Centralize thread ID printing
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
618f726f 1@c Copyright (C) 2008-2016 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 147* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
148* Xmethods In Python:: Adding and replacing methods of C++ classes.
149* Xmethod API:: Xmethod types.
150* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
151* Inferiors In Python:: Python representation of inferiors (processes)
152* Events In Python:: Listening for events from @value{GDBN}.
153* Threads In Python:: Accessing inferior threads from Python.
154* Commands In Python:: Implementing new commands in Python.
155* Parameters In Python:: Adding new @value{GDBN} parameters.
156* Functions In Python:: Writing new convenience functions.
157* Progspaces In Python:: Program spaces.
158* Objfiles In Python:: Object files.
159* Frames In Python:: Accessing inferior stack frames from Python.
160* Blocks In Python:: Accessing blocks from Python.
161* Symbols In Python:: Python representation of symbols.
162* Symbol Tables In Python:: Python representation of symbol tables.
163* Line Tables In Python:: Python representation of line tables.
164* Breakpoints In Python:: Manipulating breakpoints using Python.
165* Finish Breakpoints in Python:: Setting Breakpoints on function return
166 using Python.
167* Lazy Strings In Python:: Python representation of lazy strings.
168* Architectures In Python:: Python representation of architectures.
169@end menu
170
171@node Basic Python
172@subsubsection Basic Python
173
174@cindex python stdout
175@cindex python pagination
176At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
177@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
178A Python program which outputs to one of these streams may have its
179output interrupted by the user (@pxref{Screen Size}). In this
180situation, a Python @code{KeyboardInterrupt} exception is thrown.
181
182Some care must be taken when writing Python code to run in
183@value{GDBN}. Two things worth noting in particular:
184
185@itemize @bullet
186@item
187@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
188Python code must not override these, or even change the options using
189@code{sigaction}. If your program changes the handling of these
190signals, @value{GDBN} will most likely stop working correctly. Note
191that it is unfortunately common for GUI toolkits to install a
192@code{SIGCHLD} handler.
193
194@item
195@value{GDBN} takes care to mark its internal file descriptors as
196close-on-exec. However, this cannot be done in a thread-safe way on
197all platforms. Your Python programs should be aware of this and
198should both create new file descriptors with the close-on-exec flag
199set and arrange to close unneeded file descriptors before starting a
200child process.
201@end itemize
202
203@cindex python functions
204@cindex python module
205@cindex gdb module
206@value{GDBN} introduces a new Python module, named @code{gdb}. All
207methods and classes added by @value{GDBN} are placed in this module.
208@value{GDBN} automatically @code{import}s the @code{gdb} module for
209use in all scripts evaluated by the @code{python} command.
210
211@findex gdb.PYTHONDIR
212@defvar gdb.PYTHONDIR
213A string containing the python directory (@pxref{Python}).
214@end defvar
215
216@findex gdb.execute
217@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
218Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
219If a GDB exception happens while @var{command} runs, it is
220translated as described in @ref{Exception Handling,,Exception Handling}.
221
697aa1b7 222The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
223command as having originated from the user invoking it interactively.
224It must be a boolean value. If omitted, it defaults to @code{False}.
225
226By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
227@value{GDBN}'s standard output (and to the log output if logging is
228turned on). If the @var{to_string} parameter is
329baa95
DE
229@code{True}, then output will be collected by @code{gdb.execute} and
230returned as a string. The default is @code{False}, in which case the
231return value is @code{None}. If @var{to_string} is @code{True}, the
232@value{GDBN} virtual terminal will be temporarily set to unlimited width
233and height, and its pagination will be disabled; @pxref{Screen Size}.
234@end defun
235
236@findex gdb.breakpoints
237@defun gdb.breakpoints ()
238Return a sequence holding all of @value{GDBN}'s breakpoints.
239@xref{Breakpoints In Python}, for more information.
240@end defun
241
242@findex gdb.parameter
243@defun gdb.parameter (parameter)
697aa1b7
EZ
244Return the value of a @value{GDBN} @var{parameter} given by its name,
245a string; the parameter name string may contain spaces if the parameter has a
246multi-part name. For example, @samp{print object} is a valid
247parameter name.
329baa95
DE
248
249If the named parameter does not exist, this function throws a
250@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
251parameter's value is converted to a Python value of the appropriate
252type, and returned.
253@end defun
254
255@findex gdb.history
256@defun gdb.history (number)
257Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 258History}). The @var{number} argument indicates which history element to return.
329baa95
DE
259If @var{number} is negative, then @value{GDBN} will take its absolute value
260and count backward from the last element (i.e., the most recent element) to
261find the value to return. If @var{number} is zero, then @value{GDBN} will
262return the most recent element. If the element specified by @var{number}
263doesn't exist in the value history, a @code{gdb.error} exception will be
264raised.
265
266If no exception is raised, the return value is always an instance of
267@code{gdb.Value} (@pxref{Values From Inferior}).
268@end defun
269
270@findex gdb.parse_and_eval
271@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
272Parse @var{expression}, which must be a string, as an expression in
273the current language, evaluate it, and return the result as a
274@code{gdb.Value}.
329baa95
DE
275
276This function can be useful when implementing a new command
277(@pxref{Commands In Python}), as it provides a way to parse the
278command's argument as an expression. It is also useful simply to
279compute values, for example, it is the only way to get the value of a
280convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
281@end defun
282
283@findex gdb.find_pc_line
284@defun gdb.find_pc_line (pc)
285Return the @code{gdb.Symtab_and_line} object corresponding to the
286@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
287value of @var{pc} is passed as an argument, then the @code{symtab} and
288@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
289will be @code{None} and 0 respectively.
290@end defun
291
292@findex gdb.post_event
293@defun gdb.post_event (event)
294Put @var{event}, a callable object taking no arguments, into
295@value{GDBN}'s internal event queue. This callable will be invoked at
296some later point, during @value{GDBN}'s event processing. Events
297posted using @code{post_event} will be run in the order in which they
298were posted; however, there is no way to know when they will be
299processed relative to other events inside @value{GDBN}.
300
301@value{GDBN} is not thread-safe. If your Python program uses multiple
302threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 303functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
304this. For example:
305
306@smallexample
307(@value{GDBP}) python
308>import threading
309>
310>class Writer():
311> def __init__(self, message):
312> self.message = message;
313> def __call__(self):
314> gdb.write(self.message)
315>
316>class MyThread1 (threading.Thread):
317> def run (self):
318> gdb.post_event(Writer("Hello "))
319>
320>class MyThread2 (threading.Thread):
321> def run (self):
322> gdb.post_event(Writer("World\n"))
323>
324>MyThread1().start()
325>MyThread2().start()
326>end
327(@value{GDBP}) Hello World
328@end smallexample
329@end defun
330
331@findex gdb.write
332@defun gdb.write (string @r{[}, stream{]})
333Print a string to @value{GDBN}'s paginated output stream. The
334optional @var{stream} determines the stream to print to. The default
335stream is @value{GDBN}'s standard output stream. Possible stream
336values are:
337
338@table @code
339@findex STDOUT
340@findex gdb.STDOUT
341@item gdb.STDOUT
342@value{GDBN}'s standard output stream.
343
344@findex STDERR
345@findex gdb.STDERR
346@item gdb.STDERR
347@value{GDBN}'s standard error stream.
348
349@findex STDLOG
350@findex gdb.STDLOG
351@item gdb.STDLOG
352@value{GDBN}'s log stream (@pxref{Logging Output}).
353@end table
354
355Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
356call this function and will automatically direct the output to the
357relevant stream.
358@end defun
359
360@findex gdb.flush
361@defun gdb.flush ()
362Flush the buffer of a @value{GDBN} paginated stream so that the
363contents are displayed immediately. @value{GDBN} will flush the
364contents of a stream automatically when it encounters a newline in the
365buffer. The optional @var{stream} determines the stream to flush. The
366default stream is @value{GDBN}'s standard output stream. Possible
367stream values are:
368
369@table @code
370@findex STDOUT
371@findex gdb.STDOUT
372@item gdb.STDOUT
373@value{GDBN}'s standard output stream.
374
375@findex STDERR
376@findex gdb.STDERR
377@item gdb.STDERR
378@value{GDBN}'s standard error stream.
379
380@findex STDLOG
381@findex gdb.STDLOG
382@item gdb.STDLOG
383@value{GDBN}'s log stream (@pxref{Logging Output}).
384
385@end table
386
387Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
388call this function for the relevant stream.
389@end defun
390
391@findex gdb.target_charset
392@defun gdb.target_charset ()
393Return the name of the current target character set (@pxref{Character
394Sets}). This differs from @code{gdb.parameter('target-charset')} in
395that @samp{auto} is never returned.
396@end defun
397
398@findex gdb.target_wide_charset
399@defun gdb.target_wide_charset ()
400Return the name of the current target wide character set
401(@pxref{Character Sets}). This differs from
402@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
403never returned.
404@end defun
405
406@findex gdb.solib_name
407@defun gdb.solib_name (address)
408Return the name of the shared library holding the given @var{address}
409as a string, or @code{None}.
410@end defun
411
412@findex gdb.decode_line
413@defun gdb.decode_line @r{[}expression@r{]}
414Return locations of the line specified by @var{expression}, or of the
415current line if no argument was given. This function returns a Python
416tuple containing two elements. The first element contains a string
417holding any unparsed section of @var{expression} (or @code{None} if
418the expression has been fully parsed). The second element contains
419either @code{None} or another tuple that contains all the locations
420that match the expression represented as @code{gdb.Symtab_and_line}
421objects (@pxref{Symbol Tables In Python}). If @var{expression} is
422provided, it is decoded the way that @value{GDBN}'s inbuilt
423@code{break} or @code{edit} commands do (@pxref{Specify Location}).
424@end defun
425
426@defun gdb.prompt_hook (current_prompt)
427@anchor{prompt_hook}
428
429If @var{prompt_hook} is callable, @value{GDBN} will call the method
430assigned to this operation before a prompt is displayed by
431@value{GDBN}.
432
433The parameter @code{current_prompt} contains the current @value{GDBN}
434prompt. This method must return a Python string, or @code{None}. If
435a string is returned, the @value{GDBN} prompt will be set to that
436string. If @code{None} is returned, @value{GDBN} will continue to use
437the current prompt.
438
439Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
440such as those used by readline for command input, and annotation
441related prompts are prohibited from being changed.
442@end defun
443
444@node Exception Handling
445@subsubsection Exception Handling
446@cindex python exceptions
447@cindex exceptions, python
448
449When executing the @code{python} command, Python exceptions
450uncaught within the Python code are translated to calls to
451@value{GDBN} error-reporting mechanism. If the command that called
452@code{python} does not handle the error, @value{GDBN} will
453terminate it and print an error message containing the Python
454exception name, the associated value, and the Python call stack
455backtrace at the point where the exception was raised. Example:
456
457@smallexample
458(@value{GDBP}) python print foo
459Traceback (most recent call last):
460 File "<string>", line 1, in <module>
461NameError: name 'foo' is not defined
462@end smallexample
463
464@value{GDBN} errors that happen in @value{GDBN} commands invoked by
465Python code are converted to Python exceptions. The type of the
466Python exception depends on the error.
467
468@ftable @code
469@item gdb.error
470This is the base class for most exceptions generated by @value{GDBN}.
471It is derived from @code{RuntimeError}, for compatibility with earlier
472versions of @value{GDBN}.
473
474If an error occurring in @value{GDBN} does not fit into some more
475specific category, then the generated exception will have this type.
476
477@item gdb.MemoryError
478This is a subclass of @code{gdb.error} which is thrown when an
479operation tried to access invalid memory in the inferior.
480
481@item KeyboardInterrupt
482User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
483prompt) is translated to a Python @code{KeyboardInterrupt} exception.
484@end ftable
485
486In all cases, your exception handler will see the @value{GDBN} error
487message as its value and the Python call stack backtrace at the Python
488statement closest to where the @value{GDBN} error occured as the
489traceback.
490
491@findex gdb.GdbError
492When implementing @value{GDBN} commands in Python via @code{gdb.Command},
493it is useful to be able to throw an exception that doesn't cause a
494traceback to be printed. For example, the user may have invoked the
495command incorrectly. Use the @code{gdb.GdbError} exception
496to handle this case. Example:
497
498@smallexample
499(gdb) python
500>class HelloWorld (gdb.Command):
501> """Greet the whole world."""
502> def __init__ (self):
503> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
504> def invoke (self, args, from_tty):
505> argv = gdb.string_to_argv (args)
506> if len (argv) != 0:
507> raise gdb.GdbError ("hello-world takes no arguments")
508> print "Hello, World!"
509>HelloWorld ()
510>end
511(gdb) hello-world 42
512hello-world takes no arguments
513@end smallexample
514
515@node Values From Inferior
516@subsubsection Values From Inferior
517@cindex values from inferior, with Python
518@cindex python, working with values from inferior
519
520@cindex @code{gdb.Value}
521@value{GDBN} provides values it obtains from the inferior program in
522an object of type @code{gdb.Value}. @value{GDBN} uses this object
523for its internal bookkeeping of the inferior's values, and for
524fetching values when necessary.
525
526Inferior values that are simple scalars can be used directly in
527Python expressions that are valid for the value's data type. Here's
528an example for an integer or floating-point value @code{some_val}:
529
530@smallexample
531bar = some_val + 2
532@end smallexample
533
534@noindent
535As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
536whose values are of the same type as those of @code{some_val}. Valid
537Python operations can also be performed on @code{gdb.Value} objects
538representing a @code{struct} or @code{class} object. For such cases,
539the overloaded operator (if present), is used to perform the operation.
540For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
541representing instances of a @code{class} which overloads the @code{+}
542operator, then one can use the @code{+} operator in their Python script
543as follows:
544
545@smallexample
546val3 = val1 + val2
547@end smallexample
548
549@noindent
550The result of the operation @code{val3} is also a @code{gdb.Value}
551object corresponding to the value returned by the overloaded @code{+}
552operator. In general, overloaded operators are invoked for the
553following operations: @code{+} (binary addition), @code{-} (binary
554subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
555@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
556
557Inferior values that are structures or instances of some class can
558be accessed using the Python @dfn{dictionary syntax}. For example, if
559@code{some_val} is a @code{gdb.Value} instance holding a structure, you
560can access its @code{foo} element with:
561
562@smallexample
563bar = some_val['foo']
564@end smallexample
565
566@cindex getting structure elements using gdb.Field objects as subscripts
567Again, @code{bar} will also be a @code{gdb.Value} object. Structure
568elements can also be accessed by using @code{gdb.Field} objects as
569subscripts (@pxref{Types In Python}, for more information on
570@code{gdb.Field} objects). For example, if @code{foo_field} is a
571@code{gdb.Field} object corresponding to element @code{foo} of the above
572structure, then @code{bar} can also be accessed as follows:
573
574@smallexample
575bar = some_val[foo_field]
576@end smallexample
577
578A @code{gdb.Value} that represents a function can be executed via
579inferior function call. Any arguments provided to the call must match
580the function's prototype, and must be provided in the order specified
581by that prototype.
582
583For example, @code{some_val} is a @code{gdb.Value} instance
584representing a function that takes two integers as arguments. To
585execute this function, call it like so:
586
587@smallexample
588result = some_val (10,20)
589@end smallexample
590
591Any values returned from a function call will be stored as a
592@code{gdb.Value}.
593
594The following attributes are provided:
595
596@defvar Value.address
597If this object is addressable, this read-only attribute holds a
598@code{gdb.Value} object representing the address. Otherwise,
599this attribute holds @code{None}.
600@end defvar
601
602@cindex optimized out value in Python
603@defvar Value.is_optimized_out
604This read-only boolean attribute is true if the compiler optimized out
605this value, thus it is not available for fetching from the inferior.
606@end defvar
607
608@defvar Value.type
609The type of this @code{gdb.Value}. The value of this attribute is a
610@code{gdb.Type} object (@pxref{Types In Python}).
611@end defvar
612
613@defvar Value.dynamic_type
614The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
615type information (@acronym{RTTI}) to determine the dynamic type of the
616value. If this value is of class type, it will return the class in
617which the value is embedded, if any. If this value is of pointer or
618reference to a class type, it will compute the dynamic type of the
619referenced object, and return a pointer or reference to that type,
620respectively. In all other cases, it will return the value's static
621type.
622
623Note that this feature will only work when debugging a C@t{++} program
624that includes @acronym{RTTI} for the object in question. Otherwise,
625it will just return the static type of the value as in @kbd{ptype foo}
626(@pxref{Symbols, ptype}).
627@end defvar
628
629@defvar Value.is_lazy
630The value of this read-only boolean attribute is @code{True} if this
631@code{gdb.Value} has not yet been fetched from the inferior.
632@value{GDBN} does not fetch values until necessary, for efficiency.
633For example:
634
635@smallexample
636myval = gdb.parse_and_eval ('somevar')
637@end smallexample
638
639The value of @code{somevar} is not fetched at this time. It will be
640fetched when the value is needed, or when the @code{fetch_lazy}
641method is invoked.
642@end defvar
643
644The following methods are provided:
645
646@defun Value.__init__ (@var{val})
647Many Python values can be converted directly to a @code{gdb.Value} via
648this object initializer. Specifically:
649
650@table @asis
651@item Python boolean
652A Python boolean is converted to the boolean type from the current
653language.
654
655@item Python integer
656A Python integer is converted to the C @code{long} type for the
657current architecture.
658
659@item Python long
660A Python long is converted to the C @code{long long} type for the
661current architecture.
662
663@item Python float
664A Python float is converted to the C @code{double} type for the
665current architecture.
666
667@item Python string
b3ce5e5f
DE
668A Python string is converted to a target string in the current target
669language using the current target encoding.
670If a character cannot be represented in the current target encoding,
671then an exception is thrown.
329baa95
DE
672
673@item @code{gdb.Value}
674If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
675
676@item @code{gdb.LazyString}
677If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
678Python}), then the lazy string's @code{value} method is called, and
679its result is used.
680@end table
681@end defun
682
683@defun Value.cast (type)
684Return a new instance of @code{gdb.Value} that is the result of
685casting this instance to the type described by @var{type}, which must
686be a @code{gdb.Type} object. If the cast cannot be performed for some
687reason, this method throws an exception.
688@end defun
689
690@defun Value.dereference ()
691For pointer data types, this method returns a new @code{gdb.Value} object
692whose contents is the object pointed to by the pointer. For example, if
693@code{foo} is a C pointer to an @code{int}, declared in your C program as
694
695@smallexample
696int *foo;
697@end smallexample
698
699@noindent
700then you can use the corresponding @code{gdb.Value} to access what
701@code{foo} points to like this:
702
703@smallexample
704bar = foo.dereference ()
705@end smallexample
706
707The result @code{bar} will be a @code{gdb.Value} object holding the
708value pointed to by @code{foo}.
709
710A similar function @code{Value.referenced_value} exists which also
711returns @code{gdb.Value} objects corresonding to the values pointed to
712by pointer values (and additionally, values referenced by reference
713values). However, the behavior of @code{Value.dereference}
714differs from @code{Value.referenced_value} by the fact that the
715behavior of @code{Value.dereference} is identical to applying the C
716unary operator @code{*} on a given value. For example, consider a
717reference to a pointer @code{ptrref}, declared in your C@t{++} program
718as
719
720@smallexample
721typedef int *intptr;
722...
723int val = 10;
724intptr ptr = &val;
725intptr &ptrref = ptr;
726@end smallexample
727
728Though @code{ptrref} is a reference value, one can apply the method
729@code{Value.dereference} to the @code{gdb.Value} object corresponding
730to it and obtain a @code{gdb.Value} which is identical to that
731corresponding to @code{val}. However, if you apply the method
732@code{Value.referenced_value}, the result would be a @code{gdb.Value}
733object identical to that corresponding to @code{ptr}.
