gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
b811d2c2 1@c Copyright (C) 2008--2020 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
329baa95
DE
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
116@end table
117
118@node Python API
119@subsection Python API
120@cindex python api
121@cindex programming in python
122
123You can get quick online help for @value{GDBN}'s Python API by issuing
124the command @w{@kbd{python help (gdb)}}.
125
126Functions and methods which have two or more optional arguments allow
127them to be specified using keyword syntax. This allows passing some
128optional arguments while skipping others. Example:
129@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
130
131@menu
132* Basic Python:: Basic Python Functions.
133* Exception Handling:: How Python exceptions are translated.
134* Values From Inferior:: Python representation of values.
135* Types In Python:: Python representation of types.
136* Pretty Printing API:: Pretty-printing values.
137* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
138* Writing a Pretty-Printer:: Writing a Pretty-Printer.
139* Type Printing API:: Pretty-printing types.
140* Frame Filter API:: Filtering Frames.
141* Frame Decorator API:: Decorating Frames.
142* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 143* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
144* Xmethods In Python:: Adding and replacing methods of C++ classes.
145* Xmethod API:: Xmethod types.
146* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
147* Inferiors In Python:: Python representation of inferiors (processes)
148* Events In Python:: Listening for events from @value{GDBN}.
149* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 150* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
151* Commands In Python:: Implementing new commands in Python.
152* Parameters In Python:: Adding new @value{GDBN} parameters.
153* Functions In Python:: Writing new convenience functions.
154* Progspaces In Python:: Program spaces.
155* Objfiles In Python:: Object files.
156* Frames In Python:: Accessing inferior stack frames from Python.
157* Blocks In Python:: Accessing blocks from Python.
158* Symbols In Python:: Python representation of symbols.
159* Symbol Tables In Python:: Python representation of symbol tables.
160* Line Tables In Python:: Python representation of line tables.
161* Breakpoints In Python:: Manipulating breakpoints using Python.
162* Finish Breakpoints in Python:: Setting Breakpoints on function return
163 using Python.
164* Lazy Strings In Python:: Python representation of lazy strings.
165* Architectures In Python:: Python representation of architectures.
01b1af32 166* TUI Windows In Python:: Implementing new TUI windows.
329baa95
DE
167@end menu
168
169@node Basic Python
170@subsubsection Basic Python
171
172@cindex python stdout
173@cindex python pagination
174At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
175@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
176A Python program which outputs to one of these streams may have its
177output interrupted by the user (@pxref{Screen Size}). In this
178situation, a Python @code{KeyboardInterrupt} exception is thrown.
179
180Some care must be taken when writing Python code to run in
181@value{GDBN}. Two things worth noting in particular:
182
183@itemize @bullet
184@item
185@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
186Python code must not override these, or even change the options using
187@code{sigaction}. If your program changes the handling of these
188signals, @value{GDBN} will most likely stop working correctly. Note
189that it is unfortunately common for GUI toolkits to install a
190@code{SIGCHLD} handler.
191
192@item
193@value{GDBN} takes care to mark its internal file descriptors as
194close-on-exec. However, this cannot be done in a thread-safe way on
195all platforms. Your Python programs should be aware of this and
196should both create new file descriptors with the close-on-exec flag
197set and arrange to close unneeded file descriptors before starting a
198child process.
199@end itemize
200
201@cindex python functions
202@cindex python module
203@cindex gdb module
204@value{GDBN} introduces a new Python module, named @code{gdb}. All
205methods and classes added by @value{GDBN} are placed in this module.
206@value{GDBN} automatically @code{import}s the @code{gdb} module for
207use in all scripts evaluated by the @code{python} command.
208
1256af7d
SM
209Some types of the @code{gdb} module come with a textual representation
210(accessible through the @code{repr} or @code{str} functions). These are
211offered for debugging purposes only, expect them to change over time.
212
329baa95
DE
213@findex gdb.PYTHONDIR
214@defvar gdb.PYTHONDIR
215A string containing the python directory (@pxref{Python}).
216@end defvar
217
218@findex gdb.execute
219@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
220Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
221If a GDB exception happens while @var{command} runs, it is
222translated as described in @ref{Exception Handling,,Exception Handling}.
223
697aa1b7 224The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
225command as having originated from the user invoking it interactively.
226It must be a boolean value. If omitted, it defaults to @code{False}.
227
228By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
229@value{GDBN}'s standard output (and to the log output if logging is
230turned on). If the @var{to_string} parameter is
329baa95
DE
231@code{True}, then output will be collected by @code{gdb.execute} and
232returned as a string. The default is @code{False}, in which case the
233return value is @code{None}. If @var{to_string} is @code{True}, the
234@value{GDBN} virtual terminal will be temporarily set to unlimited width
235and height, and its pagination will be disabled; @pxref{Screen Size}.
236@end defun
237
238@findex gdb.breakpoints
239@defun gdb.breakpoints ()
240Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
241@xref{Breakpoints In Python}, for more information. In @value{GDBN}
242version 7.11 and earlier, this function returned @code{None} if there
243were no breakpoints. This peculiarity was subsequently fixed, and now
244@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
245@end defun
246
d8ae99a7
PM
247@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
248Return a Python list holding a collection of newly set
249@code{gdb.Breakpoint} objects matching function names defined by the
250@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
251system functions (those not explicitly defined in the inferior) will
252also be included in the match. The @var{throttle} keyword takes an
253integer that defines the maximum number of pattern matches for
254functions matched by the @var{regex} pattern. If the number of
255matches exceeds the integer value of @var{throttle}, a
256@code{RuntimeError} will be raised and no breakpoints will be created.
257If @var{throttle} is not defined then there is no imposed limit on the
258maximum number of matches and breakpoints to be created. The
259@var{symtabs} keyword takes a Python iterable that yields a collection
260of @code{gdb.Symtab} objects and will restrict the search to those
261functions only contained within the @code{gdb.Symtab} objects.
262@end defun
263
329baa95
DE
264@findex gdb.parameter
265@defun gdb.parameter (parameter)
697aa1b7
EZ
266Return the value of a @value{GDBN} @var{parameter} given by its name,
267a string; the parameter name string may contain spaces if the parameter has a
268multi-part name. For example, @samp{print object} is a valid
269parameter name.
329baa95
DE
270
271If the named parameter does not exist, this function throws a
272@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
273parameter's value is converted to a Python value of the appropriate
274type, and returned.
275@end defun
276
277@findex gdb.history
278@defun gdb.history (number)
279Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 280History}). The @var{number} argument indicates which history element to return.
329baa95
DE
281If @var{number} is negative, then @value{GDBN} will take its absolute value
282and count backward from the last element (i.e., the most recent element) to
283find the value to return. If @var{number} is zero, then @value{GDBN} will
284return the most recent element. If the element specified by @var{number}
285doesn't exist in the value history, a @code{gdb.error} exception will be
286raised.
287
288If no exception is raised, the return value is always an instance of
289@code{gdb.Value} (@pxref{Values From Inferior}).
290@end defun
291
7729052b
TT
292@findex gdb.convenience_variable
293@defun gdb.convenience_variable (name)
294Return the value of the convenience variable (@pxref{Convenience
295Vars}) named @var{name}. @var{name} must be a string. The name
296should not include the @samp{$} that is used to mark a convenience
297variable in an expression. If the convenience variable does not
298exist, then @code{None} is returned.
299@end defun
300
301@findex gdb.set_convenience_variable
302@defun gdb.set_convenience_variable (name, value)
303Set the value of the convenience variable (@pxref{Convenience Vars})
304named @var{name}. @var{name} must be a string. The name should not
305include the @samp{$} that is used to mark a convenience variable in an
306expression. If @var{value} is @code{None}, then the convenience
307variable is removed. Otherwise, if @var{value} is not a
308@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
309using the @code{gdb.Value} constructor.
310@end defun
311
329baa95
DE
312@findex gdb.parse_and_eval
313@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
314Parse @var{expression}, which must be a string, as an expression in
315the current language, evaluate it, and return the result as a
316@code{gdb.Value}.
329baa95
DE
317
318This function can be useful when implementing a new command
319(@pxref{Commands In Python}), as it provides a way to parse the
320command's argument as an expression. It is also useful simply to
7729052b 321compute values.
329baa95
DE
322@end defun
323
324@findex gdb.find_pc_line
325@defun gdb.find_pc_line (pc)
326Return the @code{gdb.Symtab_and_line} object corresponding to the
327@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
328value of @var{pc} is passed as an argument, then the @code{symtab} and
329@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
8743a9cd
TT
330will be @code{None} and 0 respectively. This is identical to
331@code{gdb.current_progspace().find_pc_line(pc)} and is included for
332historical compatibility.
329baa95
DE
333@end defun
334
335@findex gdb.post_event
336@defun gdb.post_event (event)
337Put @var{event}, a callable object taking no arguments, into
338@value{GDBN}'s internal event queue. This callable will be invoked at
339some later point, during @value{GDBN}'s event processing. Events
340posted using @code{post_event} will be run in the order in which they
341were posted; however, there is no way to know when they will be
342processed relative to other events inside @value{GDBN}.
343
344@value{GDBN} is not thread-safe. If your Python program uses multiple
345threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 346functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
347this. For example:
348
349@smallexample
350(@value{GDBP}) python
351>import threading
352>
353>class Writer():
354> def __init__(self, message):
355> self.message = message;
356> def __call__(self):
357> gdb.write(self.message)
358>
359>class MyThread1 (threading.Thread):
360> def run (self):
361> gdb.post_event(Writer("Hello "))
362>
363>class MyThread2 (threading.Thread):
364> def run (self):
365> gdb.post_event(Writer("World\n"))
366>
367>MyThread1().start()
368>MyThread2().start()
369>end
370(@value{GDBP}) Hello World
371@end smallexample
372@end defun
373
374@findex gdb.write
375@defun gdb.write (string @r{[}, stream{]})
376Print a string to @value{GDBN}'s paginated output stream. The
377optional @var{stream} determines the stream to print to. The default
378stream is @value{GDBN}'s standard output stream. Possible stream
379values are:
380
381@table @code
382@findex STDOUT
383@findex gdb.STDOUT
384@item gdb.STDOUT
385@value{GDBN}'s standard output stream.
386
387@findex STDERR
388@findex gdb.STDERR
389@item gdb.STDERR
390@value{GDBN}'s standard error stream.
391
392@findex STDLOG
393@findex gdb.STDLOG
394@item gdb.STDLOG
395@value{GDBN}'s log stream (@pxref{Logging Output}).
396@end table
397
398Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
399call this function and will automatically direct the output to the
400relevant stream.
401@end defun
402
403@findex gdb.flush
404@defun gdb.flush ()
405Flush the buffer of a @value{GDBN} paginated stream so that the
406contents are displayed immediately. @value{GDBN} will flush the
407contents of a stream automatically when it encounters a newline in the
408buffer. The optional @var{stream} determines the stream to flush. The
409default stream is @value{GDBN}'s standard output stream. Possible
410stream values are:
411
412@table @code
413@findex STDOUT
414@findex gdb.STDOUT
415@item gdb.STDOUT
416@value{GDBN}'s standard output stream.
417
418@findex STDERR
419@findex gdb.STDERR
420@item gdb.STDERR
421@value{GDBN}'s standard error stream.
422
423@findex STDLOG
424@findex gdb.STDLOG
425@item gdb.STDLOG
426@value{GDBN}'s log stream (@pxref{Logging Output}).
427
428@end table
429
430Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
431call this function for the relevant stream.
432@end defun
433
434@findex gdb.target_charset
435@defun gdb.target_charset ()
436Return the name of the current target character set (@pxref{Character
437Sets}). This differs from @code{gdb.parameter('target-charset')} in
438that @samp{auto} is never returned.
439@end defun
440
441@findex gdb.target_wide_charset
442@defun gdb.target_wide_charset ()
443Return the name of the current target wide character set
444(@pxref{Character Sets}). This differs from
445@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
446never returned.
447@end defun
448
449@findex gdb.solib_name
450@defun gdb.solib_name (address)
451Return the name of the shared library holding the given @var{address}
8743a9cd
TT
452as a string, or @code{None}. This is identical to
453@code{gdb.current_progspace().solib_name(address)} and is included for
454historical compatibility.
329baa95
DE
455@end defun
456
457@findex gdb.decode_line
0d2a5839 458@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
459Return locations of the line specified by @var{expression}, or of the
460current line if no argument was given. This function returns a Python
461tuple containing two elements. The first element contains a string
462holding any unparsed section of @var{expression} (or @code{None} if
463the expression has been fully parsed). The second element contains
464either @code{None} or another tuple that contains all the locations
465that match the expression represented as @code{gdb.Symtab_and_line}
466objects (@pxref{Symbol Tables In Python}). If @var{expression} is
467provided, it is decoded the way that @value{GDBN}'s inbuilt
468@code{break} or @code{edit} commands do (@pxref{Specify Location}).
469@end defun
470
471@defun gdb.prompt_hook (current_prompt)
472@anchor{prompt_hook}
473
474If @var{prompt_hook} is callable, @value{GDBN} will call the method
475assigned to this operation before a prompt is displayed by
476@value{GDBN}.
477
478The parameter @code{current_prompt} contains the current @value{GDBN}
479prompt. This method must return a Python string, or @code{None}. If
480a string is returned, the @value{GDBN} prompt will be set to that
481string. If @code{None} is returned, @value{GDBN} will continue to use
482the current prompt.
483
484Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
485such as those used by readline for command input, and annotation
486related prompts are prohibited from being changed.
487@end defun
488
489@node Exception Handling
490@subsubsection Exception Handling
491@cindex python exceptions
492@cindex exceptions, python
493
494When executing the @code{python} command, Python exceptions
495uncaught within the Python code are translated to calls to
496@value{GDBN} error-reporting mechanism. If the command that called
497@code{python} does not handle the error, @value{GDBN} will
498terminate it and print an error message containing the Python
499exception name, the associated value, and the Python call stack
500backtrace at the point where the exception was raised. Example:
501
502@smallexample
503(@value{GDBP}) python print foo
504Traceback (most recent call last):
505 File "<string>", line 1, in <module>
506NameError: name 'foo' is not defined
507@end smallexample
508
509@value{GDBN} errors that happen in @value{GDBN} commands invoked by
510Python code are converted to Python exceptions. The type of the
511Python exception depends on the error.
512
513@ftable @code
514@item gdb.error
515This is the base class for most exceptions generated by @value{GDBN}.
516It is derived from @code{RuntimeError}, for compatibility with earlier
517versions of @value{GDBN}.
518
519If an error occurring in @value{GDBN} does not fit into some more
520specific category, then the generated exception will have this type.
521
522@item gdb.MemoryError
523This is a subclass of @code{gdb.error} which is thrown when an
524operation tried to access invalid memory in the inferior.
525
526@item KeyboardInterrupt
527User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
528prompt) is translated to a Python @code{KeyboardInterrupt} exception.
529@end ftable
530
531In all cases, your exception handler will see the @value{GDBN} error
532message as its value and the Python call stack backtrace at the Python
533statement closest to where the @value{GDBN} error occured as the
534traceback.
535
4a5a194a
TT
536
537When implementing @value{GDBN} commands in Python via
538@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
539to be able to throw an exception that doesn't cause a traceback to be
540printed. For example, the user may have invoked the command
541incorrectly. @value{GDBN} provides a special exception class that can
542be used for this purpose.
543
544@ftable @code
545@item gdb.GdbError
546When thrown from a command or function, this exception will cause the
547command or function to fail, but the Python stack will not be
548displayed. @value{GDBN} does not throw this exception itself, but
549rather recognizes it when thrown from user Python code. Example:
329baa95
DE
550
551@smallexample
552(gdb) python
553>class HelloWorld (gdb.Command):
554> """Greet the whole world."""
555> def __init__ (self):
556> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
557> def invoke (self, args, from_tty):
558> argv = gdb.string_to_argv (args)
559> if len (argv) != 0:
560> raise gdb.GdbError ("hello-world takes no arguments")
561> print "Hello, World!"
562>HelloWorld ()
563>end
564(gdb) hello-world 42
565hello-world takes no arguments
566@end smallexample
4a5a194a 567@end ftable
329baa95
DE
568
569@node Values From Inferior
570@subsubsection Values From Inferior
571@cindex values from inferior, with Python
572@cindex python, working with values from inferior
573
574@cindex @code{gdb.Value}
575@value{GDBN} provides values it obtains from the inferior program in
576an object of type @code{gdb.Value}. @value{GDBN} uses this object
577for its internal bookkeeping of the inferior's values, and for
578fetching values when necessary.
579
580Inferior values that are simple scalars can be used directly in
581Python expressions that are valid for the value's data type. Here's
582an example for an integer or floating-point value @code{some_val}:
583
584@smallexample
585bar = some_val + 2
586@end smallexample
587
588@noindent
589As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
590whose values are of the same type as those of @code{some_val}. Valid
591Python operations can also be performed on @code{gdb.Value} objects
592representing a @code{struct} or @code{class} object. For such cases,
593the overloaded operator (if present), is used to perform the operation.
594For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
595representing instances of a @code{class} which overloads the @code{+}
596operator, then one can use the @code{+} operator in their Python script
597as follows:
598
599@smallexample
600val3 = val1 + val2
601@end smallexample
602
603@noindent
604The result of the operation @code{val3} is also a @code{gdb.Value}
605object corresponding to the value returned by the overloaded @code{+}
606operator. In general, overloaded operators are invoked for the
607following operations: @code{+} (binary addition), @code{-} (binary
608subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
609@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
610
611Inferior values that are structures or instances of some class can
612be accessed using the Python @dfn{dictionary syntax}. For example, if
613@code{some_val} is a @code{gdb.Value} instance holding a structure, you
614can access its @code{foo} element with:
615
616@smallexample
617bar = some_val['foo']
618@end smallexample
619
620@cindex getting structure elements using gdb.Field objects as subscripts
621Again, @code{bar} will also be a @code{gdb.Value} object. Structure
622elements can also be accessed by using @code{gdb.Field} objects as
623subscripts (@pxref{Types In Python}, for more information on
624@code{gdb.Field} objects). For example, if @code{foo_field} is a
625@code{gdb.Field} object corresponding to element @code{foo} of the above
626structure, then @code{bar} can also be accessed as follows:
627
628@smallexample
629bar = some_val[foo_field]
630@end smallexample
631
632A @code{gdb.Value} that represents a function can be executed via
633inferior function call. Any arguments provided to the call must match
634the function's prototype, and must be provided in the order specified
635by that prototype.
636
637For example, @code{some_val} is a @code{gdb.Value} instance
638representing a function that takes two integers as arguments. To
639execute this function, call it like so:
640
641@smallexample
642result = some_val (10,20)
643@end smallexample
644
645Any values returned from a function call will be stored as a
646@code{gdb.Value}.
647
648The following attributes are provided:
649
650@defvar Value.address
651If this object is addressable, this read-only attribute holds a
652@code{gdb.Value} object representing the address. Otherwise,
653this attribute holds @code{None}.
654@end defvar
655
656@cindex optimized out value in Python
657@defvar Value.is_optimized_out
658This read-only boolean attribute is true if the compiler optimized out
659this value, thus it is not available for fetching from the inferior.
660@end defvar
661
662@defvar Value.type
663The type of this @code{gdb.Value}. The value of this attribute is a
664@code{gdb.Type} object (@pxref{Types In Python}).
665@end defvar
666
667@defvar Value.dynamic_type
9da10427
TT
668The dynamic type of this @code{gdb.Value}. This uses the object's
669virtual table and the C@t{++} run-time type information
670(@acronym{RTTI}) to determine the dynamic type of the value. If this
671value is of class type, it will return the class in which the value is
672embedded, if any. If this value is of pointer or reference to a class
673type, it will compute the dynamic type of the referenced object, and
674return a pointer or reference to that type, respectively. In all
675other cases, it will return the value's static type.
329baa95
DE
676
677Note that this feature will only work when debugging a C@t{++} program
678that includes @acronym{RTTI} for the object in question. Otherwise,
679it will just return the static type of the value as in @kbd{ptype foo}
680(@pxref{Symbols, ptype}).
681@end defvar
682
683@defvar Value.is_lazy
684The value of this read-only boolean attribute is @code{True} if this
685@code{gdb.Value} has not yet been fetched from the inferior.
686@value{GDBN} does not fetch values until necessary, for efficiency.
687For example:
688
689@smallexample
690myval = gdb.parse_and_eval ('somevar')
691@end smallexample
692
693The value of @code{somevar} is not fetched at this time. It will be
694fetched when the value is needed, or when the @code{fetch_lazy}
695method is invoked.
696@end defvar
697
698The following methods are provided:
699
700@defun Value.__init__ (@var{val})
701Many Python values can be converted directly to a @code{gdb.Value} via
702this object initializer. Specifically:
703
704@table @asis
705@item Python boolean
706A Python boolean is converted to the boolean type from the current
707language.
708
709@item Python integer
710A Python integer is converted to the C @code{long} type for the
711current architecture.
712
713@item Python long
714A Python long is converted to the C @code{long long} type for the
715current architecture.
716
717@item Python float
718A Python float is converted to the C @code{double} type for the
719current architecture.
720
721@item Python string
b3ce5e5f
DE
722A Python string is converted to a target string in the current target
723language using the current target encoding.
724If a character cannot be represented in the current target encoding,
725then an exception is thrown.
329baa95
DE
726
727@item @code{gdb.Value}
728If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
729
730@item @code{gdb.LazyString}
731If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
732Python}), then the lazy string's @code{value} method is called, and
733its result is used.
734@end table
735@end defun
736
ff6c8b35 737@defun Value.__init__ (@var{val}, @var{type})
af54ade9
KB
738This second form of the @code{gdb.Value} constructor returns a
739@code{gdb.Value} of type @var{type} where the value contents are taken
740from the Python buffer object specified by @var{val}. The number of
741bytes in the Python buffer object must be greater than or equal to the
742size of @var{type}.
743@end defun
744
329baa95
DE
745@defun Value.cast (type)
746Return a new instance of @code{gdb.Value} that is the result of
747casting this instance to the type described by @var{type}, which must
748be a @code{gdb.Type} object. If the cast cannot be performed for some
749reason, this method throws an exception.
750@end defun
751
752@defun Value.dereference ()
753For pointer data types, this method returns a new @code{gdb.Value} object
754whose contents is the object pointed to by the pointer. For example, if
755@code{foo} is a C pointer to an @code{int}, declared in your C program as
756
757@smallexample
758int *foo;
759@end smallexample
760
761@noindent
762then you can use the corresponding @code{gdb.Value} to access what
763@code{foo} points to like this:
764
765@smallexample
766bar = foo.dereference ()
767@end smallexample
768
769The result @code{bar} will be a @code{gdb.Value} object holding the
770value pointed to by @code{foo}.
771
772A similar function @code{Value.referenced_value} exists which also
760f7560 773returns @code{gdb.Value} objects corresponding to the values pointed to
329baa95
DE
774by pointer values (and additionally, values referenced by reference
775values). However, the behavior of @code{Value.dereference}
776differs from @code{Value.referenced_value} by the fact that the
777behavior of @code{Value.dereference} is identical to applying the C
778unary operator @code{*} on a given value. For example, consider a
779reference to a pointer @code{ptrref}, declared in your C@t{++} program
780as
781
782@smallexample
783typedef int *intptr;
784...
785int val = 10;
786intptr ptr = &val;
787intptr &ptrref = ptr;
788@end smallexample
789
790Though @code{ptrref} is a reference value, one can apply the method
791@code{Value.dereference} to the @code{gdb.Value} object corresponding
792to it and obtain a @code{gdb.Value} which is identical to that
793corresponding to @code{val}. However, if you apply the method
794@code{Value.referenced_value}, the result would be a @code{gdb.Value}
795object identical to that corresponding to @code{ptr}.
796
797@smallexample
798py_ptrref = gdb.parse_and_eval ("ptrref")
799py_val = py_ptrref.dereference ()
800py_ptr = py_ptrref.referenced_value ()
801@end smallexample
802
803The @code{gdb.Value} object @code{py_val} is identical to that
804corresponding to @code{val}, and @code{py_ptr} is identical to that
805corresponding to @code{ptr}. In general, @code{Value.dereference} can
806be applied whenever the C unary operator @code{*} can be applied
807to the corresponding C value. For those cases where applying both
808@code{Value.dereference} and @code{Value.referenced_value} is allowed,
809the results obtained need not be identical (as we have seen in the above
810example). The results are however identical when applied on
811@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
812objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
813@end defun
814
815@defun Value.referenced_value ()
816For pointer or reference data types, this method returns a new
817@code{gdb.Value} object corresponding to the value referenced by the
818pointer/reference value. For pointer data types,
819@code{Value.dereference} and @code{Value.referenced_value} produce
820identical results. The difference between these methods is that
821@code{Value.dereference} cannot get the values referenced by reference
822values. For example, consider a reference to an @code{int}, declared
823in your C@t{++} program as
824
825@smallexample
826int val = 10;
827int &ref = val;
828@end smallexample
829
830@noindent
831then applying @code{Value.dereference} to the @code{gdb.Value} object
832corresponding to @code{ref} will result in an error, while applying
833@code{Value.referenced_value} will result in a @code{gdb.Value} object
834identical to that corresponding to @code{val}.
835
836@smallexample
837py_ref = gdb.parse_and_eval ("ref")
838er_ref = py_ref.dereference () # Results in error
839py_val = py_ref.referenced_value () # Returns the referenced value
840@end smallexample
841
842The @code{gdb.Value} object @code{py_val} is identical to that
843corresponding to @code{val}.
844@end defun
845
4c082a81
SC
846@defun Value.reference_value ()
847Return a @code{gdb.Value} object which is a reference to the value
848encapsulated by this instance.
849@end defun
850
851@defun Value.const_value ()
852Return a @code{gdb.Value} object which is a @code{const} version of the
853value encapsulated by this instance.
854@end defun
855
329baa95
DE
856@defun Value.dynamic_cast (type)
857Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
858operator were used. Consult a C@t{++} reference for details.
859@end defun
860
861@defun Value.reinterpret_cast (type)
862Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
863operator were used. Consult a C@t{++} reference for details.
864@end defun
865
52093e1b
MB
866@defun Value.format_string (...)
867Convert a @code{gdb.Value} to a string, similarly to what the @code{print}
868command does. Invoked with no arguments, this is equivalent to calling
869the @code{str} function on the @code{gdb.Value}. The representation of
870the same value may change across different versions of @value{GDBN}, so
871you shouldn't, for instance, parse the strings returned by this method.
872
873All the arguments are keyword only. If an argument is not specified, the
874current global default setting is used.
875
876@table @code
877@item raw
878@code{True} if pretty-printers (@pxref{Pretty Printing}) should not be
879used to format the value. @code{False} if enabled pretty-printers
880matching the type represented by the @code{gdb.Value} should be used to
881format it.
