*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
1654program. For example, you can list the arguments given to your program
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
1821that process run your program. (In environments without processes,
1822@code{run} jumps to the start of your program.)
1823
1824The execution of a program is affected by certain information it
1825receives from its superior. @value{GDBN} provides ways to specify this
1826information, which you must do @emph{before} starting your program. (You
1827can change it after starting your program, but such changes only affect
1828your program the next time you start it.) This information may be
1829divided into four categories:
1830
1831@table @asis
1832@item The @emph{arguments.}
1833Specify the arguments to give your program as the arguments of the
1834@code{run} command. If a shell is available on your target, the shell
1835is used to pass the arguments, so that you may use normal conventions
1836(such as wildcard expansion or variable substitution) in describing
1837the arguments.
1838In Unix systems, you can control which shell is used with the
1839@code{SHELL} environment variable.
79a6e687 1840@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1841
1842@item The @emph{environment.}
1843Your program normally inherits its environment from @value{GDBN}, but you can
1844use the @value{GDBN} commands @code{set environment} and @code{unset
1845environment} to change parts of the environment that affect
79a6e687 1846your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1847
1848@item The @emph{working directory.}
1849Your program inherits its working directory from @value{GDBN}. You can set
1850the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1851@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1852
1853@item The @emph{standard input and output.}
1854Your program normally uses the same device for standard input and
1855standard output as @value{GDBN} is using. You can redirect input and output
1856in the @code{run} command line, or you can use the @code{tty} command to
1857set a different device for your program.
79a6e687 1858@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1859
1860@cindex pipes
1861@emph{Warning:} While input and output redirection work, you cannot use
1862pipes to pass the output of the program you are debugging to another
1863program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1864wrong program.
1865@end table
c906108c
SS
1866
1867When you issue the @code{run} command, your program begins to execute
79a6e687 1868immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1869of how to arrange for your program to stop. Once your program has
1870stopped, you may call functions in your program, using the @code{print}
1871or @code{call} commands. @xref{Data, ,Examining Data}.
1872
1873If the modification time of your symbol file has changed since the last
1874time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1875table, and reads it again. When it does this, @value{GDBN} tries to retain
1876your current breakpoints.
1877
4e8b0763
JB
1878@table @code
1879@kindex start
1880@item start
1881@cindex run to main procedure
1882The name of the main procedure can vary from language to language.
1883With C or C@t{++}, the main procedure name is always @code{main}, but
1884other languages such as Ada do not require a specific name for their
1885main procedure. The debugger provides a convenient way to start the
1886execution of the program and to stop at the beginning of the main
1887procedure, depending on the language used.
1888
1889The @samp{start} command does the equivalent of setting a temporary
1890breakpoint at the beginning of the main procedure and then invoking
1891the @samp{run} command.
1892
f018e82f
EZ
1893@cindex elaboration phase
1894Some programs contain an @dfn{elaboration} phase where some startup code is
1895executed before the main procedure is called. This depends on the
1896languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1897constructors for static and global objects are executed before
1898@code{main} is called. It is therefore possible that the debugger stops
1899before reaching the main procedure. However, the temporary breakpoint
1900will remain to halt execution.
1901
1902Specify the arguments to give to your program as arguments to the
1903@samp{start} command. These arguments will be given verbatim to the
1904underlying @samp{run} command. Note that the same arguments will be
1905reused if no argument is provided during subsequent calls to
1906@samp{start} or @samp{run}.
1907
1908It is sometimes necessary to debug the program during elaboration. In
1909these cases, using the @code{start} command would stop the execution of
1910your program too late, as the program would have already completed the
1911elaboration phase. Under these circumstances, insert breakpoints in your
1912elaboration code before running your program.
1913@end table
1914
6d2ebf8b 1915@node Arguments
79a6e687 1916@section Your Program's Arguments
c906108c
SS
1917
1918@cindex arguments (to your program)
1919The arguments to your program can be specified by the arguments of the
5d161b24 1920@code{run} command.
c906108c
SS
1921They are passed to a shell, which expands wildcard characters and
1922performs redirection of I/O, and thence to your program. Your
1923@code{SHELL} environment variable (if it exists) specifies what shell
1924@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1925the default shell (@file{/bin/sh} on Unix).
1926
1927On non-Unix systems, the program is usually invoked directly by
1928@value{GDBN}, which emulates I/O redirection via the appropriate system
1929calls, and the wildcard characters are expanded by the startup code of
1930the program, not by the shell.
c906108c
SS
1931
1932@code{run} with no arguments uses the same arguments used by the previous
1933@code{run}, or those set by the @code{set args} command.
1934
c906108c 1935@table @code
41afff9a 1936@kindex set args
c906108c
SS
1937@item set args
1938Specify the arguments to be used the next time your program is run. If
1939@code{set args} has no arguments, @code{run} executes your program
1940with no arguments. Once you have run your program with arguments,
1941using @code{set args} before the next @code{run} is the only way to run
1942it again without arguments.
1943
1944@kindex show args
1945@item show args
1946Show the arguments to give your program when it is started.
1947@end table
1948
6d2ebf8b 1949@node Environment
79a6e687 1950@section Your Program's Environment
c906108c
SS
1951
1952@cindex environment (of your program)
1953The @dfn{environment} consists of a set of environment variables and
1954their values. Environment variables conventionally record such things as
1955your user name, your home directory, your terminal type, and your search
1956path for programs to run. Usually you set up environment variables with
1957the shell and they are inherited by all the other programs you run. When
1958debugging, it can be useful to try running your program with a modified
1959environment without having to start @value{GDBN} over again.
1960
1961@table @code
1962@kindex path
1963@item path @var{directory}
1964Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
1965(the search path for executables) that will be passed to your program.
1966The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
1967You may specify several directory names, separated by whitespace or by a
1968system-dependent separator character (@samp{:} on Unix, @samp{;} on
1969MS-DOS and MS-Windows). If @var{directory} is already in the path, it
1970is moved to the front, so it is searched sooner.
c906108c
SS
1971
1972You can use the string @samp{$cwd} to refer to whatever is the current
1973working directory at the time @value{GDBN} searches the path. If you
1974use @samp{.} instead, it refers to the directory where you executed the
1975@code{path} command. @value{GDBN} replaces @samp{.} in the
1976@var{directory} argument (with the current path) before adding
1977@var{directory} to the search path.
1978@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
1979@c document that, since repeating it would be a no-op.
1980
1981@kindex show paths
1982@item show paths
1983Display the list of search paths for executables (the @code{PATH}
1984environment variable).
1985
1986@kindex show environment
1987@item show environment @r{[}@var{varname}@r{]}
1988Print the value of environment variable @var{varname} to be given to
1989your program when it starts. If you do not supply @var{varname},
1990print the names and values of all environment variables to be given to
1991your program. You can abbreviate @code{environment} as @code{env}.
1992
1993@kindex set environment
53a5351d 1994@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
1995Set environment variable @var{varname} to @var{value}. The value
1996changes for your program only, not for @value{GDBN} itself. @var{value} may
1997be any string; the values of environment variables are just strings, and
1998any interpretation is supplied by your program itself. The @var{value}
1999parameter is optional; if it is eliminated, the variable is set to a
2000null value.
2001@c "any string" here does not include leading, trailing
2002@c blanks. Gnu asks: does anyone care?
2003
2004For example, this command:
2005
474c8240 2006@smallexample
c906108c 2007set env USER = foo
474c8240 2008@end smallexample
c906108c
SS
2009
2010@noindent
d4f3574e 2011tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2012@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2013are not actually required.)
2014
2015@kindex unset environment
2016@item unset environment @var{varname}
2017Remove variable @var{varname} from the environment to be passed to your
2018program. This is different from @samp{set env @var{varname} =};
2019@code{unset environment} removes the variable from the environment,
2020rather than assigning it an empty value.
2021@end table
2022
d4f3574e
SS
2023@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2024the shell indicated
c906108c
SS
2025by your @code{SHELL} environment variable if it exists (or
2026@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2027that runs an initialization file---such as @file{.cshrc} for C-shell, or
2028@file{.bashrc} for BASH---any variables you set in that file affect
2029your program. You may wish to move setting of environment variables to
2030files that are only run when you sign on, such as @file{.login} or
2031@file{.profile}.
2032
6d2ebf8b 2033@node Working Directory
79a6e687 2034@section Your Program's Working Directory
c906108c
SS
2035
2036@cindex working directory (of your program)
2037Each time you start your program with @code{run}, it inherits its
2038working directory from the current working directory of @value{GDBN}.
2039The @value{GDBN} working directory is initially whatever it inherited
2040from its parent process (typically the shell), but you can specify a new
2041working directory in @value{GDBN} with the @code{cd} command.
2042
2043The @value{GDBN} working directory also serves as a default for the commands
2044that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2045Specify Files}.
c906108c
SS
2046
2047@table @code
2048@kindex cd
721c2651 2049@cindex change working directory
c906108c
SS
2050@item cd @var{directory}
2051Set the @value{GDBN} working directory to @var{directory}.
2052
2053@kindex pwd
2054@item pwd
2055Print the @value{GDBN} working directory.
2056@end table
2057
60bf7e09
EZ
2058It is generally impossible to find the current working directory of
2059the process being debugged (since a program can change its directory
2060during its run). If you work on a system where @value{GDBN} is
2061configured with the @file{/proc} support, you can use the @code{info
2062proc} command (@pxref{SVR4 Process Information}) to find out the
2063current working directory of the debuggee.
2064
6d2ebf8b 2065@node Input/Output
79a6e687 2066@section Your Program's Input and Output
c906108c
SS
2067
2068@cindex redirection
2069@cindex i/o
2070@cindex terminal
2071By default, the program you run under @value{GDBN} does input and output to
5d161b24 2072the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2073to its own terminal modes to interact with you, but it records the terminal
2074modes your program was using and switches back to them when you continue
2075running your program.
2076
2077@table @code
2078@kindex info terminal
2079@item info terminal
2080Displays information recorded by @value{GDBN} about the terminal modes your
2081program is using.
2082@end table
2083
2084You can redirect your program's input and/or output using shell
2085redirection with the @code{run} command. For example,
2086
474c8240 2087@smallexample
c906108c 2088run > outfile
474c8240 2089@end smallexample
c906108c
SS
2090
2091@noindent
2092starts your program, diverting its output to the file @file{outfile}.
2093
2094@kindex tty
2095@cindex controlling terminal
2096Another way to specify where your program should do input and output is
2097with the @code{tty} command. This command accepts a file name as
2098argument, and causes this file to be the default for future @code{run}
2099commands. It also resets the controlling terminal for the child
2100process, for future @code{run} commands. For example,
2101
474c8240 2102@smallexample
c906108c 2103tty /dev/ttyb
474c8240 2104@end smallexample
c906108c
SS
2105
2106@noindent
2107directs that processes started with subsequent @code{run} commands
2108default to do input and output on the terminal @file{/dev/ttyb} and have
2109that as their controlling terminal.
2110
2111An explicit redirection in @code{run} overrides the @code{tty} command's
2112effect on the input/output device, but not its effect on the controlling
2113terminal.
2114
2115When you use the @code{tty} command or redirect input in the @code{run}
2116command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2117for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2118for @code{set inferior-tty}.
2119
2120@cindex inferior tty
2121@cindex set inferior controlling terminal
2122You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2123display the name of the terminal that will be used for future runs of your
2124program.
2125
2126@table @code
2127@item set inferior-tty /dev/ttyb
2128@kindex set inferior-tty
2129Set the tty for the program being debugged to /dev/ttyb.
2130
2131@item show inferior-tty
2132@kindex show inferior-tty
2133Show the current tty for the program being debugged.
2134@end table
c906108c 2135
6d2ebf8b 2136@node Attach
79a6e687 2137@section Debugging an Already-running Process
c906108c
SS
2138@kindex attach
2139@cindex attach
2140
2141@table @code
2142@item attach @var{process-id}
2143This command attaches to a running process---one that was started
2144outside @value{GDBN}. (@code{info files} shows your active
2145targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2146find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2147or with the @samp{jobs -l} shell command.
2148
2149@code{attach} does not repeat if you press @key{RET} a second time after
2150executing the command.
2151@end table
2152
2153To use @code{attach}, your program must be running in an environment
2154which supports processes; for example, @code{attach} does not work for
2155programs on bare-board targets that lack an operating system. You must
2156also have permission to send the process a signal.
2157
2158When you use @code{attach}, the debugger finds the program running in
2159the process first by looking in the current working directory, then (if
2160the program is not found) by using the source file search path
79a6e687 2161(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2162the @code{file} command to load the program. @xref{Files, ,Commands to
2163Specify Files}.
2164
2165The first thing @value{GDBN} does after arranging to debug the specified
2166process is to stop it. You can examine and modify an attached process
53a5351d
JM
2167with all the @value{GDBN} commands that are ordinarily available when
2168you start processes with @code{run}. You can insert breakpoints; you
2169can step and continue; you can modify storage. If you would rather the
2170process continue running, you may use the @code{continue} command after
c906108c
SS
2171attaching @value{GDBN} to the process.
2172
2173@table @code
2174@kindex detach
2175@item detach
2176When you have finished debugging the attached process, you can use the
2177@code{detach} command to release it from @value{GDBN} control. Detaching
2178the process continues its execution. After the @code{detach} command,
2179that process and @value{GDBN} become completely independent once more, and you
2180are ready to @code{attach} another process or start one with @code{run}.
2181@code{detach} does not repeat if you press @key{RET} again after
2182executing the command.
2183@end table
2184
159fcc13
JK
2185If you exit @value{GDBN} while you have an attached process, you detach
2186that process. If you use the @code{run} command, you kill that process.
2187By default, @value{GDBN} asks for confirmation if you try to do either of these
2188things; you can control whether or not you need to confirm by using the
2189@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2190Messages}).
c906108c 2191
6d2ebf8b 2192@node Kill Process
79a6e687 2193@section Killing the Child Process
c906108c
SS
2194
2195@table @code
2196@kindex kill
2197@item kill
2198Kill the child process in which your program is running under @value{GDBN}.
2199@end table
2200
2201This command is useful if you wish to debug a core dump instead of a
2202running process. @value{GDBN} ignores any core dump file while your program
2203is running.
2204
2205On some operating systems, a program cannot be executed outside @value{GDBN}
2206while you have breakpoints set on it inside @value{GDBN}. You can use the
2207@code{kill} command in this situation to permit running your program
2208outside the debugger.
2209
2210The @code{kill} command is also useful if you wish to recompile and
2211relink your program, since on many systems it is impossible to modify an
2212executable file while it is running in a process. In this case, when you
2213next type @code{run}, @value{GDBN} notices that the file has changed, and
2214reads the symbol table again (while trying to preserve your current
2215breakpoint settings).
2216
6d2ebf8b 2217@node Threads
79a6e687 2218@section Debugging Programs with Multiple Threads
c906108c
SS
2219
2220@cindex threads of execution
2221@cindex multiple threads
2222@cindex switching threads
2223In some operating systems, such as HP-UX and Solaris, a single program
2224may have more than one @dfn{thread} of execution. The precise semantics
2225of threads differ from one operating system to another, but in general
2226the threads of a single program are akin to multiple processes---except
2227that they share one address space (that is, they can all examine and
2228modify the same variables). On the other hand, each thread has its own
2229registers and execution stack, and perhaps private memory.
2230
2231@value{GDBN} provides these facilities for debugging multi-thread
2232programs:
2233
2234@itemize @bullet
2235@item automatic notification of new threads
2236@item @samp{thread @var{threadno}}, a command to switch among threads
2237@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2238@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2239a command to apply a command to a list of threads
2240@item thread-specific breakpoints
93815fbf
VP
2241@item @samp{set print thread-events}, which controls printing of
2242messages on thread start and exit.
c906108c
SS
2243@end itemize
2244
c906108c
SS
2245@quotation
2246@emph{Warning:} These facilities are not yet available on every
2247@value{GDBN} configuration where the operating system supports threads.
2248If your @value{GDBN} does not support threads, these commands have no
2249effect. For example, a system without thread support shows no output
2250from @samp{info threads}, and always rejects the @code{thread} command,
2251like this:
2252
2253@smallexample
2254(@value{GDBP}) info threads
2255(@value{GDBP}) thread 1
2256Thread ID 1 not known. Use the "info threads" command to
2257see the IDs of currently known threads.
2258@end smallexample
2259@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2260@c doesn't support threads"?
2261@end quotation
c906108c
SS
2262
2263@cindex focus of debugging
2264@cindex current thread
2265The @value{GDBN} thread debugging facility allows you to observe all
2266threads while your program runs---but whenever @value{GDBN} takes
2267control, one thread in particular is always the focus of debugging.
2268This thread is called the @dfn{current thread}. Debugging commands show
2269program information from the perspective of the current thread.
2270
41afff9a 2271@cindex @code{New} @var{systag} message
c906108c
SS
2272@cindex thread identifier (system)
2273@c FIXME-implementors!! It would be more helpful if the [New...] message
2274@c included GDB's numeric thread handle, so you could just go to that
2275@c thread without first checking `info threads'.
2276Whenever @value{GDBN} detects a new thread in your program, it displays
2277the target system's identification for the thread with a message in the
2278form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2279whose form varies depending on the particular system. For example, on
8807d78b 2280@sc{gnu}/Linux, you might see
c906108c 2281
474c8240 2282@smallexample
8807d78b 2283[New Thread 46912507313328 (LWP 25582)]
474c8240 2284@end smallexample
c906108c
SS
2285
2286@noindent
2287when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2288the @var{systag} is simply something like @samp{process 368}, with no
2289further qualifier.
2290
2291@c FIXME!! (1) Does the [New...] message appear even for the very first
2292@c thread of a program, or does it only appear for the
6ca652b0 2293@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2294@c program?
2295@c (2) *Is* there necessarily a first thread always? Or do some
2296@c multithread systems permit starting a program with multiple
5d161b24 2297@c threads ab initio?
c906108c
SS
2298
2299@cindex thread number
2300@cindex thread identifier (GDB)
2301For debugging purposes, @value{GDBN} associates its own thread
2302number---always a single integer---with each thread in your program.
2303
2304@table @code
2305@kindex info threads
2306@item info threads
2307Display a summary of all threads currently in your
2308program. @value{GDBN} displays for each thread (in this order):
2309
2310@enumerate
09d4efe1
EZ
2311@item
2312the thread number assigned by @value{GDBN}
c906108c 2313
09d4efe1
EZ
2314@item
2315the target system's thread identifier (@var{systag})
c906108c 2316
09d4efe1
EZ
2317@item
2318the current stack frame summary for that thread
c906108c
SS
2319@end enumerate
2320
2321@noindent
2322An asterisk @samp{*} to the left of the @value{GDBN} thread number
2323indicates the current thread.
2324
5d161b24 2325For example,
c906108c
SS
2326@end table
2327@c end table here to get a little more width for example
2328
2329@smallexample
2330(@value{GDBP}) info threads
2331 3 process 35 thread 27 0x34e5 in sigpause ()
2332 2 process 35 thread 23 0x34e5 in sigpause ()
2333* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2334 at threadtest.c:68
2335@end smallexample
53a5351d
JM
2336
2337On HP-UX systems:
c906108c 2338
4644b6e3
EZ
2339@cindex debugging multithreaded programs (on HP-UX)
2340@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2341For debugging purposes, @value{GDBN} associates its own thread
2342number---a small integer assigned in thread-creation order---with each
2343thread in your program.
2344
41afff9a
EZ
2345@cindex @code{New} @var{systag} message, on HP-UX
2346@cindex thread identifier (system), on HP-UX
c906108c
SS
2347@c FIXME-implementors!! It would be more helpful if the [New...] message
2348@c included GDB's numeric thread handle, so you could just go to that
2349@c thread without first checking `info threads'.
2350Whenever @value{GDBN} detects a new thread in your program, it displays
2351both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2352form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2353whose form varies depending on the particular system. For example, on
2354HP-UX, you see
2355
474c8240 2356@smallexample
c906108c 2357[New thread 2 (system thread 26594)]
474c8240 2358@end smallexample
c906108c
SS
2359
2360@noindent
5d161b24 2361when @value{GDBN} notices a new thread.
c906108c
SS
2362
2363@table @code
4644b6e3 2364@kindex info threads (HP-UX)
c906108c
SS
2365@item info threads
2366Display a summary of all threads currently in your
2367program. @value{GDBN} displays for each thread (in this order):
2368
2369@enumerate
2370@item the thread number assigned by @value{GDBN}
2371
2372@item the target system's thread identifier (@var{systag})
2373
2374@item the current stack frame summary for that thread
2375@end enumerate
2376
2377@noindent
2378An asterisk @samp{*} to the left of the @value{GDBN} thread number
2379indicates the current thread.
2380
5d161b24 2381For example,
c906108c
SS
2382@end table
2383@c end table here to get a little more width for example
2384
474c8240 2385@smallexample
c906108c 2386(@value{GDBP}) info threads
6d2ebf8b
SS
2387 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2388 at quicksort.c:137
2389 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2390 from /usr/lib/libc.2
2391 1 system thread 27905 0x7b003498 in _brk () \@*
2392 from /usr/lib/libc.2
474c8240 2393@end smallexample
c906108c 2394
c45da7e6
EZ
2395On Solaris, you can display more information about user threads with a
2396Solaris-specific command:
2397
2398@table @code
2399@item maint info sol-threads
2400@kindex maint info sol-threads
2401@cindex thread info (Solaris)
2402Display info on Solaris user threads.
2403@end table
2404
c906108c
SS
2405@table @code
2406@kindex thread @var{threadno}
2407@item thread @var{threadno}
2408Make thread number @var{threadno} the current thread. The command
2409argument @var{threadno} is the internal @value{GDBN} thread number, as
2410shown in the first field of the @samp{info threads} display.
2411@value{GDBN} responds by displaying the system identifier of the thread
2412you selected, and its current stack frame summary:
2413
2414@smallexample
2415@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2416(@value{GDBP}) thread 2
c906108c 2417[Switching to process 35 thread 23]
c906108c
SS
24180x34e5 in sigpause ()
2419@end smallexample
2420
2421@noindent
2422As with the @samp{[New @dots{}]} message, the form of the text after
2423@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2424threads.
c906108c 2425
9c16f35a 2426@kindex thread apply
638ac427 2427@cindex apply command to several threads
839c27b7
EZ
2428@item thread apply [@var{threadno}] [@var{all}] @var{command}
2429The @code{thread apply} command allows you to apply the named
2430@var{command} to one or more threads. Specify the numbers of the
2431threads that you want affected with the command argument
2432@var{threadno}. It can be a single thread number, one of the numbers
2433shown in the first field of the @samp{info threads} display; or it
2434could be a range of thread numbers, as in @code{2-4}. To apply a
2435command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2436
2437@kindex set print thread-events
2438@cindex print messages on thread start and exit
2439@item set print thread-events
2440@itemx set print thread-events on
2441@itemx set print thread-events off
2442The @code{set print thread-events} command allows you to enable or
2443disable printing of messages when @value{GDBN} notices that new threads have
2444started or that threads have exited. By default, these messages will
2445be printed if detection of these events is supported by the target.
2446Note that these messages cannot be disabled on all targets.
2447
2448@kindex show print thread-events
2449@item show print thread-events
2450Show whether messages will be printed when @value{GDBN} detects that threads
2451have started and exited.
c906108c
SS
2452@end table
2453
2454@cindex automatic thread selection
2455@cindex switching threads automatically
2456@cindex threads, automatic switching
2457Whenever @value{GDBN} stops your program, due to a breakpoint or a
2458signal, it automatically selects the thread where that breakpoint or
2459signal happened. @value{GDBN} alerts you to the context switch with a
2460message of the form @samp{[Switching to @var{systag}]} to identify the
2461thread.
2462
79a6e687 2463@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2464more information about how @value{GDBN} behaves when you stop and start
2465programs with multiple threads.
2466
79a6e687 2467@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2468watchpoints in programs with multiple threads.
c906108c 2469
6d2ebf8b 2470@node Processes
79a6e687 2471@section Debugging Programs with Multiple Processes
c906108c
SS
2472
2473@cindex fork, debugging programs which call
2474@cindex multiple processes
2475@cindex processes, multiple
53a5351d
JM
2476On most systems, @value{GDBN} has no special support for debugging
2477programs which create additional processes using the @code{fork}
2478function. When a program forks, @value{GDBN} will continue to debug the
2479parent process and the child process will run unimpeded. If you have
2480set a breakpoint in any code which the child then executes, the child
2481will get a @code{SIGTRAP} signal which (unless it catches the signal)
2482will cause it to terminate.
c906108c
SS
2483
2484However, if you want to debug the child process there is a workaround
2485which isn't too painful. Put a call to @code{sleep} in the code which
2486the child process executes after the fork. It may be useful to sleep
2487only if a certain environment variable is set, or a certain file exists,
2488so that the delay need not occur when you don't want to run @value{GDBN}
2489on the child. While the child is sleeping, use the @code{ps} program to
2490get its process ID. Then tell @value{GDBN} (a new invocation of
2491@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2492the child process (@pxref{Attach}). From that point on you can debug
c906108c 2493the child process just like any other process which you attached to.
c906108c 2494
b51970ac
DJ
2495On some systems, @value{GDBN} provides support for debugging programs that
2496create additional processes using the @code{fork} or @code{vfork} functions.
2497Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2498only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2499
2500By default, when a program forks, @value{GDBN} will continue to debug
2501the parent process and the child process will run unimpeded.
2502
2503If you want to follow the child process instead of the parent process,
2504use the command @w{@code{set follow-fork-mode}}.
2505
2506@table @code
2507@kindex set follow-fork-mode
2508@item set follow-fork-mode @var{mode}
2509Set the debugger response to a program call of @code{fork} or
2510@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2511process. The @var{mode} argument can be:
c906108c
SS
2512
2513@table @code
2514@item parent
2515The original process is debugged after a fork. The child process runs
2df3850c 2516unimpeded. This is the default.
c906108c
SS
2517
2518@item child
2519The new process is debugged after a fork. The parent process runs
2520unimpeded.
2521
c906108c
SS
2522@end table
2523
9c16f35a 2524@kindex show follow-fork-mode
c906108c 2525@item show follow-fork-mode
2df3850c 2526Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2527@end table
2528
5c95884b
MS
2529@cindex debugging multiple processes
2530On Linux, if you want to debug both the parent and child processes, use the
2531command @w{@code{set detach-on-fork}}.
2532
2533@table @code
2534@kindex set detach-on-fork
2535@item set detach-on-fork @var{mode}
2536Tells gdb whether to detach one of the processes after a fork, or
2537retain debugger control over them both.
2538
2539@table @code
2540@item on
2541The child process (or parent process, depending on the value of
2542@code{follow-fork-mode}) will be detached and allowed to run
2543independently. This is the default.
2544
2545@item off
2546Both processes will be held under the control of @value{GDBN}.
2547One process (child or parent, depending on the value of
2548@code{follow-fork-mode}) is debugged as usual, while the other
2549is held suspended.
2550
2551@end table
2552
11310833
NR
2553@kindex show detach-on-fork
2554@item show detach-on-fork
2555Show whether detach-on-fork mode is on/off.
5c95884b
MS
2556@end table
2557
11310833 2558If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2559@value{GDBN} will retain control of all forked processes (including
2560nested forks). You can list the forked processes under the control of
2561@value{GDBN} by using the @w{@code{info forks}} command, and switch
2562from one fork to another by using the @w{@code{fork}} command.
2563
2564@table @code
2565@kindex info forks
2566@item info forks
2567Print a list of all forked processes under the control of @value{GDBN}.
2568The listing will include a fork id, a process id, and the current
2569position (program counter) of the process.
2570
5c95884b
MS
2571@kindex fork @var{fork-id}
2572@item fork @var{fork-id}
2573Make fork number @var{fork-id} the current process. The argument
2574@var{fork-id} is the internal fork number assigned by @value{GDBN},
2575as shown in the first field of the @samp{info forks} display.
2576
11310833
NR
2577@kindex process @var{process-id}
2578@item process @var{process-id}
2579Make process number @var{process-id} the current process. The
2580argument @var{process-id} must be one that is listed in the output of
2581@samp{info forks}.
2582
5c95884b
MS
2583@end table
2584
2585To quit debugging one of the forked processes, you can either detach
f73adfeb 2586from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2587run independently), or delete (and kill) it using the
b8db102d 2588@w{@code{delete fork}} command.
5c95884b
MS
2589
2590@table @code
f73adfeb
AS
2591@kindex detach fork @var{fork-id}
2592@item detach fork @var{fork-id}
5c95884b
MS
2593Detach from the process identified by @value{GDBN} fork number
2594@var{fork-id}, and remove it from the fork list. The process will be
2595allowed to run independently.
2596
b8db102d
MS
2597@kindex delete fork @var{fork-id}
2598@item delete fork @var{fork-id}
5c95884b
MS
2599Kill the process identified by @value{GDBN} fork number @var{fork-id},
2600and remove it from the fork list.
2601
2602@end table
2603
c906108c
SS
2604If you ask to debug a child process and a @code{vfork} is followed by an
2605@code{exec}, @value{GDBN} executes the new target up to the first
2606breakpoint in the new target. If you have a breakpoint set on
2607@code{main} in your original program, the breakpoint will also be set on
2608the child process's @code{main}.
2609
2610When a child process is spawned by @code{vfork}, you cannot debug the
2611child or parent until an @code{exec} call completes.
2612
2613If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2614call executes, the new target restarts. To restart the parent process,
2615use the @code{file} command with the parent executable name as its
2616argument.
2617
2618You can use the @code{catch} command to make @value{GDBN} stop whenever
2619a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2620Catchpoints, ,Setting Catchpoints}.
c906108c 2621
5c95884b 2622@node Checkpoint/Restart
79a6e687 2623@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2624
2625@cindex checkpoint
2626@cindex restart
2627@cindex bookmark
2628@cindex snapshot of a process
2629@cindex rewind program state
2630
2631On certain operating systems@footnote{Currently, only
2632@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2633program's state, called a @dfn{checkpoint}, and come back to it
2634later.
2635
2636Returning to a checkpoint effectively undoes everything that has
2637happened in the program since the @code{checkpoint} was saved. This
2638includes changes in memory, registers, and even (within some limits)
2639system state. Effectively, it is like going back in time to the
2640moment when the checkpoint was saved.
2641
2642Thus, if you're stepping thru a program and you think you're
2643getting close to the point where things go wrong, you can save
2644a checkpoint. Then, if you accidentally go too far and miss
2645the critical statement, instead of having to restart your program
2646from the beginning, you can just go back to the checkpoint and
2647start again from there.
2648
2649This can be especially useful if it takes a lot of time or
2650steps to reach the point where you think the bug occurs.
2651
2652To use the @code{checkpoint}/@code{restart} method of debugging:
2653
2654@table @code
2655@kindex checkpoint
2656@item checkpoint
2657Save a snapshot of the debugged program's current execution state.
2658The @code{checkpoint} command takes no arguments, but each checkpoint
2659is assigned a small integer id, similar to a breakpoint id.
2660
2661@kindex info checkpoints
2662@item info checkpoints
2663List the checkpoints that have been saved in the current debugging
2664session. For each checkpoint, the following information will be
2665listed:
2666
2667@table @code
2668@item Checkpoint ID
2669@item Process ID
2670@item Code Address
2671@item Source line, or label
2672@end table
2673
2674@kindex restart @var{checkpoint-id}
2675@item restart @var{checkpoint-id}
2676Restore the program state that was saved as checkpoint number
2677@var{checkpoint-id}. All program variables, registers, stack frames
2678etc.@: will be returned to the values that they had when the checkpoint
2679was saved. In essence, gdb will ``wind back the clock'' to the point
2680in time when the checkpoint was saved.
2681
2682Note that breakpoints, @value{GDBN} variables, command history etc.
2683are not affected by restoring a checkpoint. In general, a checkpoint
2684only restores things that reside in the program being debugged, not in
2685the debugger.
2686
b8db102d
MS
2687@kindex delete checkpoint @var{checkpoint-id}
2688@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2689Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2690
2691@end table
2692
2693Returning to a previously saved checkpoint will restore the user state
2694of the program being debugged, plus a significant subset of the system
2695(OS) state, including file pointers. It won't ``un-write'' data from
2696a file, but it will rewind the file pointer to the previous location,
2697so that the previously written data can be overwritten. For files
2698opened in read mode, the pointer will also be restored so that the
2699previously read data can be read again.
2700
2701Of course, characters that have been sent to a printer (or other
2702external device) cannot be ``snatched back'', and characters received
2703from eg.@: a serial device can be removed from internal program buffers,
2704but they cannot be ``pushed back'' into the serial pipeline, ready to
2705be received again. Similarly, the actual contents of files that have
2706been changed cannot be restored (at this time).
2707
2708However, within those constraints, you actually can ``rewind'' your
2709program to a previously saved point in time, and begin debugging it
2710again --- and you can change the course of events so as to debug a
2711different execution path this time.
2712
2713@cindex checkpoints and process id
2714Finally, there is one bit of internal program state that will be
2715different when you return to a checkpoint --- the program's process
2716id. Each checkpoint will have a unique process id (or @var{pid}),
2717and each will be different from the program's original @var{pid}.
2718If your program has saved a local copy of its process id, this could
2719potentially pose a problem.
2720
79a6e687 2721@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2722
2723On some systems such as @sc{gnu}/Linux, address space randomization
2724is performed on new processes for security reasons. This makes it
2725difficult or impossible to set a breakpoint, or watchpoint, on an
2726absolute address if you have to restart the program, since the
2727absolute location of a symbol will change from one execution to the
2728next.
2729
2730A checkpoint, however, is an @emph{identical} copy of a process.
2731Therefore if you create a checkpoint at (eg.@:) the start of main,
2732and simply return to that checkpoint instead of restarting the
2733process, you can avoid the effects of address randomization and
2734your symbols will all stay in the same place.
2735
6d2ebf8b 2736@node Stopping
c906108c
SS
2737@chapter Stopping and Continuing
2738
2739The principal purposes of using a debugger are so that you can stop your
2740program before it terminates; or so that, if your program runs into
2741trouble, you can investigate and find out why.
2742
7a292a7a
SS
2743Inside @value{GDBN}, your program may stop for any of several reasons,
2744such as a signal, a breakpoint, or reaching a new line after a
2745@value{GDBN} command such as @code{step}. You may then examine and
2746change variables, set new breakpoints or remove old ones, and then
2747continue execution. Usually, the messages shown by @value{GDBN} provide
2748ample explanation of the status of your program---but you can also
2749explicitly request this information at any time.
c906108c
SS
2750
2751@table @code
2752@kindex info program
2753@item info program
2754Display information about the status of your program: whether it is
7a292a7a 2755running or not, what process it is, and why it stopped.
c906108c
SS
2756@end table
2757
2758@menu
2759* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2760* Continuing and Stepping:: Resuming execution
c906108c 2761* Signals:: Signals
c906108c 2762* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2763@end menu
2764
6d2ebf8b 2765@node Breakpoints
79a6e687 2766@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2767
2768@cindex breakpoints
2769A @dfn{breakpoint} makes your program stop whenever a certain point in
2770the program is reached. For each breakpoint, you can add conditions to
2771control in finer detail whether your program stops. You can set
2772breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2773Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2774should stop by line number, function name or exact address in the
2775program.
2776
09d4efe1
EZ
2777On some systems, you can set breakpoints in shared libraries before
2778the executable is run. There is a minor limitation on HP-UX systems:
2779you must wait until the executable is run in order to set breakpoints
2780in shared library routines that are not called directly by the program
2781(for example, routines that are arguments in a @code{pthread_create}
2782call).
c906108c
SS
2783
2784@cindex watchpoints
fd60e0df 2785@cindex data breakpoints
c906108c
SS
2786@cindex memory tracing
2787@cindex breakpoint on memory address
2788@cindex breakpoint on variable modification
2789A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2790when the value of an expression changes. The expression may be a value
0ced0c34 2791of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2792combined by operators, such as @samp{a + b}. This is sometimes called
2793@dfn{data breakpoints}. You must use a different command to set
79a6e687 2794watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2795from that, you can manage a watchpoint like any other breakpoint: you
2796enable, disable, and delete both breakpoints and watchpoints using the
2797same commands.
c906108c
SS
2798
2799You can arrange to have values from your program displayed automatically
2800whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2801Automatic Display}.
c906108c
SS
2802
2803@cindex catchpoints
2804@cindex breakpoint on events
2805A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2806when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2807exception or the loading of a library. As with watchpoints, you use a
2808different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2809Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2810other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2811@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2812
2813@cindex breakpoint numbers
2814@cindex numbers for breakpoints
2815@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2816catchpoint when you create it; these numbers are successive integers
2817starting with one. In many of the commands for controlling various
2818features of breakpoints you use the breakpoint number to say which
2819breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2820@dfn{disabled}; if disabled, it has no effect on your program until you
2821enable it again.
2822
c5394b80
JM
2823@cindex breakpoint ranges
2824@cindex ranges of breakpoints
2825Some @value{GDBN} commands accept a range of breakpoints on which to
2826operate. A breakpoint range is either a single breakpoint number, like
2827@samp{5}, or two such numbers, in increasing order, separated by a
2828hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2829all breakpoints in that range are operated on.
c5394b80 2830
c906108c
SS
2831@menu
2832* Set Breaks:: Setting breakpoints
2833* Set Watchpoints:: Setting watchpoints
2834* Set Catchpoints:: Setting catchpoints
2835* Delete Breaks:: Deleting breakpoints
2836* Disabling:: Disabling breakpoints
2837* Conditions:: Break conditions
2838* Break Commands:: Breakpoint command lists
c906108c 2839* Breakpoint Menus:: Breakpoint menus
d4f3574e 2840* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2841* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2842@end menu
2843
6d2ebf8b 2844@node Set Breaks
79a6e687 2845@subsection Setting Breakpoints
c906108c 2846
5d161b24 2847@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2848@c consider in particular declaration with/without initialization.
2849@c
2850@c FIXME 2 is there stuff on this already? break at fun start, already init?
2851
2852@kindex break
41afff9a
EZ
2853@kindex b @r{(@code{break})}
2854@vindex $bpnum@r{, convenience variable}
c906108c
SS
2855@cindex latest breakpoint
2856Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2857@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2858number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2859Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2860convenience variables.
2861
c906108c 2862@table @code
2a25a5ba
EZ
2863@item break @var{location}
2864Set a breakpoint at the given @var{location}, which can specify a
2865function name, a line number, or an address of an instruction.
2866(@xref{Specify Location}, for a list of all the possible ways to
2867specify a @var{location}.) The breakpoint will stop your program just
2868before it executes any of the code in the specified @var{location}.
2869
c906108c 2870When using source languages that permit overloading of symbols, such as
2a25a5ba 2871C@t{++}, a function name may refer to more than one possible place to break.
79a6e687 2872@xref{Breakpoint Menus,,Breakpoint Menus}, for a discussion of that situation.
c906108c 2873
c906108c
SS
2874@item break
2875When called without any arguments, @code{break} sets a breakpoint at
2876the next instruction to be executed in the selected stack frame
2877(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2878innermost, this makes your program stop as soon as control
2879returns to that frame. This is similar to the effect of a
2880@code{finish} command in the frame inside the selected frame---except
2881that @code{finish} does not leave an active breakpoint. If you use
2882@code{break} without an argument in the innermost frame, @value{GDBN} stops
2883the next time it reaches the current location; this may be useful
2884inside loops.
2885
2886@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2887least one instruction has been executed. If it did not do this, you
2888would be unable to proceed past a breakpoint without first disabling the
2889breakpoint. This rule applies whether or not the breakpoint already
2890existed when your program stopped.
2891
2892@item break @dots{} if @var{cond}
2893Set a breakpoint with condition @var{cond}; evaluate the expression
2894@var{cond} each time the breakpoint is reached, and stop only if the
2895value is nonzero---that is, if @var{cond} evaluates as true.
2896@samp{@dots{}} stands for one of the possible arguments described
2897above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2898,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2899
2900@kindex tbreak
2901@item tbreak @var{args}
2902Set a breakpoint enabled only for one stop. @var{args} are the
2903same as for the @code{break} command, and the breakpoint is set in the same
2904way, but the breakpoint is automatically deleted after the first time your
79a6e687 2905program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2906
c906108c 2907@kindex hbreak
ba04e063 2908@cindex hardware breakpoints
c906108c 2909@item hbreak @var{args}
d4f3574e
SS
2910Set a hardware-assisted breakpoint. @var{args} are the same as for the
2911@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2912breakpoint requires hardware support and some target hardware may not
2913have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2914debugging, so you can set a breakpoint at an instruction without
2915changing the instruction. This can be used with the new trap-generation
09d4efe1 2916provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2917will generate traps when a program accesses some data or instruction
2918address that is assigned to the debug registers. However the hardware
2919breakpoint registers can take a limited number of breakpoints. For
2920example, on the DSU, only two data breakpoints can be set at a time, and
2921@value{GDBN} will reject this command if more than two are used. Delete
2922or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2923(@pxref{Disabling, ,Disabling Breakpoints}).
2924@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2925For remote targets, you can restrict the number of hardware
2926breakpoints @value{GDBN} will use, see @ref{set remote
2927hardware-breakpoint-limit}.
501eef12 2928
c906108c
SS
2929@kindex thbreak
2930@item thbreak @var{args}
2931Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2932are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2933the same way. However, like the @code{tbreak} command,
c906108c
SS
2934the breakpoint is automatically deleted after the
2935first time your program stops there. Also, like the @code{hbreak}
5d161b24 2936command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2937may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2938See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2939
2940@kindex rbreak
2941@cindex regular expression
c45da7e6
EZ
2942@cindex breakpoints in functions matching a regexp
2943@cindex set breakpoints in many functions
c906108c 2944@item rbreak @var{regex}
c906108c 2945Set breakpoints on all functions matching the regular expression
11cf8741
JM
2946@var{regex}. This command sets an unconditional breakpoint on all
2947matches, printing a list of all breakpoints it set. Once these
2948breakpoints are set, they are treated just like the breakpoints set with
2949the @code{break} command. You can delete them, disable them, or make
2950them conditional the same way as any other breakpoint.
2951
2952The syntax of the regular expression is the standard one used with tools
2953like @file{grep}. Note that this is different from the syntax used by
2954shells, so for instance @code{foo*} matches all functions that include
2955an @code{fo} followed by zero or more @code{o}s. There is an implicit
2956@code{.*} leading and trailing the regular expression you supply, so to
2957match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2958
f7dc1244 2959@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 2960When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
2961breakpoints on overloaded functions that are not members of any special
2962classes.
c906108c 2963
f7dc1244
EZ
2964@cindex set breakpoints on all functions
2965The @code{rbreak} command can be used to set breakpoints in
2966@strong{all} the functions in a program, like this:
2967
2968@smallexample
2969(@value{GDBP}) rbreak .
2970@end smallexample
2971
c906108c
SS
2972@kindex info breakpoints
2973@cindex @code{$_} and @code{info breakpoints}
2974@item info breakpoints @r{[}@var{n}@r{]}
2975@itemx info break @r{[}@var{n}@r{]}
2976@itemx info watchpoints @r{[}@var{n}@r{]}
2977Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
2978not deleted. Optional argument @var{n} means print information only
2979about the specified breakpoint (or watchpoint or catchpoint). For
2980each breakpoint, following columns are printed:
c906108c
SS
2981
2982@table @emph
2983@item Breakpoint Numbers
2984@item Type
2985Breakpoint, watchpoint, or catchpoint.
2986@item Disposition
2987Whether the breakpoint is marked to be disabled or deleted when hit.
2988@item Enabled or Disabled
2989Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
fe6fbf8b 2990that are not enabled. An optional @samp{(p)} suffix marks pending
3b784c4f 2991breakpoints---breakpoints for which address is either not yet
fe6fbf8b
VP
2992resolved, pending load of a shared library, or for which address was
2993in a shared library that was since unloaded. Such breakpoint won't
2994fire until a shared library that has the symbol or line referred by
2995breakpoint is loaded. See below for details.
c906108c 2996@item Address
fe6fbf8b
VP
2997Where the breakpoint is in your program, as a memory address. For a
2998pending breakpoint whose address is not yet known, this field will
2999contain @samp{<PENDING>}. A breakpoint with several locations will
3b784c4f 3000have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3001@item What
3002Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3003line number. For a pending breakpoint, the original string passed to
3004the breakpoint command will be listed as it cannot be resolved until
3005the appropriate shared library is loaded in the future.
c906108c
SS
3006@end table
3007
3008@noindent
3009If a breakpoint is conditional, @code{info break} shows the condition on
3010the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3011are listed after that. A pending breakpoint is allowed to have a condition
3012specified for it. The condition is not parsed for validity until a shared
3013library is loaded that allows the pending breakpoint to resolve to a
3014valid location.
c906108c
SS
3015
3016@noindent
3017@code{info break} with a breakpoint
3018number @var{n} as argument lists only that breakpoint. The
3019convenience variable @code{$_} and the default examining-address for
3020the @code{x} command are set to the address of the last breakpoint
79a6e687 3021listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3022
3023@noindent
3024@code{info break} displays a count of the number of times the breakpoint
3025has been hit. This is especially useful in conjunction with the
3026@code{ignore} command. You can ignore a large number of breakpoint
3027hits, look at the breakpoint info to see how many times the breakpoint
3028was hit, and then run again, ignoring one less than that number. This
3029will get you quickly to the last hit of that breakpoint.
3030@end table
3031
3032@value{GDBN} allows you to set any number of breakpoints at the same place in
3033your program. There is nothing silly or meaningless about this. When
3034the breakpoints are conditional, this is even useful
79a6e687 3035(@pxref{Conditions, ,Break Conditions}).
c906108c 3036
fcda367b 3037It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3038in your program. Examples of this situation are:
3039
3040@itemize @bullet
3041
3042@item
3043For a C@t{++} constructor, the @value{NGCC} compiler generates several
3044instances of the function body, used in different cases.
3045
3046@item
3047For a C@t{++} template function, a given line in the function can
3048correspond to any number of instantiations.
3049
3050@item
3051For an inlined function, a given source line can correspond to
3052several places where that function is inlined.
3053
3054@end itemize
3055
3056In all those cases, @value{GDBN} will insert a breakpoint at all
3057the relevant locations.
3058
3b784c4f
EZ
3059A breakpoint with multiple locations is displayed in the breakpoint
3060table using several rows---one header row, followed by one row for
3061each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3062address column. The rows for individual locations contain the actual
3063addresses for locations, and show the functions to which those
3064locations belong. The number column for a location is of the form
fe6fbf8b
VP
3065@var{breakpoint-number}.@var{location-number}.
3066
3067For example:
3b784c4f 3068
fe6fbf8b
VP
3069@smallexample
3070Num Type Disp Enb Address What
30711 breakpoint keep y <MULTIPLE>
3072 stop only if i==1
3073 breakpoint already hit 1 time
30741.1 y 0x080486a2 in void foo<int>() at t.cc:8
30751.2 y 0x080486ca in void foo<double>() at t.cc:8
3076@end smallexample
3077
3078Each location can be individually enabled or disabled by passing
3079@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3080@code{enable} and @code{disable} commands. Note that you cannot
3081delete the individual locations from the list, you can only delete the
16bfc218 3082entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3083the @kbd{delete @var{num}} command, where @var{num} is the number of
3084the parent breakpoint, 1 in the above example). Disabling or enabling
3085the parent breakpoint (@pxref{Disabling}) affects all of the locations
3086that belong to that breakpoint.
fe6fbf8b 3087
2650777c 3088@cindex pending breakpoints
fe6fbf8b 3089It's quite common to have a breakpoint inside a shared library.
3b784c4f 3090Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3091and possibly repeatedly, as the program is executed. To support
3092this use case, @value{GDBN} updates breakpoint locations whenever
3093any shared library is loaded or unloaded. Typically, you would
fcda367b 3094set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3095debugging session, when the library is not loaded, and when the
3096symbols from the library are not available. When you try to set
3097breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3098a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3099is not yet resolved.
3100
3101After the program is run, whenever a new shared library is loaded,
3102@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3103shared library contains the symbol or line referred to by some
3104pending breakpoint, that breakpoint is resolved and becomes an
3105ordinary breakpoint. When a library is unloaded, all breakpoints
3106that refer to its symbols or source lines become pending again.
3107
3108This logic works for breakpoints with multiple locations, too. For
3109example, if you have a breakpoint in a C@t{++} template function, and
3110a newly loaded shared library has an instantiation of that template,
3111a new location is added to the list of locations for the breakpoint.
3112
3113Except for having unresolved address, pending breakpoints do not
3114differ from regular breakpoints. You can set conditions or commands,
3115enable and disable them and perform other breakpoint operations.
3116
3117@value{GDBN} provides some additional commands for controlling what
3118happens when the @samp{break} command cannot resolve breakpoint
3119address specification to an address:
dd79a6cf
JJ
3120
3121@kindex set breakpoint pending
3122@kindex show breakpoint pending
3123@table @code
3124@item set breakpoint pending auto
3125This is the default behavior. When @value{GDBN} cannot find the breakpoint
3126location, it queries you whether a pending breakpoint should be created.
3127
3128@item set breakpoint pending on
3129This indicates that an unrecognized breakpoint location should automatically
3130result in a pending breakpoint being created.
3131
3132@item set breakpoint pending off
3133This indicates that pending breakpoints are not to be created. Any
3134unrecognized breakpoint location results in an error. This setting does
3135not affect any pending breakpoints previously created.
3136
3137@item show breakpoint pending
3138Show the current behavior setting for creating pending breakpoints.
3139@end table
2650777c 3140
fe6fbf8b
VP
3141The settings above only affect the @code{break} command and its
3142variants. Once breakpoint is set, it will be automatically updated
3143as shared libraries are loaded and unloaded.
2650777c 3144
765dc015
VP
3145@cindex automatic hardware breakpoints
3146For some targets, @value{GDBN} can automatically decide if hardware or
3147software breakpoints should be used, depending on whether the
3148breakpoint address is read-only or read-write. This applies to
3149breakpoints set with the @code{break} command as well as to internal
3150breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3151breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3152breakpoints.
3153
3154You can control this automatic behaviour with the following commands::
3155
3156@kindex set breakpoint auto-hw
3157@kindex show breakpoint auto-hw
3158@table @code
3159@item set breakpoint auto-hw on
3160This is the default behavior. When @value{GDBN} sets a breakpoint, it
3161will try to use the target memory map to decide if software or hardware
3162breakpoint must be used.
3163
3164@item set breakpoint auto-hw off
3165This indicates @value{GDBN} should not automatically select breakpoint
3166type. If the target provides a memory map, @value{GDBN} will warn when
3167trying to set software breakpoint at a read-only address.
3168@end table
3169
3170
c906108c
SS
3171@cindex negative breakpoint numbers
3172@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3173@value{GDBN} itself sometimes sets breakpoints in your program for
3174special purposes, such as proper handling of @code{longjmp} (in C
3175programs). These internal breakpoints are assigned negative numbers,
3176starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3177You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3178@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3179
3180
6d2ebf8b 3181@node Set Watchpoints
79a6e687 3182@subsection Setting Watchpoints
c906108c
SS
3183
3184@cindex setting watchpoints
c906108c
SS
3185You can use a watchpoint to stop execution whenever the value of an
3186expression changes, without having to predict a particular place where
fd60e0df
EZ
3187this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3188The expression may be as simple as the value of a single variable, or
3189as complex as many variables combined by operators. Examples include:
3190
3191@itemize @bullet
3192@item
3193A reference to the value of a single variable.
3194
3195@item
3196An address cast to an appropriate data type. For example,
3197@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3198address (assuming an @code{int} occupies 4 bytes).
3199
3200@item
3201An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3202expression can use any operators valid in the program's native
3203language (@pxref{Languages}).
3204@end itemize
c906108c 3205
82f2d802
EZ
3206@cindex software watchpoints
3207@cindex hardware watchpoints
c906108c 3208Depending on your system, watchpoints may be implemented in software or
2df3850c 3209hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3210program and testing the variable's value each time, which is hundreds of
3211times slower than normal execution. (But this may still be worth it, to
3212catch errors where you have no clue what part of your program is the
3213culprit.)
3214
37e4754d 3215On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3216x86-based targets, @value{GDBN} includes support for hardware
3217watchpoints, which do not slow down the running of your program.
c906108c
SS
3218
3219@table @code
3220@kindex watch
d8b2a693 3221@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3222Set a watchpoint for an expression. @value{GDBN} will break when the
3223expression @var{expr} is written into by the program and its value
3224changes. The simplest (and the most popular) use of this command is
3225to watch the value of a single variable:
3226
3227@smallexample
3228(@value{GDBP}) watch foo
3229@end smallexample
c906108c 3230
d8b2a693
JB
3231If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3232clause, @value{GDBN} breaks only when the thread identified by
3233@var{threadnum} changes the value of @var{expr}. If any other threads
3234change the value of @var{expr}, @value{GDBN} will not break. Note
3235that watchpoints restricted to a single thread in this way only work
3236with Hardware Watchpoints.
3237
c906108c 3238@kindex rwatch
d8b2a693 3239@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3240Set a watchpoint that will break when the value of @var{expr} is read
3241by the program.
c906108c
SS
3242
3243@kindex awatch
d8b2a693 3244@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3245Set a watchpoint that will break when @var{expr} is either read from
3246or written into by the program.
c906108c 3247
45ac1734 3248@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3249@item info watchpoints
3250This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3251it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3252@end table
3253
3254@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3255watchpoints execute very quickly, and the debugger reports a change in
3256value at the exact instruction where the change occurs. If @value{GDBN}
3257cannot set a hardware watchpoint, it sets a software watchpoint, which
3258executes more slowly and reports the change in value at the next
82f2d802
EZ
3259@emph{statement}, not the instruction, after the change occurs.
3260
82f2d802
EZ
3261@cindex use only software watchpoints
3262You can force @value{GDBN} to use only software watchpoints with the
3263@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3264zero, @value{GDBN} will never try to use hardware watchpoints, even if
3265the underlying system supports them. (Note that hardware-assisted
3266watchpoints that were set @emph{before} setting
3267@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3268mechanism of watching expression values.)
c906108c 3269
9c16f35a
EZ
3270@table @code
3271@item set can-use-hw-watchpoints
3272@kindex set can-use-hw-watchpoints
3273Set whether or not to use hardware watchpoints.
3274
3275@item show can-use-hw-watchpoints
3276@kindex show can-use-hw-watchpoints
3277Show the current mode of using hardware watchpoints.
3278@end table
3279
3280For remote targets, you can restrict the number of hardware
3281watchpoints @value{GDBN} will use, see @ref{set remote
3282hardware-breakpoint-limit}.
3283
c906108c
SS
3284When you issue the @code{watch} command, @value{GDBN} reports
3285
474c8240 3286@smallexample
c906108c 3287Hardware watchpoint @var{num}: @var{expr}
474c8240 3288@end smallexample
c906108c
SS
3289
3290@noindent
3291if it was able to set a hardware watchpoint.
3292
7be570e7
JM
3293Currently, the @code{awatch} and @code{rwatch} commands can only set
3294hardware watchpoints, because accesses to data that don't change the
3295value of the watched expression cannot be detected without examining
3296every instruction as it is being executed, and @value{GDBN} does not do
3297that currently. If @value{GDBN} finds that it is unable to set a
3298hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3299will print a message like this:
3300
3301@smallexample
3302Expression cannot be implemented with read/access watchpoint.
3303@end smallexample
3304
3305Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3306data type of the watched expression is wider than what a hardware
3307watchpoint on the target machine can handle. For example, some systems
3308can only watch regions that are up to 4 bytes wide; on such systems you
3309cannot set hardware watchpoints for an expression that yields a
3310double-precision floating-point number (which is typically 8 bytes
3311wide). As a work-around, it might be possible to break the large region
3312into a series of smaller ones and watch them with separate watchpoints.
3313
3314If you set too many hardware watchpoints, @value{GDBN} might be unable
3315to insert all of them when you resume the execution of your program.
3316Since the precise number of active watchpoints is unknown until such
3317time as the program is about to be resumed, @value{GDBN} might not be
3318able to warn you about this when you set the watchpoints, and the
3319warning will be printed only when the program is resumed:
3320
3321@smallexample
3322Hardware watchpoint @var{num}: Could not insert watchpoint
3323@end smallexample
3324
3325@noindent
3326If this happens, delete or disable some of the watchpoints.
3327
fd60e0df
EZ
3328Watching complex expressions that reference many variables can also
3329exhaust the resources available for hardware-assisted watchpoints.
3330That's because @value{GDBN} needs to watch every variable in the
3331expression with separately allocated resources.
3332
7be570e7
JM
3333The SPARClite DSU will generate traps when a program accesses some data
3334or instruction address that is assigned to the debug registers. For the
3335data addresses, DSU facilitates the @code{watch} command. However the
3336hardware breakpoint registers can only take two data watchpoints, and
3337both watchpoints must be the same kind. For example, you can set two
3338watchpoints with @code{watch} commands, two with @code{rwatch} commands,
3339@strong{or} two with @code{awatch} commands, but you cannot set one
3340watchpoint with one command and the other with a different command.
c906108c
SS
3341@value{GDBN} will reject the command if you try to mix watchpoints.
3342Delete or disable unused watchpoint commands before setting new ones.
3343
3344If you call a function interactively using @code{print} or @code{call},
2df3850c 3345any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3346kind of breakpoint or the call completes.
3347
7be570e7
JM
3348@value{GDBN} automatically deletes watchpoints that watch local
3349(automatic) variables, or expressions that involve such variables, when
3350they go out of scope, that is, when the execution leaves the block in
3351which these variables were defined. In particular, when the program
3352being debugged terminates, @emph{all} local variables go out of scope,
3353and so only watchpoints that watch global variables remain set. If you
3354rerun the program, you will need to set all such watchpoints again. One
3355way of doing that would be to set a code breakpoint at the entry to the
3356@code{main} function and when it breaks, set all the watchpoints.
3357
c906108c
SS
3358@cindex watchpoints and threads
3359@cindex threads and watchpoints
d983da9c
DJ
3360In multi-threaded programs, watchpoints will detect changes to the
3361watched expression from every thread.
3362
3363@quotation
3364@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3365have only limited usefulness. If @value{GDBN} creates a software
3366watchpoint, it can only watch the value of an expression @emph{in a
3367single thread}. If you are confident that the expression can only
3368change due to the current thread's activity (and if you are also
3369confident that no other thread can become current), then you can use
3370software watchpoints as usual. However, @value{GDBN} may not notice
3371when a non-current thread's activity changes the expression. (Hardware
3372watchpoints, in contrast, watch an expression in all threads.)
c906108c 3373@end quotation
c906108c 3374
501eef12
AC
3375@xref{set remote hardware-watchpoint-limit}.
3376
6d2ebf8b 3377@node Set Catchpoints
79a6e687 3378@subsection Setting Catchpoints
d4f3574e 3379@cindex catchpoints, setting
c906108c
SS
3380@cindex exception handlers
3381@cindex event handling
3382
3383You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3384kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3385shared library. Use the @code{catch} command to set a catchpoint.
3386
3387@table @code
3388@kindex catch
3389@item catch @var{event}
3390Stop when @var{event} occurs. @var{event} can be any of the following:
3391@table @code
3392@item throw
4644b6e3 3393@cindex stop on C@t{++} exceptions
b37052ae 3394The throwing of a C@t{++} exception.
c906108c
SS
3395
3396@item catch
b37052ae 3397The catching of a C@t{++} exception.
c906108c 3398
8936fcda
JB
3399@item exception
3400@cindex Ada exception catching
3401@cindex catch Ada exceptions
3402An Ada exception being raised. If an exception name is specified
3403at the end of the command (eg @code{catch exception Program_Error}),
3404the debugger will stop only when this specific exception is raised.
3405Otherwise, the debugger stops execution when any Ada exception is raised.
3406
3407@item exception unhandled
3408An exception that was raised but is not handled by the program.
3409
3410@item assert
3411A failed Ada assertion.
3412
c906108c 3413@item exec
4644b6e3 3414@cindex break on fork/exec
c906108c
SS
3415A call to @code{exec}. This is currently only available for HP-UX.
3416
3417@item fork
c906108c
SS
3418A call to @code{fork}. This is currently only available for HP-UX.
3419
3420@item vfork
c906108c
SS
3421A call to @code{vfork}. This is currently only available for HP-UX.
3422
3423@item load
3424@itemx load @var{libname}
4644b6e3 3425@cindex break on load/unload of shared library
c906108c
SS
3426The dynamic loading of any shared library, or the loading of the library
3427@var{libname}. This is currently only available for HP-UX.
3428
3429@item unload
3430@itemx unload @var{libname}
c906108c
SS
3431The unloading of any dynamically loaded shared library, or the unloading
3432of the library @var{libname}. This is currently only available for HP-UX.
3433@end table
3434
3435@item tcatch @var{event}
3436Set a catchpoint that is enabled only for one stop. The catchpoint is
3437automatically deleted after the first time the event is caught.
3438
3439@end table
3440
3441Use the @code{info break} command to list the current catchpoints.
3442
b37052ae 3443There are currently some limitations to C@t{++} exception handling
c906108c
SS
3444(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3445
3446@itemize @bullet
3447@item
3448If you call a function interactively, @value{GDBN} normally returns
3449control to you when the function has finished executing. If the call
3450raises an exception, however, the call may bypass the mechanism that
3451returns control to you and cause your program either to abort or to
3452simply continue running until it hits a breakpoint, catches a signal
3453that @value{GDBN} is listening for, or exits. This is the case even if
3454you set a catchpoint for the exception; catchpoints on exceptions are
3455disabled within interactive calls.
3456
3457@item
3458You cannot raise an exception interactively.
3459
3460@item
3461You cannot install an exception handler interactively.
3462@end itemize
3463
3464@cindex raise exceptions
3465Sometimes @code{catch} is not the best way to debug exception handling:
3466if you need to know exactly where an exception is raised, it is better to
3467stop @emph{before} the exception handler is called, since that way you
3468can see the stack before any unwinding takes place. If you set a
3469breakpoint in an exception handler instead, it may not be easy to find
3470out where the exception was raised.
3471
3472To stop just before an exception handler is called, you need some
b37052ae 3473knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3474raised by calling a library function named @code{__raise_exception}
3475which has the following ANSI C interface:
3476
474c8240 3477@smallexample
c906108c 3478 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3479 @var{id} is the exception identifier. */
3480 void __raise_exception (void **addr, void *id);
474c8240 3481@end smallexample
c906108c
SS
3482
3483@noindent
3484To make the debugger catch all exceptions before any stack
3485unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3486(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3487
79a6e687 3488With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3489that depends on the value of @var{id}, you can stop your program when
3490a specific exception is raised. You can use multiple conditional
3491breakpoints to stop your program when any of a number of exceptions are
3492raised.
3493
3494
6d2ebf8b 3495@node Delete Breaks
79a6e687 3496@subsection Deleting Breakpoints
c906108c
SS
3497
3498@cindex clearing breakpoints, watchpoints, catchpoints
3499@cindex deleting breakpoints, watchpoints, catchpoints
3500It is often necessary to eliminate a breakpoint, watchpoint, or
3501catchpoint once it has done its job and you no longer want your program
3502to stop there. This is called @dfn{deleting} the breakpoint. A
3503breakpoint that has been deleted no longer exists; it is forgotten.
3504
3505With the @code{clear} command you can delete breakpoints according to
3506where they are in your program. With the @code{delete} command you can
3507delete individual breakpoints, watchpoints, or catchpoints by specifying
3508their breakpoint numbers.
3509
3510It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3511automatically ignores breakpoints on the first instruction to be executed
3512when you continue execution without changing the execution address.
3513
3514@table @code
3515@kindex clear
3516@item clear
3517Delete any breakpoints at the next instruction to be executed in the
79a6e687 3518selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3519the innermost frame is selected, this is a good way to delete a
3520breakpoint where your program just stopped.
3521
2a25a5ba
EZ
3522@item clear @var{location}
3523Delete any breakpoints set at the specified @var{location}.
3524@xref{Specify Location}, for the various forms of @var{location}; the
3525most useful ones are listed below:
3526
3527@table @code
c906108c
SS
3528@item clear @var{function}
3529@itemx clear @var{filename}:@var{function}
09d4efe1 3530Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3531
3532@item clear @var{linenum}
3533@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3534Delete any breakpoints set at or within the code of the specified
3535@var{linenum} of the specified @var{filename}.
2a25a5ba 3536@end table
c906108c
SS
3537
3538@cindex delete breakpoints
3539@kindex delete
41afff9a 3540@kindex d @r{(@code{delete})}
c5394b80
JM
3541@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3542Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3543ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3544breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3545confirm off}). You can abbreviate this command as @code{d}.
3546@end table
3547
6d2ebf8b 3548@node Disabling
79a6e687 3549@subsection Disabling Breakpoints
c906108c 3550
4644b6e3 3551@cindex enable/disable a breakpoint
c906108c
SS
3552Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3553prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3554it had been deleted, but remembers the information on the breakpoint so
3555that you can @dfn{enable} it again later.
3556
3557You disable and enable breakpoints, watchpoints, and catchpoints with
3558the @code{enable} and @code{disable} commands, optionally specifying one
3559or more breakpoint numbers as arguments. Use @code{info break} or
3560@code{info watch} to print a list of breakpoints, watchpoints, and
3561catchpoints if you do not know which numbers to use.
3562
3b784c4f
EZ
3563Disabling and enabling a breakpoint that has multiple locations
3564affects all of its locations.
3565
c906108c
SS
3566A breakpoint, watchpoint, or catchpoint can have any of four different
3567states of enablement:
3568
3569@itemize @bullet
3570@item
3571Enabled. The breakpoint stops your program. A breakpoint set
3572with the @code{break} command starts out in this state.
3573@item
3574Disabled. The breakpoint has no effect on your program.
3575@item
3576Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3577disabled.
c906108c
SS
3578@item
3579Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3580immediately after it does so it is deleted permanently. A breakpoint
3581set with the @code{tbreak} command starts out in this state.
c906108c
SS
3582@end itemize
3583
3584You can use the following commands to enable or disable breakpoints,
3585watchpoints, and catchpoints:
3586
3587@table @code
c906108c 3588@kindex disable
41afff9a 3589@kindex dis @r{(@code{disable})}
c5394b80 3590@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3591Disable the specified breakpoints---or all breakpoints, if none are
3592listed. A disabled breakpoint has no effect but is not forgotten. All
3593options such as ignore-counts, conditions and commands are remembered in
3594case the breakpoint is enabled again later. You may abbreviate
3595@code{disable} as @code{dis}.
3596
c906108c 3597@kindex enable
c5394b80 3598@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3599Enable the specified breakpoints (or all defined breakpoints). They
3600become effective once again in stopping your program.
3601
c5394b80 3602@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3603Enable the specified breakpoints temporarily. @value{GDBN} disables any
3604of these breakpoints immediately after stopping your program.
3605
c5394b80 3606@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3607Enable the specified breakpoints to work once, then die. @value{GDBN}
3608deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3609Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3610@end table
3611
d4f3574e
SS
3612@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3613@c confusing: tbreak is also initially enabled.
c906108c 3614Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3615,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3616subsequently, they become disabled or enabled only when you use one of
3617the commands above. (The command @code{until} can set and delete a
3618breakpoint of its own, but it does not change the state of your other
3619breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3620Stepping}.)
c906108c 3621
6d2ebf8b 3622@node Conditions
79a6e687 3623@subsection Break Conditions
c906108c
SS
3624@cindex conditional breakpoints
3625@cindex breakpoint conditions
3626
3627@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3628@c in particular for a watchpoint?
c906108c
SS
3629The simplest sort of breakpoint breaks every time your program reaches a
3630specified place. You can also specify a @dfn{condition} for a
3631breakpoint. A condition is just a Boolean expression in your
3632programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3633a condition evaluates the expression each time your program reaches it,
3634and your program stops only if the condition is @emph{true}.
3635
3636This is the converse of using assertions for program validation; in that
3637situation, you want to stop when the assertion is violated---that is,
3638when the condition is false. In C, if you want to test an assertion expressed
3639by the condition @var{assert}, you should set the condition
3640@samp{! @var{assert}} on the appropriate breakpoint.
3641
3642Conditions are also accepted for watchpoints; you may not need them,
3643since a watchpoint is inspecting the value of an expression anyhow---but
3644it might be simpler, say, to just set a watchpoint on a variable name,
3645and specify a condition that tests whether the new value is an interesting
3646one.
3647
3648Break conditions can have side effects, and may even call functions in
3649your program. This can be useful, for example, to activate functions
3650that log program progress, or to use your own print functions to
3651format special data structures. The effects are completely predictable
3652unless there is another enabled breakpoint at the same address. (In
3653that case, @value{GDBN} might see the other breakpoint first and stop your
3654program without checking the condition of this one.) Note that
d4f3574e
SS
3655breakpoint commands are usually more convenient and flexible than break
3656conditions for the
c906108c 3657purpose of performing side effects when a breakpoint is reached
79a6e687 3658(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3659
3660Break conditions can be specified when a breakpoint is set, by using
3661@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3662Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3663with the @code{condition} command.
53a5351d 3664
c906108c
SS
3665You can also use the @code{if} keyword with the @code{watch} command.
3666The @code{catch} command does not recognize the @code{if} keyword;
3667@code{condition} is the only way to impose a further condition on a
3668catchpoint.
c906108c
SS
3669
3670@table @code
3671@kindex condition
3672@item condition @var{bnum} @var{expression}
3673Specify @var{expression} as the break condition for breakpoint,
3674watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3675breakpoint @var{bnum} stops your program only if the value of
3676@var{expression} is true (nonzero, in C). When you use
3677@code{condition}, @value{GDBN} checks @var{expression} immediately for
3678syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3679referents in the context of your breakpoint. If @var{expression} uses
3680symbols not referenced in the context of the breakpoint, @value{GDBN}
3681prints an error message:
3682
474c8240 3683@smallexample
d4f3574e 3684No symbol "foo" in current context.
474c8240 3685@end smallexample
d4f3574e
SS
3686
3687@noindent
c906108c
SS
3688@value{GDBN} does
3689not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3690command (or a command that sets a breakpoint with a condition, like
3691@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3692
3693@item condition @var{bnum}
3694Remove the condition from breakpoint number @var{bnum}. It becomes
3695an ordinary unconditional breakpoint.
3696@end table
3697
3698@cindex ignore count (of breakpoint)
3699A special case of a breakpoint condition is to stop only when the
3700breakpoint has been reached a certain number of times. This is so
3701useful that there is a special way to do it, using the @dfn{ignore
3702count} of the breakpoint. Every breakpoint has an ignore count, which
3703is an integer. Most of the time, the ignore count is zero, and
3704therefore has no effect. But if your program reaches a breakpoint whose
3705ignore count is positive, then instead of stopping, it just decrements
3706the ignore count by one and continues. As a result, if the ignore count
3707value is @var{n}, the breakpoint does not stop the next @var{n} times
3708your program reaches it.
3709
3710@table @code
3711@kindex ignore
3712@item ignore @var{bnum} @var{count}
3713Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3714The next @var{count} times the breakpoint is reached, your program's
3715execution does not stop; other than to decrement the ignore count, @value{GDBN}
3716takes no action.
3717
3718To make the breakpoint stop the next time it is reached, specify
3719a count of zero.
3720
3721When you use @code{continue} to resume execution of your program from a
3722breakpoint, you can specify an ignore count directly as an argument to
3723@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3724Stepping,,Continuing and Stepping}.
c906108c
SS
3725
3726If a breakpoint has a positive ignore count and a condition, the
3727condition is not checked. Once the ignore count reaches zero,
3728@value{GDBN} resumes checking the condition.
3729
3730You could achieve the effect of the ignore count with a condition such
3731as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3732is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3733Variables}.
c906108c
SS
3734@end table
3735
3736Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3737
3738
6d2ebf8b 3739@node Break Commands
79a6e687 3740@subsection Breakpoint Command Lists
c906108c
SS
3741
3742@cindex breakpoint commands
3743You can give any breakpoint (or watchpoint or catchpoint) a series of
3744commands to execute when your program stops due to that breakpoint. For
3745example, you might want to print the values of certain expressions, or
3746enable other breakpoints.
3747
3748@table @code
3749@kindex commands
ca91424e 3750@kindex end@r{ (breakpoint commands)}
c906108c
SS
3751@item commands @r{[}@var{bnum}@r{]}
3752@itemx @dots{} @var{command-list} @dots{}
3753@itemx end
3754Specify a list of commands for breakpoint number @var{bnum}. The commands
3755themselves appear on the following lines. Type a line containing just
3756@code{end} to terminate the commands.
3757
3758To remove all commands from a breakpoint, type @code{commands} and
3759follow it immediately with @code{end}; that is, give no commands.
3760
3761With no @var{bnum} argument, @code{commands} refers to the last
3762breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3763recently encountered).
3764@end table
3765
3766Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3767disabled within a @var{command-list}.
3768
3769You can use breakpoint commands to start your program up again. Simply
3770use the @code{continue} command, or @code{step}, or any other command
3771that resumes execution.
3772
3773Any other commands in the command list, after a command that resumes
3774execution, are ignored. This is because any time you resume execution
3775(even with a simple @code{next} or @code{step}), you may encounter
3776another breakpoint---which could have its own command list, leading to
3777ambiguities about which list to execute.
3778
3779@kindex silent
3780If the first command you specify in a command list is @code{silent}, the
3781usual message about stopping at a breakpoint is not printed. This may
3782be desirable for breakpoints that are to print a specific message and
3783then continue. If none of the remaining commands print anything, you
3784see no sign that the breakpoint was reached. @code{silent} is
3785meaningful only at the beginning of a breakpoint command list.
3786
3787The commands @code{echo}, @code{output}, and @code{printf} allow you to
3788print precisely controlled output, and are often useful in silent
79a6e687 3789breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3790
3791For example, here is how you could use breakpoint commands to print the
3792value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3793
474c8240 3794@smallexample
c906108c
SS
3795break foo if x>0
3796commands
3797silent
3798printf "x is %d\n",x
3799cont
3800end
474c8240 3801@end smallexample
c906108c
SS
3802
3803One application for breakpoint commands is to compensate for one bug so
3804you can test for another. Put a breakpoint just after the erroneous line
3805of code, give it a condition to detect the case in which something
3806erroneous has been done, and give it commands to assign correct values
3807to any variables that need them. End with the @code{continue} command
3808so that your program does not stop, and start with the @code{silent}
3809command so that no output is produced. Here is an example:
3810
474c8240 3811@smallexample
c906108c
SS
3812break 403
3813commands
3814silent
3815set x = y + 4
3816cont
3817end
474c8240 3818@end smallexample
c906108c 3819
6d2ebf8b 3820@node Breakpoint Menus
79a6e687 3821@subsection Breakpoint Menus
c906108c
SS
3822@cindex overloading
3823@cindex symbol overloading
3824
b383017d 3825Some programming languages (notably C@t{++} and Objective-C) permit a
b37303ee 3826single function name
c906108c
SS
3827to be defined several times, for application in different contexts.
3828This is called @dfn{overloading}. When a function name is overloaded,
3829@samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3b784c4f
EZ
3830a breakpoint. You can use explicit signature of the function, as in
3831@samp{break @var{function}(@var{types})}, to specify which
c906108c
SS
3832particular version of the function you want. Otherwise, @value{GDBN} offers
3833you a menu of numbered choices for different possible breakpoints, and
3834waits for your selection with the prompt @samp{>}. The first two
3835options are always @samp{[0] cancel} and @samp{[1] all}. Typing @kbd{1}
3836sets a breakpoint at each definition of @var{function}, and typing
3837@kbd{0} aborts the @code{break} command without setting any new
3838breakpoints.
3839
3840For example, the following session excerpt shows an attempt to set a
3841breakpoint at the overloaded symbol @code{String::after}.
3842We choose three particular definitions of that function name:
3843
3844@c FIXME! This is likely to change to show arg type lists, at least
3845@smallexample
3846@group
3847(@value{GDBP}) b String::after
3848[0] cancel
3849[1] all
3850[2] file:String.cc; line number:867
3851[3] file:String.cc; line number:860
3852[4] file:String.cc; line number:875
3853[5] file:String.cc; line number:853
3854[6] file:String.cc; line number:846
3855[7] file:String.cc; line number:735
3856> 2 4 6
3857Breakpoint 1 at 0xb26c: file String.cc, line 867.
3858Breakpoint 2 at 0xb344: file String.cc, line 875.
3859Breakpoint 3 at 0xafcc: file String.cc, line 846.
3860Multiple breakpoints were set.
3861Use the "delete" command to delete unwanted
3862 breakpoints.
3863(@value{GDBP})
3864@end group
3865@end smallexample
c906108c
SS
3866
3867@c @ifclear BARETARGET
6d2ebf8b 3868@node Error in Breakpoints
d4f3574e 3869@subsection ``Cannot insert breakpoints''
c906108c
SS
3870@c
3871@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3872@c
d4f3574e
SS
3873Under some operating systems, breakpoints cannot be used in a program if
3874any other process is running that program. In this situation,
5d161b24 3875attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3876@value{GDBN} to print an error message:
3877
474c8240 3878@smallexample
d4f3574e
SS
3879Cannot insert breakpoints.
3880The same program may be running in another process.
474c8240 3881@end smallexample
d4f3574e
SS
3882
3883When this happens, you have three ways to proceed:
3884
3885@enumerate
3886@item
3887Remove or disable the breakpoints, then continue.
3888
3889@item
5d161b24 3890Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3891name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3892that @value{GDBN} should run your program under that name.
d4f3574e
SS
3893Then start your program again.
3894
3895@item
3896Relink your program so that the text segment is nonsharable, using the
3897linker option @samp{-N}. The operating system limitation may not apply
3898to nonsharable executables.
3899@end enumerate
c906108c
SS
3900@c @end ifclear
3901
d4f3574e
SS
3902A similar message can be printed if you request too many active
3903hardware-assisted breakpoints and watchpoints:
3904
3905@c FIXME: the precise wording of this message may change; the relevant
3906@c source change is not committed yet (Sep 3, 1999).
3907@smallexample
3908Stopped; cannot insert breakpoints.
3909You may have requested too many hardware breakpoints and watchpoints.
3910@end smallexample
3911
3912@noindent
3913This message is printed when you attempt to resume the program, since
3914only then @value{GDBN} knows exactly how many hardware breakpoints and
3915watchpoints it needs to insert.
3916
3917When this message is printed, you need to disable or remove some of the
3918hardware-assisted breakpoints and watchpoints, and then continue.
3919
79a6e687 3920@node Breakpoint-related Warnings
1485d690
KB
3921@subsection ``Breakpoint address adjusted...''
3922@cindex breakpoint address adjusted
3923
3924Some processor architectures place constraints on the addresses at
3925which breakpoints may be placed. For architectures thus constrained,
3926@value{GDBN} will attempt to adjust the breakpoint's address to comply
3927with the constraints dictated by the architecture.
3928
3929One example of such an architecture is the Fujitsu FR-V. The FR-V is
3930a VLIW architecture in which a number of RISC-like instructions may be
3931bundled together for parallel execution. The FR-V architecture
3932constrains the location of a breakpoint instruction within such a
3933bundle to the instruction with the lowest address. @value{GDBN}
3934honors this constraint by adjusting a breakpoint's address to the
3935first in the bundle.
3936
3937It is not uncommon for optimized code to have bundles which contain
3938instructions from different source statements, thus it may happen that
3939a breakpoint's address will be adjusted from one source statement to
3940another. Since this adjustment may significantly alter @value{GDBN}'s
3941breakpoint related behavior from what the user expects, a warning is
3942printed when the breakpoint is first set and also when the breakpoint
3943is hit.
3944
3945A warning like the one below is printed when setting a breakpoint
3946that's been subject to address adjustment:
3947
3948@smallexample
3949warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3950@end smallexample
3951
3952Such warnings are printed both for user settable and @value{GDBN}'s
3953internal breakpoints. If you see one of these warnings, you should
3954verify that a breakpoint set at the adjusted address will have the
3955desired affect. If not, the breakpoint in question may be removed and
b383017d 3956other breakpoints may be set which will have the desired behavior.
1485d690
KB
3957E.g., it may be sufficient to place the breakpoint at a later
3958instruction. A conditional breakpoint may also be useful in some
3959cases to prevent the breakpoint from triggering too often.
3960
3961@value{GDBN} will also issue a warning when stopping at one of these
3962adjusted breakpoints:
3963
3964@smallexample
3965warning: Breakpoint 1 address previously adjusted from 0x00010414
3966to 0x00010410.
3967@end smallexample
3968
3969When this warning is encountered, it may be too late to take remedial
3970action except in cases where the breakpoint is hit earlier or more
3971frequently than expected.
d4f3574e 3972
6d2ebf8b 3973@node Continuing and Stepping
79a6e687 3974@section Continuing and Stepping
c906108c
SS
3975
3976@cindex stepping
3977@cindex continuing
3978@cindex resuming execution
3979@dfn{Continuing} means resuming program execution until your program
3980completes normally. In contrast, @dfn{stepping} means executing just
3981one more ``step'' of your program, where ``step'' may mean either one
3982line of source code, or one machine instruction (depending on what
7a292a7a
SS
3983particular command you use). Either when continuing or when stepping,
3984your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
3985it stops due to a signal, you may want to use @code{handle}, or use
3986@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
3987
3988@table @code
3989@kindex continue
41afff9a
EZ
3990@kindex c @r{(@code{continue})}
3991@kindex fg @r{(resume foreground execution)}
c906108c
SS
3992@item continue @r{[}@var{ignore-count}@r{]}
3993@itemx c @r{[}@var{ignore-count}@r{]}
3994@itemx fg @r{[}@var{ignore-count}@r{]}
3995Resume program execution, at the address where your program last stopped;
3996any breakpoints set at that address are bypassed. The optional argument
3997@var{ignore-count} allows you to specify a further number of times to
3998ignore a breakpoint at this location; its effect is like that of
79a6e687 3999@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
4000
4001The argument @var{ignore-count} is meaningful only when your program
4002stopped due to a breakpoint. At other times, the argument to
4003@code{continue} is ignored.
4004
d4f3574e
SS
4005The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4006debugged program is deemed to be the foreground program) are provided
4007purely for convenience, and have exactly the same behavior as
4008@code{continue}.
c906108c
SS
4009@end table
4010
4011To resume execution at a different place, you can use @code{return}
79a6e687 4012(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4013calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4014Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4015
4016A typical technique for using stepping is to set a breakpoint
79a6e687 4017(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4018beginning of the function or the section of your program where a problem
4019is believed to lie, run your program until it stops at that breakpoint,
4020and then step through the suspect area, examining the variables that are
4021interesting, until you see the problem happen.
4022
4023@table @code
4024@kindex step
41afff9a 4025@kindex s @r{(@code{step})}
c906108c
SS
4026@item step
4027Continue running your program until control reaches a different source
4028line, then stop it and return control to @value{GDBN}. This command is
4029abbreviated @code{s}.
4030
4031@quotation
4032@c "without debugging information" is imprecise; actually "without line
4033@c numbers in the debugging information". (gcc -g1 has debugging info but
4034@c not line numbers). But it seems complex to try to make that
4035@c distinction here.
4036@emph{Warning:} If you use the @code{step} command while control is
4037within a function that was compiled without debugging information,
4038execution proceeds until control reaches a function that does have
4039debugging information. Likewise, it will not step into a function which
4040is compiled without debugging information. To step through functions
4041without debugging information, use the @code{stepi} command, described
4042below.
4043@end quotation
4044
4a92d011
EZ
4045The @code{step} command only stops at the first instruction of a source
4046line. This prevents the multiple stops that could otherwise occur in
4047@code{switch} statements, @code{for} loops, etc. @code{step} continues
4048to stop if a function that has debugging information is called within
4049the line. In other words, @code{step} @emph{steps inside} any functions
4050called within the line.
c906108c 4051
d4f3574e
SS
4052Also, the @code{step} command only enters a function if there is line
4053number information for the function. Otherwise it acts like the
5d161b24 4054@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4055on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4056was any debugging information about the routine.
c906108c
SS
4057
4058@item step @var{count}
4059Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4060breakpoint is reached, or a signal not related to stepping occurs before
4061@var{count} steps, stepping stops right away.
c906108c
SS
4062
4063@kindex next
41afff9a 4064@kindex n @r{(@code{next})}
c906108c
SS
4065@item next @r{[}@var{count}@r{]}
4066Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4067This is similar to @code{step}, but function calls that appear within
4068the line of code are executed without stopping. Execution stops when
4069control reaches a different line of code at the original stack level
4070that was executing when you gave the @code{next} command. This command
4071is abbreviated @code{n}.
c906108c
SS
4072
4073An argument @var{count} is a repeat count, as for @code{step}.
4074
4075
4076@c FIX ME!! Do we delete this, or is there a way it fits in with
4077@c the following paragraph? --- Vctoria
4078@c
4079@c @code{next} within a function that lacks debugging information acts like
4080@c @code{step}, but any function calls appearing within the code of the
4081@c function are executed without stopping.
4082
d4f3574e
SS
4083The @code{next} command only stops at the first instruction of a
4084source line. This prevents multiple stops that could otherwise occur in
4a92d011 4085@code{switch} statements, @code{for} loops, etc.
c906108c 4086
b90a5f51
CF
4087@kindex set step-mode
4088@item set step-mode
4089@cindex functions without line info, and stepping
4090@cindex stepping into functions with no line info
4091@itemx set step-mode on
4a92d011 4092The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4093stop at the first instruction of a function which contains no debug line
4094information rather than stepping over it.
4095
4a92d011
EZ
4096This is useful in cases where you may be interested in inspecting the
4097machine instructions of a function which has no symbolic info and do not
4098want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4099
4100@item set step-mode off
4a92d011 4101Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4102debug information. This is the default.
4103
9c16f35a
EZ
4104@item show step-mode
4105Show whether @value{GDBN} will stop in or step over functions without
4106source line debug information.
4107
c906108c
SS
4108@kindex finish
4109@item finish
4110Continue running until just after function in the selected stack frame
4111returns. Print the returned value (if any).
4112
4113Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4114,Returning from a Function}).
c906108c
SS
4115
4116@kindex until
41afff9a 4117@kindex u @r{(@code{until})}
09d4efe1 4118@cindex run until specified location
c906108c
SS
4119@item until
4120@itemx u
4121Continue running until a source line past the current line, in the
4122current stack frame, is reached. This command is used to avoid single
4123stepping through a loop more than once. It is like the @code{next}
4124command, except that when @code{until} encounters a jump, it
4125automatically continues execution until the program counter is greater
4126than the address of the jump.
4127
4128This means that when you reach the end of a loop after single stepping
4129though it, @code{until} makes your program continue execution until it
4130exits the loop. In contrast, a @code{next} command at the end of a loop
4131simply steps back to the beginning of the loop, which forces you to step
4132through the next iteration.
4133
4134@code{until} always stops your program if it attempts to exit the current
4135stack frame.
4136
4137@code{until} may produce somewhat counterintuitive results if the order
4138of machine code does not match the order of the source lines. For
4139example, in the following excerpt from a debugging session, the @code{f}
4140(@code{frame}) command shows that execution is stopped at line
4141@code{206}; yet when we use @code{until}, we get to line @code{195}:
4142
474c8240 4143@smallexample
c906108c
SS
4144(@value{GDBP}) f
4145#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4146206 expand_input();
4147(@value{GDBP}) until
4148195 for ( ; argc > 0; NEXTARG) @{
474c8240 4149@end smallexample
c906108c
SS
4150
4151This happened because, for execution efficiency, the compiler had
4152generated code for the loop closure test at the end, rather than the
4153start, of the loop---even though the test in a C @code{for}-loop is
4154written before the body of the loop. The @code{until} command appeared
4155to step back to the beginning of the loop when it advanced to this
4156expression; however, it has not really gone to an earlier
4157statement---not in terms of the actual machine code.
4158
4159@code{until} with no argument works by means of single
4160instruction stepping, and hence is slower than @code{until} with an
4161argument.
4162
4163@item until @var{location}
4164@itemx u @var{location}
4165Continue running your program until either the specified location is
4166reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4167the forms described in @ref{Specify Location}.
4168This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4169hence is quicker than @code{until} without an argument. The specified
4170location is actually reached only if it is in the current frame. This
4171implies that @code{until} can be used to skip over recursive function
4172invocations. For instance in the code below, if the current location is
4173line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4174line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4175invocations have returned.
4176
4177@smallexample
417894 int factorial (int value)
417995 @{
418096 if (value > 1) @{
418197 value *= factorial (value - 1);
418298 @}
418399 return (value);
4184100 @}
4185@end smallexample
4186
4187
4188@kindex advance @var{location}
4189@itemx advance @var{location}
09d4efe1 4190Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4191required, which should be of one of the forms described in
4192@ref{Specify Location}.
4193Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4194frame. This command is similar to @code{until}, but @code{advance} will
4195not skip over recursive function calls, and the target location doesn't
4196have to be in the same frame as the current one.
4197
c906108c
SS
4198
4199@kindex stepi
41afff9a 4200@kindex si @r{(@code{stepi})}
c906108c 4201@item stepi
96a2c332 4202@itemx stepi @var{arg}
c906108c
SS
4203@itemx si
4204Execute one machine instruction, then stop and return to the debugger.
4205
4206It is often useful to do @samp{display/i $pc} when stepping by machine
4207instructions. This makes @value{GDBN} automatically display the next
4208instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4209Display,, Automatic Display}.
c906108c
SS
4210
4211An argument is a repeat count, as in @code{step}.
4212
4213@need 750
4214@kindex nexti
41afff9a 4215@kindex ni @r{(@code{nexti})}
c906108c 4216@item nexti
96a2c332 4217@itemx nexti @var{arg}
c906108c
SS
4218@itemx ni
4219Execute one machine instruction, but if it is a function call,
4220proceed until the function returns.
4221
4222An argument is a repeat count, as in @code{next}.
4223@end table
4224
6d2ebf8b 4225@node Signals
c906108c
SS
4226@section Signals
4227@cindex signals
4228
4229A signal is an asynchronous event that can happen in a program. The
4230operating system defines the possible kinds of signals, and gives each
4231kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4232signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4233@code{SIGSEGV} is the signal a program gets from referencing a place in
4234memory far away from all the areas in use; @code{SIGALRM} occurs when
4235the alarm clock timer goes off (which happens only if your program has
4236requested an alarm).
4237
4238@cindex fatal signals
4239Some signals, including @code{SIGALRM}, are a normal part of the
4240functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4241errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4242program has not specified in advance some other way to handle the signal.
4243@code{SIGINT} does not indicate an error in your program, but it is normally
4244fatal so it can carry out the purpose of the interrupt: to kill the program.
4245
4246@value{GDBN} has the ability to detect any occurrence of a signal in your
4247program. You can tell @value{GDBN} in advance what to do for each kind of
4248signal.
4249
4250@cindex handling signals
24f93129
EZ
4251Normally, @value{GDBN} is set up to let the non-erroneous signals like
4252@code{SIGALRM} be silently passed to your program
4253(so as not to interfere with their role in the program's functioning)
c906108c
SS
4254but to stop your program immediately whenever an error signal happens.
4255You can change these settings with the @code{handle} command.
4256
4257@table @code
4258@kindex info signals
09d4efe1 4259@kindex info handle
c906108c 4260@item info signals
96a2c332 4261@itemx info handle
c906108c
SS
4262Print a table of all the kinds of signals and how @value{GDBN} has been told to
4263handle each one. You can use this to see the signal numbers of all
4264the defined types of signals.
4265
45ac1734
EZ
4266@item info signals @var{sig}
4267Similar, but print information only about the specified signal number.
4268
d4f3574e 4269@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4270
4271@kindex handle
45ac1734 4272@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4273Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4274can be the number of a signal or its name (with or without the
24f93129 4275@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4276@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4277known signals. Optional arguments @var{keywords}, described below,
4278say what change to make.
c906108c
SS
4279@end table
4280
4281@c @group
4282The keywords allowed by the @code{handle} command can be abbreviated.
4283Their full names are:
4284
4285@table @code
4286@item nostop
4287@value{GDBN} should not stop your program when this signal happens. It may
4288still print a message telling you that the signal has come in.
4289
4290@item stop
4291@value{GDBN} should stop your program when this signal happens. This implies
4292the @code{print} keyword as well.
4293
4294@item print
4295@value{GDBN} should print a message when this signal happens.
4296
4297@item noprint
4298@value{GDBN} should not mention the occurrence of the signal at all. This
4299implies the @code{nostop} keyword as well.
4300
4301@item pass
5ece1a18 4302@itemx noignore
c906108c
SS
4303@value{GDBN} should allow your program to see this signal; your program
4304can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4305and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4306
4307@item nopass
5ece1a18 4308@itemx ignore
c906108c 4309@value{GDBN} should not allow your program to see this signal.
5ece1a18 4310@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4311@end table
4312@c @end group
4313
d4f3574e
SS
4314When a signal stops your program, the signal is not visible to the
4315program until you
c906108c
SS
4316continue. Your program sees the signal then, if @code{pass} is in
4317effect for the signal in question @emph{at that time}. In other words,
4318after @value{GDBN} reports a signal, you can use the @code{handle}
4319command with @code{pass} or @code{nopass} to control whether your
4320program sees that signal when you continue.
4321
24f93129
EZ
4322The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4323non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4324@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4325erroneous signals.
4326
c906108c
SS
4327You can also use the @code{signal} command to prevent your program from
4328seeing a signal, or cause it to see a signal it normally would not see,
4329or to give it any signal at any time. For example, if your program stopped
4330due to some sort of memory reference error, you might store correct
4331values into the erroneous variables and continue, hoping to see more
4332execution; but your program would probably terminate immediately as
4333a result of the fatal signal once it saw the signal. To prevent this,
4334you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4335Program a Signal}.
c906108c 4336
6d2ebf8b 4337@node Thread Stops
79a6e687 4338@section Stopping and Starting Multi-thread Programs
c906108c
SS
4339
4340When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4341Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4342breakpoints on all threads, or on a particular thread.
4343
4344@table @code
4345@cindex breakpoints and threads
4346@cindex thread breakpoints
4347@kindex break @dots{} thread @var{threadno}
4348@item break @var{linespec} thread @var{threadno}
4349@itemx break @var{linespec} thread @var{threadno} if @dots{}
4350@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4351writing them (@pxref{Specify Location}), but the effect is always to
4352specify some source line.
c906108c
SS
4353
4354Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4355to specify that you only want @value{GDBN} to stop the program when a
4356particular thread reaches this breakpoint. @var{threadno} is one of the
4357numeric thread identifiers assigned by @value{GDBN}, shown in the first
4358column of the @samp{info threads} display.
4359
4360If you do not specify @samp{thread @var{threadno}} when you set a
4361breakpoint, the breakpoint applies to @emph{all} threads of your
4362program.
4363
4364You can use the @code{thread} qualifier on conditional breakpoints as
4365well; in this case, place @samp{thread @var{threadno}} before the
4366breakpoint condition, like this:
4367
4368@smallexample
2df3850c 4369(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4370@end smallexample
4371
4372@end table
4373
4374@cindex stopped threads
4375@cindex threads, stopped
4376Whenever your program stops under @value{GDBN} for any reason,
4377@emph{all} threads of execution stop, not just the current thread. This
4378allows you to examine the overall state of the program, including
4379switching between threads, without worrying that things may change
4380underfoot.
4381
36d86913
MC
4382@cindex thread breakpoints and system calls
4383@cindex system calls and thread breakpoints
4384@cindex premature return from system calls
4385There is an unfortunate side effect. If one thread stops for a
4386breakpoint, or for some other reason, and another thread is blocked in a
4387system call, then the system call may return prematurely. This is a
4388consequence of the interaction between multiple threads and the signals
4389that @value{GDBN} uses to implement breakpoints and other events that
4390stop execution.
4391
4392To handle this problem, your program should check the return value of
4393each system call and react appropriately. This is good programming
4394style anyways.
4395
4396For example, do not write code like this:
4397
4398@smallexample
4399 sleep (10);
4400@end smallexample
4401
4402The call to @code{sleep} will return early if a different thread stops
4403at a breakpoint or for some other reason.
4404
4405Instead, write this:
4406
4407@smallexample
4408 int unslept = 10;
4409 while (unslept > 0)
4410 unslept = sleep (unslept);
4411@end smallexample
4412
4413A system call is allowed to return early, so the system is still
4414conforming to its specification. But @value{GDBN} does cause your
4415multi-threaded program to behave differently than it would without
4416@value{GDBN}.
4417
4418Also, @value{GDBN} uses internal breakpoints in the thread library to
4419monitor certain events such as thread creation and thread destruction.
4420When such an event happens, a system call in another thread may return
4421prematurely, even though your program does not appear to stop.
4422
c906108c
SS
4423@cindex continuing threads
4424@cindex threads, continuing
4425Conversely, whenever you restart the program, @emph{all} threads start
4426executing. @emph{This is true even when single-stepping} with commands
5d161b24 4427like @code{step} or @code{next}.
c906108c
SS
4428
4429In particular, @value{GDBN} cannot single-step all threads in lockstep.
4430Since thread scheduling is up to your debugging target's operating
4431system (not controlled by @value{GDBN}), other threads may
4432execute more than one statement while the current thread completes a
4433single step. Moreover, in general other threads stop in the middle of a
4434statement, rather than at a clean statement boundary, when the program
4435stops.
4436
4437You might even find your program stopped in another thread after
4438continuing or even single-stepping. This happens whenever some other
4439thread runs into a breakpoint, a signal, or an exception before the
4440first thread completes whatever you requested.
4441
4442On some OSes, you can lock the OS scheduler and thus allow only a single
4443thread to run.
4444
4445@table @code
4446@item set scheduler-locking @var{mode}
9c16f35a
EZ
4447@cindex scheduler locking mode
4448@cindex lock scheduler
c906108c
SS
4449Set the scheduler locking mode. If it is @code{off}, then there is no
4450locking and any thread may run at any time. If @code{on}, then only the
4451current thread may run when the inferior is resumed. The @code{step}
4452mode optimizes for single-stepping. It stops other threads from
4453``seizing the prompt'' by preempting the current thread while you are
4454stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4455when you step. They are more likely to run when you @samp{next} over a
c906108c 4456function call, and they are completely free to run when you use commands
d4f3574e 4457like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4458thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4459@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4460
4461@item show scheduler-locking
4462Display the current scheduler locking mode.
4463@end table
4464
c906108c 4465
6d2ebf8b 4466@node Stack
c906108c
SS
4467@chapter Examining the Stack
4468
4469When your program has stopped, the first thing you need to know is where it
4470stopped and how it got there.
4471
4472@cindex call stack
5d161b24
DB
4473Each time your program performs a function call, information about the call
4474is generated.
4475That information includes the location of the call in your program,
4476the arguments of the call,
c906108c 4477and the local variables of the function being called.
5d161b24 4478The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4479The stack frames are allocated in a region of memory called the @dfn{call
4480stack}.
4481
4482When your program stops, the @value{GDBN} commands for examining the
4483stack allow you to see all of this information.
4484
4485@cindex selected frame
4486One of the stack frames is @dfn{selected} by @value{GDBN} and many
4487@value{GDBN} commands refer implicitly to the selected frame. In
4488particular, whenever you ask @value{GDBN} for the value of a variable in
4489your program, the value is found in the selected frame. There are
4490special @value{GDBN} commands to select whichever frame you are
79a6e687 4491interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4492
4493When your program stops, @value{GDBN} automatically selects the
5d161b24 4494currently executing frame and describes it briefly, similar to the
79a6e687 4495@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4496
4497@menu
4498* Frames:: Stack frames
4499* Backtrace:: Backtraces
4500* Selection:: Selecting a frame
4501* Frame Info:: Information on a frame
c906108c
SS
4502
4503@end menu
4504
6d2ebf8b 4505@node Frames
79a6e687 4506@section Stack Frames
c906108c 4507
d4f3574e 4508@cindex frame, definition
c906108c
SS
4509@cindex stack frame
4510The call stack is divided up into contiguous pieces called @dfn{stack
4511frames}, or @dfn{frames} for short; each frame is the data associated
4512with one call to one function. The frame contains the arguments given
4513to the function, the function's local variables, and the address at
4514which the function is executing.
4515
4516@cindex initial frame
4517@cindex outermost frame
4518@cindex innermost frame
4519When your program is started, the stack has only one frame, that of the
4520function @code{main}. This is called the @dfn{initial} frame or the
4521@dfn{outermost} frame. Each time a function is called, a new frame is
4522made. Each time a function returns, the frame for that function invocation
4523is eliminated. If a function is recursive, there can be many frames for
4524the same function. The frame for the function in which execution is
4525actually occurring is called the @dfn{innermost} frame. This is the most
4526recently created of all the stack frames that still exist.
4527
4528@cindex frame pointer
4529Inside your program, stack frames are identified by their addresses. A
4530stack frame consists of many bytes, each of which has its own address; each
4531kind of computer has a convention for choosing one byte whose
4532address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4533in a register called the @dfn{frame pointer register}
4534(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4535
4536@cindex frame number
4537@value{GDBN} assigns numbers to all existing stack frames, starting with
4538zero for the innermost frame, one for the frame that called it,
4539and so on upward. These numbers do not really exist in your program;
4540they are assigned by @value{GDBN} to give you a way of designating stack
4541frames in @value{GDBN} commands.
4542
6d2ebf8b
SS
4543@c The -fomit-frame-pointer below perennially causes hbox overflow
4544@c underflow problems.
c906108c
SS
4545@cindex frameless execution
4546Some compilers provide a way to compile functions so that they operate
e22ea452 4547without stack frames. (For example, the @value{NGCC} option
474c8240 4548@smallexample
6d2ebf8b 4549@samp{-fomit-frame-pointer}
474c8240 4550@end smallexample
6d2ebf8b 4551generates functions without a frame.)
c906108c
SS
4552This is occasionally done with heavily used library functions to save
4553the frame setup time. @value{GDBN} has limited facilities for dealing
4554with these function invocations. If the innermost function invocation
4555has no stack frame, @value{GDBN} nevertheless regards it as though
4556it had a separate frame, which is numbered zero as usual, allowing
4557correct tracing of the function call chain. However, @value{GDBN} has
4558no provision for frameless functions elsewhere in the stack.
4559
4560@table @code
d4f3574e 4561@kindex frame@r{, command}
41afff9a 4562@cindex current stack frame
c906108c 4563@item frame @var{args}
5d161b24 4564The @code{frame} command allows you to move from one stack frame to another,
c906108c 4565and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4566address of the frame or the stack frame number. Without an argument,
4567@code{frame} prints the current stack frame.
c906108c
SS
4568
4569@kindex select-frame
41afff9a 4570@cindex selecting frame silently
c906108c
SS
4571@item select-frame
4572The @code{select-frame} command allows you to move from one stack frame
4573to another without printing the frame. This is the silent version of
4574@code{frame}.
4575@end table
4576
6d2ebf8b 4577@node Backtrace
c906108c
SS
4578@section Backtraces
4579
09d4efe1
EZ
4580@cindex traceback
4581@cindex call stack traces
c906108c
SS
4582A backtrace is a summary of how your program got where it is. It shows one
4583line per frame, for many frames, starting with the currently executing
4584frame (frame zero), followed by its caller (frame one), and on up the
4585stack.
4586
4587@table @code
4588@kindex backtrace
41afff9a 4589@kindex bt @r{(@code{backtrace})}
c906108c
SS
4590@item backtrace
4591@itemx bt
4592Print a backtrace of the entire stack: one line per frame for all
4593frames in the stack.
4594
4595You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4596character, normally @kbd{Ctrl-c}.
c906108c
SS
4597
4598@item backtrace @var{n}
4599@itemx bt @var{n}
4600Similar, but print only the innermost @var{n} frames.
4601
4602@item backtrace -@var{n}
4603@itemx bt -@var{n}
4604Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4605
4606@item backtrace full
0f061b69 4607@itemx bt full
dd74f6ae
NR
4608@itemx bt full @var{n}
4609@itemx bt full -@var{n}
e7109c7e 4610Print the values of the local variables also. @var{n} specifies the
286ba84d 4611number of frames to print, as described above.
c906108c
SS
4612@end table
4613
4614@kindex where
4615@kindex info stack
c906108c
SS
4616The names @code{where} and @code{info stack} (abbreviated @code{info s})
4617are additional aliases for @code{backtrace}.
4618
839c27b7
EZ
4619@cindex multiple threads, backtrace
4620In a multi-threaded program, @value{GDBN} by default shows the
4621backtrace only for the current thread. To display the backtrace for
4622several or all of the threads, use the command @code{thread apply}
4623(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4624apply all backtrace}, @value{GDBN} will display the backtrace for all
4625the threads; this is handy when you debug a core dump of a
4626multi-threaded program.
4627
c906108c
SS
4628Each line in the backtrace shows the frame number and the function name.
4629The program counter value is also shown---unless you use @code{set
4630print address off}. The backtrace also shows the source file name and
4631line number, as well as the arguments to the function. The program
4632counter value is omitted if it is at the beginning of the code for that
4633line number.
4634
4635Here is an example of a backtrace. It was made with the command
4636@samp{bt 3}, so it shows the innermost three frames.
4637
4638@smallexample
4639@group
5d161b24 4640#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4641 at builtin.c:993
4642#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4643#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4644 at macro.c:71
4645(More stack frames follow...)
4646@end group
4647@end smallexample
4648
4649@noindent
4650The display for frame zero does not begin with a program counter
4651value, indicating that your program has stopped at the beginning of the
4652code for line @code{993} of @code{builtin.c}.
4653
18999be5
EZ
4654@cindex value optimized out, in backtrace
4655@cindex function call arguments, optimized out
4656If your program was compiled with optimizations, some compilers will
4657optimize away arguments passed to functions if those arguments are
4658never used after the call. Such optimizations generate code that
4659passes arguments through registers, but doesn't store those arguments
4660in the stack frame. @value{GDBN} has no way of displaying such
4661arguments in stack frames other than the innermost one. Here's what
4662such a backtrace might look like:
4663
4664@smallexample
4665@group
4666#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4667 at builtin.c:993
4668#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4669#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4670 at macro.c:71
4671(More stack frames follow...)
4672@end group
4673@end smallexample
4674
4675@noindent
4676The values of arguments that were not saved in their stack frames are
4677shown as @samp{<value optimized out>}.
4678
4679If you need to display the values of such optimized-out arguments,
4680either deduce that from other variables whose values depend on the one
4681you are interested in, or recompile without optimizations.
4682
a8f24a35
EZ
4683@cindex backtrace beyond @code{main} function
4684@cindex program entry point
4685@cindex startup code, and backtrace
25d29d70
AC
4686Most programs have a standard user entry point---a place where system
4687libraries and startup code transition into user code. For C this is
d416eeec
EZ
4688@code{main}@footnote{
4689Note that embedded programs (the so-called ``free-standing''
4690environment) are not required to have a @code{main} function as the
4691entry point. They could even have multiple entry points.}.
4692When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4693it will terminate the backtrace, to avoid tracing into highly
4694system-specific (and generally uninteresting) code.
4695
4696If you need to examine the startup code, or limit the number of levels
4697in a backtrace, you can change this behavior:
95f90d25
DJ
4698
4699@table @code
25d29d70
AC
4700@item set backtrace past-main
4701@itemx set backtrace past-main on
4644b6e3 4702@kindex set backtrace
25d29d70
AC
4703Backtraces will continue past the user entry point.
4704
4705@item set backtrace past-main off
95f90d25
DJ
4706Backtraces will stop when they encounter the user entry point. This is the
4707default.
4708
25d29d70 4709@item show backtrace past-main
4644b6e3 4710@kindex show backtrace
25d29d70
AC
4711Display the current user entry point backtrace policy.
4712
2315ffec
RC
4713@item set backtrace past-entry
4714@itemx set backtrace past-entry on
a8f24a35 4715Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4716This entry point is encoded by the linker when the application is built,
4717and is likely before the user entry point @code{main} (or equivalent) is called.