734
735@smallexample
736py_ptrref = gdb.parse_and_eval ("ptrref")
737py_val = py_ptrref.dereference ()
738py_ptr = py_ptrref.referenced_value ()
739@end smallexample
740
741The @code{gdb.Value} object @code{py_val} is identical to that
742corresponding to @code{val}, and @code{py_ptr} is identical to that
743corresponding to @code{ptr}. In general, @code{Value.dereference} can
744be applied whenever the C unary operator @code{*} can be applied
745to the corresponding C value. For those cases where applying both
746@code{Value.dereference} and @code{Value.referenced_value} is allowed,
747the results obtained need not be identical (as we have seen in the above
748example). The results are however identical when applied on
749@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
750objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
751@end defun
752
753@defun Value.referenced_value ()
754For pointer or reference data types, this method returns a new
755@code{gdb.Value} object corresponding to the value referenced by the
756pointer/reference value. For pointer data types,
757@code{Value.dereference} and @code{Value.referenced_value} produce
758identical results. The difference between these methods is that
759@code{Value.dereference} cannot get the values referenced by reference
760values. For example, consider a reference to an @code{int}, declared
761in your C@t{++} program as
762
763@smallexample
764int val = 10;
765int &ref = val;
766@end smallexample
767
768@noindent
769then applying @code{Value.dereference} to the @code{gdb.Value} object
770corresponding to @code{ref} will result in an error, while applying
771@code{Value.referenced_value} will result in a @code{gdb.Value} object
772identical to that corresponding to @code{val}.
773
774@smallexample
775py_ref = gdb.parse_and_eval ("ref")
776er_ref = py_ref.dereference () # Results in error
777py_val = py_ref.referenced_value () # Returns the referenced value
778@end smallexample
779
780The @code{gdb.Value} object @code{py_val} is identical to that
781corresponding to @code{val}.
782@end defun
783
4c082a81
SC
784@defun Value.reference_value ()
785Return a @code{gdb.Value} object which is a reference to the value
786encapsulated by this instance.
787@end defun
788
789@defun Value.const_value ()
790Return a @code{gdb.Value} object which is a @code{const} version of the
791value encapsulated by this instance.
792@end defun
793
329baa95
DE
794@defun Value.dynamic_cast (type)
795Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
796operator were used. Consult a C@t{++} reference for details.
797@end defun
798
799@defun Value.reinterpret_cast (type)
800Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
801operator were used. Consult a C@t{++} reference for details.
802@end defun
803
804@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
805If this @code{gdb.Value} represents a string, then this method
806converts the contents to a Python string. Otherwise, this method will
807throw an exception.
808
b3ce5e5f
DE
809Values are interpreted as strings according to the rules of the
810current language. If the optional length argument is given, the
811string will be converted to that length, and will include any embedded
812zeroes that the string may contain. Otherwise, for languages
813where the string is zero-terminated, the entire string will be
814converted.
329baa95 815
b3ce5e5f
DE
816For example, in C-like languages, a value is a string if it is a pointer
817to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
818or @code{char32_t}.
329baa95
DE
819
820If the optional @var{encoding} argument is given, it must be a string
821naming the encoding of the string in the @code{gdb.Value}, such as
822@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
823the same encodings as the corresponding argument to Python's
824@code{string.decode} method, and the Python codec machinery will be used
825to convert the string. If @var{encoding} is not given, or if
826@var{encoding} is the empty string, then either the @code{target-charset}
827(@pxref{Character Sets}) will be used, or a language-specific encoding
828will be used, if the current language is able to supply one.
829
830The optional @var{errors} argument is the same as the corresponding
831argument to Python's @code{string.decode} method.
832
833If the optional @var{length} argument is given, the string will be
834fetched and converted to the given length.
835@end defun
836
837@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
838If this @code{gdb.Value} represents a string, then this method
839converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
840In Python}). Otherwise, this method will throw an exception.
841
842If the optional @var{encoding} argument is given, it must be a string
843naming the encoding of the @code{gdb.LazyString}. Some examples are:
844@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
845@var{encoding} argument is an encoding that @value{GDBN} does
846recognize, @value{GDBN} will raise an error.
847
848When a lazy string is printed, the @value{GDBN} encoding machinery is
849used to convert the string during printing. If the optional
850@var{encoding} argument is not provided, or is an empty string,
851@value{GDBN} will automatically select the encoding most suitable for
852the string type. For further information on encoding in @value{GDBN}
853please see @ref{Character Sets}.
854
855If the optional @var{length} argument is given, the string will be
856fetched and encoded to the length of characters specified. If
857the @var{length} argument is not provided, the string will be fetched
858and encoded until a null of appropriate width is found.
859@end defun
860
861@defun Value.fetch_lazy ()
862If the @code{gdb.Value} object is currently a lazy value
863(@code{gdb.Value.is_lazy} is @code{True}), then the value is
864fetched from the inferior. Any errors that occur in the process
865will produce a Python exception.
866
867If the @code{gdb.Value} object is not a lazy value, this method
868has no effect.
869
870This method does not return a value.
871@end defun
872
873
874@node Types In Python
875@subsubsection Types In Python
876@cindex types in Python
877@cindex Python, working with types
878
879@tindex gdb.Type
880@value{GDBN} represents types from the inferior using the class
881@code{gdb.Type}.
882
883The following type-related functions are available in the @code{gdb}
884module:
885
886@findex gdb.lookup_type
887@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 888This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
889
890If @var{block} is given, then @var{name} is looked up in that scope.
891Otherwise, it is searched for globally.
892
893Ordinarily, this function will return an instance of @code{gdb.Type}.
894If the named type cannot be found, it will throw an exception.
895@end defun
896
897If the type is a structure or class type, or an enum type, the fields
898of that type can be accessed using the Python @dfn{dictionary syntax}.
899For example, if @code{some_type} is a @code{gdb.Type} instance holding
900a structure type, you can access its @code{foo} field with:
901
902@smallexample
903bar = some_type['foo']
904@end smallexample
905
906@code{bar} will be a @code{gdb.Field} object; see below under the
907description of the @code{Type.fields} method for a description of the
908@code{gdb.Field} class.
909
910An instance of @code{Type} has the following attributes:
911
912@defvar Type.code
913The type code for this type. The type code will be one of the
914@code{TYPE_CODE_} constants defined below.
915@end defvar
916
917@defvar Type.name
918The name of this type. If this type has no name, then @code{None}
919is returned.
920@end defvar
921
922@defvar Type.sizeof
923The size of this type, in target @code{char} units. Usually, a
924target's @code{char} type will be an 8-bit byte. However, on some
925unusual platforms, this type may have a different size.
926@end defvar
927
928@defvar Type.tag
929The tag name for this type. The tag name is the name after
930@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
931languages have this concept. If this type has no tag name, then
932@code{None} is returned.
933@end defvar
934
935The following methods are provided:
936
937@defun Type.fields ()
938For structure and union types, this method returns the fields. Range
939types have two fields, the minimum and maximum values. Enum types
940have one field per enum constant. Function and method types have one
941field per parameter. The base types of C@t{++} classes are also
942represented as fields. If the type has no fields, or does not fit
943into one of these categories, an empty sequence will be returned.
944
945Each field is a @code{gdb.Field} object, with some pre-defined attributes:
946@table @code
947@item bitpos
948This attribute is not available for @code{enum} or @code{static}
949(as in C@t{++} or Java) fields. The value is the position, counting
950in bits, from the start of the containing type.
951
952@item enumval
953This attribute is only available for @code{enum} fields, and its value
954is the enumeration member's integer representation.
955
956@item name
957The name of the field, or @code{None} for anonymous fields.
958
959@item artificial
960This is @code{True} if the field is artificial, usually meaning that
961it was provided by the compiler and not the user. This attribute is
962always provided, and is @code{False} if the field is not artificial.
963
964@item is_base_class
965This is @code{True} if the field represents a base class of a C@t{++}
966structure. This attribute is always provided, and is @code{False}
967if the field is not a base class of the type that is the argument of
968@code{fields}, or if that type was not a C@t{++} class.
969
970@item bitsize
971If the field is packed, or is a bitfield, then this will have a
972non-zero value, which is the size of the field in bits. Otherwise,
973this will be zero; in this case the field's size is given by its type.
974
975@item type
976The type of the field. This is usually an instance of @code{Type},
977but it can be @code{None} in some situations.
978
979@item parent_type
980The type which contains this field. This is an instance of
981@code{gdb.Type}.
982@end table
983@end defun
984
985@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
986Return a new @code{gdb.Type} object which represents an array of this
987type. If one argument is given, it is the inclusive upper bound of
988the array; in this case the lower bound is zero. If two arguments are
989given, the first argument is the lower bound of the array, and the
990second argument is the upper bound of the array. An array's length
991must not be negative, but the bounds can be.
992@end defun
993
994@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
995Return a new @code{gdb.Type} object which represents a vector of this
996type. If one argument is given, it is the inclusive upper bound of
997the vector; in this case the lower bound is zero. If two arguments are
998given, the first argument is the lower bound of the vector, and the
999second argument is the upper bound of the vector. A vector's length
1000must not be negative, but the bounds can be.
1001
1002The difference between an @code{array} and a @code{vector} is that
1003arrays behave like in C: when used in expressions they decay to a pointer
1004to the first element whereas vectors are treated as first class values.
1005@end defun
1006
1007@defun Type.const ()
1008Return a new @code{gdb.Type} object which represents a
1009@code{const}-qualified variant of this type.
1010@end defun
1011
1012@defun Type.volatile ()
1013Return a new @code{gdb.Type} object which represents a
1014@code{volatile}-qualified variant of this type.
1015@end defun
1016
1017@defun Type.unqualified ()
1018Return a new @code{gdb.Type} object which represents an unqualified
1019variant of this type. That is, the result is neither @code{const} nor
1020@code{volatile}.
1021@end defun
1022
1023@defun Type.range ()
1024Return a Python @code{Tuple} object that contains two elements: the
1025low bound of the argument type and the high bound of that type. If
1026the type does not have a range, @value{GDBN} will raise a
1027@code{gdb.error} exception (@pxref{Exception Handling}).
1028@end defun
1029
1030@defun Type.reference ()
1031Return a new @code{gdb.Type} object which represents a reference to this
1032type.
1033@end defun
1034
1035@defun Type.pointer ()
1036Return a new @code{gdb.Type} object which represents a pointer to this
1037type.
1038@end defun
1039
1040@defun Type.strip_typedefs ()
1041Return a new @code{gdb.Type} that represents the real type,
1042after removing all layers of typedefs.
1043@end defun
1044
1045@defun Type.target ()
1046Return a new @code{gdb.Type} object which represents the target type
1047of this type.
1048
1049For a pointer type, the target type is the type of the pointed-to
1050object. For an array type (meaning C-like arrays), the target type is
1051the type of the elements of the array. For a function or method type,
1052the target type is the type of the return value. For a complex type,
1053the target type is the type of the elements. For a typedef, the
1054target type is the aliased type.
1055
1056If the type does not have a target, this method will throw an
1057exception.
1058@end defun
1059
1060@defun Type.template_argument (n @r{[}, block@r{]})
1061If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1062return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1063value of the @var{n}th template argument (indexed starting at 0).
329baa95 1064
1a6a384b
JL
1065If this @code{gdb.Type} is not a template type, or if the type has fewer
1066than @var{n} template arguments, this will throw an exception.
1067Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1068
1069If @var{block} is given, then @var{name} is looked up in that scope.
1070Otherwise, it is searched for globally.
1071@end defun
1072
59fb7612
SS
1073@defun Type.optimized_out ()
1074Return @code{gdb.Value} instance of this type whose value is optimized
1075out. This allows a frame decorator to indicate that the value of an
1076argument or a local variable is not known.
1077@end defun
329baa95
DE
1078
1079Each type has a code, which indicates what category this type falls
1080into. The available type categories are represented by constants
1081defined in the @code{gdb} module:
1082
b3ce5e5f
DE
1083@vtable @code
1084@vindex TYPE_CODE_PTR
329baa95
DE
1085@item gdb.TYPE_CODE_PTR
1086The type is a pointer.
1087
b3ce5e5f 1088@vindex TYPE_CODE_ARRAY
329baa95
DE
1089@item gdb.TYPE_CODE_ARRAY
1090The type is an array.
1091
b3ce5e5f 1092@vindex TYPE_CODE_STRUCT
329baa95
DE
1093@item gdb.TYPE_CODE_STRUCT
1094The type is a structure.
1095
b3ce5e5f 1096@vindex TYPE_CODE_UNION
329baa95
DE
1097@item gdb.TYPE_CODE_UNION
1098The type is a union.
1099
b3ce5e5f 1100@vindex TYPE_CODE_ENUM
329baa95
DE
1101@item gdb.TYPE_CODE_ENUM
1102The type is an enum.
1103
b3ce5e5f 1104@vindex TYPE_CODE_FLAGS
329baa95
DE
1105@item gdb.TYPE_CODE_FLAGS
1106A bit flags type, used for things such as status registers.
1107
b3ce5e5f 1108@vindex TYPE_CODE_FUNC
329baa95
DE
1109@item gdb.TYPE_CODE_FUNC
1110The type is a function.
1111
b3ce5e5f 1112@vindex TYPE_CODE_INT
329baa95
DE
1113@item gdb.TYPE_CODE_INT
1114The type is an integer type.
1115
b3ce5e5f 1116@vindex TYPE_CODE_FLT
329baa95
DE
1117@item gdb.TYPE_CODE_FLT
1118A floating point type.
1119
b3ce5e5f 1120@vindex TYPE_CODE_VOID
329baa95
DE
1121@item gdb.TYPE_CODE_VOID
1122The special type @code{void}.
1123
b3ce5e5f 1124@vindex TYPE_CODE_SET
329baa95
DE
1125@item gdb.TYPE_CODE_SET
1126A Pascal set type.
1127
b3ce5e5f 1128@vindex TYPE_CODE_RANGE
329baa95
DE
1129@item gdb.TYPE_CODE_RANGE
1130A range type, that is, an integer type with bounds.
1131
b3ce5e5f 1132@vindex TYPE_CODE_STRING
329baa95
DE
1133@item gdb.TYPE_CODE_STRING
1134A string type. Note that this is only used for certain languages with
1135language-defined string types; C strings are not represented this way.
1136
b3ce5e5f 1137@vindex TYPE_CODE_BITSTRING
329baa95
DE
1138@item gdb.TYPE_CODE_BITSTRING
1139A string of bits. It is deprecated.
1140
b3ce5e5f 1141@vindex TYPE_CODE_ERROR
329baa95
DE
1142@item gdb.TYPE_CODE_ERROR
1143An unknown or erroneous type.
1144
b3ce5e5f 1145@vindex TYPE_CODE_METHOD
329baa95
DE
1146@item gdb.TYPE_CODE_METHOD
1147A method type, as found in C@t{++} or Java.
1148
b3ce5e5f 1149@vindex TYPE_CODE_METHODPTR
329baa95
DE
1150@item gdb.TYPE_CODE_METHODPTR
1151A pointer-to-member-function.
1152
b3ce5e5f 1153@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1154@item gdb.TYPE_CODE_MEMBERPTR
1155A pointer-to-member.
1156
b3ce5e5f 1157@vindex TYPE_CODE_REF
329baa95
DE
1158@item gdb.TYPE_CODE_REF
1159A reference type.
1160
b3ce5e5f 1161@vindex TYPE_CODE_CHAR
329baa95
DE
1162@item gdb.TYPE_CODE_CHAR
1163A character type.
1164
b3ce5e5f 1165@vindex TYPE_CODE_BOOL
329baa95
DE
1166@item gdb.TYPE_CODE_BOOL
1167A boolean type.
1168
b3ce5e5f 1169@vindex TYPE_CODE_COMPLEX
329baa95
DE
1170@item gdb.TYPE_CODE_COMPLEX
1171A complex float type.
1172
b3ce5e5f 1173@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1174@item gdb.TYPE_CODE_TYPEDEF
1175A typedef to some other type.
1176
b3ce5e5f 1177@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1178@item gdb.TYPE_CODE_NAMESPACE
1179A C@t{++} namespace.
1180
b3ce5e5f 1181@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1182@item gdb.TYPE_CODE_DECFLOAT
1183A decimal floating point type.
1184
b3ce5e5f 1185@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1186@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1187A function internal to @value{GDBN}. This is the type used to represent
1188convenience functions.
b3ce5e5f 1189@end vtable
329baa95
DE
1190
1191Further support for types is provided in the @code{gdb.types}
1192Python module (@pxref{gdb.types}).
1193
1194@node Pretty Printing API
1195@subsubsection Pretty Printing API
b3ce5e5f 1196@cindex python pretty printing api
329baa95
DE
1197
1198An example output is provided (@pxref{Pretty Printing}).
1199
1200A pretty-printer is just an object that holds a value and implements a
1201specific interface, defined here.
1202
1203@defun pretty_printer.children (self)
1204@value{GDBN} will call this method on a pretty-printer to compute the
1205children of the pretty-printer's value.
1206
1207This method must return an object conforming to the Python iterator
1208protocol. Each item returned by the iterator must be a tuple holding
1209two elements. The first element is the ``name'' of the child; the
1210second element is the child's value. The value can be any Python
1211object which is convertible to a @value{GDBN} value.
1212
1213This method is optional. If it does not exist, @value{GDBN} will act
1214as though the value has no children.
1215@end defun
1216
1217@defun pretty_printer.display_hint (self)
1218The CLI may call this method and use its result to change the
1219formatting of a value. The result will also be supplied to an MI
1220consumer as a @samp{displayhint} attribute of the variable being
1221printed.
1222
1223This method is optional. If it does exist, this method must return a
1224string.
1225
1226Some display hints are predefined by @value{GDBN}:
1227
1228@table @samp
1229@item array
1230Indicate that the object being printed is ``array-like''. The CLI
1231uses this to respect parameters such as @code{set print elements} and
1232@code{set print array}.
1233
1234@item map
1235Indicate that the object being printed is ``map-like'', and that the
1236children of this value can be assumed to alternate between keys and
1237values.
1238
1239@item string
1240Indicate that the object being printed is ``string-like''. If the
1241printer's @code{to_string} method returns a Python string of some
1242kind, then @value{GDBN} will call its internal language-specific
1243string-printing function to format the string. For the CLI this means
1244adding quotation marks, possibly escaping some characters, respecting
1245@code{set print elements}, and the like.
1246@end table
1247@end defun
1248
1249@defun pretty_printer.to_string (self)
1250@value{GDBN} will call this method to display the string
1251representation of the value passed to the object's constructor.
1252
1253When printing from the CLI, if the @code{to_string} method exists,
1254then @value{GDBN} will prepend its result to the values returned by
1255@code{children}. Exactly how this formatting is done is dependent on
1256the display hint, and may change as more hints are added. Also,
1257depending on the print settings (@pxref{Print Settings}), the CLI may
1258print just the result of @code{to_string} in a stack trace, omitting
1259the result of @code{children}.
1260
1261If this method returns a string, it is printed verbatim.
1262
1263Otherwise, if this method returns an instance of @code{gdb.Value},
1264then @value{GDBN} prints this value. This may result in a call to
1265another pretty-printer.
1266
1267If instead the method returns a Python value which is convertible to a
1268@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1269the resulting value. Again, this may result in a call to another
1270pretty-printer. Python scalars (integers, floats, and booleans) and
1271strings are convertible to @code{gdb.Value}; other types are not.
1272
1273Finally, if this method returns @code{None} then no further operations
1274are peformed in this method and nothing is printed.
1275
1276If the result is not one of these types, an exception is raised.
1277@end defun
1278
1279@value{GDBN} provides a function which can be used to look up the
1280default pretty-printer for a @code{gdb.Value}:
1281
1282@findex gdb.default_visualizer
1283@defun gdb.default_visualizer (value)
1284This function takes a @code{gdb.Value} object as an argument. If a
1285pretty-printer for this value exists, then it is returned. If no such
1286printer exists, then this returns @code{None}.
