its @sc{ascii} value (on machines supporting the
10187@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10188integral, character and enumerated types.
10189
10190@item SIZE(@var{x})
10191Returns the size of its argument. @var{x} can be a variable or a type.
10192
10193@item TRUNC(@var{r})
10194Returns the integral part of @var{r}.
10195
844781a1
GM
10196@item TSIZE(@var{x})
10197Returns the size of its argument. @var{x} can be a variable or a type.
10198
c906108c
SS
10199@item VAL(@var{t},@var{i})
10200Returns the member of the type @var{t} whose ordinal value is @var{i}.
10201@end table
10202
10203@quotation
10204@emph{Warning:} Sets and their operations are not yet supported, so
10205@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10206an error.
10207@end quotation
10208
10209@cindex Modula-2 constants
6d2ebf8b 10210@node M2 Constants
c906108c
SS
10211@subsubsection Constants
10212
10213@value{GDBN} allows you to express the constants of Modula-2 in the following
10214ways:
10215
10216@itemize @bullet
10217
10218@item
10219Integer constants are simply a sequence of digits. When used in an
10220expression, a constant is interpreted to be type-compatible with the
10221rest of the expression. Hexadecimal integers are specified by a
10222trailing @samp{H}, and octal integers by a trailing @samp{B}.
10223
10224@item
10225Floating point constants appear as a sequence of digits, followed by a
10226decimal point and another sequence of digits. An optional exponent can
10227then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10228@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10229digits of the floating point constant must be valid decimal (base 10)
10230digits.
10231
10232@item
10233Character constants consist of a single character enclosed by a pair of
10234like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10235also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10236followed by a @samp{C}.
10237
10238@item
10239String constants consist of a sequence of characters enclosed by a
10240pair of like quotes, either single (@code{'}) or double (@code{"}).
10241Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10242Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10243sequences.
10244
10245@item
10246Enumerated constants consist of an enumerated identifier.
10247
10248@item
10249Boolean constants consist of the identifiers @code{TRUE} and
10250@code{FALSE}.
10251
10252@item
10253Pointer constants consist of integral values only.
10254
10255@item
10256Set constants are not yet supported.
10257@end itemize
10258
72019c9c
GM
10259@node M2 Types
10260@subsubsection Modula-2 Types
10261@cindex Modula-2 types
10262
10263Currently @value{GDBN} can print the following data types in Modula-2
10264syntax: array types, record types, set types, pointer types, procedure
10265types, enumerated types, subrange types and base types. You can also
10266print the contents of variables declared using these type.
10267This section gives a number of simple source code examples together with
10268sample @value{GDBN} sessions.
10269
10270The first example contains the following section of code:
10271
10272@smallexample
10273VAR
10274 s: SET OF CHAR ;
10275 r: [20..40] ;
10276@end smallexample
10277
10278@noindent
10279and you can request @value{GDBN} to interrogate the type and value of
10280@code{r} and @code{s}.
10281
10282@smallexample
10283(@value{GDBP}) print s
10284@{'A'..'C', 'Z'@}
10285(@value{GDBP}) ptype s
10286SET OF CHAR
10287(@value{GDBP}) print r
1028821
10289(@value{GDBP}) ptype r
10290[20..40]
10291@end smallexample
10292
10293@noindent
10294Likewise if your source code declares @code{s} as:
10295
10296@smallexample
10297VAR
10298 s: SET ['A'..'Z'] ;
10299@end smallexample
10300
10301@noindent
10302then you may query the type of @code{s} by:
10303
10304@smallexample
10305(@value{GDBP}) ptype s
10306type = SET ['A'..'Z']
10307@end smallexample
10308
10309@noindent
10310Note that at present you cannot interactively manipulate set
10311expressions using the debugger.
10312
10313The following example shows how you might declare an array in Modula-2
10314and how you can interact with @value{GDBN} to print its type and contents:
10315
10316@smallexample
10317VAR
10318 s: ARRAY [-10..10] OF CHAR ;
10319@end smallexample
10320
10321@smallexample
10322(@value{GDBP}) ptype s
10323ARRAY [-10..10] OF CHAR
10324@end smallexample
10325
10326Note that the array handling is not yet complete and although the type
10327is printed correctly, expression handling still assumes that all
10328arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10329above.
72019c9c
GM
10330
10331Here are some more type related Modula-2 examples:
10332
10333@smallexample
10334TYPE
10335 colour = (blue, red, yellow, green) ;
10336 t = [blue..yellow] ;
10337VAR
10338 s: t ;
10339BEGIN
10340 s := blue ;
10341@end smallexample
10342
10343@noindent
10344The @value{GDBN} interaction shows how you can query the data type
10345and value of a variable.
10346
10347@smallexample
10348(@value{GDBP}) print s
10349$1 = blue
10350(@value{GDBP}) ptype t
10351type = [blue..yellow]
10352@end smallexample
10353
10354@noindent
10355In this example a Modula-2 array is declared and its contents
10356displayed. Observe that the contents are written in the same way as
10357their @code{C} counterparts.
10358
10359@smallexample
10360VAR
10361 s: ARRAY [1..5] OF CARDINAL ;
10362BEGIN
10363 s[1] := 1 ;
10364@end smallexample
10365
10366@smallexample
10367(@value{GDBP}) print s
10368$1 = @{1, 0, 0, 0, 0@}
10369(@value{GDBP}) ptype s
10370type = ARRAY [1..5] OF CARDINAL
10371@end smallexample
10372
10373The Modula-2 language interface to @value{GDBN} also understands
10374pointer types as shown in this example:
10375
10376@smallexample
10377VAR
10378 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10379BEGIN
10380 NEW(s) ;
10381 s^[1] := 1 ;
10382@end smallexample
10383
10384@noindent
10385and you can request that @value{GDBN} describes the type of @code{s}.
10386
10387@smallexample
10388(@value{GDBP}) ptype s
10389type = POINTER TO ARRAY [1..5] OF CARDINAL
10390@end smallexample
10391
10392@value{GDBN} handles compound types as we can see in this example.
10393Here we combine array types, record types, pointer types and subrange
10394types:
10395
10396@smallexample
10397TYPE
10398 foo = RECORD
10399 f1: CARDINAL ;
10400 f2: CHAR ;
10401 f3: myarray ;
10402 END ;
10403
10404 myarray = ARRAY myrange OF CARDINAL ;
10405 myrange = [-2..2] ;
10406VAR
10407 s: POINTER TO ARRAY myrange OF foo ;
10408@end smallexample
10409
10410@noindent
10411and you can ask @value{GDBN} to describe the type of @code{s} as shown
10412below.
10413
10414@smallexample
10415(@value{GDBP}) ptype s
10416type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10417 f1 : CARDINAL;
10418 f2 : CHAR;
10419 f3 : ARRAY [-2..2] OF CARDINAL;
10420END
10421@end smallexample
10422
6d2ebf8b 10423@node M2 Defaults
79a6e687 10424@subsubsection Modula-2 Defaults
c906108c
SS
10425@cindex Modula-2 defaults
10426
10427If type and range checking are set automatically by @value{GDBN}, they
10428both default to @code{on} whenever the working language changes to
d4f3574e 10429Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10430selected the working language.
10431
10432If you allow @value{GDBN} to set the language automatically, then entering
10433code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10434working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10435Infer the Source Language}, for further details.
c906108c 10436
6d2ebf8b 10437@node Deviations
79a6e687 10438@subsubsection Deviations from Standard Modula-2
c906108c
SS
10439@cindex Modula-2, deviations from
10440
10441A few changes have been made to make Modula-2 programs easier to debug.
10442This is done primarily via loosening its type strictness:
10443
10444@itemize @bullet
10445@item
10446Unlike in standard Modula-2, pointer constants can be formed by
10447integers. This allows you to modify pointer variables during
10448debugging. (In standard Modula-2, the actual address contained in a
10449pointer variable is hidden from you; it can only be modified
10450through direct assignment to another pointer variable or expression that
10451returned a pointer.)
10452
10453@item
10454C escape sequences can be used in strings and characters to represent
10455non-printable characters. @value{GDBN} prints out strings with these
10456escape sequences embedded. Single non-printable characters are
10457printed using the @samp{CHR(@var{nnn})} format.
10458
10459@item
10460The assignment operator (@code{:=}) returns the value of its right-hand
10461argument.
10462
10463@item
10464All built-in procedures both modify @emph{and} return their argument.
10465@end itemize
10466
6d2ebf8b 10467@node M2 Checks
79a6e687 10468@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10469@cindex Modula-2 checks
10470
10471@quotation
10472@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10473range checking.
10474@end quotation
10475@c FIXME remove warning when type/range checks added
10476
10477@value{GDBN} considers two Modula-2 variables type equivalent if:
10478
10479@itemize @bullet
10480@item
10481They are of types that have been declared equivalent via a @code{TYPE
10482@var{t1} = @var{t2}} statement
10483
10484@item
10485They have been declared on the same line. (Note: This is true of the
10486@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10487@end itemize
10488
10489As long as type checking is enabled, any attempt to combine variables
10490whose types are not equivalent is an error.
10491
10492Range checking is done on all mathematical operations, assignment, array
10493index bounds, and all built-in functions and procedures.
10494
6d2ebf8b 10495@node M2 Scope
79a6e687 10496@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10497@cindex scope
41afff9a 10498@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10499@cindex colon, doubled as scope operator
10500@ifinfo
41afff9a 10501@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10502@c Info cannot handle :: but TeX can.
10503@end ifinfo
10504@iftex
41afff9a 10505@vindex ::@r{, in Modula-2}
c906108c
SS
10506@end iftex
10507
10508There are a few subtle differences between the Modula-2 scope operator
10509(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10510similar syntax:
10511
474c8240 10512@smallexample
c906108c
SS
10513
10514@var{module} . @var{id}
10515@var{scope} :: @var{id}
474c8240 10516@end smallexample
c906108c
SS
10517
10518@noindent
10519where @var{scope} is the name of a module or a procedure,
10520@var{module} the name of a module, and @var{id} is any declared
10521identifier within your program, except another module.
10522
10523Using the @code{::} operator makes @value{GDBN} search the scope
10524specified by @var{scope} for the identifier @var{id}. If it is not
10525found in the specified scope, then @value{GDBN} searches all scopes
10526enclosing the one specified by @var{scope}.
10527
10528Using the @code{.} operator makes @value{GDBN} search the current scope for
10529the identifier specified by @var{id} that was imported from the
10530definition module specified by @var{module}. With this operator, it is
10531an error if the identifier @var{id} was not imported from definition
10532module @var{module}, or if @var{id} is not an identifier in
10533@var{module}.
10534
6d2ebf8b 10535@node GDB/M2
c906108c
SS
10536@subsubsection @value{GDBN} and Modula-2
10537
10538Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10539Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10540specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10541@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10542apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10543analogue in Modula-2.
10544
10545The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10546with any language, is not useful with Modula-2. Its
c906108c 10547intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10548created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10549address can be specified by an integral constant, the construct
d4f3574e 10550@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10551
10552@cindex @code{#} in Modula-2
10553In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10554interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10555
e07c999f
PH
10556@node Ada
10557@subsection Ada
10558@cindex Ada
10559
10560The extensions made to @value{GDBN} for Ada only support
10561output from the @sc{gnu} Ada (GNAT) compiler.
10562Other Ada compilers are not currently supported, and
10563attempting to debug executables produced by them is most likely
10564to be difficult.
10565
10566
10567@cindex expressions in Ada
10568@menu
10569* Ada Mode Intro:: General remarks on the Ada syntax
10570 and semantics supported by Ada mode
10571 in @value{GDBN}.
10572* Omissions from Ada:: Restrictions on the Ada expression syntax.
10573* Additions to Ada:: Extensions of the Ada expression syntax.
10574* Stopping Before Main Program:: Debugging the program during elaboration.
10575* Ada Glitches:: Known peculiarities of Ada mode.
10576@end menu
10577
10578@node Ada Mode Intro
10579@subsubsection Introduction
10580@cindex Ada mode, general
10581
10582The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10583syntax, with some extensions.
10584The philosophy behind the design of this subset is
10585
10586@itemize @bullet
10587@item
10588That @value{GDBN} should provide basic literals and access to operations for
10589arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10590leaving more sophisticated computations to subprograms written into the
10591program (which therefore may be called from @value{GDBN}).
10592
10593@item
10594That type safety and strict adherence to Ada language restrictions
10595are not particularly important to the @value{GDBN} user.
10596
10597@item
10598That brevity is important to the @value{GDBN} user.
10599@end itemize
10600
10601Thus, for brevity, the debugger acts as if there were
10602implicit @code{with} and @code{use} clauses in effect for all user-written
10603packages, making it unnecessary to fully qualify most names with
10604their packages, regardless of context. Where this causes ambiguity,
10605@value{GDBN} asks the user's intent.
10606
10607The debugger will start in Ada mode if it detects an Ada main program.
10608As for other languages, it will enter Ada mode when stopped in a program that
10609was translated from an Ada source file.
10610
10611While in Ada mode, you may use `@t{--}' for comments. This is useful
10612mostly for documenting command files. The standard @value{GDBN} comment
10613(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10614middle (to allow based literals).
10615
10616The debugger supports limited overloading. Given a subprogram call in which
10617the function symbol has multiple definitions, it will use the number of
10618actual parameters and some information about their types to attempt to narrow
10619the set of definitions. It also makes very limited use of context, preferring
10620procedures to functions in the context of the @code{call} command, and
10621functions to procedures elsewhere.
10622
10623@node Omissions from Ada
10624@subsubsection Omissions from Ada
10625@cindex Ada, omissions from
10626
10627Here are the notable omissions from the subset:
10628
10629@itemize @bullet
10630@item
10631Only a subset of the attributes are supported:
10632
10633@itemize @minus
10634@item
10635@t{'First}, @t{'Last}, and @t{'Length}
10636 on array objects (not on types and subtypes).
10637
10638@item
10639@t{'Min} and @t{'Max}.
10640
10641@item
10642@t{'Pos} and @t{'Val}.
10643
10644@item
10645@t{'Tag}.
10646
10647@item
10648@t{'Range} on array objects (not subtypes), but only as the right
10649operand of the membership (@code{in}) operator.
10650
10651@item
10652@t{'Access}, @t{'Unchecked_Access}, and
10653@t{'Unrestricted_Access} (a GNAT extension).
10654
10655@item
10656@t{'Address}.
10657@end itemize
10658
10659@item
10660The names in
10661@code{Characters.Latin_1} are not available and
10662concatenation is not implemented. Thus, escape characters in strings are
10663not currently available.
10664
10665@item
10666Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10667equality of representations. They will generally work correctly
10668for strings and arrays whose elements have integer or enumeration types.
10669They may not work correctly for arrays whose element
10670types have user-defined equality, for arrays of real values
10671(in particular, IEEE-conformant floating point, because of negative
10672zeroes and NaNs), and for arrays whose elements contain unused bits with
10673indeterminate values.
10674
10675@item
10676The other component-by-component array operations (@code{and}, @code{or},
10677@code{xor}, @code{not}, and relational tests other than equality)
10678are not implemented.
10679
10680@item
860701dc
PH
10681@cindex array aggregates (Ada)
10682@cindex record aggregates (Ada)
10683@cindex aggregates (Ada)
10684There is limited support for array and record aggregates. They are
10685permitted only on the right sides of assignments, as in these examples:
10686
10687@smallexample
10688set An_Array := (1, 2, 3, 4, 5, 6)
10689set An_Array := (1, others => 0)
10690set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10691set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10692set A_Record := (1, "Peter", True);
10693set A_Record := (Name => "Peter", Id => 1, Alive => True)
10694@end smallexample
10695
10696Changing a
10697discriminant's value by assigning an aggregate has an
10698undefined effect if that discriminant is used within the record.
10699However, you can first modify discriminants by directly assigning to
10700them (which normally would not be allowed in Ada), and then performing an
10701aggregate assignment. For example, given a variable @code{A_Rec}
10702declared to have a type such as:
10703
10704@smallexample
10705type Rec (Len : Small_Integer := 0) is record
10706 Id : Integer;
10707 Vals : IntArray (1 .. Len);
10708end record;
10709@end smallexample
10710
10711you can assign a value with a different size of @code{Vals} with two
10712assignments:
10713
10714@smallexample
10715set A_Rec.Len := 4
10716set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10717@end smallexample
10718
10719As this example also illustrates, @value{GDBN} is very loose about the usual
10720rules concerning aggregates. You may leave out some of the
10721components of an array or record aggregate (such as the @code{Len}
10722component in the assignment to @code{A_Rec} above); they will retain their
10723original values upon assignment. You may freely use dynamic values as
10724indices in component associations. You may even use overlapping or
10725redundant component associations, although which component values are
10726assigned in such cases is not defined.
e07c999f
PH
10727
10728@item
10729Calls to dispatching subprograms are not implemented.
10730
10731@item
10732The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10733than that of real Ada. It makes only limited use of the context in
10734which a subexpression appears to resolve its meaning, and it is much
10735looser in its rules for allowing type matches. As a result, some
10736function calls will be ambiguous, and the user will be asked to choose
10737the proper resolution.
e07c999f
PH
10738
10739@item
10740The @code{new} operator is not implemented.
10741
10742@item
10743Entry calls are not implemented.
10744
10745@item
10746Aside from printing, arithmetic operations on the native VAX floating-point
10747formats are not supported.
10748
10749@item
10750It is not possible to slice a packed array.
10751@end itemize
10752
10753@node Additions to Ada
10754@subsubsection Additions to Ada
10755@cindex Ada, deviations from
10756
10757As it does for other languages, @value{GDBN} makes certain generic
10758extensions to Ada (@pxref{Expressions}):
10759
10760@itemize @bullet
10761@item
ae21e955
BW
10762If the expression @var{E} is a variable residing in memory (typically
10763a local variable or array element) and @var{N} is a positive integer,
10764then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10765@var{N}-1 adjacent variables following it in memory as an array. In
10766Ada, this operator is generally not necessary, since its prime use is
10767in displaying parts of an array, and slicing will usually do this in
10768Ada. However, there are occasional uses when debugging programs in
10769which certain debugging information has been optimized away.
e07c999f
PH
10770
10771@item
ae21e955
BW
10772@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10773appears in function or file @var{B}.'' When @var{B} is a file name,
10774you must typically surround it in single quotes.
e07c999f
PH
10775
10776@item
10777The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10778@var{type} that appears at address @var{addr}.''
10779
10780@item
10781A name starting with @samp{$} is a convenience variable
10782(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10783@end itemize
10784
ae21e955
BW
10785In addition, @value{GDBN} provides a few other shortcuts and outright
10786additions specific to Ada:
e07c999f
PH
10787
10788@itemize @bullet
10789@item
10790The assignment statement is allowed as an expression, returning
10791its right-hand operand as its value. Thus, you may enter
10792
10793@smallexample
10794set x := y + 3
10795print A(tmp := y + 1)
10796@end smallexample
10797
10798@item
10799The semicolon is allowed as an ``operator,'' returning as its value
10800the value of its right-hand operand.
10801This allows, for example,
10802complex conditional breaks:
10803
10804@smallexample
10805break f
10806condition 1 (report(i); k += 1; A(k) > 100)
10807@end smallexample
10808
10809@item
10810Rather than use catenation and symbolic character names to introduce special
10811characters into strings, one may instead use a special bracket notation,
10812which is also used to print strings. A sequence of characters of the form
10813@samp{["@var{XX}"]} within a string or character literal denotes the
10814(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10815sequence of characters @samp{["""]} also denotes a single quotation mark
10816in strings. For example,
10817@smallexample
10818 "One line.["0a"]Next line.["0a"]"
10819@end smallexample
10820@noindent
ae21e955
BW
10821contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10822after each period.
e07c999f
PH
10823
10824@item
10825The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10826@t{'Max} is optional (and is ignored in any case). For example, it is valid
10827to write
10828
10829@smallexample
10830print 'max(x, y)
10831@end smallexample
10832
10833@item
10834When printing arrays, @value{GDBN} uses positional notation when the
10835array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10836For example, a one-dimensional array of three integers with a lower bound
10837of 3 might print as
e07c999f
PH
10838
10839@smallexample
10840(3 => 10, 17, 1)
10841@end smallexample
10842
10843@noindent
10844That is, in contrast to valid Ada, only the first component has a @code{=>}
10845clause.
10846
10847@item
10848You may abbreviate attributes in expressions with any unique,
10849multi-character subsequence of
10850their names (an exact match gets preference).
10851For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10852in place of @t{a'length}.
10853
10854@item
10855@cindex quoting Ada internal identifiers
10856Since Ada is case-insensitive, the debugger normally maps identifiers you type
10857to lower case. The GNAT compiler uses upper-case characters for
10858some of its internal identifiers, which are normally of no interest to users.
10859For the rare occasions when you actually have to look at them,
10860enclose them in angle brackets to avoid the lower-case mapping.
10861For example,
10862@smallexample
10863@value{GDBP} print <JMPBUF_SAVE>[0]
10864@end smallexample
10865
10866@item
10867Printing an object of class-wide type or dereferencing an
10868access-to-class-wide value will display all the components of the object's
10869specific type (as indicated by its run-time tag). Likewise, component
10870selection on such a value will operate on the specific type of the
10871object.
10872
10873@end itemize
10874
10875@node Stopping Before Main Program
10876@subsubsection Stopping at the Very Beginning
10877
10878@cindex breakpointing Ada elaboration code
10879It is sometimes necessary to debug the program during elaboration, and
10880before reaching the main procedure.
10881As defined in the Ada Reference
10882Manual, the elaboration code is invoked from a procedure called
10883@code{adainit}. To run your program up to the beginning of
10884elaboration, simply use the following two commands:
10885@code{tbreak adainit} and @code{run}.
10886
10887@node Ada Glitches
10888@subsubsection Known Peculiarities of Ada Mode
10889@cindex Ada, problems
10890
10891Besides the omissions listed previously (@pxref{Omissions from Ada}),
10892we know of several problems with and limitations of Ada mode in
10893@value{GDBN},
10894some of which will be fixed with planned future releases of the debugger
10895and the GNU Ada compiler.
10896
10897@itemize @bullet
10898@item
10899Currently, the debugger
10900has insufficient information to determine whether certain pointers represent
10901pointers to objects or the objects themselves.
10902Thus, the user may have to tack an extra @code{.all} after an expression
10903to get it printed properly.
10904
10905@item
10906Static constants that the compiler chooses not to materialize as objects in
10907storage are invisible to the debugger.
10908
10909@item
10910Named parameter associations in function argument lists are ignored (the
10911argument lists are treated as positional).
10912
10913@item
10914Many useful library packages are currently invisible to the debugger.
10915
10916@item
10917Fixed-point arithmetic, conversions, input, and output is carried out using
10918floating-point arithmetic, and may give results that only approximate those on
10919the host machine.
10920
10921@item
10922The type of the @t{'Address} attribute may not be @code{System.Address}.
10923
10924@item
10925The GNAT compiler never generates the prefix @code{Standard} for any of
10926the standard symbols defined by the Ada language. @value{GDBN} knows about
10927this: it will strip the prefix from names when you use it, and will never
10928look for a name you have so qualified among local symbols, nor match against
10929symbols in other packages or subprograms. If you have
10930defined entities anywhere in your program other than parameters and
10931local variables whose simple names match names in @code{Standard},
10932GNAT's lack of qualification here can cause confusion. When this happens,
10933you can usually resolve the confusion
10934by qualifying the problematic names with package
10935@code{Standard} explicitly.
10936@end itemize
10937
79a6e687
BW
10938@node Unsupported Languages
10939@section Unsupported Languages
4e562065
JB
10940
10941@cindex unsupported languages
10942@cindex minimal language
10943In addition to the other fully-supported programming languages,
10944@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10945It does not represent a real programming language, but provides a set
10946of capabilities close to what the C or assembly languages provide.
10947This should allow most simple operations to be performed while debugging
10948an application that uses a language currently not supported by @value{GDBN}.
10949
10950If the language is set to @code{auto}, @value{GDBN} will automatically
10951select this language if the current frame corresponds to an unsupported
10952language.
10953
6d2ebf8b 10954@node Symbols
c906108c
SS
10955@chapter Examining the Symbol Table
10956
d4f3574e 10957The commands described in this chapter allow you to inquire about the
c906108c
SS
10958symbols (names of variables, functions and types) defined in your
10959program. This information is inherent in the text of your program and
10960does not change as your program executes. @value{GDBN} finds it in your
10961program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10962(@pxref{File Options, ,Choosing Files}), or by one of the
10963file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10964
10965@cindex symbol names
10966@cindex names of symbols
10967@cindex quoting names
10968Occasionally, you may need to refer to symbols that contain unusual
10969characters, which @value{GDBN} ordinarily treats as word delimiters. The
10970most frequent case is in referring to static variables in other
79a6e687 10971source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10972are recorded in object files as debugging symbols, but @value{GDBN} would
10973ordinarily parse a typical file name, like @file{foo.c}, as the three words
10974@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10975@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10976
474c8240 10977@smallexample
c906108c 10978p 'foo.c'::x
474c8240 10979@end smallexample
c906108c
SS
10980
10981@noindent
10982looks up the value of @code{x} in the scope of the file @file{foo.c}.
10983
10984@table @code
a8f24a35
EZ
10985@cindex case-insensitive symbol names
10986@cindex case sensitivity in symbol names
10987@kindex set case-sensitive
10988@item set case-sensitive on
10989@itemx set case-sensitive off
10990@itemx set case-sensitive auto
10991Normally, when @value{GDBN} looks up symbols, it matches their names
10992with case sensitivity determined by the current source language.
10993Occasionally, you may wish to control that. The command @code{set
10994case-sensitive} lets you do that by specifying @code{on} for
10995case-sensitive matches or @code{off} for case-insensitive ones. If
10996you specify @code{auto}, case sensitivity is reset to the default
10997suitable for the source language. The default is case-sensitive
10998matches for all languages except for Fortran, for which the default is
10999case-insensitive matches.
11000
9c16f35a
EZ
11001@kindex show case-sensitive
11002@item show case-sensitive
a8f24a35
EZ
11003This command shows the current setting of case sensitivity for symbols
11004lookups.
11005
c906108c 11006@kindex info address
b37052ae 11007@cindex address of a symbol
c906108c
SS
11008@item info address @var{symbol}
11009Describe where the data for @var{symbol} is stored. For a register
11010variable, this says which register it is kept in. For a non-register
11011local variable, this prints the stack-frame offset at which the variable
11012is always stored.
11013
11014Note the contrast with @samp{print &@var{symbol}}, which does not work
11015at all for a register variable, and for a stack local variable prints
11016the exact address of the current instantiation of the variable.
11017
3d67e040 11018@kindex info symbol
b37052ae 11019@cindex symbol from address
9c16f35a 11020@cindex closest symbol and offset for an address
3d67e040
EZ
11021@item info symbol @var{addr}
11022Print the name of a symbol which is stored at the address @var{addr}.
11023If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
11024nearest symbol and an offset from it:
11025
474c8240 11026@smallexample
3d67e040
EZ
11027(@value{GDBP}) info symbol 0x54320
11028_initialize_vx + 396 in section .text
474c8240 11029@end smallexample
3d67e040
EZ
11030
11031@noindent
11032This is the opposite of the @code{info address} command. You can use
11033it to find out the name of a variable or a function given its address.
11034
c906108c 11035@kindex whatis
62f3a2ba
FF
11036@item whatis [@var{arg}]
11037Print the data type of @var{arg}, which can be either an expression or
11038a data type. With no argument, print the data type of @code{$}, the
11039last value in the value history. If @var{arg} is an expression, it is
11040not actually evaluated, and any side-effecting operations (such as
11041assignments or function calls) inside it do not take place. If
11042@var{arg} is a type name, it may be the name of a type or typedef, or
11043for C code it may have the form @samp{class @var{class-name}},
11044@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
11045@samp{enum @var{enum-tag}}.
c906108c
SS
11046@xref{Expressions, ,Expressions}.
11047
c906108c 11048@kindex ptype
62f3a2ba
FF
11049@item ptype [@var{arg}]
11050@code{ptype} accepts the same arguments as @code{whatis}, but prints a
11051detailed description of the type, instead of just the name of the type.
11052@xref{Expressions, ,Expressions}.
c906108c
SS
11053
11054For example, for this variable declaration:
11055
474c8240 11056@smallexample
c906108c 11057struct complex @{double real; double imag;@} v;
474c8240 11058@end smallexample
c906108c
SS
11059
11060@noindent
11061the two commands give this output:
11062
474c8240 11063@smallexample
c906108c
SS
11064@group
11065(@value{GDBP}) whatis v
11066type = struct complex
11067(@value{GDBP}) ptype v
11068type = struct complex @{
11069 double real;
11070 double imag;
11071@}
11072@end group
474c8240 11073@end smallexample
c906108c
SS
11074
11075@noindent
11076As with @code{whatis}, using @code{ptype} without an argument refers to
11077the type of @code{$}, the last value in the value history.
11078
ab1adacd
EZ
11079@cindex incomplete type
11080Sometimes, programs use opaque data types or incomplete specifications
11081of complex data structure. If the debug information included in the
11082program does not allow @value{GDBN} to display a full declaration of
11083the data type, it will say @samp{<incomplete type>}. For example,
11084given these declarations:
11085
11086@smallexample
11087 struct foo;
11088 struct foo *fooptr;
11089@end smallexample
11090
11091@noindent
11092but no definition for @code{struct foo} itself, @value{GDBN} will say:
11093
11094@smallexample
ddb50cd7 11095 (@value{GDBP}) ptype foo
ab1adacd
EZ
11096 $1 = <incomplete type>
11097@end smallexample
11098
11099@noindent
11100``Incomplete type'' is C terminology for data types that are not
11101completely specified.
11102
c906108c
SS
11103@kindex info types
11104@item info types @var{regexp}
11105@itemx info types
09d4efe1
EZ
11106Print a brief description of all types whose names match the regular
11107expression @var{regexp} (or all types in your program, if you supply
11108no argument). Each complete typename is matched as though it were a
11109complete line; thus, @samp{i type value} gives information on all
11110types in your program whose names include the string @code{value}, but
11111@samp{i type ^value$} gives information only on types whose complete
11112name is @code{value}.
c906108c
SS
11113
11114This command differs from @code{ptype} in two ways: first, like
11115@code{whatis}, it does not print a detailed description; second, it
11116lists all source files where a type is defined.
11117
b37052ae
EZ
11118@kindex info scope
11119@cindex local variables
09d4efe1 11120@item info scope @var{location}
b37052ae 11121List all the variables local to a particular scope. This command
09d4efe1
EZ
11122accepts a @var{location} argument---a function name, a source line, or
11123an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11124to the scope defined by that location. (@xref{Specify Location}, for
11125details about supported forms of @var{location}.) For example:
b37052ae
EZ
11126
11127@smallexample
11128(@value{GDBP}) @b{info scope command_line_handler}
11129Scope for command_line_handler:
11130Symbol rl is an argument at stack/frame offset 8, length 4.
11131Symbol linebuffer is in static storage at address 0x150a18, length 4.
11132Symbol linelength is in static storage at address 0x150a1c, length 4.
11133Symbol p is a local variable in register $esi, length 4.
11134Symbol p1 is a local variable in register $ebx, length 4.
11135Symbol nline is a local variable in register $edx, length 4.
11136Symbol repeat is a local variable at frame offset -8, length 4.
11137@end smallexample
11138
f5c37c66
EZ
11139@noindent
11140This command is especially useful for determining what data to collect
11141during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11142collect}.
11143
c906108c
SS
11144@kindex info source
11145@item info source
919d772c
JB
11146Show information about the current source file---that is, the source file for
11147the function containing the current point of execution:
11148@itemize @bullet
11149@item
11150the name of the source file, and the directory containing it,
11151@item
11152the directory it was compiled in,
11153@item
11154its length, in lines,
11155@item
11156which programming language it is written in,
11157@item
11158whether the executable includes debugging information for that file, and
11159if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11160@item
11161whether the debugging information includes information about
11162preprocessor macros.
11163@end itemize
11164
c906108c
SS
11165
11166@kindex info sources
11167@item info sources
11168Print the names of all source files in your program for which there is
11169debugging information, organized into two lists: files whose symbols
11170have already been read, and files whose symbols will be read when needed.
11171
11172@kindex info functions
11173@item info functions
11174Print the names and data types of all defined functions.
11175
11176@item info functions @var{regexp}
11177Print the names and data types of all defined functions
11178whose names contain a match for regular expression @var{regexp}.
11179Thus, @samp{info fun step} finds all functions whose names
11180include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11181start with @code{step}. If a function name contains characters
c1468174 11182that conflict with the regular expression language (e.g.@:
1c5dfdad 11183@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11184
11185@kindex info variables
11186@item info variables
11187Print the names and data types of all variables that are declared
6ca652b0 11188outside of functions (i.e.@: excluding local variables).
c906108c
SS
11189
11190@item info variables @var{regexp}
11191Print the names and data types of all variables (except for local
11192variables) whose names contain a match for regular expression
11193@var{regexp}.
11194
b37303ee 11195@kindex info classes
721c2651 11196@cindex Objective-C, classes and selectors
b37303ee
AF
11197@item info classes
11198@itemx info classes @var{regexp}
11199Display all Objective-C classes in your program, or
11200(with the @var{regexp} argument) all those matching a particular regular
11201expression.
11202
11203@kindex info selectors
11204@item info selectors
11205@itemx info selectors @var{regexp}
11206Display all Objective-C selectors in your program, or
11207(with the @var{regexp} argument) all those matching a particular regular
11208expression.
11209
c906108c
SS
11210@ignore
11211This was never implemented.
11212@kindex info methods
11213@item info methods
11214@itemx info methods @var{regexp}
11215The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11216methods within C@t{++} program, or (with the @var{regexp} argument) a
11217specific set of methods found in the various C@t{++} classes. Many
11218C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11219from the @code{ptype} command can be overwhelming and hard to use. The
11220@code{info-methods} command filters the methods, printing only those
11221which match the regular-expression @var{regexp}.
11222@end ignore
11223
c906108c
SS
11224@cindex reloading symbols
11225Some systems allow individual object files that make up your program to
7a292a7a
SS
11226be replaced without stopping and restarting your program. For example,
11227in VxWorks you can simply recompile a defective object file and keep on
11228running. If you are running on one of these systems, you can allow
11229@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11230
11231@table @code
11232@kindex set symbol-reloading
11233@item set symbol-reloading on
11234Replace symbol definitions for the corresponding source file when an
11235object file with a particular name is seen again.
11236
11237@item set symbol-reloading off
6d2ebf8b
SS
11238Do not replace symbol definitions when encountering object files of the
11239same name more than once. This is the default state; if you are not
11240running on a system that permits automatic relinking of modules, you
11241should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11242may discard symbols when linking large programs, that may contain
11243several modules (from different directories or libraries) with the same
11244name.
c906108c
SS
11245
11246@kindex show symbol-reloading
11247@item show symbol-reloading
11248Show the current @code{on} or @code{off} setting.
11249@end table
c906108c 11250
9c16f35a 11251@cindex opaque data types
c906108c
SS
11252@kindex set opaque-type-resolution
11253@item set opaque-type-resolution on
11254Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11255declared as a pointer to a @code{struct}, @code{class}, or
11256@code{union}---for example, @code{struct MyType *}---that is used in one
11257source file although the full declaration of @code{struct MyType} is in
11258another source file. The default is on.
11259
11260A change in the setting of this subcommand will not take effect until
11261the next time symbols for a file are loaded.
11262
11263@item set opaque-type-resolution off
11264Tell @value{GDBN} not to resolve opaque types. In this case, the type
11265is printed as follows:
11266@smallexample
11267@{<no data fields>@}
11268@end smallexample
11269
11270@kindex show opaque-type-resolution
11271@item show opaque-type-resolution
11272Show whether opaque types are resolved or not.
c906108c
SS
11273
11274@kindex maint print symbols
11275@cindex symbol dump
11276@kindex maint print psymbols
11277@cindex partial symbol dump
11278@item maint print symbols @var{filename}
11279@itemx maint print psymbols @var{filename}
11280@itemx maint print msymbols @var{filename}
11281Write a dump of debugging symbol data into the file @var{filename}.
11282These commands are used to debug the @value{GDBN} symbol-reading code. Only
11283symbols with debugging data are included. If you use @samp{maint print
11284symbols}, @value{GDBN} includes all the symbols for which it has already
11285collected full details: that is, @var{filename} reflects symbols for
11286only those files whose symbols @value{GDBN} has read. You can use the
11287command @code{info sources} to find out which files these are. If you
11288use @samp{maint print psymbols} instead, the dump shows information about
11289symbols that @value{GDBN} only knows partially---that is, symbols defined in
11290files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11291@samp{maint print msymbols} dumps just the minimal symbol information
11292required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11293@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11294@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11295
5e7b2f39
JB
11296@kindex maint info symtabs
11297@kindex maint info psymtabs
44ea7b70
JB
11298@cindex listing @value{GDBN}'s internal symbol tables
11299@cindex symbol tables, listing @value{GDBN}'s internal
11300@cindex full symbol tables, listing @value{GDBN}'s internal
11301@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11302@item maint info symtabs @r{[} @var{regexp} @r{]}
11303@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11304
11305List the @code{struct symtab} or @code{struct partial_symtab}
11306structures whose names match @var{regexp}. If @var{regexp} is not
11307given, list them all. The output includes expressions which you can
11308copy into a @value{GDBN} debugging this one to examine a particular
11309structure in more detail. For example:
11310
11311@smallexample
5e7b2f39 11312(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11313@{ objfile /home/gnu/build/gdb/gdb
11314 ((struct objfile *) 0x82e69d0)
b383017d 11315 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11316 ((struct partial_symtab *) 0x8474b10)
11317 readin no
11318 fullname (null)
11319 text addresses 0x814d3c8 -- 0x8158074
11320 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11321 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11322 dependencies (none)
11323 @}
11324@}
5e7b2f39 11325(@value{GDBP}) maint info symtabs
44ea7b70
JB
11326(@value{GDBP})
11327@end smallexample
11328@noindent
11329We see that there is one partial symbol table whose filename contains
11330the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11331and we see that @value{GDBN} has not read in any symtabs yet at all.
11332If we set a breakpoint on a function, that will cause @value{GDBN} to
11333read the symtab for the compilation unit containing that function:
11334
11335@smallexample
11336(@value{GDBP}) break dwarf2_psymtab_to_symtab
11337Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11338line 1574.
5e7b2f39 11339(@value{GDBP}) maint info symtabs
b383017d 11340@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11341 ((struct objfile *) 0x82e69d0)
b383017d 11342 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11343 ((struct symtab *) 0x86c1f38)
11344 dirname (null)
11345 fullname (null)
11346 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11347 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11348 debugformat DWARF 2
11349 @}
11350@}
b383017d 11351(@value{GDBP})
44ea7b70 11352@end smallexample
c906108c
SS
11353@end table
11354
44ea7b70 11355
6d2ebf8b 11356@node Altering
c906108c
SS
11357@chapter Altering Execution
11358
11359Once you think you have found an error in your program, you might want to
11360find out for certain whether correcting the apparent error would lead to
11361correct results in the rest of the run. You can find the answer by
11362experiment, using the @value{GDBN} features for altering execution of the
11363program.
11364
11365For example, you can store new values into variables or memory
7a292a7a
SS
11366locations, give your program a signal, restart it at a different
11367address, or even return prematurely from a function.
c906108c
SS
11368
11369@menu
11370* Assignment:: Assignment to variables
11371* Jumping:: Continuing at a different address
c906108c 11372* Signaling:: Giving your program a signal
c906108c
SS
11373* Returning:: Returning from a function
11374* Calling:: Calling your program's functions
11375* Patching:: Patching your program
11376@end menu
11377
6d2ebf8b 11378@node Assignment
79a6e687 11379@section Assignment to Variables
c906108c
SS
11380
11381@cindex assignment
11382@cindex setting variables
11383To alter the value of a variable, evaluate an assignment expression.
11384@xref{Expressions, ,Expressions}. For example,
11385
474c8240 11386@smallexample
c906108c 11387print x=4
474c8240 11388@end smallexample
c906108c
SS
11389
11390@noindent
11391stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11392value of the assignment expression (which is 4).
c906108c
SS
11393@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11394information on operators in supported languages.
c906108c
SS
11395
11396@kindex set variable
11397@cindex variables, setting
11398If you are not interested in seeing the value of the assignment, use the
11399@code{set} command instead of the @code{print} command. @code{set} is
11400really the same as @code{print} except that the expression's value is
11401not printed and is not put in the value history (@pxref{Value History,
79a6e687 11402,Value History}). The expression is evaluated only for its effects.
c906108c 11403
c906108c
SS
11404If the beginning of the argument string of the @code{set} command
11405appears identical to a @code{set} subcommand, use the @code{set
11406variable} command instead of just @code{set}. This command is identical
11407to @code{set} except for its lack of subcommands. For example, if your
11408program has a variable @code{width}, you get an error if you try to set
11409a new value with just @samp{set width=13}, because @value{GDBN} has the
11410command @code{set width}:
11411
474c8240 11412@smallexample
c906108c
SS
11413(@value{GDBP}) whatis width
11414type = double
11415(@value{GDBP}) p width
11416$4 = 13
11417(@value{GDBP}) set width=47
11418Invalid syntax in expression.
474c8240 11419@end smallexample
c906108c
SS
11420
11421@noindent
11422The invalid expression, of course, is @samp{=47}. In
11423order to actually set the program's variable @code{width}, use
11424
474c8240 11425@smallexample
c906108c 11426(@value{GDBP}) set var width=47
474c8240 11427@end smallexample
53a5351d 11428
c906108c
SS
11429Because the @code{set} command has many subcommands that can conflict
11430with the names of program variables, it is a good idea to use the
11431@code{set variable} command instead of just @code{set}. For example, if
11432your program has a variable @code{g}, you run into problems if you try
11433to set a new value with just @samp{set g=4}, because @value{GDBN} has
11434the command @code{set gnutarget}, abbreviated @code{set g}:
11435
474c8240 11436@smallexample
c906108c
SS
11437@group
11438(@value{GDBP}) whatis g
11439type = double
11440(@value{GDBP}) p g
11441$1 = 1
11442(@value{GDBP}) set g=4
2df3850c 11443(@value{GDBP}) p g
c906108c
SS
11444$2 = 1
11445(@value{GDBP}) r
11446The program being debugged has been started already.
11447Start it from the beginning? (y or n) y
11448Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11449"/home/smith/cc_progs/a.out": can't open to read symbols:
11450 Invalid bfd target.
c906108c
SS
11451(@value{GDBP}) show g
11452The current BFD target is "=4".
11453@end group
474c8240 11454@end smallexample
c906108c
SS
11455
11456@noindent
11457The program variable @code{g} did not change, and you silently set the
11458@code{gnutarget} to an invalid value. In order to set the variable
11459@code{g}, use
11460
474c8240 11461@smallexample
c906108c 11462(@value{GDBP}) set var g=4
474c8240 11463@end smallexample
c906108c
SS
11464
11465@value{GDBN} allows more implicit conversions in assignments than C; you can
11466freely store an integer value into a pointer variable or vice versa,
11467and you can convert any structure to any other structure that is the
11468same length or shorter.
11469@comment FIXME: how do structs align/pad in these conversions?
11470@comment /doc@cygnus.com 18dec1990
11471
11472To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11473construct to generate a value of specified type at a specified address
11474(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11475to memory location @code{0x83040} as an integer (which implies a certain size
11476and representation in memory), and
11477
474c8240 11478@smallexample
c906108c 11479set @{int@}0x83040 = 4
474c8240 11480@end smallexample
c906108c
SS
11481
11482@noindent
11483stores the value 4 into that memory location.
11484
6d2ebf8b 11485@node Jumping
79a6e687 11486@section Continuing at a Different Address
c906108c
SS
11487
11488Ordinarily, when you continue your program, you do so at the place where
11489it stopped, with the @code{continue} command. You can instead continue at
11490an address of your own choosing, with the following commands:
11491
11492@table @code
11493@kindex jump
11494@item jump @var{linespec}
2a25a5ba
EZ
11495@itemx jump @var{location}
11496Resume execution at line @var{linespec} or at address given by
11497@var{location}. Execution stops again immediately if there is a
11498breakpoint there. @xref{Specify Location}, for a description of the
11499different forms of @var{linespec} and @var{location}. It is common
11500practice to use the @code{tbreak} command in conjunction with
11501@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11502
11503The @code{jump} command does not change the current stack frame, or
11504the stack pointer, or the contents of any memory location or any
11505register other than the program counter. If line @var{linespec} is in
11506a different function from the one currently executing, the results may
11507be bizarre if the two functions expect different patterns of arguments or
11508of local variables. For this reason, the @code{jump} command requests
11509confirmation if the specified line is not in the function currently
11510executing. However, even bizarre results are predictable if you are
11511well acquainted with the machine-language code of your program.
c906108c
SS
11512@end table
11513
c906108c 11514@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11515On many systems, you can get much the same effect as the @code{jump}
11516command by storing a new value into the register @code{$pc}. The
11517difference is that this does not start your program running; it only
11518changes the address of where it @emph{will} run when you continue. For
11519example,
c906108c 11520
474c8240 11521@smallexample
c906108c 11522set $pc = 0x485
474c8240 11523@end smallexample
c906108c
SS
11524
11525@noindent
11526makes the next @code{continue} command or stepping command execute at
11527address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11528@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11529
11530The most common occasion to use the @code{jump} command is to back
11531up---perhaps with more breakpoints set---over a portion of a program
11532that has already executed, in order to examine its execution in more
11533detail.
11534
c906108c 11535@c @group
6d2ebf8b 11536@node Signaling
79a6e687 11537@section Giving your Program a Signal
9c16f35a 11538@cindex deliver a signal to a program
c906108c
SS
11539
11540@table @code
11541@kindex signal
11542@item signal @var{signal}
11543Resume execution where your program stopped, but immediately give it the
11544signal @var{signal}. @var{signal} can be the name or the number of a
11545signal. For example, on many systems @code{signal 2} and @code{signal
11546SIGINT} are both ways of sending an interrupt signal.
11547
11548Alternatively, if @var{signal} is zero, continue execution without
11549giving a signal. This is useful when your program stopped on account of
11550a signal and would ordinary see the signal when resumed with the
11551@code{continue} command; @samp{signal 0} causes it to resume without a
11552signal.
11553
11554@code{signal} does not repeat when you press @key{RET} a second time
11555after executing the command.
11556@end table
11557@c @end group
11558
11559Invoking the @code{signal} command is not the same as invoking the
11560@code{kill} utility from the shell. Sending a signal with @code{kill}
11561causes @value{GDBN} to decide what to do with the signal depending on
11562the signal handling tables (@pxref{Signals}). The @code{signal} command
11563passes the signal directly to your program.
11564
c906108c 11565
6d2ebf8b 11566@node Returning
79a6e687 11567@section Returning from a Function
c906108c
SS
11568
11569@table @code
11570@cindex returning from a function
11571@kindex return
11572@item return
11573@itemx return @var{expression}
11574You can cancel execution of a function call with the @code{return}
11575command. If you give an
11576@var{expression} argument, its value is used as the function's return
11577value.
11578@end table
11579
11580When you use @code{return}, @value{GDBN} discards the selected stack frame
11581(and all frames within it). You can think of this as making the
11582discarded frame return prematurely. If you wish to specify a value to
11583be returned, give that value as the argument to @code{return}.
11584
11585This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11586Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11587innermost remaining frame. That frame becomes selected. The
11588specified value is stored in the registers used for returning values
11589of functions.
11590
11591The @code{return} command does not resume execution; it leaves the
11592program stopped in the state that would exist if the function had just
11593returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11594and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11595selected stack frame returns naturally.
11596
6d2ebf8b 11597@node Calling
79a6e687 11598@section Calling Program Functions
c906108c 11599
f8568604 11600@table @code
c906108c 11601@cindex calling functions
f8568604
EZ
11602@cindex inferior functions, calling
11603@item print @var{expr}
d3e8051b 11604Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11605@var{expr} may include calls to functions in the program being
11606debugged.
11607
c906108c 11608@kindex call
c906108c
SS
11609@item call @var{expr}
11610Evaluate the expression @var{expr} without displaying @code{void}
11611returned values.
c906108c
SS
11612
11613You can use this variant of the @code{print} command if you want to
f8568604
EZ
11614execute a function from your program that does not return anything
11615(a.k.a.@: @dfn{a void function}), but without cluttering the output
11616with @code{void} returned values that @value{GDBN} will otherwise
11617print. If the result is not void, it is printed and saved in the
11618value history.
11619@end table
11620
9c16f35a
EZ
11621It is possible for the function you call via the @code{print} or
11622@code{call} command to generate a signal (e.g., if there's a bug in
11623the function, or if you passed it incorrect arguments). What happens
11624in that case is controlled by the @code{set unwindonsignal} command.
11625
11626@table @code
11627@item set unwindonsignal
11628@kindex set unwindonsignal
11629@cindex unwind stack in called functions
11630@cindex call dummy stack unwinding
11631Set unwinding of the stack if a signal is received while in a function
11632that @value{GDBN} called in the program being debugged. If set to on,
11633@value{GDBN} unwinds the stack it created for the call and restores
11634the context to what it was before the call. If set to off (the
11635default), @value{GDBN} stops in the frame where the signal was
11636received.
11637
11638@item show unwindonsignal
11639@kindex show unwindonsignal
11640Show the current setting of stack unwinding in the functions called by
11641@value{GDBN}.
11642@end table
11643
f8568604
EZ
11644@cindex weak alias functions
11645Sometimes, a function you wish to call is actually a @dfn{weak alias}
11646for another function. In such case, @value{GDBN} might not pick up
11647the type information, including the types of the function arguments,
11648which causes @value{GDBN} to call the inferior function incorrectly.
11649As a result, the called function will function erroneously and may
11650even crash. A solution to that is to use the name of the aliased
11651function instead.
c906108c 11652
6d2ebf8b 11653@node Patching
79a6e687 11654@section Patching Programs
7a292a7a 11655
c906108c
SS
11656@cindex patching binaries
11657@cindex writing into executables
c906108c 11658@cindex writing into corefiles
c906108c 11659
7a292a7a
SS
11660By default, @value{GDBN} opens the file containing your program's
11661executable code (or the corefile) read-only. This prevents accidental
11662alterations to machine code; but it also prevents you from intentionally
11663patching your program's binary.
c906108c
SS
11664
11665If you'd like to be able to patch the binary, you can specify that
11666explicitly with the @code{set write} command. For example, you might
11667want to turn on internal debugging flags, or even to make emergency
11668repairs.
11669
11670@table @code
11671@kindex set write
11672@item set write on
11673@itemx set write off
7a292a7a
SS
11674If you specify @samp{set write on}, @value{GDBN} opens executable and
11675core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11676off} (the default), @value{GDBN} opens them read-only.
11677
11678If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11679@code{exec-file} or @code{core-file} command) after changing @code{set
11680write}, for your new setting to take effect.
c906108c
SS
11681
11682@item show write
11683@kindex show write
7a292a7a
SS
11684Display whether executable files and core files are opened for writing
11685as well as reading.
c906108c
SS
11686@end table
11687
6d2ebf8b 11688@node GDB Files
c906108c
SS
11689@chapter @value{GDBN} Files
11690
7a292a7a
SS
11691@value{GDBN} needs to know the file name of the program to be debugged,
11692both in order to read its symbol table and in order to start your
11693program. To debug a core dump of a previous run, you must also tell
11694@value{GDBN} the name of the core dump file.
c906108c
SS
11695
11696@menu
11697* Files:: Commands to specify files
5b5d99cf 11698* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11699* Symbol Errors:: Errors reading symbol files
11700@end menu
11701
6d2ebf8b 11702@node Files
79a6e687 11703@section Commands to Specify Files
c906108c 11704
7a292a7a 11705@cindex symbol table
c906108c 11706@cindex core dump file
7a292a7a
SS
11707
11708You may want to specify executable and core dump file names. The usual
11709way to do this is at start-up time, using the arguments to
11710@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11711Out of @value{GDBN}}).
c906108c
SS
11712
11713Occasionally it is necessary to change to a different file during a
397ca115
EZ
11714@value{GDBN} session. Or you may run @value{GDBN} and forget to
11715specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11716via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11717Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11718new files are useful.
c906108c
SS
11719
11720@table @code
11721@cindex executable file
11722@kindex file
11723@item file @var{filename}
11724Use @var{filename} as the program to be debugged. It is read for its
11725symbols and for the contents of pure memory. It is also the program
11726executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11727directory and the file is not found in the @value{GDBN} working directory,
11728@value{GDBN} uses the environment variable @code{PATH} as a list of
11729directories to search, just as the shell does when looking for a program
11730to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11731and your program, using the @code{path} command.
11732
fc8be69e
EZ
11733@cindex unlinked object files
11734@cindex patching object files
11735You can load unlinked object @file{.o} files into @value{GDBN} using
11736the @code{file} command. You will not be able to ``run'' an object
11737file, but you can disassemble functions and inspect variables. Also,
11738if the underlying BFD functionality supports it, you could use
11739@kbd{gdb -write} to patch object files using this technique. Note
11740that @value{GDBN} can neither interpret nor modify relocations in this
11741case, so branches and some initialized variables will appear to go to
11742the wrong place. But this feature is still handy from time to time.
11743
c906108c
SS
11744@item file
11745@code{file} with no argument makes @value{GDBN} discard any information it
11746has on both executable file and the symbol table.
11747
11748@kindex exec-file
11749@item exec-file @r{[} @var{filename} @r{]}
11750Specify that the program to be run (but not the symbol table) is found
11751in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11752if necessary to locate your program. Omitting @var{filename} means to
11753discard information on the executable file.
11754
11755@kindex symbol-file
11756@item symbol-file @r{[} @var{filename} @r{]}
11757Read symbol table information from file @var{filename}. @code{PATH} is
11758searched when necessary. Use the @code{file} command to get both symbol
11759table and program to run from the same file.
11760
11761@code{symbol-file} with no argument clears out @value{GDBN} information on your
11762program's symbol table.
11763
ae5a43e0
DJ
11764The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11765some breakpoints and auto-display expressions. This is because they may
11766contain pointers to the internal data recording symbols and data types,
11767which are part of the old symbol table data being discarded inside
11768@value{GDBN}.
c906108c
SS
11769
11770@code{symbol-file} does not repeat if you press @key{RET} again after
11771executing it once.
11772
11773When @value{GDBN} is configured for a particular environment, it
11774understands debugging information in whatever format is the standard
11775generated for that environment; you may use either a @sc{gnu} compiler, or
11776other compilers that adhere to the local conventions.
c906108c 11777Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11778using @code{@value{NGCC}} you can generate debugging information for
c906108c 11779optimized code.
c906108c
SS
11780
11781For most kinds of object files, with the exception of old SVR3 systems
11782using COFF, the @code{symbol-file} command does not normally read the
11783symbol table in full right away. Instead, it scans the symbol table
11784quickly to find which source files and which symbols are present. The
11785details are read later, one source file at a time, as they are needed.
11786
11787The purpose of this two-stage reading strategy is to make @value{GDBN}
11788start up faster. For the most part, it is invisible except for
11789occasional pauses while the symbol table details for a particular source
11790file are being read. (The @code{set verbose} command can turn these
11791pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11792Warnings and Messages}.)
c906108c 11793
c906108c
SS
11794We have not implemented the two-stage strategy for COFF yet. When the
11795symbol table is stored in COFF format, @code{symbol-file} reads the
11796symbol table data in full right away. Note that ``stabs-in-COFF''
11797still does the two-stage strategy, since the debug info is actually
11798in stabs format.
11799
11800@kindex readnow
11801@cindex reading symbols immediately
11802@cindex symbols, reading immediately
a94ab193
EZ
11803@item symbol-file @var{filename} @r{[} -readnow @r{]}
11804@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11805You can override the @value{GDBN} two-stage strategy for reading symbol
11806tables by using the @samp{-readnow} option with any of the commands that
11807load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11808entire symbol table available.
c906108c 11809
c906108c
SS
11810@c FIXME: for now no mention of directories, since this seems to be in
11811@c flux. 13mar1992 status is that in theory GDB would look either in
11812@c current dir or in same dir as myprog; but issues like competing
11813@c GDB's, or clutter in system dirs, mean that in practice right now
11814@c only current dir is used. FFish says maybe a special GDB hierarchy
11815@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11816@c files.
11817
c906108c 11818@kindex core-file
09d4efe1 11819@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11820@itemx core
c906108c
SS
11821Specify the whereabouts of a core dump file to be used as the ``contents
11822of memory''. Traditionally, core files contain only some parts of the
11823address space of the process that generated them; @value{GDBN} can access the
11824executable file itself for other parts.
11825
11826@code{core-file} with no argument specifies that no core file is
11827to be used.
11828
11829Note that the core file is ignored when your program is actually running
7a292a7a
SS
11830under @value{GDBN}. So, if you have been running your program and you
11831wish to debug a core file instead, you must kill the subprocess in which
11832the program is running. To do this, use the @code{kill} command
79a6e687 11833(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11834
c906108c
SS
11835@kindex add-symbol-file
11836@cindex dynamic linking
11837@item add-symbol-file @var{filename} @var{address}
a94ab193 11838@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11839@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11840The @code{add-symbol-file} command reads additional symbol table
11841information from the file @var{filename}. You would use this command
11842when @var{filename} has been dynamically loaded (by some other means)
11843into the program that is running. @var{address} should be the memory
11844address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11845this out for itself. You can additionally specify an arbitrary number
11846of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11847section name and base address for that section. You can specify any
11848@var{address} as an expression.
c906108c
SS
11849
11850The symbol table of the file @var{filename} is added to the symbol table
11851originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11852@code{add-symbol-file} command any number of times; the new symbol data
11853thus read keeps adding to the old. To discard all old symbol data
11854instead, use the @code{symbol-file} command without any arguments.
c906108c 11855
17d9d558
JB
11856@cindex relocatable object files, reading symbols from
11857@cindex object files, relocatable, reading symbols from
11858@cindex reading symbols from relocatable object files
11859@cindex symbols, reading from relocatable object files
11860@cindex @file{.o} files, reading symbols from
11861Although @var{filename} is typically a shared library file, an
11862executable file, or some other object file which has been fully
11863relocated for loading into a process, you can also load symbolic
11864information from relocatable @file{.o} files, as long as:
11865
11866@itemize @bullet
11867@item
11868the file's symbolic information refers only to linker symbols defined in
11869that file, not to symbols defined by other object files,
11870@item
11871every section the file's symbolic information refers to has actually
11872been loaded into the inferior, as it appears in the file, and
11873@item
11874you can determine the address at which every section was loaded, and
11875provide these to the @code{add-symbol-file} command.
11876@end itemize
11877
11878@noindent
11879Some embedded operating systems, like Sun Chorus and VxWorks, can load
11880relocatable files into an already running program; such systems
11881typically make the requirements above easy to meet. However, it's
11882important to recognize that many native systems use complex link
49efadf5 11883procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11884assembly, for example) that make the requirements difficult to meet. In
11885general, one cannot assume that using @code{add-symbol-file} to read a
11886relocatable object file's symbolic information will have the same effect
11887as linking the relocatable object file into the program in the normal
11888way.
11889
c906108c
SS
11890@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11891
c45da7e6
EZ
11892@kindex add-symbol-file-from-memory
11893@cindex @code{syscall DSO}
11894@cindex load symbols from memory
11895@item add-symbol-file-from-memory @var{address}
11896Load symbols from the given @var{address} in a dynamically loaded
11897object file whose image is mapped directly into the inferior's memory.
11898For example, the Linux kernel maps a @code{syscall DSO} into each
11899process's address space; this DSO provides kernel-specific code for
11900some system calls. The argument can be any expression whose
11901evaluation yields the address of the file's shared object file header.
11902For this command to work, you must have used @code{symbol-file} or
11903@code{exec-file} commands in advance.
11904
09d4efe1
EZ
11905@kindex add-shared-symbol-files
11906@kindex assf
11907@item add-shared-symbol-files @var{library-file}
11908@itemx assf @var{library-file}
11909The @code{add-shared-symbol-files} command can currently be used only
11910in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11911alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11912@value{GDBN} automatically looks for shared libraries, however if
11913@value{GDBN} does not find yours, you can invoke
11914@code{add-shared-symbol-files}. It takes one argument: the shared
11915library's file name. @code{assf} is a shorthand alias for
11916@code{add-shared-symbol-files}.
c906108c 11917
c906108c 11918@kindex section
09d4efe1
EZ
11919@item section @var{section} @var{addr}
11920The @code{section} command changes the base address of the named
11921@var{section} of the exec file to @var{addr}. This can be used if the
11922exec file does not contain section addresses, (such as in the
11923@code{a.out} format), or when the addresses specified in the file
11924itself are wrong. Each section must be changed separately. The
11925@code{info files} command, described below, lists all the sections and
11926their addresses.
c906108c
SS
11927
11928@kindex info files
11929@kindex info target
11930@item info files
11931@itemx info target
7a292a7a
SS
11932@code{info files} and @code{info target} are synonymous; both print the
11933current target (@pxref{Targets, ,Specifying a Debugging Target}),
11934including the names of the executable and core dump files currently in
11935use by @value{GDBN}, and the files from which symbols were loaded. The
11936command @code{help target} lists all possible targets rather than
11937current ones.
11938
fe95c787
MS
11939@kindex maint info sections
11940@item maint info sections
11941Another command that can give you extra information about program sections
11942is @code{maint info sections}. In addition to the section information
11943displayed by @code{info files}, this command displays the flags and file
11944offset of each section in the executable and core dump files. In addition,
11945@code{maint info sections} provides the following command options (which
11946may be arbitrarily combined):
11947
11948@table @code
11949@item ALLOBJ
11950Display sections for all loaded object files, including shared libraries.
11951@item @var{sections}
6600abed 11952Display info only for named @var{sections}.
fe95c787
MS
11953@item @var{section-flags}
11954Display info only for sections for which @var{section-flags} are true.
11955The section flags that @value{GDBN} currently knows about are:
11956@table @code
11957@item ALLOC
11958Section will have space allocated in the process when loaded.
11959Set for all sections except those containing debug information.
11960@item LOAD
11961Section will be loaded from the file into the child process memory.
11962Set for pre-initialized code and data, clear for @code{.bss} sections.
11963@item RELOC
11964Section needs to be relocated before loading.
11965@item READONLY
11966Section cannot be modified by the child process.
11967@item CODE
11968Section contains executable code only.
6600abed 11969@item DATA
fe95c787
MS
11970Section contains data only (no executable code).
11971@item ROM
11972Section will reside in ROM.
11973@item CONSTRUCTOR
11974Section contains data for constructor/destructor lists.
11975@item HAS_CONTENTS
11976Section is not empty.
11977@item NEVER_LOAD
11978An instruction to the linker to not output the section.
11979@item COFF_SHARED_LIBRARY
11980A notification to the linker that the section contains
11981COFF shared library information.
11982@item IS_COMMON
11983Section contains common symbols.
11984@end table
11985@end table
6763aef9 11986@kindex set trust-readonly-sections
9c16f35a 11987@cindex read-only sections
6763aef9
MS
11988@item set trust-readonly-sections on
11989Tell @value{GDBN} that readonly sections in your object file
6ca652b0 11990really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
11991In that case, @value{GDBN} can fetch values from these sections
11992out of the object file, rather than from the target program.
11993For some targets (notably embedded ones), this can be a significant
11994enhancement to debugging performance.
11995
11996The default is off.
11997
11998@item set trust-readonly-sections off
15110bc3 11999Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
12000the contents of the section might change while the program is running,
12001and must therefore be fetched from the target when needed.
9c16f35a
EZ
12002
12003@item show trust-readonly-sections
12004Show the current setting of trusting readonly sections.
c906108c
SS
12005@end table
12006
12007All file-specifying commands allow both absolute and relative file names
12008as arguments. @value{GDBN} always converts the file name to an absolute file
12009name and remembers it that way.
12010
c906108c 12011@cindex shared libraries
9cceb671
DJ
12012@anchor{Shared Libraries}
12013@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 12014and IBM RS/6000 AIX shared libraries.
53a5351d 12015
9cceb671
DJ
12016On MS-Windows @value{GDBN} must be linked with the Expat library to support
12017shared libraries. @xref{Expat}.
12018
c906108c
SS
12019@value{GDBN} automatically loads symbol definitions from shared libraries
12020when you use the @code{run} command, or when you examine a core file.
12021(Before you issue the @code{run} command, @value{GDBN} does not understand
12022references to a function in a shared library, however---unless you are
12023debugging a core file).
53a5351d
JM
12024
12025On HP-UX, if the program loads a library explicitly, @value{GDBN}
12026automatically loads the symbols at the time of the @code{shl_load} call.
12027
c906108c
SS
12028@c FIXME: some @value{GDBN} release may permit some refs to undef
12029@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
12030@c FIXME...lib; check this from time to time when updating manual
12031
b7209cb4
FF
12032There are times, however, when you may wish to not automatically load
12033symbol definitions from shared libraries, such as when they are
12034particularly large or there are many of them.
12035
12036To control the automatic loading of shared library symbols, use the
12037commands:
12038
12039@table @code
12040@kindex set auto-solib-add
12041@item set auto-solib-add @var{mode}
12042If @var{mode} is @code{on}, symbols from all shared object libraries
12043will be loaded automatically when the inferior begins execution, you
12044attach to an independently started inferior, or when the dynamic linker
12045informs @value{GDBN} that a new library has been loaded. If @var{mode}
12046is @code{off}, symbols must be loaded manually, using the
12047@code{sharedlibrary} command. The default value is @code{on}.
12048
dcaf7c2c
EZ
12049@cindex memory used for symbol tables
12050If your program uses lots of shared libraries with debug info that
12051takes large amounts of memory, you can decrease the @value{GDBN}
12052memory footprint by preventing it from automatically loading the
12053symbols from shared libraries. To that end, type @kbd{set
12054auto-solib-add off} before running the inferior, then load each
12055library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 12056@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
12057the libraries whose symbols you want to be loaded.
12058
b7209cb4
FF
12059@kindex show auto-solib-add
12060@item show auto-solib-add
12061Display the current autoloading mode.
12062@end table
12063
c45da7e6 12064@cindex load shared library
b7209cb4
FF
12065To explicitly load shared library symbols, use the @code{sharedlibrary}
12066command:
12067
c906108c
SS
12068@table @code
12069@kindex info sharedlibrary
12070@kindex info share
12071@item info share
12072@itemx info sharedlibrary
12073Print the names of the shared libraries which are currently loaded.
12074
12075@kindex sharedlibrary
12076@kindex share
12077@item sharedlibrary @var{regex}
12078@itemx share @var{regex}
c906108c
SS
12079Load shared object library symbols for files matching a
12080Unix regular expression.
12081As with files loaded automatically, it only loads shared libraries
12082required by your program for a core file or after typing @code{run}. If
12083@var{regex} is omitted all shared libraries required by your program are
12084loaded.
c45da7e6
EZ
12085
12086@item nosharedlibrary
12087@kindex nosharedlibrary
12088@cindex unload symbols from shared libraries
12089Unload all shared object library symbols. This discards all symbols
12090that have been loaded from all shared libraries. Symbols from shared
12091libraries that were loaded by explicit user requests are not
12092discarded.
c906108c
SS
12093@end table
12094
721c2651
EZ
12095Sometimes you may wish that @value{GDBN} stops and gives you control
12096when any of shared library events happen. Use the @code{set
12097stop-on-solib-events} command for this:
12098
12099@table @code
12100@item set stop-on-solib-events
12101@kindex set stop-on-solib-events
12102This command controls whether @value{GDBN} should give you control
12103when the dynamic linker notifies it about some shared library event.
12104The most common event of interest is loading or unloading of a new
12105shared library.
12106
12107@item show stop-on-solib-events
12108@kindex show stop-on-solib-events
12109Show whether @value{GDBN} stops and gives you control when shared
12110library events happen.
12111@end table
12112
f5ebfba0
DJ
12113Shared libraries are also supported in many cross or remote debugging
12114configurations. A copy of the target's libraries need to be present on the
12115host system; they need to be the same as the target libraries, although the
12116copies on the target can be stripped as long as the copies on the host are
12117not.
12118
59b7b46f
EZ
12119@cindex where to look for shared libraries
12120For remote debugging, you need to tell @value{GDBN} where the target
12121libraries are, so that it can load the correct copies---otherwise, it
12122may try to load the host's libraries. @value{GDBN} has two variables
12123to specify the search directories for target libraries.
f5ebfba0
DJ
12124
12125@table @code
59b7b46f 12126@cindex prefix for shared library file names
f822c95b 12127@cindex system root, alternate
f5ebfba0 12128@kindex set solib-absolute-prefix
f822c95b
DJ
12129@kindex set sysroot
12130@item set sysroot @var{path}
12131Use @var{path} as the system root for the program being debugged. Any
12132absolute shared library paths will be prefixed with @var{path}; many
12133runtime loaders store the absolute paths to the shared library in the
12134target program's memory. If you use @code{set sysroot} to find shared
12135libraries, they need to be laid out in the same way that they are on
12136the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12137under @var{path}.
12138
12139The @code{set solib-absolute-prefix} command is an alias for @code{set
12140sysroot}.
12141
12142@cindex default system root
59b7b46f 12143@cindex @samp{--with-sysroot}
f822c95b
DJ
12144You can set the default system root by using the configure-time
12145@samp{--with-sysroot} option. If the system root is inside
12146@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12147@samp{--exec-prefix}), then the default system root will be updated
12148automatically if the installed @value{GDBN} is moved to a new
12149location.
12150
12151@kindex show sysroot
12152@item show sysroot
f5ebfba0
DJ
12153Display the current shared library prefix.
12154
12155@kindex set solib-search-path
12156@item set solib-search-path @var{path}
f822c95b
DJ
12157If this variable is set, @var{path} is a colon-separated list of
12158directories to search for shared libraries. @samp{solib-search-path}
12159is used after @samp{sysroot} fails to locate the library, or if the
12160path to the library is relative instead of absolute. If you want to
12161use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12162@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12163finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12164it to a nonexistent directory may interfere with automatic loading
f822c95b 12165of shared library symbols.
f5ebfba0
DJ
12166
12167@kindex show solib-search-path
12168@item show solib-search-path
12169Display the current shared library search path.
12170@end table
12171
5b5d99cf
JB
12172
12173@node Separate Debug Files
12174@section Debugging Information in Separate Files
12175@cindex separate debugging information files
12176@cindex debugging information in separate files
12177@cindex @file{.debug} subdirectories
12178@cindex debugging information directory, global
12179@cindex global debugging information directory
c7e83d54
EZ
12180@cindex build ID, and separate debugging files
12181@cindex @file{.build-id} directory
5b5d99cf
JB
12182
12183@value{GDBN} allows you to put a program's debugging information in a
12184file separate from the executable itself, in a way that allows
12185@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12186Since debugging information can be very large---sometimes larger
12187than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12188information for their executables in separate files, which users can
12189install only when they need to debug a problem.
12190
c7e83d54
EZ
12191@value{GDBN} supports two ways of specifying the separate debug info
12192file:
5b5d99cf
JB
12193
12194@itemize @bullet
12195@item
c7e83d54
EZ
12196The executable contains a @dfn{debug link} that specifies the name of
12197the separate debug info file. The separate debug file's name is
12198usually @file{@var{executable}.debug}, where @var{executable} is the
12199name of the corresponding executable file without leading directories
12200(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12201debug link specifies a CRC32 checksum for the debug file, which
12202@value{GDBN} uses to validate that the executable and the debug file
12203came from the same build.