4718
4719@item set backtrace past-entry off
d3e8051b 4720Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4721application. This is the default.
4722
4723@item show backtrace past-entry
4724Display the current internal entry point backtrace policy.
4725
25d29d70
AC
4726@item set backtrace limit @var{n}
4727@itemx set backtrace limit 0
4728@cindex backtrace limit
4729Limit the backtrace to @var{n} levels. A value of zero means
4730unlimited.
95f90d25 4731
25d29d70
AC
4732@item show backtrace limit
4733Display the current limit on backtrace levels.
95f90d25
DJ
4734@end table
4735
6d2ebf8b 4736@node Selection
79a6e687 4737@section Selecting a Frame
c906108c
SS
4738
4739Most commands for examining the stack and other data in your program work on
4740whichever stack frame is selected at the moment. Here are the commands for
4741selecting a stack frame; all of them finish by printing a brief description
4742of the stack frame just selected.
4743
4744@table @code
d4f3574e 4745@kindex frame@r{, selecting}
41afff9a 4746@kindex f @r{(@code{frame})}
c906108c
SS
4747@item frame @var{n}
4748@itemx f @var{n}
4749Select frame number @var{n}. Recall that frame zero is the innermost
4750(currently executing) frame, frame one is the frame that called the
4751innermost one, and so on. The highest-numbered frame is the one for
4752@code{main}.
4753
4754@item frame @var{addr}
4755@itemx f @var{addr}
4756Select the frame at address @var{addr}. This is useful mainly if the
4757chaining of stack frames has been damaged by a bug, making it
4758impossible for @value{GDBN} to assign numbers properly to all frames. In
4759addition, this can be useful when your program has multiple stacks and
4760switches between them.
4761
c906108c
SS
4762On the SPARC architecture, @code{frame} needs two addresses to
4763select an arbitrary frame: a frame pointer and a stack pointer.
4764
4765On the MIPS and Alpha architecture, it needs two addresses: a stack
4766pointer and a program counter.
4767
4768On the 29k architecture, it needs three addresses: a register stack
4769pointer, a program counter, and a memory stack pointer.
c906108c
SS
4770
4771@kindex up
4772@item up @var{n}
4773Move @var{n} frames up the stack. For positive numbers @var{n}, this
4774advances toward the outermost frame, to higher frame numbers, to frames
4775that have existed longer. @var{n} defaults to one.
4776
4777@kindex down
41afff9a 4778@kindex do @r{(@code{down})}
c906108c
SS
4779@item down @var{n}
4780Move @var{n} frames down the stack. For positive numbers @var{n}, this
4781advances toward the innermost frame, to lower frame numbers, to frames
4782that were created more recently. @var{n} defaults to one. You may
4783abbreviate @code{down} as @code{do}.
4784@end table
4785
4786All of these commands end by printing two lines of output describing the
4787frame. The first line shows the frame number, the function name, the
4788arguments, and the source file and line number of execution in that
5d161b24 4789frame. The second line shows the text of that source line.
c906108c
SS
4790
4791@need 1000
4792For example:
4793
4794@smallexample
4795@group
4796(@value{GDBP}) up
4797#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4798 at env.c:10
479910 read_input_file (argv[i]);
4800@end group
4801@end smallexample
4802
4803After such a printout, the @code{list} command with no arguments
4804prints ten lines centered on the point of execution in the frame.
87885426
FN
4805You can also edit the program at the point of execution with your favorite
4806editing program by typing @code{edit}.
79a6e687 4807@xref{List, ,Printing Source Lines},
87885426 4808for details.
c906108c
SS
4809
4810@table @code
4811@kindex down-silently
4812@kindex up-silently
4813@item up-silently @var{n}
4814@itemx down-silently @var{n}
4815These two commands are variants of @code{up} and @code{down},
4816respectively; they differ in that they do their work silently, without
4817causing display of the new frame. They are intended primarily for use
4818in @value{GDBN} command scripts, where the output might be unnecessary and
4819distracting.
4820@end table
4821
6d2ebf8b 4822@node Frame Info
79a6e687 4823@section Information About a Frame
c906108c
SS
4824
4825There are several other commands to print information about the selected
4826stack frame.
4827
4828@table @code
4829@item frame
4830@itemx f
4831When used without any argument, this command does not change which
4832frame is selected, but prints a brief description of the currently
4833selected stack frame. It can be abbreviated @code{f}. With an
4834argument, this command is used to select a stack frame.
79a6e687 4835@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4836
4837@kindex info frame
41afff9a 4838@kindex info f @r{(@code{info frame})}
c906108c
SS
4839@item info frame
4840@itemx info f
4841This command prints a verbose description of the selected stack frame,
4842including:
4843
4844@itemize @bullet
5d161b24
DB
4845@item
4846the address of the frame
c906108c
SS
4847@item
4848the address of the next frame down (called by this frame)
4849@item
4850the address of the next frame up (caller of this frame)
4851@item
4852the language in which the source code corresponding to this frame is written
4853@item
4854the address of the frame's arguments
4855@item
d4f3574e
SS
4856the address of the frame's local variables
4857@item
c906108c
SS
4858the program counter saved in it (the address of execution in the caller frame)
4859@item
4860which registers were saved in the frame
4861@end itemize
4862
4863@noindent The verbose description is useful when
4864something has gone wrong that has made the stack format fail to fit
4865the usual conventions.
4866
4867@item info frame @var{addr}
4868@itemx info f @var{addr}
4869Print a verbose description of the frame at address @var{addr}, without
4870selecting that frame. The selected frame remains unchanged by this
4871command. This requires the same kind of address (more than one for some
4872architectures) that you specify in the @code{frame} command.
79a6e687 4873@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4874
4875@kindex info args
4876@item info args
4877Print the arguments of the selected frame, each on a separate line.
4878
4879@item info locals
4880@kindex info locals
4881Print the local variables of the selected frame, each on a separate
4882line. These are all variables (declared either static or automatic)
4883accessible at the point of execution of the selected frame.
4884
c906108c 4885@kindex info catch
d4f3574e
SS
4886@cindex catch exceptions, list active handlers
4887@cindex exception handlers, how to list
c906108c
SS
4888@item info catch
4889Print a list of all the exception handlers that are active in the
4890current stack frame at the current point of execution. To see other
4891exception handlers, visit the associated frame (using the @code{up},
4892@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4893@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4894
c906108c
SS
4895@end table
4896
c906108c 4897
6d2ebf8b 4898@node Source
c906108c
SS
4899@chapter Examining Source Files
4900
4901@value{GDBN} can print parts of your program's source, since the debugging
4902information recorded in the program tells @value{GDBN} what source files were
4903used to build it. When your program stops, @value{GDBN} spontaneously prints
4904the line where it stopped. Likewise, when you select a stack frame
79a6e687 4905(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4906execution in that frame has stopped. You can print other portions of
4907source files by explicit command.
4908
7a292a7a 4909If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4910prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4911@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4912
4913@menu
4914* List:: Printing source lines
2a25a5ba 4915* Specify Location:: How to specify code locations
87885426 4916* Edit:: Editing source files
c906108c 4917* Search:: Searching source files
c906108c
SS
4918* Source Path:: Specifying source directories
4919* Machine Code:: Source and machine code
4920@end menu
4921
6d2ebf8b 4922@node List
79a6e687 4923@section Printing Source Lines
c906108c
SS
4924
4925@kindex list
41afff9a 4926@kindex l @r{(@code{list})}
c906108c 4927To print lines from a source file, use the @code{list} command
5d161b24 4928(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4929There are several ways to specify what part of the file you want to
4930print; see @ref{Specify Location}, for the full list.
c906108c
SS
4931
4932Here are the forms of the @code{list} command most commonly used:
4933
4934@table @code
4935@item list @var{linenum}
4936Print lines centered around line number @var{linenum} in the
4937current source file.
4938
4939@item list @var{function}
4940Print lines centered around the beginning of function
4941@var{function}.
4942
4943@item list
4944Print more lines. If the last lines printed were printed with a
4945@code{list} command, this prints lines following the last lines
4946printed; however, if the last line printed was a solitary line printed
4947as part of displaying a stack frame (@pxref{Stack, ,Examining the
4948Stack}), this prints lines centered around that line.
4949
4950@item list -
4951Print lines just before the lines last printed.
4952@end table
4953
9c16f35a 4954@cindex @code{list}, how many lines to display
c906108c
SS
4955By default, @value{GDBN} prints ten source lines with any of these forms of
4956the @code{list} command. You can change this using @code{set listsize}:
4957
4958@table @code
4959@kindex set listsize
4960@item set listsize @var{count}
4961Make the @code{list} command display @var{count} source lines (unless
4962the @code{list} argument explicitly specifies some other number).
4963
4964@kindex show listsize
4965@item show listsize
4966Display the number of lines that @code{list} prints.
4967@end table
4968
4969Repeating a @code{list} command with @key{RET} discards the argument,
4970so it is equivalent to typing just @code{list}. This is more useful
4971than listing the same lines again. An exception is made for an
4972argument of @samp{-}; that argument is preserved in repetition so that
4973each repetition moves up in the source file.
4974
c906108c
SS
4975In general, the @code{list} command expects you to supply zero, one or two
4976@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
4977of writing them (@pxref{Specify Location}), but the effect is always
4978to specify some source line.
4979
c906108c
SS
4980Here is a complete description of the possible arguments for @code{list}:
4981
4982@table @code
4983@item list @var{linespec}
4984Print lines centered around the line specified by @var{linespec}.
4985
4986@item list @var{first},@var{last}
4987Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
4988linespecs. When a @code{list} command has two linespecs, and the
4989source file of the second linespec is omitted, this refers to
4990the same source file as the first linespec.
c906108c
SS
4991
4992@item list ,@var{last}
4993Print lines ending with @var{last}.
4994
4995@item list @var{first},
4996Print lines starting with @var{first}.
4997
4998@item list +
4999Print lines just after the lines last printed.
5000
5001@item list -
5002Print lines just before the lines last printed.
5003
5004@item list
5005As described in the preceding table.
5006@end table
5007
2a25a5ba
EZ
5008@node Specify Location
5009@section Specifying a Location
5010@cindex specifying location
5011@cindex linespec
c906108c 5012
2a25a5ba
EZ
5013Several @value{GDBN} commands accept arguments that specify a location
5014of your program's code. Since @value{GDBN} is a source-level
5015debugger, a location usually specifies some line in the source code;
5016for that reason, locations are also known as @dfn{linespecs}.
c906108c 5017
2a25a5ba
EZ
5018Here are all the different ways of specifying a code location that
5019@value{GDBN} understands:
c906108c 5020
2a25a5ba
EZ
5021@table @code
5022@item @var{linenum}
5023Specifies the line number @var{linenum} of the current source file.
c906108c 5024
2a25a5ba
EZ
5025@item -@var{offset}
5026@itemx +@var{offset}
5027Specifies the line @var{offset} lines before or after the @dfn{current
5028line}. For the @code{list} command, the current line is the last one
5029printed; for the breakpoint commands, this is the line at which
5030execution stopped in the currently selected @dfn{stack frame}
5031(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5032used as the second of the two linespecs in a @code{list} command,
5033this specifies the line @var{offset} lines up or down from the first
5034linespec.
5035
5036@item @var{filename}:@var{linenum}
5037Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5038
5039@item @var{function}
5040Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5041For example, in C, this is the line with the open brace.
c906108c
SS
5042
5043@item @var{filename}:@var{function}
2a25a5ba
EZ
5044Specifies the line that begins the body of the function @var{function}
5045in the file @var{filename}. You only need the file name with a
5046function name to avoid ambiguity when there are identically named
5047functions in different source files.
c906108c
SS
5048
5049@item *@var{address}
2a25a5ba
EZ
5050Specifies the program address @var{address}. For line-oriented
5051commands, such as @code{list} and @code{edit}, this specifies a source
5052line that contains @var{address}. For @code{break} and other
5053breakpoint oriented commands, this can be used to set breakpoints in
5054parts of your program which do not have debugging information or
5055source files.
5056
5057Here @var{address} may be any expression valid in the current working
5058language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5059address. In addition, as a convenience, @value{GDBN} extends the
5060semantics of expressions used in locations to cover the situations
5061that frequently happen during debugging. Here are the various forms
5062of @var{address}:
2a25a5ba
EZ
5063
5064@table @code
5065@item @var{expression}
5066Any expression valid in the current working language.
5067
5068@item @var{funcaddr}
5069An address of a function or procedure derived from its name. In C,
5070C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5071simply the function's name @var{function} (and actually a special case
5072of a valid expression). In Pascal and Modula-2, this is
5073@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5074(although the Pascal form also works).
5075
5076This form specifies the address of the function's first instruction,
5077before the stack frame and arguments have been set up.
5078
5079@item '@var{filename}'::@var{funcaddr}
5080Like @var{funcaddr} above, but also specifies the name of the source
5081file explicitly. This is useful if the name of the function does not
5082specify the function unambiguously, e.g., if there are several
5083functions with identical names in different source files.
c906108c
SS
5084@end table
5085
2a25a5ba
EZ
5086@end table
5087
5088
87885426 5089@node Edit
79a6e687 5090@section Editing Source Files
87885426
FN
5091@cindex editing source files
5092
5093@kindex edit
5094@kindex e @r{(@code{edit})}
5095To edit the lines in a source file, use the @code{edit} command.
5096The editing program of your choice
5097is invoked with the current line set to
5098the active line in the program.
5099Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5100want to print if you want to see other parts of the program:
87885426
FN
5101
5102@table @code
2a25a5ba
EZ
5103@item edit @var{location}
5104Edit the source file specified by @code{location}. Editing starts at
5105that @var{location}, e.g., at the specified source line of the
5106specified file. @xref{Specify Location}, for all the possible forms
5107of the @var{location} argument; here are the forms of the @code{edit}
5108command most commonly used:
87885426 5109
2a25a5ba 5110@table @code
87885426
FN
5111@item edit @var{number}
5112Edit the current source file with @var{number} as the active line number.
5113
5114@item edit @var{function}
5115Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5116@end table
87885426 5117
87885426
FN
5118@end table
5119
79a6e687 5120@subsection Choosing your Editor
87885426
FN
5121You can customize @value{GDBN} to use any editor you want
5122@footnote{
5123The only restriction is that your editor (say @code{ex}), recognizes the
5124following command-line syntax:
10998722 5125@smallexample
87885426 5126ex +@var{number} file
10998722 5127@end smallexample
15387254
EZ
5128The optional numeric value +@var{number} specifies the number of the line in
5129the file where to start editing.}.
5130By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5131by setting the environment variable @code{EDITOR} before using
5132@value{GDBN}. For example, to configure @value{GDBN} to use the
5133@code{vi} editor, you could use these commands with the @code{sh} shell:
5134@smallexample
87885426
FN
5135EDITOR=/usr/bin/vi
5136export EDITOR
15387254 5137gdb @dots{}
10998722 5138@end smallexample
87885426 5139or in the @code{csh} shell,
10998722 5140@smallexample
87885426 5141setenv EDITOR /usr/bin/vi
15387254 5142gdb @dots{}
10998722 5143@end smallexample
87885426 5144
6d2ebf8b 5145@node Search
79a6e687 5146@section Searching Source Files
15387254 5147@cindex searching source files
c906108c
SS
5148
5149There are two commands for searching through the current source file for a
5150regular expression.
5151
5152@table @code
5153@kindex search
5154@kindex forward-search
5155@item forward-search @var{regexp}
5156@itemx search @var{regexp}
5157The command @samp{forward-search @var{regexp}} checks each line,
5158starting with the one following the last line listed, for a match for
5d161b24 5159@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5160synonym @samp{search @var{regexp}} or abbreviate the command name as
5161@code{fo}.
5162
09d4efe1 5163@kindex reverse-search
c906108c
SS
5164@item reverse-search @var{regexp}
5165The command @samp{reverse-search @var{regexp}} checks each line, starting
5166with the one before the last line listed and going backward, for a match
5167for @var{regexp}. It lists the line that is found. You can abbreviate
5168this command as @code{rev}.
5169@end table
c906108c 5170
6d2ebf8b 5171@node Source Path
79a6e687 5172@section Specifying Source Directories
c906108c
SS
5173
5174@cindex source path
5175@cindex directories for source files
5176Executable programs sometimes do not record the directories of the source
5177files from which they were compiled, just the names. Even when they do,
5178the directories could be moved between the compilation and your debugging
5179session. @value{GDBN} has a list of directories to search for source files;
5180this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5181it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5182in the list, until it finds a file with the desired name.
5183
5184For example, suppose an executable references the file
5185@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5186@file{/mnt/cross}. The file is first looked up literally; if this
5187fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5188fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5189message is printed. @value{GDBN} does not look up the parts of the
5190source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5191Likewise, the subdirectories of the source path are not searched: if
5192the source path is @file{/mnt/cross}, and the binary refers to
5193@file{foo.c}, @value{GDBN} would not find it under
5194@file{/mnt/cross/usr/src/foo-1.0/lib}.
5195
5196Plain file names, relative file names with leading directories, file
5197names containing dots, etc.@: are all treated as described above; for
5198instance, if the source path is @file{/mnt/cross}, and the source file
5199is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5200@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5201that---@file{/mnt/cross/foo.c}.
5202
5203Note that the executable search path is @emph{not} used to locate the
cd852561 5204source files.
c906108c
SS
5205
5206Whenever you reset or rearrange the source path, @value{GDBN} clears out
5207any information it has cached about where source files are found and where
5208each line is in the file.
5209
5210@kindex directory
5211@kindex dir
d4f3574e
SS
5212When you start @value{GDBN}, its source path includes only @samp{cdir}
5213and @samp{cwd}, in that order.
c906108c
SS
5214To add other directories, use the @code{directory} command.
5215
4b505b12
AS
5216The search path is used to find both program source files and @value{GDBN}
5217script files (read using the @samp{-command} option and @samp{source} command).
5218
30daae6c
JB
5219In addition to the source path, @value{GDBN} provides a set of commands
5220that manage a list of source path substitution rules. A @dfn{substitution
5221rule} specifies how to rewrite source directories stored in the program's
5222debug information in case the sources were moved to a different
5223directory between compilation and debugging. A rule is made of
5224two strings, the first specifying what needs to be rewritten in
5225the path, and the second specifying how it should be rewritten.
5226In @ref{set substitute-path}, we name these two parts @var{from} and
5227@var{to} respectively. @value{GDBN} does a simple string replacement
5228of @var{from} with @var{to} at the start of the directory part of the
5229source file name, and uses that result instead of the original file
5230name to look up the sources.
5231
5232Using the previous example, suppose the @file{foo-1.0} tree has been
5233moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5234@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5235@file{/mnt/cross}. The first lookup will then be
5236@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5237of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5238substitution rule, use the @code{set substitute-path} command
5239(@pxref{set substitute-path}).
5240
5241To avoid unexpected substitution results, a rule is applied only if the
5242@var{from} part of the directory name ends at a directory separator.
5243For instance, a rule substituting @file{/usr/source} into
5244@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5245not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5246is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5247not be applied to @file{/root/usr/source/baz.c} either.
5248
5249In many cases, you can achieve the same result using the @code{directory}
5250command. However, @code{set substitute-path} can be more efficient in
5251the case where the sources are organized in a complex tree with multiple
5252subdirectories. With the @code{directory} command, you need to add each
5253subdirectory of your project. If you moved the entire tree while
5254preserving its internal organization, then @code{set substitute-path}
5255allows you to direct the debugger to all the sources with one single
5256command.
5257
5258@code{set substitute-path} is also more than just a shortcut command.
5259The source path is only used if the file at the original location no
5260longer exists. On the other hand, @code{set substitute-path} modifies
5261the debugger behavior to look at the rewritten location instead. So, if
5262for any reason a source file that is not relevant to your executable is
5263located at the original location, a substitution rule is the only
3f94c067 5264method available to point @value{GDBN} at the new location.
30daae6c 5265
c906108c
SS
5266@table @code
5267@item directory @var{dirname} @dots{}
5268@item dir @var{dirname} @dots{}
5269Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5270directory names may be given to this command, separated by @samp{:}
5271(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5272part of absolute file names) or
c906108c
SS
5273whitespace. You may specify a directory that is already in the source
5274path; this moves it forward, so @value{GDBN} searches it sooner.
5275
5276@kindex cdir
5277@kindex cwd
41afff9a 5278@vindex $cdir@r{, convenience variable}
d3e8051b 5279@vindex $cwd@r{, convenience variable}
c906108c
SS
5280@cindex compilation directory
5281@cindex current directory
5282@cindex working directory
5283@cindex directory, current
5284@cindex directory, compilation
5285You can use the string @samp{$cdir} to refer to the compilation
5286directory (if one is recorded), and @samp{$cwd} to refer to the current
5287working directory. @samp{$cwd} is not the same as @samp{.}---the former
5288tracks the current working directory as it changes during your @value{GDBN}
5289session, while the latter is immediately expanded to the current
5290directory at the time you add an entry to the source path.
5291
5292@item directory
cd852561 5293Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5294
5295@c RET-repeat for @code{directory} is explicitly disabled, but since
5296@c repeating it would be a no-op we do not say that. (thanks to RMS)
5297
5298@item show directories
5299@kindex show directories
5300Print the source path: show which directories it contains.
30daae6c
JB
5301
5302@anchor{set substitute-path}
5303@item set substitute-path @var{from} @var{to}
5304@kindex set substitute-path
5305Define a source path substitution rule, and add it at the end of the
5306current list of existing substitution rules. If a rule with the same
5307@var{from} was already defined, then the old rule is also deleted.
5308
5309For example, if the file @file{/foo/bar/baz.c} was moved to
5310@file{/mnt/cross/baz.c}, then the command
5311
5312@smallexample
5313(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5314@end smallexample
5315
5316@noindent
5317will tell @value{GDBN} to replace @samp{/usr/src} with
5318@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5319@file{baz.c} even though it was moved.
5320
5321In the case when more than one substitution rule have been defined,
5322the rules are evaluated one by one in the order where they have been
5323defined. The first one matching, if any, is selected to perform
5324the substitution.
5325
5326For instance, if we had entered the following commands:
5327
5328@smallexample
5329(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5330(@value{GDBP}) set substitute-path /usr/src /mnt/src
5331@end smallexample
5332
5333@noindent
5334@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5335@file{/mnt/include/defs.h} by using the first rule. However, it would
5336use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5337@file{/mnt/src/lib/foo.c}.
5338
5339
5340@item unset substitute-path [path]
5341@kindex unset substitute-path
5342If a path is specified, search the current list of substitution rules
5343for a rule that would rewrite that path. Delete that rule if found.
5344A warning is emitted by the debugger if no rule could be found.
5345
5346If no path is specified, then all substitution rules are deleted.
5347
5348@item show substitute-path [path]
5349@kindex show substitute-path
5350If a path is specified, then print the source path substitution rule
5351which would rewrite that path, if any.
5352
5353If no path is specified, then print all existing source path substitution
5354rules.
5355
c906108c
SS
5356@end table
5357
5358If your source path is cluttered with directories that are no longer of
5359interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5360versions of source. You can correct the situation as follows:
5361
5362@enumerate
5363@item
cd852561 5364Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5365
5366@item
5367Use @code{directory} with suitable arguments to reinstall the
5368directories you want in the source path. You can add all the
5369directories in one command.
5370@end enumerate
5371
6d2ebf8b 5372@node Machine Code
79a6e687 5373@section Source and Machine Code
15387254 5374@cindex source line and its code address
c906108c
SS
5375
5376You can use the command @code{info line} to map source lines to program
5377addresses (and vice versa), and the command @code{disassemble} to display
5378a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5379mode, the @code{info line} command causes the arrow to point to the
5d161b24 5380line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5381well as hex.
5382
5383@table @code
5384@kindex info line
5385@item info line @var{linespec}
5386Print the starting and ending addresses of the compiled code for
5387source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5388the ways documented in @ref{Specify Location}.
c906108c
SS
5389@end table
5390
5391For example, we can use @code{info line} to discover the location of
5392the object code for the first line of function
5393@code{m4_changequote}:
5394
d4f3574e
SS
5395@c FIXME: I think this example should also show the addresses in
5396@c symbolic form, as they usually would be displayed.
c906108c 5397@smallexample
96a2c332 5398(@value{GDBP}) info line m4_changequote
c906108c
SS
5399Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5400@end smallexample
5401
5402@noindent
15387254 5403@cindex code address and its source line
c906108c
SS
5404We can also inquire (using @code{*@var{addr}} as the form for
5405@var{linespec}) what source line covers a particular address:
5406@smallexample
5407(@value{GDBP}) info line *0x63ff
5408Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5409@end smallexample
5410
5411@cindex @code{$_} and @code{info line}
15387254 5412@cindex @code{x} command, default address
41afff9a 5413@kindex x@r{(examine), and} info line
c906108c
SS
5414After @code{info line}, the default address for the @code{x} command
5415is changed to the starting address of the line, so that @samp{x/i} is
5416sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5417,Examining Memory}). Also, this address is saved as the value of the
c906108c 5418convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5419Variables}).
c906108c
SS
5420
5421@table @code
5422@kindex disassemble
5423@cindex assembly instructions
5424@cindex instructions, assembly
5425@cindex machine instructions
5426@cindex listing machine instructions
5427@item disassemble
5428This specialized command dumps a range of memory as machine
5429instructions. The default memory range is the function surrounding the
5430program counter of the selected frame. A single argument to this
5431command is a program counter value; @value{GDBN} dumps the function
5432surrounding this value. Two arguments specify a range of addresses
5433(first inclusive, second exclusive) to dump.
5434@end table
5435
c906108c
SS
5436The following example shows the disassembly of a range of addresses of
5437HP PA-RISC 2.0 code:
5438
5439@smallexample
5440(@value{GDBP}) disas 0x32c4 0x32e4
5441Dump of assembler code from 0x32c4 to 0x32e4:
54420x32c4 <main+204>: addil 0,dp
54430x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54440x32cc <main+212>: ldil 0x3000,r31
54450x32d0 <main+216>: ble 0x3f8(sr4,r31)
54460x32d4 <main+220>: ldo 0(r31),rp
54470x32d8 <main+224>: addil -0x800,dp
54480x32dc <main+228>: ldo 0x588(r1),r26
54490x32e0 <main+232>: ldil 0x3000,r31
5450End of assembler dump.
5451@end smallexample
c906108c
SS
5452
5453Some architectures have more than one commonly-used set of instruction
5454mnemonics or other syntax.
5455
76d17f34
EZ
5456For programs that were dynamically linked and use shared libraries,
5457instructions that call functions or branch to locations in the shared
5458libraries might show a seemingly bogus location---it's actually a
5459location of the relocation table. On some architectures, @value{GDBN}
5460might be able to resolve these to actual function names.
5461
c906108c 5462@table @code
d4f3574e 5463@kindex set disassembly-flavor
d4f3574e
SS
5464@cindex Intel disassembly flavor
5465@cindex AT&T disassembly flavor
5466@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5467Select the instruction set to use when disassembling the
5468program via the @code{disassemble} or @code{x/i} commands.
5469
5470Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5471can set @var{instruction-set} to either @code{intel} or @code{att}.
5472The default is @code{att}, the AT&T flavor used by default by Unix
5473assemblers for x86-based targets.
9c16f35a
EZ
5474
5475@kindex show disassembly-flavor
5476@item show disassembly-flavor
5477Show the current setting of the disassembly flavor.
c906108c
SS
5478@end table
5479
5480
6d2ebf8b 5481@node Data
c906108c
SS
5482@chapter Examining Data
5483
5484@cindex printing data
5485@cindex examining data
5486@kindex print
5487@kindex inspect
5488@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5489@c document because it is nonstandard... Under Epoch it displays in a
5490@c different window or something like that.
5491The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5492command (abbreviated @code{p}), or its synonym @code{inspect}. It
5493evaluates and prints the value of an expression of the language your
5494program is written in (@pxref{Languages, ,Using @value{GDBN} with
5495Different Languages}).
c906108c
SS
5496
5497@table @code
d4f3574e
SS
5498@item print @var{expr}
5499@itemx print /@var{f} @var{expr}
5500@var{expr} is an expression (in the source language). By default the
5501value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5502you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5503@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5504Formats}.
c906108c
SS
5505
5506@item print
5507@itemx print /@var{f}
15387254 5508@cindex reprint the last value
d4f3574e 5509If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5510@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5511conveniently inspect the same value in an alternative format.
5512@end table
5513
5514A more low-level way of examining data is with the @code{x} command.
5515It examines data in memory at a specified address and prints it in a
79a6e687 5516specified format. @xref{Memory, ,Examining Memory}.
c906108c 5517
7a292a7a 5518If you are interested in information about types, or about how the
d4f3574e
SS
5519fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5520command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5521Table}.
c906108c
SS
5522
5523@menu
5524* Expressions:: Expressions
5525* Variables:: Program variables
5526* Arrays:: Artificial arrays
5527* Output Formats:: Output formats
5528* Memory:: Examining memory
5529* Auto Display:: Automatic display
5530* Print Settings:: Print settings
5531* Value History:: Value history
5532* Convenience Vars:: Convenience variables
5533* Registers:: Registers
c906108c 5534* Floating Point Hardware:: Floating point hardware
53c69bd7 5535* Vector Unit:: Vector Unit
721c2651 5536* OS Information:: Auxiliary data provided by operating system
29e57380 5537* Memory Region Attributes:: Memory region attributes
16d9dec6 5538* Dump/Restore Files:: Copy between memory and a file
384ee23f 5539* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5540* Character Sets:: Debugging programs that use a different
5541 character set than GDB does
09d4efe1 5542* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5543@end menu
5544
6d2ebf8b 5545@node Expressions
c906108c
SS
5546@section Expressions
5547
5548@cindex expressions
5549@code{print} and many other @value{GDBN} commands accept an expression and
5550compute its value. Any kind of constant, variable or operator defined
5551by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5552@value{GDBN}. This includes conditional expressions, function calls,
5553casts, and string constants. It also includes preprocessor macros, if
5554you compiled your program to include this information; see
5555@ref{Compilation}.
c906108c 5556
15387254 5557@cindex arrays in expressions
d4f3574e
SS
5558@value{GDBN} supports array constants in expressions input by
5559the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
5d161b24 5560you can use the command @code{print @{1, 2, 3@}} to build up an array in
d4f3574e 5561memory that is @code{malloc}ed in the target program.
c906108c 5562
c906108c
SS
5563Because C is so widespread, most of the expressions shown in examples in
5564this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5565Languages}, for information on how to use expressions in other
5566languages.
5567
5568In this section, we discuss operators that you can use in @value{GDBN}
5569expressions regardless of your programming language.
5570
15387254 5571@cindex casts, in expressions
c906108c
SS
5572Casts are supported in all languages, not just in C, because it is so
5573useful to cast a number into a pointer in order to examine a structure
5574at that address in memory.
5575@c FIXME: casts supported---Mod2 true?
c906108c
SS
5576
5577@value{GDBN} supports these operators, in addition to those common
5578to programming languages:
5579
5580@table @code
5581@item @@
5582@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5583@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5584
5585@item ::
5586@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5587function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5588
5589@cindex @{@var{type}@}
5590@cindex type casting memory
5591@cindex memory, viewing as typed object
5592@cindex casts, to view memory
5593@item @{@var{type}@} @var{addr}
5594Refers to an object of type @var{type} stored at address @var{addr} in
5595memory. @var{addr} may be any expression whose value is an integer or
5596pointer (but parentheses are required around binary operators, just as in
5597a cast). This construct is allowed regardless of what kind of data is
5598normally supposed to reside at @var{addr}.
5599@end table
5600
6d2ebf8b 5601@node Variables
79a6e687 5602@section Program Variables
c906108c
SS
5603
5604The most common kind of expression to use is the name of a variable
5605in your program.
5606
5607Variables in expressions are understood in the selected stack frame
79a6e687 5608(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5609
5610@itemize @bullet
5611@item
5612global (or file-static)
5613@end itemize
5614
5d161b24 5615@noindent or
c906108c
SS
5616
5617@itemize @bullet
5618@item
5619visible according to the scope rules of the
5620programming language from the point of execution in that frame
5d161b24 5621@end itemize
c906108c
SS
5622
5623@noindent This means that in the function
5624
474c8240 5625@smallexample
c906108c
SS
5626foo (a)
5627 int a;
5628@{
5629 bar (a);
5630 @{
5631 int b = test ();
5632 bar (b);
5633 @}
5634@}
474c8240 5635@end smallexample
c906108c
SS
5636
5637@noindent
5638you can examine and use the variable @code{a} whenever your program is
5639executing within the function @code{foo}, but you can only use or
5640examine the variable @code{b} while your program is executing inside
5641the block where @code{b} is declared.
5642
5643@cindex variable name conflict
5644There is an exception: you can refer to a variable or function whose
5645scope is a single source file even if the current execution point is not
5646in this file. But it is possible to have more than one such variable or
5647function with the same name (in different source files). If that
5648happens, referring to that name has unpredictable effects. If you wish,
5649you can specify a static variable in a particular function or file,
15387254 5650using the colon-colon (@code{::}) notation:
c906108c 5651
d4f3574e 5652@cindex colon-colon, context for variables/functions
12c27660 5653@ifnotinfo
c906108c 5654@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5655@cindex @code{::}, context for variables/functions
12c27660 5656@end ifnotinfo
474c8240 5657@smallexample
c906108c
SS
5658@var{file}::@var{variable}
5659@var{function}::@var{variable}
474c8240 5660@end smallexample
c906108c
SS
5661
5662@noindent
5663Here @var{file} or @var{function} is the name of the context for the
5664static @var{variable}. In the case of file names, you can use quotes to
5665make sure @value{GDBN} parses the file name as a single word---for example,
5666to print a global value of @code{x} defined in @file{f2.c}:
5667
474c8240 5668@smallexample
c906108c 5669(@value{GDBP}) p 'f2.c'::x
474c8240 5670@end smallexample
c906108c 5671
b37052ae 5672@cindex C@t{++} scope resolution
c906108c 5673This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5674use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5675scope resolution operator in @value{GDBN} expressions.
5676@c FIXME: Um, so what happens in one of those rare cases where it's in
5677@c conflict?? --mew
c906108c
SS
5678
5679@cindex wrong values
5680@cindex variable values, wrong
15387254
EZ
5681@cindex function entry/exit, wrong values of variables
5682@cindex optimized code, wrong values of variables
c906108c
SS
5683@quotation
5684@emph{Warning:} Occasionally, a local variable may appear to have the
5685wrong value at certain points in a function---just after entry to a new
5686scope, and just before exit.
5687@end quotation
5688You may see this problem when you are stepping by machine instructions.
5689This is because, on most machines, it takes more than one instruction to
5690set up a stack frame (including local variable definitions); if you are
5691stepping by machine instructions, variables may appear to have the wrong
5692values until the stack frame is completely built. On exit, it usually
5693also takes more than one machine instruction to destroy a stack frame;
5694after you begin stepping through that group of instructions, local
5695variable definitions may be gone.
5696
5697This may also happen when the compiler does significant optimizations.
5698To be sure of always seeing accurate values, turn off all optimization
5699when compiling.
5700
d4f3574e
SS
5701@cindex ``No symbol "foo" in current context''
5702Another possible effect of compiler optimizations is to optimize
5703unused variables out of existence, or assign variables to registers (as
5704opposed to memory addresses). Depending on the support for such cases
5705offered by the debug info format used by the compiler, @value{GDBN}
5706might not be able to display values for such local variables. If that
5707happens, @value{GDBN} will print a message like this:
5708
474c8240 5709@smallexample
d4f3574e 5710No symbol "foo" in current context.
474c8240 5711@end smallexample
d4f3574e
SS
5712
5713To solve such problems, either recompile without optimizations, or use a
5714different debug info format, if the compiler supports several such
15387254 5715formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5716usually supports the @option{-gstabs+} option. @option{-gstabs+}
5717produces debug info in a format that is superior to formats such as
5718COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5719an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5720for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5721Compiler Collection (GCC)}.
79a6e687 5722@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5723that are best suited to C@t{++} programs.
d4f3574e 5724
ab1adacd
EZ
5725If you ask to print an object whose contents are unknown to
5726@value{GDBN}, e.g., because its data type is not completely specified
5727by the debug information, @value{GDBN} will say @samp{<incomplete
5728type>}. @xref{Symbols, incomplete type}, for more about this.
5729
3a60f64e
JK
5730Strings are identified as arrays of @code{char} values without specified
5731signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5732printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5733@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5734defines literal string type @code{"char"} as @code{char} without a sign.
5735For program code
5736
5737@smallexample
5738char var0[] = "A";
5739signed char var1[] = "A";
5740@end smallexample
5741
5742You get during debugging
5743@smallexample
5744(gdb) print var0
5745$1 = "A"
5746(gdb) print var1
5747$2 = @{65 'A', 0 '\0'@}
5748@end smallexample
5749
6d2ebf8b 5750@node Arrays
79a6e687 5751@section Artificial Arrays
c906108c
SS
5752
5753@cindex artificial array
15387254 5754@cindex arrays
41afff9a 5755@kindex @@@r{, referencing memory as an array}
c906108c
SS
5756It is often useful to print out several successive objects of the
5757same type in memory; a section of an array, or an array of
5758dynamically determined size for which only a pointer exists in the
5759program.
5760
5761You can do this by referring to a contiguous span of memory as an
5762@dfn{artificial array}, using the binary operator @samp{@@}. The left
5763operand of @samp{@@} should be the first element of the desired array
5764and be an individual object. The right operand should be the desired length
5765of the array. The result is an array value whose elements are all of
5766the type of the left argument. The first element is actually the left
5767argument; the second element comes from bytes of memory immediately
5768following those that hold the first element, and so on. Here is an
5769example. If a program says
5770
474c8240 5771@smallexample
c906108c 5772int *array = (int *) malloc (len * sizeof (int));
474c8240 5773@end smallexample
c906108c
SS
5774
5775@noindent
5776you can print the contents of @code{array} with
5777
474c8240 5778@smallexample
c906108c 5779p *array@@len
474c8240 5780@end smallexample
c906108c
SS
5781
5782The left operand of @samp{@@} must reside in memory. Array values made
5783with @samp{@@} in this way behave just like other arrays in terms of
5784subscripting, and are coerced to pointers when used in expressions.
5785Artificial arrays most often appear in expressions via the value history
79a6e687 5786(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5787
5788Another way to create an artificial array is to use a cast.
5789This re-interprets a value as if it were an array.
5790The value need not be in memory:
474c8240 5791@smallexample
c906108c
SS
5792(@value{GDBP}) p/x (short[2])0x12345678
5793$1 = @{0x1234, 0x5678@}
474c8240 5794@end smallexample
c906108c
SS
5795
5796As a convenience, if you leave the array length out (as in
c3f6f71d 5797@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5798the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5799@smallexample
c906108c
SS
5800(@value{GDBP}) p/x (short[])0x12345678
5801$2 = @{0x1234, 0x5678@}
474c8240 5802@end smallexample
c906108c
SS
5803
5804Sometimes the artificial array mechanism is not quite enough; in
5805moderately complex data structures, the elements of interest may not
5806actually be adjacent---for example, if you are interested in the values
5807of pointers in an array. One useful work-around in this situation is
5808to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5809Variables}) as a counter in an expression that prints the first
c906108c
SS
5810interesting value, and then repeat that expression via @key{RET}. For
5811instance, suppose you have an array @code{dtab} of pointers to
5812structures, and you are interested in the values of a field @code{fv}
5813in each structure. Here is an example of what you might type:
5814
474c8240 5815@smallexample
c906108c
SS
5816set $i = 0
5817p dtab[$i++]->fv
5818@key{RET}
5819@key{RET}
5820@dots{}
474c8240 5821@end smallexample
c906108c 5822
6d2ebf8b 5823@node Output Formats
79a6e687 5824@section Output Formats
c906108c
SS
5825
5826@cindex formatted output
5827@cindex output formats
5828By default, @value{GDBN} prints a value according to its data type. Sometimes
5829this is not what you want. For example, you might want to print a number
5830in hex, or a pointer in decimal. Or you might want to view data in memory
5831at a certain address as a character string or as an instruction. To do
5832these things, specify an @dfn{output format} when you print a value.
5833
5834The simplest use of output formats is to say how to print a value
5835already computed. This is done by starting the arguments of the
5836@code{print} command with a slash and a format letter. The format
5837letters supported are:
5838
5839@table @code
5840@item x
5841Regard the bits of the value as an integer, and print the integer in
5842hexadecimal.
5843
5844@item d
5845Print as integer in signed decimal.
5846
5847@item u
5848Print as integer in unsigned decimal.
5849
5850@item o
5851Print as integer in octal.
5852
5853@item t
5854Print as integer in binary. The letter @samp{t} stands for ``two''.
5855@footnote{@samp{b} cannot be used because these format letters are also
5856used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5857see @ref{Memory,,Examining Memory}.}
c906108c
SS
5858
5859@item a
5860@cindex unknown address, locating
3d67e040 5861@cindex locate address
c906108c
SS
5862Print as an address, both absolute in hexadecimal and as an offset from
5863the nearest preceding symbol. You can use this format used to discover
5864where (in what function) an unknown address is located:
5865
474c8240 5866@smallexample
c906108c
SS
5867(@value{GDBP}) p/a 0x54320
5868$3 = 0x54320 <_initialize_vx+396>
474c8240 5869@end smallexample
c906108c 5870
3d67e040
EZ
5871@noindent
5872The command @code{info symbol 0x54320} yields similar results.
5873@xref{Symbols, info symbol}.
5874
c906108c 5875@item c
51274035
EZ
5876Regard as an integer and print it as a character constant. This
5877prints both the numerical value and its character representation. The
5878character representation is replaced with the octal escape @samp{\nnn}
5879for characters outside the 7-bit @sc{ascii} range.
c906108c 5880
ea37ba09
DJ
5881Without this format, @value{GDBN} displays @code{char},
5882@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5883constants. Single-byte members of vectors are displayed as integer
5884data.
5885
c906108c
SS
5886@item f
5887Regard the bits of the value as a floating point number and print
5888using typical floating point syntax.
ea37ba09
DJ
5889
5890@item s
5891@cindex printing strings
5892@cindex printing byte arrays
5893Regard as a string, if possible. With this format, pointers to single-byte
5894data are displayed as null-terminated strings and arrays of single-byte data
5895are displayed as fixed-length strings. Other values are displayed in their
5896natural types.
5897
5898Without this format, @value{GDBN} displays pointers to and arrays of
5899@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5900strings. Single-byte members of a vector are displayed as an integer
5901array.
c906108c
SS
5902@end table
5903
5904For example, to print the program counter in hex (@pxref{Registers}), type
5905
474c8240 5906@smallexample
c906108c 5907p/x $pc
474c8240 5908@end smallexample
c906108c
SS
5909
5910@noindent
5911Note that no space is required before the slash; this is because command
5912names in @value{GDBN} cannot contain a slash.
5913
5914To reprint the last value in the value history with a different format,
5915you can use the @code{print} command with just a format and no
5916expression. For example, @samp{p/x} reprints the last value in hex.
5917
6d2ebf8b 5918@node Memory
79a6e687 5919@section Examining Memory
c906108c
SS
5920
5921You can use the command @code{x} (for ``examine'') to examine memory in
5922any of several formats, independently of your program's data types.
5923
5924@cindex examining memory
5925@table @code
41afff9a 5926@kindex x @r{(examine memory)}
c906108c
SS
5927@item x/@var{nfu} @var{addr}
5928@itemx x @var{addr}
5929@itemx x
5930Use the @code{x} command to examine memory.
5931@end table
5932
5933@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
5934much memory to display and how to format it; @var{addr} is an
5935expression giving the address where you want to start displaying memory.
5936If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
5937Several commands set convenient defaults for @var{addr}.
5938
5939@table @r
5940@item @var{n}, the repeat count
5941The repeat count is a decimal integer; the default is 1. It specifies
5942how much memory (counting by units @var{u}) to display.
5943@c This really is **decimal**; unaffected by 'set radix' as of GDB
5944@c 4.1.2.
5945
5946@item @var{f}, the display format
51274035
EZ
5947The display format is one of the formats used by @code{print}
5948(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
5949@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
5950The default is @samp{x} (hexadecimal) initially. The default changes
5951each time you use either @code{x} or @code{print}.
c906108c
SS
5952
5953@item @var{u}, the unit size
5954The unit size is any of
5955
5956@table @code
5957@item b
5958Bytes.
5959@item h
5960Halfwords (two bytes).
5961@item w
5962Words (four bytes). This is the initial default.
5963@item g
5964Giant words (eight bytes).
5965@end table
5966
5967Each time you specify a unit size with @code{x}, that size becomes the
5968default unit the next time you use @code{x}. (For the @samp{s} and
5969@samp{i} formats, the unit size is ignored and is normally not written.)
5970
5971@item @var{addr}, starting display address
5972@var{addr} is the address where you want @value{GDBN} to begin displaying
5973memory. The expression need not have a pointer value (though it may);
5974it is always interpreted as an integer address of a byte of memory.
5975@xref{Expressions, ,Expressions}, for more information on expressions. The default for
5976@var{addr} is usually just after the last address examined---but several
5977other commands also set the default address: @code{info breakpoints} (to
5978the address of the last breakpoint listed), @code{info line} (to the
5979starting address of a line), and @code{print} (if you use it to display
5980a value from memory).
5981@end table
5982
5983For example, @samp{x/3uh 0x54320} is a request to display three halfwords
5984(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
5985starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
5986words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 5987@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
5988
5989Since the letters indicating unit sizes are all distinct from the
5990letters specifying output formats, you do not have to remember whether
5991unit size or format comes first; either order works. The output
5992specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
5993(However, the count @var{n} must come first; @samp{wx4} does not work.)
5994
5995Even though the unit size @var{u} is ignored for the formats @samp{s}
5996and @samp{i}, you might still want to use a count @var{n}; for example,
5997@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
5998including any operands. For convenience, especially when used with
5999the @code{display} command, the @samp{i} format also prints branch delay
6000slot instructions, if any, beyond the count specified, which immediately
6001follow the last instruction that is within the count. The command
6002@code{disassemble} gives an alternative way of inspecting machine
6003instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6004
6005All the defaults for the arguments to @code{x} are designed to make it
6006easy to continue scanning memory with minimal specifications each time
6007you use @code{x}. For example, after you have inspected three machine
6008instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6009with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6010the repeat count @var{n} is used again; the other arguments default as
6011for successive uses of @code{x}.
6012
6013@cindex @code{$_}, @code{$__}, and value history
6014The addresses and contents printed by the @code{x} command are not saved
6015in the value history because there is often too much of them and they
6016would get in the way. Instead, @value{GDBN} makes these values available for
6017subsequent use in expressions as values of the convenience variables
6018@code{$_} and @code{$__}. After an @code{x} command, the last address
6019examined is available for use in expressions in the convenience variable
6020@code{$_}. The contents of that address, as examined, are available in
6021the convenience variable @code{$__}.
6022
6023If the @code{x} command has a repeat count, the address and contents saved
6024are from the last memory unit printed; this is not the same as the last
6025address printed if several units were printed on the last line of output.
6026
09d4efe1
EZ
6027@cindex remote memory comparison
6028@cindex verify remote memory image
6029When you are debugging a program running on a remote target machine
ea35711c 6030(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6031remote machine's memory against the executable file you downloaded to
6032the target. The @code{compare-sections} command is provided for such
6033situations.
6034
6035@table @code
6036@kindex compare-sections
6037@item compare-sections @r{[}@var{section-name}@r{]}
6038Compare the data of a loadable section @var{section-name} in the
6039executable file of the program being debugged with the same section in
6040the remote machine's memory, and report any mismatches. With no
6041arguments, compares all loadable sections. This command's
6042availability depends on the target's support for the @code{"qCRC"}
6043remote request.
6044@end table
6045
6d2ebf8b 6046@node Auto Display
79a6e687 6047@section Automatic Display
c906108c
SS
6048@cindex automatic display
6049@cindex display of expressions
6050
6051If you find that you want to print the value of an expression frequently
6052(to see how it changes), you might want to add it to the @dfn{automatic
6053display list} so that @value{GDBN} prints its value each time your program stops.
6054Each expression added to the list is given a number to identify it;
6055to remove an expression from the list, you specify that number.
6056The automatic display looks like this:
6057
474c8240 6058@smallexample
c906108c
SS
60592: foo = 38
60603: bar[5] = (struct hack *) 0x3804
474c8240 6061@end smallexample
c906108c
SS
6062
6063@noindent
6064This display shows item numbers, expressions and their current values. As with
6065displays you request manually using @code{x} or @code{print}, you can
6066specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6067whether to use @code{print} or @code{x} depending your format
6068specification---it uses @code{x} if you specify either the @samp{i}
6069or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6070
6071@table @code
6072@kindex display
d4f3574e
SS
6073@item display @var{expr}
6074Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6075each time your program stops. @xref{Expressions, ,Expressions}.
6076
6077@code{display} does not repeat if you press @key{RET} again after using it.
6078
d4f3574e 6079@item display/@var{fmt} @var{expr}
c906108c 6080For @var{fmt} specifying only a display format and not a size or
d4f3574e 6081count, add the expression @var{expr} to the auto-display list but
c906108c 6082arrange to display it each time in the specified format @var{fmt}.
79a6e687 6083@xref{Output Formats,,Output Formats}.
c906108c
SS
6084
6085@item display/@var{fmt} @var{addr}
6086For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6087number of units, add the expression @var{addr} as a memory address to
6088be examined each time your program stops. Examining means in effect
79a6e687 6089doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6090@end table
6091
6092For example, @samp{display/i $pc} can be helpful, to see the machine
6093instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6094is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6095
6096@table @code
6097@kindex delete display
6098@kindex undisplay
6099@item undisplay @var{dnums}@dots{}
6100@itemx delete display @var{dnums}@dots{}
6101Remove item numbers @var{dnums} from the list of expressions to display.
6102
6103@code{undisplay} does not repeat if you press @key{RET} after using it.
6104(Otherwise you would just get the error @samp{No display number @dots{}}.)
6105
6106@kindex disable display
6107@item disable display @var{dnums}@dots{}
6108Disable the display of item numbers @var{dnums}. A disabled display
6109item is not printed automatically, but is not forgotten. It may be
6110enabled again later.
6111
6112@kindex enable display
6113@item enable display @var{dnums}@dots{}
6114Enable display of item numbers @var{dnums}. It becomes effective once
6115again in auto display of its expression, until you specify otherwise.
6116
6117@item display
6118Display the current values of the expressions on the list, just as is
6119done when your program stops.
6120
6121@kindex info display
6122@item info display
6123Print the list of expressions previously set up to display
6124automatically, each one with its item number, but without showing the
6125values. This includes disabled expressions, which are marked as such.
6126It also includes expressions which would not be displayed right now
6127because they refer to automatic variables not currently available.
6128@end table
6129
15387254 6130@cindex display disabled out of scope
c906108c
SS
6131If a display expression refers to local variables, then it does not make
6132sense outside the lexical context for which it was set up. Such an
6133expression is disabled when execution enters a context where one of its
6134variables is not defined. For example, if you give the command
6135@code{display last_char} while inside a function with an argument
6136@code{last_char}, @value{GDBN} displays this argument while your program
6137continues to stop inside that function. When it stops elsewhere---where
6138there is no variable @code{last_char}---the display is disabled
6139automatically. The next time your program stops where @code{last_char}
6140is meaningful, you can enable the display expression once again.
6141
6d2ebf8b 6142@node Print Settings
79a6e687 6143@section Print Settings
c906108c
SS
6144
6145@cindex format options
6146@cindex print settings
6147@value{GDBN} provides the following ways to control how arrays, structures,
6148and symbols are printed.
6149
6150@noindent
6151These settings are useful for debugging programs in any language:
6152
6153@table @code
4644b6e3 6154@kindex set print
c906108c
SS
6155@item set print address
6156@itemx set print address on
4644b6e3 6157@cindex print/don't print memory addresses
c906108c
SS
6158@value{GDBN} prints memory addresses showing the location of stack
6159traces, structure values, pointer values, breakpoints, and so forth,
6160even when it also displays the contents of those addresses. The default
6161is @code{on}. For example, this is what a stack frame display looks like with
6162@code{set print address on}:
6163
6164@smallexample
6165@group
6166(@value{GDBP}) f
6167#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6168 at input.c:530
6169530 if (lquote != def_lquote)
6170@end group
6171@end smallexample
6172
6173@item set print address off
6174Do not print addresses when displaying their contents. For example,
6175this is the same stack frame displayed with @code{set print address off}:
6176
6177@smallexample
6178@group
6179(@value{GDBP}) set print addr off
6180(@value{GDBP}) f
6181#0 set_quotes (lq="<<", rq=">>") at input.c:530
6182530 if (lquote != def_lquote)
6183@end group
6184@end smallexample
6185
6186You can use @samp{set print address off} to eliminate all machine
6187dependent displays from the @value{GDBN} interface. For example, with
6188@code{print address off}, you should get the same text for backtraces on
6189all machines---whether or not they involve pointer arguments.
6190
4644b6e3 6191@kindex show print
c906108c
SS
6192@item show print address
6193Show whether or not addresses are to be printed.
6194@end table
6195
6196When @value{GDBN} prints a symbolic address, it normally prints the
6197closest earlier symbol plus an offset. If that symbol does not uniquely
6198identify the address (for example, it is a name whose scope is a single
6199source file), you may need to clarify. One way to do this is with
6200@code{info line}, for example @samp{info line *0x4537}. Alternately,
6201you can set @value{GDBN} to print the source file and line number when
6202it prints a symbolic address:
6203
6204@table @code
c906108c 6205@item set print symbol-filename on
9c16f35a
EZ
6206@cindex source file and line of a symbol
6207@cindex symbol, source file and line
c906108c
SS
6208Tell @value{GDBN} to print the source file name and line number of a
6209symbol in the symbolic form of an address.
6210
6211@item set print symbol-filename off
6212Do not print source file name and line number of a symbol. This is the
6213default.
6214
c906108c
SS
6215@item show print symbol-filename
6216Show whether or not @value{GDBN} will print the source file name and
6217line number of a symbol in the symbolic form of an address.
6218@end table
6219
6220Another situation where it is helpful to show symbol filenames and line
6221numbers is when disassembling code; @value{GDBN} shows you the line
6222number and source file that corresponds to each instruction.
6223
6224Also, you may wish to see the symbolic form only if the address being
6225printed is reasonably close to the closest earlier symbol:
6226
6227@table @code
c906108c 6228@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6229@cindex maximum value for offset of closest symbol
c906108c
SS
6230Tell @value{GDBN} to only display the symbolic form of an address if the
6231offset between the closest earlier symbol and the address is less than
5d161b24 6232@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6233to always print the symbolic form of an address if any symbol precedes it.
6234
c906108c
SS
6235@item show print max-symbolic-offset
6236Ask how large the maximum offset is that @value{GDBN} prints in a
6237symbolic address.
6238@end table
6239
6240@cindex wild pointer, interpreting
6241@cindex pointer, finding referent
6242If you have a pointer and you are not sure where it points, try
6243@samp{set print symbol-filename on}. Then you can determine the name
6244and source file location of the variable where it points, using
6245@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6246For example, here @value{GDBN} shows that a variable @code{ptt} points
6247at another variable @code{t}, defined in @file{hi2.c}:
6248
474c8240 6249@smallexample
c906108c
SS
6250(@value{GDBP}) set print symbol-filename on
6251(@value{GDBP}) p/a ptt
6252$4 = 0xe008 <t in hi2.c>
474c8240 6253@end smallexample
c906108c
SS
6254
6255@quotation
6256@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6257does not show the symbol name and filename of the referent, even with
6258the appropriate @code{set print} options turned on.
6259@end quotation
6260
6261Other settings control how different kinds of objects are printed:
6262
6263@table @code
c906108c
SS
6264@item set print array
6265@itemx set print array on
4644b6e3 6266@cindex pretty print arrays
c906108c
SS
6267Pretty print arrays. This format is more convenient to read,
6268but uses more space. The default is off.
6269
6270@item set print array off
6271Return to compressed format for arrays.
6272
c906108c
SS
6273@item show print array
6274Show whether compressed or pretty format is selected for displaying
6275arrays.
6276
3c9c013a
JB
6277@cindex print array indexes
6278@item set print array-indexes
6279@itemx set print array-indexes on
6280Print the index of each element when displaying arrays. May be more
6281convenient to locate a given element in the array or quickly find the
6282index of a given element in that printed array. The default is off.
6283
6284@item set print array-indexes off
6285Stop printing element indexes when displaying arrays.
6286
6287@item show print array-indexes
6288Show whether the index of each element is printed when displaying
6289arrays.
6290
c906108c 6291@item set print elements @var{number-of-elements}
4644b6e3 6292@cindex number of array elements to print
9c16f35a 6293@cindex limit on number of printed array elements
c906108c
SS
6294Set a limit on how many elements of an array @value{GDBN} will print.
6295If @value{GDBN} is printing a large array, it stops printing after it has
6296printed the number of elements set by the @code{set print elements} command.
6297This limit also applies to the display of strings.
d4f3574e 6298When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6299Setting @var{number-of-elements} to zero means that the printing is unlimited.
6300
c906108c
SS
6301@item show print elements
6302Display the number of elements of a large array that @value{GDBN} will print.
6303If the number is 0, then the printing is unlimited.
6304
b4740add
JB
6305@item set print frame-arguments @var{value}
6306@cindex printing frame argument values
6307@cindex print all frame argument values
6308@cindex print frame argument values for scalars only
6309@cindex do not print frame argument values
6310This command allows to control how the values of arguments are printed
6311when the debugger prints a frame (@pxref{Frames}). The possible
6312values are:
6313
6314@table @code
6315@item all
6316The values of all arguments are printed. This is the default.
6317
6318@item scalars
6319Print the value of an argument only if it is a scalar. The value of more
6320complex arguments such as arrays, structures, unions, etc, is replaced
6321by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6322
6323@smallexample
6324#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6325 at frame-args.c:23
6326@end smallexample
6327
6328@item none
6329None of the argument values are printed. Instead, the value of each argument
6330is replaced by @code{@dots{}}. In this case, the example above now becomes:
6331
6332@smallexample
6333#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6334 at frame-args.c:23
6335@end smallexample
6336@end table
6337
6338By default, all argument values are always printed. But this command
6339can be useful in several cases. For instance, it can be used to reduce
6340the amount of information printed in each frame, making the backtrace
6341more readable. Also, this command can be used to improve performance
6342when displaying Ada frames, because the computation of large arguments
6343can sometimes be CPU-intensive, especiallly in large applications.
6344Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6345avoids this computation, thus speeding up the display of each Ada frame.
6346
6347@item show print frame-arguments
6348Show how the value of arguments should be displayed when printing a frame.
6349
9c16f35a
EZ
6350@item set print repeats
6351@cindex repeated array elements
6352Set the threshold for suppressing display of repeated array
d3e8051b 6353elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6354array exceeds the threshold, @value{GDBN} prints the string
6355@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6356identical repetitions, instead of displaying the identical elements
6357themselves. Setting the threshold to zero will cause all elements to
6358be individually printed. The default threshold is 10.
6359
6360@item show print repeats
6361Display the current threshold for printing repeated identical
6362elements.
6363
c906108c 6364@item set print null-stop
4644b6e3 6365@cindex @sc{null} elements in arrays
c906108c 6366Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6367@sc{null} is encountered. This is useful when large arrays actually
c906108c 6368contain only short strings.
d4f3574e 6369The default is off.
c906108c 6370
9c16f35a
EZ
6371@item show print null-stop
6372Show whether @value{GDBN} stops printing an array on the first
6373@sc{null} character.
6374
c906108c 6375@item set print pretty on
9c16f35a
EZ
6376@cindex print structures in indented form
6377@cindex indentation in structure display
5d161b24 6378Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6379per line, like this:
6380
6381@smallexample
6382@group
6383$1 = @{
6384 next = 0x0,
6385 flags = @{
6386 sweet = 1,
6387 sour = 1
6388 @},
6389 meat = 0x54 "Pork"
6390@}
6391@end group
6392@end smallexample
6393
6394@item set print pretty off
6395Cause @value{GDBN} to print structures in a compact format, like this:
6396
6397@smallexample
6398@group
6399$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6400meat = 0x54 "Pork"@}
6401@end group
6402@end smallexample
6403
6404@noindent
6405This is the default format.
6406
c906108c
SS
6407@item show print pretty
6408Show which format @value{GDBN} is using to print structures.
6409
c906108c 6410@item set print sevenbit-strings on
4644b6e3
EZ
6411@cindex eight-bit characters in strings
6412@cindex octal escapes in strings
c906108c
SS
6413Print using only seven-bit characters; if this option is set,
6414@value{GDBN} displays any eight-bit characters (in strings or
6415character values) using the notation @code{\}@var{nnn}. This setting is
6416best if you are working in English (@sc{ascii}) and you use the
6417high-order bit of characters as a marker or ``meta'' bit.
6418
6419@item set print sevenbit-strings off
6420Print full eight-bit characters. This allows the use of more
6421international character sets, and is the default.
6422
c906108c
SS
6423@item show print sevenbit-strings
6424Show whether or not @value{GDBN} is printing only seven-bit characters.
6425
c906108c 6426@item set print union on
4644b6e3 6427@cindex unions in structures, printing
9c16f35a
EZ
6428Tell @value{GDBN} to print unions which are contained in structures
6429and other unions. This is the default setting.
c906108c
SS
6430
6431@item set print union off
9c16f35a
EZ
6432Tell @value{GDBN} not to print unions which are contained in
6433structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6434instead.
c906108c 6435
c906108c
SS
6436@item show print union
6437Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6438structures and other unions.
c906108c
SS
6439
6440For example, given the declarations
6441
6442@smallexample
6443typedef enum @{Tree, Bug@} Species;
6444typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6445typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6446 Bug_forms;
6447
6448struct thing @{
6449 Species it;
6450 union @{
6451 Tree_forms tree;
6452 Bug_forms bug;
6453 @} form;
6454@};
6455
6456struct thing foo = @{Tree, @{Acorn@}@};
6457@end smallexample
6458
6459@noindent
6460with @code{set print union on} in effect @samp{p foo} would print
6461
6462@smallexample
6463$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6464@end smallexample
6465
6466@noindent
6467and with @code{set print union off} in effect it would print
6468
6469@smallexample
6470$1 = @{it = Tree, form = @{...@}@}
6471@end smallexample
9c16f35a
EZ
6472
6473@noindent
6474@code{set print union} affects programs written in C-like languages
6475and in Pascal.
c906108c
SS
6476@end table
6477
c906108c
SS
6478@need 1000
6479@noindent
b37052ae 6480These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6481
6482@table @code
4644b6e3 6483@cindex demangling C@t{++} names
c906108c
SS
6484@item set print demangle
6485@itemx set print demangle on
b37052ae 6486Print C@t{++} names in their source form rather than in the encoded
c906108c 6487(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6488linkage. The default is on.
c906108c 6489
c906108c 6490@item show print demangle
b37052ae 6491Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6492
c906108c
SS
6493@item set print asm-demangle
6494@itemx set print asm-demangle on
b37052ae 6495Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6496in assembler code printouts such as instruction disassemblies.
6497The default is off.
6498
c906108c 6499@item show print asm-demangle
b37052ae 6500Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6501or demangled form.
6502
b37052ae
EZ
6503@cindex C@t{++} symbol decoding style
6504@cindex symbol decoding style, C@t{++}
a8f24a35 6505@kindex set demangle-style
c906108c
SS
6506@item set demangle-style @var{style}
6507Choose among several encoding schemes used by different compilers to
b37052ae 6508represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6509
6510@table @code
6511@item auto
6512Allow @value{GDBN} to choose a decoding style by inspecting your program.
6513
6514@item gnu
b37052ae 6515Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6516This is the default.
c906108c
SS
6517
6518@item hp
b37052ae 6519Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6520
6521@item lucid
b37052ae 6522Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6523
6524@item arm
b37052ae 6525Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6526@strong{Warning:} this setting alone is not sufficient to allow
6527debugging @code{cfront}-generated executables. @value{GDBN} would
6528require further enhancement to permit that.
6529
6530@end table
6531If you omit @var{style}, you will see a list of possible formats.
6532
c906108c 6533@item show demangle-style
b37052ae 6534Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6535
c906108c
SS
6536@item set print object
6537@itemx set print object on
4644b6e3 6538@cindex derived type of an object, printing
9c16f35a 6539@cindex display derived types
c906108c
SS
6540When displaying a pointer to an object, identify the @emph{actual}
6541(derived) type of the object rather than the @emph{declared} type, using
6542the virtual function table.
6543
6544@item set print object off
6545Display only the declared type of objects, without reference to the
6546virtual function table. This is the default setting.
6547
c906108c
SS
6548@item show print object
6549Show whether actual, or declared, object types are displayed.
6550
c906108c
SS
6551@item set print static-members
6552@itemx set print static-members on
4644b6e3 6553@cindex static members of C@t{++} objects
b37052ae 6554Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6555
6556@item set print static-members off
b37052ae 6557Do not print static members when displaying a C@t{++} object.
c906108c 6558
c906108c 6559@item show print static-members
9c16f35a
EZ
6560Show whether C@t{++} static members are printed or not.
6561
6562@item set print pascal_static-members
6563@itemx set print pascal_static-members on
d3e8051b
EZ
6564@cindex static members of Pascal objects
6565@cindex Pascal objects, static members display
9c16f35a
EZ
6566Print static members when displaying a Pascal object. The default is on.
6567
6568@item set print pascal_static-members off
6569Do not print static members when displaying a Pascal object.
6570
6571@item show print pascal_static-members
6572Show whether Pascal static members are printed or not.
c906108c
SS
6573
6574@c These don't work with HP ANSI C++ yet.
c906108c
SS
6575@item set print vtbl
6576@itemx set print vtbl on
4644b6e3 6577@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6578@cindex virtual functions (C@t{++}) display
6579@cindex VTBL display
b37052ae 6580Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6581(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6582ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6583
6584@item set print vtbl off
b37052ae 6585Do not pretty print C@t{++} virtual function tables.
c906108c 6586
c906108c 6587@item show print vtbl
b37052ae 6588Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6589@end table
c906108c 6590
6d2ebf8b 6591@node Value History
79a6e687 6592@section Value History
c906108c
SS
6593
6594@cindex value history
9c16f35a 6595@cindex history of values printed by @value{GDBN}
5d161b24
DB
6596Values printed by the @code{print} command are saved in the @value{GDBN}
6597@dfn{value history}. This allows you to refer to them in other expressions.
6598Values are kept until the symbol table is re-read or discarded
6599(for example with the @code{file} or @code{symbol-file} commands).
6600When the symbol table changes, the value history is discarded,
6601since the values may contain pointers back to the types defined in the
c906108c
SS
6602symbol table.
6603
6604@cindex @code{$}
6605@cindex @code{$$}
6606@cindex history number
6607The values printed are given @dfn{history numbers} by which you can
6608refer to them. These are successive integers starting with one.
6609@code{print} shows you the history number assigned to a value by
6610printing @samp{$@var{num} = } before the value; here @var{num} is the
6611history number.
6612
6613To refer to any previous value, use @samp{$} followed by the value's
6614history number. The way @code{print} labels its output is designed to
6615remind you of this. Just @code{$} refers to the most recent value in
6616the history, and @code{$$} refers to the value before that.
6617@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6618is the value just prior to @code{$$}, @code{$$1} is equivalent to
6619@code{$$}, and @code{$$0} is equivalent to @code{$}.
6620
6621For example, suppose you have just printed a pointer to a structure and
6622want to see the contents of the structure. It suffices to type
6623
474c8240 6624@smallexample
c906108c 6625p *$
474c8240 6626@end smallexample
c906108c
SS
6627
6628If you have a chain of structures where the component @code{next} points
6629to the next one, you can print the contents of the next one with this:
6630
474c8240 6631@smallexample
c906108c 6632p *$.next
474c8240 6633@end smallexample
c906108c
SS
6634
6635@noindent
6636You can print successive links in the chain by repeating this
6637command---which you can do by just typing @key{RET}.
6638
6639Note that the history records values, not expressions. If the value of
6640@code{x} is 4 and you type these commands:
6641
474c8240 6642@smallexample
c906108c
SS
6643print x
6644set x=5
474c8240 6645@end smallexample
c906108c
SS
6646
6647@noindent
6648then the value recorded in the value history by the @code{print} command
6649remains 4 even though the value of @code{x} has changed.
6650
6651@table @code
6652@kindex show values
6653@item show values
6654Print the last ten values in the value history, with their item numbers.
6655This is like @samp{p@ $$9} repeated ten times, except that @code{show
6656values} does not change the history.
6657
6658@item show values @var{n}
6659Print ten history values centered on history item number @var{n}.
6660
6661@item show values +
6662Print ten history values just after the values last printed. If no more
6663values are available, @code{show values +} produces no display.
6664@end table
6665
6666Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6667same effect as @samp{show values +}.
6668
6d2ebf8b 6669@node Convenience Vars
79a6e687 6670@section Convenience Variables
c906108c
SS
6671
6672@cindex convenience variables
9c16f35a 6673@cindex user-defined variables
c906108c
SS
6674@value{GDBN} provides @dfn{convenience variables} that you can use within
6675@value{GDBN} to hold on to a value and refer to it later. These variables
6676exist entirely within @value{GDBN}; they are not part of your program, and
6677setting a convenience variable has no direct effect on further execution
6678of your program. That is why you can use them freely.
6679
6680Convenience variables are prefixed with @samp{$}. Any name preceded by
6681@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6682the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6683(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6684by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6685
6686You can save a value in a convenience variable with an assignment
6687expression, just as you would set a variable in your program.
6688For example:
6689
474c8240 6690@smallexample
c906108c 6691set $foo = *object_ptr
474c8240 6692@end smallexample
c906108c
SS
6693
6694@noindent
6695would save in @code{$foo} the value contained in the object pointed to by
6696@code{object_ptr}.
6697
6698Using a convenience variable for the first time creates it, but its
6699value is @code{void} until you assign a new value. You can alter the
6700value with another assignment at any time.
6701
6702Convenience variables have no fixed types. You can assign a convenience
6703variable any type of value, including structures and arrays, even if
6704that variable already has a value of a different type. The convenience
6705variable, when used as an expression, has the type of its current value.
6706
6707@table @code
6708@kindex show convenience
9c16f35a 6709@cindex show all user variables
c906108c
SS
6710@item show convenience
6711Print a list of convenience variables used so far, and their values.
d4f3574e 6712Abbreviated @code{show conv}.
53e5f3cf
AS
6713
6714@kindex init-if-undefined
6715@cindex convenience variables, initializing
6716@item init-if-undefined $@var{variable} = @var{expression}
6717Set a convenience variable if it has not already been set. This is useful
6718for user-defined commands that keep some state. It is similar, in concept,
6719to using local static variables with initializers in C (except that
6720convenience variables are global). It can also be used to allow users to
6721override default values used in a command script.
6722
6723If the variable is already defined then the expression is not evaluated so
6724any side-effects do not occur.
c906108c
SS
6725@end table
6726
6727One of the ways to use a convenience variable is as a counter to be
6728incremented or a pointer to be advanced. For example, to print
6729a field from successive elements of an array of structures:
6730
474c8240 6731@smallexample
c906108c
SS
6732set $i = 0
6733print bar[$i++]->contents
474c8240 6734@end smallexample
c906108c 6735
d4f3574e
SS
6736@noindent
6737Repeat that command by typing @key{RET}.
c906108c
SS
6738
6739Some convenience variables are created automatically by @value{GDBN} and given
6740values likely to be useful.
6741
6742@table @code
41afff9a 6743@vindex $_@r{, convenience variable}
c906108c
SS
6744@item $_
6745The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6746the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6747commands which provide a default address for @code{x} to examine also
6748set @code{$_} to that address; these commands include @code{info line}
6749and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6750except when set by the @code{x} command, in which case it is a pointer
6751to the type of @code{$__}.
6752
41afff9a 6753@vindex $__@r{, convenience variable}
c906108c
SS
6754@item $__
6755The variable @code{$__} is automatically set by the @code{x} command
6756to the value found in the last address examined. Its type is chosen
6757to match the format in which the data was printed.
6758
6759@item $_exitcode
41afff9a 6760@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6761The variable @code{$_exitcode} is automatically set to the exit code when
6762the program being debugged terminates.
6763@end table
6764
53a5351d
JM
6765On HP-UX systems, if you refer to a function or variable name that
6766begins with a dollar sign, @value{GDBN} searches for a user or system
6767name first, before it searches for a convenience variable.
c906108c 6768
6d2ebf8b 6769@node Registers
c906108c
SS
6770@section Registers
6771
6772@cindex registers
6773You can refer to machine register contents, in expressions, as variables
6774with names starting with @samp{$}. The names of registers are different
6775for each machine; use @code{info registers} to see the names used on
6776your machine.
6777
6778@table @code
6779@kindex info registers
6780@item info registers
6781Print the names and values of all registers except floating-point
c85508ee 6782and vector registers (in the selected stack frame).
c906108c
SS
6783
6784@kindex info all-registers
6785@cindex floating point registers
6786@item info all-registers
6787Print the names and values of all registers, including floating-point
c85508ee 6788and vector registers (in the selected stack frame).
c906108c
SS
6789
6790@item info registers @var{regname} @dots{}
6791Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6792As discussed in detail below, register values are normally relative to
6793the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6794the machine you are using, with or without the initial @samp{$}.
6795@end table
6796
e09f16f9
EZ
6797@cindex stack pointer register
6798@cindex program counter register
6799@cindex process status register
6800@cindex frame pointer register
6801@cindex standard registers
c906108c
SS
6802@value{GDBN} has four ``standard'' register names that are available (in
6803expressions) on most machines---whenever they do not conflict with an
6804architecture's canonical mnemonics for registers. The register names
6805@code{$pc} and @code{$sp} are used for the program counter register and
6806the stack pointer. @code{$fp} is used for a register that contains a
6807pointer to the current stack frame, and @code{$ps} is used for a
6808register that contains the processor status. For example,
6809you could print the program counter in hex with
6810
474c8240 6811@smallexample
c906108c 6812p/x $pc
474c8240 6813@end smallexample
c906108c
SS
6814
6815@noindent
6816or print the instruction to be executed next with
6817
474c8240 6818@smallexample
c906108c 6819x/i $pc
474c8240 6820@end smallexample
c906108c
SS
6821
6822@noindent
6823or add four to the stack pointer@footnote{This is a way of removing
6824one word from the stack, on machines where stacks grow downward in
6825memory (most machines, nowadays). This assumes that the innermost
6826stack frame is selected; setting @code{$sp} is not allowed when other
6827stack frames are selected. To pop entire frames off the stack,
6828regardless of machine architecture, use @code{return};
79a6e687 6829see @ref{Returning, ,Returning from a Function}.} with
c906108c 6830
474c8240 6831@smallexample
c906108c 6832set $sp += 4
474c8240 6833@end smallexample
c906108c
SS
6834
6835Whenever possible, these four standard register names are available on
6836your machine even though the machine has different canonical mnemonics,
6837so long as there is no conflict. The @code{info registers} command
6838shows the canonical names. For example, on the SPARC, @code{info
6839registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6840can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6841is an alias for the @sc{eflags} register.
c906108c
SS
6842
6843@value{GDBN} always considers the contents of an ordinary register as an
6844integer when the register is examined in this way. Some machines have
6845special registers which can hold nothing but floating point; these
6846registers are considered to have floating point values. There is no way
6847to refer to the contents of an ordinary register as floating point value
6848(although you can @emph{print} it as a floating point value with
6849@samp{print/f $@var{regname}}).
6850
6851Some registers have distinct ``raw'' and ``virtual'' data formats. This
6852means that the data format in which the register contents are saved by
6853the operating system is not the same one that your program normally
6854sees. For example, the registers of the 68881 floating point
6855coprocessor are always saved in ``extended'' (raw) format, but all C
6856programs expect to work with ``double'' (virtual) format. In such
5d161b24 6857cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6858that makes sense for your program), but the @code{info registers} command
6859prints the data in both formats.
6860
36b80e65
EZ
6861@cindex SSE registers (x86)
6862@cindex MMX registers (x86)
6863Some machines have special registers whose contents can be interpreted
6864in several different ways. For example, modern x86-based machines
6865have SSE and MMX registers that can hold several values packed
6866together in several different formats. @value{GDBN} refers to such
6867registers in @code{struct} notation:
6868
6869@smallexample
6870(@value{GDBP}) print $xmm1
6871$1 = @{
6872 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6873 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6874 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6875 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6876 v4_int32 = @{0, 20657912, 11, 13@},
6877 v2_int64 = @{88725056443645952, 55834574859@},
6878 uint128 = 0x0000000d0000000b013b36f800000000
6879@}
6880@end smallexample
6881
6882@noindent
6883To set values of such registers, you need to tell @value{GDBN} which
6884view of the register you wish to change, as if you were assigning
6885value to a @code{struct} member:
6886
6887@smallexample
6888 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6889@end smallexample
6890
c906108c 6891Normally, register values are relative to the selected stack frame
79a6e687 6892(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6893value that the register would contain if all stack frames farther in
6894were exited and their saved registers restored. In order to see the
6895true contents of hardware registers, you must select the innermost
6896frame (with @samp{frame 0}).
6897
6898However, @value{GDBN} must deduce where registers are saved, from the machine
6899code generated by your compiler. If some registers are not saved, or if
6900@value{GDBN} is unable to locate the saved registers, the selected stack
6901frame makes no difference.
6902
6d2ebf8b 6903@node Floating Point Hardware
79a6e687 6904@section Floating Point Hardware
c906108c
SS
6905@cindex floating point
6906
6907Depending on the configuration, @value{GDBN} may be able to give
6908you more information about the status of the floating point hardware.
6909
6910@table @code
6911@kindex info float
6912@item info float
6913Display hardware-dependent information about the floating
6914point unit. The exact contents and layout vary depending on the
6915floating point chip. Currently, @samp{info float} is supported on
6916the ARM and x86 machines.
6917@end table
c906108c 6918
e76f1f2e
AC
6919@node Vector Unit
6920@section Vector Unit
6921@cindex vector unit
6922
6923Depending on the configuration, @value{GDBN} may be able to give you
6924more information about the status of the vector unit.
6925
6926@table @code
6927@kindex info vector
6928@item info vector
6929Display information about the vector unit. The exact contents and
6930layout vary depending on the hardware.
6931@end table
6932
721c2651 6933@node OS Information
79a6e687 6934@section Operating System Auxiliary Information
721c2651
EZ
6935@cindex OS information
6936
6937@value{GDBN} provides interfaces to useful OS facilities that can help
6938you debug your program.
6939
6940@cindex @code{ptrace} system call
6941@cindex @code{struct user} contents
6942When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
6943machines), it interfaces with the inferior via the @code{ptrace}
6944system call. The operating system creates a special sata structure,
6945called @code{struct user}, for this interface. You can use the
6946command @code{info udot} to display the contents of this data
6947structure.
6948
6949@table @code
6950@item info udot
6951@kindex info udot
6952Display the contents of the @code{struct user} maintained by the OS
6953kernel for the program being debugged. @value{GDBN} displays the
6954contents of @code{struct user} as a list of hex numbers, similar to
6955the @code{examine} command.
6956@end table
6957
b383017d
RM
6958@cindex auxiliary vector
6959@cindex vector, auxiliary
b383017d
RM
6960Some operating systems supply an @dfn{auxiliary vector} to programs at
6961startup. This is akin to the arguments and environment that you
6962specify for a program, but contains a system-dependent variety of
6963binary values that tell system libraries important details about the
6964hardware, operating system, and process. Each value's purpose is
6965identified by an integer tag; the meanings are well-known but system-specific.
6966Depending on the configuration and operating system facilities,
9c16f35a
EZ
6967@value{GDBN} may be able to show you this information. For remote
6968targets, this functionality may further depend on the remote stub's
427c3a89
DJ
6969support of the @samp{qXfer:auxv:read} packet, see
6970@ref{qXfer auxiliary vector read}.
b383017d
RM
6971
6972@table @code
6973@kindex info auxv
6974@item info auxv
6975Display the auxiliary vector of the inferior, which can be either a
e4937fc1 6976live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
6977numerically, and also shows names and text descriptions for recognized
6978tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 6979pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
6980most appropriate form for a recognized tag, and in hexadecimal for
6981an unrecognized tag.
6982@end table
6983
721c2651 6984
29e57380 6985@node Memory Region Attributes
79a6e687 6986@section Memory Region Attributes
29e57380
C
6987@cindex memory region attributes
6988
b383017d 6989@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
6990required by regions of your target's memory. @value{GDBN} uses
6991attributes to determine whether to allow certain types of memory
6992accesses; whether to use specific width accesses; and whether to cache
6993target memory. By default the description of memory regions is
6994fetched from the target (if the current target supports this), but the
6995user can override the fetched regions.
29e57380
C
6996
6997Defined memory regions can be individually enabled and disabled. When a
6998memory region is disabled, @value{GDBN} uses the default attributes when
6999accessing memory in that region. Similarly, if no memory regions have
7000been defined, @value{GDBN} uses the default attributes when accessing
7001all memory.
7002
b383017d 7003When a memory region is defined, it is given a number to identify it;
29e57380
C
7004to enable, disable, or remove a memory region, you specify that number.
7005
7006@table @code
7007@kindex mem
bfac230e 7008@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7009Define a memory region bounded by @var{lower} and @var{upper} with
7010attributes @var{attributes}@dots{}, and add it to the list of regions
7011monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7012case: it is treated as the target's maximum memory address.
bfac230e 7013(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7014
fd79ecee
DJ
7015@item mem auto
7016Discard any user changes to the memory regions and use target-supplied
7017regions, if available, or no regions if the target does not support.
7018
29e57380
C
7019@kindex delete mem
7020@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7021Remove memory regions @var{nums}@dots{} from the list of regions
7022monitored by @value{GDBN}.
29e57380
C
7023
7024@kindex disable mem
7025@item disable mem @var{nums}@dots{}
09d4efe1 7026Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7027A disabled memory region is not forgotten.
29e57380
C
7028It may be enabled again later.
7029
7030@kindex enable mem
7031@item enable mem @var{nums}@dots{}
09d4efe1 7032Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7033
7034@kindex info mem
7035@item info mem
7036Print a table of all defined memory regions, with the following columns
09d4efe1 7037for each region:
29e57380
C
7038
7039@table @emph
7040@item Memory Region Number
7041@item Enabled or Disabled.
b383017d 7042Enabled memory regions are marked with @samp{y}.
29e57380
C
7043Disabled memory regions are marked with @samp{n}.
7044
7045@item Lo Address
7046The address defining the inclusive lower bound of the memory region.
7047
7048@item Hi Address
7049The address defining the exclusive upper bound of the memory region.
7050
7051@item Attributes
7052The list of attributes set for this memory region.
7053@end table
7054@end table
7055
7056
7057@subsection Attributes
7058
b383017d 7059@subsubsection Memory Access Mode
29e57380
C
7060The access mode attributes set whether @value{GDBN} may make read or
7061write accesses to a memory region.
7062
7063While these attributes prevent @value{GDBN} from performing invalid
7064memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7065etc.@: from accessing memory.
29e57380
C
7066
7067@table @code
7068@item ro
7069Memory is read only.
7070@item wo
7071Memory is write only.
7072@item rw
6ca652b0 7073Memory is read/write. This is the default.
29e57380
C
7074@end table
7075
7076@subsubsection Memory Access Size
d3e8051b 7077The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7078accesses in the memory region. Often memory mapped device registers
7079require specific sized accesses. If no access size attribute is
7080specified, @value{GDBN} may use accesses of any size.
7081
7082@table @code
7083@item 8
7084Use 8 bit memory accesses.
7085@item 16
7086Use 16 bit memory accesses.
7087@item 32
7088Use 32 bit memory accesses.
7089@item 64
7090Use 64 bit memory accesses.
7091@end table
7092
7093@c @subsubsection Hardware/Software Breakpoints
7094@c The hardware/software breakpoint attributes set whether @value{GDBN}
7095@c will use hardware or software breakpoints for the internal breakpoints
7096@c used by the step, next, finish, until, etc. commands.
7097@c
7098@c @table @code
7099@c @item hwbreak
b383017d 7100@c Always use hardware breakpoints
29e57380
C
7101@c @item swbreak (default)
7102@c @end table
7103
7104@subsubsection Data Cache
7105The data cache attributes set whether @value{GDBN} will cache target
7106memory. While this generally improves performance by reducing debug
7107protocol overhead, it can lead to incorrect results because @value{GDBN}
7108does not know about volatile variables or memory mapped device
7109registers.
7110
7111@table @code
7112@item cache
b383017d 7113Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7114@item nocache
7115Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7116@end table
7117
4b5752d0
VP
7118@subsection Memory Access Checking
7119@value{GDBN} can be instructed to refuse accesses to memory that is
7120not explicitly described. This can be useful if accessing such
7121regions has undesired effects for a specific target, or to provide
7122better error checking. The following commands control this behaviour.
7123
7124@table @code
7125@kindex set mem inaccessible-by-default
7126@item set mem inaccessible-by-default [on|off]
7127If @code{on} is specified, make @value{GDBN} treat memory not
7128explicitly described by the memory ranges as non-existent and refuse accesses
7129to such memory. The checks are only performed if there's at least one
7130memory range defined. If @code{off} is specified, make @value{GDBN}
7131treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7132The default value is @code{on}.
4b5752d0
VP
7133@kindex show mem inaccessible-by-default
7134@item show mem inaccessible-by-default
7135Show the current handling of accesses to unknown memory.
7136@end table
7137
7138
29e57380 7139@c @subsubsection Memory Write Verification
b383017d 7140@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7141@c will re-reads data after each write to verify the write was successful.
7142@c
7143@c @table @code
7144@c @item verify
7145@c @item noverify (default)
7146@c @end table
7147
16d9dec6 7148@node Dump/Restore Files
79a6e687 7149@section Copy Between Memory and a File
16d9dec6
MS
7150@cindex dump/restore files
7151@cindex append data to a file
7152@cindex dump data to a file
7153@cindex restore data from a file
16d9dec6 7154
df5215a6
JB
7155You can use the commands @code{dump}, @code{append}, and
7156@code{restore} to copy data between target memory and a file. The
7157@code{dump} and @code{append} commands write data to a file, and the
7158@code{restore} command reads data from a file back into the inferior's
7159memory. Files may be in binary, Motorola S-record, Intel hex, or
7160Tektronix Hex format; however, @value{GDBN} can only append to binary
7161files.
7162
7163@table @code
7164
7165@kindex dump
7166@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7167@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7168Dump the contents of memory from @var{start_addr} to @var{end_addr},
7169or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7170
df5215a6 7171The @var{format} parameter may be any one of:
16d9dec6 7172@table @code
df5215a6
JB
7173@item binary
7174Raw binary form.
7175@item ihex
7176Intel hex format.
7177@item srec
7178Motorola S-record format.
7179@item tekhex
7180Tektronix Hex format.
7181@end table
7182
7183@value{GDBN} uses the same definitions of these formats as the
7184@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7185@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7186form.
7187
7188@kindex append
7189@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7190@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7191Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7192or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7193(@value{GDBN} can only append data to files in raw binary form.)
7194
7195@kindex restore
7196@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7197Restore the contents of file @var{filename} into memory. The
7198@code{restore} command can automatically recognize any known @sc{bfd}
7199file format, except for raw binary. To restore a raw binary file you
7200must specify the optional keyword @code{binary} after the filename.
16d9dec6 7201
b383017d 7202If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7203contained in the file. Binary files always start at address zero, so
7204they will be restored at address @var{bias}. Other bfd files have
7205a built-in location; they will be restored at offset @var{bias}
7206from that location.
7207
7208If @var{start} and/or @var{end} are non-zero, then only data between
7209file offset @var{start} and file offset @var{end} will be restored.
b383017d 7210These offsets are relative to the addresses in the file, before
16d9dec6
MS
7211the @var{bias} argument is applied.
7212
7213@end table
7214
384ee23f
EZ
7215@node Core File Generation
7216@section How to Produce a Core File from Your Program
7217@cindex dump core from inferior
7218
7219A @dfn{core file} or @dfn{core dump} is a file that records the memory
7220image of a running process and its process status (register values
7221etc.). Its primary use is post-mortem debugging of a program that
7222crashed while it ran outside a debugger. A program that crashes
7223automatically produces a core file, unless this feature is disabled by
7224the user. @xref{Files}, for information on invoking @value{GDBN} in
7225the post-mortem debugging mode.
7226
7227Occasionally, you may wish to produce a core file of the program you
7228are debugging in order to preserve a snapshot of its state.
7229@value{GDBN} has a special command for that.
7230
7231@table @code
7232@kindex gcore
7233@kindex generate-core-file
7234@item generate-core-file [@var{file}]
7235@itemx gcore [@var{file}]
7236Produce a core dump of the inferior process. The optional argument
7237@var{file} specifies the file name where to put the core dump. If not
7238specified, the file name defaults to @file{core.@var{pid}}, where
7239@var{pid} is the inferior process ID.
7240
7241Note that this command is implemented only for some systems (as of
7242this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7243@end table
7244
a0eb71c5
KB
7245@node Character Sets
7246@section Character Sets
7247@cindex character sets
7248@cindex charset
7249@cindex translating between character sets
7250@cindex host character set
7251@cindex target character set
7252
7253If the program you are debugging uses a different character set to
7254represent characters and strings than the one @value{GDBN} uses itself,
7255@value{GDBN} can automatically translate between the character sets for
7256you. The character set @value{GDBN} uses we call the @dfn{host
7257character set}; the one the inferior program uses we call the
7258@dfn{target character set}.
7259
7260For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7261uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7262remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7263running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7264then the host character set is Latin-1, and the target character set is
7265@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7266target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7267@sc{ebcdic} and Latin 1 as you print character or string values, or use
7268character and string literals in expressions.
7269
7270@value{GDBN} has no way to automatically recognize which character set
7271the inferior program uses; you must tell it, using the @code{set
7272target-charset} command, described below.
7273
7274Here are the commands for controlling @value{GDBN}'s character set
7275support:
7276
7277@table @code
7278@item set target-charset @var{charset}
7279@kindex set target-charset
7280Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7281character set names @value{GDBN} recognizes below, but if you type
7282@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7283list the target character sets it supports.
a0eb71c5
KB
7284@end table
7285
7286@table @code
7287@item set host-charset @var{charset}
7288@kindex set host-charset
7289Set the current host character set to @var{charset}.
7290
7291By default, @value{GDBN} uses a host character set appropriate to the
7292system it is running on; you can override that default using the
7293@code{set host-charset} command.
7294
7295@value{GDBN} can only use certain character sets as its host character
7296set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7297indicate which can be host character sets, but if you type
7298@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7299list the host character sets it supports.
a0eb71c5
KB
7300
7301@item set charset @var{charset}
7302@kindex set charset
e33d66ec
EZ
7303Set the current host and target character sets to @var{charset}. As
7304above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7305@value{GDBN} will list the name of the character sets that can be used
7306for both host and target.
7307
a0eb71c5
KB
7308
7309@item show charset
a0eb71c5 7310@kindex show charset
b383017d 7311Show the names of the current host and target charsets.
e33d66ec
EZ
7312
7313@itemx show host-charset
a0eb71c5 7314@kindex show host-charset
b383017d 7315Show the name of the current host charset.
e33d66ec
EZ
7316
7317@itemx show target-charset
a0eb71c5 7318@kindex show target-charset
b383017d 7319Show the name of the current target charset.
a0eb71c5
KB
7320
7321@end table
7322
7323@value{GDBN} currently includes support for the following character
7324sets:
7325
7326@table @code
7327
7328@item ASCII
7329@cindex ASCII character set
7330Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7331character set.
7332
7333@item ISO-8859-1
7334@cindex ISO 8859-1 character set
7335@cindex ISO Latin 1 character set
e33d66ec 7336The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7337characters needed for French, German, and Spanish. @value{GDBN} can use
7338this as its host character set.
7339
7340@item EBCDIC-US
7341@itemx IBM1047
7342@cindex EBCDIC character set
7343@cindex IBM1047 character set
7344Variants of the @sc{ebcdic} character set, used on some of IBM's
7345mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7346@value{GDBN} cannot use these as its host character set.
7347
7348@end table
7349
7350Note that these are all single-byte character sets. More work inside
3f94c067 7351@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7352encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7353
7354Here is an example of @value{GDBN}'s character set support in action.
7355Assume that the following source code has been placed in the file
7356@file{charset-test.c}:
7357
7358@smallexample
7359#include <stdio.h>
7360
7361char ascii_hello[]
7362 = @{72, 101, 108, 108, 111, 44, 32, 119,
7363 111, 114, 108, 100, 33, 10, 0@};
7364char ibm1047_hello[]
7365 = @{200, 133, 147, 147, 150, 107, 64, 166,
7366 150, 153, 147, 132, 90, 37, 0@};
7367
7368main ()
7369@{
7370 printf ("Hello, world!\n");
7371@}
10998722 7372@end smallexample
a0eb71c5
KB
7373
7374In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7375containing the string @samp{Hello, world!} followed by a newline,
7376encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7377
7378We compile the program, and invoke the debugger on it:
7379
7380@smallexample
7381$ gcc -g charset-test.c -o charset-test
7382$ gdb -nw charset-test
7383GNU gdb 2001-12-19-cvs
7384Copyright 2001 Free Software Foundation, Inc.
7385@dots{}
f7dc1244 7386(@value{GDBP})
10998722 7387@end smallexample
a0eb71c5
KB
7388
7389We can use the @code{show charset} command to see what character sets
7390@value{GDBN} is currently using to interpret and display characters and
7391strings:
7392
7393@smallexample
f7dc1244 7394(@value{GDBP}) show charset
e33d66ec 7395The current host and target character set is `ISO-8859-1'.
f7dc1244 7396(@value{GDBP})
10998722 7397@end smallexample
a0eb71c5
KB
7398
7399For the sake of printing this manual, let's use @sc{ascii} as our
7400initial character set:
7401@smallexample
f7dc1244
EZ
7402(@value{GDBP}) set charset ASCII
7403(@value{GDBP}) show charset
e33d66ec 7404The current host and target character set is `ASCII'.
f7dc1244 7405(@value{GDBP})
10998722 7406@end smallexample
a0eb71c5
KB
7407
7408Let's assume that @sc{ascii} is indeed the correct character set for our
7409host system --- in other words, let's assume that if @value{GDBN} prints
7410characters using the @sc{ascii} character set, our terminal will display
7411them properly. Since our current target character set is also
7412@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7413
7414@smallexample
f7dc1244 7415(@value{GDBP}) print ascii_hello
a0eb71c5 7416$1 = 0x401698 "Hello, world!\n"
f7dc1244 7417(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7418$2 = 72 'H'
f7dc1244 7419(@value{GDBP})
10998722 7420@end smallexample
a0eb71c5
KB
7421
7422@value{GDBN} uses the target character set for character and string
7423literals you use in expressions:
7424
7425@smallexample
f7dc1244 7426(@value{GDBP}) print '+'
a0eb71c5 7427$3 = 43 '+'
f7dc1244 7428(@value{GDBP})
10998722 7429@end smallexample
a0eb71c5
KB
7430
7431The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7432character.
7433
7434@value{GDBN} relies on the user to tell it which character set the
7435target program uses. If we print @code{ibm1047_hello} while our target
7436character set is still @sc{ascii}, we get jibberish:
7437
7438@smallexample
f7dc1244 7439(@value{GDBP}) print ibm1047_hello
a0eb71c5 7440$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7441(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7442$5 = 200 '\310'
f7dc1244 7443(@value{GDBP})
10998722 7444@end smallexample
a0eb71c5 7445
e33d66ec 7446If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7447@value{GDBN} tells us the character sets it supports:
7448
7449@smallexample
f7dc1244 7450(@value{GDBP}) set target-charset
b383017d 7451ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7452(@value{GDBP}) set target-charset
10998722 7453@end smallexample
a0eb71c5
KB
7454
7455We can select @sc{ibm1047} as our target character set, and examine the
7456program's strings again. Now the @sc{ascii} string is wrong, but
7457@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7458target character set, @sc{ibm1047}, to the host character set,
7459@sc{ascii}, and they display correctly:
7460
7461@smallexample
f7dc1244
EZ
7462(@value{GDBP}) set target-charset IBM1047
7463(@value{GDBP}) show charset
e33d66ec
EZ
7464The current host character set is `ASCII'.
7465The current target character set is `IBM1047'.
f7dc1244 7466(@value{GDBP}) print ascii_hello
a0eb71c5 7467$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7468(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7469$7 = 72 '\110'
f7dc1244 7470(@value{GDBP}) print ibm1047_hello
a0eb71c5 7471$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7472(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7473$9 = 200 'H'
f7dc1244 7474(@value{GDBP})
10998722 7475@end smallexample
a0eb71c5
KB
7476
7477As above, @value{GDBN} uses the target character set for character and
7478string literals you use in expressions:
7479
7480@smallexample
f7dc1244 7481(@value{GDBP}) print '+'
a0eb71c5 7482$10 = 78 '+'
f7dc1244 7483(@value{GDBP})
10998722 7484@end smallexample
a0eb71c5 7485
e33d66ec 7486The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7487character.
7488
09d4efe1
EZ
7489@node Caching Remote Data
7490@section Caching Data of Remote Targets
7491@cindex caching data of remote targets
7492
7493@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7494remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7495performance, because it reduces the overhead of the remote protocol by
7496bundling memory reads and writes into large chunks. Unfortunately,
7497@value{GDBN} does not currently know anything about volatile
7498registers, and thus data caching will produce incorrect results when
7499volatile registers are in use.
7500
7501@table @code
7502@kindex set remotecache
7503@item set remotecache on
7504@itemx set remotecache off
7505Set caching state for remote targets. When @code{ON}, use data
7506caching. By default, this option is @code{OFF}.
7507
7508@kindex show remotecache
7509@item show remotecache
7510Show the current state of data caching for remote targets.
7511
7512@kindex info dcache
7513@item info dcache
7514Print the information about the data cache performance. The
7515information displayed includes: the dcache width and depth; and for
7516each cache line, how many times it was referenced, and its data and
7517state (dirty, bad, ok, etc.). This command is useful for debugging
7518the data cache operation.
7519@end table
7520
a0eb71c5 7521
e2e0bcd1
JB
7522@node Macros
7523@chapter C Preprocessor Macros
7524
49efadf5 7525Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7526``preprocessor macros'' which expand into strings of tokens.
7527@value{GDBN} can evaluate expressions containing macro invocations, show
7528the result of macro expansion, and show a macro's definition, including
7529where it was defined.
7530
7531You may need to compile your program specially to provide @value{GDBN}
7532with information about preprocessor macros. Most compilers do not
7533include macros in their debugging information, even when you compile
7534with the @option{-g} flag. @xref{Compilation}.
7535
7536A program may define a macro at one point, remove that definition later,
7537and then provide a different definition after that. Thus, at different
7538points in the program, a macro may have different definitions, or have
7539no definition at all. If there is a current stack frame, @value{GDBN}
7540uses the macros in scope at that frame's source code line. Otherwise,
7541@value{GDBN} uses the macros in scope at the current listing location;
7542see @ref{List}.
7543
7544At the moment, @value{GDBN} does not support the @code{##}
7545token-splicing operator, the @code{#} stringification operator, or
7546variable-arity macros.
7547
7548Whenever @value{GDBN} evaluates an expression, it always expands any
7549macro invocations present in the expression. @value{GDBN} also provides
7550the following commands for working with macros explicitly.
7551
7552@table @code
7553
7554@kindex macro expand
7555@cindex macro expansion, showing the results of preprocessor
7556@cindex preprocessor macro expansion, showing the results of
7557@cindex expanding preprocessor macros
7558@item macro expand @var{expression}
7559@itemx macro exp @var{expression}
7560Show the results of expanding all preprocessor macro invocations in
7561@var{expression}. Since @value{GDBN} simply expands macros, but does
7562not parse the result, @var{expression} need not be a valid expression;
7563it can be any string of tokens.
7564
09d4efe1 7565@kindex macro exp1
e2e0bcd1
JB
7566@item macro expand-once @var{expression}
7567@itemx macro exp1 @var{expression}
4644b6e3 7568@cindex expand macro once
e2e0bcd1
JB
7569@i{(This command is not yet implemented.)} Show the results of
7570expanding those preprocessor macro invocations that appear explicitly in
7571@var{expression}. Macro invocations appearing in that expansion are
7572left unchanged. This command allows you to see the effect of a
7573particular macro more clearly, without being confused by further
7574expansions. Since @value{GDBN} simply expands macros, but does not
7575parse the result, @var{expression} need not be a valid expression; it
7576can be any string of tokens.
7577
475b0867 7578@kindex info macro
e2e0bcd1
JB
7579@cindex macro definition, showing
7580@cindex definition, showing a macro's
475b0867 7581@item info macro @var{macro}
e2e0bcd1
JB
7582Show the definition of the macro named @var{macro}, and describe the
7583source location where that definition was established.
7584
7585@kindex macro define
7586@cindex user-defined macros
7587@cindex defining macros interactively
7588@cindex macros, user-defined
7589@item macro define @var{macro} @var{replacement-list}
7590@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7591@i{(This command is not yet implemented.)} Introduce a definition for a
7592preprocessor macro named @var{macro}, invocations of which are replaced
7593by the tokens given in @var{replacement-list}. The first form of this
7594command defines an ``object-like'' macro, which takes no arguments; the
7595second form defines a ``function-like'' macro, which takes the arguments
7596given in @var{arglist}.
7597
7598A definition introduced by this command is in scope in every expression
7599evaluated in @value{GDBN}, until it is removed with the @command{macro
7600undef} command, described below. The definition overrides all
7601definitions for @var{macro} present in the program being debugged, as
7602well as any previous user-supplied definition.
7603
7604@kindex macro undef
7605@item macro undef @var{macro}
7606@i{(This command is not yet implemented.)} Remove any user-supplied
7607definition for the macro named @var{macro}. This command only affects
7608definitions provided with the @command{macro define} command, described
7609above; it cannot remove definitions present in the program being
7610debugged.
7611
09d4efe1
EZ
7612@kindex macro list
7613@item macro list
7614@i{(This command is not yet implemented.)} List all the macros
7615defined using the @code{macro define} command.
e2e0bcd1
JB
7616@end table
7617
7618@cindex macros, example of debugging with
7619Here is a transcript showing the above commands in action. First, we
7620show our source files:
7621
7622@smallexample
7623$ cat sample.c
7624#include <stdio.h>
7625#include "sample.h"
7626
7627#define M 42
7628#define ADD(x) (M + x)
7629
7630main ()
7631@{
7632#define N 28
7633 printf ("Hello, world!\n");
7634#undef N
7635 printf ("We're so creative.\n");
7636#define N 1729
7637 printf ("Goodbye, world!\n");
7638@}
7639$ cat sample.h
7640#define Q <
7641$
7642@end smallexample
7643
7644Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7645We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7646compiler includes information about preprocessor macros in the debugging
7647information.
7648
7649@smallexample
7650$ gcc -gdwarf-2 -g3 sample.c -o sample
7651$
7652@end smallexample
7653
7654Now, we start @value{GDBN} on our sample program:
7655
7656@smallexample
7657$ gdb -nw sample
7658GNU gdb 2002-05-06-cvs
7659Copyright 2002 Free Software Foundation, Inc.
7660GDB is free software, @dots{}
f7dc1244 7661(@value{GDBP})
e2e0bcd1
JB
7662@end smallexample
7663
7664We can expand macros and examine their definitions, even when the
7665program is not running. @value{GDBN} uses the current listing position
7666to decide which macro definitions are in scope:
7667
7668@smallexample
f7dc1244 7669(@value{GDBP}) list main
e2e0bcd1
JB
76703
76714 #define M 42
76725 #define ADD(x) (M + x)
76736
76747 main ()
76758 @{
76769 #define N 28
767710 printf ("Hello, world!\n");
767811 #undef N
767912 printf ("We're so creative.\n");
f7dc1244 7680(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7681Defined at /home/jimb/gdb/macros/play/sample.c:5
7682#define ADD(x) (M + x)
f7dc1244 7683(@value{GDBP}) info macro Q
e2e0bcd1
JB
7684Defined at /home/jimb/gdb/macros/play/sample.h:1
7685 included at /home/jimb/gdb/macros/play/sample.c:2
7686#define Q <
f7dc1244 7687(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7688expands to: (42 + 1)
f7dc1244 7689(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7690expands to: once (M + 1)
f7dc1244 7691(@value{GDBP})
e2e0bcd1
JB
7692@end smallexample
7693
7694In the example above, note that @command{macro expand-once} expands only
7695the macro invocation explicit in the original text --- the invocation of
7696@code{ADD} --- but does not expand the invocation of the macro @code{M},
7697which was introduced by @code{ADD}.
7698
3f94c067
BW
7699Once the program is running, @value{GDBN} uses the macro definitions in
7700force at the source line of the current stack frame:
e2e0bcd1
JB
7701
7702@smallexample
f7dc1244 7703(@value{GDBP}) break main
e2e0bcd1 7704Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7705(@value{GDBP}) run
b383017d 7706Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7707
7708Breakpoint 1, main () at sample.c:10
770910 printf ("Hello, world!\n");
f7dc1244 7710(@value{GDBP})
e2e0bcd1
JB
7711@end smallexample
7712
7713At line 10, the definition of the macro @code{N} at line 9 is in force:
7714
7715@smallexample
f7dc1244 7716(@value{GDBP}) info macro N
e2e0bcd1
JB
7717Defined at /home/jimb/gdb/macros/play/sample.c:9
7718#define N 28
f7dc1244 7719(@value{GDBP}) macro expand N Q M
e2e0bcd1 7720expands to: 28 < 42
f7dc1244 7721(@value{GDBP}) print N Q M
e2e0bcd1 7722$1 = 1
f7dc1244 7723(@value{GDBP})
e2e0bcd1
JB
7724@end smallexample
7725
7726As we step over directives that remove @code{N}'s definition, and then
7727give it a new definition, @value{GDBN} finds the definition (or lack
7728thereof) in force at each point:
7729
7730@smallexample
f7dc1244 7731(@value{GDBP}) next
e2e0bcd1
JB
7732Hello, world!
773312 printf ("We're so creative.\n");
f7dc1244 7734(@value{GDBP}) info macro N
e2e0bcd1
JB
7735The symbol `N' has no definition as a C/C++ preprocessor macro
7736at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7737(@value{GDBP}) next
e2e0bcd1
JB
7738We're so creative.
773914 printf ("Goodbye, world!\n");
f7dc1244 7740(@value{GDBP}) info macro N
e2e0bcd1
JB
7741Defined at /home/jimb/gdb/macros/play/sample.c:13
7742#define N 1729
f7dc1244 7743(@value{GDBP}) macro expand N Q M
e2e0bcd1 7744expands to: 1729 < 42
f7dc1244 7745(@value{GDBP}) print N Q M
e2e0bcd1 7746$2 = 0
f7dc1244 7747(@value{GDBP})
e2e0bcd1
JB
7748@end smallexample
7749
7750
b37052ae
EZ
7751@node Tracepoints
7752@chapter Tracepoints
7753@c This chapter is based on the documentation written by Michael
7754@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7755
7756@cindex tracepoints
7757In some applications, it is not feasible for the debugger to interrupt
7758the program's execution long enough for the developer to learn
7759anything helpful about its behavior. If the program's correctness
7760depends on its real-time behavior, delays introduced by a debugger
7761might cause the program to change its behavior drastically, or perhaps
7762fail, even when the code itself is correct. It is useful to be able
7763to observe the program's behavior without interrupting it.
7764
7765Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7766specify locations in the program, called @dfn{tracepoints}, and
7767arbitrary expressions to evaluate when those tracepoints are reached.
7768Later, using the @code{tfind} command, you can examine the values
7769those expressions had when the program hit the tracepoints. The
7770expressions may also denote objects in memory---structures or arrays,
7771for example---whose values @value{GDBN} should record; while visiting
7772a particular tracepoint, you may inspect those objects as if they were
7773in memory at that moment. However, because @value{GDBN} records these
7774values without interacting with you, it can do so quickly and
7775unobtrusively, hopefully not disturbing the program's behavior.