1287@end defun
1288
1289@node Selecting Pretty-Printers
1290@subsubsection Selecting Pretty-Printers
b3ce5e5f 1291@cindex selecting python pretty-printers
329baa95
DE
1292
1293The Python list @code{gdb.pretty_printers} contains an array of
1294functions or callable objects that have been registered via addition
1295as a pretty-printer. Printers in this list are called @code{global}
1296printers, they're available when debugging all inferiors.
1297Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1298Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1299attribute.
1300
1301Each function on these lists is passed a single @code{gdb.Value}
1302argument and should return a pretty-printer object conforming to the
1303interface definition above (@pxref{Pretty Printing API}). If a function
1304cannot create a pretty-printer for the value, it should return
1305@code{None}.
1306
1307@value{GDBN} first checks the @code{pretty_printers} attribute of each
1308@code{gdb.Objfile} in the current program space and iteratively calls
1309each enabled lookup routine in the list for that @code{gdb.Objfile}
1310until it receives a pretty-printer object.
1311If no pretty-printer is found in the objfile lists, @value{GDBN} then
1312searches the pretty-printer list of the current program space,
1313calling each enabled function until an object is returned.
1314After these lists have been exhausted, it tries the global
1315@code{gdb.pretty_printers} list, again calling each enabled function until an
1316object is returned.
1317
1318The order in which the objfiles are searched is not specified. For a
1319given list, functions are always invoked from the head of the list,
1320and iterated over sequentially until the end of the list, or a printer
1321object is returned.
1322
1323For various reasons a pretty-printer may not work.
1324For example, the underlying data structure may have changed and
1325the pretty-printer is out of date.
1326
1327The consequences of a broken pretty-printer are severe enough that
1328@value{GDBN} provides support for enabling and disabling individual
1329printers. For example, if @code{print frame-arguments} is on,
1330a backtrace can become highly illegible if any argument is printed
1331with a broken printer.
1332
1333Pretty-printers are enabled and disabled by attaching an @code{enabled}
1334attribute to the registered function or callable object. If this attribute
1335is present and its value is @code{False}, the printer is disabled, otherwise
1336the printer is enabled.
1337
1338@node Writing a Pretty-Printer
1339@subsubsection Writing a Pretty-Printer
1340@cindex writing a pretty-printer
1341
1342A pretty-printer consists of two parts: a lookup function to detect
1343if the type is supported, and the printer itself.
1344
1345Here is an example showing how a @code{std::string} printer might be
1346written. @xref{Pretty Printing API}, for details on the API this class
1347must provide.
1348
1349@smallexample
1350class StdStringPrinter(object):
1351 "Print a std::string"
1352
1353 def __init__(self, val):
1354 self.val = val
1355
1356 def to_string(self):
1357 return self.val['_M_dataplus']['_M_p']
1358
1359 def display_hint(self):
1360 return 'string'
1361@end smallexample
1362
1363And here is an example showing how a lookup function for the printer
1364example above might be written.
1365
1366@smallexample
1367def str_lookup_function(val):
1368 lookup_tag = val.type.tag
1369 if lookup_tag == None:
1370 return None
1371 regex = re.compile("^std::basic_string<char,.*>$")
1372 if regex.match(lookup_tag):
1373 return StdStringPrinter(val)
1374 return None
1375@end smallexample
1376
1377The example lookup function extracts the value's type, and attempts to
1378match it to a type that it can pretty-print. If it is a type the
1379printer can pretty-print, it will return a printer object. If not, it
1380returns @code{None}.
1381
1382We recommend that you put your core pretty-printers into a Python
1383package. If your pretty-printers are for use with a library, we
1384further recommend embedding a version number into the package name.
1385This practice will enable @value{GDBN} to load multiple versions of
1386your pretty-printers at the same time, because they will have
1387different names.
1388
1389You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1390can be evaluated multiple times without changing its meaning. An
1391ideal auto-load file will consist solely of @code{import}s of your
1392printer modules, followed by a call to a register pretty-printers with
1393the current objfile.
1394
1395Taken as a whole, this approach will scale nicely to multiple
1396inferiors, each potentially using a different library version.
1397Embedding a version number in the Python package name will ensure that
1398@value{GDBN} is able to load both sets of printers simultaneously.
1399Then, because the search for pretty-printers is done by objfile, and
1400because your auto-loaded code took care to register your library's
1401printers with a specific objfile, @value{GDBN} will find the correct
1402printers for the specific version of the library used by each
1403inferior.
1404
1405To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1406this code might appear in @code{gdb.libstdcxx.v6}:
1407
1408@smallexample
1409def register_printers(objfile):
1410 objfile.pretty_printers.append(str_lookup_function)
1411@end smallexample
1412
1413@noindent
1414And then the corresponding contents of the auto-load file would be:
1415
1416@smallexample
1417import gdb.libstdcxx.v6
1418gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1419@end smallexample
1420
1421The previous example illustrates a basic pretty-printer.
1422There are a few things that can be improved on.
1423The printer doesn't have a name, making it hard to identify in a
1424list of installed printers. The lookup function has a name, but
1425lookup functions can have arbitrary, even identical, names.
1426
1427Second, the printer only handles one type, whereas a library typically has
1428several types. One could install a lookup function for each desired type
1429in the library, but one could also have a single lookup function recognize
1430several types. The latter is the conventional way this is handled.
1431If a pretty-printer can handle multiple data types, then its
1432@dfn{subprinters} are the printers for the individual data types.
1433
1434The @code{gdb.printing} module provides a formal way of solving these
1435problems (@pxref{gdb.printing}).
1436Here is another example that handles multiple types.
1437
1438These are the types we are going to pretty-print:
1439
1440@smallexample
1441struct foo @{ int a, b; @};
1442struct bar @{ struct foo x, y; @};
1443@end smallexample
1444
1445Here are the printers:
1446
1447@smallexample
1448class fooPrinter:
1449 """Print a foo object."""
1450
1451 def __init__(self, val):
1452 self.val = val
1453
1454 def to_string(self):
1455 return ("a=<" + str(self.val["a"]) +
1456 "> b=<" + str(self.val["b"]) + ">")
1457
1458class barPrinter:
1459 """Print a bar object."""
1460
1461 def __init__(self, val):
1462 self.val = val
1463
1464 def to_string(self):
1465 return ("x=<" + str(self.val["x"]) +
1466 "> y=<" + str(self.val["y"]) + ">")
1467@end smallexample
1468
1469This example doesn't need a lookup function, that is handled by the
1470@code{gdb.printing} module. Instead a function is provided to build up
1471the object that handles the lookup.
1472
1473@smallexample
1474import gdb.printing
1475
1476def build_pretty_printer():
1477 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1478 "my_library")
1479 pp.add_printer('foo', '^foo$', fooPrinter)
1480 pp.add_printer('bar', '^bar$', barPrinter)
1481 return pp
1482@end smallexample
1483
1484And here is the autoload support:
1485
1486@smallexample
1487import gdb.printing
1488import my_library
1489gdb.printing.register_pretty_printer(
1490 gdb.current_objfile(),
1491 my_library.build_pretty_printer())
1492@end smallexample
1493
1494Finally, when this printer is loaded into @value{GDBN}, here is the
1495corresponding output of @samp{info pretty-printer}:
1496
1497@smallexample
1498(gdb) info pretty-printer
1499my_library.so:
1500 my_library
1501 foo
1502 bar
1503@end smallexample
1504
1505@node Type Printing API
1506@subsubsection Type Printing API
1507@cindex type printing API for Python
1508
1509@value{GDBN} provides a way for Python code to customize type display.
1510This is mainly useful for substituting canonical typedef names for
1511types.
1512
1513@cindex type printer
1514A @dfn{type printer} is just a Python object conforming to a certain
1515protocol. A simple base class implementing the protocol is provided;
1516see @ref{gdb.types}. A type printer must supply at least:
1517
1518@defivar type_printer enabled
1519A boolean which is True if the printer is enabled, and False
1520otherwise. This is manipulated by the @code{enable type-printer}
1521and @code{disable type-printer} commands.
1522@end defivar
1523
1524@defivar type_printer name
1525The name of the type printer. This must be a string. This is used by
1526the @code{enable type-printer} and @code{disable type-printer}
1527commands.
1528@end defivar
1529
1530@defmethod type_printer instantiate (self)
1531This is called by @value{GDBN} at the start of type-printing. It is
1532only called if the type printer is enabled. This method must return a
1533new object that supplies a @code{recognize} method, as described below.
1534@end defmethod
1535
1536
1537When displaying a type, say via the @code{ptype} command, @value{GDBN}
1538will compute a list of type recognizers. This is done by iterating
1539first over the per-objfile type printers (@pxref{Objfiles In Python}),
1540followed by the per-progspace type printers (@pxref{Progspaces In
1541Python}), and finally the global type printers.
1542
1543@value{GDBN} will call the @code{instantiate} method of each enabled
1544type printer. If this method returns @code{None}, then the result is
1545ignored; otherwise, it is appended to the list of recognizers.
1546
1547Then, when @value{GDBN} is going to display a type name, it iterates
1548over the list of recognizers. For each one, it calls the recognition
1549function, stopping if the function returns a non-@code{None} value.
1550The recognition function is defined as:
1551
1552@defmethod type_recognizer recognize (self, type)
1553If @var{type} is not recognized, return @code{None}. Otherwise,
1554return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1555The @var{type} argument will be an instance of @code{gdb.Type}
1556(@pxref{Types In Python}).
329baa95
DE
1557@end defmethod
1558
1559@value{GDBN} uses this two-pass approach so that type printers can
1560efficiently cache information without holding on to it too long. For
1561example, it can be convenient to look up type information in a type
1562printer and hold it for a recognizer's lifetime; if a single pass were
1563done then type printers would have to make use of the event system in
1564order to avoid holding information that could become stale as the
1565inferior changed.
1566
1567@node Frame Filter API
1568@subsubsection Filtering Frames.
1569@cindex frame filters api
1570
1571Frame filters are Python objects that manipulate the visibility of a
1572frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1573@value{GDBN}.
1574
1575Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1576commands (@pxref{GDB/MI}), those that return a collection of frames
1577are affected. The commands that work with frame filters are:
1578
1579@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1580@code{-stack-list-frames}
1581(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1582@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1583-stack-list-variables command}), @code{-stack-list-arguments}
1584@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1585@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1586-stack-list-locals command}).
1587
1588A frame filter works by taking an iterator as an argument, applying
1589actions to the contents of that iterator, and returning another
1590iterator (or, possibly, the same iterator it was provided in the case
1591where the filter does not perform any operations). Typically, frame
1592filters utilize tools such as the Python's @code{itertools} module to
1593work with and create new iterators from the source iterator.
1594Regardless of how a filter chooses to apply actions, it must not alter
1595the underlying @value{GDBN} frame or frames, or attempt to alter the
1596call-stack within @value{GDBN}. This preserves data integrity within
1597@value{GDBN}. Frame filters are executed on a priority basis and care
1598should be taken that some frame filters may have been executed before,
1599and that some frame filters will be executed after.
1600
1601An important consideration when designing frame filters, and well
1602worth reflecting upon, is that frame filters should avoid unwinding
1603the call stack if possible. Some stacks can run very deep, into the
1604tens of thousands in some cases. To search every frame when a frame
1605filter executes may be too expensive at that step. The frame filter
1606cannot know how many frames it has to iterate over, and it may have to
1607iterate through them all. This ends up duplicating effort as
1608@value{GDBN} performs this iteration when it prints the frames. If
1609the filter can defer unwinding frames until frame decorators are
1610executed, after the last filter has executed, it should. @xref{Frame
1611Decorator API}, for more information on decorators. Also, there are
1612examples for both frame decorators and filters in later chapters.
1613@xref{Writing a Frame Filter}, for more information.
1614
1615The Python dictionary @code{gdb.frame_filters} contains key/object
1616pairings that comprise a frame filter. Frame filters in this
1617dictionary are called @code{global} frame filters, and they are
1618available when debugging all inferiors. These frame filters must
1619register with the dictionary directly. In addition to the
1620@code{global} dictionary, there are other dictionaries that are loaded
1621with different inferiors via auto-loading (@pxref{Python
1622Auto-loading}). The two other areas where frame filter dictionaries
1623can be found are: @code{gdb.Progspace} which contains a
1624@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1625object which also contains a @code{frame_filters} dictionary
1626attribute.
1627
1628When a command is executed from @value{GDBN} that is compatible with
1629frame filters, @value{GDBN} combines the @code{global},
1630@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1631loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1632several frames, and thus several object files, might be in use.
1633@value{GDBN} then prunes any frame filter whose @code{enabled}
1634attribute is @code{False}. This pruned list is then sorted according
1635to the @code{priority} attribute in each filter.
1636
1637Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1638creates an iterator which wraps each frame in the call stack in a
1639@code{FrameDecorator} object, and calls each filter in order. The
1640output from the previous filter will always be the input to the next
1641filter, and so on.
1642
1643Frame filters have a mandatory interface which each frame filter must
1644implement, defined here:
1645
1646@defun FrameFilter.filter (iterator)
1647@value{GDBN} will call this method on a frame filter when it has
1648reached the order in the priority list for that filter.
1649
1650For example, if there are four frame filters:
1651
1652@smallexample
1653Name Priority
1654
1655Filter1 5
1656Filter2 10
1657Filter3 100
1658Filter4 1
1659@end smallexample
1660
1661The order that the frame filters will be called is:
1662
1663@smallexample
1664Filter3 -> Filter2 -> Filter1 -> Filter4
1665@end smallexample
1666
1667Note that the output from @code{Filter3} is passed to the input of
1668@code{Filter2}, and so on.
1669
1670This @code{filter} method is passed a Python iterator. This iterator
1671contains a sequence of frame decorators that wrap each
1672@code{gdb.Frame}, or a frame decorator that wraps another frame
1673decorator. The first filter that is executed in the sequence of frame
1674filters will receive an iterator entirely comprised of default
1675@code{FrameDecorator} objects. However, after each frame filter is
1676executed, the previous frame filter may have wrapped some or all of
1677the frame decorators with their own frame decorator. As frame
1678decorators must also conform to a mandatory interface, these
1679decorators can be assumed to act in a uniform manner (@pxref{Frame
1680Decorator API}).
1681
1682This method must return an object conforming to the Python iterator
1683protocol. Each item in the iterator must be an object conforming to
1684the frame decorator interface. If a frame filter does not wish to
1685perform any operations on this iterator, it should return that
1686iterator untouched.
1687
1688This method is not optional. If it does not exist, @value{GDBN} will
1689raise and print an error.
1690@end defun
1691
1692@defvar FrameFilter.name
1693The @code{name} attribute must be Python string which contains the
1694name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1695Management}). This attribute may contain any combination of letters
1696or numbers. Care should be taken to ensure that it is unique. This
1697attribute is mandatory.
1698@end defvar
1699
1700@defvar FrameFilter.enabled
1701The @code{enabled} attribute must be Python boolean. This attribute
1702indicates to @value{GDBN} whether the frame filter is enabled, and
1703should be considered when frame filters are executed. If
1704@code{enabled} is @code{True}, then the frame filter will be executed
1705when any of the backtrace commands detailed earlier in this chapter
1706are executed. If @code{enabled} is @code{False}, then the frame
1707filter will not be executed. This attribute is mandatory.
1708@end defvar
1709
1710@defvar FrameFilter.priority
1711The @code{priority} attribute must be Python integer. This attribute
1712controls the order of execution in relation to other frame filters.
1713There are no imposed limits on the range of @code{priority} other than
1714it must be a valid integer. The higher the @code{priority} attribute,
1715the sooner the frame filter will be executed in relation to other
1716frame filters. Although @code{priority} can be negative, it is
1717recommended practice to assume zero is the lowest priority that a
1718frame filter can be assigned. Frame filters that have the same
1719priority are executed in unsorted order in that priority slot. This
1720attribute is mandatory.
1721@end defvar
1722
1723@node Frame Decorator API
1724@subsubsection Decorating Frames.
1725@cindex frame decorator api
1726
1727Frame decorators are sister objects to frame filters (@pxref{Frame
1728Filter API}). Frame decorators are applied by a frame filter and can
1729only be used in conjunction with frame filters.
1730
1731The purpose of a frame decorator is to customize the printed content
1732of each @code{gdb.Frame} in commands where frame filters are executed.
1733This concept is called decorating a frame. Frame decorators decorate
1734a @code{gdb.Frame} with Python code contained within each API call.
1735This separates the actual data contained in a @code{gdb.Frame} from
1736the decorated data produced by a frame decorator. This abstraction is
1737necessary to maintain integrity of the data contained in each
1738@code{gdb.Frame}.
1739
1740Frame decorators have a mandatory interface, defined below.
1741
1742@value{GDBN} already contains a frame decorator called
1743@code{FrameDecorator}. This contains substantial amounts of
1744boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1745recommended that other frame decorators inherit and extend this
1746object, and only to override the methods needed.
1747
1748@defun FrameDecorator.elided (self)
1749
1750The @code{elided} method groups frames together in a hierarchical
1751system. An example would be an interpreter, where multiple low-level
1752frames make up a single call in the interpreted language. In this
1753example, the frame filter would elide the low-level frames and present
1754a single high-level frame, representing the call in the interpreted
1755language, to the user.
1756
1757The @code{elided} function must return an iterable and this iterable
1758must contain the frames that are being elided wrapped in a suitable
1759frame decorator. If no frames are being elided this function may
1760return an empty iterable, or @code{None}. Elided frames are indented
1761from normal frames in a @code{CLI} backtrace, or in the case of
1762@code{GDB/MI}, are placed in the @code{children} field of the eliding
1763frame.
1764
1765It is the frame filter's task to also filter out the elided frames from
1766the source iterator. This will avoid printing the frame twice.
1767@end defun
1768
1769@defun FrameDecorator.function (self)
1770
1771This method returns the name of the function in the frame that is to
1772be printed.
1773
1774This method must return a Python string describing the function, or
1775@code{None}.
1776
1777If this function returns @code{None}, @value{GDBN} will not print any
1778data for this field.
1779@end defun
1780
1781@defun FrameDecorator.address (self)
1782
1783This method returns the address of the frame that is to be printed.
1784
1785This method must return a Python numeric integer type of sufficient
1786size to describe the address of the frame, or @code{None}.
1787
1788If this function returns a @code{None}, @value{GDBN} will not print
1789any data for this field.
1790@end defun
1791
1792@defun FrameDecorator.filename (self)
1793
1794This method returns the filename and path associated with this frame.
1795
1796This method must return a Python string containing the filename and
1797the path to the object file backing the frame, or @code{None}.
1798
1799If this function returns a @code{None}, @value{GDBN} will not print
1800any data for this field.
1801@end defun
1802
1803@defun FrameDecorator.line (self):
1804
1805This method returns the line number associated with the current
1806position within the function addressed by this frame.
1807
1808This method must return a Python integer type, or @code{None}.
1809
1810If this function returns a @code{None}, @value{GDBN} will not print
1811any data for this field.
1812@end defun
1813
1814@defun FrameDecorator.frame_args (self)
1815@anchor{frame_args}
1816
1817This method must return an iterable, or @code{None}. Returning an
1818empty iterable, or @code{None} means frame arguments will not be
1819printed for this frame. This iterable must contain objects that
1820implement two methods, described here.
1821
1822This object must implement a @code{argument} method which takes a
1823single @code{self} parameter and must return a @code{gdb.Symbol}
1824(@pxref{Symbols In Python}), or a Python string. The object must also
1825implement a @code{value} method which takes a single @code{self}
1826parameter and must return a @code{gdb.Value} (@pxref{Values From
1827Inferior}), a Python value, or @code{None}. If the @code{value}
1828method returns @code{None}, and the @code{argument} method returns a
1829@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1830the @code{gdb.Symbol} automatically.