12204
12205@item
7e27a47a 12206The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12207also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12208only on some operating systems, notably those which use the ELF format
12209for binary files and the @sc{gnu} Binutils.) For more details about
12210this feature, see the description of the @option{--build-id}
12211command-line option in @ref{Options, , Command Line Options, ld.info,
12212The GNU Linker}. The debug info file's name is not specified
12213explicitly by the build ID, but can be computed from the build ID, see
12214below.
d3750b24
JK
12215@end itemize
12216
c7e83d54
EZ
12217Depending on the way the debug info file is specified, @value{GDBN}
12218uses two different methods of looking for the debug file:
d3750b24
JK
12219
12220@itemize @bullet
12221@item
c7e83d54
EZ
12222For the ``debug link'' method, @value{GDBN} looks up the named file in
12223the directory of the executable file, then in a subdirectory of that
12224directory named @file{.debug}, and finally under the global debug
12225directory, in a subdirectory whose name is identical to the leading
12226directories of the executable's absolute file name.
12227
12228@item
83f83d7f 12229For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12230@file{.build-id} subdirectory of the global debug directory for a file
12231named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12232first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12233are the rest of the bit string. (Real build ID strings are 32 or more
12234hex characters, not 10.)
c7e83d54
EZ
12235@end itemize
12236
12237So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12238@file{/usr/bin/ls}, which has a debug link that specifies the
12239file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12240@code{abcdef1234}. If the global debug directory is
12241@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12242debug information files, in the indicated order:
12243
12244@itemize @minus
12245@item
12246@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12247@item
c7e83d54 12248@file{/usr/bin/ls.debug}
5b5d99cf 12249@item
c7e83d54 12250@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12251@item
c7e83d54 12252@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12253@end itemize
5b5d99cf
JB
12254
12255You can set the global debugging info directory's name, and view the
12256name @value{GDBN} is currently using.
12257
12258@table @code
12259
12260@kindex set debug-file-directory
12261@item set debug-file-directory @var{directory}
12262Set the directory which @value{GDBN} searches for separate debugging
12263information files to @var{directory}.
12264
12265@kindex show debug-file-directory
12266@item show debug-file-directory
12267Show the directory @value{GDBN} searches for separate debugging
12268information files.
12269
12270@end table
12271
12272@cindex @code{.gnu_debuglink} sections
c7e83d54 12273@cindex debug link sections
5b5d99cf
JB
12274A debug link is a special section of the executable file named
12275@code{.gnu_debuglink}. The section must contain:
12276
12277@itemize
12278@item
12279A filename, with any leading directory components removed, followed by
12280a zero byte,
12281@item
12282zero to three bytes of padding, as needed to reach the next four-byte
12283boundary within the section, and
12284@item
12285a four-byte CRC checksum, stored in the same endianness used for the
12286executable file itself. The checksum is computed on the debugging
12287information file's full contents by the function given below, passing
12288zero as the @var{crc} argument.
12289@end itemize
12290
12291Any executable file format can carry a debug link, as long as it can
12292contain a section named @code{.gnu_debuglink} with the contents
12293described above.
12294
d3750b24 12295@cindex @code{.note.gnu.build-id} sections
c7e83d54 12296@cindex build ID sections
7e27a47a
EZ
12297The build ID is a special section in the executable file (and in other
12298ELF binary files that @value{GDBN} may consider). This section is
12299often named @code{.note.gnu.build-id}, but that name is not mandatory.
12300It contains unique identification for the built files---the ID remains
12301the same across multiple builds of the same build tree. The default
12302algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12303content for the build ID string. The same section with an identical
12304value is present in the original built binary with symbols, in its
12305stripped variant, and in the separate debugging information file.
d3750b24 12306
5b5d99cf
JB
12307The debugging information file itself should be an ordinary
12308executable, containing a full set of linker symbols, sections, and
12309debugging information. The sections of the debugging information file
c7e83d54
EZ
12310should have the same names, addresses, and sizes as the original file,
12311but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12312in an ordinary executable.
12313
7e27a47a 12314The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12315@samp{objcopy} utility that can produce
12316the separated executable / debugging information file pairs using the
12317following commands:
12318
12319@smallexample
12320@kbd{objcopy --only-keep-debug foo foo.debug}
12321@kbd{strip -g foo}
c7e83d54
EZ
12322@end smallexample
12323
12324@noindent
12325These commands remove the debugging
83f83d7f
JK
12326information from the executable file @file{foo} and place it in the file
12327@file{foo.debug}. You can use the first, second or both methods to link the
12328two files:
12329
12330@itemize @bullet
12331@item
12332The debug link method needs the following additional command to also leave
12333behind a debug link in @file{foo}:
12334
12335@smallexample
12336@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12337@end smallexample
12338
12339Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12340a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12341foo.debug} has the same functionality as the two @code{objcopy} commands and
12342the @code{ln -s} command above, together.
12343
12344@item
12345Build ID gets embedded into the main executable using @code{ld --build-id} or
12346the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12347compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12348utilities (Binutils) package since version 2.18.
83f83d7f
JK
12349@end itemize
12350
12351@noindent
d3750b24 12352
c7e83d54
EZ
12353Since there are many different ways to compute CRC's for the debug
12354link (different polynomials, reversals, byte ordering, etc.), the
12355simplest way to describe the CRC used in @code{.gnu_debuglink}
12356sections is to give the complete code for a function that computes it:
5b5d99cf 12357
4644b6e3 12358@kindex gnu_debuglink_crc32
5b5d99cf
JB
12359@smallexample
12360unsigned long
12361gnu_debuglink_crc32 (unsigned long crc,
12362 unsigned char *buf, size_t len)
12363@{
12364 static const unsigned long crc32_table[256] =
12365 @{
12366 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12367 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12368 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12369 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12370 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12371 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12372 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12373 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12374 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12375 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12376 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12377 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12378 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12379 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12380 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12381 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12382 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12383 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12384 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12385 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12386 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12387 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12388 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12389 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12390 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12391 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12392 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12393 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12394 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12395 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12396 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12397 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12398 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12399 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12400 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12401 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12402 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12403 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12404 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12405 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12406 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12407 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12408 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12409 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12410 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12411 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12412 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12413 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12414 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12415 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12416 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12417 0x2d02ef8d
12418 @};
12419 unsigned char *end;
12420
12421 crc = ~crc & 0xffffffff;
12422 for (end = buf + len; buf < end; ++buf)
12423 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12424 return ~crc & 0xffffffff;
5b5d99cf
JB
12425@}
12426@end smallexample
12427
c7e83d54
EZ
12428@noindent
12429This computation does not apply to the ``build ID'' method.
12430
5b5d99cf 12431
6d2ebf8b 12432@node Symbol Errors
79a6e687 12433@section Errors Reading Symbol Files
c906108c
SS
12434
12435While reading a symbol file, @value{GDBN} occasionally encounters problems,
12436such as symbol types it does not recognize, or known bugs in compiler
12437output. By default, @value{GDBN} does not notify you of such problems, since
12438they are relatively common and primarily of interest to people
12439debugging compilers. If you are interested in seeing information
12440about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12441only one message about each such type of problem, no matter how many
12442times the problem occurs; or you can ask @value{GDBN} to print more messages,
12443to see how many times the problems occur, with the @code{set
79a6e687
BW
12444complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12445Messages}).
c906108c
SS
12446
12447The messages currently printed, and their meanings, include:
12448
12449@table @code
12450@item inner block not inside outer block in @var{symbol}
12451
12452The symbol information shows where symbol scopes begin and end
12453(such as at the start of a function or a block of statements). This
12454error indicates that an inner scope block is not fully contained
12455in its outer scope blocks.
12456
12457@value{GDBN} circumvents the problem by treating the inner block as if it had
12458the same scope as the outer block. In the error message, @var{symbol}
12459may be shown as ``@code{(don't know)}'' if the outer block is not a
12460function.
12461
12462@item block at @var{address} out of order
12463
12464The symbol information for symbol scope blocks should occur in
12465order of increasing addresses. This error indicates that it does not
12466do so.
12467
12468@value{GDBN} does not circumvent this problem, and has trouble
12469locating symbols in the source file whose symbols it is reading. (You
12470can often determine what source file is affected by specifying
79a6e687
BW
12471@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12472Messages}.)
c906108c
SS
12473
12474@item bad block start address patched
12475
12476The symbol information for a symbol scope block has a start address
12477smaller than the address of the preceding source line. This is known
12478to occur in the SunOS 4.1.1 (and earlier) C compiler.
12479
12480@value{GDBN} circumvents the problem by treating the symbol scope block as
12481starting on the previous source line.
12482
12483@item bad string table offset in symbol @var{n}
12484
12485@cindex foo
12486Symbol number @var{n} contains a pointer into the string table which is
12487larger than the size of the string table.
12488
12489@value{GDBN} circumvents the problem by considering the symbol to have the
12490name @code{foo}, which may cause other problems if many symbols end up
12491with this name.
12492
12493@item unknown symbol type @code{0x@var{nn}}
12494
7a292a7a
SS
12495The symbol information contains new data types that @value{GDBN} does
12496not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12497uncomprehended information, in hexadecimal.
c906108c 12498
7a292a7a
SS
12499@value{GDBN} circumvents the error by ignoring this symbol information.
12500This usually allows you to debug your program, though certain symbols
c906108c 12501are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12502debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12503on @code{complain}, then go up to the function @code{read_dbx_symtab}
12504and examine @code{*bufp} to see the symbol.
c906108c
SS
12505
12506@item stub type has NULL name
c906108c 12507
7a292a7a 12508@value{GDBN} could not find the full definition for a struct or class.
c906108c 12509
7a292a7a 12510@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12511The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12512information that recent versions of the compiler should have output for
12513it.
c906108c
SS
12514
12515@item info mismatch between compiler and debugger
12516
12517@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12518
c906108c
SS
12519@end table
12520
6d2ebf8b 12521@node Targets
c906108c 12522@chapter Specifying a Debugging Target
7a292a7a 12523
c906108c 12524@cindex debugging target
c906108c 12525A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12526
12527Often, @value{GDBN} runs in the same host environment as your program;
12528in that case, the debugging target is specified as a side effect when
12529you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12530flexibility---for example, running @value{GDBN} on a physically separate
12531host, or controlling a standalone system over a serial port or a
53a5351d
JM
12532realtime system over a TCP/IP connection---you can use the @code{target}
12533command to specify one of the target types configured for @value{GDBN}
79a6e687 12534(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12535
a8f24a35
EZ
12536@cindex target architecture
12537It is possible to build @value{GDBN} for several different @dfn{target
12538architectures}. When @value{GDBN} is built like that, you can choose
12539one of the available architectures with the @kbd{set architecture}
12540command.
12541
12542@table @code
12543@kindex set architecture
12544@kindex show architecture
12545@item set architecture @var{arch}
12546This command sets the current target architecture to @var{arch}. The
12547value of @var{arch} can be @code{"auto"}, in addition to one of the
12548supported architectures.
12549
12550@item show architecture
12551Show the current target architecture.
9c16f35a
EZ
12552
12553@item set processor
12554@itemx processor
12555@kindex set processor
12556@kindex show processor
12557These are alias commands for, respectively, @code{set architecture}
12558and @code{show architecture}.
a8f24a35
EZ
12559@end table
12560
c906108c
SS
12561@menu
12562* Active Targets:: Active targets
12563* Target Commands:: Commands for managing targets
c906108c 12564* Byte Order:: Choosing target byte order
c906108c
SS
12565@end menu
12566
6d2ebf8b 12567@node Active Targets
79a6e687 12568@section Active Targets
7a292a7a 12569
c906108c
SS
12570@cindex stacking targets
12571@cindex active targets
12572@cindex multiple targets
12573
c906108c 12574There are three classes of targets: processes, core files, and
7a292a7a
SS
12575executable files. @value{GDBN} can work concurrently on up to three
12576active targets, one in each class. This allows you to (for example)
12577start a process and inspect its activity without abandoning your work on
12578a core file.
c906108c
SS
12579
12580For example, if you execute @samp{gdb a.out}, then the executable file
12581@code{a.out} is the only active target. If you designate a core file as
12582well---presumably from a prior run that crashed and coredumped---then
12583@value{GDBN} has two active targets and uses them in tandem, looking
12584first in the corefile target, then in the executable file, to satisfy
12585requests for memory addresses. (Typically, these two classes of target
12586are complementary, since core files contain only a program's
12587read-write memory---variables and so on---plus machine status, while
12588executable files contain only the program text and initialized data.)
c906108c
SS
12589
12590When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12591target as well. When a process target is active, all @value{GDBN}
12592commands requesting memory addresses refer to that target; addresses in
12593an active core file or executable file target are obscured while the
12594process target is active.
c906108c 12595
7a292a7a 12596Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12597core file or executable target (@pxref{Files, ,Commands to Specify
12598Files}). To specify as a target a process that is already running, use
12599the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12600Process}).
c906108c 12601
6d2ebf8b 12602@node Target Commands
79a6e687 12603@section Commands for Managing Targets
c906108c
SS
12604
12605@table @code
12606@item target @var{type} @var{parameters}
7a292a7a
SS
12607Connects the @value{GDBN} host environment to a target machine or
12608process. A target is typically a protocol for talking to debugging
12609facilities. You use the argument @var{type} to specify the type or
12610protocol of the target machine.
c906108c
SS
12611
12612Further @var{parameters} are interpreted by the target protocol, but
12613typically include things like device names or host names to connect
12614with, process numbers, and baud rates.
c906108c
SS
12615
12616The @code{target} command does not repeat if you press @key{RET} again
12617after executing the command.
12618
12619@kindex help target
12620@item help target
12621Displays the names of all targets available. To display targets
12622currently selected, use either @code{info target} or @code{info files}
79a6e687 12623(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12624
12625@item help target @var{name}
12626Describe a particular target, including any parameters necessary to
12627select it.
12628
12629@kindex set gnutarget
12630@item set gnutarget @var{args}
5d161b24 12631@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12632knows whether it is reading an @dfn{executable},
5d161b24
DB
12633a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12634with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12635with @code{gnutarget} the @code{target} refers to a program, not a machine.
12636
d4f3574e 12637@quotation
c906108c
SS
12638@emph{Warning:} To specify a file format with @code{set gnutarget},
12639you must know the actual BFD name.
d4f3574e 12640@end quotation
c906108c 12641
d4f3574e 12642@noindent
79a6e687 12643@xref{Files, , Commands to Specify Files}.
c906108c 12644
5d161b24 12645@kindex show gnutarget
c906108c
SS
12646@item show gnutarget
12647Use the @code{show gnutarget} command to display what file format
12648@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12649@value{GDBN} will determine the file format for each file automatically,
12650and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12651@end table
12652
4644b6e3 12653@cindex common targets
c906108c
SS
12654Here are some common targets (available, or not, depending on the GDB
12655configuration):
c906108c
SS
12656
12657@table @code
4644b6e3 12658@kindex target
c906108c 12659@item target exec @var{program}
4644b6e3 12660@cindex executable file target
c906108c
SS
12661An executable file. @samp{target exec @var{program}} is the same as
12662@samp{exec-file @var{program}}.
12663
c906108c 12664@item target core @var{filename}
4644b6e3 12665@cindex core dump file target
c906108c
SS
12666A core dump file. @samp{target core @var{filename}} is the same as
12667@samp{core-file @var{filename}}.
c906108c 12668
1a10341b 12669@item target remote @var{medium}
4644b6e3 12670@cindex remote target
1a10341b
JB
12671A remote system connected to @value{GDBN} via a serial line or network
12672connection. This command tells @value{GDBN} to use its own remote
12673protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12674
12675For example, if you have a board connected to @file{/dev/ttya} on the
12676machine running @value{GDBN}, you could say:
12677
12678@smallexample
12679target remote /dev/ttya
12680@end smallexample
12681
12682@code{target remote} supports the @code{load} command. This is only
12683useful if you have some other way of getting the stub to the target
12684system, and you can put it somewhere in memory where it won't get
12685clobbered by the download.
c906108c 12686
c906108c 12687@item target sim
4644b6e3 12688@cindex built-in simulator target
2df3850c 12689Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12690In general,
474c8240 12691@smallexample
104c1213
JM
12692 target sim
12693 load
12694 run
474c8240 12695@end smallexample
d4f3574e 12696@noindent
104c1213 12697works; however, you cannot assume that a specific memory map, device
d4f3574e 12698drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12699provide these. For info about any processor-specific simulator details,
12700see the appropriate section in @ref{Embedded Processors, ,Embedded
12701Processors}.
12702
c906108c
SS
12703@end table
12704
104c1213 12705Some configurations may include these targets as well:
c906108c
SS
12706
12707@table @code
12708
c906108c 12709@item target nrom @var{dev}
4644b6e3 12710@cindex NetROM ROM emulator target
c906108c
SS
12711NetROM ROM emulator. This target only supports downloading.
12712
c906108c
SS
12713@end table
12714
5d161b24 12715Different targets are available on different configurations of @value{GDBN};
c906108c 12716your configuration may have more or fewer targets.
c906108c 12717
721c2651
EZ
12718Many remote targets require you to download the executable's code once
12719you've successfully established a connection. You may wish to control
3d00d119
DJ
12720various aspects of this process.
12721
12722@table @code
721c2651
EZ
12723
12724@item set hash
12725@kindex set hash@r{, for remote monitors}
12726@cindex hash mark while downloading
12727This command controls whether a hash mark @samp{#} is displayed while
12728downloading a file to the remote monitor. If on, a hash mark is
12729displayed after each S-record is successfully downloaded to the
12730monitor.
12731
12732@item show hash
12733@kindex show hash@r{, for remote monitors}
12734Show the current status of displaying the hash mark.
12735
12736@item set debug monitor
12737@kindex set debug monitor
12738@cindex display remote monitor communications
12739Enable or disable display of communications messages between
12740@value{GDBN} and the remote monitor.
12741
12742@item show debug monitor
12743@kindex show debug monitor
12744Show the current status of displaying communications between
12745@value{GDBN} and the remote monitor.
a8f24a35 12746@end table
c906108c
SS
12747
12748@table @code
12749
12750@kindex load @var{filename}
12751@item load @var{filename}
8edfe269 12752@anchor{load}
c906108c
SS
12753Depending on what remote debugging facilities are configured into
12754@value{GDBN}, the @code{load} command may be available. Where it exists, it
12755is meant to make @var{filename} (an executable) available for debugging
12756on the remote system---by downloading, or dynamic linking, for example.
12757@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12758the @code{add-symbol-file} command.
12759
12760If your @value{GDBN} does not have a @code{load} command, attempting to
12761execute it gets the error message ``@code{You can't do that when your
12762target is @dots{}}''
c906108c
SS
12763
12764The file is loaded at whatever address is specified in the executable.
12765For some object file formats, you can specify the load address when you
12766link the program; for other formats, like a.out, the object file format
12767specifies a fixed address.
12768@c FIXME! This would be a good place for an xref to the GNU linker doc.
12769
68437a39
DJ
12770Depending on the remote side capabilities, @value{GDBN} may be able to
12771load programs into flash memory.
12772
c906108c
SS
12773@code{load} does not repeat if you press @key{RET} again after using it.
12774@end table
12775
6d2ebf8b 12776@node Byte Order
79a6e687 12777@section Choosing Target Byte Order
7a292a7a 12778
c906108c
SS
12779@cindex choosing target byte order
12780@cindex target byte order
c906108c 12781
172c2a43 12782Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12783offer the ability to run either big-endian or little-endian byte
12784orders. Usually the executable or symbol will include a bit to
12785designate the endian-ness, and you will not need to worry about
12786which to use. However, you may still find it useful to adjust
d4f3574e 12787@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12788
12789@table @code
4644b6e3 12790@kindex set endian
c906108c
SS
12791@item set endian big
12792Instruct @value{GDBN} to assume the target is big-endian.
12793
c906108c
SS
12794@item set endian little
12795Instruct @value{GDBN} to assume the target is little-endian.
12796
c906108c
SS
12797@item set endian auto
12798Instruct @value{GDBN} to use the byte order associated with the
12799executable.
12800
12801@item show endian
12802Display @value{GDBN}'s current idea of the target byte order.
12803
12804@end table
12805
12806Note that these commands merely adjust interpretation of symbolic
12807data on the host, and that they have absolutely no effect on the
12808target system.
12809
ea35711c
DJ
12810
12811@node Remote Debugging
12812@chapter Debugging Remote Programs
c906108c
SS
12813@cindex remote debugging
12814
12815If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12816@value{GDBN} in the usual way, it is often useful to use remote debugging.
12817For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12818or on a small system which does not have a general purpose operating system
12819powerful enough to run a full-featured debugger.
12820
12821Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12822to make this work with particular debugging targets. In addition,
5d161b24 12823@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12824but not specific to any particular target system) which you can use if you
12825write the remote stubs---the code that runs on the remote system to
12826communicate with @value{GDBN}.
12827
12828Other remote targets may be available in your
12829configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12830
6b2f586d 12831@menu
07f31aa6 12832* Connecting:: Connecting to a remote target
a6b151f1 12833* File Transfer:: Sending files to a remote system
6b2f586d 12834* Server:: Using the gdbserver program
79a6e687
BW
12835* Remote Configuration:: Remote configuration
12836* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12837@end menu
12838
07f31aa6 12839@node Connecting
79a6e687 12840@section Connecting to a Remote Target
07f31aa6
DJ
12841
12842On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12843your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12844Start up @value{GDBN} as usual, using the name of the local copy of your
12845program as the first argument.
12846
86941c27
JB
12847@cindex @code{target remote}
12848@value{GDBN} can communicate with the target over a serial line, or
12849over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12850each case, @value{GDBN} uses the same protocol for debugging your
12851program; only the medium carrying the debugging packets varies. The
12852@code{target remote} command establishes a connection to the target.
12853Its arguments indicate which medium to use:
12854
12855@table @code
12856
12857@item target remote @var{serial-device}
07f31aa6 12858@cindex serial line, @code{target remote}
86941c27
JB
12859Use @var{serial-device} to communicate with the target. For example,
12860to use a serial line connected to the device named @file{/dev/ttyb}:
12861
12862@smallexample
12863target remote /dev/ttyb
12864@end smallexample
12865
07f31aa6
DJ
12866If you're using a serial line, you may want to give @value{GDBN} the
12867@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12868(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12869@code{target} command.
07f31aa6 12870
86941c27
JB
12871@item target remote @code{@var{host}:@var{port}}
12872@itemx target remote @code{tcp:@var{host}:@var{port}}
12873@cindex @acronym{TCP} port, @code{target remote}
12874Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12875The @var{host} may be either a host name or a numeric @acronym{IP}
12876address; @var{port} must be a decimal number. The @var{host} could be
12877the target machine itself, if it is directly connected to the net, or
12878it might be a terminal server which in turn has a serial line to the
12879target.
07f31aa6 12880
86941c27
JB
12881For example, to connect to port 2828 on a terminal server named
12882@code{manyfarms}:
07f31aa6
DJ
12883
12884@smallexample
12885target remote manyfarms:2828
12886@end smallexample
12887
86941c27
JB
12888If your remote target is actually running on the same machine as your
12889debugger session (e.g.@: a simulator for your target running on the
12890same host), you can omit the hostname. For example, to connect to
12891port 1234 on your local machine:
07f31aa6
DJ
12892
12893@smallexample
12894target remote :1234
12895@end smallexample
12896@noindent
12897
12898Note that the colon is still required here.
12899
86941c27
JB
12900@item target remote @code{udp:@var{host}:@var{port}}
12901@cindex @acronym{UDP} port, @code{target remote}
12902Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12903connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12904
12905@smallexample
12906target remote udp:manyfarms:2828
12907@end smallexample
12908
86941c27
JB
12909When using a @acronym{UDP} connection for remote debugging, you should
12910keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12911can silently drop packets on busy or unreliable networks, which will
12912cause havoc with your debugging session.
12913
66b8c7f6
JB
12914@item target remote | @var{command}
12915@cindex pipe, @code{target remote} to
12916Run @var{command} in the background and communicate with it using a
12917pipe. The @var{command} is a shell command, to be parsed and expanded
12918by the system's command shell, @code{/bin/sh}; it should expect remote
12919protocol packets on its standard input, and send replies on its
12920standard output. You could use this to run a stand-alone simulator
12921that speaks the remote debugging protocol, to make net connections
12922using programs like @code{ssh}, or for other similar tricks.
12923
12924If @var{command} closes its standard output (perhaps by exiting),
12925@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12926program has already exited, this will have no effect.)
12927
86941c27 12928@end table
07f31aa6 12929
86941c27 12930Once the connection has been established, you can use all the usual
8edfe269
DJ
12931commands to examine and change data. The remote program is already
12932running; you can use @kbd{step} and @kbd{continue}, and you do not
12933need to use @kbd{run}.
07f31aa6
DJ
12934
12935@cindex interrupting remote programs
12936@cindex remote programs, interrupting
12937Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12938interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12939program. This may or may not succeed, depending in part on the hardware
12940and the serial drivers the remote system uses. If you type the
12941interrupt character once again, @value{GDBN} displays this prompt:
12942
12943@smallexample
12944Interrupted while waiting for the program.
12945Give up (and stop debugging it)? (y or n)
12946@end smallexample
12947
12948If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12949(If you decide you want to try again later, you can use @samp{target
12950remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12951goes back to waiting.
12952
12953@table @code
12954@kindex detach (remote)
12955@item detach
12956When you have finished debugging the remote program, you can use the
12957@code{detach} command to release it from @value{GDBN} control.
12958Detaching from the target normally resumes its execution, but the results
12959will depend on your particular remote stub. After the @code{detach}
12960command, @value{GDBN} is free to connect to another target.
12961
12962@kindex disconnect
12963@item disconnect
12964The @code{disconnect} command behaves like @code{detach}, except that
12965the target is generally not resumed. It will wait for @value{GDBN}
12966(this instance or another one) to connect and continue debugging. After
12967the @code{disconnect} command, @value{GDBN} is again free to connect to
12968another target.
09d4efe1
EZ
12969
12970@cindex send command to remote monitor
fad38dfa
EZ
12971@cindex extend @value{GDBN} for remote targets
12972@cindex add new commands for external monitor
09d4efe1
EZ
12973@kindex monitor
12974@item monitor @var{cmd}
fad38dfa
EZ
12975This command allows you to send arbitrary commands directly to the
12976remote monitor. Since @value{GDBN} doesn't care about the commands it
12977sends like this, this command is the way to extend @value{GDBN}---you
12978can add new commands that only the external monitor will understand
12979and implement.
07f31aa6
DJ
12980@end table
12981
a6b151f1
DJ
12982@node File Transfer
12983@section Sending files to a remote system
12984@cindex remote target, file transfer
12985@cindex file transfer
12986@cindex sending files to remote systems
12987
12988Some remote targets offer the ability to transfer files over the same
12989connection used to communicate with @value{GDBN}. This is convenient
12990for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
12991running @code{gdbserver} over a network interface. For other targets,
12992e.g.@: embedded devices with only a single serial port, this may be
12993the only way to upload or download files.
12994
12995Not all remote targets support these commands.
12996
12997@table @code
12998@kindex remote put
12999@item remote put @var{hostfile} @var{targetfile}
13000Copy file @var{hostfile} from the host system (the machine running
13001@value{GDBN}) to @var{targetfile} on the target system.
13002
13003@kindex remote get
13004@item remote get @var{targetfile} @var{hostfile}
13005Copy file @var{targetfile} from the target system to @var{hostfile}
13006on the host system.
13007
13008@kindex remote delete
13009@item remote delete @var{targetfile}
13010Delete @var{targetfile} from the target system.
13011
13012@end table
13013
6f05cf9f 13014@node Server
79a6e687 13015@section Using the @code{gdbserver} Program
6f05cf9f
AC
13016
13017@kindex gdbserver
13018@cindex remote connection without stubs
13019@code{gdbserver} is a control program for Unix-like systems, which
13020allows you to connect your program with a remote @value{GDBN} via
13021@code{target remote}---but without linking in the usual debugging stub.
13022
13023@code{gdbserver} is not a complete replacement for the debugging stubs,
13024because it requires essentially the same operating-system facilities
13025that @value{GDBN} itself does. In fact, a system that can run
13026@code{gdbserver} to connect to a remote @value{GDBN} could also run
13027@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
13028because it is a much smaller program than @value{GDBN} itself. It is
13029also easier to port than all of @value{GDBN}, so you may be able to get
13030started more quickly on a new system by using @code{gdbserver}.
13031Finally, if you develop code for real-time systems, you may find that
13032the tradeoffs involved in real-time operation make it more convenient to
13033do as much development work as possible on another system, for example
13034by cross-compiling. You can use @code{gdbserver} to make a similar
13035choice for debugging.
13036
13037@value{GDBN} and @code{gdbserver} communicate via either a serial line
13038or a TCP connection, using the standard @value{GDBN} remote serial
13039protocol.
13040
2d717e4f
DJ
13041@quotation
13042@emph{Warning:} @code{gdbserver} does not have any built-in security.
13043Do not run @code{gdbserver} connected to any public network; a
13044@value{GDBN} connection to @code{gdbserver} provides access to the
13045target system with the same privileges as the user running
13046@code{gdbserver}.
13047@end quotation
13048
13049@subsection Running @code{gdbserver}
13050@cindex arguments, to @code{gdbserver}
13051
13052Run @code{gdbserver} on the target system. You need a copy of the
13053program you want to debug, including any libraries it requires.
6f05cf9f
AC
13054@code{gdbserver} does not need your program's symbol table, so you can
13055strip the program if necessary to save space. @value{GDBN} on the host
13056system does all the symbol handling.
13057
13058To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 13059the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
13060syntax is:
13061
13062@smallexample
13063target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
13064@end smallexample
13065
13066@var{comm} is either a device name (to use a serial line) or a TCP
13067hostname and portnumber. For example, to debug Emacs with the argument
13068@samp{foo.txt} and communicate with @value{GDBN} over the serial port
13069@file{/dev/com1}:
13070
13071@smallexample
13072target> gdbserver /dev/com1 emacs foo.txt
13073@end smallexample
13074
13075@code{gdbserver} waits passively for the host @value{GDBN} to communicate
13076with it.
13077
13078To use a TCP connection instead of a serial line:
13079
13080@smallexample
13081target> gdbserver host:2345 emacs foo.txt
13082@end smallexample
13083
13084The only difference from the previous example is the first argument,
13085specifying that you are communicating with the host @value{GDBN} via
13086TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13087expect a TCP connection from machine @samp{host} to local TCP port 2345.
13088(Currently, the @samp{host} part is ignored.) You can choose any number
13089you want for the port number as long as it does not conflict with any
13090TCP ports already in use on the target system (for example, @code{23} is
13091reserved for @code{telnet}).@footnote{If you choose a port number that
13092conflicts with another service, @code{gdbserver} prints an error message
13093and exits.} You must use the same port number with the host @value{GDBN}
13094@code{target remote} command.
13095
2d717e4f
DJ
13096@subsubsection Attaching to a Running Program
13097
56460a61
DJ
13098On some targets, @code{gdbserver} can also attach to running programs.
13099This is accomplished via the @code{--attach} argument. The syntax is:
13100
13101@smallexample
2d717e4f 13102target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13103@end smallexample
13104
13105@var{pid} is the process ID of a currently running process. It isn't necessary
13106to point @code{gdbserver} at a binary for the running process.
13107
b1fe9455
DJ
13108@pindex pidof
13109@cindex attach to a program by name
13110You can debug processes by name instead of process ID if your target has the
13111@code{pidof} utility:
13112
13113@smallexample
2d717e4f 13114target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13115@end smallexample
13116
f822c95b 13117In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13118has multiple threads, most versions of @code{pidof} support the
13119@code{-s} option to only return the first process ID.
13120
2d717e4f
DJ
13121@subsubsection Multi-Process Mode for @code{gdbserver}
13122@cindex gdbserver, multiple processes
13123@cindex multiple processes with gdbserver
13124
13125When you connect to @code{gdbserver} using @code{target remote},
13126@code{gdbserver} debugs the specified program only once. When the
13127program exits, or you detach from it, @value{GDBN} closes the connection
13128and @code{gdbserver} exits.
13129
6e6c6f50 13130If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13131enters multi-process mode. When the debugged program exits, or you
13132detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13133though no program is running. The @code{run} and @code{attach}
13134commands instruct @code{gdbserver} to run or attach to a new program.
13135The @code{run} command uses @code{set remote exec-file} (@pxref{set
13136remote exec-file}) to select the program to run. Command line
13137arguments are supported, except for wildcard expansion and I/O
13138redirection (@pxref{Arguments}).
13139
13140To start @code{gdbserver} without supplying an initial command to run
13141or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13142Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13143the program you want to debug.
13144
13145@code{gdbserver} does not automatically exit in multi-process mode.
13146You can terminate it by using @code{monitor exit}
13147(@pxref{Monitor Commands for gdbserver}).
13148
13149@subsubsection Other Command-Line Arguments for @code{gdbserver}
13150
13151You can include @option{--debug} on the @code{gdbserver} command line.
13152@code{gdbserver} will display extra status information about the debugging
13153process. This option is intended for @code{gdbserver} development and
13154for bug reports to the developers.
13155
ccd213ac
DJ
13156The @option{--wrapper} option specifies a wrapper to launch programs
13157for debugging. The option should be followed by the name of the
13158wrapper, then any command-line arguments to pass to the wrapper, then
13159@kbd{--} indicating the end of the wrapper arguments.
13160
13161@code{gdbserver} runs the specified wrapper program with a combined
13162command line including the wrapper arguments, then the name of the
13163program to debug, then any arguments to the program. The wrapper
13164runs until it executes your program, and then @value{GDBN} gains control.
13165
13166You can use any program that eventually calls @code{execve} with
13167its arguments as a wrapper. Several standard Unix utilities do
13168this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
13169with @code{exec "$@@"} will also work.
13170
13171For example, you can use @code{env} to pass an environment variable to
13172the debugged program, without setting the variable in @code{gdbserver}'s
13173environment:
13174
13175@smallexample
13176$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
13177@end smallexample
13178
2d717e4f
DJ
13179@subsection Connecting to @code{gdbserver}
13180
13181Run @value{GDBN} on the host system.
13182
13183First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13184your application using the @code{file} command before you connect. Use
13185@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13186was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13187
13188The symbol file and target libraries must exactly match the executable
13189and libraries on the target, with one exception: the files on the host
13190system should not be stripped, even if the files on the target system
13191are. Mismatched or missing files will lead to confusing results
13192during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13193files may also prevent @code{gdbserver} from debugging multi-threaded
13194programs.
13195
79a6e687 13196Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13197For TCP connections, you must start up @code{gdbserver} prior to using
13198the @code{target remote} command. Otherwise you may get an error whose
13199text depends on the host system, but which usually looks something like
2d717e4f 13200@samp{Connection refused}. Don't use the @code{load}
397ca115 13201command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13202already on the target.
07f31aa6 13203
79a6e687 13204@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13205@cindex monitor commands, for @code{gdbserver}
2d717e4f 13206@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13207
13208During a @value{GDBN} session using @code{gdbserver}, you can use the
13209@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13210Here are the available commands.
c74d0ad8
DJ
13211
13212@table @code
13213@item monitor help
13214List the available monitor commands.
13215
13216@item monitor set debug 0
13217@itemx monitor set debug 1
13218Disable or enable general debugging messages.
13219
13220@item monitor set remote-debug 0
13221@itemx monitor set remote-debug 1
13222Disable or enable specific debugging messages associated with the remote
13223protocol (@pxref{Remote Protocol}).
13224
2d717e4f
DJ
13225@item monitor exit
13226Tell gdbserver to exit immediately. This command should be followed by
13227@code{disconnect} to close the debugging session. @code{gdbserver} will
13228detach from any attached processes and kill any processes it created.
13229Use @code{monitor exit} to terminate @code{gdbserver} at the end
13230of a multi-process mode debug session.
13231
c74d0ad8
DJ
13232@end table
13233
79a6e687
BW
13234@node Remote Configuration
13235@section Remote Configuration
501eef12 13236
9c16f35a
EZ
13237@kindex set remote
13238@kindex show remote
13239This section documents the configuration options available when
13240debugging remote programs. For the options related to the File I/O
fc320d37 13241extensions of the remote protocol, see @ref{system,
9c16f35a 13242system-call-allowed}.
501eef12
AC
13243
13244@table @code
9c16f35a 13245@item set remoteaddresssize @var{bits}
d3e8051b 13246@cindex address size for remote targets
9c16f35a
EZ
13247@cindex bits in remote address
13248Set the maximum size of address in a memory packet to the specified
13249number of bits. @value{GDBN} will mask off the address bits above
13250that number, when it passes addresses to the remote target. The
13251default value is the number of bits in the target's address.
13252
13253@item show remoteaddresssize
13254Show the current value of remote address size in bits.
13255
13256@item set remotebaud @var{n}
13257@cindex baud rate for remote targets
13258Set the baud rate for the remote serial I/O to @var{n} baud. The
13259value is used to set the speed of the serial port used for debugging
13260remote targets.
13261
13262@item show remotebaud
13263Show the current speed of the remote connection.
13264
13265@item set remotebreak
13266@cindex interrupt remote programs
13267@cindex BREAK signal instead of Ctrl-C
9a6253be 13268@anchor{set remotebreak}
9c16f35a 13269If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13270when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13271on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13272character instead. The default is off, since most remote systems
13273expect to see @samp{Ctrl-C} as the interrupt signal.
13274
13275@item show remotebreak
13276Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13277interrupt the remote program.
13278
23776285
MR
13279@item set remoteflow on
13280@itemx set remoteflow off
13281@kindex set remoteflow
13282Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13283on the serial port used to communicate to the remote target.
13284
13285@item show remoteflow
13286@kindex show remoteflow
13287Show the current setting of hardware flow control.
13288
9c16f35a
EZ
13289@item set remotelogbase @var{base}
13290Set the base (a.k.a.@: radix) of logging serial protocol
13291communications to @var{base}. Supported values of @var{base} are:
13292@code{ascii}, @code{octal}, and @code{hex}. The default is
13293@code{ascii}.
13294
13295@item show remotelogbase
13296Show the current setting of the radix for logging remote serial
13297protocol.
13298
13299@item set remotelogfile @var{file}
13300@cindex record serial communications on file
13301Record remote serial communications on the named @var{file}. The
13302default is not to record at all.
13303
13304@item show remotelogfile.
13305Show the current setting of the file name on which to record the
13306serial communications.
13307
13308@item set remotetimeout @var{num}
13309@cindex timeout for serial communications
13310@cindex remote timeout
13311Set the timeout limit to wait for the remote target to respond to
13312@var{num} seconds. The default is 2 seconds.
13313
13314@item show remotetimeout
13315Show the current number of seconds to wait for the remote target
13316responses.
13317
13318@cindex limit hardware breakpoints and watchpoints
13319@cindex remote target, limit break- and watchpoints
501eef12
AC
13320@anchor{set remote hardware-watchpoint-limit}
13321@anchor{set remote hardware-breakpoint-limit}
13322@item set remote hardware-watchpoint-limit @var{limit}
13323@itemx set remote hardware-breakpoint-limit @var{limit}
13324Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13325watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13326
13327@item set remote exec-file @var{filename}
13328@itemx show remote exec-file
13329@anchor{set remote exec-file}
13330@cindex executable file, for remote target
13331Select the file used for @code{run} with @code{target
13332extended-remote}. This should be set to a filename valid on the
13333target system. If it is not set, the target will use a default
13334filename (e.g.@: the last program run).
501eef12
AC
13335@end table
13336
427c3a89
DJ
13337@cindex remote packets, enabling and disabling
13338The @value{GDBN} remote protocol autodetects the packets supported by
13339your debugging stub. If you need to override the autodetection, you
13340can use these commands to enable or disable individual packets. Each
13341packet can be set to @samp{on} (the remote target supports this
13342packet), @samp{off} (the remote target does not support this packet),
13343or @samp{auto} (detect remote target support for this packet). They
13344all default to @samp{auto}. For more information about each packet,
13345see @ref{Remote Protocol}.
13346
13347During normal use, you should not have to use any of these commands.
13348If you do, that may be a bug in your remote debugging stub, or a bug
13349in @value{GDBN}. You may want to report the problem to the
13350@value{GDBN} developers.
13351
cfa9d6d9
DJ
13352For each packet @var{name}, the command to enable or disable the
13353packet is @code{set remote @var{name}-packet}. The available settings
13354are:
427c3a89 13355
cfa9d6d9 13356@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13357@item Command Name
13358@tab Remote Packet
13359@tab Related Features
13360
cfa9d6d9 13361@item @code{fetch-register}
427c3a89
DJ
13362@tab @code{p}
13363@tab @code{info registers}
13364
cfa9d6d9 13365@item @code{set-register}
427c3a89
DJ
13366@tab @code{P}
13367@tab @code{set}
13368
cfa9d6d9 13369@item @code{binary-download}
427c3a89
DJ
13370@tab @code{X}
13371@tab @code{load}, @code{set}
13372
cfa9d6d9 13373@item @code{read-aux-vector}
427c3a89
DJ
13374@tab @code{qXfer:auxv:read}
13375@tab @code{info auxv}
13376
cfa9d6d9 13377@item @code{symbol-lookup}
427c3a89
DJ
13378@tab @code{qSymbol}
13379@tab Detecting multiple threads
13380
2d717e4f
DJ
13381@item @code{attach}
13382@tab @code{vAttach}
13383@tab @code{attach}
13384
cfa9d6d9 13385@item @code{verbose-resume}
427c3a89
DJ
13386@tab @code{vCont}
13387@tab Stepping or resuming multiple threads
13388
2d717e4f
DJ
13389@item @code{run}
13390@tab @code{vRun}
13391@tab @code{run}
13392
cfa9d6d9 13393@item @code{software-breakpoint}
427c3a89
DJ
13394@tab @code{Z0}
13395@tab @code{break}
13396
cfa9d6d9 13397@item @code{hardware-breakpoint}
427c3a89
DJ
13398@tab @code{Z1}
13399@tab @code{hbreak}
13400
cfa9d6d9 13401@item @code{write-watchpoint}
427c3a89
DJ
13402@tab @code{Z2}
13403@tab @code{watch}
13404
cfa9d6d9 13405@item @code{read-watchpoint}
427c3a89
DJ
13406@tab @code{Z3}
13407@tab @code{rwatch}
13408
cfa9d6d9 13409@item @code{access-watchpoint}
427c3a89
DJ
13410@tab @code{Z4}
13411@tab @code{awatch}
13412
cfa9d6d9
DJ
13413@item @code{target-features}
13414@tab @code{qXfer:features:read}
13415@tab @code{set architecture}
13416
13417@item @code{library-info}
13418@tab @code{qXfer:libraries:read}
13419@tab @code{info sharedlibrary}
13420
13421@item @code{memory-map}
13422@tab @code{qXfer:memory-map:read}
13423@tab @code{info mem}
13424
13425@item @code{read-spu-object}
13426@tab @code{qXfer:spu:read}
13427@tab @code{info spu}
13428
13429@item @code{write-spu-object}
13430@tab @code{qXfer:spu:write}
13431@tab @code{info spu}
13432
13433@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13434@tab @code{qGetTLSAddr}
13435@tab Displaying @code{__thread} variables
13436
13437@item @code{supported-packets}
13438@tab @code{qSupported}
13439@tab Remote communications parameters
13440
cfa9d6d9 13441@item @code{pass-signals}
89be2091
DJ
13442@tab @code{QPassSignals}
13443@tab @code{handle @var{signal}}
13444
a6b151f1
DJ
13445@item @code{hostio-close-packet}
13446@tab @code{vFile:close}
13447@tab @code{remote get}, @code{remote put}
13448
13449@item @code{hostio-open-packet}
13450@tab @code{vFile:open}
13451@tab @code{remote get}, @code{remote put}
13452
13453@item @code{hostio-pread-packet}
13454@tab @code{vFile:pread}
13455@tab @code{remote get}, @code{remote put}
13456
13457@item @code{hostio-pwrite-packet}
13458@tab @code{vFile:pwrite}
13459@tab @code{remote get}, @code{remote put}
13460
13461@item @code{hostio-unlink-packet}
13462@tab @code{vFile:unlink}
13463@tab @code{remote delete}
427c3a89
DJ
13464@end multitable
13465
79a6e687
BW
13466@node Remote Stub
13467@section Implementing a Remote Stub
7a292a7a 13468
8e04817f
AC
13469@cindex debugging stub, example
13470@cindex remote stub, example
13471@cindex stub example, remote debugging
13472The stub files provided with @value{GDBN} implement the target side of the
13473communication protocol, and the @value{GDBN} side is implemented in the
13474@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13475these subroutines to communicate, and ignore the details. (If you're
13476implementing your own stub file, you can still ignore the details: start
13477with one of the existing stub files. @file{sparc-stub.c} is the best
13478organized, and therefore the easiest to read.)
13479
104c1213
JM
13480@cindex remote serial debugging, overview
13481To debug a program running on another machine (the debugging
13482@dfn{target} machine), you must first arrange for all the usual
13483prerequisites for the program to run by itself. For example, for a C
13484program, you need:
c906108c 13485
104c1213
JM
13486@enumerate
13487@item
13488A startup routine to set up the C runtime environment; these usually
13489have a name like @file{crt0}. The startup routine may be supplied by
13490your hardware supplier, or you may have to write your own.
96baa820 13491
5d161b24 13492@item
d4f3574e 13493A C subroutine library to support your program's
104c1213 13494subroutine calls, notably managing input and output.
96baa820 13495
104c1213
JM
13496@item
13497A way of getting your program to the other machine---for example, a
13498download program. These are often supplied by the hardware
13499manufacturer, but you may have to write your own from hardware
13500documentation.
13501@end enumerate
96baa820 13502
104c1213
JM
13503The next step is to arrange for your program to use a serial port to
13504communicate with the machine where @value{GDBN} is running (the @dfn{host}
13505machine). In general terms, the scheme looks like this:
96baa820 13506
104c1213
JM
13507@table @emph
13508@item On the host,
13509@value{GDBN} already understands how to use this protocol; when everything
13510else is set up, you can simply use the @samp{target remote} command
13511(@pxref{Targets,,Specifying a Debugging Target}).
13512
13513@item On the target,
13514you must link with your program a few special-purpose subroutines that
13515implement the @value{GDBN} remote serial protocol. The file containing these
13516subroutines is called a @dfn{debugging stub}.
13517
13518On certain remote targets, you can use an auxiliary program
13519@code{gdbserver} instead of linking a stub into your program.
79a6e687 13520@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13521@end table
96baa820 13522
104c1213
JM
13523The debugging stub is specific to the architecture of the remote
13524machine; for example, use @file{sparc-stub.c} to debug programs on
13525@sc{sparc} boards.
96baa820 13526
104c1213
JM
13527@cindex remote serial stub list
13528These working remote stubs are distributed with @value{GDBN}:
96baa820 13529
104c1213
JM
13530@table @code
13531
13532@item i386-stub.c
41afff9a 13533@cindex @file{i386-stub.c}
104c1213
JM
13534@cindex Intel
13535@cindex i386
13536For Intel 386 and compatible architectures.
13537
13538@item m68k-stub.c
41afff9a 13539@cindex @file{m68k-stub.c}
104c1213
JM
13540@cindex Motorola 680x0
13541@cindex m680x0
13542For Motorola 680x0 architectures.
13543
13544@item sh-stub.c
41afff9a 13545@cindex @file{sh-stub.c}
172c2a43 13546@cindex Renesas
104c1213 13547@cindex SH
172c2a43 13548For Renesas SH architectures.
104c1213
JM
13549
13550@item sparc-stub.c
41afff9a 13551@cindex @file{sparc-stub.c}
104c1213
JM
13552@cindex Sparc
13553For @sc{sparc} architectures.
13554
13555@item sparcl-stub.c
41afff9a 13556@cindex @file{sparcl-stub.c}
104c1213
JM
13557@cindex Fujitsu
13558@cindex SparcLite
13559For Fujitsu @sc{sparclite} architectures.
13560
13561@end table
13562
13563The @file{README} file in the @value{GDBN} distribution may list other
13564recently added stubs.
13565
13566@menu
13567* Stub Contents:: What the stub can do for you
13568* Bootstrapping:: What you must do for the stub
13569* Debug Session:: Putting it all together
104c1213
JM
13570@end menu
13571
6d2ebf8b 13572@node Stub Contents
79a6e687 13573@subsection What the Stub Can Do for You
104c1213
JM
13574
13575@cindex remote serial stub
13576The debugging stub for your architecture supplies these three
13577subroutines:
13578
13579@table @code
13580@item set_debug_traps
4644b6e3 13581@findex set_debug_traps
104c1213
JM
13582@cindex remote serial stub, initialization
13583This routine arranges for @code{handle_exception} to run when your
13584program stops. You must call this subroutine explicitly near the
13585beginning of your program.
13586
13587@item handle_exception
4644b6e3 13588@findex handle_exception
104c1213
JM
13589@cindex remote serial stub, main routine
13590This is the central workhorse, but your program never calls it
13591explicitly---the setup code arranges for @code{handle_exception} to
13592run when a trap is triggered.
13593
13594@code{handle_exception} takes control when your program stops during
13595execution (for example, on a breakpoint), and mediates communications
13596with @value{GDBN} on the host machine. This is where the communications
13597protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13598representative on the target machine. It begins by sending summary
104c1213
JM
13599information on the state of your program, then continues to execute,
13600retrieving and transmitting any information @value{GDBN} needs, until you
13601execute a @value{GDBN} command that makes your program resume; at that point,
13602@code{handle_exception} returns control to your own code on the target
5d161b24 13603machine.
104c1213
JM
13604
13605@item breakpoint
13606@cindex @code{breakpoint} subroutine, remote
13607Use this auxiliary subroutine to make your program contain a
13608breakpoint. Depending on the particular situation, this may be the only
13609way for @value{GDBN} to get control. For instance, if your target
13610machine has some sort of interrupt button, you won't need to call this;
13611pressing the interrupt button transfers control to
13612@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13613simply receiving characters on the serial port may also trigger a trap;
13614again, in that situation, you don't need to call @code{breakpoint} from
13615your own program---simply running @samp{target remote} from the host
5d161b24 13616@value{GDBN} session gets control.
104c1213
JM
13617
13618Call @code{breakpoint} if none of these is true, or if you simply want
13619to make certain your program stops at a predetermined point for the
13620start of your debugging session.
13621@end table
13622
6d2ebf8b 13623@node Bootstrapping
79a6e687 13624@subsection What You Must Do for the Stub
104c1213
JM
13625
13626@cindex remote stub, support routines
13627The debugging stubs that come with @value{GDBN} are set up for a particular
13628chip architecture, but they have no information about the rest of your
13629debugging target machine.
13630
13631First of all you need to tell the stub how to communicate with the
13632serial port.
13633
13634@table @code
13635@item int getDebugChar()
4644b6e3 13636@findex getDebugChar
104c1213
JM
13637Write this subroutine to read a single character from the serial port.
13638It may be identical to @code{getchar} for your target system; a
13639different name is used to allow you to distinguish the two if you wish.
13640
13641@item void putDebugChar(int)
4644b6e3 13642@findex putDebugChar
104c1213 13643Write this subroutine to write a single character to the serial port.
5d161b24 13644It may be identical to @code{putchar} for your target system; a
104c1213
JM
13645different name is used to allow you to distinguish the two if you wish.
13646@end table
13647
13648@cindex control C, and remote debugging
13649@cindex interrupting remote targets
13650If you want @value{GDBN} to be able to stop your program while it is
13651running, you need to use an interrupt-driven serial driver, and arrange
13652for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13653character). That is the character which @value{GDBN} uses to tell the
13654remote system to stop.
13655
13656Getting the debugging target to return the proper status to @value{GDBN}
13657probably requires changes to the standard stub; one quick and dirty way
13658is to just execute a breakpoint instruction (the ``dirty'' part is that
13659@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13660
13661Other routines you need to supply are:
13662
13663@table @code
13664@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13665@findex exceptionHandler
104c1213
JM
13666Write this function to install @var{exception_address} in the exception
13667handling tables. You need to do this because the stub does not have any
13668way of knowing what the exception handling tables on your target system
13669are like (for example, the processor's table might be in @sc{rom},
13670containing entries which point to a table in @sc{ram}).
13671@var{exception_number} is the exception number which should be changed;
13672its meaning is architecture-dependent (for example, different numbers
13673might represent divide by zero, misaligned access, etc). When this
13674exception occurs, control should be transferred directly to
13675@var{exception_address}, and the processor state (stack, registers,
13676and so on) should be just as it is when a processor exception occurs. So if
13677you want to use a jump instruction to reach @var{exception_address}, it
13678should be a simple jump, not a jump to subroutine.
13679
13680For the 386, @var{exception_address} should be installed as an interrupt
13681gate so that interrupts are masked while the handler runs. The gate
13682should be at privilege level 0 (the most privileged level). The
13683@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13684help from @code{exceptionHandler}.
13685
13686@item void flush_i_cache()
4644b6e3 13687@findex flush_i_cache
d4f3574e 13688On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13689instruction cache, if any, on your target machine. If there is no
13690instruction cache, this subroutine may be a no-op.
13691
13692On target machines that have instruction caches, @value{GDBN} requires this
13693function to make certain that the state of your program is stable.
13694@end table
13695
13696@noindent
13697You must also make sure this library routine is available:
13698
13699@table @code
13700@item void *memset(void *, int, int)
4644b6e3 13701@findex memset
104c1213
JM
13702This is the standard library function @code{memset} that sets an area of
13703memory to a known value. If you have one of the free versions of
13704@code{libc.a}, @code{memset} can be found there; otherwise, you must
13705either obtain it from your hardware manufacturer, or write your own.
13706@end table
13707
13708If you do not use the GNU C compiler, you may need other standard
13709library subroutines as well; this varies from one stub to another,
13710but in general the stubs are likely to use any of the common library
e22ea452 13711subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13712
13713
6d2ebf8b 13714@node Debug Session
79a6e687 13715@subsection Putting it All Together
104c1213
JM
13716
13717@cindex remote serial debugging summary
13718In summary, when your program is ready to debug, you must follow these
13719steps.
13720
13721@enumerate
13722@item
6d2ebf8b 13723Make sure you have defined the supporting low-level routines
79a6e687 13724(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13725@display
13726@code{getDebugChar}, @code{putDebugChar},
13727@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13728@end display
13729
13730@item
13731Insert these lines near the top of your program:
13732
474c8240 13733@smallexample
104c1213
JM
13734set_debug_traps();
13735breakpoint();
474c8240 13736@end smallexample
104c1213
JM
13737
13738@item
13739For the 680x0 stub only, you need to provide a variable called
13740@code{exceptionHook}. Normally you just use:
13741
474c8240 13742@smallexample
104c1213 13743void (*exceptionHook)() = 0;
474c8240 13744@end smallexample
104c1213 13745
d4f3574e 13746@noindent
104c1213 13747but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13748function in your program, that function is called when
104c1213
JM
13749@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13750error). The function indicated by @code{exceptionHook} is called with
13751one parameter: an @code{int} which is the exception number.
13752
13753@item
13754Compile and link together: your program, the @value{GDBN} debugging stub for
13755your target architecture, and the supporting subroutines.
13756
13757@item
13758Make sure you have a serial connection between your target machine and
13759the @value{GDBN} host, and identify the serial port on the host.
13760
13761@item
13762@c The "remote" target now provides a `load' command, so we should
13763@c document that. FIXME.
13764Download your program to your target machine (or get it there by
13765whatever means the manufacturer provides), and start it.
13766
13767@item
07f31aa6 13768Start @value{GDBN} on the host, and connect to the target
79a6e687 13769(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13770
104c1213
JM
13771@end enumerate
13772
8e04817f
AC
13773@node Configurations
13774@chapter Configuration-Specific Information
104c1213 13775
8e04817f
AC
13776While nearly all @value{GDBN} commands are available for all native and
13777cross versions of the debugger, there are some exceptions. This chapter
13778describes things that are only available in certain configurations.
104c1213 13779
8e04817f
AC
13780There are three major categories of configurations: native
13781configurations, where the host and target are the same, embedded
13782operating system configurations, which are usually the same for several
13783different processor architectures, and bare embedded processors, which
13784are quite different from each other.
104c1213 13785
8e04817f
AC
13786@menu
13787* Native::
13788* Embedded OS::
13789* Embedded Processors::
13790* Architectures::
13791@end menu
104c1213 13792
8e04817f
AC
13793@node Native
13794@section Native
104c1213 13795
8e04817f
AC
13796This section describes details specific to particular native
13797configurations.
6cf7e474 13798
8e04817f
AC
13799@menu
13800* HP-UX:: HP-UX
7561d450 13801* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13802* SVR4 Process Information:: SVR4 process information
13803* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13804* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13805* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13806* Neutrino:: Features specific to QNX Neutrino
8e04817f 13807@end menu
6cf7e474 13808
8e04817f
AC
13809@node HP-UX
13810@subsection HP-UX
104c1213 13811
8e04817f
AC
13812On HP-UX systems, if you refer to a function or variable name that
13813begins with a dollar sign, @value{GDBN} searches for a user or system
13814name first, before it searches for a convenience variable.
104c1213 13815
9c16f35a 13816
7561d450
MK
13817@node BSD libkvm Interface
13818@subsection BSD libkvm Interface
13819
13820@cindex libkvm
13821@cindex kernel memory image
13822@cindex kernel crash dump
13823
13824BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13825interface that provides a uniform interface for accessing kernel virtual
13826memory images, including live systems and crash dumps. @value{GDBN}
13827uses this interface to allow you to debug live kernels and kernel crash
13828dumps on many native BSD configurations. This is implemented as a
13829special @code{kvm} debugging target. For debugging a live system, load
13830the currently running kernel into @value{GDBN} and connect to the
13831@code{kvm} target:
13832
13833@smallexample
13834(@value{GDBP}) @b{target kvm}
13835@end smallexample
13836
13837For debugging crash dumps, provide the file name of the crash dump as an
13838argument:
13839
13840@smallexample
13841(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13842@end smallexample
13843
13844Once connected to the @code{kvm} target, the following commands are
13845available:
13846
13847@table @code
13848@kindex kvm
13849@item kvm pcb
721c2651 13850Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13851
13852@item kvm proc
13853Set current context from proc address. This command isn't available on
13854modern FreeBSD systems.
13855@end table
13856
8e04817f 13857@node SVR4 Process Information
79a6e687 13858@subsection SVR4 Process Information
60bf7e09
EZ
13859@cindex /proc
13860@cindex examine process image
13861@cindex process info via @file{/proc}
104c1213 13862
60bf7e09
EZ
13863Many versions of SVR4 and compatible systems provide a facility called
13864@samp{/proc} that can be used to examine the image of a running
13865process using file-system subroutines. If @value{GDBN} is configured
13866for an operating system with this facility, the command @code{info
13867proc} is available to report information about the process running
13868your program, or about any process running on your system. @code{info
13869proc} works only on SVR4 systems that include the @code{procfs} code.
13870This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13871Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13872
8e04817f
AC
13873@table @code
13874@kindex info proc
60bf7e09 13875@cindex process ID
8e04817f 13876@item info proc
60bf7e09
EZ
13877@itemx info proc @var{process-id}
13878Summarize available information about any running process. If a
13879process ID is specified by @var{process-id}, display information about
13880that process; otherwise display information about the program being
13881debugged. The summary includes the debugged process ID, the command
13882line used to invoke it, its current working directory, and its
13883executable file's absolute file name.
13884
13885On some systems, @var{process-id} can be of the form
13886@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13887within a process. If the optional @var{pid} part is missing, it means
13888a thread from the process being debugged (the leading @samp{/} still
13889needs to be present, or else @value{GDBN} will interpret the number as
13890a process ID rather than a thread ID).
6cf7e474 13891
8e04817f 13892@item info proc mappings
60bf7e09
EZ
13893@cindex memory address space mappings
13894Report the memory address space ranges accessible in the program, with
13895information on whether the process has read, write, or execute access
13896rights to each range. On @sc{gnu}/Linux systems, each memory range
13897includes the object file which is mapped to that range, instead of the
13898memory access rights to that range.
13899
13900@item info proc stat
13901@itemx info proc status
13902@cindex process detailed status information
13903These subcommands are specific to @sc{gnu}/Linux systems. They show
13904the process-related information, including the user ID and group ID;
13905how many threads are there in the process; its virtual memory usage;
13906the signals that are pending, blocked, and ignored; its TTY; its
13907consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13908value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13909(type @kbd{man 5 proc} from your shell prompt).
13910
13911@item info proc all
13912Show all the information about the process described under all of the
13913above @code{info proc} subcommands.
13914
8e04817f
AC
13915@ignore
13916@comment These sub-options of 'info proc' were not included when
13917@comment procfs.c was re-written. Keep their descriptions around
13918@comment against the day when someone finds the time to put them back in.
13919@kindex info proc times
13920@item info proc times
13921Starting time, user CPU time, and system CPU time for your program and
13922its children.
6cf7e474 13923
8e04817f
AC
13924@kindex info proc id
13925@item info proc id
13926Report on the process IDs related to your program: its own process ID,
13927the ID of its parent, the process group ID, and the session ID.
8e04817f 13928@end ignore
721c2651
EZ
13929
13930@item set procfs-trace
13931@kindex set procfs-trace
13932@cindex @code{procfs} API calls
13933This command enables and disables tracing of @code{procfs} API calls.
13934
13935@item show procfs-trace
13936@kindex show procfs-trace
13937Show the current state of @code{procfs} API call tracing.
13938
13939@item set procfs-file @var{file}
13940@kindex set procfs-file
13941Tell @value{GDBN} to write @code{procfs} API trace to the named
13942@var{file}. @value{GDBN} appends the trace info to the previous
13943contents of the file. The default is to display the trace on the
13944standard output.
13945
13946@item show procfs-file
13947@kindex show procfs-file
13948Show the file to which @code{procfs} API trace is written.
13949
13950@item proc-trace-entry
13951@itemx proc-trace-exit
13952@itemx proc-untrace-entry
13953@itemx proc-untrace-exit
13954@kindex proc-trace-entry
13955@kindex proc-trace-exit
13956@kindex proc-untrace-entry
13957@kindex proc-untrace-exit
13958These commands enable and disable tracing of entries into and exits
13959from the @code{syscall} interface.
13960
13961@item info pidlist
13962@kindex info pidlist
13963@cindex process list, QNX Neutrino
13964For QNX Neutrino only, this command displays the list of all the
13965processes and all the threads within each process.
13966
13967@item info meminfo
13968@kindex info meminfo
13969@cindex mapinfo list, QNX Neutrino
13970For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13971@end table
104c1213 13972
8e04817f
AC
13973@node DJGPP Native
13974@subsection Features for Debugging @sc{djgpp} Programs
13975@cindex @sc{djgpp} debugging
13976@cindex native @sc{djgpp} debugging
13977@cindex MS-DOS-specific commands
104c1213 13978
514c4d71
EZ
13979@cindex DPMI
13980@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13981MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13982that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13983top of real-mode DOS systems and their emulations.
104c1213 13984
8e04817f
AC
13985@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13986defines a few commands specific to the @sc{djgpp} port. This
13987subsection describes those commands.
104c1213 13988
8e04817f
AC
13989@table @code
13990@kindex info dos
13991@item info dos
13992This is a prefix of @sc{djgpp}-specific commands which print
13993information about the target system and important OS structures.
f1251bdd 13994
8e04817f
AC
13995@kindex sysinfo
13996@cindex MS-DOS system info
13997@cindex free memory information (MS-DOS)
13998@item info dos sysinfo
13999This command displays assorted information about the underlying
14000platform: the CPU type and features, the OS version and flavor, the
14001DPMI version, and the available conventional and DPMI memory.
104c1213 14002
8e04817f
AC
14003@cindex GDT
14004@cindex LDT
14005@cindex IDT
14006@cindex segment descriptor tables
14007@cindex descriptor tables display
14008@item info dos gdt
14009@itemx info dos ldt
14010@itemx info dos idt
14011These 3 commands display entries from, respectively, Global, Local,
14012and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
14013tables are data structures which store a descriptor for each segment
14014that is currently in use. The segment's selector is an index into a
14015descriptor table; the table entry for that index holds the
14016descriptor's base address and limit, and its attributes and access
14017rights.
104c1213 14018
8e04817f
AC
14019A typical @sc{djgpp} program uses 3 segments: a code segment, a data
14020segment (used for both data and the stack), and a DOS segment (which
14021allows access to DOS/BIOS data structures and absolute addresses in
14022conventional memory). However, the DPMI host will usually define
14023additional segments in order to support the DPMI environment.
d4f3574e 14024
8e04817f
AC
14025@cindex garbled pointers
14026These commands allow to display entries from the descriptor tables.
14027Without an argument, all entries from the specified table are
14028displayed. An argument, which should be an integer expression, means
14029display a single entry whose index is given by the argument. For
14030example, here's a convenient way to display information about the
14031debugged program's data segment:
104c1213 14032
8e04817f
AC
14033@smallexample
14034@exdent @code{(@value{GDBP}) info dos ldt $ds}
14035@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
14036@end smallexample
104c1213 14037
8e04817f
AC
14038@noindent
14039This comes in handy when you want to see whether a pointer is outside
14040the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 14041
8e04817f
AC
14042@cindex page tables display (MS-DOS)
14043@item info dos pde
14044@itemx info dos pte
14045These two commands display entries from, respectively, the Page
14046Directory and the Page Tables. Page Directories and Page Tables are
14047data structures which control how virtual memory addresses are mapped
14048into physical addresses. A Page Table includes an entry for every
14049page of memory that is mapped into the program's address space; there
14050may be several Page Tables, each one holding up to 4096 entries. A
14051Page Directory has up to 4096 entries, one each for every Page Table
14052that is currently in use.
104c1213 14053
8e04817f
AC
14054Without an argument, @kbd{info dos pde} displays the entire Page
14055Directory, and @kbd{info dos pte} displays all the entries in all of
14056the Page Tables. An argument, an integer expression, given to the
14057@kbd{info dos pde} command means display only that entry from the Page
14058Directory table. An argument given to the @kbd{info dos pte} command
14059means display entries from a single Page Table, the one pointed to by
14060the specified entry in the Page Directory.
104c1213 14061
8e04817f
AC
14062@cindex direct memory access (DMA) on MS-DOS
14063These commands are useful when your program uses @dfn{DMA} (Direct
14064Memory Access), which needs physical addresses to program the DMA
14065controller.
104c1213 14066
8e04817f 14067These commands are supported only with some DPMI servers.
104c1213 14068
8e04817f
AC
14069@cindex physical address from linear address
14070@item info dos address-pte @var{addr}
14071This command displays the Page Table entry for a specified linear
514c4d71
EZ
14072address. The argument @var{addr} is a linear address which should
14073already have the appropriate segment's base address added to it,
14074because this command accepts addresses which may belong to @emph{any}
14075segment. For example, here's how to display the Page Table entry for
14076the page where a variable @code{i} is stored:
104c1213 14077
b383017d 14078@smallexample
8e04817f
AC
14079@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
14080@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 14081@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 14082@end smallexample
104c1213 14083
8e04817f
AC
14084@noindent
14085This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 14086whose physical base address is @code{0x02698000}, and shows all the
8e04817f 14087attributes of that page.
104c1213 14088
8e04817f
AC
14089Note that you must cast the addresses of variables to a @code{char *},
14090since otherwise the value of @code{__djgpp_base_address}, the base
14091address of all variables and functions in a @sc{djgpp} program, will
14092be added using the rules of C pointer arithmetics: if @code{i} is
14093declared an @code{int}, @value{GDBN} will add 4 times the value of
14094@code{__djgpp_base_address} to the address of @code{i}.
104c1213 14095
8e04817f
AC
14096Here's another example, it displays the Page Table entry for the
14097transfer buffer:
104c1213 14098
8e04817f
AC
14099@smallexample
14100@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
14101@exdent @code{Page Table entry for address 0x29110:}
14102@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
14103@end smallexample
104c1213 14104
8e04817f
AC
14105@noindent
14106(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
141073rd member of the @code{_go32_info_block} structure.) The output
14108clearly shows that this DPMI server maps the addresses in conventional
14109memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14110linear (@code{0x29110}) addresses are identical.
104c1213 14111
8e04817f
AC
14112This command is supported only with some DPMI servers.
14113@end table
104c1213 14114
c45da7e6 14115@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14116In addition to native debugging, the DJGPP port supports remote
14117debugging via a serial data link. The following commands are specific
14118to remote serial debugging in the DJGPP port of @value{GDBN}.
14119
14120@table @code
14121@kindex set com1base
14122@kindex set com1irq
14123@kindex set com2base
14124@kindex set com2irq
14125@kindex set com3base
14126@kindex set com3irq
14127@kindex set com4base
14128@kindex set com4irq
14129@item set com1base @var{addr}
14130This command sets the base I/O port address of the @file{COM1} serial
14131port.
14132
14133@item set com1irq @var{irq}
14134This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14135for the @file{COM1} serial port.
14136
14137There are similar commands @samp{set com2base}, @samp{set com3irq},
14138etc.@: for setting the port address and the @code{IRQ} lines for the
14139other 3 COM ports.
14140
14141@kindex show com1base
14142@kindex show com1irq
14143@kindex show com2base
14144@kindex show com2irq
14145@kindex show com3base
14146@kindex show com3irq
14147@kindex show com4base
14148@kindex show com4irq
14149The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14150display the current settings of the base address and the @code{IRQ}
14151lines used by the COM ports.
c45da7e6
EZ
14152
14153@item info serial
14154@kindex info serial
14155@cindex DOS serial port status
14156This command prints the status of the 4 DOS serial ports. For each
14157port, it prints whether it's active or not, its I/O base address and
14158IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14159counts of various errors encountered so far.
a8f24a35
EZ
14160@end table
14161
14162
78c47bea 14163@node Cygwin Native
79a6e687 14164@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14165@cindex MS Windows debugging
14166@cindex native Cygwin debugging
14167@cindex Cygwin-specific commands
14168
be448670 14169@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14170DLLs with and without symbolic debugging information. There are various
14171additional Cygwin-specific commands, described in this section.
14172Working with DLLs that have no debugging symbols is described in
14173@ref{Non-debug DLL Symbols}.
78c47bea
PM
14174
14175@table @code
14176@kindex info w32
14177@item info w32
db2e3e2e 14178This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14179information about the target system and important OS structures.
14180
14181@item info w32 selector
14182This command displays information returned by
14183the Win32 API @code{GetThreadSelectorEntry} function.
14184It takes an optional argument that is evaluated to
14185a long value to give the information about this given selector.
14186Without argument, this command displays information
d3e8051b 14187about the six segment registers.
78c47bea
PM
14188
14189@kindex info dll
14190@item info dll
db2e3e2e 14191This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14192
14193@kindex dll-symbols
14194@item dll-symbols
14195This command loads symbols from a dll similarly to
14196add-sym command but without the need to specify a base address.
14197
be90c084 14198@kindex set cygwin-exceptions
e16b02ee
EZ
14199@cindex debugging the Cygwin DLL
14200@cindex Cygwin DLL, debugging
be90c084 14201@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14202If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14203happen inside the Cygwin DLL. If @var{mode} is @code{off},
14204@value{GDBN} will delay recognition of exceptions, and may ignore some
14205exceptions which seem to be caused by internal Cygwin DLL
14206``bookkeeping''. This option is meant primarily for debugging the
14207Cygwin DLL itself; the default value is @code{off} to avoid annoying
14208@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14209
14210@kindex show cygwin-exceptions
14211@item show cygwin-exceptions
e16b02ee
EZ
14212Displays whether @value{GDBN} will break on exceptions that happen
14213inside the Cygwin DLL itself.
be90c084 14214
b383017d 14215@kindex set new-console
78c47bea 14216@item set new-console @var{mode}
b383017d 14217If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14218be started in a new console on next start.