882
883@item pretty_arrays
884@code{True} if arrays should be pretty printed to be more convenient to
885read, @code{False} if they shouldn't (see @code{set print array} in
886@ref{Print Settings}).
887
888@item pretty_structs
889@code{True} if structs should be pretty printed to be more convenient to
890read, @code{False} if they shouldn't (see @code{set print pretty} in
891@ref{Print Settings}).
892
893@item array_indexes
894@code{True} if array indexes should be included in the string
895representation of arrays, @code{False} if they shouldn't (see @code{set
896print array-indexes} in @ref{Print Settings}).
897
898@item symbols
899@code{True} if the string representation of a pointer should include the
900corresponding symbol name (if one exists), @code{False} if it shouldn't
901(see @code{set print symbol} in @ref{Print Settings}).
902
903@item unions
904@code{True} if unions which are contained in other structures or unions
905should be expanded, @code{False} if they shouldn't (see @code{set print
906union} in @ref{Print Settings}).
907
908@item deref_refs
909@code{True} if C@t{++} references should be resolved to the value they
910refer to, @code{False} (the default) if they shouldn't. Note that, unlike
911for the @code{print} command, references are not automatically expanded
912when using the @code{format_string} method or the @code{str}
913function. There is no global @code{print} setting to change the default
914behaviour.
915
916@item actual_objects
917@code{True} if the representation of a pointer to an object should
918identify the @emph{actual} (derived) type of the object rather than the
919@emph{declared} type, using the virtual function table. @code{False} if
920the @emph{declared} type should be used. (See @code{set print object} in
921@ref{Print Settings}).
922
923@item static_fields
924@code{True} if static members should be included in the string
925representation of a C@t{++} object, @code{False} if they shouldn't (see
926@code{set print static-members} in @ref{Print Settings}).
927
928@item max_elements
929Number of array elements to print, or @code{0} to print an unlimited
930number of elements (see @code{set print elements} in @ref{Print
931Settings}).
932
2e62ab40
AB
933@item max_depth
934The maximum depth to print for nested structs and unions, or @code{-1}
935to print an unlimited number of elements (see @code{set print
936max-depth} in @ref{Print Settings}).
937
52093e1b
MB
938@item repeat_threshold
939Set the threshold for suppressing display of repeated array elements, or
940@code{0} to represent all elements, even if repeated. (See @code{set
941print repeats} in @ref{Print Settings}).
942
943@item format
944A string containing a single character representing the format to use for
945the returned string. For instance, @code{'x'} is equivalent to using the
946@value{GDBN} command @code{print} with the @code{/x} option and formats
947the value as a hexadecimal number.
948@end table
949@end defun
950
329baa95
DE
951@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
952If this @code{gdb.Value} represents a string, then this method
953converts the contents to a Python string. Otherwise, this method will
954throw an exception.
955
b3ce5e5f
DE
956Values are interpreted as strings according to the rules of the
957current language. If the optional length argument is given, the
958string will be converted to that length, and will include any embedded
959zeroes that the string may contain. Otherwise, for languages
960where the string is zero-terminated, the entire string will be
961converted.
329baa95 962
b3ce5e5f
DE
963For example, in C-like languages, a value is a string if it is a pointer
964to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
965or @code{char32_t}.
329baa95
DE
966
967If the optional @var{encoding} argument is given, it must be a string
968naming the encoding of the string in the @code{gdb.Value}, such as
969@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
970the same encodings as the corresponding argument to Python's
971@code{string.decode} method, and the Python codec machinery will be used
972to convert the string. If @var{encoding} is not given, or if
973@var{encoding} is the empty string, then either the @code{target-charset}
974(@pxref{Character Sets}) will be used, or a language-specific encoding
975will be used, if the current language is able to supply one.
976
977The optional @var{errors} argument is the same as the corresponding
978argument to Python's @code{string.decode} method.
979
980If the optional @var{length} argument is given, the string will be
981fetched and converted to the given length.
982@end defun
983
984@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
985If this @code{gdb.Value} represents a string, then this method
986converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
987In Python}). Otherwise, this method will throw an exception.
988
989If the optional @var{encoding} argument is given, it must be a string
990naming the encoding of the @code{gdb.LazyString}. Some examples are:
991@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
992@var{encoding} argument is an encoding that @value{GDBN} does
993recognize, @value{GDBN} will raise an error.
994
995When a lazy string is printed, the @value{GDBN} encoding machinery is
996used to convert the string during printing. If the optional
997@var{encoding} argument is not provided, or is an empty string,
998@value{GDBN} will automatically select the encoding most suitable for
999the string type. For further information on encoding in @value{GDBN}
1000please see @ref{Character Sets}.
1001
1002If the optional @var{length} argument is given, the string will be
1003fetched and encoded to the length of characters specified. If
1004the @var{length} argument is not provided, the string will be fetched
1005and encoded until a null of appropriate width is found.
1006@end defun
1007
1008@defun Value.fetch_lazy ()
1009If the @code{gdb.Value} object is currently a lazy value
1010(@code{gdb.Value.is_lazy} is @code{True}), then the value is
1011fetched from the inferior. Any errors that occur in the process
1012will produce a Python exception.
1013
1014If the @code{gdb.Value} object is not a lazy value, this method
1015has no effect.
1016
1017This method does not return a value.
1018@end defun
1019
1020
1021@node Types In Python
1022@subsubsection Types In Python
1023@cindex types in Python
1024@cindex Python, working with types
1025
1026@tindex gdb.Type
1027@value{GDBN} represents types from the inferior using the class
1028@code{gdb.Type}.
1029
1030The following type-related functions are available in the @code{gdb}
1031module:
1032
1033@findex gdb.lookup_type
1034@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 1035This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
1036
1037If @var{block} is given, then @var{name} is looked up in that scope.
1038Otherwise, it is searched for globally.
1039
1040Ordinarily, this function will return an instance of @code{gdb.Type}.
1041If the named type cannot be found, it will throw an exception.
1042@end defun
1043
1044If the type is a structure or class type, or an enum type, the fields
1045of that type can be accessed using the Python @dfn{dictionary syntax}.
1046For example, if @code{some_type} is a @code{gdb.Type} instance holding
1047a structure type, you can access its @code{foo} field with:
1048
1049@smallexample
1050bar = some_type['foo']
1051@end smallexample
1052
1053@code{bar} will be a @code{gdb.Field} object; see below under the
1054description of the @code{Type.fields} method for a description of the
1055@code{gdb.Field} class.
1056
1057An instance of @code{Type} has the following attributes:
1058
6d7bb824
TT
1059@defvar Type.alignof
1060The alignment of this type, in bytes. Type alignment comes from the
1061debugging information; if it was not specified, then @value{GDBN} will
1062use the relevant ABI to try to determine the alignment. In some
1063cases, even this is not possible, and zero will be returned.
1064@end defvar
1065
329baa95
DE
1066@defvar Type.code
1067The type code for this type. The type code will be one of the
1068@code{TYPE_CODE_} constants defined below.
1069@end defvar
1070
1acda803
TT
1071@defvar Type.dynamic
1072A boolean indicating whether this type is dynamic. In some
1073situations, such as Rust @code{enum} types or Ada variant records, the
45fc7c99
TT
1074concrete type of a value may vary depending on its contents. That is,
1075the declared type of a variable, or the type returned by
1076@code{gdb.lookup_type} may be dynamic; while the type of the
1077variable's value will be a concrete instance of that dynamic type.
1078
1079For example, consider this code:
1080@smallexample
1081int n;
1082int array[n];
1083@end smallexample
1084
1085Here, at least conceptually (whether your compiler actually does this
1086is a separate issue), examining @w{@code{gdb.lookup_symbol("array", ...).type}}
1087could yield a @code{gdb.Type} which reports a size of @code{None}.
1088This is the dynamic type.
1089
1090However, examining @code{gdb.parse_and_eval("array").type} would yield
1091a concrete type, whose length would be known.
1acda803
TT
1092@end defvar
1093
329baa95
DE
1094@defvar Type.name
1095The name of this type. If this type has no name, then @code{None}
1096is returned.
1097@end defvar
1098
1099@defvar Type.sizeof
1100The size of this type, in target @code{char} units. Usually, a
1101target's @code{char} type will be an 8-bit byte. However, on some
1acda803
TT
1102unusual platforms, this type may have a different size. A dynamic
1103type may not have a fixed size; in this case, this attribute's value
1104will be @code{None}.
329baa95
DE
1105@end defvar
1106
1107@defvar Type.tag
1108The tag name for this type. The tag name is the name after
1109@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
1110languages have this concept. If this type has no tag name, then
1111@code{None} is returned.
1112@end defvar
1113
e1f2e1a2
CB
1114@defvar Type.objfile
1115The @code{gdb.Objfile} that this type was defined in, or @code{None} if
1116there is no associated objfile.
1117@end defvar
1118
329baa95
DE
1119The following methods are provided:
1120
1121@defun Type.fields ()
1122For structure and union types, this method returns the fields. Range
1123types have two fields, the minimum and maximum values. Enum types
1124have one field per enum constant. Function and method types have one
1125field per parameter. The base types of C@t{++} classes are also
1126represented as fields. If the type has no fields, or does not fit
1127into one of these categories, an empty sequence will be returned.
1128
1129Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1130@table @code
1131@item bitpos
1132This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1133(as in C@t{++}) fields. The value is the position, counting
1acda803
TT
1134in bits, from the start of the containing type. Note that, in a
1135dynamic type, the position of a field may not be constant. In this
45fc7c99
TT
1136case, the value will be @code{None}. Also, a dynamic type may have
1137fields that do not appear in a corresponding concrete type.
329baa95
DE
1138
1139@item enumval
1140This attribute is only available for @code{enum} fields, and its value
1141is the enumeration member's integer representation.
1142
1143@item name
1144The name of the field, or @code{None} for anonymous fields.
1145
1146@item artificial
1147This is @code{True} if the field is artificial, usually meaning that
1148it was provided by the compiler and not the user. This attribute is
1149always provided, and is @code{False} if the field is not artificial.
1150
1151@item is_base_class
1152This is @code{True} if the field represents a base class of a C@t{++}
1153structure. This attribute is always provided, and is @code{False}
1154if the field is not a base class of the type that is the argument of
1155@code{fields}, or if that type was not a C@t{++} class.
1156
1157@item bitsize
1158If the field is packed, or is a bitfield, then this will have a
1159non-zero value, which is the size of the field in bits. Otherwise,
1160this will be zero; in this case the field's size is given by its type.
1161
1162@item type
1163The type of the field. This is usually an instance of @code{Type},
1164but it can be @code{None} in some situations.
1165
1166@item parent_type
1167The type which contains this field. This is an instance of
1168@code{gdb.Type}.
1169@end table
1170@end defun
1171
1172@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1173Return a new @code{gdb.Type} object which represents an array of this
1174type. If one argument is given, it is the inclusive upper bound of
1175the array; in this case the lower bound is zero. If two arguments are
1176given, the first argument is the lower bound of the array, and the
1177second argument is the upper bound of the array. An array's length
1178must not be negative, but the bounds can be.
1179@end defun
1180
1181@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1182Return a new @code{gdb.Type} object which represents a vector of this
1183type. If one argument is given, it is the inclusive upper bound of
1184the vector; in this case the lower bound is zero. If two arguments are
1185given, the first argument is the lower bound of the vector, and the
1186second argument is the upper bound of the vector. A vector's length
1187must not be negative, but the bounds can be.
1188
1189The difference between an @code{array} and a @code{vector} is that
1190arrays behave like in C: when used in expressions they decay to a pointer
1191to the first element whereas vectors are treated as first class values.
1192@end defun
1193
1194@defun Type.const ()
1195Return a new @code{gdb.Type} object which represents a
1196@code{const}-qualified variant of this type.
1197@end defun
1198
1199@defun Type.volatile ()
1200Return a new @code{gdb.Type} object which represents a
1201@code{volatile}-qualified variant of this type.
1202@end defun
1203
1204@defun Type.unqualified ()
1205Return a new @code{gdb.Type} object which represents an unqualified
1206variant of this type. That is, the result is neither @code{const} nor
1207@code{volatile}.
1208@end defun
1209
1210@defun Type.range ()
1211Return a Python @code{Tuple} object that contains two elements: the
1212low bound of the argument type and the high bound of that type. If
1213the type does not have a range, @value{GDBN} will raise a
1214@code{gdb.error} exception (@pxref{Exception Handling}).
1215@end defun
1216
1217@defun Type.reference ()
1218Return a new @code{gdb.Type} object which represents a reference to this
1219type.
1220@end defun
1221
1222@defun Type.pointer ()
1223Return a new @code{gdb.Type} object which represents a pointer to this
1224type.
1225@end defun
1226
1227@defun Type.strip_typedefs ()
1228Return a new @code{gdb.Type} that represents the real type,
1229after removing all layers of typedefs.
1230@end defun
1231
1232@defun Type.target ()
1233Return a new @code{gdb.Type} object which represents the target type
1234of this type.
1235
1236For a pointer type, the target type is the type of the pointed-to
1237object. For an array type (meaning C-like arrays), the target type is
1238the type of the elements of the array. For a function or method type,
1239the target type is the type of the return value. For a complex type,
1240the target type is the type of the elements. For a typedef, the
1241target type is the aliased type.
1242
1243If the type does not have a target, this method will throw an
1244exception.
1245@end defun
1246
1247@defun Type.template_argument (n @r{[}, block@r{]})
1248If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1249return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1250value of the @var{n}th template argument (indexed starting at 0).
329baa95 1251
1a6a384b
JL
1252If this @code{gdb.Type} is not a template type, or if the type has fewer
1253than @var{n} template arguments, this will throw an exception.
1254Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1255
1256If @var{block} is given, then @var{name} is looked up in that scope.
1257Otherwise, it is searched for globally.
1258@end defun
1259
59fb7612
SS
1260@defun Type.optimized_out ()
1261Return @code{gdb.Value} instance of this type whose value is optimized
1262out. This allows a frame decorator to indicate that the value of an
1263argument or a local variable is not known.
1264@end defun
329baa95
DE
1265
1266Each type has a code, which indicates what category this type falls
1267into. The available type categories are represented by constants
1268defined in the @code{gdb} module:
1269
b3ce5e5f
DE
1270@vtable @code
1271@vindex TYPE_CODE_PTR
329baa95
DE
1272@item gdb.TYPE_CODE_PTR
1273The type is a pointer.
1274
b3ce5e5f 1275@vindex TYPE_CODE_ARRAY
329baa95
DE
1276@item gdb.TYPE_CODE_ARRAY
1277The type is an array.
1278
b3ce5e5f 1279@vindex TYPE_CODE_STRUCT
329baa95
DE
1280@item gdb.TYPE_CODE_STRUCT
1281The type is a structure.
1282
b3ce5e5f 1283@vindex TYPE_CODE_UNION
329baa95
DE
1284@item gdb.TYPE_CODE_UNION
1285The type is a union.
1286
b3ce5e5f 1287@vindex TYPE_CODE_ENUM
329baa95
DE
1288@item gdb.TYPE_CODE_ENUM
1289The type is an enum.
1290
b3ce5e5f 1291@vindex TYPE_CODE_FLAGS
329baa95
DE
1292@item gdb.TYPE_CODE_FLAGS
1293A bit flags type, used for things such as status registers.
1294
b3ce5e5f 1295@vindex TYPE_CODE_FUNC
329baa95
DE
1296@item gdb.TYPE_CODE_FUNC
1297The type is a function.
1298
b3ce5e5f 1299@vindex TYPE_CODE_INT
329baa95
DE
1300@item gdb.TYPE_CODE_INT
1301The type is an integer type.
1302
b3ce5e5f 1303@vindex TYPE_CODE_FLT
329baa95
DE
1304@item gdb.TYPE_CODE_FLT
1305A floating point type.
1306
b3ce5e5f 1307@vindex TYPE_CODE_VOID
329baa95
DE
1308@item gdb.TYPE_CODE_VOID
1309The special type @code{void}.
1310
b3ce5e5f 1311@vindex TYPE_CODE_SET
329baa95
DE
1312@item gdb.TYPE_CODE_SET
1313A Pascal set type.
1314
b3ce5e5f 1315@vindex TYPE_CODE_RANGE
329baa95
DE
1316@item gdb.TYPE_CODE_RANGE
1317A range type, that is, an integer type with bounds.
1318
b3ce5e5f 1319@vindex TYPE_CODE_STRING
329baa95
DE
1320@item gdb.TYPE_CODE_STRING
1321A string type. Note that this is only used for certain languages with
1322language-defined string types; C strings are not represented this way.
1323
b3ce5e5f 1324@vindex TYPE_CODE_BITSTRING
329baa95
DE
1325@item gdb.TYPE_CODE_BITSTRING
1326A string of bits. It is deprecated.
1327
b3ce5e5f 1328@vindex TYPE_CODE_ERROR
329baa95
DE
1329@item gdb.TYPE_CODE_ERROR
1330An unknown or erroneous type.
1331
b3ce5e5f 1332@vindex TYPE_CODE_METHOD
329baa95 1333@item gdb.TYPE_CODE_METHOD
9c37b5ae 1334A method type, as found in C@t{++}.
329baa95 1335
b3ce5e5f 1336@vindex TYPE_CODE_METHODPTR
329baa95
DE
1337@item gdb.TYPE_CODE_METHODPTR
1338A pointer-to-member-function.
1339
b3ce5e5f 1340@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1341@item gdb.TYPE_CODE_MEMBERPTR
1342A pointer-to-member.
1343
b3ce5e5f 1344@vindex TYPE_CODE_REF
329baa95
DE
1345@item gdb.TYPE_CODE_REF
1346A reference type.
1347
3fcf899d
AV
1348@vindex TYPE_CODE_RVALUE_REF
1349@item gdb.TYPE_CODE_RVALUE_REF
1350A C@t{++}11 rvalue reference type.
1351
b3ce5e5f 1352@vindex TYPE_CODE_CHAR
329baa95
DE
1353@item gdb.TYPE_CODE_CHAR
1354A character type.
1355
b3ce5e5f 1356@vindex TYPE_CODE_BOOL
329baa95
DE
1357@item gdb.TYPE_CODE_BOOL
1358A boolean type.
1359
b3ce5e5f 1360@vindex TYPE_CODE_COMPLEX
329baa95
DE
1361@item gdb.TYPE_CODE_COMPLEX
1362A complex float type.
1363
b3ce5e5f 1364@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1365@item gdb.TYPE_CODE_TYPEDEF
1366A typedef to some other type.
1367
b3ce5e5f 1368@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1369@item gdb.TYPE_CODE_NAMESPACE
1370A C@t{++} namespace.
1371
b3ce5e5f 1372@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1373@item gdb.TYPE_CODE_DECFLOAT
1374A decimal floating point type.
1375
b3ce5e5f 1376@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1377@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1378A function internal to @value{GDBN}. This is the type used to represent
1379convenience functions.
b3ce5e5f 1380@end vtable
329baa95
DE
1381
1382Further support for types is provided in the @code{gdb.types}
1383Python module (@pxref{gdb.types}).
1384
1385@node Pretty Printing API
1386@subsubsection Pretty Printing API
b3ce5e5f 1387@cindex python pretty printing api
329baa95 1388
329baa95 1389A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1390specific interface, defined here. An example output is provided
1391(@pxref{Pretty Printing}).
329baa95
DE
1392
1393@defun pretty_printer.children (self)
1394@value{GDBN} will call this method on a pretty-printer to compute the
1395children of the pretty-printer's value.
1396
1397This method must return an object conforming to the Python iterator
1398protocol. Each item returned by the iterator must be a tuple holding
1399two elements. The first element is the ``name'' of the child; the
1400second element is the child's value. The value can be any Python
1401object which is convertible to a @value{GDBN} value.
1402
1403This method is optional. If it does not exist, @value{GDBN} will act
1404as though the value has no children.
2e62ab40 1405
a97c8e56
TT
1406For efficiency, the @code{children} method should lazily compute its
1407results. This will let @value{GDBN} read as few elements as
1408necessary, for example when various print settings (@pxref{Print
1409Settings}) or @code{-var-list-children} (@pxref{GDB/MI Variable
1410Objects}) limit the number of elements to be displayed.
1411
2e62ab40
AB
1412Children may be hidden from display based on the value of @samp{set
1413print max-depth} (@pxref{Print Settings}).
329baa95
DE
1414@end defun
1415
1416@defun pretty_printer.display_hint (self)
1417The CLI may call this method and use its result to change the
1418formatting of a value. The result will also be supplied to an MI
1419consumer as a @samp{displayhint} attribute of the variable being
1420printed.
1421
1422This method is optional. If it does exist, this method must return a
9f9aa852 1423string or the special value @code{None}.
329baa95
DE
1424
1425Some display hints are predefined by @value{GDBN}:
1426
1427@table @samp
1428@item array
1429Indicate that the object being printed is ``array-like''. The CLI
1430uses this to respect parameters such as @code{set print elements} and
1431@code{set print array}.
1432
1433@item map
1434Indicate that the object being printed is ``map-like'', and that the
1435children of this value can be assumed to alternate between keys and
1436values.
1437
1438@item string
1439Indicate that the object being printed is ``string-like''. If the
1440printer's @code{to_string} method returns a Python string of some
1441kind, then @value{GDBN} will call its internal language-specific
1442string-printing function to format the string. For the CLI this means
1443adding quotation marks, possibly escaping some characters, respecting
1444@code{set print elements}, and the like.
1445@end table
9f9aa852
AB
1446
1447The special value @code{None} causes @value{GDBN} to apply the default
1448display rules.
329baa95
DE
1449@end defun
1450
1451@defun pretty_printer.to_string (self)
1452@value{GDBN} will call this method to display the string
1453representation of the value passed to the object's constructor.
1454
1455When printing from the CLI, if the @code{to_string} method exists,
1456then @value{GDBN} will prepend its result to the values returned by
1457@code{children}. Exactly how this formatting is done is dependent on
1458the display hint, and may change as more hints are added. Also,
1459depending on the print settings (@pxref{Print Settings}), the CLI may
1460print just the result of @code{to_string} in a stack trace, omitting
1461the result of @code{children}.
1462
1463If this method returns a string, it is printed verbatim.
1464
1465Otherwise, if this method returns an instance of @code{gdb.Value},
1466then @value{GDBN} prints this value. This may result in a call to
1467another pretty-printer.
1468
1469If instead the method returns a Python value which is convertible to a
1470@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1471the resulting value. Again, this may result in a call to another
1472pretty-printer. Python scalars (integers, floats, and booleans) and
1473strings are convertible to @code{gdb.Value}; other types are not.
1474
1475Finally, if this method returns @code{None} then no further operations
1476are peformed in this method and nothing is printed.
1477
1478If the result is not one of these types, an exception is raised.
1479@end defun
1480
1481@value{GDBN} provides a function which can be used to look up the
1482default pretty-printer for a @code{gdb.Value}:
1483
1484@findex gdb.default_visualizer
1485@defun gdb.default_visualizer (value)
1486This function takes a @code{gdb.Value} object as an argument. If a
1487pretty-printer for this value exists, then it is returned. If no such
1488printer exists, then this returns @code{None}.
1489@end defun
1490
1491@node Selecting Pretty-Printers
1492@subsubsection Selecting Pretty-Printers
b3ce5e5f 1493@cindex selecting python pretty-printers
329baa95 1494
48869a5f
TT
1495@value{GDBN} provides several ways to register a pretty-printer:
1496globally, per program space, and per objfile. When choosing how to
1497register your pretty-printer, a good rule is to register it with the
1498smallest scope possible: that is prefer a specific objfile first, then
1499a program space, and only register a printer globally as a last
1500resort.
1501
1502@findex gdb.pretty_printers
1503@defvar gdb.pretty_printers
329baa95
DE
1504The Python list @code{gdb.pretty_printers} contains an array of
1505functions or callable objects that have been registered via addition
1506as a pretty-printer. Printers in this list are called @code{global}
1507printers, they're available when debugging all inferiors.
48869a5f
TT
1508@end defvar
1509
329baa95
DE
1510Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1511Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1512attribute.
1513
1514Each function on these lists is passed a single @code{gdb.Value}
1515argument and should return a pretty-printer object conforming to the
1516interface definition above (@pxref{Pretty Printing API}). If a function
1517cannot create a pretty-printer for the value, it should return
1518@code{None}.
1519
1520@value{GDBN} first checks the @code{pretty_printers} attribute of each
1521@code{gdb.Objfile} in the current program space and iteratively calls
1522each enabled lookup routine in the list for that @code{gdb.Objfile}
1523until it receives a pretty-printer object.
1524If no pretty-printer is found in the objfile lists, @value{GDBN} then
1525searches the pretty-printer list of the current program space,
1526calling each enabled function until an object is returned.
1527After these lists have been exhausted, it tries the global
1528@code{gdb.pretty_printers} list, again calling each enabled function until an
1529object is returned.
1530
1531The order in which the objfiles are searched is not specified. For a
1532given list, functions are always invoked from the head of the list,
1533and iterated over sequentially until the end of the list, or a printer
1534object is returned.
1535
1536For various reasons a pretty-printer may not work.
1537For example, the underlying data structure may have changed and
1538the pretty-printer is out of date.
1539
1540The consequences of a broken pretty-printer are severe enough that
1541@value{GDBN} provides support for enabling and disabling individual
1542printers. For example, if @code{print frame-arguments} is on,
1543a backtrace can become highly illegible if any argument is printed
1544with a broken printer.
1545
1546Pretty-printers are enabled and disabled by attaching an @code{enabled}
1547attribute to the registered function or callable object. If this attribute
1548is present and its value is @code{False}, the printer is disabled, otherwise
1549the printer is enabled.
1550
1551@node Writing a Pretty-Printer
1552@subsubsection Writing a Pretty-Printer
1553@cindex writing a pretty-printer
1554
1555A pretty-printer consists of two parts: a lookup function to detect
1556if the type is supported, and the printer itself.
1557
1558Here is an example showing how a @code{std::string} printer might be
1559written. @xref{Pretty Printing API}, for details on the API this class
1560must provide.
1561
1562@smallexample
1563class StdStringPrinter(object):
1564 "Print a std::string"
1565
1566 def __init__(self, val):
1567 self.val = val
1568
1569 def to_string(self):
1570 return self.val['_M_dataplus']['_M_p']
1571
1572 def display_hint(self):
1573 return 'string'
1574@end smallexample
1575
1576And here is an example showing how a lookup function for the printer
1577example above might be written.
1578
1579@smallexample
1580def str_lookup_function(val):
1581 lookup_tag = val.type.tag
1582 if lookup_tag == None:
1583 return None
1584 regex = re.compile("^std::basic_string<char,.*>$")
1585 if regex.match(lookup_tag):
1586 return StdStringPrinter(val)
1587 return None
1588@end smallexample
1589
1590The example lookup function extracts the value's type, and attempts to
1591match it to a type that it can pretty-print. If it is a type the
1592printer can pretty-print, it will return a printer object. If not, it
1593returns @code{None}.