1831
1832A brief example:
1833
1834@smallexample
1835class SymValueWrapper():
1836
1837 def __init__(self, symbol, value):
1838 self.sym = symbol
1839 self.val = value
1840
1841 def value(self):
1842 return self.val
1843
1844 def symbol(self):
1845 return self.sym
1846
1847class SomeFrameDecorator()
1848...
1849...
1850 def frame_args(self):
1851 args = []
1852 try:
1853 block = self.inferior_frame.block()
1854 except:
1855 return None
1856
1857 # Iterate over all symbols in a block. Only add
1858 # symbols that are arguments.
1859 for sym in block:
1860 if not sym.is_argument:
1861 continue
1862 args.append(SymValueWrapper(sym,None))
1863
1864 # Add example synthetic argument.
1865 args.append(SymValueWrapper(``foo'', 42))
1866
1867 return args
1868@end smallexample
1869@end defun
1870
1871@defun FrameDecorator.frame_locals (self)
1872
1873This method must return an iterable or @code{None}. Returning an
1874empty iterable, or @code{None} means frame local arguments will not be
1875printed for this frame.
1876
1877The object interface, the description of the various strategies for
1878reading frame locals, and the example are largely similar to those
1879described in the @code{frame_args} function, (@pxref{frame_args,,The
1880frame filter frame_args function}). Below is a modified example:
1881
1882@smallexample
1883class SomeFrameDecorator()
1884...
1885...
1886 def frame_locals(self):
1887 vars = []
1888 try:
1889 block = self.inferior_frame.block()
1890 except:
1891 return None
1892
1893 # Iterate over all symbols in a block. Add all
1894 # symbols, except arguments.
1895 for sym in block:
1896 if sym.is_argument:
1897 continue
1898 vars.append(SymValueWrapper(sym,None))
1899
1900 # Add an example of a synthetic local variable.
1901 vars.append(SymValueWrapper(``bar'', 99))
1902
1903 return vars
1904@end smallexample
1905@end defun
1906
1907@defun FrameDecorator.inferior_frame (self):
1908
1909This method must return the underlying @code{gdb.Frame} that this
1910frame decorator is decorating. @value{GDBN} requires the underlying
1911frame for internal frame information to determine how to print certain
1912values when printing a frame.
1913@end defun
1914
1915@node Writing a Frame Filter
1916@subsubsection Writing a Frame Filter
1917@cindex writing a frame filter
1918
1919There are three basic elements that a frame filter must implement: it
1920must correctly implement the documented interface (@pxref{Frame Filter
1921API}), it must register itself with @value{GDBN}, and finally, it must
1922decide if it is to work on the data provided by @value{GDBN}. In all
1923cases, whether it works on the iterator or not, each frame filter must
1924return an iterator. A bare-bones frame filter follows the pattern in
1925the following example.
1926
1927@smallexample
1928import gdb
1929
1930class FrameFilter():
1931
1932 def __init__(self):
1933 # Frame filter attribute creation.
1934 #
1935 # 'name' is the name of the filter that GDB will display.
1936 #
1937 # 'priority' is the priority of the filter relative to other
1938 # filters.
1939 #
1940 # 'enabled' is a boolean that indicates whether this filter is
1941 # enabled and should be executed.
1942
1943 self.name = "Foo"
1944 self.priority = 100
1945 self.enabled = True
1946
1947 # Register this frame filter with the global frame_filters
1948 # dictionary.
1949 gdb.frame_filters[self.name] = self
1950
1951 def filter(self, frame_iter):
1952 # Just return the iterator.
1953 return frame_iter
1954@end smallexample
1955
1956The frame filter in the example above implements the three
1957requirements for all frame filters. It implements the API, self
1958registers, and makes a decision on the iterator (in this case, it just
1959returns the iterator untouched).
1960
1961The first step is attribute creation and assignment, and as shown in
1962the comments the filter assigns the following attributes: @code{name},
1963@code{priority} and whether the filter should be enabled with the
1964@code{enabled} attribute.
1965
1966The second step is registering the frame filter with the dictionary or
1967dictionaries that the frame filter has interest in. As shown in the
1968comments, this filter just registers itself with the global dictionary
1969@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
1970is a dictionary that is initialized in the @code{gdb} module when
1971@value{GDBN} starts. What dictionary a filter registers with is an
1972important consideration. Generally, if a filter is specific to a set
1973of code, it should be registered either in the @code{objfile} or
1974@code{progspace} dictionaries as they are specific to the program
1975currently loaded in @value{GDBN}. The global dictionary is always
1976present in @value{GDBN} and is never unloaded. Any filters registered
1977with the global dictionary will exist until @value{GDBN} exits. To
1978avoid filters that may conflict, it is generally better to register
1979frame filters against the dictionaries that more closely align with
1980the usage of the filter currently in question. @xref{Python
1981Auto-loading}, for further information on auto-loading Python scripts.
1982
1983@value{GDBN} takes a hands-off approach to frame filter registration,
1984therefore it is the frame filter's responsibility to ensure
1985registration has occurred, and that any exceptions are handled
1986appropriately. In particular, you may wish to handle exceptions
1987relating to Python dictionary key uniqueness. It is mandatory that
1988the dictionary key is the same as frame filter's @code{name}
1989attribute. When a user manages frame filters (@pxref{Frame Filter
1990Management}), the names @value{GDBN} will display are those contained
1991in the @code{name} attribute.
1992
1993The final step of this example is the implementation of the
1994@code{filter} method. As shown in the example comments, we define the
1995@code{filter} method and note that the method must take an iterator,
1996and also must return an iterator. In this bare-bones example, the
1997frame filter is not very useful as it just returns the iterator
1998untouched. However this is a valid operation for frame filters that
1999have the @code{enabled} attribute set, but decide not to operate on
2000any frames.
2001
2002In the next example, the frame filter operates on all frames and
2003utilizes a frame decorator to perform some work on the frames.
2004@xref{Frame Decorator API}, for further information on the frame
2005decorator interface.
2006
2007This example works on inlined frames. It highlights frames which are
2008inlined by tagging them with an ``[inlined]'' tag. By applying a
2009frame decorator to all frames with the Python @code{itertools imap}
2010method, the example defers actions to the frame decorator. Frame
2011decorators are only processed when @value{GDBN} prints the backtrace.
2012
2013This introduces a new decision making topic: whether to perform
2014decision making operations at the filtering step, or at the printing
2015step. In this example's approach, it does not perform any filtering
2016decisions at the filtering step beyond mapping a frame decorator to
2017each frame. This allows the actual decision making to be performed
2018when each frame is printed. This is an important consideration, and
2019well worth reflecting upon when designing a frame filter. An issue
2020that frame filters should avoid is unwinding the stack if possible.
2021Some stacks can run very deep, into the tens of thousands in some
2022cases. To search every frame to determine if it is inlined ahead of
2023time may be too expensive at the filtering step. The frame filter
2024cannot know how many frames it has to iterate over, and it would have
2025to iterate through them all. This ends up duplicating effort as
2026@value{GDBN} performs this iteration when it prints the frames.
2027
2028In this example decision making can be deferred to the printing step.
2029As each frame is printed, the frame decorator can examine each frame
2030in turn when @value{GDBN} iterates. From a performance viewpoint,
2031this is the most appropriate decision to make as it avoids duplicating
2032the effort that the printing step would undertake anyway. Also, if
2033there are many frame filters unwinding the stack during filtering, it
2034can substantially delay the printing of the backtrace which will
2035result in large memory usage, and a poor user experience.
2036
2037@smallexample
2038class InlineFilter():
2039
2040 def __init__(self):
2041 self.name = "InlinedFrameFilter"
2042 self.priority = 100
2043 self.enabled = True
2044 gdb.frame_filters[self.name] = self
2045
2046 def filter(self, frame_iter):
2047 frame_iter = itertools.imap(InlinedFrameDecorator,
2048 frame_iter)
2049 return frame_iter
2050@end smallexample
2051
2052This frame filter is somewhat similar to the earlier example, except
2053that the @code{filter} method applies a frame decorator object called
2054@code{InlinedFrameDecorator} to each element in the iterator. The
2055@code{imap} Python method is light-weight. It does not proactively
2056iterate over the iterator, but rather creates a new iterator which
2057wraps the existing one.
2058
2059Below is the frame decorator for this example.
2060
2061@smallexample
2062class InlinedFrameDecorator(FrameDecorator):
2063
2064 def __init__(self, fobj):
2065 super(InlinedFrameDecorator, self).__init__(fobj)
2066
2067 def function(self):
2068 frame = fobj.inferior_frame()
2069 name = str(frame.name())
2070
2071 if frame.type() == gdb.INLINE_FRAME:
2072 name = name + " [inlined]"
2073
2074 return name
2075@end smallexample
2076
2077This frame decorator only defines and overrides the @code{function}
2078method. It lets the supplied @code{FrameDecorator}, which is shipped
2079with @value{GDBN}, perform the other work associated with printing
2080this frame.
2081
2082The combination of these two objects create this output from a
2083backtrace:
2084
2085@smallexample
2086#0 0x004004e0 in bar () at inline.c:11
2087#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2088#2 0x00400566 in main () at inline.c:31
2089@end smallexample
2090
2091So in the case of this example, a frame decorator is applied to all
2092frames, regardless of whether they may be inlined or not. As
2093@value{GDBN} iterates over the iterator produced by the frame filters,
2094@value{GDBN} executes each frame decorator which then makes a decision
2095on what to print in the @code{function} callback. Using a strategy
2096like this is a way to defer decisions on the frame content to printing
2097time.
2098
2099@subheading Eliding Frames
2100
2101It might be that the above example is not desirable for representing
2102inlined frames, and a hierarchical approach may be preferred. If we
2103want to hierarchically represent frames, the @code{elided} frame
2104decorator interface might be preferable.
2105
2106This example approaches the issue with the @code{elided} method. This
2107example is quite long, but very simplistic. It is out-of-scope for
2108this section to write a complete example that comprehensively covers
2109all approaches of finding and printing inlined frames. However, this
2110example illustrates the approach an author might use.
2111
2112This example comprises of three sections.
2113
2114@smallexample
2115class InlineFrameFilter():
2116
2117 def __init__(self):
2118 self.name = "InlinedFrameFilter"
2119 self.priority = 100
2120 self.enabled = True
2121 gdb.frame_filters[self.name] = self
2122
2123 def filter(self, frame_iter):
2124 return ElidingInlineIterator(frame_iter)
2125@end smallexample
2126
2127This frame filter is very similar to the other examples. The only
2128difference is this frame filter is wrapping the iterator provided to
2129it (@code{frame_iter}) with a custom iterator called
2130@code{ElidingInlineIterator}. This again defers actions to when
2131@value{GDBN} prints the backtrace, as the iterator is not traversed
2132until printing.
2133
2134The iterator for this example is as follows. It is in this section of
2135the example where decisions are made on the content of the backtrace.
2136
2137@smallexample
2138class ElidingInlineIterator:
2139 def __init__(self, ii):
2140 self.input_iterator = ii
2141
2142 def __iter__(self):
2143 return self
2144
2145 def next(self):
2146 frame = next(self.input_iterator)
2147
2148 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2149 return frame
2150
2151 try:
2152 eliding_frame = next(self.input_iterator)
2153 except StopIteration:
2154 return frame
2155 return ElidingFrameDecorator(eliding_frame, [frame])
2156@end smallexample
2157
2158This iterator implements the Python iterator protocol. When the
2159@code{next} function is called (when @value{GDBN} prints each frame),
2160the iterator checks if this frame decorator, @code{frame}, is wrapping
2161an inlined frame. If it is not, it returns the existing frame decorator
2162untouched. If it is wrapping an inlined frame, it assumes that the
2163inlined frame was contained within the next oldest frame,
2164@code{eliding_frame}, which it fetches. It then creates and returns a
2165frame decorator, @code{ElidingFrameDecorator}, which contains both the
2166elided frame, and the eliding frame.
2167
2168@smallexample
2169class ElidingInlineDecorator(FrameDecorator):
2170
2171 def __init__(self, frame, elided_frames):
2172 super(ElidingInlineDecorator, self).__init__(frame)
2173 self.frame = frame
2174 self.elided_frames = elided_frames
2175
2176 def elided(self):
2177 return iter(self.elided_frames)
2178@end smallexample
2179
2180This frame decorator overrides one function and returns the inlined
2181frame in the @code{elided} method. As before it lets
2182@code{FrameDecorator} do the rest of the work involved in printing
2183this frame. This produces the following output.
2184
2185@smallexample
2186#0 0x004004e0 in bar () at inline.c:11
2187#2 0x00400529 in main () at inline.c:25
2188 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2189@end smallexample
2190
2191In that output, @code{max} which has been inlined into @code{main} is
2192printed hierarchically. Another approach would be to combine the
2193@code{function} method, and the @code{elided} method to both print a
2194marker in the inlined frame, and also show the hierarchical
2195relationship.
2196
d11916aa
SS
2197@node Unwinding Frames in Python
2198@subsubsection Unwinding Frames in Python
2199@cindex unwinding frames in Python
2200
2201In @value{GDBN} terminology ``unwinding'' is the process of finding
2202the previous frame (that is, caller's) from the current one. An
2203unwinder has three methods. The first one checks if it can handle
2204given frame (``sniff'' it). For the frames it can sniff an unwinder
2205provides two additional methods: it can return frame's ID, and it can
2206fetch registers from the previous frame. A running @value{GDBN}
2207mantains a list of the unwinders and calls each unwinder's sniffer in
2208turn until it finds the one that recognizes the current frame. There
2209is an API to register an unwinder.
2210
2211The unwinders that come with @value{GDBN} handle standard frames.
2212However, mixed language applications (for example, an application
2213running Java Virtual Machine) sometimes use frame layouts that cannot
2214be handled by the @value{GDBN} unwinders. You can write Python code
2215that can handle such custom frames.
2216
2217You implement a frame unwinder in Python as a class with which has two
2218attributes, @code{name} and @code{enabled}, with obvious meanings, and
2219a single method @code{__call__}, which examines a given frame and
2220returns an object (an instance of @code{gdb.UnwindInfo class)}
2221describing it. If an unwinder does not recognize a frame, it should
2222return @code{None}. The code in @value{GDBN} that enables writing
2223unwinders in Python uses this object to return frame's ID and previous
2224frame registers when @value{GDBN} core asks for them.
2225
2226@subheading Unwinder Input
2227
2228An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2229provides a method to read frame's registers:
2230
2231@defun PendingFrame.read_register (reg)
2232This method returns the contents of the register @var{regn} in the
2233frame as a @code{gdb.Value} object. @var{reg} can be either a
2234register number or a register name; the values are platform-specific.
2235They are usually found in the corresponding
2236@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree.
2237@end defun
2238
2239It also provides a factory method to create a @code{gdb.UnwindInfo}
2240instance to be returned to @value{GDBN}:
2241
2242@defun PendingFrame.create_unwind_info (frame_id)
2243Returns a new @code{gdb.UnwindInfo} instance identified by given
2244@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2245using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2246determine which function will be used, as follows:
2247
2248@table @code
2249@item sp, pc, special
2250@code{frame_id_build_special (@var{frame_id}.sp, @var{frame_id}.pc, @var{frame_id}.special)}
2251
2252@item sp, pc
2253@code{frame_id_build (@var{frame_id}.sp, @var{frame_id}.pc)}
2254
2255This is the most common case.
2256
2257@item sp
2258@code{frame_id_build_wild (@var{frame_id}.sp)}
2259@end table
2260The attribute values should be @code{gdb.Value}
2261
2262@end defun
2263
2264@subheading Unwinder Output: UnwindInfo
2265
2266Use @code{PendingFrame.create_unwind_info} method described above to
2267create a @code{gdb.UnwindInfo} instance. Use the following method to
2268specify caller registers that have been saved in this frame:
2269
2270@defun gdb.UnwindInfo.add_saved_register (reg, value)
2271@var{reg} identifies the register. It can be a number or a name, just
2272as for the @code{PendingFrame.read_register} method above.
2273@var{value} is a register value (a @code{gdb.Value} object).
2274@end defun
2275
2276@subheading Unwinder Skeleton Code
2277
2278@value{GDBN} comes with the module containing the base @code{Unwinder}
2279class. Derive your unwinder class from it and structure the code as
2280follows:
2281
2282@smallexample
2283from gdb.unwinders import Unwinder
2284
2285class FrameId(object):
2286 def __init__(self, sp, pc):
2287 self.sp = sp
2288 self.pc = pc
2289
2290
2291class MyUnwinder(Unwinder):
2292 def __init__(....):
2293 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2294
2295 def __call__(pending_frame):
2296 if not <we recognize frame>:
2297 return None
2298 # Create UnwindInfo. Usually the frame is identified by the stack
2299 # pointer and the program counter.
2300 sp = pending_frame.read_register(<SP number>)
2301 pc = pending_frame.read_register(<PC number>)
2302 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2303
2304 # Find the values of the registers in the caller's frame and
2305 # save them in the result:
2306 unwind_info.add_saved_register(<register>, <value>)
2307 ....
2308
2309 # Return the result:
2310 return unwind_info
2311
2312@end smallexample
2313
2314@subheading Registering a Unwinder
2315
2316An object file, a program space, and the @value{GDBN} proper can have
2317unwinders registered with it.
2318
2319The @code{gdb.unwinders} module provides the function to register a
2320unwinder:
2321
2322@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2323@var{locus} is specifies an object file or a program space to which
2324@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2325@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2326added @var{unwinder} will be called before any other unwinder from the
2327same locus. Two unwinders in the same locus cannot have the same
2328name. An attempt to add a unwinder with already existing name raises
2329an exception unless @var{replace} is @code{True}, in which case the
2330old unwinder is deleted.
2331@end defun
2332
2333@subheading Unwinder Precedence
2334
2335@value{GDBN} first calls the unwinders from all the object files in no
2336particular order, then the unwinders from the current program space,
2337and finally the unwinders from @value{GDBN}.
2338
0c6e92a5
SC
2339@node Xmethods In Python
2340@subsubsection Xmethods In Python
2341@cindex xmethods in Python
2342
2343@dfn{Xmethods} are additional methods or replacements for existing
2344methods of a C@t{++} class. This feature is useful for those cases
2345where a method defined in C@t{++} source code could be inlined or
2346optimized out by the compiler, making it unavailable to @value{GDBN}.
2347For such cases, one can define an xmethod to serve as a replacement
2348for the method defined in the C@t{++} source code. @value{GDBN} will
2349then invoke the xmethod, instead of the C@t{++} method, to
2350evaluate expressions. One can also use xmethods when debugging
2351with core files. Moreover, when debugging live programs, invoking an
2352xmethod need not involve running the inferior (which can potentially
2353perturb its state). Hence, even if the C@t{++} method is available, it
2354is better to use its replacement xmethod if one is defined.
2355
2356The xmethods feature in Python is available via the concepts of an
2357@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2358implement an xmethod, one has to implement a matcher and a
2359corresponding worker for it (more than one worker can be
2360implemented, each catering to a different overloaded instance of the
2361method). Internally, @value{GDBN} invokes the @code{match} method of a
2362matcher to match the class type and method name. On a match, the
2363@code{match} method returns a list of matching @emph{worker} objects.
2364Each worker object typically corresponds to an overloaded instance of
2365the xmethod. They implement a @code{get_arg_types} method which
2366returns a sequence of types corresponding to the arguments the xmethod
2367requires. @value{GDBN} uses this sequence of types to perform
2368overload resolution and picks a winning xmethod worker. A winner
2369is also selected from among the methods @value{GDBN} finds in the
2370C@t{++} source code. Next, the winning xmethod worker and the
2371winning C@t{++} method are compared to select an overall winner. In
2372case of a tie between a xmethod worker and a C@t{++} method, the
2373xmethod worker is selected as the winner. That is, if a winning
2374xmethod worker is found to be equivalent to the winning C@t{++}
2375method, then the xmethod worker is treated as a replacement for
2376the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2377method. If the winning xmethod worker is the overall winner, then
897c3d32 2378the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2379of the worker object.