7776
7777The tracepoint facility is currently available only for remote
9d29849a
JB
7778targets. @xref{Targets}. In addition, your remote target must know
7779how to collect trace data. This functionality is implemented in the
7780remote stub; however, none of the stubs distributed with @value{GDBN}
7781support tracepoints as of this writing. The format of the remote
7782packets used to implement tracepoints are described in @ref{Tracepoint
7783Packets}.
b37052ae
EZ
7784
7785This chapter describes the tracepoint commands and features.
7786
7787@menu
b383017d
RM
7788* Set Tracepoints::
7789* Analyze Collected Data::
7790* Tracepoint Variables::
b37052ae
EZ
7791@end menu
7792
7793@node Set Tracepoints
7794@section Commands to Set Tracepoints
7795
7796Before running such a @dfn{trace experiment}, an arbitrary number of
7797tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7798tracepoint has a number assigned to it by @value{GDBN}. Like with
7799breakpoints, tracepoint numbers are successive integers starting from
7800one. Many of the commands associated with tracepoints take the
7801tracepoint number as their argument, to identify which tracepoint to
7802work on.
7803
7804For each tracepoint, you can specify, in advance, some arbitrary set
7805of data that you want the target to collect in the trace buffer when
7806it hits that tracepoint. The collected data can include registers,
7807local variables, or global data. Later, you can use @value{GDBN}
7808commands to examine the values these data had at the time the
7809tracepoint was hit.
7810
7811This section describes commands to set tracepoints and associated
7812conditions and actions.
7813
7814@menu
b383017d
RM
7815* Create and Delete Tracepoints::
7816* Enable and Disable Tracepoints::
7817* Tracepoint Passcounts::
7818* Tracepoint Actions::
7819* Listing Tracepoints::
79a6e687 7820* Starting and Stopping Trace Experiments::
b37052ae
EZ
7821@end menu
7822
7823@node Create and Delete Tracepoints
7824@subsection Create and Delete Tracepoints
7825
7826@table @code
7827@cindex set tracepoint
7828@kindex trace
7829@item trace
7830The @code{trace} command is very similar to the @code{break} command.
7831Its argument can be a source line, a function name, or an address in
7832the target program. @xref{Set Breaks}. The @code{trace} command
7833defines a tracepoint, which is a point in the target program where the
7834debugger will briefly stop, collect some data, and then allow the
7835program to continue. Setting a tracepoint or changing its commands
7836doesn't take effect until the next @code{tstart} command; thus, you
7837cannot change the tracepoint attributes once a trace experiment is
7838running.
7839
7840Here are some examples of using the @code{trace} command:
7841
7842@smallexample
7843(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7844
7845(@value{GDBP}) @b{trace +2} // 2 lines forward
7846
7847(@value{GDBP}) @b{trace my_function} // first source line of function
7848
7849(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7850
7851(@value{GDBP}) @b{trace *0x2117c4} // an address
7852@end smallexample
7853
7854@noindent
7855You can abbreviate @code{trace} as @code{tr}.
7856
7857@vindex $tpnum
7858@cindex last tracepoint number
7859@cindex recent tracepoint number
7860@cindex tracepoint number
7861The convenience variable @code{$tpnum} records the tracepoint number
7862of the most recently set tracepoint.
7863
7864@kindex delete tracepoint
7865@cindex tracepoint deletion
7866@item delete tracepoint @r{[}@var{num}@r{]}
7867Permanently delete one or more tracepoints. With no argument, the
7868default is to delete all tracepoints.
7869
7870Examples:
7871
7872@smallexample
7873(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7874
7875(@value{GDBP}) @b{delete trace} // remove all tracepoints
7876@end smallexample
7877
7878@noindent
7879You can abbreviate this command as @code{del tr}.
7880@end table
7881
7882@node Enable and Disable Tracepoints
7883@subsection Enable and Disable Tracepoints
7884
7885@table @code
7886@kindex disable tracepoint
7887@item disable tracepoint @r{[}@var{num}@r{]}
7888Disable tracepoint @var{num}, or all tracepoints if no argument
7889@var{num} is given. A disabled tracepoint will have no effect during
7890the next trace experiment, but it is not forgotten. You can re-enable
7891a disabled tracepoint using the @code{enable tracepoint} command.
7892
7893@kindex enable tracepoint
7894@item enable tracepoint @r{[}@var{num}@r{]}
7895Enable tracepoint @var{num}, or all tracepoints. The enabled
7896tracepoints will become effective the next time a trace experiment is
7897run.
7898@end table
7899
7900@node Tracepoint Passcounts
7901@subsection Tracepoint Passcounts
7902
7903@table @code
7904@kindex passcount
7905@cindex tracepoint pass count
7906@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7907Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7908automatically stop a trace experiment. If a tracepoint's passcount is
7909@var{n}, then the trace experiment will be automatically stopped on
7910the @var{n}'th time that tracepoint is hit. If the tracepoint number
7911@var{num} is not specified, the @code{passcount} command sets the
7912passcount of the most recently defined tracepoint. If no passcount is
7913given, the trace experiment will run until stopped explicitly by the
7914user.
7915
7916Examples:
7917
7918@smallexample
b383017d 7919(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 7920@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
7921
7922(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 7923@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
7924(@value{GDBP}) @b{trace foo}
7925(@value{GDBP}) @b{pass 3}
7926(@value{GDBP}) @b{trace bar}
7927(@value{GDBP}) @b{pass 2}
7928(@value{GDBP}) @b{trace baz}
7929(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
7930@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
7931@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
7932@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
7933@end smallexample
7934@end table
7935
7936@node Tracepoint Actions
7937@subsection Tracepoint Action Lists
7938
7939@table @code
7940@kindex actions
7941@cindex tracepoint actions
7942@item actions @r{[}@var{num}@r{]}
7943This command will prompt for a list of actions to be taken when the
7944tracepoint is hit. If the tracepoint number @var{num} is not
7945specified, this command sets the actions for the one that was most
7946recently defined (so that you can define a tracepoint and then say
7947@code{actions} without bothering about its number). You specify the
7948actions themselves on the following lines, one action at a time, and
7949terminate the actions list with a line containing just @code{end}. So
7950far, the only defined actions are @code{collect} and
7951@code{while-stepping}.
7952
7953@cindex remove actions from a tracepoint
7954To remove all actions from a tracepoint, type @samp{actions @var{num}}
7955and follow it immediately with @samp{end}.
7956
7957@smallexample
7958(@value{GDBP}) @b{collect @var{data}} // collect some data
7959
6826cf00 7960(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 7961
6826cf00 7962(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
7963@end smallexample
7964
7965In the following example, the action list begins with @code{collect}
7966commands indicating the things to be collected when the tracepoint is
7967hit. Then, in order to single-step and collect additional data
7968following the tracepoint, a @code{while-stepping} command is used,
7969followed by the list of things to be collected while stepping. The
7970@code{while-stepping} command is terminated by its own separate
7971@code{end} command. Lastly, the action list is terminated by an
7972@code{end} command.
7973
7974@smallexample
7975(@value{GDBP}) @b{trace foo}
7976(@value{GDBP}) @b{actions}
7977Enter actions for tracepoint 1, one per line:
7978> collect bar,baz
7979> collect $regs
7980> while-stepping 12
7981 > collect $fp, $sp
7982 > end
7983end
7984@end smallexample
7985
7986@kindex collect @r{(tracepoints)}
7987@item collect @var{expr1}, @var{expr2}, @dots{}
7988Collect values of the given expressions when the tracepoint is hit.
7989This command accepts a comma-separated list of any valid expressions.
7990In addition to global, static, or local variables, the following
7991special arguments are supported:
7992
7993@table @code
7994@item $regs
7995collect all registers
7996
7997@item $args
7998collect all function arguments
7999
8000@item $locals
8001collect all local variables.
8002@end table
8003
8004You can give several consecutive @code{collect} commands, each one
8005with a single argument, or one @code{collect} command with several
8006arguments separated by commas: the effect is the same.
8007
f5c37c66
EZ
8008The command @code{info scope} (@pxref{Symbols, info scope}) is
8009particularly useful for figuring out what data to collect.
8010
b37052ae
EZ
8011@kindex while-stepping @r{(tracepoints)}
8012@item while-stepping @var{n}
8013Perform @var{n} single-step traces after the tracepoint, collecting
8014new data at each step. The @code{while-stepping} command is
8015followed by the list of what to collect while stepping (followed by
8016its own @code{end} command):
8017
8018@smallexample
8019> while-stepping 12
8020 > collect $regs, myglobal
8021 > end
8022>
8023@end smallexample
8024
8025@noindent
8026You may abbreviate @code{while-stepping} as @code{ws} or
8027@code{stepping}.
8028@end table
8029
8030@node Listing Tracepoints
8031@subsection Listing Tracepoints
8032
8033@table @code
8034@kindex info tracepoints
09d4efe1 8035@kindex info tp
b37052ae
EZ
8036@cindex information about tracepoints
8037@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8038Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8039a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8040defined so far. For each tracepoint, the following information is
8041shown:
8042
8043@itemize @bullet
8044@item
8045its number
8046@item
8047whether it is enabled or disabled
8048@item
8049its address
8050@item
8051its passcount as given by the @code{passcount @var{n}} command
8052@item
8053its step count as given by the @code{while-stepping @var{n}} command
8054@item
8055where in the source files is the tracepoint set
8056@item
8057its action list as given by the @code{actions} command
8058@end itemize
8059
8060@smallexample
8061(@value{GDBP}) @b{info trace}
8062Num Enb Address PassC StepC What
80631 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
80642 y 0x0020dc64 0 0 in g_test at g_test.c:1375
80653 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8066(@value{GDBP})
8067@end smallexample
8068
8069@noindent
8070This command can be abbreviated @code{info tp}.
8071@end table
8072
79a6e687
BW
8073@node Starting and Stopping Trace Experiments
8074@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8075
8076@table @code
8077@kindex tstart
8078@cindex start a new trace experiment
8079@cindex collected data discarded
8080@item tstart
8081This command takes no arguments. It starts the trace experiment, and
8082begins collecting data. This has the side effect of discarding all
8083the data collected in the trace buffer during the previous trace
8084experiment.
8085
8086@kindex tstop
8087@cindex stop a running trace experiment
8088@item tstop
8089This command takes no arguments. It ends the trace experiment, and
8090stops collecting data.
8091
68c71a2e 8092@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8093automatically if any tracepoint's passcount is reached
8094(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8095
8096@kindex tstatus
8097@cindex status of trace data collection
8098@cindex trace experiment, status of
8099@item tstatus
8100This command displays the status of the current trace data
8101collection.
8102@end table
8103
8104Here is an example of the commands we described so far:
8105
8106@smallexample
8107(@value{GDBP}) @b{trace gdb_c_test}
8108(@value{GDBP}) @b{actions}
8109Enter actions for tracepoint #1, one per line.
8110> collect $regs,$locals,$args
8111> while-stepping 11
8112 > collect $regs
8113 > end
8114> end
8115(@value{GDBP}) @b{tstart}
8116 [time passes @dots{}]
8117(@value{GDBP}) @b{tstop}
8118@end smallexample
8119
8120
8121@node Analyze Collected Data
79a6e687 8122@section Using the Collected Data
b37052ae
EZ
8123
8124After the tracepoint experiment ends, you use @value{GDBN} commands
8125for examining the trace data. The basic idea is that each tracepoint
8126collects a trace @dfn{snapshot} every time it is hit and another
8127snapshot every time it single-steps. All these snapshots are
8128consecutively numbered from zero and go into a buffer, and you can
8129examine them later. The way you examine them is to @dfn{focus} on a
8130specific trace snapshot. When the remote stub is focused on a trace
8131snapshot, it will respond to all @value{GDBN} requests for memory and
8132registers by reading from the buffer which belongs to that snapshot,
8133rather than from @emph{real} memory or registers of the program being
8134debugged. This means that @strong{all} @value{GDBN} commands
8135(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8136behave as if we were currently debugging the program state as it was
8137when the tracepoint occurred. Any requests for data that are not in
8138the buffer will fail.
8139
8140@menu
8141* tfind:: How to select a trace snapshot
8142* tdump:: How to display all data for a snapshot
8143* save-tracepoints:: How to save tracepoints for a future run
8144@end menu
8145
8146@node tfind
8147@subsection @code{tfind @var{n}}
8148
8149@kindex tfind
8150@cindex select trace snapshot
8151@cindex find trace snapshot
8152The basic command for selecting a trace snapshot from the buffer is
8153@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8154counting from zero. If no argument @var{n} is given, the next
8155snapshot is selected.
8156
8157Here are the various forms of using the @code{tfind} command.
8158
8159@table @code
8160@item tfind start
8161Find the first snapshot in the buffer. This is a synonym for
8162@code{tfind 0} (since 0 is the number of the first snapshot).
8163
8164@item tfind none
8165Stop debugging trace snapshots, resume @emph{live} debugging.
8166
8167@item tfind end
8168Same as @samp{tfind none}.
8169
8170@item tfind
8171No argument means find the next trace snapshot.
8172
8173@item tfind -
8174Find the previous trace snapshot before the current one. This permits
8175retracing earlier steps.
8176
8177@item tfind tracepoint @var{num}
8178Find the next snapshot associated with tracepoint @var{num}. Search
8179proceeds forward from the last examined trace snapshot. If no
8180argument @var{num} is given, it means find the next snapshot collected
8181for the same tracepoint as the current snapshot.
8182
8183@item tfind pc @var{addr}
8184Find the next snapshot associated with the value @var{addr} of the
8185program counter. Search proceeds forward from the last examined trace
8186snapshot. If no argument @var{addr} is given, it means find the next
8187snapshot with the same value of PC as the current snapshot.
8188
8189@item tfind outside @var{addr1}, @var{addr2}
8190Find the next snapshot whose PC is outside the given range of
8191addresses.
8192
8193@item tfind range @var{addr1}, @var{addr2}
8194Find the next snapshot whose PC is between @var{addr1} and
8195@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8196
8197@item tfind line @r{[}@var{file}:@r{]}@var{n}
8198Find the next snapshot associated with the source line @var{n}. If
8199the optional argument @var{file} is given, refer to line @var{n} in
8200that source file. Search proceeds forward from the last examined
8201trace snapshot. If no argument @var{n} is given, it means find the
8202next line other than the one currently being examined; thus saying
8203@code{tfind line} repeatedly can appear to have the same effect as
8204stepping from line to line in a @emph{live} debugging session.
8205@end table
8206
8207The default arguments for the @code{tfind} commands are specifically
8208designed to make it easy to scan through the trace buffer. For
8209instance, @code{tfind} with no argument selects the next trace
8210snapshot, and @code{tfind -} with no argument selects the previous
8211trace snapshot. So, by giving one @code{tfind} command, and then
8212simply hitting @key{RET} repeatedly you can examine all the trace
8213snapshots in order. Or, by saying @code{tfind -} and then hitting
8214@key{RET} repeatedly you can examine the snapshots in reverse order.
8215The @code{tfind line} command with no argument selects the snapshot
8216for the next source line executed. The @code{tfind pc} command with
8217no argument selects the next snapshot with the same program counter
8218(PC) as the current frame. The @code{tfind tracepoint} command with
8219no argument selects the next trace snapshot collected by the same
8220tracepoint as the current one.
8221
8222In addition to letting you scan through the trace buffer manually,
8223these commands make it easy to construct @value{GDBN} scripts that
8224scan through the trace buffer and print out whatever collected data
8225you are interested in. Thus, if we want to examine the PC, FP, and SP
8226registers from each trace frame in the buffer, we can say this:
8227
8228@smallexample
8229(@value{GDBP}) @b{tfind start}
8230(@value{GDBP}) @b{while ($trace_frame != -1)}
8231> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8232 $trace_frame, $pc, $sp, $fp
8233> tfind
8234> end
8235
8236Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8237Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8238Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8239Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8240Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8241Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8242Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8243Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8244Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8245Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8246Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8247@end smallexample
8248
8249Or, if we want to examine the variable @code{X} at each source line in
8250the buffer:
8251
8252@smallexample
8253(@value{GDBP}) @b{tfind start}
8254(@value{GDBP}) @b{while ($trace_frame != -1)}
8255> printf "Frame %d, X == %d\n", $trace_frame, X
8256> tfind line
8257> end
8258
8259Frame 0, X = 1
8260Frame 7, X = 2
8261Frame 13, X = 255
8262@end smallexample
8263
8264@node tdump
8265@subsection @code{tdump}
8266@kindex tdump
8267@cindex dump all data collected at tracepoint
8268@cindex tracepoint data, display
8269
8270This command takes no arguments. It prints all the data collected at
8271the current trace snapshot.
8272
8273@smallexample
8274(@value{GDBP}) @b{trace 444}
8275(@value{GDBP}) @b{actions}
8276Enter actions for tracepoint #2, one per line:
8277> collect $regs, $locals, $args, gdb_long_test
8278> end
8279
8280(@value{GDBP}) @b{tstart}
8281
8282(@value{GDBP}) @b{tfind line 444}
8283#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8284at gdb_test.c:444
8285444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8286
8287(@value{GDBP}) @b{tdump}
8288Data collected at tracepoint 2, trace frame 1:
8289d0 0xc4aa0085 -995491707
8290d1 0x18 24
8291d2 0x80 128
8292d3 0x33 51
8293d4 0x71aea3d 119204413
8294d5 0x22 34
8295d6 0xe0 224
8296d7 0x380035 3670069
8297a0 0x19e24a 1696330
8298a1 0x3000668 50333288
8299a2 0x100 256
8300a3 0x322000 3284992
8301a4 0x3000698 50333336
8302a5 0x1ad3cc 1758156
8303fp 0x30bf3c 0x30bf3c
8304sp 0x30bf34 0x30bf34
8305ps 0x0 0
8306pc 0x20b2c8 0x20b2c8
8307fpcontrol 0x0 0
8308fpstatus 0x0 0
8309fpiaddr 0x0 0
8310p = 0x20e5b4 "gdb-test"
8311p1 = (void *) 0x11
8312p2 = (void *) 0x22
8313p3 = (void *) 0x33
8314p4 = (void *) 0x44
8315p5 = (void *) 0x55
8316p6 = (void *) 0x66
8317gdb_long_test = 17 '\021'
8318
8319(@value{GDBP})
8320@end smallexample
8321
8322@node save-tracepoints
8323@subsection @code{save-tracepoints @var{filename}}
8324@kindex save-tracepoints
8325@cindex save tracepoints for future sessions
8326
8327This command saves all current tracepoint definitions together with
8328their actions and passcounts, into a file @file{@var{filename}}
8329suitable for use in a later debugging session. To read the saved
8330tracepoint definitions, use the @code{source} command (@pxref{Command
8331Files}).
8332
8333@node Tracepoint Variables
8334@section Convenience Variables for Tracepoints
8335@cindex tracepoint variables
8336@cindex convenience variables for tracepoints
8337
8338@table @code
8339@vindex $trace_frame
8340@item (int) $trace_frame
8341The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8342snapshot is selected.
8343
8344@vindex $tracepoint
8345@item (int) $tracepoint
8346The tracepoint for the current trace snapshot.
8347
8348@vindex $trace_line
8349@item (int) $trace_line
8350The line number for the current trace snapshot.
8351
8352@vindex $trace_file
8353@item (char []) $trace_file
8354The source file for the current trace snapshot.
8355
8356@vindex $trace_func
8357@item (char []) $trace_func
8358The name of the function containing @code{$tracepoint}.
8359@end table
8360
8361Note: @code{$trace_file} is not suitable for use in @code{printf},
8362use @code{output} instead.
8363
8364Here's a simple example of using these convenience variables for
8365stepping through all the trace snapshots and printing some of their
8366data.
8367
8368@smallexample
8369(@value{GDBP}) @b{tfind start}
8370
8371(@value{GDBP}) @b{while $trace_frame != -1}
8372> output $trace_file
8373> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8374> tfind
8375> end
8376@end smallexample
8377
df0cd8c5
JB
8378@node Overlays
8379@chapter Debugging Programs That Use Overlays
8380@cindex overlays
8381
8382If your program is too large to fit completely in your target system's
8383memory, you can sometimes use @dfn{overlays} to work around this
8384problem. @value{GDBN} provides some support for debugging programs that
8385use overlays.
8386
8387@menu
8388* How Overlays Work:: A general explanation of overlays.
8389* Overlay Commands:: Managing overlays in @value{GDBN}.
8390* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8391 mapped by asking the inferior.
8392* Overlay Sample Program:: A sample program using overlays.
8393@end menu
8394
8395@node How Overlays Work
8396@section How Overlays Work
8397@cindex mapped overlays
8398@cindex unmapped overlays
8399@cindex load address, overlay's
8400@cindex mapped address
8401@cindex overlay area
8402
8403Suppose you have a computer whose instruction address space is only 64
8404kilobytes long, but which has much more memory which can be accessed by
8405other means: special instructions, segment registers, or memory
8406management hardware, for example. Suppose further that you want to
8407adapt a program which is larger than 64 kilobytes to run on this system.
8408
8409One solution is to identify modules of your program which are relatively
8410independent, and need not call each other directly; call these modules
8411@dfn{overlays}. Separate the overlays from the main program, and place
8412their machine code in the larger memory. Place your main program in
8413instruction memory, but leave at least enough space there to hold the
8414largest overlay as well.
8415
8416Now, to call a function located in an overlay, you must first copy that
8417overlay's machine code from the large memory into the space set aside
8418for it in the instruction memory, and then jump to its entry point
8419there.
8420
c928edc0
AC
8421@c NB: In the below the mapped area's size is greater or equal to the
8422@c size of all overlays. This is intentional to remind the developer
8423@c that overlays don't necessarily need to be the same size.
8424
474c8240 8425@smallexample
df0cd8c5 8426@group
c928edc0
AC
8427 Data Instruction Larger
8428Address Space Address Space Address Space
8429+-----------+ +-----------+ +-----------+
8430| | | | | |
8431+-----------+ +-----------+ +-----------+<-- overlay 1
8432| program | | main | .----| overlay 1 | load address
8433| variables | | program | | +-----------+
8434| and heap | | | | | |
8435+-----------+ | | | +-----------+<-- overlay 2
8436| | +-----------+ | | | load address
8437+-----------+ | | | .-| overlay 2 |
8438 | | | | | |
8439 mapped --->+-----------+ | | +-----------+
8440 address | | | | | |
8441 | overlay | <-' | | |
8442 | area | <---' +-----------+<-- overlay 3
8443 | | <---. | | load address
8444 +-----------+ `--| overlay 3 |
8445 | | | |
8446 +-----------+ | |
8447 +-----------+
8448 | |
8449 +-----------+
8450
8451 @anchor{A code overlay}A code overlay
df0cd8c5 8452@end group
474c8240 8453@end smallexample
df0cd8c5 8454
c928edc0
AC
8455The diagram (@pxref{A code overlay}) shows a system with separate data
8456and instruction address spaces. To map an overlay, the program copies
8457its code from the larger address space to the instruction address space.
8458Since the overlays shown here all use the same mapped address, only one
8459may be mapped at a time. For a system with a single address space for
8460data and instructions, the diagram would be similar, except that the
8461program variables and heap would share an address space with the main
8462program and the overlay area.
df0cd8c5
JB
8463
8464An overlay loaded into instruction memory and ready for use is called a
8465@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8466instruction memory. An overlay not present (or only partially present)
8467in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8468is its address in the larger memory. The mapped address is also called
8469the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8470called the @dfn{load memory address}, or @dfn{LMA}.
8471
8472Unfortunately, overlays are not a completely transparent way to adapt a
8473program to limited instruction memory. They introduce a new set of
8474global constraints you must keep in mind as you design your program:
8475
8476@itemize @bullet
8477
8478@item
8479Before calling or returning to a function in an overlay, your program
8480must make sure that overlay is actually mapped. Otherwise, the call or
8481return will transfer control to the right address, but in the wrong
8482overlay, and your program will probably crash.
8483
8484@item
8485If the process of mapping an overlay is expensive on your system, you
8486will need to choose your overlays carefully to minimize their effect on
8487your program's performance.
8488
8489@item
8490The executable file you load onto your system must contain each
8491overlay's instructions, appearing at the overlay's load address, not its
8492mapped address. However, each overlay's instructions must be relocated
8493and its symbols defined as if the overlay were at its mapped address.
8494You can use GNU linker scripts to specify different load and relocation
8495addresses for pieces of your program; see @ref{Overlay Description,,,
8496ld.info, Using ld: the GNU linker}.
8497
8498@item
8499The procedure for loading executable files onto your system must be able
8500to load their contents into the larger address space as well as the
8501instruction and data spaces.
8502
8503@end itemize
8504
8505The overlay system described above is rather simple, and could be
8506improved in many ways:
8507
8508@itemize @bullet
8509
8510@item
8511If your system has suitable bank switch registers or memory management
8512hardware, you could use those facilities to make an overlay's load area
8513contents simply appear at their mapped address in instruction space.
8514This would probably be faster than copying the overlay to its mapped
8515area in the usual way.
8516
8517@item
8518If your overlays are small enough, you could set aside more than one
8519overlay area, and have more than one overlay mapped at a time.
8520
8521@item
8522You can use overlays to manage data, as well as instructions. In
8523general, data overlays are even less transparent to your design than
8524code overlays: whereas code overlays only require care when you call or
8525return to functions, data overlays require care every time you access
8526the data. Also, if you change the contents of a data overlay, you
8527must copy its contents back out to its load address before you can copy a
8528different data overlay into the same mapped area.
8529
8530@end itemize
8531
8532
8533@node Overlay Commands
8534@section Overlay Commands
8535
8536To use @value{GDBN}'s overlay support, each overlay in your program must
8537correspond to a separate section of the executable file. The section's
8538virtual memory address and load memory address must be the overlay's
8539mapped and load addresses. Identifying overlays with sections allows
8540@value{GDBN} to determine the appropriate address of a function or
8541variable, depending on whether the overlay is mapped or not.
8542
8543@value{GDBN}'s overlay commands all start with the word @code{overlay};
8544you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8545
8546@table @code
8547@item overlay off
4644b6e3 8548@kindex overlay
df0cd8c5
JB
8549Disable @value{GDBN}'s overlay support. When overlay support is
8550disabled, @value{GDBN} assumes that all functions and variables are
8551always present at their mapped addresses. By default, @value{GDBN}'s
8552overlay support is disabled.
8553
8554@item overlay manual
df0cd8c5
JB
8555@cindex manual overlay debugging
8556Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8557relies on you to tell it which overlays are mapped, and which are not,
8558using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8559commands described below.
8560
8561@item overlay map-overlay @var{overlay}
8562@itemx overlay map @var{overlay}
df0cd8c5
JB
8563@cindex map an overlay
8564Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8565be the name of the object file section containing the overlay. When an
8566overlay is mapped, @value{GDBN} assumes it can find the overlay's
8567functions and variables at their mapped addresses. @value{GDBN} assumes
8568that any other overlays whose mapped ranges overlap that of
8569@var{overlay} are now unmapped.
8570
8571@item overlay unmap-overlay @var{overlay}
8572@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8573@cindex unmap an overlay
8574Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8575must be the name of the object file section containing the overlay.
8576When an overlay is unmapped, @value{GDBN} assumes it can find the
8577overlay's functions and variables at their load addresses.
8578
8579@item overlay auto
df0cd8c5
JB
8580Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8581consults a data structure the overlay manager maintains in the inferior
8582to see which overlays are mapped. For details, see @ref{Automatic
8583Overlay Debugging}.
8584
8585@item overlay load-target
8586@itemx overlay load
df0cd8c5
JB
8587@cindex reloading the overlay table
8588Re-read the overlay table from the inferior. Normally, @value{GDBN}
8589re-reads the table @value{GDBN} automatically each time the inferior
8590stops, so this command should only be necessary if you have changed the
8591overlay mapping yourself using @value{GDBN}. This command is only
8592useful when using automatic overlay debugging.
8593
8594@item overlay list-overlays
8595@itemx overlay list
8596@cindex listing mapped overlays
8597Display a list of the overlays currently mapped, along with their mapped
8598addresses, load addresses, and sizes.
8599
8600@end table
8601
8602Normally, when @value{GDBN} prints a code address, it includes the name
8603of the function the address falls in:
8604
474c8240 8605@smallexample
f7dc1244 8606(@value{GDBP}) print main
df0cd8c5 8607$3 = @{int ()@} 0x11a0 <main>
474c8240 8608@end smallexample
df0cd8c5
JB
8609@noindent
8610When overlay debugging is enabled, @value{GDBN} recognizes code in
8611unmapped overlays, and prints the names of unmapped functions with
8612asterisks around them. For example, if @code{foo} is a function in an
8613unmapped overlay, @value{GDBN} prints it this way:
8614
474c8240 8615@smallexample
f7dc1244 8616(@value{GDBP}) overlay list
df0cd8c5 8617No sections are mapped.
f7dc1244 8618(@value{GDBP}) print foo
df0cd8c5 8619$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8620@end smallexample
df0cd8c5
JB
8621@noindent
8622When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8623name normally:
8624
474c8240 8625@smallexample
f7dc1244 8626(@value{GDBP}) overlay list
b383017d 8627Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8628 mapped at 0x1016 - 0x104a
f7dc1244 8629(@value{GDBP}) print foo
df0cd8c5 8630$6 = @{int (int)@} 0x1016 <foo>
474c8240 8631@end smallexample
df0cd8c5
JB
8632
8633When overlay debugging is enabled, @value{GDBN} can find the correct
8634address for functions and variables in an overlay, whether or not the
8635overlay is mapped. This allows most @value{GDBN} commands, like
8636@code{break} and @code{disassemble}, to work normally, even on unmapped
8637code. However, @value{GDBN}'s breakpoint support has some limitations:
8638
8639@itemize @bullet
8640@item
8641@cindex breakpoints in overlays
8642@cindex overlays, setting breakpoints in
8643You can set breakpoints in functions in unmapped overlays, as long as
8644@value{GDBN} can write to the overlay at its load address.
8645@item
8646@value{GDBN} can not set hardware or simulator-based breakpoints in
8647unmapped overlays. However, if you set a breakpoint at the end of your
8648overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8649you are using manual overlay management), @value{GDBN} will re-set its
8650breakpoints properly.
8651@end itemize
8652
8653
8654@node Automatic Overlay Debugging
8655@section Automatic Overlay Debugging
8656@cindex automatic overlay debugging
8657
8658@value{GDBN} can automatically track which overlays are mapped and which
8659are not, given some simple co-operation from the overlay manager in the
8660inferior. If you enable automatic overlay debugging with the
8661@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8662looks in the inferior's memory for certain variables describing the
8663current state of the overlays.
8664
8665Here are the variables your overlay manager must define to support
8666@value{GDBN}'s automatic overlay debugging:
8667
8668@table @asis
8669
8670@item @code{_ovly_table}:
8671This variable must be an array of the following structures:
8672
474c8240 8673@smallexample
df0cd8c5
JB
8674struct
8675@{
8676 /* The overlay's mapped address. */
8677 unsigned long vma;
8678
8679 /* The size of the overlay, in bytes. */
8680 unsigned long size;
8681
8682 /* The overlay's load address. */
8683 unsigned long lma;
8684
8685 /* Non-zero if the overlay is currently mapped;
8686 zero otherwise. */
8687 unsigned long mapped;
8688@}
474c8240 8689@end smallexample
df0cd8c5
JB
8690
8691@item @code{_novlys}:
8692This variable must be a four-byte signed integer, holding the total
8693number of elements in @code{_ovly_table}.
8694
8695@end table
8696
8697To decide whether a particular overlay is mapped or not, @value{GDBN}
8698looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8699@code{lma} members equal the VMA and LMA of the overlay's section in the
8700executable file. When @value{GDBN} finds a matching entry, it consults
8701the entry's @code{mapped} member to determine whether the overlay is
8702currently mapped.
8703
81d46470 8704In addition, your overlay manager may define a function called
def71bfa 8705@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8706will silently set a breakpoint there. If the overlay manager then
8707calls this function whenever it has changed the overlay table, this
8708will enable @value{GDBN} to accurately keep track of which overlays
8709are in program memory, and update any breakpoints that may be set
b383017d 8710in overlays. This will allow breakpoints to work even if the
81d46470
MS
8711overlays are kept in ROM or other non-writable memory while they
8712are not being executed.
df0cd8c5
JB
8713
8714@node Overlay Sample Program
8715@section Overlay Sample Program
8716@cindex overlay example program
8717
8718When linking a program which uses overlays, you must place the overlays
8719at their load addresses, while relocating them to run at their mapped
8720addresses. To do this, you must write a linker script (@pxref{Overlay
8721Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8722since linker scripts are specific to a particular host system, target
8723architecture, and target memory layout, this manual cannot provide
8724portable sample code demonstrating @value{GDBN}'s overlay support.
8725
8726However, the @value{GDBN} source distribution does contain an overlaid
8727program, with linker scripts for a few systems, as part of its test
8728suite. The program consists of the following files from
8729@file{gdb/testsuite/gdb.base}:
8730
8731@table @file
8732@item overlays.c
8733The main program file.
8734@item ovlymgr.c
8735A simple overlay manager, used by @file{overlays.c}.
8736@item foo.c
8737@itemx bar.c
8738@itemx baz.c
8739@itemx grbx.c
8740Overlay modules, loaded and used by @file{overlays.c}.
8741@item d10v.ld
8742@itemx m32r.ld
8743Linker scripts for linking the test program on the @code{d10v-elf}
8744and @code{m32r-elf} targets.
8745@end table
8746
8747You can build the test program using the @code{d10v-elf} GCC
8748cross-compiler like this:
8749
474c8240 8750@smallexample
df0cd8c5
JB
8751$ d10v-elf-gcc -g -c overlays.c
8752$ d10v-elf-gcc -g -c ovlymgr.c
8753$ d10v-elf-gcc -g -c foo.c
8754$ d10v-elf-gcc -g -c bar.c
8755$ d10v-elf-gcc -g -c baz.c
8756$ d10v-elf-gcc -g -c grbx.c
8757$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8758 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8759@end smallexample
df0cd8c5
JB
8760
8761The build process is identical for any other architecture, except that
8762you must substitute the appropriate compiler and linker script for the
8763target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8764
8765
6d2ebf8b 8766@node Languages
c906108c
SS
8767@chapter Using @value{GDBN} with Different Languages
8768@cindex languages
8769
c906108c
SS
8770Although programming languages generally have common aspects, they are
8771rarely expressed in the same manner. For instance, in ANSI C,
8772dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8773Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8774represented (and displayed) differently. Hex numbers in C appear as
c906108c 8775@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8776
8777@cindex working language
8778Language-specific information is built into @value{GDBN} for some languages,
8779allowing you to express operations like the above in your program's
8780native language, and allowing @value{GDBN} to output values in a manner
8781consistent with the syntax of your program's native language. The
8782language you use to build expressions is called the @dfn{working
8783language}.
8784
8785@menu
8786* Setting:: Switching between source languages
8787* Show:: Displaying the language
c906108c 8788* Checks:: Type and range checks
79a6e687
BW
8789* Supported Languages:: Supported languages
8790* Unsupported Languages:: Unsupported languages
c906108c
SS
8791@end menu
8792
6d2ebf8b 8793@node Setting
79a6e687 8794@section Switching Between Source Languages
c906108c
SS
8795
8796There are two ways to control the working language---either have @value{GDBN}
8797set it automatically, or select it manually yourself. You can use the
8798@code{set language} command for either purpose. On startup, @value{GDBN}
8799defaults to setting the language automatically. The working language is
8800used to determine how expressions you type are interpreted, how values
8801are printed, etc.
8802
8803In addition to the working language, every source file that
8804@value{GDBN} knows about has its own working language. For some object
8805file formats, the compiler might indicate which language a particular
8806source file is in. However, most of the time @value{GDBN} infers the
8807language from the name of the file. The language of a source file
b37052ae 8808controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8809show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8810set the language of a source file from within @value{GDBN}, but you can
8811set the language associated with a filename extension. @xref{Show, ,
79a6e687 8812Displaying the Language}.
c906108c
SS
8813
8814This is most commonly a problem when you use a program, such
5d161b24 8815as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8816another language. In that case, make the
8817program use @code{#line} directives in its C output; that way
8818@value{GDBN} will know the correct language of the source code of the original
8819program, and will display that source code, not the generated C code.
8820
8821@menu
8822* Filenames:: Filename extensions and languages.
8823* Manually:: Setting the working language manually
8824* Automatically:: Having @value{GDBN} infer the source language
8825@end menu
8826
6d2ebf8b 8827@node Filenames
79a6e687 8828@subsection List of Filename Extensions and Languages
c906108c
SS
8829
8830If a source file name ends in one of the following extensions, then
8831@value{GDBN} infers that its language is the one indicated.
8832
8833@table @file
e07c999f
PH
8834@item .ada
8835@itemx .ads
8836@itemx .adb
8837@itemx .a
8838Ada source file.
c906108c
SS
8839
8840@item .c
8841C source file
8842
8843@item .C
8844@itemx .cc
8845@itemx .cp
8846@itemx .cpp
8847@itemx .cxx
8848@itemx .c++
b37052ae 8849C@t{++} source file
c906108c 8850
b37303ee
AF
8851@item .m
8852Objective-C source file
8853
c906108c
SS
8854@item .f
8855@itemx .F
8856Fortran source file
8857
c906108c
SS
8858@item .mod
8859Modula-2 source file
c906108c
SS
8860
8861@item .s
8862@itemx .S
8863Assembler source file. This actually behaves almost like C, but
8864@value{GDBN} does not skip over function prologues when stepping.
8865@end table
8866
8867In addition, you may set the language associated with a filename
79a6e687 8868extension. @xref{Show, , Displaying the Language}.
c906108c 8869
6d2ebf8b 8870@node Manually
79a6e687 8871@subsection Setting the Working Language
c906108c
SS
8872
8873If you allow @value{GDBN} to set the language automatically,
8874expressions are interpreted the same way in your debugging session and
8875your program.
8876
8877@kindex set language
8878If you wish, you may set the language manually. To do this, issue the
8879command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8880a language, such as
c906108c 8881@code{c} or @code{modula-2}.
c906108c
SS
8882For a list of the supported languages, type @samp{set language}.
8883
c906108c
SS
8884Setting the language manually prevents @value{GDBN} from updating the working
8885language automatically. This can lead to confusion if you try
8886to debug a program when the working language is not the same as the
8887source language, when an expression is acceptable to both
8888languages---but means different things. For instance, if the current
8889source file were written in C, and @value{GDBN} was parsing Modula-2, a
8890command such as:
8891
474c8240 8892@smallexample
c906108c 8893print a = b + c
474c8240 8894@end smallexample
c906108c
SS
8895
8896@noindent
8897might not have the effect you intended. In C, this means to add
8898@code{b} and @code{c} and place the result in @code{a}. The result
8899printed would be the value of @code{a}. In Modula-2, this means to compare
8900@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8901
6d2ebf8b 8902@node Automatically
79a6e687 8903@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8904
8905To have @value{GDBN} set the working language automatically, use
8906@samp{set language local} or @samp{set language auto}. @value{GDBN}
8907then infers the working language. That is, when your program stops in a
8908frame (usually by encountering a breakpoint), @value{GDBN} sets the
8909working language to the language recorded for the function in that
8910frame. If the language for a frame is unknown (that is, if the function
8911or block corresponding to the frame was defined in a source file that
8912does not have a recognized extension), the current working language is
8913not changed, and @value{GDBN} issues a warning.
8914
8915This may not seem necessary for most programs, which are written
8916entirely in one source language. However, program modules and libraries
8917written in one source language can be used by a main program written in
8918a different source language. Using @samp{set language auto} in this
8919case frees you from having to set the working language manually.
8920
6d2ebf8b 8921@node Show
79a6e687 8922@section Displaying the Language
c906108c
SS
8923
8924The following commands help you find out which language is the
8925working language, and also what language source files were written in.
8926
c906108c
SS
8927@table @code
8928@item show language
9c16f35a 8929@kindex show language
c906108c
SS
8930Display the current working language. This is the
8931language you can use with commands such as @code{print} to
8932build and compute expressions that may involve variables in your program.
8933
8934@item info frame
4644b6e3 8935@kindex info frame@r{, show the source language}
5d161b24 8936Display the source language for this frame. This language becomes the
c906108c 8937working language if you use an identifier from this frame.
79a6e687 8938@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
8939information listed here.
8940
8941@item info source
4644b6e3 8942@kindex info source@r{, show the source language}
c906108c 8943Display the source language of this source file.
5d161b24 8944@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
8945information listed here.
8946@end table
8947
8948In unusual circumstances, you may have source files with extensions
8949not in the standard list. You can then set the extension associated
8950with a language explicitly:
8951
c906108c 8952@table @code
09d4efe1 8953@item set extension-language @var{ext} @var{language}
9c16f35a 8954@kindex set extension-language
09d4efe1
EZ
8955Tell @value{GDBN} that source files with extension @var{ext} are to be
8956assumed as written in the source language @var{language}.
c906108c
SS
8957
8958@item info extensions
9c16f35a 8959@kindex info extensions
c906108c
SS
8960List all the filename extensions and the associated languages.
8961@end table
8962
6d2ebf8b 8963@node Checks
79a6e687 8964@section Type and Range Checking
c906108c
SS
8965
8966@quotation
8967@emph{Warning:} In this release, the @value{GDBN} commands for type and range
8968checking are included, but they do not yet have any effect. This
8969section documents the intended facilities.
8970@end quotation
8971@c FIXME remove warning when type/range code added
8972
8973Some languages are designed to guard you against making seemingly common
8974errors through a series of compile- and run-time checks. These include
8975checking the type of arguments to functions and operators, and making
8976sure mathematical overflows are caught at run time. Checks such as
8977these help to ensure a program's correctness once it has been compiled
8978by eliminating type mismatches, and providing active checks for range
8979errors when your program is running.
8980
8981@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
8982Although @value{GDBN} does not check the statements in your program,
8983it can check expressions entered directly into @value{GDBN} for
8984evaluation via the @code{print} command, for example. As with the
8985working language, @value{GDBN} can also decide whether or not to check
8986automatically based on your program's source language.
79a6e687 8987@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 8988settings of supported languages.
c906108c
SS
8989
8990@menu
8991* Type Checking:: An overview of type checking
8992* Range Checking:: An overview of range checking
8993@end menu
8994
8995@cindex type checking
8996@cindex checks, type
6d2ebf8b 8997@node Type Checking
79a6e687 8998@subsection An Overview of Type Checking
c906108c
SS
8999
9000Some languages, such as Modula-2, are strongly typed, meaning that the
9001arguments to operators and functions have to be of the correct type,
9002otherwise an error occurs. These checks prevent type mismatch
9003errors from ever causing any run-time problems. For example,
9004
9005@smallexample
90061 + 2 @result{} 3
9007@exdent but
9008@error{} 1 + 2.3
9009@end smallexample
9010
9011The second example fails because the @code{CARDINAL} 1 is not
9012type-compatible with the @code{REAL} 2.3.
9013
5d161b24
DB
9014For the expressions you use in @value{GDBN} commands, you can tell the
9015@value{GDBN} type checker to skip checking;
9016to treat any mismatches as errors and abandon the expression;
9017or to only issue warnings when type mismatches occur,
c906108c
SS
9018but evaluate the expression anyway. When you choose the last of
9019these, @value{GDBN} evaluates expressions like the second example above, but
9020also issues a warning.
9021
5d161b24
DB
9022Even if you turn type checking off, there may be other reasons
9023related to type that prevent @value{GDBN} from evaluating an expression.
9024For instance, @value{GDBN} does not know how to add an @code{int} and
9025a @code{struct foo}. These particular type errors have nothing to do
9026with the language in use, and usually arise from expressions, such as
c906108c
SS
9027the one described above, which make little sense to evaluate anyway.
9028
9029Each language defines to what degree it is strict about type. For
9030instance, both Modula-2 and C require the arguments to arithmetical
9031operators to be numbers. In C, enumerated types and pointers can be
9032represented as numbers, so that they are valid arguments to mathematical
79a6e687 9033operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9034details on specific languages.
9035
9036@value{GDBN} provides some additional commands for controlling the type checker:
9037
c906108c
SS
9038@kindex set check type
9039@kindex show check type
9040@table @code
9041@item set check type auto
9042Set type checking on or off based on the current working language.
79a6e687 9043@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9044each language.
9045
9046@item set check type on
9047@itemx set check type off
9048Set type checking on or off, overriding the default setting for the
9049current working language. Issue a warning if the setting does not
9050match the language default. If any type mismatches occur in
d4f3574e 9051evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9052message and aborts evaluation of the expression.
9053
9054@item set check type warn
9055Cause the type checker to issue warnings, but to always attempt to
9056evaluate the expression. Evaluating the expression may still
9057be impossible for other reasons. For example, @value{GDBN} cannot add
9058numbers and structures.
9059
9060@item show type
5d161b24 9061Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9062is setting it automatically.
9063@end table
9064
9065@cindex range checking
9066@cindex checks, range
6d2ebf8b 9067@node Range Checking
79a6e687 9068@subsection An Overview of Range Checking
c906108c
SS
9069
9070In some languages (such as Modula-2), it is an error to exceed the
9071bounds of a type; this is enforced with run-time checks. Such range
9072checking is meant to ensure program correctness by making sure
9073computations do not overflow, or indices on an array element access do
9074not exceed the bounds of the array.
9075
9076For expressions you use in @value{GDBN} commands, you can tell
9077@value{GDBN} to treat range errors in one of three ways: ignore them,
9078always treat them as errors and abandon the expression, or issue
9079warnings but evaluate the expression anyway.
9080
9081A range error can result from numerical overflow, from exceeding an
9082array index bound, or when you type a constant that is not a member
9083of any type. Some languages, however, do not treat overflows as an
9084error. In many implementations of C, mathematical overflow causes the
9085result to ``wrap around'' to lower values---for example, if @var{m} is
9086the largest integer value, and @var{s} is the smallest, then
9087
474c8240 9088@smallexample
c906108c 9089@var{m} + 1 @result{} @var{s}
474c8240 9090@end smallexample
c906108c
SS
9091
9092This, too, is specific to individual languages, and in some cases
79a6e687
BW
9093specific to individual compilers or machines. @xref{Supported Languages, ,
9094Supported Languages}, for further details on specific languages.
c906108c
SS
9095
9096@value{GDBN} provides some additional commands for controlling the range checker:
9097
c906108c
SS
9098@kindex set check range
9099@kindex show check range
9100@table @code
9101@item set check range auto
9102Set range checking on or off based on the current working language.
79a6e687 9103@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9104each language.
9105
9106@item set check range on
9107@itemx set check range off
9108Set range checking on or off, overriding the default setting for the
9109current working language. A warning is issued if the setting does not
c3f6f71d
JM
9110match the language default. If a range error occurs and range checking is on,
9111then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9112
9113@item set check range warn
9114Output messages when the @value{GDBN} range checker detects a range error,
9115but attempt to evaluate the expression anyway. Evaluating the
9116expression may still be impossible for other reasons, such as accessing
9117memory that the process does not own (a typical example from many Unix
9118systems).
9119
9120@item show range
9121Show the current setting of the range checker, and whether or not it is
9122being set automatically by @value{GDBN}.
9123@end table
c906108c 9124
79a6e687
BW
9125@node Supported Languages
9126@section Supported Languages
c906108c 9127
9c16f35a
EZ
9128@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9129assembly, Modula-2, and Ada.
cce74817 9130@c This is false ...
c906108c
SS
9131Some @value{GDBN} features may be used in expressions regardless of the
9132language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9133and the @samp{@{type@}addr} construct (@pxref{Expressions,
9134,Expressions}) can be used with the constructs of any supported
9135language.
9136
9137The following sections detail to what degree each source language is
9138supported by @value{GDBN}. These sections are not meant to be language
9139tutorials or references, but serve only as a reference guide to what the
9140@value{GDBN} expression parser accepts, and what input and output
9141formats should look like for different languages. There are many good
9142books written on each of these languages; please look to these for a
9143language reference or tutorial.
9144
c906108c 9145@menu
b37303ee 9146* C:: C and C@t{++}
b383017d 9147* Objective-C:: Objective-C
09d4efe1 9148* Fortran:: Fortran
9c16f35a 9149* Pascal:: Pascal
b37303ee 9150* Modula-2:: Modula-2
e07c999f 9151* Ada:: Ada
c906108c
SS
9152@end menu
9153
6d2ebf8b 9154@node C
b37052ae 9155@subsection C and C@t{++}
7a292a7a 9156
b37052ae
EZ
9157@cindex C and C@t{++}
9158@cindex expressions in C or C@t{++}
c906108c 9159
b37052ae 9160Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9161to both languages. Whenever this is the case, we discuss those languages
9162together.
9163
41afff9a
EZ
9164@cindex C@t{++}
9165@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9166@cindex @sc{gnu} C@t{++}
9167The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9168compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9169effectively, you must compile your C@t{++} programs with a supported
9170C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9171compiler (@code{aCC}).
9172
0179ffac
DC
9173For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9174format; if it doesn't work on your system, try the stabs+ debugging
9175format. You can select those formats explicitly with the @code{g++}
9176command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9177@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9178gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9179
c906108c 9180@menu
b37052ae
EZ
9181* C Operators:: C and C@t{++} operators
9182* C Constants:: C and C@t{++} constants
79a6e687 9183* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9184* C Defaults:: Default settings for C and C@t{++}
9185* C Checks:: C and C@t{++} type and range checks
c906108c 9186* Debugging C:: @value{GDBN} and C
79a6e687 9187* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9188* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9189@end menu
c906108c 9190
6d2ebf8b 9191@node C Operators
79a6e687 9192@subsubsection C and C@t{++} Operators
7a292a7a 9193
b37052ae 9194@cindex C and C@t{++} operators
c906108c
SS
9195
9196Operators must be defined on values of specific types. For instance,
9197@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9198often defined on groups of types.
c906108c 9199
b37052ae 9200For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9201
9202@itemize @bullet
53a5351d 9203
c906108c 9204@item
c906108c 9205@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9206specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9207
9208@item
d4f3574e
SS
9209@emph{Floating-point types} include @code{float}, @code{double}, and
9210@code{long double} (if supported by the target platform).
c906108c
SS
9211
9212@item
53a5351d 9213@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9214
9215@item
9216@emph{Scalar types} include all of the above.
53a5351d 9217
c906108c
SS
9218@end itemize
9219
9220@noindent
9221The following operators are supported. They are listed here
9222in order of increasing precedence:
9223
9224@table @code
9225@item ,
9226The comma or sequencing operator. Expressions in a comma-separated list
9227are evaluated from left to right, with the result of the entire
9228expression being the last expression evaluated.
9229
9230@item =
9231Assignment. The value of an assignment expression is the value
9232assigned. Defined on scalar types.
9233
9234@item @var{op}=
9235Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9236and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9237@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9238@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9239@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9240
9241@item ?:
9242The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9243of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9244integral type.
9245
9246@item ||
9247Logical @sc{or}. Defined on integral types.
9248
9249@item &&
9250Logical @sc{and}. Defined on integral types.
9251
9252@item |
9253Bitwise @sc{or}. Defined on integral types.
9254
9255@item ^
9256Bitwise exclusive-@sc{or}. Defined on integral types.
9257
9258@item &
9259Bitwise @sc{and}. Defined on integral types.
9260
9261@item ==@r{, }!=
9262Equality and inequality. Defined on scalar types. The value of these
9263expressions is 0 for false and non-zero for true.
9264
9265@item <@r{, }>@r{, }<=@r{, }>=
9266Less than, greater than, less than or equal, greater than or equal.
9267Defined on scalar types. The value of these expressions is 0 for false
9268and non-zero for true.
9269
9270@item <<@r{, }>>
9271left shift, and right shift. Defined on integral types.
9272
9273@item @@
9274The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9275
9276@item +@r{, }-
9277Addition and subtraction. Defined on integral types, floating-point types and
9278pointer types.
9279
9280@item *@r{, }/@r{, }%
9281Multiplication, division, and modulus. Multiplication and division are
9282defined on integral and floating-point types. Modulus is defined on
9283integral types.
9284
9285@item ++@r{, }--
9286Increment and decrement. When appearing before a variable, the
9287operation is performed before the variable is used in an expression;
9288when appearing after it, the variable's value is used before the
9289operation takes place.
9290
9291@item *
9292Pointer dereferencing. Defined on pointer types. Same precedence as
9293@code{++}.
9294
9295@item &
9296Address operator. Defined on variables. Same precedence as @code{++}.
9297
b37052ae
EZ
9298For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9299allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9300to examine the address
b37052ae 9301where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9302stored.
c906108c
SS
9303
9304@item -
9305Negative. Defined on integral and floating-point types. Same
9306precedence as @code{++}.
9307
9308@item !
9309Logical negation. Defined on integral types. Same precedence as
9310@code{++}.
9311
9312@item ~
9313Bitwise complement operator. Defined on integral types. Same precedence as
9314@code{++}.
9315
9316
9317@item .@r{, }->
9318Structure member, and pointer-to-structure member. For convenience,
9319@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9320pointer based on the stored type information.
9321Defined on @code{struct} and @code{union} data.
9322
c906108c
SS
9323@item .*@r{, }->*
9324Dereferences of pointers to members.
c906108c
SS
9325
9326@item []
9327Array indexing. @code{@var{a}[@var{i}]} is defined as
9328@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9329
9330@item ()
9331Function parameter list. Same precedence as @code{->}.
9332
c906108c 9333@item ::
b37052ae 9334C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9335and @code{class} types.
c906108c
SS
9336
9337@item ::
7a292a7a
SS
9338Doubled colons also represent the @value{GDBN} scope operator
9339(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9340above.
c906108c
SS
9341@end table
9342
c906108c
SS
9343If an operator is redefined in the user code, @value{GDBN} usually
9344attempts to invoke the redefined version instead of using the operator's
9345predefined meaning.
c906108c 9346
6d2ebf8b 9347@node C Constants
79a6e687 9348@subsubsection C and C@t{++} Constants
c906108c 9349
b37052ae 9350@cindex C and C@t{++} constants
c906108c 9351
b37052ae 9352@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9353following ways:
c906108c
SS
9354
9355@itemize @bullet
9356@item
9357Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9358specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9359by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9360@samp{l}, specifying that the constant should be treated as a
9361@code{long} value.
9362
9363@item
9364Floating point constants are a sequence of digits, followed by a decimal
9365point, followed by a sequence of digits, and optionally followed by an
9366exponent. An exponent is of the form:
9367@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9368sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9369A floating-point constant may also end with a letter @samp{f} or
9370@samp{F}, specifying that the constant should be treated as being of
9371the @code{float} (as opposed to the default @code{double}) type; or with
9372a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9373constant.
c906108c
SS
9374
9375@item
9376Enumerated constants consist of enumerated identifiers, or their
9377integral equivalents.
9378
9379@item
9380Character constants are a single character surrounded by single quotes
9381(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9382(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9383be represented by a letter or by @dfn{escape sequences}, which are of
9384the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9385of the character's ordinal value; or of the form @samp{\@var{x}}, where
9386@samp{@var{x}} is a predefined special character---for example,
9387@samp{\n} for newline.
9388
9389@item
96a2c332
SS
9390String constants are a sequence of character constants surrounded by
9391double quotes (@code{"}). Any valid character constant (as described
9392above) may appear. Double quotes within the string must be preceded by
9393a backslash, so for instance @samp{"a\"b'c"} is a string of five
9394characters.
c906108c
SS
9395
9396@item
9397Pointer constants are an integral value. You can also write pointers
9398to constants using the C operator @samp{&}.
9399
9400@item
9401Array constants are comma-separated lists surrounded by braces @samp{@{}
9402and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9403integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9404and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9405@end itemize
9406
79a6e687
BW
9407@node C Plus Plus Expressions
9408@subsubsection C@t{++} Expressions
b37052ae
EZ
9409
9410@cindex expressions in C@t{++}
9411@value{GDBN} expression handling can interpret most C@t{++} expressions.
9412
0179ffac
DC
9413@cindex debugging C@t{++} programs
9414@cindex C@t{++} compilers
9415@cindex debug formats and C@t{++}
9416@cindex @value{NGCC} and C@t{++}
c906108c 9417@quotation
b37052ae 9418@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9419proper compiler and the proper debug format. Currently, @value{GDBN}
9420works best when debugging C@t{++} code that is compiled with
9421@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9422@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9423stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9424stabs+ as their default debug format, so you usually don't need to
9425specify a debug format explicitly. Other compilers and/or debug formats
9426are likely to work badly or not at all when using @value{GDBN} to debug
9427C@t{++} code.
c906108c 9428@end quotation
c906108c
SS
9429
9430@enumerate
9431
9432@cindex member functions
9433@item
9434Member function calls are allowed; you can use expressions like
9435
474c8240 9436@smallexample
c906108c 9437count = aml->GetOriginal(x, y)
474c8240 9438@end smallexample
c906108c 9439
41afff9a 9440@vindex this@r{, inside C@t{++} member functions}
b37052ae 9441@cindex namespace in C@t{++}
c906108c
SS
9442@item
9443While a member function is active (in the selected stack frame), your
9444expressions have the same namespace available as the member function;
9445that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9446pointer @code{this} following the same rules as C@t{++}.
c906108c 9447
c906108c 9448@cindex call overloaded functions
d4f3574e 9449@cindex overloaded functions, calling
b37052ae 9450@cindex type conversions in C@t{++}
c906108c
SS
9451@item
9452You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9453call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9454perform overload resolution involving user-defined type conversions,
9455calls to constructors, or instantiations of templates that do not exist
9456in the program. It also cannot handle ellipsis argument lists or
9457default arguments.
9458
9459It does perform integral conversions and promotions, floating-point
9460promotions, arithmetic conversions, pointer conversions, conversions of
9461class objects to base classes, and standard conversions such as those of
9462functions or arrays to pointers; it requires an exact match on the
9463number of function arguments.
9464
9465Overload resolution is always performed, unless you have specified
79a6e687
BW
9466@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9467,@value{GDBN} Features for C@t{++}}.
c906108c 9468
d4f3574e 9469You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9470explicit function signature to call an overloaded function, as in
9471@smallexample
9472p 'foo(char,int)'('x', 13)
9473@end smallexample
d4f3574e 9474
c906108c 9475The @value{GDBN} command-completion facility can simplify this;
79a6e687 9476see @ref{Completion, ,Command Completion}.
c906108c 9477
c906108c
SS
9478@cindex reference declarations
9479@item
b37052ae
EZ
9480@value{GDBN} understands variables declared as C@t{++} references; you can use
9481them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9482dereferenced.
9483
9484In the parameter list shown when @value{GDBN} displays a frame, the values of
9485reference variables are not displayed (unlike other variables); this
9486avoids clutter, since references are often used for large structures.
9487The @emph{address} of a reference variable is always shown, unless
9488you have specified @samp{set print address off}.
9489
9490@item
b37052ae 9491@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9492expressions can use it just as expressions in your program do. Since
9493one scope may be defined in another, you can use @code{::} repeatedly if
9494necessary, for example in an expression like
9495@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9496resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9497debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9498@end enumerate
9499
b37052ae 9500In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9501calling virtual functions correctly, printing out virtual bases of
9502objects, calling functions in a base subobject, casting objects, and
9503invoking user-defined operators.
c906108c 9504
6d2ebf8b 9505@node C Defaults
79a6e687 9506@subsubsection C and C@t{++} Defaults
7a292a7a 9507
b37052ae 9508@cindex C and C@t{++} defaults
c906108c 9509
c906108c
SS
9510If you allow @value{GDBN} to set type and range checking automatically, they
9511both default to @code{off} whenever the working language changes to
b37052ae 9512C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9513selects the working language.
c906108c
SS
9514
9515If you allow @value{GDBN} to set the language automatically, it
9516recognizes source files whose names end with @file{.c}, @file{.C}, or
9517@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9518these files, it sets the working language to C or C@t{++}.
79a6e687 9519@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9520for further details.
9521
c906108c
SS
9522@c Type checking is (a) primarily motivated by Modula-2, and (b)
9523@c unimplemented. If (b) changes, it might make sense to let this node
9524@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9525
6d2ebf8b 9526@node C Checks
79a6e687 9527@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9528
b37052ae 9529@cindex C and C@t{++} checks
c906108c 9530
b37052ae 9531By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9532is not used. However, if you turn type checking on, @value{GDBN}
9533considers two variables type equivalent if:
9534
9535@itemize @bullet
9536@item
9537The two variables are structured and have the same structure, union, or
9538enumerated tag.
9539
9540@item
9541The two variables have the same type name, or types that have been
9542declared equivalent through @code{typedef}.
9543
9544@ignore
9545@c leaving this out because neither J Gilmore nor R Pesch understand it.
9546@c FIXME--beers?
9547@item
9548The two @code{struct}, @code{union}, or @code{enum} variables are
9549declared in the same declaration. (Note: this may not be true for all C
9550compilers.)
9551@end ignore
9552@end itemize
9553
9554Range checking, if turned on, is done on mathematical operations. Array
9555indices are not checked, since they are often used to index a pointer
9556that is not itself an array.
c906108c 9557
6d2ebf8b 9558@node Debugging C
c906108c 9559@subsubsection @value{GDBN} and C
c906108c
SS
9560
9561The @code{set print union} and @code{show print union} commands apply to
9562the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9563inside a @code{struct} or @code{class} is also printed. Otherwise, it
9564appears as @samp{@{...@}}.
c906108c
SS
9565
9566The @code{@@} operator aids in the debugging of dynamic arrays, formed
9567with pointers and a memory allocation function. @xref{Expressions,
9568,Expressions}.
9569
79a6e687
BW
9570@node Debugging C Plus Plus
9571@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9572
b37052ae 9573@cindex commands for C@t{++}
7a292a7a 9574
b37052ae
EZ
9575Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9576designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9577
9578@table @code
9579@cindex break in overloaded functions
9580@item @r{breakpoint menus}
9581When you want a breakpoint in a function whose name is overloaded,
9582@value{GDBN} breakpoint menus help you specify which function definition
79a6e687 9583you want. @xref{Breakpoint Menus,,Breakpoint Menus}.
c906108c 9584
b37052ae 9585@cindex overloading in C@t{++}
c906108c
SS
9586@item rbreak @var{regex}
9587Setting breakpoints using regular expressions is helpful for setting
9588breakpoints on overloaded functions that are not members of any special
9589classes.
79a6e687 9590@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9591
b37052ae 9592@cindex C@t{++} exception handling
c906108c
SS
9593@item catch throw
9594@itemx catch catch
b37052ae 9595Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9596Catchpoints, , Setting Catchpoints}.
c906108c
SS
9597
9598@cindex inheritance
9599@item ptype @var{typename}
9600Print inheritance relationships as well as other information for type
9601@var{typename}.
9602@xref{Symbols, ,Examining the Symbol Table}.
9603
b37052ae 9604@cindex C@t{++} symbol display
c906108c
SS
9605@item set print demangle
9606@itemx show print demangle
9607@itemx set print asm-demangle
9608@itemx show print asm-demangle
b37052ae
EZ
9609Control whether C@t{++} symbols display in their source form, both when
9610displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9611@xref{Print Settings, ,Print Settings}.
c906108c
SS
9612
9613@item set print object
9614@itemx show print object
9615Choose whether to print derived (actual) or declared types of objects.
79a6e687 9616@xref{Print Settings, ,Print Settings}.
c906108c
SS
9617
9618@item set print vtbl
9619@itemx show print vtbl
9620Control the format for printing virtual function tables.
79a6e687 9621@xref{Print Settings, ,Print Settings}.
c906108c 9622(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9623ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9624
9625@kindex set overload-resolution
d4f3574e 9626@cindex overloaded functions, overload resolution
c906108c 9627@item set overload-resolution on
b37052ae 9628Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9629is on. For overloaded functions, @value{GDBN} evaluates the arguments
9630and searches for a function whose signature matches the argument types,
79a6e687
BW
9631using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9632Expressions, ,C@t{++} Expressions}, for details).
9633If it cannot find a match, it emits a message.
c906108c
SS
9634
9635@item set overload-resolution off
b37052ae 9636Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9637overloaded functions that are not class member functions, @value{GDBN}
9638chooses the first function of the specified name that it finds in the
9639symbol table, whether or not its arguments are of the correct type. For
9640overloaded functions that are class member functions, @value{GDBN}
9641searches for a function whose signature @emph{exactly} matches the
9642argument types.
c906108c 9643
9c16f35a
EZ
9644@kindex show overload-resolution
9645@item show overload-resolution
9646Show the current setting of overload resolution.
9647
c906108c
SS
9648@item @r{Overloaded symbol names}
9649You can specify a particular definition of an overloaded symbol, using
b37052ae 9650the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9651@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9652also use the @value{GDBN} command-line word completion facilities to list the
9653available choices, or to finish the type list for you.
79a6e687 9654@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9655@end table
c906108c 9656
febe4383
TJB
9657@node Decimal Floating Point
9658@subsubsection Decimal Floating Point format
9659@cindex decimal floating point format
9660
9661@value{GDBN} can examine, set and perform computations with numbers in
9662decimal floating point format, which in the C language correspond to the
9663@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9664specified by the extension to support decimal floating-point arithmetic.
9665
9666There are two encodings in use, depending on the architecture: BID (Binary
9667Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9668PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9669target.
9670
9671Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9672to manipulate decimal floating point numbers, it is not possible to convert
9673(using a cast, for example) integers wider than 32-bit to decimal float.
9674
9675In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9676point computations, error checking in decimal float operations ignores
9677underflow, overflow and divide by zero exceptions.
9678
b37303ee
AF
9679@node Objective-C
9680@subsection Objective-C
9681
9682@cindex Objective-C
9683This section provides information about some commands and command
721c2651
EZ
9684options that are useful for debugging Objective-C code. See also
9685@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9686few more commands specific to Objective-C support.
b37303ee
AF
9687
9688@menu
b383017d
RM
9689* Method Names in Commands::
9690* The Print Command with Objective-C::
b37303ee
AF
9691@end menu
9692
c8f4133a 9693@node Method Names in Commands
b37303ee
AF
9694@subsubsection Method Names in Commands
9695
9696The following commands have been extended to accept Objective-C method
9697names as line specifications:
9698
9699@kindex clear@r{, and Objective-C}
9700@kindex break@r{, and Objective-C}
9701@kindex info line@r{, and Objective-C}
9702@kindex jump@r{, and Objective-C}
9703@kindex list@r{, and Objective-C}
9704@itemize
9705@item @code{clear}
9706@item @code{break}
9707@item @code{info line}
9708@item @code{jump}
9709@item @code{list}
9710@end itemize
9711
9712A fully qualified Objective-C method name is specified as
9713
9714@smallexample
9715-[@var{Class} @var{methodName}]
9716@end smallexample
9717
c552b3bb
JM
9718where the minus sign is used to indicate an instance method and a
9719plus sign (not shown) is used to indicate a class method. The class
9720name @var{Class} and method name @var{methodName} are enclosed in
9721brackets, similar to the way messages are specified in Objective-C
9722source code. For example, to set a breakpoint at the @code{create}
9723instance method of class @code{Fruit} in the program currently being
9724debugged, enter:
b37303ee
AF
9725
9726@smallexample
9727break -[Fruit create]
9728@end smallexample
9729
9730To list ten program lines around the @code{initialize} class method,
9731enter:
9732
9733@smallexample
9734list +[NSText initialize]
9735@end smallexample
9736
c552b3bb
JM
9737In the current version of @value{GDBN}, the plus or minus sign is
9738required. In future versions of @value{GDBN}, the plus or minus
9739sign will be optional, but you can use it to narrow the search. It
9740is also possible to specify just a method name:
b37303ee
AF
9741
9742@smallexample
9743break create
9744@end smallexample
9745
9746You must specify the complete method name, including any colons. If
9747your program's source files contain more than one @code{create} method,
9748you'll be presented with a numbered list of classes that implement that
9749method. Indicate your choice by number, or type @samp{0} to exit if
9750none apply.
9751
9752As another example, to clear a breakpoint established at the
9753@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9754
9755@smallexample
9756clear -[NSWindow makeKeyAndOrderFront:]
9757@end smallexample
9758
9759@node The Print Command with Objective-C
9760@subsubsection The Print Command With Objective-C
721c2651 9761@cindex Objective-C, print objects
c552b3bb
JM
9762@kindex print-object
9763@kindex po @r{(@code{print-object})}
b37303ee 9764
c552b3bb 9765The print command has also been extended to accept methods. For example:
b37303ee
AF
9766
9767@smallexample
c552b3bb 9768print -[@var{object} hash]
b37303ee
AF
9769@end smallexample
9770
9771@cindex print an Objective-C object description
c552b3bb
JM
9772@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9773@noindent
9774will tell @value{GDBN} to send the @code{hash} message to @var{object}
9775and print the result. Also, an additional command has been added,
9776@code{print-object} or @code{po} for short, which is meant to print
9777the description of an object. However, this command may only work
9778with certain Objective-C libraries that have a particular hook
9779function, @code{_NSPrintForDebugger}, defined.
b37303ee 9780
09d4efe1
EZ
9781@node Fortran
9782@subsection Fortran
9783@cindex Fortran-specific support in @value{GDBN}
9784
814e32d7
WZ
9785@value{GDBN} can be used to debug programs written in Fortran, but it
9786currently supports only the features of Fortran 77 language.
9787
9788@cindex trailing underscore, in Fortran symbols
9789Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9790among them) append an underscore to the names of variables and
9791functions. When you debug programs compiled by those compilers, you
9792will need to refer to variables and functions with a trailing
9793underscore.
9794
9795@menu
9796* Fortran Operators:: Fortran operators and expressions
9797* Fortran Defaults:: Default settings for Fortran
79a6e687 9798* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9799@end menu
9800
9801@node Fortran Operators
79a6e687 9802@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9803
9804@cindex Fortran operators and expressions
9805
9806Operators must be defined on values of specific types. For instance,
9807@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9808arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9809
9810@table @code
9811@item **
9812The exponentiation operator. It raises the first operand to the power
9813of the second one.
9814
9815@item :
9816The range operator. Normally used in the form of array(low:high) to
9817represent a section of array.
9818@end table
9819
9820@node Fortran Defaults
9821@subsubsection Fortran Defaults
9822
9823@cindex Fortran Defaults
9824
9825Fortran symbols are usually case-insensitive, so @value{GDBN} by
9826default uses case-insensitive matches for Fortran symbols. You can
9827change that with the @samp{set case-insensitive} command, see
9828@ref{Symbols}, for the details.
9829
79a6e687
BW
9830@node Special Fortran Commands
9831@subsubsection Special Fortran Commands
814e32d7
WZ
9832
9833@cindex Special Fortran commands
9834
db2e3e2e
BW
9835@value{GDBN} has some commands to support Fortran-specific features,
9836such as displaying common blocks.
814e32d7 9837
09d4efe1
EZ
9838@table @code
9839@cindex @code{COMMON} blocks, Fortran
9840@kindex info common
9841@item info common @r{[}@var{common-name}@r{]}
9842This command prints the values contained in the Fortran @code{COMMON}
9843block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9844all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9845printed.
9846@end table
9847
9c16f35a
EZ
9848@node Pascal
9849@subsection Pascal
9850
9851@cindex Pascal support in @value{GDBN}, limitations
9852Debugging Pascal programs which use sets, subranges, file variables, or
9853nested functions does not currently work. @value{GDBN} does not support
9854entering expressions, printing values, or similar features using Pascal
9855syntax.
9856
9857The Pascal-specific command @code{set print pascal_static-members}
9858controls whether static members of Pascal objects are displayed.
9859@xref{Print Settings, pascal_static-members}.
9860
09d4efe1 9861@node Modula-2
c906108c 9862@subsection Modula-2
7a292a7a 9863
d4f3574e 9864@cindex Modula-2, @value{GDBN} support
c906108c
SS
9865
9866The extensions made to @value{GDBN} to support Modula-2 only support
9867output from the @sc{gnu} Modula-2 compiler (which is currently being
9868developed). Other Modula-2 compilers are not currently supported, and
9869attempting to debug executables produced by them is most likely
9870to give an error as @value{GDBN} reads in the executable's symbol
9871table.
9872
9873@cindex expressions in Modula-2
9874@menu
9875* M2 Operators:: Built-in operators
9876* Built-In Func/Proc:: Built-in functions and procedures
9877* M2 Constants:: Modula-2 constants
72019c9c 9878* M2 Types:: Modula-2 types
c906108c
SS
9879* M2 Defaults:: Default settings for Modula-2
9880* Deviations:: Deviations from standard Modula-2
9881* M2 Checks:: Modula-2 type and range checks
9882* M2 Scope:: The scope operators @code{::} and @code{.}
9883* GDB/M2:: @value{GDBN} and Modula-2
9884@end menu
9885
6d2ebf8b 9886@node M2 Operators
c906108c
SS
9887@subsubsection Operators
9888@cindex Modula-2 operators
9889
9890Operators must be defined on values of specific types. For instance,
9891@code{+} is defined on numbers, but not on structures. Operators are
9892often defined on groups of types. For the purposes of Modula-2, the
9893following definitions hold:
9894
9895@itemize @bullet
9896
9897@item
9898@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9899their subranges.
9900
9901@item
9902@emph{Character types} consist of @code{CHAR} and its subranges.
9903
9904@item
9905@emph{Floating-point types} consist of @code{REAL}.
9906
9907@item
9908@emph{Pointer types} consist of anything declared as @code{POINTER TO
9909@var{type}}.
9910
9911@item
9912@emph{Scalar types} consist of all of the above.
9913
9914@item
9915@emph{Set types} consist of @code{SET} and @code{BITSET} types.
9916
9917@item
9918@emph{Boolean types} consist of @code{BOOLEAN}.
9919@end itemize
9920
9921@noindent
9922The following operators are supported, and appear in order of
9923increasing precedence:
9924
9925@table @code
9926@item ,
9927Function argument or array index separator.
9928
9929@item :=
9930Assignment. The value of @var{var} @code{:=} @var{value} is
9931@var{value}.
9932
9933@item <@r{, }>
9934Less than, greater than on integral, floating-point, or enumerated
9935types.
9936
9937@item <=@r{, }>=
96a2c332 9938Less than or equal to, greater than or equal to
c906108c
SS
9939on integral, floating-point and enumerated types, or set inclusion on
9940set types. Same precedence as @code{<}.
9941
9942@item =@r{, }<>@r{, }#
9943Equality and two ways of expressing inequality, valid on scalar types.
9944Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
9945available for inequality, since @code{#} conflicts with the script
9946comment character.
9947
9948@item IN
9949Set membership. Defined on set types and the types of their members.
9950Same precedence as @code{<}.
9951
9952@item OR
9953Boolean disjunction. Defined on boolean types.
9954
9955@item AND@r{, }&
d4f3574e 9956Boolean conjunction. Defined on boolean types.
c906108c
SS
9957
9958@item @@
9959The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9960
9961@item +@r{, }-
9962Addition and subtraction on integral and floating-point types, or union
9963and difference on set types.
9964
9965@item *
9966Multiplication on integral and floating-point types, or set intersection
9967on set types.
9968
9969@item /
9970Division on floating-point types, or symmetric set difference on set
9971types. Same precedence as @code{*}.
9972
9973@item DIV@r{, }MOD
9974Integer division and remainder. Defined on integral types. Same
9975precedence as @code{*}.
9976
9977@item -
9978Negative. Defined on @code{INTEGER} and @code{REAL} data.
9979
9980@item ^
9981Pointer dereferencing. Defined on pointer types.
9982
9983@item NOT
9984Boolean negation. Defined on boolean types. Same precedence as
9985@code{^}.
9986
9987@item .
9988@code{RECORD} field selector. Defined on @code{RECORD} data. Same
9989precedence as @code{^}.
9990
9991@item []
9992Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
9993
9994@item ()
9995Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
9996as @code{^}.
9997
9998@item ::@r{, }.
9999@value{GDBN} and Modula-2 scope operators.
10000@end table
10001
10002@quotation
72019c9c 10003@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10004treats the use of the operator @code{IN}, or the use of operators
10005@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10006@code{<=}, and @code{>=} on sets as an error.
10007@end quotation
10008
cb51c4e0 10009
6d2ebf8b 10010@node Built-In Func/Proc
79a6e687 10011@subsubsection Built-in Functions and Procedures
cb51c4e0 10012@cindex Modula-2 built-ins
c906108c
SS
10013
10014Modula-2 also makes available several built-in procedures and functions.
10015In describing these, the following metavariables are used:
10016
10017@table @var
10018
10019@item a
10020represents an @code{ARRAY} variable.
10021
10022@item c
10023represents a @code{CHAR} constant or variable.
10024
10025@item i
10026represents a variable or constant of integral type.
10027
10028@item m
10029represents an identifier that belongs to a set. Generally used in the
10030same function with the metavariable @var{s}. The type of @var{s} should
10031be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10032
10033@item n
10034represents a variable or constant of integral or floating-point type.
10035
10036@item r
10037represents a variable or constant of floating-point type.
10038
10039@item t
10040represents a type.
10041
10042@item v
10043represents a variable.
10044
10045@item x
10046represents a variable or constant of one of many types. See the
10047explanation of the function for details.
10048@end table
10049
10050All Modula-2 built-in procedures also return a result, described below.
10051
10052@table @code
10053@item ABS(@var{n})
10054Returns the absolute value of @var{n}.
10055
10056@item CAP(@var{c})
10057If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10058equivalent, otherwise it returns its argument.
c906108c
SS
10059
10060@item CHR(@var{i})
10061Returns the character whose ordinal value is @var{i}.
10062
10063@item DEC(@var{v})
c3f6f71d 10064Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10065
10066@item DEC(@var{v},@var{i})
10067Decrements the value in the variable @var{v} by @var{i}. Returns the
10068new value.
10069
10070@item EXCL(@var{m},@var{s})
10071Removes the element @var{m} from the set @var{s}. Returns the new
10072set.
10073
10074@item FLOAT(@var{i})
10075Returns the floating point equivalent of the integer @var{i}.
10076
10077@item HIGH(@var{a})
10078Returns the index of the last member of @var{a}.
10079
10080@item INC(@var{v})
c3f6f71d 10081Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10082
10083@item INC(@var{v},@var{i})
10084Increments the value in the variable @var{v} by @var{i}. Returns the
10085new value.
10086
10087@item INCL(@var{m},@var{s})
10088Adds the element @var{m} to the set @var{s} if it is not already
10089there. Returns the new set.
10090
10091@item MAX(@var{t})
10092Returns the maximum value of the type @var{t}.
10093
10094@item MIN(@var{t})
10095Returns the minimum value of the type @var{t}.
10096
10097@item ODD(@var{i})
10098Returns boolean TRUE if @var{i} is an odd number.
10099
10100@item ORD(@var{x})
10101Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10102value of a character is its @sc{ascii} value (on machines supporting the
10103@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10104integral, character and enumerated types.
10105
10106@item SIZE(@var{x})
10107Returns the size of its argument. @var{x} can be a variable or a type.
10108
10109@item TRUNC(@var{r})
10110Returns the integral part of @var{r}.
10111
844781a1
GM
10112@item TSIZE(@var{x})
10113Returns the size of its argument. @var{x} can be a variable or a type.
10114
c906108c
SS
10115@item VAL(@var{t},@var{i})
10116Returns the member of the type @var{t} whose ordinal value is @var{i}.
10117@end table
10118
10119@quotation
10120@emph{Warning:} Sets and their operations are not yet supported, so
10121@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10122an error.
10123@end quotation
10124
10125@cindex Modula-2 constants
6d2ebf8b 10126@node M2 Constants
c906108c
SS
10127@subsubsection Constants
10128
10129@value{GDBN} allows you to express the constants of Modula-2 in the following
10130ways:
10131
10132@itemize @bullet
10133
10134@item
10135Integer constants are simply a sequence of digits. When used in an
10136expression, a constant is interpreted to be type-compatible with the
10137rest of the expression. Hexadecimal integers are specified by a
10138trailing @samp{H}, and octal integers by a trailing @samp{B}.
10139
10140@item
10141Floating point constants appear as a sequence of digits, followed by a
10142decimal point and another sequence of digits. An optional exponent can
10143then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10144@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10145digits of the floating point constant must be valid decimal (base 10)
10146digits.
10147
10148@item
10149Character constants consist of a single character enclosed by a pair of
10150like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10151also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10152followed by a @samp{C}.
10153
10154@item
10155String constants consist of a sequence of characters enclosed by a
10156pair of like quotes, either single (@code{'}) or double (@code{"}).
10157Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10158Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10159sequences.
10160
10161@item
10162Enumerated constants consist of an enumerated identifier.
10163
10164@item
10165Boolean constants consist of the identifiers @code{TRUE} and
10166@code{FALSE}.
10167
10168@item
10169Pointer constants consist of integral values only.
10170
10171@item
10172Set constants are not yet supported.
10173@end itemize
10174
72019c9c
GM
10175@node M2 Types
10176@subsubsection Modula-2 Types
10177@cindex Modula-2 types
10178
10179Currently @value{GDBN} can print the following data types in Modula-2
10180syntax: array types, record types, set types, pointer types, procedure
10181types, enumerated types, subrange types and base types. You can also
10182print the contents of variables declared using these type.
10183This section gives a number of simple source code examples together with
10184sample @value{GDBN} sessions.
10185
10186The first example contains the following section of code:
10187
10188@smallexample
10189VAR
10190 s: SET OF CHAR ;
10191 r: [20..40] ;
10192@end smallexample
10193
10194@noindent
10195and you can request @value{GDBN} to interrogate the type and value of
10196@code{r} and @code{s}.
10197
10198@smallexample
10199(@value{GDBP}) print s
10200@{'A'..'C', 'Z'@}
10201(@value{GDBP}) ptype s
10202SET OF CHAR
10203(@value{GDBP}) print r
1020421
10205(@value{GDBP}) ptype r
10206[20..40]
10207@end smallexample
10208
10209@noindent
10210Likewise if your source code declares @code{s} as:
10211
10212@smallexample
10213VAR
10214 s: SET ['A'..'Z'] ;
10215@end smallexample
10216
10217@noindent
10218then you may query the type of @code{s} by:
10219
10220@smallexample
10221(@value{GDBP}) ptype s
10222type = SET ['A'..'Z']
10223@end smallexample
10224
10225@noindent
10226Note that at present you cannot interactively manipulate set
10227expressions using the debugger.
10228
10229The following example shows how you might declare an array in Modula-2
10230and how you can interact with @value{GDBN} to print its type and contents:
10231
10232@smallexample
10233VAR
10234 s: ARRAY [-10..10] OF CHAR ;
10235@end smallexample
10236
10237@smallexample
10238(@value{GDBP}) ptype s
10239ARRAY [-10..10] OF CHAR
10240@end smallexample
10241
10242Note that the array handling is not yet complete and although the type
10243is printed correctly, expression handling still assumes that all
10244arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10245above.
72019c9c
GM
10246
10247Here are some more type related Modula-2 examples:
10248
10249@smallexample
10250TYPE
10251 colour = (blue, red, yellow, green) ;
10252 t = [blue..yellow] ;
10253VAR
10254 s: t ;
10255BEGIN
10256 s := blue ;
10257@end smallexample
10258
10259@noindent
10260The @value{GDBN} interaction shows how you can query the data type
10261and value of a variable.
10262
10263@smallexample
10264(@value{GDBP}) print s
10265$1 = blue
10266(@value{GDBP}) ptype t
10267type = [blue..yellow]
10268@end smallexample
10269
10270@noindent
10271In this example a Modula-2 array is declared and its contents
10272displayed. Observe that the contents are written in the same way as
10273their @code{C} counterparts.
10274
10275@smallexample
10276VAR
10277 s: ARRAY [1..5] OF CARDINAL ;
10278BEGIN
10279 s[1] := 1 ;
10280@end smallexample
10281
10282@smallexample
10283(@value{GDBP}) print s
10284$1 = @{1, 0, 0, 0, 0@}
10285(@value{GDBP}) ptype s
10286type = ARRAY [1..5] OF CARDINAL
10287@end smallexample
10288
10289The Modula-2 language interface to @value{GDBN} also understands
10290pointer types as shown in this example:
10291
10292@smallexample
10293VAR
10294 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10295BEGIN
10296 NEW(s) ;
10297 s^[1] := 1 ;
10298@end smallexample
10299
10300@noindent
10301and you can request that @value{GDBN} describes the type of @code{s}.
10302
10303@smallexample
10304(@value{GDBP}) ptype s
10305type = POINTER TO ARRAY [1..5] OF CARDINAL
10306@end smallexample
10307
10308@value{GDBN} handles compound types as we can see in this example.
10309Here we combine array types, record types, pointer types and subrange
10310types:
10311
10312@smallexample
10313TYPE
10314 foo = RECORD
10315 f1: CARDINAL ;
10316 f2: CHAR ;
10317 f3: myarray ;
10318 END ;
10319
10320 myarray = ARRAY myrange OF CARDINAL ;
10321 myrange = [-2..2] ;
10322VAR
10323 s: POINTER TO ARRAY myrange OF foo ;
10324@end smallexample
10325
10326@noindent
10327and you can ask @value{GDBN} to describe the type of @code{s} as shown
10328below.
10329
10330@smallexample
10331(@value{GDBP}) ptype s
10332type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10333 f1 : CARDINAL;
10334 f2 : CHAR;
10335 f3 : ARRAY [-2..2] OF CARDINAL;
10336END
10337@end smallexample
10338
6d2ebf8b 10339@node M2 Defaults
79a6e687 10340@subsubsection Modula-2 Defaults
c906108c
SS
10341@cindex Modula-2 defaults
10342
10343If type and range checking are set automatically by @value{GDBN}, they
10344both default to @code{on} whenever the working language changes to
d4f3574e 10345Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10346selected the working language.
10347
10348If you allow @value{GDBN} to set the language automatically, then entering
10349code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10350working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10351Infer the Source Language}, for further details.
c906108c 10352
6d2ebf8b 10353@node Deviations
79a6e687 10354@subsubsection Deviations from Standard Modula-2
c906108c
SS
10355@cindex Modula-2, deviations from
10356
10357A few changes have been made to make Modula-2 programs easier to debug.
10358This is done primarily via loosening its type strictness:
10359
10360@itemize @bullet
10361@item
10362Unlike in standard Modula-2, pointer constants can be formed by
10363integers. This allows you to modify pointer variables during
10364debugging. (In standard Modula-2, the actual address contained in a
10365pointer variable is hidden from you; it can only be modified
10366through direct assignment to another pointer variable or expression that
10367returned a pointer.)
10368
10369@item
10370C escape sequences can be used in strings and characters to represent
10371non-printable characters. @value{GDBN} prints out strings with these
10372escape sequences embedded. Single non-printable characters are
10373printed using the @samp{CHR(@var{nnn})} format.
10374
10375@item
10376The assignment operator (@code{:=}) returns the value of its right-hand
10377argument.
10378
10379@item
10380All built-in procedures both modify @emph{and} return their argument.
10381@end itemize
10382
6d2ebf8b 10383@node M2 Checks
79a6e687 10384@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10385@cindex Modula-2 checks
10386
10387@quotation
10388@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10389range checking.
10390@end quotation
10391@c FIXME remove warning when type/range checks added
10392
10393@value{GDBN} considers two Modula-2 variables type equivalent if:
10394
10395@itemize @bullet
10396@item
10397They are of types that have been declared equivalent via a @code{TYPE
10398@var{t1} = @var{t2}} statement
10399
10400@item
10401They have been declared on the same line. (Note: This is true of the
10402@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10403@end itemize
10404
10405As long as type checking is enabled, any attempt to combine variables
10406whose types are not equivalent is an error.
10407
10408Range checking is done on all mathematical operations, assignment, array
10409index bounds, and all built-in functions and procedures.
10410
6d2ebf8b 10411@node M2 Scope
79a6e687 10412@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10413@cindex scope
41afff9a 10414@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10415@cindex colon, doubled as scope operator
10416@ifinfo
41afff9a 10417@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10418@c Info cannot handle :: but TeX can.
10419@end ifinfo
10420@iftex
41afff9a 10421@vindex ::@r{, in Modula-2}
c906108c
SS
10422@end iftex
10423
10424There are a few subtle differences between the Modula-2 scope operator
10425(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10426similar syntax:
10427
474c8240 10428@smallexample
c906108c
SS
10429
10430@var{module} . @var{id}
10431@var{scope} :: @var{id}
474c8240 10432@end smallexample
c906108c
SS
10433
10434@noindent
10435where @var{scope} is the name of a module or a procedure,
10436@var{module} the name of a module, and @var{id} is any declared
10437identifier within your program, except another module.
10438
10439Using the @code{::} operator makes @value{GDBN} search the scope
10440specified by @var{scope} for the identifier @var{id}. If it is not
10441found in the specified scope, then @value{GDBN} searches all scopes
10442enclosing the one specified by @var{scope}.
10443
10444Using the @code{.} operator makes @value{GDBN} search the current scope for
10445the identifier specified by @var{id} that was imported from the
10446definition module specified by @var{module}. With this operator, it is
10447an error if the identifier @var{id} was not imported from definition
10448module @var{module}, or if @var{id} is not an identifier in
10449@var{module}.
10450
6d2ebf8b 10451@node GDB/M2
c906108c
SS
10452@subsubsection @value{GDBN} and Modula-2
10453
10454Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10455Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10456specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10457@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10458apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10459analogue in Modula-2.
10460
10461The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10462with any language, is not useful with Modula-2. Its
c906108c 10463intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10464created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10465address can be specified by an integral constant, the construct
d4f3574e 10466@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10467
10468@cindex @code{#} in Modula-2
10469In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10470interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10471
e07c999f
PH
10472@node Ada
10473@subsection Ada
10474@cindex Ada
10475
10476The extensions made to @value{GDBN} for Ada only support
10477output from the @sc{gnu} Ada (GNAT) compiler.
10478Other Ada compilers are not currently supported, and
10479attempting to debug executables produced by them is most likely
10480to be difficult.
10481
10482
10483@cindex expressions in Ada
10484@menu
10485* Ada Mode Intro:: General remarks on the Ada syntax
10486 and semantics supported by Ada mode
10487 in @value{GDBN}.
10488* Omissions from Ada:: Restrictions on the Ada expression syntax.
10489* Additions to Ada:: Extensions of the Ada expression syntax.
10490* Stopping Before Main Program:: Debugging the program during elaboration.
10491* Ada Glitches:: Known peculiarities of Ada mode.
10492@end menu
10493
10494@node Ada Mode Intro
10495@subsubsection Introduction
10496@cindex Ada mode, general
10497
10498The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10499syntax, with some extensions.
10500The philosophy behind the design of this subset is
10501
10502@itemize @bullet
10503@item
10504That @value{GDBN} should provide basic literals and access to operations for
10505arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10506leaving more sophisticated computations to subprograms written into the
10507program (which therefore may be called from @value{GDBN}).
10508
10509@item
10510That type safety and strict adherence to Ada language restrictions
10511are not particularly important to the @value{GDBN} user.
10512
10513@item
10514That brevity is important to the @value{GDBN} user.
10515@end itemize
10516
10517Thus, for brevity, the debugger acts as if there were
10518implicit @code{with} and @code{use} clauses in effect for all user-written
10519packages, making it unnecessary to fully qualify most names with
10520their packages, regardless of context. Where this causes ambiguity,
10521@value{GDBN} asks the user's intent.
10522
10523The debugger will start in Ada mode if it detects an Ada main program.
10524As for other languages, it will enter Ada mode when stopped in a program that
10525was translated from an Ada source file.
10526
10527While in Ada mode, you may use `@t{--}' for comments. This is useful
10528mostly for documenting command files. The standard @value{GDBN} comment
10529(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10530middle (to allow based literals).
10531
10532The debugger supports limited overloading. Given a subprogram call in which
10533the function symbol has multiple definitions, it will use the number of
10534actual parameters and some information about their types to attempt to narrow
10535the set of definitions. It also makes very limited use of context, preferring
10536procedures to functions in the context of the @code{call} command, and
10537functions to procedures elsewhere.
10538
10539@node Omissions from Ada
10540@subsubsection Omissions from Ada
10541@cindex Ada, omissions from
10542
10543Here are the notable omissions from the subset:
10544
10545@itemize @bullet
10546@item
10547Only a subset of the attributes are supported:
10548
10549@itemize @minus
10550@item
10551@t{'First}, @t{'Last}, and @t{'Length}
10552 on array objects (not on types and subtypes).
10553
10554@item
10555@t{'Min} and @t{'Max}.
10556
10557@item
10558@t{'Pos} and @t{'Val}.
10559
10560@item
10561@t{'Tag}.
10562
10563@item
10564@t{'Range} on array objects (not subtypes), but only as the right
10565operand of the membership (@code{in}) operator.
10566
10567@item
10568@t{'Access}, @t{'Unchecked_Access}, and
10569@t{'Unrestricted_Access} (a GNAT extension).
10570
10571@item
10572@t{'Address}.
10573@end itemize
10574
10575@item
10576The names in
10577@code{Characters.Latin_1} are not available and
10578concatenation is not implemented. Thus, escape characters in strings are
10579not currently available.
10580
10581@item
10582Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10583equality of representations. They will generally work correctly
10584for strings and arrays whose elements have integer or enumeration types.
10585They may not work correctly for arrays whose element
10586types have user-defined equality, for arrays of real values
10587(in particular, IEEE-conformant floating point, because of negative
10588zeroes and NaNs), and for arrays whose elements contain unused bits with
10589indeterminate values.
10590
10591@item
10592The other component-by-component array operations (@code{and}, @code{or},
10593@code{xor}, @code{not}, and relational tests other than equality)
10594are not implemented.
10595
10596@item
860701dc
PH
10597@cindex array aggregates (Ada)
10598@cindex record aggregates (Ada)
10599@cindex aggregates (Ada)
10600There is limited support for array and record aggregates. They are
10601permitted only on the right sides of assignments, as in these examples:
10602
10603@smallexample
10604set An_Array := (1, 2, 3, 4, 5, 6)
10605set An_Array := (1, others => 0)
10606set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10607set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10608set A_Record := (1, "Peter", True);
10609set A_Record := (Name => "Peter", Id => 1, Alive => True)
10610@end smallexample
10611
10612Changing a
10613discriminant's value by assigning an aggregate has an
10614undefined effect if that discriminant is used within the record.
10615However, you can first modify discriminants by directly assigning to
10616them (which normally would not be allowed in Ada), and then performing an
10617aggregate assignment. For example, given a variable @code{A_Rec}
10618declared to have a type such as:
10619
10620@smallexample
10621type Rec (Len : Small_Integer := 0) is record
10622 Id : Integer;
10623 Vals : IntArray (1 .. Len);
10624end record;
10625@end smallexample
10626
10627you can assign a value with a different size of @code{Vals} with two
10628assignments:
10629
10630@smallexample
10631set A_Rec.Len := 4
10632set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10633@end smallexample
10634
10635As this example also illustrates, @value{GDBN} is very loose about the usual
10636rules concerning aggregates. You may leave out some of the
10637components of an array or record aggregate (such as the @code{Len}
10638component in the assignment to @code{A_Rec} above); they will retain their
10639original values upon assignment. You may freely use dynamic values as
10640indices in component associations. You may even use overlapping or
10641redundant component associations, although which component values are
10642assigned in such cases is not defined.
e07c999f
PH
10643
10644@item
10645Calls to dispatching subprograms are not implemented.
10646
10647@item
10648The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10649than that of real Ada. It makes only limited use of the context in
10650which a subexpression appears to resolve its meaning, and it is much
10651looser in its rules for allowing type matches. As a result, some
10652function calls will be ambiguous, and the user will be asked to choose
10653the proper resolution.
e07c999f
PH
10654
10655@item
10656The @code{new} operator is not implemented.
10657
10658@item
10659Entry calls are not implemented.
10660
10661@item
10662Aside from printing, arithmetic operations on the native VAX floating-point
10663formats are not supported.
10664
10665@item
10666It is not possible to slice a packed array.
10667@end itemize
10668
10669@node Additions to Ada
10670@subsubsection Additions to Ada
10671@cindex Ada, deviations from
10672
10673As it does for other languages, @value{GDBN} makes certain generic
10674extensions to Ada (@pxref{Expressions}):
10675
10676@itemize @bullet
10677@item
ae21e955
BW
10678If the expression @var{E} is a variable residing in memory (typically
10679a local variable or array element) and @var{N} is a positive integer,
10680then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10681@var{N}-1 adjacent variables following it in memory as an array. In
10682Ada, this operator is generally not necessary, since its prime use is
10683in displaying parts of an array, and slicing will usually do this in
10684Ada. However, there are occasional uses when debugging programs in
10685which certain debugging information has been optimized away.
e07c999f
PH
10686
10687@item
ae21e955
BW
10688@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10689appears in function or file @var{B}.'' When @var{B} is a file name,
10690you must typically surround it in single quotes.
e07c999f
PH
10691
10692@item
10693The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10694@var{type} that appears at address @var{addr}.''
10695
10696@item
10697A name starting with @samp{$} is a convenience variable
10698(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10699@end itemize
10700
ae21e955
BW
10701In addition, @value{GDBN} provides a few other shortcuts and outright
10702additions specific to Ada:
e07c999f
PH
10703
10704@itemize @bullet
10705@item
10706The assignment statement is allowed as an expression, returning
10707its right-hand operand as its value. Thus, you may enter
10708
10709@smallexample
10710set x := y + 3
10711print A(tmp := y + 1)
10712@end smallexample
10713
10714@item
10715The semicolon is allowed as an ``operator,'' returning as its value
10716the value of its right-hand operand.
10717This allows, for example,
10718complex conditional breaks:
10719
10720@smallexample
10721break f
10722condition 1 (report(i); k += 1; A(k) > 100)
10723@end smallexample
10724
10725@item
10726Rather than use catenation and symbolic character names to introduce special
10727characters into strings, one may instead use a special bracket notation,
10728which is also used to print strings. A sequence of characters of the form
10729@samp{["@var{XX}"]} within a string or character literal denotes the
10730(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10731sequence of characters @samp{["""]} also denotes a single quotation mark
10732in strings. For example,
10733@smallexample
10734 "One line.["0a"]Next line.["0a"]"
10735@end smallexample
10736@noindent
ae21e955
BW
10737contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10738after each period.
e07c999f
PH
10739
10740@item
10741The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10742@t{'Max} is optional (and is ignored in any case). For example, it is valid
10743to write
10744
10745@smallexample
10746print 'max(x, y)
10747@end smallexample
10748
10749@item
10750When printing arrays, @value{GDBN} uses positional notation when the
10751array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10752For example, a one-dimensional array of three integers with a lower bound
10753of 3 might print as
e07c999f
PH
10754
10755@smallexample
10756(3 => 10, 17, 1)
10757@end smallexample
10758
10759@noindent
10760That is, in contrast to valid Ada, only the first component has a @code{=>}
10761clause.
10762
10763@item
10764You may abbreviate attributes in expressions with any unique,
10765multi-character subsequence of
10766their names (an exact match gets preference).
10767For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10768in place of @t{a'length}.
10769
10770@item
10771@cindex quoting Ada internal identifiers
10772Since Ada is case-insensitive, the debugger normally maps identifiers you type
10773to lower case. The GNAT compiler uses upper-case characters for
10774some of its internal identifiers, which are normally of no interest to users.
10775For the rare occasions when you actually have to look at them,
10776enclose them in angle brackets to avoid the lower-case mapping.
10777For example,
10778@smallexample
10779@value{GDBP} print <JMPBUF_SAVE>[0]
10780@end smallexample
10781
10782@item
10783Printing an object of class-wide type or dereferencing an
10784access-to-class-wide value will display all the components of the object's
10785specific type (as indicated by its run-time tag). Likewise, component
10786selection on such a value will operate on the specific type of the
10787object.
10788
10789@end itemize
10790
10791@node Stopping Before Main Program
10792@subsubsection Stopping at the Very Beginning
10793
10794@cindex breakpointing Ada elaboration code
10795It is sometimes necessary to debug the program during elaboration, and
10796before reaching the main procedure.
10797As defined in the Ada Reference
10798Manual, the elaboration code is invoked from a procedure called
10799@code{adainit}. To run your program up to the beginning of
10800elaboration, simply use the following two commands:
10801@code{tbreak adainit} and @code{run}.
10802
10803@node Ada Glitches
10804@subsubsection Known Peculiarities of Ada Mode
10805@cindex Ada, problems
10806
10807Besides the omissions listed previously (@pxref{Omissions from Ada}),
10808we know of several problems with and limitations of Ada mode in
10809@value{GDBN},
10810some of which will be fixed with planned future releases of the debugger
10811and the GNU Ada compiler.
10812
10813@itemize @bullet
10814@item
10815Currently, the debugger
10816has insufficient information to determine whether certain pointers represent
10817pointers to objects or the objects themselves.
10818Thus, the user may have to tack an extra @code{.all} after an expression
10819to get it printed properly.
10820
10821@item
10822Static constants that the compiler chooses not to materialize as objects in
10823storage are invisible to the debugger.
10824
10825@item
10826Named parameter associations in function argument lists are ignored (the
10827argument lists are treated as positional).
10828
10829@item
10830Many useful library packages are currently invisible to the debugger.
10831
10832@item
10833Fixed-point arithmetic, conversions, input, and output is carried out using
10834floating-point arithmetic, and may give results that only approximate those on
10835the host machine.
10836
10837@item
10838The type of the @t{'Address} attribute may not be @code{System.Address}.
10839
10840@item
10841The GNAT compiler never generates the prefix @code{Standard} for any of
10842the standard symbols defined by the Ada language. @value{GDBN} knows about
10843this: it will strip the prefix from names when you use it, and will never
10844look for a name you have so qualified among local symbols, nor match against
10845symbols in other packages or subprograms. If you have
10846defined entities anywhere in your program other than parameters and
10847local variables whose simple names match names in @code{Standard},
10848GNAT's lack of qualification here can cause confusion. When this happens,
10849you can usually resolve the confusion
10850by qualifying the problematic names with package
10851@code{Standard} explicitly.
10852@end itemize
10853
79a6e687
BW
10854@node Unsupported Languages
10855@section Unsupported Languages
4e562065
JB
10856
10857@cindex unsupported languages
10858@cindex minimal language
10859In addition to the other fully-supported programming languages,
10860@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10861It does not represent a real programming language, but provides a set
10862of capabilities close to what the C or assembly languages provide.
10863This should allow most simple operations to be performed while debugging
10864an application that uses a language currently not supported by @value{GDBN}.
10865
10866If the language is set to @code{auto}, @value{GDBN} will automatically
10867select this language if the current frame corresponds to an unsupported
10868language.
10869
6d2ebf8b 10870@node Symbols
c906108c
SS
10871@chapter Examining the Symbol Table
10872
d4f3574e 10873The commands described in this chapter allow you to inquire about the
c906108c
SS
10874symbols (names of variables, functions and types) defined in your
10875program. This information is inherent in the text of your program and
10876does not change as your program executes. @value{GDBN} finds it in your
10877program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10878(@pxref{File Options, ,Choosing Files}), or by one of the
10879file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10880
10881@cindex symbol names
10882@cindex names of symbols
10883@cindex quoting names
10884Occasionally, you may need to refer to symbols that contain unusual
10885characters, which @value{GDBN} ordinarily treats as word delimiters. The
10886most frequent case is in referring to static variables in other
79a6e687 10887source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10888are recorded in object files as debugging symbols, but @value{GDBN} would
10889ordinarily parse a typical file name, like @file{foo.c}, as the three words
10890@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10891@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10892
474c8240 10893@smallexample
c906108c 10894p 'foo.c'::x
474c8240 10895@end smallexample
c906108c
SS
10896
10897@noindent
10898looks up the value of @code{x} in the scope of the file @file{foo.c}.
10899
10900@table @code
a8f24a35
EZ
10901@cindex case-insensitive symbol names
10902@cindex case sensitivity in symbol names
10903@kindex set case-sensitive
10904@item set case-sensitive on
10905@itemx set case-sensitive off
10906@itemx set case-sensitive auto
10907Normally, when @value{GDBN} looks up symbols, it matches their names
10908with case sensitivity determined by the current source language.
10909Occasionally, you may wish to control that. The command @code{set
10910case-sensitive} lets you do that by specifying @code{on} for
10911case-sensitive matches or @code{off} for case-insensitive ones. If
10912you specify @code{auto}, case sensitivity is reset to the default
10913suitable for the source language. The default is case-sensitive
10914matches for all languages except for Fortran, for which the default is
10915case-insensitive matches.
10916
9c16f35a
EZ
10917@kindex show case-sensitive
10918@item show case-sensitive
a8f24a35
EZ
10919This command shows the current setting of case sensitivity for symbols
10920lookups.
10921
c906108c 10922@kindex info address
b37052ae 10923@cindex address of a symbol
c906108c
SS
10924@item info address @var{symbol}
10925Describe where the data for @var{symbol} is stored. For a register
10926variable, this says which register it is kept in. For a non-register
10927local variable, this prints the stack-frame offset at which the variable
10928is always stored.
10929
10930Note the contrast with @samp{print &@var{symbol}}, which does not work
10931at all for a register variable, and for a stack local variable prints
10932the exact address of the current instantiation of the variable.
10933
3d67e040 10934@kindex info symbol
b37052ae 10935@cindex symbol from address
9c16f35a 10936@cindex closest symbol and offset for an address
3d67e040
EZ
10937@item info symbol @var{addr}
10938Print the name of a symbol which is stored at the address @var{addr}.
10939If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
10940nearest symbol and an offset from it:
10941
474c8240 10942@smallexample
3d67e040
EZ
10943(@value{GDBP}) info symbol 0x54320
10944_initialize_vx + 396 in section .text
474c8240 10945@end smallexample
3d67e040
EZ
10946
10947@noindent
10948This is the opposite of the @code{info address} command. You can use
10949it to find out the name of a variable or a function given its address.
10950
c906108c 10951@kindex whatis
62f3a2ba
FF
10952@item whatis [@var{arg}]
10953Print the data type of @var{arg}, which can be either an expression or
10954a data type. With no argument, print the data type of @code{$}, the
10955last value in the value history. If @var{arg} is an expression, it is
10956not actually evaluated, and any side-effecting operations (such as
10957assignments or function calls) inside it do not take place. If
10958@var{arg} is a type name, it may be the name of a type or typedef, or
10959for C code it may have the form @samp{class @var{class-name}},
10960@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
10961@samp{enum @var{enum-tag}}.
c906108c
SS
10962@xref{Expressions, ,Expressions}.
10963
c906108c 10964@kindex ptype
62f3a2ba
FF
10965@item ptype [@var{arg}]
10966@code{ptype} accepts the same arguments as @code{whatis}, but prints a
10967detailed description of the type, instead of just the name of the type.
10968@xref{Expressions, ,Expressions}.
c906108c
SS
10969
10970For example, for this variable declaration:
10971
474c8240 10972@smallexample
c906108c 10973struct complex @{double real; double imag;@} v;
474c8240 10974@end smallexample
c906108c
SS
10975
10976@noindent
10977the two commands give this output:
10978
474c8240 10979@smallexample
c906108c
SS
10980@group
10981(@value{GDBP}) whatis v
10982type = struct complex
10983(@value{GDBP}) ptype v
10984type = struct complex @{
10985 double real;
10986 double imag;
10987@}
10988@end group
474c8240 10989@end smallexample
c906108c
SS
10990
10991@noindent
10992As with @code{whatis}, using @code{ptype} without an argument refers to
10993the type of @code{$}, the last value in the value history.
10994
ab1adacd
EZ
10995@cindex incomplete type
10996Sometimes, programs use opaque data types or incomplete specifications
10997of complex data structure. If the debug information included in the
10998program does not allow @value{GDBN} to display a full declaration of
10999the data type, it will say @samp{<incomplete type>}. For example,
11000given these declarations:
11001
11002@smallexample
11003 struct foo;
11004 struct foo *fooptr;
11005@end smallexample
11006
11007@noindent
11008but no definition for @code{struct foo} itself, @value{GDBN} will say:
11009
11010@smallexample
ddb50cd7 11011 (@value{GDBP}) ptype foo
ab1adacd
EZ
11012 $1 = <incomplete type>
11013@end smallexample
11014
11015@noindent
11016``Incomplete type'' is C terminology for data types that are not
11017completely specified.