1594
1595We recommend that you put your core pretty-printers into a Python
1596package. If your pretty-printers are for use with a library, we
1597further recommend embedding a version number into the package name.
1598This practice will enable @value{GDBN} to load multiple versions of
1599your pretty-printers at the same time, because they will have
1600different names.
1601
1602You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1603can be evaluated multiple times without changing its meaning. An
1604ideal auto-load file will consist solely of @code{import}s of your
1605printer modules, followed by a call to a register pretty-printers with
1606the current objfile.
1607
1608Taken as a whole, this approach will scale nicely to multiple
1609inferiors, each potentially using a different library version.
1610Embedding a version number in the Python package name will ensure that
1611@value{GDBN} is able to load both sets of printers simultaneously.
1612Then, because the search for pretty-printers is done by objfile, and
1613because your auto-loaded code took care to register your library's
1614printers with a specific objfile, @value{GDBN} will find the correct
1615printers for the specific version of the library used by each
1616inferior.
1617
1618To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1619this code might appear in @code{gdb.libstdcxx.v6}:
1620
1621@smallexample
1622def register_printers(objfile):
1623 objfile.pretty_printers.append(str_lookup_function)
1624@end smallexample
1625
1626@noindent
1627And then the corresponding contents of the auto-load file would be:
1628
1629@smallexample
1630import gdb.libstdcxx.v6
1631gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1632@end smallexample
1633
1634The previous example illustrates a basic pretty-printer.
1635There are a few things that can be improved on.
1636The printer doesn't have a name, making it hard to identify in a
1637list of installed printers. The lookup function has a name, but
1638lookup functions can have arbitrary, even identical, names.
1639
1640Second, the printer only handles one type, whereas a library typically has
1641several types. One could install a lookup function for each desired type
1642in the library, but one could also have a single lookup function recognize
1643several types. The latter is the conventional way this is handled.
1644If a pretty-printer can handle multiple data types, then its
1645@dfn{subprinters} are the printers for the individual data types.
1646
1647The @code{gdb.printing} module provides a formal way of solving these
1648problems (@pxref{gdb.printing}).
1649Here is another example that handles multiple types.
1650
1651These are the types we are going to pretty-print:
1652
1653@smallexample
1654struct foo @{ int a, b; @};
1655struct bar @{ struct foo x, y; @};
1656@end smallexample
1657
1658Here are the printers:
1659
1660@smallexample
1661class fooPrinter:
1662 """Print a foo object."""
1663
1664 def __init__(self, val):
1665 self.val = val
1666
1667 def to_string(self):
1668 return ("a=<" + str(self.val["a"]) +
1669 "> b=<" + str(self.val["b"]) + ">")
1670
1671class barPrinter:
1672 """Print a bar object."""
1673
1674 def __init__(self, val):
1675 self.val = val
1676
1677 def to_string(self):
1678 return ("x=<" + str(self.val["x"]) +
1679 "> y=<" + str(self.val["y"]) + ">")
1680@end smallexample
1681
1682This example doesn't need a lookup function, that is handled by the
1683@code{gdb.printing} module. Instead a function is provided to build up
1684the object that handles the lookup.
1685
1686@smallexample
1687import gdb.printing
1688
1689def build_pretty_printer():
1690 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1691 "my_library")
1692 pp.add_printer('foo', '^foo$', fooPrinter)
1693 pp.add_printer('bar', '^bar$', barPrinter)
1694 return pp
1695@end smallexample
1696
1697And here is the autoload support:
1698
1699@smallexample
1700import gdb.printing
1701import my_library
1702gdb.printing.register_pretty_printer(
1703 gdb.current_objfile(),
1704 my_library.build_pretty_printer())
1705@end smallexample
1706
1707Finally, when this printer is loaded into @value{GDBN}, here is the
1708corresponding output of @samp{info pretty-printer}:
1709
1710@smallexample
1711(gdb) info pretty-printer
1712my_library.so:
1713 my_library
1714 foo
1715 bar
1716@end smallexample
1717
1718@node Type Printing API
1719@subsubsection Type Printing API
1720@cindex type printing API for Python
1721
1722@value{GDBN} provides a way for Python code to customize type display.
1723This is mainly useful for substituting canonical typedef names for
1724types.
1725
1726@cindex type printer
1727A @dfn{type printer} is just a Python object conforming to a certain
1728protocol. A simple base class implementing the protocol is provided;
1729see @ref{gdb.types}. A type printer must supply at least:
1730
1731@defivar type_printer enabled
1732A boolean which is True if the printer is enabled, and False
1733otherwise. This is manipulated by the @code{enable type-printer}
1734and @code{disable type-printer} commands.
1735@end defivar
1736
1737@defivar type_printer name
1738The name of the type printer. This must be a string. This is used by
1739the @code{enable type-printer} and @code{disable type-printer}
1740commands.
1741@end defivar
1742
1743@defmethod type_printer instantiate (self)
1744This is called by @value{GDBN} at the start of type-printing. It is
1745only called if the type printer is enabled. This method must return a
1746new object that supplies a @code{recognize} method, as described below.
1747@end defmethod
1748
1749
1750When displaying a type, say via the @code{ptype} command, @value{GDBN}
1751will compute a list of type recognizers. This is done by iterating
1752first over the per-objfile type printers (@pxref{Objfiles In Python}),
1753followed by the per-progspace type printers (@pxref{Progspaces In
1754Python}), and finally the global type printers.
1755
1756@value{GDBN} will call the @code{instantiate} method of each enabled
1757type printer. If this method returns @code{None}, then the result is
1758ignored; otherwise, it is appended to the list of recognizers.
1759
1760Then, when @value{GDBN} is going to display a type name, it iterates
1761over the list of recognizers. For each one, it calls the recognition
1762function, stopping if the function returns a non-@code{None} value.
1763The recognition function is defined as:
1764
1765@defmethod type_recognizer recognize (self, type)
1766If @var{type} is not recognized, return @code{None}. Otherwise,
1767return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1768The @var{type} argument will be an instance of @code{gdb.Type}
1769(@pxref{Types In Python}).
329baa95
DE
1770@end defmethod
1771
1772@value{GDBN} uses this two-pass approach so that type printers can
1773efficiently cache information without holding on to it too long. For
1774example, it can be convenient to look up type information in a type
1775printer and hold it for a recognizer's lifetime; if a single pass were
1776done then type printers would have to make use of the event system in
1777order to avoid holding information that could become stale as the
1778inferior changed.
1779
1780@node Frame Filter API
521b499b 1781@subsubsection Filtering Frames
329baa95
DE
1782@cindex frame filters api
1783
1784Frame filters are Python objects that manipulate the visibility of a
1785frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1786@value{GDBN}.
1787
1788Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1789commands (@pxref{GDB/MI}), those that return a collection of frames
1790are affected. The commands that work with frame filters are:
1791
1792@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1793@code{-stack-list-frames}
1794(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1795@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1796-stack-list-variables command}), @code{-stack-list-arguments}
1797@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1798@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1799-stack-list-locals command}).
1800
1801A frame filter works by taking an iterator as an argument, applying
1802actions to the contents of that iterator, and returning another
1803iterator (or, possibly, the same iterator it was provided in the case
1804where the filter does not perform any operations). Typically, frame
1805filters utilize tools such as the Python's @code{itertools} module to
1806work with and create new iterators from the source iterator.
1807Regardless of how a filter chooses to apply actions, it must not alter
1808the underlying @value{GDBN} frame or frames, or attempt to alter the
1809call-stack within @value{GDBN}. This preserves data integrity within
1810@value{GDBN}. Frame filters are executed on a priority basis and care
1811should be taken that some frame filters may have been executed before,
1812and that some frame filters will be executed after.
1813
1814An important consideration when designing frame filters, and well
1815worth reflecting upon, is that frame filters should avoid unwinding
1816the call stack if possible. Some stacks can run very deep, into the
1817tens of thousands in some cases. To search every frame when a frame
1818filter executes may be too expensive at that step. The frame filter
1819cannot know how many frames it has to iterate over, and it may have to
1820iterate through them all. This ends up duplicating effort as
1821@value{GDBN} performs this iteration when it prints the frames. If
1822the filter can defer unwinding frames until frame decorators are
1823executed, after the last filter has executed, it should. @xref{Frame
1824Decorator API}, for more information on decorators. Also, there are
1825examples for both frame decorators and filters in later chapters.
1826@xref{Writing a Frame Filter}, for more information.
1827
1828The Python dictionary @code{gdb.frame_filters} contains key/object
1829pairings that comprise a frame filter. Frame filters in this
1830dictionary are called @code{global} frame filters, and they are
1831available when debugging all inferiors. These frame filters must
1832register with the dictionary directly. In addition to the
1833@code{global} dictionary, there are other dictionaries that are loaded
1834with different inferiors via auto-loading (@pxref{Python
1835Auto-loading}). The two other areas where frame filter dictionaries
1836can be found are: @code{gdb.Progspace} which contains a
1837@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1838object which also contains a @code{frame_filters} dictionary
1839attribute.
1840
1841When a command is executed from @value{GDBN} that is compatible with
1842frame filters, @value{GDBN} combines the @code{global},
1843@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1844loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1845several frames, and thus several object files, might be in use.
1846@value{GDBN} then prunes any frame filter whose @code{enabled}
1847attribute is @code{False}. This pruned list is then sorted according
1848to the @code{priority} attribute in each filter.
1849
1850Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1851creates an iterator which wraps each frame in the call stack in a
1852@code{FrameDecorator} object, and calls each filter in order. The
1853output from the previous filter will always be the input to the next
1854filter, and so on.
1855
1856Frame filters have a mandatory interface which each frame filter must
1857implement, defined here:
1858
1859@defun FrameFilter.filter (iterator)
1860@value{GDBN} will call this method on a frame filter when it has
1861reached the order in the priority list for that filter.
1862
1863For example, if there are four frame filters:
1864
1865@smallexample
1866Name Priority
1867
1868Filter1 5
1869Filter2 10
1870Filter3 100
1871Filter4 1
1872@end smallexample
1873
1874The order that the frame filters will be called is:
1875
1876@smallexample
1877Filter3 -> Filter2 -> Filter1 -> Filter4
1878@end smallexample
1879
1880Note that the output from @code{Filter3} is passed to the input of
1881@code{Filter2}, and so on.
1882
1883This @code{filter} method is passed a Python iterator. This iterator
1884contains a sequence of frame decorators that wrap each
1885@code{gdb.Frame}, or a frame decorator that wraps another frame
1886decorator. The first filter that is executed in the sequence of frame
1887filters will receive an iterator entirely comprised of default
1888@code{FrameDecorator} objects. However, after each frame filter is
1889executed, the previous frame filter may have wrapped some or all of
1890the frame decorators with their own frame decorator. As frame
1891decorators must also conform to a mandatory interface, these
1892decorators can be assumed to act in a uniform manner (@pxref{Frame
1893Decorator API}).
1894
1895This method must return an object conforming to the Python iterator
1896protocol. Each item in the iterator must be an object conforming to
1897the frame decorator interface. If a frame filter does not wish to
1898perform any operations on this iterator, it should return that
1899iterator untouched.
1900
1901This method is not optional. If it does not exist, @value{GDBN} will
1902raise and print an error.
1903@end defun
1904
1905@defvar FrameFilter.name
1906The @code{name} attribute must be Python string which contains the
1907name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1908Management}). This attribute may contain any combination of letters
1909or numbers. Care should be taken to ensure that it is unique. This
1910attribute is mandatory.
1911@end defvar
1912
1913@defvar FrameFilter.enabled
1914The @code{enabled} attribute must be Python boolean. This attribute
1915indicates to @value{GDBN} whether the frame filter is enabled, and
1916should be considered when frame filters are executed. If
1917@code{enabled} is @code{True}, then the frame filter will be executed
1918when any of the backtrace commands detailed earlier in this chapter
1919are executed. If @code{enabled} is @code{False}, then the frame
1920filter will not be executed. This attribute is mandatory.
1921@end defvar
1922
1923@defvar FrameFilter.priority
1924The @code{priority} attribute must be Python integer. This attribute
1925controls the order of execution in relation to other frame filters.
1926There are no imposed limits on the range of @code{priority} other than
1927it must be a valid integer. The higher the @code{priority} attribute,
1928the sooner the frame filter will be executed in relation to other
1929frame filters. Although @code{priority} can be negative, it is
1930recommended practice to assume zero is the lowest priority that a
1931frame filter can be assigned. Frame filters that have the same
1932priority are executed in unsorted order in that priority slot. This
521b499b 1933attribute is mandatory. 100 is a good default priority.
329baa95
DE
1934@end defvar
1935
1936@node Frame Decorator API
521b499b 1937@subsubsection Decorating Frames
329baa95
DE
1938@cindex frame decorator api
1939
1940Frame decorators are sister objects to frame filters (@pxref{Frame
1941Filter API}). Frame decorators are applied by a frame filter and can
1942only be used in conjunction with frame filters.
1943
1944The purpose of a frame decorator is to customize the printed content
1945of each @code{gdb.Frame} in commands where frame filters are executed.
1946This concept is called decorating a frame. Frame decorators decorate
1947a @code{gdb.Frame} with Python code contained within each API call.
1948This separates the actual data contained in a @code{gdb.Frame} from
1949the decorated data produced by a frame decorator. This abstraction is
1950necessary to maintain integrity of the data contained in each
1951@code{gdb.Frame}.
1952
1953Frame decorators have a mandatory interface, defined below.
1954
1955@value{GDBN} already contains a frame decorator called
1956@code{FrameDecorator}. This contains substantial amounts of
1957boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1958recommended that other frame decorators inherit and extend this
1959object, and only to override the methods needed.
1960
521b499b
TT
1961@tindex gdb.FrameDecorator
1962@code{FrameDecorator} is defined in the Python module
1963@code{gdb.FrameDecorator}, so your code can import it like:
1964@smallexample
1965from gdb.FrameDecorator import FrameDecorator
1966@end smallexample
1967
329baa95
DE
1968@defun FrameDecorator.elided (self)
1969
1970The @code{elided} method groups frames together in a hierarchical
1971system. An example would be an interpreter, where multiple low-level
1972frames make up a single call in the interpreted language. In this
1973example, the frame filter would elide the low-level frames and present
1974a single high-level frame, representing the call in the interpreted
1975language, to the user.
1976
1977The @code{elided} function must return an iterable and this iterable
1978must contain the frames that are being elided wrapped in a suitable
1979frame decorator. If no frames are being elided this function may
1980return an empty iterable, or @code{None}. Elided frames are indented
1981from normal frames in a @code{CLI} backtrace, or in the case of
1982@code{GDB/MI}, are placed in the @code{children} field of the eliding
1983frame.
1984
1985It is the frame filter's task to also filter out the elided frames from
1986the source iterator. This will avoid printing the frame twice.
1987@end defun
1988
1989@defun FrameDecorator.function (self)
1990
1991This method returns the name of the function in the frame that is to
1992be printed.
1993
1994This method must return a Python string describing the function, or
1995@code{None}.
1996
1997If this function returns @code{None}, @value{GDBN} will not print any
1998data for this field.
1999@end defun
2000
2001@defun FrameDecorator.address (self)
2002
2003This method returns the address of the frame that is to be printed.
2004
2005This method must return a Python numeric integer type of sufficient
2006size to describe the address of the frame, or @code{None}.
2007
2008If this function returns a @code{None}, @value{GDBN} will not print
2009any data for this field.
2010@end defun
2011
2012@defun FrameDecorator.filename (self)
2013
2014This method returns the filename and path associated with this frame.
2015
2016This method must return a Python string containing the filename and
2017the path to the object file backing the frame, or @code{None}.
2018
2019If this function returns a @code{None}, @value{GDBN} will not print
2020any data for this field.
2021@end defun
2022
2023@defun FrameDecorator.line (self):
2024
2025This method returns the line number associated with the current
2026position within the function addressed by this frame.
2027
2028This method must return a Python integer type, or @code{None}.
2029
2030If this function returns a @code{None}, @value{GDBN} will not print
2031any data for this field.
2032@end defun
2033
2034@defun FrameDecorator.frame_args (self)
2035@anchor{frame_args}
2036
2037This method must return an iterable, or @code{None}. Returning an
2038empty iterable, or @code{None} means frame arguments will not be
2039printed for this frame. This iterable must contain objects that
2040implement two methods, described here.
2041
2042This object must implement a @code{argument} method which takes a
2043single @code{self} parameter and must return a @code{gdb.Symbol}
2044(@pxref{Symbols In Python}), or a Python string. The object must also
2045implement a @code{value} method which takes a single @code{self}
2046parameter and must return a @code{gdb.Value} (@pxref{Values From
2047Inferior}), a Python value, or @code{None}. If the @code{value}
2048method returns @code{None}, and the @code{argument} method returns a
2049@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
2050the @code{gdb.Symbol} automatically.
2051
2052A brief example:
2053
2054@smallexample
2055class SymValueWrapper():
2056
2057 def __init__(self, symbol, value):
2058 self.sym = symbol
2059 self.val = value
2060
2061 def value(self):
2062 return self.val
2063
2064 def symbol(self):
2065 return self.sym
2066
2067class SomeFrameDecorator()
2068...
2069...
2070 def frame_args(self):
2071 args = []
2072 try:
2073 block = self.inferior_frame.block()
2074 except:
2075 return None
2076
2077 # Iterate over all symbols in a block. Only add
2078 # symbols that are arguments.
2079 for sym in block:
2080 if not sym.is_argument:
2081 continue
2082 args.append(SymValueWrapper(sym,None))
2083
2084 # Add example synthetic argument.
2085 args.append(SymValueWrapper(``foo'', 42))
2086
2087 return args
2088@end smallexample
2089@end defun
2090
2091@defun FrameDecorator.frame_locals (self)
2092
2093This method must return an iterable or @code{None}. Returning an
2094empty iterable, or @code{None} means frame local arguments will not be
2095printed for this frame.
2096
2097The object interface, the description of the various strategies for
2098reading frame locals, and the example are largely similar to those
2099described in the @code{frame_args} function, (@pxref{frame_args,,The
2100frame filter frame_args function}). Below is a modified example:
2101
2102@smallexample
2103class SomeFrameDecorator()
2104...
2105...
2106 def frame_locals(self):
2107 vars = []
2108 try:
2109 block = self.inferior_frame.block()
2110 except:
2111 return None
2112
2113 # Iterate over all symbols in a block. Add all
2114 # symbols, except arguments.
2115 for sym in block:
2116 if sym.is_argument:
2117 continue
2118 vars.append(SymValueWrapper(sym,None))
2119
2120 # Add an example of a synthetic local variable.
2121 vars.append(SymValueWrapper(``bar'', 99))
2122
2123 return vars
2124@end smallexample
2125@end defun
2126
2127@defun FrameDecorator.inferior_frame (self):
2128
2129This method must return the underlying @code{gdb.Frame} that this
2130frame decorator is decorating. @value{GDBN} requires the underlying
2131frame for internal frame information to determine how to print certain
2132values when printing a frame.
2133@end defun
2134
2135@node Writing a Frame Filter
2136@subsubsection Writing a Frame Filter
2137@cindex writing a frame filter
2138
2139There are three basic elements that a frame filter must implement: it
2140must correctly implement the documented interface (@pxref{Frame Filter
2141API}), it must register itself with @value{GDBN}, and finally, it must
2142decide if it is to work on the data provided by @value{GDBN}. In all
2143cases, whether it works on the iterator or not, each frame filter must
2144return an iterator. A bare-bones frame filter follows the pattern in
2145the following example.
2146
2147@smallexample
2148import gdb
2149
2150class FrameFilter():
2151
2152 def __init__(self):
2153 # Frame filter attribute creation.
2154 #
2155 # 'name' is the name of the filter that GDB will display.
2156 #
2157 # 'priority' is the priority of the filter relative to other
2158 # filters.
2159 #
2160 # 'enabled' is a boolean that indicates whether this filter is
2161 # enabled and should be executed.
2162
2163 self.name = "Foo"
2164 self.priority = 100
2165 self.enabled = True
2166
2167 # Register this frame filter with the global frame_filters
2168 # dictionary.
2169 gdb.frame_filters[self.name] = self
2170
2171 def filter(self, frame_iter):
2172 # Just return the iterator.
2173 return frame_iter
2174@end smallexample
2175
2176The frame filter in the example above implements the three
2177requirements for all frame filters. It implements the API, self
2178registers, and makes a decision on the iterator (in this case, it just
2179returns the iterator untouched).
2180
2181The first step is attribute creation and assignment, and as shown in
2182the comments the filter assigns the following attributes: @code{name},
2183@code{priority} and whether the filter should be enabled with the
2184@code{enabled} attribute.
2185
2186The second step is registering the frame filter with the dictionary or
2187dictionaries that the frame filter has interest in. As shown in the
2188comments, this filter just registers itself with the global dictionary
2189@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2190is a dictionary that is initialized in the @code{gdb} module when
2191@value{GDBN} starts. What dictionary a filter registers with is an
2192important consideration. Generally, if a filter is specific to a set
2193of code, it should be registered either in the @code{objfile} or
2194@code{progspace} dictionaries as they are specific to the program
2195currently loaded in @value{GDBN}. The global dictionary is always
2196present in @value{GDBN} and is never unloaded. Any filters registered
2197with the global dictionary will exist until @value{GDBN} exits. To
2198avoid filters that may conflict, it is generally better to register
2199frame filters against the dictionaries that more closely align with
2200the usage of the filter currently in question. @xref{Python
2201Auto-loading}, for further information on auto-loading Python scripts.
2202
2203@value{GDBN} takes a hands-off approach to frame filter registration,
2204therefore it is the frame filter's responsibility to ensure
2205registration has occurred, and that any exceptions are handled
2206appropriately. In particular, you may wish to handle exceptions
2207relating to Python dictionary key uniqueness. It is mandatory that
2208the dictionary key is the same as frame filter's @code{name}
2209attribute. When a user manages frame filters (@pxref{Frame Filter
2210Management}), the names @value{GDBN} will display are those contained
2211in the @code{name} attribute.
2212
2213The final step of this example is the implementation of the
2214@code{filter} method. As shown in the example comments, we define the
2215@code{filter} method and note that the method must take an iterator,
2216and also must return an iterator. In this bare-bones example, the
2217frame filter is not very useful as it just returns the iterator
2218untouched. However this is a valid operation for frame filters that
2219have the @code{enabled} attribute set, but decide not to operate on
2220any frames.
2221
2222In the next example, the frame filter operates on all frames and
2223utilizes a frame decorator to perform some work on the frames.
2224@xref{Frame Decorator API}, for further information on the frame
2225decorator interface.
2226
2227This example works on inlined frames. It highlights frames which are
2228inlined by tagging them with an ``[inlined]'' tag. By applying a
2229frame decorator to all frames with the Python @code{itertools imap}
2230method, the example defers actions to the frame decorator. Frame
2231decorators are only processed when @value{GDBN} prints the backtrace.
2232
2233This introduces a new decision making topic: whether to perform
2234decision making operations at the filtering step, or at the printing
2235step. In this example's approach, it does not perform any filtering
2236decisions at the filtering step beyond mapping a frame decorator to
2237each frame. This allows the actual decision making to be performed
2238when each frame is printed. This is an important consideration, and
2239well worth reflecting upon when designing a frame filter. An issue
2240that frame filters should avoid is unwinding the stack if possible.
2241Some stacks can run very deep, into the tens of thousands in some
2242cases. To search every frame to determine if it is inlined ahead of
2243time may be too expensive at the filtering step. The frame filter
2244cannot know how many frames it has to iterate over, and it would have
2245to iterate through them all. This ends up duplicating effort as
2246@value{GDBN} performs this iteration when it prints the frames.
2247
2248In this example decision making can be deferred to the printing step.
2249As each frame is printed, the frame decorator can examine each frame
2250in turn when @value{GDBN} iterates. From a performance viewpoint,
2251this is the most appropriate decision to make as it avoids duplicating
2252the effort that the printing step would undertake anyway. Also, if
2253there are many frame filters unwinding the stack during filtering, it
2254can substantially delay the printing of the backtrace which will
2255result in large memory usage, and a poor user experience.
2256
2257@smallexample
2258class InlineFilter():
2259
2260 def __init__(self):
2261 self.name = "InlinedFrameFilter"
2262 self.priority = 100
2263 self.enabled = True
2264 gdb.frame_filters[self.name] = self
2265
2266 def filter(self, frame_iter):
2267 frame_iter = itertools.imap(InlinedFrameDecorator,
2268 frame_iter)
2269 return frame_iter
2270@end smallexample
2271
2272This frame filter is somewhat similar to the earlier example, except
2273that the @code{filter} method applies a frame decorator object called
2274@code{InlinedFrameDecorator} to each element in the iterator. The
2275@code{imap} Python method is light-weight. It does not proactively
2276iterate over the iterator, but rather creates a new iterator which
2277wraps the existing one.
2278
2279Below is the frame decorator for this example.
2280
2281@smallexample
2282class InlinedFrameDecorator(FrameDecorator):
2283
2284 def __init__(self, fobj):
2285 super(InlinedFrameDecorator, self).__init__(fobj)
2286
2287 def function(self):
2288 frame = fobj.inferior_frame()
2289 name = str(frame.name())
2290
2291 if frame.type() == gdb.INLINE_FRAME:
2292 name = name + " [inlined]"
2293
2294 return name
2295@end smallexample
2296
2297This frame decorator only defines and overrides the @code{function}
2298method. It lets the supplied @code{FrameDecorator}, which is shipped
2299with @value{GDBN}, perform the other work associated with printing
2300this frame.
2301
2302The combination of these two objects create this output from a
2303backtrace:
2304
2305@smallexample
2306#0 0x004004e0 in bar () at inline.c:11
2307#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2308#2 0x00400566 in main () at inline.c:31
2309@end smallexample
2310
2311So in the case of this example, a frame decorator is applied to all
2312frames, regardless of whether they may be inlined or not. As
2313@value{GDBN} iterates over the iterator produced by the frame filters,
2314@value{GDBN} executes each frame decorator which then makes a decision
2315on what to print in the @code{function} callback. Using a strategy
2316like this is a way to defer decisions on the frame content to printing
2317time.
2318
2319@subheading Eliding Frames
2320
2321It might be that the above example is not desirable for representing
2322inlined frames, and a hierarchical approach may be preferred. If we
2323want to hierarchically represent frames, the @code{elided} frame
2324decorator interface might be preferable.