14219If @var{mode} is @code{off}i, the debuggee will
14220be started in the same console as the debugger.
14221
14222@kindex show new-console
14223@item show new-console
14224Displays whether a new console is used
14225when the debuggee is started.
14226
14227@kindex set new-group
14228@item set new-group @var{mode}
14229This boolean value controls whether the debuggee should
14230start a new group or stay in the same group as the debugger.
14231This affects the way the Windows OS handles
c8aa23ab 14232@samp{Ctrl-C}.
78c47bea
PM
14233
14234@kindex show new-group
14235@item show new-group
14236Displays current value of new-group boolean.
14237
14238@kindex set debugevents
14239@item set debugevents
219eec71
EZ
14240This boolean value adds debug output concerning kernel events related
14241to the debuggee seen by the debugger. This includes events that
14242signal thread and process creation and exit, DLL loading and
14243unloading, console interrupts, and debugging messages produced by the
14244Windows @code{OutputDebugString} API call.
78c47bea
PM
14245
14246@kindex set debugexec
14247@item set debugexec
b383017d 14248This boolean value adds debug output concerning execute events
219eec71 14249(such as resume thread) seen by the debugger.
78c47bea
PM
14250
14251@kindex set debugexceptions
14252@item set debugexceptions
219eec71
EZ
14253This boolean value adds debug output concerning exceptions in the
14254debuggee seen by the debugger.
78c47bea
PM
14255
14256@kindex set debugmemory
14257@item set debugmemory
219eec71
EZ
14258This boolean value adds debug output concerning debuggee memory reads
14259and writes by the debugger.
78c47bea
PM
14260
14261@kindex set shell
14262@item set shell
14263This boolean values specifies whether the debuggee is called
14264via a shell or directly (default value is on).
14265
14266@kindex show shell
14267@item show shell
14268Displays if the debuggee will be started with a shell.
14269
14270@end table
14271
be448670 14272@menu
79a6e687 14273* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14274@end menu
14275
79a6e687
BW
14276@node Non-debug DLL Symbols
14277@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14278@cindex DLLs with no debugging symbols
14279@cindex Minimal symbols and DLLs
14280
14281Very often on windows, some of the DLLs that your program relies on do
14282not include symbolic debugging information (for example,
db2e3e2e 14283@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14284symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14285information contained in the DLL's export table. This section
be448670
CF
14286describes working with such symbols, known internally to @value{GDBN} as
14287``minimal symbols''.
14288
14289Note that before the debugged program has started execution, no DLLs
db2e3e2e 14290will have been loaded. The easiest way around this problem is simply to
be448670 14291start the program --- either by setting a breakpoint or letting the
db2e3e2e 14292program run once to completion. It is also possible to force
be448670 14293@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14294see the shared library information in @ref{Files}, or the
db2e3e2e 14295@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14296explicitly loading symbols from a DLL with no debugging information will
14297cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14298which may adversely affect symbol lookup performance.
14299
79a6e687 14300@subsubsection DLL Name Prefixes
be448670
CF
14301
14302In keeping with the naming conventions used by the Microsoft debugging
14303tools, DLL export symbols are made available with a prefix based on the
14304DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14305also entered into the symbol table, so @code{CreateFileA} is often
14306sufficient. In some cases there will be name clashes within a program
14307(particularly if the executable itself includes full debugging symbols)
14308necessitating the use of the fully qualified name when referring to the
14309contents of the DLL. Use single-quotes around the name to avoid the
14310exclamation mark (``!'') being interpreted as a language operator.
14311
14312Note that the internal name of the DLL may be all upper-case, even
14313though the file name of the DLL is lower-case, or vice-versa. Since
14314symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14315some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14316@code{info variables} commands or even @code{maint print msymbols}
14317(@pxref{Symbols}). Here's an example:
be448670
CF
14318
14319@smallexample
f7dc1244 14320(@value{GDBP}) info function CreateFileA
be448670
CF
14321All functions matching regular expression "CreateFileA":
14322
14323Non-debugging symbols:
143240x77e885f4 CreateFileA
143250x77e885f4 KERNEL32!CreateFileA
14326@end smallexample
14327
14328@smallexample
f7dc1244 14329(@value{GDBP}) info function !
be448670
CF
14330All functions matching regular expression "!":
14331
14332Non-debugging symbols:
143330x6100114c cygwin1!__assert
143340x61004034 cygwin1!_dll_crt0@@0
143350x61004240 cygwin1!dll_crt0(per_process *)
14336[etc...]
14337@end smallexample
14338
79a6e687 14339@subsubsection Working with Minimal Symbols
be448670
CF
14340
14341Symbols extracted from a DLL's export table do not contain very much
14342type information. All that @value{GDBN} can do is guess whether a symbol
14343refers to a function or variable depending on the linker section that
14344contains the symbol. Also note that the actual contents of the memory
14345contained in a DLL are not available unless the program is running. This
14346means that you cannot examine the contents of a variable or disassemble
14347a function within a DLL without a running program.
14348
14349Variables are generally treated as pointers and dereferenced
14350automatically. For this reason, it is often necessary to prefix a
14351variable name with the address-of operator (``&'') and provide explicit
14352type information in the command. Here's an example of the type of
14353problem:
14354
14355@smallexample
f7dc1244 14356(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14357$1 = 268572168
14358@end smallexample
14359
14360@smallexample
f7dc1244 14361(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
143620x10021610: "\230y\""
14363@end smallexample
14364
14365And two possible solutions:
14366
14367@smallexample
f7dc1244 14368(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14369$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14370@end smallexample
14371
14372@smallexample
f7dc1244 14373(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 143740x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14375(@value{GDBP}) x/x 0x10021608
be448670 143760x10021608: 0x0022fd98
f7dc1244 14377(@value{GDBP}) x/s 0x0022fd98
be448670
CF
143780x22fd98: "/cygdrive/c/mydirectory/myprogram"
14379@end smallexample
14380
14381Setting a break point within a DLL is possible even before the program
14382starts execution. However, under these circumstances, @value{GDBN} can't
14383examine the initial instructions of the function in order to skip the
14384function's frame set-up code. You can work around this by using ``*&''
14385to set the breakpoint at a raw memory address:
14386
14387@smallexample
f7dc1244 14388(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14389Breakpoint 1 at 0x1e04eff0
14390@end smallexample
14391
14392The author of these extensions is not entirely convinced that setting a
14393break point within a shared DLL like @file{kernel32.dll} is completely
14394safe.
14395
14d6dd68 14396@node Hurd Native
79a6e687 14397@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14398@cindex @sc{gnu} Hurd debugging
14399
14400This subsection describes @value{GDBN} commands specific to the
14401@sc{gnu} Hurd native debugging.
14402
14403@table @code
14404@item set signals
14405@itemx set sigs
14406@kindex set signals@r{, Hurd command}
14407@kindex set sigs@r{, Hurd command}
14408This command toggles the state of inferior signal interception by
14409@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14410affected by this command. @code{sigs} is a shorthand alias for
14411@code{signals}.
14412
14413@item show signals
14414@itemx show sigs
14415@kindex show signals@r{, Hurd command}
14416@kindex show sigs@r{, Hurd command}
14417Show the current state of intercepting inferior's signals.
14418
14419@item set signal-thread
14420@itemx set sigthread
14421@kindex set signal-thread
14422@kindex set sigthread
14423This command tells @value{GDBN} which thread is the @code{libc} signal
14424thread. That thread is run when a signal is delivered to a running
14425process. @code{set sigthread} is the shorthand alias of @code{set
14426signal-thread}.
14427
14428@item show signal-thread
14429@itemx show sigthread
14430@kindex show signal-thread
14431@kindex show sigthread
14432These two commands show which thread will run when the inferior is
14433delivered a signal.
14434
14435@item set stopped
14436@kindex set stopped@r{, Hurd command}
14437This commands tells @value{GDBN} that the inferior process is stopped,
14438as with the @code{SIGSTOP} signal. The stopped process can be
14439continued by delivering a signal to it.
14440
14441@item show stopped
14442@kindex show stopped@r{, Hurd command}
14443This command shows whether @value{GDBN} thinks the debuggee is
14444stopped.
14445
14446@item set exceptions
14447@kindex set exceptions@r{, Hurd command}
14448Use this command to turn off trapping of exceptions in the inferior.
14449When exception trapping is off, neither breakpoints nor
14450single-stepping will work. To restore the default, set exception
14451trapping on.
14452
14453@item show exceptions
14454@kindex show exceptions@r{, Hurd command}
14455Show the current state of trapping exceptions in the inferior.
14456
14457@item set task pause
14458@kindex set task@r{, Hurd commands}
14459@cindex task attributes (@sc{gnu} Hurd)
14460@cindex pause current task (@sc{gnu} Hurd)
14461This command toggles task suspension when @value{GDBN} has control.
14462Setting it to on takes effect immediately, and the task is suspended
14463whenever @value{GDBN} gets control. Setting it to off will take
14464effect the next time the inferior is continued. If this option is set
14465to off, you can use @code{set thread default pause on} or @code{set
14466thread pause on} (see below) to pause individual threads.
14467
14468@item show task pause
14469@kindex show task@r{, Hurd commands}
14470Show the current state of task suspension.
14471
14472@item set task detach-suspend-count
14473@cindex task suspend count
14474@cindex detach from task, @sc{gnu} Hurd
14475This command sets the suspend count the task will be left with when
14476@value{GDBN} detaches from it.
14477
14478@item show task detach-suspend-count
14479Show the suspend count the task will be left with when detaching.
14480
14481@item set task exception-port
14482@itemx set task excp
14483@cindex task exception port, @sc{gnu} Hurd
14484This command sets the task exception port to which @value{GDBN} will
14485forward exceptions. The argument should be the value of the @dfn{send
14486rights} of the task. @code{set task excp} is a shorthand alias.
14487
14488@item set noninvasive
14489@cindex noninvasive task options
14490This command switches @value{GDBN} to a mode that is the least
14491invasive as far as interfering with the inferior is concerned. This
14492is the same as using @code{set task pause}, @code{set exceptions}, and
14493@code{set signals} to values opposite to the defaults.
14494
14495@item info send-rights
14496@itemx info receive-rights
14497@itemx info port-rights
14498@itemx info port-sets
14499@itemx info dead-names
14500@itemx info ports
14501@itemx info psets
14502@cindex send rights, @sc{gnu} Hurd
14503@cindex receive rights, @sc{gnu} Hurd
14504@cindex port rights, @sc{gnu} Hurd
14505@cindex port sets, @sc{gnu} Hurd
14506@cindex dead names, @sc{gnu} Hurd
14507These commands display information about, respectively, send rights,
14508receive rights, port rights, port sets, and dead names of a task.
14509There are also shorthand aliases: @code{info ports} for @code{info
14510port-rights} and @code{info psets} for @code{info port-sets}.
14511
14512@item set thread pause
14513@kindex set thread@r{, Hurd command}
14514@cindex thread properties, @sc{gnu} Hurd
14515@cindex pause current thread (@sc{gnu} Hurd)
14516This command toggles current thread suspension when @value{GDBN} has
14517control. Setting it to on takes effect immediately, and the current
14518thread is suspended whenever @value{GDBN} gets control. Setting it to
14519off will take effect the next time the inferior is continued.
14520Normally, this command has no effect, since when @value{GDBN} has
14521control, the whole task is suspended. However, if you used @code{set
14522task pause off} (see above), this command comes in handy to suspend
14523only the current thread.
14524
14525@item show thread pause
14526@kindex show thread@r{, Hurd command}
14527This command shows the state of current thread suspension.
14528
14529@item set thread run
d3e8051b 14530This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14531
14532@item show thread run
14533Show whether the current thread is allowed to run.
14534
14535@item set thread detach-suspend-count
14536@cindex thread suspend count, @sc{gnu} Hurd
14537@cindex detach from thread, @sc{gnu} Hurd
14538This command sets the suspend count @value{GDBN} will leave on a
14539thread when detaching. This number is relative to the suspend count
14540found by @value{GDBN} when it notices the thread; use @code{set thread
14541takeover-suspend-count} to force it to an absolute value.
14542
14543@item show thread detach-suspend-count
14544Show the suspend count @value{GDBN} will leave on the thread when
14545detaching.
14546
14547@item set thread exception-port
14548@itemx set thread excp
14549Set the thread exception port to which to forward exceptions. This
14550overrides the port set by @code{set task exception-port} (see above).
14551@code{set thread excp} is the shorthand alias.
14552
14553@item set thread takeover-suspend-count
14554Normally, @value{GDBN}'s thread suspend counts are relative to the
14555value @value{GDBN} finds when it notices each thread. This command
14556changes the suspend counts to be absolute instead.
14557
14558@item set thread default
14559@itemx show thread default
14560@cindex thread default settings, @sc{gnu} Hurd
14561Each of the above @code{set thread} commands has a @code{set thread
14562default} counterpart (e.g., @code{set thread default pause}, @code{set
14563thread default exception-port}, etc.). The @code{thread default}
14564variety of commands sets the default thread properties for all
14565threads; you can then change the properties of individual threads with
14566the non-default commands.
14567@end table
14568
14569
a64548ea
EZ
14570@node Neutrino
14571@subsection QNX Neutrino
14572@cindex QNX Neutrino
14573
14574@value{GDBN} provides the following commands specific to the QNX
14575Neutrino target:
14576
14577@table @code
14578@item set debug nto-debug
14579@kindex set debug nto-debug
14580When set to on, enables debugging messages specific to the QNX
14581Neutrino support.
14582
14583@item show debug nto-debug
14584@kindex show debug nto-debug
14585Show the current state of QNX Neutrino messages.
14586@end table
14587
14588
8e04817f
AC
14589@node Embedded OS
14590@section Embedded Operating Systems
104c1213 14591
8e04817f
AC
14592This section describes configurations involving the debugging of
14593embedded operating systems that are available for several different
14594architectures.
d4f3574e 14595
8e04817f
AC
14596@menu
14597* VxWorks:: Using @value{GDBN} with VxWorks
14598@end menu
104c1213 14599
8e04817f
AC
14600@value{GDBN} includes the ability to debug programs running on
14601various real-time operating systems.
104c1213 14602
8e04817f
AC
14603@node VxWorks
14604@subsection Using @value{GDBN} with VxWorks
104c1213 14605
8e04817f 14606@cindex VxWorks
104c1213 14607
8e04817f 14608@table @code
104c1213 14609
8e04817f
AC
14610@kindex target vxworks
14611@item target vxworks @var{machinename}
14612A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14613is the target system's machine name or IP address.
104c1213 14614
8e04817f 14615@end table
104c1213 14616
8e04817f
AC
14617On VxWorks, @code{load} links @var{filename} dynamically on the
14618current target system as well as adding its symbols in @value{GDBN}.
104c1213 14619
8e04817f
AC
14620@value{GDBN} enables developers to spawn and debug tasks running on networked
14621VxWorks targets from a Unix host. Already-running tasks spawned from
14622the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14623both the Unix host and on the VxWorks target. The program
14624@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14625installed with the name @code{vxgdb}, to distinguish it from a
14626@value{GDBN} for debugging programs on the host itself.)
104c1213 14627
8e04817f
AC
14628@table @code
14629@item VxWorks-timeout @var{args}
14630@kindex vxworks-timeout
14631All VxWorks-based targets now support the option @code{vxworks-timeout}.
14632This option is set by the user, and @var{args} represents the number of
14633seconds @value{GDBN} waits for responses to rpc's. You might use this if
14634your VxWorks target is a slow software simulator or is on the far side
14635of a thin network line.
14636@end table
104c1213 14637
8e04817f
AC
14638The following information on connecting to VxWorks was current when
14639this manual was produced; newer releases of VxWorks may use revised
14640procedures.
104c1213 14641
4644b6e3 14642@findex INCLUDE_RDB
8e04817f
AC
14643To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14644to include the remote debugging interface routines in the VxWorks
14645library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14646VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14647kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14648source debugging task @code{tRdbTask} when VxWorks is booted. For more
14649information on configuring and remaking VxWorks, see the manufacturer's
14650manual.
14651@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14652
8e04817f
AC
14653Once you have included @file{rdb.a} in your VxWorks system image and set
14654your Unix execution search path to find @value{GDBN}, you are ready to
14655run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14656@code{vxgdb}, depending on your installation).
104c1213 14657
8e04817f 14658@value{GDBN} comes up showing the prompt:
104c1213 14659
474c8240 14660@smallexample
8e04817f 14661(vxgdb)
474c8240 14662@end smallexample
104c1213 14663
8e04817f
AC
14664@menu
14665* VxWorks Connection:: Connecting to VxWorks
14666* VxWorks Download:: VxWorks download
14667* VxWorks Attach:: Running tasks
14668@end menu
104c1213 14669
8e04817f
AC
14670@node VxWorks Connection
14671@subsubsection Connecting to VxWorks
104c1213 14672
8e04817f
AC
14673The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14674network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14675
474c8240 14676@smallexample
8e04817f 14677(vxgdb) target vxworks tt
474c8240 14678@end smallexample
104c1213 14679
8e04817f
AC
14680@need 750
14681@value{GDBN} displays messages like these:
104c1213 14682
8e04817f
AC
14683@smallexample
14684Attaching remote machine across net...
14685Connected to tt.
14686@end smallexample
104c1213 14687
8e04817f
AC
14688@need 1000
14689@value{GDBN} then attempts to read the symbol tables of any object modules
14690loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14691these files by searching the directories listed in the command search
79a6e687 14692path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14693to find an object file, it displays a message such as:
5d161b24 14694
474c8240 14695@smallexample
8e04817f 14696prog.o: No such file or directory.
474c8240 14697@end smallexample
104c1213 14698
8e04817f
AC
14699When this happens, add the appropriate directory to the search path with
14700the @value{GDBN} command @code{path}, and execute the @code{target}
14701command again.
104c1213 14702
8e04817f 14703@node VxWorks Download
79a6e687 14704@subsubsection VxWorks Download
104c1213 14705
8e04817f
AC
14706@cindex download to VxWorks
14707If you have connected to the VxWorks target and you want to debug an
14708object that has not yet been loaded, you can use the @value{GDBN}
14709@code{load} command to download a file from Unix to VxWorks
14710incrementally. The object file given as an argument to the @code{load}
14711command is actually opened twice: first by the VxWorks target in order
14712to download the code, then by @value{GDBN} in order to read the symbol
14713table. This can lead to problems if the current working directories on
14714the two systems differ. If both systems have NFS mounted the same
14715filesystems, you can avoid these problems by using absolute paths.
14716Otherwise, it is simplest to set the working directory on both systems
14717to the directory in which the object file resides, and then to reference
14718the file by its name, without any path. For instance, a program
14719@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14720and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14721program, type this on VxWorks:
104c1213 14722
474c8240 14723@smallexample
8e04817f 14724-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14725@end smallexample
104c1213 14726
8e04817f
AC
14727@noindent
14728Then, in @value{GDBN}, type:
104c1213 14729
474c8240 14730@smallexample
8e04817f
AC
14731(vxgdb) cd @var{hostpath}/vw/demo/rdb
14732(vxgdb) load prog.o
474c8240 14733@end smallexample
104c1213 14734
8e04817f 14735@value{GDBN} displays a response similar to this:
104c1213 14736
8e04817f
AC
14737@smallexample
14738Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14739@end smallexample
104c1213 14740
8e04817f
AC
14741You can also use the @code{load} command to reload an object module
14742after editing and recompiling the corresponding source file. Note that
14743this makes @value{GDBN} delete all currently-defined breakpoints,
14744auto-displays, and convenience variables, and to clear the value
14745history. (This is necessary in order to preserve the integrity of
14746debugger's data structures that reference the target system's symbol
14747table.)
104c1213 14748
8e04817f 14749@node VxWorks Attach
79a6e687 14750@subsubsection Running Tasks
104c1213
JM
14751
14752@cindex running VxWorks tasks
14753You can also attach to an existing task using the @code{attach} command as
14754follows:
14755
474c8240 14756@smallexample
104c1213 14757(vxgdb) attach @var{task}
474c8240 14758@end smallexample
104c1213
JM
14759
14760@noindent
14761where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14762or suspended when you attach to it. Running tasks are suspended at
14763the time of attachment.
14764
6d2ebf8b 14765@node Embedded Processors
104c1213
JM
14766@section Embedded Processors
14767
14768This section goes into details specific to particular embedded
14769configurations.
14770
c45da7e6
EZ
14771@cindex send command to simulator
14772Whenever a specific embedded processor has a simulator, @value{GDBN}
14773allows to send an arbitrary command to the simulator.
14774
14775@table @code
14776@item sim @var{command}
14777@kindex sim@r{, a command}
14778Send an arbitrary @var{command} string to the simulator. Consult the
14779documentation for the specific simulator in use for information about
14780acceptable commands.
14781@end table
14782
7d86b5d5 14783
104c1213 14784@menu
c45da7e6 14785* ARM:: ARM RDI
172c2a43 14786* M32R/D:: Renesas M32R/D
104c1213 14787* M68K:: Motorola M68K
104c1213 14788* MIPS Embedded:: MIPS Embedded
a37295f9 14789* OpenRISC 1000:: OpenRisc 1000
104c1213 14790* PA:: HP PA Embedded
4acd40f3 14791* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
14792* Sparclet:: Tsqware Sparclet
14793* Sparclite:: Fujitsu Sparclite
104c1213 14794* Z8000:: Zilog Z8000
a64548ea
EZ
14795* AVR:: Atmel AVR
14796* CRIS:: CRIS
14797* Super-H:: Renesas Super-H
104c1213
JM
14798@end menu
14799
6d2ebf8b 14800@node ARM
104c1213 14801@subsection ARM
c45da7e6 14802@cindex ARM RDI
104c1213
JM
14803
14804@table @code
8e04817f
AC
14805@kindex target rdi
14806@item target rdi @var{dev}
14807ARM Angel monitor, via RDI library interface to ADP protocol. You may
14808use this target to communicate with both boards running the Angel
14809monitor, or with the EmbeddedICE JTAG debug device.
14810
14811@kindex target rdp
14812@item target rdp @var{dev}
14813ARM Demon monitor.
14814
14815@end table
14816
e2f4edfd
EZ
14817@value{GDBN} provides the following ARM-specific commands:
14818
14819@table @code
14820@item set arm disassembler
14821@kindex set arm
14822This commands selects from a list of disassembly styles. The
14823@code{"std"} style is the standard style.
14824
14825@item show arm disassembler
14826@kindex show arm
14827Show the current disassembly style.
14828
14829@item set arm apcs32
14830@cindex ARM 32-bit mode
14831This command toggles ARM operation mode between 32-bit and 26-bit.
14832
14833@item show arm apcs32
14834Display the current usage of the ARM 32-bit mode.
14835
14836@item set arm fpu @var{fputype}
14837This command sets the ARM floating-point unit (FPU) type. The
14838argument @var{fputype} can be one of these:
14839
14840@table @code
14841@item auto
14842Determine the FPU type by querying the OS ABI.
14843@item softfpa
14844Software FPU, with mixed-endian doubles on little-endian ARM
14845processors.
14846@item fpa
14847GCC-compiled FPA co-processor.
14848@item softvfp
14849Software FPU with pure-endian doubles.
14850@item vfp
14851VFP co-processor.
14852@end table
14853
14854@item show arm fpu
14855Show the current type of the FPU.
14856
14857@item set arm abi
14858This command forces @value{GDBN} to use the specified ABI.
14859
14860@item show arm abi
14861Show the currently used ABI.
14862
14863@item set debug arm
14864Toggle whether to display ARM-specific debugging messages from the ARM
14865target support subsystem.
14866
14867@item show debug arm
14868Show whether ARM-specific debugging messages are enabled.
14869@end table
14870
c45da7e6
EZ
14871The following commands are available when an ARM target is debugged
14872using the RDI interface:
14873
14874@table @code
14875@item rdilogfile @r{[}@var{file}@r{]}
14876@kindex rdilogfile
14877@cindex ADP (Angel Debugger Protocol) logging
14878Set the filename for the ADP (Angel Debugger Protocol) packet log.
14879With an argument, sets the log file to the specified @var{file}. With
14880no argument, show the current log file name. The default log file is
14881@file{rdi.log}.
14882
14883@item rdilogenable @r{[}@var{arg}@r{]}
14884@kindex rdilogenable
14885Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14886enables logging, with an argument 0 or @code{"no"} disables it. With
14887no arguments displays the current setting. When logging is enabled,
14888ADP packets exchanged between @value{GDBN} and the RDI target device
14889are logged to a file.
14890
14891@item set rdiromatzero
14892@kindex set rdiromatzero
14893@cindex ROM at zero address, RDI
14894Tell @value{GDBN} whether the target has ROM at address 0. If on,
14895vector catching is disabled, so that zero address can be used. If off
14896(the default), vector catching is enabled. For this command to take
14897effect, it needs to be invoked prior to the @code{target rdi} command.
14898
14899@item show rdiromatzero
14900@kindex show rdiromatzero
14901Show the current setting of ROM at zero address.
14902
14903@item set rdiheartbeat
14904@kindex set rdiheartbeat
14905@cindex RDI heartbeat
14906Enable or disable RDI heartbeat packets. It is not recommended to
14907turn on this option, since it confuses ARM and EPI JTAG interface, as
14908well as the Angel monitor.
14909
14910@item show rdiheartbeat
14911@kindex show rdiheartbeat
14912Show the setting of RDI heartbeat packets.
14913@end table
14914
e2f4edfd 14915
8e04817f 14916@node M32R/D
ba04e063 14917@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14918
14919@table @code
8e04817f
AC
14920@kindex target m32r
14921@item target m32r @var{dev}
172c2a43 14922Renesas M32R/D ROM monitor.
8e04817f 14923
fb3e19c0
KI
14924@kindex target m32rsdi
14925@item target m32rsdi @var{dev}
14926Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14927@end table
14928
14929The following @value{GDBN} commands are specific to the M32R monitor:
14930
14931@table @code
14932@item set download-path @var{path}
14933@kindex set download-path
14934@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14935Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14936
14937@item show download-path
14938@kindex show download-path
14939Show the default path for downloadable @sc{srec} files.
fb3e19c0 14940
721c2651
EZ
14941@item set board-address @var{addr}
14942@kindex set board-address
14943@cindex M32-EVA target board address
14944Set the IP address for the M32R-EVA target board.
14945
14946@item show board-address
14947@kindex show board-address
14948Show the current IP address of the target board.
14949
14950@item set server-address @var{addr}
14951@kindex set server-address
14952@cindex download server address (M32R)
14953Set the IP address for the download server, which is the @value{GDBN}'s
14954host machine.
14955
14956@item show server-address
14957@kindex show server-address
14958Display the IP address of the download server.
14959
14960@item upload @r{[}@var{file}@r{]}
14961@kindex upload@r{, M32R}
14962Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14963upload capability. If no @var{file} argument is given, the current
14964executable file is uploaded.
14965
14966@item tload @r{[}@var{file}@r{]}
14967@kindex tload@r{, M32R}
14968Test the @code{upload} command.
8e04817f
AC
14969@end table
14970
ba04e063
EZ
14971The following commands are available for M32R/SDI:
14972
14973@table @code
14974@item sdireset
14975@kindex sdireset
14976@cindex reset SDI connection, M32R
14977This command resets the SDI connection.
14978
14979@item sdistatus
14980@kindex sdistatus
14981This command shows the SDI connection status.
14982
14983@item debug_chaos
14984@kindex debug_chaos
14985@cindex M32R/Chaos debugging
14986Instructs the remote that M32R/Chaos debugging is to be used.
14987
14988@item use_debug_dma
14989@kindex use_debug_dma
14990Instructs the remote to use the DEBUG_DMA method of accessing memory.
14991
14992@item use_mon_code
14993@kindex use_mon_code
14994Instructs the remote to use the MON_CODE method of accessing memory.
14995
14996@item use_ib_break
14997@kindex use_ib_break
14998Instructs the remote to set breakpoints by IB break.
14999
15000@item use_dbt_break
15001@kindex use_dbt_break
15002Instructs the remote to set breakpoints by DBT.
15003@end table
15004
8e04817f
AC
15005@node M68K
15006@subsection M68k
15007
7ce59000
DJ
15008The Motorola m68k configuration includes ColdFire support, and a
15009target command for the following ROM monitor.
8e04817f
AC
15010
15011@table @code
15012
8e04817f
AC
15013@kindex target dbug
15014@item target dbug @var{dev}
15015dBUG ROM monitor for Motorola ColdFire.
15016
8e04817f
AC
15017@end table
15018
8e04817f
AC
15019@node MIPS Embedded
15020@subsection MIPS Embedded
15021
15022@cindex MIPS boards
15023@value{GDBN} can use the MIPS remote debugging protocol to talk to a
15024MIPS board attached to a serial line. This is available when
15025you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 15026
8e04817f
AC
15027@need 1000
15028Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 15029
8e04817f
AC
15030@table @code
15031@item target mips @var{port}
15032@kindex target mips @var{port}
15033To run a program on the board, start up @code{@value{GDBP}} with the
15034name of your program as the argument. To connect to the board, use the
15035command @samp{target mips @var{port}}, where @var{port} is the name of
15036the serial port connected to the board. If the program has not already
15037been downloaded to the board, you may use the @code{load} command to
15038download it. You can then use all the usual @value{GDBN} commands.
104c1213 15039
8e04817f
AC
15040For example, this sequence connects to the target board through a serial
15041port, and loads and runs a program called @var{prog} through the
15042debugger:
104c1213 15043
474c8240 15044@smallexample
8e04817f
AC
15045host$ @value{GDBP} @var{prog}
15046@value{GDBN} is free software and @dots{}
15047(@value{GDBP}) target mips /dev/ttyb
15048(@value{GDBP}) load @var{prog}
15049(@value{GDBP}) run
474c8240 15050@end smallexample
104c1213 15051
8e04817f
AC
15052@item target mips @var{hostname}:@var{portnumber}
15053On some @value{GDBN} host configurations, you can specify a TCP
15054connection (for instance, to a serial line managed by a terminal
15055concentrator) instead of a serial port, using the syntax
15056@samp{@var{hostname}:@var{portnumber}}.
104c1213 15057
8e04817f
AC
15058@item target pmon @var{port}
15059@kindex target pmon @var{port}
15060PMON ROM monitor.
104c1213 15061
8e04817f
AC
15062@item target ddb @var{port}
15063@kindex target ddb @var{port}
15064NEC's DDB variant of PMON for Vr4300.
104c1213 15065
8e04817f
AC
15066@item target lsi @var{port}
15067@kindex target lsi @var{port}
15068LSI variant of PMON.
104c1213 15069
8e04817f
AC
15070@kindex target r3900
15071@item target r3900 @var{dev}
15072Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 15073
8e04817f
AC
15074@kindex target array
15075@item target array @var{dev}
15076Array Tech LSI33K RAID controller board.
104c1213 15077
8e04817f 15078@end table
104c1213 15079
104c1213 15080
8e04817f
AC
15081@noindent
15082@value{GDBN} also supports these special commands for MIPS targets:
104c1213 15083
8e04817f 15084@table @code
8e04817f
AC
15085@item set mipsfpu double
15086@itemx set mipsfpu single
15087@itemx set mipsfpu none
a64548ea 15088@itemx set mipsfpu auto
8e04817f
AC
15089@itemx show mipsfpu
15090@kindex set mipsfpu
15091@kindex show mipsfpu
15092@cindex MIPS remote floating point
15093@cindex floating point, MIPS remote
15094If your target board does not support the MIPS floating point
15095coprocessor, you should use the command @samp{set mipsfpu none} (if you
15096need this, you may wish to put the command in your @value{GDBN} init
15097file). This tells @value{GDBN} how to find the return value of
15098functions which return floating point values. It also allows
15099@value{GDBN} to avoid saving the floating point registers when calling
15100functions on the board. If you are using a floating point coprocessor
15101with only single precision floating point support, as on the @sc{r4650}
15102processor, use the command @samp{set mipsfpu single}. The default
15103double precision floating point coprocessor may be selected using
15104@samp{set mipsfpu double}.
104c1213 15105
8e04817f
AC
15106In previous versions the only choices were double precision or no
15107floating point, so @samp{set mipsfpu on} will select double precision
15108and @samp{set mipsfpu off} will select no floating point.
104c1213 15109
8e04817f
AC
15110As usual, you can inquire about the @code{mipsfpu} variable with
15111@samp{show mipsfpu}.
104c1213 15112
8e04817f
AC
15113@item set timeout @var{seconds}
15114@itemx set retransmit-timeout @var{seconds}
15115@itemx show timeout
15116@itemx show retransmit-timeout
15117@cindex @code{timeout}, MIPS protocol
15118@cindex @code{retransmit-timeout}, MIPS protocol
15119@kindex set timeout
15120@kindex show timeout
15121@kindex set retransmit-timeout
15122@kindex show retransmit-timeout
15123You can control the timeout used while waiting for a packet, in the MIPS
15124remote protocol, with the @code{set timeout @var{seconds}} command. The
15125default is 5 seconds. Similarly, you can control the timeout used while
15126waiting for an acknowledgement of a packet with the @code{set
15127retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15128You can inspect both values with @code{show timeout} and @code{show
15129retransmit-timeout}. (These commands are @emph{only} available when
15130@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15131
8e04817f
AC
15132The timeout set by @code{set timeout} does not apply when @value{GDBN}
15133is waiting for your program to stop. In that case, @value{GDBN} waits
15134forever because it has no way of knowing how long the program is going
15135to run before stopping.
ba04e063
EZ
15136
15137@item set syn-garbage-limit @var{num}
15138@kindex set syn-garbage-limit@r{, MIPS remote}
15139@cindex synchronize with remote MIPS target
15140Limit the maximum number of characters @value{GDBN} should ignore when
15141it tries to synchronize with the remote target. The default is 10
15142characters. Setting the limit to -1 means there's no limit.
15143
15144@item show syn-garbage-limit
15145@kindex show syn-garbage-limit@r{, MIPS remote}
15146Show the current limit on the number of characters to ignore when
15147trying to synchronize with the remote system.
15148
15149@item set monitor-prompt @var{prompt}
15150@kindex set monitor-prompt@r{, MIPS remote}
15151@cindex remote monitor prompt
15152Tell @value{GDBN} to expect the specified @var{prompt} string from the
15153remote monitor. The default depends on the target:
15154@table @asis
15155@item pmon target
15156@samp{PMON}
15157@item ddb target
15158@samp{NEC010}
15159@item lsi target
15160@samp{PMON>}
15161@end table
15162
15163@item show monitor-prompt
15164@kindex show monitor-prompt@r{, MIPS remote}
15165Show the current strings @value{GDBN} expects as the prompt from the
15166remote monitor.
15167
15168@item set monitor-warnings
15169@kindex set monitor-warnings@r{, MIPS remote}
15170Enable or disable monitor warnings about hardware breakpoints. This
15171has effect only for the @code{lsi} target. When on, @value{GDBN} will
15172display warning messages whose codes are returned by the @code{lsi}
15173PMON monitor for breakpoint commands.
15174
15175@item show monitor-warnings
15176@kindex show monitor-warnings@r{, MIPS remote}
15177Show the current setting of printing monitor warnings.
15178
15179@item pmon @var{command}
15180@kindex pmon@r{, MIPS remote}
15181@cindex send PMON command
15182This command allows sending an arbitrary @var{command} string to the
15183monitor. The monitor must be in debug mode for this to work.
8e04817f 15184@end table
104c1213 15185
a37295f9
MM
15186@node OpenRISC 1000
15187@subsection OpenRISC 1000
15188@cindex OpenRISC 1000
15189
15190@cindex or1k boards
15191See OR1k Architecture document (@uref{www.opencores.org}) for more information
15192about platform and commands.
15193
15194@table @code
15195
15196@kindex target jtag
15197@item target jtag jtag://@var{host}:@var{port}
15198
15199Connects to remote JTAG server.
15200JTAG remote server can be either an or1ksim or JTAG server,
15201connected via parallel port to the board.
15202
15203Example: @code{target jtag jtag://localhost:9999}
15204
15205@kindex or1ksim
15206@item or1ksim @var{command}
15207If connected to @code{or1ksim} OpenRISC 1000 Architectural
15208Simulator, proprietary commands can be executed.
15209
15210@kindex info or1k spr
15211@item info or1k spr
15212Displays spr groups.
15213
15214@item info or1k spr @var{group}
15215@itemx info or1k spr @var{groupno}
15216Displays register names in selected group.
15217
15218@item info or1k spr @var{group} @var{register}
15219@itemx info or1k spr @var{register}
15220@itemx info or1k spr @var{groupno} @var{registerno}
15221@itemx info or1k spr @var{registerno}
15222Shows information about specified spr register.
15223
15224@kindex spr
15225@item spr @var{group} @var{register} @var{value}
15226@itemx spr @var{register @var{value}}
15227@itemx spr @var{groupno} @var{registerno @var{value}}
15228@itemx spr @var{registerno @var{value}}
15229Writes @var{value} to specified spr register.
15230@end table
15231
15232Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15233It is very similar to @value{GDBN} trace, except it does not interfere with normal
15234program execution and is thus much faster. Hardware breakpoints/watchpoint
15235triggers can be set using:
15236@table @code
15237@item $LEA/$LDATA
15238Load effective address/data
15239@item $SEA/$SDATA
15240Store effective address/data
15241@item $AEA/$ADATA
15242Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15243@item $FETCH
15244Fetch data
15245@end table
15246
15247When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15248@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15249
15250@code{htrace} commands:
15251@cindex OpenRISC 1000 htrace
15252@table @code
15253@kindex hwatch
15254@item hwatch @var{conditional}
d3e8051b 15255Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15256or Data. For example:
15257
15258@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15259
15260@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15261
4644b6e3 15262@kindex htrace
a37295f9
MM
15263@item htrace info
15264Display information about current HW trace configuration.
15265
a37295f9
MM
15266@item htrace trigger @var{conditional}
15267Set starting criteria for HW trace.
15268
a37295f9
MM
15269@item htrace qualifier @var{conditional}
15270Set acquisition qualifier for HW trace.
15271
a37295f9
MM
15272@item htrace stop @var{conditional}
15273Set HW trace stopping criteria.
15274
f153cc92 15275@item htrace record [@var{data}]*
a37295f9
MM
15276Selects the data to be recorded, when qualifier is met and HW trace was
15277triggered.
15278
a37295f9 15279@item htrace enable
a37295f9
MM
15280@itemx htrace disable
15281Enables/disables the HW trace.
15282
f153cc92 15283@item htrace rewind [@var{filename}]
a37295f9
MM
15284Clears currently recorded trace data.
15285
15286If filename is specified, new trace file is made and any newly collected data
15287will be written there.
15288
f153cc92 15289@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15290Prints trace buffer, using current record configuration.
15291
a37295f9
MM
15292@item htrace mode continuous
15293Set continuous trace mode.
15294
a37295f9
MM
15295@item htrace mode suspend
15296Set suspend trace mode.
15297
15298@end table
15299
4acd40f3
TJB
15300@node PowerPC Embedded
15301@subsection PowerPC Embedded
104c1213 15302
55eddb0f
DJ
15303@value{GDBN} provides the following PowerPC-specific commands:
15304
104c1213 15305@table @code
55eddb0f
DJ
15306@kindex set powerpc
15307@item set powerpc soft-float
15308@itemx show powerpc soft-float
15309Force @value{GDBN} to use (or not use) a software floating point calling
15310convention. By default, @value{GDBN} selects the calling convention based
15311on the selected architecture and the provided executable file.
15312
15313@item set powerpc vector-abi
15314@itemx show powerpc vector-abi
15315Force @value{GDBN} to use the specified calling convention for vector
15316arguments and return values. The valid options are @samp{auto};
15317@samp{generic}, to avoid vector registers even if they are present;
15318@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15319registers. By default, @value{GDBN} selects the calling convention
15320based on the selected architecture and the provided executable file.
15321
8e04817f
AC
15322@kindex target dink32
15323@item target dink32 @var{dev}
15324DINK32 ROM monitor.
104c1213 15325
8e04817f
AC
15326@kindex target ppcbug
15327@item target ppcbug @var{dev}
15328@kindex target ppcbug1
15329@item target ppcbug1 @var{dev}
15330PPCBUG ROM monitor for PowerPC.
104c1213 15331
8e04817f
AC
15332@kindex target sds
15333@item target sds @var{dev}
15334SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15335@end table
8e04817f 15336
c45da7e6 15337@cindex SDS protocol
d52fb0e9 15338The following commands specific to the SDS protocol are supported
55eddb0f 15339by @value{GDBN}:
c45da7e6
EZ
15340
15341@table @code
15342@item set sdstimeout @var{nsec}
15343@kindex set sdstimeout
15344Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15345default is 2 seconds.
15346
15347@item show sdstimeout
15348@kindex show sdstimeout
15349Show the current value of the SDS timeout.
15350
15351@item sds @var{command}
15352@kindex sds@r{, a command}
15353Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15354@end table
15355
c45da7e6 15356
8e04817f
AC
15357@node PA
15358@subsection HP PA Embedded
104c1213
JM
15359
15360@table @code
15361
8e04817f
AC
15362@kindex target op50n
15363@item target op50n @var{dev}
15364OP50N monitor, running on an OKI HPPA board.
15365
15366@kindex target w89k
15367@item target w89k @var{dev}
15368W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15369
15370@end table
15371
8e04817f
AC
15372@node Sparclet
15373@subsection Tsqware Sparclet
104c1213 15374
8e04817f
AC
15375@cindex Sparclet
15376
15377@value{GDBN} enables developers to debug tasks running on
15378Sparclet targets from a Unix host.
15379@value{GDBN} uses code that runs on
15380both the Unix host and on the Sparclet target. The program
15381@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15382
8e04817f
AC
15383@table @code
15384@item remotetimeout @var{args}
15385@kindex remotetimeout
15386@value{GDBN} supports the option @code{remotetimeout}.
15387This option is set by the user, and @var{args} represents the number of
15388seconds @value{GDBN} waits for responses.
104c1213
JM
15389@end table
15390
8e04817f
AC
15391@cindex compiling, on Sparclet
15392When compiling for debugging, include the options @samp{-g} to get debug
15393information and @samp{-Ttext} to relocate the program to where you wish to
15394load it on the target. You may also want to add the options @samp{-n} or
15395@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15396
474c8240 15397@smallexample
8e04817f 15398sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15399@end smallexample
104c1213 15400
8e04817f 15401You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15402
474c8240 15403@smallexample
8e04817f 15404sparclet-aout-objdump --headers --syms prog
474c8240 15405@end smallexample
104c1213 15406
8e04817f
AC
15407@cindex running, on Sparclet
15408Once you have set
15409your Unix execution search path to find @value{GDBN}, you are ready to
15410run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15411(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15412
8e04817f
AC
15413@value{GDBN} comes up showing the prompt:
15414
474c8240 15415@smallexample
8e04817f 15416(gdbslet)
474c8240 15417@end smallexample
104c1213
JM
15418
15419@menu
8e04817f
AC
15420* Sparclet File:: Setting the file to debug
15421* Sparclet Connection:: Connecting to Sparclet
15422* Sparclet Download:: Sparclet download
15423* Sparclet Execution:: Running and debugging
104c1213
JM
15424@end menu
15425
8e04817f 15426@node Sparclet File
79a6e687 15427@subsubsection Setting File to Debug
104c1213 15428
8e04817f 15429The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15430
474c8240 15431@smallexample
8e04817f 15432(gdbslet) file prog
474c8240 15433@end smallexample
104c1213 15434
8e04817f
AC
15435@need 1000
15436@value{GDBN} then attempts to read the symbol table of @file{prog}.
15437@value{GDBN} locates
15438the file by searching the directories listed in the command search
15439path.
12c27660 15440If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15441files will be searched as well.
15442@value{GDBN} locates
15443the source files by searching the directories listed in the directory search
79a6e687 15444path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15445If it fails
15446to find a file, it displays a message such as:
104c1213 15447
474c8240 15448@smallexample
8e04817f 15449prog: No such file or directory.
474c8240 15450@end smallexample
104c1213 15451
8e04817f
AC
15452When this happens, add the appropriate directories to the search paths with
15453the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15454@code{target} command again.
104c1213 15455
8e04817f
AC
15456@node Sparclet Connection
15457@subsubsection Connecting to Sparclet
104c1213 15458
8e04817f
AC
15459The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15460To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15461
474c8240 15462@smallexample
8e04817f
AC
15463(gdbslet) target sparclet /dev/ttya
15464Remote target sparclet connected to /dev/ttya
15465main () at ../prog.c:3
474c8240 15466@end smallexample
104c1213 15467
8e04817f
AC
15468@need 750
15469@value{GDBN} displays messages like these:
104c1213 15470
474c8240 15471@smallexample
8e04817f 15472Connected to ttya.
474c8240 15473@end smallexample
104c1213 15474
8e04817f 15475@node Sparclet Download
79a6e687 15476@subsubsection Sparclet Download
104c1213 15477
8e04817f
AC
15478@cindex download to Sparclet
15479Once connected to the Sparclet target,
15480you can use the @value{GDBN}
15481@code{load} command to download the file from the host to the target.
15482The file name and load offset should be given as arguments to the @code{load}
15483command.
15484Since the file format is aout, the program must be loaded to the starting
15485address. You can use @code{objdump} to find out what this value is. The load
15486offset is an offset which is added to the VMA (virtual memory address)
15487of each of the file's sections.
15488For instance, if the program
15489@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15490and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15491
474c8240 15492@smallexample
8e04817f
AC
15493(gdbslet) load prog 0x12010000
15494Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15495@end smallexample
104c1213 15496
8e04817f
AC
15497If the code is loaded at a different address then what the program was linked
15498to, you may need to use the @code{section} and @code{add-symbol-file} commands
15499to tell @value{GDBN} where to map the symbol table.
15500
15501@node Sparclet Execution
79a6e687 15502@subsubsection Running and Debugging
8e04817f
AC
15503
15504@cindex running and debugging Sparclet programs
15505You can now begin debugging the task using @value{GDBN}'s execution control
15506commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15507manual for the list of commands.
15508
474c8240 15509@smallexample
8e04817f
AC
15510(gdbslet) b main
15511Breakpoint 1 at 0x12010000: file prog.c, line 3.
15512(gdbslet) run
15513Starting program: prog
15514Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
155153 char *symarg = 0;
15516(gdbslet) step
155174 char *execarg = "hello!";
15518(gdbslet)
474c8240 15519@end smallexample
8e04817f
AC
15520
15521@node Sparclite
15522@subsection Fujitsu Sparclite
104c1213
JM
15523
15524@table @code
15525
8e04817f
AC
15526@kindex target sparclite
15527@item target sparclite @var{dev}
15528Fujitsu sparclite boards, used only for the purpose of loading.
15529You must use an additional command to debug the program.
15530For example: target remote @var{dev} using @value{GDBN} standard
15531remote protocol.
104c1213
JM
15532
15533@end table
15534
8e04817f
AC
15535@node Z8000
15536@subsection Zilog Z8000
104c1213 15537
8e04817f
AC
15538@cindex Z8000
15539@cindex simulator, Z8000
15540@cindex Zilog Z8000 simulator
104c1213 15541
8e04817f
AC
15542When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15543a Z8000 simulator.
15544
15545For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15546unsegmented variant of the Z8000 architecture) or the Z8001 (the
15547segmented variant). The simulator recognizes which architecture is
15548appropriate by inspecting the object code.
104c1213 15549
8e04817f
AC
15550@table @code
15551@item target sim @var{args}
15552@kindex sim
15553@kindex target sim@r{, with Z8000}
15554Debug programs on a simulated CPU. If the simulator supports setup
15555options, specify them via @var{args}.
104c1213
JM
15556@end table
15557
8e04817f
AC
15558@noindent
15559After specifying this target, you can debug programs for the simulated
15560CPU in the same style as programs for your host computer; use the
15561@code{file} command to load a new program image, the @code{run} command
15562to run your program, and so on.
15563
15564As well as making available all the usual machine registers
15565(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15566additional items of information as specially named registers:
104c1213
JM
15567
15568@table @code
15569
8e04817f
AC
15570@item cycles
15571Counts clock-ticks in the simulator.
104c1213 15572
8e04817f
AC
15573@item insts
15574Counts instructions run in the simulator.
104c1213 15575
8e04817f
AC
15576@item time
15577Execution time in 60ths of a second.
104c1213 15578
8e04817f 15579@end table
104c1213 15580
8e04817f
AC
15581You can refer to these values in @value{GDBN} expressions with the usual
15582conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15583conditional breakpoint that suspends only after at least 5000
15584simulated clock ticks.
104c1213 15585
a64548ea
EZ
15586@node AVR
15587@subsection Atmel AVR
15588@cindex AVR
15589
15590When configured for debugging the Atmel AVR, @value{GDBN} supports the
15591following AVR-specific commands:
15592
15593@table @code
15594@item info io_registers
15595@kindex info io_registers@r{, AVR}
15596@cindex I/O registers (Atmel AVR)
15597This command displays information about the AVR I/O registers. For
15598each register, @value{GDBN} prints its number and value.
15599@end table
15600
15601@node CRIS
15602@subsection CRIS
15603@cindex CRIS
15604
15605When configured for debugging CRIS, @value{GDBN} provides the
15606following CRIS-specific commands:
15607
15608@table @code
15609@item set cris-version @var{ver}
15610@cindex CRIS version
e22e55c9
OF
15611Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15612The CRIS version affects register names and sizes. This command is useful in
15613case autodetection of the CRIS version fails.
a64548ea
EZ
15614
15615@item show cris-version
15616Show the current CRIS version.
15617
15618@item set cris-dwarf2-cfi
15619@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15620Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15621Change to @samp{off} when using @code{gcc-cris} whose version is below
15622@code{R59}.
a64548ea
EZ
15623
15624@item show cris-dwarf2-cfi
15625Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15626
15627@item set cris-mode @var{mode}
15628@cindex CRIS mode
15629Set the current CRIS mode to @var{mode}. It should only be changed when
15630debugging in guru mode, in which case it should be set to
15631@samp{guru} (the default is @samp{normal}).
15632
15633@item show cris-mode
15634Show the current CRIS mode.
a64548ea
EZ
15635@end table
15636
15637@node Super-H
15638@subsection Renesas Super-H
15639@cindex Super-H
15640
15641For the Renesas Super-H processor, @value{GDBN} provides these
15642commands:
15643
15644@table @code
15645@item regs
15646@kindex regs@r{, Super-H}
15647Show the values of all Super-H registers.
15648@end table
15649
15650
8e04817f
AC
15651@node Architectures
15652@section Architectures
104c1213 15653
8e04817f
AC
15654This section describes characteristics of architectures that affect
15655all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15656
8e04817f 15657@menu
9c16f35a 15658* i386::
8e04817f
AC
15659* A29K::
15660* Alpha::
15661* MIPS::
a64548ea 15662* HPPA:: HP PA architecture
23d964e7 15663* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15664* PowerPC::
8e04817f 15665@end menu
104c1213 15666
9c16f35a 15667@node i386
db2e3e2e 15668@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15669
15670@table @code
15671@item set struct-convention @var{mode}
15672@kindex set struct-convention
15673@cindex struct return convention
15674@cindex struct/union returned in registers
15675Set the convention used by the inferior to return @code{struct}s and
15676@code{union}s from functions to @var{mode}. Possible values of
15677@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15678default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15679are returned on the stack, while @code{"reg"} means that a
15680@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15681be returned in a register.
15682
15683@item show struct-convention
15684@kindex show struct-convention
15685Show the current setting of the convention to return @code{struct}s
15686from functions.
15687@end table
15688
8e04817f
AC
15689@node A29K
15690@subsection A29K
104c1213
JM
15691
15692@table @code
104c1213 15693
8e04817f
AC
15694@kindex set rstack_high_address
15695@cindex AMD 29K register stack
15696@cindex register stack, AMD29K
15697@item set rstack_high_address @var{address}
15698On AMD 29000 family processors, registers are saved in a separate
15699@dfn{register stack}. There is no way for @value{GDBN} to determine the
15700extent of this stack. Normally, @value{GDBN} just assumes that the
15701stack is ``large enough''. This may result in @value{GDBN} referencing
15702memory locations that do not exist. If necessary, you can get around
15703this problem by specifying the ending address of the register stack with
15704the @code{set rstack_high_address} command. The argument should be an
15705address, which you probably want to precede with @samp{0x} to specify in
15706hexadecimal.
104c1213 15707
8e04817f
AC
15708@kindex show rstack_high_address
15709@item show rstack_high_address
15710Display the current limit of the register stack, on AMD 29000 family
15711processors.
104c1213 15712
8e04817f 15713@end table
104c1213 15714
8e04817f
AC
15715@node Alpha
15716@subsection Alpha
104c1213 15717
8e04817f 15718See the following section.
104c1213 15719
8e04817f
AC
15720@node MIPS
15721@subsection MIPS
104c1213 15722
8e04817f
AC
15723@cindex stack on Alpha
15724@cindex stack on MIPS
15725@cindex Alpha stack
15726@cindex MIPS stack
15727Alpha- and MIPS-based computers use an unusual stack frame, which
15728sometimes requires @value{GDBN} to search backward in the object code to
15729find the beginning of a function.
104c1213 15730
8e04817f
AC
15731@cindex response time, MIPS debugging
15732To improve response time (especially for embedded applications, where
15733@value{GDBN} may be restricted to a slow serial line for this search)
15734you may want to limit the size of this search, using one of these
15735commands:
104c1213 15736
8e04817f
AC
15737@table @code
15738@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15739@item set heuristic-fence-post @var{limit}
15740Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15741search for the beginning of a function. A value of @var{0} (the
15742default) means there is no limit. However, except for @var{0}, the
15743larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15744and therefore the longer it takes to run. You should only need to use
15745this command when debugging a stripped executable.
104c1213 15746
8e04817f
AC
15747@item show heuristic-fence-post
15748Display the current limit.
15749@end table
104c1213
JM
15750
15751@noindent
8e04817f
AC
15752These commands are available @emph{only} when @value{GDBN} is configured
15753for debugging programs on Alpha or MIPS processors.
104c1213 15754
a64548ea
EZ
15755Several MIPS-specific commands are available when debugging MIPS
15756programs:
15757
15758@table @code
a64548ea
EZ
15759@item set mips abi @var{arg}
15760@kindex set mips abi
15761@cindex set ABI for MIPS
15762Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15763values of @var{arg} are:
15764
15765@table @samp
15766@item auto
15767The default ABI associated with the current binary (this is the
15768default).
15769@item o32
15770@item o64
15771@item n32
15772@item n64
15773@item eabi32
15774@item eabi64
15775@item auto
15776@end table
15777
15778@item show mips abi
15779@kindex show mips abi
15780Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15781
15782@item set mipsfpu
15783@itemx show mipsfpu
15784@xref{MIPS Embedded, set mipsfpu}.
15785
15786@item set mips mask-address @var{arg}
15787@kindex set mips mask-address
15788@cindex MIPS addresses, masking
15789This command determines whether the most-significant 32 bits of 64-bit
15790MIPS addresses are masked off. The argument @var{arg} can be
15791@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15792setting, which lets @value{GDBN} determine the correct value.
15793
15794@item show mips mask-address
15795@kindex show mips mask-address
15796Show whether the upper 32 bits of MIPS addresses are masked off or
15797not.
15798
15799@item set remote-mips64-transfers-32bit-regs
15800@kindex set remote-mips64-transfers-32bit-regs
15801This command controls compatibility with 64-bit MIPS targets that
15802transfer data in 32-bit quantities. If you have an old MIPS 64 target
15803that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15804and 64 bits for other registers, set this option to @samp{on}.
15805
15806@item show remote-mips64-transfers-32bit-regs
15807@kindex show remote-mips64-transfers-32bit-regs
15808Show the current setting of compatibility with older MIPS 64 targets.
15809
15810@item set debug mips
15811@kindex set debug mips
15812This command turns on and off debugging messages for the MIPS-specific
15813target code in @value{GDBN}.
15814
15815@item show debug mips
15816@kindex show debug mips
15817Show the current setting of MIPS debugging messages.
15818@end table
15819
15820
15821@node HPPA
15822@subsection HPPA
15823@cindex HPPA support
15824
d3e8051b 15825When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15826following special commands:
15827
15828@table @code
15829@item set debug hppa
15830@kindex set debug hppa
db2e3e2e 15831This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15832messages are to be displayed.
15833
15834@item show debug hppa
15835Show whether HPPA debugging messages are displayed.
15836
15837@item maint print unwind @var{address}
15838@kindex maint print unwind@r{, HPPA}
15839This command displays the contents of the unwind table entry at the
15840given @var{address}.
15841
15842@end table
15843
104c1213 15844
23d964e7
UW
15845@node SPU
15846@subsection Cell Broadband Engine SPU architecture
15847@cindex Cell Broadband Engine
15848@cindex SPU
15849
15850When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15851it provides the following special commands:
15852
15853@table @code
15854@item info spu event
15855@kindex info spu
15856Display SPU event facility status. Shows current event mask
15857and pending event status.
15858
15859@item info spu signal
15860Display SPU signal notification facility status. Shows pending
15861signal-control word and signal notification mode of both signal
15862notification channels.
15863
15864@item info spu mailbox
15865Display SPU mailbox facility status. Shows all pending entries,
15866in order of processing, in each of the SPU Write Outbound,
15867SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15868
15869@item info spu dma
15870Display MFC DMA status. Shows all pending commands in the MFC
15871DMA queue. For each entry, opcode, tag, class IDs, effective
15872and local store addresses and transfer size are shown.
15873
15874@item info spu proxydma
15875Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15876Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15877and local store addresses and transfer size are shown.
15878
15879@end table
15880
4acd40f3
TJB
15881@node PowerPC
15882@subsection PowerPC
15883@cindex PowerPC architecture
15884
15885When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
15886pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
15887numbers stored in the floating point registers. These values must be stored
15888in two consecutive registers, always starting at an even register like
15889@code{f0} or @code{f2}.
15890
15891The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
15892by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
15893@code{f2} and @code{f3} for @code{$dl1} and so on.
15894
23d964e7 15895
8e04817f
AC
15896@node Controlling GDB
15897@chapter Controlling @value{GDBN}
15898
15899You can alter the way @value{GDBN} interacts with you by using the
15900@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15901data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15902described here.
15903
15904@menu
15905* Prompt:: Prompt
15906* Editing:: Command editing
d620b259 15907* Command History:: Command history
8e04817f
AC
15908* Screen Size:: Screen size
15909* Numbers:: Numbers
1e698235 15910* ABI:: Configuring the current ABI
8e04817f
AC
15911* Messages/Warnings:: Optional warnings and messages
15912* Debugging Output:: Optional messages about internal happenings
15913@end menu
15914
15915@node Prompt
15916@section Prompt
104c1213 15917
8e04817f 15918@cindex prompt
104c1213 15919
8e04817f
AC
15920@value{GDBN} indicates its readiness to read a command by printing a string
15921called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15922can change the prompt string with the @code{set prompt} command. For
15923instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15924the prompt in one of the @value{GDBN} sessions so that you can always tell
15925which one you are talking to.
104c1213 15926
8e04817f
AC
15927@emph{Note:} @code{set prompt} does not add a space for you after the
15928prompt you set. This allows you to set a prompt which ends in a space
15929or a prompt that does not.
104c1213 15930
8e04817f
AC
15931@table @code
15932@kindex set prompt
15933@item set prompt @var{newprompt}
15934Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15935
8e04817f
AC
15936@kindex show prompt
15937@item show prompt
15938Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15939@end table
15940
8e04817f 15941@node Editing
79a6e687 15942@section Command Editing
8e04817f
AC
15943@cindex readline
15944@cindex command line editing
104c1213 15945
703663ab 15946@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15947@sc{gnu} library provides consistent behavior for programs which provide a
15948command line interface to the user. Advantages are @sc{gnu} Emacs-style
15949or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15950substitution, and a storage and recall of command history across
15951debugging sessions.
104c1213 15952
8e04817f
AC
15953You may control the behavior of command line editing in @value{GDBN} with the
15954command @code{set}.
104c1213 15955
8e04817f
AC
15956@table @code
15957@kindex set editing
15958@cindex editing
15959@item set editing
15960@itemx set editing on
15961Enable command line editing (enabled by default).
104c1213 15962
8e04817f
AC
15963@item set editing off
15964Disable command line editing.
104c1213 15965
8e04817f
AC
15966@kindex show editing
15967@item show editing
15968Show whether command line editing is enabled.
104c1213
JM
15969@end table
15970
703663ab
EZ
15971@xref{Command Line Editing}, for more details about the Readline
15972interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15973encouraged to read that chapter.
15974
d620b259 15975@node Command History
79a6e687 15976@section Command History
703663ab 15977@cindex command history
8e04817f
AC
15978
15979@value{GDBN} can keep track of the commands you type during your
15980debugging sessions, so that you can be certain of precisely what
15981happened. Use these commands to manage the @value{GDBN} command
15982history facility.
104c1213 15983
703663ab
EZ
15984@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15985package, to provide the history facility. @xref{Using History
15986Interactively}, for the detailed description of the History library.
15987
d620b259 15988To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15989the state which is seen by users, prefix it with @samp{server }
15990(@pxref{Server Prefix}). This
d620b259
NR
15991means that this command will not affect the command history, nor will it
15992affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15993pressed on a line by itself.
15994
15995@cindex @code{server}, command prefix
15996The server prefix does not affect the recording of values into the value
15997history; to print a value without recording it into the value history,
15998use the @code{output} command instead of the @code{print} command.
15999
703663ab
EZ
16000Here is the description of @value{GDBN} commands related to command
16001history.
16002
104c1213 16003@table @code
8e04817f
AC
16004@cindex history substitution
16005@cindex history file
16006@kindex set history filename
4644b6e3 16007@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
16008@item set history filename @var{fname}
16009Set the name of the @value{GDBN} command history file to @var{fname}.
16010This is the file where @value{GDBN} reads an initial command history
16011list, and where it writes the command history from this session when it
16012exits. You can access this list through history expansion or through
16013the history command editing characters listed below. This file defaults
16014to the value of the environment variable @code{GDBHISTFILE}, or to
16015@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
16016is not set.
104c1213 16017
9c16f35a
EZ
16018@cindex save command history
16019@kindex set history save
8e04817f
AC
16020@item set history save
16021@itemx set history save on
16022Record command history in a file, whose name may be specified with the
16023@code{set history filename} command. By default, this option is disabled.
104c1213 16024
8e04817f
AC
16025@item set history save off
16026Stop recording command history in a file.
104c1213 16027
8e04817f 16028@cindex history size
9c16f35a 16029@kindex set history size
6fc08d32 16030@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
16031@item set history size @var{size}
16032Set the number of commands which @value{GDBN} keeps in its history list.
16033This defaults to the value of the environment variable
16034@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
16035@end table
16036
8e04817f 16037History expansion assigns special meaning to the character @kbd{!}.
703663ab 16038@xref{Event Designators}, for more details.
8e04817f 16039
703663ab 16040@cindex history expansion, turn on/off
8e04817f
AC
16041Since @kbd{!} is also the logical not operator in C, history expansion
16042is off by default. If you decide to enable history expansion with the
16043@code{set history expansion on} command, you may sometimes need to
16044follow @kbd{!} (when it is used as logical not, in an expression) with
16045a space or a tab to prevent it from being expanded. The readline
16046history facilities do not attempt substitution on the strings
16047@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
16048
16049The commands to control history expansion are:
104c1213
JM
16050
16051@table @code
8e04817f
AC
16052@item set history expansion on
16053@itemx set history expansion
703663ab 16054@kindex set history expansion
8e04817f 16055Enable history expansion. History expansion is off by default.
104c1213 16056
8e04817f
AC
16057@item set history expansion off
16058Disable history expansion.
104c1213 16059
8e04817f
AC
16060@c @group
16061@kindex show history
16062@item show history
16063@itemx show history filename
16064@itemx show history save
16065@itemx show history size
16066@itemx show history expansion
16067These commands display the state of the @value{GDBN} history parameters.
16068@code{show history} by itself displays all four states.
16069@c @end group
16070@end table
16071
16072@table @code
9c16f35a
EZ
16073@kindex show commands
16074@cindex show last commands
16075@cindex display command history
8e04817f
AC
16076@item show commands
16077Display the last ten commands in the command history.
104c1213 16078
8e04817f
AC
16079@item show commands @var{n}
16080Print ten commands centered on command number @var{n}.
16081
16082@item show commands +
16083Print ten commands just after the commands last printed.
104c1213
JM
16084@end table
16085
8e04817f 16086@node Screen Size
79a6e687 16087@section Screen Size
8e04817f
AC
16088@cindex size of screen
16089@cindex pauses in output
104c1213 16090
8e04817f
AC
16091Certain commands to @value{GDBN} may produce large amounts of
16092information output to the screen. To help you read all of it,
16093@value{GDBN} pauses and asks you for input at the end of each page of
16094output. Type @key{RET} when you want to continue the output, or @kbd{q}
16095to discard the remaining output. Also, the screen width setting
16096determines when to wrap lines of output. Depending on what is being
16097printed, @value{GDBN} tries to break the line at a readable place,
16098rather than simply letting it overflow onto the following line.
16099
16100Normally @value{GDBN} knows the size of the screen from the terminal
16101driver software. For example, on Unix @value{GDBN} uses the termcap data base
16102together with the value of the @code{TERM} environment variable and the
16103@code{stty rows} and @code{stty cols} settings. If this is not correct,
16104you can override it with the @code{set height} and @code{set
16105width} commands:
16106
16107@table @code
16108@kindex set height
16109@kindex set width
16110@kindex show width
16111@kindex show height
16112@item set height @var{lpp}
16113@itemx show height
16114@itemx set width @var{cpl}
16115@itemx show width
16116These @code{set} commands specify a screen height of @var{lpp} lines and
16117a screen width of @var{cpl} characters. The associated @code{show}
16118commands display the current settings.
104c1213 16119
8e04817f
AC
16120If you specify a height of zero lines, @value{GDBN} does not pause during
16121output no matter how long the output is. This is useful if output is to a
16122file or to an editor buffer.
104c1213 16123
8e04817f
AC
16124Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16125from wrapping its output.
9c16f35a
EZ
16126
16127@item set pagination on
16128@itemx set pagination off
16129@kindex set pagination
16130Turn the output pagination on or off; the default is on. Turning
16131pagination off is the alternative to @code{set height 0}.
16132
16133@item show pagination
16134@kindex show pagination
16135Show the current pagination mode.
104c1213
JM
16136@end table
16137
8e04817f
AC
16138@node Numbers
16139@section Numbers
16140@cindex number representation
16141@cindex entering numbers
104c1213 16142
8e04817f
AC
16143You can always enter numbers in octal, decimal, or hexadecimal in
16144@value{GDBN} by the usual conventions: octal numbers begin with
16145@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16146begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16147@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1614810; likewise, the default display for numbers---when no particular
16149format is specified---is base 10. You can change the default base for
16150both input and output with the commands described below.
104c1213 16151
8e04817f
AC
16152@table @code
16153@kindex set input-radix
16154@item set input-radix @var{base}
16155Set the default base for numeric input. Supported choices
16156for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16157specified either unambiguously or using the current input radix; for
8e04817f 16158example, any of
104c1213 16159
8e04817f 16160@smallexample
9c16f35a
EZ
16161set input-radix 012
16162set input-radix 10.
16163set input-radix 0xa
8e04817f 16164@end smallexample
104c1213 16165
8e04817f 16166@noindent
9c16f35a 16167sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16168leaves the input radix unchanged, no matter what it was, since
16169@samp{10}, being without any leading or trailing signs of its base, is
16170interpreted in the current radix. Thus, if the current radix is 16,
16171@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16172change the radix.
104c1213 16173
8e04817f
AC
16174@kindex set output-radix
16175@item set output-radix @var{base}
16176Set the default base for numeric display. Supported choices
16177for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16178specified either unambiguously or using the current input radix.
104c1213 16179
8e04817f
AC
16180@kindex show input-radix
16181@item show input-radix
16182Display the current default base for numeric input.
104c1213 16183
8e04817f
AC
16184@kindex show output-radix
16185@item show output-radix
16186Display the current default base for numeric display.
9c16f35a
EZ
16187
16188@item set radix @r{[}@var{base}@r{]}
16189@itemx show radix
16190@kindex set radix
16191@kindex show radix
16192These commands set and show the default base for both input and output
16193of numbers. @code{set radix} sets the radix of input and output to
16194the same base; without an argument, it resets the radix back to its
16195default value of 10.
16196
8e04817f 16197@end table
104c1213 16198
1e698235 16199@node ABI
79a6e687 16200@section Configuring the Current ABI
1e698235
DJ
16201
16202@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16203application automatically. However, sometimes you need to override its
16204conclusions. Use these commands to manage @value{GDBN}'s view of the
16205current ABI.
16206
98b45e30
DJ
16207@cindex OS ABI
16208@kindex set osabi
b4e9345d 16209@kindex show osabi
98b45e30
DJ
16210
16211One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16212system targets, either via remote debugging or native emulation.
98b45e30
DJ
16213@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16214but you can override its conclusion using the @code{set osabi} command.
16215One example where this is useful is in debugging of binaries which use
16216an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16217not have the same identifying marks that the standard C library for your
16218platform provides.
16219
16220@table @code
16221@item show osabi
16222Show the OS ABI currently in use.
16223
16224@item set osabi
16225With no argument, show the list of registered available OS ABI's.
16226
16227@item set osabi @var{abi}
16228Set the current OS ABI to @var{abi}.
16229@end table
16230
1e698235 16231@cindex float promotion
1e698235
DJ
16232
16233Generally, the way that an argument of type @code{float} is passed to a
16234function depends on whether the function is prototyped. For a prototyped
16235(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16236according to the architecture's convention for @code{float}. For unprototyped
16237(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16238@code{double} and then passed.
16239
16240Unfortunately, some forms of debug information do not reliably indicate whether
16241a function is prototyped. If @value{GDBN} calls a function that is not marked
16242as prototyped, it consults @kbd{set coerce-float-to-double}.
16243
16244@table @code
a8f24a35 16245@kindex set coerce-float-to-double
1e698235
DJ
16246@item set coerce-float-to-double
16247@itemx set coerce-float-to-double on
16248Arguments of type @code{float} will be promoted to @code{double} when passed
16249to an unprototyped function. This is the default setting.
16250
16251@item set coerce-float-to-double off
16252Arguments of type @code{float} will be passed directly to unprototyped
16253functions.
9c16f35a
EZ
16254
16255@kindex show coerce-float-to-double
16256@item show coerce-float-to-double
16257Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16258@end table
16259
f1212245
DJ
16260@kindex set cp-abi
16261@kindex show cp-abi
16262@value{GDBN} needs to know the ABI used for your program's C@t{++}
16263objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16264used to build your application. @value{GDBN} only fully supports
16265programs with a single C@t{++} ABI; if your program contains code using
16266multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16267program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16268Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16269before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16270``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16271use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16272``auto''.
16273
16274@table @code
16275@item show cp-abi
16276Show the C@t{++} ABI currently in use.
16277
16278@item set cp-abi
16279With no argument, show the list of supported C@t{++} ABI's.
16280
16281@item set cp-abi @var{abi}
16282@itemx set cp-abi auto
16283Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16284@end table
16285
8e04817f 16286@node Messages/Warnings
79a6e687 16287@section Optional Warnings and Messages
104c1213 16288
9c16f35a
EZ
16289@cindex verbose operation
16290@cindex optional warnings
8e04817f
AC
16291By default, @value{GDBN} is silent about its inner workings. If you are
16292running on a slow machine, you may want to use the @code{set verbose}
16293command. This makes @value{GDBN} tell you when it does a lengthy
16294internal operation, so you will not think it has crashed.