11018
c906108c
SS
11019@kindex info types
11020@item info types @var{regexp}
11021@itemx info types
09d4efe1
EZ
11022Print a brief description of all types whose names match the regular
11023expression @var{regexp} (or all types in your program, if you supply
11024no argument). Each complete typename is matched as though it were a
11025complete line; thus, @samp{i type value} gives information on all
11026types in your program whose names include the string @code{value}, but
11027@samp{i type ^value$} gives information only on types whose complete
11028name is @code{value}.
c906108c
SS
11029
11030This command differs from @code{ptype} in two ways: first, like
11031@code{whatis}, it does not print a detailed description; second, it
11032lists all source files where a type is defined.
11033
b37052ae
EZ
11034@kindex info scope
11035@cindex local variables
09d4efe1 11036@item info scope @var{location}
b37052ae 11037List all the variables local to a particular scope. This command
09d4efe1
EZ
11038accepts a @var{location} argument---a function name, a source line, or
11039an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11040to the scope defined by that location. (@xref{Specify Location}, for
11041details about supported forms of @var{location}.) For example:
b37052ae
EZ
11042
11043@smallexample
11044(@value{GDBP}) @b{info scope command_line_handler}
11045Scope for command_line_handler:
11046Symbol rl is an argument at stack/frame offset 8, length 4.
11047Symbol linebuffer is in static storage at address 0x150a18, length 4.
11048Symbol linelength is in static storage at address 0x150a1c, length 4.
11049Symbol p is a local variable in register $esi, length 4.
11050Symbol p1 is a local variable in register $ebx, length 4.
11051Symbol nline is a local variable in register $edx, length 4.
11052Symbol repeat is a local variable at frame offset -8, length 4.
11053@end smallexample
11054
f5c37c66
EZ
11055@noindent
11056This command is especially useful for determining what data to collect
11057during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11058collect}.
11059
c906108c
SS
11060@kindex info source
11061@item info source
919d772c
JB
11062Show information about the current source file---that is, the source file for
11063the function containing the current point of execution:
11064@itemize @bullet
11065@item
11066the name of the source file, and the directory containing it,
11067@item
11068the directory it was compiled in,
11069@item
11070its length, in lines,
11071@item
11072which programming language it is written in,
11073@item
11074whether the executable includes debugging information for that file, and
11075if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11076@item
11077whether the debugging information includes information about
11078preprocessor macros.
11079@end itemize
11080
c906108c
SS
11081
11082@kindex info sources
11083@item info sources
11084Print the names of all source files in your program for which there is
11085debugging information, organized into two lists: files whose symbols
11086have already been read, and files whose symbols will be read when needed.
11087
11088@kindex info functions
11089@item info functions
11090Print the names and data types of all defined functions.
11091
11092@item info functions @var{regexp}
11093Print the names and data types of all defined functions
11094whose names contain a match for regular expression @var{regexp}.
11095Thus, @samp{info fun step} finds all functions whose names
11096include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11097start with @code{step}. If a function name contains characters
c1468174 11098that conflict with the regular expression language (e.g.@:
1c5dfdad 11099@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11100
11101@kindex info variables
11102@item info variables
11103Print the names and data types of all variables that are declared
6ca652b0 11104outside of functions (i.e.@: excluding local variables).
c906108c
SS
11105
11106@item info variables @var{regexp}
11107Print the names and data types of all variables (except for local
11108variables) whose names contain a match for regular expression
11109@var{regexp}.
11110
b37303ee 11111@kindex info classes
721c2651 11112@cindex Objective-C, classes and selectors
b37303ee
AF
11113@item info classes
11114@itemx info classes @var{regexp}
11115Display all Objective-C classes in your program, or
11116(with the @var{regexp} argument) all those matching a particular regular
11117expression.
11118
11119@kindex info selectors
11120@item info selectors
11121@itemx info selectors @var{regexp}
11122Display all Objective-C selectors in your program, or
11123(with the @var{regexp} argument) all those matching a particular regular
11124expression.
11125
c906108c
SS
11126@ignore
11127This was never implemented.
11128@kindex info methods
11129@item info methods
11130@itemx info methods @var{regexp}
11131The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11132methods within C@t{++} program, or (with the @var{regexp} argument) a
11133specific set of methods found in the various C@t{++} classes. Many
11134C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11135from the @code{ptype} command can be overwhelming and hard to use. The
11136@code{info-methods} command filters the methods, printing only those
11137which match the regular-expression @var{regexp}.
11138@end ignore
11139
c906108c
SS
11140@cindex reloading symbols
11141Some systems allow individual object files that make up your program to
7a292a7a
SS
11142be replaced without stopping and restarting your program. For example,
11143in VxWorks you can simply recompile a defective object file and keep on
11144running. If you are running on one of these systems, you can allow
11145@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11146
11147@table @code
11148@kindex set symbol-reloading
11149@item set symbol-reloading on
11150Replace symbol definitions for the corresponding source file when an
11151object file with a particular name is seen again.
11152
11153@item set symbol-reloading off
6d2ebf8b
SS
11154Do not replace symbol definitions when encountering object files of the
11155same name more than once. This is the default state; if you are not
11156running on a system that permits automatic relinking of modules, you
11157should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11158may discard symbols when linking large programs, that may contain
11159several modules (from different directories or libraries) with the same
11160name.
c906108c
SS
11161
11162@kindex show symbol-reloading
11163@item show symbol-reloading
11164Show the current @code{on} or @code{off} setting.
11165@end table
c906108c 11166
9c16f35a 11167@cindex opaque data types
c906108c
SS
11168@kindex set opaque-type-resolution
11169@item set opaque-type-resolution on
11170Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11171declared as a pointer to a @code{struct}, @code{class}, or
11172@code{union}---for example, @code{struct MyType *}---that is used in one
11173source file although the full declaration of @code{struct MyType} is in
11174another source file. The default is on.
11175
11176A change in the setting of this subcommand will not take effect until
11177the next time symbols for a file are loaded.
11178
11179@item set opaque-type-resolution off
11180Tell @value{GDBN} not to resolve opaque types. In this case, the type
11181is printed as follows:
11182@smallexample
11183@{<no data fields>@}
11184@end smallexample
11185
11186@kindex show opaque-type-resolution
11187@item show opaque-type-resolution
11188Show whether opaque types are resolved or not.
c906108c
SS
11189
11190@kindex maint print symbols
11191@cindex symbol dump
11192@kindex maint print psymbols
11193@cindex partial symbol dump
11194@item maint print symbols @var{filename}
11195@itemx maint print psymbols @var{filename}
11196@itemx maint print msymbols @var{filename}
11197Write a dump of debugging symbol data into the file @var{filename}.
11198These commands are used to debug the @value{GDBN} symbol-reading code. Only
11199symbols with debugging data are included. If you use @samp{maint print
11200symbols}, @value{GDBN} includes all the symbols for which it has already
11201collected full details: that is, @var{filename} reflects symbols for
11202only those files whose symbols @value{GDBN} has read. You can use the
11203command @code{info sources} to find out which files these are. If you
11204use @samp{maint print psymbols} instead, the dump shows information about
11205symbols that @value{GDBN} only knows partially---that is, symbols defined in
11206files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11207@samp{maint print msymbols} dumps just the minimal symbol information
11208required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11209@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11210@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11211
5e7b2f39
JB
11212@kindex maint info symtabs
11213@kindex maint info psymtabs
44ea7b70
JB
11214@cindex listing @value{GDBN}'s internal symbol tables
11215@cindex symbol tables, listing @value{GDBN}'s internal
11216@cindex full symbol tables, listing @value{GDBN}'s internal
11217@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11218@item maint info symtabs @r{[} @var{regexp} @r{]}
11219@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11220
11221List the @code{struct symtab} or @code{struct partial_symtab}
11222structures whose names match @var{regexp}. If @var{regexp} is not
11223given, list them all. The output includes expressions which you can
11224copy into a @value{GDBN} debugging this one to examine a particular
11225structure in more detail. For example:
11226
11227@smallexample
5e7b2f39 11228(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11229@{ objfile /home/gnu/build/gdb/gdb
11230 ((struct objfile *) 0x82e69d0)
b383017d 11231 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11232 ((struct partial_symtab *) 0x8474b10)
11233 readin no
11234 fullname (null)
11235 text addresses 0x814d3c8 -- 0x8158074
11236 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11237 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11238 dependencies (none)
11239 @}
11240@}
5e7b2f39 11241(@value{GDBP}) maint info symtabs
44ea7b70
JB
11242(@value{GDBP})
11243@end smallexample
11244@noindent
11245We see that there is one partial symbol table whose filename contains
11246the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11247and we see that @value{GDBN} has not read in any symtabs yet at all.
11248If we set a breakpoint on a function, that will cause @value{GDBN} to
11249read the symtab for the compilation unit containing that function:
11250
11251@smallexample
11252(@value{GDBP}) break dwarf2_psymtab_to_symtab
11253Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11254line 1574.
5e7b2f39 11255(@value{GDBP}) maint info symtabs
b383017d 11256@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11257 ((struct objfile *) 0x82e69d0)
b383017d 11258 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11259 ((struct symtab *) 0x86c1f38)
11260 dirname (null)
11261 fullname (null)
11262 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11263 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11264 debugformat DWARF 2
11265 @}
11266@}
b383017d 11267(@value{GDBP})
44ea7b70 11268@end smallexample
c906108c
SS
11269@end table
11270
44ea7b70 11271
6d2ebf8b 11272@node Altering
c906108c
SS
11273@chapter Altering Execution
11274
11275Once you think you have found an error in your program, you might want to
11276find out for certain whether correcting the apparent error would lead to
11277correct results in the rest of the run. You can find the answer by
11278experiment, using the @value{GDBN} features for altering execution of the
11279program.
11280
11281For example, you can store new values into variables or memory
7a292a7a
SS
11282locations, give your program a signal, restart it at a different
11283address, or even return prematurely from a function.
c906108c
SS
11284
11285@menu
11286* Assignment:: Assignment to variables
11287* Jumping:: Continuing at a different address
c906108c 11288* Signaling:: Giving your program a signal
c906108c
SS
11289* Returning:: Returning from a function
11290* Calling:: Calling your program's functions
11291* Patching:: Patching your program
11292@end menu
11293
6d2ebf8b 11294@node Assignment
79a6e687 11295@section Assignment to Variables
c906108c
SS
11296
11297@cindex assignment
11298@cindex setting variables
11299To alter the value of a variable, evaluate an assignment expression.
11300@xref{Expressions, ,Expressions}. For example,
11301
474c8240 11302@smallexample
c906108c 11303print x=4
474c8240 11304@end smallexample
c906108c
SS
11305
11306@noindent
11307stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11308value of the assignment expression (which is 4).
c906108c
SS
11309@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11310information on operators in supported languages.
c906108c
SS
11311
11312@kindex set variable
11313@cindex variables, setting
11314If you are not interested in seeing the value of the assignment, use the
11315@code{set} command instead of the @code{print} command. @code{set} is
11316really the same as @code{print} except that the expression's value is
11317not printed and is not put in the value history (@pxref{Value History,
79a6e687 11318,Value History}). The expression is evaluated only for its effects.
c906108c 11319
c906108c
SS
11320If the beginning of the argument string of the @code{set} command
11321appears identical to a @code{set} subcommand, use the @code{set
11322variable} command instead of just @code{set}. This command is identical
11323to @code{set} except for its lack of subcommands. For example, if your
11324program has a variable @code{width}, you get an error if you try to set
11325a new value with just @samp{set width=13}, because @value{GDBN} has the
11326command @code{set width}:
11327
474c8240 11328@smallexample
c906108c
SS
11329(@value{GDBP}) whatis width
11330type = double
11331(@value{GDBP}) p width
11332$4 = 13
11333(@value{GDBP}) set width=47
11334Invalid syntax in expression.
474c8240 11335@end smallexample
c906108c
SS
11336
11337@noindent
11338The invalid expression, of course, is @samp{=47}. In
11339order to actually set the program's variable @code{width}, use
11340
474c8240 11341@smallexample
c906108c 11342(@value{GDBP}) set var width=47
474c8240 11343@end smallexample
53a5351d 11344
c906108c
SS
11345Because the @code{set} command has many subcommands that can conflict
11346with the names of program variables, it is a good idea to use the
11347@code{set variable} command instead of just @code{set}. For example, if
11348your program has a variable @code{g}, you run into problems if you try
11349to set a new value with just @samp{set g=4}, because @value{GDBN} has
11350the command @code{set gnutarget}, abbreviated @code{set g}:
11351
474c8240 11352@smallexample
c906108c
SS
11353@group
11354(@value{GDBP}) whatis g
11355type = double
11356(@value{GDBP}) p g
11357$1 = 1
11358(@value{GDBP}) set g=4
2df3850c 11359(@value{GDBP}) p g
c906108c
SS
11360$2 = 1
11361(@value{GDBP}) r
11362The program being debugged has been started already.
11363Start it from the beginning? (y or n) y
11364Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11365"/home/smith/cc_progs/a.out": can't open to read symbols:
11366 Invalid bfd target.
c906108c
SS
11367(@value{GDBP}) show g
11368The current BFD target is "=4".
11369@end group
474c8240 11370@end smallexample
c906108c
SS
11371
11372@noindent
11373The program variable @code{g} did not change, and you silently set the
11374@code{gnutarget} to an invalid value. In order to set the variable
11375@code{g}, use
11376
474c8240 11377@smallexample
c906108c 11378(@value{GDBP}) set var g=4
474c8240 11379@end smallexample
c906108c
SS
11380
11381@value{GDBN} allows more implicit conversions in assignments than C; you can
11382freely store an integer value into a pointer variable or vice versa,
11383and you can convert any structure to any other structure that is the
11384same length or shorter.
11385@comment FIXME: how do structs align/pad in these conversions?
11386@comment /doc@cygnus.com 18dec1990
11387
11388To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11389construct to generate a value of specified type at a specified address
11390(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11391to memory location @code{0x83040} as an integer (which implies a certain size
11392and representation in memory), and
11393
474c8240 11394@smallexample
c906108c 11395set @{int@}0x83040 = 4
474c8240 11396@end smallexample
c906108c
SS
11397
11398@noindent
11399stores the value 4 into that memory location.
11400
6d2ebf8b 11401@node Jumping
79a6e687 11402@section Continuing at a Different Address
c906108c
SS
11403
11404Ordinarily, when you continue your program, you do so at the place where
11405it stopped, with the @code{continue} command. You can instead continue at
11406an address of your own choosing, with the following commands:
11407
11408@table @code
11409@kindex jump
11410@item jump @var{linespec}
2a25a5ba
EZ
11411@itemx jump @var{location}
11412Resume execution at line @var{linespec} or at address given by
11413@var{location}. Execution stops again immediately if there is a
11414breakpoint there. @xref{Specify Location}, for a description of the
11415different forms of @var{linespec} and @var{location}. It is common
11416practice to use the @code{tbreak} command in conjunction with
11417@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11418
11419The @code{jump} command does not change the current stack frame, or
11420the stack pointer, or the contents of any memory location or any
11421register other than the program counter. If line @var{linespec} is in
11422a different function from the one currently executing, the results may
11423be bizarre if the two functions expect different patterns of arguments or
11424of local variables. For this reason, the @code{jump} command requests
11425confirmation if the specified line is not in the function currently
11426executing. However, even bizarre results are predictable if you are
11427well acquainted with the machine-language code of your program.
c906108c
SS
11428@end table
11429
c906108c 11430@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11431On many systems, you can get much the same effect as the @code{jump}
11432command by storing a new value into the register @code{$pc}. The
11433difference is that this does not start your program running; it only
11434changes the address of where it @emph{will} run when you continue. For
11435example,
c906108c 11436
474c8240 11437@smallexample
c906108c 11438set $pc = 0x485
474c8240 11439@end smallexample
c906108c
SS
11440
11441@noindent
11442makes the next @code{continue} command or stepping command execute at
11443address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11444@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11445
11446The most common occasion to use the @code{jump} command is to back
11447up---perhaps with more breakpoints set---over a portion of a program
11448that has already executed, in order to examine its execution in more
11449detail.
11450
c906108c 11451@c @group
6d2ebf8b 11452@node Signaling
79a6e687 11453@section Giving your Program a Signal
9c16f35a 11454@cindex deliver a signal to a program
c906108c
SS
11455
11456@table @code
11457@kindex signal
11458@item signal @var{signal}
11459Resume execution where your program stopped, but immediately give it the
11460signal @var{signal}. @var{signal} can be the name or the number of a
11461signal. For example, on many systems @code{signal 2} and @code{signal
11462SIGINT} are both ways of sending an interrupt signal.
11463
11464Alternatively, if @var{signal} is zero, continue execution without
11465giving a signal. This is useful when your program stopped on account of
11466a signal and would ordinary see the signal when resumed with the
11467@code{continue} command; @samp{signal 0} causes it to resume without a
11468signal.
11469
11470@code{signal} does not repeat when you press @key{RET} a second time
11471after executing the command.
11472@end table
11473@c @end group
11474
11475Invoking the @code{signal} command is not the same as invoking the
11476@code{kill} utility from the shell. Sending a signal with @code{kill}
11477causes @value{GDBN} to decide what to do with the signal depending on
11478the signal handling tables (@pxref{Signals}). The @code{signal} command
11479passes the signal directly to your program.
11480
c906108c 11481
6d2ebf8b 11482@node Returning
79a6e687 11483@section Returning from a Function
c906108c
SS
11484
11485@table @code
11486@cindex returning from a function
11487@kindex return
11488@item return
11489@itemx return @var{expression}
11490You can cancel execution of a function call with the @code{return}
11491command. If you give an
11492@var{expression} argument, its value is used as the function's return
11493value.
11494@end table
11495
11496When you use @code{return}, @value{GDBN} discards the selected stack frame
11497(and all frames within it). You can think of this as making the
11498discarded frame return prematurely. If you wish to specify a value to
11499be returned, give that value as the argument to @code{return}.
11500
11501This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11502Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11503innermost remaining frame. That frame becomes selected. The
11504specified value is stored in the registers used for returning values
11505of functions.
11506
11507The @code{return} command does not resume execution; it leaves the
11508program stopped in the state that would exist if the function had just
11509returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11510and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11511selected stack frame returns naturally.
11512
6d2ebf8b 11513@node Calling
79a6e687 11514@section Calling Program Functions
c906108c 11515
f8568604 11516@table @code
c906108c 11517@cindex calling functions
f8568604
EZ
11518@cindex inferior functions, calling
11519@item print @var{expr}
d3e8051b 11520Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11521@var{expr} may include calls to functions in the program being
11522debugged.
11523
c906108c 11524@kindex call
c906108c
SS
11525@item call @var{expr}
11526Evaluate the expression @var{expr} without displaying @code{void}
11527returned values.
c906108c
SS
11528
11529You can use this variant of the @code{print} command if you want to
f8568604
EZ
11530execute a function from your program that does not return anything
11531(a.k.a.@: @dfn{a void function}), but without cluttering the output
11532with @code{void} returned values that @value{GDBN} will otherwise
11533print. If the result is not void, it is printed and saved in the
11534value history.
11535@end table
11536
9c16f35a
EZ
11537It is possible for the function you call via the @code{print} or
11538@code{call} command to generate a signal (e.g., if there's a bug in
11539the function, or if you passed it incorrect arguments). What happens
11540in that case is controlled by the @code{set unwindonsignal} command.
11541
11542@table @code
11543@item set unwindonsignal
11544@kindex set unwindonsignal
11545@cindex unwind stack in called functions
11546@cindex call dummy stack unwinding
11547Set unwinding of the stack if a signal is received while in a function
11548that @value{GDBN} called in the program being debugged. If set to on,
11549@value{GDBN} unwinds the stack it created for the call and restores
11550the context to what it was before the call. If set to off (the
11551default), @value{GDBN} stops in the frame where the signal was
11552received.
11553
11554@item show unwindonsignal
11555@kindex show unwindonsignal
11556Show the current setting of stack unwinding in the functions called by
11557@value{GDBN}.
11558@end table
11559
f8568604
EZ
11560@cindex weak alias functions
11561Sometimes, a function you wish to call is actually a @dfn{weak alias}
11562for another function. In such case, @value{GDBN} might not pick up
11563the type information, including the types of the function arguments,
11564which causes @value{GDBN} to call the inferior function incorrectly.
11565As a result, the called function will function erroneously and may
11566even crash. A solution to that is to use the name of the aliased
11567function instead.
c906108c 11568
6d2ebf8b 11569@node Patching
79a6e687 11570@section Patching Programs
7a292a7a 11571
c906108c
SS
11572@cindex patching binaries
11573@cindex writing into executables
c906108c 11574@cindex writing into corefiles
c906108c 11575
7a292a7a
SS
11576By default, @value{GDBN} opens the file containing your program's
11577executable code (or the corefile) read-only. This prevents accidental
11578alterations to machine code; but it also prevents you from intentionally
11579patching your program's binary.
c906108c
SS
11580
11581If you'd like to be able to patch the binary, you can specify that
11582explicitly with the @code{set write} command. For example, you might
11583want to turn on internal debugging flags, or even to make emergency
11584repairs.
11585
11586@table @code
11587@kindex set write
11588@item set write on
11589@itemx set write off
7a292a7a
SS
11590If you specify @samp{set write on}, @value{GDBN} opens executable and
11591core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11592off} (the default), @value{GDBN} opens them read-only.
11593
11594If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11595@code{exec-file} or @code{core-file} command) after changing @code{set
11596write}, for your new setting to take effect.
c906108c
SS
11597
11598@item show write
11599@kindex show write
7a292a7a
SS
11600Display whether executable files and core files are opened for writing
11601as well as reading.
c906108c
SS
11602@end table
11603
6d2ebf8b 11604@node GDB Files
c906108c
SS
11605@chapter @value{GDBN} Files
11606
7a292a7a
SS
11607@value{GDBN} needs to know the file name of the program to be debugged,
11608both in order to read its symbol table and in order to start your
11609program. To debug a core dump of a previous run, you must also tell
11610@value{GDBN} the name of the core dump file.
c906108c
SS
11611
11612@menu
11613* Files:: Commands to specify files
5b5d99cf 11614* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11615* Symbol Errors:: Errors reading symbol files
11616@end menu
11617
6d2ebf8b 11618@node Files
79a6e687 11619@section Commands to Specify Files
c906108c 11620
7a292a7a 11621@cindex symbol table
c906108c 11622@cindex core dump file
7a292a7a
SS
11623
11624You may want to specify executable and core dump file names. The usual
11625way to do this is at start-up time, using the arguments to
11626@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11627Out of @value{GDBN}}).
c906108c
SS
11628
11629Occasionally it is necessary to change to a different file during a
397ca115
EZ
11630@value{GDBN} session. Or you may run @value{GDBN} and forget to
11631specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11632via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11633Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11634new files are useful.
c906108c
SS
11635
11636@table @code
11637@cindex executable file
11638@kindex file
11639@item file @var{filename}
11640Use @var{filename} as the program to be debugged. It is read for its
11641symbols and for the contents of pure memory. It is also the program
11642executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11643directory and the file is not found in the @value{GDBN} working directory,
11644@value{GDBN} uses the environment variable @code{PATH} as a list of
11645directories to search, just as the shell does when looking for a program
11646to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11647and your program, using the @code{path} command.
11648
fc8be69e
EZ
11649@cindex unlinked object files
11650@cindex patching object files
11651You can load unlinked object @file{.o} files into @value{GDBN} using
11652the @code{file} command. You will not be able to ``run'' an object
11653file, but you can disassemble functions and inspect variables. Also,
11654if the underlying BFD functionality supports it, you could use
11655@kbd{gdb -write} to patch object files using this technique. Note
11656that @value{GDBN} can neither interpret nor modify relocations in this
11657case, so branches and some initialized variables will appear to go to
11658the wrong place. But this feature is still handy from time to time.
11659
c906108c
SS
11660@item file
11661@code{file} with no argument makes @value{GDBN} discard any information it
11662has on both executable file and the symbol table.
11663
11664@kindex exec-file
11665@item exec-file @r{[} @var{filename} @r{]}
11666Specify that the program to be run (but not the symbol table) is found
11667in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11668if necessary to locate your program. Omitting @var{filename} means to
11669discard information on the executable file.
11670
11671@kindex symbol-file
11672@item symbol-file @r{[} @var{filename} @r{]}
11673Read symbol table information from file @var{filename}. @code{PATH} is
11674searched when necessary. Use the @code{file} command to get both symbol
11675table and program to run from the same file.
11676
11677@code{symbol-file} with no argument clears out @value{GDBN} information on your
11678program's symbol table.
11679
ae5a43e0
DJ
11680The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11681some breakpoints and auto-display expressions. This is because they may
11682contain pointers to the internal data recording symbols and data types,
11683which are part of the old symbol table data being discarded inside
11684@value{GDBN}.
c906108c
SS
11685
11686@code{symbol-file} does not repeat if you press @key{RET} again after
11687executing it once.
11688
11689When @value{GDBN} is configured for a particular environment, it
11690understands debugging information in whatever format is the standard
11691generated for that environment; you may use either a @sc{gnu} compiler, or
11692other compilers that adhere to the local conventions.
c906108c 11693Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11694using @code{@value{NGCC}} you can generate debugging information for
c906108c 11695optimized code.
c906108c
SS
11696
11697For most kinds of object files, with the exception of old SVR3 systems
11698using COFF, the @code{symbol-file} command does not normally read the
11699symbol table in full right away. Instead, it scans the symbol table
11700quickly to find which source files and which symbols are present. The
11701details are read later, one source file at a time, as they are needed.
11702
11703The purpose of this two-stage reading strategy is to make @value{GDBN}
11704start up faster. For the most part, it is invisible except for
11705occasional pauses while the symbol table details for a particular source
11706file are being read. (The @code{set verbose} command can turn these
11707pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11708Warnings and Messages}.)
c906108c 11709
c906108c
SS
11710We have not implemented the two-stage strategy for COFF yet. When the
11711symbol table is stored in COFF format, @code{symbol-file} reads the
11712symbol table data in full right away. Note that ``stabs-in-COFF''
11713still does the two-stage strategy, since the debug info is actually
11714in stabs format.
11715
11716@kindex readnow
11717@cindex reading symbols immediately
11718@cindex symbols, reading immediately
a94ab193
EZ
11719@item symbol-file @var{filename} @r{[} -readnow @r{]}
11720@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11721You can override the @value{GDBN} two-stage strategy for reading symbol
11722tables by using the @samp{-readnow} option with any of the commands that
11723load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11724entire symbol table available.
c906108c 11725
c906108c
SS
11726@c FIXME: for now no mention of directories, since this seems to be in
11727@c flux. 13mar1992 status is that in theory GDB would look either in
11728@c current dir or in same dir as myprog; but issues like competing
11729@c GDB's, or clutter in system dirs, mean that in practice right now
11730@c only current dir is used. FFish says maybe a special GDB hierarchy
11731@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11732@c files.
11733
c906108c 11734@kindex core-file
09d4efe1 11735@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11736@itemx core
c906108c
SS
11737Specify the whereabouts of a core dump file to be used as the ``contents
11738of memory''. Traditionally, core files contain only some parts of the
11739address space of the process that generated them; @value{GDBN} can access the
11740executable file itself for other parts.
11741
11742@code{core-file} with no argument specifies that no core file is
11743to be used.
11744
11745Note that the core file is ignored when your program is actually running
7a292a7a
SS
11746under @value{GDBN}. So, if you have been running your program and you
11747wish to debug a core file instead, you must kill the subprocess in which
11748the program is running. To do this, use the @code{kill} command
79a6e687 11749(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11750
c906108c
SS
11751@kindex add-symbol-file
11752@cindex dynamic linking
11753@item add-symbol-file @var{filename} @var{address}
a94ab193 11754@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11755@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11756The @code{add-symbol-file} command reads additional symbol table
11757information from the file @var{filename}. You would use this command
11758when @var{filename} has been dynamically loaded (by some other means)
11759into the program that is running. @var{address} should be the memory
11760address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11761this out for itself. You can additionally specify an arbitrary number
11762of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11763section name and base address for that section. You can specify any
11764@var{address} as an expression.
c906108c
SS
11765
11766The symbol table of the file @var{filename} is added to the symbol table
11767originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11768@code{add-symbol-file} command any number of times; the new symbol data
11769thus read keeps adding to the old. To discard all old symbol data
11770instead, use the @code{symbol-file} command without any arguments.
c906108c 11771
17d9d558
JB
11772@cindex relocatable object files, reading symbols from
11773@cindex object files, relocatable, reading symbols from
11774@cindex reading symbols from relocatable object files
11775@cindex symbols, reading from relocatable object files
11776@cindex @file{.o} files, reading symbols from
11777Although @var{filename} is typically a shared library file, an
11778executable file, or some other object file which has been fully
11779relocated for loading into a process, you can also load symbolic
11780information from relocatable @file{.o} files, as long as:
11781
11782@itemize @bullet
11783@item
11784the file's symbolic information refers only to linker symbols defined in
11785that file, not to symbols defined by other object files,
11786@item
11787every section the file's symbolic information refers to has actually
11788been loaded into the inferior, as it appears in the file, and
11789@item
11790you can determine the address at which every section was loaded, and
11791provide these to the @code{add-symbol-file} command.
11792@end itemize
11793
11794@noindent
11795Some embedded operating systems, like Sun Chorus and VxWorks, can load
11796relocatable files into an already running program; such systems
11797typically make the requirements above easy to meet. However, it's
11798important to recognize that many native systems use complex link
49efadf5 11799procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11800assembly, for example) that make the requirements difficult to meet. In
11801general, one cannot assume that using @code{add-symbol-file} to read a
11802relocatable object file's symbolic information will have the same effect
11803as linking the relocatable object file into the program in the normal
11804way.
11805
c906108c
SS
11806@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11807
c45da7e6
EZ
11808@kindex add-symbol-file-from-memory
11809@cindex @code{syscall DSO}
11810@cindex load symbols from memory
11811@item add-symbol-file-from-memory @var{address}
11812Load symbols from the given @var{address} in a dynamically loaded
11813object file whose image is mapped directly into the inferior's memory.
11814For example, the Linux kernel maps a @code{syscall DSO} into each
11815process's address space; this DSO provides kernel-specific code for
11816some system calls. The argument can be any expression whose
11817evaluation yields the address of the file's shared object file header.
11818For this command to work, you must have used @code{symbol-file} or
11819@code{exec-file} commands in advance.
11820
09d4efe1
EZ
11821@kindex add-shared-symbol-files
11822@kindex assf
11823@item add-shared-symbol-files @var{library-file}
11824@itemx assf @var{library-file}
11825The @code{add-shared-symbol-files} command can currently be used only
11826in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11827alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11828@value{GDBN} automatically looks for shared libraries, however if
11829@value{GDBN} does not find yours, you can invoke
11830@code{add-shared-symbol-files}. It takes one argument: the shared
11831library's file name. @code{assf} is a shorthand alias for
11832@code{add-shared-symbol-files}.
c906108c 11833
c906108c 11834@kindex section
09d4efe1
EZ
11835@item section @var{section} @var{addr}
11836The @code{section} command changes the base address of the named
11837@var{section} of the exec file to @var{addr}. This can be used if the
11838exec file does not contain section addresses, (such as in the
11839@code{a.out} format), or when the addresses specified in the file
11840itself are wrong. Each section must be changed separately. The
11841@code{info files} command, described below, lists all the sections and
11842their addresses.
c906108c
SS
11843
11844@kindex info files
11845@kindex info target
11846@item info files
11847@itemx info target
7a292a7a
SS
11848@code{info files} and @code{info target} are synonymous; both print the
11849current target (@pxref{Targets, ,Specifying a Debugging Target}),
11850including the names of the executable and core dump files currently in
11851use by @value{GDBN}, and the files from which symbols were loaded. The
11852command @code{help target} lists all possible targets rather than
11853current ones.
11854
fe95c787
MS
11855@kindex maint info sections
11856@item maint info sections
11857Another command that can give you extra information about program sections
11858is @code{maint info sections}. In addition to the section information
11859displayed by @code{info files}, this command displays the flags and file
11860offset of each section in the executable and core dump files. In addition,
11861@code{maint info sections} provides the following command options (which
11862may be arbitrarily combined):
11863
11864@table @code
11865@item ALLOBJ
11866Display sections for all loaded object files, including shared libraries.
11867@item @var{sections}
6600abed 11868Display info only for named @var{sections}.
fe95c787
MS
11869@item @var{section-flags}
11870Display info only for sections for which @var{section-flags} are true.
11871The section flags that @value{GDBN} currently knows about are:
11872@table @code
11873@item ALLOC
11874Section will have space allocated in the process when loaded.
11875Set for all sections except those containing debug information.
11876@item LOAD
11877Section will be loaded from the file into the child process memory.
11878Set for pre-initialized code and data, clear for @code{.bss} sections.
11879@item RELOC
11880Section needs to be relocated before loading.
11881@item READONLY
11882Section cannot be modified by the child process.
11883@item CODE
11884Section contains executable code only.
6600abed 11885@item DATA
fe95c787
MS
11886Section contains data only (no executable code).
11887@item ROM
11888Section will reside in ROM.
11889@item CONSTRUCTOR
11890Section contains data for constructor/destructor lists.
11891@item HAS_CONTENTS
11892Section is not empty.
11893@item NEVER_LOAD
11894An instruction to the linker to not output the section.
11895@item COFF_SHARED_LIBRARY
11896A notification to the linker that the section contains
11897COFF shared library information.
11898@item IS_COMMON
11899Section contains common symbols.
11900@end table
11901@end table
6763aef9 11902@kindex set trust-readonly-sections
9c16f35a 11903@cindex read-only sections
6763aef9
MS
11904@item set trust-readonly-sections on
11905Tell @value{GDBN} that readonly sections in your object file
6ca652b0 11906really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
11907In that case, @value{GDBN} can fetch values from these sections
11908out of the object file, rather than from the target program.
11909For some targets (notably embedded ones), this can be a significant
11910enhancement to debugging performance.
11911
11912The default is off.
11913
11914@item set trust-readonly-sections off
15110bc3 11915Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
11916the contents of the section might change while the program is running,
11917and must therefore be fetched from the target when needed.
9c16f35a
EZ
11918
11919@item show trust-readonly-sections
11920Show the current setting of trusting readonly sections.
c906108c
SS
11921@end table
11922
11923All file-specifying commands allow both absolute and relative file names
11924as arguments. @value{GDBN} always converts the file name to an absolute file
11925name and remembers it that way.
11926
c906108c 11927@cindex shared libraries
9cceb671
DJ
11928@anchor{Shared Libraries}
11929@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 11930and IBM RS/6000 AIX shared libraries.
53a5351d 11931
9cceb671
DJ
11932On MS-Windows @value{GDBN} must be linked with the Expat library to support
11933shared libraries. @xref{Expat}.
11934
c906108c
SS
11935@value{GDBN} automatically loads symbol definitions from shared libraries
11936when you use the @code{run} command, or when you examine a core file.
11937(Before you issue the @code{run} command, @value{GDBN} does not understand
11938references to a function in a shared library, however---unless you are
11939debugging a core file).
53a5351d
JM
11940
11941On HP-UX, if the program loads a library explicitly, @value{GDBN}
11942automatically loads the symbols at the time of the @code{shl_load} call.
11943
c906108c
SS
11944@c FIXME: some @value{GDBN} release may permit some refs to undef
11945@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
11946@c FIXME...lib; check this from time to time when updating manual
11947
b7209cb4
FF
11948There are times, however, when you may wish to not automatically load
11949symbol definitions from shared libraries, such as when they are
11950particularly large or there are many of them.
11951
11952To control the automatic loading of shared library symbols, use the
11953commands:
11954
11955@table @code
11956@kindex set auto-solib-add
11957@item set auto-solib-add @var{mode}
11958If @var{mode} is @code{on}, symbols from all shared object libraries
11959will be loaded automatically when the inferior begins execution, you
11960attach to an independently started inferior, or when the dynamic linker
11961informs @value{GDBN} that a new library has been loaded. If @var{mode}
11962is @code{off}, symbols must be loaded manually, using the
11963@code{sharedlibrary} command. The default value is @code{on}.
11964
dcaf7c2c
EZ
11965@cindex memory used for symbol tables
11966If your program uses lots of shared libraries with debug info that
11967takes large amounts of memory, you can decrease the @value{GDBN}
11968memory footprint by preventing it from automatically loading the
11969symbols from shared libraries. To that end, type @kbd{set
11970auto-solib-add off} before running the inferior, then load each
11971library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 11972@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
11973the libraries whose symbols you want to be loaded.
11974
b7209cb4
FF
11975@kindex show auto-solib-add
11976@item show auto-solib-add
11977Display the current autoloading mode.
11978@end table
11979
c45da7e6 11980@cindex load shared library
b7209cb4
FF
11981To explicitly load shared library symbols, use the @code{sharedlibrary}
11982command:
11983
c906108c
SS
11984@table @code
11985@kindex info sharedlibrary
11986@kindex info share
11987@item info share
11988@itemx info sharedlibrary
11989Print the names of the shared libraries which are currently loaded.
11990
11991@kindex sharedlibrary
11992@kindex share
11993@item sharedlibrary @var{regex}
11994@itemx share @var{regex}
c906108c
SS
11995Load shared object library symbols for files matching a
11996Unix regular expression.
11997As with files loaded automatically, it only loads shared libraries
11998required by your program for a core file or after typing @code{run}. If
11999@var{regex} is omitted all shared libraries required by your program are
12000loaded.
c45da7e6
EZ
12001
12002@item nosharedlibrary
12003@kindex nosharedlibrary
12004@cindex unload symbols from shared libraries
12005Unload all shared object library symbols. This discards all symbols
12006that have been loaded from all shared libraries. Symbols from shared
12007libraries that were loaded by explicit user requests are not
12008discarded.
c906108c
SS
12009@end table
12010
721c2651
EZ
12011Sometimes you may wish that @value{GDBN} stops and gives you control
12012when any of shared library events happen. Use the @code{set
12013stop-on-solib-events} command for this:
12014
12015@table @code
12016@item set stop-on-solib-events
12017@kindex set stop-on-solib-events
12018This command controls whether @value{GDBN} should give you control
12019when the dynamic linker notifies it about some shared library event.
12020The most common event of interest is loading or unloading of a new
12021shared library.
12022
12023@item show stop-on-solib-events
12024@kindex show stop-on-solib-events
12025Show whether @value{GDBN} stops and gives you control when shared
12026library events happen.
12027@end table
12028
f5ebfba0
DJ
12029Shared libraries are also supported in many cross or remote debugging
12030configurations. A copy of the target's libraries need to be present on the
12031host system; they need to be the same as the target libraries, although the
12032copies on the target can be stripped as long as the copies on the host are
12033not.
12034
59b7b46f
EZ
12035@cindex where to look for shared libraries
12036For remote debugging, you need to tell @value{GDBN} where the target
12037libraries are, so that it can load the correct copies---otherwise, it
12038may try to load the host's libraries. @value{GDBN} has two variables
12039to specify the search directories for target libraries.
f5ebfba0
DJ
12040
12041@table @code
59b7b46f 12042@cindex prefix for shared library file names
f822c95b 12043@cindex system root, alternate
f5ebfba0 12044@kindex set solib-absolute-prefix
f822c95b
DJ
12045@kindex set sysroot
12046@item set sysroot @var{path}
12047Use @var{path} as the system root for the program being debugged. Any
12048absolute shared library paths will be prefixed with @var{path}; many
12049runtime loaders store the absolute paths to the shared library in the
12050target program's memory. If you use @code{set sysroot} to find shared
12051libraries, they need to be laid out in the same way that they are on
12052the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12053under @var{path}.
12054
12055The @code{set solib-absolute-prefix} command is an alias for @code{set
12056sysroot}.
12057
12058@cindex default system root
59b7b46f 12059@cindex @samp{--with-sysroot}
f822c95b
DJ
12060You can set the default system root by using the configure-time
12061@samp{--with-sysroot} option. If the system root is inside
12062@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12063@samp{--exec-prefix}), then the default system root will be updated
12064automatically if the installed @value{GDBN} is moved to a new
12065location.
12066
12067@kindex show sysroot
12068@item show sysroot
f5ebfba0
DJ
12069Display the current shared library prefix.
12070
12071@kindex set solib-search-path
12072@item set solib-search-path @var{path}
f822c95b
DJ
12073If this variable is set, @var{path} is a colon-separated list of
12074directories to search for shared libraries. @samp{solib-search-path}
12075is used after @samp{sysroot} fails to locate the library, or if the
12076path to the library is relative instead of absolute. If you want to
12077use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12078@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12079finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12080it to a nonexistent directory may interfere with automatic loading
f822c95b 12081of shared library symbols.
f5ebfba0
DJ
12082
12083@kindex show solib-search-path
12084@item show solib-search-path
12085Display the current shared library search path.
12086@end table
12087
5b5d99cf
JB
12088
12089@node Separate Debug Files
12090@section Debugging Information in Separate Files
12091@cindex separate debugging information files
12092@cindex debugging information in separate files
12093@cindex @file{.debug} subdirectories
12094@cindex debugging information directory, global
12095@cindex global debugging information directory
c7e83d54
EZ
12096@cindex build ID, and separate debugging files
12097@cindex @file{.build-id} directory
5b5d99cf
JB
12098
12099@value{GDBN} allows you to put a program's debugging information in a
12100file separate from the executable itself, in a way that allows
12101@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12102Since debugging information can be very large---sometimes larger
12103than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12104information for their executables in separate files, which users can
12105install only when they need to debug a problem.
12106
c7e83d54
EZ
12107@value{GDBN} supports two ways of specifying the separate debug info
12108file:
5b5d99cf
JB
12109
12110@itemize @bullet
12111@item
c7e83d54
EZ
12112The executable contains a @dfn{debug link} that specifies the name of
12113the separate debug info file. The separate debug file's name is
12114usually @file{@var{executable}.debug}, where @var{executable} is the
12115name of the corresponding executable file without leading directories
12116(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12117debug link specifies a CRC32 checksum for the debug file, which
12118@value{GDBN} uses to validate that the executable and the debug file
12119came from the same build.
12120
12121@item
7e27a47a 12122The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12123also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12124only on some operating systems, notably those which use the ELF format
12125for binary files and the @sc{gnu} Binutils.) For more details about
12126this feature, see the description of the @option{--build-id}
12127command-line option in @ref{Options, , Command Line Options, ld.info,
12128The GNU Linker}. The debug info file's name is not specified
12129explicitly by the build ID, but can be computed from the build ID, see
12130below.
d3750b24
JK
12131@end itemize
12132
c7e83d54
EZ
12133Depending on the way the debug info file is specified, @value{GDBN}
12134uses two different methods of looking for the debug file:
d3750b24
JK
12135
12136@itemize @bullet
12137@item
c7e83d54
EZ
12138For the ``debug link'' method, @value{GDBN} looks up the named file in
12139the directory of the executable file, then in a subdirectory of that
12140directory named @file{.debug}, and finally under the global debug
12141directory, in a subdirectory whose name is identical to the leading
12142directories of the executable's absolute file name.
12143
12144@item
83f83d7f 12145For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12146@file{.build-id} subdirectory of the global debug directory for a file
12147named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12148first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12149are the rest of the bit string. (Real build ID strings are 32 or more
12150hex characters, not 10.)
c7e83d54
EZ
12151@end itemize
12152
12153So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12154@file{/usr/bin/ls}, which has a debug link that specifies the
12155file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12156@code{abcdef1234}. If the global debug directory is
12157@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12158debug information files, in the indicated order:
12159
12160@itemize @minus
12161@item
12162@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12163@item
c7e83d54 12164@file{/usr/bin/ls.debug}
5b5d99cf 12165@item
c7e83d54 12166@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12167@item
c7e83d54 12168@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12169@end itemize
5b5d99cf
JB
12170
12171You can set the global debugging info directory's name, and view the
12172name @value{GDBN} is currently using.
12173
12174@table @code
12175
12176@kindex set debug-file-directory
12177@item set debug-file-directory @var{directory}
12178Set the directory which @value{GDBN} searches for separate debugging
12179information files to @var{directory}.
12180
12181@kindex show debug-file-directory
12182@item show debug-file-directory
12183Show the directory @value{GDBN} searches for separate debugging
12184information files.
12185
12186@end table
12187
12188@cindex @code{.gnu_debuglink} sections
c7e83d54 12189@cindex debug link sections
5b5d99cf
JB
12190A debug link is a special section of the executable file named
12191@code{.gnu_debuglink}. The section must contain:
12192
12193@itemize
12194@item
12195A filename, with any leading directory components removed, followed by
12196a zero byte,
12197@item
12198zero to three bytes of padding, as needed to reach the next four-byte
12199boundary within the section, and
12200@item
12201a four-byte CRC checksum, stored in the same endianness used for the
12202executable file itself. The checksum is computed on the debugging
12203information file's full contents by the function given below, passing
12204zero as the @var{crc} argument.
12205@end itemize
12206
12207Any executable file format can carry a debug link, as long as it can
12208contain a section named @code{.gnu_debuglink} with the contents
12209described above.
12210
d3750b24 12211@cindex @code{.note.gnu.build-id} sections
c7e83d54 12212@cindex build ID sections
7e27a47a
EZ
12213The build ID is a special section in the executable file (and in other
12214ELF binary files that @value{GDBN} may consider). This section is
12215often named @code{.note.gnu.build-id}, but that name is not mandatory.
12216It contains unique identification for the built files---the ID remains
12217the same across multiple builds of the same build tree. The default
12218algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12219content for the build ID string. The same section with an identical
12220value is present in the original built binary with symbols, in its
12221stripped variant, and in the separate debugging information file.
d3750b24 12222
5b5d99cf
JB
12223The debugging information file itself should be an ordinary
12224executable, containing a full set of linker symbols, sections, and
12225debugging information. The sections of the debugging information file
c7e83d54
EZ
12226should have the same names, addresses, and sizes as the original file,
12227but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12228in an ordinary executable.
12229
7e27a47a 12230The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12231@samp{objcopy} utility that can produce
12232the separated executable / debugging information file pairs using the
12233following commands:
12234
12235@smallexample
12236@kbd{objcopy --only-keep-debug foo foo.debug}
12237@kbd{strip -g foo}
c7e83d54
EZ
12238@end smallexample
12239
12240@noindent
12241These commands remove the debugging
83f83d7f
JK
12242information from the executable file @file{foo} and place it in the file
12243@file{foo.debug}. You can use the first, second or both methods to link the
12244two files:
12245
12246@itemize @bullet
12247@item
12248The debug link method needs the following additional command to also leave
12249behind a debug link in @file{foo}:
12250
12251@smallexample
12252@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12253@end smallexample
12254
12255Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12256a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12257foo.debug} has the same functionality as the two @code{objcopy} commands and
12258the @code{ln -s} command above, together.
12259
12260@item
12261Build ID gets embedded into the main executable using @code{ld --build-id} or
12262the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12263compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12264utilities (Binutils) package since version 2.18.
83f83d7f
JK
12265@end itemize
12266
12267@noindent
d3750b24 12268
c7e83d54
EZ
12269Since there are many different ways to compute CRC's for the debug
12270link (different polynomials, reversals, byte ordering, etc.), the
12271simplest way to describe the CRC used in @code{.gnu_debuglink}
12272sections is to give the complete code for a function that computes it:
5b5d99cf 12273
4644b6e3 12274@kindex gnu_debuglink_crc32
5b5d99cf
JB
12275@smallexample
12276unsigned long
12277gnu_debuglink_crc32 (unsigned long crc,
12278 unsigned char *buf, size_t len)
12279@{
12280 static const unsigned long crc32_table[256] =
12281 @{
12282 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12283 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12284 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12285 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12286 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12287 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12288 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12289 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12290 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12291 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12292 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12293 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12294 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12295 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12296 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12297 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12298 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12299 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12300 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12301 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12302 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12303 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12304 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12305 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12306 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12307 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12308 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12309 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12310 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12311 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12312 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12313 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12314 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12315 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12316 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12317 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12318 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12319 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12320 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12321 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12322 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12323 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12324 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12325 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12326 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12327 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12328 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12329 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12330 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12331 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12332 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12333 0x2d02ef8d
12334 @};
12335 unsigned char *end;
12336
12337 crc = ~crc & 0xffffffff;
12338 for (end = buf + len; buf < end; ++buf)
12339 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12340 return ~crc & 0xffffffff;
5b5d99cf
JB
12341@}
12342@end smallexample
12343
c7e83d54
EZ
12344@noindent
12345This computation does not apply to the ``build ID'' method.
12346
5b5d99cf 12347
6d2ebf8b 12348@node Symbol Errors
79a6e687 12349@section Errors Reading Symbol Files
c906108c
SS
12350
12351While reading a symbol file, @value{GDBN} occasionally encounters problems,
12352such as symbol types it does not recognize, or known bugs in compiler
12353output. By default, @value{GDBN} does not notify you of such problems, since
12354they are relatively common and primarily of interest to people
12355debugging compilers. If you are interested in seeing information
12356about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12357only one message about each such type of problem, no matter how many
12358times the problem occurs; or you can ask @value{GDBN} to print more messages,
12359to see how many times the problems occur, with the @code{set
79a6e687
BW
12360complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12361Messages}).
c906108c
SS
12362
12363The messages currently printed, and their meanings, include:
12364
12365@table @code
12366@item inner block not inside outer block in @var{symbol}
12367
12368The symbol information shows where symbol scopes begin and end
12369(such as at the start of a function or a block of statements). This
12370error indicates that an inner scope block is not fully contained
12371in its outer scope blocks.
12372
12373@value{GDBN} circumvents the problem by treating the inner block as if it had
12374the same scope as the outer block. In the error message, @var{symbol}
12375may be shown as ``@code{(don't know)}'' if the outer block is not a
12376function.
12377
12378@item block at @var{address} out of order
12379
12380The symbol information for symbol scope blocks should occur in
12381order of increasing addresses. This error indicates that it does not
12382do so.
12383
12384@value{GDBN} does not circumvent this problem, and has trouble
12385locating symbols in the source file whose symbols it is reading. (You
12386can often determine what source file is affected by specifying
79a6e687
BW
12387@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12388Messages}.)
c906108c
SS
12389
12390@item bad block start address patched
12391
12392The symbol information for a symbol scope block has a start address
12393smaller than the address of the preceding source line. This is known
12394to occur in the SunOS 4.1.1 (and earlier) C compiler.
12395
12396@value{GDBN} circumvents the problem by treating the symbol scope block as
12397starting on the previous source line.
12398
12399@item bad string table offset in symbol @var{n}
12400
12401@cindex foo
12402Symbol number @var{n} contains a pointer into the string table which is
12403larger than the size of the string table.
12404
12405@value{GDBN} circumvents the problem by considering the symbol to have the
12406name @code{foo}, which may cause other problems if many symbols end up
12407with this name.
12408
12409@item unknown symbol type @code{0x@var{nn}}
12410
7a292a7a
SS
12411The symbol information contains new data types that @value{GDBN} does
12412not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12413uncomprehended information, in hexadecimal.
c906108c 12414
7a292a7a
SS
12415@value{GDBN} circumvents the error by ignoring this symbol information.
12416This usually allows you to debug your program, though certain symbols
c906108c 12417are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12418debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12419on @code{complain}, then go up to the function @code{read_dbx_symtab}
12420and examine @code{*bufp} to see the symbol.
c906108c
SS
12421
12422@item stub type has NULL name
c906108c 12423
7a292a7a 12424@value{GDBN} could not find the full definition for a struct or class.
c906108c 12425
7a292a7a 12426@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12427The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12428information that recent versions of the compiler should have output for
12429it.
c906108c
SS
12430
12431@item info mismatch between compiler and debugger
12432
12433@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12434
c906108c
SS
12435@end table
12436
6d2ebf8b 12437@node Targets
c906108c 12438@chapter Specifying a Debugging Target
7a292a7a 12439
c906108c 12440@cindex debugging target
c906108c 12441A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12442
12443Often, @value{GDBN} runs in the same host environment as your program;
12444in that case, the debugging target is specified as a side effect when
12445you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12446flexibility---for example, running @value{GDBN} on a physically separate
12447host, or controlling a standalone system over a serial port or a
53a5351d
JM
12448realtime system over a TCP/IP connection---you can use the @code{target}
12449command to specify one of the target types configured for @value{GDBN}
79a6e687 12450(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12451
a8f24a35
EZ
12452@cindex target architecture
12453It is possible to build @value{GDBN} for several different @dfn{target
12454architectures}. When @value{GDBN} is built like that, you can choose
12455one of the available architectures with the @kbd{set architecture}
12456command.
12457
12458@table @code
12459@kindex set architecture
12460@kindex show architecture
12461@item set architecture @var{arch}
12462This command sets the current target architecture to @var{arch}. The
12463value of @var{arch} can be @code{"auto"}, in addition to one of the
12464supported architectures.
12465
12466@item show architecture
12467Show the current target architecture.
9c16f35a
EZ
12468
12469@item set processor
12470@itemx processor
12471@kindex set processor
12472@kindex show processor
12473These are alias commands for, respectively, @code{set architecture}
12474and @code{show architecture}.
a8f24a35
EZ
12475@end table
12476
c906108c
SS
12477@menu
12478* Active Targets:: Active targets
12479* Target Commands:: Commands for managing targets
c906108c 12480* Byte Order:: Choosing target byte order
c906108c
SS
12481@end menu
12482
6d2ebf8b 12483@node Active Targets
79a6e687 12484@section Active Targets
7a292a7a 12485
c906108c
SS
12486@cindex stacking targets
12487@cindex active targets
12488@cindex multiple targets
12489
c906108c 12490There are three classes of targets: processes, core files, and
7a292a7a
SS
12491executable files. @value{GDBN} can work concurrently on up to three
12492active targets, one in each class. This allows you to (for example)
12493start a process and inspect its activity without abandoning your work on
12494a core file.
c906108c
SS
12495
12496For example, if you execute @samp{gdb a.out}, then the executable file
12497@code{a.out} is the only active target. If you designate a core file as
12498well---presumably from a prior run that crashed and coredumped---then
12499@value{GDBN} has two active targets and uses them in tandem, looking
12500first in the corefile target, then in the executable file, to satisfy
12501requests for memory addresses. (Typically, these two classes of target
12502are complementary, since core files contain only a program's
12503read-write memory---variables and so on---plus machine status, while
12504executable files contain only the program text and initialized data.)
c906108c
SS
12505
12506When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12507target as well. When a process target is active, all @value{GDBN}
12508commands requesting memory addresses refer to that target; addresses in
12509an active core file or executable file target are obscured while the
12510process target is active.
c906108c 12511
7a292a7a 12512Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12513core file or executable target (@pxref{Files, ,Commands to Specify
12514Files}). To specify as a target a process that is already running, use
12515the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12516Process}).
c906108c 12517
6d2ebf8b 12518@node Target Commands
79a6e687 12519@section Commands for Managing Targets
c906108c
SS
12520
12521@table @code
12522@item target @var{type} @var{parameters}
7a292a7a
SS
12523Connects the @value{GDBN} host environment to a target machine or
12524process. A target is typically a protocol for talking to debugging
12525facilities. You use the argument @var{type} to specify the type or
12526protocol of the target machine.
c906108c
SS
12527
12528Further @var{parameters} are interpreted by the target protocol, but
12529typically include things like device names or host names to connect
12530with, process numbers, and baud rates.
c906108c
SS
12531
12532The @code{target} command does not repeat if you press @key{RET} again
12533after executing the command.
12534
12535@kindex help target
12536@item help target
12537Displays the names of all targets available. To display targets
12538currently selected, use either @code{info target} or @code{info files}
79a6e687 12539(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12540
12541@item help target @var{name}
12542Describe a particular target, including any parameters necessary to
12543select it.
12544
12545@kindex set gnutarget
12546@item set gnutarget @var{args}
5d161b24 12547@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12548knows whether it is reading an @dfn{executable},
5d161b24
DB
12549a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12550with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12551with @code{gnutarget} the @code{target} refers to a program, not a machine.
12552
d4f3574e 12553@quotation
c906108c
SS
12554@emph{Warning:} To specify a file format with @code{set gnutarget},
12555you must know the actual BFD name.
d4f3574e 12556@end quotation
c906108c 12557
d4f3574e 12558@noindent
79a6e687 12559@xref{Files, , Commands to Specify Files}.
c906108c 12560
5d161b24 12561@kindex show gnutarget
c906108c
SS
12562@item show gnutarget
12563Use the @code{show gnutarget} command to display what file format
12564@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12565@value{GDBN} will determine the file format for each file automatically,
12566and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12567@end table
12568
4644b6e3 12569@cindex common targets
c906108c
SS
12570Here are some common targets (available, or not, depending on the GDB
12571configuration):
c906108c
SS
12572
12573@table @code
4644b6e3 12574@kindex target
c906108c 12575@item target exec @var{program}
4644b6e3 12576@cindex executable file target
c906108c
SS
12577An executable file. @samp{target exec @var{program}} is the same as
12578@samp{exec-file @var{program}}.
12579
c906108c 12580@item target core @var{filename}
4644b6e3 12581@cindex core dump file target
c906108c
SS
12582A core dump file. @samp{target core @var{filename}} is the same as
12583@samp{core-file @var{filename}}.
c906108c 12584
1a10341b 12585@item target remote @var{medium}
4644b6e3 12586@cindex remote target
1a10341b
JB
12587A remote system connected to @value{GDBN} via a serial line or network
12588connection. This command tells @value{GDBN} to use its own remote
12589protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12590
12591For example, if you have a board connected to @file{/dev/ttya} on the
12592machine running @value{GDBN}, you could say:
12593
12594@smallexample
12595target remote /dev/ttya
12596@end smallexample
12597
12598@code{target remote} supports the @code{load} command. This is only
12599useful if you have some other way of getting the stub to the target
12600system, and you can put it somewhere in memory where it won't get
12601clobbered by the download.
c906108c 12602
c906108c 12603@item target sim
4644b6e3 12604@cindex built-in simulator target
2df3850c 12605Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12606In general,
474c8240 12607@smallexample
104c1213
JM
12608 target sim
12609 load
12610 run
474c8240 12611@end smallexample
d4f3574e 12612@noindent
104c1213 12613works; however, you cannot assume that a specific memory map, device
d4f3574e 12614drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12615provide these. For info about any processor-specific simulator details,
12616see the appropriate section in @ref{Embedded Processors, ,Embedded
12617Processors}.
12618
c906108c
SS
12619@end table
12620
104c1213 12621Some configurations may include these targets as well:
c906108c
SS
12622
12623@table @code
12624
c906108c 12625@item target nrom @var{dev}
4644b6e3 12626@cindex NetROM ROM emulator target
c906108c
SS
12627NetROM ROM emulator. This target only supports downloading.
12628
c906108c
SS
12629@end table
12630
5d161b24 12631Different targets are available on different configurations of @value{GDBN};
c906108c 12632your configuration may have more or fewer targets.
c906108c 12633
721c2651
EZ
12634Many remote targets require you to download the executable's code once
12635you've successfully established a connection. You may wish to control
3d00d119
DJ
12636various aspects of this process.
12637
12638@table @code
721c2651
EZ
12639
12640@item set hash
12641@kindex set hash@r{, for remote monitors}
12642@cindex hash mark while downloading
12643This command controls whether a hash mark @samp{#} is displayed while
12644downloading a file to the remote monitor. If on, a hash mark is
12645displayed after each S-record is successfully downloaded to the
12646monitor.
12647
12648@item show hash
12649@kindex show hash@r{, for remote monitors}
12650Show the current status of displaying the hash mark.
12651
12652@item set debug monitor
12653@kindex set debug monitor
12654@cindex display remote monitor communications
12655Enable or disable display of communications messages between
12656@value{GDBN} and the remote monitor.
12657
12658@item show debug monitor
12659@kindex show debug monitor
12660Show the current status of displaying communications between
12661@value{GDBN} and the remote monitor.
a8f24a35 12662@end table
c906108c
SS
12663
12664@table @code
12665
12666@kindex load @var{filename}
12667@item load @var{filename}
c906108c
SS
12668Depending on what remote debugging facilities are configured into
12669@value{GDBN}, the @code{load} command may be available. Where it exists, it
12670is meant to make @var{filename} (an executable) available for debugging
12671on the remote system---by downloading, or dynamic linking, for example.
12672@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12673the @code{add-symbol-file} command.
12674
12675If your @value{GDBN} does not have a @code{load} command, attempting to
12676execute it gets the error message ``@code{You can't do that when your
12677target is @dots{}}''
c906108c
SS
12678
12679The file is loaded at whatever address is specified in the executable.
12680For some object file formats, you can specify the load address when you
12681link the program; for other formats, like a.out, the object file format
12682specifies a fixed address.
12683@c FIXME! This would be a good place for an xref to the GNU linker doc.
12684
68437a39
DJ
12685Depending on the remote side capabilities, @value{GDBN} may be able to
12686load programs into flash memory.
12687
c906108c
SS
12688@code{load} does not repeat if you press @key{RET} again after using it.
12689@end table
12690
6d2ebf8b 12691@node Byte Order
79a6e687 12692@section Choosing Target Byte Order
7a292a7a 12693
c906108c
SS
12694@cindex choosing target byte order
12695@cindex target byte order
c906108c 12696
172c2a43 12697Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12698offer the ability to run either big-endian or little-endian byte
12699orders. Usually the executable or symbol will include a bit to
12700designate the endian-ness, and you will not need to worry about
12701which to use. However, you may still find it useful to adjust
d4f3574e 12702@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12703
12704@table @code
4644b6e3 12705@kindex set endian
c906108c
SS
12706@item set endian big
12707Instruct @value{GDBN} to assume the target is big-endian.
12708
c906108c
SS
12709@item set endian little
12710Instruct @value{GDBN} to assume the target is little-endian.
12711
c906108c
SS
12712@item set endian auto
12713Instruct @value{GDBN} to use the byte order associated with the
12714executable.
12715
12716@item show endian
12717Display @value{GDBN}'s current idea of the target byte order.
12718
12719@end table
12720
12721Note that these commands merely adjust interpretation of symbolic
12722data on the host, and that they have absolutely no effect on the
12723target system.
12724
ea35711c
DJ
12725
12726@node Remote Debugging
12727@chapter Debugging Remote Programs
c906108c
SS
12728@cindex remote debugging
12729
12730If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12731@value{GDBN} in the usual way, it is often useful to use remote debugging.
12732For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12733or on a small system which does not have a general purpose operating system
12734powerful enough to run a full-featured debugger.
12735
12736Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12737to make this work with particular debugging targets. In addition,
5d161b24 12738@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12739but not specific to any particular target system) which you can use if you
12740write the remote stubs---the code that runs on the remote system to
12741communicate with @value{GDBN}.
12742
12743Other remote targets may be available in your
12744configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12745
6b2f586d 12746@menu
07f31aa6 12747* Connecting:: Connecting to a remote target
a6b151f1 12748* File Transfer:: Sending files to a remote system
6b2f586d 12749* Server:: Using the gdbserver program
79a6e687
BW
12750* Remote Configuration:: Remote configuration
12751* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12752@end menu
12753
07f31aa6 12754@node Connecting
79a6e687 12755@section Connecting to a Remote Target
07f31aa6
DJ
12756
12757On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12758your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12759Start up @value{GDBN} as usual, using the name of the local copy of your
12760program as the first argument.
12761
86941c27
JB
12762@cindex @code{target remote}
12763@value{GDBN} can communicate with the target over a serial line, or
12764over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12765each case, @value{GDBN} uses the same protocol for debugging your
12766program; only the medium carrying the debugging packets varies. The
12767@code{target remote} command establishes a connection to the target.
12768Its arguments indicate which medium to use:
12769
12770@table @code
12771
12772@item target remote @var{serial-device}
07f31aa6 12773@cindex serial line, @code{target remote}
86941c27
JB
12774Use @var{serial-device} to communicate with the target. For example,
12775to use a serial line connected to the device named @file{/dev/ttyb}:
12776
12777@smallexample
12778target remote /dev/ttyb
12779@end smallexample
12780
07f31aa6
DJ
12781If you're using a serial line, you may want to give @value{GDBN} the
12782@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12783(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12784@code{target} command.
07f31aa6 12785
86941c27
JB
12786@item target remote @code{@var{host}:@var{port}}
12787@itemx target remote @code{tcp:@var{host}:@var{port}}
12788@cindex @acronym{TCP} port, @code{target remote}
12789Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12790The @var{host} may be either a host name or a numeric @acronym{IP}
12791address; @var{port} must be a decimal number. The @var{host} could be
12792the target machine itself, if it is directly connected to the net, or
12793it might be a terminal server which in turn has a serial line to the
12794target.
07f31aa6 12795
86941c27
JB
12796For example, to connect to port 2828 on a terminal server named
12797@code{manyfarms}:
07f31aa6
DJ
12798
12799@smallexample
12800target remote manyfarms:2828
12801@end smallexample
12802
86941c27
JB
12803If your remote target is actually running on the same machine as your
12804debugger session (e.g.@: a simulator for your target running on the
12805same host), you can omit the hostname. For example, to connect to
12806port 1234 on your local machine:
07f31aa6
DJ
12807
12808@smallexample
12809target remote :1234
12810@end smallexample
12811@noindent
12812
12813Note that the colon is still required here.
12814
86941c27
JB
12815@item target remote @code{udp:@var{host}:@var{port}}
12816@cindex @acronym{UDP} port, @code{target remote}
12817Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12818connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12819
12820@smallexample
12821target remote udp:manyfarms:2828
12822@end smallexample
12823
86941c27
JB
12824When using a @acronym{UDP} connection for remote debugging, you should
12825keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12826can silently drop packets on busy or unreliable networks, which will
12827cause havoc with your debugging session.
12828
66b8c7f6
JB
12829@item target remote | @var{command}
12830@cindex pipe, @code{target remote} to
12831Run @var{command} in the background and communicate with it using a
12832pipe. The @var{command} is a shell command, to be parsed and expanded
12833by the system's command shell, @code{/bin/sh}; it should expect remote
12834protocol packets on its standard input, and send replies on its
12835standard output. You could use this to run a stand-alone simulator
12836that speaks the remote debugging protocol, to make net connections
12837using programs like @code{ssh}, or for other similar tricks.
12838
12839If @var{command} closes its standard output (perhaps by exiting),
12840@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12841program has already exited, this will have no effect.)
12842
86941c27 12843@end table
07f31aa6 12844
86941c27
JB
12845Once the connection has been established, you can use all the usual
12846commands to examine and change data and to step and continue the
12847remote program.
07f31aa6
DJ
12848
12849@cindex interrupting remote programs
12850@cindex remote programs, interrupting
12851Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12852interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12853program. This may or may not succeed, depending in part on the hardware
12854and the serial drivers the remote system uses. If you type the
12855interrupt character once again, @value{GDBN} displays this prompt:
12856
12857@smallexample
12858Interrupted while waiting for the program.
12859Give up (and stop debugging it)? (y or n)
12860@end smallexample
12861
12862If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12863(If you decide you want to try again later, you can use @samp{target
12864remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12865goes back to waiting.
12866
12867@table @code
12868@kindex detach (remote)
12869@item detach
12870When you have finished debugging the remote program, you can use the
12871@code{detach} command to release it from @value{GDBN} control.
12872Detaching from the target normally resumes its execution, but the results
12873will depend on your particular remote stub. After the @code{detach}
12874command, @value{GDBN} is free to connect to another target.
12875
12876@kindex disconnect
12877@item disconnect
12878The @code{disconnect} command behaves like @code{detach}, except that
12879the target is generally not resumed. It will wait for @value{GDBN}
12880(this instance or another one) to connect and continue debugging. After
12881the @code{disconnect} command, @value{GDBN} is again free to connect to
12882another target.
09d4efe1
EZ
12883
12884@cindex send command to remote monitor
fad38dfa
EZ
12885@cindex extend @value{GDBN} for remote targets
12886@cindex add new commands for external monitor
09d4efe1
EZ
12887@kindex monitor
12888@item monitor @var{cmd}
fad38dfa
EZ
12889This command allows you to send arbitrary commands directly to the
12890remote monitor. Since @value{GDBN} doesn't care about the commands it
12891sends like this, this command is the way to extend @value{GDBN}---you
12892can add new commands that only the external monitor will understand
12893and implement.
07f31aa6
DJ
12894@end table
12895
a6b151f1
DJ
12896@node File Transfer
12897@section Sending files to a remote system
12898@cindex remote target, file transfer
12899@cindex file transfer
12900@cindex sending files to remote systems
12901
12902Some remote targets offer the ability to transfer files over the same
12903connection used to communicate with @value{GDBN}. This is convenient
12904for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
12905running @code{gdbserver} over a network interface. For other targets,
12906e.g.@: embedded devices with only a single serial port, this may be
12907the only way to upload or download files.
12908
12909Not all remote targets support these commands.
12910
12911@table @code
12912@kindex remote put
12913@item remote put @var{hostfile} @var{targetfile}
12914Copy file @var{hostfile} from the host system (the machine running
12915@value{GDBN}) to @var{targetfile} on the target system.
12916
12917@kindex remote get
12918@item remote get @var{targetfile} @var{hostfile}
12919Copy file @var{targetfile} from the target system to @var{hostfile}
12920on the host system.
12921
12922@kindex remote delete
12923@item remote delete @var{targetfile}
12924Delete @var{targetfile} from the target system.
12925
12926@end table
12927
6f05cf9f 12928@node Server
79a6e687 12929@section Using the @code{gdbserver} Program
6f05cf9f
AC
12930
12931@kindex gdbserver
12932@cindex remote connection without stubs
12933@code{gdbserver} is a control program for Unix-like systems, which
12934allows you to connect your program with a remote @value{GDBN} via
12935@code{target remote}---but without linking in the usual debugging stub.
12936
12937@code{gdbserver} is not a complete replacement for the debugging stubs,
12938because it requires essentially the same operating-system facilities
12939that @value{GDBN} itself does. In fact, a system that can run
12940@code{gdbserver} to connect to a remote @value{GDBN} could also run
12941@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
12942because it is a much smaller program than @value{GDBN} itself. It is
12943also easier to port than all of @value{GDBN}, so you may be able to get
12944started more quickly on a new system by using @code{gdbserver}.
12945Finally, if you develop code for real-time systems, you may find that
12946the tradeoffs involved in real-time operation make it more convenient to
12947do as much development work as possible on another system, for example
12948by cross-compiling. You can use @code{gdbserver} to make a similar
12949choice for debugging.
12950
12951@value{GDBN} and @code{gdbserver} communicate via either a serial line
12952or a TCP connection, using the standard @value{GDBN} remote serial
12953protocol.
12954
2d717e4f
DJ
12955@quotation
12956@emph{Warning:} @code{gdbserver} does not have any built-in security.
12957Do not run @code{gdbserver} connected to any public network; a
12958@value{GDBN} connection to @code{gdbserver} provides access to the
12959target system with the same privileges as the user running
12960@code{gdbserver}.
12961@end quotation
12962
12963@subsection Running @code{gdbserver}
12964@cindex arguments, to @code{gdbserver}
12965
12966Run @code{gdbserver} on the target system. You need a copy of the
12967program you want to debug, including any libraries it requires.
6f05cf9f
AC
12968@code{gdbserver} does not need your program's symbol table, so you can
12969strip the program if necessary to save space. @value{GDBN} on the host
12970system does all the symbol handling.
12971
12972To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 12973the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
12974syntax is:
12975
12976@smallexample
12977target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
12978@end smallexample
12979
12980@var{comm} is either a device name (to use a serial line) or a TCP
12981hostname and portnumber. For example, to debug Emacs with the argument
12982@samp{foo.txt} and communicate with @value{GDBN} over the serial port
12983@file{/dev/com1}:
12984
12985@smallexample
12986target> gdbserver /dev/com1 emacs foo.txt
12987@end smallexample
12988
12989@code{gdbserver} waits passively for the host @value{GDBN} to communicate
12990with it.
12991
12992To use a TCP connection instead of a serial line:
12993
12994@smallexample
12995target> gdbserver host:2345 emacs foo.txt
12996@end smallexample
12997
12998The only difference from the previous example is the first argument,
12999specifying that you are communicating with the host @value{GDBN} via
13000TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13001expect a TCP connection from machine @samp{host} to local TCP port 2345.
13002(Currently, the @samp{host} part is ignored.) You can choose any number
13003you want for the port number as long as it does not conflict with any
13004TCP ports already in use on the target system (for example, @code{23} is
13005reserved for @code{telnet}).@footnote{If you choose a port number that
13006conflicts with another service, @code{gdbserver} prints an error message
13007and exits.} You must use the same port number with the host @value{GDBN}
13008@code{target remote} command.
13009
2d717e4f
DJ
13010@subsubsection Attaching to a Running Program
13011
56460a61
DJ
13012On some targets, @code{gdbserver} can also attach to running programs.
13013This is accomplished via the @code{--attach} argument. The syntax is:
13014
13015@smallexample
2d717e4f 13016target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13017@end smallexample
13018
13019@var{pid} is the process ID of a currently running process. It isn't necessary
13020to point @code{gdbserver} at a binary for the running process.
13021
b1fe9455
DJ
13022@pindex pidof
13023@cindex attach to a program by name
13024You can debug processes by name instead of process ID if your target has the
13025@code{pidof} utility:
13026
13027@smallexample
2d717e4f 13028target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13029@end smallexample
13030
f822c95b 13031In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13032has multiple threads, most versions of @code{pidof} support the
13033@code{-s} option to only return the first process ID.
13034
2d717e4f
DJ
13035@subsubsection Multi-Process Mode for @code{gdbserver}
13036@cindex gdbserver, multiple processes
13037@cindex multiple processes with gdbserver
13038
13039When you connect to @code{gdbserver} using @code{target remote},
13040@code{gdbserver} debugs the specified program only once. When the
13041program exits, or you detach from it, @value{GDBN} closes the connection
13042and @code{gdbserver} exits.
13043
13044If you connect using @code{target extended-remote}, @code{gdbserver}
13045enters multi-process mode. When the debugged program exits, or you
13046detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13047though no program is running. The @code{run} and @code{attach}
13048commands instruct @code{gdbserver} to run or attach to a new program.
13049The @code{run} command uses @code{set remote exec-file} (@pxref{set
13050remote exec-file}) to select the program to run. Command line
13051arguments are supported, except for wildcard expansion and I/O
13052redirection (@pxref{Arguments}).
13053
13054To start @code{gdbserver} without supplying an initial command to run
13055or process ID to attach, use the @option{--multi} command line option.
13056Then you can connect using @code{target extended-remote} and start
13057the program you want to debug.
13058
13059@code{gdbserver} does not automatically exit in multi-process mode.
13060You can terminate it by using @code{monitor exit}
13061(@pxref{Monitor Commands for gdbserver}).
13062
13063@subsubsection Other Command-Line Arguments for @code{gdbserver}
13064
13065You can include @option{--debug} on the @code{gdbserver} command line.
13066@code{gdbserver} will display extra status information about the debugging
13067process. This option is intended for @code{gdbserver} development and
13068for bug reports to the developers.
13069
13070@subsection Connecting to @code{gdbserver}
13071
13072Run @value{GDBN} on the host system.
13073
13074First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13075your application using the @code{file} command before you connect. Use
13076@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13077was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13078
13079The symbol file and target libraries must exactly match the executable
13080and libraries on the target, with one exception: the files on the host
13081system should not be stripped, even if the files on the target system
13082are. Mismatched or missing files will lead to confusing results
13083during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13084files may also prevent @code{gdbserver} from debugging multi-threaded
13085programs.
13086
79a6e687 13087Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13088For TCP connections, you must start up @code{gdbserver} prior to using
13089the @code{target remote} command. Otherwise you may get an error whose
13090text depends on the host system, but which usually looks something like
2d717e4f 13091@samp{Connection refused}. Don't use the @code{load}
397ca115 13092command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13093already on the target.
07f31aa6 13094
79a6e687 13095@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13096@cindex monitor commands, for @code{gdbserver}
2d717e4f 13097@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13098
13099During a @value{GDBN} session using @code{gdbserver}, you can use the
13100@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13101Here are the available commands.
c74d0ad8
DJ
13102
13103@table @code
13104@item monitor help
13105List the available monitor commands.
13106
13107@item monitor set debug 0
13108@itemx monitor set debug 1
13109Disable or enable general debugging messages.
13110
13111@item monitor set remote-debug 0
13112@itemx monitor set remote-debug 1
13113Disable or enable specific debugging messages associated with the remote
13114protocol (@pxref{Remote Protocol}).
13115
2d717e4f
DJ
13116@item monitor exit
13117Tell gdbserver to exit immediately. This command should be followed by
13118@code{disconnect} to close the debugging session. @code{gdbserver} will
13119detach from any attached processes and kill any processes it created.
13120Use @code{monitor exit} to terminate @code{gdbserver} at the end
13121of a multi-process mode debug session.
13122
c74d0ad8
DJ
13123@end table
13124
79a6e687
BW
13125@node Remote Configuration
13126@section Remote Configuration
501eef12 13127
9c16f35a
EZ
13128@kindex set remote
13129@kindex show remote
13130This section documents the configuration options available when
13131debugging remote programs. For the options related to the File I/O
fc320d37 13132extensions of the remote protocol, see @ref{system,
9c16f35a 13133system-call-allowed}.
501eef12
AC
13134
13135@table @code
9c16f35a 13136@item set remoteaddresssize @var{bits}
d3e8051b 13137@cindex address size for remote targets
9c16f35a
EZ
13138@cindex bits in remote address
13139Set the maximum size of address in a memory packet to the specified
13140number of bits. @value{GDBN} will mask off the address bits above
13141that number, when it passes addresses to the remote target. The
13142default value is the number of bits in the target's address.
13143
13144@item show remoteaddresssize
13145Show the current value of remote address size in bits.
13146
13147@item set remotebaud @var{n}
13148@cindex baud rate for remote targets
13149Set the baud rate for the remote serial I/O to @var{n} baud. The
13150value is used to set the speed of the serial port used for debugging
13151remote targets.
13152
13153@item show remotebaud
13154Show the current speed of the remote connection.
13155
13156@item set remotebreak
13157@cindex interrupt remote programs
13158@cindex BREAK signal instead of Ctrl-C
9a6253be 13159@anchor{set remotebreak}
9c16f35a 13160If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13161when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13162on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13163character instead. The default is off, since most remote systems
13164expect to see @samp{Ctrl-C} as the interrupt signal.
13165
13166@item show remotebreak
13167Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13168interrupt the remote program.
13169
23776285
MR
13170@item set remoteflow on
13171@itemx set remoteflow off
13172@kindex set remoteflow
13173Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13174on the serial port used to communicate to the remote target.
13175
13176@item show remoteflow
13177@kindex show remoteflow
13178Show the current setting of hardware flow control.
13179
9c16f35a
EZ
13180@item set remotelogbase @var{base}
13181Set the base (a.k.a.@: radix) of logging serial protocol
13182communications to @var{base}. Supported values of @var{base} are:
13183@code{ascii}, @code{octal}, and @code{hex}. The default is
13184@code{ascii}.
13185
13186@item show remotelogbase
13187Show the current setting of the radix for logging remote serial
13188protocol.
13189
13190@item set remotelogfile @var{file}
13191@cindex record serial communications on file
13192Record remote serial communications on the named @var{file}. The
13193default is not to record at all.
13194
13195@item show remotelogfile.
13196Show the current setting of the file name on which to record the
13197serial communications.
13198
13199@item set remotetimeout @var{num}
13200@cindex timeout for serial communications
13201@cindex remote timeout
13202Set the timeout limit to wait for the remote target to respond to
13203@var{num} seconds. The default is 2 seconds.
13204
13205@item show remotetimeout
13206Show the current number of seconds to wait for the remote target
13207responses.
13208
13209@cindex limit hardware breakpoints and watchpoints
13210@cindex remote target, limit break- and watchpoints
501eef12
AC
13211@anchor{set remote hardware-watchpoint-limit}
13212@anchor{set remote hardware-breakpoint-limit}
13213@item set remote hardware-watchpoint-limit @var{limit}
13214@itemx set remote hardware-breakpoint-limit @var{limit}
13215Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13216watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13217
13218@item set remote exec-file @var{filename}
13219@itemx show remote exec-file
13220@anchor{set remote exec-file}
13221@cindex executable file, for remote target
13222Select the file used for @code{run} with @code{target
13223extended-remote}. This should be set to a filename valid on the
13224target system. If it is not set, the target will use a default
13225filename (e.g.@: the last program run).
501eef12
AC
13226@end table
13227
427c3a89
DJ
13228@cindex remote packets, enabling and disabling
13229The @value{GDBN} remote protocol autodetects the packets supported by
13230your debugging stub. If you need to override the autodetection, you
13231can use these commands to enable or disable individual packets. Each
13232packet can be set to @samp{on} (the remote target supports this
13233packet), @samp{off} (the remote target does not support this packet),
13234or @samp{auto} (detect remote target support for this packet). They
13235all default to @samp{auto}. For more information about each packet,
13236see @ref{Remote Protocol}.
13237
13238During normal use, you should not have to use any of these commands.
13239If you do, that may be a bug in your remote debugging stub, or a bug
13240in @value{GDBN}. You may want to report the problem to the
13241@value{GDBN} developers.
13242
cfa9d6d9
DJ
13243For each packet @var{name}, the command to enable or disable the
13244packet is @code{set remote @var{name}-packet}. The available settings
13245are:
427c3a89 13246
cfa9d6d9 13247@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13248@item Command Name
13249@tab Remote Packet
13250@tab Related Features
13251
cfa9d6d9 13252@item @code{fetch-register}
427c3a89
DJ
13253@tab @code{p}
13254@tab @code{info registers}
13255
cfa9d6d9 13256@item @code{set-register}
427c3a89
DJ
13257@tab @code{P}
13258@tab @code{set}
13259
cfa9d6d9 13260@item @code{binary-download}
427c3a89
DJ
13261@tab @code{X}
13262@tab @code{load}, @code{set}
13263
cfa9d6d9 13264@item @code{read-aux-vector}
427c3a89
DJ
13265@tab @code{qXfer:auxv:read}
13266@tab @code{info auxv}
13267
cfa9d6d9 13268@item @code{symbol-lookup}
427c3a89
DJ
13269@tab @code{qSymbol}
13270@tab Detecting multiple threads
13271
2d717e4f
DJ
13272@item @code{attach}
13273@tab @code{vAttach}
13274@tab @code{attach}
13275
cfa9d6d9 13276@item @code{verbose-resume}
427c3a89
DJ
13277@tab @code{vCont}
13278@tab Stepping or resuming multiple threads
13279
2d717e4f
DJ
13280@item @code{run}
13281@tab @code{vRun}
13282@tab @code{run}
13283
cfa9d6d9 13284@item @code{software-breakpoint}
427c3a89
DJ
13285@tab @code{Z0}
13286@tab @code{break}
13287
cfa9d6d9 13288@item @code{hardware-breakpoint}
427c3a89
DJ
13289@tab @code{Z1}
13290@tab @code{hbreak}
13291
cfa9d6d9 13292@item @code{write-watchpoint}
427c3a89
DJ
13293@tab @code{Z2}
13294@tab @code{watch}
13295
cfa9d6d9 13296@item @code{read-watchpoint}
427c3a89
DJ
13297@tab @code{Z3}
13298@tab @code{rwatch}
13299
cfa9d6d9 13300@item @code{access-watchpoint}
427c3a89
DJ
13301@tab @code{Z4}
13302@tab @code{awatch}
13303
cfa9d6d9
DJ
13304@item @code{target-features}
13305@tab @code{qXfer:features:read}
13306@tab @code{set architecture}
13307
13308@item @code{library-info}
13309@tab @code{qXfer:libraries:read}
13310@tab @code{info sharedlibrary}
13311
13312@item @code{memory-map}
13313@tab @code{qXfer:memory-map:read}
13314@tab @code{info mem}
13315
13316@item @code{read-spu-object}
13317@tab @code{qXfer:spu:read}
13318@tab @code{info spu}
13319
13320@item @code{write-spu-object}
13321@tab @code{qXfer:spu:write}
13322@tab @code{info spu}
13323
13324@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13325@tab @code{qGetTLSAddr}
13326@tab Displaying @code{__thread} variables
13327
13328@item @code{supported-packets}
13329@tab @code{qSupported}
13330@tab Remote communications parameters
13331
cfa9d6d9 13332@item @code{pass-signals}
89be2091
DJ
13333@tab @code{QPassSignals}
13334@tab @code{handle @var{signal}}
13335
a6b151f1
DJ
13336@item @code{hostio-close-packet}
13337@tab @code{vFile:close}
13338@tab @code{remote get}, @code{remote put}
13339
13340@item @code{hostio-open-packet}
13341@tab @code{vFile:open}
13342@tab @code{remote get}, @code{remote put}
13343
13344@item @code{hostio-pread-packet}
13345@tab @code{vFile:pread}
13346@tab @code{remote get}, @code{remote put}
13347
13348@item @code{hostio-pwrite-packet}
13349@tab @code{vFile:pwrite}
13350@tab @code{remote get}, @code{remote put}
13351
13352@item @code{hostio-unlink-packet}
13353@tab @code{vFile:unlink}
13354@tab @code{remote delete}
427c3a89
DJ
13355@end multitable
13356
79a6e687
BW
13357@node Remote Stub
13358@section Implementing a Remote Stub
7a292a7a 13359
8e04817f
AC
13360@cindex debugging stub, example
13361@cindex remote stub, example
13362@cindex stub example, remote debugging
13363The stub files provided with @value{GDBN} implement the target side of the
13364communication protocol, and the @value{GDBN} side is implemented in the
13365@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13366these subroutines to communicate, and ignore the details. (If you're
13367implementing your own stub file, you can still ignore the details: start
13368with one of the existing stub files. @file{sparc-stub.c} is the best
13369organized, and therefore the easiest to read.)
13370
104c1213
JM
13371@cindex remote serial debugging, overview
13372To debug a program running on another machine (the debugging
13373@dfn{target} machine), you must first arrange for all the usual
13374prerequisites for the program to run by itself. For example, for a C
13375program, you need:
c906108c 13376
104c1213
JM
13377@enumerate
13378@item
13379A startup routine to set up the C runtime environment; these usually
13380have a name like @file{crt0}. The startup routine may be supplied by
13381your hardware supplier, or you may have to write your own.
96baa820 13382
5d161b24 13383@item
d4f3574e 13384A C subroutine library to support your program's
104c1213 13385subroutine calls, notably managing input and output.
96baa820 13386
104c1213
JM
13387@item
13388A way of getting your program to the other machine---for example, a
13389download program. These are often supplied by the hardware
13390manufacturer, but you may have to write your own from hardware
13391documentation.
13392@end enumerate
96baa820 13393
104c1213
JM
13394The next step is to arrange for your program to use a serial port to
13395communicate with the machine where @value{GDBN} is running (the @dfn{host}
13396machine). In general terms, the scheme looks like this:
96baa820 13397
104c1213
JM
13398@table @emph
13399@item On the host,
13400@value{GDBN} already understands how to use this protocol; when everything
13401else is set up, you can simply use the @samp{target remote} command
13402(@pxref{Targets,,Specifying a Debugging Target}).
13403
13404@item On the target,
13405you must link with your program a few special-purpose subroutines that
13406implement the @value{GDBN} remote serial protocol. The file containing these
13407subroutines is called a @dfn{debugging stub}.
13408
13409On certain remote targets, you can use an auxiliary program
13410@code{gdbserver} instead of linking a stub into your program.
79a6e687 13411@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13412@end table
96baa820 13413
104c1213
JM
13414The debugging stub is specific to the architecture of the remote
13415machine; for example, use @file{sparc-stub.c} to debug programs on
13416@sc{sparc} boards.
96baa820 13417
104c1213
JM
13418@cindex remote serial stub list
13419These working remote stubs are distributed with @value{GDBN}:
96baa820 13420
104c1213
JM
13421@table @code
13422
13423@item i386-stub.c
41afff9a 13424@cindex @file{i386-stub.c}
104c1213
JM
13425@cindex Intel
13426@cindex i386
13427For Intel 386 and compatible architectures.
13428
13429@item m68k-stub.c
41afff9a 13430@cindex @file{m68k-stub.c}
104c1213
JM
13431@cindex Motorola 680x0
13432@cindex m680x0
13433For Motorola 680x0 architectures.
13434
13435@item sh-stub.c
41afff9a 13436@cindex @file{sh-stub.c}
172c2a43 13437@cindex Renesas
104c1213 13438@cindex SH
172c2a43 13439For Renesas SH architectures.
104c1213
JM
13440
13441@item sparc-stub.c
41afff9a 13442@cindex @file{sparc-stub.c}
104c1213
JM
13443@cindex Sparc
13444For @sc{sparc} architectures.
13445
13446@item sparcl-stub.c
41afff9a 13447@cindex @file{sparcl-stub.c}
104c1213
JM
13448@cindex Fujitsu
13449@cindex SparcLite
13450For Fujitsu @sc{sparclite} architectures.
13451
13452@end table
13453
13454The @file{README} file in the @value{GDBN} distribution may list other
13455recently added stubs.
13456
13457@menu
13458* Stub Contents:: What the stub can do for you
13459* Bootstrapping:: What you must do for the stub
13460* Debug Session:: Putting it all together
104c1213
JM
13461@end menu
13462
6d2ebf8b 13463@node Stub Contents
79a6e687 13464@subsection What the Stub Can Do for You
104c1213
JM
13465
13466@cindex remote serial stub
13467The debugging stub for your architecture supplies these three
13468subroutines:
13469
13470@table @code
13471@item set_debug_traps
4644b6e3 13472@findex set_debug_traps
104c1213
JM
13473@cindex remote serial stub, initialization
13474This routine arranges for @code{handle_exception} to run when your
13475program stops. You must call this subroutine explicitly near the
13476beginning of your program.
13477
13478@item handle_exception
4644b6e3 13479@findex handle_exception
104c1213
JM
13480@cindex remote serial stub, main routine
13481This is the central workhorse, but your program never calls it
13482explicitly---the setup code arranges for @code{handle_exception} to
13483run when a trap is triggered.
13484
13485@code{handle_exception} takes control when your program stops during
13486execution (for example, on a breakpoint), and mediates communications
13487with @value{GDBN} on the host machine. This is where the communications
13488protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13489representative on the target machine. It begins by sending summary
104c1213
JM
13490information on the state of your program, then continues to execute,
13491retrieving and transmitting any information @value{GDBN} needs, until you
13492execute a @value{GDBN} command that makes your program resume; at that point,
13493@code{handle_exception} returns control to your own code on the target
5d161b24 13494machine.
104c1213
JM
13495
13496@item breakpoint
13497@cindex @code{breakpoint} subroutine, remote
13498Use this auxiliary subroutine to make your program contain a
13499breakpoint. Depending on the particular situation, this may be the only
13500way for @value{GDBN} to get control. For instance, if your target
13501machine has some sort of interrupt button, you won't need to call this;
13502pressing the interrupt button transfers control to
13503@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13504simply receiving characters on the serial port may also trigger a trap;
13505again, in that situation, you don't need to call @code{breakpoint} from
13506your own program---simply running @samp{target remote} from the host
5d161b24 13507@value{GDBN} session gets control.
104c1213
JM
13508
13509Call @code{breakpoint} if none of these is true, or if you simply want
13510to make certain your program stops at a predetermined point for the
13511start of your debugging session.
13512@end table
13513
6d2ebf8b 13514@node Bootstrapping
79a6e687 13515@subsection What You Must Do for the Stub
104c1213
JM
13516
13517@cindex remote stub, support routines
13518The debugging stubs that come with @value{GDBN} are set up for a particular
13519chip architecture, but they have no information about the rest of your
13520debugging target machine.
13521
13522First of all you need to tell the stub how to communicate with the
13523serial port.
13524
13525@table @code
13526@item int getDebugChar()
4644b6e3 13527@findex getDebugChar
104c1213
JM
13528Write this subroutine to read a single character from the serial port.
13529It may be identical to @code{getchar} for your target system; a
13530different name is used to allow you to distinguish the two if you wish.
13531
13532@item void putDebugChar(int)
4644b6e3 13533@findex putDebugChar
104c1213 13534Write this subroutine to write a single character to the serial port.
5d161b24 13535It may be identical to @code{putchar} for your target system; a
104c1213
JM
13536different name is used to allow you to distinguish the two if you wish.
13537@end table
13538
13539@cindex control C, and remote debugging
13540@cindex interrupting remote targets
13541If you want @value{GDBN} to be able to stop your program while it is
13542running, you need to use an interrupt-driven serial driver, and arrange
13543for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13544character). That is the character which @value{GDBN} uses to tell the
13545remote system to stop.
13546
13547Getting the debugging target to return the proper status to @value{GDBN}
13548probably requires changes to the standard stub; one quick and dirty way
13549is to just execute a breakpoint instruction (the ``dirty'' part is that
13550@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13551
13552Other routines you need to supply are:
13553
13554@table @code
13555@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13556@findex exceptionHandler
104c1213
JM
13557Write this function to install @var{exception_address} in the exception
13558handling tables. You need to do this because the stub does not have any
13559way of knowing what the exception handling tables on your target system
13560are like (for example, the processor's table might be in @sc{rom},
13561containing entries which point to a table in @sc{ram}).
13562@var{exception_number} is the exception number which should be changed;
13563its meaning is architecture-dependent (for example, different numbers
13564might represent divide by zero, misaligned access, etc). When this
13565exception occurs, control should be transferred directly to
13566@var{exception_address}, and the processor state (stack, registers,
13567and so on) should be just as it is when a processor exception occurs. So if
13568you want to use a jump instruction to reach @var{exception_address}, it
13569should be a simple jump, not a jump to subroutine.
13570
13571For the 386, @var{exception_address} should be installed as an interrupt
13572gate so that interrupts are masked while the handler runs. The gate
13573should be at privilege level 0 (the most privileged level). The
13574@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13575help from @code{exceptionHandler}.
13576
13577@item void flush_i_cache()
4644b6e3 13578@findex flush_i_cache
d4f3574e 13579On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13580instruction cache, if any, on your target machine. If there is no
13581instruction cache, this subroutine may be a no-op.
13582
13583On target machines that have instruction caches, @value{GDBN} requires this
13584function to make certain that the state of your program is stable.
13585@end table
13586
13587@noindent
13588You must also make sure this library routine is available:
13589
13590@table @code
13591@item void *memset(void *, int, int)
4644b6e3 13592@findex memset
104c1213
JM
13593This is the standard library function @code{memset} that sets an area of
13594memory to a known value. If you have one of the free versions of
13595@code{libc.a}, @code{memset} can be found there; otherwise, you must
13596either obtain it from your hardware manufacturer, or write your own.
13597@end table
13598
13599If you do not use the GNU C compiler, you may need other standard
13600library subroutines as well; this varies from one stub to another,
13601but in general the stubs are likely to use any of the common library
e22ea452 13602subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13603
13604
6d2ebf8b 13605@node Debug Session
79a6e687 13606@subsection Putting it All Together
104c1213
JM
13607
13608@cindex remote serial debugging summary
13609In summary, when your program is ready to debug, you must follow these
13610steps.
13611
13612@enumerate
13613@item
6d2ebf8b 13614Make sure you have defined the supporting low-level routines
79a6e687 13615(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13616@display
13617@code{getDebugChar}, @code{putDebugChar},
13618@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13619@end display
13620
13621@item
13622Insert these lines near the top of your program:
13623
474c8240 13624@smallexample
104c1213
JM
13625set_debug_traps();
13626breakpoint();
474c8240 13627@end smallexample
104c1213
JM
13628
13629@item
13630For the 680x0 stub only, you need to provide a variable called
13631@code{exceptionHook}. Normally you just use:
13632
474c8240 13633@smallexample
104c1213 13634void (*exceptionHook)() = 0;
474c8240 13635@end smallexample
104c1213 13636
d4f3574e 13637@noindent
104c1213 13638but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13639function in your program, that function is called when
104c1213
JM
13640@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13641error). The function indicated by @code{exceptionHook} is called with
13642one parameter: an @code{int} which is the exception number.
13643
13644@item
13645Compile and link together: your program, the @value{GDBN} debugging stub for
13646your target architecture, and the supporting subroutines.
13647
13648@item
13649Make sure you have a serial connection between your target machine and
13650the @value{GDBN} host, and identify the serial port on the host.
13651
13652@item
13653@c The "remote" target now provides a `load' command, so we should
13654@c document that. FIXME.
13655Download your program to your target machine (or get it there by
13656whatever means the manufacturer provides), and start it.
13657
13658@item
07f31aa6 13659Start @value{GDBN} on the host, and connect to the target
79a6e687 13660(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13661
104c1213
JM
13662@end enumerate
13663
8e04817f
AC
13664@node Configurations
13665@chapter Configuration-Specific Information
104c1213 13666
8e04817f
AC
13667While nearly all @value{GDBN} commands are available for all native and
13668cross versions of the debugger, there are some exceptions. This chapter
13669describes things that are only available in certain configurations.
104c1213 13670
8e04817f
AC
13671There are three major categories of configurations: native
13672configurations, where the host and target are the same, embedded
13673operating system configurations, which are usually the same for several
13674different processor architectures, and bare embedded processors, which
13675are quite different from each other.
104c1213 13676
8e04817f
AC
13677@menu
13678* Native::
13679* Embedded OS::
13680* Embedded Processors::
13681* Architectures::
13682@end menu
104c1213 13683
8e04817f
AC
13684@node Native
13685@section Native
104c1213 13686
8e04817f
AC
13687This section describes details specific to particular native
13688configurations.
6cf7e474 13689
8e04817f
AC
13690@menu
13691* HP-UX:: HP-UX
7561d450 13692* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13693* SVR4 Process Information:: SVR4 process information
13694* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13695* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13696* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13697* Neutrino:: Features specific to QNX Neutrino
8e04817f 13698@end menu
6cf7e474 13699
8e04817f
AC
13700@node HP-UX
13701@subsection HP-UX
104c1213 13702
8e04817f
AC
13703On HP-UX systems, if you refer to a function or variable name that
13704begins with a dollar sign, @value{GDBN} searches for a user or system
13705name first, before it searches for a convenience variable.
104c1213 13706
9c16f35a 13707
7561d450
MK
13708@node BSD libkvm Interface
13709@subsection BSD libkvm Interface
13710
13711@cindex libkvm
13712@cindex kernel memory image
13713@cindex kernel crash dump
13714
13715BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13716interface that provides a uniform interface for accessing kernel virtual
13717memory images, including live systems and crash dumps. @value{GDBN}
13718uses this interface to allow you to debug live kernels and kernel crash
13719dumps on many native BSD configurations. This is implemented as a
13720special @code{kvm} debugging target. For debugging a live system, load
13721the currently running kernel into @value{GDBN} and connect to the
13722@code{kvm} target:
13723
13724@smallexample
13725(@value{GDBP}) @b{target kvm}
13726@end smallexample
13727
13728For debugging crash dumps, provide the file name of the crash dump as an
13729argument:
13730
13731@smallexample
13732(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13733@end smallexample
13734
13735Once connected to the @code{kvm} target, the following commands are
13736available:
13737
13738@table @code
13739@kindex kvm
13740@item kvm pcb
721c2651 13741Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13742
13743@item kvm proc
13744Set current context from proc address. This command isn't available on
13745modern FreeBSD systems.
13746@end table
13747
8e04817f 13748@node SVR4 Process Information
79a6e687 13749@subsection SVR4 Process Information
60bf7e09
EZ
13750@cindex /proc
13751@cindex examine process image
13752@cindex process info via @file{/proc}
104c1213 13753
60bf7e09
EZ
13754Many versions of SVR4 and compatible systems provide a facility called
13755@samp{/proc} that can be used to examine the image of a running
13756process using file-system subroutines. If @value{GDBN} is configured
13757for an operating system with this facility, the command @code{info
13758proc} is available to report information about the process running
13759your program, or about any process running on your system. @code{info
13760proc} works only on SVR4 systems that include the @code{procfs} code.
13761This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13762Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13763
8e04817f
AC
13764@table @code
13765@kindex info proc
60bf7e09 13766@cindex process ID
8e04817f 13767@item info proc
60bf7e09
EZ
13768@itemx info proc @var{process-id}
13769Summarize available information about any running process. If a
13770process ID is specified by @var{process-id}, display information about
13771that process; otherwise display information about the program being
13772debugged. The summary includes the debugged process ID, the command
13773line used to invoke it, its current working directory, and its
13774executable file's absolute file name.
13775
13776On some systems, @var{process-id} can be of the form
13777@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13778within a process. If the optional @var{pid} part is missing, it means
13779a thread from the process being debugged (the leading @samp{/} still
13780needs to be present, or else @value{GDBN} will interpret the number as
13781a process ID rather than a thread ID).
6cf7e474 13782
8e04817f 13783@item info proc mappings
60bf7e09
EZ
13784@cindex memory address space mappings
13785Report the memory address space ranges accessible in the program, with
13786information on whether the process has read, write, or execute access
13787rights to each range. On @sc{gnu}/Linux systems, each memory range
13788includes the object file which is mapped to that range, instead of the
13789memory access rights to that range.
13790
13791@item info proc stat
13792@itemx info proc status
13793@cindex process detailed status information
13794These subcommands are specific to @sc{gnu}/Linux systems. They show
13795the process-related information, including the user ID and group ID;
13796how many threads are there in the process; its virtual memory usage;
13797the signals that are pending, blocked, and ignored; its TTY; its
13798consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13799value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13800(type @kbd{man 5 proc} from your shell prompt).
13801
13802@item info proc all
13803Show all the information about the process described under all of the
13804above @code{info proc} subcommands.
13805
8e04817f
AC
13806@ignore
13807@comment These sub-options of 'info proc' were not included when
13808@comment procfs.c was re-written. Keep their descriptions around
13809@comment against the day when someone finds the time to put them back in.
13810@kindex info proc times
13811@item info proc times
13812Starting time, user CPU time, and system CPU time for your program and
13813its children.
6cf7e474 13814
8e04817f
AC
13815@kindex info proc id
13816@item info proc id
13817Report on the process IDs related to your program: its own process ID,
13818the ID of its parent, the process group ID, and the session ID.
8e04817f 13819@end ignore
721c2651
EZ
13820
13821@item set procfs-trace
13822@kindex set procfs-trace
13823@cindex @code{procfs} API calls
13824This command enables and disables tracing of @code{procfs} API calls.
13825
13826@item show procfs-trace
13827@kindex show procfs-trace
13828Show the current state of @code{procfs} API call tracing.
13829
13830@item set procfs-file @var{file}
13831@kindex set procfs-file
13832Tell @value{GDBN} to write @code{procfs} API trace to the named
13833@var{file}. @value{GDBN} appends the trace info to the previous
13834contents of the file. The default is to display the trace on the
13835standard output.
13836
13837@item show procfs-file
13838@kindex show procfs-file
13839Show the file to which @code{procfs} API trace is written.
13840
13841@item proc-trace-entry
13842@itemx proc-trace-exit
13843@itemx proc-untrace-entry
13844@itemx proc-untrace-exit
13845@kindex proc-trace-entry
13846@kindex proc-trace-exit
13847@kindex proc-untrace-entry
13848@kindex proc-untrace-exit
13849These commands enable and disable tracing of entries into and exits
13850from the @code{syscall} interface.
13851
13852@item info pidlist
13853@kindex info pidlist
13854@cindex process list, QNX Neutrino
13855For QNX Neutrino only, this command displays the list of all the
13856processes and all the threads within each process.
13857
13858@item info meminfo
13859@kindex info meminfo
13860@cindex mapinfo list, QNX Neutrino
13861For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13862@end table
104c1213 13863
8e04817f
AC
13864@node DJGPP Native
13865@subsection Features for Debugging @sc{djgpp} Programs
13866@cindex @sc{djgpp} debugging
13867@cindex native @sc{djgpp} debugging
13868@cindex MS-DOS-specific commands
104c1213 13869
514c4d71
EZ
13870@cindex DPMI
13871@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13872MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13873that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13874top of real-mode DOS systems and their emulations.
104c1213 13875
8e04817f
AC
13876@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13877defines a few commands specific to the @sc{djgpp} port. This
13878subsection describes those commands.
104c1213 13879
8e04817f
AC
13880@table @code
13881@kindex info dos
13882@item info dos
13883This is a prefix of @sc{djgpp}-specific commands which print
13884information about the target system and important OS structures.
f1251bdd 13885
8e04817f
AC
13886@kindex sysinfo
13887@cindex MS-DOS system info
13888@cindex free memory information (MS-DOS)
13889@item info dos sysinfo
13890This command displays assorted information about the underlying
13891platform: the CPU type and features, the OS version and flavor, the
13892DPMI version, and the available conventional and DPMI memory.
104c1213 13893
8e04817f
AC
13894@cindex GDT
13895@cindex LDT
13896@cindex IDT
13897@cindex segment descriptor tables
13898@cindex descriptor tables display
13899@item info dos gdt
13900@itemx info dos ldt
13901@itemx info dos idt
13902These 3 commands display entries from, respectively, Global, Local,
13903and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
13904tables are data structures which store a descriptor for each segment
13905that is currently in use. The segment's selector is an index into a
13906descriptor table; the table entry for that index holds the
13907descriptor's base address and limit, and its attributes and access
13908rights.
104c1213 13909
8e04817f
AC
13910A typical @sc{djgpp} program uses 3 segments: a code segment, a data
13911segment (used for both data and the stack), and a DOS segment (which
13912allows access to DOS/BIOS data structures and absolute addresses in
13913conventional memory). However, the DPMI host will usually define
13914additional segments in order to support the DPMI environment.
d4f3574e 13915
8e04817f
AC
13916@cindex garbled pointers
13917These commands allow to display entries from the descriptor tables.
13918Without an argument, all entries from the specified table are
13919displayed. An argument, which should be an integer expression, means
13920display a single entry whose index is given by the argument. For
13921example, here's a convenient way to display information about the
13922debugged program's data segment:
104c1213 13923
8e04817f
AC
13924@smallexample
13925@exdent @code{(@value{GDBP}) info dos ldt $ds}
13926@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
13927@end smallexample
104c1213 13928
8e04817f
AC
13929@noindent
13930This comes in handy when you want to see whether a pointer is outside
13931the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 13932
8e04817f
AC
13933@cindex page tables display (MS-DOS)
13934@item info dos pde
13935@itemx info dos pte
13936These two commands display entries from, respectively, the Page
13937Directory and the Page Tables. Page Directories and Page Tables are
13938data structures which control how virtual memory addresses are mapped
13939into physical addresses. A Page Table includes an entry for every
13940page of memory that is mapped into the program's address space; there
13941may be several Page Tables, each one holding up to 4096 entries. A
13942Page Directory has up to 4096 entries, one each for every Page Table
13943that is currently in use.
104c1213 13944
8e04817f
AC
13945Without an argument, @kbd{info dos pde} displays the entire Page
13946Directory, and @kbd{info dos pte} displays all the entries in all of
13947the Page Tables. An argument, an integer expression, given to the
13948@kbd{info dos pde} command means display only that entry from the Page
13949Directory table. An argument given to the @kbd{info dos pte} command
13950means display entries from a single Page Table, the one pointed to by
13951the specified entry in the Page Directory.
104c1213 13952
8e04817f
AC
13953@cindex direct memory access (DMA) on MS-DOS
13954These commands are useful when your program uses @dfn{DMA} (Direct
13955Memory Access), which needs physical addresses to program the DMA
13956controller.
104c1213 13957
8e04817f 13958These commands are supported only with some DPMI servers.