2380
2381If one wants to implement an xmethod as a replacement for an
2382existing C@t{++} method, then they have to implement an equivalent
2383xmethod which has exactly the same name and takes arguments of
2384exactly the same type as the C@t{++} method. If the user wants to
2385invoke the C@t{++} method even though a replacement xmethod is
2386available for that method, then they can disable the xmethod.
2387
2388@xref{Xmethod API}, for API to implement xmethods in Python.
2389@xref{Writing an Xmethod}, for implementing xmethods in Python.
2390
2391@node Xmethod API
2392@subsubsection Xmethod API
2393@cindex xmethod API
2394
2395The @value{GDBN} Python API provides classes, interfaces and functions
2396to implement, register and manipulate xmethods.
2397@xref{Xmethods In Python}.
2398
2399An xmethod matcher should be an instance of a class derived from
2400@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2401object with similar interface and attributes. An instance of
2402@code{XMethodMatcher} has the following attributes:
2403
2404@defvar name
2405The name of the matcher.
2406@end defvar
2407
2408@defvar enabled
2409A boolean value indicating whether the matcher is enabled or disabled.
2410@end defvar
2411
2412@defvar methods
2413A list of named methods managed by the matcher. Each object in the list
2414is an instance of the class @code{XMethod} defined in the module
2415@code{gdb.xmethod}, or any object with the following attributes:
2416
2417@table @code
2418
2419@item name
2420Name of the xmethod which should be unique for each xmethod
2421managed by the matcher.
2422
2423@item enabled
2424A boolean value indicating whether the xmethod is enabled or
2425disabled.
2426
2427@end table
2428
2429The class @code{XMethod} is a convenience class with same
2430attributes as above along with the following constructor:
2431
dd5d5494 2432@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2433Constructs an enabled xmethod with name @var{name}.
2434@end defun
2435@end defvar
2436
2437@noindent
2438The @code{XMethodMatcher} class has the following methods:
2439
dd5d5494 2440@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2441Constructs an enabled xmethod matcher with name @var{name}. The
2442@code{methods} attribute is initialized to @code{None}.
2443@end defun
2444
dd5d5494 2445@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2446Derived classes should override this method. It should return a
2447xmethod worker object (or a sequence of xmethod worker
2448objects) matching the @var{class_type} and @var{method_name}.
2449@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2450is a string value. If the matcher manages named methods as listed in
2451its @code{methods} attribute, then only those worker objects whose
2452corresponding entries in the @code{methods} list are enabled should be
2453returned.
2454@end defun
2455
2456An xmethod worker should be an instance of a class derived from
2457@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2458or support the following interface:
2459
dd5d5494 2460@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2461This method returns a sequence of @code{gdb.Type} objects corresponding
2462to the arguments that the xmethod takes. It can return an empty
2463sequence or @code{None} if the xmethod does not take any arguments.
2464If the xmethod takes a single argument, then a single
2465@code{gdb.Type} object corresponding to it can be returned.
2466@end defun
2467
2ce1cdbf
DE
2468@defun XMethodWorker.get_result_type (self, *args)
2469This method returns a @code{gdb.Type} object representing the type
2470of the result of invoking this xmethod.
2471The @var{args} argument is the same tuple of arguments that would be
2472passed to the @code{__call__} method of this worker.
2473@end defun
2474
dd5d5494 2475@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2476This is the method which does the @emph{work} of the xmethod. The
2477@var{args} arguments is the tuple of arguments to the xmethod. Each
2478element in this tuple is a gdb.Value object. The first element is
2479always the @code{this} pointer value.
2480@end defun
2481
2482For @value{GDBN} to lookup xmethods, the xmethod matchers
2483should be registered using the following function defined in the module
2484@code{gdb.xmethod}:
2485
dd5d5494 2486@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2487The @code{matcher} is registered with @code{locus}, replacing an
2488existing matcher with the same name as @code{matcher} if
2489@code{replace} is @code{True}. @code{locus} can be a
2490@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2491@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2492@code{None}. If it is @code{None}, then @code{matcher} is registered
2493globally.
2494@end defun
2495
2496@node Writing an Xmethod
2497@subsubsection Writing an Xmethod
2498@cindex writing xmethods in Python
2499
2500Implementing xmethods in Python will require implementing xmethod
2501matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2502the following C@t{++} class:
2503
2504@smallexample
2505class MyClass
2506@{
2507public:
2508 MyClass (int a) : a_(a) @{ @}
2509
2510 int geta (void) @{ return a_; @}
2511 int operator+ (int b);
2512
2513private:
2514 int a_;
2515@};
2516
2517int
2518MyClass::operator+ (int b)
2519@{
2520 return a_ + b;
2521@}
2522@end smallexample
2523
2524@noindent
2525Let us define two xmethods for the class @code{MyClass}, one
2526replacing the method @code{geta}, and another adding an overloaded
2527flavor of @code{operator+} which takes a @code{MyClass} argument (the
2528C@t{++} code above already has an overloaded @code{operator+}
2529which takes an @code{int} argument). The xmethod matcher can be
2530defined as follows:
2531
2532@smallexample
2533class MyClass_geta(gdb.xmethod.XMethod):
2534 def __init__(self):
2535 gdb.xmethod.XMethod.__init__(self, 'geta')
2536
2537 def get_worker(self, method_name):
2538 if method_name == 'geta':
2539 return MyClassWorker_geta()
2540
2541
2542class MyClass_sum(gdb.xmethod.XMethod):
2543 def __init__(self):
2544 gdb.xmethod.XMethod.__init__(self, 'sum')
2545
2546 def get_worker(self, method_name):
2547 if method_name == 'operator+':
2548 return MyClassWorker_plus()
2549
2550
2551class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2552 def __init__(self):
2553 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2554 # List of methods 'managed' by this matcher
2555 self.methods = [MyClass_geta(), MyClass_sum()]
2556
2557 def match(self, class_type, method_name):
2558 if class_type.tag != 'MyClass':
2559 return None
2560 workers = []
2561 for method in self.methods:
2562 if method.enabled:
2563 worker = method.get_worker(method_name)
2564 if worker:
2565 workers.append(worker)
2566
2567 return workers
2568@end smallexample
2569
2570@noindent
2571Notice that the @code{match} method of @code{MyClassMatcher} returns
2572a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2573method, and a worker object of type @code{MyClassWorker_plus} for the
2574@code{operator+} method. This is done indirectly via helper classes
2575derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2576@code{methods} attribute in a matcher as it is optional. However, if a
2577matcher manages more than one xmethod, it is a good practice to list the
2578xmethods in the @code{methods} attribute of the matcher. This will then
2579facilitate enabling and disabling individual xmethods via the
2580@code{enable/disable} commands. Notice also that a worker object is
2581returned only if the corresponding entry in the @code{methods} attribute
2582of the matcher is enabled.
2583
2584The implementation of the worker classes returned by the matcher setup
2585above is as follows:
2586
2587@smallexample
2588class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2589 def get_arg_types(self):
2590 return None
2ce1cdbf
DE
2591
2592 def get_result_type(self, obj):
2593 return gdb.lookup_type('int')
0c6e92a5
SC
2594
2595 def __call__(self, obj):
2596 return obj['a_']
2597
2598
2599class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2600 def get_arg_types(self):
2601 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2602
2603 def get_result_type(self, obj):
2604 return gdb.lookup_type('int')
0c6e92a5
SC
2605
2606 def __call__(self, obj, other):
2607 return obj['a_'] + other['a_']
2608@end smallexample
2609
2610For @value{GDBN} to actually lookup a xmethod, it has to be
2611registered with it. The matcher defined above is registered with
2612@value{GDBN} globally as follows:
2613
2614@smallexample
2615gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2616@end smallexample
2617
2618If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2619code as follows:
2620
2621@smallexample
2622MyClass obj(5);
2623@end smallexample
2624
2625@noindent
2626then, after loading the Python script defining the xmethod matchers
2627and workers into @code{GDBN}, invoking the method @code{geta} or using
2628the operator @code{+} on @code{obj} will invoke the xmethods
2629defined above:
2630
2631@smallexample
2632(gdb) p obj.geta()
2633$1 = 5
2634
2635(gdb) p obj + obj
2636$2 = 10
2637@end smallexample
2638
2639Consider another example with a C++ template class:
2640
2641@smallexample
2642template <class T>
2643class MyTemplate
2644@{
2645public:
2646 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2647 ~MyTemplate () @{ delete [] data_; @}
2648
2649 int footprint (void)
2650 @{
2651 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2652 @}
2653
2654private:
2655 int dsize_;
2656 T *data_;
2657@};
2658@end smallexample
2659
2660Let us implement an xmethod for the above class which serves as a
2661replacement for the @code{footprint} method. The full code listing
2662of the xmethod workers and xmethod matchers is as follows:
2663
2664@smallexample
2665class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2666 def __init__(self, class_type):
2667 self.class_type = class_type
2ce1cdbf 2668
0c6e92a5
SC
2669 def get_arg_types(self):
2670 return None
2ce1cdbf
DE
2671
2672 def get_result_type(self):
2673 return gdb.lookup_type('int')
2674
0c6e92a5
SC
2675 def __call__(self, obj):
2676 return (self.class_type.sizeof +
2677 obj['dsize_'] *
2678 self.class_type.template_argument(0).sizeof)
2679
2680
2681class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2682 def __init__(self):
2683 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2684
2685 def match(self, class_type, method_name):
2686 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2687 class_type.tag) and
2688 method_name == 'footprint'):
2689 return MyTemplateWorker_footprint(class_type)
2690@end smallexample
2691
2692Notice that, in this example, we have not used the @code{methods}
2693attribute of the matcher as the matcher manages only one xmethod. The
2694user can enable/disable this xmethod by enabling/disabling the matcher
2695itself.
2696
329baa95
DE
2697@node Inferiors In Python
2698@subsubsection Inferiors In Python
2699@cindex inferiors in Python
2700
2701@findex gdb.Inferior
2702Programs which are being run under @value{GDBN} are called inferiors
2703(@pxref{Inferiors and Programs}). Python scripts can access
2704information about and manipulate inferiors controlled by @value{GDBN}
2705via objects of the @code{gdb.Inferior} class.
2706
2707The following inferior-related functions are available in the @code{gdb}
2708module:
2709
2710@defun gdb.inferiors ()
2711Return a tuple containing all inferior objects.
2712@end defun
2713
2714@defun gdb.selected_inferior ()
2715Return an object representing the current inferior.
2716@end defun
2717
2718A @code{gdb.Inferior} object has the following attributes:
2719
2720@defvar Inferior.num
2721ID of inferior, as assigned by GDB.
2722@end defvar
2723
2724@defvar Inferior.pid
2725Process ID of the inferior, as assigned by the underlying operating
2726system.
2727@end defvar
2728
2729@defvar Inferior.was_attached
2730Boolean signaling whether the inferior was created using `attach', or
2731started by @value{GDBN} itself.
2732@end defvar
2733
2734A @code{gdb.Inferior} object has the following methods:
2735
2736@defun Inferior.is_valid ()
2737Returns @code{True} if the @code{gdb.Inferior} object is valid,
2738@code{False} if not. A @code{gdb.Inferior} object will become invalid
2739if the inferior no longer exists within @value{GDBN}. All other
2740@code{gdb.Inferior} methods will throw an exception if it is invalid
2741at the time the method is called.
2742@end defun
2743
2744@defun Inferior.threads ()
2745This method returns a tuple holding all the threads which are valid
2746when it is called. If there are no valid threads, the method will
2747return an empty tuple.
2748@end defun
2749
2750@findex Inferior.read_memory
2751@defun Inferior.read_memory (address, length)
a86c90e6 2752Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2753@var{address}. Returns a buffer object, which behaves much like an array
2754or a string. It can be modified and given to the
2755@code{Inferior.write_memory} function. In @code{Python} 3, the return
2756value is a @code{memoryview} object.
2757@end defun
2758
2759@findex Inferior.write_memory
2760@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2761Write the contents of @var{buffer} to the inferior, starting at
2762@var{address}. The @var{buffer} parameter must be a Python object
2763which supports the buffer protocol, i.e., a string, an array or the
2764object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2765determines the number of addressable memory units from @var{buffer} to be
2766written.
329baa95
DE
2767@end defun
2768
2769@findex gdb.search_memory
2770@defun Inferior.search_memory (address, length, pattern)
2771Search a region of the inferior memory starting at @var{address} with
2772the given @var{length} using the search pattern supplied in
2773@var{pattern}. The @var{pattern} parameter must be a Python object
2774which supports the buffer protocol, i.e., a string, an array or the
2775object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2776containing the address where the pattern was found, or @code{None} if
2777the pattern could not be found.
2778@end defun
2779
2780@node Events In Python
2781@subsubsection Events In Python
2782@cindex inferior events in Python
2783
2784@value{GDBN} provides a general event facility so that Python code can be
2785notified of various state changes, particularly changes that occur in
2786the inferior.
2787
2788An @dfn{event} is just an object that describes some state change. The
2789type of the object and its attributes will vary depending on the details
2790of the change. All the existing events are described below.
2791
2792In order to be notified of an event, you must register an event handler
2793with an @dfn{event registry}. An event registry is an object in the
2794@code{gdb.events} module which dispatches particular events. A registry
2795provides methods to register and unregister event handlers:
2796
2797@defun EventRegistry.connect (object)
2798Add the given callable @var{object} to the registry. This object will be
2799called when an event corresponding to this registry occurs.
2800@end defun
2801
2802@defun EventRegistry.disconnect (object)
2803Remove the given @var{object} from the registry. Once removed, the object
2804will no longer receive notifications of events.
2805@end defun
2806
2807Here is an example:
2808
2809@smallexample
2810def exit_handler (event):
2811 print "event type: exit"
2812 print "exit code: %d" % (event.exit_code)
2813
2814gdb.events.exited.connect (exit_handler)
2815@end smallexample
2816
2817In the above example we connect our handler @code{exit_handler} to the
2818registry @code{events.exited}. Once connected, @code{exit_handler} gets
2819called when the inferior exits. The argument @dfn{event} in this example is
2820of type @code{gdb.ExitedEvent}. As you can see in the example the
2821@code{ExitedEvent} object has an attribute which indicates the exit code of
2822the inferior.
2823
2824The following is a listing of the event registries that are available and
2825details of the events they emit:
2826
2827@table @code
2828
2829@item events.cont
2830Emits @code{gdb.ThreadEvent}.
2831
2832Some events can be thread specific when @value{GDBN} is running in non-stop
2833mode. When represented in Python, these events all extend
2834@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2835events which are emitted by this or other modules might extend this event.
2836Examples of these events are @code{gdb.BreakpointEvent} and
2837@code{gdb.ContinueEvent}.
2838
2839@defvar ThreadEvent.inferior_thread
2840In non-stop mode this attribute will be set to the specific thread which was
2841involved in the emitted event. Otherwise, it will be set to @code{None}.
2842@end defvar
2843
2844Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2845
2846This event indicates that the inferior has been continued after a stop. For
2847inherited attribute refer to @code{gdb.ThreadEvent} above.
2848
2849@item events.exited
2850Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2851@code{events.ExitedEvent} has two attributes:
2852@defvar ExitedEvent.exit_code
2853An integer representing the exit code, if available, which the inferior
2854has returned. (The exit code could be unavailable if, for example,
2855@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2856the attribute does not exist.
2857@end defvar
2858@defvar ExitedEvent inferior
2859A reference to the inferior which triggered the @code{exited} event.
2860@end defvar
2861
2862@item events.stop
2863Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2864
2865Indicates that the inferior has stopped. All events emitted by this registry
2866extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2867will indicate the stopped thread when @value{GDBN} is running in non-stop
2868mode. Refer to @code{gdb.ThreadEvent} above for more details.
2869
2870Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2871
2872This event indicates that the inferior or one of its threads has received as
2873signal. @code{gdb.SignalEvent} has the following attributes:
2874
2875@defvar SignalEvent.stop_signal
2876A string representing the signal received by the inferior. A list of possible
2877signal values can be obtained by running the command @code{info signals} in
2878the @value{GDBN} command prompt.
2879@end defvar
2880
2881Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2882
2883@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2884been hit, and has the following attributes:
2885
2886@defvar BreakpointEvent.breakpoints
2887A sequence containing references to all the breakpoints (type
2888@code{gdb.Breakpoint}) that were hit.
2889@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2890@end defvar
2891@defvar BreakpointEvent.breakpoint
2892A reference to the first breakpoint that was hit.
2893This function is maintained for backward compatibility and is now deprecated
2894in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
2895@end defvar
2896
2897@item events.new_objfile
2898Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
2899been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
2900
2901@defvar NewObjFileEvent.new_objfile
2902A reference to the object file (@code{gdb.Objfile}) which has been loaded.
2903@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
2904@end defvar
2905
4ffbba72
DE
2906@item events.clear_objfiles
2907Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
2908files for a program space has been reset.
2909@code{gdb.ClearObjFilesEvent} has one attribute:
2910
2911@defvar ClearObjFilesEvent.progspace
2912A reference to the program space (@code{gdb.Progspace}) whose objfile list has
2913been cleared. @xref{Progspaces In Python}.
2914@end defvar
2915
162078c8
NB
2916@item events.inferior_call_pre
2917Emits @code{gdb.InferiorCallPreEvent} which indicates that a function in
2918the inferior is about to be called.
2919
2920@defvar InferiorCallPreEvent.ptid
2921The thread in which the call will be run.
2922@end defvar
2923
2924@defvar InferiorCallPreEvent.address
2925The location of the function to be called.
2926@end defvar
2927
2928@item events.inferior_call_post
2929Emits @code{gdb.InferiorCallPostEvent} which indicates that a function in
2930the inferior has returned.
2931
2932@defvar InferiorCallPostEvent.ptid
2933The thread in which the call was run.
2934@end defvar
2935
2936@defvar InferiorCallPostEvent.address
2937The location of the function that was called.
2938@end defvar
2939
2940@item events.memory_changed
2941Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
2942inferior has been modified by the @value{GDBN} user, for instance via a
2943command like @w{@code{set *addr = value}}. The event has the following
2944attributes:
2945
2946@defvar MemoryChangedEvent.address
2947The start address of the changed region.
2948@end defvar
2949
2950@defvar MemoryChangedEvent.length
2951Length in bytes of the changed region.
2952@end defvar
2953
2954@item events.register_changed
2955Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
2956inferior has been modified by the @value{GDBN} user.
2957
2958@defvar RegisterChangedEvent.frame
2959A gdb.Frame object representing the frame in which the register was modified.
2960@end defvar
2961@defvar RegisterChangedEvent.regnum
2962Denotes which register was modified.
2963@end defvar
2964
329baa95
DE
2965@end table
2966
2967@node Threads In Python
2968@subsubsection Threads In Python
2969@cindex threads in python
2970
2971@findex gdb.InferiorThread
2972Python scripts can access information about, and manipulate inferior threads
2973controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
2974
2975The following thread-related functions are available in the @code{gdb}
2976module:
2977
2978@findex gdb.selected_thread
2979@defun gdb.selected_thread ()
2980This function returns the thread object for the selected thread. If there
2981is no selected thread, this will return @code{None}.
2982@end defun
2983
2984A @code{gdb.InferiorThread} object has the following attributes:
2985
2986@defvar InferiorThread.name
2987The name of the thread. If the user specified a name using
2988@code{thread name}, then this returns that name. Otherwise, if an
2989OS-supplied name is available, then it is returned. Otherwise, this
2990returns @code{None}.
2991
2992This attribute can be assigned to. The new value must be a string
2993object, which sets the new name, or @code{None}, which removes any
2994user-specified thread name.
2995@end defvar
2996
2997@defvar InferiorThread.num
2998ID of the thread, as assigned by GDB.