104c1213 16295
8e04817f
AC
16296Currently, the messages controlled by @code{set verbose} are those
16297which announce that the symbol table for a source file is being read;
79a6e687 16298see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16299
8e04817f
AC
16300@table @code
16301@kindex set verbose
16302@item set verbose on
16303Enables @value{GDBN} output of certain informational messages.
104c1213 16304
8e04817f
AC
16305@item set verbose off
16306Disables @value{GDBN} output of certain informational messages.
104c1213 16307
8e04817f
AC
16308@kindex show verbose
16309@item show verbose
16310Displays whether @code{set verbose} is on or off.
16311@end table
104c1213 16312
8e04817f
AC
16313By default, if @value{GDBN} encounters bugs in the symbol table of an
16314object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16315find this information useful (@pxref{Symbol Errors, ,Errors Reading
16316Symbol Files}).
104c1213 16317
8e04817f 16318@table @code
104c1213 16319
8e04817f
AC
16320@kindex set complaints
16321@item set complaints @var{limit}
16322Permits @value{GDBN} to output @var{limit} complaints about each type of
16323unusual symbols before becoming silent about the problem. Set
16324@var{limit} to zero to suppress all complaints; set it to a large number
16325to prevent complaints from being suppressed.
104c1213 16326
8e04817f
AC
16327@kindex show complaints
16328@item show complaints
16329Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16330
8e04817f 16331@end table
104c1213 16332
8e04817f
AC
16333By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16334lot of stupid questions to confirm certain commands. For example, if
16335you try to run a program which is already running:
104c1213 16336
474c8240 16337@smallexample
8e04817f
AC
16338(@value{GDBP}) run
16339The program being debugged has been started already.
16340Start it from the beginning? (y or n)
474c8240 16341@end smallexample
104c1213 16342
8e04817f
AC
16343If you are willing to unflinchingly face the consequences of your own
16344commands, you can disable this ``feature'':
104c1213 16345
8e04817f 16346@table @code
104c1213 16347
8e04817f
AC
16348@kindex set confirm
16349@cindex flinching
16350@cindex confirmation
16351@cindex stupid questions
16352@item set confirm off
16353Disables confirmation requests.
104c1213 16354
8e04817f
AC
16355@item set confirm on
16356Enables confirmation requests (the default).
104c1213 16357
8e04817f
AC
16358@kindex show confirm
16359@item show confirm
16360Displays state of confirmation requests.
16361
16362@end table
104c1213 16363
16026cd7
AS
16364@cindex command tracing
16365If you need to debug user-defined commands or sourced files you may find it
16366useful to enable @dfn{command tracing}. In this mode each command will be
16367printed as it is executed, prefixed with one or more @samp{+} symbols, the
16368quantity denoting the call depth of each command.
16369
16370@table @code
16371@kindex set trace-commands
16372@cindex command scripts, debugging
16373@item set trace-commands on
16374Enable command tracing.
16375@item set trace-commands off
16376Disable command tracing.
16377@item show trace-commands
16378Display the current state of command tracing.
16379@end table
16380
8e04817f 16381@node Debugging Output
79a6e687 16382@section Optional Messages about Internal Happenings
4644b6e3
EZ
16383@cindex optional debugging messages
16384
da316a69
EZ
16385@value{GDBN} has commands that enable optional debugging messages from
16386various @value{GDBN} subsystems; normally these commands are of
16387interest to @value{GDBN} maintainers, or when reporting a bug. This
16388section documents those commands.
16389
104c1213 16390@table @code
a8f24a35
EZ
16391@kindex set exec-done-display
16392@item set exec-done-display
16393Turns on or off the notification of asynchronous commands'
16394completion. When on, @value{GDBN} will print a message when an
16395asynchronous command finishes its execution. The default is off.
16396@kindex show exec-done-display
16397@item show exec-done-display
16398Displays the current setting of asynchronous command completion
16399notification.
4644b6e3
EZ
16400@kindex set debug
16401@cindex gdbarch debugging info
a8f24a35 16402@cindex architecture debugging info
8e04817f 16403@item set debug arch
a8f24a35 16404Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16405@kindex show debug
8e04817f
AC
16406@item show debug arch
16407Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16408@item set debug aix-thread
16409@cindex AIX threads
16410Display debugging messages about inner workings of the AIX thread
16411module.
16412@item show debug aix-thread
16413Show the current state of AIX thread debugging info display.
8e04817f 16414@item set debug event
4644b6e3 16415@cindex event debugging info
a8f24a35 16416Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16417default is off.
8e04817f
AC
16418@item show debug event
16419Displays the current state of displaying @value{GDBN} event debugging
16420info.
8e04817f 16421@item set debug expression
4644b6e3 16422@cindex expression debugging info
721c2651
EZ
16423Turns on or off display of debugging info about @value{GDBN}
16424expression parsing. The default is off.
8e04817f 16425@item show debug expression
721c2651
EZ
16426Displays the current state of displaying debugging info about
16427@value{GDBN} expression parsing.
7453dc06 16428@item set debug frame
4644b6e3 16429@cindex frame debugging info
7453dc06
AC
16430Turns on or off display of @value{GDBN} frame debugging info. The
16431default is off.
7453dc06
AC
16432@item show debug frame
16433Displays the current state of displaying @value{GDBN} frame debugging
16434info.
30e91e0b
RC
16435@item set debug infrun
16436@cindex inferior debugging info
16437Turns on or off display of @value{GDBN} debugging info for running the inferior.
16438The default is off. @file{infrun.c} contains GDB's runtime state machine used
16439for implementing operations such as single-stepping the inferior.
16440@item show debug infrun
16441Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16442@item set debug lin-lwp
16443@cindex @sc{gnu}/Linux LWP debug messages
16444@cindex Linux lightweight processes
721c2651 16445Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16446@item show debug lin-lwp
16447Show the current state of Linux LWP debugging messages.
b84876c2
PA
16448@item set debug lin-lwp-async
16449@cindex @sc{gnu}/Linux LWP async debug messages
16450@cindex Linux lightweight processes
16451Turns on or off debugging messages from the Linux LWP async debug support.
16452@item show debug lin-lwp-async
16453Show the current state of Linux LWP async debugging messages.
2b4855ab 16454@item set debug observer
4644b6e3 16455@cindex observer debugging info
2b4855ab
AC
16456Turns on or off display of @value{GDBN} observer debugging. This
16457includes info such as the notification of observable events.
2b4855ab
AC
16458@item show debug observer
16459Displays the current state of observer debugging.
8e04817f 16460@item set debug overload
4644b6e3 16461@cindex C@t{++} overload debugging info
8e04817f 16462Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16463info. This includes info such as ranking of functions, etc. The default
8e04817f 16464is off.
8e04817f
AC
16465@item show debug overload
16466Displays the current state of displaying @value{GDBN} C@t{++} overload
16467debugging info.
8e04817f
AC
16468@cindex packets, reporting on stdout
16469@cindex serial connections, debugging
605a56cb
DJ
16470@cindex debug remote protocol
16471@cindex remote protocol debugging
16472@cindex display remote packets
8e04817f
AC
16473@item set debug remote
16474Turns on or off display of reports on all packets sent back and forth across
16475the serial line to the remote machine. The info is printed on the
16476@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16477@item show debug remote
16478Displays the state of display of remote packets.
8e04817f
AC
16479@item set debug serial
16480Turns on or off display of @value{GDBN} serial debugging info. The
16481default is off.
8e04817f
AC
16482@item show debug serial
16483Displays the current state of displaying @value{GDBN} serial debugging
16484info.
c45da7e6
EZ
16485@item set debug solib-frv
16486@cindex FR-V shared-library debugging
16487Turns on or off debugging messages for FR-V shared-library code.
16488@item show debug solib-frv
16489Display the current state of FR-V shared-library code debugging
16490messages.
8e04817f 16491@item set debug target
4644b6e3 16492@cindex target debugging info
8e04817f
AC
16493Turns on or off display of @value{GDBN} target debugging info. This info
16494includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16495default is 0. Set it to 1 to track events, and to 2 to also track the
16496value of large memory transfers. Changes to this flag do not take effect
16497until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16498@item show debug target
16499Displays the current state of displaying @value{GDBN} target debugging
16500info.
75feb17d
DJ
16501@item set debug timestamp
16502@cindex timestampping debugging info
16503Turns on or off display of timestamps with @value{GDBN} debugging info.
16504When enabled, seconds and microseconds are displayed before each debugging
16505message.
16506@item show debug timestamp
16507Displays the current state of displaying timestamps with @value{GDBN}
16508debugging info.
c45da7e6 16509@item set debugvarobj
4644b6e3 16510@cindex variable object debugging info
8e04817f
AC
16511Turns on or off display of @value{GDBN} variable object debugging
16512info. The default is off.
c45da7e6 16513@item show debugvarobj
8e04817f
AC
16514Displays the current state of displaying @value{GDBN} variable object
16515debugging info.
e776119f
DJ
16516@item set debug xml
16517@cindex XML parser debugging
16518Turns on or off debugging messages for built-in XML parsers.
16519@item show debug xml
16520Displays the current state of XML debugging messages.
8e04817f 16521@end table
104c1213 16522
8e04817f
AC
16523@node Sequences
16524@chapter Canned Sequences of Commands
104c1213 16525
8e04817f 16526Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16527Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16528commands for execution as a unit: user-defined commands and command
16529files.
104c1213 16530
8e04817f 16531@menu
fcc73fe3
EZ
16532* Define:: How to define your own commands
16533* Hooks:: Hooks for user-defined commands
16534* Command Files:: How to write scripts of commands to be stored in a file
16535* Output:: Commands for controlled output
8e04817f 16536@end menu
104c1213 16537
8e04817f 16538@node Define
79a6e687 16539@section User-defined Commands
104c1213 16540
8e04817f 16541@cindex user-defined command
fcc73fe3 16542@cindex arguments, to user-defined commands
8e04817f
AC
16543A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16544which you assign a new name as a command. This is done with the
16545@code{define} command. User commands may accept up to 10 arguments
16546separated by whitespace. Arguments are accessed within the user command
c03c782f 16547via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16548
8e04817f
AC
16549@smallexample
16550define adder
16551 print $arg0 + $arg1 + $arg2
c03c782f 16552end
8e04817f 16553@end smallexample
104c1213
JM
16554
16555@noindent
8e04817f 16556To execute the command use:
104c1213 16557
8e04817f
AC
16558@smallexample
16559adder 1 2 3
16560@end smallexample
104c1213 16561
8e04817f
AC
16562@noindent
16563This defines the command @code{adder}, which prints the sum of
16564its three arguments. Note the arguments are text substitutions, so they may
16565reference variables, use complex expressions, or even perform inferior
16566functions calls.
104c1213 16567
fcc73fe3
EZ
16568@cindex argument count in user-defined commands
16569@cindex how many arguments (user-defined commands)
c03c782f
AS
16570In addition, @code{$argc} may be used to find out how many arguments have
16571been passed. This expands to a number in the range 0@dots{}10.
16572
16573@smallexample
16574define adder
16575 if $argc == 2
16576 print $arg0 + $arg1
16577 end
16578 if $argc == 3
16579 print $arg0 + $arg1 + $arg2
16580 end
16581end
16582@end smallexample
16583
104c1213 16584@table @code
104c1213 16585
8e04817f
AC
16586@kindex define
16587@item define @var{commandname}
16588Define a command named @var{commandname}. If there is already a command
16589by that name, you are asked to confirm that you want to redefine it.
104c1213 16590
8e04817f
AC
16591The definition of the command is made up of other @value{GDBN} command lines,
16592which are given following the @code{define} command. The end of these
16593commands is marked by a line containing @code{end}.
104c1213 16594
8e04817f 16595@kindex document
ca91424e 16596@kindex end@r{ (user-defined commands)}
8e04817f
AC
16597@item document @var{commandname}
16598Document the user-defined command @var{commandname}, so that it can be
16599accessed by @code{help}. The command @var{commandname} must already be
16600defined. This command reads lines of documentation just as @code{define}
16601reads the lines of the command definition, ending with @code{end}.
16602After the @code{document} command is finished, @code{help} on command
16603@var{commandname} displays the documentation you have written.
104c1213 16604
8e04817f
AC
16605You may use the @code{document} command again to change the
16606documentation of a command. Redefining the command with @code{define}
16607does not change the documentation.
104c1213 16608
c45da7e6
EZ
16609@kindex dont-repeat
16610@cindex don't repeat command
16611@item dont-repeat
16612Used inside a user-defined command, this tells @value{GDBN} that this
16613command should not be repeated when the user hits @key{RET}
16614(@pxref{Command Syntax, repeat last command}).
16615
8e04817f
AC
16616@kindex help user-defined
16617@item help user-defined
16618List all user-defined commands, with the first line of the documentation
16619(if any) for each.
104c1213 16620
8e04817f
AC
16621@kindex show user
16622@item show user
16623@itemx show user @var{commandname}
16624Display the @value{GDBN} commands used to define @var{commandname} (but
16625not its documentation). If no @var{commandname} is given, display the
16626definitions for all user-defined commands.
104c1213 16627
fcc73fe3 16628@cindex infinite recursion in user-defined commands
20f01a46
DH
16629@kindex show max-user-call-depth
16630@kindex set max-user-call-depth
16631@item show max-user-call-depth
5ca0cb28
DH
16632@itemx set max-user-call-depth
16633The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16634levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16635infinite recursion and aborts the command.
104c1213
JM
16636@end table
16637
fcc73fe3
EZ
16638In addition to the above commands, user-defined commands frequently
16639use control flow commands, described in @ref{Command Files}.
16640
8e04817f
AC
16641When user-defined commands are executed, the
16642commands of the definition are not printed. An error in any command
16643stops execution of the user-defined command.
104c1213 16644
8e04817f
AC
16645If used interactively, commands that would ask for confirmation proceed
16646without asking when used inside a user-defined command. Many @value{GDBN}
16647commands that normally print messages to say what they are doing omit the
16648messages when used in a user-defined command.
104c1213 16649
8e04817f 16650@node Hooks
79a6e687 16651@section User-defined Command Hooks
8e04817f
AC
16652@cindex command hooks
16653@cindex hooks, for commands
16654@cindex hooks, pre-command
104c1213 16655
8e04817f 16656@kindex hook
8e04817f
AC
16657You may define @dfn{hooks}, which are a special kind of user-defined
16658command. Whenever you run the command @samp{foo}, if the user-defined
16659command @samp{hook-foo} exists, it is executed (with no arguments)
16660before that command.
104c1213 16661
8e04817f
AC
16662@cindex hooks, post-command
16663@kindex hookpost
8e04817f
AC
16664A hook may also be defined which is run after the command you executed.
16665Whenever you run the command @samp{foo}, if the user-defined command
16666@samp{hookpost-foo} exists, it is executed (with no arguments) after
16667that command. Post-execution hooks may exist simultaneously with
16668pre-execution hooks, for the same command.
104c1213 16669
8e04817f 16670It is valid for a hook to call the command which it hooks. If this
9f1c6395 16671occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16672
8e04817f
AC
16673@c It would be nice if hookpost could be passed a parameter indicating
16674@c if the command it hooks executed properly or not. FIXME!
104c1213 16675
8e04817f
AC
16676@kindex stop@r{, a pseudo-command}
16677In addition, a pseudo-command, @samp{stop} exists. Defining
16678(@samp{hook-stop}) makes the associated commands execute every time
16679execution stops in your program: before breakpoint commands are run,
16680displays are printed, or the stack frame is printed.
104c1213 16681
8e04817f
AC
16682For example, to ignore @code{SIGALRM} signals while
16683single-stepping, but treat them normally during normal execution,
16684you could define:
104c1213 16685
474c8240 16686@smallexample
8e04817f
AC
16687define hook-stop
16688handle SIGALRM nopass
16689end
104c1213 16690
8e04817f
AC
16691define hook-run
16692handle SIGALRM pass
16693end
104c1213 16694
8e04817f 16695define hook-continue
d3e8051b 16696handle SIGALRM pass
8e04817f 16697end
474c8240 16698@end smallexample
104c1213 16699
d3e8051b 16700As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16701command, and to add extra text to the beginning and end of the message,
8e04817f 16702you could define:
104c1213 16703
474c8240 16704@smallexample
8e04817f
AC
16705define hook-echo
16706echo <<<---
16707end
104c1213 16708
8e04817f
AC
16709define hookpost-echo
16710echo --->>>\n
16711end
104c1213 16712
8e04817f
AC
16713(@value{GDBP}) echo Hello World
16714<<<---Hello World--->>>
16715(@value{GDBP})
104c1213 16716
474c8240 16717@end smallexample
104c1213 16718
8e04817f
AC
16719You can define a hook for any single-word command in @value{GDBN}, but
16720not for command aliases; you should define a hook for the basic command
c1468174 16721name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16722@c FIXME! So how does Joe User discover whether a command is an alias
16723@c or not?
16724If an error occurs during the execution of your hook, execution of
16725@value{GDBN} commands stops and @value{GDBN} issues a prompt
16726(before the command that you actually typed had a chance to run).
104c1213 16727
8e04817f
AC
16728If you try to define a hook which does not match any known command, you
16729get a warning from the @code{define} command.
c906108c 16730
8e04817f 16731@node Command Files
79a6e687 16732@section Command Files
c906108c 16733
8e04817f 16734@cindex command files
fcc73fe3 16735@cindex scripting commands
6fc08d32
EZ
16736A command file for @value{GDBN} is a text file made of lines that are
16737@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16738also be included. An empty line in a command file does nothing; it
16739does not mean to repeat the last command, as it would from the
16740terminal.
c906108c 16741
6fc08d32
EZ
16742You can request the execution of a command file with the @code{source}
16743command:
c906108c 16744
8e04817f
AC
16745@table @code
16746@kindex source
ca91424e 16747@cindex execute commands from a file
16026cd7 16748@item source [@code{-v}] @var{filename}
8e04817f 16749Execute the command file @var{filename}.
c906108c
SS
16750@end table
16751
fcc73fe3
EZ
16752The lines in a command file are generally executed sequentially,
16753unless the order of execution is changed by one of the
16754@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16755printed as they are executed. An error in any command terminates
16756execution of the command file and control is returned to the console.
c906108c 16757
4b505b12
AS
16758@value{GDBN} searches for @var{filename} in the current directory and then
16759on the search path (specified with the @samp{directory} command).
16760
16026cd7
AS
16761If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16762each command as it is executed. The option must be given before
16763@var{filename}, and is interpreted as part of the filename anywhere else.
16764
8e04817f
AC
16765Commands that would ask for confirmation if used interactively proceed
16766without asking when used in a command file. Many @value{GDBN} commands that
16767normally print messages to say what they are doing omit the messages
16768when called from command files.
c906108c 16769
8e04817f
AC
16770@value{GDBN} also accepts command input from standard input. In this
16771mode, normal output goes to standard output and error output goes to
16772standard error. Errors in a command file supplied on standard input do
6fc08d32 16773not terminate execution of the command file---execution continues with
8e04817f 16774the next command.
c906108c 16775
474c8240 16776@smallexample
8e04817f 16777gdb < cmds > log 2>&1
474c8240 16778@end smallexample
c906108c 16779
8e04817f
AC
16780(The syntax above will vary depending on the shell used.) This example
16781will execute commands from the file @file{cmds}. All output and errors
16782would be directed to @file{log}.
c906108c 16783
fcc73fe3
EZ
16784Since commands stored on command files tend to be more general than
16785commands typed interactively, they frequently need to deal with
16786complicated situations, such as different or unexpected values of
16787variables and symbols, changes in how the program being debugged is
16788built, etc. @value{GDBN} provides a set of flow-control commands to
16789deal with these complexities. Using these commands, you can write
16790complex scripts that loop over data structures, execute commands
16791conditionally, etc.
16792
16793@table @code
16794@kindex if
16795@kindex else
16796@item if
16797@itemx else
16798This command allows to include in your script conditionally executed
16799commands. The @code{if} command takes a single argument, which is an
16800expression to evaluate. It is followed by a series of commands that
16801are executed only if the expression is true (its value is nonzero).
16802There can then optionally be an @code{else} line, followed by a series
16803of commands that are only executed if the expression was false. The
16804end of the list is marked by a line containing @code{end}.
16805
16806@kindex while
16807@item while
16808This command allows to write loops. Its syntax is similar to
16809@code{if}: the command takes a single argument, which is an expression
16810to evaluate, and must be followed by the commands to execute, one per
16811line, terminated by an @code{end}. These commands are called the
16812@dfn{body} of the loop. The commands in the body of @code{while} are
16813executed repeatedly as long as the expression evaluates to true.
16814
16815@kindex loop_break
16816@item loop_break
16817This command exits the @code{while} loop in whose body it is included.
16818Execution of the script continues after that @code{while}s @code{end}
16819line.
16820
16821@kindex loop_continue
16822@item loop_continue
16823This command skips the execution of the rest of the body of commands
16824in the @code{while} loop in whose body it is included. Execution
16825branches to the beginning of the @code{while} loop, where it evaluates
16826the controlling expression.
ca91424e
EZ
16827
16828@kindex end@r{ (if/else/while commands)}
16829@item end
16830Terminate the block of commands that are the body of @code{if},
16831@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16832@end table
16833
16834
8e04817f 16835@node Output
79a6e687 16836@section Commands for Controlled Output
c906108c 16837
8e04817f
AC
16838During the execution of a command file or a user-defined command, normal
16839@value{GDBN} output is suppressed; the only output that appears is what is
16840explicitly printed by the commands in the definition. This section
16841describes three commands useful for generating exactly the output you
16842want.
c906108c
SS
16843
16844@table @code
8e04817f
AC
16845@kindex echo
16846@item echo @var{text}
16847@c I do not consider backslash-space a standard C escape sequence
16848@c because it is not in ANSI.
16849Print @var{text}. Nonprinting characters can be included in
16850@var{text} using C escape sequences, such as @samp{\n} to print a
16851newline. @strong{No newline is printed unless you specify one.}
16852In addition to the standard C escape sequences, a backslash followed
16853by a space stands for a space. This is useful for displaying a
16854string with spaces at the beginning or the end, since leading and
16855trailing spaces are otherwise trimmed from all arguments.
16856To print @samp{@w{ }and foo =@w{ }}, use the command
16857@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16858
8e04817f
AC
16859A backslash at the end of @var{text} can be used, as in C, to continue
16860the command onto subsequent lines. For example,
c906108c 16861
474c8240 16862@smallexample
8e04817f
AC
16863echo This is some text\n\
16864which is continued\n\
16865onto several lines.\n
474c8240 16866@end smallexample
c906108c 16867
8e04817f 16868produces the same output as
c906108c 16869
474c8240 16870@smallexample
8e04817f
AC
16871echo This is some text\n
16872echo which is continued\n
16873echo onto several lines.\n
474c8240 16874@end smallexample
c906108c 16875
8e04817f
AC
16876@kindex output
16877@item output @var{expression}
16878Print the value of @var{expression} and nothing but that value: no
16879newlines, no @samp{$@var{nn} = }. The value is not entered in the
16880value history either. @xref{Expressions, ,Expressions}, for more information
16881on expressions.
c906108c 16882
8e04817f
AC
16883@item output/@var{fmt} @var{expression}
16884Print the value of @var{expression} in format @var{fmt}. You can use
16885the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16886Formats}, for more information.
c906108c 16887
8e04817f 16888@kindex printf
82160952
EZ
16889@item printf @var{template}, @var{expressions}@dots{}
16890Print the values of one or more @var{expressions} under the control of
16891the string @var{template}. To print several values, make
16892@var{expressions} be a comma-separated list of individual expressions,
16893which may be either numbers or pointers. Their values are printed as
16894specified by @var{template}, exactly as a C program would do by
16895executing the code below:
c906108c 16896
474c8240 16897@smallexample
82160952 16898printf (@var{template}, @var{expressions}@dots{});
474c8240 16899@end smallexample
c906108c 16900
82160952
EZ
16901As in @code{C} @code{printf}, ordinary characters in @var{template}
16902are printed verbatim, while @dfn{conversion specification} introduced
16903by the @samp{%} character cause subsequent @var{expressions} to be
16904evaluated, their values converted and formatted according to type and
16905style information encoded in the conversion specifications, and then
16906printed.
16907
8e04817f 16908For example, you can print two values in hex like this:
c906108c 16909
8e04817f
AC
16910@smallexample
16911printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16912@end smallexample
c906108c 16913
82160952
EZ
16914@code{printf} supports all the standard @code{C} conversion
16915specifications, including the flags and modifiers between the @samp{%}
16916character and the conversion letter, with the following exceptions:
16917
16918@itemize @bullet
16919@item
16920The argument-ordering modifiers, such as @samp{2$}, are not supported.
16921
16922@item
16923The modifier @samp{*} is not supported for specifying precision or
16924width.
16925
16926@item
16927The @samp{'} flag (for separation of digits into groups according to
16928@code{LC_NUMERIC'}) is not supported.
16929
16930@item
16931The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16932supported.
16933
16934@item
16935The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16936
16937@item
16938The conversion letters @samp{a} and @samp{A} are not supported.
16939@end itemize
16940
16941@noindent
16942Note that the @samp{ll} type modifier is supported only if the
16943underlying @code{C} implementation used to build @value{GDBN} supports
16944the @code{long long int} type, and the @samp{L} type modifier is
16945supported only if @code{long double} type is available.
16946
16947As in @code{C}, @code{printf} supports simple backslash-escape
16948sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16949@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16950single character. Octal and hexadecimal escape sequences are not
16951supported.
1a619819
LM
16952
16953Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
16954(@dfn{Decimal Floating Point}) types using the following length modifiers
16955together with a floating point specifier.
1a619819
LM
16956letters:
16957
16958@itemize @bullet
16959@item
16960@samp{H} for printing @code{Decimal32} types.
16961
16962@item
16963@samp{D} for printing @code{Decimal64} types.
16964
16965@item
16966@samp{DD} for printing @code{Decimal128} types.
16967@end itemize
16968
16969If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 16970support for the three length modifiers for DFP types, other modifiers
3b784c4f 16971such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16972
16973In case there is no such @code{C} support, no additional modifiers will be
16974available and the value will be printed in the standard way.
16975
16976Here's an example of printing DFP types using the above conversion letters:
16977@smallexample
0aea4bf3 16978printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
16979@end smallexample
16980
c906108c
SS
16981@end table
16982
21c294e6
AC
16983@node Interpreters
16984@chapter Command Interpreters
16985@cindex command interpreters
16986
16987@value{GDBN} supports multiple command interpreters, and some command
16988infrastructure to allow users or user interface writers to switch
16989between interpreters or run commands in other interpreters.
16990
16991@value{GDBN} currently supports two command interpreters, the console
16992interpreter (sometimes called the command-line interpreter or @sc{cli})
16993and the machine interface interpreter (or @sc{gdb/mi}). This manual
16994describes both of these interfaces in great detail.
16995
16996By default, @value{GDBN} will start with the console interpreter.
16997However, the user may choose to start @value{GDBN} with another
16998interpreter by specifying the @option{-i} or @option{--interpreter}
16999startup options. Defined interpreters include:
17000
17001@table @code
17002@item console
17003@cindex console interpreter
17004The traditional console or command-line interpreter. This is the most often
17005used interpreter with @value{GDBN}. With no interpreter specified at runtime,
17006@value{GDBN} will use this interpreter.
17007
17008@item mi
17009@cindex mi interpreter
17010The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
17011by programs wishing to use @value{GDBN} as a backend for a debugger GUI
17012or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
17013Interface}.
17014
17015@item mi2
17016@cindex mi2 interpreter
17017The current @sc{gdb/mi} interface.
17018
17019@item mi1
17020@cindex mi1 interpreter
17021The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
17022
17023@end table
17024
17025@cindex invoke another interpreter
17026The interpreter being used by @value{GDBN} may not be dynamically
17027switched at runtime. Although possible, this could lead to a very
17028precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
17029enters the command "interpreter-set console" in a console view,
17030@value{GDBN} would switch to using the console interpreter, rendering
17031the IDE inoperable!
17032
17033@kindex interpreter-exec
17034Although you may only choose a single interpreter at startup, you may execute
17035commands in any interpreter from the current interpreter using the appropriate
17036command. If you are running the console interpreter, simply use the
17037@code{interpreter-exec} command:
17038
17039@smallexample
17040interpreter-exec mi "-data-list-register-names"
17041@end smallexample
17042
17043@sc{gdb/mi} has a similar command, although it is only available in versions of
17044@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
17045
8e04817f
AC
17046@node TUI
17047@chapter @value{GDBN} Text User Interface
17048@cindex TUI
d0d5df6f 17049@cindex Text User Interface
c906108c 17050
8e04817f
AC
17051@menu
17052* TUI Overview:: TUI overview
17053* TUI Keys:: TUI key bindings
7cf36c78 17054* TUI Single Key Mode:: TUI single key mode
db2e3e2e 17055* TUI Commands:: TUI-specific commands
8e04817f
AC
17056* TUI Configuration:: TUI configuration variables
17057@end menu
c906108c 17058
46ba6afa 17059The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
17060interface which uses the @code{curses} library to show the source
17061file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
17062commands in separate text windows. The TUI mode is supported only
17063on platforms where a suitable version of the @code{curses} library
17064is available.
d0d5df6f 17065
46ba6afa
BW
17066@pindex @value{GDBTUI}
17067The TUI mode is enabled by default when you invoke @value{GDBN} as
17068either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
17069You can also switch in and out of TUI mode while @value{GDBN} runs by
17070using various TUI commands and key bindings, such as @kbd{C-x C-a}.
17071@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 17072
8e04817f 17073@node TUI Overview
79a6e687 17074@section TUI Overview
c906108c 17075
46ba6afa 17076In TUI mode, @value{GDBN} can display several text windows:
c906108c 17077
8e04817f
AC
17078@table @emph
17079@item command
17080This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
17081prompt and the @value{GDBN} output. The @value{GDBN} input is still
17082managed using readline.
c906108c 17083
8e04817f
AC
17084@item source
17085The source window shows the source file of the program. The current
46ba6afa 17086line and active breakpoints are displayed in this window.
c906108c 17087
8e04817f
AC
17088@item assembly
17089The assembly window shows the disassembly output of the program.
c906108c 17090
8e04817f 17091@item register
46ba6afa
BW
17092This window shows the processor registers. Registers are highlighted
17093when their values change.
c906108c
SS
17094@end table
17095
269c21fe 17096The source and assembly windows show the current program position
46ba6afa
BW
17097by highlighting the current line and marking it with a @samp{>} marker.
17098Breakpoints are indicated with two markers. The first marker
269c21fe
SC
17099indicates the breakpoint type:
17100
17101@table @code
17102@item B
17103Breakpoint which was hit at least once.
17104
17105@item b
17106Breakpoint which was never hit.
17107
17108@item H
17109Hardware breakpoint which was hit at least once.
17110
17111@item h
17112Hardware breakpoint which was never hit.
269c21fe
SC
17113@end table
17114
17115The second marker indicates whether the breakpoint is enabled or not:
17116
17117@table @code
17118@item +
17119Breakpoint is enabled.
17120
17121@item -
17122Breakpoint is disabled.
269c21fe
SC
17123@end table
17124
46ba6afa
BW
17125The source, assembly and register windows are updated when the current
17126thread changes, when the frame changes, or when the program counter
17127changes.
17128
17129These windows are not all visible at the same time. The command
17130window is always visible. The others can be arranged in several
17131layouts:
c906108c 17132
8e04817f
AC
17133@itemize @bullet
17134@item
46ba6afa 17135source only,
2df3850c 17136
8e04817f 17137@item
46ba6afa 17138assembly only,
8e04817f
AC
17139
17140@item
46ba6afa 17141source and assembly,
8e04817f
AC
17142
17143@item
46ba6afa 17144source and registers, or
c906108c 17145
8e04817f 17146@item
46ba6afa 17147assembly and registers.
8e04817f 17148@end itemize
c906108c 17149
46ba6afa 17150A status line above the command window shows the following information:
b7bb15bc
SC
17151
17152@table @emph
17153@item target
46ba6afa 17154Indicates the current @value{GDBN} target.
b7bb15bc
SC
17155(@pxref{Targets, ,Specifying a Debugging Target}).
17156
17157@item process
46ba6afa 17158Gives the current process or thread number.
b7bb15bc
SC
17159When no process is being debugged, this field is set to @code{No process}.
17160
17161@item function
17162Gives the current function name for the selected frame.
17163The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17164When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17165the string @code{??} is displayed.
17166
17167@item line
17168Indicates the current line number for the selected frame.
46ba6afa 17169When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17170
17171@item pc
17172Indicates the current program counter address.
b7bb15bc
SC
17173@end table
17174
8e04817f
AC
17175@node TUI Keys
17176@section TUI Key Bindings
17177@cindex TUI key bindings
c906108c 17178
8e04817f 17179The TUI installs several key bindings in the readline keymaps
46ba6afa 17180(@pxref{Command Line Editing}). The following key bindings
8e04817f 17181are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17182
8e04817f
AC
17183@table @kbd
17184@kindex C-x C-a
17185@item C-x C-a
17186@kindex C-x a
17187@itemx C-x a
17188@kindex C-x A
17189@itemx C-x A
46ba6afa
BW
17190Enter or leave the TUI mode. When leaving the TUI mode,
17191the curses window management stops and @value{GDBN} operates using
17192its standard mode, writing on the terminal directly. When reentering
17193the TUI mode, control is given back to the curses windows.
8e04817f 17194The screen is then refreshed.
c906108c 17195
8e04817f
AC
17196@kindex C-x 1
17197@item C-x 1
17198Use a TUI layout with only one window. The layout will
17199either be @samp{source} or @samp{assembly}. When the TUI mode
17200is not active, it will switch to the TUI mode.
2df3850c 17201
8e04817f 17202Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17203
8e04817f
AC
17204@kindex C-x 2
17205@item C-x 2
17206Use a TUI layout with at least two windows. When the current
46ba6afa 17207layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17208When a new layout is chosen, one window will always be common to the
17209previous layout and the new one.
c906108c 17210
8e04817f 17211Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17212
72ffddc9
SC
17213@kindex C-x o
17214@item C-x o
17215Change the active window. The TUI associates several key bindings
46ba6afa 17216(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17217gives the focus to the next TUI window.
17218
17219Think of it as the Emacs @kbd{C-x o} binding.
17220
7cf36c78
SC
17221@kindex C-x s
17222@item C-x s
46ba6afa
BW
17223Switch in and out of the TUI SingleKey mode that binds single
17224keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17225@end table
17226
46ba6afa 17227The following key bindings only work in the TUI mode:
5d161b24 17228
46ba6afa 17229@table @asis
8e04817f 17230@kindex PgUp
46ba6afa 17231@item @key{PgUp}
8e04817f 17232Scroll the active window one page up.
c906108c 17233
8e04817f 17234@kindex PgDn
46ba6afa 17235@item @key{PgDn}
8e04817f 17236Scroll the active window one page down.
c906108c 17237
8e04817f 17238@kindex Up
46ba6afa 17239@item @key{Up}
8e04817f 17240Scroll the active window one line up.
c906108c 17241
8e04817f 17242@kindex Down
46ba6afa 17243@item @key{Down}
8e04817f 17244Scroll the active window one line down.
c906108c 17245
8e04817f 17246@kindex Left
46ba6afa 17247@item @key{Left}
8e04817f 17248Scroll the active window one column left.
c906108c 17249
8e04817f 17250@kindex Right
46ba6afa 17251@item @key{Right}
8e04817f 17252Scroll the active window one column right.
c906108c 17253
8e04817f 17254@kindex C-L
46ba6afa 17255@item @kbd{C-L}
8e04817f 17256Refresh the screen.
8e04817f 17257@end table
c906108c 17258
46ba6afa
BW
17259Because the arrow keys scroll the active window in the TUI mode, they
17260are not available for their normal use by readline unless the command
17261window has the focus. When another window is active, you must use
17262other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17263and @kbd{C-f} to control the command window.
8e04817f 17264
7cf36c78
SC
17265@node TUI Single Key Mode
17266@section TUI Single Key Mode
17267@cindex TUI single key mode
17268
46ba6afa
BW
17269The TUI also provides a @dfn{SingleKey} mode, which binds several
17270frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17271switch into this mode, where the following key bindings are used:
7cf36c78
SC
17272
17273@table @kbd
17274@kindex c @r{(SingleKey TUI key)}
17275@item c
17276continue
17277
17278@kindex d @r{(SingleKey TUI key)}
17279@item d
17280down
17281
17282@kindex f @r{(SingleKey TUI key)}
17283@item f
17284finish
17285
17286@kindex n @r{(SingleKey TUI key)}
17287@item n
17288next
17289
17290@kindex q @r{(SingleKey TUI key)}
17291@item q
46ba6afa 17292exit the SingleKey mode.
7cf36c78
SC
17293
17294@kindex r @r{(SingleKey TUI key)}
17295@item r
17296run
17297
17298@kindex s @r{(SingleKey TUI key)}
17299@item s
17300step
17301
17302@kindex u @r{(SingleKey TUI key)}
17303@item u
17304up
17305
17306@kindex v @r{(SingleKey TUI key)}
17307@item v
17308info locals
17309
17310@kindex w @r{(SingleKey TUI key)}
17311@item w
17312where
7cf36c78
SC
17313@end table
17314
17315Other keys temporarily switch to the @value{GDBN} command prompt.
17316The key that was pressed is inserted in the editing buffer so that
17317it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17318with the TUI SingleKey mode. Once the command is entered the TUI
17319SingleKey mode is restored. The only way to permanently leave
7f9087cb 17320this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17321
17322
8e04817f 17323@node TUI Commands
db2e3e2e 17324@section TUI-specific Commands
8e04817f
AC
17325@cindex TUI commands
17326
17327The TUI has specific commands to control the text windows.
46ba6afa
BW
17328These commands are always available, even when @value{GDBN} is not in
17329the TUI mode. When @value{GDBN} is in the standard mode, most
17330of these commands will automatically switch to the TUI mode.
c906108c
SS
17331
17332@table @code
3d757584
SC
17333@item info win
17334@kindex info win
17335List and give the size of all displayed windows.
17336
8e04817f 17337@item layout next
4644b6e3 17338@kindex layout
8e04817f 17339Display the next layout.
2df3850c 17340
8e04817f 17341@item layout prev
8e04817f 17342Display the previous layout.
c906108c 17343
8e04817f 17344@item layout src
8e04817f 17345Display the source window only.
c906108c 17346
8e04817f 17347@item layout asm
8e04817f 17348Display the assembly window only.
c906108c 17349
8e04817f 17350@item layout split
8e04817f 17351Display the source and assembly window.
c906108c 17352
8e04817f 17353@item layout regs
8e04817f
AC
17354Display the register window together with the source or assembly window.
17355
46ba6afa 17356@item focus next
8e04817f 17357@kindex focus
46ba6afa
BW
17358Make the next window active for scrolling.
17359
17360@item focus prev
17361Make the previous window active for scrolling.
17362
17363@item focus src
17364Make the source window active for scrolling.
17365
17366@item focus asm
17367Make the assembly window active for scrolling.
17368
17369@item focus regs
17370Make the register window active for scrolling.
17371
17372@item focus cmd
17373Make the command window active for scrolling.
c906108c 17374
8e04817f
AC
17375@item refresh
17376@kindex refresh
7f9087cb 17377Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17378
6a1b180d
SC
17379@item tui reg float
17380@kindex tui reg
17381Show the floating point registers in the register window.
17382
17383@item tui reg general
17384Show the general registers in the register window.
17385
17386@item tui reg next
17387Show the next register group. The list of register groups as well as
17388their order is target specific. The predefined register groups are the
17389following: @code{general}, @code{float}, @code{system}, @code{vector},
17390@code{all}, @code{save}, @code{restore}.
17391
17392@item tui reg system
17393Show the system registers in the register window.
17394
8e04817f
AC
17395@item update
17396@kindex update
17397Update the source window and the current execution point.
c906108c 17398
8e04817f
AC
17399@item winheight @var{name} +@var{count}
17400@itemx winheight @var{name} -@var{count}
17401@kindex winheight
17402Change the height of the window @var{name} by @var{count}
17403lines. Positive counts increase the height, while negative counts
17404decrease it.
2df3850c 17405
46ba6afa
BW
17406@item tabset @var{nchars}
17407@kindex tabset
c45da7e6 17408Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17409@end table
17410
8e04817f 17411@node TUI Configuration
79a6e687 17412@section TUI Configuration Variables
8e04817f 17413@cindex TUI configuration variables
c906108c 17414
46ba6afa 17415Several configuration variables control the appearance of TUI windows.
c906108c 17416
8e04817f
AC
17417@table @code
17418@item set tui border-kind @var{kind}
17419@kindex set tui border-kind
17420Select the border appearance for the source, assembly and register windows.
17421The possible values are the following:
17422@table @code
17423@item space
17424Use a space character to draw the border.
c906108c 17425
8e04817f 17426@item ascii
46ba6afa 17427Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17428
8e04817f
AC
17429@item acs
17430Use the Alternate Character Set to draw the border. The border is
17431drawn using character line graphics if the terminal supports them.
8e04817f 17432@end table
c78b4128 17433
8e04817f
AC
17434@item set tui border-mode @var{mode}
17435@kindex set tui border-mode
46ba6afa
BW
17436@itemx set tui active-border-mode @var{mode}
17437@kindex set tui active-border-mode
17438Select the display attributes for the borders of the inactive windows
17439or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17440@table @code
17441@item normal
17442Use normal attributes to display the border.
c906108c 17443
8e04817f
AC
17444@item standout
17445Use standout mode.
c906108c 17446
8e04817f
AC
17447@item reverse
17448Use reverse video mode.
c906108c 17449
8e04817f
AC
17450@item half
17451Use half bright mode.
c906108c 17452
8e04817f
AC
17453@item half-standout
17454Use half bright and standout mode.
c906108c 17455
8e04817f
AC
17456@item bold
17457Use extra bright or bold mode.
c78b4128 17458
8e04817f
AC
17459@item bold-standout
17460Use extra bright or bold and standout mode.
8e04817f 17461@end table
8e04817f 17462@end table
c78b4128 17463
8e04817f
AC
17464@node Emacs
17465@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17466
8e04817f
AC
17467@cindex Emacs
17468@cindex @sc{gnu} Emacs
17469A special interface allows you to use @sc{gnu} Emacs to view (and
17470edit) the source files for the program you are debugging with
17471@value{GDBN}.
c906108c 17472
8e04817f
AC
17473To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17474executable file you want to debug as an argument. This command starts
17475@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17476created Emacs buffer.
17477@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17478
5e252a2e 17479Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17480things:
c906108c 17481
8e04817f
AC
17482@itemize @bullet
17483@item
5e252a2e
NR
17484All ``terminal'' input and output goes through an Emacs buffer, called
17485the GUD buffer.
c906108c 17486
8e04817f
AC
17487This applies both to @value{GDBN} commands and their output, and to the input
17488and output done by the program you are debugging.
bf0184be 17489
8e04817f
AC
17490This is useful because it means that you can copy the text of previous
17491commands and input them again; you can even use parts of the output
17492in this way.
bf0184be 17493
8e04817f
AC
17494All the facilities of Emacs' Shell mode are available for interacting
17495with your program. In particular, you can send signals the usual
17496way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17497stop.
bf0184be
ND
17498
17499@item
8e04817f 17500@value{GDBN} displays source code through Emacs.
bf0184be 17501
8e04817f
AC
17502Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17503source file for that frame and puts an arrow (@samp{=>}) at the
17504left margin of the current line. Emacs uses a separate buffer for
17505source display, and splits the screen to show both your @value{GDBN} session
17506and the source.
bf0184be 17507
8e04817f
AC
17508Explicit @value{GDBN} @code{list} or search commands still produce output as
17509usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17510@end itemize
17511
17512We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17513a graphical mode, enabled by default, which provides further buffers
17514that can control the execution and describe the state of your program.
17515@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17516
64fabec2
AC
17517If you specify an absolute file name when prompted for the @kbd{M-x
17518gdb} argument, then Emacs sets your current working directory to where
17519your program resides. If you only specify the file name, then Emacs
17520sets your current working directory to to the directory associated
17521with the previous buffer. In this case, @value{GDBN} may find your
17522program by searching your environment's @code{PATH} variable, but on
17523some operating systems it might not find the source. So, although the
17524@value{GDBN} input and output session proceeds normally, the auxiliary
17525buffer does not display the current source and line of execution.
17526
17527The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17528line of the GUD buffer and this serves as a default for the commands
17529that specify files for @value{GDBN} to operate on. @xref{Files,
17530,Commands to Specify Files}.
64fabec2
AC
17531
17532By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17533need to call @value{GDBN} by a different name (for example, if you
17534keep several configurations around, with different names) you can
17535customize the Emacs variable @code{gud-gdb-command-name} to run the
17536one you want.
8e04817f 17537
5e252a2e 17538In the GUD buffer, you can use these special Emacs commands in
8e04817f 17539addition to the standard Shell mode commands:
c906108c 17540
8e04817f
AC
17541@table @kbd
17542@item C-h m
5e252a2e 17543Describe the features of Emacs' GUD Mode.
c906108c 17544
64fabec2 17545@item C-c C-s
8e04817f
AC
17546Execute to another source line, like the @value{GDBN} @code{step} command; also
17547update the display window to show the current file and location.
c906108c 17548
64fabec2 17549@item C-c C-n
8e04817f
AC
17550Execute to next source line in this function, skipping all function
17551calls, like the @value{GDBN} @code{next} command. Then update the display window
17552to show the current file and location.
c906108c 17553
64fabec2 17554@item C-c C-i
8e04817f
AC
17555Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17556display window accordingly.
c906108c 17557
8e04817f
AC
17558@item C-c C-f
17559Execute until exit from the selected stack frame, like the @value{GDBN}
17560@code{finish} command.
c906108c 17561
64fabec2 17562@item C-c C-r
8e04817f
AC
17563Continue execution of your program, like the @value{GDBN} @code{continue}
17564command.
b433d00b 17565
64fabec2 17566@item C-c <
8e04817f
AC
17567Go up the number of frames indicated by the numeric argument
17568(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17569like the @value{GDBN} @code{up} command.
b433d00b 17570
64fabec2 17571@item C-c >
8e04817f
AC
17572Go down the number of frames indicated by the numeric argument, like the
17573@value{GDBN} @code{down} command.
8e04817f 17574@end table
c906108c 17575
7f9087cb 17576In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17577tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17578
5e252a2e
NR
17579In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17580separate frame which shows a backtrace when the GUD buffer is current.
17581Move point to any frame in the stack and type @key{RET} to make it
17582become the current frame and display the associated source in the
17583source buffer. Alternatively, click @kbd{Mouse-2} to make the
17584selected frame become the current one. In graphical mode, the
17585speedbar displays watch expressions.
64fabec2 17586
8e04817f
AC
17587If you accidentally delete the source-display buffer, an easy way to get
17588it back is to type the command @code{f} in the @value{GDBN} buffer, to
17589request a frame display; when you run under Emacs, this recreates
17590the source buffer if necessary to show you the context of the current
17591frame.
c906108c 17592
8e04817f
AC
17593The source files displayed in Emacs are in ordinary Emacs buffers
17594which are visiting the source files in the usual way. You can edit
17595the files with these buffers if you wish; but keep in mind that @value{GDBN}
17596communicates with Emacs in terms of line numbers. If you add or
17597delete lines from the text, the line numbers that @value{GDBN} knows cease
17598to correspond properly with the code.
b383017d 17599
5e252a2e
NR
17600A more detailed description of Emacs' interaction with @value{GDBN} is
17601given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17602Emacs Manual}).
c906108c 17603
8e04817f
AC
17604@c The following dropped because Epoch is nonstandard. Reactivate
17605@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17606@ignore
17607@kindex Emacs Epoch environment
17608@kindex Epoch
17609@kindex inspect
c906108c 17610
8e04817f
AC
17611Version 18 of @sc{gnu} Emacs has a built-in window system
17612called the @code{epoch}
17613environment. Users of this environment can use a new command,
17614@code{inspect} which performs identically to @code{print} except that
17615each value is printed in its own window.
17616@end ignore
c906108c 17617
922fbb7b
AC
17618
17619@node GDB/MI
17620@chapter The @sc{gdb/mi} Interface
17621
17622@unnumberedsec Function and Purpose
17623
17624@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17625@sc{gdb/mi} is a line based machine oriented text interface to
17626@value{GDBN} and is activated by specifying using the
17627@option{--interpreter} command line option (@pxref{Mode Options}). It
17628is specifically intended to support the development of systems which
17629use the debugger as just one small component of a larger system.
922fbb7b
AC
17630
17631This chapter is a specification of the @sc{gdb/mi} interface. It is written
17632in the form of a reference manual.
17633
17634Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17635features described below are incomplete and subject to change
17636(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17637
17638@unnumberedsec Notation and Terminology
17639
17640@cindex notational conventions, for @sc{gdb/mi}
17641This chapter uses the following notation:
17642
17643@itemize @bullet
17644@item
17645@code{|} separates two alternatives.
17646
17647@item
17648@code{[ @var{something} ]} indicates that @var{something} is optional:
17649it may or may not be given.
17650
17651@item
17652@code{( @var{group} )*} means that @var{group} inside the parentheses
17653may repeat zero or more times.
17654
17655@item
17656@code{( @var{group} )+} means that @var{group} inside the parentheses
17657may repeat one or more times.
17658
17659@item
17660@code{"@var{string}"} means a literal @var{string}.
17661@end itemize
17662
17663@ignore
17664@heading Dependencies
17665@end ignore
17666
922fbb7b
AC
17667@menu
17668* GDB/MI Command Syntax::
17669* GDB/MI Compatibility with CLI::
af6eff6f 17670* GDB/MI Development and Front Ends::
922fbb7b 17671* GDB/MI Output Records::
ef21caaf 17672* GDB/MI Simple Examples::
922fbb7b 17673* GDB/MI Command Description Format::
ef21caaf 17674* GDB/MI Breakpoint Commands::
a2c02241
NR
17675* GDB/MI Program Context::
17676* GDB/MI Thread Commands::
17677* GDB/MI Program Execution::
17678* GDB/MI Stack Manipulation::
17679* GDB/MI Variable Objects::
922fbb7b 17680* GDB/MI Data Manipulation::
a2c02241
NR
17681* GDB/MI Tracepoint Commands::
17682* GDB/MI Symbol Query::
351ff01a 17683* GDB/MI File Commands::
922fbb7b
AC
17684@ignore
17685* GDB/MI Kod Commands::
17686* GDB/MI Memory Overlay Commands::
17687* GDB/MI Signal Handling Commands::
17688@end ignore
922fbb7b 17689* GDB/MI Target Manipulation::
a6b151f1 17690* GDB/MI File Transfer Commands::
ef21caaf 17691* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17692@end menu
17693
17694@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17695@node GDB/MI Command Syntax
17696@section @sc{gdb/mi} Command Syntax
17697
17698@menu
17699* GDB/MI Input Syntax::
17700* GDB/MI Output Syntax::
922fbb7b
AC
17701@end menu
17702
17703@node GDB/MI Input Syntax
17704@subsection @sc{gdb/mi} Input Syntax
17705
17706@cindex input syntax for @sc{gdb/mi}
17707@cindex @sc{gdb/mi}, input syntax
17708@table @code
17709@item @var{command} @expansion{}
17710@code{@var{cli-command} | @var{mi-command}}
17711
17712@item @var{cli-command} @expansion{}
17713@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17714@var{cli-command} is any existing @value{GDBN} CLI command.
17715
17716@item @var{mi-command} @expansion{}
17717@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17718@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17719
17720@item @var{token} @expansion{}
17721"any sequence of digits"
17722
17723@item @var{option} @expansion{}
17724@code{"-" @var{parameter} [ " " @var{parameter} ]}
17725
17726@item @var{parameter} @expansion{}
17727@code{@var{non-blank-sequence} | @var{c-string}}
17728
17729@item @var{operation} @expansion{}
17730@emph{any of the operations described in this chapter}
17731
17732@item @var{non-blank-sequence} @expansion{}
17733@emph{anything, provided it doesn't contain special characters such as
17734"-", @var{nl}, """ and of course " "}
17735
17736@item @var{c-string} @expansion{}
17737@code{""" @var{seven-bit-iso-c-string-content} """}
17738
17739@item @var{nl} @expansion{}
17740@code{CR | CR-LF}
17741@end table
17742
17743@noindent
17744Notes:
17745
17746@itemize @bullet
17747@item
17748The CLI commands are still handled by the @sc{mi} interpreter; their
17749output is described below.
17750
17751@item
17752The @code{@var{token}}, when present, is passed back when the command
17753finishes.
17754
17755@item
17756Some @sc{mi} commands accept optional arguments as part of the parameter
17757list. Each option is identified by a leading @samp{-} (dash) and may be
17758followed by an optional argument parameter. Options occur first in the
17759parameter list and can be delimited from normal parameters using
17760@samp{--} (this is useful when some parameters begin with a dash).
17761@end itemize
17762
17763Pragmatics:
17764
17765@itemize @bullet
17766@item
17767We want easy access to the existing CLI syntax (for debugging).
17768
17769@item
17770We want it to be easy to spot a @sc{mi} operation.
17771@end itemize
17772
17773@node GDB/MI Output Syntax
17774@subsection @sc{gdb/mi} Output Syntax
17775
17776@cindex output syntax of @sc{gdb/mi}
17777@cindex @sc{gdb/mi}, output syntax
17778The output from @sc{gdb/mi} consists of zero or more out-of-band records
17779followed, optionally, by a single result record. This result record
17780is for the most recent command. The sequence of output records is
594fe323 17781terminated by @samp{(gdb)}.
922fbb7b
AC
17782
17783If an input command was prefixed with a @code{@var{token}} then the
17784corresponding output for that command will also be prefixed by that same
17785@var{token}.
17786
17787@table @code
17788@item @var{output} @expansion{}
594fe323 17789@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17790
17791@item @var{result-record} @expansion{}
17792@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17793
17794@item @var{out-of-band-record} @expansion{}
17795@code{@var{async-record} | @var{stream-record}}
17796
17797@item @var{async-record} @expansion{}
17798@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17799
17800@item @var{exec-async-output} @expansion{}
17801@code{[ @var{token} ] "*" @var{async-output}}
17802
17803@item @var{status-async-output} @expansion{}
17804@code{[ @var{token} ] "+" @var{async-output}}
17805
17806@item @var{notify-async-output} @expansion{}
17807@code{[ @var{token} ] "=" @var{async-output}}
17808
17809@item @var{async-output} @expansion{}
17810@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17811
17812@item @var{result-class} @expansion{}
17813@code{"done" | "running" | "connected" | "error" | "exit"}
17814
17815@item @var{async-class} @expansion{}
17816@code{"stopped" | @var{others}} (where @var{others} will be added
17817depending on the needs---this is still in development).
17818
17819@item @var{result} @expansion{}
17820@code{ @var{variable} "=" @var{value}}
17821
17822@item @var{variable} @expansion{}
17823@code{ @var{string} }
17824
17825@item @var{value} @expansion{}
17826@code{ @var{const} | @var{tuple} | @var{list} }
17827
17828@item @var{const} @expansion{}
17829@code{@var{c-string}}
17830
17831@item @var{tuple} @expansion{}
17832@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17833
17834@item @var{list} @expansion{}
17835@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17836@var{result} ( "," @var{result} )* "]" }
17837
17838@item @var{stream-record} @expansion{}
17839@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17840
17841@item @var{console-stream-output} @expansion{}
17842@code{"~" @var{c-string}}
17843
17844@item @var{target-stream-output} @expansion{}
17845@code{"@@" @var{c-string}}
17846
17847@item @var{log-stream-output} @expansion{}
17848@code{"&" @var{c-string}}
17849
17850@item @var{nl} @expansion{}
17851@code{CR | CR-LF}
17852
17853@item @var{token} @expansion{}
17854@emph{any sequence of digits}.
17855@end table
17856
17857@noindent
17858Notes:
17859
17860@itemize @bullet
17861@item
17862All output sequences end in a single line containing a period.
17863
17864@item
17865The @code{@var{token}} is from the corresponding request. If an execution
17866command is interrupted by the @samp{-exec-interrupt} command, the
17867@var{token} associated with the @samp{*stopped} message is the one of the
17868original execution command, not the one of the interrupt command.
17869
17870@item
17871@cindex status output in @sc{gdb/mi}
17872@var{status-async-output} contains on-going status information about the
17873progress of a slow operation. It can be discarded. All status output is
17874prefixed by @samp{+}.
17875
17876@item
17877@cindex async output in @sc{gdb/mi}
17878@var{exec-async-output} contains asynchronous state change on the target
17879(stopped, started, disappeared). All async output is prefixed by
17880@samp{*}.
17881
17882@item
17883@cindex notify output in @sc{gdb/mi}
17884@var{notify-async-output} contains supplementary information that the
17885client should handle (e.g., a new breakpoint information). All notify
17886output is prefixed by @samp{=}.
17887
17888@item
17889@cindex console output in @sc{gdb/mi}
17890@var{console-stream-output} is output that should be displayed as is in the
17891console. It is the textual response to a CLI command. All the console
17892output is prefixed by @samp{~}.
17893
17894@item
17895@cindex target output in @sc{gdb/mi}
17896@var{target-stream-output} is the output produced by the target program.
17897All the target output is prefixed by @samp{@@}.
17898
17899@item
17900@cindex log output in @sc{gdb/mi}
17901@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17902instance messages that should be displayed as part of an error log. All
17903the log output is prefixed by @samp{&}.
17904
17905@item
17906@cindex list output in @sc{gdb/mi}
17907New @sc{gdb/mi} commands should only output @var{lists} containing
17908@var{values}.
17909
17910
17911@end itemize
17912
17913@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17914details about the various output records.
17915
922fbb7b
AC
17916@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17917@node GDB/MI Compatibility with CLI
17918@section @sc{gdb/mi} Compatibility with CLI
17919
17920@cindex compatibility, @sc{gdb/mi} and CLI
17921@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17922
a2c02241
NR
17923For the developers convenience CLI commands can be entered directly,
17924but there may be some unexpected behaviour. For example, commands
17925that query the user will behave as if the user replied yes, breakpoint
17926command lists are not executed and some CLI commands, such as
17927@code{if}, @code{when} and @code{define}, prompt for further input with
17928@samp{>}, which is not valid MI output.
ef21caaf
NR
17929
17930This feature may be removed at some stage in the future and it is
a2c02241
NR
17931recommended that front ends use the @code{-interpreter-exec} command
17932(@pxref{-interpreter-exec}).
922fbb7b 17933
af6eff6f
NR
17934@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17935@node GDB/MI Development and Front Ends
17936@section @sc{gdb/mi} Development and Front Ends
17937@cindex @sc{gdb/mi} development
17938
17939The application which takes the MI output and presents the state of the
17940program being debugged to the user is called a @dfn{front end}.
17941
17942Although @sc{gdb/mi} is still incomplete, it is currently being used
17943by a variety of front ends to @value{GDBN}. This makes it difficult
17944to introduce new functionality without breaking existing usage. This
17945section tries to minimize the problems by describing how the protocol
17946might change.
17947
17948Some changes in MI need not break a carefully designed front end, and
17949for these the MI version will remain unchanged. The following is a
17950list of changes that may occur within one level, so front ends should
17951parse MI output in a way that can handle them:
17952
17953@itemize @bullet
17954@item
17955New MI commands may be added.
17956
17957@item
17958New fields may be added to the output of any MI command.
17959
36ece8b3
NR
17960@item
17961The range of values for fields with specified values, e.g.,
9f708cb2 17962@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17963
af6eff6f
NR
17964@c The format of field's content e.g type prefix, may change so parse it
17965@c at your own risk. Yes, in general?
17966
17967@c The order of fields may change? Shouldn't really matter but it might
17968@c resolve inconsistencies.
17969@end itemize
17970
17971If the changes are likely to break front ends, the MI version level
17972will be increased by one. This will allow the front end to parse the
17973output according to the MI version. Apart from mi0, new versions of
17974@value{GDBN} will not support old versions of MI and it will be the
17975responsibility of the front end to work with the new one.
17976
17977@c Starting with mi3, add a new command -mi-version that prints the MI
17978@c version?
17979
17980The best way to avoid unexpected changes in MI that might break your front
17981end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17982follow development on @email{gdb@@sourceware.org} and
17983@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17984@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17985Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17986called Debugger Machine Interface (DMI) that will become a standard
17987for all debuggers, not just @value{GDBN}.
17988@cindex mailing lists
17989
922fbb7b
AC
17990@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17991@node GDB/MI Output Records
17992@section @sc{gdb/mi} Output Records
17993
17994@menu
17995* GDB/MI Result Records::
17996* GDB/MI Stream Records::
17997* GDB/MI Out-of-band Records::
17998@end menu
17999
18000@node GDB/MI Result Records
18001@subsection @sc{gdb/mi} Result Records
18002
18003@cindex result records in @sc{gdb/mi}
18004@cindex @sc{gdb/mi}, result records
18005In addition to a number of out-of-band notifications, the response to a
18006@sc{gdb/mi} command includes one of the following result indications:
18007
18008@table @code
18009@findex ^done
18010@item "^done" [ "," @var{results} ]
18011The synchronous operation was successful, @code{@var{results}} are the return
18012values.
18013
18014@item "^running"
18015@findex ^running
18016@c Is this one correct? Should it be an out-of-band notification?
18017The asynchronous operation was successfully started. The target is
18018running.
18019
ef21caaf
NR
18020@item "^connected"
18021@findex ^connected
3f94c067 18022@value{GDBN} has connected to a remote target.
ef21caaf 18023
922fbb7b
AC
18024@item "^error" "," @var{c-string}
18025@findex ^error
18026The operation failed. The @code{@var{c-string}} contains the corresponding
18027error message.
ef21caaf
NR
18028
18029@item "^exit"
18030@findex ^exit
3f94c067 18031@value{GDBN} has terminated.
ef21caaf 18032
922fbb7b
AC
18033@end table
18034
18035@node GDB/MI Stream Records
18036@subsection @sc{gdb/mi} Stream Records
18037
18038@cindex @sc{gdb/mi}, stream records
18039@cindex stream records in @sc{gdb/mi}
18040@value{GDBN} internally maintains a number of output streams: the console, the
18041target, and the log. The output intended for each of these streams is
18042funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
18043
18044Each stream record begins with a unique @dfn{prefix character} which
18045identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
18046Syntax}). In addition to the prefix, each stream record contains a
18047@code{@var{string-output}}. This is either raw text (with an implicit new
18048line) or a quoted C string (which does not contain an implicit newline).
18049
18050@table @code
18051@item "~" @var{string-output}
18052The console output stream contains text that should be displayed in the
18053CLI console window. It contains the textual responses to CLI commands.
18054
18055@item "@@" @var{string-output}
18056The target output stream contains any textual output from the running
ef21caaf
NR
18057target. This is only present when GDB's event loop is truly
18058asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
18059
18060@item "&" @var{string-output}
18061The log stream contains debugging messages being produced by @value{GDBN}'s
18062internals.
18063@end table
18064
18065@node GDB/MI Out-of-band Records
18066@subsection @sc{gdb/mi} Out-of-band Records
18067
18068@cindex out-of-band records in @sc{gdb/mi}
18069@cindex @sc{gdb/mi}, out-of-band records
18070@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
18071additional changes that have occurred. Those changes can either be a
18072consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
18073target activity (e.g., target stopped).
18074
18075The following is a preliminary list of possible out-of-band records.
034dad6f 18076In particular, the @var{exec-async-output} records.
922fbb7b
AC
18077
18078@table @code
034dad6f
BR
18079@item *stopped,reason="@var{reason}"
18080@end table
18081
18082@var{reason} can be one of the following:
18083
18084@table @code
18085@item breakpoint-hit
18086A breakpoint was reached.
18087@item watchpoint-trigger
18088A watchpoint was triggered.
18089@item read-watchpoint-trigger
18090A read watchpoint was triggered.
18091@item access-watchpoint-trigger
18092An access watchpoint was triggered.
18093@item function-finished
18094An -exec-finish or similar CLI command was accomplished.
18095@item location-reached
18096An -exec-until or similar CLI command was accomplished.
18097@item watchpoint-scope
18098A watchpoint has gone out of scope.
18099@item end-stepping-range
18100An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
18101similar CLI command was accomplished.
18102@item exited-signalled
18103The inferior exited because of a signal.
18104@item exited
18105The inferior exited.
18106@item exited-normally
18107The inferior exited normally.
18108@item signal-received
18109A signal was received by the inferior.
922fbb7b
AC
18110@end table
18111
18112
ef21caaf
NR
18113@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18114@node GDB/MI Simple Examples
18115@section Simple Examples of @sc{gdb/mi} Interaction
18116@cindex @sc{gdb/mi}, simple examples
18117
18118This subsection presents several simple examples of interaction using
18119the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18120following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18121the output received from @sc{gdb/mi}.
18122
d3e8051b 18123Note the line breaks shown in the examples are here only for
ef21caaf
NR
18124readability, they don't appear in the real output.
18125
79a6e687 18126@subheading Setting a Breakpoint
ef21caaf
NR
18127
18128Setting a breakpoint generates synchronous output which contains detailed
18129information of the breakpoint.
18130
18131@smallexample
18132-> -break-insert main
18133<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18134 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18135 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18136<- (gdb)
18137@end smallexample
18138
18139@subheading Program Execution
18140
18141Program execution generates asynchronous records and MI gives the
18142reason that execution stopped.
18143
18144@smallexample
18145-> -exec-run
18146<- ^running
18147<- (gdb)
18148<- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
18149 frame=@{addr="0x08048564",func="main",
18150 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18151 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18152<- (gdb)
18153-> -exec-continue
18154<- ^running
18155<- (gdb)
18156<- *stopped,reason="exited-normally"
18157<- (gdb)
18158@end smallexample
18159
3f94c067 18160@subheading Quitting @value{GDBN}
ef21caaf 18161
3f94c067 18162Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18163
18164@smallexample
18165-> (gdb)
18166<- -gdb-exit
18167<- ^exit
18168@end smallexample
18169
a2c02241 18170@subheading A Bad Command
ef21caaf
NR
18171
18172Here's what happens if you pass a non-existent command:
18173
18174@smallexample
18175-> -rubbish
18176<- ^error,msg="Undefined MI command: rubbish"
594fe323 18177<- (gdb)
ef21caaf
NR
18178@end smallexample
18179
18180
922fbb7b
AC
18181@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18182@node GDB/MI Command Description Format
18183@section @sc{gdb/mi} Command Description Format
18184
18185The remaining sections describe blocks of commands. Each block of
18186commands is laid out in a fashion similar to this section.
18187
922fbb7b
AC
18188@subheading Motivation
18189
18190The motivation for this collection of commands.
18191
18192@subheading Introduction
18193
18194A brief introduction to this collection of commands as a whole.
18195
18196@subheading Commands
18197
18198For each command in the block, the following is described:
18199
18200@subsubheading Synopsis
18201
18202@smallexample
18203 -command @var{args}@dots{}
18204@end smallexample
18205
922fbb7b
AC
18206@subsubheading Result
18207
265eeb58 18208@subsubheading @value{GDBN} Command
922fbb7b 18209
265eeb58 18210The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18211
18212@subsubheading Example
18213
ef21caaf
NR
18214Example(s) formatted for readability. Some of the described commands have
18215not been implemented yet and these are labeled N.A.@: (not available).
18216
18217
922fbb7b 18218@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18219@node GDB/MI Breakpoint Commands
18220@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18221
18222@cindex breakpoint commands for @sc{gdb/mi}
18223@cindex @sc{gdb/mi}, breakpoint commands
18224This section documents @sc{gdb/mi} commands for manipulating
18225breakpoints.
18226
18227@subheading The @code{-break-after} Command
18228@findex -break-after
18229
18230@subsubheading Synopsis
18231
18232@smallexample
18233 -break-after @var{number} @var{count}
18234@end smallexample
18235
18236The breakpoint number @var{number} is not in effect until it has been
18237hit @var{count} times. To see how this is reflected in the output of
18238the @samp{-break-list} command, see the description of the
18239@samp{-break-list} command below.
18240
18241@subsubheading @value{GDBN} Command
18242
18243The corresponding @value{GDBN} command is @samp{ignore}.
18244
18245@subsubheading Example
18246
18247@smallexample
594fe323 18248(gdb)
922fbb7b 18249-break-insert main
948d5102
NR
18250^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
18251fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18252(gdb)
922fbb7b
AC
18253-break-after 1 3
18254~
18255^done
594fe323 18256(gdb)
922fbb7b
AC
18257-break-list
18258^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18259hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18260@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18261@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18262@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18263@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18264@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18265body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18266addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18267line="5",times="0",ignore="3"@}]@}
594fe323 18268(gdb)
922fbb7b
AC
18269@end smallexample
18270
18271@ignore
18272@subheading The @code{-break-catch} Command
18273@findex -break-catch
18274
18275@subheading The @code{-break-commands} Command
18276@findex -break-commands
18277@end ignore
18278
18279
18280@subheading The @code{-break-condition} Command
18281@findex -break-condition
18282
18283@subsubheading Synopsis
18284
18285@smallexample
18286 -break-condition @var{number} @var{expr}
18287@end smallexample
18288
18289Breakpoint @var{number} will stop the program only if the condition in
18290@var{expr} is true. The condition becomes part of the
18291@samp{-break-list} output (see the description of the @samp{-break-list}
18292command below).
18293
18294@subsubheading @value{GDBN} Command
18295
18296The corresponding @value{GDBN} command is @samp{condition}.
18297
18298@subsubheading Example
18299
18300@smallexample
594fe323 18301(gdb)
922fbb7b
AC
18302-break-condition 1 1
18303^done
594fe323 18304(gdb)
922fbb7b
AC
18305-break-list
18306^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18307hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18308@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18309@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18310@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18311@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18312@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18313body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18314addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18315line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18316(gdb)
922fbb7b
AC
18317@end smallexample
18318
18319@subheading The @code{-break-delete} Command
18320@findex -break-delete
18321
18322@subsubheading Synopsis
18323
18324@smallexample
18325 -break-delete ( @var{breakpoint} )+
18326@end smallexample
18327
18328Delete the breakpoint(s) whose number(s) are specified in the argument
18329list. This is obviously reflected in the breakpoint list.
18330
79a6e687 18331@subsubheading @value{GDBN} Command
922fbb7b
AC
18332
18333The corresponding @value{GDBN} command is @samp{delete}.
18334
18335@subsubheading Example
18336
18337@smallexample
594fe323 18338(gdb)
922fbb7b
AC
18339-break-delete 1
18340^done
594fe323 18341(gdb)
922fbb7b
AC
18342-break-list
18343^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18344hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18345@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18346@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18347@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18348@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18349@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18350body=[]@}
594fe323 18351(gdb)
922fbb7b
AC
18352@end smallexample
18353
18354@subheading The @code{-break-disable} Command
18355@findex -break-disable
18356
18357@subsubheading Synopsis
18358
18359@smallexample
18360 -break-disable ( @var{breakpoint} )+
18361@end smallexample
18362
18363Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18364break list is now set to @samp{n} for the named @var{breakpoint}(s).
18365
18366@subsubheading @value{GDBN} Command
18367
18368The corresponding @value{GDBN} command is @samp{disable}.
18369
18370@subsubheading Example
18371
18372@smallexample
594fe323 18373(gdb)
922fbb7b
AC
18374-break-disable 2
18375^done
594fe323 18376(gdb)
922fbb7b
AC
18377-break-list
18378^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18379hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18380@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18381@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18382@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18383@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18384@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18385body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18386addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18387line="5",times="0"@}]@}
594fe323 18388(gdb)
922fbb7b
AC
18389@end smallexample
18390
18391@subheading The @code{-break-enable} Command
18392@findex -break-enable
18393
18394@subsubheading Synopsis
18395
18396@smallexample
18397 -break-enable ( @var{breakpoint} )+
18398@end smallexample
18399
18400Enable (previously disabled) @var{breakpoint}(s).