104c1213 13959
8e04817f
AC
13960@cindex physical address from linear address
13961@item info dos address-pte @var{addr}
13962This command displays the Page Table entry for a specified linear
514c4d71
EZ
13963address. The argument @var{addr} is a linear address which should
13964already have the appropriate segment's base address added to it,
13965because this command accepts addresses which may belong to @emph{any}
13966segment. For example, here's how to display the Page Table entry for
13967the page where a variable @code{i} is stored:
104c1213 13968
b383017d 13969@smallexample
8e04817f
AC
13970@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
13971@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 13972@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 13973@end smallexample
104c1213 13974
8e04817f
AC
13975@noindent
13976This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 13977whose physical base address is @code{0x02698000}, and shows all the
8e04817f 13978attributes of that page.
104c1213 13979
8e04817f
AC
13980Note that you must cast the addresses of variables to a @code{char *},
13981since otherwise the value of @code{__djgpp_base_address}, the base
13982address of all variables and functions in a @sc{djgpp} program, will
13983be added using the rules of C pointer arithmetics: if @code{i} is
13984declared an @code{int}, @value{GDBN} will add 4 times the value of
13985@code{__djgpp_base_address} to the address of @code{i}.
104c1213 13986
8e04817f
AC
13987Here's another example, it displays the Page Table entry for the
13988transfer buffer:
104c1213 13989
8e04817f
AC
13990@smallexample
13991@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
13992@exdent @code{Page Table entry for address 0x29110:}
13993@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
13994@end smallexample
104c1213 13995
8e04817f
AC
13996@noindent
13997(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
139983rd member of the @code{_go32_info_block} structure.) The output
13999clearly shows that this DPMI server maps the addresses in conventional
14000memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14001linear (@code{0x29110}) addresses are identical.
104c1213 14002
8e04817f
AC
14003This command is supported only with some DPMI servers.
14004@end table
104c1213 14005
c45da7e6 14006@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14007In addition to native debugging, the DJGPP port supports remote
14008debugging via a serial data link. The following commands are specific
14009to remote serial debugging in the DJGPP port of @value{GDBN}.
14010
14011@table @code
14012@kindex set com1base
14013@kindex set com1irq
14014@kindex set com2base
14015@kindex set com2irq
14016@kindex set com3base
14017@kindex set com3irq
14018@kindex set com4base
14019@kindex set com4irq
14020@item set com1base @var{addr}
14021This command sets the base I/O port address of the @file{COM1} serial
14022port.
14023
14024@item set com1irq @var{irq}
14025This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14026for the @file{COM1} serial port.
14027
14028There are similar commands @samp{set com2base}, @samp{set com3irq},
14029etc.@: for setting the port address and the @code{IRQ} lines for the
14030other 3 COM ports.
14031
14032@kindex show com1base
14033@kindex show com1irq
14034@kindex show com2base
14035@kindex show com2irq
14036@kindex show com3base
14037@kindex show com3irq
14038@kindex show com4base
14039@kindex show com4irq
14040The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14041display the current settings of the base address and the @code{IRQ}
14042lines used by the COM ports.
c45da7e6
EZ
14043
14044@item info serial
14045@kindex info serial
14046@cindex DOS serial port status
14047This command prints the status of the 4 DOS serial ports. For each
14048port, it prints whether it's active or not, its I/O base address and
14049IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14050counts of various errors encountered so far.
a8f24a35
EZ
14051@end table
14052
14053
78c47bea 14054@node Cygwin Native
79a6e687 14055@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14056@cindex MS Windows debugging
14057@cindex native Cygwin debugging
14058@cindex Cygwin-specific commands
14059
be448670 14060@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14061DLLs with and without symbolic debugging information. There are various
14062additional Cygwin-specific commands, described in this section.
14063Working with DLLs that have no debugging symbols is described in
14064@ref{Non-debug DLL Symbols}.
78c47bea
PM
14065
14066@table @code
14067@kindex info w32
14068@item info w32
db2e3e2e 14069This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14070information about the target system and important OS structures.
14071
14072@item info w32 selector
14073This command displays information returned by
14074the Win32 API @code{GetThreadSelectorEntry} function.
14075It takes an optional argument that is evaluated to
14076a long value to give the information about this given selector.
14077Without argument, this command displays information
d3e8051b 14078about the six segment registers.
78c47bea
PM
14079
14080@kindex info dll
14081@item info dll
db2e3e2e 14082This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14083
14084@kindex dll-symbols
14085@item dll-symbols
14086This command loads symbols from a dll similarly to
14087add-sym command but without the need to specify a base address.
14088
be90c084 14089@kindex set cygwin-exceptions
e16b02ee
EZ
14090@cindex debugging the Cygwin DLL
14091@cindex Cygwin DLL, debugging
be90c084 14092@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14093If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14094happen inside the Cygwin DLL. If @var{mode} is @code{off},
14095@value{GDBN} will delay recognition of exceptions, and may ignore some
14096exceptions which seem to be caused by internal Cygwin DLL
14097``bookkeeping''. This option is meant primarily for debugging the
14098Cygwin DLL itself; the default value is @code{off} to avoid annoying
14099@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14100
14101@kindex show cygwin-exceptions
14102@item show cygwin-exceptions
e16b02ee
EZ
14103Displays whether @value{GDBN} will break on exceptions that happen
14104inside the Cygwin DLL itself.
be90c084 14105
b383017d 14106@kindex set new-console
78c47bea 14107@item set new-console @var{mode}
b383017d 14108If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14109be started in a new console on next start.
14110If @var{mode} is @code{off}i, the debuggee will
14111be started in the same console as the debugger.
14112
14113@kindex show new-console
14114@item show new-console
14115Displays whether a new console is used
14116when the debuggee is started.
14117
14118@kindex set new-group
14119@item set new-group @var{mode}
14120This boolean value controls whether the debuggee should
14121start a new group or stay in the same group as the debugger.
14122This affects the way the Windows OS handles
c8aa23ab 14123@samp{Ctrl-C}.
78c47bea
PM
14124
14125@kindex show new-group
14126@item show new-group
14127Displays current value of new-group boolean.
14128
14129@kindex set debugevents
14130@item set debugevents
219eec71
EZ
14131This boolean value adds debug output concerning kernel events related
14132to the debuggee seen by the debugger. This includes events that
14133signal thread and process creation and exit, DLL loading and
14134unloading, console interrupts, and debugging messages produced by the
14135Windows @code{OutputDebugString} API call.
78c47bea
PM
14136
14137@kindex set debugexec
14138@item set debugexec
b383017d 14139This boolean value adds debug output concerning execute events
219eec71 14140(such as resume thread) seen by the debugger.
78c47bea
PM
14141
14142@kindex set debugexceptions
14143@item set debugexceptions
219eec71
EZ
14144This boolean value adds debug output concerning exceptions in the
14145debuggee seen by the debugger.
78c47bea
PM
14146
14147@kindex set debugmemory
14148@item set debugmemory
219eec71
EZ
14149This boolean value adds debug output concerning debuggee memory reads
14150and writes by the debugger.
78c47bea
PM
14151
14152@kindex set shell
14153@item set shell
14154This boolean values specifies whether the debuggee is called
14155via a shell or directly (default value is on).
14156
14157@kindex show shell
14158@item show shell
14159Displays if the debuggee will be started with a shell.
14160
14161@end table
14162
be448670 14163@menu
79a6e687 14164* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14165@end menu
14166
79a6e687
BW
14167@node Non-debug DLL Symbols
14168@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14169@cindex DLLs with no debugging symbols
14170@cindex Minimal symbols and DLLs
14171
14172Very often on windows, some of the DLLs that your program relies on do
14173not include symbolic debugging information (for example,
db2e3e2e 14174@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14175symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14176information contained in the DLL's export table. This section
be448670
CF
14177describes working with such symbols, known internally to @value{GDBN} as
14178``minimal symbols''.
14179
14180Note that before the debugged program has started execution, no DLLs
db2e3e2e 14181will have been loaded. The easiest way around this problem is simply to
be448670 14182start the program --- either by setting a breakpoint or letting the
db2e3e2e 14183program run once to completion. It is also possible to force
be448670 14184@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14185see the shared library information in @ref{Files}, or the
db2e3e2e 14186@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14187explicitly loading symbols from a DLL with no debugging information will
14188cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14189which may adversely affect symbol lookup performance.
14190
79a6e687 14191@subsubsection DLL Name Prefixes
be448670
CF
14192
14193In keeping with the naming conventions used by the Microsoft debugging
14194tools, DLL export symbols are made available with a prefix based on the
14195DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14196also entered into the symbol table, so @code{CreateFileA} is often
14197sufficient. In some cases there will be name clashes within a program
14198(particularly if the executable itself includes full debugging symbols)
14199necessitating the use of the fully qualified name when referring to the
14200contents of the DLL. Use single-quotes around the name to avoid the
14201exclamation mark (``!'') being interpreted as a language operator.
14202
14203Note that the internal name of the DLL may be all upper-case, even
14204though the file name of the DLL is lower-case, or vice-versa. Since
14205symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14206some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14207@code{info variables} commands or even @code{maint print msymbols}
14208(@pxref{Symbols}). Here's an example:
be448670
CF
14209
14210@smallexample
f7dc1244 14211(@value{GDBP}) info function CreateFileA
be448670
CF
14212All functions matching regular expression "CreateFileA":
14213
14214Non-debugging symbols:
142150x77e885f4 CreateFileA
142160x77e885f4 KERNEL32!CreateFileA
14217@end smallexample
14218
14219@smallexample
f7dc1244 14220(@value{GDBP}) info function !
be448670
CF
14221All functions matching regular expression "!":
14222
14223Non-debugging symbols:
142240x6100114c cygwin1!__assert
142250x61004034 cygwin1!_dll_crt0@@0
142260x61004240 cygwin1!dll_crt0(per_process *)
14227[etc...]
14228@end smallexample
14229
79a6e687 14230@subsubsection Working with Minimal Symbols
be448670
CF
14231
14232Symbols extracted from a DLL's export table do not contain very much
14233type information. All that @value{GDBN} can do is guess whether a symbol
14234refers to a function or variable depending on the linker section that
14235contains the symbol. Also note that the actual contents of the memory
14236contained in a DLL are not available unless the program is running. This
14237means that you cannot examine the contents of a variable or disassemble
14238a function within a DLL without a running program.
14239
14240Variables are generally treated as pointers and dereferenced
14241automatically. For this reason, it is often necessary to prefix a
14242variable name with the address-of operator (``&'') and provide explicit
14243type information in the command. Here's an example of the type of
14244problem:
14245
14246@smallexample
f7dc1244 14247(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14248$1 = 268572168
14249@end smallexample
14250
14251@smallexample
f7dc1244 14252(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
142530x10021610: "\230y\""
14254@end smallexample
14255
14256And two possible solutions:
14257
14258@smallexample
f7dc1244 14259(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14260$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14261@end smallexample
14262
14263@smallexample
f7dc1244 14264(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 142650x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14266(@value{GDBP}) x/x 0x10021608
be448670 142670x10021608: 0x0022fd98
f7dc1244 14268(@value{GDBP}) x/s 0x0022fd98
be448670
CF
142690x22fd98: "/cygdrive/c/mydirectory/myprogram"
14270@end smallexample
14271
14272Setting a break point within a DLL is possible even before the program
14273starts execution. However, under these circumstances, @value{GDBN} can't
14274examine the initial instructions of the function in order to skip the
14275function's frame set-up code. You can work around this by using ``*&''
14276to set the breakpoint at a raw memory address:
14277
14278@smallexample
f7dc1244 14279(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14280Breakpoint 1 at 0x1e04eff0
14281@end smallexample
14282
14283The author of these extensions is not entirely convinced that setting a
14284break point within a shared DLL like @file{kernel32.dll} is completely
14285safe.
14286
14d6dd68 14287@node Hurd Native
79a6e687 14288@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14289@cindex @sc{gnu} Hurd debugging
14290
14291This subsection describes @value{GDBN} commands specific to the
14292@sc{gnu} Hurd native debugging.
14293
14294@table @code
14295@item set signals
14296@itemx set sigs
14297@kindex set signals@r{, Hurd command}
14298@kindex set sigs@r{, Hurd command}
14299This command toggles the state of inferior signal interception by
14300@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14301affected by this command. @code{sigs} is a shorthand alias for
14302@code{signals}.
14303
14304@item show signals
14305@itemx show sigs
14306@kindex show signals@r{, Hurd command}
14307@kindex show sigs@r{, Hurd command}
14308Show the current state of intercepting inferior's signals.
14309
14310@item set signal-thread
14311@itemx set sigthread
14312@kindex set signal-thread
14313@kindex set sigthread
14314This command tells @value{GDBN} which thread is the @code{libc} signal
14315thread. That thread is run when a signal is delivered to a running
14316process. @code{set sigthread} is the shorthand alias of @code{set
14317signal-thread}.
14318
14319@item show signal-thread
14320@itemx show sigthread
14321@kindex show signal-thread
14322@kindex show sigthread
14323These two commands show which thread will run when the inferior is
14324delivered a signal.
14325
14326@item set stopped
14327@kindex set stopped@r{, Hurd command}
14328This commands tells @value{GDBN} that the inferior process is stopped,
14329as with the @code{SIGSTOP} signal. The stopped process can be
14330continued by delivering a signal to it.
14331
14332@item show stopped
14333@kindex show stopped@r{, Hurd command}
14334This command shows whether @value{GDBN} thinks the debuggee is
14335stopped.
14336
14337@item set exceptions
14338@kindex set exceptions@r{, Hurd command}
14339Use this command to turn off trapping of exceptions in the inferior.
14340When exception trapping is off, neither breakpoints nor
14341single-stepping will work. To restore the default, set exception
14342trapping on.
14343
14344@item show exceptions
14345@kindex show exceptions@r{, Hurd command}
14346Show the current state of trapping exceptions in the inferior.
14347
14348@item set task pause
14349@kindex set task@r{, Hurd commands}
14350@cindex task attributes (@sc{gnu} Hurd)
14351@cindex pause current task (@sc{gnu} Hurd)
14352This command toggles task suspension when @value{GDBN} has control.
14353Setting it to on takes effect immediately, and the task is suspended
14354whenever @value{GDBN} gets control. Setting it to off will take
14355effect the next time the inferior is continued. If this option is set
14356to off, you can use @code{set thread default pause on} or @code{set
14357thread pause on} (see below) to pause individual threads.
14358
14359@item show task pause
14360@kindex show task@r{, Hurd commands}
14361Show the current state of task suspension.
14362
14363@item set task detach-suspend-count
14364@cindex task suspend count
14365@cindex detach from task, @sc{gnu} Hurd
14366This command sets the suspend count the task will be left with when
14367@value{GDBN} detaches from it.
14368
14369@item show task detach-suspend-count
14370Show the suspend count the task will be left with when detaching.
14371
14372@item set task exception-port
14373@itemx set task excp
14374@cindex task exception port, @sc{gnu} Hurd
14375This command sets the task exception port to which @value{GDBN} will
14376forward exceptions. The argument should be the value of the @dfn{send
14377rights} of the task. @code{set task excp} is a shorthand alias.
14378
14379@item set noninvasive
14380@cindex noninvasive task options
14381This command switches @value{GDBN} to a mode that is the least
14382invasive as far as interfering with the inferior is concerned. This
14383is the same as using @code{set task pause}, @code{set exceptions}, and
14384@code{set signals} to values opposite to the defaults.
14385
14386@item info send-rights
14387@itemx info receive-rights
14388@itemx info port-rights
14389@itemx info port-sets
14390@itemx info dead-names
14391@itemx info ports
14392@itemx info psets
14393@cindex send rights, @sc{gnu} Hurd
14394@cindex receive rights, @sc{gnu} Hurd
14395@cindex port rights, @sc{gnu} Hurd
14396@cindex port sets, @sc{gnu} Hurd
14397@cindex dead names, @sc{gnu} Hurd
14398These commands display information about, respectively, send rights,
14399receive rights, port rights, port sets, and dead names of a task.
14400There are also shorthand aliases: @code{info ports} for @code{info
14401port-rights} and @code{info psets} for @code{info port-sets}.
14402
14403@item set thread pause
14404@kindex set thread@r{, Hurd command}
14405@cindex thread properties, @sc{gnu} Hurd
14406@cindex pause current thread (@sc{gnu} Hurd)
14407This command toggles current thread suspension when @value{GDBN} has
14408control. Setting it to on takes effect immediately, and the current
14409thread is suspended whenever @value{GDBN} gets control. Setting it to
14410off will take effect the next time the inferior is continued.
14411Normally, this command has no effect, since when @value{GDBN} has
14412control, the whole task is suspended. However, if you used @code{set
14413task pause off} (see above), this command comes in handy to suspend
14414only the current thread.
14415
14416@item show thread pause
14417@kindex show thread@r{, Hurd command}
14418This command shows the state of current thread suspension.
14419
14420@item set thread run
d3e8051b 14421This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14422
14423@item show thread run
14424Show whether the current thread is allowed to run.
14425
14426@item set thread detach-suspend-count
14427@cindex thread suspend count, @sc{gnu} Hurd
14428@cindex detach from thread, @sc{gnu} Hurd
14429This command sets the suspend count @value{GDBN} will leave on a
14430thread when detaching. This number is relative to the suspend count
14431found by @value{GDBN} when it notices the thread; use @code{set thread
14432takeover-suspend-count} to force it to an absolute value.
14433
14434@item show thread detach-suspend-count
14435Show the suspend count @value{GDBN} will leave on the thread when
14436detaching.
14437
14438@item set thread exception-port
14439@itemx set thread excp
14440Set the thread exception port to which to forward exceptions. This
14441overrides the port set by @code{set task exception-port} (see above).
14442@code{set thread excp} is the shorthand alias.
14443
14444@item set thread takeover-suspend-count
14445Normally, @value{GDBN}'s thread suspend counts are relative to the
14446value @value{GDBN} finds when it notices each thread. This command
14447changes the suspend counts to be absolute instead.
14448
14449@item set thread default
14450@itemx show thread default
14451@cindex thread default settings, @sc{gnu} Hurd
14452Each of the above @code{set thread} commands has a @code{set thread
14453default} counterpart (e.g., @code{set thread default pause}, @code{set
14454thread default exception-port}, etc.). The @code{thread default}
14455variety of commands sets the default thread properties for all
14456threads; you can then change the properties of individual threads with
14457the non-default commands.
14458@end table
14459
14460
a64548ea
EZ
14461@node Neutrino
14462@subsection QNX Neutrino
14463@cindex QNX Neutrino
14464
14465@value{GDBN} provides the following commands specific to the QNX
14466Neutrino target:
14467
14468@table @code
14469@item set debug nto-debug
14470@kindex set debug nto-debug
14471When set to on, enables debugging messages specific to the QNX
14472Neutrino support.
14473
14474@item show debug nto-debug
14475@kindex show debug nto-debug
14476Show the current state of QNX Neutrino messages.
14477@end table
14478
14479
8e04817f
AC
14480@node Embedded OS
14481@section Embedded Operating Systems
104c1213 14482
8e04817f
AC
14483This section describes configurations involving the debugging of
14484embedded operating systems that are available for several different
14485architectures.
d4f3574e 14486
8e04817f
AC
14487@menu
14488* VxWorks:: Using @value{GDBN} with VxWorks
14489@end menu
104c1213 14490
8e04817f
AC
14491@value{GDBN} includes the ability to debug programs running on
14492various real-time operating systems.
104c1213 14493
8e04817f
AC
14494@node VxWorks
14495@subsection Using @value{GDBN} with VxWorks
104c1213 14496
8e04817f 14497@cindex VxWorks
104c1213 14498
8e04817f 14499@table @code
104c1213 14500
8e04817f
AC
14501@kindex target vxworks
14502@item target vxworks @var{machinename}
14503A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14504is the target system's machine name or IP address.
104c1213 14505
8e04817f 14506@end table
104c1213 14507
8e04817f
AC
14508On VxWorks, @code{load} links @var{filename} dynamically on the
14509current target system as well as adding its symbols in @value{GDBN}.
104c1213 14510
8e04817f
AC
14511@value{GDBN} enables developers to spawn and debug tasks running on networked
14512VxWorks targets from a Unix host. Already-running tasks spawned from
14513the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14514both the Unix host and on the VxWorks target. The program
14515@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14516installed with the name @code{vxgdb}, to distinguish it from a
14517@value{GDBN} for debugging programs on the host itself.)
104c1213 14518
8e04817f
AC
14519@table @code
14520@item VxWorks-timeout @var{args}
14521@kindex vxworks-timeout
14522All VxWorks-based targets now support the option @code{vxworks-timeout}.
14523This option is set by the user, and @var{args} represents the number of
14524seconds @value{GDBN} waits for responses to rpc's. You might use this if
14525your VxWorks target is a slow software simulator or is on the far side
14526of a thin network line.
14527@end table
104c1213 14528
8e04817f
AC
14529The following information on connecting to VxWorks was current when
14530this manual was produced; newer releases of VxWorks may use revised
14531procedures.
104c1213 14532
4644b6e3 14533@findex INCLUDE_RDB
8e04817f
AC
14534To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14535to include the remote debugging interface routines in the VxWorks
14536library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14537VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14538kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14539source debugging task @code{tRdbTask} when VxWorks is booted. For more
14540information on configuring and remaking VxWorks, see the manufacturer's
14541manual.
14542@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14543
8e04817f
AC
14544Once you have included @file{rdb.a} in your VxWorks system image and set
14545your Unix execution search path to find @value{GDBN}, you are ready to
14546run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14547@code{vxgdb}, depending on your installation).
104c1213 14548
8e04817f 14549@value{GDBN} comes up showing the prompt:
104c1213 14550
474c8240 14551@smallexample
8e04817f 14552(vxgdb)
474c8240 14553@end smallexample
104c1213 14554
8e04817f
AC
14555@menu
14556* VxWorks Connection:: Connecting to VxWorks
14557* VxWorks Download:: VxWorks download
14558* VxWorks Attach:: Running tasks
14559@end menu
104c1213 14560
8e04817f
AC
14561@node VxWorks Connection
14562@subsubsection Connecting to VxWorks
104c1213 14563
8e04817f
AC
14564The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14565network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14566
474c8240 14567@smallexample
8e04817f 14568(vxgdb) target vxworks tt
474c8240 14569@end smallexample
104c1213 14570
8e04817f
AC
14571@need 750
14572@value{GDBN} displays messages like these:
104c1213 14573
8e04817f
AC
14574@smallexample
14575Attaching remote machine across net...
14576Connected to tt.
14577@end smallexample
104c1213 14578
8e04817f
AC
14579@need 1000
14580@value{GDBN} then attempts to read the symbol tables of any object modules
14581loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14582these files by searching the directories listed in the command search
79a6e687 14583path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14584to find an object file, it displays a message such as:
5d161b24 14585
474c8240 14586@smallexample
8e04817f 14587prog.o: No such file or directory.
474c8240 14588@end smallexample
104c1213 14589
8e04817f
AC
14590When this happens, add the appropriate directory to the search path with
14591the @value{GDBN} command @code{path}, and execute the @code{target}
14592command again.
104c1213 14593
8e04817f 14594@node VxWorks Download
79a6e687 14595@subsubsection VxWorks Download
104c1213 14596
8e04817f
AC
14597@cindex download to VxWorks
14598If you have connected to the VxWorks target and you want to debug an
14599object that has not yet been loaded, you can use the @value{GDBN}
14600@code{load} command to download a file from Unix to VxWorks
14601incrementally. The object file given as an argument to the @code{load}
14602command is actually opened twice: first by the VxWorks target in order
14603to download the code, then by @value{GDBN} in order to read the symbol
14604table. This can lead to problems if the current working directories on
14605the two systems differ. If both systems have NFS mounted the same
14606filesystems, you can avoid these problems by using absolute paths.
14607Otherwise, it is simplest to set the working directory on both systems
14608to the directory in which the object file resides, and then to reference
14609the file by its name, without any path. For instance, a program
14610@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14611and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14612program, type this on VxWorks:
104c1213 14613
474c8240 14614@smallexample
8e04817f 14615-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14616@end smallexample
104c1213 14617
8e04817f
AC
14618@noindent
14619Then, in @value{GDBN}, type:
104c1213 14620
474c8240 14621@smallexample
8e04817f
AC
14622(vxgdb) cd @var{hostpath}/vw/demo/rdb
14623(vxgdb) load prog.o
474c8240 14624@end smallexample
104c1213 14625
8e04817f 14626@value{GDBN} displays a response similar to this:
104c1213 14627
8e04817f
AC
14628@smallexample
14629Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14630@end smallexample
104c1213 14631
8e04817f
AC
14632You can also use the @code{load} command to reload an object module
14633after editing and recompiling the corresponding source file. Note that
14634this makes @value{GDBN} delete all currently-defined breakpoints,
14635auto-displays, and convenience variables, and to clear the value
14636history. (This is necessary in order to preserve the integrity of
14637debugger's data structures that reference the target system's symbol
14638table.)
104c1213 14639
8e04817f 14640@node VxWorks Attach
79a6e687 14641@subsubsection Running Tasks
104c1213
JM
14642
14643@cindex running VxWorks tasks
14644You can also attach to an existing task using the @code{attach} command as
14645follows:
14646
474c8240 14647@smallexample
104c1213 14648(vxgdb) attach @var{task}
474c8240 14649@end smallexample
104c1213
JM
14650
14651@noindent
14652where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14653or suspended when you attach to it. Running tasks are suspended at
14654the time of attachment.
14655
6d2ebf8b 14656@node Embedded Processors
104c1213
JM
14657@section Embedded Processors
14658
14659This section goes into details specific to particular embedded
14660configurations.
14661
c45da7e6
EZ
14662@cindex send command to simulator
14663Whenever a specific embedded processor has a simulator, @value{GDBN}
14664allows to send an arbitrary command to the simulator.
14665
14666@table @code
14667@item sim @var{command}
14668@kindex sim@r{, a command}
14669Send an arbitrary @var{command} string to the simulator. Consult the
14670documentation for the specific simulator in use for information about
14671acceptable commands.
14672@end table
14673
7d86b5d5 14674
104c1213 14675@menu
c45da7e6 14676* ARM:: ARM RDI
172c2a43 14677* M32R/D:: Renesas M32R/D
104c1213 14678* M68K:: Motorola M68K
104c1213 14679* MIPS Embedded:: MIPS Embedded
a37295f9 14680* OpenRISC 1000:: OpenRisc 1000
104c1213 14681* PA:: HP PA Embedded
0869d01b 14682* PowerPC:: PowerPC
104c1213
JM
14683* Sparclet:: Tsqware Sparclet
14684* Sparclite:: Fujitsu Sparclite
104c1213 14685* Z8000:: Zilog Z8000
a64548ea
EZ
14686* AVR:: Atmel AVR
14687* CRIS:: CRIS
14688* Super-H:: Renesas Super-H
104c1213
JM
14689@end menu
14690
6d2ebf8b 14691@node ARM
104c1213 14692@subsection ARM
c45da7e6 14693@cindex ARM RDI
104c1213
JM
14694
14695@table @code
8e04817f
AC
14696@kindex target rdi
14697@item target rdi @var{dev}
14698ARM Angel monitor, via RDI library interface to ADP protocol. You may
14699use this target to communicate with both boards running the Angel
14700monitor, or with the EmbeddedICE JTAG debug device.
14701
14702@kindex target rdp
14703@item target rdp @var{dev}
14704ARM Demon monitor.
14705
14706@end table
14707
e2f4edfd
EZ
14708@value{GDBN} provides the following ARM-specific commands:
14709
14710@table @code
14711@item set arm disassembler
14712@kindex set arm
14713This commands selects from a list of disassembly styles. The
14714@code{"std"} style is the standard style.
14715
14716@item show arm disassembler
14717@kindex show arm
14718Show the current disassembly style.
14719
14720@item set arm apcs32
14721@cindex ARM 32-bit mode
14722This command toggles ARM operation mode between 32-bit and 26-bit.
14723
14724@item show arm apcs32
14725Display the current usage of the ARM 32-bit mode.
14726
14727@item set arm fpu @var{fputype}
14728This command sets the ARM floating-point unit (FPU) type. The
14729argument @var{fputype} can be one of these:
14730
14731@table @code
14732@item auto
14733Determine the FPU type by querying the OS ABI.
14734@item softfpa
14735Software FPU, with mixed-endian doubles on little-endian ARM
14736processors.
14737@item fpa
14738GCC-compiled FPA co-processor.
14739@item softvfp
14740Software FPU with pure-endian doubles.
14741@item vfp
14742VFP co-processor.
14743@end table
14744
14745@item show arm fpu
14746Show the current type of the FPU.
14747
14748@item set arm abi
14749This command forces @value{GDBN} to use the specified ABI.
14750
14751@item show arm abi
14752Show the currently used ABI.
14753
14754@item set debug arm
14755Toggle whether to display ARM-specific debugging messages from the ARM
14756target support subsystem.
14757
14758@item show debug arm
14759Show whether ARM-specific debugging messages are enabled.
14760@end table
14761
c45da7e6
EZ
14762The following commands are available when an ARM target is debugged
14763using the RDI interface:
14764
14765@table @code
14766@item rdilogfile @r{[}@var{file}@r{]}
14767@kindex rdilogfile
14768@cindex ADP (Angel Debugger Protocol) logging
14769Set the filename for the ADP (Angel Debugger Protocol) packet log.
14770With an argument, sets the log file to the specified @var{file}. With
14771no argument, show the current log file name. The default log file is
14772@file{rdi.log}.
14773
14774@item rdilogenable @r{[}@var{arg}@r{]}
14775@kindex rdilogenable
14776Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14777enables logging, with an argument 0 or @code{"no"} disables it. With
14778no arguments displays the current setting. When logging is enabled,
14779ADP packets exchanged between @value{GDBN} and the RDI target device
14780are logged to a file.
14781
14782@item set rdiromatzero
14783@kindex set rdiromatzero
14784@cindex ROM at zero address, RDI
14785Tell @value{GDBN} whether the target has ROM at address 0. If on,
14786vector catching is disabled, so that zero address can be used. If off
14787(the default), vector catching is enabled. For this command to take
14788effect, it needs to be invoked prior to the @code{target rdi} command.
14789
14790@item show rdiromatzero
14791@kindex show rdiromatzero
14792Show the current setting of ROM at zero address.
14793
14794@item set rdiheartbeat
14795@kindex set rdiheartbeat
14796@cindex RDI heartbeat
14797Enable or disable RDI heartbeat packets. It is not recommended to
14798turn on this option, since it confuses ARM and EPI JTAG interface, as
14799well as the Angel monitor.
14800
14801@item show rdiheartbeat
14802@kindex show rdiheartbeat
14803Show the setting of RDI heartbeat packets.
14804@end table
14805
e2f4edfd 14806
8e04817f 14807@node M32R/D
ba04e063 14808@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14809
14810@table @code
8e04817f
AC
14811@kindex target m32r
14812@item target m32r @var{dev}
172c2a43 14813Renesas M32R/D ROM monitor.
8e04817f 14814
fb3e19c0
KI
14815@kindex target m32rsdi
14816@item target m32rsdi @var{dev}
14817Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14818@end table
14819
14820The following @value{GDBN} commands are specific to the M32R monitor:
14821
14822@table @code
14823@item set download-path @var{path}
14824@kindex set download-path
14825@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14826Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14827
14828@item show download-path
14829@kindex show download-path
14830Show the default path for downloadable @sc{srec} files.
fb3e19c0 14831
721c2651
EZ
14832@item set board-address @var{addr}
14833@kindex set board-address
14834@cindex M32-EVA target board address
14835Set the IP address for the M32R-EVA target board.
14836
14837@item show board-address
14838@kindex show board-address
14839Show the current IP address of the target board.
14840
14841@item set server-address @var{addr}
14842@kindex set server-address
14843@cindex download server address (M32R)
14844Set the IP address for the download server, which is the @value{GDBN}'s
14845host machine.
14846
14847@item show server-address
14848@kindex show server-address
14849Display the IP address of the download server.
14850
14851@item upload @r{[}@var{file}@r{]}
14852@kindex upload@r{, M32R}
14853Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14854upload capability. If no @var{file} argument is given, the current
14855executable file is uploaded.
14856
14857@item tload @r{[}@var{file}@r{]}
14858@kindex tload@r{, M32R}
14859Test the @code{upload} command.
8e04817f
AC
14860@end table
14861
ba04e063
EZ
14862The following commands are available for M32R/SDI:
14863
14864@table @code
14865@item sdireset
14866@kindex sdireset
14867@cindex reset SDI connection, M32R
14868This command resets the SDI connection.
14869
14870@item sdistatus
14871@kindex sdistatus
14872This command shows the SDI connection status.
14873
14874@item debug_chaos
14875@kindex debug_chaos
14876@cindex M32R/Chaos debugging
14877Instructs the remote that M32R/Chaos debugging is to be used.
14878
14879@item use_debug_dma
14880@kindex use_debug_dma
14881Instructs the remote to use the DEBUG_DMA method of accessing memory.
14882
14883@item use_mon_code
14884@kindex use_mon_code
14885Instructs the remote to use the MON_CODE method of accessing memory.
14886
14887@item use_ib_break
14888@kindex use_ib_break
14889Instructs the remote to set breakpoints by IB break.
14890
14891@item use_dbt_break
14892@kindex use_dbt_break
14893Instructs the remote to set breakpoints by DBT.
14894@end table
14895
8e04817f
AC
14896@node M68K
14897@subsection M68k
14898
7ce59000
DJ
14899The Motorola m68k configuration includes ColdFire support, and a
14900target command for the following ROM monitor.
8e04817f
AC
14901
14902@table @code
14903
8e04817f
AC
14904@kindex target dbug
14905@item target dbug @var{dev}
14906dBUG ROM monitor for Motorola ColdFire.
14907
8e04817f
AC
14908@end table
14909
8e04817f
AC
14910@node MIPS Embedded
14911@subsection MIPS Embedded
14912
14913@cindex MIPS boards
14914@value{GDBN} can use the MIPS remote debugging protocol to talk to a
14915MIPS board attached to a serial line. This is available when
14916you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 14917
8e04817f
AC
14918@need 1000
14919Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 14920
8e04817f
AC
14921@table @code
14922@item target mips @var{port}
14923@kindex target mips @var{port}
14924To run a program on the board, start up @code{@value{GDBP}} with the
14925name of your program as the argument. To connect to the board, use the
14926command @samp{target mips @var{port}}, where @var{port} is the name of
14927the serial port connected to the board. If the program has not already
14928been downloaded to the board, you may use the @code{load} command to
14929download it. You can then use all the usual @value{GDBN} commands.
104c1213 14930
8e04817f
AC
14931For example, this sequence connects to the target board through a serial
14932port, and loads and runs a program called @var{prog} through the
14933debugger:
104c1213 14934
474c8240 14935@smallexample
8e04817f
AC
14936host$ @value{GDBP} @var{prog}
14937@value{GDBN} is free software and @dots{}
14938(@value{GDBP}) target mips /dev/ttyb
14939(@value{GDBP}) load @var{prog}
14940(@value{GDBP}) run
474c8240 14941@end smallexample
104c1213 14942
8e04817f
AC
14943@item target mips @var{hostname}:@var{portnumber}
14944On some @value{GDBN} host configurations, you can specify a TCP
14945connection (for instance, to a serial line managed by a terminal
14946concentrator) instead of a serial port, using the syntax
14947@samp{@var{hostname}:@var{portnumber}}.
104c1213 14948
8e04817f
AC
14949@item target pmon @var{port}
14950@kindex target pmon @var{port}
14951PMON ROM monitor.
104c1213 14952
8e04817f
AC
14953@item target ddb @var{port}
14954@kindex target ddb @var{port}
14955NEC's DDB variant of PMON for Vr4300.
104c1213 14956
8e04817f
AC
14957@item target lsi @var{port}
14958@kindex target lsi @var{port}
14959LSI variant of PMON.
104c1213 14960
8e04817f
AC
14961@kindex target r3900
14962@item target r3900 @var{dev}
14963Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 14964
8e04817f
AC
14965@kindex target array
14966@item target array @var{dev}
14967Array Tech LSI33K RAID controller board.
104c1213 14968
8e04817f 14969@end table
104c1213 14970
104c1213 14971
8e04817f
AC
14972@noindent
14973@value{GDBN} also supports these special commands for MIPS targets:
104c1213 14974
8e04817f 14975@table @code
8e04817f
AC
14976@item set mipsfpu double
14977@itemx set mipsfpu single
14978@itemx set mipsfpu none
a64548ea 14979@itemx set mipsfpu auto
8e04817f
AC
14980@itemx show mipsfpu
14981@kindex set mipsfpu
14982@kindex show mipsfpu
14983@cindex MIPS remote floating point
14984@cindex floating point, MIPS remote
14985If your target board does not support the MIPS floating point
14986coprocessor, you should use the command @samp{set mipsfpu none} (if you
14987need this, you may wish to put the command in your @value{GDBN} init
14988file). This tells @value{GDBN} how to find the return value of
14989functions which return floating point values. It also allows
14990@value{GDBN} to avoid saving the floating point registers when calling
14991functions on the board. If you are using a floating point coprocessor
14992with only single precision floating point support, as on the @sc{r4650}
14993processor, use the command @samp{set mipsfpu single}. The default
14994double precision floating point coprocessor may be selected using
14995@samp{set mipsfpu double}.
104c1213 14996
8e04817f
AC
14997In previous versions the only choices were double precision or no
14998floating point, so @samp{set mipsfpu on} will select double precision
14999and @samp{set mipsfpu off} will select no floating point.
104c1213 15000
8e04817f
AC
15001As usual, you can inquire about the @code{mipsfpu} variable with
15002@samp{show mipsfpu}.
104c1213 15003
8e04817f
AC
15004@item set timeout @var{seconds}
15005@itemx set retransmit-timeout @var{seconds}
15006@itemx show timeout
15007@itemx show retransmit-timeout
15008@cindex @code{timeout}, MIPS protocol
15009@cindex @code{retransmit-timeout}, MIPS protocol
15010@kindex set timeout
15011@kindex show timeout
15012@kindex set retransmit-timeout
15013@kindex show retransmit-timeout
15014You can control the timeout used while waiting for a packet, in the MIPS
15015remote protocol, with the @code{set timeout @var{seconds}} command. The
15016default is 5 seconds. Similarly, you can control the timeout used while
15017waiting for an acknowledgement of a packet with the @code{set
15018retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15019You can inspect both values with @code{show timeout} and @code{show
15020retransmit-timeout}. (These commands are @emph{only} available when
15021@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15022
8e04817f
AC
15023The timeout set by @code{set timeout} does not apply when @value{GDBN}
15024is waiting for your program to stop. In that case, @value{GDBN} waits
15025forever because it has no way of knowing how long the program is going
15026to run before stopping.
ba04e063
EZ
15027
15028@item set syn-garbage-limit @var{num}
15029@kindex set syn-garbage-limit@r{, MIPS remote}
15030@cindex synchronize with remote MIPS target
15031Limit the maximum number of characters @value{GDBN} should ignore when
15032it tries to synchronize with the remote target. The default is 10
15033characters. Setting the limit to -1 means there's no limit.
15034
15035@item show syn-garbage-limit
15036@kindex show syn-garbage-limit@r{, MIPS remote}
15037Show the current limit on the number of characters to ignore when
15038trying to synchronize with the remote system.
15039
15040@item set monitor-prompt @var{prompt}
15041@kindex set monitor-prompt@r{, MIPS remote}
15042@cindex remote monitor prompt
15043Tell @value{GDBN} to expect the specified @var{prompt} string from the
15044remote monitor. The default depends on the target:
15045@table @asis
15046@item pmon target
15047@samp{PMON}
15048@item ddb target
15049@samp{NEC010}
15050@item lsi target
15051@samp{PMON>}
15052@end table
15053
15054@item show monitor-prompt
15055@kindex show monitor-prompt@r{, MIPS remote}
15056Show the current strings @value{GDBN} expects as the prompt from the
15057remote monitor.
15058
15059@item set monitor-warnings
15060@kindex set monitor-warnings@r{, MIPS remote}
15061Enable or disable monitor warnings about hardware breakpoints. This
15062has effect only for the @code{lsi} target. When on, @value{GDBN} will
15063display warning messages whose codes are returned by the @code{lsi}
15064PMON monitor for breakpoint commands.
15065
15066@item show monitor-warnings
15067@kindex show monitor-warnings@r{, MIPS remote}
15068Show the current setting of printing monitor warnings.
15069
15070@item pmon @var{command}
15071@kindex pmon@r{, MIPS remote}
15072@cindex send PMON command
15073This command allows sending an arbitrary @var{command} string to the
15074monitor. The monitor must be in debug mode for this to work.
8e04817f 15075@end table
104c1213 15076
a37295f9
MM
15077@node OpenRISC 1000
15078@subsection OpenRISC 1000
15079@cindex OpenRISC 1000
15080
15081@cindex or1k boards
15082See OR1k Architecture document (@uref{www.opencores.org}) for more information
15083about platform and commands.
15084
15085@table @code
15086
15087@kindex target jtag
15088@item target jtag jtag://@var{host}:@var{port}
15089
15090Connects to remote JTAG server.
15091JTAG remote server can be either an or1ksim or JTAG server,
15092connected via parallel port to the board.
15093
15094Example: @code{target jtag jtag://localhost:9999}
15095
15096@kindex or1ksim
15097@item or1ksim @var{command}
15098If connected to @code{or1ksim} OpenRISC 1000 Architectural
15099Simulator, proprietary commands can be executed.
15100
15101@kindex info or1k spr
15102@item info or1k spr
15103Displays spr groups.
15104
15105@item info or1k spr @var{group}
15106@itemx info or1k spr @var{groupno}
15107Displays register names in selected group.
15108
15109@item info or1k spr @var{group} @var{register}
15110@itemx info or1k spr @var{register}
15111@itemx info or1k spr @var{groupno} @var{registerno}
15112@itemx info or1k spr @var{registerno}
15113Shows information about specified spr register.
15114
15115@kindex spr
15116@item spr @var{group} @var{register} @var{value}
15117@itemx spr @var{register @var{value}}
15118@itemx spr @var{groupno} @var{registerno @var{value}}
15119@itemx spr @var{registerno @var{value}}
15120Writes @var{value} to specified spr register.
15121@end table
15122
15123Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15124It is very similar to @value{GDBN} trace, except it does not interfere with normal
15125program execution and is thus much faster. Hardware breakpoints/watchpoint
15126triggers can be set using:
15127@table @code
15128@item $LEA/$LDATA
15129Load effective address/data
15130@item $SEA/$SDATA
15131Store effective address/data
15132@item $AEA/$ADATA
15133Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15134@item $FETCH
15135Fetch data
15136@end table
15137
15138When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15139@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15140
15141@code{htrace} commands:
15142@cindex OpenRISC 1000 htrace
15143@table @code
15144@kindex hwatch
15145@item hwatch @var{conditional}
d3e8051b 15146Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15147or Data. For example:
15148
15149@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15150
15151@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15152
4644b6e3 15153@kindex htrace
a37295f9
MM
15154@item htrace info
15155Display information about current HW trace configuration.
15156
a37295f9
MM
15157@item htrace trigger @var{conditional}
15158Set starting criteria for HW trace.
15159
a37295f9
MM
15160@item htrace qualifier @var{conditional}
15161Set acquisition qualifier for HW trace.
15162
a37295f9
MM
15163@item htrace stop @var{conditional}
15164Set HW trace stopping criteria.
15165
f153cc92 15166@item htrace record [@var{data}]*
a37295f9
MM
15167Selects the data to be recorded, when qualifier is met and HW trace was
15168triggered.
15169
a37295f9 15170@item htrace enable
a37295f9
MM
15171@itemx htrace disable
15172Enables/disables the HW trace.
15173
f153cc92 15174@item htrace rewind [@var{filename}]
a37295f9
MM
15175Clears currently recorded trace data.
15176
15177If filename is specified, new trace file is made and any newly collected data
15178will be written there.
15179
f153cc92 15180@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15181Prints trace buffer, using current record configuration.
15182
a37295f9
MM
15183@item htrace mode continuous
15184Set continuous trace mode.
15185
a37295f9
MM
15186@item htrace mode suspend
15187Set suspend trace mode.
15188
15189@end table
15190
8e04817f
AC
15191@node PowerPC
15192@subsection PowerPC
104c1213 15193
55eddb0f
DJ
15194@value{GDBN} provides the following PowerPC-specific commands:
15195
104c1213 15196@table @code
55eddb0f
DJ
15197@kindex set powerpc
15198@item set powerpc soft-float
15199@itemx show powerpc soft-float
15200Force @value{GDBN} to use (or not use) a software floating point calling
15201convention. By default, @value{GDBN} selects the calling convention based
15202on the selected architecture and the provided executable file.
15203
15204@item set powerpc vector-abi
15205@itemx show powerpc vector-abi
15206Force @value{GDBN} to use the specified calling convention for vector
15207arguments and return values. The valid options are @samp{auto};
15208@samp{generic}, to avoid vector registers even if they are present;
15209@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15210registers. By default, @value{GDBN} selects the calling convention
15211based on the selected architecture and the provided executable file.
15212
8e04817f
AC
15213@kindex target dink32
15214@item target dink32 @var{dev}
15215DINK32 ROM monitor.
104c1213 15216
8e04817f
AC
15217@kindex target ppcbug
15218@item target ppcbug @var{dev}
15219@kindex target ppcbug1
15220@item target ppcbug1 @var{dev}
15221PPCBUG ROM monitor for PowerPC.
104c1213 15222
8e04817f
AC
15223@kindex target sds
15224@item target sds @var{dev}
15225SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15226@end table
8e04817f 15227
c45da7e6 15228@cindex SDS protocol
d52fb0e9 15229The following commands specific to the SDS protocol are supported
55eddb0f 15230by @value{GDBN}:
c45da7e6
EZ
15231
15232@table @code
15233@item set sdstimeout @var{nsec}
15234@kindex set sdstimeout
15235Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15236default is 2 seconds.
15237
15238@item show sdstimeout
15239@kindex show sdstimeout
15240Show the current value of the SDS timeout.
15241
15242@item sds @var{command}
15243@kindex sds@r{, a command}
15244Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15245@end table
15246
c45da7e6 15247
8e04817f
AC
15248@node PA
15249@subsection HP PA Embedded
104c1213
JM
15250
15251@table @code
15252
8e04817f
AC
15253@kindex target op50n
15254@item target op50n @var{dev}
15255OP50N monitor, running on an OKI HPPA board.
15256
15257@kindex target w89k
15258@item target w89k @var{dev}
15259W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15260
15261@end table
15262
8e04817f
AC
15263@node Sparclet
15264@subsection Tsqware Sparclet
104c1213 15265
8e04817f
AC
15266@cindex Sparclet
15267
15268@value{GDBN} enables developers to debug tasks running on
15269Sparclet targets from a Unix host.
15270@value{GDBN} uses code that runs on
15271both the Unix host and on the Sparclet target. The program
15272@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15273
8e04817f
AC
15274@table @code
15275@item remotetimeout @var{args}
15276@kindex remotetimeout
15277@value{GDBN} supports the option @code{remotetimeout}.
15278This option is set by the user, and @var{args} represents the number of
15279seconds @value{GDBN} waits for responses.
104c1213
JM
15280@end table
15281
8e04817f
AC
15282@cindex compiling, on Sparclet
15283When compiling for debugging, include the options @samp{-g} to get debug
15284information and @samp{-Ttext} to relocate the program to where you wish to
15285load it on the target. You may also want to add the options @samp{-n} or
15286@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15287
474c8240 15288@smallexample
8e04817f 15289sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15290@end smallexample
104c1213 15291
8e04817f 15292You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15293
474c8240 15294@smallexample
8e04817f 15295sparclet-aout-objdump --headers --syms prog
474c8240 15296@end smallexample
104c1213 15297
8e04817f
AC
15298@cindex running, on Sparclet
15299Once you have set
15300your Unix execution search path to find @value{GDBN}, you are ready to
15301run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15302(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15303
8e04817f
AC
15304@value{GDBN} comes up showing the prompt:
15305
474c8240 15306@smallexample
8e04817f 15307(gdbslet)
474c8240 15308@end smallexample
104c1213
JM
15309
15310@menu
8e04817f
AC
15311* Sparclet File:: Setting the file to debug
15312* Sparclet Connection:: Connecting to Sparclet
15313* Sparclet Download:: Sparclet download
15314* Sparclet Execution:: Running and debugging
104c1213
JM
15315@end menu
15316
8e04817f 15317@node Sparclet File
79a6e687 15318@subsubsection Setting File to Debug
104c1213 15319
8e04817f 15320The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15321
474c8240 15322@smallexample
8e04817f 15323(gdbslet) file prog
474c8240 15324@end smallexample
104c1213 15325
8e04817f
AC
15326@need 1000
15327@value{GDBN} then attempts to read the symbol table of @file{prog}.
15328@value{GDBN} locates
15329the file by searching the directories listed in the command search
15330path.
12c27660 15331If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15332files will be searched as well.
15333@value{GDBN} locates
15334the source files by searching the directories listed in the directory search
79a6e687 15335path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15336If it fails
15337to find a file, it displays a message such as:
104c1213 15338
474c8240 15339@smallexample
8e04817f 15340prog: No such file or directory.
474c8240 15341@end smallexample
104c1213 15342
8e04817f
AC
15343When this happens, add the appropriate directories to the search paths with
15344the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15345@code{target} command again.
104c1213 15346
8e04817f
AC
15347@node Sparclet Connection
15348@subsubsection Connecting to Sparclet
104c1213 15349
8e04817f
AC
15350The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15351To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15352
474c8240 15353@smallexample
8e04817f
AC
15354(gdbslet) target sparclet /dev/ttya
15355Remote target sparclet connected to /dev/ttya
15356main () at ../prog.c:3
474c8240 15357@end smallexample
104c1213 15358
8e04817f
AC
15359@need 750
15360@value{GDBN} displays messages like these:
104c1213 15361
474c8240 15362@smallexample
8e04817f 15363Connected to ttya.
474c8240 15364@end smallexample
104c1213 15365
8e04817f 15366@node Sparclet Download
79a6e687 15367@subsubsection Sparclet Download
104c1213 15368
8e04817f
AC
15369@cindex download to Sparclet
15370Once connected to the Sparclet target,
15371you can use the @value{GDBN}
15372@code{load} command to download the file from the host to the target.
15373The file name and load offset should be given as arguments to the @code{load}
15374command.
15375Since the file format is aout, the program must be loaded to the starting
15376address. You can use @code{objdump} to find out what this value is. The load
15377offset is an offset which is added to the VMA (virtual memory address)
15378of each of the file's sections.
15379For instance, if the program
15380@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15381and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15382
474c8240 15383@smallexample
8e04817f
AC
15384(gdbslet) load prog 0x12010000
15385Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15386@end smallexample
104c1213 15387
8e04817f
AC
15388If the code is loaded at a different address then what the program was linked
15389to, you may need to use the @code{section} and @code{add-symbol-file} commands
15390to tell @value{GDBN} where to map the symbol table.
15391
15392@node Sparclet Execution
79a6e687 15393@subsubsection Running and Debugging
8e04817f
AC
15394
15395@cindex running and debugging Sparclet programs
15396You can now begin debugging the task using @value{GDBN}'s execution control
15397commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15398manual for the list of commands.
15399
474c8240 15400@smallexample
8e04817f
AC
15401(gdbslet) b main
15402Breakpoint 1 at 0x12010000: file prog.c, line 3.
15403(gdbslet) run
15404Starting program: prog
15405Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
154063 char *symarg = 0;
15407(gdbslet) step
154084 char *execarg = "hello!";
15409(gdbslet)
474c8240 15410@end smallexample
8e04817f
AC
15411
15412@node Sparclite
15413@subsection Fujitsu Sparclite
104c1213
JM
15414
15415@table @code
15416
8e04817f
AC
15417@kindex target sparclite
15418@item target sparclite @var{dev}
15419Fujitsu sparclite boards, used only for the purpose of loading.
15420You must use an additional command to debug the program.
15421For example: target remote @var{dev} using @value{GDBN} standard
15422remote protocol.
104c1213
JM
15423
15424@end table
15425
8e04817f
AC
15426@node Z8000
15427@subsection Zilog Z8000
104c1213 15428
8e04817f
AC
15429@cindex Z8000
15430@cindex simulator, Z8000
15431@cindex Zilog Z8000 simulator
104c1213 15432
8e04817f
AC
15433When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15434a Z8000 simulator.
15435
15436For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15437unsegmented variant of the Z8000 architecture) or the Z8001 (the
15438segmented variant). The simulator recognizes which architecture is
15439appropriate by inspecting the object code.
104c1213 15440
8e04817f
AC
15441@table @code
15442@item target sim @var{args}
15443@kindex sim
15444@kindex target sim@r{, with Z8000}
15445Debug programs on a simulated CPU. If the simulator supports setup
15446options, specify them via @var{args}.
104c1213
JM
15447@end table
15448
8e04817f
AC
15449@noindent
15450After specifying this target, you can debug programs for the simulated
15451CPU in the same style as programs for your host computer; use the
15452@code{file} command to load a new program image, the @code{run} command
15453to run your program, and so on.
15454
15455As well as making available all the usual machine registers
15456(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15457additional items of information as specially named registers:
104c1213
JM
15458
15459@table @code
15460
8e04817f
AC
15461@item cycles
15462Counts clock-ticks in the simulator.
104c1213 15463
8e04817f
AC
15464@item insts
15465Counts instructions run in the simulator.
104c1213 15466
8e04817f
AC
15467@item time
15468Execution time in 60ths of a second.
104c1213 15469
8e04817f 15470@end table
104c1213 15471
8e04817f
AC
15472You can refer to these values in @value{GDBN} expressions with the usual
15473conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15474conditional breakpoint that suspends only after at least 5000
15475simulated clock ticks.
104c1213 15476
a64548ea
EZ
15477@node AVR
15478@subsection Atmel AVR
15479@cindex AVR
15480
15481When configured for debugging the Atmel AVR, @value{GDBN} supports the
15482following AVR-specific commands:
15483
15484@table @code
15485@item info io_registers
15486@kindex info io_registers@r{, AVR}
15487@cindex I/O registers (Atmel AVR)
15488This command displays information about the AVR I/O registers. For
15489each register, @value{GDBN} prints its number and value.
15490@end table
15491
15492@node CRIS
15493@subsection CRIS
15494@cindex CRIS
15495
15496When configured for debugging CRIS, @value{GDBN} provides the
15497following CRIS-specific commands:
15498
15499@table @code
15500@item set cris-version @var{ver}
15501@cindex CRIS version
e22e55c9
OF
15502Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15503The CRIS version affects register names and sizes. This command is useful in
15504case autodetection of the CRIS version fails.
a64548ea
EZ
15505
15506@item show cris-version
15507Show the current CRIS version.
15508
15509@item set cris-dwarf2-cfi
15510@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15511Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15512Change to @samp{off} when using @code{gcc-cris} whose version is below
15513@code{R59}.
a64548ea
EZ
15514
15515@item show cris-dwarf2-cfi
15516Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15517
15518@item set cris-mode @var{mode}
15519@cindex CRIS mode
15520Set the current CRIS mode to @var{mode}. It should only be changed when
15521debugging in guru mode, in which case it should be set to
15522@samp{guru} (the default is @samp{normal}).
15523
15524@item show cris-mode
15525Show the current CRIS mode.
a64548ea
EZ
15526@end table
15527
15528@node Super-H
15529@subsection Renesas Super-H
15530@cindex Super-H
15531
15532For the Renesas Super-H processor, @value{GDBN} provides these
15533commands:
15534
15535@table @code
15536@item regs
15537@kindex regs@r{, Super-H}
15538Show the values of all Super-H registers.
15539@end table
15540
15541
8e04817f
AC
15542@node Architectures
15543@section Architectures
104c1213 15544
8e04817f
AC
15545This section describes characteristics of architectures that affect
15546all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15547
8e04817f 15548@menu
9c16f35a 15549* i386::
8e04817f
AC
15550* A29K::
15551* Alpha::
15552* MIPS::
a64548ea 15553* HPPA:: HP PA architecture
23d964e7 15554* SPU:: Cell Broadband Engine SPU architecture
8e04817f 15555@end menu
104c1213 15556
9c16f35a 15557@node i386
db2e3e2e 15558@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15559
15560@table @code
15561@item set struct-convention @var{mode}
15562@kindex set struct-convention
15563@cindex struct return convention
15564@cindex struct/union returned in registers
15565Set the convention used by the inferior to return @code{struct}s and
15566@code{union}s from functions to @var{mode}. Possible values of
15567@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15568default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15569are returned on the stack, while @code{"reg"} means that a
15570@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15571be returned in a register.
15572
15573@item show struct-convention
15574@kindex show struct-convention
15575Show the current setting of the convention to return @code{struct}s
15576from functions.
15577@end table
15578
8e04817f
AC
15579@node A29K
15580@subsection A29K
104c1213
JM
15581
15582@table @code
104c1213 15583
8e04817f
AC
15584@kindex set rstack_high_address
15585@cindex AMD 29K register stack
15586@cindex register stack, AMD29K
15587@item set rstack_high_address @var{address}
15588On AMD 29000 family processors, registers are saved in a separate
15589@dfn{register stack}. There is no way for @value{GDBN} to determine the
15590extent of this stack. Normally, @value{GDBN} just assumes that the
15591stack is ``large enough''. This may result in @value{GDBN} referencing
15592memory locations that do not exist. If necessary, you can get around
15593this problem by specifying the ending address of the register stack with
15594the @code{set rstack_high_address} command. The argument should be an
15595address, which you probably want to precede with @samp{0x} to specify in
15596hexadecimal.
104c1213 15597
8e04817f
AC
15598@kindex show rstack_high_address
15599@item show rstack_high_address
15600Display the current limit of the register stack, on AMD 29000 family
15601processors.
104c1213 15602
8e04817f 15603@end table
104c1213 15604
8e04817f
AC
15605@node Alpha
15606@subsection Alpha
104c1213 15607
8e04817f 15608See the following section.
104c1213 15609
8e04817f
AC
15610@node MIPS
15611@subsection MIPS
104c1213 15612
8e04817f
AC
15613@cindex stack on Alpha
15614@cindex stack on MIPS
15615@cindex Alpha stack
15616@cindex MIPS stack
15617Alpha- and MIPS-based computers use an unusual stack frame, which
15618sometimes requires @value{GDBN} to search backward in the object code to
15619find the beginning of a function.
104c1213 15620
8e04817f
AC
15621@cindex response time, MIPS debugging
15622To improve response time (especially for embedded applications, where
15623@value{GDBN} may be restricted to a slow serial line for this search)
15624you may want to limit the size of this search, using one of these
15625commands:
104c1213 15626
8e04817f
AC
15627@table @code
15628@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15629@item set heuristic-fence-post @var{limit}
15630Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15631search for the beginning of a function. A value of @var{0} (the
15632default) means there is no limit. However, except for @var{0}, the
15633larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15634and therefore the longer it takes to run. You should only need to use
15635this command when debugging a stripped executable.
104c1213 15636
8e04817f
AC
15637@item show heuristic-fence-post
15638Display the current limit.
15639@end table
104c1213
JM
15640
15641@noindent
8e04817f
AC
15642These commands are available @emph{only} when @value{GDBN} is configured
15643for debugging programs on Alpha or MIPS processors.
104c1213 15644
a64548ea
EZ
15645Several MIPS-specific commands are available when debugging MIPS
15646programs:
15647
15648@table @code
a64548ea
EZ
15649@item set mips abi @var{arg}
15650@kindex set mips abi
15651@cindex set ABI for MIPS
15652Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15653values of @var{arg} are:
15654
15655@table @samp
15656@item auto
15657The default ABI associated with the current binary (this is the
15658default).
15659@item o32
15660@item o64
15661@item n32
15662@item n64
15663@item eabi32
15664@item eabi64
15665@item auto
15666@end table
15667
15668@item show mips abi
15669@kindex show mips abi
15670Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15671
15672@item set mipsfpu
15673@itemx show mipsfpu
15674@xref{MIPS Embedded, set mipsfpu}.
15675
15676@item set mips mask-address @var{arg}
15677@kindex set mips mask-address
15678@cindex MIPS addresses, masking
15679This command determines whether the most-significant 32 bits of 64-bit
15680MIPS addresses are masked off. The argument @var{arg} can be
15681@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15682setting, which lets @value{GDBN} determine the correct value.
15683
15684@item show mips mask-address
15685@kindex show mips mask-address
15686Show whether the upper 32 bits of MIPS addresses are masked off or
15687not.
15688
15689@item set remote-mips64-transfers-32bit-regs
15690@kindex set remote-mips64-transfers-32bit-regs
15691This command controls compatibility with 64-bit MIPS targets that
15692transfer data in 32-bit quantities. If you have an old MIPS 64 target
15693that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15694and 64 bits for other registers, set this option to @samp{on}.
15695
15696@item show remote-mips64-transfers-32bit-regs
15697@kindex show remote-mips64-transfers-32bit-regs
15698Show the current setting of compatibility with older MIPS 64 targets.
15699
15700@item set debug mips
15701@kindex set debug mips
15702This command turns on and off debugging messages for the MIPS-specific
15703target code in @value{GDBN}.
15704
15705@item show debug mips
15706@kindex show debug mips
15707Show the current setting of MIPS debugging messages.
15708@end table
15709
15710
15711@node HPPA
15712@subsection HPPA
15713@cindex HPPA support
15714
d3e8051b 15715When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15716following special commands:
15717
15718@table @code
15719@item set debug hppa
15720@kindex set debug hppa
db2e3e2e 15721This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15722messages are to be displayed.
15723
15724@item show debug hppa
15725Show whether HPPA debugging messages are displayed.
15726
15727@item maint print unwind @var{address}
15728@kindex maint print unwind@r{, HPPA}
15729This command displays the contents of the unwind table entry at the
15730given @var{address}.
15731
15732@end table
15733
104c1213 15734
23d964e7
UW
15735@node SPU
15736@subsection Cell Broadband Engine SPU architecture
15737@cindex Cell Broadband Engine
15738@cindex SPU
15739
15740When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15741it provides the following special commands:
15742
15743@table @code
15744@item info spu event
15745@kindex info spu
15746Display SPU event facility status. Shows current event mask
15747and pending event status.
15748
15749@item info spu signal
15750Display SPU signal notification facility status. Shows pending
15751signal-control word and signal notification mode of both signal
15752notification channels.
15753
15754@item info spu mailbox
15755Display SPU mailbox facility status. Shows all pending entries,
15756in order of processing, in each of the SPU Write Outbound,
15757SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15758
15759@item info spu dma
15760Display MFC DMA status. Shows all pending commands in the MFC
15761DMA queue. For each entry, opcode, tag, class IDs, effective
15762and local store addresses and transfer size are shown.
15763
15764@item info spu proxydma
15765Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15766Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15767and local store addresses and transfer size are shown.
15768
15769@end table
15770
15771
8e04817f
AC
15772@node Controlling GDB
15773@chapter Controlling @value{GDBN}
15774
15775You can alter the way @value{GDBN} interacts with you by using the
15776@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15777data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15778described here.
15779
15780@menu
15781* Prompt:: Prompt
15782* Editing:: Command editing
d620b259 15783* Command History:: Command history
8e04817f
AC
15784* Screen Size:: Screen size
15785* Numbers:: Numbers
1e698235 15786* ABI:: Configuring the current ABI
8e04817f
AC
15787* Messages/Warnings:: Optional warnings and messages
15788* Debugging Output:: Optional messages about internal happenings
15789@end menu
15790
15791@node Prompt
15792@section Prompt
104c1213 15793
8e04817f 15794@cindex prompt
104c1213 15795
8e04817f
AC
15796@value{GDBN} indicates its readiness to read a command by printing a string
15797called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15798can change the prompt string with the @code{set prompt} command. For
15799instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15800the prompt in one of the @value{GDBN} sessions so that you can always tell
15801which one you are talking to.
104c1213 15802
8e04817f
AC
15803@emph{Note:} @code{set prompt} does not add a space for you after the
15804prompt you set. This allows you to set a prompt which ends in a space
15805or a prompt that does not.
104c1213 15806
8e04817f
AC
15807@table @code
15808@kindex set prompt
15809@item set prompt @var{newprompt}
15810Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15811
8e04817f
AC
15812@kindex show prompt
15813@item show prompt
15814Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15815@end table
15816
8e04817f 15817@node Editing
79a6e687 15818@section Command Editing
8e04817f
AC
15819@cindex readline
15820@cindex command line editing
104c1213 15821
703663ab 15822@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15823@sc{gnu} library provides consistent behavior for programs which provide a
15824command line interface to the user. Advantages are @sc{gnu} Emacs-style
15825or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15826substitution, and a storage and recall of command history across
15827debugging sessions.
104c1213 15828
8e04817f
AC
15829You may control the behavior of command line editing in @value{GDBN} with the
15830command @code{set}.
104c1213 15831
8e04817f
AC
15832@table @code
15833@kindex set editing
15834@cindex editing
15835@item set editing
15836@itemx set editing on
15837Enable command line editing (enabled by default).
104c1213 15838
8e04817f
AC
15839@item set editing off
15840Disable command line editing.
104c1213 15841
8e04817f
AC
15842@kindex show editing
15843@item show editing
15844Show whether command line editing is enabled.
104c1213
JM
15845@end table
15846
703663ab
EZ
15847@xref{Command Line Editing}, for more details about the Readline
15848interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15849encouraged to read that chapter.
15850
d620b259 15851@node Command History
79a6e687 15852@section Command History
703663ab 15853@cindex command history
8e04817f
AC
15854
15855@value{GDBN} can keep track of the commands you type during your
15856debugging sessions, so that you can be certain of precisely what
15857happened. Use these commands to manage the @value{GDBN} command
15858history facility.
104c1213 15859
703663ab
EZ
15860@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15861package, to provide the history facility. @xref{Using History
15862Interactively}, for the detailed description of the History library.
15863
d620b259 15864To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15865the state which is seen by users, prefix it with @samp{server }
15866(@pxref{Server Prefix}). This
d620b259
NR
15867means that this command will not affect the command history, nor will it
15868affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15869pressed on a line by itself.
15870
15871@cindex @code{server}, command prefix
15872The server prefix does not affect the recording of values into the value
15873history; to print a value without recording it into the value history,
15874use the @code{output} command instead of the @code{print} command.
15875
703663ab
EZ
15876Here is the description of @value{GDBN} commands related to command
15877history.
15878
104c1213 15879@table @code
8e04817f
AC
15880@cindex history substitution
15881@cindex history file
15882@kindex set history filename
4644b6e3 15883@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
15884@item set history filename @var{fname}
15885Set the name of the @value{GDBN} command history file to @var{fname}.
15886This is the file where @value{GDBN} reads an initial command history
15887list, and where it writes the command history from this session when it
15888exits. You can access this list through history expansion or through
15889the history command editing characters listed below. This file defaults
15890to the value of the environment variable @code{GDBHISTFILE}, or to
15891@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
15892is not set.
104c1213 15893
9c16f35a
EZ
15894@cindex save command history
15895@kindex set history save
8e04817f
AC
15896@item set history save
15897@itemx set history save on
15898Record command history in a file, whose name may be specified with the
15899@code{set history filename} command. By default, this option is disabled.
104c1213 15900
8e04817f
AC
15901@item set history save off
15902Stop recording command history in a file.
104c1213 15903
8e04817f 15904@cindex history size
9c16f35a 15905@kindex set history size
6fc08d32 15906@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
15907@item set history size @var{size}
15908Set the number of commands which @value{GDBN} keeps in its history list.
15909This defaults to the value of the environment variable
15910@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
15911@end table
15912
8e04817f 15913History expansion assigns special meaning to the character @kbd{!}.
703663ab 15914@xref{Event Designators}, for more details.
8e04817f 15915
703663ab 15916@cindex history expansion, turn on/off
8e04817f
AC
15917Since @kbd{!} is also the logical not operator in C, history expansion
15918is off by default. If you decide to enable history expansion with the
15919@code{set history expansion on} command, you may sometimes need to
15920follow @kbd{!} (when it is used as logical not, in an expression) with
15921a space or a tab to prevent it from being expanded. The readline
15922history facilities do not attempt substitution on the strings
15923@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
15924
15925The commands to control history expansion are:
104c1213
JM
15926
15927@table @code
8e04817f
AC
15928@item set history expansion on
15929@itemx set history expansion
703663ab 15930@kindex set history expansion
8e04817f 15931Enable history expansion. History expansion is off by default.
104c1213 15932
8e04817f
AC
15933@item set history expansion off
15934Disable history expansion.
104c1213 15935
8e04817f
AC
15936@c @group
15937@kindex show history
15938@item show history
15939@itemx show history filename
15940@itemx show history save
15941@itemx show history size
15942@itemx show history expansion
15943These commands display the state of the @value{GDBN} history parameters.
15944@code{show history} by itself displays all four states.
15945@c @end group
15946@end table
15947
15948@table @code
9c16f35a
EZ
15949@kindex show commands
15950@cindex show last commands
15951@cindex display command history
8e04817f
AC
15952@item show commands
15953Display the last ten commands in the command history.
104c1213 15954
8e04817f
AC
15955@item show commands @var{n}
15956Print ten commands centered on command number @var{n}.
15957
15958@item show commands +
15959Print ten commands just after the commands last printed.
104c1213
JM
15960@end table
15961
8e04817f 15962@node Screen Size
79a6e687 15963@section Screen Size
8e04817f
AC
15964@cindex size of screen
15965@cindex pauses in output
104c1213 15966
8e04817f
AC
15967Certain commands to @value{GDBN} may produce large amounts of
15968information output to the screen. To help you read all of it,
15969@value{GDBN} pauses and asks you for input at the end of each page of
15970output. Type @key{RET} when you want to continue the output, or @kbd{q}
15971to discard the remaining output. Also, the screen width setting
15972determines when to wrap lines of output. Depending on what is being
15973printed, @value{GDBN} tries to break the line at a readable place,
15974rather than simply letting it overflow onto the following line.
15975
15976Normally @value{GDBN} knows the size of the screen from the terminal
15977driver software. For example, on Unix @value{GDBN} uses the termcap data base
15978together with the value of the @code{TERM} environment variable and the
15979@code{stty rows} and @code{stty cols} settings. If this is not correct,
15980you can override it with the @code{set height} and @code{set
15981width} commands:
15982
15983@table @code
15984@kindex set height
15985@kindex set width
15986@kindex show width
15987@kindex show height
15988@item set height @var{lpp}
15989@itemx show height
15990@itemx set width @var{cpl}
15991@itemx show width
15992These @code{set} commands specify a screen height of @var{lpp} lines and
15993a screen width of @var{cpl} characters. The associated @code{show}
15994commands display the current settings.
104c1213 15995
8e04817f
AC
15996If you specify a height of zero lines, @value{GDBN} does not pause during
15997output no matter how long the output is. This is useful if output is to a
15998file or to an editor buffer.
104c1213 15999
8e04817f
AC
16000Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16001from wrapping its output.
9c16f35a
EZ
16002
16003@item set pagination on
16004@itemx set pagination off
16005@kindex set pagination
16006Turn the output pagination on or off; the default is on. Turning
16007pagination off is the alternative to @code{set height 0}.
16008
16009@item show pagination
16010@kindex show pagination
16011Show the current pagination mode.
104c1213
JM
16012@end table
16013
8e04817f
AC
16014@node Numbers
16015@section Numbers
16016@cindex number representation
16017@cindex entering numbers
104c1213 16018
8e04817f
AC
16019You can always enter numbers in octal, decimal, or hexadecimal in
16020@value{GDBN} by the usual conventions: octal numbers begin with
16021@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16022begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16023@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1602410; likewise, the default display for numbers---when no particular
16025format is specified---is base 10. You can change the default base for
16026both input and output with the commands described below.
104c1213 16027
8e04817f
AC
16028@table @code
16029@kindex set input-radix
16030@item set input-radix @var{base}
16031Set the default base for numeric input. Supported choices
16032for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16033specified either unambiguously or using the current input radix; for
8e04817f 16034example, any of
104c1213 16035
8e04817f 16036@smallexample
9c16f35a
EZ
16037set input-radix 012
16038set input-radix 10.
16039set input-radix 0xa
8e04817f 16040@end smallexample
104c1213 16041
8e04817f 16042@noindent
9c16f35a 16043sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16044leaves the input radix unchanged, no matter what it was, since
16045@samp{10}, being without any leading or trailing signs of its base, is
16046interpreted in the current radix. Thus, if the current radix is 16,
16047@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16048change the radix.
104c1213 16049
8e04817f
AC
16050@kindex set output-radix
16051@item set output-radix @var{base}
16052Set the default base for numeric display. Supported choices
16053for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16054specified either unambiguously or using the current input radix.
104c1213 16055
8e04817f
AC
16056@kindex show input-radix
16057@item show input-radix
16058Display the current default base for numeric input.
104c1213 16059
8e04817f
AC
16060@kindex show output-radix
16061@item show output-radix
16062Display the current default base for numeric display.
9c16f35a
EZ
16063
16064@item set radix @r{[}@var{base}@r{]}
16065@itemx show radix
16066@kindex set radix
16067@kindex show radix
16068These commands set and show the default base for both input and output
16069of numbers. @code{set radix} sets the radix of input and output to
16070the same base; without an argument, it resets the radix back to its
16071default value of 10.
16072
8e04817f 16073@end table
104c1213 16074
1e698235 16075@node ABI
79a6e687 16076@section Configuring the Current ABI
1e698235
DJ
16077
16078@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16079application automatically. However, sometimes you need to override its
16080conclusions. Use these commands to manage @value{GDBN}'s view of the
16081current ABI.
16082
98b45e30
DJ
16083@cindex OS ABI
16084@kindex set osabi
b4e9345d 16085@kindex show osabi
98b45e30
DJ
16086
16087One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16088system targets, either via remote debugging or native emulation.
98b45e30
DJ
16089@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16090but you can override its conclusion using the @code{set osabi} command.
16091One example where this is useful is in debugging of binaries which use
16092an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16093not have the same identifying marks that the standard C library for your
16094platform provides.
16095
16096@table @code
16097@item show osabi
16098Show the OS ABI currently in use.
16099
16100@item set osabi
16101With no argument, show the list of registered available OS ABI's.
16102
16103@item set osabi @var{abi}
16104Set the current OS ABI to @var{abi}.
16105@end table
16106
1e698235 16107@cindex float promotion
1e698235
DJ
16108
16109Generally, the way that an argument of type @code{float} is passed to a
16110function depends on whether the function is prototyped. For a prototyped
16111(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16112according to the architecture's convention for @code{float}. For unprototyped
16113(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16114@code{double} and then passed.
16115
16116Unfortunately, some forms of debug information do not reliably indicate whether
16117a function is prototyped. If @value{GDBN} calls a function that is not marked
16118as prototyped, it consults @kbd{set coerce-float-to-double}.
16119
16120@table @code
a8f24a35 16121@kindex set coerce-float-to-double
1e698235
DJ
16122@item set coerce-float-to-double
16123@itemx set coerce-float-to-double on
16124Arguments of type @code{float} will be promoted to @code{double} when passed
16125to an unprototyped function. This is the default setting.
16126
16127@item set coerce-float-to-double off
16128Arguments of type @code{float} will be passed directly to unprototyped
16129functions.
9c16f35a
EZ
16130
16131@kindex show coerce-float-to-double
16132@item show coerce-float-to-double
16133Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16134@end table
16135
f1212245
DJ
16136@kindex set cp-abi
16137@kindex show cp-abi
16138@value{GDBN} needs to know the ABI used for your program's C@t{++}
16139objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16140used to build your application. @value{GDBN} only fully supports
16141programs with a single C@t{++} ABI; if your program contains code using
16142multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16143program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16144Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16145before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16146``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16147use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16148``auto''.
16149
16150@table @code
16151@item show cp-abi
16152Show the C@t{++} ABI currently in use.
16153
16154@item set cp-abi
16155With no argument, show the list of supported C@t{++} ABI's.
16156
16157@item set cp-abi @var{abi}
16158@itemx set cp-abi auto
16159Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16160@end table
16161
8e04817f 16162@node Messages/Warnings
79a6e687 16163@section Optional Warnings and Messages
104c1213 16164
9c16f35a
EZ
16165@cindex verbose operation
16166@cindex optional warnings
8e04817f
AC
16167By default, @value{GDBN} is silent about its inner workings. If you are
16168running on a slow machine, you may want to use the @code{set verbose}
16169command. This makes @value{GDBN} tell you when it does a lengthy
16170internal operation, so you will not think it has crashed.
104c1213 16171
8e04817f
AC
16172Currently, the messages controlled by @code{set verbose} are those
16173which announce that the symbol table for a source file is being read;
79a6e687 16174see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16175
8e04817f
AC
16176@table @code
16177@kindex set verbose
16178@item set verbose on
16179Enables @value{GDBN} output of certain informational messages.
104c1213 16180
8e04817f
AC
16181@item set verbose off
16182Disables @value{GDBN} output of certain informational messages.
104c1213 16183
8e04817f
AC
16184@kindex show verbose
16185@item show verbose
16186Displays whether @code{set verbose} is on or off.
16187@end table
104c1213 16188
8e04817f
AC
16189By default, if @value{GDBN} encounters bugs in the symbol table of an
16190object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16191find this information useful (@pxref{Symbol Errors, ,Errors Reading
16192Symbol Files}).
104c1213 16193
8e04817f 16194@table @code
104c1213 16195
8e04817f
AC
16196@kindex set complaints
16197@item set complaints @var{limit}
16198Permits @value{GDBN} to output @var{limit} complaints about each type of
16199unusual symbols before becoming silent about the problem. Set
16200@var{limit} to zero to suppress all complaints; set it to a large number
16201to prevent complaints from being suppressed.
104c1213 16202
8e04817f
AC
16203@kindex show complaints
16204@item show complaints
16205Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16206
8e04817f 16207@end table
104c1213 16208
8e04817f
AC
16209By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16210lot of stupid questions to confirm certain commands. For example, if
16211you try to run a program which is already running:
104c1213 16212
474c8240 16213@smallexample
8e04817f
AC
16214(@value{GDBP}) run
16215The program being debugged has been started already.
16216Start it from the beginning? (y or n)
474c8240 16217@end smallexample
104c1213 16218
8e04817f
AC
16219If you are willing to unflinchingly face the consequences of your own
16220commands, you can disable this ``feature'':
104c1213 16221
8e04817f 16222@table @code
104c1213 16223
8e04817f
AC
16224@kindex set confirm
16225@cindex flinching
16226@cindex confirmation
16227@cindex stupid questions
16228@item set confirm off
16229Disables confirmation requests.
104c1213 16230
8e04817f
AC
16231@item set confirm on
16232Enables confirmation requests (the default).
104c1213 16233
8e04817f
AC
16234@kindex show confirm
16235@item show confirm
16236Displays state of confirmation requests.
16237
16238@end table
104c1213 16239
16026cd7
AS
16240@cindex command tracing
16241If you need to debug user-defined commands or sourced files you may find it
16242useful to enable @dfn{command tracing}. In this mode each command will be
16243printed as it is executed, prefixed with one or more @samp{+} symbols, the
16244quantity denoting the call depth of each command.
16245
16246@table @code
16247@kindex set trace-commands
16248@cindex command scripts, debugging
16249@item set trace-commands on
16250Enable command tracing.
16251@item set trace-commands off
16252Disable command tracing.
16253@item show trace-commands
16254Display the current state of command tracing.
16255@end table
16256
8e04817f 16257@node Debugging Output
79a6e687 16258@section Optional Messages about Internal Happenings
4644b6e3
EZ
16259@cindex optional debugging messages
16260
da316a69
EZ
16261@value{GDBN} has commands that enable optional debugging messages from
16262various @value{GDBN} subsystems; normally these commands are of
16263interest to @value{GDBN} maintainers, or when reporting a bug. This
16264section documents those commands.
16265
104c1213 16266@table @code
a8f24a35
EZ
16267@kindex set exec-done-display
16268@item set exec-done-display
16269Turns on or off the notification of asynchronous commands'
16270completion. When on, @value{GDBN} will print a message when an
16271asynchronous command finishes its execution. The default is off.
16272@kindex show exec-done-display
16273@item show exec-done-display
16274Displays the current setting of asynchronous command completion
16275notification.
4644b6e3
EZ
16276@kindex set debug
16277@cindex gdbarch debugging info
a8f24a35 16278@cindex architecture debugging info
8e04817f 16279@item set debug arch
a8f24a35 16280Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16281@kindex show debug
8e04817f
AC
16282@item show debug arch
16283Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16284@item set debug aix-thread
16285@cindex AIX threads
16286Display debugging messages about inner workings of the AIX thread
16287module.
16288@item show debug aix-thread
16289Show the current state of AIX thread debugging info display.
8e04817f 16290@item set debug event
4644b6e3 16291@cindex event debugging info
a8f24a35 16292Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16293default is off.
8e04817f
AC
16294@item show debug event
16295Displays the current state of displaying @value{GDBN} event debugging
16296info.
8e04817f 16297@item set debug expression
4644b6e3 16298@cindex expression debugging info
721c2651
EZ
16299Turns on or off display of debugging info about @value{GDBN}
16300expression parsing. The default is off.
8e04817f 16301@item show debug expression
721c2651
EZ
16302Displays the current state of displaying debugging info about
16303@value{GDBN} expression parsing.
7453dc06 16304@item set debug frame
4644b6e3 16305@cindex frame debugging info
7453dc06
AC
16306Turns on or off display of @value{GDBN} frame debugging info. The
16307default is off.
7453dc06
AC
16308@item show debug frame
16309Displays the current state of displaying @value{GDBN} frame debugging
16310info.
30e91e0b
RC
16311@item set debug infrun
16312@cindex inferior debugging info
16313Turns on or off display of @value{GDBN} debugging info for running the inferior.
16314The default is off. @file{infrun.c} contains GDB's runtime state machine used
16315for implementing operations such as single-stepping the inferior.
16316@item show debug infrun
16317Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16318@item set debug lin-lwp
16319@cindex @sc{gnu}/Linux LWP debug messages
16320@cindex Linux lightweight processes
721c2651 16321Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16322@item show debug lin-lwp
16323Show the current state of Linux LWP debugging messages.
2b4855ab 16324@item set debug observer
4644b6e3 16325@cindex observer debugging info
2b4855ab
AC
16326Turns on or off display of @value{GDBN} observer debugging. This
16327includes info such as the notification of observable events.
2b4855ab
AC
16328@item show debug observer
16329Displays the current state of observer debugging.
8e04817f 16330@item set debug overload
4644b6e3 16331@cindex C@t{++} overload debugging info
8e04817f 16332Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16333info. This includes info such as ranking of functions, etc. The default
8e04817f 16334is off.
8e04817f
AC
16335@item show debug overload
16336Displays the current state of displaying @value{GDBN} C@t{++} overload
16337debugging info.
8e04817f
AC
16338@cindex packets, reporting on stdout
16339@cindex serial connections, debugging
605a56cb
DJ
16340@cindex debug remote protocol
16341@cindex remote protocol debugging
16342@cindex display remote packets
8e04817f
AC
16343@item set debug remote
16344Turns on or off display of reports on all packets sent back and forth across
16345the serial line to the remote machine. The info is printed on the
16346@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16347@item show debug remote
16348Displays the state of display of remote packets.
8e04817f
AC
16349@item set debug serial
16350Turns on or off display of @value{GDBN} serial debugging info. The
16351default is off.
8e04817f
AC
16352@item show debug serial
16353Displays the current state of displaying @value{GDBN} serial debugging
16354info.
c45da7e6
EZ
16355@item set debug solib-frv
16356@cindex FR-V shared-library debugging
16357Turns on or off debugging messages for FR-V shared-library code.
16358@item show debug solib-frv
16359Display the current state of FR-V shared-library code debugging
16360messages.
8e04817f 16361@item set debug target
4644b6e3 16362@cindex target debugging info
8e04817f
AC
16363Turns on or off display of @value{GDBN} target debugging info. This info
16364includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16365default is 0. Set it to 1 to track events, and to 2 to also track the
16366value of large memory transfers. Changes to this flag do not take effect
16367until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16368@item show debug target
16369Displays the current state of displaying @value{GDBN} target debugging
16370info.
c45da7e6 16371@item set debugvarobj
4644b6e3 16372@cindex variable object debugging info
8e04817f
AC
16373Turns on or off display of @value{GDBN} variable object debugging
16374info. The default is off.
c45da7e6 16375@item show debugvarobj
8e04817f
AC
16376Displays the current state of displaying @value{GDBN} variable object
16377debugging info.
e776119f
DJ
16378@item set debug xml
16379@cindex XML parser debugging
16380Turns on or off debugging messages for built-in XML parsers.
16381@item show debug xml
16382Displays the current state of XML debugging messages.
8e04817f 16383@end table
104c1213 16384
8e04817f
AC
16385@node Sequences
16386@chapter Canned Sequences of Commands
104c1213 16387
8e04817f 16388Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16389Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16390commands for execution as a unit: user-defined commands and command
16391files.
104c1213 16392
8e04817f 16393@menu
fcc73fe3
EZ
16394* Define:: How to define your own commands
16395* Hooks:: Hooks for user-defined commands
16396* Command Files:: How to write scripts of commands to be stored in a file
16397* Output:: Commands for controlled output
8e04817f 16398@end menu
104c1213 16399
8e04817f 16400@node Define
79a6e687 16401@section User-defined Commands
104c1213 16402
8e04817f 16403@cindex user-defined command
fcc73fe3 16404@cindex arguments, to user-defined commands
8e04817f
AC
16405A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16406which you assign a new name as a command. This is done with the
16407@code{define} command. User commands may accept up to 10 arguments
16408separated by whitespace. Arguments are accessed within the user command
c03c782f 16409via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16410
8e04817f
AC
16411@smallexample
16412define adder
16413 print $arg0 + $arg1 + $arg2
c03c782f 16414end
8e04817f 16415@end smallexample
104c1213
JM
16416
16417@noindent
8e04817f 16418To execute the command use:
104c1213 16419
8e04817f
AC
16420@smallexample
16421adder 1 2 3
16422@end smallexample
104c1213 16423
8e04817f
AC
16424@noindent
16425This defines the command @code{adder}, which prints the sum of
16426its three arguments. Note the arguments are text substitutions, so they may
16427reference variables, use complex expressions, or even perform inferior
16428functions calls.
104c1213 16429
fcc73fe3
EZ
16430@cindex argument count in user-defined commands
16431@cindex how many arguments (user-defined commands)
c03c782f
AS
16432In addition, @code{$argc} may be used to find out how many arguments have
16433been passed. This expands to a number in the range 0@dots{}10.
16434
16435@smallexample
16436define adder
16437 if $argc == 2
16438 print $arg0 + $arg1
16439 end
16440 if $argc == 3
16441 print $arg0 + $arg1 + $arg2
16442 end
16443end
16444@end smallexample
16445
104c1213 16446@table @code
104c1213 16447
8e04817f
AC
16448@kindex define
16449@item define @var{commandname}
16450Define a command named @var{commandname}. If there is already a command
16451by that name, you are asked to confirm that you want to redefine it.
104c1213 16452
8e04817f
AC
16453The definition of the command is made up of other @value{GDBN} command lines,
16454which are given following the @code{define} command. The end of these
16455commands is marked by a line containing @code{end}.
104c1213 16456
8e04817f 16457@kindex document
ca91424e 16458@kindex end@r{ (user-defined commands)}
8e04817f
AC
16459@item document @var{commandname}
16460Document the user-defined command @var{commandname}, so that it can be
16461accessed by @code{help}. The command @var{commandname} must already be
16462defined. This command reads lines of documentation just as @code{define}
16463reads the lines of the command definition, ending with @code{end}.
16464After the @code{document} command is finished, @code{help} on command
16465@var{commandname} displays the documentation you have written.
104c1213 16466
8e04817f
AC
16467You may use the @code{document} command again to change the
16468documentation of a command. Redefining the command with @code{define}
16469does not change the documentation.
104c1213 16470
c45da7e6
EZ
16471@kindex dont-repeat
16472@cindex don't repeat command
16473@item dont-repeat
16474Used inside a user-defined command, this tells @value{GDBN} that this
16475command should not be repeated when the user hits @key{RET}
16476(@pxref{Command Syntax, repeat last command}).
16477
8e04817f
AC
16478@kindex help user-defined
16479@item help user-defined
16480List all user-defined commands, with the first line of the documentation
16481(if any) for each.
104c1213 16482
8e04817f
AC
16483@kindex show user
16484@item show user
16485@itemx show user @var{commandname}
16486Display the @value{GDBN} commands used to define @var{commandname} (but
16487not its documentation). If no @var{commandname} is given, display the
16488definitions for all user-defined commands.
104c1213 16489
fcc73fe3 16490@cindex infinite recursion in user-defined commands
20f01a46
DH
16491@kindex show max-user-call-depth
16492@kindex set max-user-call-depth
16493@item show max-user-call-depth
5ca0cb28
DH
16494@itemx set max-user-call-depth
16495The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16496levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16497infinite recursion and aborts the command.
104c1213
JM
16498@end table
16499
fcc73fe3
EZ
16500In addition to the above commands, user-defined commands frequently
16501use control flow commands, described in @ref{Command Files}.
16502
8e04817f
AC
16503When user-defined commands are executed, the
16504commands of the definition are not printed. An error in any command
16505stops execution of the user-defined command.
104c1213 16506
8e04817f
AC
16507If used interactively, commands that would ask for confirmation proceed
16508without asking when used inside a user-defined command. Many @value{GDBN}
16509commands that normally print messages to say what they are doing omit the
16510messages when used in a user-defined command.
104c1213 16511
8e04817f 16512@node Hooks
79a6e687 16513@section User-defined Command Hooks
8e04817f
AC
16514@cindex command hooks
16515@cindex hooks, for commands
16516@cindex hooks, pre-command
104c1213 16517
8e04817f 16518@kindex hook
8e04817f
AC
16519You may define @dfn{hooks}, which are a special kind of user-defined
16520command. Whenever you run the command @samp{foo}, if the user-defined
16521command @samp{hook-foo} exists, it is executed (with no arguments)
16522before that command.
104c1213 16523
8e04817f
AC
16524@cindex hooks, post-command
16525@kindex hookpost
8e04817f
AC
16526A hook may also be defined which is run after the command you executed.
16527Whenever you run the command @samp{foo}, if the user-defined command
16528@samp{hookpost-foo} exists, it is executed (with no arguments) after
16529that command. Post-execution hooks may exist simultaneously with
16530pre-execution hooks, for the same command.
104c1213 16531
8e04817f 16532It is valid for a hook to call the command which it hooks. If this
9f1c6395 16533occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16534
8e04817f
AC
16535@c It would be nice if hookpost could be passed a parameter indicating
16536@c if the command it hooks executed properly or not. FIXME!
104c1213 16537
8e04817f
AC
16538@kindex stop@r{, a pseudo-command}
16539In addition, a pseudo-command, @samp{stop} exists. Defining
16540(@samp{hook-stop}) makes the associated commands execute every time
16541execution stops in your program: before breakpoint commands are run,
16542displays are printed, or the stack frame is printed.
104c1213 16543
8e04817f
AC
16544For example, to ignore @code{SIGALRM} signals while
16545single-stepping, but treat them normally during normal execution,
16546you could define:
104c1213 16547
474c8240 16548@smallexample
8e04817f
AC
16549define hook-stop
16550handle SIGALRM nopass
16551end
104c1213 16552
8e04817f
AC
16553define hook-run
16554handle SIGALRM pass
16555end
104c1213 16556
8e04817f 16557define hook-continue
d3e8051b 16558handle SIGALRM pass
8e04817f 16559end
474c8240 16560@end smallexample
104c1213 16561
d3e8051b 16562As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16563command, and to add extra text to the beginning and end of the message,
8e04817f 16564you could define:
104c1213 16565
474c8240 16566@smallexample
8e04817f
AC
16567define hook-echo
16568echo <<<---
16569end
104c1213 16570
8e04817f
AC
16571define hookpost-echo
16572echo --->>>\n
16573end
104c1213 16574
8e04817f
AC
16575(@value{GDBP}) echo Hello World
16576<<<---Hello World--->>>
16577(@value{GDBP})
104c1213 16578
474c8240 16579@end smallexample
104c1213 16580
8e04817f
AC
16581You can define a hook for any single-word command in @value{GDBN}, but
16582not for command aliases; you should define a hook for the basic command
c1468174 16583name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16584@c FIXME! So how does Joe User discover whether a command is an alias
16585@c or not?
16586If an error occurs during the execution of your hook, execution of
16587@value{GDBN} commands stops and @value{GDBN} issues a prompt
16588(before the command that you actually typed had a chance to run).
104c1213 16589
8e04817f
AC
16590If you try to define a hook which does not match any known command, you
16591get a warning from the @code{define} command.
c906108c 16592
8e04817f 16593@node Command Files
79a6e687 16594@section Command Files
c906108c 16595
8e04817f 16596@cindex command files
fcc73fe3 16597@cindex scripting commands
6fc08d32
EZ
16598A command file for @value{GDBN} is a text file made of lines that are
16599@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16600also be included. An empty line in a command file does nothing; it
16601does not mean to repeat the last command, as it would from the
16602terminal.
c906108c 16603
6fc08d32
EZ
16604You can request the execution of a command file with the @code{source}
16605command:
c906108c 16606
8e04817f
AC
16607@table @code
16608@kindex source
ca91424e 16609@cindex execute commands from a file
16026cd7 16610@item source [@code{-v}] @var{filename}
8e04817f 16611Execute the command file @var{filename}.
c906108c
SS
16612@end table
16613
fcc73fe3
EZ
16614The lines in a command file are generally executed sequentially,
16615unless the order of execution is changed by one of the
16616@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16617printed as they are executed. An error in any command terminates
16618execution of the command file and control is returned to the console.
c906108c 16619
4b505b12
AS
16620@value{GDBN} searches for @var{filename} in the current directory and then
16621on the search path (specified with the @samp{directory} command).
16622
16026cd7
AS
16623If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16624each command as it is executed. The option must be given before
16625@var{filename}, and is interpreted as part of the filename anywhere else.
16626
8e04817f
AC
16627Commands that would ask for confirmation if used interactively proceed
16628without asking when used in a command file. Many @value{GDBN} commands that
16629normally print messages to say what they are doing omit the messages
16630when called from command files.
c906108c 16631
8e04817f
AC
16632@value{GDBN} also accepts command input from standard input. In this
16633mode, normal output goes to standard output and error output goes to
16634standard error. Errors in a command file supplied on standard input do
6fc08d32 16635not terminate execution of the command file---execution continues with
8e04817f 16636the next command.
c906108c 16637
474c8240 16638@smallexample
8e04817f 16639gdb < cmds > log 2>&1
474c8240 16640@end smallexample
c906108c 16641
8e04817f
AC
16642(The syntax above will vary depending on the shell used.) This example
16643will execute commands from the file @file{cmds}. All output and errors
16644would be directed to @file{log}.
c906108c 16645
fcc73fe3
EZ
16646Since commands stored on command files tend to be more general than
16647commands typed interactively, they frequently need to deal with
16648complicated situations, such as different or unexpected values of
16649variables and symbols, changes in how the program being debugged is
16650built, etc. @value{GDBN} provides a set of flow-control commands to
16651deal with these complexities. Using these commands, you can write
16652complex scripts that loop over data structures, execute commands
16653conditionally, etc.
16654
16655@table @code
16656@kindex if
16657@kindex else
16658@item if
16659@itemx else
16660This command allows to include in your script conditionally executed
16661commands. The @code{if} command takes a single argument, which is an
16662expression to evaluate. It is followed by a series of commands that
16663are executed only if the expression is true (its value is nonzero).
16664There can then optionally be an @code{else} line, followed by a series
16665of commands that are only executed if the expression was false. The
16666end of the list is marked by a line containing @code{end}.
16667
16668@kindex while
16669@item while
16670This command allows to write loops. Its syntax is similar to
16671@code{if}: the command takes a single argument, which is an expression
16672to evaluate, and must be followed by the commands to execute, one per
16673line, terminated by an @code{end}. These commands are called the
16674@dfn{body} of the loop. The commands in the body of @code{while} are
16675executed repeatedly as long as the expression evaluates to true.
16676
16677@kindex loop_break
16678@item loop_break
16679This command exits the @code{while} loop in whose body it is included.
16680Execution of the script continues after that @code{while}s @code{end}
16681line.
16682
16683@kindex loop_continue
16684@item loop_continue
16685This command skips the execution of the rest of the body of commands
16686in the @code{while} loop in whose body it is included. Execution
16687branches to the beginning of the @code{while} loop, where it evaluates
16688the controlling expression.
ca91424e
EZ
16689
16690@kindex end@r{ (if/else/while commands)}
16691@item end
16692Terminate the block of commands that are the body of @code{if},
16693@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16694@end table
16695
16696
8e04817f 16697@node Output
79a6e687 16698@section Commands for Controlled Output
c906108c 16699
8e04817f
AC
16700During the execution of a command file or a user-defined command, normal
16701@value{GDBN} output is suppressed; the only output that appears is what is
16702explicitly printed by the commands in the definition. This section
16703describes three commands useful for generating exactly the output you
16704want.
c906108c
SS
16705
16706@table @code
8e04817f
AC
16707@kindex echo
16708@item echo @var{text}
16709@c I do not consider backslash-space a standard C escape sequence
16710@c because it is not in ANSI.
16711Print @var{text}. Nonprinting characters can be included in
16712@var{text} using C escape sequences, such as @samp{\n} to print a
16713newline. @strong{No newline is printed unless you specify one.}
16714In addition to the standard C escape sequences, a backslash followed
16715by a space stands for a space. This is useful for displaying a
16716string with spaces at the beginning or the end, since leading and
16717trailing spaces are otherwise trimmed from all arguments.
16718To print @samp{@w{ }and foo =@w{ }}, use the command
16719@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16720
8e04817f
AC
16721A backslash at the end of @var{text} can be used, as in C, to continue
16722the command onto subsequent lines. For example,
c906108c 16723
474c8240 16724@smallexample
8e04817f
AC
16725echo This is some text\n\
16726which is continued\n\
16727onto several lines.\n
474c8240 16728@end smallexample
c906108c 16729
8e04817f 16730produces the same output as
c906108c 16731
474c8240 16732@smallexample
8e04817f
AC
16733echo This is some text\n
16734echo which is continued\n
16735echo onto several lines.\n
474c8240 16736@end smallexample
c906108c 16737
8e04817f
AC
16738@kindex output
16739@item output @var{expression}
16740Print the value of @var{expression} and nothing but that value: no
16741newlines, no @samp{$@var{nn} = }. The value is not entered in the
16742value history either. @xref{Expressions, ,Expressions}, for more information
16743on expressions.
c906108c 16744
8e04817f
AC
16745@item output/@var{fmt} @var{expression}
16746Print the value of @var{expression} in format @var{fmt}. You can use
16747the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16748Formats}, for more information.
c906108c 16749
8e04817f 16750@kindex printf
82160952
EZ
16751@item printf @var{template}, @var{expressions}@dots{}
16752Print the values of one or more @var{expressions} under the control of
16753the string @var{template}. To print several values, make
16754@var{expressions} be a comma-separated list of individual expressions,
16755which may be either numbers or pointers. Their values are printed as
16756specified by @var{template}, exactly as a C program would do by
16757executing the code below:
c906108c 16758
474c8240 16759@smallexample
82160952 16760printf (@var{template}, @var{expressions}@dots{});
474c8240 16761@end smallexample
c906108c 16762
82160952
EZ
16763As in @code{C} @code{printf}, ordinary characters in @var{template}
16764are printed verbatim, while @dfn{conversion specification} introduced
16765by the @samp{%} character cause subsequent @var{expressions} to be
16766evaluated, their values converted and formatted according to type and
16767style information encoded in the conversion specifications, and then
16768printed.
16769
8e04817f 16770For example, you can print two values in hex like this:
c906108c 16771
8e04817f
AC
16772@smallexample
16773printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16774@end smallexample
c906108c 16775
82160952
EZ
16776@code{printf} supports all the standard @code{C} conversion
16777specifications, including the flags and modifiers between the @samp{%}
16778character and the conversion letter, with the following exceptions:
16779
16780@itemize @bullet
16781@item
16782The argument-ordering modifiers, such as @samp{2$}, are not supported.
16783
16784@item
16785The modifier @samp{*} is not supported for specifying precision or
16786width.
16787
16788@item
16789The @samp{'} flag (for separation of digits into groups according to
16790@code{LC_NUMERIC'}) is not supported.
16791
16792@item
16793The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16794supported.
16795
16796@item
16797The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16798
16799@item
16800The conversion letters @samp{a} and @samp{A} are not supported.
16801@end itemize
16802
16803@noindent
16804Note that the @samp{ll} type modifier is supported only if the
16805underlying @code{C} implementation used to build @value{GDBN} supports
16806the @code{long long int} type, and the @samp{L} type modifier is
16807supported only if @code{long double} type is available.
16808
16809As in @code{C}, @code{printf} supports simple backslash-escape
16810sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16811@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16812single character. Octal and hexadecimal escape sequences are not
16813supported.
1a619819
LM
16814
16815Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
16816(@dfn{Decimal Floating Point}) types using the following length modifiers
16817together with a floating point specifier.
1a619819
LM
16818letters:
16819
16820@itemize @bullet
16821@item
16822@samp{H} for printing @code{Decimal32} types.
16823
16824@item
16825@samp{D} for printing @code{Decimal64} types.
16826
16827@item
16828@samp{DD} for printing @code{Decimal128} types.
16829@end itemize
16830
16831If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 16832support for the three length modifiers for DFP types, other modifiers
3b784c4f 16833such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16834
16835In case there is no such @code{C} support, no additional modifiers will be
16836available and the value will be printed in the standard way.
16837
16838Here's an example of printing DFP types using the above conversion letters:
16839@smallexample
0aea4bf3 16840printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
16841@end smallexample
16842
c906108c
SS
16843@end table
16844
21c294e6
AC
16845@node Interpreters
16846@chapter Command Interpreters
16847@cindex command interpreters
16848
16849@value{GDBN} supports multiple command interpreters, and some command
16850infrastructure to allow users or user interface writers to switch
16851between interpreters or run commands in other interpreters.
16852
16853@value{GDBN} currently supports two command interpreters, the console
16854interpreter (sometimes called the command-line interpreter or @sc{cli})
16855and the machine interface interpreter (or @sc{gdb/mi}). This manual
16856describes both of these interfaces in great detail.
16857
16858By default, @value{GDBN} will start with the console interpreter.
16859However, the user may choose to start @value{GDBN} with another
16860interpreter by specifying the @option{-i} or @option{--interpreter}
16861startup options. Defined interpreters include:
16862
16863@table @code
16864@item console
16865@cindex console interpreter
16866The traditional console or command-line interpreter. This is the most often
16867used interpreter with @value{GDBN}. With no interpreter specified at runtime,
16868@value{GDBN} will use this interpreter.
16869
16870@item mi
16871@cindex mi interpreter
16872The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
16873by programs wishing to use @value{GDBN} as a backend for a debugger GUI
16874or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
16875Interface}.
16876
16877@item mi2
16878@cindex mi2 interpreter
16879The current @sc{gdb/mi} interface.
16880
16881@item mi1
16882@cindex mi1 interpreter
16883The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
16884
16885@end table
16886
16887@cindex invoke another interpreter
16888The interpreter being used by @value{GDBN} may not be dynamically
16889switched at runtime. Although possible, this could lead to a very
16890precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
16891enters the command "interpreter-set console" in a console view,
16892@value{GDBN} would switch to using the console interpreter, rendering
16893the IDE inoperable!
16894
16895@kindex interpreter-exec
16896Although you may only choose a single interpreter at startup, you may execute
16897commands in any interpreter from the current interpreter using the appropriate
16898command. If you are running the console interpreter, simply use the
16899@code{interpreter-exec} command:
16900
16901@smallexample
16902interpreter-exec mi "-data-list-register-names"
16903@end smallexample
16904
16905@sc{gdb/mi} has a similar command, although it is only available in versions of
16906@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
16907
8e04817f
AC
16908@node TUI
16909@chapter @value{GDBN} Text User Interface
16910@cindex TUI
d0d5df6f 16911@cindex Text User Interface
c906108c 16912
8e04817f
AC
16913@menu
16914* TUI Overview:: TUI overview
16915* TUI Keys:: TUI key bindings
7cf36c78 16916* TUI Single Key Mode:: TUI single key mode
db2e3e2e 16917* TUI Commands:: TUI-specific commands
8e04817f
AC
16918* TUI Configuration:: TUI configuration variables
16919@end menu
c906108c 16920
46ba6afa 16921The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
16922interface which uses the @code{curses} library to show the source
16923file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
16924commands in separate text windows. The TUI mode is supported only
16925on platforms where a suitable version of the @code{curses} library
16926is available.
d0d5df6f 16927
46ba6afa
BW
16928@pindex @value{GDBTUI}
16929The TUI mode is enabled by default when you invoke @value{GDBN} as
16930either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
16931You can also switch in and out of TUI mode while @value{GDBN} runs by
16932using various TUI commands and key bindings, such as @kbd{C-x C-a}.
16933@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 16934
8e04817f 16935@node TUI Overview
79a6e687 16936@section TUI Overview
c906108c 16937
46ba6afa 16938In TUI mode, @value{GDBN} can display several text windows:
c906108c 16939
8e04817f
AC
16940@table @emph
16941@item command
16942This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
16943prompt and the @value{GDBN} output. The @value{GDBN} input is still
16944managed using readline.
c906108c 16945
8e04817f
AC
16946@item source
16947The source window shows the source file of the program. The current
46ba6afa 16948line and active breakpoints are displayed in this window.
c906108c 16949
8e04817f
AC
16950@item assembly
16951The assembly window shows the disassembly output of the program.
c906108c 16952
8e04817f 16953@item register
46ba6afa
BW
16954This window shows the processor registers. Registers are highlighted
16955when their values change.
c906108c
SS
16956@end table
16957
269c21fe 16958The source and assembly windows show the current program position
46ba6afa
BW
16959by highlighting the current line and marking it with a @samp{>} marker.
16960Breakpoints are indicated with two markers. The first marker
269c21fe
SC
16961indicates the breakpoint type:
16962
16963@table @code
16964@item B
16965Breakpoint which was hit at least once.
16966
16967@item b
16968Breakpoint which was never hit.
16969
16970@item H
16971Hardware breakpoint which was hit at least once.
16972
16973@item h
16974Hardware breakpoint which was never hit.
269c21fe
SC
16975@end table
16976
16977The second marker indicates whether the breakpoint is enabled or not:
16978
16979@table @code
16980@item +
16981Breakpoint is enabled.
16982
16983@item -
16984Breakpoint is disabled.
269c21fe
SC
16985@end table
16986
46ba6afa
BW
16987The source, assembly and register windows are updated when the current
16988thread changes, when the frame changes, or when the program counter
16989changes.
16990
16991These windows are not all visible at the same time. The command
16992window is always visible. The others can be arranged in several
16993layouts:
c906108c 16994
8e04817f
AC
16995@itemize @bullet
16996@item
46ba6afa 16997source only,
2df3850c 16998
8e04817f 16999@item
46ba6afa 17000assembly only,
8e04817f
AC
17001
17002@item
46ba6afa 17003source and assembly,
8e04817f
AC
17004
17005@item
46ba6afa 17006source and registers, or
c906108c 17007
8e04817f 17008@item
46ba6afa 17009assembly and registers.
8e04817f 17010@end itemize
c906108c 17011
46ba6afa 17012A status line above the command window shows the following information:
b7bb15bc
SC
17013
17014@table @emph
17015@item target
46ba6afa 17016Indicates the current @value{GDBN} target.
b7bb15bc
SC
17017(@pxref{Targets, ,Specifying a Debugging Target}).
17018
17019@item process
46ba6afa 17020Gives the current process or thread number.
b7bb15bc
SC
17021When no process is being debugged, this field is set to @code{No process}.
17022
17023@item function
17024Gives the current function name for the selected frame.
17025The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17026When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17027the string @code{??} is displayed.