2999@end defvar
3000
3001@defvar InferiorThread.ptid
3002ID of the thread, as assigned by the operating system. This attribute is a
3003tuple containing three integers. The first is the Process ID (PID); the second
3004is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3005Either the LWPID or TID may be 0, which indicates that the operating system
3006does not use that identifier.
3007@end defvar
3008
84654457
PA
3009@defvar InferiorThread.inferior
3010The inferior this thread belongs to. This attribute is represented as
3011a @code{gdb.Inferior} object. This attribute is not writable.
3012@end defvar
3013
329baa95
DE
3014A @code{gdb.InferiorThread} object has the following methods:
3015
3016@defun InferiorThread.is_valid ()
3017Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3018@code{False} if not. A @code{gdb.InferiorThread} object will become
3019invalid if the thread exits, or the inferior that the thread belongs
3020is deleted. All other @code{gdb.InferiorThread} methods will throw an
3021exception if it is invalid at the time the method is called.
3022@end defun
3023
3024@defun InferiorThread.switch ()
3025This changes @value{GDBN}'s currently selected thread to the one represented
3026by this object.
3027@end defun
3028
3029@defun InferiorThread.is_stopped ()
3030Return a Boolean indicating whether the thread is stopped.
3031@end defun
3032
3033@defun InferiorThread.is_running ()
3034Return a Boolean indicating whether the thread is running.
3035@end defun
3036
3037@defun InferiorThread.is_exited ()
3038Return a Boolean indicating whether the thread is exited.
3039@end defun
3040
3041@node Commands In Python
3042@subsubsection Commands In Python
3043
3044@cindex commands in python
3045@cindex python commands
3046You can implement new @value{GDBN} CLI commands in Python. A CLI
3047command is implemented using an instance of the @code{gdb.Command}
3048class, most commonly using a subclass.
3049
3050@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3051The object initializer for @code{Command} registers the new command
3052with @value{GDBN}. This initializer is normally invoked from the
3053subclass' own @code{__init__} method.
3054
3055@var{name} is the name of the command. If @var{name} consists of
3056multiple words, then the initial words are looked for as prefix
3057commands. In this case, if one of the prefix commands does not exist,
3058an exception is raised.
3059
3060There is no support for multi-line commands.
3061
3062@var{command_class} should be one of the @samp{COMMAND_} constants
3063defined below. This argument tells @value{GDBN} how to categorize the
3064new command in the help system.
3065
3066@var{completer_class} is an optional argument. If given, it should be
3067one of the @samp{COMPLETE_} constants defined below. This argument
3068tells @value{GDBN} how to perform completion for this command. If not
3069given, @value{GDBN} will attempt to complete using the object's
3070@code{complete} method (see below); if no such method is found, an
3071error will occur when completion is attempted.
3072
3073@var{prefix} is an optional argument. If @code{True}, then the new
3074command is a prefix command; sub-commands of this command may be
3075registered.
3076
3077The help text for the new command is taken from the Python
3078documentation string for the command's class, if there is one. If no
3079documentation string is provided, the default value ``This command is
3080not documented.'' is used.
3081@end defun
3082
3083@cindex don't repeat Python command
3084@defun Command.dont_repeat ()
3085By default, a @value{GDBN} command is repeated when the user enters a
3086blank line at the command prompt. A command can suppress this
3087behavior by invoking the @code{dont_repeat} method. This is similar
3088to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3089@end defun
3090
3091@defun Command.invoke (argument, from_tty)
3092This method is called by @value{GDBN} when this command is invoked.
3093
3094@var{argument} is a string. It is the argument to the command, after
3095leading and trailing whitespace has been stripped.
3096
3097@var{from_tty} is a boolean argument. When true, this means that the
3098command was entered by the user at the terminal; when false it means
3099that the command came from elsewhere.
3100
3101If this method throws an exception, it is turned into a @value{GDBN}
3102@code{error} call. Otherwise, the return value is ignored.
3103
3104@findex gdb.string_to_argv
3105To break @var{argument} up into an argv-like string use
3106@code{gdb.string_to_argv}. This function behaves identically to
3107@value{GDBN}'s internal argument lexer @code{buildargv}.
3108It is recommended to use this for consistency.
3109Arguments are separated by spaces and may be quoted.
3110Example:
3111
3112@smallexample
3113print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3114['1', '2 "3', '4 "5', "6 '7"]
3115@end smallexample
3116
3117@end defun
3118
3119@cindex completion of Python commands
3120@defun Command.complete (text, word)
3121This method is called by @value{GDBN} when the user attempts
3122completion on this command. All forms of completion are handled by
3123this method, that is, the @key{TAB} and @key{M-?} key bindings
3124(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3125complete}).
3126
697aa1b7
EZ
3127The arguments @var{text} and @var{word} are both strings; @var{text}
3128holds the complete command line up to the cursor's location, while
329baa95
DE
3129@var{word} holds the last word of the command line; this is computed
3130using a word-breaking heuristic.
3131
3132The @code{complete} method can return several values:
3133@itemize @bullet
3134@item
3135If the return value is a sequence, the contents of the sequence are
3136used as the completions. It is up to @code{complete} to ensure that the
3137contents actually do complete the word. A zero-length sequence is
3138allowed, it means that there were no completions available. Only
3139string elements of the sequence are used; other elements in the
3140sequence are ignored.
3141
3142@item
3143If the return value is one of the @samp{COMPLETE_} constants defined
3144below, then the corresponding @value{GDBN}-internal completion
3145function is invoked, and its result is used.
3146
3147@item
3148All other results are treated as though there were no available
3149completions.
3150@end itemize
3151@end defun
3152
3153When a new command is registered, it must be declared as a member of
3154some general class of commands. This is used to classify top-level
3155commands in the on-line help system; note that prefix commands are not
3156listed under their own category but rather that of their top-level
3157command. The available classifications are represented by constants
3158defined in the @code{gdb} module:
3159
3160@table @code
3161@findex COMMAND_NONE
3162@findex gdb.COMMAND_NONE
3163@item gdb.COMMAND_NONE
3164The command does not belong to any particular class. A command in
3165this category will not be displayed in any of the help categories.
3166
3167@findex COMMAND_RUNNING
3168@findex gdb.COMMAND_RUNNING
3169@item gdb.COMMAND_RUNNING
3170The command is related to running the inferior. For example,
3171@code{start}, @code{step}, and @code{continue} are in this category.
3172Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3173commands in this category.
3174
3175@findex COMMAND_DATA
3176@findex gdb.COMMAND_DATA
3177@item gdb.COMMAND_DATA
3178The command is related to data or variables. For example,
3179@code{call}, @code{find}, and @code{print} are in this category. Type
3180@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3181in this category.
3182
3183@findex COMMAND_STACK
3184@findex gdb.COMMAND_STACK
3185@item gdb.COMMAND_STACK
3186The command has to do with manipulation of the stack. For example,
3187@code{backtrace}, @code{frame}, and @code{return} are in this
3188category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3189list of commands in this category.
3190
3191@findex COMMAND_FILES
3192@findex gdb.COMMAND_FILES
3193@item gdb.COMMAND_FILES
3194This class is used for file-related commands. For example,
3195@code{file}, @code{list} and @code{section} are in this category.
3196Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3197commands in this category.
3198
3199@findex COMMAND_SUPPORT
3200@findex gdb.COMMAND_SUPPORT
3201@item gdb.COMMAND_SUPPORT
3202This should be used for ``support facilities'', generally meaning
3203things that are useful to the user when interacting with @value{GDBN},
3204but not related to the state of the inferior. For example,
3205@code{help}, @code{make}, and @code{shell} are in this category. Type
3206@kbd{help support} at the @value{GDBN} prompt to see a list of
3207commands in this category.
3208
3209@findex COMMAND_STATUS
3210@findex gdb.COMMAND_STATUS
3211@item gdb.COMMAND_STATUS
3212The command is an @samp{info}-related command, that is, related to the
3213state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3214and @code{show} are in this category. Type @kbd{help status} at the
3215@value{GDBN} prompt to see a list of commands in this category.
3216
3217@findex COMMAND_BREAKPOINTS
3218@findex gdb.COMMAND_BREAKPOINTS
3219@item gdb.COMMAND_BREAKPOINTS
3220The command has to do with breakpoints. For example, @code{break},
3221@code{clear}, and @code{delete} are in this category. Type @kbd{help
3222breakpoints} at the @value{GDBN} prompt to see a list of commands in
3223this category.
3224
3225@findex COMMAND_TRACEPOINTS
3226@findex gdb.COMMAND_TRACEPOINTS
3227@item gdb.COMMAND_TRACEPOINTS
3228The command has to do with tracepoints. For example, @code{trace},
3229@code{actions}, and @code{tfind} are in this category. Type
3230@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3231commands in this category.
3232
3233@findex COMMAND_USER
3234@findex gdb.COMMAND_USER
3235@item gdb.COMMAND_USER
3236The command is a general purpose command for the user, and typically
3237does not fit in one of the other categories.
3238Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3239a list of commands in this category, as well as the list of gdb macros
3240(@pxref{Sequences}).
3241
3242@findex COMMAND_OBSCURE
3243@findex gdb.COMMAND_OBSCURE
3244@item gdb.COMMAND_OBSCURE
3245The command is only used in unusual circumstances, or is not of
3246general interest to users. For example, @code{checkpoint},
3247@code{fork}, and @code{stop} are in this category. Type @kbd{help
3248obscure} at the @value{GDBN} prompt to see a list of commands in this
3249category.
3250
3251@findex COMMAND_MAINTENANCE
3252@findex gdb.COMMAND_MAINTENANCE
3253@item gdb.COMMAND_MAINTENANCE
3254The command is only useful to @value{GDBN} maintainers. The
3255@code{maintenance} and @code{flushregs} commands are in this category.
3256Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3257commands in this category.
3258@end table
3259
3260A new command can use a predefined completion function, either by
3261specifying it via an argument at initialization, or by returning it
3262from the @code{complete} method. These predefined completion
3263constants are all defined in the @code{gdb} module:
3264
b3ce5e5f
DE
3265@vtable @code
3266@vindex COMPLETE_NONE
329baa95
DE
3267@item gdb.COMPLETE_NONE
3268This constant means that no completion should be done.
3269
b3ce5e5f 3270@vindex COMPLETE_FILENAME
329baa95
DE
3271@item gdb.COMPLETE_FILENAME
3272This constant means that filename completion should be performed.
3273
b3ce5e5f 3274@vindex COMPLETE_LOCATION
329baa95
DE
3275@item gdb.COMPLETE_LOCATION
3276This constant means that location completion should be done.
3277@xref{Specify Location}.
3278
b3ce5e5f 3279@vindex COMPLETE_COMMAND
329baa95
DE
3280@item gdb.COMPLETE_COMMAND
3281This constant means that completion should examine @value{GDBN}
3282command names.
3283
b3ce5e5f 3284@vindex COMPLETE_SYMBOL
329baa95
DE
3285@item gdb.COMPLETE_SYMBOL
3286This constant means that completion should be done using symbol names
3287as the source.
3288
b3ce5e5f 3289@vindex COMPLETE_EXPRESSION
329baa95
DE
3290@item gdb.COMPLETE_EXPRESSION
3291This constant means that completion should be done on expressions.
3292Often this means completing on symbol names, but some language
3293parsers also have support for completing on field names.
b3ce5e5f 3294@end vtable
329baa95
DE
3295
3296The following code snippet shows how a trivial CLI command can be
3297implemented in Python:
3298
3299@smallexample
3300class HelloWorld (gdb.Command):
3301 """Greet the whole world."""
3302
3303 def __init__ (self):
3304 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3305
3306 def invoke (self, arg, from_tty):
3307 print "Hello, World!"
3308
3309HelloWorld ()
3310@end smallexample
3311
3312The last line instantiates the class, and is necessary to trigger the
3313registration of the command with @value{GDBN}. Depending on how the
3314Python code is read into @value{GDBN}, you may need to import the
3315@code{gdb} module explicitly.
3316
3317@node Parameters In Python
3318@subsubsection Parameters In Python
3319
3320@cindex parameters in python
3321@cindex python parameters
3322@tindex gdb.Parameter
3323@tindex Parameter
3324You can implement new @value{GDBN} parameters using Python. A new
3325parameter is implemented as an instance of the @code{gdb.Parameter}
3326class.
3327
3328Parameters are exposed to the user via the @code{set} and
3329@code{show} commands. @xref{Help}.
3330
3331There are many parameters that already exist and can be set in
3332@value{GDBN}. Two examples are: @code{set follow fork} and
3333@code{set charset}. Setting these parameters influences certain
3334behavior in @value{GDBN}. Similarly, you can define parameters that
3335can be used to influence behavior in custom Python scripts and commands.
3336
3337@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3338The object initializer for @code{Parameter} registers the new
3339parameter with @value{GDBN}. This initializer is normally invoked
3340from the subclass' own @code{__init__} method.
3341
3342@var{name} is the name of the new parameter. If @var{name} consists
3343of multiple words, then the initial words are looked for as prefix
3344parameters. An example of this can be illustrated with the
3345@code{set print} set of parameters. If @var{name} is
3346@code{print foo}, then @code{print} will be searched as the prefix
3347parameter. In this case the parameter can subsequently be accessed in
3348@value{GDBN} as @code{set print foo}.
3349
3350If @var{name} consists of multiple words, and no prefix parameter group
3351can be found, an exception is raised.
3352
3353@var{command-class} should be one of the @samp{COMMAND_} constants
3354(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3355categorize the new parameter in the help system.
3356
3357@var{parameter-class} should be one of the @samp{PARAM_} constants
3358defined below. This argument tells @value{GDBN} the type of the new
3359parameter; this information is used for input validation and
3360completion.
3361
3362If @var{parameter-class} is @code{PARAM_ENUM}, then
3363@var{enum-sequence} must be a sequence of strings. These strings
3364represent the possible values for the parameter.
3365
3366If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3367of a fourth argument will cause an exception to be thrown.
3368
3369The help text for the new parameter is taken from the Python
3370documentation string for the parameter's class, if there is one. If
3371there is no documentation string, a default value is used.
3372@end defun
3373
3374@defvar Parameter.set_doc
3375If this attribute exists, and is a string, then its value is used as
3376the help text for this parameter's @code{set} command. The value is
3377examined when @code{Parameter.__init__} is invoked; subsequent changes
3378have no effect.
3379@end defvar
3380
3381@defvar Parameter.show_doc
3382If this attribute exists, and is a string, then its value is used as
3383the help text for this parameter's @code{show} command. The value is
3384examined when @code{Parameter.__init__} is invoked; subsequent changes
3385have no effect.
3386@end defvar
3387
3388@defvar Parameter.value
3389The @code{value} attribute holds the underlying value of the
3390parameter. It can be read and assigned to just as any other
3391attribute. @value{GDBN} does validation when assignments are made.
3392@end defvar
3393
3394There are two methods that should be implemented in any
3395@code{Parameter} class. These are:
3396
3397@defun Parameter.get_set_string (self)
3398@value{GDBN} will call this method when a @var{parameter}'s value has
3399been changed via the @code{set} API (for example, @kbd{set foo off}).
3400The @code{value} attribute has already been populated with the new
3401value and may be used in output. This method must return a string.
3402@end defun
3403
3404@defun Parameter.get_show_string (self, svalue)
3405@value{GDBN} will call this method when a @var{parameter}'s
3406@code{show} API has been invoked (for example, @kbd{show foo}). The
3407argument @code{svalue} receives the string representation of the
3408current value. This method must return a string.
3409@end defun
3410
3411When a new parameter is defined, its type must be specified. The
3412available types are represented by constants defined in the @code{gdb}
3413module:
3414
3415@table @code
3416@findex PARAM_BOOLEAN
3417@findex gdb.PARAM_BOOLEAN
3418@item gdb.PARAM_BOOLEAN
3419The value is a plain boolean. The Python boolean values, @code{True}
3420and @code{False} are the only valid values.
3421
3422@findex PARAM_AUTO_BOOLEAN
3423@findex gdb.PARAM_AUTO_BOOLEAN
3424@item gdb.PARAM_AUTO_BOOLEAN
3425The value has three possible states: true, false, and @samp{auto}. In
3426Python, true and false are represented using boolean constants, and
3427@samp{auto} is represented using @code{None}.
3428
3429@findex PARAM_UINTEGER
3430@findex gdb.PARAM_UINTEGER
3431@item gdb.PARAM_UINTEGER
3432The value is an unsigned integer. The value of 0 should be
3433interpreted to mean ``unlimited''.
3434
3435@findex PARAM_INTEGER
3436@findex gdb.PARAM_INTEGER
3437@item gdb.PARAM_INTEGER
3438The value is a signed integer. The value of 0 should be interpreted
3439to mean ``unlimited''.
3440
3441@findex PARAM_STRING
3442@findex gdb.PARAM_STRING
3443@item gdb.PARAM_STRING
3444The value is a string. When the user modifies the string, any escape
3445sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3446translated into corresponding characters and encoded into the current
3447host charset.
3448
3449@findex PARAM_STRING_NOESCAPE
3450@findex gdb.PARAM_STRING_NOESCAPE
3451@item gdb.PARAM_STRING_NOESCAPE
3452The value is a string. When the user modifies the string, escapes are
3453passed through untranslated.
3454
3455@findex PARAM_OPTIONAL_FILENAME
3456@findex gdb.PARAM_OPTIONAL_FILENAME
3457@item gdb.PARAM_OPTIONAL_FILENAME
3458The value is a either a filename (a string), or @code{None}.
3459
3460@findex PARAM_FILENAME
3461@findex gdb.PARAM_FILENAME
3462@item gdb.PARAM_FILENAME
3463The value is a filename. This is just like
3464@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3465
3466@findex PARAM_ZINTEGER
3467@findex gdb.PARAM_ZINTEGER
3468@item gdb.PARAM_ZINTEGER
3469The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3470is interpreted as itself.
3471
3472@findex PARAM_ENUM
3473@findex gdb.PARAM_ENUM
3474@item gdb.PARAM_ENUM
3475The value is a string, which must be one of a collection string
3476constants provided when the parameter is created.
3477@end table
3478
3479@node Functions In Python
3480@subsubsection Writing new convenience functions
3481
3482@cindex writing convenience functions
3483@cindex convenience functions in python
3484@cindex python convenience functions
3485@tindex gdb.Function
3486@tindex Function
3487You can implement new convenience functions (@pxref{Convenience Vars})
3488in Python. A convenience function is an instance of a subclass of the
3489class @code{gdb.Function}.
3490
3491@defun Function.__init__ (name)
3492The initializer for @code{Function} registers the new function with
3493@value{GDBN}. The argument @var{name} is the name of the function,
3494a string. The function will be visible to the user as a convenience
3495variable of type @code{internal function}, whose name is the same as
3496the given @var{name}.
3497
3498The documentation for the new function is taken from the documentation
3499string for the new class.
3500@end defun
3501
3502@defun Function.invoke (@var{*args})
3503When a convenience function is evaluated, its arguments are converted
3504to instances of @code{gdb.Value}, and then the function's
3505@code{invoke} method is called. Note that @value{GDBN} does not
3506predetermine the arity of convenience functions. Instead, all
3507available arguments are passed to @code{invoke}, following the
3508standard Python calling convention. In particular, a convenience
3509function can have default values for parameters without ill effect.
3510
3511The return value of this method is used as its value in the enclosing
3512expression. If an ordinary Python value is returned, it is converted
3513to a @code{gdb.Value} following the usual rules.
3514@end defun
3515
3516The following code snippet shows how a trivial convenience function can
3517be implemented in Python:
3518
3519@smallexample
3520class Greet (gdb.Function):
3521 """Return string to greet someone.
3522Takes a name as argument."""