18401
18402@subsubheading @value{GDBN} Command
18403
18404The corresponding @value{GDBN} command is @samp{enable}.
18405
18406@subsubheading Example
18407
18408@smallexample
594fe323 18409(gdb)
922fbb7b
AC
18410-break-enable 2
18411^done
594fe323 18412(gdb)
922fbb7b
AC
18413-break-list
18414^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18415hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18416@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18417@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18418@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18419@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18420@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18421body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18422addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18423line="5",times="0"@}]@}
594fe323 18424(gdb)
922fbb7b
AC
18425@end smallexample
18426
18427@subheading The @code{-break-info} Command
18428@findex -break-info
18429
18430@subsubheading Synopsis
18431
18432@smallexample
18433 -break-info @var{breakpoint}
18434@end smallexample
18435
18436@c REDUNDANT???
18437Get information about a single breakpoint.
18438
79a6e687 18439@subsubheading @value{GDBN} Command
922fbb7b
AC
18440
18441The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18442
18443@subsubheading Example
18444N.A.
18445
18446@subheading The @code{-break-insert} Command
18447@findex -break-insert
18448
18449@subsubheading Synopsis
18450
18451@smallexample
afe8ab22 18452 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18453 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18454 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18455@end smallexample
18456
18457@noindent
afe8ab22 18458If specified, @var{location}, can be one of:
922fbb7b
AC
18459
18460@itemize @bullet
18461@item function
18462@c @item +offset
18463@c @item -offset
18464@c @item linenum
18465@item filename:linenum
18466@item filename:function
18467@item *address
18468@end itemize
18469
18470The possible optional parameters of this command are:
18471
18472@table @samp
18473@item -t
948d5102 18474Insert a temporary breakpoint.
922fbb7b
AC
18475@item -h
18476Insert a hardware breakpoint.
18477@item -c @var{condition}
18478Make the breakpoint conditional on @var{condition}.
18479@item -i @var{ignore-count}
18480Initialize the @var{ignore-count}.
afe8ab22
VP
18481@item -f
18482If @var{location} cannot be parsed (for example if it
18483refers to unknown files or functions), create a pending
18484breakpoint. Without this flag, @value{GDBN} will report
18485an error, and won't create a breakpoint, if @var{location}
18486cannot be parsed.
922fbb7b
AC
18487@end table
18488
18489@subsubheading Result
18490
18491The result is in the form:
18492
18493@smallexample
948d5102
NR
18494^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18495enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18496fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18497times="@var{times}"@}
922fbb7b
AC
18498@end smallexample
18499
18500@noindent
948d5102
NR
18501where @var{number} is the @value{GDBN} number for this breakpoint,
18502@var{funcname} is the name of the function where the breakpoint was
18503inserted, @var{filename} is the name of the source file which contains
18504this function, @var{lineno} is the source line number within that file
18505and @var{times} the number of times that the breakpoint has been hit
18506(always 0 for -break-insert but may be greater for -break-info or -break-list
18507which use the same output).
922fbb7b
AC
18508
18509Note: this format is open to change.
18510@c An out-of-band breakpoint instead of part of the result?
18511
18512@subsubheading @value{GDBN} Command
18513
18514The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18515@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18516
18517@subsubheading Example
18518
18519@smallexample
594fe323 18520(gdb)
922fbb7b 18521-break-insert main
948d5102
NR
18522^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18523fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18524(gdb)
922fbb7b 18525-break-insert -t foo
948d5102
NR
18526^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18527fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18528(gdb)
922fbb7b
AC
18529-break-list
18530^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18531hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18532@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18533@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18534@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18535@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18536@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18537body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18538addr="0x0001072c", func="main",file="recursive2.c",
18539fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18540bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18541addr="0x00010774",func="foo",file="recursive2.c",
18542fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18543(gdb)
922fbb7b
AC
18544-break-insert -r foo.*
18545~int foo(int, int);
948d5102
NR
18546^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18547"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18548(gdb)
922fbb7b
AC
18549@end smallexample
18550
18551@subheading The @code{-break-list} Command
18552@findex -break-list
18553
18554@subsubheading Synopsis
18555
18556@smallexample
18557 -break-list
18558@end smallexample
18559
18560Displays the list of inserted breakpoints, showing the following fields:
18561
18562@table @samp
18563@item Number
18564number of the breakpoint
18565@item Type
18566type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18567@item Disposition
18568should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18569or @samp{nokeep}
18570@item Enabled
18571is the breakpoint enabled or no: @samp{y} or @samp{n}
18572@item Address
18573memory location at which the breakpoint is set
18574@item What
18575logical location of the breakpoint, expressed by function name, file
18576name, line number
18577@item Times
18578number of times the breakpoint has been hit
18579@end table
18580
18581If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18582@code{body} field is an empty list.
18583
18584@subsubheading @value{GDBN} Command
18585
18586The corresponding @value{GDBN} command is @samp{info break}.
18587
18588@subsubheading Example
18589
18590@smallexample
594fe323 18591(gdb)
922fbb7b
AC
18592-break-list
18593^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18594hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18595@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18596@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18597@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18598@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18599@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18600body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18601addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18602bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18603addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18604line="13",times="0"@}]@}
594fe323 18605(gdb)
922fbb7b
AC
18606@end smallexample
18607
18608Here's an example of the result when there are no breakpoints:
18609
18610@smallexample
594fe323 18611(gdb)
922fbb7b
AC
18612-break-list
18613^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18614hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18615@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18616@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18617@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18618@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18619@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18620body=[]@}
594fe323 18621(gdb)
922fbb7b
AC
18622@end smallexample
18623
18624@subheading The @code{-break-watch} Command
18625@findex -break-watch
18626
18627@subsubheading Synopsis
18628
18629@smallexample
18630 -break-watch [ -a | -r ]
18631@end smallexample
18632
18633Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18634@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18635read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18636option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18637trigger only when the memory location is accessed for reading. Without
18638either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18639i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18640@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18641
18642Note that @samp{-break-list} will report a single list of watchpoints and
18643breakpoints inserted.
18644
18645@subsubheading @value{GDBN} Command
18646
18647The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18648@samp{rwatch}.
18649
18650@subsubheading Example
18651
18652Setting a watchpoint on a variable in the @code{main} function:
18653
18654@smallexample
594fe323 18655(gdb)
922fbb7b
AC
18656-break-watch x
18657^done,wpt=@{number="2",exp="x"@}
594fe323 18658(gdb)
922fbb7b
AC
18659-exec-continue
18660^running
0869d01b
NR
18661(gdb)
18662*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18663value=@{old="-268439212",new="55"@},
76ff342d 18664frame=@{func="main",args=[],file="recursive2.c",
948d5102 18665fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18666(gdb)
922fbb7b
AC
18667@end smallexample
18668
18669Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18670the program execution twice: first for the variable changing value, then
18671for the watchpoint going out of scope.
18672
18673@smallexample
594fe323 18674(gdb)
922fbb7b
AC
18675-break-watch C
18676^done,wpt=@{number="5",exp="C"@}
594fe323 18677(gdb)
922fbb7b
AC
18678-exec-continue
18679^running
0869d01b
NR
18680(gdb)
18681*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18682wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18683frame=@{func="callee4",args=[],
76ff342d
DJ
18684file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18685fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18686(gdb)
922fbb7b
AC
18687-exec-continue
18688^running
0869d01b
NR
18689(gdb)
18690*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18691frame=@{func="callee3",args=[@{name="strarg",
18692value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18693file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18694fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18695(gdb)
922fbb7b
AC
18696@end smallexample
18697
18698Listing breakpoints and watchpoints, at different points in the program
18699execution. Note that once the watchpoint goes out of scope, it is
18700deleted.
18701
18702@smallexample
594fe323 18703(gdb)
922fbb7b
AC
18704-break-watch C
18705^done,wpt=@{number="2",exp="C"@}
594fe323 18706(gdb)
922fbb7b
AC
18707-break-list
18708^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18709hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18710@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18711@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18712@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18713@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18714@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18715body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18716addr="0x00010734",func="callee4",
948d5102
NR
18717file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18718fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18719bkpt=@{number="2",type="watchpoint",disp="keep",
18720enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18721(gdb)
922fbb7b
AC
18722-exec-continue
18723^running
0869d01b
NR
18724(gdb)
18725*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18726value=@{old="-276895068",new="3"@},
18727frame=@{func="callee4",args=[],
76ff342d
DJ
18728file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18729fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18730(gdb)
922fbb7b
AC
18731-break-list
18732^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18733hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18734@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18735@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18736@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18737@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18738@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18739body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18740addr="0x00010734",func="callee4",
948d5102
NR
18741file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18742fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18743bkpt=@{number="2",type="watchpoint",disp="keep",
18744enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18745(gdb)
922fbb7b
AC
18746-exec-continue
18747^running
18748^done,reason="watchpoint-scope",wpnum="2",
18749frame=@{func="callee3",args=[@{name="strarg",
18750value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18751file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18752fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18753(gdb)
922fbb7b
AC
18754-break-list
18755^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18756hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18757@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18758@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18759@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18760@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18761@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18762body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18763addr="0x00010734",func="callee4",
948d5102
NR
18764file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18765fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18766times="1"@}]@}
594fe323 18767(gdb)
922fbb7b
AC
18768@end smallexample
18769
18770@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18771@node GDB/MI Program Context
18772@section @sc{gdb/mi} Program Context
922fbb7b 18773
a2c02241
NR
18774@subheading The @code{-exec-arguments} Command
18775@findex -exec-arguments
922fbb7b 18776
922fbb7b
AC
18777
18778@subsubheading Synopsis
18779
18780@smallexample
a2c02241 18781 -exec-arguments @var{args}
922fbb7b
AC
18782@end smallexample
18783
a2c02241
NR
18784Set the inferior program arguments, to be used in the next
18785@samp{-exec-run}.
922fbb7b 18786
a2c02241 18787@subsubheading @value{GDBN} Command
922fbb7b 18788
a2c02241 18789The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18790
a2c02241 18791@subsubheading Example
922fbb7b 18792
a2c02241
NR
18793@c FIXME!
18794Don't have one around.
922fbb7b 18795
a2c02241
NR
18796
18797@subheading The @code{-exec-show-arguments} Command
18798@findex -exec-show-arguments
18799
18800@subsubheading Synopsis
18801
18802@smallexample
18803 -exec-show-arguments
18804@end smallexample
18805
18806Print the arguments of the program.
922fbb7b
AC
18807
18808@subsubheading @value{GDBN} Command
18809
a2c02241 18810The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18811
18812@subsubheading Example
a2c02241 18813N.A.
922fbb7b 18814
922fbb7b 18815
a2c02241
NR
18816@subheading The @code{-environment-cd} Command
18817@findex -environment-cd
922fbb7b 18818
a2c02241 18819@subsubheading Synopsis
922fbb7b
AC
18820
18821@smallexample
a2c02241 18822 -environment-cd @var{pathdir}
922fbb7b
AC
18823@end smallexample
18824
a2c02241 18825Set @value{GDBN}'s working directory.
922fbb7b 18826
a2c02241 18827@subsubheading @value{GDBN} Command
922fbb7b 18828
a2c02241
NR
18829The corresponding @value{GDBN} command is @samp{cd}.
18830
18831@subsubheading Example
922fbb7b
AC
18832
18833@smallexample
594fe323 18834(gdb)
a2c02241
NR
18835-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18836^done
594fe323 18837(gdb)
922fbb7b
AC
18838@end smallexample
18839
18840
a2c02241
NR
18841@subheading The @code{-environment-directory} Command
18842@findex -environment-directory
922fbb7b
AC
18843
18844@subsubheading Synopsis
18845
18846@smallexample
a2c02241 18847 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18848@end smallexample
18849
a2c02241
NR
18850Add directories @var{pathdir} to beginning of search path for source files.
18851If the @samp{-r} option is used, the search path is reset to the default
18852search path. If directories @var{pathdir} are supplied in addition to the
18853@samp{-r} option, the search path is first reset and then addition
18854occurs as normal.
18855Multiple directories may be specified, separated by blanks. Specifying
18856multiple directories in a single command
18857results in the directories added to the beginning of the
18858search path in the same order they were presented in the command.
18859If blanks are needed as
18860part of a directory name, double-quotes should be used around
18861the name. In the command output, the path will show up separated
d3e8051b 18862by the system directory-separator character. The directory-separator
a2c02241
NR
18863character must not be used
18864in any directory name.
18865If no directories are specified, the current search path is displayed.
922fbb7b
AC
18866
18867@subsubheading @value{GDBN} Command
18868
a2c02241 18869The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18870
18871@subsubheading Example
18872
922fbb7b 18873@smallexample
594fe323 18874(gdb)
a2c02241
NR
18875-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18876^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18877(gdb)
a2c02241
NR
18878-environment-directory ""
18879^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18880(gdb)
a2c02241
NR
18881-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18882^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18883(gdb)
a2c02241
NR
18884-environment-directory -r
18885^done,source-path="$cdir:$cwd"
594fe323 18886(gdb)
922fbb7b
AC
18887@end smallexample
18888
18889
a2c02241
NR
18890@subheading The @code{-environment-path} Command
18891@findex -environment-path
922fbb7b
AC
18892
18893@subsubheading Synopsis
18894
18895@smallexample
a2c02241 18896 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18897@end smallexample
18898
a2c02241
NR
18899Add directories @var{pathdir} to beginning of search path for object files.
18900If the @samp{-r} option is used, the search path is reset to the original
18901search path that existed at gdb start-up. If directories @var{pathdir} are
18902supplied in addition to the
18903@samp{-r} option, the search path is first reset and then addition
18904occurs as normal.
18905Multiple directories may be specified, separated by blanks. Specifying
18906multiple directories in a single command
18907results in the directories added to the beginning of the
18908search path in the same order they were presented in the command.
18909If blanks are needed as
18910part of a directory name, double-quotes should be used around
18911the name. In the command output, the path will show up separated
d3e8051b 18912by the system directory-separator character. The directory-separator
a2c02241
NR
18913character must not be used
18914in any directory name.
18915If no directories are specified, the current path is displayed.
18916
922fbb7b
AC
18917
18918@subsubheading @value{GDBN} Command
18919
a2c02241 18920The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18921
18922@subsubheading Example
18923
922fbb7b 18924@smallexample
594fe323 18925(gdb)
a2c02241
NR
18926-environment-path
18927^done,path="/usr/bin"
594fe323 18928(gdb)
a2c02241
NR
18929-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18930^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18931(gdb)
a2c02241
NR
18932-environment-path -r /usr/local/bin
18933^done,path="/usr/local/bin:/usr/bin"
594fe323 18934(gdb)
922fbb7b
AC
18935@end smallexample
18936
18937
a2c02241
NR
18938@subheading The @code{-environment-pwd} Command
18939@findex -environment-pwd
922fbb7b
AC
18940
18941@subsubheading Synopsis
18942
18943@smallexample
a2c02241 18944 -environment-pwd
922fbb7b
AC
18945@end smallexample
18946
a2c02241 18947Show the current working directory.
922fbb7b 18948
79a6e687 18949@subsubheading @value{GDBN} Command
922fbb7b 18950
a2c02241 18951The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18952
18953@subsubheading Example
18954
922fbb7b 18955@smallexample
594fe323 18956(gdb)
a2c02241
NR
18957-environment-pwd
18958^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18959(gdb)
922fbb7b
AC
18960@end smallexample
18961
a2c02241
NR
18962@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18963@node GDB/MI Thread Commands
18964@section @sc{gdb/mi} Thread Commands
18965
18966
18967@subheading The @code{-thread-info} Command
18968@findex -thread-info
922fbb7b
AC
18969
18970@subsubheading Synopsis
18971
18972@smallexample
8e8901c5 18973 -thread-info [ @var{thread-id} ]
922fbb7b
AC
18974@end smallexample
18975
8e8901c5
VP
18976Reports information about either a specific thread, if
18977the @var{thread-id} parameter is present, or about all
18978threads. When printing information about all threads,
18979also reports the current thread.
18980
79a6e687 18981@subsubheading @value{GDBN} Command
922fbb7b 18982
8e8901c5
VP
18983The @samp{info thread} command prints the same information
18984about all threads.
922fbb7b
AC
18985
18986@subsubheading Example
922fbb7b
AC
18987
18988@smallexample
8e8901c5
VP
18989-thread-info
18990^done,threads=[
18991@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
18992 frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},
18993@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
18994 frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
18995 file="/tmp/a.c",fullname="/tmp/a.c",line="158"@}@}],
18996current-thread-id="1"
18997(gdb)
922fbb7b
AC
18998@end smallexample
18999
a2c02241
NR
19000@subheading The @code{-thread-list-ids} Command
19001@findex -thread-list-ids
922fbb7b 19002
a2c02241 19003@subsubheading Synopsis
922fbb7b 19004
a2c02241
NR
19005@smallexample
19006 -thread-list-ids
19007@end smallexample
922fbb7b 19008
a2c02241
NR
19009Produces a list of the currently known @value{GDBN} thread ids. At the
19010end of the list it also prints the total number of such threads.
922fbb7b
AC
19011
19012@subsubheading @value{GDBN} Command
19013
a2c02241 19014Part of @samp{info threads} supplies the same information.
922fbb7b
AC
19015
19016@subsubheading Example
19017
a2c02241 19018No threads present, besides the main process:
922fbb7b
AC
19019
19020@smallexample
594fe323 19021(gdb)
a2c02241
NR
19022-thread-list-ids
19023^done,thread-ids=@{@},number-of-threads="0"
594fe323 19024(gdb)
922fbb7b
AC
19025@end smallexample
19026
922fbb7b 19027
a2c02241 19028Several threads:
922fbb7b
AC
19029
19030@smallexample
594fe323 19031(gdb)
a2c02241
NR
19032-thread-list-ids
19033^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19034number-of-threads="3"
594fe323 19035(gdb)
922fbb7b
AC
19036@end smallexample
19037
a2c02241
NR
19038
19039@subheading The @code{-thread-select} Command
19040@findex -thread-select
922fbb7b
AC
19041
19042@subsubheading Synopsis
19043
19044@smallexample
a2c02241 19045 -thread-select @var{threadnum}
922fbb7b
AC
19046@end smallexample
19047
a2c02241
NR
19048Make @var{threadnum} the current thread. It prints the number of the new
19049current thread, and the topmost frame for that thread.
922fbb7b
AC
19050
19051@subsubheading @value{GDBN} Command
19052
a2c02241 19053The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
19054
19055@subsubheading Example
922fbb7b
AC
19056
19057@smallexample
594fe323 19058(gdb)
a2c02241
NR
19059-exec-next
19060^running
594fe323 19061(gdb)
a2c02241
NR
19062*stopped,reason="end-stepping-range",thread-id="2",line="187",
19063file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 19064(gdb)
a2c02241
NR
19065-thread-list-ids
19066^done,
19067thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19068number-of-threads="3"
594fe323 19069(gdb)
a2c02241
NR
19070-thread-select 3
19071^done,new-thread-id="3",
19072frame=@{level="0",func="vprintf",
19073args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
19074@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 19075(gdb)
922fbb7b
AC
19076@end smallexample
19077
a2c02241
NR
19078@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19079@node GDB/MI Program Execution
19080@section @sc{gdb/mi} Program Execution
922fbb7b 19081
ef21caaf 19082These are the asynchronous commands which generate the out-of-band
3f94c067 19083record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
19084asynchronously with remote targets and this interaction is mimicked in
19085other cases.
922fbb7b 19086
922fbb7b
AC
19087@subheading The @code{-exec-continue} Command
19088@findex -exec-continue
19089
19090@subsubheading Synopsis
19091
19092@smallexample
19093 -exec-continue
19094@end smallexample
19095
ef21caaf
NR
19096Resumes the execution of the inferior program until a breakpoint is
19097encountered, or until the inferior exits.
922fbb7b
AC
19098
19099@subsubheading @value{GDBN} Command
19100
19101The corresponding @value{GDBN} corresponding is @samp{continue}.
19102
19103@subsubheading Example
19104
19105@smallexample
19106-exec-continue
19107^running
594fe323 19108(gdb)
922fbb7b
AC
19109@@Hello world
19110*stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
948d5102 19111file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
594fe323 19112(gdb)
922fbb7b
AC
19113@end smallexample
19114
19115
19116@subheading The @code{-exec-finish} Command
19117@findex -exec-finish
19118
19119@subsubheading Synopsis
19120
19121@smallexample
19122 -exec-finish
19123@end smallexample
19124
ef21caaf
NR
19125Resumes the execution of the inferior program until the current
19126function is exited. Displays the results returned by the function.
922fbb7b
AC
19127
19128@subsubheading @value{GDBN} Command
19129
19130The corresponding @value{GDBN} command is @samp{finish}.
19131
19132@subsubheading Example
19133
19134Function returning @code{void}.
19135
19136@smallexample
19137-exec-finish
19138^running
594fe323 19139(gdb)
922fbb7b
AC
19140@@hello from foo
19141*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19142file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19143(gdb)
922fbb7b
AC
19144@end smallexample
19145
19146Function returning other than @code{void}. The name of the internal
19147@value{GDBN} variable storing the result is printed, together with the
19148value itself.
19149
19150@smallexample
19151-exec-finish
19152^running
594fe323 19153(gdb)
922fbb7b
AC
19154*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19155args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19156file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19157gdb-result-var="$1",return-value="0"
594fe323 19158(gdb)
922fbb7b
AC
19159@end smallexample
19160
19161
19162@subheading The @code{-exec-interrupt} Command
19163@findex -exec-interrupt
19164
19165@subsubheading Synopsis
19166
19167@smallexample
19168 -exec-interrupt
19169@end smallexample
19170
ef21caaf
NR
19171Interrupts the background execution of the target. Note how the token
19172associated with the stop message is the one for the execution command
19173that has been interrupted. The token for the interrupt itself only
19174appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19175interrupt a non-running program, an error message will be printed.
19176
19177@subsubheading @value{GDBN} Command
19178
19179The corresponding @value{GDBN} command is @samp{interrupt}.
19180
19181@subsubheading Example
19182
19183@smallexample
594fe323 19184(gdb)
922fbb7b
AC
19185111-exec-continue
19186111^running
19187
594fe323 19188(gdb)
922fbb7b
AC
19189222-exec-interrupt
19190222^done
594fe323 19191(gdb)
922fbb7b 19192111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19193frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19194fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19195(gdb)
922fbb7b 19196
594fe323 19197(gdb)
922fbb7b
AC
19198-exec-interrupt
19199^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19200(gdb)
922fbb7b
AC
19201@end smallexample
19202
19203
19204@subheading The @code{-exec-next} Command
19205@findex -exec-next
19206
19207@subsubheading Synopsis
19208
19209@smallexample
19210 -exec-next
19211@end smallexample
19212
ef21caaf
NR
19213Resumes execution of the inferior program, stopping when the beginning
19214of the next source line is reached.
922fbb7b
AC
19215
19216@subsubheading @value{GDBN} Command
19217
19218The corresponding @value{GDBN} command is @samp{next}.
19219
19220@subsubheading Example
19221
19222@smallexample
19223-exec-next
19224^running
594fe323 19225(gdb)
922fbb7b 19226*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19227(gdb)
922fbb7b
AC
19228@end smallexample
19229
19230
19231@subheading The @code{-exec-next-instruction} Command
19232@findex -exec-next-instruction
19233
19234@subsubheading Synopsis
19235
19236@smallexample
19237 -exec-next-instruction
19238@end smallexample
19239
ef21caaf
NR
19240Executes one machine instruction. If the instruction is a function
19241call, continues until the function returns. If the program stops at an
19242instruction in the middle of a source line, the address will be
19243printed as well.
922fbb7b
AC
19244
19245@subsubheading @value{GDBN} Command
19246
19247The corresponding @value{GDBN} command is @samp{nexti}.
19248
19249@subsubheading Example
19250
19251@smallexample
594fe323 19252(gdb)
922fbb7b
AC
19253-exec-next-instruction
19254^running
19255
594fe323 19256(gdb)
922fbb7b
AC
19257*stopped,reason="end-stepping-range",
19258addr="0x000100d4",line="5",file="hello.c"
594fe323 19259(gdb)
922fbb7b
AC
19260@end smallexample
19261
19262
19263@subheading The @code{-exec-return} Command
19264@findex -exec-return
19265
19266@subsubheading Synopsis
19267
19268@smallexample
19269 -exec-return
19270@end smallexample
19271
19272Makes current function return immediately. Doesn't execute the inferior.
19273Displays the new current frame.
19274
19275@subsubheading @value{GDBN} Command
19276
19277The corresponding @value{GDBN} command is @samp{return}.
19278
19279@subsubheading Example
19280
19281@smallexample
594fe323 19282(gdb)
922fbb7b
AC
19283200-break-insert callee4
19284200^done,bkpt=@{number="1",addr="0x00010734",
19285file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19286(gdb)
922fbb7b
AC
19287000-exec-run
19288000^running
594fe323 19289(gdb)
922fbb7b
AC
19290000*stopped,reason="breakpoint-hit",bkptno="1",
19291frame=@{func="callee4",args=[],
76ff342d
DJ
19292file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19293fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19294(gdb)
922fbb7b
AC
19295205-break-delete
19296205^done
594fe323 19297(gdb)
922fbb7b
AC
19298111-exec-return
19299111^done,frame=@{level="0",func="callee3",
19300args=[@{name="strarg",
19301value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19302file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19303fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19304(gdb)
922fbb7b
AC
19305@end smallexample
19306
19307
19308@subheading The @code{-exec-run} Command
19309@findex -exec-run
19310
19311@subsubheading Synopsis
19312
19313@smallexample
19314 -exec-run
19315@end smallexample
19316
ef21caaf
NR
19317Starts execution of the inferior from the beginning. The inferior
19318executes until either a breakpoint is encountered or the program
19319exits. In the latter case the output will include an exit code, if
19320the program has exited exceptionally.
922fbb7b
AC
19321
19322@subsubheading @value{GDBN} Command
19323
19324The corresponding @value{GDBN} command is @samp{run}.
19325
ef21caaf 19326@subsubheading Examples
922fbb7b
AC
19327
19328@smallexample
594fe323 19329(gdb)
922fbb7b
AC
19330-break-insert main
19331^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19332(gdb)
922fbb7b
AC
19333-exec-run
19334^running
594fe323 19335(gdb)
922fbb7b 19336*stopped,reason="breakpoint-hit",bkptno="1",
76ff342d 19337frame=@{func="main",args=[],file="recursive2.c",
948d5102 19338fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19339(gdb)
922fbb7b
AC
19340@end smallexample
19341
ef21caaf
NR
19342@noindent
19343Program exited normally:
19344
19345@smallexample
594fe323 19346(gdb)
ef21caaf
NR
19347-exec-run
19348^running
594fe323 19349(gdb)
ef21caaf
NR
19350x = 55
19351*stopped,reason="exited-normally"
594fe323 19352(gdb)
ef21caaf
NR
19353@end smallexample
19354
19355@noindent
19356Program exited exceptionally:
19357
19358@smallexample
594fe323 19359(gdb)
ef21caaf
NR
19360-exec-run
19361^running
594fe323 19362(gdb)
ef21caaf
NR
19363x = 55
19364*stopped,reason="exited",exit-code="01"
594fe323 19365(gdb)
ef21caaf
NR
19366@end smallexample
19367
19368Another way the program can terminate is if it receives a signal such as
19369@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19370
19371@smallexample
594fe323 19372(gdb)
ef21caaf
NR
19373*stopped,reason="exited-signalled",signal-name="SIGINT",
19374signal-meaning="Interrupt"
19375@end smallexample
19376
922fbb7b 19377
a2c02241
NR
19378@c @subheading -exec-signal
19379
19380
19381@subheading The @code{-exec-step} Command
19382@findex -exec-step
922fbb7b
AC
19383
19384@subsubheading Synopsis
19385
19386@smallexample
a2c02241 19387 -exec-step
922fbb7b
AC
19388@end smallexample
19389
a2c02241
NR
19390Resumes execution of the inferior program, stopping when the beginning
19391of the next source line is reached, if the next source line is not a
19392function call. If it is, stop at the first instruction of the called
19393function.
922fbb7b
AC
19394
19395@subsubheading @value{GDBN} Command
19396
a2c02241 19397The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19398
19399@subsubheading Example
19400
19401Stepping into a function:
19402
19403@smallexample
19404-exec-step
19405^running
594fe323 19406(gdb)
922fbb7b
AC
19407*stopped,reason="end-stepping-range",
19408frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19409@{name="b",value="0"@}],file="recursive2.c",
948d5102 19410fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19411(gdb)
922fbb7b
AC
19412@end smallexample
19413
19414Regular stepping:
19415
19416@smallexample
19417-exec-step
19418^running
594fe323 19419(gdb)
922fbb7b 19420*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19421(gdb)
922fbb7b
AC
19422@end smallexample
19423
19424
19425@subheading The @code{-exec-step-instruction} Command
19426@findex -exec-step-instruction
19427
19428@subsubheading Synopsis
19429
19430@smallexample
19431 -exec-step-instruction
19432@end smallexample
19433
ef21caaf
NR
19434Resumes the inferior which executes one machine instruction. The
19435output, once @value{GDBN} has stopped, will vary depending on whether
19436we have stopped in the middle of a source line or not. In the former
19437case, the address at which the program stopped will be printed as
922fbb7b
AC
19438well.
19439
19440@subsubheading @value{GDBN} Command
19441
19442The corresponding @value{GDBN} command is @samp{stepi}.
19443
19444@subsubheading Example
19445
19446@smallexample
594fe323 19447(gdb)
922fbb7b
AC
19448-exec-step-instruction
19449^running
19450
594fe323 19451(gdb)
922fbb7b 19452*stopped,reason="end-stepping-range",
76ff342d 19453frame=@{func="foo",args=[],file="try.c",
948d5102 19454fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19455(gdb)
922fbb7b
AC
19456-exec-step-instruction
19457^running
19458
594fe323 19459(gdb)
922fbb7b 19460*stopped,reason="end-stepping-range",
76ff342d 19461frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19462fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19463(gdb)
922fbb7b
AC
19464@end smallexample
19465
19466
19467@subheading The @code{-exec-until} Command
19468@findex -exec-until
19469
19470@subsubheading Synopsis
19471
19472@smallexample
19473 -exec-until [ @var{location} ]
19474@end smallexample
19475
ef21caaf
NR
19476Executes the inferior until the @var{location} specified in the
19477argument is reached. If there is no argument, the inferior executes
19478until a source line greater than the current one is reached. The
19479reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19480
19481@subsubheading @value{GDBN} Command
19482
19483The corresponding @value{GDBN} command is @samp{until}.
19484
19485@subsubheading Example
19486
19487@smallexample
594fe323 19488(gdb)
922fbb7b
AC
19489-exec-until recursive2.c:6
19490^running
594fe323 19491(gdb)
922fbb7b
AC
19492x = 55
19493*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19494file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19495(gdb)
922fbb7b
AC
19496@end smallexample
19497
19498@ignore
19499@subheading -file-clear
19500Is this going away????
19501@end ignore
19502
351ff01a 19503@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19504@node GDB/MI Stack Manipulation
19505@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19506
922fbb7b 19507
a2c02241
NR
19508@subheading The @code{-stack-info-frame} Command
19509@findex -stack-info-frame
922fbb7b
AC
19510
19511@subsubheading Synopsis
19512
19513@smallexample
a2c02241 19514 -stack-info-frame
922fbb7b
AC
19515@end smallexample
19516
a2c02241 19517Get info on the selected frame.
922fbb7b
AC
19518
19519@subsubheading @value{GDBN} Command
19520
a2c02241
NR
19521The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19522(without arguments).
922fbb7b
AC
19523
19524@subsubheading Example
19525
19526@smallexample
594fe323 19527(gdb)
a2c02241
NR
19528-stack-info-frame
19529^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19530file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19531fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19532(gdb)
922fbb7b
AC
19533@end smallexample
19534
a2c02241
NR
19535@subheading The @code{-stack-info-depth} Command
19536@findex -stack-info-depth
922fbb7b
AC
19537
19538@subsubheading Synopsis
19539
19540@smallexample
a2c02241 19541 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19542@end smallexample
19543
a2c02241
NR
19544Return the depth of the stack. If the integer argument @var{max-depth}
19545is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19546
19547@subsubheading @value{GDBN} Command
19548
a2c02241 19549There's no equivalent @value{GDBN} command.
922fbb7b
AC
19550
19551@subsubheading Example
19552
a2c02241
NR
19553For a stack with frame levels 0 through 11:
19554
922fbb7b 19555@smallexample
594fe323 19556(gdb)
a2c02241
NR
19557-stack-info-depth
19558^done,depth="12"
594fe323 19559(gdb)
a2c02241
NR
19560-stack-info-depth 4
19561^done,depth="4"
594fe323 19562(gdb)
a2c02241
NR
19563-stack-info-depth 12
19564^done,depth="12"
594fe323 19565(gdb)
a2c02241
NR
19566-stack-info-depth 11
19567^done,depth="11"
594fe323 19568(gdb)
a2c02241
NR
19569-stack-info-depth 13
19570^done,depth="12"
594fe323 19571(gdb)
922fbb7b
AC
19572@end smallexample
19573
a2c02241
NR
19574@subheading The @code{-stack-list-arguments} Command
19575@findex -stack-list-arguments
922fbb7b
AC
19576
19577@subsubheading Synopsis
19578
19579@smallexample
a2c02241
NR
19580 -stack-list-arguments @var{show-values}
19581 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19582@end smallexample
19583
a2c02241
NR
19584Display a list of the arguments for the frames between @var{low-frame}
19585and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19586@var{high-frame} are not provided, list the arguments for the whole
19587call stack. If the two arguments are equal, show the single frame
19588at the corresponding level. It is an error if @var{low-frame} is
19589larger than the actual number of frames. On the other hand,
19590@var{high-frame} may be larger than the actual number of frames, in
19591which case only existing frames will be returned.
a2c02241
NR
19592
19593The @var{show-values} argument must have a value of 0 or 1. A value of
195940 means that only the names of the arguments are listed, a value of 1
19595means that both names and values of the arguments are printed.
922fbb7b
AC
19596
19597@subsubheading @value{GDBN} Command
19598
a2c02241
NR
19599@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19600@samp{gdb_get_args} command which partially overlaps with the
19601functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19602
19603@subsubheading Example
922fbb7b 19604
a2c02241 19605@smallexample
594fe323 19606(gdb)
a2c02241
NR
19607-stack-list-frames
19608^done,
19609stack=[
19610frame=@{level="0",addr="0x00010734",func="callee4",
19611file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19612fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19613frame=@{level="1",addr="0x0001076c",func="callee3",
19614file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19615fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19616frame=@{level="2",addr="0x0001078c",func="callee2",
19617file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19618fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19619frame=@{level="3",addr="0x000107b4",func="callee1",
19620file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19621fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19622frame=@{level="4",addr="0x000107e0",func="main",
19623file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19624fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19625(gdb)
a2c02241
NR
19626-stack-list-arguments 0
19627^done,
19628stack-args=[
19629frame=@{level="0",args=[]@},
19630frame=@{level="1",args=[name="strarg"]@},
19631frame=@{level="2",args=[name="intarg",name="strarg"]@},
19632frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19633frame=@{level="4",args=[]@}]
594fe323 19634(gdb)
a2c02241
NR
19635-stack-list-arguments 1
19636^done,
19637stack-args=[
19638frame=@{level="0",args=[]@},
19639frame=@{level="1",
19640 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19641frame=@{level="2",args=[
19642@{name="intarg",value="2"@},
19643@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19644@{frame=@{level="3",args=[
19645@{name="intarg",value="2"@},
19646@{name="strarg",value="0x11940 \"A string argument.\""@},
19647@{name="fltarg",value="3.5"@}]@},
19648frame=@{level="4",args=[]@}]
594fe323 19649(gdb)
a2c02241
NR
19650-stack-list-arguments 0 2 2
19651^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19652(gdb)
a2c02241
NR
19653-stack-list-arguments 1 2 2
19654^done,stack-args=[frame=@{level="2",
19655args=[@{name="intarg",value="2"@},
19656@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19657(gdb)
a2c02241
NR
19658@end smallexample
19659
19660@c @subheading -stack-list-exception-handlers
922fbb7b 19661
a2c02241
NR
19662
19663@subheading The @code{-stack-list-frames} Command
19664@findex -stack-list-frames
1abaf70c
BR
19665
19666@subsubheading Synopsis
19667
19668@smallexample
a2c02241 19669 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19670@end smallexample
19671
a2c02241
NR
19672List the frames currently on the stack. For each frame it displays the
19673following info:
19674
19675@table @samp
19676@item @var{level}
d3e8051b 19677The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19678@item @var{addr}
19679The @code{$pc} value for that frame.
19680@item @var{func}
19681Function name.
19682@item @var{file}
19683File name of the source file where the function lives.
19684@item @var{line}
19685Line number corresponding to the @code{$pc}.
19686@end table
19687
19688If invoked without arguments, this command prints a backtrace for the
19689whole stack. If given two integer arguments, it shows the frames whose
19690levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19691are equal, it shows the single frame at the corresponding level. It is
19692an error if @var{low-frame} is larger than the actual number of
a5451f4e 19693frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19694actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19695
19696@subsubheading @value{GDBN} Command
19697
a2c02241 19698The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19699
19700@subsubheading Example
19701
a2c02241
NR
19702Full stack backtrace:
19703
1abaf70c 19704@smallexample
594fe323 19705(gdb)
a2c02241
NR
19706-stack-list-frames
19707^done,stack=
19708[frame=@{level="0",addr="0x0001076c",func="foo",
19709 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19710frame=@{level="1",addr="0x000107a4",func="foo",
19711 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19712frame=@{level="2",addr="0x000107a4",func="foo",
19713 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19714frame=@{level="3",addr="0x000107a4",func="foo",
19715 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19716frame=@{level="4",addr="0x000107a4",func="foo",
19717 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19718frame=@{level="5",addr="0x000107a4",func="foo",
19719 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19720frame=@{level="6",addr="0x000107a4",func="foo",
19721 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19722frame=@{level="7",addr="0x000107a4",func="foo",
19723 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19724frame=@{level="8",addr="0x000107a4",func="foo",
19725 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19726frame=@{level="9",addr="0x000107a4",func="foo",
19727 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19728frame=@{level="10",addr="0x000107a4",func="foo",
19729 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19730frame=@{level="11",addr="0x00010738",func="main",
19731 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19732(gdb)
1abaf70c
BR
19733@end smallexample
19734
a2c02241 19735Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19736
a2c02241 19737@smallexample
594fe323 19738(gdb)
a2c02241
NR
19739-stack-list-frames 3 5
19740^done,stack=
19741[frame=@{level="3",addr="0x000107a4",func="foo",
19742 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19743frame=@{level="4",addr="0x000107a4",func="foo",
19744 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19745frame=@{level="5",addr="0x000107a4",func="foo",
19746 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19747(gdb)
a2c02241 19748@end smallexample
922fbb7b 19749
a2c02241 19750Show a single frame:
922fbb7b
AC
19751
19752@smallexample
594fe323 19753(gdb)
a2c02241
NR
19754-stack-list-frames 3 3
19755^done,stack=
19756[frame=@{level="3",addr="0x000107a4",func="foo",
19757 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19758(gdb)
922fbb7b
AC
19759@end smallexample
19760
922fbb7b 19761
a2c02241
NR
19762@subheading The @code{-stack-list-locals} Command
19763@findex -stack-list-locals
57c22c6c 19764
a2c02241 19765@subsubheading Synopsis
922fbb7b
AC
19766
19767@smallexample
a2c02241 19768 -stack-list-locals @var{print-values}
922fbb7b
AC
19769@end smallexample
19770
a2c02241
NR
19771Display the local variable names for the selected frame. If
19772@var{print-values} is 0 or @code{--no-values}, print only the names of
19773the variables; if it is 1 or @code{--all-values}, print also their
19774values; and if it is 2 or @code{--simple-values}, print the name,
19775type and value for simple data types and the name and type for arrays,
19776structures and unions. In this last case, a frontend can immediately
19777display the value of simple data types and create variable objects for
d3e8051b 19778other data types when the user wishes to explore their values in
a2c02241 19779more detail.
922fbb7b
AC
19780
19781@subsubheading @value{GDBN} Command
19782
a2c02241 19783@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19784
19785@subsubheading Example
922fbb7b
AC
19786
19787@smallexample
594fe323 19788(gdb)
a2c02241
NR
19789-stack-list-locals 0
19790^done,locals=[name="A",name="B",name="C"]
594fe323 19791(gdb)
a2c02241
NR
19792-stack-list-locals --all-values
19793^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19794 @{name="C",value="@{1, 2, 3@}"@}]
19795-stack-list-locals --simple-values
19796^done,locals=[@{name="A",type="int",value="1"@},
19797 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19798(gdb)
922fbb7b
AC
19799@end smallexample
19800
922fbb7b 19801
a2c02241
NR
19802@subheading The @code{-stack-select-frame} Command
19803@findex -stack-select-frame
922fbb7b
AC
19804
19805@subsubheading Synopsis
19806
19807@smallexample
a2c02241 19808 -stack-select-frame @var{framenum}
922fbb7b
AC
19809@end smallexample
19810
a2c02241
NR
19811Change the selected frame. Select a different frame @var{framenum} on
19812the stack.
922fbb7b
AC
19813
19814@subsubheading @value{GDBN} Command
19815
a2c02241
NR
19816The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19817@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19818
19819@subsubheading Example
19820
19821@smallexample
594fe323 19822(gdb)
a2c02241 19823-stack-select-frame 2
922fbb7b 19824^done
594fe323 19825(gdb)
922fbb7b
AC
19826@end smallexample
19827
19828@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19829@node GDB/MI Variable Objects
19830@section @sc{gdb/mi} Variable Objects
922fbb7b 19831
a1b5960f 19832@ignore
922fbb7b 19833
a2c02241 19834@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19835
a2c02241
NR
19836For the implementation of a variable debugger window (locals, watched
19837expressions, etc.), we are proposing the adaptation of the existing code
19838used by @code{Insight}.
922fbb7b 19839
a2c02241 19840The two main reasons for that are:
922fbb7b 19841
a2c02241
NR
19842@enumerate 1
19843@item
19844It has been proven in practice (it is already on its second generation).
922fbb7b 19845
a2c02241
NR
19846@item
19847It will shorten development time (needless to say how important it is
19848now).
19849@end enumerate
922fbb7b 19850
a2c02241
NR
19851The original interface was designed to be used by Tcl code, so it was
19852slightly changed so it could be used through @sc{gdb/mi}. This section
19853describes the @sc{gdb/mi} operations that will be available and gives some
19854hints about their use.
922fbb7b 19855
a2c02241
NR
19856@emph{Note}: In addition to the set of operations described here, we
19857expect the @sc{gui} implementation of a variable window to require, at
19858least, the following operations:
922fbb7b 19859
a2c02241
NR
19860@itemize @bullet
19861@item @code{-gdb-show} @code{output-radix}
19862@item @code{-stack-list-arguments}
19863@item @code{-stack-list-locals}
19864@item @code{-stack-select-frame}
19865@end itemize
922fbb7b 19866
a1b5960f
VP
19867@end ignore
19868
c8b2f53c 19869@subheading Introduction to Variable Objects
922fbb7b 19870
a2c02241 19871@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19872
19873Variable objects are "object-oriented" MI interface for examining and
19874changing values of expressions. Unlike some other MI interfaces that
19875work with expressions, variable objects are specifically designed for
19876simple and efficient presentation in the frontend. A variable object
19877is identified by string name. When a variable object is created, the
19878frontend specifies the expression for that variable object. The
19879expression can be a simple variable, or it can be an arbitrary complex
19880expression, and can even involve CPU registers. After creating a
19881variable object, the frontend can invoke other variable object
19882operations---for example to obtain or change the value of a variable
19883object, or to change display format.
19884
19885Variable objects have hierarchical tree structure. Any variable object
19886that corresponds to a composite type, such as structure in C, has
19887a number of child variable objects, for example corresponding to each
19888element of a structure. A child variable object can itself have
19889children, recursively. Recursion ends when we reach
25d5ea92
VP
19890leaf variable objects, which always have built-in types. Child variable
19891objects are created only by explicit request, so if a frontend
19892is not interested in the children of a particular variable object, no
19893child will be created.
c8b2f53c
VP
19894
19895For a leaf variable object it is possible to obtain its value as a
19896string, or set the value from a string. String value can be also
19897obtained for a non-leaf variable object, but it's generally a string
19898that only indicates the type of the object, and does not list its
19899contents. Assignment to a non-leaf variable object is not allowed.
19900
19901A frontend does not need to read the values of all variable objects each time
19902the program stops. Instead, MI provides an update command that lists all
19903variable objects whose values has changed since the last update
19904operation. This considerably reduces the amount of data that must
25d5ea92
VP
19905be transferred to the frontend. As noted above, children variable
19906objects are created on demand, and only leaf variable objects have a
19907real value. As result, gdb will read target memory only for leaf
19908variables that frontend has created.
19909
19910The automatic update is not always desirable. For example, a frontend
19911might want to keep a value of some expression for future reference,
19912and never update it. For another example, fetching memory is
19913relatively slow for embedded targets, so a frontend might want
19914to disable automatic update for the variables that are either not
19915visible on the screen, or ``closed''. This is possible using so
19916called ``frozen variable objects''. Such variable objects are never
19917implicitly updated.
922fbb7b 19918
a2c02241
NR
19919The following is the complete set of @sc{gdb/mi} operations defined to
19920access this functionality:
922fbb7b 19921
a2c02241
NR
19922@multitable @columnfractions .4 .6
19923@item @strong{Operation}
19924@tab @strong{Description}
922fbb7b 19925
a2c02241
NR
19926@item @code{-var-create}
19927@tab create a variable object
19928@item @code{-var-delete}
22d8a470 19929@tab delete the variable object and/or its children
a2c02241
NR
19930@item @code{-var-set-format}
19931@tab set the display format of this variable
19932@item @code{-var-show-format}
19933@tab show the display format of this variable
19934@item @code{-var-info-num-children}
19935@tab tells how many children this object has
19936@item @code{-var-list-children}
19937@tab return a list of the object's children
19938@item @code{-var-info-type}
19939@tab show the type of this variable object
19940@item @code{-var-info-expression}
02142340
VP
19941@tab print parent-relative expression that this variable object represents
19942@item @code{-var-info-path-expression}
19943@tab print full expression that this variable object represents
a2c02241
NR
19944@item @code{-var-show-attributes}
19945@tab is this variable editable? does it exist here?
19946@item @code{-var-evaluate-expression}
19947@tab get the value of this variable
19948@item @code{-var-assign}
19949@tab set the value of this variable
19950@item @code{-var-update}
19951@tab update the variable and its children
25d5ea92
VP
19952@item @code{-var-set-frozen}
19953@tab set frozeness attribute
a2c02241 19954@end multitable
922fbb7b 19955
a2c02241
NR
19956In the next subsection we describe each operation in detail and suggest
19957how it can be used.
922fbb7b 19958
a2c02241 19959@subheading Description And Use of Operations on Variable Objects
922fbb7b 19960
a2c02241
NR
19961@subheading The @code{-var-create} Command
19962@findex -var-create
ef21caaf 19963
a2c02241 19964@subsubheading Synopsis
ef21caaf 19965
a2c02241
NR
19966@smallexample
19967 -var-create @{@var{name} | "-"@}
19968 @{@var{frame-addr} | "*"@} @var{expression}
19969@end smallexample
19970
19971This operation creates a variable object, which allows the monitoring of
19972a variable, the result of an expression, a memory cell or a CPU
19973register.
ef21caaf 19974
a2c02241
NR
19975The @var{name} parameter is the string by which the object can be
19976referenced. It must be unique. If @samp{-} is specified, the varobj
19977system will generate a string ``varNNNNNN'' automatically. It will be
19978unique provided that one does not specify @var{name} on that format.
19979The command fails if a duplicate name is found.
ef21caaf 19980
a2c02241
NR
19981The frame under which the expression should be evaluated can be
19982specified by @var{frame-addr}. A @samp{*} indicates that the current
19983frame should be used.
922fbb7b 19984
a2c02241
NR
19985@var{expression} is any expression valid on the current language set (must not
19986begin with a @samp{*}), or one of the following:
922fbb7b 19987
a2c02241
NR
19988@itemize @bullet
19989@item
19990@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 19991
a2c02241
NR
19992@item
19993@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 19994
a2c02241
NR
19995@item
19996@samp{$@var{regname}} --- a CPU register name
19997@end itemize
922fbb7b 19998
a2c02241 19999@subsubheading Result
922fbb7b 20000
a2c02241
NR
20001This operation returns the name, number of children and the type of the
20002object created. Type is returned as a string as the ones generated by
20003the @value{GDBN} CLI:
922fbb7b
AC
20004
20005@smallexample
a2c02241 20006 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
20007@end smallexample
20008
a2c02241
NR
20009
20010@subheading The @code{-var-delete} Command
20011@findex -var-delete
922fbb7b
AC
20012
20013@subsubheading Synopsis
20014
20015@smallexample
22d8a470 20016 -var-delete [ -c ] @var{name}
922fbb7b
AC
20017@end smallexample
20018
a2c02241 20019Deletes a previously created variable object and all of its children.
22d8a470 20020With the @samp{-c} option, just deletes the children.
922fbb7b 20021
a2c02241 20022Returns an error if the object @var{name} is not found.
922fbb7b 20023
922fbb7b 20024
a2c02241
NR
20025@subheading The @code{-var-set-format} Command
20026@findex -var-set-format
922fbb7b 20027
a2c02241 20028@subsubheading Synopsis
922fbb7b
AC
20029
20030@smallexample
a2c02241 20031 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
20032@end smallexample
20033
a2c02241
NR
20034Sets the output format for the value of the object @var{name} to be
20035@var{format-spec}.
20036
20037The syntax for the @var{format-spec} is as follows:
20038
20039@smallexample
20040 @var{format-spec} @expansion{}
20041 @{binary | decimal | hexadecimal | octal | natural@}
20042@end smallexample
20043
c8b2f53c
VP
20044The natural format is the default format choosen automatically
20045based on the variable type (like decimal for an @code{int}, hex
20046for pointers, etc.).
20047
20048For a variable with children, the format is set only on the
20049variable itself, and the children are not affected.
a2c02241
NR
20050
20051@subheading The @code{-var-show-format} Command
20052@findex -var-show-format
922fbb7b
AC
20053
20054@subsubheading Synopsis
20055
20056@smallexample
a2c02241 20057 -var-show-format @var{name}
922fbb7b
AC
20058@end smallexample
20059
a2c02241 20060Returns the format used to display the value of the object @var{name}.
922fbb7b 20061
a2c02241
NR
20062@smallexample
20063 @var{format} @expansion{}
20064 @var{format-spec}
20065@end smallexample
922fbb7b 20066
922fbb7b 20067
a2c02241
NR
20068@subheading The @code{-var-info-num-children} Command
20069@findex -var-info-num-children
20070
20071@subsubheading Synopsis
20072
20073@smallexample
20074 -var-info-num-children @var{name}
20075@end smallexample
20076
20077Returns the number of children of a variable object @var{name}:
20078
20079@smallexample
20080 numchild=@var{n}
20081@end smallexample
20082
20083
20084@subheading The @code{-var-list-children} Command
20085@findex -var-list-children
20086
20087@subsubheading Synopsis
20088
20089@smallexample
20090 -var-list-children [@var{print-values}] @var{name}
20091@end smallexample
20092@anchor{-var-list-children}
20093
20094Return a list of the children of the specified variable object and
20095create variable objects for them, if they do not already exist. With
20096a single argument or if @var{print-values} has a value for of 0 or
20097@code{--no-values}, print only the names of the variables; if
20098@var{print-values} is 1 or @code{--all-values}, also print their
20099values; and if it is 2 or @code{--simple-values} print the name and
20100value for simple data types and just the name for arrays, structures
20101and unions.
922fbb7b
AC
20102
20103@subsubheading Example
20104
20105@smallexample
594fe323 20106(gdb)
a2c02241
NR
20107 -var-list-children n
20108 ^done,numchild=@var{n},children=[@{name=@var{name},
20109 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 20110(gdb)
a2c02241
NR
20111 -var-list-children --all-values n
20112 ^done,numchild=@var{n},children=[@{name=@var{name},
20113 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
20114@end smallexample
20115
922fbb7b 20116
a2c02241
NR
20117@subheading The @code{-var-info-type} Command
20118@findex -var-info-type
922fbb7b 20119
a2c02241
NR
20120@subsubheading Synopsis
20121
20122@smallexample
20123 -var-info-type @var{name}
20124@end smallexample
20125
20126Returns the type of the specified variable @var{name}. The type is
20127returned as a string in the same format as it is output by the
20128@value{GDBN} CLI:
20129
20130@smallexample
20131 type=@var{typename}
20132@end smallexample
20133
20134
20135@subheading The @code{-var-info-expression} Command
20136@findex -var-info-expression
922fbb7b
AC
20137
20138@subsubheading Synopsis
20139
20140@smallexample
a2c02241 20141 -var-info-expression @var{name}
922fbb7b
AC
20142@end smallexample
20143
02142340
VP
20144Returns a string that is suitable for presenting this
20145variable object in user interface. The string is generally
20146not valid expression in the current language, and cannot be evaluated.
20147
20148For example, if @code{a} is an array, and variable object
20149@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20150
a2c02241 20151@smallexample
02142340
VP
20152(gdb) -var-info-expression A.1
20153^done,lang="C",exp="1"
a2c02241 20154@end smallexample
922fbb7b 20155
a2c02241 20156@noindent
02142340
VP
20157Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20158
20159Note that the output of the @code{-var-list-children} command also
20160includes those expressions, so the @code{-var-info-expression} command
20161is of limited use.
20162
20163@subheading The @code{-var-info-path-expression} Command
20164@findex -var-info-path-expression
20165
20166@subsubheading Synopsis
20167
20168@smallexample
20169 -var-info-path-expression @var{name}
20170@end smallexample
20171
20172Returns an expression that can be evaluated in the current
20173context and will yield the same value that a variable object has.
20174Compare this with the @code{-var-info-expression} command, which
20175result can be used only for UI presentation. Typical use of
20176the @code{-var-info-path-expression} command is creating a
20177watchpoint from a variable object.
20178
20179For example, suppose @code{C} is a C@t{++} class, derived from class
20180@code{Base}, and that the @code{Base} class has a member called
20181@code{m_size}. Assume a variable @code{c} is has the type of
20182@code{C} and a variable object @code{C} was created for variable
20183@code{c}. Then, we'll get this output:
20184@smallexample
20185(gdb) -var-info-path-expression C.Base.public.m_size
20186^done,path_expr=((Base)c).m_size)
20187@end smallexample
922fbb7b 20188
a2c02241
NR
20189@subheading The @code{-var-show-attributes} Command
20190@findex -var-show-attributes
922fbb7b 20191
a2c02241 20192@subsubheading Synopsis
922fbb7b 20193
a2c02241
NR
20194@smallexample
20195 -var-show-attributes @var{name}
20196@end smallexample
922fbb7b 20197
a2c02241 20198List attributes of the specified variable object @var{name}:
922fbb7b
AC
20199
20200@smallexample
a2c02241 20201 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20202@end smallexample
20203
a2c02241
NR
20204@noindent
20205where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20206
20207@subheading The @code{-var-evaluate-expression} Command
20208@findex -var-evaluate-expression
20209
20210@subsubheading Synopsis
20211
20212@smallexample
20213 -var-evaluate-expression @var{name}
20214@end smallexample
20215
20216Evaluates the expression that is represented by the specified variable
c8b2f53c
VP
20217object and returns its value as a string. The format of the
20218string can be changed using the @code{-var-set-format} command.
a2c02241
NR
20219
20220@smallexample
20221 value=@var{value}
20222@end smallexample
20223
20224Note that one must invoke @code{-var-list-children} for a variable
20225before the value of a child variable can be evaluated.
20226
20227@subheading The @code{-var-assign} Command
20228@findex -var-assign
20229
20230@subsubheading Synopsis
20231
20232@smallexample
20233 -var-assign @var{name} @var{expression}
20234@end smallexample
20235
20236Assigns the value of @var{expression} to the variable object specified
20237by @var{name}. The object must be @samp{editable}. If the variable's
20238value is altered by the assign, the variable will show up in any
20239subsequent @code{-var-update} list.
20240
20241@subsubheading Example
922fbb7b
AC
20242
20243@smallexample
594fe323 20244(gdb)
a2c02241
NR
20245-var-assign var1 3
20246^done,value="3"
594fe323 20247(gdb)
a2c02241
NR
20248-var-update *
20249^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20250(gdb)
922fbb7b
AC
20251@end smallexample
20252
a2c02241
NR
20253@subheading The @code{-var-update} Command
20254@findex -var-update
20255
20256@subsubheading Synopsis
20257
20258@smallexample
20259 -var-update [@var{print-values}] @{@var{name} | "*"@}
20260@end smallexample
20261
c8b2f53c
VP
20262Reevaluate the expressions corresponding to the variable object
20263@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20264list of variable objects whose values have changed; @var{name} must
20265be a root variable object. Here, ``changed'' means that the result of
20266@code{-var-evaluate-expression} before and after the
20267@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20268object names, all existing variable objects are updated, except
20269for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3
NR
20270@var{print-values} determines whether both names and values, or just
20271names are printed. The possible values of this options are the same
20272as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20273recommended to use the @samp{--all-values} option, to reduce the
20274number of MI commands needed on each program stop.
c8b2f53c 20275
a2c02241
NR
20276
20277@subsubheading Example
922fbb7b
AC
20278
20279@smallexample
594fe323 20280(gdb)
a2c02241
NR
20281-var-assign var1 3
20282^done,value="3"
594fe323 20283(gdb)
a2c02241
NR
20284-var-update --all-values var1
20285^done,changelist=[@{name="var1",value="3",in_scope="true",
20286type_changed="false"@}]
594fe323 20287(gdb)
922fbb7b
AC
20288@end smallexample
20289
9f708cb2 20290@anchor{-var-update}
36ece8b3
NR
20291The field in_scope may take three values:
20292
20293@table @code
20294@item "true"
20295The variable object's current value is valid.
20296
20297@item "false"
20298The variable object does not currently hold a valid value but it may
20299hold one in the future if its associated expression comes back into
20300scope.
20301
20302@item "invalid"
20303The variable object no longer holds a valid value.
20304This can occur when the executable file being debugged has changed,
20305either through recompilation or by using the @value{GDBN} @code{file}
20306command. The front end should normally choose to delete these variable
20307objects.
20308@end table
20309
20310In the future new values may be added to this list so the front should
20311be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20312
25d5ea92
VP
20313@subheading The @code{-var-set-frozen} Command
20314@findex -var-set-frozen
9f708cb2 20315@anchor{-var-set-frozen}
25d5ea92
VP
20316
20317@subsubheading Synopsis
20318
20319@smallexample
9f708cb2 20320 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20321@end smallexample
20322
9f708cb2 20323Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20324@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20325frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20326frozen, then neither itself, nor any of its children, are
9f708cb2 20327implicitly updated by @code{-var-update} of
25d5ea92
VP
20328a parent variable or by @code{-var-update *}. Only
20329@code{-var-update} of the variable itself will update its value and
20330values of its children. After a variable object is unfrozen, it is
20331implicitly updated by all subsequent @code{-var-update} operations.
20332Unfreezing a variable does not update it, only subsequent
20333@code{-var-update} does.
20334
20335@subsubheading Example
20336
20337@smallexample
20338(gdb)
20339-var-set-frozen V 1
20340^done
20341(gdb)
20342@end smallexample
20343
20344
a2c02241
NR
20345@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20346@node GDB/MI Data Manipulation
20347@section @sc{gdb/mi} Data Manipulation
922fbb7b 20348
a2c02241
NR
20349@cindex data manipulation, in @sc{gdb/mi}
20350@cindex @sc{gdb/mi}, data manipulation
20351This section describes the @sc{gdb/mi} commands that manipulate data:
20352examine memory and registers, evaluate expressions, etc.
20353
20354@c REMOVED FROM THE INTERFACE.
20355@c @subheading -data-assign
20356@c Change the value of a program variable. Plenty of side effects.
79a6e687 20357@c @subsubheading GDB Command
a2c02241
NR
20358@c set variable
20359@c @subsubheading Example
20360@c N.A.
20361
20362@subheading The @code{-data-disassemble} Command
20363@findex -data-disassemble
922fbb7b
AC
20364
20365@subsubheading Synopsis
20366
20367@smallexample
a2c02241
NR
20368 -data-disassemble
20369 [ -s @var{start-addr} -e @var{end-addr} ]
20370 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20371 -- @var{mode}
922fbb7b
AC
20372@end smallexample
20373
a2c02241
NR
20374@noindent
20375Where:
20376
20377@table @samp
20378@item @var{start-addr}
20379is the beginning address (or @code{$pc})
20380@item @var{end-addr}
20381is the end address
20382@item @var{filename}
20383is the name of the file to disassemble
20384@item @var{linenum}
20385is the line number to disassemble around
20386@item @var{lines}
d3e8051b 20387is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20388the whole function will be disassembled, in case no @var{end-addr} is
20389specified. If @var{end-addr} is specified as a non-zero value, and
20390@var{lines} is lower than the number of disassembly lines between
20391@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20392displayed; if @var{lines} is higher than the number of lines between
20393@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20394are displayed.
20395@item @var{mode}
20396is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20397disassembly).
20398@end table
20399
20400@subsubheading Result
20401
20402The output for each instruction is composed of four fields:
20403
20404@itemize @bullet
20405@item Address
20406@item Func-name
20407@item Offset
20408@item Instruction
20409@end itemize
20410
20411Note that whatever included in the instruction field, is not manipulated
d3e8051b 20412directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20413
20414@subsubheading @value{GDBN} Command
20415
a2c02241 20416There's no direct mapping from this command to the CLI.
922fbb7b
AC
20417
20418@subsubheading Example
20419
a2c02241
NR
20420Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20421
922fbb7b 20422@smallexample
594fe323 20423(gdb)
a2c02241
NR
20424-data-disassemble -s $pc -e "$pc + 20" -- 0
20425^done,
20426asm_insns=[
20427@{address="0x000107c0",func-name="main",offset="4",
20428inst="mov 2, %o0"@},
20429@{address="0x000107c4",func-name="main",offset="8",
20430inst="sethi %hi(0x11800), %o2"@},
20431@{address="0x000107c8",func-name="main",offset="12",
20432inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20433@{address="0x000107cc",func-name="main",offset="16",
20434inst="sethi %hi(0x11800), %o2"@},
20435@{address="0x000107d0",func-name="main",offset="20",
20436inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20437(gdb)
a2c02241
NR
20438@end smallexample
20439
20440Disassemble the whole @code{main} function. Line 32 is part of
20441@code{main}.
20442
20443@smallexample
20444-data-disassemble -f basics.c -l 32 -- 0
20445^done,asm_insns=[
20446@{address="0x000107bc",func-name="main",offset="0",
20447inst="save %sp, -112, %sp"@},
20448@{address="0x000107c0",func-name="main",offset="4",
20449inst="mov 2, %o0"@},
20450@{address="0x000107c4",func-name="main",offset="8",
20451inst="sethi %hi(0x11800), %o2"@},
20452[@dots{}]
20453@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20454@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20455(gdb)
922fbb7b
AC
20456@end smallexample
20457
a2c02241 20458Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20459
a2c02241 20460@smallexample
594fe323 20461(gdb)
a2c02241
NR
20462-data-disassemble -f basics.c -l 32 -n 3 -- 0
20463^done,asm_insns=[
20464@{address="0x000107bc",func-name="main",offset="0",
20465inst="save %sp, -112, %sp"@},
20466@{address="0x000107c0",func-name="main",offset="4",
20467inst="mov 2, %o0"@},
20468@{address="0x000107c4",func-name="main",offset="8",
20469inst="sethi %hi(0x11800), %o2"@}]
594fe323 20470(gdb)
a2c02241
NR
20471@end smallexample
20472
20473Disassemble 3 instructions from the start of @code{main} in mixed mode:
20474
20475@smallexample
594fe323 20476(gdb)
a2c02241
NR
20477-data-disassemble -f basics.c -l 32 -n 3 -- 1
20478^done,asm_insns=[
20479src_and_asm_line=@{line="31",
20480file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20481 testsuite/gdb.mi/basics.c",line_asm_insn=[
20482@{address="0x000107bc",func-name="main",offset="0",
20483inst="save %sp, -112, %sp"@}]@},
20484src_and_asm_line=@{line="32",
20485file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20486 testsuite/gdb.mi/basics.c",line_asm_insn=[
20487@{address="0x000107c0",func-name="main",offset="4",
20488inst="mov 2, %o0"@},
20489@{address="0x000107c4",func-name="main",offset="8",
20490inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20491(gdb)
a2c02241
NR
20492@end smallexample
20493
20494
20495@subheading The @code{-data-evaluate-expression} Command
20496@findex -data-evaluate-expression
922fbb7b
AC
20497
20498@subsubheading Synopsis
20499
20500@smallexample
a2c02241 20501 -data-evaluate-expression @var{expr}
922fbb7b
AC
20502@end smallexample
20503
a2c02241
NR
20504Evaluate @var{expr} as an expression. The expression could contain an
20505inferior function call. The function call will execute synchronously.
20506If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20507
20508@subsubheading @value{GDBN} Command
20509
a2c02241
NR
20510The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20511@samp{call}. In @code{gdbtk} only, there's a corresponding
20512@samp{gdb_eval} command.
922fbb7b
AC
20513
20514@subsubheading Example
20515
a2c02241
NR
20516In the following example, the numbers that precede the commands are the
20517@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20518Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20519output.
20520
922fbb7b 20521@smallexample
a2c02241
NR
20522211-data-evaluate-expression A
20523211^done,value="1"
594fe323 20524(gdb)
a2c02241
NR
20525311-data-evaluate-expression &A
20526311^done,value="0xefffeb7c"
594fe323 20527(gdb)
a2c02241
NR
20528411-data-evaluate-expression A+3
20529411^done,value="4"
594fe323 20530(gdb)
a2c02241
NR
20531511-data-evaluate-expression "A + 3"
20532511^done,value="4"
594fe323 20533(gdb)
a2c02241 20534@end smallexample
922fbb7b
AC
20535
20536
a2c02241
NR
20537@subheading The @code{-data-list-changed-registers} Command
20538@findex -data-list-changed-registers
922fbb7b
AC
20539
20540@subsubheading Synopsis
20541
20542@smallexample
a2c02241 20543 -data-list-changed-registers
922fbb7b
AC
20544@end smallexample
20545
a2c02241 20546Display a list of the registers that have changed.
922fbb7b
AC
20547
20548@subsubheading @value{GDBN} Command
20549
a2c02241
NR
20550@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20551has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20552
20553@subsubheading Example
922fbb7b 20554
a2c02241 20555On a PPC MBX board:
922fbb7b
AC
20556
20557@smallexample
594fe323 20558(gdb)
a2c02241
NR
20559-exec-continue
20560^running
922fbb7b 20561
594fe323 20562(gdb)
a2c02241
NR
20563*stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20564args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
594fe323 20565(gdb)
a2c02241
NR
20566-data-list-changed-registers
20567^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20568"10","11","13","14","15","16","17","18","19","20","21","22","23",
20569"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20570(gdb)
a2c02241 20571@end smallexample
922fbb7b
AC
20572
20573
a2c02241
NR
20574@subheading The @code{-data-list-register-names} Command
20575@findex -data-list-register-names
922fbb7b
AC
20576
20577@subsubheading Synopsis
20578
20579@smallexample
a2c02241 20580 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20581@end smallexample
20582
a2c02241
NR
20583Show a list of register names for the current target. If no arguments
20584are given, it shows a list of the names of all the registers. If
20585integer numbers are given as arguments, it will print a list of the
20586names of the registers corresponding to the arguments. To ensure
20587consistency between a register name and its number, the output list may
20588include empty register names.
922fbb7b
AC
20589
20590@subsubheading @value{GDBN} Command
20591
a2c02241
NR
20592@value{GDBN} does not have a command which corresponds to
20593@samp{-data-list-register-names}. In @code{gdbtk} there is a
20594corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20595
20596@subsubheading Example
922fbb7b 20597
a2c02241
NR
20598For the PPC MBX board:
20599@smallexample
594fe323 20600(gdb)
a2c02241
NR
20601-data-list-register-names
20602^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20603"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20604"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20605"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20606"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20607"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20608"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20609(gdb)
a2c02241
NR
20610-data-list-register-names 1 2 3
20611^done,register-names=["r1","r2","r3"]
594fe323 20612(gdb)
a2c02241 20613@end smallexample
922fbb7b 20614
a2c02241
NR
20615@subheading The @code{-data-list-register-values} Command
20616@findex -data-list-register-values
922fbb7b
AC
20617
20618@subsubheading Synopsis
20619
20620@smallexample
a2c02241 20621 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20622@end smallexample
20623
a2c02241
NR
20624Display the registers' contents. @var{fmt} is the format according to
20625which the registers' contents are to be returned, followed by an optional
20626list of numbers specifying the registers to display. A missing list of
20627numbers indicates that the contents of all the registers must be returned.
20628
20629Allowed formats for @var{fmt} are:
20630
20631@table @code
20632@item x
20633Hexadecimal
20634@item o
20635Octal
20636@item t
20637Binary
20638@item d
20639Decimal
20640@item r
20641Raw
20642@item N
20643Natural
20644@end table
922fbb7b
AC
20645
20646@subsubheading @value{GDBN} Command
20647
a2c02241
NR
20648The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20649all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20650
20651@subsubheading Example
922fbb7b 20652
a2c02241
NR
20653For a PPC MBX board (note: line breaks are for readability only, they
20654don't appear in the actual output):
20655
20656@smallexample
594fe323 20657(gdb)
a2c02241
NR
20658-data-list-register-values r 64 65
20659^done,register-values=[@{number="64",value="0xfe00a300"@},
20660@{number="65",value="0x00029002"@}]
594fe323 20661(gdb)
a2c02241
NR
20662-data-list-register-values x
20663^done,register-values=[@{number="0",value="0xfe0043c8"@},
20664@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20665@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20666@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20667@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20668@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20669@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20670@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20671@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20672@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20673@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20674@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20675@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20676@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20677@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20678@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20679@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20680@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20681@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20682@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20683@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20684@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20685@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20686@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20687@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20688@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20689@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20690@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20691@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20692@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20693@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20694@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20695@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20696@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20697@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20698@{number="69",value="0x20002b03"@}]
594fe323 20699(gdb)
a2c02241 20700@end smallexample
922fbb7b 20701
a2c02241
NR
20702
20703@subheading The @code{-data-read-memory} Command
20704@findex -data-read-memory
922fbb7b
AC
20705
20706@subsubheading Synopsis
20707
20708@smallexample
a2c02241
NR
20709 -data-read-memory [ -o @var{byte-offset} ]
20710 @var{address} @var{word-format} @var{word-size}
20711 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20712@end smallexample
20713
a2c02241
NR
20714@noindent
20715where:
922fbb7b 20716
a2c02241
NR
20717@table @samp
20718@item @var{address}
20719An expression specifying the address of the first memory word to be
20720read. Complex expressions containing embedded white space should be
20721quoted using the C convention.
922fbb7b 20722
a2c02241
NR
20723@item @var{word-format}
20724The format to be used to print the memory words. The notation is the
20725same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20726,Output Formats}).