17028
17029@item line
17030Indicates the current line number for the selected frame.
46ba6afa 17031When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17032
17033@item pc
17034Indicates the current program counter address.
b7bb15bc
SC
17035@end table
17036
8e04817f
AC
17037@node TUI Keys
17038@section TUI Key Bindings
17039@cindex TUI key bindings
c906108c 17040
8e04817f 17041The TUI installs several key bindings in the readline keymaps
46ba6afa 17042(@pxref{Command Line Editing}). The following key bindings
8e04817f 17043are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17044
8e04817f
AC
17045@table @kbd
17046@kindex C-x C-a
17047@item C-x C-a
17048@kindex C-x a
17049@itemx C-x a
17050@kindex C-x A
17051@itemx C-x A
46ba6afa
BW
17052Enter or leave the TUI mode. When leaving the TUI mode,
17053the curses window management stops and @value{GDBN} operates using
17054its standard mode, writing on the terminal directly. When reentering
17055the TUI mode, control is given back to the curses windows.
8e04817f 17056The screen is then refreshed.
c906108c 17057
8e04817f
AC
17058@kindex C-x 1
17059@item C-x 1
17060Use a TUI layout with only one window. The layout will
17061either be @samp{source} or @samp{assembly}. When the TUI mode
17062is not active, it will switch to the TUI mode.
2df3850c 17063
8e04817f 17064Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17065
8e04817f
AC
17066@kindex C-x 2
17067@item C-x 2
17068Use a TUI layout with at least two windows. When the current
46ba6afa 17069layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17070When a new layout is chosen, one window will always be common to the
17071previous layout and the new one.
c906108c 17072
8e04817f 17073Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17074
72ffddc9
SC
17075@kindex C-x o
17076@item C-x o
17077Change the active window. The TUI associates several key bindings
46ba6afa 17078(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17079gives the focus to the next TUI window.
17080
17081Think of it as the Emacs @kbd{C-x o} binding.
17082
7cf36c78
SC
17083@kindex C-x s
17084@item C-x s
46ba6afa
BW
17085Switch in and out of the TUI SingleKey mode that binds single
17086keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17087@end table
17088
46ba6afa 17089The following key bindings only work in the TUI mode:
5d161b24 17090
46ba6afa 17091@table @asis
8e04817f 17092@kindex PgUp
46ba6afa 17093@item @key{PgUp}
8e04817f 17094Scroll the active window one page up.
c906108c 17095
8e04817f 17096@kindex PgDn
46ba6afa 17097@item @key{PgDn}
8e04817f 17098Scroll the active window one page down.
c906108c 17099
8e04817f 17100@kindex Up
46ba6afa 17101@item @key{Up}
8e04817f 17102Scroll the active window one line up.
c906108c 17103
8e04817f 17104@kindex Down
46ba6afa 17105@item @key{Down}
8e04817f 17106Scroll the active window one line down.
c906108c 17107
8e04817f 17108@kindex Left
46ba6afa 17109@item @key{Left}
8e04817f 17110Scroll the active window one column left.
c906108c 17111
8e04817f 17112@kindex Right
46ba6afa 17113@item @key{Right}
8e04817f 17114Scroll the active window one column right.
c906108c 17115
8e04817f 17116@kindex C-L
46ba6afa 17117@item @kbd{C-L}
8e04817f 17118Refresh the screen.
8e04817f 17119@end table
c906108c 17120
46ba6afa
BW
17121Because the arrow keys scroll the active window in the TUI mode, they
17122are not available for their normal use by readline unless the command
17123window has the focus. When another window is active, you must use
17124other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17125and @kbd{C-f} to control the command window.
8e04817f 17126
7cf36c78
SC
17127@node TUI Single Key Mode
17128@section TUI Single Key Mode
17129@cindex TUI single key mode
17130
46ba6afa
BW
17131The TUI also provides a @dfn{SingleKey} mode, which binds several
17132frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17133switch into this mode, where the following key bindings are used:
7cf36c78
SC
17134
17135@table @kbd
17136@kindex c @r{(SingleKey TUI key)}
17137@item c
17138continue
17139
17140@kindex d @r{(SingleKey TUI key)}
17141@item d
17142down
17143
17144@kindex f @r{(SingleKey TUI key)}
17145@item f
17146finish
17147
17148@kindex n @r{(SingleKey TUI key)}
17149@item n
17150next
17151
17152@kindex q @r{(SingleKey TUI key)}
17153@item q
46ba6afa 17154exit the SingleKey mode.
7cf36c78
SC
17155
17156@kindex r @r{(SingleKey TUI key)}
17157@item r
17158run
17159
17160@kindex s @r{(SingleKey TUI key)}
17161@item s
17162step
17163
17164@kindex u @r{(SingleKey TUI key)}
17165@item u
17166up
17167
17168@kindex v @r{(SingleKey TUI key)}
17169@item v
17170info locals
17171
17172@kindex w @r{(SingleKey TUI key)}
17173@item w
17174where
7cf36c78
SC
17175@end table
17176
17177Other keys temporarily switch to the @value{GDBN} command prompt.
17178The key that was pressed is inserted in the editing buffer so that
17179it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17180with the TUI SingleKey mode. Once the command is entered the TUI
17181SingleKey mode is restored. The only way to permanently leave
7f9087cb 17182this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17183
17184
8e04817f 17185@node TUI Commands
db2e3e2e 17186@section TUI-specific Commands
8e04817f
AC
17187@cindex TUI commands
17188
17189The TUI has specific commands to control the text windows.
46ba6afa
BW
17190These commands are always available, even when @value{GDBN} is not in
17191the TUI mode. When @value{GDBN} is in the standard mode, most
17192of these commands will automatically switch to the TUI mode.
c906108c
SS
17193
17194@table @code
3d757584
SC
17195@item info win
17196@kindex info win
17197List and give the size of all displayed windows.
17198
8e04817f 17199@item layout next
4644b6e3 17200@kindex layout
8e04817f 17201Display the next layout.
2df3850c 17202
8e04817f 17203@item layout prev
8e04817f 17204Display the previous layout.
c906108c 17205
8e04817f 17206@item layout src
8e04817f 17207Display the source window only.
c906108c 17208
8e04817f 17209@item layout asm
8e04817f 17210Display the assembly window only.
c906108c 17211
8e04817f 17212@item layout split
8e04817f 17213Display the source and assembly window.
c906108c 17214
8e04817f 17215@item layout regs
8e04817f
AC
17216Display the register window together with the source or assembly window.
17217
46ba6afa 17218@item focus next
8e04817f 17219@kindex focus
46ba6afa
BW
17220Make the next window active for scrolling.
17221
17222@item focus prev
17223Make the previous window active for scrolling.
17224
17225@item focus src
17226Make the source window active for scrolling.
17227
17228@item focus asm
17229Make the assembly window active for scrolling.
17230
17231@item focus regs
17232Make the register window active for scrolling.
17233
17234@item focus cmd
17235Make the command window active for scrolling.
c906108c 17236
8e04817f
AC
17237@item refresh
17238@kindex refresh
7f9087cb 17239Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17240
6a1b180d
SC
17241@item tui reg float
17242@kindex tui reg
17243Show the floating point registers in the register window.
17244
17245@item tui reg general
17246Show the general registers in the register window.
17247
17248@item tui reg next
17249Show the next register group. The list of register groups as well as
17250their order is target specific. The predefined register groups are the
17251following: @code{general}, @code{float}, @code{system}, @code{vector},
17252@code{all}, @code{save}, @code{restore}.
17253
17254@item tui reg system
17255Show the system registers in the register window.
17256
8e04817f
AC
17257@item update
17258@kindex update
17259Update the source window and the current execution point.
c906108c 17260
8e04817f
AC
17261@item winheight @var{name} +@var{count}
17262@itemx winheight @var{name} -@var{count}
17263@kindex winheight
17264Change the height of the window @var{name} by @var{count}
17265lines. Positive counts increase the height, while negative counts
17266decrease it.
2df3850c 17267
46ba6afa
BW
17268@item tabset @var{nchars}
17269@kindex tabset
c45da7e6 17270Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17271@end table
17272
8e04817f 17273@node TUI Configuration
79a6e687 17274@section TUI Configuration Variables
8e04817f 17275@cindex TUI configuration variables
c906108c 17276
46ba6afa 17277Several configuration variables control the appearance of TUI windows.
c906108c 17278
8e04817f
AC
17279@table @code
17280@item set tui border-kind @var{kind}
17281@kindex set tui border-kind
17282Select the border appearance for the source, assembly and register windows.
17283The possible values are the following:
17284@table @code
17285@item space
17286Use a space character to draw the border.
c906108c 17287
8e04817f 17288@item ascii
46ba6afa 17289Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17290
8e04817f
AC
17291@item acs
17292Use the Alternate Character Set to draw the border. The border is
17293drawn using character line graphics if the terminal supports them.
8e04817f 17294@end table
c78b4128 17295
8e04817f
AC
17296@item set tui border-mode @var{mode}
17297@kindex set tui border-mode
46ba6afa
BW
17298@itemx set tui active-border-mode @var{mode}
17299@kindex set tui active-border-mode
17300Select the display attributes for the borders of the inactive windows
17301or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17302@table @code
17303@item normal
17304Use normal attributes to display the border.
c906108c 17305
8e04817f
AC
17306@item standout
17307Use standout mode.
c906108c 17308
8e04817f
AC
17309@item reverse
17310Use reverse video mode.
c906108c 17311
8e04817f
AC
17312@item half
17313Use half bright mode.
c906108c 17314
8e04817f
AC
17315@item half-standout
17316Use half bright and standout mode.
c906108c 17317
8e04817f
AC
17318@item bold
17319Use extra bright or bold mode.
c78b4128 17320
8e04817f
AC
17321@item bold-standout
17322Use extra bright or bold and standout mode.
8e04817f 17323@end table
8e04817f 17324@end table
c78b4128 17325
8e04817f
AC
17326@node Emacs
17327@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17328
8e04817f
AC
17329@cindex Emacs
17330@cindex @sc{gnu} Emacs
17331A special interface allows you to use @sc{gnu} Emacs to view (and
17332edit) the source files for the program you are debugging with
17333@value{GDBN}.
c906108c 17334
8e04817f
AC
17335To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17336executable file you want to debug as an argument. This command starts
17337@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17338created Emacs buffer.
17339@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17340
5e252a2e 17341Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17342things:
c906108c 17343
8e04817f
AC
17344@itemize @bullet
17345@item
5e252a2e
NR
17346All ``terminal'' input and output goes through an Emacs buffer, called
17347the GUD buffer.
c906108c 17348
8e04817f
AC
17349This applies both to @value{GDBN} commands and their output, and to the input
17350and output done by the program you are debugging.
bf0184be 17351
8e04817f
AC
17352This is useful because it means that you can copy the text of previous
17353commands and input them again; you can even use parts of the output
17354in this way.
bf0184be 17355
8e04817f
AC
17356All the facilities of Emacs' Shell mode are available for interacting
17357with your program. In particular, you can send signals the usual
17358way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17359stop.
bf0184be
ND
17360
17361@item
8e04817f 17362@value{GDBN} displays source code through Emacs.
bf0184be 17363
8e04817f
AC
17364Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17365source file for that frame and puts an arrow (@samp{=>}) at the
17366left margin of the current line. Emacs uses a separate buffer for
17367source display, and splits the screen to show both your @value{GDBN} session
17368and the source.
bf0184be 17369
8e04817f
AC
17370Explicit @value{GDBN} @code{list} or search commands still produce output as
17371usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17372@end itemize
17373
17374We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17375a graphical mode, enabled by default, which provides further buffers
17376that can control the execution and describe the state of your program.
17377@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17378
64fabec2
AC
17379If you specify an absolute file name when prompted for the @kbd{M-x
17380gdb} argument, then Emacs sets your current working directory to where
17381your program resides. If you only specify the file name, then Emacs
17382sets your current working directory to to the directory associated
17383with the previous buffer. In this case, @value{GDBN} may find your
17384program by searching your environment's @code{PATH} variable, but on
17385some operating systems it might not find the source. So, although the
17386@value{GDBN} input and output session proceeds normally, the auxiliary
17387buffer does not display the current source and line of execution.
17388
17389The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17390line of the GUD buffer and this serves as a default for the commands
17391that specify files for @value{GDBN} to operate on. @xref{Files,
17392,Commands to Specify Files}.
64fabec2
AC
17393
17394By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17395need to call @value{GDBN} by a different name (for example, if you
17396keep several configurations around, with different names) you can
17397customize the Emacs variable @code{gud-gdb-command-name} to run the
17398one you want.
8e04817f 17399
5e252a2e 17400In the GUD buffer, you can use these special Emacs commands in
8e04817f 17401addition to the standard Shell mode commands:
c906108c 17402
8e04817f
AC
17403@table @kbd
17404@item C-h m
5e252a2e 17405Describe the features of Emacs' GUD Mode.
c906108c 17406
64fabec2 17407@item C-c C-s
8e04817f
AC
17408Execute to another source line, like the @value{GDBN} @code{step} command; also
17409update the display window to show the current file and location.
c906108c 17410
64fabec2 17411@item C-c C-n
8e04817f
AC
17412Execute to next source line in this function, skipping all function
17413calls, like the @value{GDBN} @code{next} command. Then update the display window
17414to show the current file and location.
c906108c 17415
64fabec2 17416@item C-c C-i
8e04817f
AC
17417Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17418display window accordingly.
c906108c 17419
8e04817f
AC
17420@item C-c C-f
17421Execute until exit from the selected stack frame, like the @value{GDBN}
17422@code{finish} command.
c906108c 17423
64fabec2 17424@item C-c C-r
8e04817f
AC
17425Continue execution of your program, like the @value{GDBN} @code{continue}
17426command.
b433d00b 17427
64fabec2 17428@item C-c <
8e04817f
AC
17429Go up the number of frames indicated by the numeric argument
17430(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17431like the @value{GDBN} @code{up} command.
b433d00b 17432
64fabec2 17433@item C-c >
8e04817f
AC
17434Go down the number of frames indicated by the numeric argument, like the
17435@value{GDBN} @code{down} command.
8e04817f 17436@end table
c906108c 17437
7f9087cb 17438In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17439tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17440
5e252a2e
NR
17441In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17442separate frame which shows a backtrace when the GUD buffer is current.
17443Move point to any frame in the stack and type @key{RET} to make it
17444become the current frame and display the associated source in the
17445source buffer. Alternatively, click @kbd{Mouse-2} to make the
17446selected frame become the current one. In graphical mode, the
17447speedbar displays watch expressions.
64fabec2 17448
8e04817f
AC
17449If you accidentally delete the source-display buffer, an easy way to get
17450it back is to type the command @code{f} in the @value{GDBN} buffer, to
17451request a frame display; when you run under Emacs, this recreates
17452the source buffer if necessary to show you the context of the current
17453frame.
c906108c 17454
8e04817f
AC
17455The source files displayed in Emacs are in ordinary Emacs buffers
17456which are visiting the source files in the usual way. You can edit
17457the files with these buffers if you wish; but keep in mind that @value{GDBN}
17458communicates with Emacs in terms of line numbers. If you add or
17459delete lines from the text, the line numbers that @value{GDBN} knows cease
17460to correspond properly with the code.
b383017d 17461
5e252a2e
NR
17462A more detailed description of Emacs' interaction with @value{GDBN} is
17463given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17464Emacs Manual}).
c906108c 17465
8e04817f
AC
17466@c The following dropped because Epoch is nonstandard. Reactivate
17467@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17468@ignore
17469@kindex Emacs Epoch environment
17470@kindex Epoch
17471@kindex inspect
c906108c 17472
8e04817f
AC
17473Version 18 of @sc{gnu} Emacs has a built-in window system
17474called the @code{epoch}
17475environment. Users of this environment can use a new command,
17476@code{inspect} which performs identically to @code{print} except that
17477each value is printed in its own window.
17478@end ignore
c906108c 17479
922fbb7b
AC
17480
17481@node GDB/MI
17482@chapter The @sc{gdb/mi} Interface
17483
17484@unnumberedsec Function and Purpose
17485
17486@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17487@sc{gdb/mi} is a line based machine oriented text interface to
17488@value{GDBN} and is activated by specifying using the
17489@option{--interpreter} command line option (@pxref{Mode Options}). It
17490is specifically intended to support the development of systems which
17491use the debugger as just one small component of a larger system.
922fbb7b
AC
17492
17493This chapter is a specification of the @sc{gdb/mi} interface. It is written
17494in the form of a reference manual.
17495
17496Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17497features described below are incomplete and subject to change
17498(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17499
17500@unnumberedsec Notation and Terminology
17501
17502@cindex notational conventions, for @sc{gdb/mi}
17503This chapter uses the following notation:
17504
17505@itemize @bullet
17506@item
17507@code{|} separates two alternatives.
17508
17509@item
17510@code{[ @var{something} ]} indicates that @var{something} is optional:
17511it may or may not be given.
17512
17513@item
17514@code{( @var{group} )*} means that @var{group} inside the parentheses
17515may repeat zero or more times.
17516
17517@item
17518@code{( @var{group} )+} means that @var{group} inside the parentheses
17519may repeat one or more times.
17520
17521@item
17522@code{"@var{string}"} means a literal @var{string}.
17523@end itemize
17524
17525@ignore
17526@heading Dependencies
17527@end ignore
17528
922fbb7b
AC
17529@menu
17530* GDB/MI Command Syntax::
17531* GDB/MI Compatibility with CLI::
af6eff6f 17532* GDB/MI Development and Front Ends::
922fbb7b 17533* GDB/MI Output Records::
ef21caaf 17534* GDB/MI Simple Examples::
922fbb7b 17535* GDB/MI Command Description Format::
ef21caaf 17536* GDB/MI Breakpoint Commands::
a2c02241
NR
17537* GDB/MI Program Context::
17538* GDB/MI Thread Commands::
17539* GDB/MI Program Execution::
17540* GDB/MI Stack Manipulation::
17541* GDB/MI Variable Objects::
922fbb7b 17542* GDB/MI Data Manipulation::
a2c02241
NR
17543* GDB/MI Tracepoint Commands::
17544* GDB/MI Symbol Query::
351ff01a 17545* GDB/MI File Commands::
922fbb7b
AC
17546@ignore
17547* GDB/MI Kod Commands::
17548* GDB/MI Memory Overlay Commands::
17549* GDB/MI Signal Handling Commands::
17550@end ignore
922fbb7b 17551* GDB/MI Target Manipulation::
a6b151f1 17552* GDB/MI File Transfer Commands::
ef21caaf 17553* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17554@end menu
17555
17556@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17557@node GDB/MI Command Syntax
17558@section @sc{gdb/mi} Command Syntax
17559
17560@menu
17561* GDB/MI Input Syntax::
17562* GDB/MI Output Syntax::
922fbb7b
AC
17563@end menu
17564
17565@node GDB/MI Input Syntax
17566@subsection @sc{gdb/mi} Input Syntax
17567
17568@cindex input syntax for @sc{gdb/mi}
17569@cindex @sc{gdb/mi}, input syntax
17570@table @code
17571@item @var{command} @expansion{}
17572@code{@var{cli-command} | @var{mi-command}}
17573
17574@item @var{cli-command} @expansion{}
17575@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17576@var{cli-command} is any existing @value{GDBN} CLI command.
17577
17578@item @var{mi-command} @expansion{}
17579@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17580@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17581
17582@item @var{token} @expansion{}
17583"any sequence of digits"
17584
17585@item @var{option} @expansion{}
17586@code{"-" @var{parameter} [ " " @var{parameter} ]}
17587
17588@item @var{parameter} @expansion{}
17589@code{@var{non-blank-sequence} | @var{c-string}}
17590
17591@item @var{operation} @expansion{}
17592@emph{any of the operations described in this chapter}
17593
17594@item @var{non-blank-sequence} @expansion{}
17595@emph{anything, provided it doesn't contain special characters such as
17596"-", @var{nl}, """ and of course " "}
17597
17598@item @var{c-string} @expansion{}
17599@code{""" @var{seven-bit-iso-c-string-content} """}
17600
17601@item @var{nl} @expansion{}
17602@code{CR | CR-LF}
17603@end table
17604
17605@noindent
17606Notes:
17607
17608@itemize @bullet
17609@item
17610The CLI commands are still handled by the @sc{mi} interpreter; their
17611output is described below.
17612
17613@item
17614The @code{@var{token}}, when present, is passed back when the command
17615finishes.
17616
17617@item
17618Some @sc{mi} commands accept optional arguments as part of the parameter
17619list. Each option is identified by a leading @samp{-} (dash) and may be
17620followed by an optional argument parameter. Options occur first in the
17621parameter list and can be delimited from normal parameters using
17622@samp{--} (this is useful when some parameters begin with a dash).
17623@end itemize
17624
17625Pragmatics:
17626
17627@itemize @bullet
17628@item
17629We want easy access to the existing CLI syntax (for debugging).
17630
17631@item
17632We want it to be easy to spot a @sc{mi} operation.
17633@end itemize
17634
17635@node GDB/MI Output Syntax
17636@subsection @sc{gdb/mi} Output Syntax
17637
17638@cindex output syntax of @sc{gdb/mi}
17639@cindex @sc{gdb/mi}, output syntax
17640The output from @sc{gdb/mi} consists of zero or more out-of-band records
17641followed, optionally, by a single result record. This result record
17642is for the most recent command. The sequence of output records is
594fe323 17643terminated by @samp{(gdb)}.
922fbb7b
AC
17644
17645If an input command was prefixed with a @code{@var{token}} then the
17646corresponding output for that command will also be prefixed by that same
17647@var{token}.
17648
17649@table @code
17650@item @var{output} @expansion{}
594fe323 17651@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17652
17653@item @var{result-record} @expansion{}
17654@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17655
17656@item @var{out-of-band-record} @expansion{}
17657@code{@var{async-record} | @var{stream-record}}
17658
17659@item @var{async-record} @expansion{}
17660@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17661
17662@item @var{exec-async-output} @expansion{}
17663@code{[ @var{token} ] "*" @var{async-output}}
17664
17665@item @var{status-async-output} @expansion{}
17666@code{[ @var{token} ] "+" @var{async-output}}
17667
17668@item @var{notify-async-output} @expansion{}
17669@code{[ @var{token} ] "=" @var{async-output}}
17670
17671@item @var{async-output} @expansion{}
17672@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17673
17674@item @var{result-class} @expansion{}
17675@code{"done" | "running" | "connected" | "error" | "exit"}
17676
17677@item @var{async-class} @expansion{}
17678@code{"stopped" | @var{others}} (where @var{others} will be added
17679depending on the needs---this is still in development).
17680
17681@item @var{result} @expansion{}
17682@code{ @var{variable} "=" @var{value}}
17683
17684@item @var{variable} @expansion{}
17685@code{ @var{string} }
17686
17687@item @var{value} @expansion{}
17688@code{ @var{const} | @var{tuple} | @var{list} }
17689
17690@item @var{const} @expansion{}
17691@code{@var{c-string}}
17692
17693@item @var{tuple} @expansion{}
17694@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17695
17696@item @var{list} @expansion{}
17697@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17698@var{result} ( "," @var{result} )* "]" }
17699
17700@item @var{stream-record} @expansion{}
17701@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17702
17703@item @var{console-stream-output} @expansion{}
17704@code{"~" @var{c-string}}
17705
17706@item @var{target-stream-output} @expansion{}
17707@code{"@@" @var{c-string}}
17708
17709@item @var{log-stream-output} @expansion{}
17710@code{"&" @var{c-string}}
17711
17712@item @var{nl} @expansion{}
17713@code{CR | CR-LF}
17714
17715@item @var{token} @expansion{}
17716@emph{any sequence of digits}.
17717@end table
17718
17719@noindent
17720Notes:
17721
17722@itemize @bullet
17723@item
17724All output sequences end in a single line containing a period.
17725
17726@item
17727The @code{@var{token}} is from the corresponding request. If an execution
17728command is interrupted by the @samp{-exec-interrupt} command, the
17729@var{token} associated with the @samp{*stopped} message is the one of the
17730original execution command, not the one of the interrupt command.
17731
17732@item
17733@cindex status output in @sc{gdb/mi}
17734@var{status-async-output} contains on-going status information about the
17735progress of a slow operation. It can be discarded. All status output is
17736prefixed by @samp{+}.
17737
17738@item
17739@cindex async output in @sc{gdb/mi}
17740@var{exec-async-output} contains asynchronous state change on the target
17741(stopped, started, disappeared). All async output is prefixed by
17742@samp{*}.
17743
17744@item
17745@cindex notify output in @sc{gdb/mi}
17746@var{notify-async-output} contains supplementary information that the
17747client should handle (e.g., a new breakpoint information). All notify
17748output is prefixed by @samp{=}.
17749
17750@item
17751@cindex console output in @sc{gdb/mi}
17752@var{console-stream-output} is output that should be displayed as is in the
17753console. It is the textual response to a CLI command. All the console
17754output is prefixed by @samp{~}.
17755
17756@item
17757@cindex target output in @sc{gdb/mi}
17758@var{target-stream-output} is the output produced by the target program.
17759All the target output is prefixed by @samp{@@}.
17760
17761@item
17762@cindex log output in @sc{gdb/mi}
17763@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17764instance messages that should be displayed as part of an error log. All
17765the log output is prefixed by @samp{&}.
17766
17767@item
17768@cindex list output in @sc{gdb/mi}
17769New @sc{gdb/mi} commands should only output @var{lists} containing
17770@var{values}.
17771
17772
17773@end itemize
17774
17775@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17776details about the various output records.
17777
922fbb7b
AC
17778@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17779@node GDB/MI Compatibility with CLI
17780@section @sc{gdb/mi} Compatibility with CLI
17781
17782@cindex compatibility, @sc{gdb/mi} and CLI
17783@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17784
a2c02241
NR
17785For the developers convenience CLI commands can be entered directly,
17786but there may be some unexpected behaviour. For example, commands
17787that query the user will behave as if the user replied yes, breakpoint
17788command lists are not executed and some CLI commands, such as
17789@code{if}, @code{when} and @code{define}, prompt for further input with
17790@samp{>}, which is not valid MI output.
ef21caaf
NR
17791
17792This feature may be removed at some stage in the future and it is
a2c02241
NR
17793recommended that front ends use the @code{-interpreter-exec} command
17794(@pxref{-interpreter-exec}).
922fbb7b 17795
af6eff6f
NR
17796@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17797@node GDB/MI Development and Front Ends
17798@section @sc{gdb/mi} Development and Front Ends
17799@cindex @sc{gdb/mi} development
17800
17801The application which takes the MI output and presents the state of the
17802program being debugged to the user is called a @dfn{front end}.
17803
17804Although @sc{gdb/mi} is still incomplete, it is currently being used
17805by a variety of front ends to @value{GDBN}. This makes it difficult
17806to introduce new functionality without breaking existing usage. This
17807section tries to minimize the problems by describing how the protocol
17808might change.
17809
17810Some changes in MI need not break a carefully designed front end, and
17811for these the MI version will remain unchanged. The following is a
17812list of changes that may occur within one level, so front ends should
17813parse MI output in a way that can handle them:
17814
17815@itemize @bullet
17816@item
17817New MI commands may be added.
17818
17819@item
17820New fields may be added to the output of any MI command.
17821
36ece8b3
NR
17822@item
17823The range of values for fields with specified values, e.g.,
9f708cb2 17824@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17825
af6eff6f
NR
17826@c The format of field's content e.g type prefix, may change so parse it
17827@c at your own risk. Yes, in general?
17828
17829@c The order of fields may change? Shouldn't really matter but it might
17830@c resolve inconsistencies.
17831@end itemize
17832
17833If the changes are likely to break front ends, the MI version level
17834will be increased by one. This will allow the front end to parse the
17835output according to the MI version. Apart from mi0, new versions of
17836@value{GDBN} will not support old versions of MI and it will be the
17837responsibility of the front end to work with the new one.
17838
17839@c Starting with mi3, add a new command -mi-version that prints the MI
17840@c version?
17841
17842The best way to avoid unexpected changes in MI that might break your front
17843end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17844follow development on @email{gdb@@sourceware.org} and
17845@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17846@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17847Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17848called Debugger Machine Interface (DMI) that will become a standard
17849for all debuggers, not just @value{GDBN}.
17850@cindex mailing lists
17851
922fbb7b
AC
17852@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17853@node GDB/MI Output Records
17854@section @sc{gdb/mi} Output Records
17855
17856@menu
17857* GDB/MI Result Records::
17858* GDB/MI Stream Records::
17859* GDB/MI Out-of-band Records::
17860@end menu
17861
17862@node GDB/MI Result Records
17863@subsection @sc{gdb/mi} Result Records
17864
17865@cindex result records in @sc{gdb/mi}
17866@cindex @sc{gdb/mi}, result records
17867In addition to a number of out-of-band notifications, the response to a
17868@sc{gdb/mi} command includes one of the following result indications:
17869
17870@table @code
17871@findex ^done
17872@item "^done" [ "," @var{results} ]
17873The synchronous operation was successful, @code{@var{results}} are the return
17874values.
17875
17876@item "^running"
17877@findex ^running
17878@c Is this one correct? Should it be an out-of-band notification?
17879The asynchronous operation was successfully started. The target is
17880running.
17881
ef21caaf
NR
17882@item "^connected"
17883@findex ^connected
3f94c067 17884@value{GDBN} has connected to a remote target.
ef21caaf 17885
922fbb7b
AC
17886@item "^error" "," @var{c-string}
17887@findex ^error
17888The operation failed. The @code{@var{c-string}} contains the corresponding
17889error message.
ef21caaf
NR
17890
17891@item "^exit"
17892@findex ^exit
3f94c067 17893@value{GDBN} has terminated.
ef21caaf 17894
922fbb7b
AC
17895@end table
17896
17897@node GDB/MI Stream Records
17898@subsection @sc{gdb/mi} Stream Records
17899
17900@cindex @sc{gdb/mi}, stream records
17901@cindex stream records in @sc{gdb/mi}
17902@value{GDBN} internally maintains a number of output streams: the console, the
17903target, and the log. The output intended for each of these streams is
17904funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
17905
17906Each stream record begins with a unique @dfn{prefix character} which
17907identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
17908Syntax}). In addition to the prefix, each stream record contains a
17909@code{@var{string-output}}. This is either raw text (with an implicit new
17910line) or a quoted C string (which does not contain an implicit newline).
17911
17912@table @code
17913@item "~" @var{string-output}
17914The console output stream contains text that should be displayed in the
17915CLI console window. It contains the textual responses to CLI commands.
17916
17917@item "@@" @var{string-output}
17918The target output stream contains any textual output from the running
ef21caaf
NR
17919target. This is only present when GDB's event loop is truly
17920asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
17921
17922@item "&" @var{string-output}
17923The log stream contains debugging messages being produced by @value{GDBN}'s
17924internals.
17925@end table
17926
17927@node GDB/MI Out-of-band Records
17928@subsection @sc{gdb/mi} Out-of-band Records
17929
17930@cindex out-of-band records in @sc{gdb/mi}
17931@cindex @sc{gdb/mi}, out-of-band records
17932@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
17933additional changes that have occurred. Those changes can either be a
17934consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
17935target activity (e.g., target stopped).
17936
17937The following is a preliminary list of possible out-of-band records.
034dad6f 17938In particular, the @var{exec-async-output} records.
922fbb7b
AC
17939
17940@table @code
034dad6f
BR
17941@item *stopped,reason="@var{reason}"
17942@end table
17943
17944@var{reason} can be one of the following:
17945
17946@table @code
17947@item breakpoint-hit
17948A breakpoint was reached.
17949@item watchpoint-trigger
17950A watchpoint was triggered.
17951@item read-watchpoint-trigger
17952A read watchpoint was triggered.
17953@item access-watchpoint-trigger
17954An access watchpoint was triggered.
17955@item function-finished
17956An -exec-finish or similar CLI command was accomplished.
17957@item location-reached
17958An -exec-until or similar CLI command was accomplished.
17959@item watchpoint-scope
17960A watchpoint has gone out of scope.
17961@item end-stepping-range
17962An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
17963similar CLI command was accomplished.
17964@item exited-signalled
17965The inferior exited because of a signal.
17966@item exited
17967The inferior exited.
17968@item exited-normally
17969The inferior exited normally.
17970@item signal-received
17971A signal was received by the inferior.
922fbb7b
AC
17972@end table
17973
17974
ef21caaf
NR
17975@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17976@node GDB/MI Simple Examples
17977@section Simple Examples of @sc{gdb/mi} Interaction
17978@cindex @sc{gdb/mi}, simple examples
17979
17980This subsection presents several simple examples of interaction using
17981the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
17982following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
17983the output received from @sc{gdb/mi}.
17984
d3e8051b 17985Note the line breaks shown in the examples are here only for
ef21caaf
NR
17986readability, they don't appear in the real output.
17987
79a6e687 17988@subheading Setting a Breakpoint
ef21caaf
NR
17989
17990Setting a breakpoint generates synchronous output which contains detailed
17991information of the breakpoint.
17992
17993@smallexample
17994-> -break-insert main
17995<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
17996 enabled="y",addr="0x08048564",func="main",file="myprog.c",
17997 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
17998<- (gdb)
17999@end smallexample
18000
18001@subheading Program Execution
18002
18003Program execution generates asynchronous records and MI gives the
18004reason that execution stopped.
18005
18006@smallexample
18007-> -exec-run
18008<- ^running
18009<- (gdb)
18010<- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
18011 frame=@{addr="0x08048564",func="main",
18012 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18013 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18014<- (gdb)
18015-> -exec-continue
18016<- ^running
18017<- (gdb)
18018<- *stopped,reason="exited-normally"
18019<- (gdb)
18020@end smallexample
18021
3f94c067 18022@subheading Quitting @value{GDBN}
ef21caaf 18023
3f94c067 18024Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18025
18026@smallexample
18027-> (gdb)
18028<- -gdb-exit
18029<- ^exit
18030@end smallexample
18031
a2c02241 18032@subheading A Bad Command
ef21caaf
NR
18033
18034Here's what happens if you pass a non-existent command:
18035
18036@smallexample
18037-> -rubbish
18038<- ^error,msg="Undefined MI command: rubbish"
594fe323 18039<- (gdb)
ef21caaf
NR
18040@end smallexample
18041
18042
922fbb7b
AC
18043@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18044@node GDB/MI Command Description Format
18045@section @sc{gdb/mi} Command Description Format
18046
18047The remaining sections describe blocks of commands. Each block of
18048commands is laid out in a fashion similar to this section.
18049
922fbb7b
AC
18050@subheading Motivation
18051
18052The motivation for this collection of commands.
18053
18054@subheading Introduction
18055
18056A brief introduction to this collection of commands as a whole.
18057
18058@subheading Commands
18059
18060For each command in the block, the following is described:
18061
18062@subsubheading Synopsis
18063
18064@smallexample
18065 -command @var{args}@dots{}
18066@end smallexample
18067
922fbb7b
AC
18068@subsubheading Result
18069
265eeb58 18070@subsubheading @value{GDBN} Command
922fbb7b 18071
265eeb58 18072The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18073
18074@subsubheading Example
18075
ef21caaf
NR
18076Example(s) formatted for readability. Some of the described commands have
18077not been implemented yet and these are labeled N.A.@: (not available).
18078
18079
922fbb7b 18080@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18081@node GDB/MI Breakpoint Commands
18082@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18083
18084@cindex breakpoint commands for @sc{gdb/mi}
18085@cindex @sc{gdb/mi}, breakpoint commands
18086This section documents @sc{gdb/mi} commands for manipulating
18087breakpoints.
18088
18089@subheading The @code{-break-after} Command
18090@findex -break-after
18091
18092@subsubheading Synopsis
18093
18094@smallexample
18095 -break-after @var{number} @var{count}
18096@end smallexample
18097
18098The breakpoint number @var{number} is not in effect until it has been
18099hit @var{count} times. To see how this is reflected in the output of
18100the @samp{-break-list} command, see the description of the
18101@samp{-break-list} command below.
18102
18103@subsubheading @value{GDBN} Command
18104
18105The corresponding @value{GDBN} command is @samp{ignore}.
18106
18107@subsubheading Example
18108
18109@smallexample
594fe323 18110(gdb)
922fbb7b 18111-break-insert main
948d5102
NR
18112^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
18113fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18114(gdb)
922fbb7b
AC
18115-break-after 1 3
18116~
18117^done
594fe323 18118(gdb)
922fbb7b
AC
18119-break-list
18120^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18121hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18122@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18123@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18124@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18125@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18126@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18127body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18128addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18129line="5",times="0",ignore="3"@}]@}
594fe323 18130(gdb)
922fbb7b
AC
18131@end smallexample
18132
18133@ignore
18134@subheading The @code{-break-catch} Command
18135@findex -break-catch
18136
18137@subheading The @code{-break-commands} Command
18138@findex -break-commands
18139@end ignore
18140
18141
18142@subheading The @code{-break-condition} Command
18143@findex -break-condition
18144
18145@subsubheading Synopsis
18146
18147@smallexample
18148 -break-condition @var{number} @var{expr}
18149@end smallexample
18150
18151Breakpoint @var{number} will stop the program only if the condition in
18152@var{expr} is true. The condition becomes part of the
18153@samp{-break-list} output (see the description of the @samp{-break-list}
18154command below).
18155
18156@subsubheading @value{GDBN} Command
18157
18158The corresponding @value{GDBN} command is @samp{condition}.
18159
18160@subsubheading Example
18161
18162@smallexample
594fe323 18163(gdb)
922fbb7b
AC
18164-break-condition 1 1
18165^done
594fe323 18166(gdb)
922fbb7b
AC
18167-break-list
18168^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18169hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18170@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18171@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18172@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18173@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18174@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18175body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18176addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18177line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18178(gdb)
922fbb7b
AC
18179@end smallexample
18180
18181@subheading The @code{-break-delete} Command
18182@findex -break-delete
18183
18184@subsubheading Synopsis
18185
18186@smallexample
18187 -break-delete ( @var{breakpoint} )+
18188@end smallexample
18189
18190Delete the breakpoint(s) whose number(s) are specified in the argument
18191list. This is obviously reflected in the breakpoint list.
18192
79a6e687 18193@subsubheading @value{GDBN} Command
922fbb7b
AC
18194
18195The corresponding @value{GDBN} command is @samp{delete}.
18196
18197@subsubheading Example
18198
18199@smallexample
594fe323 18200(gdb)
922fbb7b
AC
18201-break-delete 1
18202^done
594fe323 18203(gdb)
922fbb7b
AC
18204-break-list
18205^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18206hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18207@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18208@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18209@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18210@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18211@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18212body=[]@}
594fe323 18213(gdb)
922fbb7b
AC
18214@end smallexample
18215
18216@subheading The @code{-break-disable} Command
18217@findex -break-disable
18218
18219@subsubheading Synopsis
18220
18221@smallexample
18222 -break-disable ( @var{breakpoint} )+
18223@end smallexample
18224
18225Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18226break list is now set to @samp{n} for the named @var{breakpoint}(s).
18227
18228@subsubheading @value{GDBN} Command
18229
18230The corresponding @value{GDBN} command is @samp{disable}.
18231
18232@subsubheading Example
18233
18234@smallexample
594fe323 18235(gdb)
922fbb7b
AC
18236-break-disable 2
18237^done
594fe323 18238(gdb)
922fbb7b
AC
18239-break-list
18240^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18241hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18242@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18243@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18244@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18245@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18246@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18247body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18248addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18249line="5",times="0"@}]@}
594fe323 18250(gdb)
922fbb7b
AC
18251@end smallexample
18252
18253@subheading The @code{-break-enable} Command
18254@findex -break-enable
18255
18256@subsubheading Synopsis
18257
18258@smallexample
18259 -break-enable ( @var{breakpoint} )+
18260@end smallexample
18261
18262Enable (previously disabled) @var{breakpoint}(s).
18263
18264@subsubheading @value{GDBN} Command
18265
18266The corresponding @value{GDBN} command is @samp{enable}.
18267
18268@subsubheading Example
18269
18270@smallexample
594fe323 18271(gdb)
922fbb7b
AC
18272-break-enable 2
18273^done
594fe323 18274(gdb)
922fbb7b
AC
18275-break-list
18276^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18277hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18278@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18279@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18280@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18281@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18282@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18283body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18284addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18285line="5",times="0"@}]@}
594fe323 18286(gdb)
922fbb7b
AC
18287@end smallexample
18288
18289@subheading The @code{-break-info} Command
18290@findex -break-info
18291
18292@subsubheading Synopsis
18293
18294@smallexample
18295 -break-info @var{breakpoint}
18296@end smallexample
18297
18298@c REDUNDANT???
18299Get information about a single breakpoint.
18300
79a6e687 18301@subsubheading @value{GDBN} Command
922fbb7b
AC
18302
18303The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18304
18305@subsubheading Example
18306N.A.
18307
18308@subheading The @code{-break-insert} Command
18309@findex -break-insert
18310
18311@subsubheading Synopsis
18312
18313@smallexample
afe8ab22 18314 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18315 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18316 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18317@end smallexample
18318
18319@noindent
afe8ab22 18320If specified, @var{location}, can be one of:
922fbb7b
AC
18321
18322@itemize @bullet
18323@item function
18324@c @item +offset
18325@c @item -offset
18326@c @item linenum
18327@item filename:linenum
18328@item filename:function
18329@item *address
18330@end itemize
18331
18332The possible optional parameters of this command are:
18333
18334@table @samp
18335@item -t
948d5102 18336Insert a temporary breakpoint.
922fbb7b
AC
18337@item -h
18338Insert a hardware breakpoint.
18339@item -c @var{condition}
18340Make the breakpoint conditional on @var{condition}.
18341@item -i @var{ignore-count}
18342Initialize the @var{ignore-count}.
afe8ab22
VP
18343@item -f
18344If @var{location} cannot be parsed (for example if it
18345refers to unknown files or functions), create a pending
18346breakpoint. Without this flag, @value{GDBN} will report
18347an error, and won't create a breakpoint, if @var{location}
18348cannot be parsed.
922fbb7b
AC
18349@end table
18350
18351@subsubheading Result
18352
18353The result is in the form:
18354
18355@smallexample
948d5102
NR
18356^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18357enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18358fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18359times="@var{times}"@}
922fbb7b
AC
18360@end smallexample
18361
18362@noindent
948d5102
NR
18363where @var{number} is the @value{GDBN} number for this breakpoint,
18364@var{funcname} is the name of the function where the breakpoint was
18365inserted, @var{filename} is the name of the source file which contains
18366this function, @var{lineno} is the source line number within that file
18367and @var{times} the number of times that the breakpoint has been hit
18368(always 0 for -break-insert but may be greater for -break-info or -break-list
18369which use the same output).
922fbb7b
AC
18370
18371Note: this format is open to change.
18372@c An out-of-band breakpoint instead of part of the result?
18373
18374@subsubheading @value{GDBN} Command
18375
18376The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18377@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18378
18379@subsubheading Example
18380
18381@smallexample
594fe323 18382(gdb)
922fbb7b 18383-break-insert main
948d5102
NR
18384^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18385fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18386(gdb)
922fbb7b 18387-break-insert -t foo
948d5102
NR
18388^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18389fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18390(gdb)
922fbb7b
AC
18391-break-list
18392^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18393hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18394@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18395@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18396@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18397@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18398@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18399body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18400addr="0x0001072c", func="main",file="recursive2.c",
18401fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18402bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18403addr="0x00010774",func="foo",file="recursive2.c",
18404fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18405(gdb)
922fbb7b
AC
18406-break-insert -r foo.*
18407~int foo(int, int);
948d5102
NR
18408^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18409"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18410(gdb)
922fbb7b
AC
18411@end smallexample
18412
18413@subheading The @code{-break-list} Command
18414@findex -break-list
18415
18416@subsubheading Synopsis
18417
18418@smallexample
18419 -break-list
18420@end smallexample
18421
18422Displays the list of inserted breakpoints, showing the following fields:
18423
18424@table @samp
18425@item Number
18426number of the breakpoint
18427@item Type
18428type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18429@item Disposition
18430should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18431or @samp{nokeep}
18432@item Enabled
18433is the breakpoint enabled or no: @samp{y} or @samp{n}
18434@item Address
18435memory location at which the breakpoint is set
18436@item What
18437logical location of the breakpoint, expressed by function name, file
18438name, line number
18439@item Times
18440number of times the breakpoint has been hit
18441@end table
18442
18443If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18444@code{body} field is an empty list.
18445
18446@subsubheading @value{GDBN} Command
18447
18448The corresponding @value{GDBN} command is @samp{info break}.
18449
18450@subsubheading Example
18451
18452@smallexample
594fe323 18453(gdb)
922fbb7b
AC
18454-break-list
18455^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18456hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18457@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18458@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18459@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18460@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18461@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18462body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18463addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18464bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18465addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18466line="13",times="0"@}]@}
594fe323 18467(gdb)
922fbb7b
AC
18468@end smallexample
18469
18470Here's an example of the result when there are no breakpoints:
18471
18472@smallexample
594fe323 18473(gdb)
922fbb7b
AC
18474-break-list
18475^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18476hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18477@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18478@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18479@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18480@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18481@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18482body=[]@}
594fe323 18483(gdb)
922fbb7b
AC
18484@end smallexample
18485
18486@subheading The @code{-break-watch} Command
18487@findex -break-watch
18488
18489@subsubheading Synopsis
18490
18491@smallexample
18492 -break-watch [ -a | -r ]
18493@end smallexample
18494
18495Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18496@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18497read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18498option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18499trigger only when the memory location is accessed for reading. Without
18500either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18501i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18502@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18503
18504Note that @samp{-break-list} will report a single list of watchpoints and
18505breakpoints inserted.
18506
18507@subsubheading @value{GDBN} Command
18508
18509The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18510@samp{rwatch}.
18511
18512@subsubheading Example
18513
18514Setting a watchpoint on a variable in the @code{main} function:
18515
18516@smallexample
594fe323 18517(gdb)
922fbb7b
AC
18518-break-watch x
18519^done,wpt=@{number="2",exp="x"@}
594fe323 18520(gdb)
922fbb7b
AC
18521-exec-continue
18522^running
0869d01b
NR
18523(gdb)
18524*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18525value=@{old="-268439212",new="55"@},
76ff342d 18526frame=@{func="main",args=[],file="recursive2.c",
948d5102 18527fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18528(gdb)
922fbb7b
AC
18529@end smallexample
18530
18531Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18532the program execution twice: first for the variable changing value, then
18533for the watchpoint going out of scope.
18534
18535@smallexample
594fe323 18536(gdb)
922fbb7b
AC
18537-break-watch C
18538^done,wpt=@{number="5",exp="C"@}
594fe323 18539(gdb)
922fbb7b
AC
18540-exec-continue
18541^running
0869d01b
NR
18542(gdb)
18543*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18544wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18545frame=@{func="callee4",args=[],
76ff342d
DJ
18546file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18547fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18548(gdb)
922fbb7b
AC
18549-exec-continue
18550^running
0869d01b
NR
18551(gdb)
18552*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18553frame=@{func="callee3",args=[@{name="strarg",
18554value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18555file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18556fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18557(gdb)
922fbb7b
AC
18558@end smallexample
18559
18560Listing breakpoints and watchpoints, at different points in the program
18561execution. Note that once the watchpoint goes out of scope, it is
18562deleted.
18563
18564@smallexample
594fe323 18565(gdb)
922fbb7b
AC
18566-break-watch C
18567^done,wpt=@{number="2",exp="C"@}
594fe323 18568(gdb)
922fbb7b
AC
18569-break-list
18570^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18571hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18572@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18573@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18574@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18575@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18576@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18577body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18578addr="0x00010734",func="callee4",
948d5102
NR
18579file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18580fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18581bkpt=@{number="2",type="watchpoint",disp="keep",
18582enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18583(gdb)
922fbb7b
AC
18584-exec-continue
18585^running
0869d01b
NR
18586(gdb)
18587*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18588value=@{old="-276895068",new="3"@},
18589frame=@{func="callee4",args=[],
76ff342d
DJ
18590file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18591fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18592(gdb)
922fbb7b
AC
18593-break-list
18594^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18595hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18596@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18597@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18598@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18599@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18600@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18601body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18602addr="0x00010734",func="callee4",
948d5102
NR
18603file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18604fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18605bkpt=@{number="2",type="watchpoint",disp="keep",
18606enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18607(gdb)
922fbb7b
AC
18608-exec-continue
18609^running
18610^done,reason="watchpoint-scope",wpnum="2",
18611frame=@{func="callee3",args=[@{name="strarg",
18612value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18613file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18614fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18615(gdb)
922fbb7b
AC
18616-break-list
18617^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18618hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18619@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18620@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18621@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18622@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18623@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18624body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18625addr="0x00010734",func="callee4",
948d5102
NR
18626file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18627fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18628times="1"@}]@}
594fe323 18629(gdb)
922fbb7b
AC
18630@end smallexample
18631
18632@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18633@node GDB/MI Program Context
18634@section @sc{gdb/mi} Program Context
922fbb7b 18635
a2c02241
NR
18636@subheading The @code{-exec-arguments} Command
18637@findex -exec-arguments
922fbb7b 18638
922fbb7b
AC
18639
18640@subsubheading Synopsis
18641
18642@smallexample
a2c02241 18643 -exec-arguments @var{args}
922fbb7b
AC
18644@end smallexample
18645
a2c02241
NR
18646Set the inferior program arguments, to be used in the next
18647@samp{-exec-run}.
922fbb7b 18648
a2c02241 18649@subsubheading @value{GDBN} Command
922fbb7b 18650
a2c02241 18651The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18652
a2c02241 18653@subsubheading Example
922fbb7b 18654
a2c02241
NR
18655@c FIXME!
18656Don't have one around.
922fbb7b 18657
a2c02241
NR
18658
18659@subheading The @code{-exec-show-arguments} Command
18660@findex -exec-show-arguments
18661
18662@subsubheading Synopsis
18663
18664@smallexample
18665 -exec-show-arguments
18666@end smallexample
18667
18668Print the arguments of the program.
922fbb7b
AC
18669
18670@subsubheading @value{GDBN} Command
18671
a2c02241 18672The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18673
18674@subsubheading Example
a2c02241 18675N.A.
922fbb7b 18676
922fbb7b 18677
a2c02241
NR
18678@subheading The @code{-environment-cd} Command
18679@findex -environment-cd
922fbb7b 18680
a2c02241 18681@subsubheading Synopsis
922fbb7b
AC
18682
18683@smallexample
a2c02241 18684 -environment-cd @var{pathdir}
922fbb7b
AC
18685@end smallexample
18686
a2c02241 18687Set @value{GDBN}'s working directory.
922fbb7b 18688
a2c02241 18689@subsubheading @value{GDBN} Command
922fbb7b 18690
a2c02241
NR
18691The corresponding @value{GDBN} command is @samp{cd}.
18692
18693@subsubheading Example
922fbb7b
AC
18694
18695@smallexample
594fe323 18696(gdb)
a2c02241
NR
18697-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18698^done
594fe323 18699(gdb)
922fbb7b
AC
18700@end smallexample
18701
18702
a2c02241
NR
18703@subheading The @code{-environment-directory} Command
18704@findex -environment-directory
922fbb7b
AC
18705
18706@subsubheading Synopsis
18707
18708@smallexample
a2c02241 18709 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18710@end smallexample
18711
a2c02241
NR
18712Add directories @var{pathdir} to beginning of search path for source files.
18713If the @samp{-r} option is used, the search path is reset to the default
18714search path. If directories @var{pathdir} are supplied in addition to the
18715@samp{-r} option, the search path is first reset and then addition
18716occurs as normal.
18717Multiple directories may be specified, separated by blanks. Specifying
18718multiple directories in a single command
18719results in the directories added to the beginning of the
18720search path in the same order they were presented in the command.
18721If blanks are needed as
18722part of a directory name, double-quotes should be used around
18723the name. In the command output, the path will show up separated
d3e8051b 18724by the system directory-separator character. The directory-separator
a2c02241
NR
18725character must not be used
18726in any directory name.
18727If no directories are specified, the current search path is displayed.
922fbb7b
AC
18728
18729@subsubheading @value{GDBN} Command
18730
a2c02241 18731The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18732
18733@subsubheading Example
18734
922fbb7b 18735@smallexample
594fe323 18736(gdb)
a2c02241
NR
18737-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18738^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18739(gdb)
a2c02241
NR
18740-environment-directory ""
18741^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18742(gdb)
a2c02241
NR
18743-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18744^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18745(gdb)
a2c02241
NR
18746-environment-directory -r
18747^done,source-path="$cdir:$cwd"
594fe323 18748(gdb)
922fbb7b
AC
18749@end smallexample
18750
18751
a2c02241
NR
18752@subheading The @code{-environment-path} Command
18753@findex -environment-path
922fbb7b
AC
18754
18755@subsubheading Synopsis
18756
18757@smallexample
a2c02241 18758 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18759@end smallexample
18760
a2c02241
NR
18761Add directories @var{pathdir} to beginning of search path for object files.
18762If the @samp{-r} option is used, the search path is reset to the original
18763search path that existed at gdb start-up. If directories @var{pathdir} are
18764supplied in addition to the
18765@samp{-r} option, the search path is first reset and then addition
18766occurs as normal.
18767Multiple directories may be specified, separated by blanks. Specifying
18768multiple directories in a single command
18769results in the directories added to the beginning of the
18770search path in the same order they were presented in the command.
18771If blanks are needed as
18772part of a directory name, double-quotes should be used around
18773the name. In the command output, the path will show up separated
d3e8051b 18774by the system directory-separator character. The directory-separator
a2c02241
NR
18775character must not be used
18776in any directory name.
18777If no directories are specified, the current path is displayed.
18778
922fbb7b
AC
18779
18780@subsubheading @value{GDBN} Command
18781
a2c02241 18782The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18783
18784@subsubheading Example
18785
922fbb7b 18786@smallexample
594fe323 18787(gdb)
a2c02241
NR
18788-environment-path
18789^done,path="/usr/bin"
594fe323 18790(gdb)
a2c02241
NR
18791-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18792^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18793(gdb)
a2c02241
NR
18794-environment-path -r /usr/local/bin
18795^done,path="/usr/local/bin:/usr/bin"
594fe323 18796(gdb)
922fbb7b
AC
18797@end smallexample
18798
18799
a2c02241
NR
18800@subheading The @code{-environment-pwd} Command
18801@findex -environment-pwd
922fbb7b
AC
18802
18803@subsubheading Synopsis
18804
18805@smallexample
a2c02241 18806 -environment-pwd
922fbb7b
AC
18807@end smallexample
18808
a2c02241 18809Show the current working directory.
922fbb7b 18810
79a6e687 18811@subsubheading @value{GDBN} Command
922fbb7b 18812
a2c02241 18813The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18814
18815@subsubheading Example
18816
922fbb7b 18817@smallexample
594fe323 18818(gdb)
a2c02241
NR
18819-environment-pwd
18820^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18821(gdb)
922fbb7b
AC
18822@end smallexample
18823
a2c02241
NR
18824@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18825@node GDB/MI Thread Commands
18826@section @sc{gdb/mi} Thread Commands
18827
18828
18829@subheading The @code{-thread-info} Command
18830@findex -thread-info
922fbb7b
AC
18831
18832@subsubheading Synopsis
18833
18834@smallexample
a2c02241 18835 -thread-info
922fbb7b
AC
18836@end smallexample
18837
79a6e687 18838@subsubheading @value{GDBN} Command
922fbb7b 18839
a2c02241 18840No equivalent.
922fbb7b
AC
18841
18842@subsubheading Example
a2c02241 18843N.A.
922fbb7b
AC
18844
18845
a2c02241
NR
18846@subheading The @code{-thread-list-all-threads} Command
18847@findex -thread-list-all-threads
922fbb7b
AC
18848
18849@subsubheading Synopsis
18850
18851@smallexample
a2c02241 18852 -thread-list-all-threads
922fbb7b
AC
18853@end smallexample
18854
a2c02241 18855@subsubheading @value{GDBN} Command
922fbb7b 18856
a2c02241 18857The equivalent @value{GDBN} command is @samp{info threads}.
922fbb7b 18858
a2c02241
NR
18859@subsubheading Example
18860N.A.
922fbb7b 18861
922fbb7b 18862
a2c02241
NR
18863@subheading The @code{-thread-list-ids} Command
18864@findex -thread-list-ids
922fbb7b 18865
a2c02241 18866@subsubheading Synopsis
922fbb7b 18867
a2c02241
NR
18868@smallexample
18869 -thread-list-ids
18870@end smallexample
922fbb7b 18871
a2c02241
NR
18872Produces a list of the currently known @value{GDBN} thread ids. At the
18873end of the list it also prints the total number of such threads.
922fbb7b
AC
18874
18875@subsubheading @value{GDBN} Command
18876
a2c02241 18877Part of @samp{info threads} supplies the same information.
922fbb7b
AC
18878
18879@subsubheading Example
18880
a2c02241 18881No threads present, besides the main process:
922fbb7b
AC
18882
18883@smallexample
594fe323 18884(gdb)
a2c02241
NR
18885-thread-list-ids
18886^done,thread-ids=@{@},number-of-threads="0"
594fe323 18887(gdb)
922fbb7b
AC
18888@end smallexample
18889
922fbb7b 18890
a2c02241 18891Several threads:
922fbb7b
AC
18892
18893@smallexample
594fe323 18894(gdb)
a2c02241
NR
18895-thread-list-ids
18896^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18897number-of-threads="3"
594fe323 18898(gdb)
922fbb7b
AC
18899@end smallexample
18900
a2c02241
NR
18901
18902@subheading The @code{-thread-select} Command
18903@findex -thread-select
922fbb7b
AC
18904
18905@subsubheading Synopsis
18906
18907@smallexample
a2c02241 18908 -thread-select @var{threadnum}
922fbb7b
AC
18909@end smallexample
18910
a2c02241
NR
18911Make @var{threadnum} the current thread. It prints the number of the new
18912current thread, and the topmost frame for that thread.
922fbb7b
AC
18913
18914@subsubheading @value{GDBN} Command
18915
a2c02241 18916The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
18917
18918@subsubheading Example
922fbb7b
AC
18919
18920@smallexample
594fe323 18921(gdb)
a2c02241
NR
18922-exec-next
18923^running
594fe323 18924(gdb)
a2c02241
NR
18925*stopped,reason="end-stepping-range",thread-id="2",line="187",
18926file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 18927(gdb)
a2c02241
NR
18928-thread-list-ids
18929^done,
18930thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18931number-of-threads="3"
594fe323 18932(gdb)
a2c02241
NR
18933-thread-select 3
18934^done,new-thread-id="3",
18935frame=@{level="0",func="vprintf",
18936args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
18937@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 18938(gdb)
922fbb7b
AC
18939@end smallexample
18940
a2c02241
NR
18941@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18942@node GDB/MI Program Execution
18943@section @sc{gdb/mi} Program Execution
922fbb7b 18944
ef21caaf 18945These are the asynchronous commands which generate the out-of-band
3f94c067 18946record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
18947asynchronously with remote targets and this interaction is mimicked in
18948other cases.
922fbb7b 18949
922fbb7b
AC
18950@subheading The @code{-exec-continue} Command
18951@findex -exec-continue
18952
18953@subsubheading Synopsis
18954
18955@smallexample
18956 -exec-continue
18957@end smallexample
18958
ef21caaf
NR
18959Resumes the execution of the inferior program until a breakpoint is
18960encountered, or until the inferior exits.
922fbb7b
AC
18961
18962@subsubheading @value{GDBN} Command
18963
18964The corresponding @value{GDBN} corresponding is @samp{continue}.
18965
18966@subsubheading Example
18967
18968@smallexample
18969-exec-continue
18970^running
594fe323 18971(gdb)
922fbb7b
AC
18972@@Hello world
18973*stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
948d5102 18974file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
594fe323 18975(gdb)
922fbb7b
AC
18976@end smallexample
18977
18978
18979@subheading The @code{-exec-finish} Command
18980@findex -exec-finish
18981
18982@subsubheading Synopsis
18983
18984@smallexample
18985 -exec-finish
18986@end smallexample
18987
ef21caaf
NR
18988Resumes the execution of the inferior program until the current
18989function is exited. Displays the results returned by the function.
922fbb7b
AC
18990
18991@subsubheading @value{GDBN} Command
18992
18993The corresponding @value{GDBN} command is @samp{finish}.
18994
18995@subsubheading Example
18996
18997Function returning @code{void}.
18998
18999@smallexample
19000-exec-finish
19001^running
594fe323 19002(gdb)
922fbb7b
AC
19003@@hello from foo
19004*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19005file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19006(gdb)
922fbb7b
AC
19007@end smallexample
19008
19009Function returning other than @code{void}. The name of the internal
19010@value{GDBN} variable storing the result is printed, together with the
19011value itself.
19012
19013@smallexample
19014-exec-finish
19015^running
594fe323 19016(gdb)
922fbb7b
AC
19017*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19018args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19019file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19020gdb-result-var="$1",return-value="0"
594fe323 19021(gdb)
922fbb7b
AC
19022@end smallexample
19023
19024
19025@subheading The @code{-exec-interrupt} Command
19026@findex -exec-interrupt
19027
19028@subsubheading Synopsis
19029
19030@smallexample
19031 -exec-interrupt
19032@end smallexample
19033
ef21caaf
NR
19034Interrupts the background execution of the target. Note how the token
19035associated with the stop message is the one for the execution command
19036that has been interrupted. The token for the interrupt itself only
19037appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19038interrupt a non-running program, an error message will be printed.
19039
19040@subsubheading @value{GDBN} Command
19041
19042The corresponding @value{GDBN} command is @samp{interrupt}.
19043
19044@subsubheading Example
19045
19046@smallexample
594fe323 19047(gdb)
922fbb7b
AC
19048111-exec-continue
19049111^running
19050
594fe323 19051(gdb)
922fbb7b
AC
19052222-exec-interrupt
19053222^done
594fe323 19054(gdb)
922fbb7b 19055111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19056frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19057fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19058(gdb)
922fbb7b 19059
594fe323 19060(gdb)
922fbb7b
AC
19061-exec-interrupt
19062^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19063(gdb)
922fbb7b
AC
19064@end smallexample
19065
19066
19067@subheading The @code{-exec-next} Command
19068@findex -exec-next
19069
19070@subsubheading Synopsis
19071
19072@smallexample
19073 -exec-next
19074@end smallexample
19075
ef21caaf
NR
19076Resumes execution of the inferior program, stopping when the beginning
19077of the next source line is reached.
922fbb7b
AC
19078
19079@subsubheading @value{GDBN} Command
19080
19081The corresponding @value{GDBN} command is @samp{next}.
19082
19083@subsubheading Example
19084
19085@smallexample
19086-exec-next
19087^running
594fe323 19088(gdb)
922fbb7b 19089*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19090(gdb)
922fbb7b
AC
19091@end smallexample
19092
19093
19094@subheading The @code{-exec-next-instruction} Command
19095@findex -exec-next-instruction
19096
19097@subsubheading Synopsis
19098
19099@smallexample
19100 -exec-next-instruction
19101@end smallexample
19102
ef21caaf
NR
19103Executes one machine instruction. If the instruction is a function
19104call, continues until the function returns. If the program stops at an
19105instruction in the middle of a source line, the address will be
19106printed as well.
922fbb7b
AC
19107
19108@subsubheading @value{GDBN} Command
19109
19110The corresponding @value{GDBN} command is @samp{nexti}.
19111
19112@subsubheading Example
19113
19114@smallexample
594fe323 19115(gdb)
922fbb7b
AC
19116-exec-next-instruction
19117^running
19118
594fe323 19119(gdb)
922fbb7b
AC
19120*stopped,reason="end-stepping-range",
19121addr="0x000100d4",line="5",file="hello.c"
594fe323 19122(gdb)
922fbb7b
AC
19123@end smallexample
19124
19125
19126@subheading The @code{-exec-return} Command
19127@findex -exec-return
19128
19129@subsubheading Synopsis
19130
19131@smallexample
19132 -exec-return
19133@end smallexample
19134
19135Makes current function return immediately. Doesn't execute the inferior.
19136Displays the new current frame.
19137
19138@subsubheading @value{GDBN} Command
19139
19140The corresponding @value{GDBN} command is @samp{return}.
19141
19142@subsubheading Example
19143
19144@smallexample
594fe323 19145(gdb)
922fbb7b
AC
19146200-break-insert callee4
19147200^done,bkpt=@{number="1",addr="0x00010734",
19148file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19149(gdb)
922fbb7b
AC
19150000-exec-run
19151000^running
594fe323 19152(gdb)
922fbb7b
AC
19153000*stopped,reason="breakpoint-hit",bkptno="1",
19154frame=@{func="callee4",args=[],
76ff342d
DJ
19155file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19156fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19157(gdb)
922fbb7b
AC
19158205-break-delete
19159205^done
594fe323 19160(gdb)
922fbb7b
AC
19161111-exec-return
19162111^done,frame=@{level="0",func="callee3",
19163args=[@{name="strarg",
19164value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19165file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19166fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19167(gdb)
922fbb7b
AC
19168@end smallexample
19169
19170
19171@subheading The @code{-exec-run} Command
19172@findex -exec-run
19173
19174@subsubheading Synopsis
19175
19176@smallexample
19177 -exec-run
19178@end smallexample
19179
ef21caaf
NR
19180Starts execution of the inferior from the beginning. The inferior
19181executes until either a breakpoint is encountered or the program
19182exits. In the latter case the output will include an exit code, if
19183the program has exited exceptionally.
922fbb7b
AC
19184
19185@subsubheading @value{GDBN} Command
19186
19187The corresponding @value{GDBN} command is @samp{run}.
19188
ef21caaf 19189@subsubheading Examples
922fbb7b
AC
19190
19191@smallexample
594fe323 19192(gdb)
922fbb7b
AC
19193-break-insert main
19194^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19195(gdb)
922fbb7b
AC
19196-exec-run
19197^running
594fe323 19198(gdb)
922fbb7b 19199*stopped,reason="breakpoint-hit",bkptno="1",
76ff342d 19200frame=@{func="main",args=[],file="recursive2.c",
948d5102 19201fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19202(gdb)
922fbb7b
AC
19203@end smallexample
19204
ef21caaf
NR
19205@noindent
19206Program exited normally:
19207
19208@smallexample
594fe323 19209(gdb)
ef21caaf
NR
19210-exec-run
19211^running
594fe323 19212(gdb)
ef21caaf
NR
19213x = 55
19214*stopped,reason="exited-normally"
594fe323 19215(gdb)
ef21caaf
NR
19216@end smallexample
19217
19218@noindent
19219Program exited exceptionally:
19220
19221@smallexample
594fe323 19222(gdb)
ef21caaf
NR
19223-exec-run
19224^running
594fe323 19225(gdb)
ef21caaf
NR
19226x = 55
19227*stopped,reason="exited",exit-code="01"
594fe323 19228(gdb)
ef21caaf
NR
19229@end smallexample
19230
19231Another way the program can terminate is if it receives a signal such as
19232@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19233
19234@smallexample
594fe323 19235(gdb)
ef21caaf
NR
19236*stopped,reason="exited-signalled",signal-name="SIGINT",
19237signal-meaning="Interrupt"
19238@end smallexample
19239
922fbb7b 19240
a2c02241
NR
19241@c @subheading -exec-signal
19242
19243
19244@subheading The @code{-exec-step} Command
19245@findex -exec-step
922fbb7b
AC
19246
19247@subsubheading Synopsis
19248
19249@smallexample
a2c02241 19250 -exec-step
922fbb7b
AC
19251@end smallexample
19252
a2c02241
NR
19253Resumes execution of the inferior program, stopping when the beginning
19254of the next source line is reached, if the next source line is not a
19255function call. If it is, stop at the first instruction of the called
19256function.
922fbb7b
AC
19257
19258@subsubheading @value{GDBN} Command
19259
a2c02241 19260The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19261
19262@subsubheading Example
19263
19264Stepping into a function:
19265
19266@smallexample
19267-exec-step
19268^running
594fe323 19269(gdb)
922fbb7b
AC
19270*stopped,reason="end-stepping-range",
19271frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19272@{name="b",value="0"@}],file="recursive2.c",
948d5102 19273fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19274(gdb)
922fbb7b
AC
19275@end smallexample
19276
19277Regular stepping:
19278
19279@smallexample
19280-exec-step
19281^running
594fe323 19282(gdb)
922fbb7b 19283*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19284(gdb)
922fbb7b
AC
19285@end smallexample
19286
19287
19288@subheading The @code{-exec-step-instruction} Command
19289@findex -exec-step-instruction
19290
19291@subsubheading Synopsis
19292
19293@smallexample
19294 -exec-step-instruction
19295@end smallexample
19296
ef21caaf
NR
19297Resumes the inferior which executes one machine instruction. The
19298output, once @value{GDBN} has stopped, will vary depending on whether
19299we have stopped in the middle of a source line or not. In the former
19300case, the address at which the program stopped will be printed as
922fbb7b
AC
19301well.
19302
19303@subsubheading @value{GDBN} Command
19304
19305The corresponding @value{GDBN} command is @samp{stepi}.
19306
19307@subsubheading Example
19308
19309@smallexample
594fe323 19310(gdb)
922fbb7b
AC
19311-exec-step-instruction
19312^running
19313
594fe323 19314(gdb)
922fbb7b 19315*stopped,reason="end-stepping-range",
76ff342d 19316frame=@{func="foo",args=[],file="try.c",
948d5102 19317fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19318(gdb)
922fbb7b
AC
19319-exec-step-instruction
19320^running
19321
594fe323 19322(gdb)
922fbb7b 19323*stopped,reason="end-stepping-range",
76ff342d 19324frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19325fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19326(gdb)
922fbb7b
AC
19327@end smallexample
19328
19329
19330@subheading The @code{-exec-until} Command
19331@findex -exec-until
19332
19333@subsubheading Synopsis
19334
19335@smallexample
19336 -exec-until [ @var{location} ]
19337@end smallexample
19338
ef21caaf
NR
19339Executes the inferior until the @var{location} specified in the
19340argument is reached. If there is no argument, the inferior executes
19341until a source line greater than the current one is reached. The
19342reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19343
19344@subsubheading @value{GDBN} Command
19345
19346The corresponding @value{GDBN} command is @samp{until}.
19347
19348@subsubheading Example
19349
19350@smallexample
594fe323 19351(gdb)
922fbb7b
AC
19352-exec-until recursive2.c:6
19353^running
594fe323 19354(gdb)
922fbb7b
AC
19355x = 55
19356*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19357file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19358(gdb)
922fbb7b
AC
19359@end smallexample
19360
19361@ignore
19362@subheading -file-clear
19363Is this going away????
19364@end ignore
19365
351ff01a 19366@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19367@node GDB/MI Stack Manipulation
19368@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19369
922fbb7b 19370
a2c02241
NR
19371@subheading The @code{-stack-info-frame} Command
19372@findex -stack-info-frame
922fbb7b
AC
19373
19374@subsubheading Synopsis
19375
19376@smallexample
a2c02241 19377 -stack-info-frame
922fbb7b
AC
19378@end smallexample
19379
a2c02241 19380Get info on the selected frame.
922fbb7b
AC
19381
19382@subsubheading @value{GDBN} Command
19383
a2c02241
NR
19384The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19385(without arguments).
922fbb7b
AC
19386
19387@subsubheading Example
19388
19389@smallexample
594fe323 19390(gdb)
a2c02241
NR
19391-stack-info-frame
19392^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19393file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19394fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19395(gdb)
922fbb7b
AC
19396@end smallexample
19397
a2c02241
NR
19398@subheading The @code{-stack-info-depth} Command
19399@findex -stack-info-depth
922fbb7b
AC
19400
19401@subsubheading Synopsis
19402
19403@smallexample
a2c02241 19404 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19405@end smallexample
19406
a2c02241
NR
19407Return the depth of the stack. If the integer argument @var{max-depth}
19408is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19409
19410@subsubheading @value{GDBN} Command
19411
a2c02241 19412There's no equivalent @value{GDBN} command.
922fbb7b
AC
19413
19414@subsubheading Example
19415
a2c02241
NR
19416For a stack with frame levels 0 through 11:
19417
922fbb7b 19418@smallexample
594fe323 19419(gdb)
a2c02241
NR
19420-stack-info-depth
19421^done,depth="12"
594fe323 19422(gdb)
a2c02241
NR
19423-stack-info-depth 4
19424^done,depth="4"
594fe323 19425(gdb)
a2c02241
NR
19426-stack-info-depth 12
19427^done,depth="12"
594fe323 19428(gdb)
a2c02241
NR
19429-stack-info-depth 11
19430^done,depth="11"
594fe323 19431(gdb)
a2c02241
NR
19432-stack-info-depth 13
19433^done,depth="12"
594fe323 19434(gdb)
922fbb7b
AC
19435@end smallexample
19436
a2c02241
NR
19437@subheading The @code{-stack-list-arguments} Command
19438@findex -stack-list-arguments
922fbb7b
AC
19439
19440@subsubheading Synopsis
19441
19442@smallexample
a2c02241
NR
19443 -stack-list-arguments @var{show-values}
19444 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19445@end smallexample
19446
a2c02241
NR
19447Display a list of the arguments for the frames between @var{low-frame}
19448and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19449@var{high-frame} are not provided, list the arguments for the whole
19450call stack. If the two arguments are equal, show the single frame
19451at the corresponding level. It is an error if @var{low-frame} is
19452larger than the actual number of frames. On the other hand,
19453@var{high-frame} may be larger than the actual number of frames, in
19454which case only existing frames will be returned.
a2c02241
NR
19455
19456The @var{show-values} argument must have a value of 0 or 1. A value of
194570 means that only the names of the arguments are listed, a value of 1
19458means that both names and values of the arguments are printed.
922fbb7b
AC
19459
19460@subsubheading @value{GDBN} Command
19461
a2c02241
NR
19462@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19463@samp{gdb_get_args} command which partially overlaps with the
19464functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19465
19466@subsubheading Example
922fbb7b 19467
a2c02241 19468@smallexample
594fe323 19469(gdb)
a2c02241
NR
19470-stack-list-frames
19471^done,
19472stack=[
19473frame=@{level="0",addr="0x00010734",func="callee4",
19474file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19475fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19476frame=@{level="1",addr="0x0001076c",func="callee3",
19477file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19478fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19479frame=@{level="2",addr="0x0001078c",func="callee2",
19480file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19481fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19482frame=@{level="3",addr="0x000107b4",func="callee1",
19483file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19484fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19485frame=@{level="4",addr="0x000107e0",func="main",
19486file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19487fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19488(gdb)
a2c02241
NR
19489-stack-list-arguments 0
19490^done,
19491stack-args=[
19492frame=@{level="0",args=[]@},
19493frame=@{level="1",args=[name="strarg"]@},
19494frame=@{level="2",args=[name="intarg",name="strarg"]@},
19495frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19496frame=@{level="4",args=[]@}]
594fe323 19497(gdb)
a2c02241
NR
19498-stack-list-arguments 1
19499^done,
19500stack-args=[
19501frame=@{level="0",args=[]@},
19502frame=@{level="1",
19503 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19504frame=@{level="2",args=[
19505@{name="intarg",value="2"@},
19506@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19507@{frame=@{level="3",args=[
19508@{name="intarg",value="2"@},
19509@{name="strarg",value="0x11940 \"A string argument.\""@},
19510@{name="fltarg",value="3.5"@}]@},
19511frame=@{level="4",args=[]@}]
594fe323 19512(gdb)
a2c02241
NR
19513-stack-list-arguments 0 2 2
19514^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19515(gdb)
a2c02241
NR
19516-stack-list-arguments 1 2 2
19517^done,stack-args=[frame=@{level="2",
19518args=[@{name="intarg",value="2"@},
19519@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19520(gdb)
a2c02241
NR
19521@end smallexample
19522
19523@c @subheading -stack-list-exception-handlers
922fbb7b 19524
a2c02241
NR
19525
19526@subheading The @code{-stack-list-frames} Command
19527@findex -stack-list-frames
1abaf70c
BR
19528
19529@subsubheading Synopsis
19530
19531@smallexample
a2c02241 19532 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19533@end smallexample
19534
a2c02241
NR
19535List the frames currently on the stack. For each frame it displays the
19536following info:
19537
19538@table @samp
19539@item @var{level}
d3e8051b 19540The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19541@item @var{addr}
19542The @code{$pc} value for that frame.
19543@item @var{func}
19544Function name.
19545@item @var{file}
19546File name of the source file where the function lives.
19547@item @var{line}
19548Line number corresponding to the @code{$pc}.
19549@end table
19550
19551If invoked without arguments, this command prints a backtrace for the
19552whole stack. If given two integer arguments, it shows the frames whose
19553levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19554are equal, it shows the single frame at the corresponding level. It is
19555an error if @var{low-frame} is larger than the actual number of
a5451f4e 19556frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19557actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19558
19559@subsubheading @value{GDBN} Command
19560
a2c02241 19561The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19562
19563@subsubheading Example
19564
a2c02241
NR
19565Full stack backtrace:
19566
1abaf70c 19567@smallexample
594fe323 19568(gdb)
a2c02241
NR
19569-stack-list-frames
19570^done,stack=
19571[frame=@{level="0",addr="0x0001076c",func="foo",
19572 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19573frame=@{level="1",addr="0x000107a4",func="foo",
19574 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19575frame=@{level="2",addr="0x000107a4",func="foo",
19576 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19577frame=@{level="3",addr="0x000107a4",func="foo",
19578 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19579frame=@{level="4",addr="0x000107a4",func="foo",
19580 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19581frame=@{level="5",addr="0x000107a4",func="foo",
19582 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19583frame=@{level="6",addr="0x000107a4",func="foo",
19584 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19585frame=@{level="7",addr="0x000107a4",func="foo",
19586 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19587frame=@{level="8",addr="0x000107a4",func="foo",
19588 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19589frame=@{level="9",addr="0x000107a4",func="foo",
19590 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19591frame=@{level="10",addr="0x000107a4",func="foo",
19592 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19593frame=@{level="11",addr="0x00010738",func="main",
19594 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19595(gdb)
1abaf70c
BR
19596@end smallexample
19597
a2c02241 19598Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19599
a2c02241 19600@smallexample
594fe323 19601(gdb)
a2c02241
NR
19602-stack-list-frames 3 5
19603^done,stack=
19604[frame=@{level="3",addr="0x000107a4",func="foo",
19605 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19606frame=@{level="4",addr="0x000107a4",func="foo",
19607 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19608frame=@{level="5",addr="0x000107a4",func="foo",
19609 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19610(gdb)
a2c02241 19611@end smallexample
922fbb7b 19612
a2c02241 19613Show a single frame:
922fbb7b
AC
19614
19615@smallexample
594fe323 19616(gdb)
a2c02241
NR
19617-stack-list-frames 3 3
19618^done,stack=
19619[frame=@{level="3",addr="0x000107a4",func="foo",
19620 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19621(gdb)
922fbb7b
AC
19622@end smallexample
19623
922fbb7b 19624
a2c02241
NR
19625@subheading The @code{-stack-list-locals} Command
19626@findex -stack-list-locals
57c22c6c 19627
a2c02241 19628@subsubheading Synopsis
922fbb7b
AC
19629
19630@smallexample
a2c02241 19631 -stack-list-locals @var{print-values}
922fbb7b
AC
19632@end smallexample
19633
a2c02241
NR
19634Display the local variable names for the selected frame. If
19635@var{print-values} is 0 or @code{--no-values}, print only the names of
19636the variables; if it is 1 or @code{--all-values}, print also their
19637values; and if it is 2 or @code{--simple-values}, print the name,
19638type and value for simple data types and the name and type for arrays,
19639structures and unions. In this last case, a frontend can immediately
19640display the value of simple data types and create variable objects for
d3e8051b 19641other data types when the user wishes to explore their values in
a2c02241 19642more detail.
922fbb7b
AC
19643
19644@subsubheading @value{GDBN} Command
19645
a2c02241 19646@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19647
19648@subsubheading Example
922fbb7b
AC
19649
19650@smallexample
594fe323 19651(gdb)
a2c02241
NR
19652-stack-list-locals 0
19653^done,locals=[name="A",name="B",name="C"]
594fe323 19654(gdb)
a2c02241
NR
19655-stack-list-locals --all-values
19656^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19657 @{name="C",value="@{1, 2, 3@}"@}]
19658-stack-list-locals --simple-values
19659^done,locals=[@{name="A",type="int",value="1"@},
19660 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19661(gdb)
922fbb7b
AC
19662@end smallexample
19663
922fbb7b 19664
a2c02241
NR
19665@subheading The @code{-stack-select-frame} Command
19666@findex -stack-select-frame
922fbb7b
AC
19667
19668@subsubheading Synopsis
19669
19670@smallexample
a2c02241 19671 -stack-select-frame @var{framenum}
922fbb7b
AC
19672@end smallexample
19673
a2c02241
NR
19674Change the selected frame. Select a different frame @var{framenum} on
19675the stack.
922fbb7b
AC
19676
19677@subsubheading @value{GDBN} Command
19678
a2c02241
NR
19679The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19680@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19681
19682@subsubheading Example
19683
19684@smallexample
594fe323 19685(gdb)
a2c02241 19686-stack-select-frame 2
922fbb7b 19687^done
594fe323 19688(gdb)
922fbb7b
AC
19689@end smallexample
19690
19691@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19692@node GDB/MI Variable Objects
19693@section @sc{gdb/mi} Variable Objects
922fbb7b 19694
a1b5960f 19695@ignore
922fbb7b 19696
a2c02241 19697@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19698
a2c02241
NR
19699For the implementation of a variable debugger window (locals, watched
19700expressions, etc.), we are proposing the adaptation of the existing code
19701used by @code{Insight}.
922fbb7b 19702
a2c02241 19703The two main reasons for that are:
922fbb7b 19704
a2c02241
NR
19705@enumerate 1
19706@item
19707It has been proven in practice (it is already on its second generation).
922fbb7b 19708
a2c02241
NR
19709@item
19710It will shorten development time (needless to say how important it is
19711now).
19712@end enumerate
922fbb7b 19713
a2c02241
NR
19714The original interface was designed to be used by Tcl code, so it was
19715slightly changed so it could be used through @sc{gdb/mi}. This section
19716describes the @sc{gdb/mi} operations that will be available and gives some
19717hints about their use.
922fbb7b 19718
a2c02241
NR
19719@emph{Note}: In addition to the set of operations described here, we
19720expect the @sc{gui} implementation of a variable window to require, at
19721least, the following operations:
922fbb7b 19722
a2c02241
NR
19723@itemize @bullet
19724@item @code{-gdb-show} @code{output-radix}
19725@item @code{-stack-list-arguments}
19726@item @code{-stack-list-locals}
19727@item @code{-stack-select-frame}
19728@end itemize
922fbb7b 19729
a1b5960f
VP
19730@end ignore
19731
c8b2f53c 19732@subheading Introduction to Variable Objects
922fbb7b 19733
a2c02241 19734@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19735
19736Variable objects are "object-oriented" MI interface for examining and
19737changing values of expressions. Unlike some other MI interfaces that
19738work with expressions, variable objects are specifically designed for
19739simple and efficient presentation in the frontend. A variable object
19740is identified by string name. When a variable object is created, the
19741frontend specifies the expression for that variable object. The
19742expression can be a simple variable, or it can be an arbitrary complex
19743expression, and can even involve CPU registers. After creating a
19744variable object, the frontend can invoke other variable object
19745operations---for example to obtain or change the value of a variable
19746object, or to change display format.
19747
19748Variable objects have hierarchical tree structure. Any variable object
19749that corresponds to a composite type, such as structure in C, has
19750a number of child variable objects, for example corresponding to each
19751element of a structure. A child variable object can itself have
19752children, recursively. Recursion ends when we reach
25d5ea92
VP
19753leaf variable objects, which always have built-in types. Child variable
19754objects are created only by explicit request, so if a frontend
19755is not interested in the children of a particular variable object, no
19756child will be created.
c8b2f53c
VP
19757
19758For a leaf variable object it is possible to obtain its value as a
19759string, or set the value from a string. String value can be also
19760obtained for a non-leaf variable object, but it's generally a string
19761that only indicates the type of the object, and does not list its
19762contents. Assignment to a non-leaf variable object is not allowed.
19763
19764A frontend does not need to read the values of all variable objects each time
19765the program stops. Instead, MI provides an update command that lists all
19766variable objects whose values has changed since the last update
19767operation. This considerably reduces the amount of data that must
25d5ea92
VP
19768be transferred to the frontend. As noted above, children variable
19769objects are created on demand, and only leaf variable objects have a
19770real value. As result, gdb will read target memory only for leaf
19771variables that frontend has created.
19772
19773The automatic update is not always desirable. For example, a frontend
19774might want to keep a value of some expression for future reference,
19775and never update it. For another example, fetching memory is
19776relatively slow for embedded targets, so a frontend might want
19777to disable automatic update for the variables that are either not
19778visible on the screen, or ``closed''. This is possible using so
19779called ``frozen variable objects''. Such variable objects are never
19780implicitly updated.
922fbb7b 19781
a2c02241
NR
19782The following is the complete set of @sc{gdb/mi} operations defined to
19783access this functionality:
922fbb7b 19784
a2c02241
NR
19785@multitable @columnfractions .4 .6
19786@item @strong{Operation}
19787@tab @strong{Description}
922fbb7b 19788
a2c02241
NR
19789@item @code{-var-create}
19790@tab create a variable object
19791@item @code{-var-delete}
22d8a470 19792@tab delete the variable object and/or its children
a2c02241
NR
19793@item @code{-var-set-format}
19794@tab set the display format of this variable
19795@item @code{-var-show-format}
19796@tab show the display format of this variable
19797@item @code{-var-info-num-children}
19798@tab tells how many children this object has
19799@item @code{-var-list-children}
19800@tab return a list of the object's children
19801@item @code{-var-info-type}
19802@tab show the type of this variable object
19803@item @code{-var-info-expression}
02142340
VP
19804@tab print parent-relative expression that this variable object represents
19805@item @code{-var-info-path-expression}
19806@tab print full expression that this variable object represents
a2c02241
NR
19807@item @code{-var-show-attributes}
19808@tab is this variable editable? does it exist here?
19809@item @code{-var-evaluate-expression}
19810@tab get the value of this variable
19811@item @code{-var-assign}
19812@tab set the value of this variable
19813@item @code{-var-update}
19814@tab update the variable and its children
25d5ea92
VP
19815@item @code{-var-set-frozen}
19816@tab set frozeness attribute
a2c02241 19817@end multitable
922fbb7b 19818
a2c02241
NR
19819In the next subsection we describe each operation in detail and suggest
19820how it can be used.
922fbb7b 19821
a2c02241 19822@subheading Description And Use of Operations on Variable Objects
922fbb7b 19823
a2c02241
NR
19824@subheading The @code{-var-create} Command
19825@findex -var-create
ef21caaf 19826
a2c02241 19827@subsubheading Synopsis
ef21caaf 19828
a2c02241
NR
19829@smallexample
19830 -var-create @{@var{name} | "-"@}
19831 @{@var{frame-addr} | "*"@} @var{expression}
19832@end smallexample
19833
19834This operation creates a variable object, which allows the monitoring of
19835a variable, the result of an expression, a memory cell or a CPU
19836register.
ef21caaf 19837
a2c02241
NR
19838The @var{name} parameter is the string by which the object can be
19839referenced. It must be unique. If @samp{-} is specified, the varobj
19840system will generate a string ``varNNNNNN'' automatically. It will be
19841unique provided that one does not specify @var{name} on that format.
19842The command fails if a duplicate name is found.
ef21caaf 19843
a2c02241
NR
19844The frame under which the expression should be evaluated can be
19845specified by @var{frame-addr}. A @samp{*} indicates that the current
19846frame should be used.
922fbb7b 19847
a2c02241
NR
19848@var{expression} is any expression valid on the current language set (must not
19849begin with a @samp{*}), or one of the following:
922fbb7b 19850
a2c02241
NR
19851@itemize @bullet
19852@item
19853@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 19854
a2c02241
NR
19855@item
19856@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 19857
a2c02241
NR
19858@item
19859@samp{$@var{regname}} --- a CPU register name
19860@end itemize
922fbb7b 19861
a2c02241 19862@subsubheading Result
922fbb7b 19863
a2c02241
NR
19864This operation returns the name, number of children and the type of the
19865object created. Type is returned as a string as the ones generated by
19866the @value{GDBN} CLI:
922fbb7b
AC
19867
19868@smallexample
a2c02241 19869 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
19870@end smallexample
19871
a2c02241
NR
19872
19873@subheading The @code{-var-delete} Command
19874@findex -var-delete
922fbb7b
AC
19875
19876@subsubheading Synopsis
19877
19878@smallexample
22d8a470 19879 -var-delete [ -c ] @var{name}
922fbb7b
AC
19880@end smallexample
19881
a2c02241 19882Deletes a previously created variable object and all of its children.
22d8a470 19883With the @samp{-c} option, just deletes the children.
922fbb7b 19884
a2c02241 19885Returns an error if the object @var{name} is not found.
922fbb7b 19886
922fbb7b 19887
a2c02241
NR
19888@subheading The @code{-var-set-format} Command
19889@findex -var-set-format
922fbb7b 19890
a2c02241 19891@subsubheading Synopsis
922fbb7b
AC
19892
19893@smallexample
a2c02241 19894 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
19895@end smallexample
19896
a2c02241
NR
19897Sets the output format for the value of the object @var{name} to be
19898@var{format-spec}.
19899
19900The syntax for the @var{format-spec} is as follows:
19901
19902@smallexample
19903 @var{format-spec} @expansion{}
19904 @{binary | decimal | hexadecimal | octal | natural@}
19905@end smallexample
19906
c8b2f53c
VP
19907The natural format is the default format choosen automatically
19908based on the variable type (like decimal for an @code{int}, hex
19909for pointers, etc.).
19910
19911For a variable with children, the format is set only on the
19912variable itself, and the children are not affected.
a2c02241
NR
19913
19914@subheading The @code{-var-show-format} Command
19915@findex -var-show-format
922fbb7b
AC
19916
19917@subsubheading Synopsis
19918
19919@smallexample
a2c02241 19920 -var-show-format @var{name}
922fbb7b
AC
19921@end smallexample
19922
a2c02241 19923Returns the format used to display the value of the object @var{name}.
922fbb7b 19924
a2c02241
NR
19925@smallexample
19926 @var{format} @expansion{}
19927 @var{format-spec}
19928@end smallexample
922fbb7b 19929
922fbb7b 19930
a2c02241
NR
19931@subheading The @code{-var-info-num-children} Command
19932@findex -var-info-num-children
19933
19934@subsubheading Synopsis
19935
19936@smallexample
19937 -var-info-num-children @var{name}
19938@end smallexample
19939
19940Returns the number of children of a variable object @var{name}:
19941
19942@smallexample
19943 numchild=@var{n}
19944@end smallexample
19945
19946
19947@subheading The @code{-var-list-children} Command
19948@findex -var-list-children
19949
19950@subsubheading Synopsis
19951
19952@smallexample
19953 -var-list-children [@var{print-values}] @var{name}
19954@end smallexample
19955@anchor{-var-list-children}
19956
19957Return a list of the children of the specified variable object and
19958create variable objects for them, if they do not already exist. With
19959a single argument or if @var{print-values} has a value for of 0 or
19960@code{--no-values}, print only the names of the variables; if
19961@var{print-values} is 1 or @code{--all-values}, also print their
19962values; and if it is 2 or @code{--simple-values} print the name and
19963value for simple data types and just the name for arrays, structures
19964and unions.
922fbb7b
AC
19965
19966@subsubheading Example
19967
19968@smallexample
594fe323 19969(gdb)
a2c02241
NR
19970 -var-list-children n
19971 ^done,numchild=@var{n},children=[@{name=@var{name},
19972 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 19973(gdb)
a2c02241
NR
19974 -var-list-children --all-values n
19975 ^done,numchild=@var{n},children=[@{name=@var{name},
19976 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
19977@end smallexample
19978
922fbb7b 19979
a2c02241
NR
19980@subheading The @code{-var-info-type} Command
19981@findex -var-info-type
922fbb7b 19982
a2c02241
NR
19983@subsubheading Synopsis
19984
19985@smallexample
19986 -var-info-type @var{name}
19987@end smallexample
19988
19989Returns the type of the specified variable @var{name}. The type is
19990returned as a string in the same format as it is output by the
19991@value{GDBN} CLI:
19992
19993@smallexample
19994 type=@var{typename}
19995@end smallexample
19996
19997
19998@subheading The @code{-var-info-expression} Command
19999@findex -var-info-expression
922fbb7b
AC
20000
20001@subsubheading Synopsis
20002
20003@smallexample
a2c02241 20004 -var-info-expression @var{name}
922fbb7b
AC
20005@end smallexample
20006
02142340
VP
20007Returns a string that is suitable for presenting this
20008variable object in user interface. The string is generally
20009not valid expression in the current language, and cannot be evaluated.
20010
20011For example, if @code{a} is an array, and variable object
20012@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20013
a2c02241 20014@smallexample
02142340
VP
20015(gdb) -var-info-expression A.1
20016^done,lang="C",exp="1"
a2c02241 20017@end smallexample
922fbb7b 20018
a2c02241 20019@noindent
02142340
VP
20020Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20021
20022Note that the output of the @code{-var-list-children} command also
20023includes those expressions, so the @code{-var-info-expression} command
20024is of limited use.
20025
20026@subheading The @code{-var-info-path-expression} Command
20027@findex -var-info-path-expression
20028
20029@subsubheading Synopsis
20030
20031@smallexample
20032 -var-info-path-expression @var{name}
20033@end smallexample
20034
20035Returns an expression that can be evaluated in the current
20036context and will yield the same value that a variable object has.
20037Compare this with the @code{-var-info-expression} command, which
20038result can be used only for UI presentation. Typical use of
20039the @code{-var-info-path-expression} command is creating a
20040watchpoint from a variable object.
20041
20042For example, suppose @code{C} is a C@t{++} class, derived from class
20043@code{Base}, and that the @code{Base} class has a member called
20044@code{m_size}. Assume a variable @code{c} is has the type of
20045@code{C} and a variable object @code{C} was created for variable
20046@code{c}. Then, we'll get this output:
20047@smallexample
20048(gdb) -var-info-path-expression C.Base.public.m_size
20049^done,path_expr=((Base)c).m_size)
20050@end smallexample
922fbb7b 20051
a2c02241
NR
20052@subheading The @code{-var-show-attributes} Command
20053@findex -var-show-attributes
922fbb7b 20054
a2c02241 20055@subsubheading Synopsis
922fbb7b 20056
a2c02241
NR
20057@smallexample
20058 -var-show-attributes @var{name}
20059@end smallexample
922fbb7b 20060
a2c02241 20061List attributes of the specified variable object @var{name}:
922fbb7b
AC
20062
20063@smallexample
a2c02241 20064 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20065@end smallexample
20066
a2c02241
NR
20067@noindent
20068where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20069
20070@subheading The @code{-var-evaluate-expression} Command
20071@findex -var-evaluate-expression
20072
20073@subsubheading Synopsis
20074
20075@smallexample
20076 -var-evaluate-expression @var{name}
20077@end smallexample
20078
20079Evaluates the expression that is represented by the specified variable
c8b2f53c
VP
20080object and returns its value as a string. The format of the
20081string can be changed using the @code{-var-set-format} command.
a2c02241
NR
20082
20083@smallexample
20084 value=@var{value}
20085@end smallexample
20086
20087Note that one must invoke @code{-var-list-children} for a variable
20088before the value of a child variable can be evaluated.
20089
20090@subheading The @code{-var-assign} Command
20091@findex -var-assign
20092
20093@subsubheading Synopsis
20094
20095@smallexample
20096 -var-assign @var{name} @var{expression}
20097@end smallexample
20098
20099Assigns the value of @var{expression} to the variable object specified
20100by @var{name}. The object must be @samp{editable}. If the variable's
20101value is altered by the assign, the variable will show up in any
20102subsequent @code{-var-update} list.
20103
20104@subsubheading Example
922fbb7b
AC
20105
20106@smallexample
594fe323 20107(gdb)
a2c02241
NR
20108-var-assign var1 3
20109^done,value="3"
594fe323 20110(gdb)
a2c02241
NR
20111-var-update *
20112^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20113(gdb)
922fbb7b
AC
20114@end smallexample
20115
a2c02241
NR
20116@subheading The @code{-var-update} Command
20117@findex -var-update
20118
20119@subsubheading Synopsis
20120
20121@smallexample
20122 -var-update [@var{print-values}] @{@var{name} | "*"@}
20123@end smallexample
20124
c8b2f53c
VP
20125Reevaluate the expressions corresponding to the variable object
20126@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20127list of variable objects whose values have changed; @var{name} must
20128be a root variable object. Here, ``changed'' means that the result of
20129@code{-var-evaluate-expression} before and after the
20130@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20131object names, all existing variable objects are updated, except
20132for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3
NR
20133@var{print-values} determines whether both names and values, or just
20134names are printed. The possible values of this options are the same
20135as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20136recommended to use the @samp{--all-values} option, to reduce the
20137number of MI commands needed on each program stop.
c8b2f53c 20138
a2c02241
NR
20139
20140@subsubheading Example
922fbb7b
AC
20141
20142@smallexample
594fe323 20143(gdb)
a2c02241
NR
20144-var-assign var1 3
20145^done,value="3"
594fe323 20146(gdb)
a2c02241
NR
20147-var-update --all-values var1
20148^done,changelist=[@{name="var1",value="3",in_scope="true",
20149type_changed="false"@}]
594fe323 20150(gdb)
922fbb7b
AC
20151@end smallexample
20152
9f708cb2 20153@anchor{-var-update}
36ece8b3
NR
20154The field in_scope may take three values:
20155
20156@table @code
20157@item "true"
20158The variable object's current value is valid.
20159
20160@item "false"
20161The variable object does not currently hold a valid value but it may
20162hold one in the future if its associated expression comes back into
20163scope.
20164
20165@item "invalid"
20166The variable object no longer holds a valid value.
20167This can occur when the executable file being debugged has changed,
20168either through recompilation or by using the @value{GDBN} @code{file}
20169command. The front end should normally choose to delete these variable
20170objects.
20171@end table
20172
20173In the future new values may be added to this list so the front should
20174be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20175
25d5ea92
VP
20176@subheading The @code{-var-set-frozen} Command
20177@findex -var-set-frozen
9f708cb2 20178@anchor{-var-set-frozen}
25d5ea92
VP
20179
20180@subsubheading Synopsis
20181
20182@smallexample
9f708cb2 20183 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20184@end smallexample
20185
9f708cb2 20186Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20187@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20188frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20189frozen, then neither itself, nor any of its children, are
9f708cb2 20190implicitly updated by @code{-var-update} of
25d5ea92
VP
20191a parent variable or by @code{-var-update *}. Only
20192@code{-var-update} of the variable itself will update its value and
20193values of its children. After a variable object is unfrozen, it is
20194implicitly updated by all subsequent @code{-var-update} operations.
20195Unfreezing a variable does not update it, only subsequent
20196@code{-var-update} does.
20197
20198@subsubheading Example
20199
20200@smallexample
20201(gdb)
20202-var-set-frozen V 1
20203^done
20204(gdb)
20205@end smallexample
20206
20207
a2c02241
NR
20208@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20209@node GDB/MI Data Manipulation
20210@section @sc{gdb/mi} Data Manipulation
922fbb7b 20211
a2c02241
NR
20212@cindex data manipulation, in @sc{gdb/mi}
20213@cindex @sc{gdb/mi}, data manipulation
20214This section describes the @sc{gdb/mi} commands that manipulate data:
20215examine memory and registers, evaluate expressions, etc.
20216
20217@c REMOVED FROM THE INTERFACE.
20218@c @subheading -data-assign
20219@c Change the value of a program variable. Plenty of side effects.
79a6e687 20220@c @subsubheading GDB Command
a2c02241
NR
20221@c set variable
20222@c @subsubheading Example
20223@c N.A.
20224
20225@subheading The @code{-data-disassemble} Command
20226@findex -data-disassemble
922fbb7b
AC
20227
20228@subsubheading Synopsis
20229
20230@smallexample
a2c02241
NR
20231 -data-disassemble
20232 [ -s @var{start-addr} -e @var{end-addr} ]
20233 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20234 -- @var{mode}
922fbb7b
AC
20235@end smallexample
20236
a2c02241
NR
20237@noindent
20238Where:
20239
20240@table @samp
20241@item @var{start-addr}
20242is the beginning address (or @code{$pc})
20243@item @var{end-addr}
20244is the end address
20245@item @var{filename}
20246is the name of the file to disassemble
20247@item @var{linenum}
20248is the line number to disassemble around
20249@item @var{lines}
d3e8051b 20250is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20251the whole function will be disassembled, in case no @var{end-addr} is
20252specified. If @var{end-addr} is specified as a non-zero value, and
20253@var{lines} is lower than the number of disassembly lines between
20254@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20255displayed; if @var{lines} is higher than the number of lines between
20256@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20257are displayed.
20258@item @var{mode}
20259is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20260disassembly).
20261@end table
20262
20263@subsubheading Result
20264
20265The output for each instruction is composed of four fields:
20266
20267@itemize @bullet
20268@item Address
20269@item Func-name
20270@item Offset
20271@item Instruction
20272@end itemize
20273
20274Note that whatever included in the instruction field, is not manipulated
d3e8051b 20275directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20276
20277@subsubheading @value{GDBN} Command
20278
a2c02241 20279There's no direct mapping from this command to the CLI.
922fbb7b
AC
20280
20281@subsubheading Example
20282
a2c02241
NR
20283Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20284
922fbb7b 20285@smallexample
594fe323 20286(gdb)
a2c02241
NR
20287-data-disassemble -s $pc -e "$pc + 20" -- 0
20288^done,
20289asm_insns=[
20290@{address="0x000107c0",func-name="main",offset="4",
20291inst="mov 2, %o0"@},
20292@{address="0x000107c4",func-name="main",offset="8",
20293inst="sethi %hi(0x11800), %o2"@},
20294@{address="0x000107c8",func-name="main",offset="12",
20295inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20296@{address="0x000107cc",func-name="main",offset="16",
20297inst="sethi %hi(0x11800), %o2"@},
20298@{address="0x000107d0",func-name="main",offset="20",
20299inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20300(gdb)
a2c02241
NR
20301@end smallexample
20302
20303Disassemble the whole @code{main} function. Line 32 is part of
20304@code{main}.
20305
20306@smallexample
20307-data-disassemble -f basics.c -l 32 -- 0
20308^done,asm_insns=[
20309@{address="0x000107bc",func-name="main",offset="0",
20310inst="save %sp, -112, %sp"@},
20311@{address="0x000107c0",func-name="main",offset="4",
20312inst="mov 2, %o0"@},
20313@{address="0x000107c4",func-name="main",offset="8",
20314inst="sethi %hi(0x11800), %o2"@},
20315[@dots{}]
20316@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20317@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20318(gdb)
922fbb7b
AC
20319@end smallexample
20320
a2c02241 20321Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20322
a2c02241 20323@smallexample
594fe323 20324(gdb)
a2c02241
NR
20325-data-disassemble -f basics.c -l 32 -n 3 -- 0
20326^done,asm_insns=[
20327@{address="0x000107bc",func-name="main",offset="0",
20328inst="save %sp, -112, %sp"@},
20329@{address="0x000107c0",func-name="main",offset="4",
20330inst="mov 2, %o0"@},
20331@{address="0x000107c4",func-name="main",offset="8",
20332inst="sethi %hi(0x11800), %o2"@}]
594fe323 20333(gdb)
a2c02241
NR
20334@end smallexample
20335
20336Disassemble 3 instructions from the start of @code{main} in mixed mode:
20337
20338@smallexample
594fe323 20339(gdb)
a2c02241
NR
20340-data-disassemble -f basics.c -l 32 -n 3 -- 1
20341^done,asm_insns=[
20342src_and_asm_line=@{line="31",
20343file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20344 testsuite/gdb.mi/basics.c",line_asm_insn=[
20345@{address="0x000107bc",func-name="main",offset="0",
20346inst="save %sp, -112, %sp"@}]@},
20347src_and_asm_line=@{line="32",
20348file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20349 testsuite/gdb.mi/basics.c",line_asm_insn=[
20350@{address="0x000107c0",func-name="main",offset="4",
20351inst="mov 2, %o0"@},
20352@{address="0x000107c4",func-name="main",offset="8",
20353inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20354(gdb)
a2c02241
NR
20355@end smallexample
20356
20357
20358@subheading The @code{-data-evaluate-expression} Command
20359@findex -data-evaluate-expression
922fbb7b
AC
20360
20361@subsubheading Synopsis
20362
20363@smallexample
a2c02241 20364 -data-evaluate-expression @var{expr}
922fbb7b
AC
20365@end smallexample
20366
a2c02241
NR
20367Evaluate @var{expr} as an expression. The expression could contain an
20368inferior function call. The function call will execute synchronously.
20369If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20370
20371@subsubheading @value{GDBN} Command
20372
a2c02241
NR
20373The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20374@samp{call}. In @code{gdbtk} only, there's a corresponding
20375@samp{gdb_eval} command.
922fbb7b
AC
20376
20377@subsubheading Example
20378
a2c02241
NR
20379In the following example, the numbers that precede the commands are the
20380@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20381Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20382output.
20383
922fbb7b 20384@smallexample
a2c02241
NR
20385211-data-evaluate-expression A
20386211^done,value="1"
594fe323 20387(gdb)
a2c02241
NR
20388311-data-evaluate-expression &A
20389311^done,value="0xefffeb7c"
594fe323 20390(gdb)
a2c02241
NR
20391411-data-evaluate-expression A+3
20392411^done,value="4"
594fe323 20393(gdb)
a2c02241
NR
20394511-data-evaluate-expression "A + 3"
20395511^done,value="4"
594fe323 20396(gdb)
a2c02241 20397@end smallexample
922fbb7b
AC
20398
20399
a2c02241
NR
20400@subheading The @code{-data-list-changed-registers} Command
20401@findex -data-list-changed-registers
922fbb7b
AC
20402
20403@subsubheading Synopsis
20404
20405@smallexample
a2c02241 20406 -data-list-changed-registers
922fbb7b
AC
20407@end smallexample
20408
a2c02241 20409Display a list of the registers that have changed.
922fbb7b
AC
20410
20411@subsubheading @value{GDBN} Command
20412
a2c02241
NR
20413@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20414has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20415
20416@subsubheading Example
922fbb7b 20417
a2c02241 20418On a PPC MBX board:
922fbb7b
AC
20419
20420@smallexample
594fe323 20421(gdb)
a2c02241
NR
20422-exec-continue
20423^running
922fbb7b 20424
594fe323 20425(gdb)
a2c02241
NR
20426*stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20427args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
594fe323 20428(gdb)
a2c02241
NR
20429-data-list-changed-registers
20430^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20431"10","11","13","14","15","16","17","18","19","20","21","22","23",
20432"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20433(gdb)
a2c02241 20434@end smallexample
922fbb7b
AC
20435
20436
a2c02241
NR
20437@subheading The @code{-data-list-register-names} Command
20438@findex -data-list-register-names
922fbb7b
AC
20439
20440@subsubheading Synopsis
20441
20442@smallexample
a2c02241 20443 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20444@end smallexample
20445
a2c02241
NR
20446Show a list of register names for the current target. If no arguments
20447are given, it shows a list of the names of all the registers. If
20448integer numbers are given as arguments, it will print a list of the
20449names of the registers corresponding to the arguments. To ensure
20450consistency between a register name and its number, the output list may
20451include empty register names.