3523
3524 def __init__ (self):
3525 super (Greet, self).__init__ ("greet")
3526
3527 def invoke (self, name):
3528 return "Hello, %s!" % name.string ()
3529
3530Greet ()
3531@end smallexample
3532
3533The last line instantiates the class, and is necessary to trigger the
3534registration of the function with @value{GDBN}. Depending on how the
3535Python code is read into @value{GDBN}, you may need to import the
3536@code{gdb} module explicitly.
3537
3538Now you can use the function in an expression:
3539
3540@smallexample
3541(gdb) print $greet("Bob")
3542$1 = "Hello, Bob!"
3543@end smallexample
3544
3545@node Progspaces In Python
3546@subsubsection Program Spaces In Python
3547
3548@cindex progspaces in python
3549@tindex gdb.Progspace
3550@tindex Progspace
3551A program space, or @dfn{progspace}, represents a symbolic view
3552of an address space.
3553It consists of all of the objfiles of the program.
3554@xref{Objfiles In Python}.
3555@xref{Inferiors and Programs, program spaces}, for more details
3556about program spaces.
3557
3558The following progspace-related functions are available in the
3559@code{gdb} module:
3560
3561@findex gdb.current_progspace
3562@defun gdb.current_progspace ()
3563This function returns the program space of the currently selected inferior.
3564@xref{Inferiors and Programs}.
3565@end defun
3566
3567@findex gdb.progspaces
3568@defun gdb.progspaces ()
3569Return a sequence of all the progspaces currently known to @value{GDBN}.
3570@end defun
3571
3572Each progspace is represented by an instance of the @code{gdb.Progspace}
3573class.
3574
3575@defvar Progspace.filename
3576The file name of the progspace as a string.
3577@end defvar
3578
3579@defvar Progspace.pretty_printers
3580The @code{pretty_printers} attribute is a list of functions. It is
3581used to look up pretty-printers. A @code{Value} is passed to each
3582function in order; if the function returns @code{None}, then the
3583search continues. Otherwise, the return value should be an object
3584which is used to format the value. @xref{Pretty Printing API}, for more
3585information.
3586@end defvar
3587
3588@defvar Progspace.type_printers
3589The @code{type_printers} attribute is a list of type printer objects.
3590@xref{Type Printing API}, for more information.
3591@end defvar
3592
3593@defvar Progspace.frame_filters
3594The @code{frame_filters} attribute is a dictionary of frame filter
3595objects. @xref{Frame Filter API}, for more information.
3596@end defvar
3597
02be9a71
DE
3598One may add arbitrary attributes to @code{gdb.Progspace} objects
3599in the usual Python way.
3600This is useful if, for example, one needs to do some extra record keeping
3601associated with the program space.
3602
3603In this contrived example, we want to perform some processing when
3604an objfile with a certain symbol is loaded, but we only want to do
3605this once because it is expensive. To achieve this we record the results
3606with the program space because we can't predict when the desired objfile
3607will be loaded.
3608
3609@smallexample
3610(gdb) python
3611def clear_objfiles_handler(event):
3612 event.progspace.expensive_computation = None
3613def expensive(symbol):
3614 """A mock routine to perform an "expensive" computation on symbol."""
3615 print "Computing the answer to the ultimate question ..."
3616 return 42
3617def new_objfile_handler(event):
3618 objfile = event.new_objfile
3619 progspace = objfile.progspace
3620 if not hasattr(progspace, 'expensive_computation') or \
3621 progspace.expensive_computation is None:
3622 # We use 'main' for the symbol to keep the example simple.
3623 # Note: There's no current way to constrain the lookup
3624 # to one objfile.
3625 symbol = gdb.lookup_global_symbol('main')
3626 if symbol is not None:
3627 progspace.expensive_computation = expensive(symbol)
3628gdb.events.clear_objfiles.connect(clear_objfiles_handler)
3629gdb.events.new_objfile.connect(new_objfile_handler)
3630end
3631(gdb) file /tmp/hello
3632Reading symbols from /tmp/hello...done.
3633Computing the answer to the ultimate question ...
3634(gdb) python print gdb.current_progspace().expensive_computation
363542
3636(gdb) run
3637Starting program: /tmp/hello
3638Hello.
3639[Inferior 1 (process 4242) exited normally]
3640@end smallexample
3641
329baa95
DE
3642@node Objfiles In Python
3643@subsubsection Objfiles In Python
3644
3645@cindex objfiles in python
3646@tindex gdb.Objfile
3647@tindex Objfile
3648@value{GDBN} loads symbols for an inferior from various
3649symbol-containing files (@pxref{Files}). These include the primary
3650executable file, any shared libraries used by the inferior, and any
3651separate debug info files (@pxref{Separate Debug Files}).
3652@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
3653
3654The following objfile-related functions are available in the
3655@code{gdb} module:
3656
3657@findex gdb.current_objfile
3658@defun gdb.current_objfile ()
3659When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
3660sets the ``current objfile'' to the corresponding objfile. This
3661function returns the current objfile. If there is no current objfile,
3662this function returns @code{None}.
3663@end defun
3664
3665@findex gdb.objfiles
3666@defun gdb.objfiles ()
3667Return a sequence of all the objfiles current known to @value{GDBN}.
3668@xref{Objfiles In Python}.
3669@end defun
3670
6dddd6a5
DE
3671@findex gdb.lookup_objfile
3672@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
3673Look up @var{name}, a file name or build ID, in the list of objfiles
3674for the current program space (@pxref{Progspaces In Python}).
3675If the objfile is not found throw the Python @code{ValueError} exception.
3676
3677If @var{name} is a relative file name, then it will match any
3678source file name with the same trailing components. For example, if
3679@var{name} is @samp{gcc/expr.c}, then it will match source file
3680name of @file{/build/trunk/gcc/expr.c}, but not
3681@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
3682
3683If @var{by_build_id} is provided and is @code{True} then @var{name}
3684is the build ID of the objfile. Otherwise, @var{name} is a file name.
3685This is supported only on some operating systems, notably those which use
3686the ELF format for binary files and the @sc{gnu} Binutils. For more details
3687about this feature, see the description of the @option{--build-id}
3688command-line option in @ref{Options, , Command Line Options, ld.info,
3689The GNU Linker}.
3690@end defun
3691
329baa95
DE
3692Each objfile is represented by an instance of the @code{gdb.Objfile}
3693class.
3694
3695@defvar Objfile.filename
1b549396
DE
3696The file name of the objfile as a string, with symbolic links resolved.
3697
3698The value is @code{None} if the objfile is no longer valid.
3699See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
3700@end defvar
3701
3a8b707a
DE
3702@defvar Objfile.username
3703The file name of the objfile as specified by the user as a string.
3704
3705The value is @code{None} if the objfile is no longer valid.
3706See the @code{gdb.Objfile.is_valid} method, described below.
3707@end defvar
3708
a0be3e44
DE
3709@defvar Objfile.owner
3710For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
3711object that debug info is being provided for.
3712Otherwise this is @code{None}.
3713Separate debug info objfiles are added with the
3714@code{gdb.Objfile.add_separate_debug_file} method, described below.
3715@end defvar
3716
7c50a931
DE
3717@defvar Objfile.build_id
3718The build ID of the objfile as a string.
3719If the objfile does not have a build ID then the value is @code{None}.
3720
3721This is supported only on some operating systems, notably those which use
3722the ELF format for binary files and the @sc{gnu} Binutils. For more details
3723about this feature, see the description of the @option{--build-id}
3724command-line option in @ref{Options, , Command Line Options, ld.info,
3725The GNU Linker}.
3726@end defvar
3727
d096d8c1
DE
3728@defvar Objfile.progspace
3729The containing program space of the objfile as a @code{gdb.Progspace}
3730object. @xref{Progspaces In Python}.
3731@end defvar
3732
329baa95
DE
3733@defvar Objfile.pretty_printers
3734The @code{pretty_printers} attribute is a list of functions. It is
3735used to look up pretty-printers. A @code{Value} is passed to each
3736function in order; if the function returns @code{None}, then the
3737search continues. Otherwise, the return value should be an object
3738which is used to format the value. @xref{Pretty Printing API}, for more
3739information.
3740@end defvar
3741
3742@defvar Objfile.type_printers
3743The @code{type_printers} attribute is a list of type printer objects.
3744@xref{Type Printing API}, for more information.
3745@end defvar
3746
3747@defvar Objfile.frame_filters
3748The @code{frame_filters} attribute is a dictionary of frame filter
3749objects. @xref{Frame Filter API}, for more information.
3750@end defvar
3751
02be9a71
DE
3752One may add arbitrary attributes to @code{gdb.Objfile} objects
3753in the usual Python way.
3754This is useful if, for example, one needs to do some extra record keeping
3755associated with the objfile.
3756
3757In this contrived example we record the time when @value{GDBN}
3758loaded the objfile.
3759
3760@smallexample
3761(gdb) python
3762import datetime
3763def new_objfile_handler(event):
3764 # Set the time_loaded attribute of the new objfile.
3765 event.new_objfile.time_loaded = datetime.datetime.today()
3766gdb.events.new_objfile.connect(new_objfile_handler)
3767end
3768(gdb) file ./hello
3769Reading symbols from ./hello...done.
3770(gdb) python print gdb.objfiles()[0].time_loaded
37712014-10-09 11:41:36.770345
3772@end smallexample
3773
329baa95
DE
3774A @code{gdb.Objfile} object has the following methods:
3775
3776@defun Objfile.is_valid ()
3777Returns @code{True} if the @code{gdb.Objfile} object is valid,
3778@code{False} if not. A @code{gdb.Objfile} object can become invalid
3779if the object file it refers to is not loaded in @value{GDBN} any
3780longer. All other @code{gdb.Objfile} methods will throw an exception
3781if it is invalid at the time the method is called.
3782@end defun
3783
86e4ed39
DE
3784@defun Objfile.add_separate_debug_file (file)
3785Add @var{file} to the list of files that @value{GDBN} will search for
3786debug information for the objfile.
3787This is useful when the debug info has been removed from the program
3788and stored in a separate file. @value{GDBN} has built-in support for
3789finding separate debug info files (@pxref{Separate Debug Files}), but if
3790the file doesn't live in one of the standard places that @value{GDBN}
3791searches then this function can be used to add a debug info file
3792from a different place.
3793@end defun
3794
329baa95
DE
3795@node Frames In Python
3796@subsubsection Accessing inferior stack frames from Python.
3797
3798@cindex frames in python
3799When the debugged program stops, @value{GDBN} is able to analyze its call
3800stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
3801represents a frame in the stack. A @code{gdb.Frame} object is only valid
3802while its corresponding frame exists in the inferior's stack. If you try
3803to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
3804exception (@pxref{Exception Handling}).
3805
3806Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
3807operator, like:
3808
3809@smallexample
3810(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
3811True
3812@end smallexample
3813
3814The following frame-related functions are available in the @code{gdb} module:
3815
3816@findex gdb.selected_frame
3817@defun gdb.selected_frame ()
3818Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
3819@end defun
3820
3821@findex gdb.newest_frame
3822@defun gdb.newest_frame ()
3823Return the newest frame object for the selected thread.
3824@end defun
3825
3826@defun gdb.frame_stop_reason_string (reason)
3827Return a string explaining the reason why @value{GDBN} stopped unwinding
3828frames, as expressed by the given @var{reason} code (an integer, see the
3829@code{unwind_stop_reason} method further down in this section).
3830@end defun
3831
3832A @code{gdb.Frame} object has the following methods:
3833
3834@defun Frame.is_valid ()
3835Returns true if the @code{gdb.Frame} object is valid, false if not.
3836A frame object can become invalid if the frame it refers to doesn't
3837exist anymore in the inferior. All @code{gdb.Frame} methods will throw
3838an exception if it is invalid at the time the method is called.
3839@end defun
3840
3841@defun Frame.name ()
3842Returns the function name of the frame, or @code{None} if it can't be
3843obtained.
3844@end defun
3845
3846@defun Frame.architecture ()
3847Returns the @code{gdb.Architecture} object corresponding to the frame's
3848architecture. @xref{Architectures In Python}.
3849@end defun
3850
3851@defun Frame.type ()
3852Returns the type of the frame. The value can be one of:
3853@table @code
3854@item gdb.NORMAL_FRAME
3855An ordinary stack frame.
3856
3857@item gdb.DUMMY_FRAME
3858A fake stack frame that was created by @value{GDBN} when performing an
3859inferior function call.
3860
3861@item gdb.INLINE_FRAME
3862A frame representing an inlined function. The function was inlined
3863into a @code{gdb.NORMAL_FRAME} that is older than this one.
3864
3865@item gdb.TAILCALL_FRAME
3866A frame representing a tail call. @xref{Tail Call Frames}.
3867
3868@item gdb.SIGTRAMP_FRAME
3869A signal trampoline frame. This is the frame created by the OS when
3870it calls into a signal handler.
3871
3872@item gdb.ARCH_FRAME
3873A fake stack frame representing a cross-architecture call.
3874
3875@item gdb.SENTINEL_FRAME
3876This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
3877newest frame.
3878@end table
3879@end defun
3880
3881@defun Frame.unwind_stop_reason ()
3882Return an integer representing the reason why it's not possible to find
3883more frames toward the outermost frame. Use
3884@code{gdb.frame_stop_reason_string} to convert the value returned by this
3885function to a string. The value can be one of:
3886
3887@table @code
3888@item gdb.FRAME_UNWIND_NO_REASON
3889No particular reason (older frames should be available).
3890
3891@item gdb.FRAME_UNWIND_NULL_ID
3892The previous frame's analyzer returns an invalid result. This is no
3893longer used by @value{GDBN}, and is kept only for backward
3894compatibility.
3895
3896@item gdb.FRAME_UNWIND_OUTERMOST
3897This frame is the outermost.
3898
3899@item gdb.FRAME_UNWIND_UNAVAILABLE
3900Cannot unwind further, because that would require knowing the
3901values of registers or memory that have not been collected.
3902
3903@item gdb.FRAME_UNWIND_INNER_ID
3904This frame ID looks like it ought to belong to a NEXT frame,
3905but we got it for a PREV frame. Normally, this is a sign of
3906unwinder failure. It could also indicate stack corruption.
3907
3908@item gdb.FRAME_UNWIND_SAME_ID
3909This frame has the same ID as the previous one. That means
3910that unwinding further would almost certainly give us another
3911frame with exactly the same ID, so break the chain. Normally,
3912this is a sign of unwinder failure. It could also indicate
3913stack corruption.
3914
3915@item gdb.FRAME_UNWIND_NO_SAVED_PC
3916The frame unwinder did not find any saved PC, but we needed
3917one to unwind further.
3918
53e8a631
AB
3919@item gdb.FRAME_UNWIND_MEMORY_ERROR
3920The frame unwinder caused an error while trying to access memory.
3921
329baa95
DE
3922@item gdb.FRAME_UNWIND_FIRST_ERROR
3923Any stop reason greater or equal to this value indicates some kind
3924of error. This special value facilitates writing code that tests
3925for errors in unwinding in a way that will work correctly even if
3926the list of the other values is modified in future @value{GDBN}
3927versions. Using it, you could write:
3928@smallexample
3929reason = gdb.selected_frame().unwind_stop_reason ()
3930reason_str = gdb.frame_stop_reason_string (reason)
3931if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
3932 print "An error occured: %s" % reason_str
3933@end smallexample
3934@end table
3935
3936@end defun
3937
3938@defun Frame.pc ()
3939Returns the frame's resume address.
3940@end defun
3941
3942@defun Frame.block ()
3943Return the frame's code block. @xref{Blocks In Python}.
3944@end defun
3945
3946@defun Frame.function ()
3947Return the symbol for the function corresponding to this frame.
3948@xref{Symbols In Python}.
3949@end defun
3950
3951@defun Frame.older ()
3952Return the frame that called this frame.
3953@end defun
3954
3955@defun Frame.newer ()
3956Return the frame called by this frame.
3957@end defun
3958
3959@defun Frame.find_sal ()
3960Return the frame's symtab and line object.
3961@xref{Symbol Tables In Python}.
3962@end defun
3963
5f3b99cf
SS
3964@defun Frame.read_register (register)
3965Return the value of @var{register} in this frame. The @var{register}
3966argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
3967Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
3968does not exist.
3969@end defun
3970
329baa95
DE
3971@defun Frame.read_var (variable @r{[}, block@r{]})
3972Return the value of @var{variable} in this frame. If the optional
3973argument @var{block} is provided, search for the variable from that
3974block; otherwise start at the frame's current block (which is
697aa1b7
EZ
3975determined by the frame's current program counter). The @var{variable}
3976argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
3977@code{gdb.Block} object.
3978@end defun
3979
3980@defun Frame.select ()
3981Set this frame to be the selected frame. @xref{Stack, ,Examining the
3982Stack}.
3983@end defun
3984
3985@node Blocks In Python
3986@subsubsection Accessing blocks from Python.
3987
3988@cindex blocks in python
3989@tindex gdb.Block
3990
3991In @value{GDBN}, symbols are stored in blocks. A block corresponds
3992roughly to a scope in the source code. Blocks are organized
3993hierarchically, and are represented individually in Python as a
3994@code{gdb.Block}. Blocks rely on debugging information being
3995available.
3996
3997A frame has a block. Please see @ref{Frames In Python}, for a more
3998in-depth discussion of frames.
3999
4000The outermost block is known as the @dfn{global block}. The global
4001block typically holds public global variables and functions.
4002
4003The block nested just inside the global block is the @dfn{static
4004block}. The static block typically holds file-scoped variables and
4005functions.
4006
4007@value{GDBN} provides a method to get a block's superblock, but there
4008is currently no way to examine the sub-blocks of a block, or to
4009iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4010Python}).
4011
4012Here is a short example that should help explain blocks:
4013
4014@smallexample
4015/* This is in the global block. */
4016int global;
4017
4018/* This is in the static block. */
4019static int file_scope;
4020
4021/* 'function' is in the global block, and 'argument' is
4022 in a block nested inside of 'function'. */
4023int function (int argument)
4024@{
4025 /* 'local' is in a block inside 'function'. It may or may
4026 not be in the same block as 'argument'. */
4027 int local;
4028
4029 @{
4030 /* 'inner' is in a block whose superblock is the one holding
4031 'local'. */
4032 int inner;
4033
4034 /* If this call is expanded by the compiler, you may see
4035 a nested block here whose function is 'inline_function'
4036 and whose superblock is the one holding 'inner'. */
4037 inline_function ();
4038 @}
4039@}
4040@end smallexample
4041
4042A @code{gdb.Block} is iterable. The iterator returns the symbols
4043(@pxref{Symbols In Python}) local to the block. Python programs
4044should not assume that a specific block object will always contain a
4045given symbol, since changes in @value{GDBN} features and
4046infrastructure may cause symbols move across blocks in a symbol
4047table.
4048
4049The following block-related functions are available in the @code{gdb}
4050module:
4051
4052@findex gdb.block_for_pc
4053@defun gdb.block_for_pc (pc)
4054Return the innermost @code{gdb.Block} containing the given @var{pc}
4055value. If the block cannot be found for the @var{pc} value specified,
4056the function will return @code{None}.
4057@end defun
4058
4059A @code{gdb.Block} object has the following methods:
4060
4061@defun Block.is_valid ()
4062Returns @code{True} if the @code{gdb.Block} object is valid,
4063@code{False} if not. A block object can become invalid if the block it
4064refers to doesn't exist anymore in the inferior. All other
4065@code{gdb.Block} methods will throw an exception if it is invalid at
4066the time the method is called. The block's validity is also checked
4067during iteration over symbols of the block.
4068@end defun
4069
4070A @code{gdb.Block} object has the following attributes:
4071
4072@defvar Block.start
4073The start address of the block. This attribute is not writable.
4074@end defvar
4075
4076@defvar Block.end
4077The end address of the block. This attribute is not writable.
4078@end defvar
4079
4080@defvar Block.function
4081The name of the block represented as a @code{gdb.Symbol}. If the
4082block is not named, then this attribute holds @code{None}. This
4083attribute is not writable.