922fbb7b 20727
a2c02241
NR
20728@item @var{word-size}
20729The size of each memory word in bytes.
922fbb7b 20730
a2c02241
NR
20731@item @var{nr-rows}
20732The number of rows in the output table.
922fbb7b 20733
a2c02241
NR
20734@item @var{nr-cols}
20735The number of columns in the output table.
922fbb7b 20736
a2c02241
NR
20737@item @var{aschar}
20738If present, indicates that each row should include an @sc{ascii} dump. The
20739value of @var{aschar} is used as a padding character when a byte is not a
20740member of the printable @sc{ascii} character set (printable @sc{ascii}
20741characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20742
a2c02241
NR
20743@item @var{byte-offset}
20744An offset to add to the @var{address} before fetching memory.
20745@end table
922fbb7b 20746
a2c02241
NR
20747This command displays memory contents as a table of @var{nr-rows} by
20748@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20749@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20750(returned as @samp{total-bytes}). Should less than the requested number
20751of bytes be returned by the target, the missing words are identified
20752using @samp{N/A}. The number of bytes read from the target is returned
20753in @samp{nr-bytes} and the starting address used to read memory in
20754@samp{addr}.
20755
20756The address of the next/previous row or page is available in
20757@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20758@samp{prev-page}.
922fbb7b
AC
20759
20760@subsubheading @value{GDBN} Command
20761
a2c02241
NR
20762The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20763@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20764
20765@subsubheading Example
32e7087d 20766
a2c02241
NR
20767Read six bytes of memory starting at @code{bytes+6} but then offset by
20768@code{-6} bytes. Format as three rows of two columns. One byte per
20769word. Display each word in hex.
32e7087d
JB
20770
20771@smallexample
594fe323 20772(gdb)
a2c02241
NR
207739-data-read-memory -o -6 -- bytes+6 x 1 3 2
207749^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20775next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20776prev-page="0x0000138a",memory=[
20777@{addr="0x00001390",data=["0x00","0x01"]@},
20778@{addr="0x00001392",data=["0x02","0x03"]@},
20779@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20780(gdb)
32e7087d
JB
20781@end smallexample
20782
a2c02241
NR
20783Read two bytes of memory starting at address @code{shorts + 64} and
20784display as a single word formatted in decimal.
32e7087d 20785
32e7087d 20786@smallexample
594fe323 20787(gdb)
a2c02241
NR
207885-data-read-memory shorts+64 d 2 1 1
207895^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20790next-row="0x00001512",prev-row="0x0000150e",
20791next-page="0x00001512",prev-page="0x0000150e",memory=[
20792@{addr="0x00001510",data=["128"]@}]
594fe323 20793(gdb)
32e7087d
JB
20794@end smallexample
20795
a2c02241
NR
20796Read thirty two bytes of memory starting at @code{bytes+16} and format
20797as eight rows of four columns. Include a string encoding with @samp{x}
20798used as the non-printable character.
922fbb7b
AC
20799
20800@smallexample
594fe323 20801(gdb)
a2c02241
NR
208024-data-read-memory bytes+16 x 1 8 4 x
208034^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20804next-row="0x000013c0",prev-row="0x0000139c",
20805next-page="0x000013c0",prev-page="0x00001380",memory=[
20806@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20807@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20808@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20809@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20810@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20811@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20812@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20813@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20814(gdb)
922fbb7b
AC
20815@end smallexample
20816
a2c02241
NR
20817@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20818@node GDB/MI Tracepoint Commands
20819@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20820
a2c02241 20821The tracepoint commands are not yet implemented.
922fbb7b 20822
a2c02241 20823@c @subheading -trace-actions
922fbb7b 20824
a2c02241 20825@c @subheading -trace-delete
922fbb7b 20826
a2c02241 20827@c @subheading -trace-disable
922fbb7b 20828
a2c02241 20829@c @subheading -trace-dump
922fbb7b 20830
a2c02241 20831@c @subheading -trace-enable
922fbb7b 20832
a2c02241 20833@c @subheading -trace-exists
922fbb7b 20834
a2c02241 20835@c @subheading -trace-find
922fbb7b 20836
a2c02241 20837@c @subheading -trace-frame-number
922fbb7b 20838
a2c02241 20839@c @subheading -trace-info
922fbb7b 20840
a2c02241 20841@c @subheading -trace-insert
922fbb7b 20842
a2c02241 20843@c @subheading -trace-list
922fbb7b 20844
a2c02241 20845@c @subheading -trace-pass-count
922fbb7b 20846
a2c02241 20847@c @subheading -trace-save
922fbb7b 20848
a2c02241 20849@c @subheading -trace-start
922fbb7b 20850
a2c02241 20851@c @subheading -trace-stop
922fbb7b 20852
922fbb7b 20853
a2c02241
NR
20854@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20855@node GDB/MI Symbol Query
20856@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20857
20858
a2c02241
NR
20859@subheading The @code{-symbol-info-address} Command
20860@findex -symbol-info-address
922fbb7b
AC
20861
20862@subsubheading Synopsis
20863
20864@smallexample
a2c02241 20865 -symbol-info-address @var{symbol}
922fbb7b
AC
20866@end smallexample
20867
a2c02241 20868Describe where @var{symbol} is stored.
922fbb7b
AC
20869
20870@subsubheading @value{GDBN} Command
20871
a2c02241 20872The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20873
20874@subsubheading Example
20875N.A.
20876
20877
a2c02241
NR
20878@subheading The @code{-symbol-info-file} Command
20879@findex -symbol-info-file
922fbb7b
AC
20880
20881@subsubheading Synopsis
20882
20883@smallexample
a2c02241 20884 -symbol-info-file
922fbb7b
AC
20885@end smallexample
20886
a2c02241 20887Show the file for the symbol.
922fbb7b 20888
a2c02241 20889@subsubheading @value{GDBN} Command
922fbb7b 20890
a2c02241
NR
20891There's no equivalent @value{GDBN} command. @code{gdbtk} has
20892@samp{gdb_find_file}.
922fbb7b
AC
20893
20894@subsubheading Example
20895N.A.
20896
20897
a2c02241
NR
20898@subheading The @code{-symbol-info-function} Command
20899@findex -symbol-info-function
922fbb7b
AC
20900
20901@subsubheading Synopsis
20902
20903@smallexample
a2c02241 20904 -symbol-info-function
922fbb7b
AC
20905@end smallexample
20906
a2c02241 20907Show which function the symbol lives in.
922fbb7b
AC
20908
20909@subsubheading @value{GDBN} Command
20910
a2c02241 20911@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20912
20913@subsubheading Example
20914N.A.
20915
20916
a2c02241
NR
20917@subheading The @code{-symbol-info-line} Command
20918@findex -symbol-info-line
922fbb7b
AC
20919
20920@subsubheading Synopsis
20921
20922@smallexample
a2c02241 20923 -symbol-info-line
922fbb7b
AC
20924@end smallexample
20925
a2c02241 20926Show the core addresses of the code for a source line.
922fbb7b 20927
a2c02241 20928@subsubheading @value{GDBN} Command
922fbb7b 20929
a2c02241
NR
20930The corresponding @value{GDBN} command is @samp{info line}.
20931@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20932
20933@subsubheading Example
a2c02241 20934N.A.
922fbb7b
AC
20935
20936
a2c02241
NR
20937@subheading The @code{-symbol-info-symbol} Command
20938@findex -symbol-info-symbol
07f31aa6
DJ
20939
20940@subsubheading Synopsis
20941
a2c02241
NR
20942@smallexample
20943 -symbol-info-symbol @var{addr}
20944@end smallexample
07f31aa6 20945
a2c02241 20946Describe what symbol is at location @var{addr}.
07f31aa6 20947
a2c02241 20948@subsubheading @value{GDBN} Command
07f31aa6 20949
a2c02241 20950The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20951
20952@subsubheading Example
a2c02241 20953N.A.
07f31aa6
DJ
20954
20955
a2c02241
NR
20956@subheading The @code{-symbol-list-functions} Command
20957@findex -symbol-list-functions
922fbb7b
AC
20958
20959@subsubheading Synopsis
20960
20961@smallexample
a2c02241 20962 -symbol-list-functions
922fbb7b
AC
20963@end smallexample
20964
a2c02241 20965List the functions in the executable.
922fbb7b
AC
20966
20967@subsubheading @value{GDBN} Command
20968
a2c02241
NR
20969@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20970@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20971
20972@subsubheading Example
a2c02241 20973N.A.
922fbb7b
AC
20974
20975
a2c02241
NR
20976@subheading The @code{-symbol-list-lines} Command
20977@findex -symbol-list-lines
922fbb7b
AC
20978
20979@subsubheading Synopsis
20980
20981@smallexample
a2c02241 20982 -symbol-list-lines @var{filename}
922fbb7b
AC
20983@end smallexample
20984
a2c02241
NR
20985Print the list of lines that contain code and their associated program
20986addresses for the given source filename. The entries are sorted in
20987ascending PC order.
922fbb7b
AC
20988
20989@subsubheading @value{GDBN} Command
20990
a2c02241 20991There is no corresponding @value{GDBN} command.
922fbb7b
AC
20992
20993@subsubheading Example
a2c02241 20994@smallexample
594fe323 20995(gdb)
a2c02241
NR
20996-symbol-list-lines basics.c
20997^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 20998(gdb)
a2c02241 20999@end smallexample
922fbb7b
AC
21000
21001
a2c02241
NR
21002@subheading The @code{-symbol-list-types} Command
21003@findex -symbol-list-types
922fbb7b
AC
21004
21005@subsubheading Synopsis
21006
21007@smallexample
a2c02241 21008 -symbol-list-types
922fbb7b
AC
21009@end smallexample
21010
a2c02241 21011List all the type names.
922fbb7b
AC
21012
21013@subsubheading @value{GDBN} Command
21014
a2c02241
NR
21015The corresponding commands are @samp{info types} in @value{GDBN},
21016@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21017
21018@subsubheading Example
21019N.A.
21020
21021
a2c02241
NR
21022@subheading The @code{-symbol-list-variables} Command
21023@findex -symbol-list-variables
922fbb7b
AC
21024
21025@subsubheading Synopsis
21026
21027@smallexample
a2c02241 21028 -symbol-list-variables
922fbb7b
AC
21029@end smallexample
21030
a2c02241 21031List all the global and static variable names.
922fbb7b
AC
21032
21033@subsubheading @value{GDBN} Command
21034
a2c02241 21035@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21036
21037@subsubheading Example
21038N.A.
21039
21040
a2c02241
NR
21041@subheading The @code{-symbol-locate} Command
21042@findex -symbol-locate
922fbb7b
AC
21043
21044@subsubheading Synopsis
21045
21046@smallexample
a2c02241 21047 -symbol-locate
922fbb7b
AC
21048@end smallexample
21049
922fbb7b
AC
21050@subsubheading @value{GDBN} Command
21051
a2c02241 21052@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
21053
21054@subsubheading Example
21055N.A.
21056
21057
a2c02241
NR
21058@subheading The @code{-symbol-type} Command
21059@findex -symbol-type
922fbb7b
AC
21060
21061@subsubheading Synopsis
21062
21063@smallexample
a2c02241 21064 -symbol-type @var{variable}
922fbb7b
AC
21065@end smallexample
21066
a2c02241 21067Show type of @var{variable}.
922fbb7b 21068
a2c02241 21069@subsubheading @value{GDBN} Command
922fbb7b 21070
a2c02241
NR
21071The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
21072@samp{gdb_obj_variable}.
21073
21074@subsubheading Example
21075N.A.
21076
21077
21078@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21079@node GDB/MI File Commands
21080@section @sc{gdb/mi} File Commands
21081
21082This section describes the GDB/MI commands to specify executable file names
21083and to read in and obtain symbol table information.
21084
21085@subheading The @code{-file-exec-and-symbols} Command
21086@findex -file-exec-and-symbols
21087
21088@subsubheading Synopsis
922fbb7b
AC
21089
21090@smallexample
a2c02241 21091 -file-exec-and-symbols @var{file}
922fbb7b
AC
21092@end smallexample
21093
a2c02241
NR
21094Specify the executable file to be debugged. This file is the one from
21095which the symbol table is also read. If no file is specified, the
21096command clears the executable and symbol information. If breakpoints
21097are set when using this command with no arguments, @value{GDBN} will produce
21098error messages. Otherwise, no output is produced, except a completion
21099notification.
21100
922fbb7b
AC
21101@subsubheading @value{GDBN} Command
21102
a2c02241 21103The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
21104
21105@subsubheading Example
21106
21107@smallexample
594fe323 21108(gdb)
a2c02241
NR
21109-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21110^done
594fe323 21111(gdb)
922fbb7b
AC
21112@end smallexample
21113
922fbb7b 21114
a2c02241
NR
21115@subheading The @code{-file-exec-file} Command
21116@findex -file-exec-file
922fbb7b
AC
21117
21118@subsubheading Synopsis
21119
21120@smallexample
a2c02241 21121 -file-exec-file @var{file}
922fbb7b
AC
21122@end smallexample
21123
a2c02241
NR
21124Specify the executable file to be debugged. Unlike
21125@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21126from this file. If used without argument, @value{GDBN} clears the information
21127about the executable file. No output is produced, except a completion
21128notification.
922fbb7b 21129
a2c02241
NR
21130@subsubheading @value{GDBN} Command
21131
21132The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21133
21134@subsubheading Example
a2c02241
NR
21135
21136@smallexample
594fe323 21137(gdb)
a2c02241
NR
21138-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21139^done
594fe323 21140(gdb)
a2c02241 21141@end smallexample
922fbb7b
AC
21142
21143
a2c02241
NR
21144@subheading The @code{-file-list-exec-sections} Command
21145@findex -file-list-exec-sections
922fbb7b
AC
21146
21147@subsubheading Synopsis
21148
21149@smallexample
a2c02241 21150 -file-list-exec-sections
922fbb7b
AC
21151@end smallexample
21152
a2c02241
NR
21153List the sections of the current executable file.
21154
922fbb7b
AC
21155@subsubheading @value{GDBN} Command
21156
a2c02241
NR
21157The @value{GDBN} command @samp{info file} shows, among the rest, the same
21158information as this command. @code{gdbtk} has a corresponding command
21159@samp{gdb_load_info}.
922fbb7b
AC
21160
21161@subsubheading Example
21162N.A.
21163
21164
a2c02241
NR
21165@subheading The @code{-file-list-exec-source-file} Command
21166@findex -file-list-exec-source-file
922fbb7b
AC
21167
21168@subsubheading Synopsis
21169
21170@smallexample
a2c02241 21171 -file-list-exec-source-file
922fbb7b
AC
21172@end smallexample
21173
a2c02241 21174List the line number, the current source file, and the absolute path
44288b44
NR
21175to the current source file for the current executable. The macro
21176information field has a value of @samp{1} or @samp{0} depending on
21177whether or not the file includes preprocessor macro information.
922fbb7b
AC
21178
21179@subsubheading @value{GDBN} Command
21180
a2c02241 21181The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21182
21183@subsubheading Example
21184
922fbb7b 21185@smallexample
594fe323 21186(gdb)
a2c02241 21187123-file-list-exec-source-file
44288b44 21188123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21189(gdb)
922fbb7b
AC
21190@end smallexample
21191
21192
a2c02241
NR
21193@subheading The @code{-file-list-exec-source-files} Command
21194@findex -file-list-exec-source-files
922fbb7b
AC
21195
21196@subsubheading Synopsis
21197
21198@smallexample
a2c02241 21199 -file-list-exec-source-files
922fbb7b
AC
21200@end smallexample
21201
a2c02241
NR
21202List the source files for the current executable.
21203
3f94c067
BW
21204It will always output the filename, but only when @value{GDBN} can find
21205the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21206
21207@subsubheading @value{GDBN} Command
21208
a2c02241
NR
21209The @value{GDBN} equivalent is @samp{info sources}.
21210@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21211
21212@subsubheading Example
922fbb7b 21213@smallexample
594fe323 21214(gdb)
a2c02241
NR
21215-file-list-exec-source-files
21216^done,files=[
21217@{file=foo.c,fullname=/home/foo.c@},
21218@{file=/home/bar.c,fullname=/home/bar.c@},
21219@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21220(gdb)
922fbb7b
AC
21221@end smallexample
21222
a2c02241
NR
21223@subheading The @code{-file-list-shared-libraries} Command
21224@findex -file-list-shared-libraries
922fbb7b 21225
a2c02241 21226@subsubheading Synopsis
922fbb7b 21227
a2c02241
NR
21228@smallexample
21229 -file-list-shared-libraries
21230@end smallexample
922fbb7b 21231
a2c02241 21232List the shared libraries in the program.
922fbb7b 21233
a2c02241 21234@subsubheading @value{GDBN} Command
922fbb7b 21235
a2c02241 21236The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21237
a2c02241
NR
21238@subsubheading Example
21239N.A.
922fbb7b
AC
21240
21241
a2c02241
NR
21242@subheading The @code{-file-list-symbol-files} Command
21243@findex -file-list-symbol-files
922fbb7b 21244
a2c02241 21245@subsubheading Synopsis
922fbb7b 21246
a2c02241
NR
21247@smallexample
21248 -file-list-symbol-files
21249@end smallexample
922fbb7b 21250
a2c02241 21251List symbol files.
922fbb7b 21252
a2c02241 21253@subsubheading @value{GDBN} Command
922fbb7b 21254
a2c02241 21255The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21256
a2c02241
NR
21257@subsubheading Example
21258N.A.
922fbb7b 21259
922fbb7b 21260
a2c02241
NR
21261@subheading The @code{-file-symbol-file} Command
21262@findex -file-symbol-file
922fbb7b 21263
a2c02241 21264@subsubheading Synopsis
922fbb7b 21265
a2c02241
NR
21266@smallexample
21267 -file-symbol-file @var{file}
21268@end smallexample
922fbb7b 21269
a2c02241
NR
21270Read symbol table info from the specified @var{file} argument. When
21271used without arguments, clears @value{GDBN}'s symbol table info. No output is
21272produced, except for a completion notification.
922fbb7b 21273
a2c02241 21274@subsubheading @value{GDBN} Command
922fbb7b 21275
a2c02241 21276The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21277
a2c02241 21278@subsubheading Example
922fbb7b 21279
a2c02241 21280@smallexample
594fe323 21281(gdb)
a2c02241
NR
21282-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21283^done
594fe323 21284(gdb)
a2c02241 21285@end smallexample
922fbb7b 21286
a2c02241 21287@ignore
a2c02241
NR
21288@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21289@node GDB/MI Memory Overlay Commands
21290@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21291
a2c02241 21292The memory overlay commands are not implemented.
922fbb7b 21293
a2c02241 21294@c @subheading -overlay-auto
922fbb7b 21295
a2c02241 21296@c @subheading -overlay-list-mapping-state
922fbb7b 21297
a2c02241 21298@c @subheading -overlay-list-overlays
922fbb7b 21299
a2c02241 21300@c @subheading -overlay-map
922fbb7b 21301
a2c02241 21302@c @subheading -overlay-off
922fbb7b 21303
a2c02241 21304@c @subheading -overlay-on
922fbb7b 21305
a2c02241 21306@c @subheading -overlay-unmap
922fbb7b 21307
a2c02241
NR
21308@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21309@node GDB/MI Signal Handling Commands
21310@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21311
a2c02241 21312Signal handling commands are not implemented.
922fbb7b 21313
a2c02241 21314@c @subheading -signal-handle
922fbb7b 21315
a2c02241 21316@c @subheading -signal-list-handle-actions
922fbb7b 21317
a2c02241
NR
21318@c @subheading -signal-list-signal-types
21319@end ignore
922fbb7b 21320
922fbb7b 21321
a2c02241
NR
21322@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21323@node GDB/MI Target Manipulation
21324@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21325
21326
a2c02241
NR
21327@subheading The @code{-target-attach} Command
21328@findex -target-attach
922fbb7b
AC
21329
21330@subsubheading Synopsis
21331
21332@smallexample
a2c02241 21333 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21334@end smallexample
21335
a2c02241 21336Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21337
79a6e687 21338@subsubheading @value{GDBN} Command
922fbb7b 21339
a2c02241 21340The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21341
a2c02241
NR
21342@subsubheading Example
21343N.A.
922fbb7b 21344
a2c02241
NR
21345
21346@subheading The @code{-target-compare-sections} Command
21347@findex -target-compare-sections
922fbb7b
AC
21348
21349@subsubheading Synopsis
21350
21351@smallexample
a2c02241 21352 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21353@end smallexample
21354
a2c02241
NR
21355Compare data of section @var{section} on target to the exec file.
21356Without the argument, all sections are compared.
922fbb7b 21357
a2c02241 21358@subsubheading @value{GDBN} Command
922fbb7b 21359
a2c02241 21360The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21361
a2c02241
NR
21362@subsubheading Example
21363N.A.
21364
21365
21366@subheading The @code{-target-detach} Command
21367@findex -target-detach
922fbb7b
AC
21368
21369@subsubheading Synopsis
21370
21371@smallexample
a2c02241 21372 -target-detach
922fbb7b
AC
21373@end smallexample
21374
a2c02241
NR
21375Detach from the remote target which normally resumes its execution.
21376There's no output.
21377
79a6e687 21378@subsubheading @value{GDBN} Command
a2c02241
NR
21379
21380The corresponding @value{GDBN} command is @samp{detach}.
21381
21382@subsubheading Example
922fbb7b
AC
21383
21384@smallexample
594fe323 21385(gdb)
a2c02241
NR
21386-target-detach
21387^done
594fe323 21388(gdb)
922fbb7b
AC
21389@end smallexample
21390
21391
a2c02241
NR
21392@subheading The @code{-target-disconnect} Command
21393@findex -target-disconnect
922fbb7b
AC
21394
21395@subsubheading Synopsis
21396
123dc839 21397@smallexample
a2c02241 21398 -target-disconnect
123dc839 21399@end smallexample
922fbb7b 21400
a2c02241
NR
21401Disconnect from the remote target. There's no output and the target is
21402generally not resumed.
21403
79a6e687 21404@subsubheading @value{GDBN} Command
a2c02241
NR
21405
21406The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21407
21408@subsubheading Example
922fbb7b
AC
21409
21410@smallexample
594fe323 21411(gdb)
a2c02241
NR
21412-target-disconnect
21413^done
594fe323 21414(gdb)
922fbb7b
AC
21415@end smallexample
21416
21417
a2c02241
NR
21418@subheading The @code{-target-download} Command
21419@findex -target-download
922fbb7b
AC
21420
21421@subsubheading Synopsis
21422
21423@smallexample
a2c02241 21424 -target-download
922fbb7b
AC
21425@end smallexample
21426
a2c02241
NR
21427Loads the executable onto the remote target.
21428It prints out an update message every half second, which includes the fields:
21429
21430@table @samp
21431@item section
21432The name of the section.
21433@item section-sent
21434The size of what has been sent so far for that section.
21435@item section-size
21436The size of the section.
21437@item total-sent
21438The total size of what was sent so far (the current and the previous sections).
21439@item total-size
21440The size of the overall executable to download.
21441@end table
21442
21443@noindent
21444Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21445@sc{gdb/mi} Output Syntax}).
21446
21447In addition, it prints the name and size of the sections, as they are
21448downloaded. These messages include the following fields:
21449
21450@table @samp
21451@item section
21452The name of the section.
21453@item section-size
21454The size of the section.
21455@item total-size
21456The size of the overall executable to download.
21457@end table
21458
21459@noindent
21460At the end, a summary is printed.
21461
21462@subsubheading @value{GDBN} Command
21463
21464The corresponding @value{GDBN} command is @samp{load}.
21465
21466@subsubheading Example
21467
21468Note: each status message appears on a single line. Here the messages
21469have been broken down so that they can fit onto a page.
922fbb7b
AC
21470
21471@smallexample
594fe323 21472(gdb)
a2c02241
NR
21473-target-download
21474+download,@{section=".text",section-size="6668",total-size="9880"@}
21475+download,@{section=".text",section-sent="512",section-size="6668",
21476total-sent="512",total-size="9880"@}
21477+download,@{section=".text",section-sent="1024",section-size="6668",
21478total-sent="1024",total-size="9880"@}
21479+download,@{section=".text",section-sent="1536",section-size="6668",
21480total-sent="1536",total-size="9880"@}
21481+download,@{section=".text",section-sent="2048",section-size="6668",
21482total-sent="2048",total-size="9880"@}
21483+download,@{section=".text",section-sent="2560",section-size="6668",
21484total-sent="2560",total-size="9880"@}
21485+download,@{section=".text",section-sent="3072",section-size="6668",
21486total-sent="3072",total-size="9880"@}
21487+download,@{section=".text",section-sent="3584",section-size="6668",
21488total-sent="3584",total-size="9880"@}
21489+download,@{section=".text",section-sent="4096",section-size="6668",
21490total-sent="4096",total-size="9880"@}
21491+download,@{section=".text",section-sent="4608",section-size="6668",
21492total-sent="4608",total-size="9880"@}
21493+download,@{section=".text",section-sent="5120",section-size="6668",
21494total-sent="5120",total-size="9880"@}
21495+download,@{section=".text",section-sent="5632",section-size="6668",
21496total-sent="5632",total-size="9880"@}
21497+download,@{section=".text",section-sent="6144",section-size="6668",
21498total-sent="6144",total-size="9880"@}
21499+download,@{section=".text",section-sent="6656",section-size="6668",
21500total-sent="6656",total-size="9880"@}
21501+download,@{section=".init",section-size="28",total-size="9880"@}
21502+download,@{section=".fini",section-size="28",total-size="9880"@}
21503+download,@{section=".data",section-size="3156",total-size="9880"@}
21504+download,@{section=".data",section-sent="512",section-size="3156",
21505total-sent="7236",total-size="9880"@}
21506+download,@{section=".data",section-sent="1024",section-size="3156",
21507total-sent="7748",total-size="9880"@}
21508+download,@{section=".data",section-sent="1536",section-size="3156",
21509total-sent="8260",total-size="9880"@}
21510+download,@{section=".data",section-sent="2048",section-size="3156",
21511total-sent="8772",total-size="9880"@}
21512+download,@{section=".data",section-sent="2560",section-size="3156",
21513total-sent="9284",total-size="9880"@}
21514+download,@{section=".data",section-sent="3072",section-size="3156",
21515total-sent="9796",total-size="9880"@}
21516^done,address="0x10004",load-size="9880",transfer-rate="6586",
21517write-rate="429"
594fe323 21518(gdb)
922fbb7b
AC
21519@end smallexample
21520
21521
a2c02241
NR
21522@subheading The @code{-target-exec-status} Command
21523@findex -target-exec-status
922fbb7b
AC
21524
21525@subsubheading Synopsis
21526
21527@smallexample
a2c02241 21528 -target-exec-status
922fbb7b
AC
21529@end smallexample
21530
a2c02241
NR
21531Provide information on the state of the target (whether it is running or
21532not, for instance).
922fbb7b 21533
a2c02241 21534@subsubheading @value{GDBN} Command
922fbb7b 21535
a2c02241
NR
21536There's no equivalent @value{GDBN} command.
21537
21538@subsubheading Example
21539N.A.
922fbb7b 21540
a2c02241
NR
21541
21542@subheading The @code{-target-list-available-targets} Command
21543@findex -target-list-available-targets
922fbb7b
AC
21544
21545@subsubheading Synopsis
21546
21547@smallexample
a2c02241 21548 -target-list-available-targets
922fbb7b
AC
21549@end smallexample
21550
a2c02241 21551List the possible targets to connect to.
922fbb7b 21552
a2c02241 21553@subsubheading @value{GDBN} Command
922fbb7b 21554
a2c02241 21555The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21556
a2c02241
NR
21557@subsubheading Example
21558N.A.
21559
21560
21561@subheading The @code{-target-list-current-targets} Command
21562@findex -target-list-current-targets
922fbb7b
AC
21563
21564@subsubheading Synopsis
21565
21566@smallexample
a2c02241 21567 -target-list-current-targets
922fbb7b
AC
21568@end smallexample
21569
a2c02241 21570Describe the current target.
922fbb7b 21571
a2c02241 21572@subsubheading @value{GDBN} Command
922fbb7b 21573
a2c02241
NR
21574The corresponding information is printed by @samp{info file} (among
21575other things).
922fbb7b 21576
a2c02241
NR
21577@subsubheading Example
21578N.A.
21579
21580
21581@subheading The @code{-target-list-parameters} Command
21582@findex -target-list-parameters
922fbb7b
AC
21583
21584@subsubheading Synopsis
21585
21586@smallexample
a2c02241 21587 -target-list-parameters
922fbb7b
AC
21588@end smallexample
21589
a2c02241
NR
21590@c ????
21591
21592@subsubheading @value{GDBN} Command
21593
21594No equivalent.
922fbb7b
AC
21595
21596@subsubheading Example
a2c02241
NR
21597N.A.
21598
21599
21600@subheading The @code{-target-select} Command
21601@findex -target-select
21602
21603@subsubheading Synopsis
922fbb7b
AC
21604
21605@smallexample
a2c02241 21606 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21607@end smallexample
21608
a2c02241 21609Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21610
a2c02241
NR
21611@table @samp
21612@item @var{type}
21613The type of target, for instance @samp{async}, @samp{remote}, etc.
21614@item @var{parameters}
21615Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21616Commands for Managing Targets}, for more details.
a2c02241
NR
21617@end table
21618
21619The output is a connection notification, followed by the address at
21620which the target program is, in the following form:
922fbb7b
AC
21621
21622@smallexample
a2c02241
NR
21623^connected,addr="@var{address}",func="@var{function name}",
21624 args=[@var{arg list}]
922fbb7b
AC
21625@end smallexample
21626
a2c02241
NR
21627@subsubheading @value{GDBN} Command
21628
21629The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21630
21631@subsubheading Example
922fbb7b 21632
265eeb58 21633@smallexample
594fe323 21634(gdb)
a2c02241
NR
21635-target-select async /dev/ttya
21636^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21637(gdb)
265eeb58 21638@end smallexample
ef21caaf 21639
a6b151f1
DJ
21640@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21641@node GDB/MI File Transfer Commands
21642@section @sc{gdb/mi} File Transfer Commands
21643
21644
21645@subheading The @code{-target-file-put} Command
21646@findex -target-file-put
21647
21648@subsubheading Synopsis
21649
21650@smallexample
21651 -target-file-put @var{hostfile} @var{targetfile}
21652@end smallexample
21653
21654Copy file @var{hostfile} from the host system (the machine running
21655@value{GDBN}) to @var{targetfile} on the target system.
21656
21657@subsubheading @value{GDBN} Command
21658
21659The corresponding @value{GDBN} command is @samp{remote put}.
21660
21661@subsubheading Example
21662
21663@smallexample
21664(gdb)
21665-target-file-put localfile remotefile
21666^done
21667(gdb)
21668@end smallexample
21669
21670
21671@subheading The @code{-target-file-put} Command
21672@findex -target-file-get
21673
21674@subsubheading Synopsis
21675
21676@smallexample
21677 -target-file-get @var{targetfile} @var{hostfile}
21678@end smallexample
21679
21680Copy file @var{targetfile} from the target system to @var{hostfile}
21681on the host system.
21682
21683@subsubheading @value{GDBN} Command
21684
21685The corresponding @value{GDBN} command is @samp{remote get}.
21686
21687@subsubheading Example
21688
21689@smallexample
21690(gdb)
21691-target-file-get remotefile localfile
21692^done
21693(gdb)
21694@end smallexample
21695
21696
21697@subheading The @code{-target-file-delete} Command
21698@findex -target-file-delete
21699
21700@subsubheading Synopsis
21701
21702@smallexample
21703 -target-file-delete @var{targetfile}
21704@end smallexample
21705
21706Delete @var{targetfile} from the target system.
21707
21708@subsubheading @value{GDBN} Command
21709
21710The corresponding @value{GDBN} command is @samp{remote delete}.
21711
21712@subsubheading Example
21713
21714@smallexample
21715(gdb)
21716-target-file-delete remotefile
21717^done
21718(gdb)
21719@end smallexample
21720
21721
ef21caaf
NR
21722@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21723@node GDB/MI Miscellaneous Commands
21724@section Miscellaneous @sc{gdb/mi} Commands
21725
21726@c @subheading -gdb-complete
21727
21728@subheading The @code{-gdb-exit} Command
21729@findex -gdb-exit
21730
21731@subsubheading Synopsis
21732
21733@smallexample
21734 -gdb-exit
21735@end smallexample
21736
21737Exit @value{GDBN} immediately.
21738
21739@subsubheading @value{GDBN} Command
21740
21741Approximately corresponds to @samp{quit}.
21742
21743@subsubheading Example
21744
21745@smallexample
594fe323 21746(gdb)
ef21caaf
NR
21747-gdb-exit
21748^exit
21749@end smallexample
21750
a2c02241
NR
21751
21752@subheading The @code{-exec-abort} Command
21753@findex -exec-abort
21754
21755@subsubheading Synopsis
21756
21757@smallexample
21758 -exec-abort
21759@end smallexample
21760
21761Kill the inferior running program.
21762
21763@subsubheading @value{GDBN} Command
21764
21765The corresponding @value{GDBN} command is @samp{kill}.
21766
21767@subsubheading Example
21768N.A.
21769
21770
ef21caaf
NR
21771@subheading The @code{-gdb-set} Command
21772@findex -gdb-set
21773
21774@subsubheading Synopsis
21775
21776@smallexample
21777 -gdb-set
21778@end smallexample
21779
21780Set an internal @value{GDBN} variable.
21781@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21782
21783@subsubheading @value{GDBN} Command
21784
21785The corresponding @value{GDBN} command is @samp{set}.
21786
21787@subsubheading Example
21788
21789@smallexample
594fe323 21790(gdb)
ef21caaf
NR
21791-gdb-set $foo=3
21792^done
594fe323 21793(gdb)
ef21caaf
NR
21794@end smallexample
21795
21796
21797@subheading The @code{-gdb-show} Command
21798@findex -gdb-show
21799
21800@subsubheading Synopsis
21801
21802@smallexample
21803 -gdb-show
21804@end smallexample
21805
21806Show the current value of a @value{GDBN} variable.
21807
79a6e687 21808@subsubheading @value{GDBN} Command
ef21caaf
NR
21809
21810The corresponding @value{GDBN} command is @samp{show}.
21811
21812@subsubheading Example
21813
21814@smallexample
594fe323 21815(gdb)
ef21caaf
NR
21816-gdb-show annotate
21817^done,value="0"
594fe323 21818(gdb)
ef21caaf
NR
21819@end smallexample
21820
21821@c @subheading -gdb-source
21822
21823
21824@subheading The @code{-gdb-version} Command
21825@findex -gdb-version
21826
21827@subsubheading Synopsis
21828
21829@smallexample
21830 -gdb-version
21831@end smallexample
21832
21833Show version information for @value{GDBN}. Used mostly in testing.
21834
21835@subsubheading @value{GDBN} Command
21836
21837The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21838default shows this information when you start an interactive session.
21839
21840@subsubheading Example
21841
21842@c This example modifies the actual output from GDB to avoid overfull
21843@c box in TeX.
21844@smallexample
594fe323 21845(gdb)
ef21caaf
NR
21846-gdb-version
21847~GNU gdb 5.2.1
21848~Copyright 2000 Free Software Foundation, Inc.
21849~GDB is free software, covered by the GNU General Public License, and
21850~you are welcome to change it and/or distribute copies of it under
21851~ certain conditions.
21852~Type "show copying" to see the conditions.
21853~There is absolutely no warranty for GDB. Type "show warranty" for
21854~ details.
21855~This GDB was configured as
21856 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21857^done
594fe323 21858(gdb)
ef21caaf
NR
21859@end smallexample
21860
084344da
VP
21861@subheading The @code{-list-features} Command
21862@findex -list-features
21863
21864Returns a list of particular features of the MI protocol that
21865this version of gdb implements. A feature can be a command,
21866or a new field in an output of some command, or even an
21867important bugfix. While a frontend can sometimes detect presence
21868of a feature at runtime, it is easier to perform detection at debugger
21869startup.
21870
21871The command returns a list of strings, with each string naming an
21872available feature. Each returned string is just a name, it does not
21873have any internal structure. The list of possible feature names
21874is given below.
21875
21876Example output:
21877
21878@smallexample
21879(gdb) -list-features
21880^done,result=["feature1","feature2"]
21881@end smallexample
21882
21883The current list of features is:
21884
21885@itemize @minus
21886@item
21887@samp{frozen-varobjs}---indicates presence of the
21888@code{-var-set-frozen} command, as well as possible presense of the
21889@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
21890@item
21891@samp{pending-breakpoints}---indicates presence of the @code{-f}
21892option to the @code{-break-insert} command.
8e8901c5
VP
21893@item
21894@samp{thread-info}---indicates presence of the @code{-thread-info} command.
8b4ed427 21895
084344da
VP
21896@end itemize
21897
ef21caaf
NR
21898@subheading The @code{-interpreter-exec} Command
21899@findex -interpreter-exec
21900
21901@subheading Synopsis
21902
21903@smallexample
21904-interpreter-exec @var{interpreter} @var{command}
21905@end smallexample
a2c02241 21906@anchor{-interpreter-exec}
ef21caaf
NR
21907
21908Execute the specified @var{command} in the given @var{interpreter}.
21909
21910@subheading @value{GDBN} Command
21911
21912The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21913
21914@subheading Example
21915
21916@smallexample
594fe323 21917(gdb)
ef21caaf
NR
21918-interpreter-exec console "break main"
21919&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21920&"During symbol reading, bad structure-type format.\n"
21921~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21922^done
594fe323 21923(gdb)
ef21caaf
NR
21924@end smallexample
21925
21926@subheading The @code{-inferior-tty-set} Command
21927@findex -inferior-tty-set
21928
21929@subheading Synopsis
21930
21931@smallexample
21932-inferior-tty-set /dev/pts/1
21933@end smallexample
21934
21935Set terminal for future runs of the program being debugged.
21936
21937@subheading @value{GDBN} Command
21938
21939The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21940
21941@subheading Example
21942
21943@smallexample
594fe323 21944(gdb)
ef21caaf
NR
21945-inferior-tty-set /dev/pts/1
21946^done
594fe323 21947(gdb)
ef21caaf
NR
21948@end smallexample
21949
21950@subheading The @code{-inferior-tty-show} Command
21951@findex -inferior-tty-show
21952
21953@subheading Synopsis
21954
21955@smallexample
21956-inferior-tty-show
21957@end smallexample
21958
21959Show terminal for future runs of program being debugged.
21960
21961@subheading @value{GDBN} Command
21962
21963The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21964
21965@subheading Example
21966
21967@smallexample
594fe323 21968(gdb)
ef21caaf
NR
21969-inferior-tty-set /dev/pts/1
21970^done
594fe323 21971(gdb)
ef21caaf
NR
21972-inferior-tty-show
21973^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21974(gdb)
ef21caaf 21975@end smallexample
922fbb7b 21976
a4eefcd8
NR
21977@subheading The @code{-enable-timings} Command
21978@findex -enable-timings
21979
21980@subheading Synopsis
21981
21982@smallexample
21983-enable-timings [yes | no]
21984@end smallexample
21985
21986Toggle the printing of the wallclock, user and system times for an MI
21987command as a field in its output. This command is to help frontend
21988developers optimize the performance of their code. No argument is
21989equivalent to @samp{yes}.
21990
21991@subheading @value{GDBN} Command
21992
21993No equivalent.
21994
21995@subheading Example
21996
21997@smallexample
21998(gdb)
21999-enable-timings
22000^done
22001(gdb)
22002-break-insert main
22003^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
22004addr="0x080484ed",func="main",file="myprog.c",
22005fullname="/home/nickrob/myprog.c",line="73",times="0"@},
22006time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
22007(gdb)
22008-enable-timings no
22009^done
22010(gdb)
22011-exec-run
22012^running
22013(gdb)
22014*stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
22015frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
22016@{name="argv",value="0xbfb60364"@}],file="myprog.c",
22017fullname="/home/nickrob/myprog.c",line="73"@}
22018(gdb)
22019@end smallexample
22020
922fbb7b
AC
22021@node Annotations
22022@chapter @value{GDBN} Annotations
22023
086432e2
AC
22024This chapter describes annotations in @value{GDBN}. Annotations were
22025designed to interface @value{GDBN} to graphical user interfaces or other
22026similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
22027relatively high level.
22028
d3e8051b 22029The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
22030(@pxref{GDB/MI}).
22031
922fbb7b
AC
22032@ignore
22033This is Edition @value{EDITION}, @value{DATE}.
22034@end ignore
22035
22036@menu
22037* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 22038* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
22039* Prompting:: Annotations marking @value{GDBN}'s need for input.
22040* Errors:: Annotations for error messages.
922fbb7b
AC
22041* Invalidation:: Some annotations describe things now invalid.
22042* Annotations for Running::
22043 Whether the program is running, how it stopped, etc.
22044* Source Annotations:: Annotations describing source code.
922fbb7b
AC
22045@end menu
22046
22047@node Annotations Overview
22048@section What is an Annotation?
22049@cindex annotations
22050
922fbb7b
AC
22051Annotations start with a newline character, two @samp{control-z}
22052characters, and the name of the annotation. If there is no additional
22053information associated with this annotation, the name of the annotation
22054is followed immediately by a newline. If there is additional
22055information, the name of the annotation is followed by a space, the
22056additional information, and a newline. The additional information
22057cannot contain newline characters.
22058
22059Any output not beginning with a newline and two @samp{control-z}
22060characters denotes literal output from @value{GDBN}. Currently there is
22061no need for @value{GDBN} to output a newline followed by two
22062@samp{control-z} characters, but if there was such a need, the
22063annotations could be extended with an @samp{escape} annotation which
22064means those three characters as output.
22065
086432e2
AC
22066The annotation @var{level}, which is specified using the
22067@option{--annotate} command line option (@pxref{Mode Options}), controls
22068how much information @value{GDBN} prints together with its prompt,
22069values of expressions, source lines, and other types of output. Level 0
d3e8051b 22070is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
22071subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
22072for programs that control @value{GDBN}, and level 2 annotations have
22073been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
22074Interface, annotate, GDB's Obsolete Annotations}).
22075
22076@table @code
22077@kindex set annotate
22078@item set annotate @var{level}
e09f16f9 22079The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 22080annotations to the specified @var{level}.
9c16f35a
EZ
22081
22082@item show annotate
22083@kindex show annotate
22084Show the current annotation level.
09d4efe1
EZ
22085@end table
22086
22087This chapter describes level 3 annotations.
086432e2 22088
922fbb7b
AC
22089A simple example of starting up @value{GDBN} with annotations is:
22090
22091@smallexample
086432e2
AC
22092$ @kbd{gdb --annotate=3}
22093GNU gdb 6.0
22094Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
22095GDB is free software, covered by the GNU General Public License,
22096and you are welcome to change it and/or distribute copies of it
22097under certain conditions.
22098Type "show copying" to see the conditions.
22099There is absolutely no warranty for GDB. Type "show warranty"
22100for details.
086432e2 22101This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
22102
22103^Z^Zpre-prompt
f7dc1244 22104(@value{GDBP})
922fbb7b 22105^Z^Zprompt
086432e2 22106@kbd{quit}
922fbb7b
AC
22107
22108^Z^Zpost-prompt
b383017d 22109$
922fbb7b
AC
22110@end smallexample
22111
22112Here @samp{quit} is input to @value{GDBN}; the rest is output from
22113@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
22114denotes a @samp{control-z} character) are annotations; the rest is
22115output from @value{GDBN}.
22116
9e6c4bd5
NR
22117@node Server Prefix
22118@section The Server Prefix
22119@cindex server prefix
22120
22121If you prefix a command with @samp{server } then it will not affect
22122the command history, nor will it affect @value{GDBN}'s notion of which
22123command to repeat if @key{RET} is pressed on a line by itself. This
22124means that commands can be run behind a user's back by a front-end in
22125a transparent manner.
22126
22127The server prefix does not affect the recording of values into the value
22128history; to print a value without recording it into the value history,
22129use the @code{output} command instead of the @code{print} command.
22130
922fbb7b
AC
22131@node Prompting
22132@section Annotation for @value{GDBN} Input
22133
22134@cindex annotations for prompts
22135When @value{GDBN} prompts for input, it annotates this fact so it is possible
22136to know when to send output, when the output from a given command is
22137over, etc.
22138
22139Different kinds of input each have a different @dfn{input type}. Each
22140input type has three annotations: a @code{pre-} annotation, which
22141denotes the beginning of any prompt which is being output, a plain
22142annotation, which denotes the end of the prompt, and then a @code{post-}
22143annotation which denotes the end of any echo which may (or may not) be
22144associated with the input. For example, the @code{prompt} input type
22145features the following annotations:
22146
22147@smallexample
22148^Z^Zpre-prompt
22149^Z^Zprompt
22150^Z^Zpost-prompt
22151@end smallexample
22152
22153The input types are
22154
22155@table @code
e5ac9b53
EZ
22156@findex pre-prompt annotation
22157@findex prompt annotation
22158@findex post-prompt annotation
922fbb7b
AC
22159@item prompt
22160When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22161
e5ac9b53
EZ
22162@findex pre-commands annotation
22163@findex commands annotation
22164@findex post-commands annotation
922fbb7b
AC
22165@item commands
22166When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22167command. The annotations are repeated for each command which is input.
22168
e5ac9b53
EZ
22169@findex pre-overload-choice annotation
22170@findex overload-choice annotation
22171@findex post-overload-choice annotation
922fbb7b
AC
22172@item overload-choice
22173When @value{GDBN} wants the user to select between various overloaded functions.
22174
e5ac9b53
EZ
22175@findex pre-query annotation
22176@findex query annotation
22177@findex post-query annotation
922fbb7b
AC
22178@item query
22179When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22180
e5ac9b53
EZ
22181@findex pre-prompt-for-continue annotation
22182@findex prompt-for-continue annotation
22183@findex post-prompt-for-continue annotation
922fbb7b
AC
22184@item prompt-for-continue
22185When @value{GDBN} is asking the user to press return to continue. Note: Don't
22186expect this to work well; instead use @code{set height 0} to disable
22187prompting. This is because the counting of lines is buggy in the
22188presence of annotations.
22189@end table
22190
22191@node Errors
22192@section Errors
22193@cindex annotations for errors, warnings and interrupts
22194
e5ac9b53 22195@findex quit annotation
922fbb7b
AC
22196@smallexample
22197^Z^Zquit
22198@end smallexample
22199
22200This annotation occurs right before @value{GDBN} responds to an interrupt.
22201
e5ac9b53 22202@findex error annotation
922fbb7b
AC
22203@smallexample
22204^Z^Zerror
22205@end smallexample
22206
22207This annotation occurs right before @value{GDBN} responds to an error.
22208
22209Quit and error annotations indicate that any annotations which @value{GDBN} was
22210in the middle of may end abruptly. For example, if a
22211@code{value-history-begin} annotation is followed by a @code{error}, one
22212cannot expect to receive the matching @code{value-history-end}. One
22213cannot expect not to receive it either, however; an error annotation
22214does not necessarily mean that @value{GDBN} is immediately returning all the way
22215to the top level.
22216
e5ac9b53 22217@findex error-begin annotation
922fbb7b
AC
22218A quit or error annotation may be preceded by
22219
22220@smallexample
22221^Z^Zerror-begin
22222@end smallexample
22223
22224Any output between that and the quit or error annotation is the error
22225message.
22226
22227Warning messages are not yet annotated.
22228@c If we want to change that, need to fix warning(), type_error(),
22229@c range_error(), and possibly other places.
22230
922fbb7b
AC
22231@node Invalidation
22232@section Invalidation Notices
22233
22234@cindex annotations for invalidation messages
22235The following annotations say that certain pieces of state may have
22236changed.
22237
22238@table @code
e5ac9b53 22239@findex frames-invalid annotation
922fbb7b
AC
22240@item ^Z^Zframes-invalid
22241
22242The frames (for example, output from the @code{backtrace} command) may
22243have changed.
22244
e5ac9b53 22245@findex breakpoints-invalid annotation
922fbb7b
AC
22246@item ^Z^Zbreakpoints-invalid
22247
22248The breakpoints may have changed. For example, the user just added or
22249deleted a breakpoint.
22250@end table
22251
22252@node Annotations for Running
22253@section Running the Program
22254@cindex annotations for running programs
22255
e5ac9b53
EZ
22256@findex starting annotation
22257@findex stopping annotation
922fbb7b 22258When the program starts executing due to a @value{GDBN} command such as
b383017d 22259@code{step} or @code{continue},
922fbb7b
AC
22260
22261@smallexample
22262^Z^Zstarting
22263@end smallexample
22264
b383017d 22265is output. When the program stops,
922fbb7b
AC
22266
22267@smallexample
22268^Z^Zstopped
22269@end smallexample
22270
22271is output. Before the @code{stopped} annotation, a variety of
22272annotations describe how the program stopped.
22273
22274@table @code
e5ac9b53 22275@findex exited annotation
922fbb7b
AC
22276@item ^Z^Zexited @var{exit-status}
22277The program exited, and @var{exit-status} is the exit status (zero for
22278successful exit, otherwise nonzero).
22279
e5ac9b53
EZ
22280@findex signalled annotation
22281@findex signal-name annotation
22282@findex signal-name-end annotation
22283@findex signal-string annotation
22284@findex signal-string-end annotation
922fbb7b
AC
22285@item ^Z^Zsignalled
22286The program exited with a signal. After the @code{^Z^Zsignalled}, the
22287annotation continues:
22288
22289@smallexample
22290@var{intro-text}
22291^Z^Zsignal-name
22292@var{name}
22293^Z^Zsignal-name-end
22294@var{middle-text}
22295^Z^Zsignal-string
22296@var{string}
22297^Z^Zsignal-string-end
22298@var{end-text}
22299@end smallexample
22300
22301@noindent
22302where @var{name} is the name of the signal, such as @code{SIGILL} or
22303@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22304as @code{Illegal Instruction} or @code{Segmentation fault}.
22305@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22306user's benefit and have no particular format.
22307
e5ac9b53 22308@findex signal annotation
922fbb7b
AC
22309@item ^Z^Zsignal
22310The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22311just saying that the program received the signal, not that it was
22312terminated with it.
22313
e5ac9b53 22314@findex breakpoint annotation
922fbb7b
AC
22315@item ^Z^Zbreakpoint @var{number}
22316The program hit breakpoint number @var{number}.
22317
e5ac9b53 22318@findex watchpoint annotation
922fbb7b
AC
22319@item ^Z^Zwatchpoint @var{number}
22320The program hit watchpoint number @var{number}.
22321@end table
22322
22323@node Source Annotations
22324@section Displaying Source
22325@cindex annotations for source display
22326
e5ac9b53 22327@findex source annotation
922fbb7b
AC
22328The following annotation is used instead of displaying source code:
22329
22330@smallexample
22331^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22332@end smallexample
22333
22334where @var{filename} is an absolute file name indicating which source
22335file, @var{line} is the line number within that file (where 1 is the
22336first line in the file), @var{character} is the character position
22337within the file (where 0 is the first character in the file) (for most
22338debug formats this will necessarily point to the beginning of a line),
22339@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22340line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22341@var{addr} is the address in the target program associated with the
22342source which is being displayed. @var{addr} is in the form @samp{0x}
22343followed by one or more lowercase hex digits (note that this does not
22344depend on the language).
22345
8e04817f
AC
22346@node GDB Bugs
22347@chapter Reporting Bugs in @value{GDBN}
22348@cindex bugs in @value{GDBN}
22349@cindex reporting bugs in @value{GDBN}
c906108c 22350
8e04817f 22351Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22352
8e04817f
AC
22353Reporting a bug may help you by bringing a solution to your problem, or it
22354may not. But in any case the principal function of a bug report is to help
22355the entire community by making the next version of @value{GDBN} work better. Bug
22356reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22357
8e04817f
AC
22358In order for a bug report to serve its purpose, you must include the
22359information that enables us to fix the bug.
c4555f82
SC
22360
22361@menu
8e04817f
AC
22362* Bug Criteria:: Have you found a bug?
22363* Bug Reporting:: How to report bugs
c4555f82
SC
22364@end menu
22365
8e04817f 22366@node Bug Criteria
79a6e687 22367@section Have You Found a Bug?
8e04817f 22368@cindex bug criteria
c4555f82 22369
8e04817f 22370If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22371
22372@itemize @bullet
8e04817f
AC
22373@cindex fatal signal
22374@cindex debugger crash
22375@cindex crash of debugger
c4555f82 22376@item
8e04817f
AC
22377If the debugger gets a fatal signal, for any input whatever, that is a
22378@value{GDBN} bug. Reliable debuggers never crash.
22379
22380@cindex error on valid input
22381@item
22382If @value{GDBN} produces an error message for valid input, that is a
22383bug. (Note that if you're cross debugging, the problem may also be
22384somewhere in the connection to the target.)
c4555f82 22385
8e04817f 22386@cindex invalid input
c4555f82 22387@item
8e04817f
AC
22388If @value{GDBN} does not produce an error message for invalid input,
22389that is a bug. However, you should note that your idea of
22390``invalid input'' might be our idea of ``an extension'' or ``support
22391for traditional practice''.
22392
22393@item
22394If you are an experienced user of debugging tools, your suggestions
22395for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22396@end itemize
22397
8e04817f 22398@node Bug Reporting
79a6e687 22399@section How to Report Bugs
8e04817f
AC
22400@cindex bug reports
22401@cindex @value{GDBN} bugs, reporting
22402
22403A number of companies and individuals offer support for @sc{gnu} products.
22404If you obtained @value{GDBN} from a support organization, we recommend you
22405contact that organization first.
22406
22407You can find contact information for many support companies and
22408individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22409distribution.
22410@c should add a web page ref...
22411
129188f6 22412In any event, we also recommend that you submit bug reports for
d3e8051b 22413@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22414@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22415page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22416be used.
8e04817f
AC
22417
22418@strong{Do not send bug reports to @samp{info-gdb}, or to
22419@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22420not want to receive bug reports. Those that do have arranged to receive
22421@samp{bug-gdb}.
22422
22423The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22424serves as a repeater. The mailing list and the newsgroup carry exactly
22425the same messages. Often people think of posting bug reports to the
22426newsgroup instead of mailing them. This appears to work, but it has one
22427problem which can be crucial: a newsgroup posting often lacks a mail
22428path back to the sender. Thus, if we need to ask for more information,
22429we may be unable to reach you. For this reason, it is better to send
22430bug reports to the mailing list.
c4555f82 22431
8e04817f
AC
22432The fundamental principle of reporting bugs usefully is this:
22433@strong{report all the facts}. If you are not sure whether to state a
22434fact or leave it out, state it!
c4555f82 22435
8e04817f
AC
22436Often people omit facts because they think they know what causes the
22437problem and assume that some details do not matter. Thus, you might
22438assume that the name of the variable you use in an example does not matter.
22439Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22440stray memory reference which happens to fetch from the location where that
22441name is stored in memory; perhaps, if the name were different, the contents
22442of that location would fool the debugger into doing the right thing despite
22443the bug. Play it safe and give a specific, complete example. That is the
22444easiest thing for you to do, and the most helpful.
c4555f82 22445
8e04817f
AC
22446Keep in mind that the purpose of a bug report is to enable us to fix the
22447bug. It may be that the bug has been reported previously, but neither
22448you nor we can know that unless your bug report is complete and
22449self-contained.
c4555f82 22450
8e04817f
AC
22451Sometimes people give a few sketchy facts and ask, ``Does this ring a
22452bell?'' Those bug reports are useless, and we urge everyone to
22453@emph{refuse to respond to them} except to chide the sender to report
22454bugs properly.
22455
22456To enable us to fix the bug, you should include all these things:
c4555f82
SC
22457
22458@itemize @bullet
22459@item
8e04817f
AC
22460The version of @value{GDBN}. @value{GDBN} announces it if you start
22461with no arguments; you can also print it at any time using @code{show
22462version}.
c4555f82 22463
8e04817f
AC
22464Without this, we will not know whether there is any point in looking for
22465the bug in the current version of @value{GDBN}.
c4555f82
SC
22466
22467@item
8e04817f
AC
22468The type of machine you are using, and the operating system name and
22469version number.
c4555f82
SC
22470
22471@item
c1468174 22472What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22473``@value{GCC}--2.8.1''.
c4555f82
SC
22474
22475@item
8e04817f 22476What compiler (and its version) was used to compile the program you are
c1468174 22477debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22478C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22479to get this information; for other compilers, see the documentation for
22480those compilers.
c4555f82 22481
8e04817f
AC
22482@item
22483The command arguments you gave the compiler to compile your example and
22484observe the bug. For example, did you use @samp{-O}? To guarantee
22485you will not omit something important, list them all. A copy of the
22486Makefile (or the output from make) is sufficient.
c4555f82 22487
8e04817f
AC
22488If we were to try to guess the arguments, we would probably guess wrong
22489and then we might not encounter the bug.
c4555f82 22490
8e04817f
AC
22491@item
22492A complete input script, and all necessary source files, that will
22493reproduce the bug.
c4555f82 22494
8e04817f
AC
22495@item
22496A description of what behavior you observe that you believe is
22497incorrect. For example, ``It gets a fatal signal.''
c4555f82 22498
8e04817f
AC
22499Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22500will certainly notice it. But if the bug is incorrect output, we might
22501not notice unless it is glaringly wrong. You might as well not give us
22502a chance to make a mistake.
c4555f82 22503
8e04817f
AC
22504Even if the problem you experience is a fatal signal, you should still
22505say so explicitly. Suppose something strange is going on, such as, your
22506copy of @value{GDBN} is out of synch, or you have encountered a bug in
22507the C library on your system. (This has happened!) Your copy might
22508crash and ours would not. If you told us to expect a crash, then when
22509ours fails to crash, we would know that the bug was not happening for
22510us. If you had not told us to expect a crash, then we would not be able
22511to draw any conclusion from our observations.
c4555f82 22512
e0c07bf0
MC
22513@pindex script
22514@cindex recording a session script
22515To collect all this information, you can use a session recording program
22516such as @command{script}, which is available on many Unix systems.
22517Just run your @value{GDBN} session inside @command{script} and then
22518include the @file{typescript} file with your bug report.
22519
22520Another way to record a @value{GDBN} session is to run @value{GDBN}
22521inside Emacs and then save the entire buffer to a file.
22522
8e04817f
AC
22523@item
22524If you wish to suggest changes to the @value{GDBN} source, send us context
22525diffs. If you even discuss something in the @value{GDBN} source, refer to
22526it by context, not by line number.
c4555f82 22527
8e04817f
AC
22528The line numbers in our development sources will not match those in your
22529sources. Your line numbers would convey no useful information to us.
c4555f82 22530
8e04817f 22531@end itemize
c4555f82 22532
8e04817f 22533Here are some things that are not necessary:
c4555f82 22534
8e04817f
AC
22535@itemize @bullet
22536@item
22537A description of the envelope of the bug.
c4555f82 22538
8e04817f
AC
22539Often people who encounter a bug spend a lot of time investigating
22540which changes to the input file will make the bug go away and which
22541changes will not affect it.
c4555f82 22542
8e04817f
AC
22543This is often time consuming and not very useful, because the way we
22544will find the bug is by running a single example under the debugger
22545with breakpoints, not by pure deduction from a series of examples.
22546We recommend that you save your time for something else.
c4555f82 22547
8e04817f
AC
22548Of course, if you can find a simpler example to report @emph{instead}
22549of the original one, that is a convenience for us. Errors in the
22550output will be easier to spot, running under the debugger will take
22551less time, and so on.
c4555f82 22552
8e04817f
AC
22553However, simplification is not vital; if you do not want to do this,
22554report the bug anyway and send us the entire test case you used.
c4555f82 22555
8e04817f
AC
22556@item
22557A patch for the bug.
c4555f82 22558
8e04817f
AC
22559A patch for the bug does help us if it is a good one. But do not omit
22560the necessary information, such as the test case, on the assumption that
22561a patch is all we need. We might see problems with your patch and decide
22562to fix the problem another way, or we might not understand it at all.
c4555f82 22563
8e04817f
AC
22564Sometimes with a program as complicated as @value{GDBN} it is very hard to
22565construct an example that will make the program follow a certain path
22566through the code. If you do not send us the example, we will not be able
22567to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22568
8e04817f
AC
22569And if we cannot understand what bug you are trying to fix, or why your
22570patch should be an improvement, we will not install it. A test case will
22571help us to understand.
c4555f82 22572
8e04817f
AC
22573@item
22574A guess about what the bug is or what it depends on.
c4555f82 22575
8e04817f
AC
22576Such guesses are usually wrong. Even we cannot guess right about such
22577things without first using the debugger to find the facts.
22578@end itemize
c4555f82 22579
8e04817f
AC
22580@c The readline documentation is distributed with the readline code
22581@c and consists of the two following files:
22582@c rluser.texinfo
22583@c inc-hist.texinfo
22584@c Use -I with makeinfo to point to the appropriate directory,
22585@c environment var TEXINPUTS with TeX.
5bdf8622 22586@include rluser.texi
8e04817f 22587@include inc-hist.texinfo
c4555f82 22588
c4555f82 22589
8e04817f
AC
22590@node Formatting Documentation
22591@appendix Formatting Documentation
c4555f82 22592
8e04817f
AC
22593@cindex @value{GDBN} reference card
22594@cindex reference card
22595The @value{GDBN} 4 release includes an already-formatted reference card, ready
22596for printing with PostScript or Ghostscript, in the @file{gdb}
22597subdirectory of the main source directory@footnote{In
22598@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22599release.}. If you can use PostScript or Ghostscript with your printer,
22600you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22601
8e04817f
AC
22602The release also includes the source for the reference card. You
22603can format it, using @TeX{}, by typing:
c4555f82 22604
474c8240 22605@smallexample
8e04817f 22606make refcard.dvi
474c8240 22607@end smallexample
c4555f82 22608
8e04817f
AC
22609The @value{GDBN} reference card is designed to print in @dfn{landscape}
22610mode on US ``letter'' size paper;
22611that is, on a sheet 11 inches wide by 8.5 inches
22612high. You will need to specify this form of printing as an option to
22613your @sc{dvi} output program.
c4555f82 22614
8e04817f 22615@cindex documentation
c4555f82 22616
8e04817f
AC
22617All the documentation for @value{GDBN} comes as part of the machine-readable
22618distribution. The documentation is written in Texinfo format, which is
22619a documentation system that uses a single source file to produce both
22620on-line information and a printed manual. You can use one of the Info
22621formatting commands to create the on-line version of the documentation
22622and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22623
8e04817f
AC
22624@value{GDBN} includes an already formatted copy of the on-line Info
22625version of this manual in the @file{gdb} subdirectory. The main Info
22626file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22627subordinate files matching @samp{gdb.info*} in the same directory. If
22628necessary, you can print out these files, or read them with any editor;
22629but they are easier to read using the @code{info} subsystem in @sc{gnu}
22630Emacs or the standalone @code{info} program, available as part of the
22631@sc{gnu} Texinfo distribution.
c4555f82 22632
8e04817f
AC
22633If you want to format these Info files yourself, you need one of the
22634Info formatting programs, such as @code{texinfo-format-buffer} or
22635@code{makeinfo}.
c4555f82 22636
8e04817f
AC
22637If you have @code{makeinfo} installed, and are in the top level
22638@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22639version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22640
474c8240 22641@smallexample
8e04817f
AC
22642cd gdb
22643make gdb.info
474c8240 22644@end smallexample
c4555f82 22645
8e04817f
AC
22646If you want to typeset and print copies of this manual, you need @TeX{},
22647a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22648Texinfo definitions file.
c4555f82 22649
8e04817f
AC
22650@TeX{} is a typesetting program; it does not print files directly, but
22651produces output files called @sc{dvi} files. To print a typeset
22652document, you need a program to print @sc{dvi} files. If your system
22653has @TeX{} installed, chances are it has such a program. The precise
22654command to use depends on your system; @kbd{lpr -d} is common; another
22655(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22656require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22657
8e04817f
AC
22658@TeX{} also requires a macro definitions file called
22659@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22660written in Texinfo format. On its own, @TeX{} cannot either read or
22661typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22662and is located in the @file{gdb-@var{version-number}/texinfo}
22663directory.
c4555f82 22664
8e04817f 22665If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22666typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22667subdirectory of the main source directory (for example, to
22668@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22669
474c8240 22670@smallexample
8e04817f 22671make gdb.dvi
474c8240 22672@end smallexample
c4555f82 22673
8e04817f 22674Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22675
8e04817f
AC
22676@node Installing GDB
22677@appendix Installing @value{GDBN}
8e04817f 22678@cindex installation
c4555f82 22679
7fa2210b
DJ
22680@menu
22681* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22682* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22683* Separate Objdir:: Compiling @value{GDBN} in another directory
22684* Config Names:: Specifying names for hosts and targets
22685* Configure Options:: Summary of options for configure
22686@end menu
22687
22688@node Requirements
79a6e687 22689@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22690@cindex building @value{GDBN}, requirements for
22691
22692Building @value{GDBN} requires various tools and packages to be available.
22693Other packages will be used only if they are found.
22694
79a6e687 22695@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22696@table @asis
22697@item ISO C90 compiler
22698@value{GDBN} is written in ISO C90. It should be buildable with any
22699working C90 compiler, e.g.@: GCC.
22700
22701@end table
22702
79a6e687 22703@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22704@table @asis
22705@item Expat
123dc839 22706@anchor{Expat}
7fa2210b
DJ
22707@value{GDBN} can use the Expat XML parsing library. This library may be
22708included with your operating system distribution; if it is not, you
22709can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22710The @file{configure} script will search for this library in several
7fa2210b
DJ
22711standard locations; if it is installed in an unusual path, you can
22712use the @option{--with-libexpat-prefix} option to specify its location.
22713
9cceb671
DJ
22714Expat is used for:
22715
22716@itemize @bullet
22717@item
22718Remote protocol memory maps (@pxref{Memory Map Format})
22719@item
22720Target descriptions (@pxref{Target Descriptions})
22721@item
22722Remote shared library lists (@pxref{Library List Format})
22723@item
22724MS-Windows shared libraries (@pxref{Shared Libraries})
22725@end itemize
7fa2210b
DJ
22726
22727@end table
22728
22729@node Running Configure
db2e3e2e 22730@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22731@cindex configuring @value{GDBN}
db2e3e2e 22732@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22733of preparing @value{GDBN} for installation; you can then use @code{make} to
22734build the @code{gdb} program.
22735@iftex
22736@c irrelevant in info file; it's as current as the code it lives with.
22737@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22738look at the @file{README} file in the sources; we may have improved the
22739installation procedures since publishing this manual.}
22740@end iftex
c4555f82 22741
8e04817f
AC
22742The @value{GDBN} distribution includes all the source code you need for
22743@value{GDBN} in a single directory, whose name is usually composed by
22744appending the version number to @samp{gdb}.
c4555f82 22745
8e04817f
AC
22746For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22747@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22748
8e04817f
AC
22749@table @code
22750@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22751script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22752
8e04817f
AC
22753@item gdb-@value{GDBVN}/gdb
22754the source specific to @value{GDBN} itself
c4555f82 22755
8e04817f
AC
22756@item gdb-@value{GDBVN}/bfd
22757source for the Binary File Descriptor library
c906108c 22758
8e04817f
AC
22759@item gdb-@value{GDBVN}/include
22760@sc{gnu} include files
c906108c 22761
8e04817f
AC
22762@item gdb-@value{GDBVN}/libiberty
22763source for the @samp{-liberty} free software library
c906108c 22764
8e04817f
AC
22765@item gdb-@value{GDBVN}/opcodes
22766source for the library of opcode tables and disassemblers
c906108c 22767
8e04817f
AC
22768@item gdb-@value{GDBVN}/readline
22769source for the @sc{gnu} command-line interface
c906108c 22770
8e04817f
AC
22771@item gdb-@value{GDBVN}/glob
22772source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22773
8e04817f
AC
22774@item gdb-@value{GDBVN}/mmalloc
22775source for the @sc{gnu} memory-mapped malloc package
22776@end table
c906108c 22777
db2e3e2e 22778The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22779from the @file{gdb-@var{version-number}} source directory, which in
22780this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22781
8e04817f 22782First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22783if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22784identifier for the platform on which @value{GDBN} will run as an
22785argument.
c906108c 22786
8e04817f 22787For example:
c906108c 22788
474c8240 22789@smallexample
8e04817f
AC
22790cd gdb-@value{GDBVN}
22791./configure @var{host}
22792make
474c8240 22793@end smallexample
c906108c 22794
8e04817f
AC
22795@noindent
22796where @var{host} is an identifier such as @samp{sun4} or
22797@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22798(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22799correct value by examining your system.)
c906108c 22800
8e04817f
AC
22801Running @samp{configure @var{host}} and then running @code{make} builds the
22802@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22803libraries, then @code{gdb} itself. The configured source files, and the
22804binaries, are left in the corresponding source directories.
c906108c 22805
8e04817f 22806@need 750
db2e3e2e 22807@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22808system does not recognize this automatically when you run a different
22809shell, you may need to run @code{sh} on it explicitly:
c906108c 22810
474c8240 22811@smallexample
8e04817f 22812sh configure @var{host}
474c8240 22813@end smallexample
c906108c 22814
db2e3e2e 22815If you run @file{configure} from a directory that contains source
8e04817f 22816directories for multiple libraries or programs, such as the
db2e3e2e
BW
22817@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22818@file{configure}
8e04817f
AC
22819creates configuration files for every directory level underneath (unless
22820you tell it not to, with the @samp{--norecursion} option).
22821
db2e3e2e 22822You should run the @file{configure} script from the top directory in the
94e91d6d 22823source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22824@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22825that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22826if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22827of the @file{gdb-@var{version-number}} directory, you will omit the
22828configuration of @file{bfd}, @file{readline}, and other sibling
22829directories of the @file{gdb} subdirectory. This leads to build errors
22830about missing include files such as @file{bfd/bfd.h}.
c906108c 22831
8e04817f
AC
22832You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22833However, you should make sure that the shell on your path (named by
22834the @samp{SHELL} environment variable) is publicly readable. Remember
22835that @value{GDBN} uses the shell to start your program---some systems refuse to
22836let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22837
8e04817f 22838@node Separate Objdir
79a6e687 22839@section Compiling @value{GDBN} in Another Directory
c906108c 22840
8e04817f
AC
22841If you want to run @value{GDBN} versions for several host or target machines,
22842you need a different @code{gdb} compiled for each combination of
db2e3e2e 22843host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22844allowing you to generate each configuration in a separate subdirectory,
22845rather than in the source directory. If your @code{make} program
22846handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22847@code{make} in each of these directories builds the @code{gdb}
22848program specified there.
c906108c 22849
db2e3e2e 22850To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22851with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22852(You also need to specify a path to find @file{configure}
22853itself from your working directory. If the path to @file{configure}
8e04817f
AC
22854would be the same as the argument to @samp{--srcdir}, you can leave out
22855the @samp{--srcdir} option; it is assumed.)
c906108c 22856
8e04817f
AC
22857For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22858separate directory for a Sun 4 like this:
c906108c 22859
474c8240 22860@smallexample
8e04817f
AC
22861@group
22862cd gdb-@value{GDBVN}
22863mkdir ../gdb-sun4
22864cd ../gdb-sun4
22865../gdb-@value{GDBVN}/configure sun4
22866make
22867@end group
474c8240 22868@end smallexample
c906108c 22869
db2e3e2e 22870When @file{configure} builds a configuration using a remote source
8e04817f
AC
22871directory, it creates a tree for the binaries with the same structure
22872(and using the same names) as the tree under the source directory. In
22873the example, you'd find the Sun 4 library @file{libiberty.a} in the
22874directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22875@file{gdb-sun4/gdb}.
c906108c 22876
94e91d6d
MC
22877Make sure that your path to the @file{configure} script has just one
22878instance of @file{gdb} in it. If your path to @file{configure} looks
22879like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22880one subdirectory of @value{GDBN}, not the whole package. This leads to
22881build errors about missing include files such as @file{bfd/bfd.h}.