922fbb7b
AC
20452
20453@subsubheading @value{GDBN} Command
20454
a2c02241
NR
20455@value{GDBN} does not have a command which corresponds to
20456@samp{-data-list-register-names}. In @code{gdbtk} there is a
20457corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20458
20459@subsubheading Example
922fbb7b 20460
a2c02241
NR
20461For the PPC MBX board:
20462@smallexample
594fe323 20463(gdb)
a2c02241
NR
20464-data-list-register-names
20465^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20466"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20467"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20468"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20469"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20470"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20471"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20472(gdb)
a2c02241
NR
20473-data-list-register-names 1 2 3
20474^done,register-names=["r1","r2","r3"]
594fe323 20475(gdb)
a2c02241 20476@end smallexample
922fbb7b 20477
a2c02241
NR
20478@subheading The @code{-data-list-register-values} Command
20479@findex -data-list-register-values
922fbb7b
AC
20480
20481@subsubheading Synopsis
20482
20483@smallexample
a2c02241 20484 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20485@end smallexample
20486
a2c02241
NR
20487Display the registers' contents. @var{fmt} is the format according to
20488which the registers' contents are to be returned, followed by an optional
20489list of numbers specifying the registers to display. A missing list of
20490numbers indicates that the contents of all the registers must be returned.
20491
20492Allowed formats for @var{fmt} are:
20493
20494@table @code
20495@item x
20496Hexadecimal
20497@item o
20498Octal
20499@item t
20500Binary
20501@item d
20502Decimal
20503@item r
20504Raw
20505@item N
20506Natural
20507@end table
922fbb7b
AC
20508
20509@subsubheading @value{GDBN} Command
20510
a2c02241
NR
20511The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20512all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20513
20514@subsubheading Example
922fbb7b 20515
a2c02241
NR
20516For a PPC MBX board (note: line breaks are for readability only, they
20517don't appear in the actual output):
20518
20519@smallexample
594fe323 20520(gdb)
a2c02241
NR
20521-data-list-register-values r 64 65
20522^done,register-values=[@{number="64",value="0xfe00a300"@},
20523@{number="65",value="0x00029002"@}]
594fe323 20524(gdb)
a2c02241
NR
20525-data-list-register-values x
20526^done,register-values=[@{number="0",value="0xfe0043c8"@},
20527@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20528@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20529@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20530@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20531@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20532@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20533@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20534@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20535@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20536@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20537@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20538@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20539@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20540@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20541@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20542@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20543@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20544@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20545@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20546@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20547@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20548@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20549@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20550@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20551@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20552@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20553@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20554@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20555@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20556@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20557@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20558@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20559@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20560@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20561@{number="69",value="0x20002b03"@}]
594fe323 20562(gdb)
a2c02241 20563@end smallexample
922fbb7b 20564
a2c02241
NR
20565
20566@subheading The @code{-data-read-memory} Command
20567@findex -data-read-memory
922fbb7b
AC
20568
20569@subsubheading Synopsis
20570
20571@smallexample
a2c02241
NR
20572 -data-read-memory [ -o @var{byte-offset} ]
20573 @var{address} @var{word-format} @var{word-size}
20574 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20575@end smallexample
20576
a2c02241
NR
20577@noindent
20578where:
922fbb7b 20579
a2c02241
NR
20580@table @samp
20581@item @var{address}
20582An expression specifying the address of the first memory word to be
20583read. Complex expressions containing embedded white space should be
20584quoted using the C convention.
922fbb7b 20585
a2c02241
NR
20586@item @var{word-format}
20587The format to be used to print the memory words. The notation is the
20588same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20589,Output Formats}).
922fbb7b 20590
a2c02241
NR
20591@item @var{word-size}
20592The size of each memory word in bytes.
922fbb7b 20593
a2c02241
NR
20594@item @var{nr-rows}
20595The number of rows in the output table.
922fbb7b 20596
a2c02241
NR
20597@item @var{nr-cols}
20598The number of columns in the output table.
922fbb7b 20599
a2c02241
NR
20600@item @var{aschar}
20601If present, indicates that each row should include an @sc{ascii} dump. The
20602value of @var{aschar} is used as a padding character when a byte is not a
20603member of the printable @sc{ascii} character set (printable @sc{ascii}
20604characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20605
a2c02241
NR
20606@item @var{byte-offset}
20607An offset to add to the @var{address} before fetching memory.
20608@end table
922fbb7b 20609
a2c02241
NR
20610This command displays memory contents as a table of @var{nr-rows} by
20611@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20612@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20613(returned as @samp{total-bytes}). Should less than the requested number
20614of bytes be returned by the target, the missing words are identified
20615using @samp{N/A}. The number of bytes read from the target is returned
20616in @samp{nr-bytes} and the starting address used to read memory in
20617@samp{addr}.
20618
20619The address of the next/previous row or page is available in
20620@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20621@samp{prev-page}.
922fbb7b
AC
20622
20623@subsubheading @value{GDBN} Command
20624
a2c02241
NR
20625The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20626@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20627
20628@subsubheading Example
32e7087d 20629
a2c02241
NR
20630Read six bytes of memory starting at @code{bytes+6} but then offset by
20631@code{-6} bytes. Format as three rows of two columns. One byte per
20632word. Display each word in hex.
32e7087d
JB
20633
20634@smallexample
594fe323 20635(gdb)
a2c02241
NR
206369-data-read-memory -o -6 -- bytes+6 x 1 3 2
206379^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20638next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20639prev-page="0x0000138a",memory=[
20640@{addr="0x00001390",data=["0x00","0x01"]@},
20641@{addr="0x00001392",data=["0x02","0x03"]@},
20642@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20643(gdb)
32e7087d
JB
20644@end smallexample
20645
a2c02241
NR
20646Read two bytes of memory starting at address @code{shorts + 64} and
20647display as a single word formatted in decimal.
32e7087d 20648
32e7087d 20649@smallexample
594fe323 20650(gdb)
a2c02241
NR
206515-data-read-memory shorts+64 d 2 1 1
206525^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20653next-row="0x00001512",prev-row="0x0000150e",
20654next-page="0x00001512",prev-page="0x0000150e",memory=[
20655@{addr="0x00001510",data=["128"]@}]
594fe323 20656(gdb)
32e7087d
JB
20657@end smallexample
20658
a2c02241
NR
20659Read thirty two bytes of memory starting at @code{bytes+16} and format
20660as eight rows of four columns. Include a string encoding with @samp{x}
20661used as the non-printable character.
922fbb7b
AC
20662
20663@smallexample
594fe323 20664(gdb)
a2c02241
NR
206654-data-read-memory bytes+16 x 1 8 4 x
206664^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20667next-row="0x000013c0",prev-row="0x0000139c",
20668next-page="0x000013c0",prev-page="0x00001380",memory=[
20669@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20670@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20671@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20672@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20673@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20674@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20675@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20676@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20677(gdb)
922fbb7b
AC
20678@end smallexample
20679
a2c02241
NR
20680@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20681@node GDB/MI Tracepoint Commands
20682@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20683
a2c02241 20684The tracepoint commands are not yet implemented.
922fbb7b 20685
a2c02241 20686@c @subheading -trace-actions
922fbb7b 20687
a2c02241 20688@c @subheading -trace-delete
922fbb7b 20689
a2c02241 20690@c @subheading -trace-disable
922fbb7b 20691
a2c02241 20692@c @subheading -trace-dump
922fbb7b 20693
a2c02241 20694@c @subheading -trace-enable
922fbb7b 20695
a2c02241 20696@c @subheading -trace-exists
922fbb7b 20697
a2c02241 20698@c @subheading -trace-find
922fbb7b 20699
a2c02241 20700@c @subheading -trace-frame-number
922fbb7b 20701
a2c02241 20702@c @subheading -trace-info
922fbb7b 20703
a2c02241 20704@c @subheading -trace-insert
922fbb7b 20705
a2c02241 20706@c @subheading -trace-list
922fbb7b 20707
a2c02241 20708@c @subheading -trace-pass-count
922fbb7b 20709
a2c02241 20710@c @subheading -trace-save
922fbb7b 20711
a2c02241 20712@c @subheading -trace-start
922fbb7b 20713
a2c02241 20714@c @subheading -trace-stop
922fbb7b 20715
922fbb7b 20716
a2c02241
NR
20717@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20718@node GDB/MI Symbol Query
20719@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20720
20721
a2c02241
NR
20722@subheading The @code{-symbol-info-address} Command
20723@findex -symbol-info-address
922fbb7b
AC
20724
20725@subsubheading Synopsis
20726
20727@smallexample
a2c02241 20728 -symbol-info-address @var{symbol}
922fbb7b
AC
20729@end smallexample
20730
a2c02241 20731Describe where @var{symbol} is stored.
922fbb7b
AC
20732
20733@subsubheading @value{GDBN} Command
20734
a2c02241 20735The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20736
20737@subsubheading Example
20738N.A.
20739
20740
a2c02241
NR
20741@subheading The @code{-symbol-info-file} Command
20742@findex -symbol-info-file
922fbb7b
AC
20743
20744@subsubheading Synopsis
20745
20746@smallexample
a2c02241 20747 -symbol-info-file
922fbb7b
AC
20748@end smallexample
20749
a2c02241 20750Show the file for the symbol.
922fbb7b 20751
a2c02241 20752@subsubheading @value{GDBN} Command
922fbb7b 20753
a2c02241
NR
20754There's no equivalent @value{GDBN} command. @code{gdbtk} has
20755@samp{gdb_find_file}.
922fbb7b
AC
20756
20757@subsubheading Example
20758N.A.
20759
20760
a2c02241
NR
20761@subheading The @code{-symbol-info-function} Command
20762@findex -symbol-info-function
922fbb7b
AC
20763
20764@subsubheading Synopsis
20765
20766@smallexample
a2c02241 20767 -symbol-info-function
922fbb7b
AC
20768@end smallexample
20769
a2c02241 20770Show which function the symbol lives in.
922fbb7b
AC
20771
20772@subsubheading @value{GDBN} Command
20773
a2c02241 20774@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20775
20776@subsubheading Example
20777N.A.
20778
20779
a2c02241
NR
20780@subheading The @code{-symbol-info-line} Command
20781@findex -symbol-info-line
922fbb7b
AC
20782
20783@subsubheading Synopsis
20784
20785@smallexample
a2c02241 20786 -symbol-info-line
922fbb7b
AC
20787@end smallexample
20788
a2c02241 20789Show the core addresses of the code for a source line.
922fbb7b 20790
a2c02241 20791@subsubheading @value{GDBN} Command
922fbb7b 20792
a2c02241
NR
20793The corresponding @value{GDBN} command is @samp{info line}.
20794@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20795
20796@subsubheading Example
a2c02241 20797N.A.
922fbb7b
AC
20798
20799
a2c02241
NR
20800@subheading The @code{-symbol-info-symbol} Command
20801@findex -symbol-info-symbol
07f31aa6
DJ
20802
20803@subsubheading Synopsis
20804
a2c02241
NR
20805@smallexample
20806 -symbol-info-symbol @var{addr}
20807@end smallexample
07f31aa6 20808
a2c02241 20809Describe what symbol is at location @var{addr}.
07f31aa6 20810
a2c02241 20811@subsubheading @value{GDBN} Command
07f31aa6 20812
a2c02241 20813The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20814
20815@subsubheading Example
a2c02241 20816N.A.
07f31aa6
DJ
20817
20818
a2c02241
NR
20819@subheading The @code{-symbol-list-functions} Command
20820@findex -symbol-list-functions
922fbb7b
AC
20821
20822@subsubheading Synopsis
20823
20824@smallexample
a2c02241 20825 -symbol-list-functions
922fbb7b
AC
20826@end smallexample
20827
a2c02241 20828List the functions in the executable.
922fbb7b
AC
20829
20830@subsubheading @value{GDBN} Command
20831
a2c02241
NR
20832@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20833@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20834
20835@subsubheading Example
a2c02241 20836N.A.
922fbb7b
AC
20837
20838
a2c02241
NR
20839@subheading The @code{-symbol-list-lines} Command
20840@findex -symbol-list-lines
922fbb7b
AC
20841
20842@subsubheading Synopsis
20843
20844@smallexample
a2c02241 20845 -symbol-list-lines @var{filename}
922fbb7b
AC
20846@end smallexample
20847
a2c02241
NR
20848Print the list of lines that contain code and their associated program
20849addresses for the given source filename. The entries are sorted in
20850ascending PC order.
922fbb7b
AC
20851
20852@subsubheading @value{GDBN} Command
20853
a2c02241 20854There is no corresponding @value{GDBN} command.
922fbb7b
AC
20855
20856@subsubheading Example
a2c02241 20857@smallexample
594fe323 20858(gdb)
a2c02241
NR
20859-symbol-list-lines basics.c
20860^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 20861(gdb)
a2c02241 20862@end smallexample
922fbb7b
AC
20863
20864
a2c02241
NR
20865@subheading The @code{-symbol-list-types} Command
20866@findex -symbol-list-types
922fbb7b
AC
20867
20868@subsubheading Synopsis
20869
20870@smallexample
a2c02241 20871 -symbol-list-types
922fbb7b
AC
20872@end smallexample
20873
a2c02241 20874List all the type names.
922fbb7b
AC
20875
20876@subsubheading @value{GDBN} Command
20877
a2c02241
NR
20878The corresponding commands are @samp{info types} in @value{GDBN},
20879@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20880
20881@subsubheading Example
20882N.A.
20883
20884
a2c02241
NR
20885@subheading The @code{-symbol-list-variables} Command
20886@findex -symbol-list-variables
922fbb7b
AC
20887
20888@subsubheading Synopsis
20889
20890@smallexample
a2c02241 20891 -symbol-list-variables
922fbb7b
AC
20892@end smallexample
20893
a2c02241 20894List all the global and static variable names.
922fbb7b
AC
20895
20896@subsubheading @value{GDBN} Command
20897
a2c02241 20898@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20899
20900@subsubheading Example
20901N.A.
20902
20903
a2c02241
NR
20904@subheading The @code{-symbol-locate} Command
20905@findex -symbol-locate
922fbb7b
AC
20906
20907@subsubheading Synopsis
20908
20909@smallexample
a2c02241 20910 -symbol-locate
922fbb7b
AC
20911@end smallexample
20912
922fbb7b
AC
20913@subsubheading @value{GDBN} Command
20914
a2c02241 20915@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
20916
20917@subsubheading Example
20918N.A.
20919
20920
a2c02241
NR
20921@subheading The @code{-symbol-type} Command
20922@findex -symbol-type
922fbb7b
AC
20923
20924@subsubheading Synopsis
20925
20926@smallexample
a2c02241 20927 -symbol-type @var{variable}
922fbb7b
AC
20928@end smallexample
20929
a2c02241 20930Show type of @var{variable}.
922fbb7b 20931
a2c02241 20932@subsubheading @value{GDBN} Command
922fbb7b 20933
a2c02241
NR
20934The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
20935@samp{gdb_obj_variable}.
20936
20937@subsubheading Example
20938N.A.
20939
20940
20941@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20942@node GDB/MI File Commands
20943@section @sc{gdb/mi} File Commands
20944
20945This section describes the GDB/MI commands to specify executable file names
20946and to read in and obtain symbol table information.
20947
20948@subheading The @code{-file-exec-and-symbols} Command
20949@findex -file-exec-and-symbols
20950
20951@subsubheading Synopsis
922fbb7b
AC
20952
20953@smallexample
a2c02241 20954 -file-exec-and-symbols @var{file}
922fbb7b
AC
20955@end smallexample
20956
a2c02241
NR
20957Specify the executable file to be debugged. This file is the one from
20958which the symbol table is also read. If no file is specified, the
20959command clears the executable and symbol information. If breakpoints
20960are set when using this command with no arguments, @value{GDBN} will produce
20961error messages. Otherwise, no output is produced, except a completion
20962notification.
20963
922fbb7b
AC
20964@subsubheading @value{GDBN} Command
20965
a2c02241 20966The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
20967
20968@subsubheading Example
20969
20970@smallexample
594fe323 20971(gdb)
a2c02241
NR
20972-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20973^done
594fe323 20974(gdb)
922fbb7b
AC
20975@end smallexample
20976
922fbb7b 20977
a2c02241
NR
20978@subheading The @code{-file-exec-file} Command
20979@findex -file-exec-file
922fbb7b
AC
20980
20981@subsubheading Synopsis
20982
20983@smallexample
a2c02241 20984 -file-exec-file @var{file}
922fbb7b
AC
20985@end smallexample
20986
a2c02241
NR
20987Specify the executable file to be debugged. Unlike
20988@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
20989from this file. If used without argument, @value{GDBN} clears the information
20990about the executable file. No output is produced, except a completion
20991notification.
922fbb7b 20992
a2c02241
NR
20993@subsubheading @value{GDBN} Command
20994
20995The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
20996
20997@subsubheading Example
a2c02241
NR
20998
20999@smallexample
594fe323 21000(gdb)
a2c02241
NR
21001-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21002^done
594fe323 21003(gdb)
a2c02241 21004@end smallexample
922fbb7b
AC
21005
21006
a2c02241
NR
21007@subheading The @code{-file-list-exec-sections} Command
21008@findex -file-list-exec-sections
922fbb7b
AC
21009
21010@subsubheading Synopsis
21011
21012@smallexample
a2c02241 21013 -file-list-exec-sections
922fbb7b
AC
21014@end smallexample
21015
a2c02241
NR
21016List the sections of the current executable file.
21017
922fbb7b
AC
21018@subsubheading @value{GDBN} Command
21019
a2c02241
NR
21020The @value{GDBN} command @samp{info file} shows, among the rest, the same
21021information as this command. @code{gdbtk} has a corresponding command
21022@samp{gdb_load_info}.
922fbb7b
AC
21023
21024@subsubheading Example
21025N.A.
21026
21027
a2c02241
NR
21028@subheading The @code{-file-list-exec-source-file} Command
21029@findex -file-list-exec-source-file
922fbb7b
AC
21030
21031@subsubheading Synopsis
21032
21033@smallexample
a2c02241 21034 -file-list-exec-source-file
922fbb7b
AC
21035@end smallexample
21036
a2c02241
NR
21037List the line number, the current source file, and the absolute path
21038to the current source file for the current executable.
922fbb7b
AC
21039
21040@subsubheading @value{GDBN} Command
21041
a2c02241 21042The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21043
21044@subsubheading Example
21045
922fbb7b 21046@smallexample
594fe323 21047(gdb)
a2c02241
NR
21048123-file-list-exec-source-file
21049123^done,line="1",file="foo.c",fullname="/home/bar/foo.c"
594fe323 21050(gdb)
922fbb7b
AC
21051@end smallexample
21052
21053
a2c02241
NR
21054@subheading The @code{-file-list-exec-source-files} Command
21055@findex -file-list-exec-source-files
922fbb7b
AC
21056
21057@subsubheading Synopsis
21058
21059@smallexample
a2c02241 21060 -file-list-exec-source-files
922fbb7b
AC
21061@end smallexample
21062
a2c02241
NR
21063List the source files for the current executable.
21064
3f94c067
BW
21065It will always output the filename, but only when @value{GDBN} can find
21066the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21067
21068@subsubheading @value{GDBN} Command
21069
a2c02241
NR
21070The @value{GDBN} equivalent is @samp{info sources}.
21071@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21072
21073@subsubheading Example
922fbb7b 21074@smallexample
594fe323 21075(gdb)
a2c02241
NR
21076-file-list-exec-source-files
21077^done,files=[
21078@{file=foo.c,fullname=/home/foo.c@},
21079@{file=/home/bar.c,fullname=/home/bar.c@},
21080@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21081(gdb)
922fbb7b
AC
21082@end smallexample
21083
a2c02241
NR
21084@subheading The @code{-file-list-shared-libraries} Command
21085@findex -file-list-shared-libraries
922fbb7b 21086
a2c02241 21087@subsubheading Synopsis
922fbb7b 21088
a2c02241
NR
21089@smallexample
21090 -file-list-shared-libraries
21091@end smallexample
922fbb7b 21092
a2c02241 21093List the shared libraries in the program.
922fbb7b 21094
a2c02241 21095@subsubheading @value{GDBN} Command
922fbb7b 21096
a2c02241 21097The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21098
a2c02241
NR
21099@subsubheading Example
21100N.A.
922fbb7b
AC
21101
21102
a2c02241
NR
21103@subheading The @code{-file-list-symbol-files} Command
21104@findex -file-list-symbol-files
922fbb7b 21105
a2c02241 21106@subsubheading Synopsis
922fbb7b 21107
a2c02241
NR
21108@smallexample
21109 -file-list-symbol-files
21110@end smallexample
922fbb7b 21111
a2c02241 21112List symbol files.
922fbb7b 21113
a2c02241 21114@subsubheading @value{GDBN} Command
922fbb7b 21115
a2c02241 21116The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21117
a2c02241
NR
21118@subsubheading Example
21119N.A.
922fbb7b 21120
922fbb7b 21121
a2c02241
NR
21122@subheading The @code{-file-symbol-file} Command
21123@findex -file-symbol-file
922fbb7b 21124
a2c02241 21125@subsubheading Synopsis
922fbb7b 21126
a2c02241
NR
21127@smallexample
21128 -file-symbol-file @var{file}
21129@end smallexample
922fbb7b 21130
a2c02241
NR
21131Read symbol table info from the specified @var{file} argument. When
21132used without arguments, clears @value{GDBN}'s symbol table info. No output is
21133produced, except for a completion notification.
922fbb7b 21134
a2c02241 21135@subsubheading @value{GDBN} Command
922fbb7b 21136
a2c02241 21137The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21138
a2c02241 21139@subsubheading Example
922fbb7b 21140
a2c02241 21141@smallexample
594fe323 21142(gdb)
a2c02241
NR
21143-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21144^done
594fe323 21145(gdb)
a2c02241 21146@end smallexample
922fbb7b 21147
a2c02241 21148@ignore
a2c02241
NR
21149@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21150@node GDB/MI Memory Overlay Commands
21151@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21152
a2c02241 21153The memory overlay commands are not implemented.
922fbb7b 21154
a2c02241 21155@c @subheading -overlay-auto
922fbb7b 21156
a2c02241 21157@c @subheading -overlay-list-mapping-state
922fbb7b 21158
a2c02241 21159@c @subheading -overlay-list-overlays
922fbb7b 21160
a2c02241 21161@c @subheading -overlay-map
922fbb7b 21162
a2c02241 21163@c @subheading -overlay-off
922fbb7b 21164
a2c02241 21165@c @subheading -overlay-on
922fbb7b 21166
a2c02241 21167@c @subheading -overlay-unmap
922fbb7b 21168
a2c02241
NR
21169@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21170@node GDB/MI Signal Handling Commands
21171@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21172
a2c02241 21173Signal handling commands are not implemented.
922fbb7b 21174
a2c02241 21175@c @subheading -signal-handle
922fbb7b 21176
a2c02241 21177@c @subheading -signal-list-handle-actions
922fbb7b 21178
a2c02241
NR
21179@c @subheading -signal-list-signal-types
21180@end ignore
922fbb7b 21181
922fbb7b 21182
a2c02241
NR
21183@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21184@node GDB/MI Target Manipulation
21185@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21186
21187
a2c02241
NR
21188@subheading The @code{-target-attach} Command
21189@findex -target-attach
922fbb7b
AC
21190
21191@subsubheading Synopsis
21192
21193@smallexample
a2c02241 21194 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21195@end smallexample
21196
a2c02241 21197Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21198
79a6e687 21199@subsubheading @value{GDBN} Command
922fbb7b 21200
a2c02241 21201The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21202
a2c02241
NR
21203@subsubheading Example
21204N.A.
922fbb7b 21205
a2c02241
NR
21206
21207@subheading The @code{-target-compare-sections} Command
21208@findex -target-compare-sections
922fbb7b
AC
21209
21210@subsubheading Synopsis
21211
21212@smallexample
a2c02241 21213 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21214@end smallexample
21215
a2c02241
NR
21216Compare data of section @var{section} on target to the exec file.
21217Without the argument, all sections are compared.
922fbb7b 21218
a2c02241 21219@subsubheading @value{GDBN} Command
922fbb7b 21220
a2c02241 21221The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21222
a2c02241
NR
21223@subsubheading Example
21224N.A.
21225
21226
21227@subheading The @code{-target-detach} Command
21228@findex -target-detach
922fbb7b
AC
21229
21230@subsubheading Synopsis
21231
21232@smallexample
a2c02241 21233 -target-detach
922fbb7b
AC
21234@end smallexample
21235
a2c02241
NR
21236Detach from the remote target which normally resumes its execution.
21237There's no output.
21238
79a6e687 21239@subsubheading @value{GDBN} Command
a2c02241
NR
21240
21241The corresponding @value{GDBN} command is @samp{detach}.
21242
21243@subsubheading Example
922fbb7b
AC
21244
21245@smallexample
594fe323 21246(gdb)
a2c02241
NR
21247-target-detach
21248^done
594fe323 21249(gdb)
922fbb7b
AC
21250@end smallexample
21251
21252
a2c02241
NR
21253@subheading The @code{-target-disconnect} Command
21254@findex -target-disconnect
922fbb7b
AC
21255
21256@subsubheading Synopsis
21257
123dc839 21258@smallexample
a2c02241 21259 -target-disconnect
123dc839 21260@end smallexample
922fbb7b 21261
a2c02241
NR
21262Disconnect from the remote target. There's no output and the target is
21263generally not resumed.
21264
79a6e687 21265@subsubheading @value{GDBN} Command
a2c02241
NR
21266
21267The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21268
21269@subsubheading Example
922fbb7b
AC
21270
21271@smallexample
594fe323 21272(gdb)
a2c02241
NR
21273-target-disconnect
21274^done
594fe323 21275(gdb)
922fbb7b
AC
21276@end smallexample
21277
21278
a2c02241
NR
21279@subheading The @code{-target-download} Command
21280@findex -target-download
922fbb7b
AC
21281
21282@subsubheading Synopsis
21283
21284@smallexample
a2c02241 21285 -target-download
922fbb7b
AC
21286@end smallexample
21287
a2c02241
NR
21288Loads the executable onto the remote target.
21289It prints out an update message every half second, which includes the fields:
21290
21291@table @samp
21292@item section
21293The name of the section.
21294@item section-sent
21295The size of what has been sent so far for that section.
21296@item section-size
21297The size of the section.
21298@item total-sent
21299The total size of what was sent so far (the current and the previous sections).
21300@item total-size
21301The size of the overall executable to download.
21302@end table
21303
21304@noindent
21305Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21306@sc{gdb/mi} Output Syntax}).
21307
21308In addition, it prints the name and size of the sections, as they are
21309downloaded. These messages include the following fields:
21310
21311@table @samp
21312@item section
21313The name of the section.
21314@item section-size
21315The size of the section.
21316@item total-size
21317The size of the overall executable to download.
21318@end table
21319
21320@noindent
21321At the end, a summary is printed.
21322
21323@subsubheading @value{GDBN} Command
21324
21325The corresponding @value{GDBN} command is @samp{load}.
21326
21327@subsubheading Example
21328
21329Note: each status message appears on a single line. Here the messages
21330have been broken down so that they can fit onto a page.
922fbb7b
AC
21331
21332@smallexample
594fe323 21333(gdb)
a2c02241
NR
21334-target-download
21335+download,@{section=".text",section-size="6668",total-size="9880"@}
21336+download,@{section=".text",section-sent="512",section-size="6668",
21337total-sent="512",total-size="9880"@}
21338+download,@{section=".text",section-sent="1024",section-size="6668",
21339total-sent="1024",total-size="9880"@}
21340+download,@{section=".text",section-sent="1536",section-size="6668",
21341total-sent="1536",total-size="9880"@}
21342+download,@{section=".text",section-sent="2048",section-size="6668",
21343total-sent="2048",total-size="9880"@}
21344+download,@{section=".text",section-sent="2560",section-size="6668",
21345total-sent="2560",total-size="9880"@}
21346+download,@{section=".text",section-sent="3072",section-size="6668",
21347total-sent="3072",total-size="9880"@}
21348+download,@{section=".text",section-sent="3584",section-size="6668",
21349total-sent="3584",total-size="9880"@}
21350+download,@{section=".text",section-sent="4096",section-size="6668",
21351total-sent="4096",total-size="9880"@}
21352+download,@{section=".text",section-sent="4608",section-size="6668",
21353total-sent="4608",total-size="9880"@}
21354+download,@{section=".text",section-sent="5120",section-size="6668",
21355total-sent="5120",total-size="9880"@}
21356+download,@{section=".text",section-sent="5632",section-size="6668",
21357total-sent="5632",total-size="9880"@}
21358+download,@{section=".text",section-sent="6144",section-size="6668",
21359total-sent="6144",total-size="9880"@}
21360+download,@{section=".text",section-sent="6656",section-size="6668",
21361total-sent="6656",total-size="9880"@}
21362+download,@{section=".init",section-size="28",total-size="9880"@}
21363+download,@{section=".fini",section-size="28",total-size="9880"@}
21364+download,@{section=".data",section-size="3156",total-size="9880"@}
21365+download,@{section=".data",section-sent="512",section-size="3156",
21366total-sent="7236",total-size="9880"@}
21367+download,@{section=".data",section-sent="1024",section-size="3156",
21368total-sent="7748",total-size="9880"@}
21369+download,@{section=".data",section-sent="1536",section-size="3156",
21370total-sent="8260",total-size="9880"@}
21371+download,@{section=".data",section-sent="2048",section-size="3156",
21372total-sent="8772",total-size="9880"@}
21373+download,@{section=".data",section-sent="2560",section-size="3156",
21374total-sent="9284",total-size="9880"@}
21375+download,@{section=".data",section-sent="3072",section-size="3156",
21376total-sent="9796",total-size="9880"@}
21377^done,address="0x10004",load-size="9880",transfer-rate="6586",
21378write-rate="429"
594fe323 21379(gdb)
922fbb7b
AC
21380@end smallexample
21381
21382
a2c02241
NR
21383@subheading The @code{-target-exec-status} Command
21384@findex -target-exec-status
922fbb7b
AC
21385
21386@subsubheading Synopsis
21387
21388@smallexample
a2c02241 21389 -target-exec-status
922fbb7b
AC
21390@end smallexample
21391
a2c02241
NR
21392Provide information on the state of the target (whether it is running or
21393not, for instance).
922fbb7b 21394
a2c02241 21395@subsubheading @value{GDBN} Command
922fbb7b 21396
a2c02241
NR
21397There's no equivalent @value{GDBN} command.
21398
21399@subsubheading Example
21400N.A.
922fbb7b 21401
a2c02241
NR
21402
21403@subheading The @code{-target-list-available-targets} Command
21404@findex -target-list-available-targets
922fbb7b
AC
21405
21406@subsubheading Synopsis
21407
21408@smallexample
a2c02241 21409 -target-list-available-targets
922fbb7b
AC
21410@end smallexample
21411
a2c02241 21412List the possible targets to connect to.
922fbb7b 21413
a2c02241 21414@subsubheading @value{GDBN} Command
922fbb7b 21415
a2c02241 21416The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21417
a2c02241
NR
21418@subsubheading Example
21419N.A.
21420
21421
21422@subheading The @code{-target-list-current-targets} Command
21423@findex -target-list-current-targets
922fbb7b
AC
21424
21425@subsubheading Synopsis
21426
21427@smallexample
a2c02241 21428 -target-list-current-targets
922fbb7b
AC
21429@end smallexample
21430
a2c02241 21431Describe the current target.
922fbb7b 21432
a2c02241 21433@subsubheading @value{GDBN} Command
922fbb7b 21434
a2c02241
NR
21435The corresponding information is printed by @samp{info file} (among
21436other things).
922fbb7b 21437
a2c02241
NR
21438@subsubheading Example
21439N.A.
21440
21441
21442@subheading The @code{-target-list-parameters} Command
21443@findex -target-list-parameters
922fbb7b
AC
21444
21445@subsubheading Synopsis
21446
21447@smallexample
a2c02241 21448 -target-list-parameters
922fbb7b
AC
21449@end smallexample
21450
a2c02241
NR
21451@c ????
21452
21453@subsubheading @value{GDBN} Command
21454
21455No equivalent.
922fbb7b
AC
21456
21457@subsubheading Example
a2c02241
NR
21458N.A.
21459
21460
21461@subheading The @code{-target-select} Command
21462@findex -target-select
21463
21464@subsubheading Synopsis
922fbb7b
AC
21465
21466@smallexample
a2c02241 21467 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21468@end smallexample
21469
a2c02241 21470Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21471
a2c02241
NR
21472@table @samp
21473@item @var{type}
21474The type of target, for instance @samp{async}, @samp{remote}, etc.
21475@item @var{parameters}
21476Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21477Commands for Managing Targets}, for more details.
a2c02241
NR
21478@end table
21479
21480The output is a connection notification, followed by the address at
21481which the target program is, in the following form:
922fbb7b
AC
21482
21483@smallexample
a2c02241
NR
21484^connected,addr="@var{address}",func="@var{function name}",
21485 args=[@var{arg list}]
922fbb7b
AC
21486@end smallexample
21487
a2c02241
NR
21488@subsubheading @value{GDBN} Command
21489
21490The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21491
21492@subsubheading Example
922fbb7b 21493
265eeb58 21494@smallexample
594fe323 21495(gdb)
a2c02241
NR
21496-target-select async /dev/ttya
21497^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21498(gdb)
265eeb58 21499@end smallexample
ef21caaf 21500
a6b151f1
DJ
21501@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21502@node GDB/MI File Transfer Commands
21503@section @sc{gdb/mi} File Transfer Commands
21504
21505
21506@subheading The @code{-target-file-put} Command
21507@findex -target-file-put
21508
21509@subsubheading Synopsis
21510
21511@smallexample
21512 -target-file-put @var{hostfile} @var{targetfile}
21513@end smallexample
21514
21515Copy file @var{hostfile} from the host system (the machine running
21516@value{GDBN}) to @var{targetfile} on the target system.
21517
21518@subsubheading @value{GDBN} Command
21519
21520The corresponding @value{GDBN} command is @samp{remote put}.
21521
21522@subsubheading Example
21523
21524@smallexample
21525(gdb)
21526-target-file-put localfile remotefile
21527^done
21528(gdb)
21529@end smallexample
21530
21531
21532@subheading The @code{-target-file-put} Command
21533@findex -target-file-get
21534
21535@subsubheading Synopsis
21536
21537@smallexample
21538 -target-file-get @var{targetfile} @var{hostfile}
21539@end smallexample
21540
21541Copy file @var{targetfile} from the target system to @var{hostfile}
21542on the host system.
21543
21544@subsubheading @value{GDBN} Command
21545
21546The corresponding @value{GDBN} command is @samp{remote get}.
21547
21548@subsubheading Example
21549
21550@smallexample
21551(gdb)
21552-target-file-get remotefile localfile
21553^done
21554(gdb)
21555@end smallexample
21556
21557
21558@subheading The @code{-target-file-delete} Command
21559@findex -target-file-delete
21560
21561@subsubheading Synopsis
21562
21563@smallexample
21564 -target-file-delete @var{targetfile}
21565@end smallexample
21566
21567Delete @var{targetfile} from the target system.
21568
21569@subsubheading @value{GDBN} Command
21570
21571The corresponding @value{GDBN} command is @samp{remote delete}.
21572
21573@subsubheading Example
21574
21575@smallexample
21576(gdb)
21577-target-file-delete remotefile
21578^done
21579(gdb)
21580@end smallexample
21581
21582
ef21caaf
NR
21583@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21584@node GDB/MI Miscellaneous Commands
21585@section Miscellaneous @sc{gdb/mi} Commands
21586
21587@c @subheading -gdb-complete
21588
21589@subheading The @code{-gdb-exit} Command
21590@findex -gdb-exit
21591
21592@subsubheading Synopsis
21593
21594@smallexample
21595 -gdb-exit
21596@end smallexample
21597
21598Exit @value{GDBN} immediately.
21599
21600@subsubheading @value{GDBN} Command
21601
21602Approximately corresponds to @samp{quit}.
21603
21604@subsubheading Example
21605
21606@smallexample
594fe323 21607(gdb)
ef21caaf
NR
21608-gdb-exit
21609^exit
21610@end smallexample
21611
a2c02241
NR
21612
21613@subheading The @code{-exec-abort} Command
21614@findex -exec-abort
21615
21616@subsubheading Synopsis
21617
21618@smallexample
21619 -exec-abort
21620@end smallexample
21621
21622Kill the inferior running program.
21623
21624@subsubheading @value{GDBN} Command
21625
21626The corresponding @value{GDBN} command is @samp{kill}.
21627
21628@subsubheading Example
21629N.A.
21630
21631
ef21caaf
NR
21632@subheading The @code{-gdb-set} Command
21633@findex -gdb-set
21634
21635@subsubheading Synopsis
21636
21637@smallexample
21638 -gdb-set
21639@end smallexample
21640
21641Set an internal @value{GDBN} variable.
21642@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21643
21644@subsubheading @value{GDBN} Command
21645
21646The corresponding @value{GDBN} command is @samp{set}.
21647
21648@subsubheading Example
21649
21650@smallexample
594fe323 21651(gdb)
ef21caaf
NR
21652-gdb-set $foo=3
21653^done
594fe323 21654(gdb)
ef21caaf
NR
21655@end smallexample
21656
21657
21658@subheading The @code{-gdb-show} Command
21659@findex -gdb-show
21660
21661@subsubheading Synopsis
21662
21663@smallexample
21664 -gdb-show
21665@end smallexample
21666
21667Show the current value of a @value{GDBN} variable.
21668
79a6e687 21669@subsubheading @value{GDBN} Command
ef21caaf
NR
21670
21671The corresponding @value{GDBN} command is @samp{show}.
21672
21673@subsubheading Example
21674
21675@smallexample
594fe323 21676(gdb)
ef21caaf
NR
21677-gdb-show annotate
21678^done,value="0"
594fe323 21679(gdb)
ef21caaf
NR
21680@end smallexample
21681
21682@c @subheading -gdb-source
21683
21684
21685@subheading The @code{-gdb-version} Command
21686@findex -gdb-version
21687
21688@subsubheading Synopsis
21689
21690@smallexample
21691 -gdb-version
21692@end smallexample
21693
21694Show version information for @value{GDBN}. Used mostly in testing.
21695
21696@subsubheading @value{GDBN} Command
21697
21698The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21699default shows this information when you start an interactive session.
21700
21701@subsubheading Example
21702
21703@c This example modifies the actual output from GDB to avoid overfull
21704@c box in TeX.
21705@smallexample
594fe323 21706(gdb)
ef21caaf
NR
21707-gdb-version
21708~GNU gdb 5.2.1
21709~Copyright 2000 Free Software Foundation, Inc.
21710~GDB is free software, covered by the GNU General Public License, and
21711~you are welcome to change it and/or distribute copies of it under
21712~ certain conditions.
21713~Type "show copying" to see the conditions.
21714~There is absolutely no warranty for GDB. Type "show warranty" for
21715~ details.
21716~This GDB was configured as
21717 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21718^done
594fe323 21719(gdb)
ef21caaf
NR
21720@end smallexample
21721
084344da
VP
21722@subheading The @code{-list-features} Command
21723@findex -list-features
21724
21725Returns a list of particular features of the MI protocol that
21726this version of gdb implements. A feature can be a command,
21727or a new field in an output of some command, or even an
21728important bugfix. While a frontend can sometimes detect presence
21729of a feature at runtime, it is easier to perform detection at debugger
21730startup.
21731
21732The command returns a list of strings, with each string naming an
21733available feature. Each returned string is just a name, it does not
21734have any internal structure. The list of possible feature names
21735is given below.
21736
21737Example output:
21738
21739@smallexample
21740(gdb) -list-features
21741^done,result=["feature1","feature2"]
21742@end smallexample
21743
21744The current list of features is:
21745
21746@itemize @minus
21747@item
21748@samp{frozen-varobjs}---indicates presence of the
21749@code{-var-set-frozen} command, as well as possible presense of the
21750@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
21751@item
21752@samp{pending-breakpoints}---indicates presence of the @code{-f}
21753option to the @code{-break-insert} command.
21754
084344da
VP
21755@end itemize
21756
ef21caaf
NR
21757@subheading The @code{-interpreter-exec} Command
21758@findex -interpreter-exec
21759
21760@subheading Synopsis
21761
21762@smallexample
21763-interpreter-exec @var{interpreter} @var{command}
21764@end smallexample
a2c02241 21765@anchor{-interpreter-exec}
ef21caaf
NR
21766
21767Execute the specified @var{command} in the given @var{interpreter}.
21768
21769@subheading @value{GDBN} Command
21770
21771The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21772
21773@subheading Example
21774
21775@smallexample
594fe323 21776(gdb)
ef21caaf
NR
21777-interpreter-exec console "break main"
21778&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21779&"During symbol reading, bad structure-type format.\n"
21780~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21781^done
594fe323 21782(gdb)
ef21caaf
NR
21783@end smallexample
21784
21785@subheading The @code{-inferior-tty-set} Command
21786@findex -inferior-tty-set
21787
21788@subheading Synopsis
21789
21790@smallexample
21791-inferior-tty-set /dev/pts/1
21792@end smallexample
21793
21794Set terminal for future runs of the program being debugged.
21795
21796@subheading @value{GDBN} Command
21797
21798The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21799
21800@subheading Example
21801
21802@smallexample
594fe323 21803(gdb)
ef21caaf
NR
21804-inferior-tty-set /dev/pts/1
21805^done
594fe323 21806(gdb)
ef21caaf
NR
21807@end smallexample
21808
21809@subheading The @code{-inferior-tty-show} Command
21810@findex -inferior-tty-show
21811
21812@subheading Synopsis
21813
21814@smallexample
21815-inferior-tty-show
21816@end smallexample
21817
21818Show terminal for future runs of program being debugged.
21819
21820@subheading @value{GDBN} Command
21821
21822The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21823
21824@subheading Example
21825
21826@smallexample
594fe323 21827(gdb)
ef21caaf
NR
21828-inferior-tty-set /dev/pts/1
21829^done
594fe323 21830(gdb)
ef21caaf
NR
21831-inferior-tty-show
21832^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21833(gdb)
ef21caaf 21834@end smallexample
922fbb7b 21835
a4eefcd8
NR
21836@subheading The @code{-enable-timings} Command
21837@findex -enable-timings
21838
21839@subheading Synopsis
21840
21841@smallexample
21842-enable-timings [yes | no]
21843@end smallexample
21844
21845Toggle the printing of the wallclock, user and system times for an MI
21846command as a field in its output. This command is to help frontend
21847developers optimize the performance of their code. No argument is
21848equivalent to @samp{yes}.
21849
21850@subheading @value{GDBN} Command
21851
21852No equivalent.
21853
21854@subheading Example
21855
21856@smallexample
21857(gdb)
21858-enable-timings
21859^done
21860(gdb)
21861-break-insert main
21862^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
21863addr="0x080484ed",func="main",file="myprog.c",
21864fullname="/home/nickrob/myprog.c",line="73",times="0"@},
21865time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
21866(gdb)
21867-enable-timings no
21868^done
21869(gdb)
21870-exec-run
21871^running
21872(gdb)
21873*stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
21874frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
21875@{name="argv",value="0xbfb60364"@}],file="myprog.c",
21876fullname="/home/nickrob/myprog.c",line="73"@}
21877(gdb)
21878@end smallexample
21879
922fbb7b
AC
21880@node Annotations
21881@chapter @value{GDBN} Annotations
21882
086432e2
AC
21883This chapter describes annotations in @value{GDBN}. Annotations were
21884designed to interface @value{GDBN} to graphical user interfaces or other
21885similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
21886relatively high level.
21887
d3e8051b 21888The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
21889(@pxref{GDB/MI}).
21890
922fbb7b
AC
21891@ignore
21892This is Edition @value{EDITION}, @value{DATE}.
21893@end ignore
21894
21895@menu
21896* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 21897* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
21898* Prompting:: Annotations marking @value{GDBN}'s need for input.
21899* Errors:: Annotations for error messages.
922fbb7b
AC
21900* Invalidation:: Some annotations describe things now invalid.
21901* Annotations for Running::
21902 Whether the program is running, how it stopped, etc.
21903* Source Annotations:: Annotations describing source code.
922fbb7b
AC
21904@end menu
21905
21906@node Annotations Overview
21907@section What is an Annotation?
21908@cindex annotations
21909
922fbb7b
AC
21910Annotations start with a newline character, two @samp{control-z}
21911characters, and the name of the annotation. If there is no additional
21912information associated with this annotation, the name of the annotation
21913is followed immediately by a newline. If there is additional
21914information, the name of the annotation is followed by a space, the
21915additional information, and a newline. The additional information
21916cannot contain newline characters.
21917
21918Any output not beginning with a newline and two @samp{control-z}
21919characters denotes literal output from @value{GDBN}. Currently there is
21920no need for @value{GDBN} to output a newline followed by two
21921@samp{control-z} characters, but if there was such a need, the
21922annotations could be extended with an @samp{escape} annotation which
21923means those three characters as output.
21924
086432e2
AC
21925The annotation @var{level}, which is specified using the
21926@option{--annotate} command line option (@pxref{Mode Options}), controls
21927how much information @value{GDBN} prints together with its prompt,
21928values of expressions, source lines, and other types of output. Level 0
d3e8051b 21929is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
21930subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
21931for programs that control @value{GDBN}, and level 2 annotations have
21932been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
21933Interface, annotate, GDB's Obsolete Annotations}).
21934
21935@table @code
21936@kindex set annotate
21937@item set annotate @var{level}
e09f16f9 21938The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 21939annotations to the specified @var{level}.
9c16f35a
EZ
21940
21941@item show annotate
21942@kindex show annotate
21943Show the current annotation level.
09d4efe1
EZ
21944@end table
21945
21946This chapter describes level 3 annotations.
086432e2 21947
922fbb7b
AC
21948A simple example of starting up @value{GDBN} with annotations is:
21949
21950@smallexample
086432e2
AC
21951$ @kbd{gdb --annotate=3}
21952GNU gdb 6.0
21953Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
21954GDB is free software, covered by the GNU General Public License,
21955and you are welcome to change it and/or distribute copies of it
21956under certain conditions.
21957Type "show copying" to see the conditions.
21958There is absolutely no warranty for GDB. Type "show warranty"
21959for details.
086432e2 21960This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
21961
21962^Z^Zpre-prompt
f7dc1244 21963(@value{GDBP})
922fbb7b 21964^Z^Zprompt
086432e2 21965@kbd{quit}
922fbb7b
AC
21966
21967^Z^Zpost-prompt
b383017d 21968$
922fbb7b
AC
21969@end smallexample
21970
21971Here @samp{quit} is input to @value{GDBN}; the rest is output from
21972@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
21973denotes a @samp{control-z} character) are annotations; the rest is
21974output from @value{GDBN}.
21975
9e6c4bd5
NR
21976@node Server Prefix
21977@section The Server Prefix
21978@cindex server prefix
21979
21980If you prefix a command with @samp{server } then it will not affect
21981the command history, nor will it affect @value{GDBN}'s notion of which
21982command to repeat if @key{RET} is pressed on a line by itself. This
21983means that commands can be run behind a user's back by a front-end in
21984a transparent manner.
21985
21986The server prefix does not affect the recording of values into the value
21987history; to print a value without recording it into the value history,
21988use the @code{output} command instead of the @code{print} command.
21989
922fbb7b
AC
21990@node Prompting
21991@section Annotation for @value{GDBN} Input
21992
21993@cindex annotations for prompts
21994When @value{GDBN} prompts for input, it annotates this fact so it is possible
21995to know when to send output, when the output from a given command is
21996over, etc.
21997
21998Different kinds of input each have a different @dfn{input type}. Each
21999input type has three annotations: a @code{pre-} annotation, which
22000denotes the beginning of any prompt which is being output, a plain
22001annotation, which denotes the end of the prompt, and then a @code{post-}
22002annotation which denotes the end of any echo which may (or may not) be
22003associated with the input. For example, the @code{prompt} input type
22004features the following annotations:
22005
22006@smallexample
22007^Z^Zpre-prompt
22008^Z^Zprompt
22009^Z^Zpost-prompt
22010@end smallexample
22011
22012The input types are
22013
22014@table @code
e5ac9b53
EZ
22015@findex pre-prompt annotation
22016@findex prompt annotation
22017@findex post-prompt annotation
922fbb7b
AC
22018@item prompt
22019When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22020
e5ac9b53
EZ
22021@findex pre-commands annotation
22022@findex commands annotation
22023@findex post-commands annotation
922fbb7b
AC
22024@item commands
22025When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22026command. The annotations are repeated for each command which is input.
22027
e5ac9b53
EZ
22028@findex pre-overload-choice annotation
22029@findex overload-choice annotation
22030@findex post-overload-choice annotation
922fbb7b
AC
22031@item overload-choice
22032When @value{GDBN} wants the user to select between various overloaded functions.
22033
e5ac9b53
EZ
22034@findex pre-query annotation
22035@findex query annotation
22036@findex post-query annotation
922fbb7b
AC
22037@item query
22038When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22039
e5ac9b53
EZ
22040@findex pre-prompt-for-continue annotation
22041@findex prompt-for-continue annotation
22042@findex post-prompt-for-continue annotation
922fbb7b
AC
22043@item prompt-for-continue
22044When @value{GDBN} is asking the user to press return to continue. Note: Don't
22045expect this to work well; instead use @code{set height 0} to disable
22046prompting. This is because the counting of lines is buggy in the
22047presence of annotations.
22048@end table
22049
22050@node Errors
22051@section Errors
22052@cindex annotations for errors, warnings and interrupts
22053
e5ac9b53 22054@findex quit annotation
922fbb7b
AC
22055@smallexample
22056^Z^Zquit
22057@end smallexample
22058
22059This annotation occurs right before @value{GDBN} responds to an interrupt.
22060
e5ac9b53 22061@findex error annotation
922fbb7b
AC
22062@smallexample
22063^Z^Zerror
22064@end smallexample
22065
22066This annotation occurs right before @value{GDBN} responds to an error.
22067
22068Quit and error annotations indicate that any annotations which @value{GDBN} was
22069in the middle of may end abruptly. For example, if a
22070@code{value-history-begin} annotation is followed by a @code{error}, one
22071cannot expect to receive the matching @code{value-history-end}. One
22072cannot expect not to receive it either, however; an error annotation
22073does not necessarily mean that @value{GDBN} is immediately returning all the way
22074to the top level.
22075
e5ac9b53 22076@findex error-begin annotation
922fbb7b
AC
22077A quit or error annotation may be preceded by
22078
22079@smallexample
22080^Z^Zerror-begin
22081@end smallexample
22082
22083Any output between that and the quit or error annotation is the error
22084message.
22085
22086Warning messages are not yet annotated.
22087@c If we want to change that, need to fix warning(), type_error(),
22088@c range_error(), and possibly other places.
22089
922fbb7b
AC
22090@node Invalidation
22091@section Invalidation Notices
22092
22093@cindex annotations for invalidation messages
22094The following annotations say that certain pieces of state may have
22095changed.
22096
22097@table @code
e5ac9b53 22098@findex frames-invalid annotation
922fbb7b
AC
22099@item ^Z^Zframes-invalid
22100
22101The frames (for example, output from the @code{backtrace} command) may
22102have changed.
22103
e5ac9b53 22104@findex breakpoints-invalid annotation
922fbb7b
AC
22105@item ^Z^Zbreakpoints-invalid
22106
22107The breakpoints may have changed. For example, the user just added or
22108deleted a breakpoint.
22109@end table
22110
22111@node Annotations for Running
22112@section Running the Program
22113@cindex annotations for running programs
22114
e5ac9b53
EZ
22115@findex starting annotation
22116@findex stopping annotation
922fbb7b 22117When the program starts executing due to a @value{GDBN} command such as
b383017d 22118@code{step} or @code{continue},
922fbb7b
AC
22119
22120@smallexample
22121^Z^Zstarting
22122@end smallexample
22123
b383017d 22124is output. When the program stops,
922fbb7b
AC
22125
22126@smallexample
22127^Z^Zstopped
22128@end smallexample
22129
22130is output. Before the @code{stopped} annotation, a variety of
22131annotations describe how the program stopped.
22132
22133@table @code
e5ac9b53 22134@findex exited annotation
922fbb7b
AC
22135@item ^Z^Zexited @var{exit-status}
22136The program exited, and @var{exit-status} is the exit status (zero for
22137successful exit, otherwise nonzero).
22138
e5ac9b53
EZ
22139@findex signalled annotation
22140@findex signal-name annotation
22141@findex signal-name-end annotation
22142@findex signal-string annotation
22143@findex signal-string-end annotation
922fbb7b
AC
22144@item ^Z^Zsignalled
22145The program exited with a signal. After the @code{^Z^Zsignalled}, the
22146annotation continues:
22147
22148@smallexample
22149@var{intro-text}
22150^Z^Zsignal-name
22151@var{name}
22152^Z^Zsignal-name-end
22153@var{middle-text}
22154^Z^Zsignal-string
22155@var{string}
22156^Z^Zsignal-string-end
22157@var{end-text}
22158@end smallexample
22159
22160@noindent
22161where @var{name} is the name of the signal, such as @code{SIGILL} or
22162@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22163as @code{Illegal Instruction} or @code{Segmentation fault}.
22164@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22165user's benefit and have no particular format.
22166
e5ac9b53 22167@findex signal annotation
922fbb7b
AC
22168@item ^Z^Zsignal
22169The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22170just saying that the program received the signal, not that it was
22171terminated with it.
22172
e5ac9b53 22173@findex breakpoint annotation
922fbb7b
AC
22174@item ^Z^Zbreakpoint @var{number}
22175The program hit breakpoint number @var{number}.
22176
e5ac9b53 22177@findex watchpoint annotation
922fbb7b
AC
22178@item ^Z^Zwatchpoint @var{number}
22179The program hit watchpoint number @var{number}.
22180@end table
22181
22182@node Source Annotations
22183@section Displaying Source
22184@cindex annotations for source display
22185
e5ac9b53 22186@findex source annotation
922fbb7b
AC
22187The following annotation is used instead of displaying source code:
22188
22189@smallexample
22190^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22191@end smallexample
22192
22193where @var{filename} is an absolute file name indicating which source
22194file, @var{line} is the line number within that file (where 1 is the
22195first line in the file), @var{character} is the character position
22196within the file (where 0 is the first character in the file) (for most
22197debug formats this will necessarily point to the beginning of a line),
22198@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22199line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22200@var{addr} is the address in the target program associated with the
22201source which is being displayed. @var{addr} is in the form @samp{0x}
22202followed by one or more lowercase hex digits (note that this does not
22203depend on the language).
22204
8e04817f
AC
22205@node GDB Bugs
22206@chapter Reporting Bugs in @value{GDBN}
22207@cindex bugs in @value{GDBN}
22208@cindex reporting bugs in @value{GDBN}
c906108c 22209
8e04817f 22210Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22211
8e04817f
AC
22212Reporting a bug may help you by bringing a solution to your problem, or it
22213may not. But in any case the principal function of a bug report is to help
22214the entire community by making the next version of @value{GDBN} work better. Bug
22215reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22216
8e04817f
AC
22217In order for a bug report to serve its purpose, you must include the
22218information that enables us to fix the bug.
c4555f82
SC
22219
22220@menu
8e04817f
AC
22221* Bug Criteria:: Have you found a bug?
22222* Bug Reporting:: How to report bugs
c4555f82
SC
22223@end menu
22224
8e04817f 22225@node Bug Criteria
79a6e687 22226@section Have You Found a Bug?
8e04817f 22227@cindex bug criteria
c4555f82 22228
8e04817f 22229If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22230
22231@itemize @bullet
8e04817f
AC
22232@cindex fatal signal
22233@cindex debugger crash
22234@cindex crash of debugger
c4555f82 22235@item
8e04817f
AC
22236If the debugger gets a fatal signal, for any input whatever, that is a
22237@value{GDBN} bug. Reliable debuggers never crash.
22238
22239@cindex error on valid input
22240@item
22241If @value{GDBN} produces an error message for valid input, that is a
22242bug. (Note that if you're cross debugging, the problem may also be
22243somewhere in the connection to the target.)
c4555f82 22244
8e04817f 22245@cindex invalid input
c4555f82 22246@item
8e04817f
AC
22247If @value{GDBN} does not produce an error message for invalid input,
22248that is a bug. However, you should note that your idea of
22249``invalid input'' might be our idea of ``an extension'' or ``support
22250for traditional practice''.
22251
22252@item
22253If you are an experienced user of debugging tools, your suggestions
22254for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22255@end itemize
22256
8e04817f 22257@node Bug Reporting
79a6e687 22258@section How to Report Bugs
8e04817f
AC
22259@cindex bug reports
22260@cindex @value{GDBN} bugs, reporting
22261
22262A number of companies and individuals offer support for @sc{gnu} products.
22263If you obtained @value{GDBN} from a support organization, we recommend you
22264contact that organization first.
22265
22266You can find contact information for many support companies and
22267individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22268distribution.
22269@c should add a web page ref...
22270
129188f6 22271In any event, we also recommend that you submit bug reports for
d3e8051b 22272@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22273@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22274page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22275be used.
8e04817f
AC
22276
22277@strong{Do not send bug reports to @samp{info-gdb}, or to
22278@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22279not want to receive bug reports. Those that do have arranged to receive
22280@samp{bug-gdb}.
22281
22282The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22283serves as a repeater. The mailing list and the newsgroup carry exactly
22284the same messages. Often people think of posting bug reports to the
22285newsgroup instead of mailing them. This appears to work, but it has one
22286problem which can be crucial: a newsgroup posting often lacks a mail
22287path back to the sender. Thus, if we need to ask for more information,
22288we may be unable to reach you. For this reason, it is better to send
22289bug reports to the mailing list.
c4555f82 22290
8e04817f
AC
22291The fundamental principle of reporting bugs usefully is this:
22292@strong{report all the facts}. If you are not sure whether to state a
22293fact or leave it out, state it!
c4555f82 22294
8e04817f
AC
22295Often people omit facts because they think they know what causes the
22296problem and assume that some details do not matter. Thus, you might
22297assume that the name of the variable you use in an example does not matter.
22298Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22299stray memory reference which happens to fetch from the location where that
22300name is stored in memory; perhaps, if the name were different, the contents
22301of that location would fool the debugger into doing the right thing despite
22302the bug. Play it safe and give a specific, complete example. That is the
22303easiest thing for you to do, and the most helpful.
c4555f82 22304
8e04817f
AC
22305Keep in mind that the purpose of a bug report is to enable us to fix the
22306bug. It may be that the bug has been reported previously, but neither
22307you nor we can know that unless your bug report is complete and
22308self-contained.
c4555f82 22309
8e04817f
AC
22310Sometimes people give a few sketchy facts and ask, ``Does this ring a
22311bell?'' Those bug reports are useless, and we urge everyone to
22312@emph{refuse to respond to them} except to chide the sender to report
22313bugs properly.
22314
22315To enable us to fix the bug, you should include all these things:
c4555f82
SC
22316
22317@itemize @bullet
22318@item
8e04817f
AC
22319The version of @value{GDBN}. @value{GDBN} announces it if you start
22320with no arguments; you can also print it at any time using @code{show
22321version}.
c4555f82 22322
8e04817f
AC
22323Without this, we will not know whether there is any point in looking for
22324the bug in the current version of @value{GDBN}.
c4555f82
SC
22325
22326@item
8e04817f
AC
22327The type of machine you are using, and the operating system name and
22328version number.
c4555f82
SC
22329
22330@item
c1468174 22331What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22332``@value{GCC}--2.8.1''.
c4555f82
SC
22333
22334@item
8e04817f 22335What compiler (and its version) was used to compile the program you are
c1468174 22336debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22337C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22338to get this information; for other compilers, see the documentation for
22339those compilers.
c4555f82 22340
8e04817f
AC
22341@item
22342The command arguments you gave the compiler to compile your example and
22343observe the bug. For example, did you use @samp{-O}? To guarantee
22344you will not omit something important, list them all. A copy of the
22345Makefile (or the output from make) is sufficient.
c4555f82 22346
8e04817f
AC
22347If we were to try to guess the arguments, we would probably guess wrong
22348and then we might not encounter the bug.
c4555f82 22349
8e04817f
AC
22350@item
22351A complete input script, and all necessary source files, that will
22352reproduce the bug.
c4555f82 22353
8e04817f
AC
22354@item
22355A description of what behavior you observe that you believe is
22356incorrect. For example, ``It gets a fatal signal.''
c4555f82 22357
8e04817f
AC
22358Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22359will certainly notice it. But if the bug is incorrect output, we might
22360not notice unless it is glaringly wrong. You might as well not give us
22361a chance to make a mistake.
c4555f82 22362
8e04817f
AC
22363Even if the problem you experience is a fatal signal, you should still
22364say so explicitly. Suppose something strange is going on, such as, your
22365copy of @value{GDBN} is out of synch, or you have encountered a bug in
22366the C library on your system. (This has happened!) Your copy might
22367crash and ours would not. If you told us to expect a crash, then when
22368ours fails to crash, we would know that the bug was not happening for
22369us. If you had not told us to expect a crash, then we would not be able
22370to draw any conclusion from our observations.
c4555f82 22371
e0c07bf0
MC
22372@pindex script
22373@cindex recording a session script
22374To collect all this information, you can use a session recording program
22375such as @command{script}, which is available on many Unix systems.
22376Just run your @value{GDBN} session inside @command{script} and then
22377include the @file{typescript} file with your bug report.
22378
22379Another way to record a @value{GDBN} session is to run @value{GDBN}
22380inside Emacs and then save the entire buffer to a file.
22381
8e04817f
AC
22382@item
22383If you wish to suggest changes to the @value{GDBN} source, send us context
22384diffs. If you even discuss something in the @value{GDBN} source, refer to
22385it by context, not by line number.
c4555f82 22386
8e04817f
AC
22387The line numbers in our development sources will not match those in your
22388sources. Your line numbers would convey no useful information to us.
c4555f82 22389
8e04817f 22390@end itemize
c4555f82 22391
8e04817f 22392Here are some things that are not necessary:
c4555f82 22393
8e04817f
AC
22394@itemize @bullet
22395@item
22396A description of the envelope of the bug.
c4555f82 22397
8e04817f
AC
22398Often people who encounter a bug spend a lot of time investigating
22399which changes to the input file will make the bug go away and which
22400changes will not affect it.
c4555f82 22401
8e04817f
AC
22402This is often time consuming and not very useful, because the way we
22403will find the bug is by running a single example under the debugger
22404with breakpoints, not by pure deduction from a series of examples.
22405We recommend that you save your time for something else.
c4555f82 22406
8e04817f
AC
22407Of course, if you can find a simpler example to report @emph{instead}
22408of the original one, that is a convenience for us. Errors in the
22409output will be easier to spot, running under the debugger will take
22410less time, and so on.
c4555f82 22411
8e04817f
AC
22412However, simplification is not vital; if you do not want to do this,
22413report the bug anyway and send us the entire test case you used.
c4555f82 22414
8e04817f
AC
22415@item
22416A patch for the bug.
c4555f82 22417
8e04817f
AC
22418A patch for the bug does help us if it is a good one. But do not omit
22419the necessary information, such as the test case, on the assumption that
22420a patch is all we need. We might see problems with your patch and decide
22421to fix the problem another way, or we might not understand it at all.
c4555f82 22422
8e04817f
AC
22423Sometimes with a program as complicated as @value{GDBN} it is very hard to
22424construct an example that will make the program follow a certain path
22425through the code. If you do not send us the example, we will not be able
22426to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22427
8e04817f
AC
22428And if we cannot understand what bug you are trying to fix, or why your
22429patch should be an improvement, we will not install it. A test case will
22430help us to understand.
c4555f82 22431
8e04817f
AC
22432@item
22433A guess about what the bug is or what it depends on.
c4555f82 22434
8e04817f
AC
22435Such guesses are usually wrong. Even we cannot guess right about such
22436things without first using the debugger to find the facts.
22437@end itemize
c4555f82 22438
8e04817f
AC
22439@c The readline documentation is distributed with the readline code
22440@c and consists of the two following files:
22441@c rluser.texinfo
22442@c inc-hist.texinfo
22443@c Use -I with makeinfo to point to the appropriate directory,
22444@c environment var TEXINPUTS with TeX.
5bdf8622 22445@include rluser.texi
8e04817f 22446@include inc-hist.texinfo
c4555f82 22447
c4555f82 22448
8e04817f
AC
22449@node Formatting Documentation
22450@appendix Formatting Documentation
c4555f82 22451
8e04817f
AC
22452@cindex @value{GDBN} reference card
22453@cindex reference card
22454The @value{GDBN} 4 release includes an already-formatted reference card, ready
22455for printing with PostScript or Ghostscript, in the @file{gdb}
22456subdirectory of the main source directory@footnote{In
22457@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22458release.}. If you can use PostScript or Ghostscript with your printer,
22459you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22460
8e04817f
AC
22461The release also includes the source for the reference card. You
22462can format it, using @TeX{}, by typing:
c4555f82 22463
474c8240 22464@smallexample
8e04817f 22465make refcard.dvi
474c8240 22466@end smallexample
c4555f82 22467
8e04817f
AC
22468The @value{GDBN} reference card is designed to print in @dfn{landscape}
22469mode on US ``letter'' size paper;
22470that is, on a sheet 11 inches wide by 8.5 inches
22471high. You will need to specify this form of printing as an option to
22472your @sc{dvi} output program.
c4555f82 22473
8e04817f 22474@cindex documentation
c4555f82 22475
8e04817f
AC
22476All the documentation for @value{GDBN} comes as part of the machine-readable
22477distribution. The documentation is written in Texinfo format, which is
22478a documentation system that uses a single source file to produce both
22479on-line information and a printed manual. You can use one of the Info
22480formatting commands to create the on-line version of the documentation
22481and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22482
8e04817f
AC
22483@value{GDBN} includes an already formatted copy of the on-line Info
22484version of this manual in the @file{gdb} subdirectory. The main Info
22485file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22486subordinate files matching @samp{gdb.info*} in the same directory. If
22487necessary, you can print out these files, or read them with any editor;
22488but they are easier to read using the @code{info} subsystem in @sc{gnu}
22489Emacs or the standalone @code{info} program, available as part of the
22490@sc{gnu} Texinfo distribution.
c4555f82 22491
8e04817f
AC
22492If you want to format these Info files yourself, you need one of the
22493Info formatting programs, such as @code{texinfo-format-buffer} or
22494@code{makeinfo}.
c4555f82 22495
8e04817f
AC
22496If you have @code{makeinfo} installed, and are in the top level
22497@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22498version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22499
474c8240 22500@smallexample
8e04817f
AC
22501cd gdb
22502make gdb.info
474c8240 22503@end smallexample
c4555f82 22504
8e04817f
AC
22505If you want to typeset and print copies of this manual, you need @TeX{},
22506a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22507Texinfo definitions file.
c4555f82 22508
8e04817f
AC
22509@TeX{} is a typesetting program; it does not print files directly, but
22510produces output files called @sc{dvi} files. To print a typeset
22511document, you need a program to print @sc{dvi} files. If your system
22512has @TeX{} installed, chances are it has such a program. The precise
22513command to use depends on your system; @kbd{lpr -d} is common; another
22514(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22515require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22516
8e04817f
AC
22517@TeX{} also requires a macro definitions file called
22518@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22519written in Texinfo format. On its own, @TeX{} cannot either read or
22520typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22521and is located in the @file{gdb-@var{version-number}/texinfo}
22522directory.
c4555f82 22523
8e04817f 22524If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22525typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22526subdirectory of the main source directory (for example, to
22527@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22528
474c8240 22529@smallexample
8e04817f 22530make gdb.dvi
474c8240 22531@end smallexample
c4555f82 22532
8e04817f 22533Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22534
8e04817f
AC
22535@node Installing GDB
22536@appendix Installing @value{GDBN}
8e04817f 22537@cindex installation
c4555f82 22538
7fa2210b
DJ
22539@menu
22540* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22541* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22542* Separate Objdir:: Compiling @value{GDBN} in another directory
22543* Config Names:: Specifying names for hosts and targets
22544* Configure Options:: Summary of options for configure
22545@end menu
22546
22547@node Requirements
79a6e687 22548@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22549@cindex building @value{GDBN}, requirements for
22550
22551Building @value{GDBN} requires various tools and packages to be available.
22552Other packages will be used only if they are found.
22553
79a6e687 22554@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22555@table @asis
22556@item ISO C90 compiler
22557@value{GDBN} is written in ISO C90. It should be buildable with any
22558working C90 compiler, e.g.@: GCC.
22559
22560@end table
22561
79a6e687 22562@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22563@table @asis
22564@item Expat
123dc839 22565@anchor{Expat}
7fa2210b
DJ
22566@value{GDBN} can use the Expat XML parsing library. This library may be
22567included with your operating system distribution; if it is not, you
22568can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22569The @file{configure} script will search for this library in several
7fa2210b
DJ
22570standard locations; if it is installed in an unusual path, you can
22571use the @option{--with-libexpat-prefix} option to specify its location.
22572
9cceb671
DJ
22573Expat is used for:
22574
22575@itemize @bullet
22576@item
22577Remote protocol memory maps (@pxref{Memory Map Format})
22578@item
22579Target descriptions (@pxref{Target Descriptions})
22580@item
22581Remote shared library lists (@pxref{Library List Format})
22582@item
22583MS-Windows shared libraries (@pxref{Shared Libraries})
22584@end itemize
7fa2210b
DJ
22585
22586@end table
22587
22588@node Running Configure
db2e3e2e 22589@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22590@cindex configuring @value{GDBN}
db2e3e2e 22591@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22592of preparing @value{GDBN} for installation; you can then use @code{make} to
22593build the @code{gdb} program.
22594@iftex
22595@c irrelevant in info file; it's as current as the code it lives with.
22596@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22597look at the @file{README} file in the sources; we may have improved the
22598installation procedures since publishing this manual.}
22599@end iftex
c4555f82 22600
8e04817f
AC
22601The @value{GDBN} distribution includes all the source code you need for
22602@value{GDBN} in a single directory, whose name is usually composed by
22603appending the version number to @samp{gdb}.
c4555f82 22604
8e04817f
AC
22605For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22606@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22607
8e04817f
AC
22608@table @code
22609@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22610script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22611
8e04817f
AC
22612@item gdb-@value{GDBVN}/gdb
22613the source specific to @value{GDBN} itself
c4555f82 22614
8e04817f
AC
22615@item gdb-@value{GDBVN}/bfd
22616source for the Binary File Descriptor library
c906108c 22617
8e04817f
AC
22618@item gdb-@value{GDBVN}/include
22619@sc{gnu} include files
c906108c 22620
8e04817f
AC
22621@item gdb-@value{GDBVN}/libiberty
22622source for the @samp{-liberty} free software library
c906108c 22623
8e04817f
AC
22624@item gdb-@value{GDBVN}/opcodes
22625source for the library of opcode tables and disassemblers
c906108c 22626
8e04817f
AC
22627@item gdb-@value{GDBVN}/readline
22628source for the @sc{gnu} command-line interface
c906108c 22629
8e04817f
AC
22630@item gdb-@value{GDBVN}/glob
22631source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22632
8e04817f
AC
22633@item gdb-@value{GDBVN}/mmalloc
22634source for the @sc{gnu} memory-mapped malloc package
22635@end table
c906108c 22636
db2e3e2e 22637The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22638from the @file{gdb-@var{version-number}} source directory, which in
22639this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22640
8e04817f 22641First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22642if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22643identifier for the platform on which @value{GDBN} will run as an
22644argument.
c906108c 22645
8e04817f 22646For example:
c906108c 22647
474c8240 22648@smallexample
8e04817f
AC
22649cd gdb-@value{GDBVN}
22650./configure @var{host}
22651make
474c8240 22652@end smallexample
c906108c 22653
8e04817f
AC
22654@noindent
22655where @var{host} is an identifier such as @samp{sun4} or
22656@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22657(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22658correct value by examining your system.)
c906108c 22659
8e04817f
AC
22660Running @samp{configure @var{host}} and then running @code{make} builds the
22661@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22662libraries, then @code{gdb} itself. The configured source files, and the
22663binaries, are left in the corresponding source directories.
c906108c 22664
8e04817f 22665@need 750
db2e3e2e 22666@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22667system does not recognize this automatically when you run a different
22668shell, you may need to run @code{sh} on it explicitly:
c906108c 22669
474c8240 22670@smallexample
8e04817f 22671sh configure @var{host}
474c8240 22672@end smallexample
c906108c 22673
db2e3e2e 22674If you run @file{configure} from a directory that contains source
8e04817f 22675directories for multiple libraries or programs, such as the
db2e3e2e
BW
22676@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22677@file{configure}
8e04817f
AC
22678creates configuration files for every directory level underneath (unless
22679you tell it not to, with the @samp{--norecursion} option).
22680
db2e3e2e 22681You should run the @file{configure} script from the top directory in the
94e91d6d 22682source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22683@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22684that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22685if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22686of the @file{gdb-@var{version-number}} directory, you will omit the
22687configuration of @file{bfd}, @file{readline}, and other sibling
22688directories of the @file{gdb} subdirectory. This leads to build errors
22689about missing include files such as @file{bfd/bfd.h}.
c906108c 22690
8e04817f
AC
22691You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22692However, you should make sure that the shell on your path (named by
22693the @samp{SHELL} environment variable) is publicly readable. Remember
22694that @value{GDBN} uses the shell to start your program---some systems refuse to
22695let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22696
8e04817f 22697@node Separate Objdir
79a6e687 22698@section Compiling @value{GDBN} in Another Directory
c906108c 22699
8e04817f
AC
22700If you want to run @value{GDBN} versions for several host or target machines,
22701you need a different @code{gdb} compiled for each combination of
db2e3e2e 22702host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22703allowing you to generate each configuration in a separate subdirectory,
22704rather than in the source directory. If your @code{make} program
22705handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22706@code{make} in each of these directories builds the @code{gdb}
22707program specified there.
c906108c 22708
db2e3e2e 22709To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22710with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22711(You also need to specify a path to find @file{configure}
22712itself from your working directory. If the path to @file{configure}
8e04817f
AC
22713would be the same as the argument to @samp{--srcdir}, you can leave out
22714the @samp{--srcdir} option; it is assumed.)
c906108c 22715
8e04817f
AC
22716For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22717separate directory for a Sun 4 like this:
c906108c 22718
474c8240 22719@smallexample
8e04817f
AC
22720@group
22721cd gdb-@value{GDBVN}
22722mkdir ../gdb-sun4
22723cd ../gdb-sun4
22724../gdb-@value{GDBVN}/configure sun4
22725make
22726@end group
474c8240 22727@end smallexample
c906108c 22728
db2e3e2e 22729When @file{configure} builds a configuration using a remote source
8e04817f
AC
22730directory, it creates a tree for the binaries with the same structure
22731(and using the same names) as the tree under the source directory. In
22732the example, you'd find the Sun 4 library @file{libiberty.a} in the
22733directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22734@file{gdb-sun4/gdb}.
c906108c 22735
94e91d6d
MC
22736Make sure that your path to the @file{configure} script has just one
22737instance of @file{gdb} in it. If your path to @file{configure} looks
22738like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22739one subdirectory of @value{GDBN}, not the whole package. This leads to
22740build errors about missing include files such as @file{bfd/bfd.h}.
22741
8e04817f
AC
22742One popular reason to build several @value{GDBN} configurations in separate
22743directories is to configure @value{GDBN} for cross-compiling (where
22744@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22745programs that run on another machine---the @dfn{target}).
22746You specify a cross-debugging target by
db2e3e2e 22747giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22748
8e04817f
AC
22749When you run @code{make} to build a program or library, you must run
22750it in a configured directory---whatever directory you were in when you
db2e3e2e 22751called @file{configure} (or one of its subdirectories).
c906108c 22752
db2e3e2e 22753The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22754directory also runs recursively. If you type @code{make} in a source
22755directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22756directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22757will build all the required libraries, and then build GDB.
c906108c 22758
8e04817f
AC
22759When you have multiple hosts or targets configured in separate
22760directories, you can run @code{make} on them in parallel (for example,
22761if they are NFS-mounted on each of the hosts); they will not interfere
22762with each other.
c906108c 22763
8e04817f 22764@node Config Names
79a6e687 22765@section Specifying Names for Hosts and Targets
c906108c 22766
db2e3e2e 22767The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22768script are based on a three-part naming scheme, but some short predefined
22769aliases are also supported. The full naming scheme encodes three pieces
22770of information in the following pattern:
c906108c 22771
474c8240 22772@smallexample
8e04817f 22773@var{architecture}-@var{vendor}-@var{os}
474c8240 22774@end smallexample
c906108c 22775
8e04817f
AC
22776For example, you can use the alias @code{sun4} as a @var{host} argument,
22777or as the value for @var{target} in a @code{--target=@var{target}}
22778option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22779
db2e3e2e 22780The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22781any query facility to list all supported host and target names or
db2e3e2e 22782aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22783@code{config.sub} to map abbreviations to full names; you can read the
22784script, if you wish, or you can use it to test your guesses on
22785abbreviations---for example:
c906108c 22786
8e04817f
AC
22787@smallexample
22788% sh config.sub i386-linux
22789i386-pc-linux-gnu
22790% sh config.sub alpha-linux
22791alpha-unknown-linux-gnu
22792% sh config.sub hp9k700
22793hppa1.1-hp-hpux
22794% sh config.sub sun4
22795sparc-sun-sunos4.1.1
22796% sh config.sub sun3
22797m68k-sun-sunos4.1.1
22798% sh config.sub i986v
22799Invalid configuration `i986v': machine `i986v' not recognized
22800@end smallexample
c906108c 22801
8e04817f
AC
22802@noindent
22803@code{config.sub} is also distributed in the @value{GDBN} source
22804directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22805
8e04817f 22806@node Configure Options
db2e3e2e 22807@section @file{configure} Options
c906108c 22808
db2e3e2e
BW
22809Here is a summary of the @file{configure} options and arguments that
22810are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22811several other options not listed here. @inforef{What Configure
db2e3e2e 22812Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22813
474c8240 22814@smallexample
8e04817f
AC
22815configure @r{[}--help@r{]}
22816 @r{[}--prefix=@var{dir}@r{]}
22817 @r{[}--exec-prefix=@var{dir}@r{]}
22818 @r{[}--srcdir=@var{dirname}@r{]}
22819 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22820 @r{[}--target=@var{target}@r{]}
22821 @var{host}
474c8240 22822@end smallexample
c906108c 22823
8e04817f
AC
22824@noindent
22825You may introduce options with a single @samp{-} rather than
22826@samp{--} if you prefer; but you may abbreviate option names if you use
22827@samp{--}.
c906108c 22828
8e04817f
AC
22829@table @code
22830@item --help
db2e3e2e 22831Display a quick summary of how to invoke @file{configure}.
c906108c 22832
8e04817f
AC
22833@item --prefix=@var{dir}
22834Configure the source to install programs and files under directory
22835@file{@var{dir}}.
c906108c 22836
8e04817f
AC
22837@item --exec-prefix=@var{dir}
22838Configure the source to install programs under directory
22839@file{@var{dir}}.
c906108c 22840
8e04817f
AC
22841@c avoid splitting the warning from the explanation:
22842@need 2000
22843@item --srcdir=@var{dirname}
22844@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22845@code{make} that implements the @code{VPATH} feature.}@*
22846Use this option to make configurations in directories separate from the
22847@value{GDBN} source directories. Among other things, you can use this to
22848build (or maintain) several configurations simultaneously, in separate
db2e3e2e 22849directories. @file{configure} writes configuration-specific files in
8e04817f 22850the current directory, but arranges for them to use the source in the
db2e3e2e 22851directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
22852the working directory in parallel to the source directories below
22853@var{dirname}.
c906108c 22854
8e04817f 22855@item --norecursion
db2e3e2e 22856Configure only the directory level where @file{configure} is executed; do not
8e04817f 22857propagate configuration to subdirectories.
c906108c 22858
8e04817f
AC
22859@item --target=@var{target}
22860Configure @value{GDBN} for cross-debugging programs running on the specified
22861@var{target}. Without this option, @value{GDBN} is configured to debug
22862programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 22863
8e04817f 22864There is no convenient way to generate a list of all available targets.
c906108c 22865
8e04817f
AC
22866@item @var{host} @dots{}
22867Configure @value{GDBN} to run on the specified @var{host}.
c906108c 22868
8e04817f
AC
22869There is no convenient way to generate a list of all available hosts.
22870@end table
c906108c 22871
8e04817f
AC
22872There are many other options available as well, but they are generally
22873needed for special purposes only.
c906108c 22874
8e04817f
AC
22875@node Maintenance Commands
22876@appendix Maintenance Commands
22877@cindex maintenance commands
22878@cindex internal commands
c906108c 22879
8e04817f 22880In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
22881includes a number of commands intended for @value{GDBN} developers,
22882that are not documented elsewhere in this manual. These commands are
da316a69
EZ
22883provided here for reference. (For commands that turn on debugging
22884messages, see @ref{Debugging Output}.)
c906108c 22885
8e04817f 22886@table @code
09d4efe1
EZ
22887@kindex maint agent
22888@item maint agent @var{expression}
22889Translate the given @var{expression} into remote agent bytecodes.
22890This command is useful for debugging the Agent Expression mechanism
22891(@pxref{Agent Expressions}).
22892
8e04817f
AC
22893@kindex maint info breakpoints
22894@item @anchor{maint info breakpoints}maint info breakpoints
22895Using the same format as @samp{info breakpoints}, display both the
22896breakpoints you've set explicitly, and those @value{GDBN} is using for
22897internal purposes. Internal breakpoints are shown with negative
22898breakpoint numbers. The type column identifies what kind of breakpoint
22899is shown:
c906108c 22900
8e04817f
AC
22901@table @code
22902@item breakpoint
22903Normal, explicitly set breakpoint.
c906108c 22904
8e04817f
AC
22905@item watchpoint
22906Normal, explicitly set watchpoint.
c906108c 22907
8e04817f
AC
22908@item longjmp
22909Internal breakpoint, used to handle correctly stepping through
22910@code{longjmp} calls.
c906108c 22911
8e04817f
AC
22912@item longjmp resume
22913Internal breakpoint at the target of a @code{longjmp}.
c906108c 22914
8e04817f
AC
22915@item until
22916Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 22917
8e04817f
AC
22918@item finish
22919Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 22920
8e04817f
AC
22921@item shlib events
22922Shared library events.
c906108c 22923
8e04817f 22924@end table
c906108c 22925
09d4efe1
EZ
22926@kindex maint check-symtabs
22927@item maint check-symtabs
22928Check the consistency of psymtabs and symtabs.
22929
22930@kindex maint cplus first_component
22931@item maint cplus first_component @var{name}
22932Print the first C@t{++} class/namespace component of @var{name}.
22933
22934@kindex maint cplus namespace
22935@item maint cplus namespace
22936Print the list of possible C@t{++} namespaces.
22937
22938@kindex maint demangle
22939@item maint demangle @var{name}
d3e8051b 22940Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
22941
22942@kindex maint deprecate
22943@kindex maint undeprecate
22944@cindex deprecated commands
22945@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
22946@itemx maint undeprecate @var{command}
22947Deprecate or undeprecate the named @var{command}. Deprecated commands
22948cause @value{GDBN} to issue a warning when you use them. The optional
22949argument @var{replacement} says which newer command should be used in
22950favor of the deprecated one; if it is given, @value{GDBN} will mention
22951the replacement as part of the warning.
22952
22953@kindex maint dump-me
22954@item maint dump-me
721c2651 22955@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 22956Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
22957This is supported only on systems which support aborting a program
22958with the @code{SIGQUIT} signal.
09d4efe1 22959
8d30a00d
AC
22960@kindex maint internal-error
22961@kindex maint internal-warning
09d4efe1
EZ
22962@item maint internal-error @r{[}@var{message-text}@r{]}
22963@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
22964Cause @value{GDBN} to call the internal function @code{internal_error}
22965or @code{internal_warning} and hence behave as though an internal error
22966or internal warning has been detected. In addition to reporting the
22967internal problem, these functions give the user the opportunity to
22968either quit @value{GDBN} or create a core file of the current
22969@value{GDBN} session.
22970
09d4efe1
EZ
22971These commands take an optional parameter @var{message-text} that is
22972used as the text of the error or warning message.
22973
d3e8051b 22974Here's an example of using @code{internal-error}:
09d4efe1 22975
8d30a00d 22976@smallexample
f7dc1244 22977(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
22978@dots{}/maint.c:121: internal-error: testing, 1, 2
22979A problem internal to GDB has been detected. Further
22980debugging may prove unreliable.
22981Quit this debugging session? (y or n) @kbd{n}
22982Create a core file? (y or n) @kbd{n}
f7dc1244 22983(@value{GDBP})
8d30a00d
AC
22984@end smallexample
22985
09d4efe1
EZ
22986@kindex maint packet
22987@item maint packet @var{text}
22988If @value{GDBN} is talking to an inferior via the serial protocol,
22989then this command sends the string @var{text} to the inferior, and
22990displays the response packet. @value{GDBN} supplies the initial
22991@samp{$} character, the terminating @samp{#} character, and the
22992checksum.
22993
22994@kindex maint print architecture
22995@item maint print architecture @r{[}@var{file}@r{]}
22996Print the entire architecture configuration. The optional argument
22997@var{file} names the file where the output goes.
8d30a00d 22998
81adfced
DJ
22999@kindex maint print c-tdesc
23000@item maint print c-tdesc
23001Print the current target description (@pxref{Target Descriptions}) as
23002a C source file. The created source file can be used in @value{GDBN}
23003when an XML parser is not available to parse the description.
23004
00905d52
AC
23005@kindex maint print dummy-frames
23006@item maint print dummy-frames
00905d52
AC
23007Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23008
23009@smallexample
f7dc1244 23010(@value{GDBP}) @kbd{b add}
00905d52 23011@dots{}
f7dc1244 23012(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23013Breakpoint 2, add (a=2, b=3) at @dots{}
2301458 return (a + b);
23015The program being debugged stopped while in a function called from GDB.
23016@dots{}
f7dc1244 23017(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
230180x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23019 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23020 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23021(@value{GDBP})
00905d52
AC
23022@end smallexample
23023
23024Takes an optional file parameter.
23025
0680b120
AC
23026@kindex maint print registers
23027@kindex maint print raw-registers
23028@kindex maint print cooked-registers
617073a9 23029@kindex maint print register-groups
09d4efe1
EZ
23030@item maint print registers @r{[}@var{file}@r{]}
23031@itemx maint print raw-registers @r{[}@var{file}@r{]}
23032@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23033@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23034Print @value{GDBN}'s internal register data structures.
23035
617073a9
AC
23036The command @code{maint print raw-registers} includes the contents of
23037the raw register cache; the command @code{maint print cooked-registers}
23038includes the (cooked) value of all registers; and the command
23039@code{maint print register-groups} includes the groups that each
23040register is a member of. @xref{Registers,, Registers, gdbint,
23041@value{GDBN} Internals}.
0680b120 23042
09d4efe1
EZ
23043These commands take an optional parameter, a file name to which to
23044write the information.
0680b120 23045
617073a9 23046@kindex maint print reggroups
09d4efe1
EZ
23047@item maint print reggroups @r{[}@var{file}@r{]}
23048Print @value{GDBN}'s internal register group data structures. The
23049optional argument @var{file} tells to what file to write the
23050information.
617073a9 23051
09d4efe1 23052The register groups info looks like this:
617073a9
AC
23053
23054@smallexample
f7dc1244 23055(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23056 Group Type
23057 general user
23058 float user
23059 all user
23060 vector user
23061 system user
23062 save internal
23063 restore internal
617073a9
AC
23064@end smallexample
23065
09d4efe1
EZ
23066@kindex flushregs
23067@item flushregs
23068This command forces @value{GDBN} to flush its internal register cache.
23069
23070@kindex maint print objfiles
23071@cindex info for known object files
23072@item maint print objfiles
23073Print a dump of all known object files. For each object file, this
23074command prints its name, address in memory, and all of its psymtabs
23075and symtabs.
23076
23077@kindex maint print statistics
23078@cindex bcache statistics
23079@item maint print statistics
23080This command prints, for each object file in the program, various data
23081about that object file followed by the byte cache (@dfn{bcache})
23082statistics for the object file. The objfile data includes the number
d3e8051b 23083of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23084defined by the objfile, the number of as yet unexpanded psym tables,
23085the number of line tables and string tables, and the amount of memory
23086used by the various tables. The bcache statistics include the counts,
23087sizes, and counts of duplicates of all and unique objects, max,
23088average, and median entry size, total memory used and its overhead and
23089savings, and various measures of the hash table size and chain
23090lengths.
23091
c7ba131e
JB
23092@kindex maint print target-stack
23093@cindex target stack description
23094@item maint print target-stack
23095A @dfn{target} is an interface between the debugger and a particular
23096kind of file or process. Targets can be stacked in @dfn{strata},
23097so that more than one target can potentially respond to a request.
23098In particular, memory accesses will walk down the stack of targets
23099until they find a target that is interested in handling that particular
23100address.
23101
23102This command prints a short description of each layer that was pushed on
23103the @dfn{target stack}, starting from the top layer down to the bottom one.
23104
09d4efe1
EZ
23105@kindex maint print type
23106@cindex type chain of a data type
23107@item maint print type @var{expr}
23108Print the type chain for a type specified by @var{expr}. The argument
23109can be either a type name or a symbol. If it is a symbol, the type of
23110that symbol is described. The type chain produced by this command is
23111a recursive definition of the data type as stored in @value{GDBN}'s
23112data structures, including its flags and contained types.
23113
23114@kindex maint set dwarf2 max-cache-age
23115@kindex maint show dwarf2 max-cache-age
23116@item maint set dwarf2 max-cache-age
23117@itemx maint show dwarf2 max-cache-age
23118Control the DWARF 2 compilation unit cache.
23119
23120@cindex DWARF 2 compilation units cache
23121In object files with inter-compilation-unit references, such as those
23122produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23123reader needs to frequently refer to previously read compilation units.
23124This setting controls how long a compilation unit will remain in the
23125cache if it is not referenced. A higher limit means that cached
23126compilation units will be stored in memory longer, and more total
23127memory will be used. Setting it to zero disables caching, which will
23128slow down @value{GDBN} startup, but reduce memory consumption.
23129
e7ba9c65
DJ
23130@kindex maint set profile
23131@kindex maint show profile
23132@cindex profiling GDB
23133@item maint set profile
23134@itemx maint show profile
23135Control profiling of @value{GDBN}.
23136
23137Profiling will be disabled until you use the @samp{maint set profile}
23138command to enable it. When you enable profiling, the system will begin
23139collecting timing and execution count data; when you disable profiling or
23140exit @value{GDBN}, the results will be written to a log file. Remember that
23141if you use profiling, @value{GDBN} will overwrite the profiling log file
23142(often called @file{gmon.out}). If you have a record of important profiling
23143data in a @file{gmon.out} file, be sure to move it to a safe location.
23144
23145Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23146compiled with the @samp{-pg} compiler option.
e7ba9c65 23147
09d4efe1
EZ
23148@kindex maint show-debug-regs
23149@cindex x86 hardware debug registers
23150@item maint show-debug-regs
23151Control whether to show variables that mirror the x86 hardware debug
23152registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23153enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23154removes a hardware breakpoint or watchpoint, and when the inferior
23155triggers a hardware-assisted breakpoint or watchpoint.
23156
23157@kindex maint space
23158@cindex memory used by commands
23159@item maint space
23160Control whether to display memory usage for each command. If set to a
23161nonzero value, @value{GDBN} will display how much memory each command
23162took, following the command's own output. This can also be requested
23163by invoking @value{GDBN} with the @option{--statistics} command-line
23164switch (@pxref{Mode Options}).
23165
23166@kindex maint time
23167@cindex time of command execution
23168@item maint time
23169Control whether to display the execution time for each command. If
23170set to a nonzero value, @value{GDBN} will display how much time it
23171took to execute each command, following the command's own output.
23172This can also be requested by invoking @value{GDBN} with the
23173@option{--statistics} command-line switch (@pxref{Mode Options}).
23174
23175@kindex maint translate-address
23176@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23177Find the symbol stored at the location specified by the address
23178@var{addr} and an optional section name @var{section}. If found,
23179@value{GDBN} prints the name of the closest symbol and an offset from
23180the symbol's location to the specified address. This is similar to
23181the @code{info address} command (@pxref{Symbols}), except that this
23182command also allows to find symbols in other sections.
ae038cb0 23183
8e04817f 23184@end table
c906108c 23185
9c16f35a
EZ
23186The following command is useful for non-interactive invocations of
23187@value{GDBN}, such as in the test suite.
23188
23189@table @code
23190@item set watchdog @var{nsec}
23191@kindex set watchdog
23192@cindex watchdog timer
23193@cindex timeout for commands
23194Set the maximum number of seconds @value{GDBN} will wait for the
23195target operation to finish. If this time expires, @value{GDBN}
23196reports and error and the command is aborted.
23197
23198@item show watchdog
23199Show the current setting of the target wait timeout.
23200@end table
c906108c 23201
e0ce93ac 23202@node Remote Protocol
8e04817f 23203@appendix @value{GDBN} Remote Serial Protocol
c906108c 23204
ee2d5c50
AC
23205@menu
23206* Overview::
23207* Packets::
23208* Stop Reply Packets::
23209* General Query Packets::
23210* Register Packet Format::
9d29849a 23211* Tracepoint Packets::
a6b151f1 23212* Host I/O Packets::
9a6253be 23213* Interrupts::
ee2d5c50 23214* Examples::
79a6e687 23215* File-I/O Remote Protocol Extension::
cfa9d6d9 23216* Library List Format::
79a6e687 23217* Memory Map Format::
ee2d5c50
AC
23218@end menu
23219
23220@node Overview
23221@section Overview
23222
8e04817f
AC
23223There may be occasions when you need to know something about the
23224protocol---for example, if there is only one serial port to your target
23225machine, you might want your program to do something special if it
23226recognizes a packet meant for @value{GDBN}.
c906108c 23227
d2c6833e 23228In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23229transmitted and received data, respectively.
c906108c 23230
8e04817f
AC
23231@cindex protocol, @value{GDBN} remote serial
23232@cindex serial protocol, @value{GDBN} remote
23233@cindex remote serial protocol
23234All @value{GDBN} commands and responses (other than acknowledgments) are
23235sent as a @var{packet}. A @var{packet} is introduced with the character
23236@samp{$}, the actual @var{packet-data}, and the terminating character
23237@samp{#} followed by a two-digit @var{checksum}:
c906108c 23238
474c8240 23239@smallexample
8e04817f 23240@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23241@end smallexample
8e04817f 23242@noindent
c906108c 23243
8e04817f
AC
23244@cindex checksum, for @value{GDBN} remote
23245@noindent
23246The two-digit @var{checksum} is computed as the modulo 256 sum of all
23247characters between the leading @samp{$} and the trailing @samp{#} (an
23248eight bit unsigned checksum).
c906108c 23249
8e04817f
AC
23250Implementors should note that prior to @value{GDBN} 5.0 the protocol
23251specification also included an optional two-digit @var{sequence-id}:
c906108c 23252
474c8240 23253@smallexample
8e04817f 23254@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23255@end smallexample
c906108c 23256
8e04817f
AC
23257@cindex sequence-id, for @value{GDBN} remote
23258@noindent
23259That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23260has never output @var{sequence-id}s. Stubs that handle packets added
23261since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23262
8e04817f
AC
23263@cindex acknowledgment, for @value{GDBN} remote
23264When either the host or the target machine receives a packet, the first
23265response expected is an acknowledgment: either @samp{+} (to indicate
23266the package was received correctly) or @samp{-} (to request
23267retransmission):
c906108c 23268
474c8240 23269@smallexample
d2c6833e
AC
23270-> @code{$}@var{packet-data}@code{#}@var{checksum}
23271<- @code{+}
474c8240 23272@end smallexample
8e04817f 23273@noindent
53a5351d 23274
8e04817f
AC
23275The host (@value{GDBN}) sends @var{command}s, and the target (the
23276debugging stub incorporated in your program) sends a @var{response}. In
23277the case of step and continue @var{command}s, the response is only sent
23278when the operation has completed (the target has again stopped).
c906108c 23279
8e04817f
AC
23280@var{packet-data} consists of a sequence of characters with the
23281exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23282exceptions).
c906108c 23283
ee2d5c50 23284@cindex remote protocol, field separator
0876f84a 23285Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23286@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23287@sc{hex} with leading zeros suppressed.
c906108c 23288
8e04817f
AC
23289Implementors should note that prior to @value{GDBN} 5.0, the character
23290@samp{:} could not appear as the third character in a packet (as it
23291would potentially conflict with the @var{sequence-id}).
c906108c 23292
0876f84a
DJ
23293@cindex remote protocol, binary data
23294@anchor{Binary Data}
23295Binary data in most packets is encoded either as two hexadecimal
23296digits per byte of binary data. This allowed the traditional remote
23297protocol to work over connections which were only seven-bit clean.
23298Some packets designed more recently assume an eight-bit clean
23299connection, and use a more efficient encoding to send and receive
23300binary data.
23301
23302The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23303as an escape character. Any escaped byte is transmitted as the escape
23304character followed by the original character XORed with @code{0x20}.
23305For example, the byte @code{0x7d} would be transmitted as the two
23306bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23307@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23308@samp{@}}) must always be escaped. Responses sent by the stub
23309must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23310is not interpreted as the start of a run-length encoded sequence
23311(described next).
23312
1d3811f6
DJ
23313Response @var{data} can be run-length encoded to save space.
23314Run-length encoding replaces runs of identical characters with one
23315instance of the repeated character, followed by a @samp{*} and a
23316repeat count. The repeat count is itself sent encoded, to avoid
23317binary characters in @var{data}: a value of @var{n} is sent as
23318@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23319produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23320code 32) for a repeat count of 3. (This is because run-length
23321encoding starts to win for counts 3 or more.) Thus, for example,
23322@samp{0* } is a run-length encoding of ``0000'': the space character
23323after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
233243}} more times.
23325
23326The printable characters @samp{#} and @samp{$} or with a numeric value
23327greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23328seven repeats (@samp{$}) can be expanded using a repeat count of only
23329five (@samp{"}). For example, @samp{00000000} can be encoded as
23330@samp{0*"00}.
c906108c 23331
8e04817f
AC
23332The error response returned for some packets includes a two character
23333error number. That number is not well defined.
c906108c 23334
f8da2bff 23335@cindex empty response, for unsupported packets
8e04817f
AC
23336For any @var{command} not supported by the stub, an empty response
23337(@samp{$#00}) should be returned. That way it is possible to extend the
23338protocol. A newer @value{GDBN} can tell if a packet is supported based
23339on that response.
c906108c 23340
b383017d
RM
23341A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23342@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23343optional.
c906108c 23344
ee2d5c50
AC
23345@node Packets
23346@section Packets
23347
23348The following table provides a complete list of all currently defined
23349@var{command}s and their corresponding response @var{data}.
79a6e687 23350@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23351I/O extension of the remote protocol.
ee2d5c50 23352
b8ff78ce
JB
23353Each packet's description has a template showing the packet's overall
23354syntax, followed by an explanation of the packet's meaning. We
23355include spaces in some of the templates for clarity; these are not
23356part of the packet's syntax. No @value{GDBN} packet uses spaces to
23357separate its components. For example, a template like @samp{foo
23358@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23359bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23360@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23361@samp{foo} and the @var{bar}, or between the @var{bar} and the
23362@var{baz}.
23363
8ffe2530
JB
23364Note that all packet forms beginning with an upper- or lower-case
23365letter, other than those described here, are reserved for future use.
23366
b8ff78ce 23367Here are the packet descriptions.
ee2d5c50 23368
b8ff78ce 23369@table @samp
ee2d5c50 23370
b8ff78ce
JB
23371@item !
23372@cindex @samp{!} packet
2d717e4f 23373@anchor{extended mode}
8e04817f
AC
23374Enable extended mode. In extended mode, the remote server is made
23375persistent. The @samp{R} packet is used to restart the program being
23376debugged.
ee2d5c50
AC
23377
23378Reply:
23379@table @samp
23380@item OK
8e04817f 23381The remote target both supports and has enabled extended mode.
ee2d5c50 23382@end table
c906108c 23383
b8ff78ce
JB
23384@item ?
23385@cindex @samp{?} packet
ee2d5c50
AC
23386Indicate the reason the target halted. The reply is the same as for
23387step and continue.
c906108c 23388
ee2d5c50
AC
23389Reply:
23390@xref{Stop Reply Packets}, for the reply specifications.
23391
b8ff78ce
JB
23392@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23393@cindex @samp{A} packet
23394Initialized @code{argv[]} array passed into program. @var{arglen}
23395specifies the number of bytes in the hex encoded byte stream
23396@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23397
23398Reply:
23399@table @samp
23400@item OK
b8ff78ce
JB
23401The arguments were set.
23402@item E @var{NN}
23403An error occurred.
ee2d5c50
AC
23404@end table
23405
b8ff78ce
JB
23406@item b @var{baud}
23407@cindex @samp{b} packet
23408(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23409Change the serial line speed to @var{baud}.
23410
23411JTC: @emph{When does the transport layer state change? When it's
23412received, or after the ACK is transmitted. In either case, there are
23413problems if the command or the acknowledgment packet is dropped.}
23414
23415Stan: @emph{If people really wanted to add something like this, and get
23416it working for the first time, they ought to modify ser-unix.c to send
23417some kind of out-of-band message to a specially-setup stub and have the
23418switch happen "in between" packets, so that from remote protocol's point
23419of view, nothing actually happened.}
23420
b8ff78ce
JB
23421@item B @var{addr},@var{mode}
23422@cindex @samp{B} packet
8e04817f 23423Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23424breakpoint at @var{addr}.
23425
b8ff78ce 23426Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23427(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23428
4f553f88 23429@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23430@cindex @samp{c} packet
23431Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23432resume at current address.
c906108c 23433
ee2d5c50
AC
23434Reply:
23435@xref{Stop Reply Packets}, for the reply specifications.
23436
4f553f88 23437@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23438@cindex @samp{C} packet
8e04817f 23439Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23440@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23441
ee2d5c50
AC
23442Reply:
23443@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23444
b8ff78ce
JB
23445@item d
23446@cindex @samp{d} packet
ee2d5c50
AC
23447Toggle debug flag.
23448
b8ff78ce
JB
23449Don't use this packet; instead, define a general set packet
23450(@pxref{General Query Packets}).
ee2d5c50 23451
b8ff78ce
JB
23452@item D
23453@cindex @samp{D} packet
ee2d5c50 23454Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23455before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23456
23457Reply:
23458@table @samp
10fac096
NW
23459@item OK
23460for success
b8ff78ce 23461@item E @var{NN}
10fac096 23462for an error
ee2d5c50 23463@end table
c906108c 23464
b8ff78ce
JB
23465@item F @var{RC},@var{EE},@var{CF};@var{XX}
23466@cindex @samp{F} packet
23467A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23468This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23469Remote Protocol Extension}, for the specification.
ee2d5c50 23470
b8ff78ce 23471@item g
ee2d5c50 23472@anchor{read registers packet}
b8ff78ce 23473@cindex @samp{g} packet
ee2d5c50
AC
23474Read general registers.
23475
23476Reply:
23477@table @samp
23478@item @var{XX@dots{}}
8e04817f
AC
23479Each byte of register data is described by two hex digits. The bytes
23480with the register are transmitted in target byte order. The size of
b8ff78ce 23481each register and their position within the @samp{g} packet are
4a9bb1df
UW
23482determined by the @value{GDBN} internal gdbarch functions
23483@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23484specification of several standard @samp{g} packets is specified below.
23485@item E @var{NN}
ee2d5c50
AC
23486for an error.
23487@end table
c906108c 23488
b8ff78ce
JB
23489@item G @var{XX@dots{}}
23490@cindex @samp{G} packet
23491Write general registers. @xref{read registers packet}, for a
23492description of the @var{XX@dots{}} data.
ee2d5c50
AC
23493
23494Reply:
23495@table @samp
23496@item OK
23497for success
b8ff78ce 23498@item E @var{NN}
ee2d5c50
AC
23499for an error
23500@end table
23501
b8ff78ce
JB
23502@item H @var{c} @var{t}
23503@cindex @samp{H} packet
8e04817f 23504Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23505@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23506should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23507operations. The thread designator @var{t} may be @samp{-1}, meaning all
23508the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23509
23510Reply:
23511@table @samp
23512@item OK
23513for success
b8ff78ce 23514@item E @var{NN}
ee2d5c50
AC
23515for an error
23516@end table
c906108c 23517
8e04817f
AC
23518@c FIXME: JTC:
23519@c 'H': How restrictive (or permissive) is the thread model. If a
23520@c thread is selected and stopped, are other threads allowed
23521@c to continue to execute? As I mentioned above, I think the
23522@c semantics of each command when a thread is selected must be
23523@c described. For example:
23524@c
23525@c 'g': If the stub supports threads and a specific thread is
23526@c selected, returns the register block from that thread;
23527@c otherwise returns current registers.
23528@c
23529@c 'G' If the stub supports threads and a specific thread is
23530@c selected, sets the registers of the register block of
23531@c that thread; otherwise sets current registers.
c906108c 23532
b8ff78ce 23533@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23534@anchor{cycle step packet}
b8ff78ce
JB
23535@cindex @samp{i} packet
23536Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23537present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23538step starting at that address.
c906108c 23539
b8ff78ce
JB
23540@item I
23541@cindex @samp{I} packet
23542Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23543step packet}.
ee2d5c50 23544
b8ff78ce
JB
23545@item k
23546@cindex @samp{k} packet
23547Kill request.
c906108c 23548
ac282366 23549FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23550thread context has been selected (i.e.@: does 'k' kill only that
23551thread?)}.
c906108c 23552
b8ff78ce
JB
23553@item m @var{addr},@var{length}
23554@cindex @samp{m} packet
8e04817f 23555Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23556Note that @var{addr} may not be aligned to any particular boundary.
23557
23558The stub need not use any particular size or alignment when gathering
23559data from memory for the response; even if @var{addr} is word-aligned
23560and @var{length} is a multiple of the word size, the stub is free to
23561use byte accesses, or not. For this reason, this packet may not be
23562suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23563@cindex alignment of remote memory accesses
23564@cindex size of remote memory accesses
23565@cindex memory, alignment and size of remote accesses
c906108c 23566
ee2d5c50
AC
23567Reply:
23568@table @samp
23569@item @var{XX@dots{}}
599b237a 23570Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23571number. The reply may contain fewer bytes than requested if the
23572server was able to read only part of the region of memory.
23573@item E @var{NN}
ee2d5c50
AC
23574@var{NN} is errno
23575@end table
23576
b8ff78ce
JB
23577@item M @var{addr},@var{length}:@var{XX@dots{}}
23578@cindex @samp{M} packet
8e04817f 23579Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23580@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23581hexadecimal number.
ee2d5c50
AC
23582
23583Reply:
23584@table @samp
23585@item OK
23586for success
b8ff78ce 23587@item E @var{NN}
8e04817f
AC
23588for an error (this includes the case where only part of the data was
23589written).
ee2d5c50 23590@end table
c906108c 23591
b8ff78ce
JB
23592@item p @var{n}
23593@cindex @samp{p} packet
23594Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23595@xref{read registers packet}, for a description of how the returned
23596register value is encoded.
ee2d5c50
AC
23597
23598Reply:
23599@table @samp
2e868123
AC
23600@item @var{XX@dots{}}
23601the register's value
b8ff78ce 23602@item E @var{NN}
2e868123
AC
23603for an error
23604@item
23605Indicating an unrecognized @var{query}.
ee2d5c50
AC
23606@end table
23607
b8ff78ce 23608@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23609@anchor{write register packet}
b8ff78ce
JB
23610@cindex @samp{P} packet
23611Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23612number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23613digits for each byte in the register (target byte order).
c906108c 23614
ee2d5c50
AC
23615Reply:
23616@table @samp
23617@item OK
23618for success
b8ff78ce 23619@item E @var{NN}
ee2d5c50
AC
23620for an error
23621@end table
23622
5f3bebba
JB
23623@item q @var{name} @var{params}@dots{}
23624@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23625@cindex @samp{q} packet
b8ff78ce 23626@cindex @samp{Q} packet
5f3bebba
JB
23627General query (@samp{q}) and set (@samp{Q}). These packets are
23628described fully in @ref{General Query Packets}.
c906108c 23629
b8ff78ce
JB
23630@item r
23631@cindex @samp{r} packet
8e04817f 23632Reset the entire system.
c906108c 23633
b8ff78ce 23634Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23635
b8ff78ce
JB
23636@item R @var{XX}
23637@cindex @samp{R} packet
8e04817f 23638Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 23639This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 23640
8e04817f 23641The @samp{R} packet has no reply.
ee2d5c50 23642
4f553f88 23643@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23644@cindex @samp{s} packet
23645Single step. @var{addr} is the address at which to resume. If
23646@var{addr} is omitted, resume at same address.
c906108c 23647
ee2d5c50
AC
23648Reply:
23649@xref{Stop Reply Packets}, for the reply specifications.