2325
2326This example approaches the issue with the @code{elided} method. This
2327example is quite long, but very simplistic. It is out-of-scope for
2328this section to write a complete example that comprehensively covers
2329all approaches of finding and printing inlined frames. However, this
2330example illustrates the approach an author might use.
2331
2332This example comprises of three sections.
2333
2334@smallexample
2335class InlineFrameFilter():
2336
2337 def __init__(self):
2338 self.name = "InlinedFrameFilter"
2339 self.priority = 100
2340 self.enabled = True
2341 gdb.frame_filters[self.name] = self
2342
2343 def filter(self, frame_iter):
2344 return ElidingInlineIterator(frame_iter)
2345@end smallexample
2346
2347This frame filter is very similar to the other examples. The only
2348difference is this frame filter is wrapping the iterator provided to
2349it (@code{frame_iter}) with a custom iterator called
2350@code{ElidingInlineIterator}. This again defers actions to when
2351@value{GDBN} prints the backtrace, as the iterator is not traversed
2352until printing.
2353
2354The iterator for this example is as follows. It is in this section of
2355the example where decisions are made on the content of the backtrace.
2356
2357@smallexample
2358class ElidingInlineIterator:
2359 def __init__(self, ii):
2360 self.input_iterator = ii
2361
2362 def __iter__(self):
2363 return self
2364
2365 def next(self):
2366 frame = next(self.input_iterator)
2367
2368 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2369 return frame
2370
2371 try:
2372 eliding_frame = next(self.input_iterator)
2373 except StopIteration:
2374 return frame
2375 return ElidingFrameDecorator(eliding_frame, [frame])
2376@end smallexample
2377
2378This iterator implements the Python iterator protocol. When the
2379@code{next} function is called (when @value{GDBN} prints each frame),
2380the iterator checks if this frame decorator, @code{frame}, is wrapping
2381an inlined frame. If it is not, it returns the existing frame decorator
2382untouched. If it is wrapping an inlined frame, it assumes that the
2383inlined frame was contained within the next oldest frame,
2384@code{eliding_frame}, which it fetches. It then creates and returns a
2385frame decorator, @code{ElidingFrameDecorator}, which contains both the
2386elided frame, and the eliding frame.
2387
2388@smallexample
2389class ElidingInlineDecorator(FrameDecorator):
2390
2391 def __init__(self, frame, elided_frames):
2392 super(ElidingInlineDecorator, self).__init__(frame)
2393 self.frame = frame
2394 self.elided_frames = elided_frames
2395
2396 def elided(self):
2397 return iter(self.elided_frames)
2398@end smallexample
2399
2400This frame decorator overrides one function and returns the inlined
2401frame in the @code{elided} method. As before it lets
2402@code{FrameDecorator} do the rest of the work involved in printing
2403this frame. This produces the following output.
2404
2405@smallexample
2406#0 0x004004e0 in bar () at inline.c:11
2407#2 0x00400529 in main () at inline.c:25
2408 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2409@end smallexample
2410
2411In that output, @code{max} which has been inlined into @code{main} is
2412printed hierarchically. Another approach would be to combine the
2413@code{function} method, and the @code{elided} method to both print a
2414marker in the inlined frame, and also show the hierarchical
2415relationship.
2416
d11916aa
SS
2417@node Unwinding Frames in Python
2418@subsubsection Unwinding Frames in Python
2419@cindex unwinding frames in Python
2420
2421In @value{GDBN} terminology ``unwinding'' is the process of finding
2422the previous frame (that is, caller's) from the current one. An
2423unwinder has three methods. The first one checks if it can handle
2424given frame (``sniff'' it). For the frames it can sniff an unwinder
2425provides two additional methods: it can return frame's ID, and it can
2426fetch registers from the previous frame. A running @value{GDBN}
2427mantains a list of the unwinders and calls each unwinder's sniffer in
2428turn until it finds the one that recognizes the current frame. There
2429is an API to register an unwinder.
2430
2431The unwinders that come with @value{GDBN} handle standard frames.
2432However, mixed language applications (for example, an application
2433running Java Virtual Machine) sometimes use frame layouts that cannot
2434be handled by the @value{GDBN} unwinders. You can write Python code
2435that can handle such custom frames.
2436
2437You implement a frame unwinder in Python as a class with which has two
2438attributes, @code{name} and @code{enabled}, with obvious meanings, and
2439a single method @code{__call__}, which examines a given frame and
2440returns an object (an instance of @code{gdb.UnwindInfo class)}
2441describing it. If an unwinder does not recognize a frame, it should
2442return @code{None}. The code in @value{GDBN} that enables writing
2443unwinders in Python uses this object to return frame's ID and previous
2444frame registers when @value{GDBN} core asks for them.
2445
e7b5068c
TT
2446An unwinder should do as little work as possible. Some otherwise
2447innocuous operations can cause problems (even crashes, as this code is
2448not not well-hardened yet). For example, making an inferior call from
2449an unwinder is unadvisable, as an inferior call will reset
2450@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2451unwinding.
2452
d11916aa
SS
2453@subheading Unwinder Input
2454
2455An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2456provides a method to read frame's registers:
2457
2458@defun PendingFrame.read_register (reg)
e7b5068c 2459This method returns the contents of the register @var{reg} in the
d11916aa
SS
2460frame as a @code{gdb.Value} object. @var{reg} can be either a
2461register number or a register name; the values are platform-specific.
2462They are usually found in the corresponding
e7b5068c
TT
2463@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2464@var{reg} does not name a register for the current architecture, this
2465method will throw an exception.
2466
2467Note that this method will always return a @code{gdb.Value} for a
2468valid register name. This does not mean that the value will be valid.
2469For example, you may request a register that an earlier unwinder could
2470not unwind---the value will be unavailable. Instead, the
2471@code{gdb.Value} returned from this method will be lazy; that is, its
2472underlying bits will not be fetched until it is first used. So,
2473attempting to use such a value will cause an exception at the point of
2474use.
2475
2476The type of the returned @code{gdb.Value} depends on the register and
2477the architecture. It is common for registers to have a scalar type,
2478like @code{long long}; but many other types are possible, such as
2479pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2480@end defun
2481
2482It also provides a factory method to create a @code{gdb.UnwindInfo}
2483instance to be returned to @value{GDBN}:
2484
2485@defun PendingFrame.create_unwind_info (frame_id)
2486Returns a new @code{gdb.UnwindInfo} instance identified by given
2487@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2488using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2489determine which function will be used, as follows:
2490
2491@table @code
d11916aa 2492@item sp, pc
e7b5068c
TT
2493The frame is identified by the given stack address and PC. The stack
2494address must be chosen so that it is constant throughout the lifetime
2495of the frame, so a typical choice is the value of the stack pointer at
2496the start of the function---in the DWARF standard, this would be the
2497``Call Frame Address''.
d11916aa 2498
e7b5068c
TT
2499This is the most common case by far. The other cases are documented
2500for completeness but are only useful in specialized situations.
2501
2502@item sp, pc, special
2503The frame is identified by the stack address, the PC, and a
2504``special'' address. The special address is used on architectures
2505that can have frames that do not change the stack, but which are still
2506distinct, for example the IA-64, which has a second stack for
2507registers. Both @var{sp} and @var{special} must be constant
2508throughout the lifetime of the frame.
d11916aa
SS
2509
2510@item sp
e7b5068c
TT
2511The frame is identified by the stack address only. Any other stack
2512frame with a matching @var{sp} will be considered to match this frame.
2513Inside gdb, this is called a ``wild frame''. You will never need
2514this.
d11916aa 2515@end table
e7b5068c
TT
2516
2517Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2518
2519@end defun
2520
2521@subheading Unwinder Output: UnwindInfo
2522
2523Use @code{PendingFrame.create_unwind_info} method described above to
2524create a @code{gdb.UnwindInfo} instance. Use the following method to
2525specify caller registers that have been saved in this frame:
2526
2527@defun gdb.UnwindInfo.add_saved_register (reg, value)
2528@var{reg} identifies the register. It can be a number or a name, just
2529as for the @code{PendingFrame.read_register} method above.
2530@var{value} is a register value (a @code{gdb.Value} object).
2531@end defun
2532
2533@subheading Unwinder Skeleton Code
2534
2535@value{GDBN} comes with the module containing the base @code{Unwinder}
2536class. Derive your unwinder class from it and structure the code as
2537follows:
2538
2539@smallexample
2540from gdb.unwinders import Unwinder
2541
2542class FrameId(object):
2543 def __init__(self, sp, pc):
2544 self.sp = sp
2545 self.pc = pc
2546
2547
2548class MyUnwinder(Unwinder):
2549 def __init__(....):
6b92c0d3 2550 super(MyUnwinder, self).__init___(<expects unwinder name argument>)
d11916aa
SS
2551
2552 def __call__(pending_frame):
2553 if not <we recognize frame>:
2554 return None
2555 # Create UnwindInfo. Usually the frame is identified by the stack
2556 # pointer and the program counter.
2557 sp = pending_frame.read_register(<SP number>)
2558 pc = pending_frame.read_register(<PC number>)
2559 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2560
2561 # Find the values of the registers in the caller's frame and
2562 # save them in the result:
2563 unwind_info.add_saved_register(<register>, <value>)
2564 ....
2565
2566 # Return the result:
2567 return unwind_info
2568
2569@end smallexample
2570
2571@subheading Registering a Unwinder
2572
2573An object file, a program space, and the @value{GDBN} proper can have
2574unwinders registered with it.
2575
2576The @code{gdb.unwinders} module provides the function to register a
2577unwinder:
2578
2579@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2580@var{locus} is specifies an object file or a program space to which
2581@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2582@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2583added @var{unwinder} will be called before any other unwinder from the
2584same locus. Two unwinders in the same locus cannot have the same
2585name. An attempt to add a unwinder with already existing name raises
2586an exception unless @var{replace} is @code{True}, in which case the
2587old unwinder is deleted.
2588@end defun
2589
2590@subheading Unwinder Precedence
2591
2592@value{GDBN} first calls the unwinders from all the object files in no
2593particular order, then the unwinders from the current program space,
2594and finally the unwinders from @value{GDBN}.
2595
0c6e92a5
SC
2596@node Xmethods In Python
2597@subsubsection Xmethods In Python
2598@cindex xmethods in Python
2599
2600@dfn{Xmethods} are additional methods or replacements for existing
2601methods of a C@t{++} class. This feature is useful for those cases
2602where a method defined in C@t{++} source code could be inlined or
2603optimized out by the compiler, making it unavailable to @value{GDBN}.
2604For such cases, one can define an xmethod to serve as a replacement
2605for the method defined in the C@t{++} source code. @value{GDBN} will
2606then invoke the xmethod, instead of the C@t{++} method, to
2607evaluate expressions. One can also use xmethods when debugging
2608with core files. Moreover, when debugging live programs, invoking an
2609xmethod need not involve running the inferior (which can potentially
2610perturb its state). Hence, even if the C@t{++} method is available, it
2611is better to use its replacement xmethod if one is defined.
2612
2613The xmethods feature in Python is available via the concepts of an
2614@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2615implement an xmethod, one has to implement a matcher and a
2616corresponding worker for it (more than one worker can be
2617implemented, each catering to a different overloaded instance of the
2618method). Internally, @value{GDBN} invokes the @code{match} method of a
2619matcher to match the class type and method name. On a match, the
2620@code{match} method returns a list of matching @emph{worker} objects.
2621Each worker object typically corresponds to an overloaded instance of
2622the xmethod. They implement a @code{get_arg_types} method which
2623returns a sequence of types corresponding to the arguments the xmethod
2624requires. @value{GDBN} uses this sequence of types to perform
2625overload resolution and picks a winning xmethod worker. A winner
2626is also selected from among the methods @value{GDBN} finds in the
2627C@t{++} source code. Next, the winning xmethod worker and the
2628winning C@t{++} method are compared to select an overall winner. In
2629case of a tie between a xmethod worker and a C@t{++} method, the
2630xmethod worker is selected as the winner. That is, if a winning
2631xmethod worker is found to be equivalent to the winning C@t{++}
2632method, then the xmethod worker is treated as a replacement for
2633the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2634method. If the winning xmethod worker is the overall winner, then
897c3d32 2635the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2636of the worker object.
2637
2638If one wants to implement an xmethod as a replacement for an
2639existing C@t{++} method, then they have to implement an equivalent
2640xmethod which has exactly the same name and takes arguments of
2641exactly the same type as the C@t{++} method. If the user wants to
2642invoke the C@t{++} method even though a replacement xmethod is
2643available for that method, then they can disable the xmethod.
2644
2645@xref{Xmethod API}, for API to implement xmethods in Python.
2646@xref{Writing an Xmethod}, for implementing xmethods in Python.
2647
2648@node Xmethod API
2649@subsubsection Xmethod API
2650@cindex xmethod API
2651
2652The @value{GDBN} Python API provides classes, interfaces and functions
2653to implement, register and manipulate xmethods.
2654@xref{Xmethods In Python}.
2655
2656An xmethod matcher should be an instance of a class derived from
2657@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2658object with similar interface and attributes. An instance of
2659@code{XMethodMatcher} has the following attributes:
2660
2661@defvar name
2662The name of the matcher.
2663@end defvar
2664
2665@defvar enabled
2666A boolean value indicating whether the matcher is enabled or disabled.
2667@end defvar
2668
2669@defvar methods
2670A list of named methods managed by the matcher. Each object in the list
2671is an instance of the class @code{XMethod} defined in the module
2672@code{gdb.xmethod}, or any object with the following attributes:
2673
2674@table @code
2675
2676@item name
2677Name of the xmethod which should be unique for each xmethod
2678managed by the matcher.
2679
2680@item enabled
2681A boolean value indicating whether the xmethod is enabled or
2682disabled.
2683
2684@end table
2685
2686The class @code{XMethod} is a convenience class with same
2687attributes as above along with the following constructor:
2688
dd5d5494 2689@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2690Constructs an enabled xmethod with name @var{name}.
2691@end defun
2692@end defvar
2693
2694@noindent
2695The @code{XMethodMatcher} class has the following methods:
2696
dd5d5494 2697@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2698Constructs an enabled xmethod matcher with name @var{name}. The
2699@code{methods} attribute is initialized to @code{None}.
2700@end defun
2701
dd5d5494 2702@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2703Derived classes should override this method. It should return a
2704xmethod worker object (or a sequence of xmethod worker
2705objects) matching the @var{class_type} and @var{method_name}.
2706@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2707is a string value. If the matcher manages named methods as listed in
2708its @code{methods} attribute, then only those worker objects whose
2709corresponding entries in the @code{methods} list are enabled should be
2710returned.
2711@end defun
2712
2713An xmethod worker should be an instance of a class derived from
2714@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2715or support the following interface:
2716
dd5d5494 2717@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2718This method returns a sequence of @code{gdb.Type} objects corresponding
2719to the arguments that the xmethod takes. It can return an empty
2720sequence or @code{None} if the xmethod does not take any arguments.
2721If the xmethod takes a single argument, then a single
2722@code{gdb.Type} object corresponding to it can be returned.
2723@end defun
2724
2ce1cdbf
DE
2725@defun XMethodWorker.get_result_type (self, *args)
2726This method returns a @code{gdb.Type} object representing the type
2727of the result of invoking this xmethod.
2728The @var{args} argument is the same tuple of arguments that would be
2729passed to the @code{__call__} method of this worker.
2730@end defun
2731
dd5d5494 2732@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2733This is the method which does the @emph{work} of the xmethod. The
2734@var{args} arguments is the tuple of arguments to the xmethod. Each
2735element in this tuple is a gdb.Value object. The first element is
2736always the @code{this} pointer value.
2737@end defun
2738
2739For @value{GDBN} to lookup xmethods, the xmethod matchers
2740should be registered using the following function defined in the module
2741@code{gdb.xmethod}:
2742
dd5d5494 2743@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2744The @code{matcher} is registered with @code{locus}, replacing an
2745existing matcher with the same name as @code{matcher} if
2746@code{replace} is @code{True}. @code{locus} can be a
2747@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2748@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2749@code{None}. If it is @code{None}, then @code{matcher} is registered
2750globally.
2751@end defun
2752
2753@node Writing an Xmethod
2754@subsubsection Writing an Xmethod
2755@cindex writing xmethods in Python
2756
2757Implementing xmethods in Python will require implementing xmethod
2758matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2759the following C@t{++} class:
2760
2761@smallexample
2762class MyClass
2763@{
2764public:
2765 MyClass (int a) : a_(a) @{ @}
2766
2767 int geta (void) @{ return a_; @}
2768 int operator+ (int b);
2769
2770private:
2771 int a_;
2772@};
2773
2774int
2775MyClass::operator+ (int b)
2776@{
2777 return a_ + b;
2778@}
2779@end smallexample
2780
2781@noindent
2782Let us define two xmethods for the class @code{MyClass}, one
2783replacing the method @code{geta}, and another adding an overloaded
2784flavor of @code{operator+} which takes a @code{MyClass} argument (the
2785C@t{++} code above already has an overloaded @code{operator+}
2786which takes an @code{int} argument). The xmethod matcher can be
2787defined as follows:
2788
2789@smallexample
2790class MyClass_geta(gdb.xmethod.XMethod):
2791 def __init__(self):
2792 gdb.xmethod.XMethod.__init__(self, 'geta')
2793
2794 def get_worker(self, method_name):
2795 if method_name == 'geta':
2796 return MyClassWorker_geta()
2797
2798
2799class MyClass_sum(gdb.xmethod.XMethod):
2800 def __init__(self):
2801 gdb.xmethod.XMethod.__init__(self, 'sum')
2802
2803 def get_worker(self, method_name):
2804 if method_name == 'operator+':
2805 return MyClassWorker_plus()
2806
2807
2808class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2809 def __init__(self):
2810 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2811 # List of methods 'managed' by this matcher
2812 self.methods = [MyClass_geta(), MyClass_sum()]
2813
2814 def match(self, class_type, method_name):
2815 if class_type.tag != 'MyClass':
2816 return None
2817 workers = []
2818 for method in self.methods:
2819 if method.enabled:
2820 worker = method.get_worker(method_name)
2821 if worker:
2822 workers.append(worker)
2823
2824 return workers
2825@end smallexample
2826
2827@noindent
2828Notice that the @code{match} method of @code{MyClassMatcher} returns
2829a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2830method, and a worker object of type @code{MyClassWorker_plus} for the
2831@code{operator+} method. This is done indirectly via helper classes
2832derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2833@code{methods} attribute in a matcher as it is optional. However, if a
2834matcher manages more than one xmethod, it is a good practice to list the
2835xmethods in the @code{methods} attribute of the matcher. This will then
2836facilitate enabling and disabling individual xmethods via the
2837@code{enable/disable} commands. Notice also that a worker object is
2838returned only if the corresponding entry in the @code{methods} attribute
2839of the matcher is enabled.
2840
2841The implementation of the worker classes returned by the matcher setup
2842above is as follows:
2843
2844@smallexample
2845class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2846 def get_arg_types(self):
2847 return None
2ce1cdbf
DE
2848
2849 def get_result_type(self, obj):
2850 return gdb.lookup_type('int')
0c6e92a5
SC
2851
2852 def __call__(self, obj):
2853 return obj['a_']
2854
2855
2856class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2857 def get_arg_types(self):
2858 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2859
2860 def get_result_type(self, obj):
2861 return gdb.lookup_type('int')
0c6e92a5
SC
2862
2863 def __call__(self, obj, other):
2864 return obj['a_'] + other['a_']
2865@end smallexample
2866
2867For @value{GDBN} to actually lookup a xmethod, it has to be
2868registered with it. The matcher defined above is registered with
2869@value{GDBN} globally as follows:
2870
2871@smallexample
2872gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2873@end smallexample
2874
2875If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2876code as follows:
2877
2878@smallexample
2879MyClass obj(5);
2880@end smallexample
2881
2882@noindent
2883then, after loading the Python script defining the xmethod matchers
2884and workers into @code{GDBN}, invoking the method @code{geta} or using
2885the operator @code{+} on @code{obj} will invoke the xmethods
2886defined above:
2887
2888@smallexample
2889(gdb) p obj.geta()
2890$1 = 5
2891
2892(gdb) p obj + obj
2893$2 = 10
2894@end smallexample
2895
2896Consider another example with a C++ template class:
2897
2898@smallexample
2899template <class T>
2900class MyTemplate
2901@{
2902public:
2903 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2904 ~MyTemplate () @{ delete [] data_; @}
2905
2906 int footprint (void)
2907 @{
2908 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2909 @}
2910
2911private:
2912 int dsize_;
2913 T *data_;
2914@};
2915@end smallexample
2916
2917Let us implement an xmethod for the above class which serves as a
2918replacement for the @code{footprint} method. The full code listing
2919of the xmethod workers and xmethod matchers is as follows:
2920
2921@smallexample
2922class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2923 def __init__(self, class_type):
2924 self.class_type = class_type
2ce1cdbf 2925
0c6e92a5
SC
2926 def get_arg_types(self):
2927 return None
2ce1cdbf
DE
2928
2929 def get_result_type(self):
2930 return gdb.lookup_type('int')
2931
0c6e92a5
SC
2932 def __call__(self, obj):
2933 return (self.class_type.sizeof +
2934 obj['dsize_'] *
2935 self.class_type.template_argument(0).sizeof)
2936
2937
2938class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2939 def __init__(self):
2940 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2941
2942 def match(self, class_type, method_name):
2943 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2944 class_type.tag) and
2945 method_name == 'footprint'):
2946 return MyTemplateWorker_footprint(class_type)
2947@end smallexample
2948
2949Notice that, in this example, we have not used the @code{methods}
2950attribute of the matcher as the matcher manages only one xmethod. The
2951user can enable/disable this xmethod by enabling/disabling the matcher
2952itself.
2953
329baa95
DE
2954@node Inferiors In Python
2955@subsubsection Inferiors In Python
2956@cindex inferiors in Python
2957
2958@findex gdb.Inferior
2959Programs which are being run under @value{GDBN} are called inferiors
65c574f6 2960(@pxref{Inferiors Connections and Programs}). Python scripts can access
329baa95
DE
2961information about and manipulate inferiors controlled by @value{GDBN}
2962via objects of the @code{gdb.Inferior} class.
2963
2964The following inferior-related functions are available in the @code{gdb}
2965module:
2966
2967@defun gdb.inferiors ()
2968Return a tuple containing all inferior objects.
2969@end defun
2970
2971@defun gdb.selected_inferior ()
2972Return an object representing the current inferior.
2973@end defun
2974
2975A @code{gdb.Inferior} object has the following attributes:
2976
2977@defvar Inferior.num
2978ID of inferior, as assigned by GDB.
2979@end defvar
2980
2981@defvar Inferior.pid
2982Process ID of the inferior, as assigned by the underlying operating
2983system.
2984@end defvar
2985
2986@defvar Inferior.was_attached
2987Boolean signaling whether the inferior was created using `attach', or
2988started by @value{GDBN} itself.
2989@end defvar
2990
a40bf0c2
SM
2991@defvar Inferior.progspace
2992The inferior's program space. @xref{Progspaces In Python}.
2993@end defvar
2994
329baa95
DE
2995A @code{gdb.Inferior} object has the following methods:
2996
2997@defun Inferior.is_valid ()
2998Returns @code{True} if the @code{gdb.Inferior} object is valid,
2999@code{False} if not. A @code{gdb.Inferior} object will become invalid
3000if the inferior no longer exists within @value{GDBN}. All other
3001@code{gdb.Inferior} methods will throw an exception if it is invalid
3002at the time the method is called.
3003@end defun
3004
3005@defun Inferior.threads ()
3006This method returns a tuple holding all the threads which are valid
3007when it is called. If there are no valid threads, the method will
3008return an empty tuple.
3009@end defun
3010
add5ded5
TT
3011@defun Inferior.architecture ()
3012Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
3013for this inferior. This represents the architecture of the inferior
3014as a whole. Some platforms can have multiple architectures in a
3015single address space, so this may not match the architecture of a
163cffef 3016particular frame (@pxref{Frames In Python}).
9e1698c6 3017@end defun
add5ded5 3018
329baa95
DE
3019@findex Inferior.read_memory
3020@defun Inferior.read_memory (address, length)
a86c90e6 3021Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
3022@var{address}. Returns a buffer object, which behaves much like an array
3023or a string. It can be modified and given to the
79778b30 3024@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
3025value is a @code{memoryview} object.
3026@end defun
3027
3028@findex Inferior.write_memory
3029@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
3030Write the contents of @var{buffer} to the inferior, starting at
3031@var{address}. The @var{buffer} parameter must be a Python object
3032which supports the buffer protocol, i.e., a string, an array or the
3033object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
3034determines the number of addressable memory units from @var{buffer} to be
3035written.
329baa95
DE
3036@end defun
3037
3038@findex gdb.search_memory
3039@defun Inferior.search_memory (address, length, pattern)
3040Search a region of the inferior memory starting at @var{address} with
3041the given @var{length} using the search pattern supplied in
3042@var{pattern}. The @var{pattern} parameter must be a Python object
3043which supports the buffer protocol, i.e., a string, an array or the
3044object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
3045containing the address where the pattern was found, or @code{None} if
3046the pattern could not be found.
3047@end defun
3048
2b0c8b01 3049@findex Inferior.thread_from_handle
da2c323b 3050@findex Inferior.thread_from_thread_handle
2b0c8b01
KB
3051@defun Inferior.thread_from_handle (handle)
3052Return the thread object corresponding to @var{handle}, a thread
da2c323b
KB
3053library specific data structure such as @code{pthread_t} for pthreads
3054library implementations.
2b0c8b01
KB
3055
3056The function @code{Inferior.thread_from_thread_handle} provides
3057the same functionality, but use of @code{Inferior.thread_from_thread_handle}
3058is deprecated.
da2c323b
KB
3059@end defun
3060
329baa95
DE
3061@node Events In Python
3062@subsubsection Events In Python
3063@cindex inferior events in Python
3064
3065@value{GDBN} provides a general event facility so that Python code can be
3066notified of various state changes, particularly changes that occur in
3067the inferior.
3068
3069An @dfn{event} is just an object that describes some state change. The
3070type of the object and its attributes will vary depending on the details
3071of the change. All the existing events are described below.
3072
3073In order to be notified of an event, you must register an event handler
3074with an @dfn{event registry}. An event registry is an object in the
3075@code{gdb.events} module which dispatches particular events. A registry
3076provides methods to register and unregister event handlers:
3077
3078@defun EventRegistry.connect (object)
3079Add the given callable @var{object} to the registry. This object will be
3080called when an event corresponding to this registry occurs.
3081@end defun
3082
3083@defun EventRegistry.disconnect (object)
3084Remove the given @var{object} from the registry. Once removed, the object
3085will no longer receive notifications of events.