22882
8e04817f
AC
22883One popular reason to build several @value{GDBN} configurations in separate
22884directories is to configure @value{GDBN} for cross-compiling (where
22885@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22886programs that run on another machine---the @dfn{target}).
22887You specify a cross-debugging target by
db2e3e2e 22888giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22889
8e04817f
AC
22890When you run @code{make} to build a program or library, you must run
22891it in a configured directory---whatever directory you were in when you
db2e3e2e 22892called @file{configure} (or one of its subdirectories).
c906108c 22893
db2e3e2e 22894The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22895directory also runs recursively. If you type @code{make} in a source
22896directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22897directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22898will build all the required libraries, and then build GDB.
c906108c 22899
8e04817f
AC
22900When you have multiple hosts or targets configured in separate
22901directories, you can run @code{make} on them in parallel (for example,
22902if they are NFS-mounted on each of the hosts); they will not interfere
22903with each other.
c906108c 22904
8e04817f 22905@node Config Names
79a6e687 22906@section Specifying Names for Hosts and Targets
c906108c 22907
db2e3e2e 22908The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22909script are based on a three-part naming scheme, but some short predefined
22910aliases are also supported. The full naming scheme encodes three pieces
22911of information in the following pattern:
c906108c 22912
474c8240 22913@smallexample
8e04817f 22914@var{architecture}-@var{vendor}-@var{os}
474c8240 22915@end smallexample
c906108c 22916
8e04817f
AC
22917For example, you can use the alias @code{sun4} as a @var{host} argument,
22918or as the value for @var{target} in a @code{--target=@var{target}}
22919option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22920
db2e3e2e 22921The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22922any query facility to list all supported host and target names or
db2e3e2e 22923aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22924@code{config.sub} to map abbreviations to full names; you can read the
22925script, if you wish, or you can use it to test your guesses on
22926abbreviations---for example:
c906108c 22927
8e04817f
AC
22928@smallexample
22929% sh config.sub i386-linux
22930i386-pc-linux-gnu
22931% sh config.sub alpha-linux
22932alpha-unknown-linux-gnu
22933% sh config.sub hp9k700
22934hppa1.1-hp-hpux
22935% sh config.sub sun4
22936sparc-sun-sunos4.1.1
22937% sh config.sub sun3
22938m68k-sun-sunos4.1.1
22939% sh config.sub i986v
22940Invalid configuration `i986v': machine `i986v' not recognized
22941@end smallexample
c906108c 22942
8e04817f
AC
22943@noindent
22944@code{config.sub} is also distributed in the @value{GDBN} source
22945directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22946
8e04817f 22947@node Configure Options
db2e3e2e 22948@section @file{configure} Options
c906108c 22949
db2e3e2e
BW
22950Here is a summary of the @file{configure} options and arguments that
22951are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22952several other options not listed here. @inforef{What Configure
db2e3e2e 22953Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22954
474c8240 22955@smallexample
8e04817f
AC
22956configure @r{[}--help@r{]}
22957 @r{[}--prefix=@var{dir}@r{]}
22958 @r{[}--exec-prefix=@var{dir}@r{]}
22959 @r{[}--srcdir=@var{dirname}@r{]}
22960 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22961 @r{[}--target=@var{target}@r{]}
22962 @var{host}
474c8240 22963@end smallexample
c906108c 22964
8e04817f
AC
22965@noindent
22966You may introduce options with a single @samp{-} rather than
22967@samp{--} if you prefer; but you may abbreviate option names if you use
22968@samp{--}.
c906108c 22969
8e04817f
AC
22970@table @code
22971@item --help
db2e3e2e 22972Display a quick summary of how to invoke @file{configure}.
c906108c 22973
8e04817f
AC
22974@item --prefix=@var{dir}
22975Configure the source to install programs and files under directory
22976@file{@var{dir}}.
c906108c 22977
8e04817f
AC
22978@item --exec-prefix=@var{dir}
22979Configure the source to install programs under directory
22980@file{@var{dir}}.
c906108c 22981
8e04817f
AC
22982@c avoid splitting the warning from the explanation:
22983@need 2000
22984@item --srcdir=@var{dirname}
22985@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22986@code{make} that implements the @code{VPATH} feature.}@*
22987Use this option to make configurations in directories separate from the
22988@value{GDBN} source directories. Among other things, you can use this to
22989build (or maintain) several configurations simultaneously, in separate
db2e3e2e 22990directories. @file{configure} writes configuration-specific files in
8e04817f 22991the current directory, but arranges for them to use the source in the
db2e3e2e 22992directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
22993the working directory in parallel to the source directories below
22994@var{dirname}.
c906108c 22995
8e04817f 22996@item --norecursion
db2e3e2e 22997Configure only the directory level where @file{configure} is executed; do not
8e04817f 22998propagate configuration to subdirectories.
c906108c 22999
8e04817f
AC
23000@item --target=@var{target}
23001Configure @value{GDBN} for cross-debugging programs running on the specified
23002@var{target}. Without this option, @value{GDBN} is configured to debug
23003programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 23004
8e04817f 23005There is no convenient way to generate a list of all available targets.
c906108c 23006
8e04817f
AC
23007@item @var{host} @dots{}
23008Configure @value{GDBN} to run on the specified @var{host}.
c906108c 23009
8e04817f
AC
23010There is no convenient way to generate a list of all available hosts.
23011@end table
c906108c 23012
8e04817f
AC
23013There are many other options available as well, but they are generally
23014needed for special purposes only.
c906108c 23015
8e04817f
AC
23016@node Maintenance Commands
23017@appendix Maintenance Commands
23018@cindex maintenance commands
23019@cindex internal commands
c906108c 23020
8e04817f 23021In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
23022includes a number of commands intended for @value{GDBN} developers,
23023that are not documented elsewhere in this manual. These commands are
da316a69
EZ
23024provided here for reference. (For commands that turn on debugging
23025messages, see @ref{Debugging Output}.)
c906108c 23026
8e04817f 23027@table @code
09d4efe1
EZ
23028@kindex maint agent
23029@item maint agent @var{expression}
23030Translate the given @var{expression} into remote agent bytecodes.
23031This command is useful for debugging the Agent Expression mechanism
23032(@pxref{Agent Expressions}).
23033
8e04817f
AC
23034@kindex maint info breakpoints
23035@item @anchor{maint info breakpoints}maint info breakpoints
23036Using the same format as @samp{info breakpoints}, display both the
23037breakpoints you've set explicitly, and those @value{GDBN} is using for
23038internal purposes. Internal breakpoints are shown with negative
23039breakpoint numbers. The type column identifies what kind of breakpoint
23040is shown:
c906108c 23041
8e04817f
AC
23042@table @code
23043@item breakpoint
23044Normal, explicitly set breakpoint.
c906108c 23045
8e04817f
AC
23046@item watchpoint
23047Normal, explicitly set watchpoint.
c906108c 23048
8e04817f
AC
23049@item longjmp
23050Internal breakpoint, used to handle correctly stepping through
23051@code{longjmp} calls.
c906108c 23052
8e04817f
AC
23053@item longjmp resume
23054Internal breakpoint at the target of a @code{longjmp}.
c906108c 23055
8e04817f
AC
23056@item until
23057Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 23058
8e04817f
AC
23059@item finish
23060Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 23061
8e04817f
AC
23062@item shlib events
23063Shared library events.
c906108c 23064
8e04817f 23065@end table
c906108c 23066
09d4efe1
EZ
23067@kindex maint check-symtabs
23068@item maint check-symtabs
23069Check the consistency of psymtabs and symtabs.
23070
23071@kindex maint cplus first_component
23072@item maint cplus first_component @var{name}
23073Print the first C@t{++} class/namespace component of @var{name}.
23074
23075@kindex maint cplus namespace
23076@item maint cplus namespace
23077Print the list of possible C@t{++} namespaces.
23078
23079@kindex maint demangle
23080@item maint demangle @var{name}
d3e8051b 23081Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
23082
23083@kindex maint deprecate
23084@kindex maint undeprecate
23085@cindex deprecated commands
23086@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
23087@itemx maint undeprecate @var{command}
23088Deprecate or undeprecate the named @var{command}. Deprecated commands
23089cause @value{GDBN} to issue a warning when you use them. The optional
23090argument @var{replacement} says which newer command should be used in
23091favor of the deprecated one; if it is given, @value{GDBN} will mention
23092the replacement as part of the warning.
23093
23094@kindex maint dump-me
23095@item maint dump-me
721c2651 23096@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 23097Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
23098This is supported only on systems which support aborting a program
23099with the @code{SIGQUIT} signal.
09d4efe1 23100
8d30a00d
AC
23101@kindex maint internal-error
23102@kindex maint internal-warning
09d4efe1
EZ
23103@item maint internal-error @r{[}@var{message-text}@r{]}
23104@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
23105Cause @value{GDBN} to call the internal function @code{internal_error}
23106or @code{internal_warning} and hence behave as though an internal error
23107or internal warning has been detected. In addition to reporting the
23108internal problem, these functions give the user the opportunity to
23109either quit @value{GDBN} or create a core file of the current
23110@value{GDBN} session.
23111
09d4efe1
EZ
23112These commands take an optional parameter @var{message-text} that is
23113used as the text of the error or warning message.
23114
d3e8051b 23115Here's an example of using @code{internal-error}:
09d4efe1 23116
8d30a00d 23117@smallexample
f7dc1244 23118(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
23119@dots{}/maint.c:121: internal-error: testing, 1, 2
23120A problem internal to GDB has been detected. Further
23121debugging may prove unreliable.
23122Quit this debugging session? (y or n) @kbd{n}
23123Create a core file? (y or n) @kbd{n}
f7dc1244 23124(@value{GDBP})
8d30a00d
AC
23125@end smallexample
23126
09d4efe1
EZ
23127@kindex maint packet
23128@item maint packet @var{text}
23129If @value{GDBN} is talking to an inferior via the serial protocol,
23130then this command sends the string @var{text} to the inferior, and
23131displays the response packet. @value{GDBN} supplies the initial
23132@samp{$} character, the terminating @samp{#} character, and the
23133checksum.
23134
23135@kindex maint print architecture
23136@item maint print architecture @r{[}@var{file}@r{]}
23137Print the entire architecture configuration. The optional argument
23138@var{file} names the file where the output goes.
8d30a00d 23139
81adfced
DJ
23140@kindex maint print c-tdesc
23141@item maint print c-tdesc
23142Print the current target description (@pxref{Target Descriptions}) as
23143a C source file. The created source file can be used in @value{GDBN}
23144when an XML parser is not available to parse the description.
23145
00905d52
AC
23146@kindex maint print dummy-frames
23147@item maint print dummy-frames
00905d52
AC
23148Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23149
23150@smallexample
f7dc1244 23151(@value{GDBP}) @kbd{b add}
00905d52 23152@dots{}
f7dc1244 23153(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23154Breakpoint 2, add (a=2, b=3) at @dots{}
2315558 return (a + b);
23156The program being debugged stopped while in a function called from GDB.
23157@dots{}
f7dc1244 23158(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
231590x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23160 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23161 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23162(@value{GDBP})
00905d52
AC
23163@end smallexample
23164
23165Takes an optional file parameter.
23166
0680b120
AC
23167@kindex maint print registers
23168@kindex maint print raw-registers
23169@kindex maint print cooked-registers
617073a9 23170@kindex maint print register-groups
09d4efe1
EZ
23171@item maint print registers @r{[}@var{file}@r{]}
23172@itemx maint print raw-registers @r{[}@var{file}@r{]}
23173@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23174@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23175Print @value{GDBN}'s internal register data structures.
23176
617073a9
AC
23177The command @code{maint print raw-registers} includes the contents of
23178the raw register cache; the command @code{maint print cooked-registers}
23179includes the (cooked) value of all registers; and the command
23180@code{maint print register-groups} includes the groups that each
23181register is a member of. @xref{Registers,, Registers, gdbint,
23182@value{GDBN} Internals}.
0680b120 23183
09d4efe1
EZ
23184These commands take an optional parameter, a file name to which to
23185write the information.
0680b120 23186
617073a9 23187@kindex maint print reggroups
09d4efe1
EZ
23188@item maint print reggroups @r{[}@var{file}@r{]}
23189Print @value{GDBN}'s internal register group data structures. The
23190optional argument @var{file} tells to what file to write the
23191information.
617073a9 23192
09d4efe1 23193The register groups info looks like this:
617073a9
AC
23194
23195@smallexample
f7dc1244 23196(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23197 Group Type
23198 general user
23199 float user
23200 all user
23201 vector user
23202 system user
23203 save internal
23204 restore internal
617073a9
AC
23205@end smallexample
23206
09d4efe1
EZ
23207@kindex flushregs
23208@item flushregs
23209This command forces @value{GDBN} to flush its internal register cache.
23210
23211@kindex maint print objfiles
23212@cindex info for known object files
23213@item maint print objfiles
23214Print a dump of all known object files. For each object file, this
23215command prints its name, address in memory, and all of its psymtabs
23216and symtabs.
23217
23218@kindex maint print statistics
23219@cindex bcache statistics
23220@item maint print statistics
23221This command prints, for each object file in the program, various data
23222about that object file followed by the byte cache (@dfn{bcache})
23223statistics for the object file. The objfile data includes the number
d3e8051b 23224of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23225defined by the objfile, the number of as yet unexpanded psym tables,
23226the number of line tables and string tables, and the amount of memory
23227used by the various tables. The bcache statistics include the counts,
23228sizes, and counts of duplicates of all and unique objects, max,
23229average, and median entry size, total memory used and its overhead and
23230savings, and various measures of the hash table size and chain
23231lengths.
23232
c7ba131e
JB
23233@kindex maint print target-stack
23234@cindex target stack description
23235@item maint print target-stack
23236A @dfn{target} is an interface between the debugger and a particular
23237kind of file or process. Targets can be stacked in @dfn{strata},
23238so that more than one target can potentially respond to a request.
23239In particular, memory accesses will walk down the stack of targets
23240until they find a target that is interested in handling that particular
23241address.
23242
23243This command prints a short description of each layer that was pushed on
23244the @dfn{target stack}, starting from the top layer down to the bottom one.
23245
09d4efe1
EZ
23246@kindex maint print type
23247@cindex type chain of a data type
23248@item maint print type @var{expr}
23249Print the type chain for a type specified by @var{expr}. The argument
23250can be either a type name or a symbol. If it is a symbol, the type of
23251that symbol is described. The type chain produced by this command is
23252a recursive definition of the data type as stored in @value{GDBN}'s
23253data structures, including its flags and contained types.
23254
23255@kindex maint set dwarf2 max-cache-age
23256@kindex maint show dwarf2 max-cache-age
23257@item maint set dwarf2 max-cache-age
23258@itemx maint show dwarf2 max-cache-age
23259Control the DWARF 2 compilation unit cache.
23260
23261@cindex DWARF 2 compilation units cache
23262In object files with inter-compilation-unit references, such as those
23263produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23264reader needs to frequently refer to previously read compilation units.
23265This setting controls how long a compilation unit will remain in the
23266cache if it is not referenced. A higher limit means that cached
23267compilation units will be stored in memory longer, and more total
23268memory will be used. Setting it to zero disables caching, which will
23269slow down @value{GDBN} startup, but reduce memory consumption.
23270
e7ba9c65
DJ
23271@kindex maint set profile
23272@kindex maint show profile
23273@cindex profiling GDB
23274@item maint set profile
23275@itemx maint show profile
23276Control profiling of @value{GDBN}.
23277
23278Profiling will be disabled until you use the @samp{maint set profile}
23279command to enable it. When you enable profiling, the system will begin
23280collecting timing and execution count data; when you disable profiling or
23281exit @value{GDBN}, the results will be written to a log file. Remember that
23282if you use profiling, @value{GDBN} will overwrite the profiling log file
23283(often called @file{gmon.out}). If you have a record of important profiling
23284data in a @file{gmon.out} file, be sure to move it to a safe location.
23285
23286Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23287compiled with the @samp{-pg} compiler option.
e7ba9c65 23288
b84876c2
PA
23289@kindex maint set linux-async
23290@kindex maint show linux-async
23291@cindex asynchronous support
23292@item maint set linux-async
23293@itemx maint show linux-async
23294Control the GNU/Linux native asynchronous support of @value{GDBN}.
23295
23296GNU/Linux native asynchronous support will be disabled until you use
23297the @samp{maint set linux-async} command to enable it.
23298
09d4efe1
EZ
23299@kindex maint show-debug-regs
23300@cindex x86 hardware debug registers
23301@item maint show-debug-regs
23302Control whether to show variables that mirror the x86 hardware debug
23303registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23304enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23305removes a hardware breakpoint or watchpoint, and when the inferior
23306triggers a hardware-assisted breakpoint or watchpoint.
23307
23308@kindex maint space
23309@cindex memory used by commands
23310@item maint space
23311Control whether to display memory usage for each command. If set to a
23312nonzero value, @value{GDBN} will display how much memory each command
23313took, following the command's own output. This can also be requested
23314by invoking @value{GDBN} with the @option{--statistics} command-line
23315switch (@pxref{Mode Options}).
23316
23317@kindex maint time
23318@cindex time of command execution
23319@item maint time
23320Control whether to display the execution time for each command. If
23321set to a nonzero value, @value{GDBN} will display how much time it
23322took to execute each command, following the command's own output.
23323This can also be requested by invoking @value{GDBN} with the
23324@option{--statistics} command-line switch (@pxref{Mode Options}).
23325
23326@kindex maint translate-address
23327@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23328Find the symbol stored at the location specified by the address
23329@var{addr} and an optional section name @var{section}. If found,
23330@value{GDBN} prints the name of the closest symbol and an offset from
23331the symbol's location to the specified address. This is similar to
23332the @code{info address} command (@pxref{Symbols}), except that this
23333command also allows to find symbols in other sections.
ae038cb0 23334
8e04817f 23335@end table
c906108c 23336
9c16f35a
EZ
23337The following command is useful for non-interactive invocations of
23338@value{GDBN}, such as in the test suite.
23339
23340@table @code
23341@item set watchdog @var{nsec}
23342@kindex set watchdog
23343@cindex watchdog timer
23344@cindex timeout for commands
23345Set the maximum number of seconds @value{GDBN} will wait for the
23346target operation to finish. If this time expires, @value{GDBN}
23347reports and error and the command is aborted.
23348
23349@item show watchdog
23350Show the current setting of the target wait timeout.
23351@end table
c906108c 23352
e0ce93ac 23353@node Remote Protocol
8e04817f 23354@appendix @value{GDBN} Remote Serial Protocol
c906108c 23355
ee2d5c50
AC
23356@menu
23357* Overview::
23358* Packets::
23359* Stop Reply Packets::
23360* General Query Packets::
23361* Register Packet Format::
9d29849a 23362* Tracepoint Packets::
a6b151f1 23363* Host I/O Packets::
9a6253be 23364* Interrupts::
ee2d5c50 23365* Examples::
79a6e687 23366* File-I/O Remote Protocol Extension::
cfa9d6d9 23367* Library List Format::
79a6e687 23368* Memory Map Format::
ee2d5c50
AC
23369@end menu
23370
23371@node Overview
23372@section Overview
23373
8e04817f
AC
23374There may be occasions when you need to know something about the
23375protocol---for example, if there is only one serial port to your target
23376machine, you might want your program to do something special if it
23377recognizes a packet meant for @value{GDBN}.
c906108c 23378
d2c6833e 23379In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23380transmitted and received data, respectively.
c906108c 23381
8e04817f
AC
23382@cindex protocol, @value{GDBN} remote serial
23383@cindex serial protocol, @value{GDBN} remote
23384@cindex remote serial protocol
23385All @value{GDBN} commands and responses (other than acknowledgments) are
23386sent as a @var{packet}. A @var{packet} is introduced with the character
23387@samp{$}, the actual @var{packet-data}, and the terminating character
23388@samp{#} followed by a two-digit @var{checksum}:
c906108c 23389
474c8240 23390@smallexample
8e04817f 23391@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23392@end smallexample
8e04817f 23393@noindent
c906108c 23394
8e04817f
AC
23395@cindex checksum, for @value{GDBN} remote
23396@noindent
23397The two-digit @var{checksum} is computed as the modulo 256 sum of all
23398characters between the leading @samp{$} and the trailing @samp{#} (an
23399eight bit unsigned checksum).
c906108c 23400
8e04817f
AC
23401Implementors should note that prior to @value{GDBN} 5.0 the protocol
23402specification also included an optional two-digit @var{sequence-id}:
c906108c 23403
474c8240 23404@smallexample
8e04817f 23405@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23406@end smallexample
c906108c 23407
8e04817f
AC
23408@cindex sequence-id, for @value{GDBN} remote
23409@noindent
23410That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23411has never output @var{sequence-id}s. Stubs that handle packets added
23412since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23413
8e04817f
AC
23414@cindex acknowledgment, for @value{GDBN} remote
23415When either the host or the target machine receives a packet, the first
23416response expected is an acknowledgment: either @samp{+} (to indicate
23417the package was received correctly) or @samp{-} (to request
23418retransmission):
c906108c 23419
474c8240 23420@smallexample
d2c6833e
AC
23421-> @code{$}@var{packet-data}@code{#}@var{checksum}
23422<- @code{+}
474c8240 23423@end smallexample
8e04817f 23424@noindent
53a5351d 23425
8e04817f
AC
23426The host (@value{GDBN}) sends @var{command}s, and the target (the
23427debugging stub incorporated in your program) sends a @var{response}. In
23428the case of step and continue @var{command}s, the response is only sent
23429when the operation has completed (the target has again stopped).
c906108c 23430
8e04817f
AC
23431@var{packet-data} consists of a sequence of characters with the
23432exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23433exceptions).
c906108c 23434
ee2d5c50 23435@cindex remote protocol, field separator
0876f84a 23436Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23437@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23438@sc{hex} with leading zeros suppressed.
c906108c 23439
8e04817f
AC
23440Implementors should note that prior to @value{GDBN} 5.0, the character
23441@samp{:} could not appear as the third character in a packet (as it
23442would potentially conflict with the @var{sequence-id}).
c906108c 23443
0876f84a
DJ
23444@cindex remote protocol, binary data
23445@anchor{Binary Data}
23446Binary data in most packets is encoded either as two hexadecimal
23447digits per byte of binary data. This allowed the traditional remote
23448protocol to work over connections which were only seven-bit clean.
23449Some packets designed more recently assume an eight-bit clean
23450connection, and use a more efficient encoding to send and receive
23451binary data.
23452
23453The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23454as an escape character. Any escaped byte is transmitted as the escape
23455character followed by the original character XORed with @code{0x20}.
23456For example, the byte @code{0x7d} would be transmitted as the two
23457bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23458@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23459@samp{@}}) must always be escaped. Responses sent by the stub
23460must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23461is not interpreted as the start of a run-length encoded sequence
23462(described next).
23463
1d3811f6
DJ
23464Response @var{data} can be run-length encoded to save space.
23465Run-length encoding replaces runs of identical characters with one
23466instance of the repeated character, followed by a @samp{*} and a
23467repeat count. The repeat count is itself sent encoded, to avoid
23468binary characters in @var{data}: a value of @var{n} is sent as
23469@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23470produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23471code 32) for a repeat count of 3. (This is because run-length
23472encoding starts to win for counts 3 or more.) Thus, for example,
23473@samp{0* } is a run-length encoding of ``0000'': the space character
23474after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
234753}} more times.
23476
23477The printable characters @samp{#} and @samp{$} or with a numeric value
23478greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23479seven repeats (@samp{$}) can be expanded using a repeat count of only
23480five (@samp{"}). For example, @samp{00000000} can be encoded as
23481@samp{0*"00}.
c906108c 23482
8e04817f
AC
23483The error response returned for some packets includes a two character
23484error number. That number is not well defined.
c906108c 23485
f8da2bff 23486@cindex empty response, for unsupported packets
8e04817f
AC
23487For any @var{command} not supported by the stub, an empty response
23488(@samp{$#00}) should be returned. That way it is possible to extend the
23489protocol. A newer @value{GDBN} can tell if a packet is supported based
23490on that response.
c906108c 23491
b383017d
RM
23492A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23493@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23494optional.
c906108c 23495
ee2d5c50
AC
23496@node Packets
23497@section Packets
23498
23499The following table provides a complete list of all currently defined
23500@var{command}s and their corresponding response @var{data}.
79a6e687 23501@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23502I/O extension of the remote protocol.
ee2d5c50 23503
b8ff78ce
JB
23504Each packet's description has a template showing the packet's overall
23505syntax, followed by an explanation of the packet's meaning. We
23506include spaces in some of the templates for clarity; these are not
23507part of the packet's syntax. No @value{GDBN} packet uses spaces to
23508separate its components. For example, a template like @samp{foo
23509@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23510bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23511@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23512@samp{foo} and the @var{bar}, or between the @var{bar} and the
23513@var{baz}.
23514
8ffe2530
JB
23515Note that all packet forms beginning with an upper- or lower-case
23516letter, other than those described here, are reserved for future use.
23517
b8ff78ce 23518Here are the packet descriptions.
ee2d5c50 23519
b8ff78ce 23520@table @samp
ee2d5c50 23521
b8ff78ce
JB
23522@item !
23523@cindex @samp{!} packet
2d717e4f 23524@anchor{extended mode}
8e04817f
AC
23525Enable extended mode. In extended mode, the remote server is made
23526persistent. The @samp{R} packet is used to restart the program being
23527debugged.
ee2d5c50
AC
23528
23529Reply:
23530@table @samp
23531@item OK
8e04817f 23532The remote target both supports and has enabled extended mode.
ee2d5c50 23533@end table
c906108c 23534
b8ff78ce
JB
23535@item ?
23536@cindex @samp{?} packet
ee2d5c50
AC
23537Indicate the reason the target halted. The reply is the same as for
23538step and continue.
c906108c 23539
ee2d5c50
AC
23540Reply:
23541@xref{Stop Reply Packets}, for the reply specifications.
23542
b8ff78ce
JB
23543@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23544@cindex @samp{A} packet
23545Initialized @code{argv[]} array passed into program. @var{arglen}
23546specifies the number of bytes in the hex encoded byte stream
23547@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23548
23549Reply:
23550@table @samp
23551@item OK
b8ff78ce
JB
23552The arguments were set.
23553@item E @var{NN}
23554An error occurred.
ee2d5c50
AC
23555@end table
23556
b8ff78ce
JB
23557@item b @var{baud}
23558@cindex @samp{b} packet
23559(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23560Change the serial line speed to @var{baud}.
23561
23562JTC: @emph{When does the transport layer state change? When it's
23563received, or after the ACK is transmitted. In either case, there are
23564problems if the command or the acknowledgment packet is dropped.}
23565
23566Stan: @emph{If people really wanted to add something like this, and get
23567it working for the first time, they ought to modify ser-unix.c to send
23568some kind of out-of-band message to a specially-setup stub and have the
23569switch happen "in between" packets, so that from remote protocol's point
23570of view, nothing actually happened.}
23571
b8ff78ce
JB
23572@item B @var{addr},@var{mode}
23573@cindex @samp{B} packet
8e04817f 23574Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23575breakpoint at @var{addr}.
23576
b8ff78ce 23577Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23578(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23579
4f553f88 23580@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23581@cindex @samp{c} packet
23582Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23583resume at current address.
c906108c 23584
ee2d5c50
AC
23585Reply:
23586@xref{Stop Reply Packets}, for the reply specifications.
23587
4f553f88 23588@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23589@cindex @samp{C} packet
8e04817f 23590Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23591@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23592
ee2d5c50
AC
23593Reply:
23594@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23595
b8ff78ce
JB
23596@item d
23597@cindex @samp{d} packet
ee2d5c50
AC
23598Toggle debug flag.
23599
b8ff78ce
JB
23600Don't use this packet; instead, define a general set packet
23601(@pxref{General Query Packets}).
ee2d5c50 23602
b8ff78ce
JB
23603@item D
23604@cindex @samp{D} packet
ee2d5c50 23605Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23606before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23607
23608Reply:
23609@table @samp
10fac096
NW
23610@item OK
23611for success
b8ff78ce 23612@item E @var{NN}
10fac096 23613for an error
ee2d5c50 23614@end table
c906108c 23615
b8ff78ce
JB
23616@item F @var{RC},@var{EE},@var{CF};@var{XX}
23617@cindex @samp{F} packet
23618A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23619This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23620Remote Protocol Extension}, for the specification.
ee2d5c50 23621
b8ff78ce 23622@item g
ee2d5c50 23623@anchor{read registers packet}
b8ff78ce 23624@cindex @samp{g} packet
ee2d5c50
AC
23625Read general registers.
23626
23627Reply:
23628@table @samp
23629@item @var{XX@dots{}}
8e04817f
AC
23630Each byte of register data is described by two hex digits. The bytes
23631with the register are transmitted in target byte order. The size of
b8ff78ce 23632each register and their position within the @samp{g} packet are
4a9bb1df
UW
23633determined by the @value{GDBN} internal gdbarch functions
23634@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23635specification of several standard @samp{g} packets is specified below.
23636@item E @var{NN}
ee2d5c50
AC
23637for an error.
23638@end table
c906108c 23639
b8ff78ce
JB
23640@item G @var{XX@dots{}}
23641@cindex @samp{G} packet
23642Write general registers. @xref{read registers packet}, for a
23643description of the @var{XX@dots{}} data.
ee2d5c50
AC
23644
23645Reply:
23646@table @samp
23647@item OK
23648for success
b8ff78ce 23649@item E @var{NN}
ee2d5c50
AC
23650for an error
23651@end table
23652
b8ff78ce
JB
23653@item H @var{c} @var{t}
23654@cindex @samp{H} packet
8e04817f 23655Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23656@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23657should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23658operations. The thread designator @var{t} may be @samp{-1}, meaning all
23659the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23660
23661Reply:
23662@table @samp
23663@item OK
23664for success
b8ff78ce 23665@item E @var{NN}
ee2d5c50
AC
23666for an error
23667@end table
c906108c 23668
8e04817f
AC
23669@c FIXME: JTC:
23670@c 'H': How restrictive (or permissive) is the thread model. If a
23671@c thread is selected and stopped, are other threads allowed
23672@c to continue to execute? As I mentioned above, I think the
23673@c semantics of each command when a thread is selected must be
23674@c described. For example:
23675@c
23676@c 'g': If the stub supports threads and a specific thread is
23677@c selected, returns the register block from that thread;
23678@c otherwise returns current registers.
23679@c
23680@c 'G' If the stub supports threads and a specific thread is
23681@c selected, sets the registers of the register block of
23682@c that thread; otherwise sets current registers.
c906108c 23683
b8ff78ce 23684@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23685@anchor{cycle step packet}
b8ff78ce
JB
23686@cindex @samp{i} packet
23687Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23688present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23689step starting at that address.
c906108c 23690
b8ff78ce
JB
23691@item I
23692@cindex @samp{I} packet
23693Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23694step packet}.
ee2d5c50 23695
b8ff78ce
JB
23696@item k
23697@cindex @samp{k} packet
23698Kill request.
c906108c 23699
ac282366 23700FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23701thread context has been selected (i.e.@: does 'k' kill only that
23702thread?)}.
c906108c 23703
b8ff78ce
JB
23704@item m @var{addr},@var{length}
23705@cindex @samp{m} packet
8e04817f 23706Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23707Note that @var{addr} may not be aligned to any particular boundary.
23708
23709The stub need not use any particular size or alignment when gathering
23710data from memory for the response; even if @var{addr} is word-aligned
23711and @var{length} is a multiple of the word size, the stub is free to
23712use byte accesses, or not. For this reason, this packet may not be
23713suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23714@cindex alignment of remote memory accesses
23715@cindex size of remote memory accesses
23716@cindex memory, alignment and size of remote accesses
c906108c 23717
ee2d5c50
AC
23718Reply:
23719@table @samp
23720@item @var{XX@dots{}}
599b237a 23721Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23722number. The reply may contain fewer bytes than requested if the
23723server was able to read only part of the region of memory.
23724@item E @var{NN}
ee2d5c50
AC
23725@var{NN} is errno
23726@end table
23727
b8ff78ce
JB
23728@item M @var{addr},@var{length}:@var{XX@dots{}}
23729@cindex @samp{M} packet
8e04817f 23730Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23731@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23732hexadecimal number.
ee2d5c50
AC
23733
23734Reply:
23735@table @samp
23736@item OK
23737for success
b8ff78ce 23738@item E @var{NN}
8e04817f
AC
23739for an error (this includes the case where only part of the data was
23740written).
ee2d5c50 23741@end table
c906108c 23742
b8ff78ce
JB
23743@item p @var{n}
23744@cindex @samp{p} packet
23745Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23746@xref{read registers packet}, for a description of how the returned
23747register value is encoded.
ee2d5c50
AC
23748
23749Reply:
23750@table @samp
2e868123
AC
23751@item @var{XX@dots{}}
23752the register's value
b8ff78ce 23753@item E @var{NN}
2e868123
AC
23754for an error
23755@item
23756Indicating an unrecognized @var{query}.
ee2d5c50
AC
23757@end table
23758
b8ff78ce 23759@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23760@anchor{write register packet}
b8ff78ce
JB
23761@cindex @samp{P} packet
23762Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23763number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23764digits for each byte in the register (target byte order).
c906108c 23765
ee2d5c50
AC
23766Reply:
23767@table @samp
23768@item OK
23769for success
b8ff78ce 23770@item E @var{NN}
ee2d5c50
AC
23771for an error
23772@end table
23773
5f3bebba
JB
23774@item q @var{name} @var{params}@dots{}
23775@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23776@cindex @samp{q} packet
b8ff78ce 23777@cindex @samp{Q} packet
5f3bebba
JB
23778General query (@samp{q}) and set (@samp{Q}). These packets are
23779described fully in @ref{General Query Packets}.
c906108c 23780
b8ff78ce
JB
23781@item r
23782@cindex @samp{r} packet
8e04817f 23783Reset the entire system.
c906108c 23784
b8ff78ce 23785Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23786
b8ff78ce
JB
23787@item R @var{XX}
23788@cindex @samp{R} packet
8e04817f 23789Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 23790This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 23791
8e04817f 23792The @samp{R} packet has no reply.
ee2d5c50 23793
4f553f88 23794@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23795@cindex @samp{s} packet
23796Single step. @var{addr} is the address at which to resume. If
23797@var{addr} is omitted, resume at same address.
c906108c 23798
ee2d5c50
AC
23799Reply:
23800@xref{Stop Reply Packets}, for the reply specifications.
23801
4f553f88 23802@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23803@anchor{step with signal packet}
b8ff78ce
JB
23804@cindex @samp{S} packet
23805Step with signal. This is analogous to the @samp{C} packet, but
23806requests a single-step, rather than a normal resumption of execution.
c906108c 23807
ee2d5c50
AC
23808Reply:
23809@xref{Stop Reply Packets}, for the reply specifications.
23810
b8ff78ce
JB
23811@item t @var{addr}:@var{PP},@var{MM}
23812@cindex @samp{t} packet
8e04817f 23813Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23814@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23815@var{addr} must be at least 3 digits.
c906108c 23816
b8ff78ce
JB
23817@item T @var{XX}
23818@cindex @samp{T} packet
ee2d5c50 23819Find out if the thread XX is alive.
c906108c 23820
ee2d5c50
AC
23821Reply:
23822@table @samp
23823@item OK
23824thread is still alive
b8ff78ce 23825@item E @var{NN}
ee2d5c50
AC
23826thread is dead
23827@end table
23828
b8ff78ce
JB
23829@item v
23830Packets starting with @samp{v} are identified by a multi-letter name,
23831up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23832
2d717e4f
DJ
23833@item vAttach;@var{pid}
23834@cindex @samp{vAttach} packet
23835Attach to a new process with the specified process ID. @var{pid} is a
1fddbabb
PA
23836hexadecimal integer identifying the process. If the stub is currently
23837controlling a process, it is killed. The attached process is stopped.
2d717e4f
DJ
23838
23839This packet is only available in extended mode (@pxref{extended mode}).
23840
23841Reply:
23842@table @samp
23843@item E @var{nn}
23844for an error
23845@item @r{Any stop packet}
23846for success (@pxref{Stop Reply Packets})
23847@end table
23848
b8ff78ce
JB
23849@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23850@cindex @samp{vCont} packet
23851Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23852If an action is specified with no @var{tid}, then it is applied to any
23853threads that don't have a specific action specified; if no default action is
23854specified then other threads should remain stopped. Specifying multiple
23855default actions is an error; specifying no actions is also an error.
23856Thread IDs are specified in hexadecimal. Currently supported actions are:
23857
b8ff78ce 23858@table @samp
86d30acc
DJ
23859@item c
23860Continue.
b8ff78ce 23861@item C @var{sig}
86d30acc
DJ
23862Continue with signal @var{sig}. @var{sig} should be two hex digits.
23863@item s
23864Step.
b8ff78ce 23865@item S @var{sig}
86d30acc
DJ
23866Step with signal @var{sig}. @var{sig} should be two hex digits.
23867@end table
23868
23869The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23870not supported in @samp{vCont}.
86d30acc
DJ
23871
23872Reply:
23873@xref{Stop Reply Packets}, for the reply specifications.
23874
b8ff78ce
JB
23875@item vCont?
23876@cindex @samp{vCont?} packet
d3e8051b 23877Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23878
23879Reply:
23880@table @samp
b8ff78ce
JB
23881@item vCont@r{[};@var{action}@dots{}@r{]}
23882The @samp{vCont} packet is supported. Each @var{action} is a supported
23883command in the @samp{vCont} packet.
86d30acc 23884@item
b8ff78ce 23885The @samp{vCont} packet is not supported.
86d30acc 23886@end table
ee2d5c50 23887
a6b151f1
DJ
23888@item vFile:@var{operation}:@var{parameter}@dots{}
23889@cindex @samp{vFile} packet
23890Perform a file operation on the target system. For details,
23891see @ref{Host I/O Packets}.
23892
68437a39
DJ
23893@item vFlashErase:@var{addr},@var{length}
23894@cindex @samp{vFlashErase} packet
23895Direct the stub to erase @var{length} bytes of flash starting at
23896@var{addr}. The region may enclose any number of flash blocks, but
23897its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23898flash block size appearing in the memory map (@pxref{Memory Map
23899Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23900together, and sends a @samp{vFlashDone} request after each group; the
23901stub is allowed to delay erase operation until the @samp{vFlashDone}
23902packet is received.
23903
23904Reply:
23905@table @samp
23906@item OK
23907for success
23908@item E @var{NN}
23909for an error
23910@end table
23911
23912@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23913@cindex @samp{vFlashWrite} packet
23914Direct the stub to write data to flash address @var{addr}. The data
23915is passed in binary form using the same encoding as for the @samp{X}
23916packet (@pxref{Binary Data}). The memory ranges specified by
23917@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23918not overlap, and must appear in order of increasing addresses
23919(although @samp{vFlashErase} packets for higher addresses may already
23920have been received; the ordering is guaranteed only between
23921@samp{vFlashWrite} packets). If a packet writes to an address that was
23922neither erased by a preceding @samp{vFlashErase} packet nor by some other
23923target-specific method, the results are unpredictable.
23924
23925
23926Reply:
23927@table @samp
23928@item OK
23929for success
23930@item E.memtype
23931for vFlashWrite addressing non-flash memory
23932@item E @var{NN}
23933for an error
23934@end table
23935
23936@item vFlashDone
23937@cindex @samp{vFlashDone} packet
23938Indicate to the stub that flash programming operation is finished.
23939The stub is permitted to delay or batch the effects of a group of
23940@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23941@samp{vFlashDone} packet is received. The contents of the affected
23942regions of flash memory are unpredictable until the @samp{vFlashDone}
23943request is completed.
23944
2d717e4f
DJ
23945@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
23946@cindex @samp{vRun} packet
23947Run the program @var{filename}, passing it each @var{argument} on its
23948command line. The file and arguments are hex-encoded strings. If
23949@var{filename} is an empty string, the stub may use a default program
23950(e.g.@: the last program run). The program is created in the stopped
1fddbabb 23951state. If the stub is currently controlling a process, it is killed.
2d717e4f
DJ
23952
23953This packet is only available in extended mode (@pxref{extended mode}).
23954
23955Reply:
23956@table @samp
23957@item E @var{nn}
23958for an error
23959@item @r{Any stop packet}
23960for success (@pxref{Stop Reply Packets})
23961@end table
23962
b8ff78ce 23963@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23964@anchor{X packet}
b8ff78ce
JB
23965@cindex @samp{X} packet
23966Write data to memory, where the data is transmitted in binary.
23967@var{addr} is address, @var{length} is number of bytes,
0876f84a 23968@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23969
ee2d5c50
AC
23970Reply:
23971@table @samp
23972@item OK
23973for success
b8ff78ce 23974@item E @var{NN}
ee2d5c50
AC
23975for an error
23976@end table
23977
b8ff78ce
JB
23978@item z @var{type},@var{addr},@var{length}
23979@itemx Z @var{type},@var{addr},@var{length}
2f870471 23980@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
23981@cindex @samp{z} packet
23982@cindex @samp{Z} packets
23983Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
23984watchpoint starting at address @var{address} and covering the next
23985@var{length} bytes.
ee2d5c50 23986
2f870471
AC
23987Each breakpoint and watchpoint packet @var{type} is documented
23988separately.
23989
512217c7
AC
23990@emph{Implementation notes: A remote target shall return an empty string
23991for an unrecognized breakpoint or watchpoint packet @var{type}. A
23992remote target shall support either both or neither of a given
b8ff78ce 23993@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
23994avoid potential problems with duplicate packets, the operations should
23995be implemented in an idempotent way.}
23996
b8ff78ce
JB
23997@item z0,@var{addr},@var{length}
23998@itemx Z0,@var{addr},@var{length}
23999@cindex @samp{z0} packet
24000@cindex @samp{Z0} packet
24001Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
24002@var{addr} of size @var{length}.
2f870471
AC
24003
24004A memory breakpoint is implemented by replacing the instruction at
24005@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 24006@var{length} is used by targets that indicates the size of the
2f870471
AC
24007breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
24008@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 24009
2f870471
AC
24010@emph{Implementation note: It is possible for a target to copy or move
24011code that contains memory breakpoints (e.g., when implementing
24012overlays). The behavior of this packet, in the presence of such a
24013target, is not defined.}
c906108c 24014
ee2d5c50
AC
24015Reply:
24016@table @samp
2f870471
AC
24017@item OK
24018success
24019@item
24020not supported
b8ff78ce 24021@item E @var{NN}
ee2d5c50 24022for an error
2f870471
AC
24023@end table
24024
b8ff78ce
JB
24025@item z1,@var{addr},@var{length}
24026@itemx Z1,@var{addr},@var{length}
24027@cindex @samp{z1} packet
24028@cindex @samp{Z1} packet
24029Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
24030address @var{addr} of size @var{length}.
2f870471
AC
24031
24032A hardware breakpoint is implemented using a mechanism that is not
24033dependant on being able to modify the target's memory.
24034
24035@emph{Implementation note: A hardware breakpoint is not affected by code
24036movement.}
24037
24038Reply:
24039@table @samp
ee2d5c50 24040@item OK
2f870471
AC
24041success
24042@item
24043not supported
b8ff78ce 24044@item E @var{NN}
2f870471
AC
24045for an error
24046@end table
24047
b8ff78ce
JB
24048@item z2,@var{addr},@var{length}
24049@itemx Z2,@var{addr},@var{length}
24050@cindex @samp{z2} packet
24051@cindex @samp{Z2} packet
24052Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
24053
24054Reply:
24055@table @samp
24056@item OK
24057success
24058@item
24059not supported
b8ff78ce 24060@item E @var{NN}
2f870471
AC
24061for an error
24062@end table
24063
b8ff78ce
JB
24064@item z3,@var{addr},@var{length}
24065@itemx Z3,@var{addr},@var{length}
24066@cindex @samp{z3} packet
24067@cindex @samp{Z3} packet
24068Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
24069
24070Reply:
24071@table @samp
24072@item OK
24073success
24074@item
24075not supported
b8ff78ce 24076@item E @var{NN}
2f870471
AC
24077for an error
24078@end table
24079
b8ff78ce
JB
24080@item z4,@var{addr},@var{length}
24081@itemx Z4,@var{addr},@var{length}
24082@cindex @samp{z4} packet
24083@cindex @samp{Z4} packet
24084Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
24085
24086Reply:
24087@table @samp
24088@item OK
24089success
24090@item
24091not supported
b8ff78ce 24092@item E @var{NN}
2f870471 24093for an error
ee2d5c50
AC
24094@end table
24095
24096@end table
c906108c 24097
ee2d5c50
AC
24098@node Stop Reply Packets
24099@section Stop Reply Packets
24100@cindex stop reply packets
c906108c 24101
8e04817f
AC
24102The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
24103receive any of the below as a reply. In the case of the @samp{C},
24104@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 24105when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
24106number} is defined by the header @file{include/gdb/signals.h} in the
24107@value{GDBN} source code.
c906108c 24108
b8ff78ce
JB
24109As in the description of request packets, we include spaces in the
24110reply templates for clarity; these are not part of the reply packet's
24111syntax. No @value{GDBN} stop reply packet uses spaces to separate its
24112components.
c906108c 24113
b8ff78ce 24114@table @samp
ee2d5c50 24115
b8ff78ce 24116@item S @var{AA}
599b237a 24117The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24118number). This is equivalent to a @samp{T} response with no
24119@var{n}:@var{r} pairs.
c906108c 24120
b8ff78ce
JB
24121@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
24122@cindex @samp{T} packet reply
599b237a 24123The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24124number). This is equivalent to an @samp{S} response, except that the
24125@samp{@var{n}:@var{r}} pairs can carry values of important registers
24126and other information directly in the stop reply packet, reducing
24127round-trip latency. Single-step and breakpoint traps are reported
24128this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
24129
24130@itemize @bullet
b8ff78ce 24131@item
599b237a 24132If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24133corresponding @var{r} gives that register's value. @var{r} is a
24134series of bytes in target byte order, with each byte given by a
24135two-digit hex number.
cfa9d6d9 24136
b8ff78ce
JB
24137@item
24138If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24139hex.
cfa9d6d9 24140
b8ff78ce 24141@item
cfa9d6d9
DJ
24142If @var{n} is a recognized @dfn{stop reason}, it describes a more
24143specific event that stopped the target. The currently defined stop
24144reasons are listed below. @var{aa} should be @samp{05}, the trap
24145signal. At most one stop reason should be present.
24146
b8ff78ce
JB
24147@item
24148Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24149and go on to the next; this allows us to extend the protocol in the
24150future.
cfa9d6d9
DJ
24151@end itemize
24152
24153The currently defined stop reasons are:
24154
24155@table @samp
24156@item watch
24157@itemx rwatch
24158@itemx awatch
24159The packet indicates a watchpoint hit, and @var{r} is the data address, in
24160hex.
24161
24162@cindex shared library events, remote reply
24163@item library
24164The packet indicates that the loaded libraries have changed.
24165@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24166list of loaded libraries. @var{r} is ignored.
24167@end table
ee2d5c50 24168
b8ff78ce 24169@item W @var{AA}
8e04817f 24170The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24171applicable to certain targets.
24172
b8ff78ce 24173@item X @var{AA}
8e04817f 24174The process terminated with signal @var{AA}.
c906108c 24175
b8ff78ce
JB
24176@item O @var{XX}@dots{}
24177@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24178written as the program's console output. This can happen at any time
24179while the program is running and the debugger should continue to wait
24180for @samp{W}, @samp{T}, etc.
0ce1b118 24181
b8ff78ce 24182@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24183@var{call-id} is the identifier which says which host system call should
24184be called. This is just the name of the function. Translation into the
24185correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24186@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24187system calls.
24188
b8ff78ce
JB
24189@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24190this very system call.
0ce1b118 24191
b8ff78ce
JB
24192The target replies with this packet when it expects @value{GDBN} to
24193call a host system call on behalf of the target. @value{GDBN} replies
24194with an appropriate @samp{F} packet and keeps up waiting for the next
24195reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24196or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24197Protocol Extension}, for more details.
0ce1b118 24198
ee2d5c50
AC
24199@end table
24200
24201@node General Query Packets
24202@section General Query Packets
9c16f35a 24203@cindex remote query requests
c906108c 24204
5f3bebba
JB
24205Packets starting with @samp{q} are @dfn{general query packets};
24206packets starting with @samp{Q} are @dfn{general set packets}. General
24207query and set packets are a semi-unified form for retrieving and
24208sending information to and from the stub.
24209
24210The initial letter of a query or set packet is followed by a name
24211indicating what sort of thing the packet applies to. For example,
24212@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24213definitions with the stub. These packet names follow some
24214conventions:
24215
24216@itemize @bullet
24217@item
24218The name must not contain commas, colons or semicolons.
24219@item
24220Most @value{GDBN} query and set packets have a leading upper case
24221letter.
24222@item
24223The names of custom vendor packets should use a company prefix, in
24224lower case, followed by a period. For example, packets designed at
24225the Acme Corporation might begin with @samp{qacme.foo} (for querying
24226foos) or @samp{Qacme.bar} (for setting bars).
24227@end itemize
24228
aa56d27a
JB
24229The name of a query or set packet should be separated from any
24230parameters by a @samp{:}; the parameters themselves should be
24231separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24232full packet name, and check for a separator or the end of the packet,
24233in case two packet names share a common prefix. New packets should not begin
24234with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24235packets predate these conventions, and have arguments without any terminator
24236for the packet name; we suspect they are in widespread use in places that
24237are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24238existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24239packet.}.
c906108c 24240
b8ff78ce
JB
24241Like the descriptions of the other packets, each description here
24242has a template showing the packet's overall syntax, followed by an
24243explanation of the packet's meaning. We include spaces in some of the
24244templates for clarity; these are not part of the packet's syntax. No
24245@value{GDBN} packet uses spaces to separate its components.
24246
5f3bebba
JB
24247Here are the currently defined query and set packets:
24248
b8ff78ce 24249@table @samp
c906108c 24250
b8ff78ce 24251@item qC
9c16f35a 24252@cindex current thread, remote request
b8ff78ce 24253@cindex @samp{qC} packet
ee2d5c50
AC
24254Return the current thread id.
24255
24256Reply:
24257@table @samp
b8ff78ce 24258@item QC @var{pid}
599b237a 24259Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24260@item @r{(anything else)}
ee2d5c50
AC
24261Any other reply implies the old pid.
24262@end table
24263
b8ff78ce 24264@item qCRC:@var{addr},@var{length}
ff2587ec 24265@cindex CRC of memory block, remote request
b8ff78ce
JB
24266@cindex @samp{qCRC} packet
24267Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24268Reply:
24269@table @samp
b8ff78ce 24270@item E @var{NN}
ff2587ec 24271An error (such as memory fault)
b8ff78ce
JB
24272@item C @var{crc32}
24273The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24274@end table
24275
b8ff78ce
JB
24276@item qfThreadInfo
24277@itemx qsThreadInfo
9c16f35a 24278@cindex list active threads, remote request
b8ff78ce
JB
24279@cindex @samp{qfThreadInfo} packet
24280@cindex @samp{qsThreadInfo} packet
24281Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24282may be too many active threads to fit into one reply packet, this query
24283works iteratively: it may require more than one query/reply sequence to
24284obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24285be the @samp{qfThreadInfo} query; subsequent queries in the
24286sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24287
b8ff78ce 24288NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24289
24290Reply:
24291@table @samp
b8ff78ce 24292@item m @var{id}
ee2d5c50 24293A single thread id
b8ff78ce 24294@item m @var{id},@var{id}@dots{}
ee2d5c50 24295a comma-separated list of thread ids
b8ff78ce
JB
24296@item l
24297(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24298@end table
24299
24300In response to each query, the target will reply with a list of one or
e1aac25b
JB
24301more thread ids, in big-endian unsigned hex, separated by commas.
24302@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24303ids (using the @samp{qs} form of the query), until the target responds
24304with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24305
b8ff78ce 24306@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24307@cindex get thread-local storage address, remote request
b8ff78ce 24308@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24309Fetch the address associated with thread local storage specified
24310by @var{thread-id}, @var{offset}, and @var{lm}.
24311
24312@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24313thread for which to fetch the TLS address.
24314
24315@var{offset} is the (big endian, hex encoded) offset associated with the
24316thread local variable. (This offset is obtained from the debug
24317information associated with the variable.)
24318
db2e3e2e 24319@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24320the load module associated with the thread local storage. For example,
24321a @sc{gnu}/Linux system will pass the link map address of the shared
24322object associated with the thread local storage under consideration.
24323Other operating environments may choose to represent the load module
24324differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24325
24326Reply:
b8ff78ce
JB
24327@table @samp
24328@item @var{XX}@dots{}
ff2587ec
WZ
24329Hex encoded (big endian) bytes representing the address of the thread
24330local storage requested.
24331
b8ff78ce
JB
24332@item E @var{nn}
24333An error occurred. @var{nn} are hex digits.
ff2587ec 24334
b8ff78ce
JB
24335@item
24336An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24337@end table
24338
b8ff78ce 24339@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24340Obtain thread information from RTOS. Where: @var{startflag} (one hex
24341digit) is one to indicate the first query and zero to indicate a
24342subsequent query; @var{threadcount} (two hex digits) is the maximum
24343number of threads the response packet can contain; and @var{nextthread}
24344(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24345returned in the response as @var{argthread}.
ee2d5c50 24346
b8ff78ce 24347Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24348
24349Reply:
24350@table @samp
b8ff78ce 24351@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24352Where: @var{count} (two hex digits) is the number of threads being
24353returned; @var{done} (one hex digit) is zero to indicate more threads
24354and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24355digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24356is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24357digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24358@end table
c906108c 24359
b8ff78ce 24360@item qOffsets
9c16f35a 24361@cindex section offsets, remote request
b8ff78ce 24362@cindex @samp{qOffsets} packet
31d99776
DJ
24363Get section offsets that the target used when relocating the downloaded
24364image.
c906108c 24365
ee2d5c50
AC
24366Reply:
24367@table @samp
31d99776
DJ
24368@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24369Relocate the @code{Text} section by @var{xxx} from its original address.
24370Relocate the @code{Data} section by @var{yyy} from its original address.
24371If the object file format provides segment information (e.g.@: @sc{elf}
24372@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24373segments by the supplied offsets.
24374
24375@emph{Note: while a @code{Bss} offset may be included in the response,
24376@value{GDBN} ignores this and instead applies the @code{Data} offset
24377to the @code{Bss} section.}
24378
24379@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24380Relocate the first segment of the object file, which conventionally
24381contains program code, to a starting address of @var{xxx}. If
24382@samp{DataSeg} is specified, relocate the second segment, which
24383conventionally contains modifiable data, to a starting address of
24384@var{yyy}. @value{GDBN} will report an error if the object file
24385does not contain segment information, or does not contain at least
24386as many segments as mentioned in the reply. Extra segments are
24387kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24388@end table
24389
b8ff78ce 24390@item qP @var{mode} @var{threadid}
9c16f35a 24391@cindex thread information, remote request
b8ff78ce 24392@cindex @samp{qP} packet
8e04817f
AC
24393Returns information on @var{threadid}. Where: @var{mode} is a hex
24394encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24395
aa56d27a
JB
24396Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24397(see below).
24398
b8ff78ce 24399Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24400
89be2091
DJ
24401@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24402@cindex pass signals to inferior, remote request
24403@cindex @samp{QPassSignals} packet
23181151 24404@anchor{QPassSignals}
89be2091
DJ
24405Each listed @var{signal} should be passed directly to the inferior process.
24406Signals are numbered identically to continue packets and stop replies
24407(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24408strictly greater than the previous item. These signals do not need to stop
24409the inferior, or be reported to @value{GDBN}. All other signals should be
24410reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24411combine; any earlier @samp{QPassSignals} list is completely replaced by the
24412new list. This packet improves performance when using @samp{handle
24413@var{signal} nostop noprint pass}.
24414
24415Reply:
24416@table @samp
24417@item OK
24418The request succeeded.
24419
24420@item E @var{nn}
24421An error occurred. @var{nn} are hex digits.
24422
24423@item
24424An empty reply indicates that @samp{QPassSignals} is not supported by
24425the stub.
24426@end table
24427
24428Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24429command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24430This packet is not probed by default; the remote stub must request it,
24431by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24432
b8ff78ce 24433@item qRcmd,@var{command}
ff2587ec 24434@cindex execute remote command, remote request
b8ff78ce 24435@cindex @samp{qRcmd} packet
ff2587ec 24436@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24437execution. Invalid commands should be reported using the output
24438string. Before the final result packet, the target may also respond
24439with a number of intermediate @samp{O@var{output}} console output
24440packets. @emph{Implementors should note that providing access to a
24441stubs's interpreter may have security implications}.
fa93a9d8 24442
ff2587ec
WZ
24443Reply:
24444@table @samp
24445@item OK
24446A command response with no output.
24447@item @var{OUTPUT}
24448A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24449@item E @var{NN}
ff2587ec 24450Indicate a badly formed request.
b8ff78ce
JB
24451@item
24452An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24453@end table
fa93a9d8 24454
aa56d27a
JB
24455(Note that the @code{qRcmd} packet's name is separated from the
24456command by a @samp{,}, not a @samp{:}, contrary to the naming
24457conventions above. Please don't use this packet as a model for new
24458packets.)
24459
be2a5f71
DJ
24460@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24461@cindex supported packets, remote query
24462@cindex features of the remote protocol
24463@cindex @samp{qSupported} packet
0876f84a 24464@anchor{qSupported}
be2a5f71
DJ
24465Tell the remote stub about features supported by @value{GDBN}, and
24466query the stub for features it supports. This packet allows
24467@value{GDBN} and the remote stub to take advantage of each others'
24468features. @samp{qSupported} also consolidates multiple feature probes
24469at startup, to improve @value{GDBN} performance---a single larger
24470packet performs better than multiple smaller probe packets on
24471high-latency links. Some features may enable behavior which must not
24472be on by default, e.g.@: because it would confuse older clients or
24473stubs. Other features may describe packets which could be
24474automatically probed for, but are not. These features must be
24475reported before @value{GDBN} will use them. This ``default
24476unsupported'' behavior is not appropriate for all packets, but it
24477helps to keep the initial connection time under control with new
24478versions of @value{GDBN} which support increasing numbers of packets.
24479
24480Reply:
24481@table @samp
24482@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24483The stub supports or does not support each returned @var{stubfeature},
24484depending on the form of each @var{stubfeature} (see below for the
24485possible forms).
24486@item
24487An empty reply indicates that @samp{qSupported} is not recognized,
24488or that no features needed to be reported to @value{GDBN}.
24489@end table
24490
24491The allowed forms for each feature (either a @var{gdbfeature} in the
24492@samp{qSupported} packet, or a @var{stubfeature} in the response)
24493are:
24494
24495@table @samp
24496@item @var{name}=@var{value}
24497The remote protocol feature @var{name} is supported, and associated
24498with the specified @var{value}. The format of @var{value} depends
24499on the feature, but it must not include a semicolon.
24500@item @var{name}+
24501The remote protocol feature @var{name} is supported, and does not
24502need an associated value.
24503@item @var{name}-
24504The remote protocol feature @var{name} is not supported.
24505@item @var{name}?
24506The remote protocol feature @var{name} may be supported, and
24507@value{GDBN} should auto-detect support in some other way when it is
24508needed. This form will not be used for @var{gdbfeature} notifications,
24509but may be used for @var{stubfeature} responses.
24510@end table
24511
24512Whenever the stub receives a @samp{qSupported} request, the
24513supplied set of @value{GDBN} features should override any previous
24514request. This allows @value{GDBN} to put the stub in a known
24515state, even if the stub had previously been communicating with
24516a different version of @value{GDBN}.
24517
24518No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24519are defined yet. Stubs should ignore any unknown values for
24520@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24521packet supports receiving packets of unlimited length (earlier
24522versions of @value{GDBN} may reject overly long responses). Values
24523for @var{gdbfeature} may be defined in the future to let the stub take
24524advantage of new features in @value{GDBN}, e.g.@: incompatible
24525improvements in the remote protocol---support for unlimited length
24526responses would be a @var{gdbfeature} example, if it were not implied by
24527the @samp{qSupported} query. The stub's reply should be independent
24528of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24529describes all the features it supports, and then the stub replies with
24530all the features it supports.
24531
24532Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24533responses, as long as each response uses one of the standard forms.
24534
24535Some features are flags. A stub which supports a flag feature
24536should respond with a @samp{+} form response. Other features
24537require values, and the stub should respond with an @samp{=}
24538form response.
24539
24540Each feature has a default value, which @value{GDBN} will use if
24541@samp{qSupported} is not available or if the feature is not mentioned
24542in the @samp{qSupported} response. The default values are fixed; a
24543stub is free to omit any feature responses that match the defaults.
24544
24545Not all features can be probed, but for those which can, the probing
24546mechanism is useful: in some cases, a stub's internal
24547architecture may not allow the protocol layer to know some information
24548about the underlying target in advance. This is especially common in
24549stubs which may be configured for multiple targets.
24550
24551These are the currently defined stub features and their properties:
24552
cfa9d6d9 24553@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24554@c NOTE: The first row should be @headitem, but we do not yet require
24555@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24556@item Feature Name
be2a5f71
DJ
24557@tab Value Required
24558@tab Default
24559@tab Probe Allowed
24560
24561@item @samp{PacketSize}
24562@tab Yes
24563@tab @samp{-}
24564@tab No
24565
0876f84a
DJ
24566@item @samp{qXfer:auxv:read}
24567@tab No
24568@tab @samp{-}
24569@tab Yes
24570
23181151
DJ
24571@item @samp{qXfer:features:read}
24572@tab No
24573@tab @samp{-}
24574@tab Yes
24575
cfa9d6d9
DJ
24576@item @samp{qXfer:libraries:read}
24577@tab No
24578@tab @samp{-}
24579@tab Yes
24580
68437a39
DJ
24581@item @samp{qXfer:memory-map:read}
24582@tab No
24583@tab @samp{-}
24584@tab Yes
24585
0e7f50da
UW
24586@item @samp{qXfer:spu:read}
24587@tab No
24588@tab @samp{-}
24589@tab Yes
24590
24591@item @samp{qXfer:spu:write}
24592@tab No
24593@tab @samp{-}
24594@tab Yes
24595
89be2091
DJ
24596@item @samp{QPassSignals}
24597@tab No
24598@tab @samp{-}
24599@tab Yes
24600
be2a5f71
DJ
24601@end multitable
24602
24603These are the currently defined stub features, in more detail:
24604
24605@table @samp
24606@cindex packet size, remote protocol
24607@item PacketSize=@var{bytes}
24608The remote stub can accept packets up to at least @var{bytes} in
24609length. @value{GDBN} will send packets up to this size for bulk
24610transfers, and will never send larger packets. This is a limit on the
24611data characters in the packet, including the frame and checksum.
24612There is no trailing NUL byte in a remote protocol packet; if the stub
24613stores packets in a NUL-terminated format, it should allow an extra
24614byte in its buffer for the NUL. If this stub feature is not supported,
24615@value{GDBN} guesses based on the size of the @samp{g} packet response.
24616
0876f84a
DJ
24617@item qXfer:auxv:read
24618The remote stub understands the @samp{qXfer:auxv:read} packet
24619(@pxref{qXfer auxiliary vector read}).
24620
23181151
DJ
24621@item qXfer:features:read
24622The remote stub understands the @samp{qXfer:features:read} packet
24623(@pxref{qXfer target description read}).
24624
cfa9d6d9
DJ
24625@item qXfer:libraries:read
24626The remote stub understands the @samp{qXfer:libraries:read} packet
24627(@pxref{qXfer library list read}).
24628
23181151
DJ
24629@item qXfer:memory-map:read
24630The remote stub understands the @samp{qXfer:memory-map:read} packet
24631(@pxref{qXfer memory map read}).
24632
0e7f50da
UW
24633@item qXfer:spu:read
24634The remote stub understands the @samp{qXfer:spu:read} packet
24635(@pxref{qXfer spu read}).
24636
24637@item qXfer:spu:write
24638The remote stub understands the @samp{qXfer:spu:write} packet
24639(@pxref{qXfer spu write}).
24640
23181151
DJ
24641@item QPassSignals
24642The remote stub understands the @samp{QPassSignals} packet
24643(@pxref{QPassSignals}).
24644
be2a5f71
DJ
24645@end table
24646
b8ff78ce 24647@item qSymbol::
ff2587ec 24648@cindex symbol lookup, remote request
b8ff78ce 24649@cindex @samp{qSymbol} packet
ff2587ec
WZ
24650Notify the target that @value{GDBN} is prepared to serve symbol lookup
24651requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24652
24653Reply:
ff2587ec 24654@table @samp
b8ff78ce 24655@item OK
ff2587ec 24656The target does not need to look up any (more) symbols.
b8ff78ce 24657@item qSymbol:@var{sym_name}
ff2587ec
WZ
24658The target requests the value of symbol @var{sym_name} (hex encoded).
24659@value{GDBN} may provide the value by using the
b8ff78ce
JB
24660@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24661below.
ff2587ec 24662@end table
83761cbd 24663
b8ff78ce 24664@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24665Set the value of @var{sym_name} to @var{sym_value}.
24666
24667@var{sym_name} (hex encoded) is the name of a symbol whose value the
24668target has previously requested.
24669
24670@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24671@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24672will be empty.
24673
24674Reply:
24675@table @samp
b8ff78ce 24676@item OK
ff2587ec 24677The target does not need to look up any (more) symbols.
b8ff78ce 24678@item qSymbol:@var{sym_name}
ff2587ec
WZ
24679The target requests the value of a new symbol @var{sym_name} (hex
24680encoded). @value{GDBN} will continue to supply the values of symbols
24681(if available), until the target ceases to request them.
fa93a9d8 24682@end table
0abb7bc7 24683
9d29849a
JB
24684@item QTDP
24685@itemx QTFrame
24686@xref{Tracepoint Packets}.
24687
b8ff78ce 24688@item qThreadExtraInfo,@var{id}
ff2587ec 24689@cindex thread attributes info, remote request
b8ff78ce
JB
24690@cindex @samp{qThreadExtraInfo} packet
24691Obtain a printable string description of a thread's attributes from
24692the target OS. @var{id} is a thread-id in big-endian hex. This
24693string may contain anything that the target OS thinks is interesting
24694for @value{GDBN} to tell the user about the thread. The string is
24695displayed in @value{GDBN}'s @code{info threads} display. Some
24696examples of possible thread extra info strings are @samp{Runnable}, or
24697@samp{Blocked on Mutex}.
ff2587ec
WZ
24698
24699Reply:
24700@table @samp
b8ff78ce
JB
24701@item @var{XX}@dots{}
24702Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24703comprising the printable string containing the extra information about
24704the thread's attributes.
ff2587ec 24705@end table
814e32d7 24706
aa56d27a
JB
24707(Note that the @code{qThreadExtraInfo} packet's name is separated from
24708the command by a @samp{,}, not a @samp{:}, contrary to the naming
24709conventions above. Please don't use this packet as a model for new
24710packets.)
24711
9d29849a
JB
24712@item QTStart
24713@itemx QTStop
24714@itemx QTinit
24715@itemx QTro
24716@itemx qTStatus
24717@xref{Tracepoint Packets}.
24718
0876f84a
DJ
24719@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24720@cindex read special object, remote request
24721@cindex @samp{qXfer} packet
68437a39 24722@anchor{qXfer read}
0876f84a
DJ
24723Read uninterpreted bytes from the target's special data area
24724identified by the keyword @var{object}. Request @var{length} bytes
24725starting at @var{offset} bytes into the data. The content and
0e7f50da 24726encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24727additional details about what data to access.
24728
24729Here are the specific requests of this form defined so far. All
24730@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24731formats, listed below.
24732
24733@table @samp
24734@item qXfer:auxv:read::@var{offset},@var{length}
24735@anchor{qXfer auxiliary vector read}
24736Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24737auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24738
24739This packet is not probed by default; the remote stub must request it,
89be2091 24740by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24741
23181151
DJ
24742@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24743@anchor{qXfer target description read}
24744Access the @dfn{target description}. @xref{Target Descriptions}. The
24745annex specifies which XML document to access. The main description is
24746always loaded from the @samp{target.xml} annex.
24747
24748This packet is not probed by default; the remote stub must request it,
24749by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24750
cfa9d6d9
DJ
24751@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24752@anchor{qXfer library list read}
24753Access the target's list of loaded libraries. @xref{Library List Format}.
24754The annex part of the generic @samp{qXfer} packet must be empty
24755(@pxref{qXfer read}).
24756
24757Targets which maintain a list of libraries in the program's memory do
24758not need to implement this packet; it is designed for platforms where
24759the operating system manages the list of loaded libraries.
24760
24761This packet is not probed by default; the remote stub must request it,
24762by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24763
68437a39
DJ
24764@item qXfer:memory-map:read::@var{offset},@var{length}
24765@anchor{qXfer memory map read}
79a6e687 24766Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24767annex part of the generic @samp{qXfer} packet must be empty
24768(@pxref{qXfer read}).
24769
0e7f50da
UW
24770This packet is not probed by default; the remote stub must request it,
24771by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24772
24773@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24774@anchor{qXfer spu read}
24775Read contents of an @code{spufs} file on the target system. The
24776annex specifies which file to read; it must be of the form
24777@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24778in the target process, and @var{name} identifes the @code{spufs} file
24779in that context to be accessed.
24780
68437a39
DJ
24781This packet is not probed by default; the remote stub must request it,
24782by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24783@end table
24784
0876f84a
DJ
24785Reply:
24786@table @samp
24787@item m @var{data}
24788Data @var{data} (@pxref{Binary Data}) has been read from the
24789target. There may be more data at a higher address (although
24790it is permitted to return @samp{m} even for the last valid
24791block of data, as long as at least one byte of data was read).
24792@var{data} may have fewer bytes than the @var{length} in the
24793request.
24794
24795@item l @var{data}
24796Data @var{data} (@pxref{Binary Data}) has been read from the target.
24797There is no more data to be read. @var{data} may have fewer bytes
24798than the @var{length} in the request.
24799
24800@item l
24801The @var{offset} in the request is at the end of the data.
24802There is no more data to be read.
24803
24804@item E00
24805The request was malformed, or @var{annex} was invalid.
24806
24807@item E @var{nn}
24808The offset was invalid, or there was an error encountered reading the data.
24809@var{nn} is a hex-encoded @code{errno} value.
24810
24811@item
24812An empty reply indicates the @var{object} string was not recognized by
24813the stub, or that the object does not support reading.
24814@end table
24815
24816@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24817@cindex write data into object, remote request
24818Write uninterpreted bytes into the target's special data area
24819identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24820into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24821(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24822is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24823to access.
24824
0e7f50da
UW
24825Here are the specific requests of this form defined so far. All
24826@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24827formats, listed below.
24828
24829@table @samp
24830@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24831@anchor{qXfer spu write}
24832Write @var{data} to an @code{spufs} file on the target system. The
24833annex specifies which file to write; it must be of the form
24834@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24835in the target process, and @var{name} identifes the @code{spufs} file
24836in that context to be accessed.
24837
24838This packet is not probed by default; the remote stub must request it,
24839by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24840@end table
0876f84a
DJ
24841
24842Reply:
24843@table @samp
24844@item @var{nn}
24845@var{nn} (hex encoded) is the number of bytes written.