23650
4f553f88 23651@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23652@anchor{step with signal packet}
b8ff78ce
JB
23653@cindex @samp{S} packet
23654Step with signal. This is analogous to the @samp{C} packet, but
23655requests a single-step, rather than a normal resumption of execution.
c906108c 23656
ee2d5c50
AC
23657Reply:
23658@xref{Stop Reply Packets}, for the reply specifications.
23659
b8ff78ce
JB
23660@item t @var{addr}:@var{PP},@var{MM}
23661@cindex @samp{t} packet
8e04817f 23662Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23663@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23664@var{addr} must be at least 3 digits.
c906108c 23665
b8ff78ce
JB
23666@item T @var{XX}
23667@cindex @samp{T} packet
ee2d5c50 23668Find out if the thread XX is alive.
c906108c 23669
ee2d5c50
AC
23670Reply:
23671@table @samp
23672@item OK
23673thread is still alive
b8ff78ce 23674@item E @var{NN}
ee2d5c50
AC
23675thread is dead
23676@end table
23677
b8ff78ce
JB
23678@item v
23679Packets starting with @samp{v} are identified by a multi-letter name,
23680up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23681
2d717e4f
DJ
23682@item vAttach;@var{pid}
23683@cindex @samp{vAttach} packet
23684Attach to a new process with the specified process ID. @var{pid} is a
23685hexadecimal integer identifying the process. If the stub is currently
23686controlling a process, it is killed. The attached process is stopped.
23687
23688This packet is only available in extended mode (@pxref{extended mode}).
23689
23690Reply:
23691@table @samp
23692@item E @var{nn}
23693for an error
23694@item @r{Any stop packet}
23695for success (@pxref{Stop Reply Packets})
23696@end table
23697
b8ff78ce
JB
23698@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23699@cindex @samp{vCont} packet
23700Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23701If an action is specified with no @var{tid}, then it is applied to any
23702threads that don't have a specific action specified; if no default action is
23703specified then other threads should remain stopped. Specifying multiple
23704default actions is an error; specifying no actions is also an error.
23705Thread IDs are specified in hexadecimal. Currently supported actions are:
23706
b8ff78ce 23707@table @samp
86d30acc
DJ
23708@item c
23709Continue.
b8ff78ce 23710@item C @var{sig}
86d30acc
DJ
23711Continue with signal @var{sig}. @var{sig} should be two hex digits.
23712@item s
23713Step.
b8ff78ce 23714@item S @var{sig}
86d30acc
DJ
23715Step with signal @var{sig}. @var{sig} should be two hex digits.
23716@end table
23717
23718The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23719not supported in @samp{vCont}.
86d30acc
DJ
23720
23721Reply:
23722@xref{Stop Reply Packets}, for the reply specifications.
23723
b8ff78ce
JB
23724@item vCont?
23725@cindex @samp{vCont?} packet
d3e8051b 23726Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23727
23728Reply:
23729@table @samp
b8ff78ce
JB
23730@item vCont@r{[};@var{action}@dots{}@r{]}
23731The @samp{vCont} packet is supported. Each @var{action} is a supported
23732command in the @samp{vCont} packet.
86d30acc 23733@item
b8ff78ce 23734The @samp{vCont} packet is not supported.
86d30acc 23735@end table
ee2d5c50 23736
a6b151f1
DJ
23737@item vFile:@var{operation}:@var{parameter}@dots{}
23738@cindex @samp{vFile} packet
23739Perform a file operation on the target system. For details,
23740see @ref{Host I/O Packets}.
23741
68437a39
DJ
23742@item vFlashErase:@var{addr},@var{length}
23743@cindex @samp{vFlashErase} packet
23744Direct the stub to erase @var{length} bytes of flash starting at
23745@var{addr}. The region may enclose any number of flash blocks, but
23746its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23747flash block size appearing in the memory map (@pxref{Memory Map
23748Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23749together, and sends a @samp{vFlashDone} request after each group; the
23750stub is allowed to delay erase operation until the @samp{vFlashDone}
23751packet is received.
23752
23753Reply:
23754@table @samp
23755@item OK
23756for success
23757@item E @var{NN}
23758for an error
23759@end table
23760
23761@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23762@cindex @samp{vFlashWrite} packet
23763Direct the stub to write data to flash address @var{addr}. The data
23764is passed in binary form using the same encoding as for the @samp{X}
23765packet (@pxref{Binary Data}). The memory ranges specified by
23766@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23767not overlap, and must appear in order of increasing addresses
23768(although @samp{vFlashErase} packets for higher addresses may already
23769have been received; the ordering is guaranteed only between
23770@samp{vFlashWrite} packets). If a packet writes to an address that was
23771neither erased by a preceding @samp{vFlashErase} packet nor by some other
23772target-specific method, the results are unpredictable.
23773
23774
23775Reply:
23776@table @samp
23777@item OK
23778for success
23779@item E.memtype
23780for vFlashWrite addressing non-flash memory
23781@item E @var{NN}
23782for an error
23783@end table
23784
23785@item vFlashDone
23786@cindex @samp{vFlashDone} packet
23787Indicate to the stub that flash programming operation is finished.
23788The stub is permitted to delay or batch the effects of a group of
23789@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23790@samp{vFlashDone} packet is received. The contents of the affected
23791regions of flash memory are unpredictable until the @samp{vFlashDone}
23792request is completed.
23793
2d717e4f
DJ
23794@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
23795@cindex @samp{vRun} packet
23796Run the program @var{filename}, passing it each @var{argument} on its
23797command line. The file and arguments are hex-encoded strings. If
23798@var{filename} is an empty string, the stub may use a default program
23799(e.g.@: the last program run). The program is created in the stopped
23800state. If the stub is currently controlling a process, it is killed.
23801
23802This packet is only available in extended mode (@pxref{extended mode}).
23803
23804Reply:
23805@table @samp
23806@item E @var{nn}
23807for an error
23808@item @r{Any stop packet}
23809for success (@pxref{Stop Reply Packets})
23810@end table
23811
b8ff78ce 23812@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23813@anchor{X packet}
b8ff78ce
JB
23814@cindex @samp{X} packet
23815Write data to memory, where the data is transmitted in binary.
23816@var{addr} is address, @var{length} is number of bytes,
0876f84a 23817@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23818
ee2d5c50
AC
23819Reply:
23820@table @samp
23821@item OK
23822for success
b8ff78ce 23823@item E @var{NN}
ee2d5c50
AC
23824for an error
23825@end table
23826
b8ff78ce
JB
23827@item z @var{type},@var{addr},@var{length}
23828@itemx Z @var{type},@var{addr},@var{length}
2f870471 23829@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
23830@cindex @samp{z} packet
23831@cindex @samp{Z} packets
23832Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
23833watchpoint starting at address @var{address} and covering the next
23834@var{length} bytes.
ee2d5c50 23835
2f870471
AC
23836Each breakpoint and watchpoint packet @var{type} is documented
23837separately.
23838
512217c7
AC
23839@emph{Implementation notes: A remote target shall return an empty string
23840for an unrecognized breakpoint or watchpoint packet @var{type}. A
23841remote target shall support either both or neither of a given
b8ff78ce 23842@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
23843avoid potential problems with duplicate packets, the operations should
23844be implemented in an idempotent way.}
23845
b8ff78ce
JB
23846@item z0,@var{addr},@var{length}
23847@itemx Z0,@var{addr},@var{length}
23848@cindex @samp{z0} packet
23849@cindex @samp{Z0} packet
23850Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
23851@var{addr} of size @var{length}.
2f870471
AC
23852
23853A memory breakpoint is implemented by replacing the instruction at
23854@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 23855@var{length} is used by targets that indicates the size of the
2f870471
AC
23856breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
23857@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 23858
2f870471
AC
23859@emph{Implementation note: It is possible for a target to copy or move
23860code that contains memory breakpoints (e.g., when implementing
23861overlays). The behavior of this packet, in the presence of such a
23862target, is not defined.}
c906108c 23863
ee2d5c50
AC
23864Reply:
23865@table @samp
2f870471
AC
23866@item OK
23867success
23868@item
23869not supported
b8ff78ce 23870@item E @var{NN}
ee2d5c50 23871for an error
2f870471
AC
23872@end table
23873
b8ff78ce
JB
23874@item z1,@var{addr},@var{length}
23875@itemx Z1,@var{addr},@var{length}
23876@cindex @samp{z1} packet
23877@cindex @samp{Z1} packet
23878Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
23879address @var{addr} of size @var{length}.
2f870471
AC
23880
23881A hardware breakpoint is implemented using a mechanism that is not
23882dependant on being able to modify the target's memory.
23883
23884@emph{Implementation note: A hardware breakpoint is not affected by code
23885movement.}
23886
23887Reply:
23888@table @samp
ee2d5c50 23889@item OK
2f870471
AC
23890success
23891@item
23892not supported
b8ff78ce 23893@item E @var{NN}
2f870471
AC
23894for an error
23895@end table
23896
b8ff78ce
JB
23897@item z2,@var{addr},@var{length}
23898@itemx Z2,@var{addr},@var{length}
23899@cindex @samp{z2} packet
23900@cindex @samp{Z2} packet
23901Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
23902
23903Reply:
23904@table @samp
23905@item OK
23906success
23907@item
23908not supported
b8ff78ce 23909@item E @var{NN}
2f870471
AC
23910for an error
23911@end table
23912
b8ff78ce
JB
23913@item z3,@var{addr},@var{length}
23914@itemx Z3,@var{addr},@var{length}
23915@cindex @samp{z3} packet
23916@cindex @samp{Z3} packet
23917Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
23918
23919Reply:
23920@table @samp
23921@item OK
23922success
23923@item
23924not supported
b8ff78ce 23925@item E @var{NN}
2f870471
AC
23926for an error
23927@end table
23928
b8ff78ce
JB
23929@item z4,@var{addr},@var{length}
23930@itemx Z4,@var{addr},@var{length}
23931@cindex @samp{z4} packet
23932@cindex @samp{Z4} packet
23933Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
23934
23935Reply:
23936@table @samp
23937@item OK
23938success
23939@item
23940not supported
b8ff78ce 23941@item E @var{NN}
2f870471 23942for an error
ee2d5c50
AC
23943@end table
23944
23945@end table
c906108c 23946
ee2d5c50
AC
23947@node Stop Reply Packets
23948@section Stop Reply Packets
23949@cindex stop reply packets
c906108c 23950
8e04817f
AC
23951The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
23952receive any of the below as a reply. In the case of the @samp{C},
23953@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 23954when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
23955number} is defined by the header @file{include/gdb/signals.h} in the
23956@value{GDBN} source code.
c906108c 23957
b8ff78ce
JB
23958As in the description of request packets, we include spaces in the
23959reply templates for clarity; these are not part of the reply packet's
23960syntax. No @value{GDBN} stop reply packet uses spaces to separate its
23961components.
c906108c 23962
b8ff78ce 23963@table @samp
ee2d5c50 23964
b8ff78ce 23965@item S @var{AA}
599b237a 23966The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23967number). This is equivalent to a @samp{T} response with no
23968@var{n}:@var{r} pairs.
c906108c 23969
b8ff78ce
JB
23970@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
23971@cindex @samp{T} packet reply
599b237a 23972The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23973number). This is equivalent to an @samp{S} response, except that the
23974@samp{@var{n}:@var{r}} pairs can carry values of important registers
23975and other information directly in the stop reply packet, reducing
23976round-trip latency. Single-step and breakpoint traps are reported
23977this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
23978
23979@itemize @bullet
b8ff78ce 23980@item
599b237a 23981If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
23982corresponding @var{r} gives that register's value. @var{r} is a
23983series of bytes in target byte order, with each byte given by a
23984two-digit hex number.
cfa9d6d9 23985
b8ff78ce
JB
23986@item
23987If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
23988hex.
cfa9d6d9 23989
b8ff78ce 23990@item
cfa9d6d9
DJ
23991If @var{n} is a recognized @dfn{stop reason}, it describes a more
23992specific event that stopped the target. The currently defined stop
23993reasons are listed below. @var{aa} should be @samp{05}, the trap
23994signal. At most one stop reason should be present.
23995
b8ff78ce
JB
23996@item
23997Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
23998and go on to the next; this allows us to extend the protocol in the
23999future.
cfa9d6d9
DJ
24000@end itemize
24001
24002The currently defined stop reasons are:
24003
24004@table @samp
24005@item watch
24006@itemx rwatch
24007@itemx awatch
24008The packet indicates a watchpoint hit, and @var{r} is the data address, in
24009hex.
24010
24011@cindex shared library events, remote reply
24012@item library
24013The packet indicates that the loaded libraries have changed.
24014@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24015list of loaded libraries. @var{r} is ignored.
24016@end table
ee2d5c50 24017
b8ff78ce 24018@item W @var{AA}
8e04817f 24019The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24020applicable to certain targets.
24021
b8ff78ce 24022@item X @var{AA}
8e04817f 24023The process terminated with signal @var{AA}.
c906108c 24024
b8ff78ce
JB
24025@item O @var{XX}@dots{}
24026@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24027written as the program's console output. This can happen at any time
24028while the program is running and the debugger should continue to wait
24029for @samp{W}, @samp{T}, etc.
0ce1b118 24030
b8ff78ce 24031@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24032@var{call-id} is the identifier which says which host system call should
24033be called. This is just the name of the function. Translation into the
24034correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24035@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24036system calls.
24037
b8ff78ce
JB
24038@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24039this very system call.
0ce1b118 24040
b8ff78ce
JB
24041The target replies with this packet when it expects @value{GDBN} to
24042call a host system call on behalf of the target. @value{GDBN} replies
24043with an appropriate @samp{F} packet and keeps up waiting for the next
24044reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24045or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24046Protocol Extension}, for more details.
0ce1b118 24047
ee2d5c50
AC
24048@end table
24049
24050@node General Query Packets
24051@section General Query Packets
9c16f35a 24052@cindex remote query requests
c906108c 24053
5f3bebba
JB
24054Packets starting with @samp{q} are @dfn{general query packets};
24055packets starting with @samp{Q} are @dfn{general set packets}. General
24056query and set packets are a semi-unified form for retrieving and
24057sending information to and from the stub.
24058
24059The initial letter of a query or set packet is followed by a name
24060indicating what sort of thing the packet applies to. For example,
24061@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24062definitions with the stub. These packet names follow some
24063conventions:
24064
24065@itemize @bullet
24066@item
24067The name must not contain commas, colons or semicolons.
24068@item
24069Most @value{GDBN} query and set packets have a leading upper case
24070letter.
24071@item
24072The names of custom vendor packets should use a company prefix, in
24073lower case, followed by a period. For example, packets designed at
24074the Acme Corporation might begin with @samp{qacme.foo} (for querying
24075foos) or @samp{Qacme.bar} (for setting bars).
24076@end itemize
24077
aa56d27a
JB
24078The name of a query or set packet should be separated from any
24079parameters by a @samp{:}; the parameters themselves should be
24080separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24081full packet name, and check for a separator or the end of the packet,
24082in case two packet names share a common prefix. New packets should not begin
24083with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24084packets predate these conventions, and have arguments without any terminator
24085for the packet name; we suspect they are in widespread use in places that
24086are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24087existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24088packet.}.
c906108c 24089
b8ff78ce
JB
24090Like the descriptions of the other packets, each description here
24091has a template showing the packet's overall syntax, followed by an
24092explanation of the packet's meaning. We include spaces in some of the
24093templates for clarity; these are not part of the packet's syntax. No
24094@value{GDBN} packet uses spaces to separate its components.
24095
5f3bebba
JB
24096Here are the currently defined query and set packets:
24097
b8ff78ce 24098@table @samp
c906108c 24099
b8ff78ce 24100@item qC
9c16f35a 24101@cindex current thread, remote request
b8ff78ce 24102@cindex @samp{qC} packet
ee2d5c50
AC
24103Return the current thread id.
24104
24105Reply:
24106@table @samp
b8ff78ce 24107@item QC @var{pid}
599b237a 24108Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24109@item @r{(anything else)}
ee2d5c50
AC
24110Any other reply implies the old pid.
24111@end table
24112
b8ff78ce 24113@item qCRC:@var{addr},@var{length}
ff2587ec 24114@cindex CRC of memory block, remote request
b8ff78ce
JB
24115@cindex @samp{qCRC} packet
24116Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24117Reply:
24118@table @samp
b8ff78ce 24119@item E @var{NN}
ff2587ec 24120An error (such as memory fault)
b8ff78ce
JB
24121@item C @var{crc32}
24122The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24123@end table
24124
b8ff78ce
JB
24125@item qfThreadInfo
24126@itemx qsThreadInfo
9c16f35a 24127@cindex list active threads, remote request
b8ff78ce
JB
24128@cindex @samp{qfThreadInfo} packet
24129@cindex @samp{qsThreadInfo} packet
24130Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24131may be too many active threads to fit into one reply packet, this query
24132works iteratively: it may require more than one query/reply sequence to
24133obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24134be the @samp{qfThreadInfo} query; subsequent queries in the
24135sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24136
b8ff78ce 24137NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24138
24139Reply:
24140@table @samp
b8ff78ce 24141@item m @var{id}
ee2d5c50 24142A single thread id
b8ff78ce 24143@item m @var{id},@var{id}@dots{}
ee2d5c50 24144a comma-separated list of thread ids
b8ff78ce
JB
24145@item l
24146(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24147@end table
24148
24149In response to each query, the target will reply with a list of one or
e1aac25b
JB
24150more thread ids, in big-endian unsigned hex, separated by commas.
24151@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24152ids (using the @samp{qs} form of the query), until the target responds
24153with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24154
b8ff78ce 24155@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24156@cindex get thread-local storage address, remote request
b8ff78ce 24157@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24158Fetch the address associated with thread local storage specified
24159by @var{thread-id}, @var{offset}, and @var{lm}.
24160
24161@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24162thread for which to fetch the TLS address.
24163
24164@var{offset} is the (big endian, hex encoded) offset associated with the
24165thread local variable. (This offset is obtained from the debug
24166information associated with the variable.)
24167
db2e3e2e 24168@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24169the load module associated with the thread local storage. For example,
24170a @sc{gnu}/Linux system will pass the link map address of the shared
24171object associated with the thread local storage under consideration.
24172Other operating environments may choose to represent the load module
24173differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24174
24175Reply:
b8ff78ce
JB
24176@table @samp
24177@item @var{XX}@dots{}
ff2587ec
WZ
24178Hex encoded (big endian) bytes representing the address of the thread
24179local storage requested.
24180
b8ff78ce
JB
24181@item E @var{nn}
24182An error occurred. @var{nn} are hex digits.
ff2587ec 24183
b8ff78ce
JB
24184@item
24185An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24186@end table
24187
b8ff78ce 24188@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24189Obtain thread information from RTOS. Where: @var{startflag} (one hex
24190digit) is one to indicate the first query and zero to indicate a
24191subsequent query; @var{threadcount} (two hex digits) is the maximum
24192number of threads the response packet can contain; and @var{nextthread}
24193(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24194returned in the response as @var{argthread}.
ee2d5c50 24195
b8ff78ce 24196Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24197
24198Reply:
24199@table @samp
b8ff78ce 24200@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24201Where: @var{count} (two hex digits) is the number of threads being
24202returned; @var{done} (one hex digit) is zero to indicate more threads
24203and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24204digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24205is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24206digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24207@end table
c906108c 24208
b8ff78ce 24209@item qOffsets
9c16f35a 24210@cindex section offsets, remote request
b8ff78ce 24211@cindex @samp{qOffsets} packet
31d99776
DJ
24212Get section offsets that the target used when relocating the downloaded
24213image.
c906108c 24214
ee2d5c50
AC
24215Reply:
24216@table @samp
31d99776
DJ
24217@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24218Relocate the @code{Text} section by @var{xxx} from its original address.
24219Relocate the @code{Data} section by @var{yyy} from its original address.
24220If the object file format provides segment information (e.g.@: @sc{elf}
24221@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24222segments by the supplied offsets.
24223
24224@emph{Note: while a @code{Bss} offset may be included in the response,
24225@value{GDBN} ignores this and instead applies the @code{Data} offset
24226to the @code{Bss} section.}
24227
24228@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24229Relocate the first segment of the object file, which conventionally
24230contains program code, to a starting address of @var{xxx}. If
24231@samp{DataSeg} is specified, relocate the second segment, which
24232conventionally contains modifiable data, to a starting address of
24233@var{yyy}. @value{GDBN} will report an error if the object file
24234does not contain segment information, or does not contain at least
24235as many segments as mentioned in the reply. Extra segments are
24236kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24237@end table
24238
b8ff78ce 24239@item qP @var{mode} @var{threadid}
9c16f35a 24240@cindex thread information, remote request
b8ff78ce 24241@cindex @samp{qP} packet
8e04817f
AC
24242Returns information on @var{threadid}. Where: @var{mode} is a hex
24243encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24244
aa56d27a
JB
24245Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24246(see below).
24247
b8ff78ce 24248Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24249
89be2091
DJ
24250@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24251@cindex pass signals to inferior, remote request
24252@cindex @samp{QPassSignals} packet
23181151 24253@anchor{QPassSignals}
89be2091
DJ
24254Each listed @var{signal} should be passed directly to the inferior process.
24255Signals are numbered identically to continue packets and stop replies
24256(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24257strictly greater than the previous item. These signals do not need to stop
24258the inferior, or be reported to @value{GDBN}. All other signals should be
24259reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24260combine; any earlier @samp{QPassSignals} list is completely replaced by the
24261new list. This packet improves performance when using @samp{handle
24262@var{signal} nostop noprint pass}.
24263
24264Reply:
24265@table @samp
24266@item OK
24267The request succeeded.
24268
24269@item E @var{nn}
24270An error occurred. @var{nn} are hex digits.
24271
24272@item
24273An empty reply indicates that @samp{QPassSignals} is not supported by
24274the stub.
24275@end table
24276
24277Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24278command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24279This packet is not probed by default; the remote stub must request it,
24280by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24281
b8ff78ce 24282@item qRcmd,@var{command}
ff2587ec 24283@cindex execute remote command, remote request
b8ff78ce 24284@cindex @samp{qRcmd} packet
ff2587ec 24285@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24286execution. Invalid commands should be reported using the output
24287string. Before the final result packet, the target may also respond
24288with a number of intermediate @samp{O@var{output}} console output
24289packets. @emph{Implementors should note that providing access to a
24290stubs's interpreter may have security implications}.
fa93a9d8 24291
ff2587ec
WZ
24292Reply:
24293@table @samp
24294@item OK
24295A command response with no output.
24296@item @var{OUTPUT}
24297A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24298@item E @var{NN}
ff2587ec 24299Indicate a badly formed request.
b8ff78ce
JB
24300@item
24301An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24302@end table
fa93a9d8 24303
aa56d27a
JB
24304(Note that the @code{qRcmd} packet's name is separated from the
24305command by a @samp{,}, not a @samp{:}, contrary to the naming
24306conventions above. Please don't use this packet as a model for new
24307packets.)
24308
be2a5f71
DJ
24309@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24310@cindex supported packets, remote query
24311@cindex features of the remote protocol
24312@cindex @samp{qSupported} packet
0876f84a 24313@anchor{qSupported}
be2a5f71
DJ
24314Tell the remote stub about features supported by @value{GDBN}, and
24315query the stub for features it supports. This packet allows
24316@value{GDBN} and the remote stub to take advantage of each others'
24317features. @samp{qSupported} also consolidates multiple feature probes
24318at startup, to improve @value{GDBN} performance---a single larger
24319packet performs better than multiple smaller probe packets on
24320high-latency links. Some features may enable behavior which must not
24321be on by default, e.g.@: because it would confuse older clients or
24322stubs. Other features may describe packets which could be
24323automatically probed for, but are not. These features must be
24324reported before @value{GDBN} will use them. This ``default
24325unsupported'' behavior is not appropriate for all packets, but it
24326helps to keep the initial connection time under control with new
24327versions of @value{GDBN} which support increasing numbers of packets.
24328
24329Reply:
24330@table @samp
24331@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24332The stub supports or does not support each returned @var{stubfeature},
24333depending on the form of each @var{stubfeature} (see below for the
24334possible forms).
24335@item
24336An empty reply indicates that @samp{qSupported} is not recognized,
24337or that no features needed to be reported to @value{GDBN}.
24338@end table
24339
24340The allowed forms for each feature (either a @var{gdbfeature} in the
24341@samp{qSupported} packet, or a @var{stubfeature} in the response)
24342are:
24343
24344@table @samp
24345@item @var{name}=@var{value}
24346The remote protocol feature @var{name} is supported, and associated
24347with the specified @var{value}. The format of @var{value} depends
24348on the feature, but it must not include a semicolon.
24349@item @var{name}+
24350The remote protocol feature @var{name} is supported, and does not
24351need an associated value.
24352@item @var{name}-
24353The remote protocol feature @var{name} is not supported.
24354@item @var{name}?
24355The remote protocol feature @var{name} may be supported, and
24356@value{GDBN} should auto-detect support in some other way when it is
24357needed. This form will not be used for @var{gdbfeature} notifications,
24358but may be used for @var{stubfeature} responses.
24359@end table
24360
24361Whenever the stub receives a @samp{qSupported} request, the
24362supplied set of @value{GDBN} features should override any previous
24363request. This allows @value{GDBN} to put the stub in a known
24364state, even if the stub had previously been communicating with
24365a different version of @value{GDBN}.
24366
24367No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24368are defined yet. Stubs should ignore any unknown values for
24369@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24370packet supports receiving packets of unlimited length (earlier
24371versions of @value{GDBN} may reject overly long responses). Values
24372for @var{gdbfeature} may be defined in the future to let the stub take
24373advantage of new features in @value{GDBN}, e.g.@: incompatible
24374improvements in the remote protocol---support for unlimited length
24375responses would be a @var{gdbfeature} example, if it were not implied by
24376the @samp{qSupported} query. The stub's reply should be independent
24377of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24378describes all the features it supports, and then the stub replies with
24379all the features it supports.
24380
24381Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24382responses, as long as each response uses one of the standard forms.
24383
24384Some features are flags. A stub which supports a flag feature
24385should respond with a @samp{+} form response. Other features
24386require values, and the stub should respond with an @samp{=}
24387form response.
24388
24389Each feature has a default value, which @value{GDBN} will use if
24390@samp{qSupported} is not available or if the feature is not mentioned
24391in the @samp{qSupported} response. The default values are fixed; a
24392stub is free to omit any feature responses that match the defaults.
24393
24394Not all features can be probed, but for those which can, the probing
24395mechanism is useful: in some cases, a stub's internal
24396architecture may not allow the protocol layer to know some information
24397about the underlying target in advance. This is especially common in
24398stubs which may be configured for multiple targets.
24399
24400These are the currently defined stub features and their properties:
24401
cfa9d6d9 24402@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24403@c NOTE: The first row should be @headitem, but we do not yet require
24404@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24405@item Feature Name
be2a5f71
DJ
24406@tab Value Required
24407@tab Default
24408@tab Probe Allowed
24409
24410@item @samp{PacketSize}
24411@tab Yes
24412@tab @samp{-}
24413@tab No
24414
0876f84a
DJ
24415@item @samp{qXfer:auxv:read}
24416@tab No
24417@tab @samp{-}
24418@tab Yes
24419
23181151
DJ
24420@item @samp{qXfer:features:read}
24421@tab No
24422@tab @samp{-}
24423@tab Yes
24424
cfa9d6d9
DJ
24425@item @samp{qXfer:libraries:read}
24426@tab No
24427@tab @samp{-}
24428@tab Yes
24429
68437a39
DJ
24430@item @samp{qXfer:memory-map:read}
24431@tab No
24432@tab @samp{-}
24433@tab Yes
24434
0e7f50da
UW
24435@item @samp{qXfer:spu:read}
24436@tab No
24437@tab @samp{-}
24438@tab Yes
24439
24440@item @samp{qXfer:spu:write}
24441@tab No
24442@tab @samp{-}
24443@tab Yes
24444
89be2091
DJ
24445@item @samp{QPassSignals}
24446@tab No
24447@tab @samp{-}
24448@tab Yes
24449
be2a5f71
DJ
24450@end multitable
24451
24452These are the currently defined stub features, in more detail:
24453
24454@table @samp
24455@cindex packet size, remote protocol
24456@item PacketSize=@var{bytes}
24457The remote stub can accept packets up to at least @var{bytes} in
24458length. @value{GDBN} will send packets up to this size for bulk
24459transfers, and will never send larger packets. This is a limit on the
24460data characters in the packet, including the frame and checksum.
24461There is no trailing NUL byte in a remote protocol packet; if the stub
24462stores packets in a NUL-terminated format, it should allow an extra
24463byte in its buffer for the NUL. If this stub feature is not supported,
24464@value{GDBN} guesses based on the size of the @samp{g} packet response.
24465
0876f84a
DJ
24466@item qXfer:auxv:read
24467The remote stub understands the @samp{qXfer:auxv:read} packet
24468(@pxref{qXfer auxiliary vector read}).
24469
23181151
DJ
24470@item qXfer:features:read
24471The remote stub understands the @samp{qXfer:features:read} packet
24472(@pxref{qXfer target description read}).
24473
cfa9d6d9
DJ
24474@item qXfer:libraries:read
24475The remote stub understands the @samp{qXfer:libraries:read} packet
24476(@pxref{qXfer library list read}).
24477
23181151
DJ
24478@item qXfer:memory-map:read
24479The remote stub understands the @samp{qXfer:memory-map:read} packet
24480(@pxref{qXfer memory map read}).
24481
0e7f50da
UW
24482@item qXfer:spu:read
24483The remote stub understands the @samp{qXfer:spu:read} packet
24484(@pxref{qXfer spu read}).
24485
24486@item qXfer:spu:write
24487The remote stub understands the @samp{qXfer:spu:write} packet
24488(@pxref{qXfer spu write}).
24489
23181151
DJ
24490@item QPassSignals
24491The remote stub understands the @samp{QPassSignals} packet
24492(@pxref{QPassSignals}).
24493
be2a5f71
DJ
24494@end table
24495
b8ff78ce 24496@item qSymbol::
ff2587ec 24497@cindex symbol lookup, remote request
b8ff78ce 24498@cindex @samp{qSymbol} packet
ff2587ec
WZ
24499Notify the target that @value{GDBN} is prepared to serve symbol lookup
24500requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24501
24502Reply:
ff2587ec 24503@table @samp
b8ff78ce 24504@item OK
ff2587ec 24505The target does not need to look up any (more) symbols.
b8ff78ce 24506@item qSymbol:@var{sym_name}
ff2587ec
WZ
24507The target requests the value of symbol @var{sym_name} (hex encoded).
24508@value{GDBN} may provide the value by using the
b8ff78ce
JB
24509@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24510below.
ff2587ec 24511@end table
83761cbd 24512
b8ff78ce 24513@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24514Set the value of @var{sym_name} to @var{sym_value}.
24515
24516@var{sym_name} (hex encoded) is the name of a symbol whose value the
24517target has previously requested.
24518
24519@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24520@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24521will be empty.
24522
24523Reply:
24524@table @samp
b8ff78ce 24525@item OK
ff2587ec 24526The target does not need to look up any (more) symbols.
b8ff78ce 24527@item qSymbol:@var{sym_name}
ff2587ec
WZ
24528The target requests the value of a new symbol @var{sym_name} (hex
24529encoded). @value{GDBN} will continue to supply the values of symbols
24530(if available), until the target ceases to request them.
fa93a9d8 24531@end table
0abb7bc7 24532
9d29849a
JB
24533@item QTDP
24534@itemx QTFrame
24535@xref{Tracepoint Packets}.
24536
b8ff78ce 24537@item qThreadExtraInfo,@var{id}
ff2587ec 24538@cindex thread attributes info, remote request
b8ff78ce
JB
24539@cindex @samp{qThreadExtraInfo} packet
24540Obtain a printable string description of a thread's attributes from
24541the target OS. @var{id} is a thread-id in big-endian hex. This
24542string may contain anything that the target OS thinks is interesting
24543for @value{GDBN} to tell the user about the thread. The string is
24544displayed in @value{GDBN}'s @code{info threads} display. Some
24545examples of possible thread extra info strings are @samp{Runnable}, or
24546@samp{Blocked on Mutex}.
ff2587ec
WZ
24547
24548Reply:
24549@table @samp
b8ff78ce
JB
24550@item @var{XX}@dots{}
24551Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24552comprising the printable string containing the extra information about
24553the thread's attributes.
ff2587ec 24554@end table
814e32d7 24555
aa56d27a
JB
24556(Note that the @code{qThreadExtraInfo} packet's name is separated from
24557the command by a @samp{,}, not a @samp{:}, contrary to the naming
24558conventions above. Please don't use this packet as a model for new
24559packets.)
24560
9d29849a
JB
24561@item QTStart
24562@itemx QTStop
24563@itemx QTinit
24564@itemx QTro
24565@itemx qTStatus
24566@xref{Tracepoint Packets}.
24567
0876f84a
DJ
24568@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24569@cindex read special object, remote request
24570@cindex @samp{qXfer} packet
68437a39 24571@anchor{qXfer read}
0876f84a
DJ
24572Read uninterpreted bytes from the target's special data area
24573identified by the keyword @var{object}. Request @var{length} bytes
24574starting at @var{offset} bytes into the data. The content and
0e7f50da 24575encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24576additional details about what data to access.
24577
24578Here are the specific requests of this form defined so far. All
24579@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24580formats, listed below.
24581
24582@table @samp
24583@item qXfer:auxv:read::@var{offset},@var{length}
24584@anchor{qXfer auxiliary vector read}
24585Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24586auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24587
24588This packet is not probed by default; the remote stub must request it,
89be2091 24589by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24590
23181151
DJ
24591@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24592@anchor{qXfer target description read}
24593Access the @dfn{target description}. @xref{Target Descriptions}. The
24594annex specifies which XML document to access. The main description is
24595always loaded from the @samp{target.xml} annex.
24596
24597This packet is not probed by default; the remote stub must request it,
24598by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24599
cfa9d6d9
DJ
24600@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24601@anchor{qXfer library list read}
24602Access the target's list of loaded libraries. @xref{Library List Format}.
24603The annex part of the generic @samp{qXfer} packet must be empty
24604(@pxref{qXfer read}).
24605
24606Targets which maintain a list of libraries in the program's memory do
24607not need to implement this packet; it is designed for platforms where
24608the operating system manages the list of loaded libraries.
24609
24610This packet is not probed by default; the remote stub must request it,
24611by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24612
68437a39
DJ
24613@item qXfer:memory-map:read::@var{offset},@var{length}
24614@anchor{qXfer memory map read}
79a6e687 24615Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24616annex part of the generic @samp{qXfer} packet must be empty
24617(@pxref{qXfer read}).
24618
0e7f50da
UW
24619This packet is not probed by default; the remote stub must request it,
24620by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24621
24622@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24623@anchor{qXfer spu read}
24624Read contents of an @code{spufs} file on the target system. The
24625annex specifies which file to read; it must be of the form
24626@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24627in the target process, and @var{name} identifes the @code{spufs} file
24628in that context to be accessed.
24629
68437a39
DJ
24630This packet is not probed by default; the remote stub must request it,
24631by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24632@end table
24633
0876f84a
DJ
24634Reply:
24635@table @samp
24636@item m @var{data}
24637Data @var{data} (@pxref{Binary Data}) has been read from the
24638target. There may be more data at a higher address (although
24639it is permitted to return @samp{m} even for the last valid
24640block of data, as long as at least one byte of data was read).
24641@var{data} may have fewer bytes than the @var{length} in the
24642request.
24643
24644@item l @var{data}
24645Data @var{data} (@pxref{Binary Data}) has been read from the target.
24646There is no more data to be read. @var{data} may have fewer bytes
24647than the @var{length} in the request.
24648
24649@item l
24650The @var{offset} in the request is at the end of the data.
24651There is no more data to be read.
24652
24653@item E00
24654The request was malformed, or @var{annex} was invalid.
24655
24656@item E @var{nn}
24657The offset was invalid, or there was an error encountered reading the data.
24658@var{nn} is a hex-encoded @code{errno} value.
24659
24660@item
24661An empty reply indicates the @var{object} string was not recognized by
24662the stub, or that the object does not support reading.
24663@end table
24664
24665@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24666@cindex write data into object, remote request
24667Write uninterpreted bytes into the target's special data area
24668identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24669into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24670(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24671is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24672to access.
24673
0e7f50da
UW
24674Here are the specific requests of this form defined so far. All
24675@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24676formats, listed below.
24677
24678@table @samp
24679@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24680@anchor{qXfer spu write}
24681Write @var{data} to an @code{spufs} file on the target system. The
24682annex specifies which file to write; it must be of the form
24683@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24684in the target process, and @var{name} identifes the @code{spufs} file
24685in that context to be accessed.
24686
24687This packet is not probed by default; the remote stub must request it,
24688by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24689@end table
0876f84a
DJ
24690
24691Reply:
24692@table @samp
24693@item @var{nn}
24694@var{nn} (hex encoded) is the number of bytes written.
24695This may be fewer bytes than supplied in the request.
24696
24697@item E00
24698The request was malformed, or @var{annex} was invalid.
24699
24700@item E @var{nn}
24701The offset was invalid, or there was an error encountered writing the data.
24702@var{nn} is a hex-encoded @code{errno} value.
24703
24704@item
24705An empty reply indicates the @var{object} string was not
24706recognized by the stub, or that the object does not support writing.
24707@end table
24708
24709@item qXfer:@var{object}:@var{operation}:@dots{}
24710Requests of this form may be added in the future. When a stub does
24711not recognize the @var{object} keyword, or its support for
24712@var{object} does not recognize the @var{operation} keyword, the stub
24713must respond with an empty packet.
24714
ee2d5c50
AC
24715@end table
24716
24717@node Register Packet Format
24718@section Register Packet Format
eb12ee30 24719
b8ff78ce 24720The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24721In the below, some thirty-two bit registers are transferred as
24722sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24723to fill the space allocated. Register bytes are transferred in target
24724byte order. The two nibbles within a register byte are transferred
ee2d5c50 24725most-significant - least-significant.
eb12ee30 24726
ee2d5c50 24727@table @r
eb12ee30 24728
8e04817f 24729@item MIPS32
ee2d5c50 24730
599b237a 24731All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2473232 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24733registers; fsr; fir; fp.
eb12ee30 24734
8e04817f 24735@item MIPS64
ee2d5c50 24736
599b237a 24737All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24738thirty-two bit registers such as @code{sr}). The ordering is the same
24739as @code{MIPS32}.
eb12ee30 24740
ee2d5c50
AC
24741@end table
24742
9d29849a
JB
24743@node Tracepoint Packets
24744@section Tracepoint Packets
24745@cindex tracepoint packets
24746@cindex packets, tracepoint
24747
24748Here we describe the packets @value{GDBN} uses to implement
24749tracepoints (@pxref{Tracepoints}).
24750
24751@table @samp
24752
24753@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24754Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24755is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24756the tracepoint is disabled. @var{step} is the tracepoint's step
24757count, and @var{pass} is its pass count. If the trailing @samp{-} is
24758present, further @samp{QTDP} packets will follow to specify this
24759tracepoint's actions.
24760
24761Replies:
24762@table @samp
24763@item OK
24764The packet was understood and carried out.
24765@item
24766The packet was not recognized.
24767@end table
24768
24769@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24770Define actions to be taken when a tracepoint is hit. @var{n} and
24771@var{addr} must be the same as in the initial @samp{QTDP} packet for
24772this tracepoint. This packet may only be sent immediately after
24773another @samp{QTDP} packet that ended with a @samp{-}. If the
24774trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24775specifying more actions for this tracepoint.
24776
24777In the series of action packets for a given tracepoint, at most one
24778can have an @samp{S} before its first @var{action}. If such a packet
24779is sent, it and the following packets define ``while-stepping''
24780actions. Any prior packets define ordinary actions --- that is, those
24781taken when the tracepoint is first hit. If no action packet has an
24782@samp{S}, then all the packets in the series specify ordinary
24783tracepoint actions.
24784
24785The @samp{@var{action}@dots{}} portion of the packet is a series of
24786actions, concatenated without separators. Each action has one of the
24787following forms:
24788
24789@table @samp
24790
24791@item R @var{mask}
24792Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24793a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24794@var{i} should be collected. (The least significant bit is numbered
24795zero.) Note that @var{mask} may be any number of digits long; it may
24796not fit in a 32-bit word.
24797
24798@item M @var{basereg},@var{offset},@var{len}
24799Collect @var{len} bytes of memory starting at the address in register
24800number @var{basereg}, plus @var{offset}. If @var{basereg} is
24801@samp{-1}, then the range has a fixed address: @var{offset} is the
24802address of the lowest byte to collect. The @var{basereg},
599b237a 24803@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24804values (the @samp{-1} value for @var{basereg} is a special case).
24805
24806@item X @var{len},@var{expr}
24807Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24808it directs. @var{expr} is an agent expression, as described in
24809@ref{Agent Expressions}. Each byte of the expression is encoded as a
24810two-digit hex number in the packet; @var{len} is the number of bytes
24811in the expression (and thus one-half the number of hex digits in the
24812packet).
24813
24814@end table
24815
24816Any number of actions may be packed together in a single @samp{QTDP}
24817packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24818length (400 bytes, for many stubs). There may be only one @samp{R}
24819action per tracepoint, and it must precede any @samp{M} or @samp{X}
24820actions. Any registers referred to by @samp{M} and @samp{X} actions
24821must be collected by a preceding @samp{R} action. (The
24822``while-stepping'' actions are treated as if they were attached to a
24823separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
24824
24825Replies:
24826@table @samp
24827@item OK
24828The packet was understood and carried out.
24829@item
24830The packet was not recognized.
24831@end table
24832
24833@item QTFrame:@var{n}
24834Select the @var{n}'th tracepoint frame from the buffer, and use the
24835register and memory contents recorded there to answer subsequent
24836request packets from @value{GDBN}.
24837
24838A successful reply from the stub indicates that the stub has found the
24839requested frame. The response is a series of parts, concatenated
24840without separators, describing the frame we selected. Each part has
24841one of the following forms:
24842
24843@table @samp
24844@item F @var{f}
24845The selected frame is number @var{n} in the trace frame buffer;
599b237a 24846@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
24847was no frame matching the criteria in the request packet.
24848
24849@item T @var{t}
24850The selected trace frame records a hit of tracepoint number @var{t};
599b237a 24851@var{t} is a hexadecimal number.
9d29849a
JB
24852
24853@end table
24854
24855@item QTFrame:pc:@var{addr}
24856Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24857currently selected frame whose PC is @var{addr};
599b237a 24858@var{addr} is a hexadecimal number.
9d29849a
JB
24859
24860@item QTFrame:tdp:@var{t}
24861Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24862currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 24863is a hexadecimal number.
9d29849a
JB
24864
24865@item QTFrame:range:@var{start}:@var{end}
24866Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24867currently selected frame whose PC is between @var{start} (inclusive)
599b237a 24868and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
24869numbers.
24870
24871@item QTFrame:outside:@var{start}:@var{end}
24872Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
24873frame @emph{outside} the given range of addresses.
24874
24875@item QTStart
24876Begin the tracepoint experiment. Begin collecting data from tracepoint
24877hits in the trace frame buffer.
24878
24879@item QTStop
24880End the tracepoint experiment. Stop collecting trace frames.
24881
24882@item QTinit
24883Clear the table of tracepoints, and empty the trace frame buffer.
24884
24885@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
24886Establish the given ranges of memory as ``transparent''. The stub
24887will answer requests for these ranges from memory's current contents,
24888if they were not collected as part of the tracepoint hit.
24889
24890@value{GDBN} uses this to mark read-only regions of memory, like those
24891containing program code. Since these areas never change, they should
24892still have the same contents they did when the tracepoint was hit, so
24893there's no reason for the stub to refuse to provide their contents.
24894
24895@item qTStatus
24896Ask the stub if there is a trace experiment running right now.
24897
24898Replies:
24899@table @samp
24900@item T0
24901There is no trace experiment running.
24902@item T1
24903There is a trace experiment running.
24904@end table
24905
24906@end table
24907
24908
a6b151f1
DJ
24909@node Host I/O Packets
24910@section Host I/O Packets
24911@cindex Host I/O, remote protocol
24912@cindex file transfer, remote protocol
24913
24914The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
24915operations on the far side of a remote link. For example, Host I/O is
24916used to upload and download files to a remote target with its own
24917filesystem. Host I/O uses the same constant values and data structure
24918layout as the target-initiated File-I/O protocol. However, the
24919Host I/O packets are structured differently. The target-initiated
24920protocol relies on target memory to store parameters and buffers.
24921Host I/O requests are initiated by @value{GDBN}, and the
24922target's memory is not involved. @xref{File-I/O Remote Protocol
24923Extension}, for more details on the target-initiated protocol.
24924
24925The Host I/O request packets all encode a single operation along with
24926its arguments. They have this format:
24927
24928@table @samp
24929
24930@item vFile:@var{operation}: @var{parameter}@dots{}
24931@var{operation} is the name of the particular request; the target
24932should compare the entire packet name up to the second colon when checking
24933for a supported operation. The format of @var{parameter} depends on
24934the operation. Numbers are always passed in hexadecimal. Negative
24935numbers have an explicit minus sign (i.e.@: two's complement is not
24936used). Strings (e.g.@: filenames) are encoded as a series of
24937hexadecimal bytes. The last argument to a system call may be a
24938buffer of escaped binary data (@pxref{Binary Data}).
24939
24940@end table
24941
24942The valid responses to Host I/O packets are:
24943
24944@table @samp
24945
24946@item F @var{result} [, @var{errno}] [; @var{attachment}]
24947@var{result} is the integer value returned by this operation, usually
24948non-negative for success and -1 for errors. If an error has occured,
24949@var{errno} will be included in the result. @var{errno} will have a
24950value defined by the File-I/O protocol (@pxref{Errno Values}). For
24951operations which return data, @var{attachment} supplies the data as a
24952binary buffer. Binary buffers in response packets are escaped in the
24953normal way (@pxref{Binary Data}). See the individual packet
24954documentation for the interpretation of @var{result} and
24955@var{attachment}.
24956
24957@item
24958An empty response indicates that this operation is not recognized.
24959
24960@end table
24961
24962These are the supported Host I/O operations:
24963
24964@table @samp
24965@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
24966Open a file at @var{pathname} and return a file descriptor for it, or
24967return -1 if an error occurs. @var{pathname} is a string,
24968@var{flags} is an integer indicating a mask of open flags
24969(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
24970of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 24971@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
24972
24973@item vFile:close: @var{fd}
24974Close the open file corresponding to @var{fd} and return 0, or
24975-1 if an error occurs.
24976
24977@item vFile:pread: @var{fd}, @var{count}, @var{offset}
24978Read data from the open file corresponding to @var{fd}. Up to
24979@var{count} bytes will be read from the file, starting at @var{offset}
24980relative to the start of the file. The target may read fewer bytes;
24981common reasons include packet size limits and an end-of-file
24982condition. The number of bytes read is returned. Zero should only be
24983returned for a successful read at the end of the file, or if
24984@var{count} was zero.
24985
24986The data read should be returned as a binary attachment on success.
24987If zero bytes were read, the response should include an empty binary
24988attachment (i.e.@: a trailing semicolon). The return value is the
24989number of target bytes read; the binary attachment may be longer if
24990some characters were escaped.
24991
24992@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
24993Write @var{data} (a binary buffer) to the open file corresponding
24994to @var{fd}. Start the write at @var{offset} from the start of the
24995file. Unlike many @code{write} system calls, there is no
24996separate @var{count} argument; the length of @var{data} in the
24997packet is used. @samp{vFile:write} returns the number of bytes written,
24998which may be shorter than the length of @var{data}, or -1 if an
24999error occurred.
25000
25001@item vFile:unlink: @var{pathname}
25002Delete the file at @var{pathname} on the target. Return 0,
25003or -1 if an error occurs. @var{pathname} is a string.
25004
25005@end table
25006
9a6253be
KB
25007@node Interrupts
25008@section Interrupts
25009@cindex interrupts (remote protocol)
25010
25011When a program on the remote target is running, @value{GDBN} may
25012attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25013control of which is specified via @value{GDBN}'s @samp{remotebreak}
25014setting (@pxref{set remotebreak}).
25015
25016The precise meaning of @code{BREAK} is defined by the transport
25017mechanism and may, in fact, be undefined. @value{GDBN} does
25018not currently define a @code{BREAK} mechanism for any of the network
25019interfaces.
25020
25021@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25022transport mechanisms. It is represented by sending the single byte
25023@code{0x03} without any of the usual packet overhead described in
25024the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25025transmitted as part of a packet, it is considered to be packet data
25026and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25027(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25028@code{0x03} as part of its packet.
25029
25030Stubs are not required to recognize these interrupt mechanisms and the
25031precise meaning associated with receipt of the interrupt is
25032implementation defined. If the stub is successful at interrupting the
25033running program, it is expected that it will send one of the Stop
25034Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25035of successfully stopping the program. Interrupts received while the
25036program is stopped will be discarded.
25037
ee2d5c50
AC
25038@node Examples
25039@section Examples
eb12ee30 25040
8e04817f
AC
25041Example sequence of a target being re-started. Notice how the restart
25042does not get any direct output:
eb12ee30 25043
474c8240 25044@smallexample
d2c6833e
AC
25045-> @code{R00}
25046<- @code{+}
8e04817f 25047@emph{target restarts}
d2c6833e 25048-> @code{?}
8e04817f 25049<- @code{+}
d2c6833e
AC
25050<- @code{T001:1234123412341234}
25051-> @code{+}
474c8240 25052@end smallexample
eb12ee30 25053
8e04817f 25054Example sequence of a target being stepped by a single instruction:
eb12ee30 25055
474c8240 25056@smallexample
d2c6833e 25057-> @code{G1445@dots{}}
8e04817f 25058<- @code{+}
d2c6833e
AC
25059-> @code{s}
25060<- @code{+}
25061@emph{time passes}
25062<- @code{T001:1234123412341234}
8e04817f 25063-> @code{+}
d2c6833e 25064-> @code{g}
8e04817f 25065<- @code{+}
d2c6833e
AC
25066<- @code{1455@dots{}}
25067-> @code{+}
474c8240 25068@end smallexample
eb12ee30 25069
79a6e687
BW
25070@node File-I/O Remote Protocol Extension
25071@section File-I/O Remote Protocol Extension
0ce1b118
CV
25072@cindex File-I/O remote protocol extension
25073
25074@menu
25075* File-I/O Overview::
79a6e687
BW
25076* Protocol Basics::
25077* The F Request Packet::
25078* The F Reply Packet::
25079* The Ctrl-C Message::
0ce1b118 25080* Console I/O::
79a6e687 25081* List of Supported Calls::
db2e3e2e 25082* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25083* Constants::
25084* File-I/O Examples::
25085@end menu
25086
25087@node File-I/O Overview
25088@subsection File-I/O Overview
25089@cindex file-i/o overview
25090
9c16f35a 25091The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25092target to use the host's file system and console I/O to perform various
0ce1b118 25093system calls. System calls on the target system are translated into a
fc320d37
SL
25094remote protocol packet to the host system, which then performs the needed
25095actions and returns a response packet to the target system.
0ce1b118
CV
25096This simulates file system operations even on targets that lack file systems.
25097
fc320d37
SL
25098The protocol is defined to be independent of both the host and target systems.
25099It uses its own internal representation of datatypes and values. Both
0ce1b118 25100@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25101translating the system-dependent value representations into the internal
25102protocol representations when data is transmitted.
0ce1b118 25103
fc320d37
SL
25104The communication is synchronous. A system call is possible only when
25105@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25106or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25107the target is stopped to allow deterministic access to the target's
fc320d37
SL
25108memory. Therefore File-I/O is not interruptible by target signals. On
25109the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25110(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25111
25112The target's request to perform a host system call does not finish
25113the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25114after finishing the system call, the target returns to continuing the
25115previous activity (continue, step). No additional continue or step
25116request from @value{GDBN} is required.
25117
25118@smallexample
f7dc1244 25119(@value{GDBP}) continue
0ce1b118
CV
25120 <- target requests 'system call X'
25121 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25122 -> @value{GDBN} returns result
25123 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25124 <- target hits breakpoint and sends a Txx packet
25125@end smallexample
25126
fc320d37
SL
25127The protocol only supports I/O on the console and to regular files on
25128the host file system. Character or block special devices, pipes,
25129named pipes, sockets or any other communication method on the host
0ce1b118
CV
25130system are not supported by this protocol.
25131
79a6e687
BW
25132@node Protocol Basics
25133@subsection Protocol Basics
0ce1b118
CV
25134@cindex protocol basics, file-i/o
25135
fc320d37
SL
25136The File-I/O protocol uses the @code{F} packet as the request as well
25137as reply packet. Since a File-I/O system call can only occur when
25138@value{GDBN} is waiting for a response from the continuing or stepping target,
25139the File-I/O request is a reply that @value{GDBN} has to expect as a result
25140of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25141This @code{F} packet contains all information needed to allow @value{GDBN}
25142to call the appropriate host system call:
25143
25144@itemize @bullet
b383017d 25145@item
0ce1b118
CV
25146A unique identifier for the requested system call.
25147
25148@item
25149All parameters to the system call. Pointers are given as addresses
25150in the target memory address space. Pointers to strings are given as
b383017d 25151pointer/length pair. Numerical values are given as they are.
db2e3e2e 25152Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25153
25154@end itemize
25155
fc320d37 25156At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25157
25158@itemize @bullet
b383017d 25159@item
fc320d37
SL
25160If the parameters include pointer values to data needed as input to a
25161system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25162standard @code{m} packet request. This additional communication has to be
25163expected by the target implementation and is handled as any other @code{m}
25164packet.
25165
25166@item
25167@value{GDBN} translates all value from protocol representation to host
25168representation as needed. Datatypes are coerced into the host types.
25169
25170@item
fc320d37 25171@value{GDBN} calls the system call.
0ce1b118
CV
25172
25173@item
25174It then coerces datatypes back to protocol representation.
25175
25176@item
fc320d37
SL
25177If the system call is expected to return data in buffer space specified
25178by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25179target using a @code{M} or @code{X} packet. This packet has to be expected
25180by the target implementation and is handled as any other @code{M} or @code{X}
25181packet.
25182
25183@end itemize
25184
25185Eventually @value{GDBN} replies with another @code{F} packet which contains all
25186necessary information for the target to continue. This at least contains
25187
25188@itemize @bullet
25189@item
25190Return value.
25191
25192@item
25193@code{errno}, if has been changed by the system call.
25194
25195@item
25196``Ctrl-C'' flag.
25197
25198@end itemize
25199
25200After having done the needed type and value coercion, the target continues
25201the latest continue or step action.
25202
79a6e687
BW
25203@node The F Request Packet
25204@subsection The @code{F} Request Packet
0ce1b118
CV
25205@cindex file-i/o request packet
25206@cindex @code{F} request packet
25207
25208The @code{F} request packet has the following format:
25209
25210@table @samp
fc320d37 25211@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25212
25213@var{call-id} is the identifier to indicate the host system call to be called.
25214This is just the name of the function.
25215
fc320d37
SL
25216@var{parameter@dots{}} are the parameters to the system call.
25217Parameters are hexadecimal integer values, either the actual values in case
25218of scalar datatypes, pointers to target buffer space in case of compound
25219datatypes and unspecified memory areas, or pointer/length pairs in case
25220of string parameters. These are appended to the @var{call-id} as a
25221comma-delimited list. All values are transmitted in ASCII
25222string representation, pointer/length pairs separated by a slash.
0ce1b118 25223
b383017d 25224@end table
0ce1b118 25225
fc320d37 25226
0ce1b118 25227
79a6e687
BW
25228@node The F Reply Packet
25229@subsection The @code{F} Reply Packet
0ce1b118
CV
25230@cindex file-i/o reply packet
25231@cindex @code{F} reply packet
25232
25233The @code{F} reply packet has the following format:
25234
25235@table @samp
25236
d3bdde98 25237@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25238
25239@var{retcode} is the return code of the system call as hexadecimal value.
25240
db2e3e2e
BW
25241@var{errno} is the @code{errno} set by the call, in protocol-specific
25242representation.
0ce1b118
CV
25243This parameter can be omitted if the call was successful.
25244
fc320d37
SL
25245@var{Ctrl-C flag} is only sent if the user requested a break. In this
25246case, @var{errno} must be sent as well, even if the call was successful.
25247The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25248
25249@smallexample
25250F0,0,C
25251@end smallexample
25252
25253@noindent
fc320d37 25254or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25255
25256@smallexample
25257F-1,4,C
25258@end smallexample
25259
25260@noindent
db2e3e2e 25261assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25262
25263@end table
25264
0ce1b118 25265
79a6e687
BW
25266@node The Ctrl-C Message
25267@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25268@cindex ctrl-c message, in file-i/o protocol
25269
c8aa23ab 25270If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25271reply packet (@pxref{The F Reply Packet}),
fc320d37 25272the target should behave as if it had
0ce1b118 25273gotten a break message. The meaning for the target is ``system call
fc320d37 25274interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25275(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25276packet.
fc320d37
SL
25277
25278It's important for the target to know in which
25279state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25280
25281@itemize @bullet
25282@item
25283The system call hasn't been performed on the host yet.
25284
25285@item
25286The system call on the host has been finished.
25287
25288@end itemize
25289
25290These two states can be distinguished by the target by the value of the
25291returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25292call hasn't been performed. This is equivalent to the @code{EINTR} handling
25293on POSIX systems. In any other case, the target may presume that the
fc320d37 25294system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25295as if the break message arrived right after the system call.
25296
fc320d37 25297@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25298yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25299@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25300before the user requests a break, the full action must be finished by
25301@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25302The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25303or the full action has been completed.
25304
25305@node Console I/O
25306@subsection Console I/O
25307@cindex console i/o as part of file-i/o
25308
d3e8051b 25309By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25310descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25311on the @value{GDBN} console is handled as any other file output operation
25312(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25313by @value{GDBN} so that after the target read request from file descriptor
253140 all following typing is buffered until either one of the following
25315conditions is met:
25316
25317@itemize @bullet
25318@item
c8aa23ab 25319The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25320@code{read}
25321system call is treated as finished.
25322
25323@item
7f9087cb 25324The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25325newline.
0ce1b118
CV
25326
25327@item
c8aa23ab
EZ
25328The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25329character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25330
25331@end itemize
25332
fc320d37
SL
25333If the user has typed more characters than fit in the buffer given to
25334the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25335either another @code{read(0, @dots{})} is requested by the target, or debugging
25336is stopped at the user's request.
0ce1b118 25337
0ce1b118 25338
79a6e687
BW
25339@node List of Supported Calls
25340@subsection List of Supported Calls
0ce1b118
CV
25341@cindex list of supported file-i/o calls
25342
25343@menu
25344* open::
25345* close::
25346* read::
25347* write::
25348* lseek::
25349* rename::
25350* unlink::
25351* stat/fstat::
25352* gettimeofday::
25353* isatty::
25354* system::
25355@end menu
25356
25357@node open
25358@unnumberedsubsubsec open
25359@cindex open, file-i/o system call
25360
fc320d37
SL
25361@table @asis
25362@item Synopsis:
0ce1b118 25363@smallexample
0ce1b118
CV
25364int open(const char *pathname, int flags);
25365int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25366@end smallexample
25367
fc320d37
SL
25368@item Request:
25369@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25370
0ce1b118 25371@noindent
fc320d37 25372@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25373
25374@table @code
b383017d 25375@item O_CREAT
0ce1b118
CV
25376If the file does not exist it will be created. The host
25377rules apply as far as file ownership and time stamps
25378are concerned.
25379
b383017d 25380@item O_EXCL
fc320d37 25381When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25382an error and open() fails.
25383
b383017d 25384@item O_TRUNC
0ce1b118 25385If the file already exists and the open mode allows
fc320d37
SL
25386writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25387truncated to zero length.
0ce1b118 25388
b383017d 25389@item O_APPEND
0ce1b118
CV
25390The file is opened in append mode.
25391
b383017d 25392@item O_RDONLY
0ce1b118
CV
25393The file is opened for reading only.
25394
b383017d 25395@item O_WRONLY
0ce1b118
CV
25396The file is opened for writing only.
25397
b383017d 25398@item O_RDWR
0ce1b118 25399The file is opened for reading and writing.
fc320d37 25400@end table
0ce1b118
CV
25401
25402@noindent
fc320d37 25403Other bits are silently ignored.
0ce1b118 25404
0ce1b118
CV
25405
25406@noindent
fc320d37 25407@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25408
25409@table @code
b383017d 25410@item S_IRUSR
0ce1b118
CV
25411User has read permission.
25412
b383017d 25413@item S_IWUSR
0ce1b118
CV
25414User has write permission.
25415
b383017d 25416@item S_IRGRP
0ce1b118
CV
25417Group has read permission.
25418
b383017d 25419@item S_IWGRP
0ce1b118
CV
25420Group has write permission.
25421
b383017d 25422@item S_IROTH
0ce1b118
CV
25423Others have read permission.
25424
b383017d 25425@item S_IWOTH
0ce1b118 25426Others have write permission.
fc320d37 25427@end table
0ce1b118
CV
25428
25429@noindent
fc320d37 25430Other bits are silently ignored.
0ce1b118 25431
0ce1b118 25432
fc320d37
SL
25433@item Return value:
25434@code{open} returns the new file descriptor or -1 if an error
25435occurred.
0ce1b118 25436
fc320d37 25437@item Errors:
0ce1b118
CV
25438
25439@table @code
b383017d 25440@item EEXIST
fc320d37 25441@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25442
b383017d 25443@item EISDIR
fc320d37 25444@var{pathname} refers to a directory.
0ce1b118 25445
b383017d 25446@item EACCES
0ce1b118
CV
25447The requested access is not allowed.
25448
25449@item ENAMETOOLONG
fc320d37 25450@var{pathname} was too long.
0ce1b118 25451
b383017d 25452@item ENOENT
fc320d37 25453A directory component in @var{pathname} does not exist.
0ce1b118 25454
b383017d 25455@item ENODEV
fc320d37 25456@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25457
b383017d 25458@item EROFS
fc320d37 25459@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25460write access was requested.
25461
b383017d 25462@item EFAULT
fc320d37 25463@var{pathname} is an invalid pointer value.
0ce1b118 25464
b383017d 25465@item ENOSPC
0ce1b118
CV
25466No space on device to create the file.
25467
b383017d 25468@item EMFILE
0ce1b118
CV
25469The process already has the maximum number of files open.
25470
b383017d 25471@item ENFILE
0ce1b118
CV
25472The limit on the total number of files open on the system
25473has been reached.
25474
b383017d 25475@item EINTR
0ce1b118
CV
25476The call was interrupted by the user.
25477@end table
25478
fc320d37
SL
25479@end table
25480
0ce1b118
CV
25481@node close
25482@unnumberedsubsubsec close
25483@cindex close, file-i/o system call
25484
fc320d37
SL
25485@table @asis
25486@item Synopsis:
0ce1b118 25487@smallexample
0ce1b118 25488int close(int fd);
fc320d37 25489@end smallexample
0ce1b118 25490
fc320d37
SL
25491@item Request:
25492@samp{Fclose,@var{fd}}
0ce1b118 25493
fc320d37
SL
25494@item Return value:
25495@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25496
fc320d37 25497@item Errors:
0ce1b118
CV
25498
25499@table @code
b383017d 25500@item EBADF
fc320d37 25501@var{fd} isn't a valid open file descriptor.
0ce1b118 25502
b383017d 25503@item EINTR
0ce1b118
CV
25504The call was interrupted by the user.
25505@end table
25506
fc320d37
SL
25507@end table
25508
0ce1b118
CV
25509@node read
25510@unnumberedsubsubsec read
25511@cindex read, file-i/o system call
25512
fc320d37
SL
25513@table @asis
25514@item Synopsis:
0ce1b118 25515@smallexample
0ce1b118 25516int read(int fd, void *buf, unsigned int count);
fc320d37 25517@end smallexample
0ce1b118 25518
fc320d37
SL
25519@item Request:
25520@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25521
fc320d37 25522@item Return value:
0ce1b118
CV
25523On success, the number of bytes read is returned.
25524Zero indicates end of file. If count is zero, read
b383017d 25525returns zero as well. On error, -1 is returned.
0ce1b118 25526
fc320d37 25527@item Errors:
0ce1b118
CV
25528
25529@table @code
b383017d 25530@item EBADF
fc320d37 25531@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25532reading.
25533
b383017d 25534@item EFAULT
fc320d37 25535@var{bufptr} is an invalid pointer value.
0ce1b118 25536
b383017d 25537@item EINTR
0ce1b118
CV
25538The call was interrupted by the user.
25539@end table
25540
fc320d37
SL
25541@end table
25542
0ce1b118
CV
25543@node write
25544@unnumberedsubsubsec write
25545@cindex write, file-i/o system call
25546
fc320d37
SL
25547@table @asis
25548@item Synopsis:
0ce1b118 25549@smallexample
0ce1b118 25550int write(int fd, const void *buf, unsigned int count);
fc320d37 25551@end smallexample
0ce1b118 25552
fc320d37
SL
25553@item Request:
25554@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25555
fc320d37 25556@item Return value:
0ce1b118
CV
25557On success, the number of bytes written are returned.
25558Zero indicates nothing was written. On error, -1
25559is returned.
25560
fc320d37 25561@item Errors:
0ce1b118
CV
25562
25563@table @code
b383017d 25564@item EBADF
fc320d37 25565@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25566writing.
25567
b383017d 25568@item EFAULT
fc320d37 25569@var{bufptr} is an invalid pointer value.
0ce1b118 25570
b383017d 25571@item EFBIG
0ce1b118 25572An attempt was made to write a file that exceeds the
db2e3e2e 25573host-specific maximum file size allowed.
0ce1b118 25574
b383017d 25575@item ENOSPC
0ce1b118
CV
25576No space on device to write the data.
25577
b383017d 25578@item EINTR
0ce1b118
CV
25579The call was interrupted by the user.
25580@end table
25581
fc320d37
SL
25582@end table
25583
0ce1b118
CV
25584@node lseek
25585@unnumberedsubsubsec lseek
25586@cindex lseek, file-i/o system call
25587
fc320d37
SL
25588@table @asis
25589@item Synopsis:
0ce1b118 25590@smallexample
0ce1b118 25591long lseek (int fd, long offset, int flag);
0ce1b118
CV
25592@end smallexample
25593
fc320d37
SL
25594@item Request:
25595@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25596
25597@var{flag} is one of:
0ce1b118
CV
25598
25599@table @code
b383017d 25600@item SEEK_SET
fc320d37 25601The offset is set to @var{offset} bytes.
0ce1b118 25602
b383017d 25603@item SEEK_CUR
fc320d37 25604The offset is set to its current location plus @var{offset}
0ce1b118
CV
25605bytes.
25606
b383017d 25607@item SEEK_END
fc320d37 25608The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25609bytes.
25610@end table
25611
fc320d37 25612@item Return value:
0ce1b118
CV
25613On success, the resulting unsigned offset in bytes from
25614the beginning of the file is returned. Otherwise, a
25615value of -1 is returned.
25616
fc320d37 25617@item Errors:
0ce1b118
CV
25618
25619@table @code
b383017d 25620@item EBADF
fc320d37 25621@var{fd} is not a valid open file descriptor.
0ce1b118 25622
b383017d 25623@item ESPIPE
fc320d37 25624@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25625
b383017d 25626@item EINVAL
fc320d37 25627@var{flag} is not a proper value.
0ce1b118 25628
b383017d 25629@item EINTR
0ce1b118
CV
25630The call was interrupted by the user.
25631@end table
25632
fc320d37
SL
25633@end table
25634
0ce1b118
CV
25635@node rename
25636@unnumberedsubsubsec rename
25637@cindex rename, file-i/o system call
25638
fc320d37
SL
25639@table @asis
25640@item Synopsis:
0ce1b118 25641@smallexample
0ce1b118 25642int rename(const char *oldpath, const char *newpath);
fc320d37 25643@end smallexample
0ce1b118 25644
fc320d37
SL
25645@item Request:
25646@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25647
fc320d37 25648@item Return value:
0ce1b118
CV
25649On success, zero is returned. On error, -1 is returned.
25650
fc320d37 25651@item Errors:
0ce1b118
CV
25652
25653@table @code
b383017d 25654@item EISDIR
fc320d37 25655@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25656directory.
25657
b383017d 25658@item EEXIST
fc320d37 25659@var{newpath} is a non-empty directory.
0ce1b118 25660
b383017d 25661@item EBUSY
fc320d37 25662@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25663process.
25664
b383017d 25665@item EINVAL
0ce1b118
CV
25666An attempt was made to make a directory a subdirectory
25667of itself.
25668
b383017d 25669@item ENOTDIR
fc320d37
SL
25670A component used as a directory in @var{oldpath} or new
25671path is not a directory. Or @var{oldpath} is a directory
25672and @var{newpath} exists but is not a directory.
0ce1b118 25673
b383017d 25674@item EFAULT
fc320d37 25675@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25676
b383017d 25677@item EACCES
0ce1b118
CV
25678No access to the file or the path of the file.
25679
25680@item ENAMETOOLONG
b383017d 25681
fc320d37 25682@var{oldpath} or @var{newpath} was too long.
0ce1b118 25683
b383017d 25684@item ENOENT
fc320d37 25685A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25686
b383017d 25687@item EROFS
0ce1b118
CV
25688The file is on a read-only filesystem.
25689
b383017d 25690@item ENOSPC
0ce1b118
CV
25691The device containing the file has no room for the new
25692directory entry.
25693
b383017d 25694@item EINTR
0ce1b118
CV
25695The call was interrupted by the user.
25696@end table
25697
fc320d37
SL
25698@end table
25699
0ce1b118
CV
25700@node unlink
25701@unnumberedsubsubsec unlink
25702@cindex unlink, file-i/o system call
25703
fc320d37
SL
25704@table @asis
25705@item Synopsis:
0ce1b118 25706@smallexample
0ce1b118 25707int unlink(const char *pathname);
fc320d37 25708@end smallexample
0ce1b118 25709
fc320d37
SL
25710@item Request:
25711@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25712
fc320d37 25713@item Return value:
0ce1b118
CV
25714On success, zero is returned. On error, -1 is returned.
25715
fc320d37 25716@item Errors:
0ce1b118
CV
25717
25718@table @code
b383017d 25719@item EACCES
0ce1b118
CV
25720No access to the file or the path of the file.
25721
b383017d 25722@item EPERM
0ce1b118
CV
25723The system does not allow unlinking of directories.
25724
b383017d 25725@item EBUSY
fc320d37 25726The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25727being used by another process.
25728
b383017d 25729@item EFAULT
fc320d37 25730@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25731
25732@item ENAMETOOLONG
fc320d37 25733@var{pathname} was too long.
0ce1b118 25734
b383017d 25735@item ENOENT
fc320d37 25736A directory component in @var{pathname} does not exist.
0ce1b118 25737
b383017d 25738@item ENOTDIR
0ce1b118
CV
25739A component of the path is not a directory.
25740
b383017d 25741@item EROFS
0ce1b118
CV
25742The file is on a read-only filesystem.
25743
b383017d 25744@item EINTR
0ce1b118
CV
25745The call was interrupted by the user.
25746@end table
25747
fc320d37
SL
25748@end table
25749
0ce1b118
CV
25750@node stat/fstat
25751@unnumberedsubsubsec stat/fstat
25752@cindex fstat, file-i/o system call
25753@cindex stat, file-i/o system call
25754
fc320d37
SL
25755@table @asis
25756@item Synopsis:
0ce1b118 25757@smallexample
0ce1b118
CV
25758int stat(const char *pathname, struct stat *buf);
25759int fstat(int fd, struct stat *buf);
fc320d37 25760@end smallexample
0ce1b118 25761
fc320d37
SL
25762@item Request:
25763@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25764@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25765
fc320d37 25766@item Return value:
0ce1b118
CV
25767On success, zero is returned. On error, -1 is returned.
25768
fc320d37 25769@item Errors:
0ce1b118
CV
25770
25771@table @code
b383017d 25772@item EBADF
fc320d37 25773@var{fd} is not a valid open file.
0ce1b118 25774
b383017d 25775@item ENOENT
fc320d37 25776A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25777path is an empty string.
25778
b383017d 25779@item ENOTDIR
0ce1b118
CV
25780A component of the path is not a directory.
25781
b383017d 25782@item EFAULT
fc320d37 25783@var{pathnameptr} is an invalid pointer value.
0ce1b118 25784
b383017d 25785@item EACCES
0ce1b118
CV
25786No access to the file or the path of the file.
25787
25788@item ENAMETOOLONG
fc320d37 25789@var{pathname} was too long.
0ce1b118 25790
b383017d 25791@item EINTR
0ce1b118
CV
25792The call was interrupted by the user.
25793@end table
25794
fc320d37
SL
25795@end table
25796
0ce1b118
CV
25797@node gettimeofday
25798@unnumberedsubsubsec gettimeofday
25799@cindex gettimeofday, file-i/o system call
25800
fc320d37
SL
25801@table @asis
25802@item Synopsis:
0ce1b118 25803@smallexample
0ce1b118 25804int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25805@end smallexample
0ce1b118 25806
fc320d37
SL
25807@item Request:
25808@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25809
fc320d37 25810@item Return value:
0ce1b118
CV
25811On success, 0 is returned, -1 otherwise.
25812
fc320d37 25813@item Errors:
0ce1b118
CV
25814
25815@table @code
b383017d 25816@item EINVAL
fc320d37 25817@var{tz} is a non-NULL pointer.
0ce1b118 25818
b383017d 25819@item EFAULT
fc320d37
SL
25820@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25821@end table
25822
0ce1b118
CV
25823@end table
25824
25825@node isatty
25826@unnumberedsubsubsec isatty
25827@cindex isatty, file-i/o system call
25828
fc320d37
SL
25829@table @asis
25830@item Synopsis:
0ce1b118 25831@smallexample
0ce1b118 25832int isatty(int fd);
fc320d37 25833@end smallexample
0ce1b118 25834
fc320d37
SL
25835@item Request:
25836@samp{Fisatty,@var{fd}}
0ce1b118 25837
fc320d37
SL
25838@item Return value:
25839Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 25840
fc320d37 25841@item Errors:
0ce1b118
CV
25842
25843@table @code
b383017d 25844@item EINTR
0ce1b118
CV
25845The call was interrupted by the user.
25846@end table
25847
fc320d37
SL
25848@end table
25849
25850Note that the @code{isatty} call is treated as a special case: it returns
258511 to the target if the file descriptor is attached
25852to the @value{GDBN} console, 0 otherwise. Implementing through system calls
25853would require implementing @code{ioctl} and would be more complex than
25854needed.
25855
25856
0ce1b118
CV
25857@node system
25858@unnumberedsubsubsec system
25859@cindex system, file-i/o system call
25860
fc320d37
SL
25861@table @asis
25862@item Synopsis:
0ce1b118 25863@smallexample
0ce1b118 25864int system(const char *command);
fc320d37 25865@end smallexample
0ce1b118 25866
fc320d37
SL
25867@item Request:
25868@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 25869
fc320d37 25870@item Return value:
5600ea19
NS
25871If @var{len} is zero, the return value indicates whether a shell is
25872available. A zero return value indicates a shell is not available.
25873For non-zero @var{len}, the value returned is -1 on error and the
25874return status of the command otherwise. Only the exit status of the
25875command is returned, which is extracted from the host's @code{system}
25876return value by calling @code{WEXITSTATUS(retval)}. In case
25877@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 25878
fc320d37 25879@item Errors:
0ce1b118
CV
25880
25881@table @code
b383017d 25882@item EINTR
0ce1b118
CV
25883The call was interrupted by the user.
25884@end table
25885
fc320d37
SL
25886@end table
25887
25888@value{GDBN} takes over the full task of calling the necessary host calls
25889to perform the @code{system} call. The return value of @code{system} on
25890the host is simplified before it's returned
25891to the target. Any termination signal information from the child process
25892is discarded, and the return value consists
25893entirely of the exit status of the called command.
25894
25895Due to security concerns, the @code{system} call is by default refused
25896by @value{GDBN}. The user has to allow this call explicitly with the
25897@code{set remote system-call-allowed 1} command.
25898
25899@table @code
25900@item set remote system-call-allowed
25901@kindex set remote system-call-allowed
25902Control whether to allow the @code{system} calls in the File I/O
25903protocol for the remote target. The default is zero (disabled).
25904
25905@item show remote system-call-allowed
25906@kindex show remote system-call-allowed
25907Show whether the @code{system} calls are allowed in the File I/O
25908protocol.
25909@end table
25910
db2e3e2e
BW
25911@node Protocol-specific Representation of Datatypes
25912@subsection Protocol-specific Representation of Datatypes
25913@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
25914
25915@menu
79a6e687
BW
25916* Integral Datatypes::
25917* Pointer Values::
25918* Memory Transfer::
0ce1b118
CV
25919* struct stat::
25920* struct timeval::
25921@end menu
25922
79a6e687
BW
25923@node Integral Datatypes
25924@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
25925@cindex integral datatypes, in file-i/o protocol
25926
fc320d37
SL
25927The integral datatypes used in the system calls are @code{int},
25928@code{unsigned int}, @code{long}, @code{unsigned long},
25929@code{mode_t}, and @code{time_t}.
0ce1b118 25930
fc320d37 25931@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
25932implemented as 32 bit values in this protocol.
25933
fc320d37 25934@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 25935
0ce1b118
CV
25936@xref{Limits}, for corresponding MIN and MAX values (similar to those
25937in @file{limits.h}) to allow range checking on host and target.
25938
25939@code{time_t} datatypes are defined as seconds since the Epoch.
25940
25941All integral datatypes transferred as part of a memory read or write of a
25942structured datatype e.g.@: a @code{struct stat} have to be given in big endian
25943byte order.
25944
79a6e687
BW
25945@node Pointer Values
25946@unnumberedsubsubsec Pointer Values
0ce1b118
CV
25947@cindex pointer values, in file-i/o protocol
25948
25949Pointers to target data are transmitted as they are. An exception
25950is made for pointers to buffers for which the length isn't
25951transmitted as part of the function call, namely strings. Strings
25952are transmitted as a pointer/length pair, both as hex values, e.g.@:
25953
25954@smallexample
25955@code{1aaf/12}
25956@end smallexample
25957
25958@noindent
25959which is a pointer to data of length 18 bytes at position 0x1aaf.
25960The length is defined as the full string length in bytes, including
fc320d37
SL
25961the trailing null byte. For example, the string @code{"hello world"}
25962at address 0x123456 is transmitted as
0ce1b118
CV
25963
25964@smallexample
fc320d37 25965@code{123456/d}
0ce1b118
CV
25966@end smallexample
25967
79a6e687
BW
25968@node Memory Transfer
25969@unnumberedsubsubsec Memory Transfer
fc320d37
SL
25970@cindex memory transfer, in file-i/o protocol
25971
25972Structured data which is transferred using a memory read or write (for
db2e3e2e 25973example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
25974with all scalar multibyte datatypes being big endian. Translation to
25975this representation needs to be done both by the target before the @code{F}
25976packet is sent, and by @value{GDBN} before
25977it transfers memory to the target. Transferred pointers to structured
25978data should point to the already-coerced data at any time.
0ce1b118 25979
0ce1b118
CV
25980
25981@node struct stat
25982@unnumberedsubsubsec struct stat
25983@cindex struct stat, in file-i/o protocol
25984
fc320d37
SL
25985The buffer of type @code{struct stat} used by the target and @value{GDBN}
25986is defined as follows:
0ce1b118
CV
25987
25988@smallexample
25989struct stat @{
25990 unsigned int st_dev; /* device */
25991 unsigned int st_ino; /* inode */
25992 mode_t st_mode; /* protection */
25993 unsigned int st_nlink; /* number of hard links */
25994 unsigned int st_uid; /* user ID of owner */
25995 unsigned int st_gid; /* group ID of owner */
25996 unsigned int st_rdev; /* device type (if inode device) */
25997 unsigned long st_size; /* total size, in bytes */
25998 unsigned long st_blksize; /* blocksize for filesystem I/O */
25999 unsigned long st_blocks; /* number of blocks allocated */
26000 time_t st_atime; /* time of last access */
26001 time_t st_mtime; /* time of last modification */
26002 time_t st_ctime; /* time of last change */
26003@};
26004@end smallexample
26005
fc320d37 26006The integral datatypes conform to the definitions given in the
79a6e687 26007appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26008structure is of size 64 bytes.
26009
26010The values of several fields have a restricted meaning and/or
26011range of values.
26012
fc320d37 26013@table @code
0ce1b118 26014
fc320d37
SL
26015@item st_dev
26016A value of 0 represents a file, 1 the console.
0ce1b118 26017
fc320d37
SL
26018@item st_ino
26019No valid meaning for the target. Transmitted unchanged.
0ce1b118 26020
fc320d37
SL
26021@item st_mode
26022Valid mode bits are described in @ref{Constants}. Any other
26023bits have currently no meaning for the target.
0ce1b118 26024
fc320d37
SL
26025@item st_uid
26026@itemx st_gid
26027@itemx st_rdev
26028No valid meaning for the target. Transmitted unchanged.
0ce1b118 26029
fc320d37
SL
26030@item st_atime
26031@itemx st_mtime
26032@itemx st_ctime
26033These values have a host and file system dependent
26034accuracy. Especially on Windows hosts, the file system may not
26035support exact timing values.
26036@end table
0ce1b118 26037
fc320d37
SL
26038The target gets a @code{struct stat} of the above representation and is
26039responsible for coercing it to the target representation before
0ce1b118
CV
26040continuing.
26041
fc320d37
SL
26042Note that due to size differences between the host, target, and protocol
26043representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26044get truncated on the target.
26045
26046@node struct timeval
26047@unnumberedsubsubsec struct timeval
26048@cindex struct timeval, in file-i/o protocol
26049
fc320d37 26050The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26051is defined as follows:
26052
26053@smallexample
b383017d 26054struct timeval @{
0ce1b118
CV
26055 time_t tv_sec; /* second */
26056 long tv_usec; /* microsecond */
26057@};
26058@end smallexample
26059
fc320d37 26060The integral datatypes conform to the definitions given in the
79a6e687 26061appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26062structure is of size 8 bytes.
26063
26064@node Constants
26065@subsection Constants
26066@cindex constants, in file-i/o protocol
26067
26068The following values are used for the constants inside of the
fc320d37 26069protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26070values before and after the call as needed.
26071
26072@menu
79a6e687
BW
26073* Open Flags::
26074* mode_t Values::
26075* Errno Values::
26076* Lseek Flags::
0ce1b118
CV
26077* Limits::
26078@end menu
26079
79a6e687
BW
26080@node Open Flags
26081@unnumberedsubsubsec Open Flags
0ce1b118
CV
26082@cindex open flags, in file-i/o protocol
26083
26084All values are given in hexadecimal representation.
26085
26086@smallexample
26087 O_RDONLY 0x0
26088 O_WRONLY 0x1
26089 O_RDWR 0x2
26090 O_APPEND 0x8
26091 O_CREAT 0x200
26092 O_TRUNC 0x400
26093 O_EXCL 0x800
26094@end smallexample
26095
79a6e687
BW
26096@node mode_t Values
26097@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26098@cindex mode_t values, in file-i/o protocol
26099
26100All values are given in octal representation.
26101
26102@smallexample
26103 S_IFREG 0100000
26104 S_IFDIR 040000
26105 S_IRUSR 0400
26106 S_IWUSR 0200
26107 S_IXUSR 0100
26108 S_IRGRP 040
26109 S_IWGRP 020
26110 S_IXGRP 010
26111 S_IROTH 04
26112 S_IWOTH 02
26113 S_IXOTH 01
26114@end smallexample
26115
79a6e687
BW
26116@node Errno Values
26117@unnumberedsubsubsec Errno Values
0ce1b118
CV
26118@cindex errno values, in file-i/o protocol
26119
26120All values are given in decimal representation.
26121
26122@smallexample
26123 EPERM 1
26124 ENOENT 2
26125 EINTR 4
26126 EBADF 9
26127 EACCES 13
26128 EFAULT 14
26129 EBUSY 16
26130 EEXIST 17
26131 ENODEV 19
26132 ENOTDIR 20
26133 EISDIR 21
26134 EINVAL 22
26135 ENFILE 23
26136 EMFILE 24
26137 EFBIG 27
26138 ENOSPC 28
26139 ESPIPE 29
26140 EROFS 30
26141 ENAMETOOLONG 91
26142 EUNKNOWN 9999
26143@end smallexample
26144
fc320d37 26145 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26146 any error value not in the list of supported error numbers.
26147
79a6e687
BW
26148@node Lseek Flags
26149@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26150@cindex lseek flags, in file-i/o protocol
26151
26152@smallexample
26153 SEEK_SET 0
26154 SEEK_CUR 1
26155 SEEK_END 2
26156@end smallexample
26157
26158@node Limits
26159@unnumberedsubsubsec Limits
26160@cindex limits, in file-i/o protocol
26161
26162All values are given in decimal representation.
26163
26164@smallexample
26165 INT_MIN -2147483648
26166 INT_MAX 2147483647
26167 UINT_MAX 4294967295
26168 LONG_MIN -9223372036854775808
26169 LONG_MAX 9223372036854775807
26170 ULONG_MAX 18446744073709551615
26171@end smallexample
26172
26173@node File-I/O Examples
26174@subsection File-I/O Examples
26175@cindex file-i/o examples
26176
26177Example sequence of a write call, file descriptor 3, buffer is at target
26178address 0x1234, 6 bytes should be written:
26179
26180@smallexample
26181<- @code{Fwrite,3,1234,6}
26182@emph{request memory read from target}
26183-> @code{m1234,6}
26184<- XXXXXX
26185@emph{return "6 bytes written"}
26186-> @code{F6}
26187@end smallexample
26188
26189Example sequence of a read call, file descriptor 3, buffer is at target
26190address 0x1234, 6 bytes should be read:
26191
26192@smallexample
26193<- @code{Fread,3,1234,6}
26194@emph{request memory write to target}
26195-> @code{X1234,6:XXXXXX}
26196@emph{return "6 bytes read"}
26197-> @code{F6}
26198@end smallexample
26199
26200Example sequence of a read call, call fails on the host due to invalid
fc320d37 26201file descriptor (@code{EBADF}):
0ce1b118
CV
26202
26203@smallexample
26204<- @code{Fread,3,1234,6}
26205-> @code{F-1,9}
26206@end smallexample
26207
c8aa23ab 26208Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26209host is called:
26210
26211@smallexample
26212<- @code{Fread,3,1234,6}
26213-> @code{F-1,4,C}
26214<- @code{T02}
26215@end smallexample
26216
c8aa23ab 26217Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26218host is called:
26219
26220@smallexample
26221<- @code{Fread,3,1234,6}
26222-> @code{X1234,6:XXXXXX}
26223<- @code{T02}
26224@end smallexample
26225
cfa9d6d9
DJ
26226@node Library List Format
26227@section Library List Format
26228@cindex library list format, remote protocol
26229
26230On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26231same process as your application to manage libraries. In this case,
26232@value{GDBN} can use the loader's symbol table and normal memory
26233operations to maintain a list of shared libraries. On other
26234platforms, the operating system manages loaded libraries.
26235@value{GDBN} can not retrieve the list of currently loaded libraries
26236through memory operations, so it uses the @samp{qXfer:libraries:read}
26237packet (@pxref{qXfer library list read}) instead. The remote stub
26238queries the target's operating system and reports which libraries
26239are loaded.
26240
26241The @samp{qXfer:libraries:read} packet returns an XML document which
26242lists loaded libraries and their offsets. Each library has an
26243associated name and one or more segment base addresses, which report
26244where the library was loaded in memory. The segment bases are start
26245addresses, not relocation offsets; they do not depend on the library's
26246link-time base addresses.
26247
9cceb671
DJ
26248@value{GDBN} must be linked with the Expat library to support XML
26249library lists. @xref{Expat}.
26250
cfa9d6d9
DJ
26251A simple memory map, with one loaded library relocated by a single
26252offset, looks like this:
26253
26254@smallexample
26255<library-list>
26256 <library name="/lib/libc.so.6">
26257 <segment address="0x10000000"/>
26258 </library>
26259</library-list>
26260@end smallexample
26261
26262The format of a library list is described by this DTD:
26263
26264@smallexample
26265<!-- library-list: Root element with versioning -->
26266<!ELEMENT library-list (library)*>
26267<!ATTLIST library-list version CDATA #FIXED "1.0">
26268<!ELEMENT library (segment)*>
26269<!ATTLIST library name CDATA #REQUIRED>
26270<!ELEMENT segment EMPTY>
26271<!ATTLIST segment address CDATA #REQUIRED>
26272@end smallexample
26273
79a6e687
BW
26274@node Memory Map Format
26275@section Memory Map Format
68437a39
DJ
26276@cindex memory map format
26277
26278To be able to write into flash memory, @value{GDBN} needs to obtain a
26279memory map from the target. This section describes the format of the
26280memory map.
26281
26282The memory map is obtained using the @samp{qXfer:memory-map:read}
26283(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26284lists memory regions.
26285
26286@value{GDBN} must be linked with the Expat library to support XML
26287memory maps. @xref{Expat}.
26288
26289The top-level structure of the document is shown below:
68437a39
DJ
26290
26291@smallexample
26292<?xml version="1.0"?>
26293<!DOCTYPE memory-map
26294 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26295 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26296<memory-map>
26297 region...
26298</memory-map>
26299@end smallexample
26300
26301Each region can be either:
26302
26303@itemize
26304
26305@item
26306A region of RAM starting at @var{addr} and extending for @var{length}
26307bytes from there:
26308
26309@smallexample
26310<memory type="ram" start="@var{addr}" length="@var{length}"/>
26311@end smallexample
26312
26313
26314@item
26315A region of read-only memory:
26316
26317@smallexample
26318<memory type="rom" start="@var{addr}" length="@var{length}"/>
26319@end smallexample
26320
26321
26322@item
26323A region of flash memory, with erasure blocks @var{blocksize}
26324bytes in length:
26325
26326@smallexample
26327<memory type="flash" start="@var{addr}" length="@var{length}">
26328 <property name="blocksize">@var{blocksize}</property>
26329</memory>
26330@end smallexample
26331
26332@end itemize
26333
26334Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26335by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26336packets to write to addresses in such ranges.
26337
26338The formal DTD for memory map format is given below:
26339
26340@smallexample
26341<!-- ................................................... -->
26342<!-- Memory Map XML DTD ................................ -->
26343<!-- File: memory-map.dtd .............................. -->
26344<!-- .................................... .............. -->
26345<!-- memory-map.dtd -->
26346<!-- memory-map: Root element with versioning -->
26347<!ELEMENT memory-map (memory | property)>
26348<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26349<!ELEMENT memory (property)>
26350<!-- memory: Specifies a memory region,
26351 and its type, or device. -->
26352<!ATTLIST memory type CDATA #REQUIRED
26353 start CDATA #REQUIRED
26354 length CDATA #REQUIRED
26355 device CDATA #IMPLIED>
26356<!-- property: Generic attribute tag -->
26357<!ELEMENT property (#PCDATA | property)*>
26358<!ATTLIST property name CDATA #REQUIRED>
26359@end smallexample
26360
f418dd93
DJ
26361@include agentexpr.texi
26362
23181151
DJ
26363@node Target Descriptions
26364@appendix Target Descriptions
26365@cindex target descriptions
26366
26367@strong{Warning:} target descriptions are still under active development,
26368and the contents and format may change between @value{GDBN} releases.
26369The format is expected to stabilize in the future.
26370
26371One of the challenges of using @value{GDBN} to debug embedded systems
26372is that there are so many minor variants of each processor
26373architecture in use. It is common practice for vendors to start with
26374a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26375and then make changes to adapt it to a particular market niche. Some
26376architectures have hundreds of variants, available from dozens of
26377vendors. This leads to a number of problems:
26378
26379@itemize @bullet
26380@item
26381With so many different customized processors, it is difficult for
26382the @value{GDBN} maintainers to keep up with the changes.
26383@item
26384Since individual variants may have short lifetimes or limited
26385audiences, it may not be worthwhile to carry information about every
26386variant in the @value{GDBN} source tree.
26387@item
26388When @value{GDBN} does support the architecture of the embedded system
26389at hand, the task of finding the correct architecture name to give the
26390@command{set architecture} command can be error-prone.
26391@end itemize
26392
26393To address these problems, the @value{GDBN} remote protocol allows a
26394target system to not only identify itself to @value{GDBN}, but to
26395actually describe its own features. This lets @value{GDBN} support
26396processor variants it has never seen before --- to the extent that the
26397descriptions are accurate, and that @value{GDBN} understands them.
26398
9cceb671
DJ
26399@value{GDBN} must be linked with the Expat library to support XML
26400target descriptions. @xref{Expat}.
123dc839 26401
23181151
DJ
26402@menu
26403* Retrieving Descriptions:: How descriptions are fetched from a target.
26404* Target Description Format:: The contents of a target description.
123dc839
DJ
26405* Predefined Target Types:: Standard types available for target
26406 descriptions.
26407* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26408@end menu
26409
26410@node Retrieving Descriptions
26411@section Retrieving Descriptions
26412
26413Target descriptions can be read from the target automatically, or
26414specified by the user manually. The default behavior is to read the
26415description from the target. @value{GDBN} retrieves it via the remote
26416protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26417qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26418@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26419XML document, of the form described in @ref{Target Description
26420Format}.
26421
26422Alternatively, you can specify a file to read for the target description.
26423If a file is set, the target will not be queried. The commands to
26424specify a file are:
26425
26426@table @code
26427@cindex set tdesc filename
26428@item set tdesc filename @var{path}
26429Read the target description from @var{path}.
26430
26431@cindex unset tdesc filename
26432@item unset tdesc filename
26433Do not read the XML target description from a file. @value{GDBN}
26434will use the description supplied by the current target.
26435
26436@cindex show tdesc filename
26437@item show tdesc filename
26438Show the filename to read for a target description, if any.
26439@end table
26440
26441
26442@node Target Description Format
26443@section Target Description Format
26444@cindex target descriptions, XML format
26445
26446A target description annex is an @uref{http://www.w3.org/XML/, XML}
26447document which complies with the Document Type Definition provided in
26448the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26449means you can use generally available tools like @command{xmllint} to
26450check that your feature descriptions are well-formed and valid.
26451However, to help people unfamiliar with XML write descriptions for
26452their targets, we also describe the grammar here.
26453
123dc839
DJ
26454Target descriptions can identify the architecture of the remote target
26455and (for some architectures) provide information about custom register
26456sets. @value{GDBN} can use this information to autoconfigure for your
26457target, or to warn you if you connect to an unsupported target.
23181151
DJ
26458
26459Here is a simple target description:
26460
123dc839 26461@smallexample
1780a0ed 26462<target version="1.0">
23181151
DJ
26463 <architecture>i386:x86-64</architecture>
26464</target>
123dc839 26465@end smallexample
23181151
DJ
26466
26467@noindent
26468This minimal description only says that the target uses
26469the x86-64 architecture.
26470
123dc839
DJ
26471A target description has the following overall form, with [ ] marking
26472optional elements and @dots{} marking repeatable elements. The elements
26473are explained further below.
23181151 26474
123dc839 26475@smallexample
23181151
DJ
26476<?xml version="1.0"?>
26477<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26478<target version="1.0">
123dc839
DJ
26479 @r{[}@var{architecture}@r{]}
26480 @r{[}@var{feature}@dots{}@r{]}
23181151 26481</target>
123dc839 26482@end smallexample
23181151
DJ
26483
26484@noindent
26485The description is generally insensitive to whitespace and line
26486breaks, under the usual common-sense rules. The XML version
26487declaration and document type declaration can generally be omitted
26488(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26489useful for XML validation tools. The @samp{version} attribute for
26490@samp{<target>} may also be omitted, but we recommend
26491including it; if future versions of @value{GDBN} use an incompatible
26492revision of @file{gdb-target.dtd}, they will detect and report
26493the version mismatch.
23181151 26494
108546a0
DJ
26495@subsection Inclusion
26496@cindex target descriptions, inclusion
26497@cindex XInclude
26498@ifnotinfo
26499@cindex <xi:include>
26500@end ifnotinfo
26501
26502It can sometimes be valuable to split a target description up into
26503several different annexes, either for organizational purposes, or to
26504share files between different possible target descriptions. You can
26505divide a description into multiple files by replacing any element of
26506the target description with an inclusion directive of the form:
26507
123dc839 26508@smallexample
108546a0 26509<xi:include href="@var{document}"/>
123dc839 26510@end smallexample
108546a0
DJ
26511
26512@noindent
26513When @value{GDBN} encounters an element of this form, it will retrieve
26514the named XML @var{document}, and replace the inclusion directive with
26515the contents of that document. If the current description was read
26516using @samp{qXfer}, then so will be the included document;
26517@var{document} will be interpreted as the name of an annex. If the
26518current description was read from a file, @value{GDBN} will look for
26519@var{document} as a file in the same directory where it found the
26520original description.
26521
123dc839
DJ
26522@subsection Architecture
26523@cindex <architecture>
26524
26525An @samp{<architecture>} element has this form:
26526
26527@smallexample
26528 <architecture>@var{arch}</architecture>
26529@end smallexample
26530
26531@var{arch} is an architecture name from the same selection
26532accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26533Debugging Target}).
26534
26535@subsection Features
26536@cindex <feature>
26537
26538Each @samp{<feature>} describes some logical portion of the target
26539system. Features are currently used to describe available CPU
26540registers and the types of their contents. A @samp{<feature>} element
26541has this form:
26542
26543@smallexample
26544<feature name="@var{name}">
26545 @r{[}@var{type}@dots{}@r{]}
26546 @var{reg}@dots{}
26547</feature>
26548@end smallexample
26549
26550@noindent
26551Each feature's name should be unique within the description. The name
26552of a feature does not matter unless @value{GDBN} has some special
26553knowledge of the contents of that feature; if it does, the feature
26554should have its standard name. @xref{Standard Target Features}.
26555
26556@subsection Types
26557
26558Any register's value is a collection of bits which @value{GDBN} must
26559interpret. The default interpretation is a two's complement integer,
26560but other types can be requested by name in the register description.
26561Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26562Target Types}), and the description can define additional composite types.
26563
26564Each type element must have an @samp{id} attribute, which gives
26565a unique (within the containing @samp{<feature>}) name to the type.
26566Types must be defined before they are used.
26567
26568@cindex <vector>
26569Some targets offer vector registers, which can be treated as arrays
26570of scalar elements. These types are written as @samp{<vector>} elements,
26571specifying the array element type, @var{type}, and the number of elements,
26572@var{count}:
26573
26574@smallexample
26575<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26576@end smallexample
26577
26578@cindex <union>
26579If a register's value is usefully viewed in multiple ways, define it
26580with a union type containing the useful representations. The
26581@samp{<union>} element contains one or more @samp{<field>} elements,
26582each of which has a @var{name} and a @var{type}:
26583
26584@smallexample
26585<union id="@var{id}">
26586 <field name="@var{name}" type="@var{type}"/>
26587 @dots{}
26588</union>
26589@end smallexample
26590
26591@subsection Registers
26592@cindex <reg>
26593
26594Each register is represented as an element with this form:
26595
26596@smallexample
26597<reg name="@var{name}"
26598 bitsize="@var{size}"
26599 @r{[}regnum="@var{num}"@r{]}
26600 @r{[}save-restore="@var{save-restore}"@r{]}
26601 @r{[}type="@var{type}"@r{]}
26602 @r{[}group="@var{group}"@r{]}/>
26603@end smallexample
26604
26605@noindent
26606The components are as follows:
26607
26608@table @var
26609
26610@item name
26611The register's name; it must be unique within the target description.
26612
26613@item bitsize
26614The register's size, in bits.
26615
26616@item regnum
26617The register's number. If omitted, a register's number is one greater
26618than that of the previous register (either in the current feature or in
26619a preceeding feature); the first register in the target description
26620defaults to zero. This register number is used to read or write
26621the register; e.g.@: it is used in the remote @code{p} and @code{P}
26622packets, and registers appear in the @code{g} and @code{G} packets
26623in order of increasing register number.
26624
26625@item save-restore
26626Whether the register should be preserved across inferior function
26627calls; this must be either @code{yes} or @code{no}. The default is
26628@code{yes}, which is appropriate for most registers except for
26629some system control registers; this is not related to the target's
26630ABI.
26631
26632@item type
26633The type of the register. @var{type} may be a predefined type, a type
26634defined in the current feature, or one of the special types @code{int}
26635and @code{float}. @code{int} is an integer type of the correct size
26636for @var{bitsize}, and @code{float} is a floating point type (in the
26637architecture's normal floating point format) of the correct size for
26638@var{bitsize}. The default is @code{int}.
26639
26640@item group
26641The register group to which this register belongs. @var{group} must
26642be either @code{general}, @code{float}, or @code{vector}. If no
26643@var{group} is specified, @value{GDBN} will not display the register
26644in @code{info registers}.
26645
26646@end table
26647
26648@node Predefined Target Types
26649@section Predefined Target Types
26650@cindex target descriptions, predefined types
26651
26652Type definitions in the self-description can build up composite types
26653from basic building blocks, but can not define fundamental types. Instead,
26654standard identifiers are provided by @value{GDBN} for the fundamental
26655types. The currently supported types are:
26656
26657@table @code
26658
26659@item int8
26660@itemx int16
26661@itemx int32
26662@itemx int64
7cc46491 26663@itemx int128
123dc839
DJ
26664Signed integer types holding the specified number of bits.
26665
26666@item uint8
26667@itemx uint16
26668@itemx uint32
26669@itemx uint64
7cc46491 26670@itemx uint128
123dc839
DJ
26671Unsigned integer types holding the specified number of bits.
26672
26673@item code_ptr
26674@itemx data_ptr
26675Pointers to unspecified code and data. The program counter and
26676any dedicated return address register may be marked as code
26677pointers; printing a code pointer converts it into a symbolic
26678address. The stack pointer and any dedicated address registers
26679may be marked as data pointers.
26680
6e3bbd1a
PB
26681@item ieee_single
26682Single precision IEEE floating point.
26683
26684@item ieee_double
26685Double precision IEEE floating point.
26686
123dc839
DJ
26687@item arm_fpa_ext
26688The 12-byte extended precision format used by ARM FPA registers.
26689
26690@end table
26691
26692@node Standard Target Features
26693@section Standard Target Features
26694@cindex target descriptions, standard features
26695
26696A target description must contain either no registers or all the
26697target's registers. If the description contains no registers, then
26698@value{GDBN} will assume a default register layout, selected based on
26699the architecture. If the description contains any registers, the
26700default layout will not be used; the standard registers must be
26701described in the target description, in such a way that @value{GDBN}
26702can recognize them.
26703
26704This is accomplished by giving specific names to feature elements
26705which contain standard registers. @value{GDBN} will look for features
26706with those names and verify that they contain the expected registers;
26707if any known feature is missing required registers, or if any required
26708feature is missing, @value{GDBN} will reject the target
26709description. You can add additional registers to any of the
26710standard features --- @value{GDBN} will display them just as if
26711they were added to an unrecognized feature.
26712
26713This section lists the known features and their expected contents.
26714Sample XML documents for these features are included in the
26715@value{GDBN} source tree, in the directory @file{gdb/features}.
26716
26717Names recognized by @value{GDBN} should include the name of the
26718company or organization which selected the name, and the overall
26719architecture to which the feature applies; so e.g.@: the feature
26720containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26721
ff6f572f
DJ
26722The names of registers are not case sensitive for the purpose
26723of recognizing standard features, but @value{GDBN} will only display
26724registers using the capitalization used in the description.
26725
e9c17194
VP
26726@menu
26727* ARM Features::
26728* M68K Features::
26729@end menu
26730
26731
26732@node ARM Features
123dc839
DJ
26733@subsection ARM Features
26734@cindex target descriptions, ARM features
26735
26736The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26737It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26738@samp{lr}, @samp{pc}, and @samp{cpsr}.
26739
26740The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26741should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26742
ff6f572f
DJ
26743The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26744it should contain at least registers @samp{wR0} through @samp{wR15} and
26745@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26746@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26747
f8b73d13
DJ
26748@subsection MIPS Features
26749@cindex target descriptions, MIPS features
26750
26751The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26752It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26753@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26754on the target.
26755
26756The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26757contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26758registers. They may be 32-bit or 64-bit depending on the target.
26759
26760The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26761it may be optional in a future version of @value{GDBN}. It should
26762contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26763@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26764
822b6570
DJ
26765The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26766contain a single register, @samp{restart}, which is used by the
26767Linux kernel to control restartable syscalls.
26768
e9c17194
VP
26769@node M68K Features
26770@subsection M68K Features
26771@cindex target descriptions, M68K features
26772
26773@table @code
26774@item @samp{org.gnu.gdb.m68k.core}
26775@itemx @samp{org.gnu.gdb.coldfire.core}
26776@itemx @samp{org.gnu.gdb.fido.core}
26777One of those features must be always present.
26778The feature that is present determines which flavor of m86k is
26779used. The feature that is present should contain registers
26780@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26781@samp{sp}, @samp{ps} and @samp{pc}.
26782
26783@item @samp{org.gnu.gdb.coldfire.fp}
26784This feature is optional. If present, it should contain registers
26785@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26786@samp{fpiaddr}.
26787@end table
26788
7cc46491
DJ
26789@subsection PowerPC Features
26790@cindex target descriptions, PowerPC features
26791
26792The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
26793targets. It should contain registers @samp{r0} through @samp{r31},
26794@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
26795@samp{xer}. They may be 32-bit or 64-bit depending on the target.
26796
26797The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
26798contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
26799
26800The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
26801contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
26802and @samp{vrsave}.
26803
26804The @samp{org.gnu.gdb.power.spe} feature is optional. It should
26805contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
26806@samp{spefscr}. SPE targets should provide 32-bit registers in
26807@samp{org.gnu.gdb.power.core} and provide the upper halves in
26808@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
26809these to present registers @samp{ev0} through @samp{ev31} to the
26810user.
26811
aab4e0ec 26812@include gpl.texi
eb12ee30 26813
2154891a 26814@raisesections
6826cf00 26815@include fdl.texi
2154891a 26816@lowersections
6826cf00 26817
6d2ebf8b 26818@node Index
c906108c
SS
26819@unnumbered Index
26820
26821@printindex cp
26822
26823@tex
26824% I think something like @colophon should be in texinfo. In the
26825% meantime:
26826\long\def\colophon{\hbox to0pt{}\vfill
26827\centerline{The body of this manual is set in}
26828\centerline{\fontname\tenrm,}
26829\centerline{with headings in {\bf\fontname\tenbf}}
26830\centerline{and examples in {\tt\fontname\tentt}.}
26831\centerline{{\it\fontname\tenit\/},}
26832\centerline{{\bf\fontname\tenbf}, and}
26833\centerline{{\sl\fontname\tensl\/}}
26834\centerline{are used for emphasis.}\vfill}
26835\page\colophon
26836% Blame: doc@cygnus.com, 1991.
26837@end tex
26838
c906108c 26839@bye
This page took 2.624629 seconds and 4 git commands to generate.