3086@end defun
3087
3088Here is an example:
3089
3090@smallexample
3091def exit_handler (event):
3092 print "event type: exit"
3093 print "exit code: %d" % (event.exit_code)
3094
3095gdb.events.exited.connect (exit_handler)
3096@end smallexample
3097
3098In the above example we connect our handler @code{exit_handler} to the
3099registry @code{events.exited}. Once connected, @code{exit_handler} gets
3100called when the inferior exits. The argument @dfn{event} in this example is
3101of type @code{gdb.ExitedEvent}. As you can see in the example the
3102@code{ExitedEvent} object has an attribute which indicates the exit code of
3103the inferior.
3104
3105The following is a listing of the event registries that are available and
3106details of the events they emit:
3107
3108@table @code
3109
3110@item events.cont
3111Emits @code{gdb.ThreadEvent}.
3112
3113Some events can be thread specific when @value{GDBN} is running in non-stop
3114mode. When represented in Python, these events all extend
3115@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
3116events which are emitted by this or other modules might extend this event.
3117Examples of these events are @code{gdb.BreakpointEvent} and
3118@code{gdb.ContinueEvent}.
3119
3120@defvar ThreadEvent.inferior_thread
3121In non-stop mode this attribute will be set to the specific thread which was
3122involved in the emitted event. Otherwise, it will be set to @code{None}.
3123@end defvar
3124
3125Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
3126
3127This event indicates that the inferior has been continued after a stop. For
3128inherited attribute refer to @code{gdb.ThreadEvent} above.
3129
3130@item events.exited
3131Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
3132@code{events.ExitedEvent} has two attributes:
3133@defvar ExitedEvent.exit_code
3134An integer representing the exit code, if available, which the inferior
3135has returned. (The exit code could be unavailable if, for example,
3136@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
3137the attribute does not exist.
3138@end defvar
373832b6 3139@defvar ExitedEvent.inferior
329baa95
DE
3140A reference to the inferior which triggered the @code{exited} event.
3141@end defvar
3142
3143@item events.stop
3144Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
3145
3146Indicates that the inferior has stopped. All events emitted by this registry
3147extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
3148will indicate the stopped thread when @value{GDBN} is running in non-stop
3149mode. Refer to @code{gdb.ThreadEvent} above for more details.
3150
3151Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
3152
3153This event indicates that the inferior or one of its threads has received as
3154signal. @code{gdb.SignalEvent} has the following attributes:
3155
3156@defvar SignalEvent.stop_signal
3157A string representing the signal received by the inferior. A list of possible
3158signal values can be obtained by running the command @code{info signals} in
3159the @value{GDBN} command prompt.
3160@end defvar
3161
3162Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
3163
3164@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3165been hit, and has the following attributes:
3166
3167@defvar BreakpointEvent.breakpoints
3168A sequence containing references to all the breakpoints (type
3169@code{gdb.Breakpoint}) that were hit.
3170@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3171@end defvar
3172@defvar BreakpointEvent.breakpoint
3173A reference to the first breakpoint that was hit.
3174This function is maintained for backward compatibility and is now deprecated
3175in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3176@end defvar
3177
3178@item events.new_objfile
3179Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3180been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3181
3182@defvar NewObjFileEvent.new_objfile
3183A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3184@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3185@end defvar
3186
4ffbba72
DE
3187@item events.clear_objfiles
3188Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3189files for a program space has been reset.
3190@code{gdb.ClearObjFilesEvent} has one attribute:
3191
3192@defvar ClearObjFilesEvent.progspace
3193A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3194been cleared. @xref{Progspaces In Python}.
3195@end defvar
3196
fb5af5e3
TT
3197@item events.inferior_call
3198Emits events just before and after a function in the inferior is
3199called by @value{GDBN}. Before an inferior call, this emits an event
3200of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3201this emits an event of type @code{gdb.InferiorCallPostEvent}.
3202
3203@table @code
3204@tindex gdb.InferiorCallPreEvent
3205@item @code{gdb.InferiorCallPreEvent}
3206Indicates that a function in the inferior is about to be called.
162078c8
NB
3207
3208@defvar InferiorCallPreEvent.ptid
3209The thread in which the call will be run.
3210@end defvar
3211
3212@defvar InferiorCallPreEvent.address
3213The location of the function to be called.
3214@end defvar
3215
fb5af5e3
TT
3216@tindex gdb.InferiorCallPostEvent
3217@item @code{gdb.InferiorCallPostEvent}
3218Indicates that a function in the inferior has just been called.
162078c8
NB
3219
3220@defvar InferiorCallPostEvent.ptid
3221The thread in which the call was run.
3222@end defvar
3223
3224@defvar InferiorCallPostEvent.address
3225The location of the function that was called.
3226@end defvar
fb5af5e3 3227@end table
162078c8
NB
3228
3229@item events.memory_changed
3230Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3231inferior has been modified by the @value{GDBN} user, for instance via a
3232command like @w{@code{set *addr = value}}. The event has the following
3233attributes:
3234
3235@defvar MemoryChangedEvent.address
3236The start address of the changed region.
3237@end defvar
3238
3239@defvar MemoryChangedEvent.length
3240Length in bytes of the changed region.
3241@end defvar
3242
3243@item events.register_changed
3244Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3245inferior has been modified by the @value{GDBN} user.
3246
3247@defvar RegisterChangedEvent.frame
3248A gdb.Frame object representing the frame in which the register was modified.
3249@end defvar
3250@defvar RegisterChangedEvent.regnum
3251Denotes which register was modified.
3252@end defvar
3253
dac790e1
TT
3254@item events.breakpoint_created
3255This is emitted when a new breakpoint has been created. The argument
3256that is passed is the new @code{gdb.Breakpoint} object.
3257
3258@item events.breakpoint_modified
3259This is emitted when a breakpoint has been modified in some way. The
3260argument that is passed is the new @code{gdb.Breakpoint} object.
3261
3262@item events.breakpoint_deleted
3263This is emitted when a breakpoint has been deleted. The argument that
3264is passed is the @code{gdb.Breakpoint} object. When this event is
3265emitted, the @code{gdb.Breakpoint} object will already be in its
3266invalid state; that is, the @code{is_valid} method will return
3267@code{False}.
3268
3f77c769
TT
3269@item events.before_prompt
3270This event carries no payload. It is emitted each time @value{GDBN}
3271presents a prompt to the user.
3272
7c96f8c1
TT
3273@item events.new_inferior
3274This is emitted when a new inferior is created. Note that the
3275inferior is not necessarily running; in fact, it may not even have an
3276associated executable.
3277
3278The event is of type @code{gdb.NewInferiorEvent}. This has a single
3279attribute:
3280
3281@defvar NewInferiorEvent.inferior
3282The new inferior, a @code{gdb.Inferior} object.
3283@end defvar
3284
3285@item events.inferior_deleted
3286This is emitted when an inferior has been deleted. Note that this is
3287not the same as process exit; it is notified when the inferior itself
3288is removed, say via @code{remove-inferiors}.
3289
3290The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3291attribute:
3292
3293@defvar NewInferiorEvent.inferior
3294The inferior that is being removed, a @code{gdb.Inferior} object.
3295@end defvar
3296
3297@item events.new_thread
3298This is emitted when @value{GDBN} notices a new thread. The event is of
3299type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3300This has a single attribute:
3301
3302@defvar NewThreadEvent.inferior_thread
3303The new thread.
3304@end defvar
3305
329baa95
DE
3306@end table
3307
3308@node Threads In Python
3309@subsubsection Threads In Python
3310@cindex threads in python
3311
3312@findex gdb.InferiorThread
3313Python scripts can access information about, and manipulate inferior threads
3314controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3315
3316The following thread-related functions are available in the @code{gdb}
3317module:
3318
3319@findex gdb.selected_thread
3320@defun gdb.selected_thread ()
3321This function returns the thread object for the selected thread. If there
3322is no selected thread, this will return @code{None}.
3323@end defun
3324
14796d29 3325To get the list of threads for an inferior, use the @code{Inferior.threads()}
0ca4866a 3326method. @xref{Inferiors In Python}.
14796d29 3327
329baa95
DE
3328A @code{gdb.InferiorThread} object has the following attributes:
3329
3330@defvar InferiorThread.name
3331The name of the thread. If the user specified a name using
3332@code{thread name}, then this returns that name. Otherwise, if an
3333OS-supplied name is available, then it is returned. Otherwise, this
3334returns @code{None}.
3335
3336This attribute can be assigned to. The new value must be a string
3337object, which sets the new name, or @code{None}, which removes any
3338user-specified thread name.
3339@end defvar
3340
3341@defvar InferiorThread.num
5d5658a1 3342The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3343@end defvar
3344
22a02324
PA
3345@defvar InferiorThread.global_num
3346The global ID of the thread, as assigned by GDB. You can use this to
3347make Python breakpoints thread-specific, for example
3348(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3349@end defvar
3350
329baa95
DE
3351@defvar InferiorThread.ptid
3352ID of the thread, as assigned by the operating system. This attribute is a
3353tuple containing three integers. The first is the Process ID (PID); the second
3354is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3355Either the LWPID or TID may be 0, which indicates that the operating system
3356does not use that identifier.
3357@end defvar
3358
84654457
PA
3359@defvar InferiorThread.inferior
3360The inferior this thread belongs to. This attribute is represented as
3361a @code{gdb.Inferior} object. This attribute is not writable.
3362@end defvar
3363
329baa95
DE
3364A @code{gdb.InferiorThread} object has the following methods:
3365
3366@defun InferiorThread.is_valid ()
3367Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3368@code{False} if not. A @code{gdb.InferiorThread} object will become
3369invalid if the thread exits, or the inferior that the thread belongs
3370is deleted. All other @code{gdb.InferiorThread} methods will throw an
3371exception if it is invalid at the time the method is called.
3372@end defun
3373
3374@defun InferiorThread.switch ()
3375This changes @value{GDBN}'s currently selected thread to the one represented
3376by this object.
3377@end defun
3378
3379@defun InferiorThread.is_stopped ()
3380Return a Boolean indicating whether the thread is stopped.
3381@end defun
3382
3383@defun InferiorThread.is_running ()
3384Return a Boolean indicating whether the thread is running.
3385@end defun
3386
3387@defun InferiorThread.is_exited ()
3388Return a Boolean indicating whether the thread is exited.
3389@end defun
3390
c369f8f0
KB
3391@defun InferiorThread.handle ()
3392Return the thread object's handle, represented as a Python @code{bytes}
3393object. A @code{gdb.Value} representation of the handle may be
3394constructed via @code{gdb.Value(bufobj, type)} where @var{bufobj} is
3395the Python @code{bytes} representation of the handle and @var{type} is
3396a @code{gdb.Type} for the handle type.
3397@end defun
3398
0a0faf9f
TW
3399@node Recordings In Python
3400@subsubsection Recordings In Python
3401@cindex recordings in python
3402
3403The following recordings-related functions
3404(@pxref{Process Record and Replay}) are available in the @code{gdb}
3405module:
3406
3407@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3408Start a recording using the given @var{method} and @var{format}. If
3409no @var{format} is given, the default format for the recording method
3410is used. If no @var{method} is given, the default method will be used.
3411Returns a @code{gdb.Record} object on success. Throw an exception on
3412failure.
3413
3414The following strings can be passed as @var{method}:
3415
3416@itemize @bullet
3417@item
3418@code{"full"}
3419@item
3420@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3421@code{"bts"} or leave out for default format.
3422@end itemize
3423@end defun
3424
3425@defun gdb.current_recording ()
3426Access a currently running recording. Return a @code{gdb.Record}
3427object on success. Return @code{None} if no recording is currently
3428active.
3429@end defun
3430
3431@defun gdb.stop_recording ()
3432Stop the current recording. Throw an exception if no recording is
3433currently active. All record objects become invalid after this call.
3434@end defun
3435
3436A @code{gdb.Record} object has the following attributes:
3437
0a0faf9f
TW
3438@defvar Record.method
3439A string with the current recording method, e.g.@: @code{full} or
3440@code{btrace}.
3441@end defvar
3442
3443@defvar Record.format
3444A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3445@code{None}.
3446@end defvar
3447
3448@defvar Record.begin
3449A method specific instruction object representing the first instruction
3450in this recording.
3451@end defvar
3452
3453@defvar Record.end
3454A method specific instruction object representing the current
3455instruction, that is not actually part of the recording.
3456@end defvar
3457
3458@defvar Record.replay_position
3459The instruction representing the current replay position. If there is
3460no replay active, this will be @code{None}.
3461@end defvar
3462
3463@defvar Record.instruction_history
3464A list with all recorded instructions.
3465@end defvar
3466
3467@defvar Record.function_call_history
3468A list with all recorded function call segments.
3469@end defvar
3470
3471A @code{gdb.Record} object has the following methods:
3472
3473@defun Record.goto (instruction)
3474Move the replay position to the given @var{instruction}.
3475@end defun
3476
d050f7d7
TW
3477The common @code{gdb.Instruction} class that recording method specific
3478instruction objects inherit from, has the following attributes:
0a0faf9f 3479
d050f7d7 3480@defvar Instruction.pc
913aeadd 3481An integer representing this instruction's address.
0a0faf9f
TW
3482@end defvar
3483
d050f7d7 3484@defvar Instruction.data
913aeadd
TW
3485A buffer with the raw instruction data. In Python 3, the return value is a
3486@code{memoryview} object.
0a0faf9f
TW
3487@end defvar
3488
d050f7d7 3489@defvar Instruction.decoded
913aeadd 3490A human readable string with the disassembled instruction.
0a0faf9f
TW
3491@end defvar
3492
d050f7d7 3493@defvar Instruction.size
913aeadd 3494The size of the instruction in bytes.
0a0faf9f
TW
3495@end defvar
3496
d050f7d7
TW
3497Additionally @code{gdb.RecordInstruction} has the following attributes:
3498
3499@defvar RecordInstruction.number
3500An integer identifying this instruction. @code{number} corresponds to
3501the numbers seen in @code{record instruction-history}
3502(@pxref{Process Record and Replay}).
3503@end defvar
3504
3505@defvar RecordInstruction.sal
3506A @code{gdb.Symtab_and_line} object representing the associated symtab
3507and line of this instruction. May be @code{None} if no debug information is
3508available.
3509@end defvar
3510
0ed5da75 3511@defvar RecordInstruction.is_speculative
d050f7d7 3512A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3513@end defvar
3514
3515If an error occured during recording or decoding a recording, this error is
3516represented by a @code{gdb.RecordGap} object in the instruction list. It has
3517the following attributes:
3518
3519@defvar RecordGap.number
3520An integer identifying this gap. @code{number} corresponds to the numbers seen
3521in @code{record instruction-history} (@pxref{Process Record and Replay}).
3522@end defvar
3523
3524@defvar RecordGap.error_code
3525A numerical representation of the reason for the gap. The value is specific to
3526the current recording method.
3527@end defvar
3528
3529@defvar RecordGap.error_string
3530A human readable string with the reason for the gap.
0a0faf9f
TW
3531@end defvar
3532
14f819c8 3533A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3534
14f819c8
TW
3535@defvar RecordFunctionSegment.number
3536An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3537the numbers seen in @code{record function-call-history}
3538(@pxref{Process Record and Replay}).
3539@end defvar
3540
14f819c8 3541@defvar RecordFunctionSegment.symbol
0a0faf9f 3542A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3543@code{None} if no debug information is available.
0a0faf9f
TW
3544@end defvar
3545
14f819c8 3546@defvar RecordFunctionSegment.level
0a0faf9f
TW
3547An integer representing the function call's stack level. May be
3548@code{None} if the function call is a gap.
3549@end defvar
3550
14f819c8 3551@defvar RecordFunctionSegment.instructions
0ed5da75 3552A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3553associated with this function call.
0a0faf9f
TW
3554@end defvar
3555
14f819c8
TW
3556@defvar RecordFunctionSegment.up
3557A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3558function segment. If the call has not been recorded, this will be the
3559function segment to which control returns. If neither the call nor the
3560return have been recorded, this will be @code{None}.
3561@end defvar
3562
14f819c8
TW
3563@defvar RecordFunctionSegment.prev
3564A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3565segment of this function call. May be @code{None}.
3566@end defvar
3567
14f819c8
TW
3568@defvar RecordFunctionSegment.next
3569A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3570this function call. May be @code{None}.
3571@end defvar
3572
3573The following example demonstrates the usage of these objects and
3574functions to create a function that will rewind a record to the last
3575time a function in a different file was executed. This would typically
3576be used to track the execution of user provided callback functions in a
3577library which typically are not visible in a back trace.
3578
3579@smallexample
3580def bringback ():
3581 rec = gdb.current_recording ()
3582 if not rec:
3583 return
3584
3585 insn = rec.instruction_history
3586 if len (insn) == 0:
3587 return
3588
3589 try:
3590 position = insn.index (rec.replay_position)
3591 except:
3592 position = -1
3593 try:
3594 filename = insn[position].sal.symtab.fullname ()
3595 except:
3596 filename = None
3597
3598 for i in reversed (insn[:position]):
3599 try:
3600 current = i.sal.symtab.fullname ()
3601 except:
3602 current = None
3603
3604 if filename == current:
3605 continue
3606
3607 rec.goto (i)
3608 return
3609@end smallexample
3610
3611Another possible application is to write a function that counts the
3612number of code executions in a given line range. This line range can
3613contain parts of functions or span across several functions and is not
3614limited to be contiguous.
3615
3616@smallexample
3617def countrange (filename, linerange):
3618 count = 0
3619
3620 def filter_only (file_name):
3621 for call in gdb.current_recording ().function_call_history:
3622 try:
3623 if file_name in call.symbol.symtab.fullname ():
3624 yield call
3625 except:
3626 pass
3627
3628 for c in filter_only (filename):
3629 for i in c.instructions:
3630 try:
3631 if i.sal.line in linerange:
3632 count += 1
3633 break;
3634 except:
3635 pass
3636
3637 return count
3638@end smallexample
3639
329baa95
DE
3640@node Commands In Python
3641@subsubsection Commands In Python
3642
3643@cindex commands in python
3644@cindex python commands
3645You can implement new @value{GDBN} CLI commands in Python. A CLI
3646command is implemented using an instance of the @code{gdb.Command}
3647class, most commonly using a subclass.
3648
3649@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3650The object initializer for @code{Command} registers the new command
3651with @value{GDBN}. This initializer is normally invoked from the
3652subclass' own @code{__init__} method.
3653
3654@var{name} is the name of the command. If @var{name} consists of
3655multiple words, then the initial words are looked for as prefix
3656commands. In this case, if one of the prefix commands does not exist,
3657an exception is raised.
3658
3659There is no support for multi-line commands.
3660
3661@var{command_class} should be one of the @samp{COMMAND_} constants
3662defined below. This argument tells @value{GDBN} how to categorize the
3663new command in the help system.
3664
3665@var{completer_class} is an optional argument. If given, it should be
3666one of the @samp{COMPLETE_} constants defined below. This argument
3667tells @value{GDBN} how to perform completion for this command. If not
3668given, @value{GDBN} will attempt to complete using the object's
3669@code{complete} method (see below); if no such method is found, an
3670error will occur when completion is attempted.
3671
3672@var{prefix} is an optional argument. If @code{True}, then the new
3673command is a prefix command; sub-commands of this command may be
3674registered.
3675
3676The help text for the new command is taken from the Python
3677documentation string for the command's class, if there is one. If no
3678documentation string is provided, the default value ``This command is
3679not documented.'' is used.
3680@end defun
3681
3682@cindex don't repeat Python command
3683@defun Command.dont_repeat ()
3684By default, a @value{GDBN} command is repeated when the user enters a
3685blank line at the command prompt. A command can suppress this
3686behavior by invoking the @code{dont_repeat} method. This is similar
3687to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3688@end defun
3689
3690@defun Command.invoke (argument, from_tty)
3691This method is called by @value{GDBN} when this command is invoked.
3692
3693@var{argument} is a string. It is the argument to the command, after
3694leading and trailing whitespace has been stripped.
3695
3696@var{from_tty} is a boolean argument. When true, this means that the
3697command was entered by the user at the terminal; when false it means
3698that the command came from elsewhere.
3699
3700If this method throws an exception, it is turned into a @value{GDBN}
3701@code{error} call. Otherwise, the return value is ignored.
3702
3703@findex gdb.string_to_argv
3704To break @var{argument} up into an argv-like string use
3705@code{gdb.string_to_argv}. This function behaves identically to
3706@value{GDBN}'s internal argument lexer @code{buildargv}.
3707It is recommended to use this for consistency.
3708Arguments are separated by spaces and may be quoted.
3709Example:
3710
3711@smallexample
3712print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3713['1', '2 "3', '4 "5', "6 '7"]
3714@end smallexample
3715
3716@end defun
3717
3718@cindex completion of Python commands
3719@defun Command.complete (text, word)
3720This method is called by @value{GDBN} when the user attempts
3721completion on this command. All forms of completion are handled by
3722this method, that is, the @key{TAB} and @key{M-?} key bindings
3723(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3724complete}).
3725
697aa1b7
EZ
3726The arguments @var{text} and @var{word} are both strings; @var{text}
3727holds the complete command line up to the cursor's location, while
329baa95
DE
3728@var{word} holds the last word of the command line; this is computed
3729using a word-breaking heuristic.
3730
3731The @code{complete} method can return several values:
3732@itemize @bullet
3733@item
3734If the return value is a sequence, the contents of the sequence are
3735used as the completions. It is up to @code{complete} to ensure that the
3736contents actually do complete the word. A zero-length sequence is
3737allowed, it means that there were no completions available. Only
3738string elements of the sequence are used; other elements in the
3739sequence are ignored.
3740
3741@item
3742If the return value is one of the @samp{COMPLETE_} constants defined
3743below, then the corresponding @value{GDBN}-internal completion
3744function is invoked, and its result is used.
3745
3746@item
3747All other results are treated as though there were no available
3748completions.
3749@end itemize
3750@end defun
3751
3752When a new command is registered, it must be declared as a member of
3753some general class of commands. This is used to classify top-level
3754commands in the on-line help system; note that prefix commands are not
3755listed under their own category but rather that of their top-level
3756command. The available classifications are represented by constants
3757defined in the @code{gdb} module:
3758
3759@table @code
3760@findex COMMAND_NONE
3761@findex gdb.COMMAND_NONE
3762@item gdb.COMMAND_NONE
3763The command does not belong to any particular class. A command in
3764this category will not be displayed in any of the help categories.
3765
3766@findex COMMAND_RUNNING
3767@findex gdb.COMMAND_RUNNING
3768@item gdb.COMMAND_RUNNING
3769The command is related to running the inferior. For example,
3770@code{start}, @code{step}, and @code{continue} are in this category.
3771Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3772commands in this category.
3773
3774@findex COMMAND_DATA
3775@findex gdb.COMMAND_DATA
3776@item gdb.COMMAND_DATA
3777The command is related to data or variables. For example,
3778@code{call}, @code{find}, and @code{print} are in this category. Type
3779@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3780in this category.
3781
3782@findex COMMAND_STACK
3783@findex gdb.COMMAND_STACK
3784@item gdb.COMMAND_STACK
3785The command has to do with manipulation of the stack. For example,
3786@code{backtrace}, @code{frame}, and @code{return} are in this
3787category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3788list of commands in this category.
3789
3790@findex COMMAND_FILES
3791@findex gdb.COMMAND_FILES
3792@item gdb.COMMAND_FILES
3793This class is used for file-related commands. For example,
3794@code{file}, @code{list} and @code{section} are in this category.
3795Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3796commands in this category.
3797
3798@findex COMMAND_SUPPORT
3799@findex gdb.COMMAND_SUPPORT
3800@item gdb.COMMAND_SUPPORT
3801This should be used for ``support facilities'', generally meaning
3802things that are useful to the user when interacting with @value{GDBN},
3803but not related to the state of the inferior. For example,
3804@code{help}, @code{make}, and @code{shell} are in this category. Type
3805@kbd{help support} at the @value{GDBN} prompt to see a list of
3806commands in this category.
3807
3808@findex COMMAND_STATUS
3809@findex gdb.COMMAND_STATUS
3810@item gdb.COMMAND_STATUS
3811The command is an @samp{info}-related command, that is, related to the
3812state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3813and @code{show} are in this category. Type @kbd{help status} at the
3814@value{GDBN} prompt to see a list of commands in this category.
3815
3816@findex COMMAND_BREAKPOINTS
3817@findex gdb.COMMAND_BREAKPOINTS
3818@item gdb.COMMAND_BREAKPOINTS
3819The command has to do with breakpoints. For example, @code{break},
3820@code{clear}, and @code{delete} are in this category. Type @kbd{help
3821breakpoints} at the @value{GDBN} prompt to see a list of commands in
3822this category.
3823
3824@findex COMMAND_TRACEPOINTS
3825@findex gdb.COMMAND_TRACEPOINTS
3826@item gdb.COMMAND_TRACEPOINTS
3827The command has to do with tracepoints. For example, @code{trace},
3828@code{actions}, and @code{tfind} are in this category. Type
3829@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3830commands in this category.
3831
2b2fbab8
TT
3832@findex COMMAND_TUI
3833@findex gdb.COMMAND_TUI
3834@item gdb.COMMAND_TUI
3835The command has to do with the text user interface (@pxref{TUI}).
3836Type @kbd{help tui} at the @value{GDBN} prompt to see a list of
3837commands in this category.
3838
329baa95
DE
3839@findex COMMAND_USER
3840@findex gdb.COMMAND_USER
3841@item gdb.COMMAND_USER
3842The command is a general purpose command for the user, and typically
3843does not fit in one of the other categories.
3844Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3845a list of commands in this category, as well as the list of gdb macros
3846(@pxref{Sequences}).
3847
3848@findex COMMAND_OBSCURE
3849@findex gdb.COMMAND_OBSCURE
3850@item gdb.COMMAND_OBSCURE
3851The command is only used in unusual circumstances, or is not of
3852general interest to users. For example, @code{checkpoint},
3853@code{fork}, and @code{stop} are in this category. Type @kbd{help
3854obscure} at the @value{GDBN} prompt to see a list of commands in this
3855category.
3856
3857@findex COMMAND_MAINTENANCE
3858@findex gdb.COMMAND_MAINTENANCE
3859@item gdb.COMMAND_MAINTENANCE
3860The command is only useful to @value{GDBN} maintainers. The
3861@code{maintenance} and @code{flushregs} commands are in this category.
3862Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3863commands in this category.
3864@end table
3865
3866A new command can use a predefined completion function, either by
3867specifying it via an argument at initialization, or by returning it
3868from the @code{complete} method. These predefined completion
3869constants are all defined in the @code{gdb} module:
3870
b3ce5e5f
DE
3871@vtable @code
3872@vindex COMPLETE_NONE
329baa95
DE
3873@item gdb.COMPLETE_NONE
3874This constant means that no completion should be done.
3875
b3ce5e5f 3876@vindex COMPLETE_FILENAME
329baa95
DE
3877@item gdb.COMPLETE_FILENAME
3878This constant means that filename completion should be performed.