24846This may be fewer bytes than supplied in the request.
24847
24848@item E00
24849The request was malformed, or @var{annex} was invalid.
24850
24851@item E @var{nn}
24852The offset was invalid, or there was an error encountered writing the data.
24853@var{nn} is a hex-encoded @code{errno} value.
24854
24855@item
24856An empty reply indicates the @var{object} string was not
24857recognized by the stub, or that the object does not support writing.
24858@end table
24859
24860@item qXfer:@var{object}:@var{operation}:@dots{}
24861Requests of this form may be added in the future. When a stub does
24862not recognize the @var{object} keyword, or its support for
24863@var{object} does not recognize the @var{operation} keyword, the stub
24864must respond with an empty packet.
24865
ee2d5c50
AC
24866@end table
24867
24868@node Register Packet Format
24869@section Register Packet Format
eb12ee30 24870
b8ff78ce 24871The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24872In the below, some thirty-two bit registers are transferred as
24873sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24874to fill the space allocated. Register bytes are transferred in target
24875byte order. The two nibbles within a register byte are transferred
ee2d5c50 24876most-significant - least-significant.
eb12ee30 24877
ee2d5c50 24878@table @r
eb12ee30 24879
8e04817f 24880@item MIPS32
ee2d5c50 24881
599b237a 24882All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2488332 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24884registers; fsr; fir; fp.
eb12ee30 24885
8e04817f 24886@item MIPS64
ee2d5c50 24887
599b237a 24888All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24889thirty-two bit registers such as @code{sr}). The ordering is the same
24890as @code{MIPS32}.
eb12ee30 24891
ee2d5c50
AC
24892@end table
24893
9d29849a
JB
24894@node Tracepoint Packets
24895@section Tracepoint Packets
24896@cindex tracepoint packets
24897@cindex packets, tracepoint
24898
24899Here we describe the packets @value{GDBN} uses to implement
24900tracepoints (@pxref{Tracepoints}).
24901
24902@table @samp
24903
24904@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24905Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24906is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24907the tracepoint is disabled. @var{step} is the tracepoint's step
24908count, and @var{pass} is its pass count. If the trailing @samp{-} is
24909present, further @samp{QTDP} packets will follow to specify this
24910tracepoint's actions.
24911
24912Replies:
24913@table @samp
24914@item OK
24915The packet was understood and carried out.
24916@item
24917The packet was not recognized.
24918@end table
24919
24920@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24921Define actions to be taken when a tracepoint is hit. @var{n} and
24922@var{addr} must be the same as in the initial @samp{QTDP} packet for
24923this tracepoint. This packet may only be sent immediately after
24924another @samp{QTDP} packet that ended with a @samp{-}. If the
24925trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24926specifying more actions for this tracepoint.
24927
24928In the series of action packets for a given tracepoint, at most one
24929can have an @samp{S} before its first @var{action}. If such a packet
24930is sent, it and the following packets define ``while-stepping''
24931actions. Any prior packets define ordinary actions --- that is, those
24932taken when the tracepoint is first hit. If no action packet has an
24933@samp{S}, then all the packets in the series specify ordinary
24934tracepoint actions.
24935
24936The @samp{@var{action}@dots{}} portion of the packet is a series of
24937actions, concatenated without separators. Each action has one of the
24938following forms:
24939
24940@table @samp
24941
24942@item R @var{mask}
24943Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24944a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24945@var{i} should be collected. (The least significant bit is numbered
24946zero.) Note that @var{mask} may be any number of digits long; it may
24947not fit in a 32-bit word.
24948
24949@item M @var{basereg},@var{offset},@var{len}
24950Collect @var{len} bytes of memory starting at the address in register
24951number @var{basereg}, plus @var{offset}. If @var{basereg} is
24952@samp{-1}, then the range has a fixed address: @var{offset} is the
24953address of the lowest byte to collect. The @var{basereg},
599b237a 24954@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24955values (the @samp{-1} value for @var{basereg} is a special case).
24956
24957@item X @var{len},@var{expr}
24958Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24959it directs. @var{expr} is an agent expression, as described in
24960@ref{Agent Expressions}. Each byte of the expression is encoded as a
24961two-digit hex number in the packet; @var{len} is the number of bytes
24962in the expression (and thus one-half the number of hex digits in the
24963packet).
24964
24965@end table
24966
24967Any number of actions may be packed together in a single @samp{QTDP}
24968packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24969length (400 bytes, for many stubs). There may be only one @samp{R}
24970action per tracepoint, and it must precede any @samp{M} or @samp{X}
24971actions. Any registers referred to by @samp{M} and @samp{X} actions
24972must be collected by a preceding @samp{R} action. (The
24973``while-stepping'' actions are treated as if they were attached to a
24974separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
24975
24976Replies:
24977@table @samp
24978@item OK
24979The packet was understood and carried out.
24980@item
24981The packet was not recognized.
24982@end table
24983
24984@item QTFrame:@var{n}
24985Select the @var{n}'th tracepoint frame from the buffer, and use the
24986register and memory contents recorded there to answer subsequent
24987request packets from @value{GDBN}.
24988
24989A successful reply from the stub indicates that the stub has found the
24990requested frame. The response is a series of parts, concatenated
24991without separators, describing the frame we selected. Each part has
24992one of the following forms:
24993
24994@table @samp
24995@item F @var{f}
24996The selected frame is number @var{n} in the trace frame buffer;
599b237a 24997@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
24998was no frame matching the criteria in the request packet.
24999
25000@item T @var{t}
25001The selected trace frame records a hit of tracepoint number @var{t};
599b237a 25002@var{t} is a hexadecimal number.
9d29849a
JB
25003
25004@end table
25005
25006@item QTFrame:pc:@var{addr}
25007Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25008currently selected frame whose PC is @var{addr};
599b237a 25009@var{addr} is a hexadecimal number.
9d29849a
JB
25010
25011@item QTFrame:tdp:@var{t}
25012Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25013currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 25014is a hexadecimal number.
9d29849a
JB
25015
25016@item QTFrame:range:@var{start}:@var{end}
25017Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25018currently selected frame whose PC is between @var{start} (inclusive)
599b237a 25019and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
25020numbers.
25021
25022@item QTFrame:outside:@var{start}:@var{end}
25023Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
25024frame @emph{outside} the given range of addresses.
25025
25026@item QTStart
25027Begin the tracepoint experiment. Begin collecting data from tracepoint
25028hits in the trace frame buffer.
25029
25030@item QTStop
25031End the tracepoint experiment. Stop collecting trace frames.
25032
25033@item QTinit
25034Clear the table of tracepoints, and empty the trace frame buffer.
25035
25036@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
25037Establish the given ranges of memory as ``transparent''. The stub
25038will answer requests for these ranges from memory's current contents,
25039if they were not collected as part of the tracepoint hit.
25040
25041@value{GDBN} uses this to mark read-only regions of memory, like those
25042containing program code. Since these areas never change, they should
25043still have the same contents they did when the tracepoint was hit, so
25044there's no reason for the stub to refuse to provide their contents.
25045
25046@item qTStatus
25047Ask the stub if there is a trace experiment running right now.
25048
25049Replies:
25050@table @samp
25051@item T0
25052There is no trace experiment running.
25053@item T1
25054There is a trace experiment running.
25055@end table
25056
25057@end table
25058
25059
a6b151f1
DJ
25060@node Host I/O Packets
25061@section Host I/O Packets
25062@cindex Host I/O, remote protocol
25063@cindex file transfer, remote protocol
25064
25065The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
25066operations on the far side of a remote link. For example, Host I/O is
25067used to upload and download files to a remote target with its own
25068filesystem. Host I/O uses the same constant values and data structure
25069layout as the target-initiated File-I/O protocol. However, the
25070Host I/O packets are structured differently. The target-initiated
25071protocol relies on target memory to store parameters and buffers.
25072Host I/O requests are initiated by @value{GDBN}, and the
25073target's memory is not involved. @xref{File-I/O Remote Protocol
25074Extension}, for more details on the target-initiated protocol.
25075
25076The Host I/O request packets all encode a single operation along with
25077its arguments. They have this format:
25078
25079@table @samp
25080
25081@item vFile:@var{operation}: @var{parameter}@dots{}
25082@var{operation} is the name of the particular request; the target
25083should compare the entire packet name up to the second colon when checking
25084for a supported operation. The format of @var{parameter} depends on
25085the operation. Numbers are always passed in hexadecimal. Negative
25086numbers have an explicit minus sign (i.e.@: two's complement is not
25087used). Strings (e.g.@: filenames) are encoded as a series of
25088hexadecimal bytes. The last argument to a system call may be a
25089buffer of escaped binary data (@pxref{Binary Data}).
25090
25091@end table
25092
25093The valid responses to Host I/O packets are:
25094
25095@table @samp
25096
25097@item F @var{result} [, @var{errno}] [; @var{attachment}]
25098@var{result} is the integer value returned by this operation, usually
25099non-negative for success and -1 for errors. If an error has occured,
25100@var{errno} will be included in the result. @var{errno} will have a
25101value defined by the File-I/O protocol (@pxref{Errno Values}). For
25102operations which return data, @var{attachment} supplies the data as a
25103binary buffer. Binary buffers in response packets are escaped in the
25104normal way (@pxref{Binary Data}). See the individual packet
25105documentation for the interpretation of @var{result} and
25106@var{attachment}.
25107
25108@item
25109An empty response indicates that this operation is not recognized.
25110
25111@end table
25112
25113These are the supported Host I/O operations:
25114
25115@table @samp
25116@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
25117Open a file at @var{pathname} and return a file descriptor for it, or
25118return -1 if an error occurs. @var{pathname} is a string,
25119@var{flags} is an integer indicating a mask of open flags
25120(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
25121of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 25122@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
25123
25124@item vFile:close: @var{fd}
25125Close the open file corresponding to @var{fd} and return 0, or
25126-1 if an error occurs.
25127
25128@item vFile:pread: @var{fd}, @var{count}, @var{offset}
25129Read data from the open file corresponding to @var{fd}. Up to
25130@var{count} bytes will be read from the file, starting at @var{offset}
25131relative to the start of the file. The target may read fewer bytes;
25132common reasons include packet size limits and an end-of-file
25133condition. The number of bytes read is returned. Zero should only be
25134returned for a successful read at the end of the file, or if
25135@var{count} was zero.
25136
25137The data read should be returned as a binary attachment on success.
25138If zero bytes were read, the response should include an empty binary
25139attachment (i.e.@: a trailing semicolon). The return value is the
25140number of target bytes read; the binary attachment may be longer if
25141some characters were escaped.
25142
25143@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25144Write @var{data} (a binary buffer) to the open file corresponding
25145to @var{fd}. Start the write at @var{offset} from the start of the
25146file. Unlike many @code{write} system calls, there is no
25147separate @var{count} argument; the length of @var{data} in the
25148packet is used. @samp{vFile:write} returns the number of bytes written,
25149which may be shorter than the length of @var{data}, or -1 if an
25150error occurred.
25151
25152@item vFile:unlink: @var{pathname}
25153Delete the file at @var{pathname} on the target. Return 0,
25154or -1 if an error occurs. @var{pathname} is a string.
25155
25156@end table
25157
9a6253be
KB
25158@node Interrupts
25159@section Interrupts
25160@cindex interrupts (remote protocol)
25161
25162When a program on the remote target is running, @value{GDBN} may
25163attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25164control of which is specified via @value{GDBN}'s @samp{remotebreak}
25165setting (@pxref{set remotebreak}).
25166
25167The precise meaning of @code{BREAK} is defined by the transport
25168mechanism and may, in fact, be undefined. @value{GDBN} does
25169not currently define a @code{BREAK} mechanism for any of the network
25170interfaces.
25171
25172@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25173transport mechanisms. It is represented by sending the single byte
25174@code{0x03} without any of the usual packet overhead described in
25175the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25176transmitted as part of a packet, it is considered to be packet data
25177and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25178(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25179@code{0x03} as part of its packet.
25180
25181Stubs are not required to recognize these interrupt mechanisms and the
25182precise meaning associated with receipt of the interrupt is
25183implementation defined. If the stub is successful at interrupting the
25184running program, it is expected that it will send one of the Stop
25185Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25186of successfully stopping the program. Interrupts received while the
25187program is stopped will be discarded.
25188
ee2d5c50
AC
25189@node Examples
25190@section Examples
eb12ee30 25191
8e04817f
AC
25192Example sequence of a target being re-started. Notice how the restart
25193does not get any direct output:
eb12ee30 25194
474c8240 25195@smallexample
d2c6833e
AC
25196-> @code{R00}
25197<- @code{+}
8e04817f 25198@emph{target restarts}
d2c6833e 25199-> @code{?}
8e04817f 25200<- @code{+}
d2c6833e
AC
25201<- @code{T001:1234123412341234}
25202-> @code{+}
474c8240 25203@end smallexample
eb12ee30 25204
8e04817f 25205Example sequence of a target being stepped by a single instruction:
eb12ee30 25206
474c8240 25207@smallexample
d2c6833e 25208-> @code{G1445@dots{}}
8e04817f 25209<- @code{+}
d2c6833e
AC
25210-> @code{s}
25211<- @code{+}
25212@emph{time passes}
25213<- @code{T001:1234123412341234}
8e04817f 25214-> @code{+}
d2c6833e 25215-> @code{g}
8e04817f 25216<- @code{+}
d2c6833e
AC
25217<- @code{1455@dots{}}
25218-> @code{+}
474c8240 25219@end smallexample
eb12ee30 25220
79a6e687
BW
25221@node File-I/O Remote Protocol Extension
25222@section File-I/O Remote Protocol Extension
0ce1b118
CV
25223@cindex File-I/O remote protocol extension
25224
25225@menu
25226* File-I/O Overview::
79a6e687
BW
25227* Protocol Basics::
25228* The F Request Packet::
25229* The F Reply Packet::
25230* The Ctrl-C Message::
0ce1b118 25231* Console I/O::
79a6e687 25232* List of Supported Calls::
db2e3e2e 25233* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25234* Constants::
25235* File-I/O Examples::
25236@end menu
25237
25238@node File-I/O Overview
25239@subsection File-I/O Overview
25240@cindex file-i/o overview
25241
9c16f35a 25242The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25243target to use the host's file system and console I/O to perform various
0ce1b118 25244system calls. System calls on the target system are translated into a
fc320d37
SL
25245remote protocol packet to the host system, which then performs the needed
25246actions and returns a response packet to the target system.
0ce1b118
CV
25247This simulates file system operations even on targets that lack file systems.
25248
fc320d37
SL
25249The protocol is defined to be independent of both the host and target systems.
25250It uses its own internal representation of datatypes and values. Both
0ce1b118 25251@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25252translating the system-dependent value representations into the internal
25253protocol representations when data is transmitted.
0ce1b118 25254
fc320d37
SL
25255The communication is synchronous. A system call is possible only when
25256@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25257or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25258the target is stopped to allow deterministic access to the target's
fc320d37
SL
25259memory. Therefore File-I/O is not interruptible by target signals. On
25260the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25261(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25262
25263The target's request to perform a host system call does not finish
25264the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25265after finishing the system call, the target returns to continuing the
25266previous activity (continue, step). No additional continue or step
25267request from @value{GDBN} is required.
25268
25269@smallexample
f7dc1244 25270(@value{GDBP}) continue
0ce1b118
CV
25271 <- target requests 'system call X'
25272 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25273 -> @value{GDBN} returns result
25274 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25275 <- target hits breakpoint and sends a Txx packet
25276@end smallexample
25277
fc320d37
SL
25278The protocol only supports I/O on the console and to regular files on
25279the host file system. Character or block special devices, pipes,
25280named pipes, sockets or any other communication method on the host
0ce1b118
CV
25281system are not supported by this protocol.
25282
79a6e687
BW
25283@node Protocol Basics
25284@subsection Protocol Basics
0ce1b118
CV
25285@cindex protocol basics, file-i/o
25286
fc320d37
SL
25287The File-I/O protocol uses the @code{F} packet as the request as well
25288as reply packet. Since a File-I/O system call can only occur when
25289@value{GDBN} is waiting for a response from the continuing or stepping target,
25290the File-I/O request is a reply that @value{GDBN} has to expect as a result
25291of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25292This @code{F} packet contains all information needed to allow @value{GDBN}
25293to call the appropriate host system call:
25294
25295@itemize @bullet
b383017d 25296@item
0ce1b118
CV
25297A unique identifier for the requested system call.
25298
25299@item
25300All parameters to the system call. Pointers are given as addresses
25301in the target memory address space. Pointers to strings are given as
b383017d 25302pointer/length pair. Numerical values are given as they are.
db2e3e2e 25303Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25304
25305@end itemize
25306
fc320d37 25307At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25308
25309@itemize @bullet
b383017d 25310@item
fc320d37
SL
25311If the parameters include pointer values to data needed as input to a
25312system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25313standard @code{m} packet request. This additional communication has to be
25314expected by the target implementation and is handled as any other @code{m}
25315packet.
25316
25317@item
25318@value{GDBN} translates all value from protocol representation to host
25319representation as needed. Datatypes are coerced into the host types.
25320
25321@item
fc320d37 25322@value{GDBN} calls the system call.
0ce1b118
CV
25323
25324@item
25325It then coerces datatypes back to protocol representation.
25326
25327@item
fc320d37
SL
25328If the system call is expected to return data in buffer space specified
25329by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25330target using a @code{M} or @code{X} packet. This packet has to be expected
25331by the target implementation and is handled as any other @code{M} or @code{X}
25332packet.
25333
25334@end itemize
25335
25336Eventually @value{GDBN} replies with another @code{F} packet which contains all
25337necessary information for the target to continue. This at least contains
25338
25339@itemize @bullet
25340@item
25341Return value.
25342
25343@item
25344@code{errno}, if has been changed by the system call.
25345
25346@item
25347``Ctrl-C'' flag.
25348
25349@end itemize
25350
25351After having done the needed type and value coercion, the target continues
25352the latest continue or step action.
25353
79a6e687
BW
25354@node The F Request Packet
25355@subsection The @code{F} Request Packet
0ce1b118
CV
25356@cindex file-i/o request packet
25357@cindex @code{F} request packet
25358
25359The @code{F} request packet has the following format:
25360
25361@table @samp
fc320d37 25362@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25363
25364@var{call-id} is the identifier to indicate the host system call to be called.
25365This is just the name of the function.
25366
fc320d37
SL
25367@var{parameter@dots{}} are the parameters to the system call.
25368Parameters are hexadecimal integer values, either the actual values in case
25369of scalar datatypes, pointers to target buffer space in case of compound
25370datatypes and unspecified memory areas, or pointer/length pairs in case
25371of string parameters. These are appended to the @var{call-id} as a
25372comma-delimited list. All values are transmitted in ASCII
25373string representation, pointer/length pairs separated by a slash.
0ce1b118 25374
b383017d 25375@end table
0ce1b118 25376
fc320d37 25377
0ce1b118 25378
79a6e687
BW
25379@node The F Reply Packet
25380@subsection The @code{F} Reply Packet
0ce1b118
CV
25381@cindex file-i/o reply packet
25382@cindex @code{F} reply packet
25383
25384The @code{F} reply packet has the following format:
25385
25386@table @samp
25387
d3bdde98 25388@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25389
25390@var{retcode} is the return code of the system call as hexadecimal value.
25391
db2e3e2e
BW
25392@var{errno} is the @code{errno} set by the call, in protocol-specific
25393representation.
0ce1b118
CV
25394This parameter can be omitted if the call was successful.
25395
fc320d37
SL
25396@var{Ctrl-C flag} is only sent if the user requested a break. In this
25397case, @var{errno} must be sent as well, even if the call was successful.
25398The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25399
25400@smallexample
25401F0,0,C
25402@end smallexample
25403
25404@noindent
fc320d37 25405or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25406
25407@smallexample
25408F-1,4,C
25409@end smallexample
25410
25411@noindent
db2e3e2e 25412assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25413
25414@end table
25415
0ce1b118 25416
79a6e687
BW
25417@node The Ctrl-C Message
25418@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25419@cindex ctrl-c message, in file-i/o protocol
25420
c8aa23ab 25421If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25422reply packet (@pxref{The F Reply Packet}),
fc320d37 25423the target should behave as if it had
0ce1b118 25424gotten a break message. The meaning for the target is ``system call
fc320d37 25425interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25426(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25427packet.
fc320d37
SL
25428
25429It's important for the target to know in which
25430state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25431
25432@itemize @bullet
25433@item
25434The system call hasn't been performed on the host yet.
25435
25436@item
25437The system call on the host has been finished.
25438
25439@end itemize
25440
25441These two states can be distinguished by the target by the value of the
25442returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25443call hasn't been performed. This is equivalent to the @code{EINTR} handling
25444on POSIX systems. In any other case, the target may presume that the
fc320d37 25445system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25446as if the break message arrived right after the system call.
25447
fc320d37 25448@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25449yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25450@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25451before the user requests a break, the full action must be finished by
25452@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25453The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25454or the full action has been completed.
25455
25456@node Console I/O
25457@subsection Console I/O
25458@cindex console i/o as part of file-i/o
25459
d3e8051b 25460By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25461descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25462on the @value{GDBN} console is handled as any other file output operation
25463(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25464by @value{GDBN} so that after the target read request from file descriptor
254650 all following typing is buffered until either one of the following
25466conditions is met:
25467
25468@itemize @bullet
25469@item
c8aa23ab 25470The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25471@code{read}
25472system call is treated as finished.
25473
25474@item
7f9087cb 25475The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25476newline.
0ce1b118
CV
25477
25478@item
c8aa23ab
EZ
25479The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25480character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25481
25482@end itemize
25483
fc320d37
SL
25484If the user has typed more characters than fit in the buffer given to
25485the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25486either another @code{read(0, @dots{})} is requested by the target, or debugging
25487is stopped at the user's request.
0ce1b118 25488
0ce1b118 25489
79a6e687
BW
25490@node List of Supported Calls
25491@subsection List of Supported Calls
0ce1b118
CV
25492@cindex list of supported file-i/o calls
25493
25494@menu
25495* open::
25496* close::
25497* read::
25498* write::
25499* lseek::
25500* rename::
25501* unlink::
25502* stat/fstat::
25503* gettimeofday::
25504* isatty::
25505* system::
25506@end menu
25507
25508@node open
25509@unnumberedsubsubsec open
25510@cindex open, file-i/o system call
25511
fc320d37
SL
25512@table @asis
25513@item Synopsis:
0ce1b118 25514@smallexample
0ce1b118
CV
25515int open(const char *pathname, int flags);
25516int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25517@end smallexample
25518
fc320d37
SL
25519@item Request:
25520@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25521
0ce1b118 25522@noindent
fc320d37 25523@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25524
25525@table @code
b383017d 25526@item O_CREAT
0ce1b118
CV
25527If the file does not exist it will be created. The host
25528rules apply as far as file ownership and time stamps
25529are concerned.
25530
b383017d 25531@item O_EXCL
fc320d37 25532When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25533an error and open() fails.
25534
b383017d 25535@item O_TRUNC
0ce1b118 25536If the file already exists and the open mode allows
fc320d37
SL
25537writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25538truncated to zero length.
0ce1b118 25539
b383017d 25540@item O_APPEND
0ce1b118
CV
25541The file is opened in append mode.
25542
b383017d 25543@item O_RDONLY
0ce1b118
CV
25544The file is opened for reading only.
25545
b383017d 25546@item O_WRONLY
0ce1b118
CV
25547The file is opened for writing only.
25548
b383017d 25549@item O_RDWR
0ce1b118 25550The file is opened for reading and writing.
fc320d37 25551@end table
0ce1b118
CV
25552
25553@noindent
fc320d37 25554Other bits are silently ignored.
0ce1b118 25555
0ce1b118
CV
25556
25557@noindent
fc320d37 25558@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25559
25560@table @code
b383017d 25561@item S_IRUSR
0ce1b118
CV
25562User has read permission.
25563
b383017d 25564@item S_IWUSR
0ce1b118
CV
25565User has write permission.
25566
b383017d 25567@item S_IRGRP
0ce1b118
CV
25568Group has read permission.
25569
b383017d 25570@item S_IWGRP
0ce1b118
CV
25571Group has write permission.
25572
b383017d 25573@item S_IROTH
0ce1b118
CV
25574Others have read permission.
25575
b383017d 25576@item S_IWOTH
0ce1b118 25577Others have write permission.
fc320d37 25578@end table
0ce1b118
CV
25579
25580@noindent
fc320d37 25581Other bits are silently ignored.
0ce1b118 25582
0ce1b118 25583
fc320d37
SL
25584@item Return value:
25585@code{open} returns the new file descriptor or -1 if an error
25586occurred.
0ce1b118 25587
fc320d37 25588@item Errors:
0ce1b118
CV
25589
25590@table @code
b383017d 25591@item EEXIST
fc320d37 25592@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25593
b383017d 25594@item EISDIR
fc320d37 25595@var{pathname} refers to a directory.
0ce1b118 25596
b383017d 25597@item EACCES
0ce1b118
CV
25598The requested access is not allowed.
25599
25600@item ENAMETOOLONG
fc320d37 25601@var{pathname} was too long.
0ce1b118 25602
b383017d 25603@item ENOENT
fc320d37 25604A directory component in @var{pathname} does not exist.
0ce1b118 25605
b383017d 25606@item ENODEV
fc320d37 25607@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25608
b383017d 25609@item EROFS
fc320d37 25610@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25611write access was requested.
25612
b383017d 25613@item EFAULT
fc320d37 25614@var{pathname} is an invalid pointer value.
0ce1b118 25615
b383017d 25616@item ENOSPC
0ce1b118
CV
25617No space on device to create the file.
25618
b383017d 25619@item EMFILE
0ce1b118
CV
25620The process already has the maximum number of files open.
25621
b383017d 25622@item ENFILE
0ce1b118
CV
25623The limit on the total number of files open on the system
25624has been reached.
25625
b383017d 25626@item EINTR
0ce1b118
CV
25627The call was interrupted by the user.
25628@end table
25629
fc320d37
SL
25630@end table
25631
0ce1b118
CV
25632@node close
25633@unnumberedsubsubsec close
25634@cindex close, file-i/o system call
25635
fc320d37
SL
25636@table @asis
25637@item Synopsis:
0ce1b118 25638@smallexample
0ce1b118 25639int close(int fd);
fc320d37 25640@end smallexample
0ce1b118 25641
fc320d37
SL
25642@item Request:
25643@samp{Fclose,@var{fd}}
0ce1b118 25644
fc320d37
SL
25645@item Return value:
25646@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25647
fc320d37 25648@item Errors:
0ce1b118
CV
25649
25650@table @code
b383017d 25651@item EBADF
fc320d37 25652@var{fd} isn't a valid open file descriptor.
0ce1b118 25653
b383017d 25654@item EINTR
0ce1b118
CV
25655The call was interrupted by the user.
25656@end table
25657
fc320d37
SL
25658@end table
25659
0ce1b118
CV
25660@node read
25661@unnumberedsubsubsec read
25662@cindex read, file-i/o system call
25663
fc320d37
SL
25664@table @asis
25665@item Synopsis:
0ce1b118 25666@smallexample
0ce1b118 25667int read(int fd, void *buf, unsigned int count);
fc320d37 25668@end smallexample
0ce1b118 25669
fc320d37
SL
25670@item Request:
25671@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25672
fc320d37 25673@item Return value:
0ce1b118
CV
25674On success, the number of bytes read is returned.
25675Zero indicates end of file. If count is zero, read
b383017d 25676returns zero as well. On error, -1 is returned.
0ce1b118 25677
fc320d37 25678@item Errors:
0ce1b118
CV
25679
25680@table @code
b383017d 25681@item EBADF
fc320d37 25682@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25683reading.
25684
b383017d 25685@item EFAULT
fc320d37 25686@var{bufptr} is an invalid pointer value.
0ce1b118 25687
b383017d 25688@item EINTR
0ce1b118
CV
25689The call was interrupted by the user.
25690@end table
25691
fc320d37
SL
25692@end table
25693
0ce1b118
CV
25694@node write
25695@unnumberedsubsubsec write
25696@cindex write, file-i/o system call
25697
fc320d37
SL
25698@table @asis
25699@item Synopsis:
0ce1b118 25700@smallexample
0ce1b118 25701int write(int fd, const void *buf, unsigned int count);
fc320d37 25702@end smallexample
0ce1b118 25703
fc320d37
SL
25704@item Request:
25705@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25706
fc320d37 25707@item Return value:
0ce1b118
CV
25708On success, the number of bytes written are returned.
25709Zero indicates nothing was written. On error, -1
25710is returned.
25711
fc320d37 25712@item Errors:
0ce1b118
CV
25713
25714@table @code
b383017d 25715@item EBADF
fc320d37 25716@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25717writing.
25718
b383017d 25719@item EFAULT
fc320d37 25720@var{bufptr} is an invalid pointer value.
0ce1b118 25721
b383017d 25722@item EFBIG
0ce1b118 25723An attempt was made to write a file that exceeds the
db2e3e2e 25724host-specific maximum file size allowed.
0ce1b118 25725
b383017d 25726@item ENOSPC
0ce1b118
CV
25727No space on device to write the data.
25728
b383017d 25729@item EINTR
0ce1b118
CV
25730The call was interrupted by the user.
25731@end table
25732
fc320d37
SL
25733@end table
25734
0ce1b118
CV
25735@node lseek
25736@unnumberedsubsubsec lseek
25737@cindex lseek, file-i/o system call
25738
fc320d37
SL
25739@table @asis
25740@item Synopsis:
0ce1b118 25741@smallexample
0ce1b118 25742long lseek (int fd, long offset, int flag);
0ce1b118
CV
25743@end smallexample
25744
fc320d37
SL
25745@item Request:
25746@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25747
25748@var{flag} is one of:
0ce1b118
CV
25749
25750@table @code
b383017d 25751@item SEEK_SET
fc320d37 25752The offset is set to @var{offset} bytes.
0ce1b118 25753
b383017d 25754@item SEEK_CUR
fc320d37 25755The offset is set to its current location plus @var{offset}
0ce1b118
CV
25756bytes.
25757
b383017d 25758@item SEEK_END
fc320d37 25759The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25760bytes.
25761@end table
25762
fc320d37 25763@item Return value:
0ce1b118
CV
25764On success, the resulting unsigned offset in bytes from
25765the beginning of the file is returned. Otherwise, a
25766value of -1 is returned.
25767
fc320d37 25768@item Errors:
0ce1b118
CV
25769
25770@table @code
b383017d 25771@item EBADF
fc320d37 25772@var{fd} is not a valid open file descriptor.
0ce1b118 25773
b383017d 25774@item ESPIPE
fc320d37 25775@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25776
b383017d 25777@item EINVAL
fc320d37 25778@var{flag} is not a proper value.
0ce1b118 25779
b383017d 25780@item EINTR
0ce1b118
CV
25781The call was interrupted by the user.
25782@end table
25783
fc320d37
SL
25784@end table
25785
0ce1b118
CV
25786@node rename
25787@unnumberedsubsubsec rename
25788@cindex rename, file-i/o system call
25789
fc320d37
SL
25790@table @asis
25791@item Synopsis:
0ce1b118 25792@smallexample
0ce1b118 25793int rename(const char *oldpath, const char *newpath);
fc320d37 25794@end smallexample
0ce1b118 25795
fc320d37
SL
25796@item Request:
25797@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25798
fc320d37 25799@item Return value:
0ce1b118
CV
25800On success, zero is returned. On error, -1 is returned.
25801
fc320d37 25802@item Errors:
0ce1b118
CV
25803
25804@table @code
b383017d 25805@item EISDIR
fc320d37 25806@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25807directory.
25808
b383017d 25809@item EEXIST
fc320d37 25810@var{newpath} is a non-empty directory.
0ce1b118 25811
b383017d 25812@item EBUSY
fc320d37 25813@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25814process.
25815
b383017d 25816@item EINVAL
0ce1b118
CV
25817An attempt was made to make a directory a subdirectory
25818of itself.
25819
b383017d 25820@item ENOTDIR
fc320d37
SL
25821A component used as a directory in @var{oldpath} or new
25822path is not a directory. Or @var{oldpath} is a directory
25823and @var{newpath} exists but is not a directory.
0ce1b118 25824
b383017d 25825@item EFAULT
fc320d37 25826@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25827
b383017d 25828@item EACCES
0ce1b118
CV
25829No access to the file or the path of the file.
25830
25831@item ENAMETOOLONG
b383017d 25832
fc320d37 25833@var{oldpath} or @var{newpath} was too long.
0ce1b118 25834
b383017d 25835@item ENOENT
fc320d37 25836A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25837
b383017d 25838@item EROFS
0ce1b118
CV
25839The file is on a read-only filesystem.
25840
b383017d 25841@item ENOSPC
0ce1b118
CV
25842The device containing the file has no room for the new
25843directory entry.
25844
b383017d 25845@item EINTR
0ce1b118
CV
25846The call was interrupted by the user.
25847@end table
25848
fc320d37
SL
25849@end table
25850
0ce1b118
CV
25851@node unlink
25852@unnumberedsubsubsec unlink
25853@cindex unlink, file-i/o system call
25854
fc320d37
SL
25855@table @asis
25856@item Synopsis:
0ce1b118 25857@smallexample
0ce1b118 25858int unlink(const char *pathname);
fc320d37 25859@end smallexample
0ce1b118 25860
fc320d37
SL
25861@item Request:
25862@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25863
fc320d37 25864@item Return value:
0ce1b118
CV
25865On success, zero is returned. On error, -1 is returned.
25866
fc320d37 25867@item Errors:
0ce1b118
CV
25868
25869@table @code
b383017d 25870@item EACCES
0ce1b118
CV
25871No access to the file or the path of the file.
25872
b383017d 25873@item EPERM
0ce1b118
CV
25874The system does not allow unlinking of directories.
25875
b383017d 25876@item EBUSY
fc320d37 25877The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25878being used by another process.
25879
b383017d 25880@item EFAULT
fc320d37 25881@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25882
25883@item ENAMETOOLONG
fc320d37 25884@var{pathname} was too long.
0ce1b118 25885
b383017d 25886@item ENOENT
fc320d37 25887A directory component in @var{pathname} does not exist.
0ce1b118 25888
b383017d 25889@item ENOTDIR
0ce1b118
CV
25890A component of the path is not a directory.
25891
b383017d 25892@item EROFS
0ce1b118
CV
25893The file is on a read-only filesystem.
25894
b383017d 25895@item EINTR
0ce1b118
CV
25896The call was interrupted by the user.
25897@end table
25898
fc320d37
SL
25899@end table
25900
0ce1b118
CV
25901@node stat/fstat
25902@unnumberedsubsubsec stat/fstat
25903@cindex fstat, file-i/o system call
25904@cindex stat, file-i/o system call
25905
fc320d37
SL
25906@table @asis
25907@item Synopsis:
0ce1b118 25908@smallexample
0ce1b118
CV
25909int stat(const char *pathname, struct stat *buf);
25910int fstat(int fd, struct stat *buf);
fc320d37 25911@end smallexample
0ce1b118 25912
fc320d37
SL
25913@item Request:
25914@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25915@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25916
fc320d37 25917@item Return value:
0ce1b118
CV
25918On success, zero is returned. On error, -1 is returned.
25919
fc320d37 25920@item Errors:
0ce1b118
CV
25921
25922@table @code
b383017d 25923@item EBADF
fc320d37 25924@var{fd} is not a valid open file.
0ce1b118 25925
b383017d 25926@item ENOENT
fc320d37 25927A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25928path is an empty string.
25929
b383017d 25930@item ENOTDIR
0ce1b118
CV
25931A component of the path is not a directory.
25932
b383017d 25933@item EFAULT
fc320d37 25934@var{pathnameptr} is an invalid pointer value.
0ce1b118 25935
b383017d 25936@item EACCES
0ce1b118
CV
25937No access to the file or the path of the file.
25938
25939@item ENAMETOOLONG
fc320d37 25940@var{pathname} was too long.
0ce1b118 25941
b383017d 25942@item EINTR
0ce1b118
CV
25943The call was interrupted by the user.
25944@end table
25945
fc320d37
SL
25946@end table
25947
0ce1b118
CV
25948@node gettimeofday
25949@unnumberedsubsubsec gettimeofday
25950@cindex gettimeofday, file-i/o system call
25951
fc320d37
SL
25952@table @asis
25953@item Synopsis:
0ce1b118 25954@smallexample
0ce1b118 25955int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25956@end smallexample
0ce1b118 25957
fc320d37
SL
25958@item Request:
25959@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25960
fc320d37 25961@item Return value:
0ce1b118
CV
25962On success, 0 is returned, -1 otherwise.
25963
fc320d37 25964@item Errors:
0ce1b118
CV
25965
25966@table @code
b383017d 25967@item EINVAL
fc320d37 25968@var{tz} is a non-NULL pointer.
0ce1b118 25969
b383017d 25970@item EFAULT
fc320d37
SL
25971@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25972@end table
25973
0ce1b118
CV
25974@end table
25975
25976@node isatty
25977@unnumberedsubsubsec isatty
25978@cindex isatty, file-i/o system call
25979
fc320d37
SL
25980@table @asis
25981@item Synopsis:
0ce1b118 25982@smallexample
0ce1b118 25983int isatty(int fd);
fc320d37 25984@end smallexample
0ce1b118 25985
fc320d37
SL
25986@item Request:
25987@samp{Fisatty,@var{fd}}
0ce1b118 25988
fc320d37
SL
25989@item Return value:
25990Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 25991
fc320d37 25992@item Errors:
0ce1b118
CV
25993
25994@table @code
b383017d 25995@item EINTR
0ce1b118
CV
25996The call was interrupted by the user.
25997@end table
25998
fc320d37
SL
25999@end table
26000
26001Note that the @code{isatty} call is treated as a special case: it returns
260021 to the target if the file descriptor is attached
26003to the @value{GDBN} console, 0 otherwise. Implementing through system calls
26004would require implementing @code{ioctl} and would be more complex than
26005needed.
26006
26007
0ce1b118
CV
26008@node system
26009@unnumberedsubsubsec system
26010@cindex system, file-i/o system call
26011
fc320d37
SL
26012@table @asis
26013@item Synopsis:
0ce1b118 26014@smallexample
0ce1b118 26015int system(const char *command);
fc320d37 26016@end smallexample
0ce1b118 26017
fc320d37
SL
26018@item Request:
26019@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 26020
fc320d37 26021@item Return value:
5600ea19
NS
26022If @var{len} is zero, the return value indicates whether a shell is
26023available. A zero return value indicates a shell is not available.
26024For non-zero @var{len}, the value returned is -1 on error and the
26025return status of the command otherwise. Only the exit status of the
26026command is returned, which is extracted from the host's @code{system}
26027return value by calling @code{WEXITSTATUS(retval)}. In case
26028@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 26029
fc320d37 26030@item Errors:
0ce1b118
CV
26031
26032@table @code
b383017d 26033@item EINTR
0ce1b118
CV
26034The call was interrupted by the user.
26035@end table
26036
fc320d37
SL
26037@end table
26038
26039@value{GDBN} takes over the full task of calling the necessary host calls
26040to perform the @code{system} call. The return value of @code{system} on
26041the host is simplified before it's returned
26042to the target. Any termination signal information from the child process
26043is discarded, and the return value consists
26044entirely of the exit status of the called command.
26045
26046Due to security concerns, the @code{system} call is by default refused
26047by @value{GDBN}. The user has to allow this call explicitly with the
26048@code{set remote system-call-allowed 1} command.
26049
26050@table @code
26051@item set remote system-call-allowed
26052@kindex set remote system-call-allowed
26053Control whether to allow the @code{system} calls in the File I/O
26054protocol for the remote target. The default is zero (disabled).
26055
26056@item show remote system-call-allowed
26057@kindex show remote system-call-allowed
26058Show whether the @code{system} calls are allowed in the File I/O
26059protocol.
26060@end table
26061
db2e3e2e
BW
26062@node Protocol-specific Representation of Datatypes
26063@subsection Protocol-specific Representation of Datatypes
26064@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
26065
26066@menu
79a6e687
BW
26067* Integral Datatypes::
26068* Pointer Values::
26069* Memory Transfer::
0ce1b118
CV
26070* struct stat::
26071* struct timeval::
26072@end menu
26073
79a6e687
BW
26074@node Integral Datatypes
26075@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
26076@cindex integral datatypes, in file-i/o protocol
26077
fc320d37
SL
26078The integral datatypes used in the system calls are @code{int},
26079@code{unsigned int}, @code{long}, @code{unsigned long},
26080@code{mode_t}, and @code{time_t}.
0ce1b118 26081
fc320d37 26082@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
26083implemented as 32 bit values in this protocol.
26084
fc320d37 26085@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 26086
0ce1b118
CV
26087@xref{Limits}, for corresponding MIN and MAX values (similar to those
26088in @file{limits.h}) to allow range checking on host and target.
26089
26090@code{time_t} datatypes are defined as seconds since the Epoch.
26091
26092All integral datatypes transferred as part of a memory read or write of a
26093structured datatype e.g.@: a @code{struct stat} have to be given in big endian
26094byte order.
26095
79a6e687
BW
26096@node Pointer Values
26097@unnumberedsubsubsec Pointer Values
0ce1b118
CV
26098@cindex pointer values, in file-i/o protocol
26099
26100Pointers to target data are transmitted as they are. An exception
26101is made for pointers to buffers for which the length isn't
26102transmitted as part of the function call, namely strings. Strings
26103are transmitted as a pointer/length pair, both as hex values, e.g.@:
26104
26105@smallexample
26106@code{1aaf/12}
26107@end smallexample
26108
26109@noindent
26110which is a pointer to data of length 18 bytes at position 0x1aaf.
26111The length is defined as the full string length in bytes, including
fc320d37
SL
26112the trailing null byte. For example, the string @code{"hello world"}
26113at address 0x123456 is transmitted as
0ce1b118
CV
26114
26115@smallexample
fc320d37 26116@code{123456/d}
0ce1b118
CV
26117@end smallexample
26118
79a6e687
BW
26119@node Memory Transfer
26120@unnumberedsubsubsec Memory Transfer
fc320d37
SL
26121@cindex memory transfer, in file-i/o protocol
26122
26123Structured data which is transferred using a memory read or write (for
db2e3e2e 26124example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
26125with all scalar multibyte datatypes being big endian. Translation to
26126this representation needs to be done both by the target before the @code{F}
26127packet is sent, and by @value{GDBN} before
26128it transfers memory to the target. Transferred pointers to structured
26129data should point to the already-coerced data at any time.
0ce1b118 26130
0ce1b118
CV
26131
26132@node struct stat
26133@unnumberedsubsubsec struct stat
26134@cindex struct stat, in file-i/o protocol
26135
fc320d37
SL
26136The buffer of type @code{struct stat} used by the target and @value{GDBN}
26137is defined as follows:
0ce1b118
CV
26138
26139@smallexample
26140struct stat @{
26141 unsigned int st_dev; /* device */
26142 unsigned int st_ino; /* inode */
26143 mode_t st_mode; /* protection */
26144 unsigned int st_nlink; /* number of hard links */
26145 unsigned int st_uid; /* user ID of owner */
26146 unsigned int st_gid; /* group ID of owner */
26147 unsigned int st_rdev; /* device type (if inode device) */
26148 unsigned long st_size; /* total size, in bytes */
26149 unsigned long st_blksize; /* blocksize for filesystem I/O */
26150 unsigned long st_blocks; /* number of blocks allocated */
26151 time_t st_atime; /* time of last access */
26152 time_t st_mtime; /* time of last modification */
26153 time_t st_ctime; /* time of last change */
26154@};
26155@end smallexample
26156
fc320d37 26157The integral datatypes conform to the definitions given in the
79a6e687 26158appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26159structure is of size 64 bytes.
26160
26161The values of several fields have a restricted meaning and/or
26162range of values.
26163
fc320d37 26164@table @code
0ce1b118 26165
fc320d37
SL
26166@item st_dev
26167A value of 0 represents a file, 1 the console.
0ce1b118 26168
fc320d37
SL
26169@item st_ino
26170No valid meaning for the target. Transmitted unchanged.
0ce1b118 26171
fc320d37
SL
26172@item st_mode
26173Valid mode bits are described in @ref{Constants}. Any other
26174bits have currently no meaning for the target.
0ce1b118 26175
fc320d37
SL
26176@item st_uid
26177@itemx st_gid
26178@itemx st_rdev
26179No valid meaning for the target. Transmitted unchanged.
0ce1b118 26180
fc320d37
SL
26181@item st_atime
26182@itemx st_mtime
26183@itemx st_ctime
26184These values have a host and file system dependent
26185accuracy. Especially on Windows hosts, the file system may not
26186support exact timing values.
26187@end table
0ce1b118 26188
fc320d37
SL
26189The target gets a @code{struct stat} of the above representation and is
26190responsible for coercing it to the target representation before
0ce1b118
CV
26191continuing.
26192
fc320d37
SL
26193Note that due to size differences between the host, target, and protocol
26194representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26195get truncated on the target.
26196
26197@node struct timeval
26198@unnumberedsubsubsec struct timeval
26199@cindex struct timeval, in file-i/o protocol
26200
fc320d37 26201The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26202is defined as follows:
26203
26204@smallexample
b383017d 26205struct timeval @{
0ce1b118
CV
26206 time_t tv_sec; /* second */
26207 long tv_usec; /* microsecond */
26208@};
26209@end smallexample
26210
fc320d37 26211The integral datatypes conform to the definitions given in the
79a6e687 26212appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26213structure is of size 8 bytes.
26214
26215@node Constants
26216@subsection Constants
26217@cindex constants, in file-i/o protocol
26218
26219The following values are used for the constants inside of the
fc320d37 26220protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26221values before and after the call as needed.
26222
26223@menu
79a6e687
BW
26224* Open Flags::
26225* mode_t Values::
26226* Errno Values::
26227* Lseek Flags::
0ce1b118
CV
26228* Limits::
26229@end menu
26230
79a6e687
BW
26231@node Open Flags
26232@unnumberedsubsubsec Open Flags
0ce1b118
CV
26233@cindex open flags, in file-i/o protocol
26234
26235All values are given in hexadecimal representation.
26236
26237@smallexample
26238 O_RDONLY 0x0
26239 O_WRONLY 0x1
26240 O_RDWR 0x2
26241 O_APPEND 0x8
26242 O_CREAT 0x200
26243 O_TRUNC 0x400
26244 O_EXCL 0x800
26245@end smallexample
26246
79a6e687
BW
26247@node mode_t Values
26248@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26249@cindex mode_t values, in file-i/o protocol
26250
26251All values are given in octal representation.
26252
26253@smallexample
26254 S_IFREG 0100000
26255 S_IFDIR 040000
26256 S_IRUSR 0400
26257 S_IWUSR 0200
26258 S_IXUSR 0100
26259 S_IRGRP 040
26260 S_IWGRP 020
26261 S_IXGRP 010
26262 S_IROTH 04
26263 S_IWOTH 02
26264 S_IXOTH 01
26265@end smallexample
26266
79a6e687
BW
26267@node Errno Values
26268@unnumberedsubsubsec Errno Values
0ce1b118
CV
26269@cindex errno values, in file-i/o protocol
26270
26271All values are given in decimal representation.
26272
26273@smallexample
26274 EPERM 1
26275 ENOENT 2
26276 EINTR 4
26277 EBADF 9
26278 EACCES 13
26279 EFAULT 14
26280 EBUSY 16
26281 EEXIST 17
26282 ENODEV 19
26283 ENOTDIR 20
26284 EISDIR 21
26285 EINVAL 22
26286 ENFILE 23
26287 EMFILE 24
26288 EFBIG 27
26289 ENOSPC 28
26290 ESPIPE 29
26291 EROFS 30
26292 ENAMETOOLONG 91
26293 EUNKNOWN 9999
26294@end smallexample
26295
fc320d37 26296 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26297 any error value not in the list of supported error numbers.
26298
79a6e687
BW
26299@node Lseek Flags
26300@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26301@cindex lseek flags, in file-i/o protocol
26302
26303@smallexample
26304 SEEK_SET 0
26305 SEEK_CUR 1
26306 SEEK_END 2
26307@end smallexample
26308
26309@node Limits
26310@unnumberedsubsubsec Limits
26311@cindex limits, in file-i/o protocol
26312
26313All values are given in decimal representation.
26314
26315@smallexample
26316 INT_MIN -2147483648
26317 INT_MAX 2147483647
26318 UINT_MAX 4294967295
26319 LONG_MIN -9223372036854775808
26320 LONG_MAX 9223372036854775807
26321 ULONG_MAX 18446744073709551615
26322@end smallexample
26323
26324@node File-I/O Examples
26325@subsection File-I/O Examples
26326@cindex file-i/o examples
26327
26328Example sequence of a write call, file descriptor 3, buffer is at target
26329address 0x1234, 6 bytes should be written:
26330
26331@smallexample
26332<- @code{Fwrite,3,1234,6}
26333@emph{request memory read from target}
26334-> @code{m1234,6}
26335<- XXXXXX
26336@emph{return "6 bytes written"}
26337-> @code{F6}
26338@end smallexample
26339
26340Example sequence of a read call, file descriptor 3, buffer is at target
26341address 0x1234, 6 bytes should be read:
26342
26343@smallexample
26344<- @code{Fread,3,1234,6}
26345@emph{request memory write to target}
26346-> @code{X1234,6:XXXXXX}
26347@emph{return "6 bytes read"}
26348-> @code{F6}
26349@end smallexample
26350
26351Example sequence of a read call, call fails on the host due to invalid
fc320d37 26352file descriptor (@code{EBADF}):
0ce1b118
CV
26353
26354@smallexample
26355<- @code{Fread,3,1234,6}
26356-> @code{F-1,9}
26357@end smallexample
26358
c8aa23ab 26359Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26360host is called:
26361
26362@smallexample
26363<- @code{Fread,3,1234,6}
26364-> @code{F-1,4,C}
26365<- @code{T02}
26366@end smallexample
26367
c8aa23ab 26368Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26369host is called:
26370
26371@smallexample
26372<- @code{Fread,3,1234,6}
26373-> @code{X1234,6:XXXXXX}
26374<- @code{T02}
26375@end smallexample
26376
cfa9d6d9
DJ
26377@node Library List Format
26378@section Library List Format
26379@cindex library list format, remote protocol
26380
26381On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26382same process as your application to manage libraries. In this case,
26383@value{GDBN} can use the loader's symbol table and normal memory
26384operations to maintain a list of shared libraries. On other
26385platforms, the operating system manages loaded libraries.
26386@value{GDBN} can not retrieve the list of currently loaded libraries
26387through memory operations, so it uses the @samp{qXfer:libraries:read}
26388packet (@pxref{qXfer library list read}) instead. The remote stub
26389queries the target's operating system and reports which libraries
26390are loaded.
26391
26392The @samp{qXfer:libraries:read} packet returns an XML document which
26393lists loaded libraries and their offsets. Each library has an
1fddbabb
PA
26394associated name and one or more segment or section base addresses,
26395which report where the library was loaded in memory.
26396
26397For the common case of libraries that are fully linked binaries, the
26398library should have a list of segments. If the target supports
26399dynamic linking of a relocatable object file, its library XML element
26400should instead include a list of allocated sections. The segment or
26401section bases are start addresses, not relocation offsets; they do not
26402depend on the library's link-time base addresses.
cfa9d6d9 26403
9cceb671
DJ
26404@value{GDBN} must be linked with the Expat library to support XML
26405library lists. @xref{Expat}.
26406
cfa9d6d9
DJ
26407A simple memory map, with one loaded library relocated by a single
26408offset, looks like this:
26409
26410@smallexample
26411<library-list>
26412 <library name="/lib/libc.so.6">
26413 <segment address="0x10000000"/>
26414 </library>
26415</library-list>
26416@end smallexample
26417
1fddbabb
PA
26418Another simple memory map, with one loaded library with three
26419allocated sections (.text, .data, .bss), looks like this:
26420
26421@smallexample
26422<library-list>
26423 <library name="sharedlib.o">
26424 <section address="0x10000000"/>
26425 <section address="0x20000000"/>
26426 <section address="0x30000000"/>
26427 </library>
26428</library-list>
26429@end smallexample
26430
cfa9d6d9
DJ
26431The format of a library list is described by this DTD:
26432
26433@smallexample
26434<!-- library-list: Root element with versioning -->
26435<!ELEMENT library-list (library)*>
26436<!ATTLIST library-list version CDATA #FIXED "1.0">
1fddbabb 26437<!ELEMENT library (segment*, section*)>
cfa9d6d9
DJ
26438<!ATTLIST library name CDATA #REQUIRED>
26439<!ELEMENT segment EMPTY>
26440<!ATTLIST segment address CDATA #REQUIRED>
1fddbabb
PA
26441<!ELEMENT section EMPTY>
26442<!ATTLIST section address CDATA #REQUIRED>
cfa9d6d9
DJ
26443@end smallexample
26444
1fddbabb
PA
26445In addition, segments and section descriptors cannot be mixed within a
26446single library element, and you must supply at least one segment or
26447section for each library.
26448
79a6e687
BW
26449@node Memory Map Format
26450@section Memory Map Format
68437a39
DJ
26451@cindex memory map format
26452
26453To be able to write into flash memory, @value{GDBN} needs to obtain a
26454memory map from the target. This section describes the format of the
26455memory map.
26456
26457The memory map is obtained using the @samp{qXfer:memory-map:read}
26458(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26459lists memory regions.
26460
26461@value{GDBN} must be linked with the Expat library to support XML
26462memory maps. @xref{Expat}.
26463
26464The top-level structure of the document is shown below:
68437a39
DJ
26465
26466@smallexample
26467<?xml version="1.0"?>
26468<!DOCTYPE memory-map
26469 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26470 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26471<memory-map>
26472 region...
26473</memory-map>
26474@end smallexample
26475
26476Each region can be either:
26477
26478@itemize
26479
26480@item
26481A region of RAM starting at @var{addr} and extending for @var{length}
26482bytes from there:
26483
26484@smallexample
26485<memory type="ram" start="@var{addr}" length="@var{length}"/>
26486@end smallexample
26487
26488
26489@item
26490A region of read-only memory:
26491
26492@smallexample
26493<memory type="rom" start="@var{addr}" length="@var{length}"/>
26494@end smallexample
26495
26496
26497@item
26498A region of flash memory, with erasure blocks @var{blocksize}
26499bytes in length:
26500
26501@smallexample
26502<memory type="flash" start="@var{addr}" length="@var{length}">
26503 <property name="blocksize">@var{blocksize}</property>
26504</memory>
26505@end smallexample
26506
26507@end itemize
26508
26509Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26510by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26511packets to write to addresses in such ranges.
26512
26513The formal DTD for memory map format is given below:
26514
26515@smallexample
26516<!-- ................................................... -->
26517<!-- Memory Map XML DTD ................................ -->
26518<!-- File: memory-map.dtd .............................. -->
26519<!-- .................................... .............. -->
26520<!-- memory-map.dtd -->
26521<!-- memory-map: Root element with versioning -->
26522<!ELEMENT memory-map (memory | property)>
26523<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26524<!ELEMENT memory (property)>
26525<!-- memory: Specifies a memory region,
26526 and its type, or device. -->
26527<!ATTLIST memory type CDATA #REQUIRED
26528 start CDATA #REQUIRED
26529 length CDATA #REQUIRED
26530 device CDATA #IMPLIED>
26531<!-- property: Generic attribute tag -->
26532<!ELEMENT property (#PCDATA | property)*>
26533<!ATTLIST property name CDATA #REQUIRED>
26534@end smallexample
26535
f418dd93
DJ
26536@include agentexpr.texi
26537
23181151
DJ
26538@node Target Descriptions
26539@appendix Target Descriptions
26540@cindex target descriptions
26541
26542@strong{Warning:} target descriptions are still under active development,
26543and the contents and format may change between @value{GDBN} releases.
26544The format is expected to stabilize in the future.
26545
26546One of the challenges of using @value{GDBN} to debug embedded systems
26547is that there are so many minor variants of each processor
26548architecture in use. It is common practice for vendors to start with
26549a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26550and then make changes to adapt it to a particular market niche. Some
26551architectures have hundreds of variants, available from dozens of
26552vendors. This leads to a number of problems:
26553
26554@itemize @bullet
26555@item
26556With so many different customized processors, it is difficult for
26557the @value{GDBN} maintainers to keep up with the changes.
26558@item
26559Since individual variants may have short lifetimes or limited
26560audiences, it may not be worthwhile to carry information about every
26561variant in the @value{GDBN} source tree.
26562@item
26563When @value{GDBN} does support the architecture of the embedded system
26564at hand, the task of finding the correct architecture name to give the
26565@command{set architecture} command can be error-prone.
26566@end itemize
26567
26568To address these problems, the @value{GDBN} remote protocol allows a
26569target system to not only identify itself to @value{GDBN}, but to
26570actually describe its own features. This lets @value{GDBN} support
26571processor variants it has never seen before --- to the extent that the
26572descriptions are accurate, and that @value{GDBN} understands them.
26573
9cceb671
DJ
26574@value{GDBN} must be linked with the Expat library to support XML
26575target descriptions. @xref{Expat}.
123dc839 26576
23181151
DJ
26577@menu
26578* Retrieving Descriptions:: How descriptions are fetched from a target.
26579* Target Description Format:: The contents of a target description.
123dc839
DJ
26580* Predefined Target Types:: Standard types available for target
26581 descriptions.
26582* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26583@end menu
26584
26585@node Retrieving Descriptions
26586@section Retrieving Descriptions
26587
26588Target descriptions can be read from the target automatically, or
26589specified by the user manually. The default behavior is to read the
26590description from the target. @value{GDBN} retrieves it via the remote
26591protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26592qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26593@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26594XML document, of the form described in @ref{Target Description
26595Format}.
26596
26597Alternatively, you can specify a file to read for the target description.
26598If a file is set, the target will not be queried. The commands to
26599specify a file are:
26600
26601@table @code
26602@cindex set tdesc filename
26603@item set tdesc filename @var{path}
26604Read the target description from @var{path}.
26605
26606@cindex unset tdesc filename
26607@item unset tdesc filename
26608Do not read the XML target description from a file. @value{GDBN}
26609will use the description supplied by the current target.
26610
26611@cindex show tdesc filename
26612@item show tdesc filename
26613Show the filename to read for a target description, if any.
26614@end table
26615
26616
26617@node Target Description Format
26618@section Target Description Format
26619@cindex target descriptions, XML format
26620
26621A target description annex is an @uref{http://www.w3.org/XML/, XML}
26622document which complies with the Document Type Definition provided in
26623the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26624means you can use generally available tools like @command{xmllint} to
26625check that your feature descriptions are well-formed and valid.
26626However, to help people unfamiliar with XML write descriptions for
26627their targets, we also describe the grammar here.
26628
123dc839
DJ
26629Target descriptions can identify the architecture of the remote target
26630and (for some architectures) provide information about custom register
26631sets. @value{GDBN} can use this information to autoconfigure for your
26632target, or to warn you if you connect to an unsupported target.
23181151
DJ
26633
26634Here is a simple target description:
26635
123dc839 26636@smallexample
1780a0ed 26637<target version="1.0">
23181151
DJ
26638 <architecture>i386:x86-64</architecture>
26639</target>
123dc839 26640@end smallexample
23181151
DJ
26641
26642@noindent
26643This minimal description only says that the target uses
26644the x86-64 architecture.
26645
123dc839
DJ
26646A target description has the following overall form, with [ ] marking
26647optional elements and @dots{} marking repeatable elements. The elements
26648are explained further below.
23181151 26649
123dc839 26650@smallexample
23181151
DJ
26651<?xml version="1.0"?>
26652<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26653<target version="1.0">
123dc839
DJ
26654 @r{[}@var{architecture}@r{]}
26655 @r{[}@var{feature}@dots{}@r{]}
23181151 26656</target>
123dc839 26657@end smallexample
23181151
DJ
26658
26659@noindent
26660The description is generally insensitive to whitespace and line
26661breaks, under the usual common-sense rules. The XML version
26662declaration and document type declaration can generally be omitted
26663(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26664useful for XML validation tools. The @samp{version} attribute for
26665@samp{<target>} may also be omitted, but we recommend
26666including it; if future versions of @value{GDBN} use an incompatible
26667revision of @file{gdb-target.dtd}, they will detect and report
26668the version mismatch.
23181151 26669
108546a0
DJ
26670@subsection Inclusion
26671@cindex target descriptions, inclusion
26672@cindex XInclude
26673@ifnotinfo
26674@cindex <xi:include>
26675@end ifnotinfo
26676
26677It can sometimes be valuable to split a target description up into
26678several different annexes, either for organizational purposes, or to
26679share files between different possible target descriptions. You can
26680divide a description into multiple files by replacing any element of
26681the target description with an inclusion directive of the form:
26682
123dc839 26683@smallexample
108546a0 26684<xi:include href="@var{document}"/>
123dc839 26685@end smallexample
108546a0
DJ
26686
26687@noindent
26688When @value{GDBN} encounters an element of this form, it will retrieve
26689the named XML @var{document}, and replace the inclusion directive with
26690the contents of that document. If the current description was read
26691using @samp{qXfer}, then so will be the included document;
26692@var{document} will be interpreted as the name of an annex. If the
26693current description was read from a file, @value{GDBN} will look for
26694@var{document} as a file in the same directory where it found the
26695original description.
26696
123dc839
DJ
26697@subsection Architecture
26698@cindex <architecture>
26699
26700An @samp{<architecture>} element has this form:
26701
26702@smallexample
26703 <architecture>@var{arch}</architecture>
26704@end smallexample
26705
26706@var{arch} is an architecture name from the same selection
26707accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26708Debugging Target}).
26709
26710@subsection Features
26711@cindex <feature>
26712
26713Each @samp{<feature>} describes some logical portion of the target
26714system. Features are currently used to describe available CPU
26715registers and the types of their contents. A @samp{<feature>} element
26716has this form:
26717
26718@smallexample
26719<feature name="@var{name}">
26720 @r{[}@var{type}@dots{}@r{]}
26721 @var{reg}@dots{}
26722</feature>
26723@end smallexample
26724
26725@noindent
26726Each feature's name should be unique within the description. The name
26727of a feature does not matter unless @value{GDBN} has some special
26728knowledge of the contents of that feature; if it does, the feature
26729should have its standard name. @xref{Standard Target Features}.
26730
26731@subsection Types
26732
26733Any register's value is a collection of bits which @value{GDBN} must
26734interpret. The default interpretation is a two's complement integer,
26735but other types can be requested by name in the register description.
26736Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26737Target Types}), and the description can define additional composite types.
26738
26739Each type element must have an @samp{id} attribute, which gives
26740a unique (within the containing @samp{<feature>}) name to the type.
26741Types must be defined before they are used.
26742
26743@cindex <vector>
26744Some targets offer vector registers, which can be treated as arrays
26745of scalar elements. These types are written as @samp{<vector>} elements,
26746specifying the array element type, @var{type}, and the number of elements,
26747@var{count}:
26748
26749@smallexample
26750<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26751@end smallexample
26752
26753@cindex <union>
26754If a register's value is usefully viewed in multiple ways, define it
26755with a union type containing the useful representations. The
26756@samp{<union>} element contains one or more @samp{<field>} elements,
26757each of which has a @var{name} and a @var{type}:
26758
26759@smallexample
26760<union id="@var{id}">
26761 <field name="@var{name}" type="@var{type}"/>
26762 @dots{}
26763</union>
26764@end smallexample
26765
26766@subsection Registers
26767@cindex <reg>
26768
26769Each register is represented as an element with this form:
26770
26771@smallexample
26772<reg name="@var{name}"
26773 bitsize="@var{size}"
26774 @r{[}regnum="@var{num}"@r{]}
26775 @r{[}save-restore="@var{save-restore}"@r{]}
26776 @r{[}type="@var{type}"@r{]}
26777 @r{[}group="@var{group}"@r{]}/>
26778@end smallexample
26779
26780@noindent
26781The components are as follows:
26782
26783@table @var
26784
26785@item name
26786The register's name; it must be unique within the target description.
26787
26788@item bitsize
26789The register's size, in bits.
26790
26791@item regnum
26792The register's number. If omitted, a register's number is one greater
26793than that of the previous register (either in the current feature or in
26794a preceeding feature); the first register in the target description
26795defaults to zero. This register number is used to read or write
26796the register; e.g.@: it is used in the remote @code{p} and @code{P}
26797packets, and registers appear in the @code{g} and @code{G} packets
26798in order of increasing register number.
26799
26800@item save-restore
26801Whether the register should be preserved across inferior function
26802calls; this must be either @code{yes} or @code{no}. The default is
26803@code{yes}, which is appropriate for most registers except for
26804some system control registers; this is not related to the target's
26805ABI.
26806
26807@item type
26808The type of the register. @var{type} may be a predefined type, a type
26809defined in the current feature, or one of the special types @code{int}
26810and @code{float}. @code{int} is an integer type of the correct size
26811for @var{bitsize}, and @code{float} is a floating point type (in the
26812architecture's normal floating point format) of the correct size for
26813@var{bitsize}. The default is @code{int}.
26814
26815@item group
26816The register group to which this register belongs. @var{group} must
26817be either @code{general}, @code{float}, or @code{vector}. If no
26818@var{group} is specified, @value{GDBN} will not display the register
26819in @code{info registers}.
26820
26821@end table
26822
26823@node Predefined Target Types
26824@section Predefined Target Types
26825@cindex target descriptions, predefined types
26826
26827Type definitions in the self-description can build up composite types
26828from basic building blocks, but can not define fundamental types. Instead,
26829standard identifiers are provided by @value{GDBN} for the fundamental
26830types. The currently supported types are:
26831
26832@table @code
26833
26834@item int8
26835@itemx int16
26836@itemx int32
26837@itemx int64
7cc46491 26838@itemx int128
123dc839
DJ
26839Signed integer types holding the specified number of bits.
26840
26841@item uint8
26842@itemx uint16
26843@itemx uint32
26844@itemx uint64
7cc46491 26845@itemx uint128
123dc839
DJ
26846Unsigned integer types holding the specified number of bits.
26847
26848@item code_ptr
26849@itemx data_ptr
26850Pointers to unspecified code and data. The program counter and
26851any dedicated return address register may be marked as code
26852pointers; printing a code pointer converts it into a symbolic
26853address. The stack pointer and any dedicated address registers
26854may be marked as data pointers.
26855
6e3bbd1a
PB
26856@item ieee_single
26857Single precision IEEE floating point.
26858
26859@item ieee_double
26860Double precision IEEE floating point.
26861
123dc839
DJ
26862@item arm_fpa_ext
26863The 12-byte extended precision format used by ARM FPA registers.
26864
26865@end table
26866
26867@node Standard Target Features
26868@section Standard Target Features
26869@cindex target descriptions, standard features
26870
26871A target description must contain either no registers or all the
26872target's registers. If the description contains no registers, then
26873@value{GDBN} will assume a default register layout, selected based on
26874the architecture. If the description contains any registers, the
26875default layout will not be used; the standard registers must be
26876described in the target description, in such a way that @value{GDBN}
26877can recognize them.
26878
26879This is accomplished by giving specific names to feature elements
26880which contain standard registers. @value{GDBN} will look for features
26881with those names and verify that they contain the expected registers;
26882if any known feature is missing required registers, or if any required
26883feature is missing, @value{GDBN} will reject the target
26884description. You can add additional registers to any of the
26885standard features --- @value{GDBN} will display them just as if
26886they were added to an unrecognized feature.
26887
26888This section lists the known features and their expected contents.
26889Sample XML documents for these features are included in the
26890@value{GDBN} source tree, in the directory @file{gdb/features}.
26891
26892Names recognized by @value{GDBN} should include the name of the
26893company or organization which selected the name, and the overall
26894architecture to which the feature applies; so e.g.@: the feature
26895containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26896
ff6f572f
DJ
26897The names of registers are not case sensitive for the purpose
26898of recognizing standard features, but @value{GDBN} will only display
26899registers using the capitalization used in the description.
26900
e9c17194
VP
26901@menu
26902* ARM Features::
1e26b4f8 26903* MIPS Features::
e9c17194 26904* M68K Features::
1e26b4f8 26905* PowerPC Features::
e9c17194
VP
26906@end menu
26907
26908
26909@node ARM Features
123dc839
DJ
26910@subsection ARM Features
26911@cindex target descriptions, ARM features
26912
26913The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26914It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26915@samp{lr}, @samp{pc}, and @samp{cpsr}.
26916
26917The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26918should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26919
ff6f572f
DJ
26920The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26921it should contain at least registers @samp{wR0} through @samp{wR15} and
26922@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26923@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26924
1e26b4f8 26925@node MIPS Features
f8b73d13
DJ
26926@subsection MIPS Features
26927@cindex target descriptions, MIPS features
26928
26929The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26930It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26931@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26932on the target.
26933
26934The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26935contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26936registers. They may be 32-bit or 64-bit depending on the target.
26937
26938The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26939it may be optional in a future version of @value{GDBN}. It should
26940contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26941@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26942
822b6570
DJ
26943The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26944contain a single register, @samp{restart}, which is used by the
26945Linux kernel to control restartable syscalls.
26946
e9c17194
VP
26947@node M68K Features
26948@subsection M68K Features
26949@cindex target descriptions, M68K features
26950
26951@table @code
26952@item @samp{org.gnu.gdb.m68k.core}
26953@itemx @samp{org.gnu.gdb.coldfire.core}
26954@itemx @samp{org.gnu.gdb.fido.core}
26955One of those features must be always present.
26956The feature that is present determines which flavor of m86k is
26957used. The feature that is present should contain registers
26958@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26959@samp{sp}, @samp{ps} and @samp{pc}.
26960
26961@item @samp{org.gnu.gdb.coldfire.fp}
26962This feature is optional. If present, it should contain registers
26963@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26964@samp{fpiaddr}.
26965@end table
26966
1e26b4f8 26967@node PowerPC Features
7cc46491
DJ
26968@subsection PowerPC Features
26969@cindex target descriptions, PowerPC features
26970
26971The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
26972targets. It should contain registers @samp{r0} through @samp{r31},
26973@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
26974@samp{xer}. They may be 32-bit or 64-bit depending on the target.
26975
26976The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
26977contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
26978
26979The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
26980contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
26981and @samp{vrsave}.
26982
26983The @samp{org.gnu.gdb.power.spe} feature is optional. It should
26984contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
26985@samp{spefscr}. SPE targets should provide 32-bit registers in
26986@samp{org.gnu.gdb.power.core} and provide the upper halves in
26987@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
26988these to present registers @samp{ev0} through @samp{ev31} to the
26989user.
26990
aab4e0ec 26991@include gpl.texi
eb12ee30 26992
2154891a 26993@raisesections
6826cf00 26994@include fdl.texi
2154891a 26995@lowersections
6826cf00 26996
6d2ebf8b 26997@node Index
c906108c
SS
26998@unnumbered Index
26999
27000@printindex cp
27001
27002@tex
27003% I think something like @colophon should be in texinfo. In the
27004% meantime:
27005\long\def\colophon{\hbox to0pt{}\vfill
27006\centerline{The body of this manual is set in}
27007\centerline{\fontname\tenrm,}
27008\centerline{with headings in {\bf\fontname\tenbf}}
27009\centerline{and examples in {\tt\fontname\tentt}.}
27010\centerline{{\it\fontname\tenit\/},}
27011\centerline{{\bf\fontname\tenbf}, and}
27012\centerline{{\sl\fontname\tensl\/}}
27013\centerline{are used for emphasis.}\vfill}
27014\page\colophon
27015% Blame: doc@cygnus.com, 1991.
27016@end tex
27017
c906108c 27018@bye
This page took 3.446581 seconds and 4 git commands to generate.