3879
b3ce5e5f 3880@vindex COMPLETE_LOCATION
329baa95
DE
3881@item gdb.COMPLETE_LOCATION
3882This constant means that location completion should be done.
3883@xref{Specify Location}.
3884
b3ce5e5f 3885@vindex COMPLETE_COMMAND
329baa95
DE
3886@item gdb.COMPLETE_COMMAND
3887This constant means that completion should examine @value{GDBN}
3888command names.
3889
b3ce5e5f 3890@vindex COMPLETE_SYMBOL
329baa95
DE
3891@item gdb.COMPLETE_SYMBOL
3892This constant means that completion should be done using symbol names
3893as the source.
3894
b3ce5e5f 3895@vindex COMPLETE_EXPRESSION
329baa95
DE
3896@item gdb.COMPLETE_EXPRESSION
3897This constant means that completion should be done on expressions.
3898Often this means completing on symbol names, but some language
3899parsers also have support for completing on field names.
b3ce5e5f 3900@end vtable
329baa95
DE
3901
3902The following code snippet shows how a trivial CLI command can be
3903implemented in Python:
3904
3905@smallexample
3906class HelloWorld (gdb.Command):
3907 """Greet the whole world."""
3908
3909 def __init__ (self):
3910 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3911
3912 def invoke (self, arg, from_tty):
3913 print "Hello, World!"
3914
3915HelloWorld ()
3916@end smallexample
3917
3918The last line instantiates the class, and is necessary to trigger the
3919registration of the command with @value{GDBN}. Depending on how the
3920Python code is read into @value{GDBN}, you may need to import the
3921@code{gdb} module explicitly.
3922
3923@node Parameters In Python
3924@subsubsection Parameters In Python
3925
3926@cindex parameters in python
3927@cindex python parameters
3928@tindex gdb.Parameter
3929@tindex Parameter
3930You can implement new @value{GDBN} parameters using Python. A new
3931parameter is implemented as an instance of the @code{gdb.Parameter}
3932class.
3933
3934Parameters are exposed to the user via the @code{set} and
3935@code{show} commands. @xref{Help}.
3936
3937There are many parameters that already exist and can be set in
3938@value{GDBN}. Two examples are: @code{set follow fork} and
3939@code{set charset}. Setting these parameters influences certain
3940behavior in @value{GDBN}. Similarly, you can define parameters that
3941can be used to influence behavior in custom Python scripts and commands.
3942
3943@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3944The object initializer for @code{Parameter} registers the new
3945parameter with @value{GDBN}. This initializer is normally invoked
3946from the subclass' own @code{__init__} method.
3947
3948@var{name} is the name of the new parameter. If @var{name} consists
3949of multiple words, then the initial words are looked for as prefix
3950parameters. An example of this can be illustrated with the
3951@code{set print} set of parameters. If @var{name} is
3952@code{print foo}, then @code{print} will be searched as the prefix
3953parameter. In this case the parameter can subsequently be accessed in
3954@value{GDBN} as @code{set print foo}.
3955
3956If @var{name} consists of multiple words, and no prefix parameter group
3957can be found, an exception is raised.
3958
3959@var{command-class} should be one of the @samp{COMMAND_} constants
3960(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3961categorize the new parameter in the help system.
3962
3963@var{parameter-class} should be one of the @samp{PARAM_} constants
3964defined below. This argument tells @value{GDBN} the type of the new
3965parameter; this information is used for input validation and
3966completion.
3967
3968If @var{parameter-class} is @code{PARAM_ENUM}, then
3969@var{enum-sequence} must be a sequence of strings. These strings
3970represent the possible values for the parameter.
3971
3972If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3973of a fourth argument will cause an exception to be thrown.
3974
3975The help text for the new parameter is taken from the Python
3976documentation string for the parameter's class, if there is one. If
3977there is no documentation string, a default value is used.
3978@end defun
3979
3980@defvar Parameter.set_doc
3981If this attribute exists, and is a string, then its value is used as
3982the help text for this parameter's @code{set} command. The value is
3983examined when @code{Parameter.__init__} is invoked; subsequent changes
3984have no effect.
3985@end defvar
3986
3987@defvar Parameter.show_doc
3988If this attribute exists, and is a string, then its value is used as
3989the help text for this parameter's @code{show} command. The value is
3990examined when @code{Parameter.__init__} is invoked; subsequent changes
3991have no effect.
3992@end defvar
3993
3994@defvar Parameter.value
3995The @code{value} attribute holds the underlying value of the
3996parameter. It can be read and assigned to just as any other
3997attribute. @value{GDBN} does validation when assignments are made.
3998@end defvar
3999
984ee559
TT
4000There are two methods that may be implemented in any @code{Parameter}
4001class. These are:
329baa95
DE
4002
4003@defun Parameter.get_set_string (self)
984ee559
TT
4004If this method exists, @value{GDBN} will call it when a
4005@var{parameter}'s value has been changed via the @code{set} API (for
4006example, @kbd{set foo off}). The @code{value} attribute has already
4007been populated with the new value and may be used in output. This
4008method must return a string. If the returned string is not empty,
4009@value{GDBN} will present it to the user.
ae778caf
TT
4010
4011If this method raises the @code{gdb.GdbError} exception
4012(@pxref{Exception Handling}), then @value{GDBN} will print the
4013exception's string and the @code{set} command will fail. Note,
4014however, that the @code{value} attribute will not be reset in this
4015case. So, if your parameter must validate values, it should store the
4016old value internally and reset the exposed value, like so:
4017
4018@smallexample
4019class ExampleParam (gdb.Parameter):
4020 def __init__ (self, name):
4021 super (ExampleParam, self).__init__ (name,
4022 gdb.COMMAND_DATA,
4023 gdb.PARAM_BOOLEAN)
4024 self.value = True
4025 self.saved_value = True
4026 def validate(self):
4027 return False
4028 def get_set_string (self):
4029 if not self.validate():
4030 self.value = self.saved_value
4031 raise gdb.GdbError('Failed to validate')
4032 self.saved_value = self.value
4033@end smallexample
329baa95
DE
4034@end defun
4035
4036@defun Parameter.get_show_string (self, svalue)
4037@value{GDBN} will call this method when a @var{parameter}'s
4038@code{show} API has been invoked (for example, @kbd{show foo}). The
4039argument @code{svalue} receives the string representation of the
4040current value. This method must return a string.
4041@end defun
4042
4043When a new parameter is defined, its type must be specified. The
4044available types are represented by constants defined in the @code{gdb}
4045module:
4046
4047@table @code
4048@findex PARAM_BOOLEAN
4049@findex gdb.PARAM_BOOLEAN
4050@item gdb.PARAM_BOOLEAN
4051The value is a plain boolean. The Python boolean values, @code{True}
4052and @code{False} are the only valid values.
4053
4054@findex PARAM_AUTO_BOOLEAN
4055@findex gdb.PARAM_AUTO_BOOLEAN
4056@item gdb.PARAM_AUTO_BOOLEAN
4057The value has three possible states: true, false, and @samp{auto}. In
4058Python, true and false are represented using boolean constants, and
4059@samp{auto} is represented using @code{None}.
4060
4061@findex PARAM_UINTEGER
4062@findex gdb.PARAM_UINTEGER
4063@item gdb.PARAM_UINTEGER
4064The value is an unsigned integer. The value of 0 should be
4065interpreted to mean ``unlimited''.
4066
4067@findex PARAM_INTEGER
4068@findex gdb.PARAM_INTEGER
4069@item gdb.PARAM_INTEGER
4070The value is a signed integer. The value of 0 should be interpreted
4071to mean ``unlimited''.
4072
4073@findex PARAM_STRING
4074@findex gdb.PARAM_STRING
4075@item gdb.PARAM_STRING
4076The value is a string. When the user modifies the string, any escape
4077sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
4078translated into corresponding characters and encoded into the current
4079host charset.
4080
4081@findex PARAM_STRING_NOESCAPE
4082@findex gdb.PARAM_STRING_NOESCAPE
4083@item gdb.PARAM_STRING_NOESCAPE
4084The value is a string. When the user modifies the string, escapes are
4085passed through untranslated.
4086
4087@findex PARAM_OPTIONAL_FILENAME
4088@findex gdb.PARAM_OPTIONAL_FILENAME
4089@item gdb.PARAM_OPTIONAL_FILENAME
4090The value is a either a filename (a string), or @code{None}.
4091
4092@findex PARAM_FILENAME
4093@findex gdb.PARAM_FILENAME
4094@item gdb.PARAM_FILENAME
4095The value is a filename. This is just like
4096@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
4097
4098@findex PARAM_ZINTEGER
4099@findex gdb.PARAM_ZINTEGER
4100@item gdb.PARAM_ZINTEGER
4101The value is an integer. This is like @code{PARAM_INTEGER}, except 0
4102is interpreted as itself.
4103
0489430a
TT
4104@findex PARAM_ZUINTEGER
4105@findex gdb.PARAM_ZUINTEGER
4106@item gdb.PARAM_ZUINTEGER
4107The value is an unsigned integer. This is like @code{PARAM_INTEGER},
4108except 0 is interpreted as itself, and the value cannot be negative.
4109
4110@findex PARAM_ZUINTEGER_UNLIMITED
4111@findex gdb.PARAM_ZUINTEGER_UNLIMITED
4112@item gdb.PARAM_ZUINTEGER_UNLIMITED
4113The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
4114except the special value -1 should be interpreted to mean
4115``unlimited''. Other negative values are not allowed.
4116
329baa95
DE
4117@findex PARAM_ENUM
4118@findex gdb.PARAM_ENUM
4119@item gdb.PARAM_ENUM
4120The value is a string, which must be one of a collection string
4121constants provided when the parameter is created.
4122@end table
4123
4124@node Functions In Python
4125@subsubsection Writing new convenience functions
4126
4127@cindex writing convenience functions
4128@cindex convenience functions in python
4129@cindex python convenience functions
4130@tindex gdb.Function
4131@tindex Function
4132You can implement new convenience functions (@pxref{Convenience Vars})
4133in Python. A convenience function is an instance of a subclass of the
4134class @code{gdb.Function}.
4135
4136@defun Function.__init__ (name)
4137The initializer for @code{Function} registers the new function with
4138@value{GDBN}. The argument @var{name} is the name of the function,
4139a string. The function will be visible to the user as a convenience
4140variable of type @code{internal function}, whose name is the same as
4141the given @var{name}.
4142
4143The documentation for the new function is taken from the documentation
4144string for the new class.
4145@end defun
4146
4147@defun Function.invoke (@var{*args})
4148When a convenience function is evaluated, its arguments are converted
4149to instances of @code{gdb.Value}, and then the function's
4150@code{invoke} method is called. Note that @value{GDBN} does not
4151predetermine the arity of convenience functions. Instead, all
4152available arguments are passed to @code{invoke}, following the
4153standard Python calling convention. In particular, a convenience
4154function can have default values for parameters without ill effect.
4155
4156The return value of this method is used as its value in the enclosing
4157expression. If an ordinary Python value is returned, it is converted
4158to a @code{gdb.Value} following the usual rules.
4159@end defun
4160
4161The following code snippet shows how a trivial convenience function can
4162be implemented in Python:
4163
4164@smallexample
4165class Greet (gdb.Function):
4166 """Return string to greet someone.
4167Takes a name as argument."""
4168
4169 def __init__ (self):
4170 super (Greet, self).__init__ ("greet")
4171
4172 def invoke (self, name):
4173 return "Hello, %s!" % name.string ()
4174
4175Greet ()
4176@end smallexample
4177
4178The last line instantiates the class, and is necessary to trigger the
4179registration of the function with @value{GDBN}. Depending on how the
4180Python code is read into @value{GDBN}, you may need to import the
4181@code{gdb} module explicitly.
4182
4183Now you can use the function in an expression:
4184
4185@smallexample
4186(gdb) print $greet("Bob")
4187$1 = "Hello, Bob!"
4188@end smallexample
4189
4190@node Progspaces In Python
4191@subsubsection Program Spaces In Python
4192
4193@cindex progspaces in python
4194@tindex gdb.Progspace
4195@tindex Progspace
4196A program space, or @dfn{progspace}, represents a symbolic view
4197of an address space.
4198It consists of all of the objfiles of the program.
4199@xref{Objfiles In Python}.
65c574f6 4200@xref{Inferiors Connections and Programs, program spaces}, for more details
329baa95
DE
4201about program spaces.
4202
4203The following progspace-related functions are available in the
4204@code{gdb} module:
4205
4206@findex gdb.current_progspace
4207@defun gdb.current_progspace ()
4208This function returns the program space of the currently selected inferior.
65c574f6 4209@xref{Inferiors Connections and Programs}. This is identical to
a40bf0c2
SM
4210@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4211included for historical compatibility.
329baa95
DE
4212@end defun
4213
4214@findex gdb.progspaces
4215@defun gdb.progspaces ()
4216Return a sequence of all the progspaces currently known to @value{GDBN}.
4217@end defun
4218
4219Each progspace is represented by an instance of the @code{gdb.Progspace}
4220class.
4221
4222@defvar Progspace.filename
4223The file name of the progspace as a string.
4224@end defvar
4225
4226@defvar Progspace.pretty_printers
4227The @code{pretty_printers} attribute is a list of functions. It is
4228used to look up pretty-printers. A @code{Value} is passed to each
4229function in order; if the function returns @code{None}, then the
4230search continues. Otherwise, the return value should be an object
4231which is used to format the value. @xref{Pretty Printing API}, for more
4232information.
4233@end defvar
4234
4235@defvar Progspace.type_printers
4236The @code{type_printers} attribute is a list of type printer objects.
4237@xref{Type Printing API}, for more information.
4238@end defvar
4239
4240@defvar Progspace.frame_filters
4241The @code{frame_filters} attribute is a dictionary of frame filter
4242objects. @xref{Frame Filter API}, for more information.
4243@end defvar
4244
8743a9cd
TT
4245A program space has the following methods:
4246
4247@findex Progspace.block_for_pc
4248@defun Progspace.block_for_pc (pc)
4249Return the innermost @code{gdb.Block} containing the given @var{pc}
4250value. If the block cannot be found for the @var{pc} value specified,
4251the function will return @code{None}.
4252@end defun
4253
4254@findex Progspace.find_pc_line
4255@defun Progspace.find_pc_line (pc)
4256Return the @code{gdb.Symtab_and_line} object corresponding to the
4257@var{pc} value. @xref{Symbol Tables In Python}. If an invalid value
4258of @var{pc} is passed as an argument, then the @code{symtab} and
4259@code{line} attributes of the returned @code{gdb.Symtab_and_line}
4260object will be @code{None} and 0 respectively.
4261@end defun
4262
4263@findex Progspace.is_valid
4264@defun Progspace.is_valid ()
4265Returns @code{True} if the @code{gdb.Progspace} object is valid,
4266@code{False} if not. A @code{gdb.Progspace} object can become invalid
4267if the program space file it refers to is not referenced by any
4268inferior. All other @code{gdb.Progspace} methods will throw an
4269exception if it is invalid at the time the method is called.
4270@end defun
4271
4272@findex Progspace.objfiles
4273@defun Progspace.objfiles ()
4274Return a sequence of all the objfiles referenced by this program
4275space. @xref{Objfiles In Python}.
4276@end defun
4277
4278@findex Progspace.solib_name
4279@defun Progspace.solib_name (address)
4280Return the name of the shared library holding the given @var{address}
4281as a string, or @code{None}.
4282@end defun
4283
02be9a71
DE
4284One may add arbitrary attributes to @code{gdb.Progspace} objects
4285in the usual Python way.
4286This is useful if, for example, one needs to do some extra record keeping
4287associated with the program space.
4288
4289In this contrived example, we want to perform some processing when
4290an objfile with a certain symbol is loaded, but we only want to do
4291this once because it is expensive. To achieve this we record the results
4292with the program space because we can't predict when the desired objfile
4293will be loaded.
4294
4295@smallexample
4296(gdb) python
4297def clear_objfiles_handler(event):
4298 event.progspace.expensive_computation = None
4299def expensive(symbol):
4300 """A mock routine to perform an "expensive" computation on symbol."""
4301 print "Computing the answer to the ultimate question ..."
4302 return 42
4303def new_objfile_handler(event):
4304 objfile = event.new_objfile
4305 progspace = objfile.progspace
4306 if not hasattr(progspace, 'expensive_computation') or \
4307 progspace.expensive_computation is None:
4308 # We use 'main' for the symbol to keep the example simple.
4309 # Note: There's no current way to constrain the lookup
4310 # to one objfile.
4311 symbol = gdb.lookup_global_symbol('main')
4312 if symbol is not None:
4313 progspace.expensive_computation = expensive(symbol)
4314gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4315gdb.events.new_objfile.connect(new_objfile_handler)
4316end
4317(gdb) file /tmp/hello
0bab6cf1 4318Reading symbols from /tmp/hello...
02be9a71
DE
4319Computing the answer to the ultimate question ...
4320(gdb) python print gdb.current_progspace().expensive_computation
432142
4322(gdb) run
4323Starting program: /tmp/hello
4324Hello.
4325[Inferior 1 (process 4242) exited normally]
4326@end smallexample
4327
329baa95
DE
4328@node Objfiles In Python
4329@subsubsection Objfiles In Python
4330
4331@cindex objfiles in python
4332@tindex gdb.Objfile
4333@tindex Objfile
4334@value{GDBN} loads symbols for an inferior from various
4335symbol-containing files (@pxref{Files}). These include the primary
4336executable file, any shared libraries used by the inferior, and any
4337separate debug info files (@pxref{Separate Debug Files}).
4338@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4339
4340The following objfile-related functions are available in the
4341@code{gdb} module:
4342
4343@findex gdb.current_objfile
4344@defun gdb.current_objfile ()
4345When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4346sets the ``current objfile'' to the corresponding objfile. This
4347function returns the current objfile. If there is no current objfile,
4348this function returns @code{None}.
4349@end defun
4350
4351@findex gdb.objfiles
4352@defun gdb.objfiles ()
74d3fbbb
SM
4353Return a sequence of objfiles referenced by the current program space.
4354@xref{Objfiles In Python}, and @ref{Progspaces In Python}. This is identical
4355to @code{gdb.selected_inferior().progspace.objfiles()} and is included for
4356historical compatibility.
329baa95
DE
4357@end defun
4358
6dddd6a5
DE
4359@findex gdb.lookup_objfile
4360@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4361Look up @var{name}, a file name or build ID, in the list of objfiles
4362for the current program space (@pxref{Progspaces In Python}).
4363If the objfile is not found throw the Python @code{ValueError} exception.
4364
4365If @var{name} is a relative file name, then it will match any
4366source file name with the same trailing components. For example, if
4367@var{name} is @samp{gcc/expr.c}, then it will match source file
4368name of @file{/build/trunk/gcc/expr.c}, but not
4369@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4370
4371If @var{by_build_id} is provided and is @code{True} then @var{name}
4372is the build ID of the objfile. Otherwise, @var{name} is a file name.
4373This is supported only on some operating systems, notably those which use
4374the ELF format for binary files and the @sc{gnu} Binutils. For more details
4375about this feature, see the description of the @option{--build-id}
f5a476a7 4376command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4377The GNU Linker}.
4378@end defun
4379
329baa95
DE
4380Each objfile is represented by an instance of the @code{gdb.Objfile}
4381class.
4382
4383@defvar Objfile.filename
1b549396
DE
4384The file name of the objfile as a string, with symbolic links resolved.
4385
4386The value is @code{None} if the objfile is no longer valid.
4387See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4388@end defvar
4389
3a8b707a
DE
4390@defvar Objfile.username
4391The file name of the objfile as specified by the user as a string.
4392
4393The value is @code{None} if the objfile is no longer valid.
4394See the @code{gdb.Objfile.is_valid} method, described below.
4395@end defvar
4396
a0be3e44
DE
4397@defvar Objfile.owner
4398For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4399object that debug info is being provided for.
4400Otherwise this is @code{None}.
4401Separate debug info objfiles are added with the
4402@code{gdb.Objfile.add_separate_debug_file} method, described below.
4403@end defvar
4404
7c50a931
DE
4405@defvar Objfile.build_id
4406The build ID of the objfile as a string.
4407If the objfile does not have a build ID then the value is @code{None}.
4408
4409This is supported only on some operating systems, notably those which use
4410the ELF format for binary files and the @sc{gnu} Binutils. For more details
4411about this feature, see the description of the @option{--build-id}
f5a476a7 4412command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4413The GNU Linker}.
4414@end defvar
4415
d096d8c1
DE
4416@defvar Objfile.progspace
4417The containing program space of the objfile as a @code{gdb.Progspace}
4418object. @xref{Progspaces In Python}.
4419@end defvar
4420
329baa95
DE
4421@defvar Objfile.pretty_printers
4422The @code{pretty_printers} attribute is a list of functions. It is
4423used to look up pretty-printers. A @code{Value} is passed to each
4424function in order; if the function returns @code{None}, then the
4425search continues. Otherwise, the return value should be an object
4426which is used to format the value. @xref{Pretty Printing API}, for more
4427information.
4428@end defvar
4429
4430@defvar Objfile.type_printers
4431The @code{type_printers} attribute is a list of type printer objects.
4432@xref{Type Printing API}, for more information.
4433@end defvar
4434
4435@defvar Objfile.frame_filters
4436The @code{frame_filters} attribute is a dictionary of frame filter
4437objects. @xref{Frame Filter API}, for more information.
4438@end defvar
4439
02be9a71
DE
4440One may add arbitrary attributes to @code{gdb.Objfile} objects
4441in the usual Python way.
4442This is useful if, for example, one needs to do some extra record keeping
4443associated with the objfile.
4444
4445In this contrived example we record the time when @value{GDBN}
4446loaded the objfile.
4447
4448@smallexample
4449(gdb) python
4450import datetime
4451def new_objfile_handler(event):
4452 # Set the time_loaded attribute of the new objfile.
4453 event.new_objfile.time_loaded = datetime.datetime.today()
4454gdb.events.new_objfile.connect(new_objfile_handler)
4455end
4456(gdb) file ./hello
0bab6cf1 4457Reading symbols from ./hello...
02be9a71
DE
4458(gdb) python print gdb.objfiles()[0].time_loaded
44592014-10-09 11:41:36.770345
4460@end smallexample
4461
329baa95
DE
4462A @code{gdb.Objfile} object has the following methods:
4463
4464@defun Objfile.is_valid ()
4465Returns @code{True} if the @code{gdb.Objfile} object is valid,
4466@code{False} if not. A @code{gdb.Objfile} object can become invalid
4467if the object file it refers to is not loaded in @value{GDBN} any
4468longer. All other @code{gdb.Objfile} methods will throw an exception
4469if it is invalid at the time the method is called.
4470@end defun
4471
86e4ed39
DE
4472@defun Objfile.add_separate_debug_file (file)
4473Add @var{file} to the list of files that @value{GDBN} will search for
4474debug information for the objfile.
4475This is useful when the debug info has been removed from the program
4476and stored in a separate file. @value{GDBN} has built-in support for
4477finding separate debug info files (@pxref{Separate Debug Files}), but if
4478the file doesn't live in one of the standard places that @value{GDBN}
4479searches then this function can be used to add a debug info file
4480from a different place.
4481@end defun
4482
c620ed88
CB
4483@defun Objfile.lookup_global_symbol (name @r{[}, domain@r{]})
4484Search for a global symbol named @var{name} in this objfile. Optionally, the
4485search scope can be restricted with the @var{domain} argument.
4486The @var{domain} argument must be a domain constant defined in the @code{gdb}
4487module and described in @ref{Symbols In Python}. This function is similar to
4488@code{gdb.lookup_global_symbol}, except that the search is limited to this
4489objfile.
4490
4491The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4492is not found.
4493@end defun
4494
4495@defun Objfile.lookup_static_symbol (name @r{[}, domain@r{]})
4496Like @code{Objfile.lookup_global_symbol}, but searches for a global
4497symbol with static linkage named @var{name} in this objfile.
4498@end defun
4499
329baa95 4500@node Frames In Python
849cba3b 4501@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4502
4503@cindex frames in python
4504When the debugged program stops, @value{GDBN} is able to analyze its call
4505stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4506represents a frame in the stack. A @code{gdb.Frame} object is only valid
4507while its corresponding frame exists in the inferior's stack. If you try
4508to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4509exception (@pxref{Exception Handling}).
4510
4511Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4512operator, like:
4513
4514@smallexample
4515(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4516True
4517@end smallexample
4518
4519The following frame-related functions are available in the @code{gdb} module:
4520
4521@findex gdb.selected_frame
4522@defun gdb.selected_frame ()
4523Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4524@end defun
4525
4526@findex gdb.newest_frame
4527@defun gdb.newest_frame ()
4528Return the newest frame object for the selected thread.
4529@end defun
4530
4531@defun gdb.frame_stop_reason_string (reason)
4532Return a string explaining the reason why @value{GDBN} stopped unwinding
4533frames, as expressed by the given @var{reason} code (an integer, see the
4534@code{unwind_stop_reason} method further down in this section).
4535@end defun
4536
e0f3fd7c
TT
4537@findex gdb.invalidate_cached_frames
4538@defun gdb.invalidate_cached_frames
4539@value{GDBN} internally keeps a cache of the frames that have been
4540unwound. This function invalidates this cache.
4541
4542This function should not generally be called by ordinary Python code.
4543It is documented for the sake of completeness.
4544@end defun
4545
329baa95
DE
4546A @code{gdb.Frame} object has the following methods:
4547
4548@defun Frame.is_valid ()
4549Returns true if the @code{gdb.Frame} object is valid, false if not.
4550A frame object can become invalid if the frame it refers to doesn't
4551exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4552an exception if it is invalid at the time the method is called.
4553@end defun
4554
4555@defun Frame.name ()
4556Returns the function name of the frame, or @code{None} if it can't be
4557obtained.
4558@end defun
4559
4560@defun Frame.architecture ()
4561Returns the @code{gdb.Architecture} object corresponding to the frame's
4562architecture. @xref{Architectures In Python}.
4563@end defun
4564
4565@defun Frame.type ()
4566Returns the type of the frame. The value can be one of:
4567@table @code
4568@item gdb.NORMAL_FRAME
4569An ordinary stack frame.
4570
4571@item gdb.DUMMY_FRAME
4572A fake stack frame that was created by @value{GDBN} when performing an
4573inferior function call.
4574
4575@item gdb.INLINE_FRAME
4576A frame representing an inlined function. The function was inlined
4577into a @code{gdb.NORMAL_FRAME} that is older than this one.
4578
4579@item gdb.TAILCALL_FRAME
4580A frame representing a tail call. @xref{Tail Call Frames}.
4581
4582@item gdb.SIGTRAMP_FRAME
4583A signal trampoline frame. This is the frame created by the OS when
4584it calls into a signal handler.
4585
4586@item gdb.ARCH_FRAME
4587A fake stack frame representing a cross-architecture call.
4588
4589@item gdb.SENTINEL_FRAME
4590This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4591newest frame.
4592@end table
4593@end defun
4594
4595@defun Frame.unwind_stop_reason ()
4596Return an integer representing the reason why it's not possible to find
4597more frames toward the outermost frame. Use
4598@code{gdb.frame_stop_reason_string} to convert the value returned by this
4599function to a string. The value can be one of:
4600
4601@table @code
4602@item gdb.FRAME_UNWIND_NO_REASON
4603No particular reason (older frames should be available).
4604
4605@item gdb.FRAME_UNWIND_NULL_ID
4606The previous frame's analyzer returns an invalid result. This is no
4607longer used by @value{GDBN}, and is kept only for backward
4608compatibility.
4609
4610@item gdb.FRAME_UNWIND_OUTERMOST
4611This frame is the outermost.
4612
4613@item gdb.FRAME_UNWIND_UNAVAILABLE
4614Cannot unwind further, because that would require knowing the
4615values of registers or memory that have not been collected.
4616
4617@item gdb.FRAME_UNWIND_INNER_ID
4618This frame ID looks like it ought to belong to a NEXT frame,
4619but we got it for a PREV frame. Normally, this is a sign of
4620unwinder failure. It could also indicate stack corruption.
4621
4622@item gdb.FRAME_UNWIND_SAME_ID
4623This frame has the same ID as the previous one. That means
4624that unwinding further would almost certainly give us another
4625frame with exactly the same ID, so break the chain. Normally,
4626this is a sign of unwinder failure. It could also indicate
4627stack corruption.
4628
4629@item gdb.FRAME_UNWIND_NO_SAVED_PC
4630The frame unwinder did not find any saved PC, but we needed
4631one to unwind further.
4632
53e8a631
AB
4633@item gdb.FRAME_UNWIND_MEMORY_ERROR
4634The frame unwinder caused an error while trying to access memory.
4635
329baa95
DE
4636@item gdb.FRAME_UNWIND_FIRST_ERROR
4637Any stop reason greater or equal to this value indicates some kind
4638of error. This special value facilitates writing code that tests
4639for errors in unwinding in a way that will work correctly even if
4640the list of the other values is modified in future @value{GDBN}
4641versions. Using it, you could write:
4642@smallexample
4643reason = gdb.selected_frame().unwind_stop_reason ()
4644reason_str = gdb.frame_stop_reason_string (reason)
4645if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4646 print "An error occured: %s" % reason_str
4647@end smallexample
4648@end table
4649
4650@end defun
4651
4652@defun Frame.pc ()
4653Returns the frame's resume address.
4654@end defun
4655
4656@defun Frame.block ()
60c0454d
TT
4657Return the frame's code block. @xref{Blocks In Python}. If the frame
4658does not have a block -- for example, if there is no debugging
4659information for the code in question -- then this will throw an
4660exception.
329baa95
DE
4661@end defun
4662
4663@defun Frame.function ()
4664Return the symbol for the function corresponding to this frame.
4665@xref{Symbols In Python}.
4666@end defun
4667
4668@defun Frame.older ()
4669Return the frame that called this frame.
4670@end defun
4671
4672@defun Frame.newer ()
4673Return the frame called by this frame.
4674@end defun
4675
4676@defun Frame.find_sal ()
4677Return the frame's symtab and line object.
4678@xref{Symbol Tables In Python}.
4679@end defun
4680
5f3b99cf
SS
4681@defun Frame.read_register (register)
4682Return the value of @var{register} in this frame. The @var{register}
4683argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4684Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4685does not exist.
4686@end defun
4687
329baa95
DE
4688@defun Frame.read_var (variable @r{[}, block@r{]})
4689Return the value of @var{variable} in this frame. If the optional
4690argument @var{block} is provided, search for the variable from that
4691block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4692determined by the frame's current program counter). The @var{variable}
4693argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4694@code{gdb.Block} object.
4695@end defun
4696
4697@defun Frame.select ()
4698Set this frame to be the selected frame. @xref{Stack, ,Examining the
4699Stack}.
4700@end defun
4701
4702@node Blocks In Python
849cba3b 4703@subsubsection Accessing blocks from Python
329baa95
DE
4704
4705@cindex blocks in python
4706@tindex gdb.Block
4707
4708In @value{GDBN}, symbols are stored in blocks. A block corresponds
4709roughly to a scope in the source code. Blocks are organized
4710hierarchically, and are represented individually in Python as a
4711@code{gdb.Block}. Blocks rely on debugging information being
4712available.
4713
4714A frame has a block. Please see @ref{Frames In Python}, for a more
4715in-depth discussion of frames.
4716
4717The outermost block is known as the @dfn{global block}. The global
4718block typically holds public global variables and functions.
4719
4720The block nested just inside the global block is the @dfn{static
4721block}. The static block typically holds file-scoped variables and
4722functions.
4723
4724@value{GDBN} provides a method to get a block's superblock, but there
4725is currently no way to examine the sub-blocks of a block, or to
4726iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4727Python}).
4728
4729Here is a short example that should help explain blocks:
4730
4731@smallexample
4732/* This is in the global block. */
4733int global;
4734
4735/* This is in the static block. */
4736static int file_scope;
4737
4738/* 'function' is in the global block, and 'argument' is
4739 in a block nested inside of 'function'. */
4740int function (int argument)
4741@{
4742 /* 'local' is in a block inside 'function'. It may or may
4743 not be in the same block as 'argument'. */
4744 int local;
4745
4746 @{
4747 /* 'inner' is in a block whose superblock is the one holding
4748 'local'. */
4749 int inner;
4750
4751 /* If this call is expanded by the compiler, you may see
4752 a nested block here whose function is 'inline_function'
4753 and whose superblock is the one holding 'inner'. */
4754 inline_function ();
4755 @}
4756@}
4757@end smallexample
4758
4759A @code{gdb.Block} is iterable. The iterator returns the symbols
4760(@pxref{Symbols In Python}) local to the block. Python programs
4761should not assume that a specific block object will always contain a
4762given symbol, since changes in @value{GDBN} features and
4763infrastructure may cause symbols move across blocks in a symbol
0b27c27d
CB
4764table. You can also use Python's @dfn{dictionary syntax} to access
4765variables in this block, e.g.:
4766
4767@smallexample
4768symbol = some_block['variable'] # symbol is of type gdb.Symbol
4769@end smallexample
329baa95
DE
4770
4771The following block-related functions are available in the @code{gdb}
4772module:
4773
4774@findex gdb.block_for_pc
4775@defun gdb.block_for_pc (pc)
4776Return the innermost @code{gdb.Block} containing the given @var{pc}
4777value. If the block cannot be found for the @var{pc} value specified,
8743a9cd
TT
4778the function will return @code{None}. This is identical to
4779@code{gdb.current_progspace().block_for_pc(pc)} and is included for
4780historical compatibility.
329baa95
DE
4781@end defun
4782
4783A @code{gdb.Block} object has the following methods:
4784
4785@defun Block.is_valid ()
4786Returns @code{True} if the @code{gdb.Block} object is valid,
4787@code{False} if not. A block object can become invalid if the block it
4788refers to doesn't exist anymore in the inferior. All other
4789@code{gdb.Block} methods will throw an exception if it is invalid at
4790the time the method is called. The block's validity is also checked
4791during iteration over symbols of the block.
4792@end defun
4793
4794A @code{gdb.Block} object has the following attributes:
4795
4796@defvar Block.start
4797The start address of the block. This attribute is not writable.
4798@end defvar
4799
4800@defvar Block.end
22eb9e92
TT
4801One past the last address that appears in the block. This attribute
4802is not writable.
329baa95
DE
4803@end defvar
4804
4805@defvar Block.function
4806The name of the block represented as a @code{gdb.Symbol}. If the
4807block is not named, then this attribute holds @code{None}. This
4808attribute is not writable.
4809
4810For ordinary function blocks, the superblock is the static block.
4811However, you should note that it is possible for a function block to
4812have a superblock that is not the static block -- for instance this
4813happens for an inlined function.
4814@end defvar
4815
4816@defvar Block.superblock
4817The block containing this block. If this parent block does not exist,
4818this attribute holds @code{None}. This attribute is not writable.
4819@end defvar
4820
4821@defvar Block.global_block
4822The global block associated with this block. This attribute is not
4823writable.
4824@end defvar
4825
4826@defvar Block.static_block
4827The static block associated with this block. This attribute is not
4828writable.
4829@end defvar
4830
4831@defvar Block.is_global
4832@code{True} if the @code{gdb.Block} object is a global block,
4833@code{False} if not. This attribute is not
4834writable.
4835@end defvar
4836
4837@defvar Block.is_static
4838@code{True} if the @code{gdb.Block} object is a static block,
4839@code{False} if not. This attribute is not writable.
4840@end defvar
4841
4842@node Symbols In Python
849cba3b 4843@subsubsection Python representation of Symbols
329baa95
DE
4844
4845@cindex symbols in python
4846@tindex gdb.Symbol
4847
4848@value{GDBN} represents every variable, function and type as an
4849entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4850Similarly, Python represents these symbols in @value{GDBN} with the
4851@code{gdb.Symbol} object.
4852
4853The following symbol-related functions are available in the @code{gdb}
4854module:
4855
4856@findex gdb.lookup_symbol
4857@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4858This function searches for a symbol by name. The search scope can be
4859restricted to the parameters defined in the optional domain and block
4860arguments.
4861
4862@var{name} is the name of the symbol. It must be a string. The
4863optional @var{block} argument restricts the search to symbols visible
4864in that @var{block}. The @var{block} argument must be a
4865@code{gdb.Block} object. If omitted, the block for the current frame
4866is used. The optional @var{domain} argument restricts
4867the search to the domain type. The @var{domain} argument must be a
4868domain constant defined in the @code{gdb} module and described later
4869in this chapter.
4870
4871The result is a tuple of two elements.
4872The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4873is not found.
4874If the symbol is found, the second element is @code{True} if the symbol
4875is a field of a method's object (e.g., @code{this} in C@t{++}),
4876otherwise it is @code{False}.
4877If the symbol is not found, the second element is @code{False}.
4878@end defun
4879
4880@findex gdb.lookup_global_symbol
4881@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4882This function searches for a global symbol by name.
4883The search scope can be restricted to by the domain argument.
4884
4885@var{name} is the name of the symbol. It must be a string.
4886The optional @var{domain} argument restricts the search to the domain type.
4887The @var{domain} argument must be a domain constant defined in the @code{gdb}
4888module and described later in this chapter.
4889
4890The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4891is not found.
4892@end defun
4893
2906593f
CB
4894@findex gdb.lookup_static_symbol
4895@defun gdb.lookup_static_symbol (name @r{[}, domain@r{]})
4896This function searches for a global symbol with static linkage by name.
4897The search scope can be restricted to by the domain argument.
4898
4899@var{name} is the name of the symbol. It must be a string.
4900The optional @var{domain} argument restricts the search to the domain type.
4901The @var{domain} argument must be a domain constant defined in the @code{gdb}
4902module and described later in this chapter.
4903
4904The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4905is not found.
4906
4907Note that this function will not find function-scoped static variables. To look
4908up such variables, iterate over the variables of the function's
4909@code{gdb.Block} and check that @code{block.addr_class} is
4910@code{gdb.SYMBOL_LOC_STATIC}.
09ff83af
AB
4911
4912There can be multiple global symbols with static linkage with the same
4913name. This function will only return the first matching symbol that
4914it finds. Which symbol is found depends on where @value{GDBN} is
4915currently stopped, as @value{GDBN} will first search for matching
4916symbols in the current object file, and then search all other object
4917files. If the application is not yet running then @value{GDBN} will
4918search all object files in the order they appear in the debug
4919information.
2906593f
CB
4920@end defun
4921
086baaf1
AB
4922@findex gdb.lookup_static_symbols
4923@defun gdb.lookup_static_symbols (name @r{[}, domain@r{]})
4924Similar to @code{gdb.lookup_static_symbol}, this function searches for
4925global symbols with static linkage by name, and optionally restricted
4926by the domain argument. However, this function returns a list of all
4927matching symbols found, not just the first one.
4928
4929@var{name} is the name of the symbol. It must be a string.
4930The optional @var{domain} argument restricts the search to the domain type.
4931The @var{domain} argument must be a domain constant defined in the @code{gdb}
4932module and described later in this chapter.
4933
4934The result is a list of @code{gdb.Symbol} objects which could be empty
4935if no matching symbols were found.
4936
4937Note that this function will not find function-scoped static variables. To look
4938up such variables, iterate over the variables of the function's
4939@code{gdb.Block} and check that @code{block.addr_class} is
4940@code{gdb.SYMBOL_LOC_STATIC}.
4941@end defun
4942
329baa95
DE
4943A @code{gdb.Symbol} object has the following attributes:
4944
4945@defvar Symbol.type
4946The type of the symbol or @code{None} if no type is recorded.
4947This attribute is represented as a @code{gdb.Type} object.
4948@xref{Types In Python}. This attribute is not writable.
4949@end defvar
4950
4951@defvar Symbol.symtab
4952The symbol table in which the symbol appears. This attribute is
4953represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4954Python}. This attribute is not writable.
4955@end defvar
4956
4957@defvar Symbol.line
4958The line number in the source code at which the symbol was defined.
4959This is an integer.
4960@end defvar
4961
4962@defvar Symbol.name
4963The name of the symbol as a string. This attribute is not writable.
4964@end defvar
4965
4966@defvar Symbol.linkage_name
4967The name of the symbol, as used by the linker (i.e., may be mangled).
4968This attribute is not writable.
4969@end defvar
4970
4971@defvar Symbol.print_name
4972The name of the symbol in a form suitable for output. This is either
4973@code{name} or @code{linkage_name}, depending on whether the user
4974asked @value{GDBN} to display demangled or mangled names.
4975@end defvar
4976
4977@defvar Symbol.addr_class
4978The address class of the symbol. This classifies how to find the value
4979of a symbol. Each address class is a constant defined in the
4980@code{gdb} module and described later in this chapter.
4981@end defvar
4982
4983@defvar Symbol.needs_frame
4984This is @code{True} if evaluating this symbol's value requires a frame
4985(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4986local variables will require a frame, but other symbols will not.
4987@end defvar
4988
4989@defvar Symbol.is_argument
4990@code{True} if the symbol is an argument of a function.
4991@end defvar
4992
4993@defvar Symbol.is_constant
4994@code{True} if the symbol is a constant.
4995@end defvar
4996
4997@defvar Symbol.is_function
4998@code{True} if the symbol is a function or a method.
4999@end defvar
5000
5001@defvar Symbol.is_variable
5002@code{True} if the symbol is a variable.
5003@end defvar
5004
5005A @code{gdb.Symbol} object has the following methods:
5006
5007@defun Symbol.is_valid ()
5008Returns @code{True} if the @code{gdb.Symbol} object is valid,
5009@code{False} if not. A @code{gdb.Symbol} object can become invalid if
5010the symbol it refers to does not exist in @value{GDBN} any longer.
5011All other @code{gdb.Symbol} methods will throw an exception if it is
5012invalid at the time the method is called.
5013@end defun
5014
5015@defun Symbol.value (@r{[}frame@r{]})
5016Compute the value of the symbol, as a @code{gdb.Value}. For
5017functions, this computes the address of the function, cast to the
5018appropriate type. If the symbol requires a frame in order to compute
5019its value, then @var{frame} must be given. If @var{frame} is not
5020given, or if @var{frame} is invalid, then this method will throw an
5021exception.
5022@end defun
5023
5024The available domain categories in @code{gdb.Symbol} are represented
5025as constants in the @code{gdb} module:
5026
b3ce5e5f
DE
5027@vtable @code
5028@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
5029@item gdb.SYMBOL_UNDEF_DOMAIN
5030This is used when a domain has not been discovered or none of the
5031following domains apply. This usually indicates an error either
5032in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
5033
5034@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
5035@item gdb.SYMBOL_VAR_DOMAIN
5036This domain contains variables, function names, typedef names and enum
5037type values.
b3ce5e5f
DE
5038
5039@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
5040@item gdb.SYMBOL_STRUCT_DOMAIN
5041This domain holds struct, union and enum type names.
b3ce5e5f
DE
5042
5043@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
5044@item gdb.SYMBOL_LABEL_DOMAIN
5045This domain contains names of labels (for gotos).
b3ce5e5f 5046
51e78fc5
TT
5047@vindex SYMBOL_MODULE_DOMAIN
5048@item gdb.SYMBOL_MODULE_DOMAIN
5049This domain contains names of Fortran module types.
5050
5051@vindex SYMBOL_COMMON_BLOCK_DOMAIN
5052@item gdb.SYMBOL_COMMON_BLOCK_DOMAIN
5053This domain contains names of Fortran common blocks.
b3ce5e5f 5054@end vtable
329baa95
DE
5055
5056The available address class categories in @code{gdb.Symbol} are represented
5057as constants in the @code{gdb} module:
5058
b3ce5e5f
DE
5059@vtable @code
5060@vindex SYMBOL_LOC_UNDEF
329baa95
DE
5061@item gdb.SYMBOL_LOC_UNDEF
5062If this is returned by address class, it indicates an error either in
5063the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
5064
5065@vindex SYMBOL_LOC_CONST
329baa95
DE
5066@item gdb.SYMBOL_LOC_CONST
5067Value is constant int.
b3ce5e5f
DE
5068
5069@vindex SYMBOL_LOC_STATIC
329baa95
DE
5070@item gdb.SYMBOL_LOC_STATIC
5071Value is at a fixed address.
b3ce5e5f
DE
5072
5073@vindex SYMBOL_LOC_REGISTER
329baa95
DE
5074@item gdb.SYMBOL_LOC_REGISTER
5075Value is in a register.
b3ce5e5f
DE
5076
5077@vindex SYMBOL_LOC_ARG
329baa95
DE
5078@item gdb.SYMBOL_LOC_ARG
5079Value is an argument. This value is at the offset stored within the
5080symbol inside the frame's argument list.
b3ce5e5f
DE
5081
5082@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
5083@item gdb.SYMBOL_LOC_REF_ARG
5084Value address is stored in the frame's argument list. Just like
5085@code{LOC_ARG} except that the value's address is stored at the
5086offset, not the value itself.
b3ce5e5f
DE
5087
5088@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
5089@item gdb.SYMBOL_LOC_REGPARM_ADDR
5090Value is a specified register. Just like @code{LOC_REGISTER} except
5091the register holds the address of the argument instead of the argument
5092itself.
b3ce5e5f
DE
5093
5094@vindex SYMBOL_LOC_LOCAL
329baa95
DE
5095@item gdb.SYMBOL_LOC_LOCAL
5096Value is a local variable.
b3ce5e5f
DE
5097
5098@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
5099@item gdb.SYMBOL_LOC_TYPEDEF
5100Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
5101have this class.
b3ce5e5f
DE
5102
5103@vindex SYMBOL_LOC_BLOCK
329baa95
DE
5104@item gdb.SYMBOL_LOC_BLOCK
5105Value is a block.
b3ce5e5f
DE
5106
5107@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
5108@item gdb.SYMBOL_LOC_CONST_BYTES
5109Value is a byte-sequence.
b3ce5e5f
DE
5110
5111@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
5112@item gdb.SYMBOL_LOC_UNRESOLVED
5113Value is at a fixed address, but the address of the variable has to be
5114determined from the minimal symbol table whenever the variable is
5115referenced.
b3ce5e5f
DE
5116
5117@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
5118@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
5119The value does not actually exist in the program.
b3ce5e5f
DE
5120
5121@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
5122@item gdb.SYMBOL_LOC_COMPUTED
5123The value's address is a computed location.
51e78fc5
TT
5124
5125@vindex SYMBOL_LOC_COMPUTED
5126@item gdb.SYMBOL_LOC_COMPUTED
5127The value's address is a symbol. This is only used for Fortran common
5128blocks.
b3ce5e5f 5129@end vtable
329baa95
DE
5130
5131@node Symbol Tables In Python
849cba3b 5132@subsubsection Symbol table representation in Python
329baa95
DE
5133
5134@cindex symbol tables in python
5135@tindex gdb.Symtab
5136@tindex gdb.Symtab_and_line
5137
5138Access to symbol table data maintained by @value{GDBN} on the inferior
5139is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
5140@code{gdb.Symtab}. Symbol table and line data for a frame is returned
5141from the @code{find_sal} method in @code{gdb.Frame} object.
5142@xref{Frames In Python}.
5143
5144For more information on @value{GDBN}'s symbol table management, see
5145@ref{Symbols, ,Examining the Symbol Table}, for more information.
5146
5147A @code{gdb.Symtab_and_line} object has the following attributes:
5148
5149@defvar Symtab_and_line.symtab
5150The symbol table object (@code{gdb.Symtab}) for this frame.
5151This attribute is not writable.
5152@end defvar
5153
5154@defvar Symtab_and_line.pc
5155Indicates the start of the address range occupied by code for the
5156current source line. This attribute is not writable.
5157@end defvar
5158
5159@defvar Symtab_and_line.last
5160Indicates the end of the address range occupied by code for the current
5161source line. This attribute is not writable.
5162@end defvar
5163
5164@defvar Symtab_and_line.line
5165Indicates the current line number for this object. This
5166attribute is not writable.
5167@end defvar
5168
5169A @code{gdb.Symtab_and_line} object has the following methods:
5170
5171@defun Symtab_and_line.is_valid ()
5172Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
5173@code{False} if not. A @code{gdb.Symtab_and_line} object can become
5174invalid if the Symbol table and line object it refers to does not
5175exist in @value{GDBN} any longer. All other
5176@code{gdb.Symtab_and_line} methods will throw an exception if it is
5177invalid at the time the method is called.
5178@end defun
5179
5180A @code{gdb.Symtab} object has the following attributes:
5181
5182@defvar Symtab.filename
5183The symbol table's source filename. This attribute is not writable.
5184@end defvar
5185
5186@defvar Symtab.objfile
5187The symbol table's backing object file. @xref{Objfiles In Python}.
5188This attribute is not writable.
5189@end defvar
5190
2b4fd423
DE
5191@defvar Symtab.producer
5192The name and possibly version number of the program that
5193compiled the code in the symbol table.
5194The contents of this string is up to the compiler.
5195If no producer information is available then @code{None} is returned.
5196This attribute is not writable.
5197@end defvar
5198
329baa95
DE
5199A @code{gdb.Symtab} object has the following methods:
5200
5201@defun Symtab.is_valid ()
5202Returns @code{True} if the @code{gdb.Symtab} object is valid,
5203@code{False} if not. A @code{gdb.Symtab} object can become invalid if
5204the symbol table it refers to does not exist in @value{GDBN} any
5205longer. All other @code{gdb.Symtab} methods will throw an exception
5206if it is invalid at the time the method is called.
5207@end defun
5208
5209@defun Symtab.fullname ()
5210Return the symbol table's source absolute file name.
5211@end defun
5212
5213@defun Symtab.global_block ()
5214Return the global block of the underlying symbol table.
5215@xref{Blocks In Python}.
5216@end defun
5217
5218@defun Symtab.static_block ()
5219Return the static block of the underlying symbol table.
5220@xref{Blocks In Python}.
5221@end defun
5222
5223@defun Symtab.linetable ()
5224Return the line table associated with the symbol table.
5225@xref{Line Tables In Python}.
5226@end defun
5227
5228@node Line Tables In Python
5229@subsubsection Manipulating line tables using Python
5230
5231@cindex line tables in python
5232@tindex gdb.LineTable
5233
5234Python code can request and inspect line table information from a
5235symbol table that is loaded in @value{GDBN}. A line table is a
5236mapping of source lines to their executable locations in memory. To
5237acquire the line table information for a particular symbol table, use
5238the @code{linetable} function (@pxref{Symbol Tables In Python}).
5239
5240A @code{gdb.LineTable} is iterable. The iterator returns
5241@code{LineTableEntry} objects that correspond to the source line and
5242address for each line table entry. @code{LineTableEntry} objects have
5243the following attributes:
5244
5245@defvar LineTableEntry.line
5246The source line number for this line table entry. This number
5247corresponds to the actual line of source. This attribute is not
5248writable.
5249@end defvar
5250
5251@defvar LineTableEntry.pc
5252The address that is associated with the line table entry where the
5253executable code for that source line resides in memory. This
5254attribute is not writable.
5255@end defvar
5256
5257As there can be multiple addresses for a single source line, you may
5258receive multiple @code{LineTableEntry} objects with matching
5259@code{line} attributes, but with different @code{pc} attributes. The
5260iterator is sorted in ascending @code{pc} order. Here is a small
5261example illustrating iterating over a line table.
5262
5263@smallexample
5264symtab = gdb.selected_frame().find_sal().symtab
5265linetable = symtab.linetable()
5266for line in linetable:
5267 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
5268@end smallexample
5269
5270This will have the following output:
5271
5272@smallexample
5273Line: 33 Address: 0x4005c8L
5274Line: 37 Address: 0x4005caL
5275Line: 39 Address: 0x4005d2L
5276Line: 40 Address: 0x4005f8L
5277Line: 42 Address: 0x4005ffL
5278Line: 44 Address: 0x400608L
5279Line: 42 Address: 0x40060cL
5280Line: 45 Address: 0x400615L
5281@end smallexample
5282
5283In addition to being able to iterate over a @code{LineTable}, it also
5284has the following direct access methods:
5285
5286@defun LineTable.line (line)
5287Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
5288entries in the line table for the given @var{line}, which specifies
5289the source code line. If there are no entries for that source code
329baa95
DE
5290@var{line}, the Python @code{None} is returned.
5291@end defun
5292
5293@defun LineTable.has_line (line)
5294Return a Python @code{Boolean} indicating whether there is an entry in
5295the line table for this source line. Return @code{True} if an entry
5296is found, or @code{False} if not.
5297@end defun
5298
5299@defun LineTable.source_lines ()
5300Return a Python @code{List} of the source line numbers in the symbol
5301table. Only lines with executable code locations are returned. The
5302contents of the @code{List} will just be the source line entries
5303represented as Python @code{Long} values.
5304@end defun
5305
5306@node Breakpoints In Python
5307@subsubsection Manipulating breakpoints using Python
5308
5309@cindex breakpoints in python
5310@tindex gdb.Breakpoint
5311
5312Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5313class.
5314
0b982d68
SM
5315A breakpoint can be created using one of the two forms of the
5316@code{gdb.Breakpoint} constructor. The first one accepts a string
5317like one would pass to the @code{break}
5318(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5319(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5320create both breakpoints and watchpoints. The second accepts separate Python
5321arguments similar to @ref{Explicit Locations}, and can only be used to create
5322breakpoints.
5323
b89641ba 5324@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5325Create a new breakpoint according to @var{spec}, which is a string naming the
5326location of a breakpoint, or an expression that defines a watchpoint. The
5327string should describe a location in a format recognized by the @code{break}
5328command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5329watchpoint, by the @code{watch} command
5330(@pxref{Set Watchpoints, , Setting Watchpoints}).
5331
5332The optional @var{type} argument specifies the type of the breakpoint to create,
5333as defined below.
5334
5335The optional @var{wp_class} argument defines the class of watchpoint to create,
5336if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5337defaults to @code{gdb.WP_WRITE}.
5338
5339The optional @var{internal} argument allows the breakpoint to become invisible
5340to the user. The breakpoint will neither be reported when created, nor will it
5341be listed in the output from @code{info breakpoints} (but will be listed with
5342the @code{maint info breakpoints} command).
5343
5344The optional @var{temporary} argument makes the breakpoint a temporary
5345breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5346further access to the Python breakpoint after it has been hit will result in a
5347runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5348
5349The optional @var{qualified} argument is a boolean that allows interpreting
5350the function passed in @code{spec} as a fully-qualified name. It is equivalent
5351to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5352@ref{Explicit Locations}).
5353
0b982d68
SM
5354@end defun
5355
b89641ba 5356@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5357This second form of creating a new breakpoint specifies the explicit
5358location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5359be created in the specified source file @var{source}, at the specified
5360@var{function}, @var{label} and @var{line}.
5361
b89641ba
SM
5362@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5363explained previously.
329baa95
DE
5364@end defun
5365
cda75e70
TT
5366The available types are represented by constants defined in the @code{gdb}
5367module:
5368
5369@vtable @code
5370@vindex BP_BREAKPOINT
5371@item gdb.BP_BREAKPOINT
5372Normal code breakpoint.
5373
5374@vindex BP_WATCHPOINT
5375@item gdb.BP_WATCHPOINT
5376Watchpoint breakpoint.
5377
5378@vindex BP_HARDWARE_WATCHPOINT
5379@item gdb.BP_HARDWARE_WATCHPOINT
5380Hardware assisted watchpoint.
5381
5382@vindex BP_READ_WATCHPOINT
5383@item gdb.BP_READ_WATCHPOINT
5384Hardware assisted read watchpoint.
5385
5386@vindex BP_ACCESS_WATCHPOINT
5387@item gdb.BP_ACCESS_WATCHPOINT
5388Hardware assisted access watchpoint.
5389@end vtable
5390
5391The available watchpoint types represented by constants are defined in the
5392@code{gdb} module:
5393
5394@vtable @code
5395@vindex WP_READ
5396@item gdb.WP_READ
5397Read only watchpoint.
5398
5399@vindex WP_WRITE
5400@item gdb.WP_WRITE
5401Write only watchpoint.
5402
5403@vindex WP_ACCESS
5404@item gdb.WP_ACCESS
5405Read/Write watchpoint.
5406@end vtable
5407
329baa95
DE
5408@defun Breakpoint.stop (self)
5409The @code{gdb.Breakpoint} class can be sub-classed and, in
5410particular, you may choose to implement the @code{stop} method.
5411If this method is defined in a sub-class of @code{gdb.Breakpoint},
5412it will be called when the inferior reaches any location of a
5413breakpoint which instantiates that sub-class. If the method returns
5414@code{True}, the inferior will be stopped at the location of the
5415breakpoint, otherwise the inferior will continue.
5416
5417If there are multiple breakpoints at the same location with a
5418@code{stop} method, each one will be called regardless of the
5419return status of the previous. This ensures that all @code{stop}
5420methods have a chance to execute at that location. In this scenario
5421if one of the methods returns @code{True} but the others return
5422@code{False}, the inferior will still be stopped.
5423
5424You should not alter the execution state of the inferior (i.e.@:, step,
5425next, etc.), alter the current frame context (i.e.@:, change the current
5426active frame), or alter, add or delete any breakpoint. As a general
5427rule, you should not alter any data within @value{GDBN} or the inferior
5428at this time.
5429
5430Example @code{stop} implementation:
5431
5432@smallexample
5433class MyBreakpoint (gdb.Breakpoint):
5434 def stop (self):
5435 inf_val = gdb.parse_and_eval("foo")
5436 if inf_val == 3:
5437 return True
5438 return False
5439@end smallexample
5440@end defun
5441
329baa95
DE
5442@defun Breakpoint.is_valid ()
5443Return @code{True} if this @code{Breakpoint} object is valid,
5444@code{False} otherwise. A @code{Breakpoint} object can become invalid
5445if the user deletes the breakpoint. In this case, the object still
5446exists, but the underlying breakpoint does not. In the cases of
5447watchpoint scope, the watchpoint remains valid even if execution of the
5448inferior leaves the scope of that watchpoint.
5449@end defun
5450
fab3a15d 5451@defun Breakpoint.delete ()
329baa95
DE
5452Permanently deletes the @value{GDBN} breakpoint. This also
5453invalidates the Python @code{Breakpoint} object. Any further access
5454to this object's attributes or methods will raise an error.
5455@end defun
5456
5457@defvar Breakpoint.enabled
5458This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5459@code{False} otherwise. This attribute is writable. You can use it to enable
5460or disable the breakpoint.
329baa95
DE
5461@end defvar
5462
5463@defvar Breakpoint.silent
5464This attribute is @code{True} if the breakpoint is silent, and
5465@code{False} otherwise. This attribute is writable.
5466
5467Note that a breakpoint can also be silent if it has commands and the
5468first command is @code{silent}. This is not reported by the
5469@code{silent} attribute.
5470@end defvar
5471
93daf339
TT
5472@defvar Breakpoint.pending
5473This attribute is @code{True} if the breakpoint is pending, and
5474@code{False} otherwise. @xref{Set Breaks}. This attribute is
5475read-only.
5476@end defvar
5477
22a02324 5478@anchor{python_breakpoint_thread}
329baa95 5479@defvar Breakpoint.thread
5d5658a1
PA
5480If the breakpoint is thread-specific, this attribute holds the
5481thread's global id. If the breakpoint is not thread-specific, this
5482attribute is @code{None}. This attribute is writable.
329baa95
DE
5483@end defvar
5484
5485@defvar Breakpoint.task
5486If the breakpoint is Ada task-specific, this attribute holds the Ada task
5487id. If the breakpoint is not task-specific (or the underlying
5488language is not Ada), this attribute is @code{None}. This attribute
5489is writable.
5490@end defvar
5491
5492@defvar Breakpoint.ignore_count
5493This attribute holds the ignore count for the breakpoint, an integer.
5494This attribute is writable.
5495@end defvar
5496
5497@defvar Breakpoint.number
5498This attribute holds the breakpoint's number --- the identifier used by
5499the user to manipulate the breakpoint. This attribute is not writable.
5500@end defvar
5501
5502@defvar Breakpoint.type
5503This attribute holds the breakpoint's type --- the identifier used to
5504determine the actual breakpoint type or use-case. This attribute is not
5505writable.
5506@end defvar
5507
5508@defvar Breakpoint.visible
5509This attribute tells whether the breakpoint is visible to the user
5510when set, or when the @samp{info breakpoints} command is run. This
5511attribute is not writable.
5512@end defvar
5513
5514@defvar Breakpoint.temporary
5515This attribute indicates whether the breakpoint was created as a
5516temporary breakpoint. Temporary breakpoints are automatically deleted
5517after that breakpoint has been hit. Access to this attribute, and all
5518other attributes and functions other than the @code{is_valid}
5519function, will result in an error after the breakpoint has been hit
5520(as it has been automatically deleted). This attribute is not
5521writable.
5522@end defvar
5523
329baa95
DE
5524@defvar Breakpoint.hit_count
5525This attribute holds the hit count for the breakpoint, an integer.
5526This attribute is writable, but currently it can only be set to zero.
5527@end defvar
5528
5529@defvar Breakpoint.location
5530This attribute holds the location of the breakpoint, as specified by
5531the user. It is a string. If the breakpoint does not have a location
5532(that is, it is a watchpoint) the attribute's value is @code{None}. This
5533attribute is not writable.
5534@end defvar
5535
5536@defvar Breakpoint.expression
5537This attribute holds a breakpoint expression, as specified by
5538the user. It is a string. If the breakpoint does not have an
5539expression (the breakpoint is not a watchpoint) the attribute's value
5540is @code{None}. This attribute is not writable.
5541@end defvar
5542
5543@defvar Breakpoint.condition
5544This attribute holds the condition of the breakpoint, as specified by
5545the user. It is a string. If there is no condition, this attribute's
5546value is @code{None}. This attribute is writable.
5547@end defvar
5548
5549@defvar Breakpoint.commands
5550This attribute holds the commands attached to the breakpoint. If
5551there are commands, this attribute's value is a string holding all the
5552commands, separated by newlines. If there are no commands, this
a913fffb 5553attribute is @code{None}. This attribute is writable.
329baa95
DE
5554@end defvar
5555
5556@node Finish Breakpoints in Python
5557@subsubsection Finish Breakpoints
5558
5559@cindex python finish breakpoints
5560@tindex gdb.FinishBreakpoint
5561
5562A finish breakpoint is a temporary breakpoint set at the return address of
5563a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5564extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5565and deleted when the execution will run out of the breakpoint scope (i.e.@:
5566@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5567Finish breakpoints are thread specific and must be create with the right
5568thread selected.
5569
5570@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5571Create a finish breakpoint at the return address of the @code{gdb.Frame}
5572object @var{frame}. If @var{frame} is not provided, this defaults to the
5573newest frame. The optional @var{internal} argument allows the breakpoint to
5574become invisible to the user. @xref{Breakpoints In Python}, for further
5575details about this argument.
5576@end defun
5577
5578@defun FinishBreakpoint.out_of_scope (self)
5579In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5580@code{return} command, @dots{}), a function may not properly terminate, and
5581thus never hit the finish breakpoint. When @value{GDBN} notices such a
5582situation, the @code{out_of_scope} callback will be triggered.
5583
5584You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5585method:
5586
5587@smallexample
5588class MyFinishBreakpoint (gdb.FinishBreakpoint)
5589 def stop (self):
5590 print "normal finish"
5591 return True
5592
5593 def out_of_scope ():
5594 print "abnormal finish"
5595@end smallexample
5596@end defun
5597
5598@defvar FinishBreakpoint.return_value
5599When @value{GDBN} is stopped at a finish breakpoint and the frame
5600used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5601attribute will contain a @code{gdb.Value} object corresponding to the return
5602value of the function. The value will be @code{None} if the function return
5603type is @code{void} or if the return value was not computable. This attribute
5604is not writable.
5605@end defvar
5606
5607@node Lazy Strings In Python
849cba3b 5608@subsubsection Python representation of lazy strings
329baa95
DE
5609
5610@cindex lazy strings in python
5611@tindex gdb.LazyString
5612
5613A @dfn{lazy string} is a string whose contents is not retrieved or
5614encoded until it is needed.
5615
5616A @code{gdb.LazyString} is represented in @value{GDBN} as an
5617@code{address} that points to a region of memory, an @code{encoding}
5618that will be used to encode that region of memory, and a @code{length}
5619to delimit the region of memory that represents the string. The
5620difference between a @code{gdb.LazyString} and a string wrapped within
5621a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5622differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5623retrieved and encoded during printing, while a @code{gdb.Value}
5624wrapping a string is immediately retrieved and encoded on creation.
5625
5626A @code{gdb.LazyString} object has the following functions:
5627
5628@defun LazyString.value ()
5629Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5630will point to the string in memory, but will lose all the delayed
5631retrieval, encoding and handling that @value{GDBN} applies to a
5632@code{gdb.LazyString}.
5633@end defun
5634
5635@defvar LazyString.address
5636This attribute holds the address of the string. This attribute is not
5637writable.
5638@end defvar
5639
5640@defvar LazyString.length
5641This attribute holds the length of the string in characters. If the
5642length is -1, then the string will be fetched and encoded up to the
5643first null of appropriate width. This attribute is not writable.
5644@end defvar
5645
5646@defvar LazyString.encoding
5647This attribute holds the encoding that will be applied to the string
5648when the string is printed by @value{GDBN}. If the encoding is not
5649set, or contains an empty string, then @value{GDBN} will select the
5650most appropriate encoding when the string is printed. This attribute
5651is not writable.
5652@end defvar
5653
5654@defvar LazyString.type
5655This attribute holds the type that is represented by the lazy string's
f8d99587 5656type. For a lazy string this is a pointer or array type. To
329baa95
DE
5657resolve this to the lazy string's character type, use the type's
5658@code{target} method. @xref{Types In Python}. This attribute is not
5659writable.
5660@end defvar
5661
5662@node Architectures In Python
5663@subsubsection Python representation of architectures
5664@cindex Python architectures
5665
5666@value{GDBN} uses architecture specific parameters and artifacts in a
5667number of its various computations. An architecture is represented
5668by an instance of the @code{gdb.Architecture} class.
5669
5670A @code{gdb.Architecture} class has the following methods:
5671
5672@defun Architecture.name ()
5673Return the name (string value) of the architecture.
5674@end defun
5675
5676@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5677Return a list of disassembled instructions starting from the memory
5678address @var{start_pc}. The optional arguments @var{end_pc} and
5679@var{count} determine the number of instructions in the returned list.
5680If both the optional arguments @var{end_pc} and @var{count} are
5681specified, then a list of at most @var{count} disassembled instructions
5682whose start address falls in the closed memory address interval from
5683@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5684specified, but @var{count} is specified, then @var{count} number of
5685instructions starting from the address @var{start_pc} are returned. If
5686@var{count} is not specified but @var{end_pc} is specified, then all
5687instructions whose start address falls in the closed memory address
5688interval from @var{start_pc} to @var{end_pc} are returned. If neither
5689@var{end_pc} nor @var{count} are specified, then a single instruction at
5690@var{start_pc} is returned. For all of these cases, each element of the
5691returned list is a Python @code{dict} with the following string keys:
5692
5693@table @code
5694
5695@item addr
5696The value corresponding to this key is a Python long integer capturing
5697the memory address of the instruction.
5698
5699@item asm
5700The value corresponding to this key is a string value which represents
5701the instruction with assembly language mnemonics. The assembly
5702language flavor used is the same as that specified by the current CLI
5703variable @code{disassembly-flavor}. @xref{Machine Code}.
5704
5705@item length
5706The value corresponding to this key is the length (integer value) of the
5707instruction in bytes.
5708
5709@end table
5710@end defun
5711
01b1af32
TT
5712@node TUI Windows In Python
5713@subsubsection Implementing new TUI windows
5714@cindex Python TUI Windows
5715
5716New TUI (@pxref{TUI}) windows can be implemented in Python.
5717
5718@findex gdb.register_window_type
5719@defun gdb.register_window_type (@var{name}, @var{factory})
5720Because TUI windows are created and destroyed depending on the layout
5721the user chooses, new window types are implemented by registering a
5722factory function with @value{GDBN}.
5723
5724@var{name} is the name of the new window. It's an error to try to
5725replace one of the built-in windows, but other window types can be
5726replaced.
5727
5728@var{function} is a factory function that is called to create the TUI
5729window. This is called with a single argument of type
5730@code{gdb.TuiWindow}, described below. It should return an object
5731that implements the TUI window protocol, also described below.
5732@end defun
5733
5734As mentioned above, when a factory function is called, it is passed a
5735an object of type @code{gdb.TuiWindow}. This object has these
5736methods and attributes:
5737
5738@defun TuiWindow.is_valid ()
5739This method returns @code{True} when this window is valid. When the
5740user changes the TUI layout, windows no longer visible in the new
5741layout will be destroyed. At this point, the @code{gdb.TuiWindow}
5742will no longer be valid, and methods (and attributes) other than
5743@code{is_valid} will throw an exception.
5744@end defun
5745
5746@defvar TuiWindow.width
5747This attribute holds the width of the window. It is not writable.
5748@end defvar
5749
5750@defvar TuiWindow.height
5751This attribute holds the height of the window. It is not writable.
5752@end defvar
5753
5754@defvar TuiWindow.title
5755This attribute holds the window's title, a string. This is normally
5756displayed above the window. This attribute can be modified.
5757@end defvar
5758
5759@defun TuiWindow.erase ()
5760Remove all the contents of the window.
5761@end defun
5762
5763@defun TuiWindow.write (@var{string})
5764Write @var{string} to the window. @var{string} can contain ANSI
5765terminal escape styling sequences; @value{GDBN} will translate these
5766as appropriate for the terminal.
5767@end defun
5768
5769The factory function that you supply should return an object
5770conforming to the TUI window protocol. These are the method that can
5771be called on this object, which is referred to below as the ``window
5772object''. The methods documented below are optional; if the object
5773does not implement one of these methods, @value{GDBN} will not attempt
5774to call it. Additional new methods may be added to the window
5775protocol in the future. @value{GDBN} guarantees that they will begin
5776with a lower-case letter, so you can start implementation methods with
5777upper-case letters or underscore to avoid any future conflicts.
5778
5779@defun Window.close ()
5780When the TUI window is closed, the @code{gdb.TuiWindow} object will be
5781put into an invalid state. At this time, @value{GDBN} will call
5782@code{close} method on the window object.
5783
5784After this method is called, @value{GDBN} will discard any references
5785it holds on this window object, and will no longer call methods on
5786this object.
5787@end defun
5788
5789@defun Window.render ()
5790In some situations, a TUI window can change size. For example, this
5791can happen if the user resizes the terminal, or changes the layout.
5792When this happens, @value{GDBN} will call the @code{render} method on
5793the window object.
5794
5795If your window is intended to update in response to changes in the
5796inferior, you will probably also want to register event listeners and
5797send output to the @code{gdb.TuiWindow}.
5798@end defun
5799
5800@defun Window.hscroll (@var{num})
5801This is a request to scroll the window horizontally. @var{num} is the
5802amount by which to scroll, with negative numbers meaning to scroll
5803right. In the TUI model, it is the viewport that moves, not the
5804contents. A positive argument should cause the viewport to move
5805right, and so the content should appear to move to the left.
5806@end defun
5807
5808@defun Window.vscroll (@var{num})
5809This is a request to scroll the window vertically. @var{num} is the
5810amount by which to scroll, with negative numbers meaning to scroll
5811backward. In the TUI model, it is the viewport that moves, not the
5812contents. A positive argument should cause the viewport to move down,
5813and so the content should appear to move up.
5814@end defun
5815
329baa95
DE
5816@node Python Auto-loading
5817@subsection Python Auto-loading
5818@cindex Python auto-loading
5819
5820When a new object file is read (for example, due to the @code{file}
5821command, or because the inferior has loaded a shared library),
5822@value{GDBN} will look for Python support scripts in several ways:
5823@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5824@xref{Auto-loading extensions}.
5825
5826The auto-loading feature is useful for supplying application-specific
5827debugging commands and scripts.
5828
5829Auto-loading can be enabled or disabled,
5830and the list of auto-loaded scripts can be printed.
5831
5832@table @code
5833@anchor{set auto-load python-scripts}
5834@kindex set auto-load python-scripts
5835@item set auto-load python-scripts [on|off]
5836Enable or disable the auto-loading of Python scripts.
5837
5838@anchor{show auto-load python-scripts}
5839@kindex show auto-load python-scripts
5840@item show auto-load python-scripts
5841Show whether auto-loading of Python scripts is enabled or disabled.
5842
5843@anchor{info auto-load python-scripts}
5844@kindex info auto-load python-scripts
5845@cindex print list of auto-loaded Python scripts
5846@item info auto-load python-scripts [@var{regexp}]
5847Print the list of all Python scripts that @value{GDBN} auto-loaded.
5848
5849Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5850the @code{.debug_gdb_scripts} section and were either not found
5851(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5852@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5853This is useful because their names are not printed when @value{GDBN}
5854tries to load them and fails. There may be many of them, and printing
5855an error message for each one is problematic.
5856
5857If @var{regexp} is supplied only Python scripts with matching names are printed.
5858
5859Example:
5860
5861@smallexample
5862(gdb) info auto-load python-scripts
5863Loaded Script
5864Yes py-section-script.py
5865 full name: /tmp/py-section-script.py
5866No my-foo-pretty-printers.py
5867@end smallexample
5868@end table
5869
9f050062 5870When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5871@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5872function (@pxref{Objfiles In Python}). This can be useful for
5873registering objfile-specific pretty-printers and frame-filters.
5874
5875@node Python modules
5876@subsection Python modules
5877@cindex python modules
5878
5879@value{GDBN} comes with several modules to assist writing Python code.
5880
5881@menu
5882* gdb.printing:: Building and registering pretty-printers.
5883* gdb.types:: Utilities for working with types.
5884* gdb.prompt:: Utilities for prompt value substitution.
5885@end menu
5886
5887@node gdb.printing
5888@subsubsection gdb.printing
5889@cindex gdb.printing
5890
5891This module provides a collection of utilities for working with
5892pretty-printers.
5893
5894@table @code
5895@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5896This class specifies the API that makes @samp{info pretty-printer},
5897@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5898Pretty-printers should generally inherit from this class.
5899
5900@item SubPrettyPrinter (@var{name})
5901For printers that handle multiple types, this class specifies the
5902corresponding API for the subprinters.
5903
5904@item RegexpCollectionPrettyPrinter (@var{name})
5905Utility class for handling multiple printers, all recognized via
5906regular expressions.
5907@xref{Writing a Pretty-Printer}, for an example.
5908
5909@item FlagEnumerationPrinter (@var{name})
5910A pretty-printer which handles printing of @code{enum} values. Unlike
5911@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5912work properly when there is some overlap between the enumeration
697aa1b7
EZ
5913constants. The argument @var{name} is the name of the printer and
5914also the name of the @code{enum} type to look up.
329baa95
DE
5915
5916@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5917Register @var{printer} with the pretty-printer list of @var{obj}.
5918If @var{replace} is @code{True} then any existing copy of the printer
5919is replaced. Otherwise a @code{RuntimeError} exception is raised
5920if a printer with the same name already exists.
5921@end table
5922
5923@node gdb.types
5924@subsubsection gdb.types
5925@cindex gdb.types
5926
5927This module provides a collection of utilities for working with
5928@code{gdb.Type} objects.
5929
5930@table @code
5931@item get_basic_type (@var{type})
5932Return @var{type} with const and volatile qualifiers stripped,
5933and with typedefs and C@t{++} references converted to the underlying type.
5934
5935C@t{++} example:
5936
5937@smallexample
5938typedef const int const_int;
5939const_int foo (3);
5940const_int& foo_ref (foo);
5941int main () @{ return 0; @}
5942@end smallexample
5943
5944Then in gdb:
5945
5946@smallexample
5947(gdb) start
5948(gdb) python import gdb.types
5949(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5950(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5951int
5952@end smallexample
5953
5954@item has_field (@var{type}, @var{field})
5955Return @code{True} if @var{type}, assumed to be a type with fields
5956(e.g., a structure or union), has field @var{field}.
5957
5958@item make_enum_dict (@var{enum_type})
5959Return a Python @code{dictionary} type produced from @var{enum_type}.
5960
5961@item deep_items (@var{type})
5962Returns a Python iterator similar to the standard
5963@code{gdb.Type.iteritems} method, except that the iterator returned
5964by @code{deep_items} will recursively traverse anonymous struct or
5965union fields. For example:
5966
5967@smallexample
5968struct A
5969@{
5970 int a;
5971 union @{
5972 int b0;
5973 int b1;
5974 @};
5975@};
5976@end smallexample
5977
5978@noindent
5979Then in @value{GDBN}:
5980@smallexample
5981(@value{GDBP}) python import gdb.types
5982(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5983(@value{GDBP}) python print struct_a.keys ()
5984@{['a', '']@}
5985(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5986@{['a', 'b0', 'b1']@}
5987@end smallexample
5988
5989@item get_type_recognizers ()
5990Return a list of the enabled type recognizers for the current context.
5991This is called by @value{GDBN} during the type-printing process
5992(@pxref{Type Printing API}).
5993
5994@item apply_type_recognizers (recognizers, type_obj)
5995Apply the type recognizers, @var{recognizers}, to the type object
5996@var{type_obj}. If any recognizer returns a string, return that
5997string. Otherwise, return @code{None}. This is called by
5998@value{GDBN} during the type-printing process (@pxref{Type Printing
5999API}).
6000
6001@item register_type_printer (locus, printer)
697aa1b7
EZ
6002This is a convenience function to register a type printer
6003@var{printer}. The printer must implement the type printer protocol.
6004The @var{locus} argument is either a @code{gdb.Objfile}, in which case
6005the printer is registered with that objfile; a @code{gdb.Progspace},
6006in which case the printer is registered with that progspace; or
6007@code{None}, in which case the printer is registered globally.
329baa95
DE
6008
6009@item TypePrinter
6010This is a base class that implements the type printer protocol. Type
6011printers are encouraged, but not required, to derive from this class.
6012It defines a constructor:
6013
6014@defmethod TypePrinter __init__ (self, name)
6015Initialize the type printer with the given name. The new printer
6016starts in the enabled state.
6017@end defmethod
6018
6019@end table
6020
6021@node gdb.prompt
6022@subsubsection gdb.prompt
6023@cindex gdb.prompt
6024
6025This module provides a method for prompt value-substitution.
6026
6027@table @code
6028@item substitute_prompt (@var{string})
6029Return @var{string} with escape sequences substituted by values. Some
6030escape sequences take arguments. You can specify arguments inside
6031``@{@}'' immediately following the escape sequence.
6032
6033The escape sequences you can pass to this function are:
6034
6035@table @code
6036@item \\
6037Substitute a backslash.
6038@item \e
6039Substitute an ESC character.
6040@item \f
6041Substitute the selected frame; an argument names a frame parameter.
6042@item \n
6043Substitute a newline.
6044@item \p
6045Substitute a parameter's value; the argument names the parameter.
6046@item \r
6047Substitute a carriage return.
6048@item \t
6049Substitute the selected thread; an argument names a thread parameter.
6050@item \v
6051Substitute the version of GDB.
6052@item \w
6053Substitute the current working directory.
6054@item \[
6055Begin a sequence of non-printing characters. These sequences are
6056typically used with the ESC character, and are not counted in the string
6057length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
6058blue-colored ``(gdb)'' prompt where the length is five.
6059@item \]
6060End a sequence of non-printing characters.
6061@end table
6062
6063For example:
6064
6065@smallexample
77bb17b6 6066substitute_prompt ("frame: \f, args: \p@{print frame-arguments@}")
329baa95
DE
6067@end smallexample
6068
6069@exdent will return the string:
6070
6071@smallexample
77bb17b6 6072"frame: main, args: scalars"
329baa95
DE
6073@end smallexample
6074@end table
This page took 1.02007 seconds and 4 git commands to generate.