4084
4085For ordinary function blocks, the superblock is the static block.
4086However, you should note that it is possible for a function block to
4087have a superblock that is not the static block -- for instance this
4088happens for an inlined function.
4089@end defvar
4090
4091@defvar Block.superblock
4092The block containing this block. If this parent block does not exist,
4093this attribute holds @code{None}. This attribute is not writable.
4094@end defvar
4095
4096@defvar Block.global_block
4097The global block associated with this block. This attribute is not
4098writable.
4099@end defvar
4100
4101@defvar Block.static_block
4102The static block associated with this block. This attribute is not
4103writable.
4104@end defvar
4105
4106@defvar Block.is_global
4107@code{True} if the @code{gdb.Block} object is a global block,
4108@code{False} if not. This attribute is not
4109writable.
4110@end defvar
4111
4112@defvar Block.is_static
4113@code{True} if the @code{gdb.Block} object is a static block,
4114@code{False} if not. This attribute is not writable.
4115@end defvar
4116
4117@node Symbols In Python
4118@subsubsection Python representation of Symbols.
4119
4120@cindex symbols in python
4121@tindex gdb.Symbol
4122
4123@value{GDBN} represents every variable, function and type as an
4124entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4125Similarly, Python represents these symbols in @value{GDBN} with the
4126@code{gdb.Symbol} object.
4127
4128The following symbol-related functions are available in the @code{gdb}
4129module:
4130
4131@findex gdb.lookup_symbol
4132@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4133This function searches for a symbol by name. The search scope can be
4134restricted to the parameters defined in the optional domain and block
4135arguments.
4136
4137@var{name} is the name of the symbol. It must be a string. The
4138optional @var{block} argument restricts the search to symbols visible
4139in that @var{block}. The @var{block} argument must be a
4140@code{gdb.Block} object. If omitted, the block for the current frame
4141is used. The optional @var{domain} argument restricts
4142the search to the domain type. The @var{domain} argument must be a
4143domain constant defined in the @code{gdb} module and described later
4144in this chapter.
4145
4146The result is a tuple of two elements.
4147The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4148is not found.
4149If the symbol is found, the second element is @code{True} if the symbol
4150is a field of a method's object (e.g., @code{this} in C@t{++}),
4151otherwise it is @code{False}.
4152If the symbol is not found, the second element is @code{False}.
4153@end defun
4154
4155@findex gdb.lookup_global_symbol
4156@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4157This function searches for a global symbol by name.
4158The search scope can be restricted to by the domain argument.
4159
4160@var{name} is the name of the symbol. It must be a string.
4161The optional @var{domain} argument restricts the search to the domain type.
4162The @var{domain} argument must be a domain constant defined in the @code{gdb}
4163module and described later in this chapter.
4164
4165The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4166is not found.
4167@end defun
4168
4169A @code{gdb.Symbol} object has the following attributes:
4170
4171@defvar Symbol.type
4172The type of the symbol or @code{None} if no type is recorded.
4173This attribute is represented as a @code{gdb.Type} object.
4174@xref{Types In Python}. This attribute is not writable.
4175@end defvar
4176
4177@defvar Symbol.symtab
4178The symbol table in which the symbol appears. This attribute is
4179represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4180Python}. This attribute is not writable.
4181@end defvar
4182
4183@defvar Symbol.line
4184The line number in the source code at which the symbol was defined.
4185This is an integer.
4186@end defvar
4187
4188@defvar Symbol.name
4189The name of the symbol as a string. This attribute is not writable.
4190@end defvar
4191
4192@defvar Symbol.linkage_name
4193The name of the symbol, as used by the linker (i.e., may be mangled).
4194This attribute is not writable.
4195@end defvar
4196
4197@defvar Symbol.print_name
4198The name of the symbol in a form suitable for output. This is either
4199@code{name} or @code{linkage_name}, depending on whether the user
4200asked @value{GDBN} to display demangled or mangled names.
4201@end defvar
4202
4203@defvar Symbol.addr_class
4204The address class of the symbol. This classifies how to find the value
4205of a symbol. Each address class is a constant defined in the
4206@code{gdb} module and described later in this chapter.
4207@end defvar
4208
4209@defvar Symbol.needs_frame
4210This is @code{True} if evaluating this symbol's value requires a frame
4211(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4212local variables will require a frame, but other symbols will not.
4213@end defvar
4214
4215@defvar Symbol.is_argument
4216@code{True} if the symbol is an argument of a function.
4217@end defvar
4218
4219@defvar Symbol.is_constant
4220@code{True} if the symbol is a constant.
4221@end defvar
4222
4223@defvar Symbol.is_function
4224@code{True} if the symbol is a function or a method.
4225@end defvar
4226
4227@defvar Symbol.is_variable
4228@code{True} if the symbol is a variable.
4229@end defvar
4230
4231A @code{gdb.Symbol} object has the following methods:
4232
4233@defun Symbol.is_valid ()
4234Returns @code{True} if the @code{gdb.Symbol} object is valid,
4235@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4236the symbol it refers to does not exist in @value{GDBN} any longer.
4237All other @code{gdb.Symbol} methods will throw an exception if it is
4238invalid at the time the method is called.
4239@end defun
4240
4241@defun Symbol.value (@r{[}frame@r{]})
4242Compute the value of the symbol, as a @code{gdb.Value}. For
4243functions, this computes the address of the function, cast to the
4244appropriate type. If the symbol requires a frame in order to compute
4245its value, then @var{frame} must be given. If @var{frame} is not
4246given, or if @var{frame} is invalid, then this method will throw an
4247exception.
4248@end defun
4249
4250The available domain categories in @code{gdb.Symbol} are represented
4251as constants in the @code{gdb} module:
4252
b3ce5e5f
DE
4253@vtable @code
4254@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4255@item gdb.SYMBOL_UNDEF_DOMAIN
4256This is used when a domain has not been discovered or none of the
4257following domains apply. This usually indicates an error either
4258in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4259
4260@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4261@item gdb.SYMBOL_VAR_DOMAIN
4262This domain contains variables, function names, typedef names and enum
4263type values.
b3ce5e5f
DE
4264
4265@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4266@item gdb.SYMBOL_STRUCT_DOMAIN
4267This domain holds struct, union and enum type names.
b3ce5e5f
DE
4268
4269@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4270@item gdb.SYMBOL_LABEL_DOMAIN
4271This domain contains names of labels (for gotos).
b3ce5e5f
DE
4272
4273@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4274@item gdb.SYMBOL_VARIABLES_DOMAIN
4275This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4276contains everything minus functions and types.
b3ce5e5f
DE
4277
4278@vindex SYMBOL_FUNCTIONS_DOMAIN
329baa95
DE
4279@item gdb.SYMBOL_FUNCTION_DOMAIN
4280This domain contains all functions.
b3ce5e5f
DE
4281
4282@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4283@item gdb.SYMBOL_TYPES_DOMAIN
4284This domain contains all types.
b3ce5e5f 4285@end vtable
329baa95
DE
4286
4287The available address class categories in @code{gdb.Symbol} are represented
4288as constants in the @code{gdb} module:
4289
b3ce5e5f
DE
4290@vtable @code
4291@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4292@item gdb.SYMBOL_LOC_UNDEF
4293If this is returned by address class, it indicates an error either in
4294the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4295
4296@vindex SYMBOL_LOC_CONST
329baa95
DE
4297@item gdb.SYMBOL_LOC_CONST
4298Value is constant int.
b3ce5e5f
DE
4299
4300@vindex SYMBOL_LOC_STATIC
329baa95
DE
4301@item gdb.SYMBOL_LOC_STATIC
4302Value is at a fixed address.
b3ce5e5f
DE
4303
4304@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4305@item gdb.SYMBOL_LOC_REGISTER
4306Value is in a register.
b3ce5e5f
DE
4307
4308@vindex SYMBOL_LOC_ARG
329baa95
DE
4309@item gdb.SYMBOL_LOC_ARG
4310Value is an argument. This value is at the offset stored within the
4311symbol inside the frame's argument list.
b3ce5e5f
DE
4312
4313@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4314@item gdb.SYMBOL_LOC_REF_ARG
4315Value address is stored in the frame's argument list. Just like
4316@code{LOC_ARG} except that the value's address is stored at the
4317offset, not the value itself.
b3ce5e5f
DE
4318
4319@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4320@item gdb.SYMBOL_LOC_REGPARM_ADDR
4321Value is a specified register. Just like @code{LOC_REGISTER} except
4322the register holds the address of the argument instead of the argument
4323itself.
b3ce5e5f
DE
4324
4325@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4326@item gdb.SYMBOL_LOC_LOCAL
4327Value is a local variable.
b3ce5e5f
DE
4328
4329@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4330@item gdb.SYMBOL_LOC_TYPEDEF
4331Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4332have this class.
b3ce5e5f
DE
4333
4334@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4335@item gdb.SYMBOL_LOC_BLOCK
4336Value is a block.
b3ce5e5f
DE
4337
4338@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4339@item gdb.SYMBOL_LOC_CONST_BYTES
4340Value is a byte-sequence.
b3ce5e5f
DE
4341
4342@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4343@item gdb.SYMBOL_LOC_UNRESOLVED
4344Value is at a fixed address, but the address of the variable has to be
4345determined from the minimal symbol table whenever the variable is
4346referenced.
b3ce5e5f
DE
4347
4348@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4349@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4350The value does not actually exist in the program.
b3ce5e5f
DE
4351
4352@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4353@item gdb.SYMBOL_LOC_COMPUTED
4354The value's address is a computed location.
b3ce5e5f 4355@end vtable
329baa95
DE
4356
4357@node Symbol Tables In Python
4358@subsubsection Symbol table representation in Python.
4359
4360@cindex symbol tables in python
4361@tindex gdb.Symtab
4362@tindex gdb.Symtab_and_line
4363
4364Access to symbol table data maintained by @value{GDBN} on the inferior
4365is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4366@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4367from the @code{find_sal} method in @code{gdb.Frame} object.
4368@xref{Frames In Python}.
4369
4370For more information on @value{GDBN}'s symbol table management, see
4371@ref{Symbols, ,Examining the Symbol Table}, for more information.
4372
4373A @code{gdb.Symtab_and_line} object has the following attributes:
4374
4375@defvar Symtab_and_line.symtab
4376The symbol table object (@code{gdb.Symtab}) for this frame.
4377This attribute is not writable.
4378@end defvar
4379
4380@defvar Symtab_and_line.pc
4381Indicates the start of the address range occupied by code for the
4382current source line. This attribute is not writable.
4383@end defvar
4384
4385@defvar Symtab_and_line.last
4386Indicates the end of the address range occupied by code for the current
4387source line. This attribute is not writable.
4388@end defvar
4389
4390@defvar Symtab_and_line.line
4391Indicates the current line number for this object. This
4392attribute is not writable.
4393@end defvar
4394
4395A @code{gdb.Symtab_and_line} object has the following methods:
4396
4397@defun Symtab_and_line.is_valid ()
4398Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4399@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4400invalid if the Symbol table and line object it refers to does not
4401exist in @value{GDBN} any longer. All other
4402@code{gdb.Symtab_and_line} methods will throw an exception if it is
4403invalid at the time the method is called.
4404@end defun
4405
4406A @code{gdb.Symtab} object has the following attributes:
4407
4408@defvar Symtab.filename
4409The symbol table's source filename. This attribute is not writable.
4410@end defvar
4411
4412@defvar Symtab.objfile
4413The symbol table's backing object file. @xref{Objfiles In Python}.
4414This attribute is not writable.
4415@end defvar
4416
2b4fd423
DE
4417@defvar Symtab.producer
4418The name and possibly version number of the program that
4419compiled the code in the symbol table.
4420The contents of this string is up to the compiler.
4421If no producer information is available then @code{None} is returned.
4422This attribute is not writable.
4423@end defvar
4424
329baa95
DE
4425A @code{gdb.Symtab} object has the following methods:
4426
4427@defun Symtab.is_valid ()
4428Returns @code{True} if the @code{gdb.Symtab} object is valid,
4429@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4430the symbol table it refers to does not exist in @value{GDBN} any
4431longer. All other @code{gdb.Symtab} methods will throw an exception
4432if it is invalid at the time the method is called.
4433@end defun
4434
4435@defun Symtab.fullname ()
4436Return the symbol table's source absolute file name.
4437@end defun
4438
4439@defun Symtab.global_block ()
4440Return the global block of the underlying symbol table.
4441@xref{Blocks In Python}.
4442@end defun
4443
4444@defun Symtab.static_block ()
4445Return the static block of the underlying symbol table.
4446@xref{Blocks In Python}.
4447@end defun
4448
4449@defun Symtab.linetable ()
4450Return the line table associated with the symbol table.
4451@xref{Line Tables In Python}.
4452@end defun
4453
4454@node Line Tables In Python
4455@subsubsection Manipulating line tables using Python
4456
4457@cindex line tables in python
4458@tindex gdb.LineTable
4459
4460Python code can request and inspect line table information from a
4461symbol table that is loaded in @value{GDBN}. A line table is a
4462mapping of source lines to their executable locations in memory. To
4463acquire the line table information for a particular symbol table, use
4464the @code{linetable} function (@pxref{Symbol Tables In Python}).
4465
4466A @code{gdb.LineTable} is iterable. The iterator returns
4467@code{LineTableEntry} objects that correspond to the source line and
4468address for each line table entry. @code{LineTableEntry} objects have
4469the following attributes:
4470
4471@defvar LineTableEntry.line
4472The source line number for this line table entry. This number
4473corresponds to the actual line of source. This attribute is not
4474writable.
4475@end defvar
4476
4477@defvar LineTableEntry.pc
4478The address that is associated with the line table entry where the
4479executable code for that source line resides in memory. This
4480attribute is not writable.
4481@end defvar
4482
4483As there can be multiple addresses for a single source line, you may
4484receive multiple @code{LineTableEntry} objects with matching
4485@code{line} attributes, but with different @code{pc} attributes. The
4486iterator is sorted in ascending @code{pc} order. Here is a small
4487example illustrating iterating over a line table.
4488
4489@smallexample
4490symtab = gdb.selected_frame().find_sal().symtab
4491linetable = symtab.linetable()
4492for line in linetable:
4493 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4494@end smallexample
4495
4496This will have the following output:
4497
4498@smallexample
4499Line: 33 Address: 0x4005c8L
4500Line: 37 Address: 0x4005caL
4501Line: 39 Address: 0x4005d2L
4502Line: 40 Address: 0x4005f8L
4503Line: 42 Address: 0x4005ffL
4504Line: 44 Address: 0x400608L
4505Line: 42 Address: 0x40060cL
4506Line: 45 Address: 0x400615L
4507@end smallexample
4508
4509In addition to being able to iterate over a @code{LineTable}, it also
4510has the following direct access methods:
4511
4512@defun LineTable.line (line)
4513Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4514entries in the line table for the given @var{line}, which specifies
4515the source code line. If there are no entries for that source code
329baa95
DE
4516@var{line}, the Python @code{None} is returned.
4517@end defun
4518
4519@defun LineTable.has_line (line)
4520Return a Python @code{Boolean} indicating whether there is an entry in
4521the line table for this source line. Return @code{True} if an entry
4522is found, or @code{False} if not.
4523@end defun
4524
4525@defun LineTable.source_lines ()
4526Return a Python @code{List} of the source line numbers in the symbol
4527table. Only lines with executable code locations are returned. The
4528contents of the @code{List} will just be the source line entries
4529represented as Python @code{Long} values.
4530@end defun
4531
4532@node Breakpoints In Python
4533@subsubsection Manipulating breakpoints using Python
4534
4535@cindex breakpoints in python
4536@tindex gdb.Breakpoint
4537
4538Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4539class.
4540
4541@defun Breakpoint.__init__ (spec @r{[}, type @r{[}, wp_class @r{[},internal @r{[},temporary@r{]]]]})
697aa1b7
EZ
4542Create a new breakpoint according to @var{spec}, which is a string
4543naming the location of the breakpoint, or an expression that defines a
4544watchpoint. The contents can be any location recognized by the
4545@code{break} command, or in the case of a watchpoint, by the
4546@code{watch} command. The optional @var{type} denotes the breakpoint
4547to create from the types defined later in this chapter. This argument
4548can be either @code{gdb.BP_BREAKPOINT} or @code{gdb.BP_WATCHPOINT}; it
329baa95
DE
4549defaults to @code{gdb.BP_BREAKPOINT}. The optional @var{internal}
4550argument allows the breakpoint to become invisible to the user. The
4551breakpoint will neither be reported when created, nor will it be
4552listed in the output from @code{info breakpoints} (but will be listed
4553with the @code{maint info breakpoints} command). The optional
4554@var{temporary} argument makes the breakpoint a temporary breakpoint.
4555Temporary breakpoints are deleted after they have been hit. Any
4556further access to the Python breakpoint after it has been hit will
4557result in a runtime error (as that breakpoint has now been
4558automatically deleted). The optional @var{wp_class} argument defines
4559the class of watchpoint to create, if @var{type} is
4560@code{gdb.BP_WATCHPOINT}. If a watchpoint class is not provided, it
4561is assumed to be a @code{gdb.WP_WRITE} class.
4562@end defun
4563
4564@defun Breakpoint.stop (self)
4565The @code{gdb.Breakpoint} class can be sub-classed and, in
4566particular, you may choose to implement the @code{stop} method.
4567If this method is defined in a sub-class of @code{gdb.Breakpoint},
4568it will be called when the inferior reaches any location of a
4569breakpoint which instantiates that sub-class. If the method returns
4570@code{True}, the inferior will be stopped at the location of the
4571breakpoint, otherwise the inferior will continue.
4572
4573If there are multiple breakpoints at the same location with a
4574@code{stop} method, each one will be called regardless of the
4575return status of the previous. This ensures that all @code{stop}
4576methods have a chance to execute at that location. In this scenario
4577if one of the methods returns @code{True} but the others return
4578@code{False}, the inferior will still be stopped.
4579
4580You should not alter the execution state of the inferior (i.e.@:, step,
4581next, etc.), alter the current frame context (i.e.@:, change the current
4582active frame), or alter, add or delete any breakpoint. As a general
4583rule, you should not alter any data within @value{GDBN} or the inferior
4584at this time.
4585
4586Example @code{stop} implementation:
4587
4588@smallexample
4589class MyBreakpoint (gdb.Breakpoint):
4590 def stop (self):
4591 inf_val = gdb.parse_and_eval("foo")
4592 if inf_val == 3:
4593 return True
4594 return False
4595@end smallexample
4596@end defun
4597
4598The available watchpoint types represented by constants are defined in the
4599@code{gdb} module:
4600
b3ce5e5f
DE
4601@vtable @code
4602@vindex WP_READ
329baa95
DE
4603@item gdb.WP_READ
4604Read only watchpoint.
4605
b3ce5e5f 4606@vindex WP_WRITE
329baa95
DE
4607@item gdb.WP_WRITE
4608Write only watchpoint.
4609
b3ce5e5f 4610@vindex WP_ACCESS
329baa95
DE
4611@item gdb.WP_ACCESS
4612Read/Write watchpoint.
b3ce5e5f 4613@end vtable
329baa95
DE
4614
4615@defun Breakpoint.is_valid ()
4616Return @code{True} if this @code{Breakpoint} object is valid,
4617@code{False} otherwise. A @code{Breakpoint} object can become invalid
4618if the user deletes the breakpoint. In this case, the object still
4619exists, but the underlying breakpoint does not. In the cases of
4620watchpoint scope, the watchpoint remains valid even if execution of the
4621inferior leaves the scope of that watchpoint.
4622@end defun
4623
fab3a15d 4624@defun Breakpoint.delete ()
329baa95
DE
4625Permanently deletes the @value{GDBN} breakpoint. This also
4626invalidates the Python @code{Breakpoint} object. Any further access
4627to this object's attributes or methods will raise an error.
4628@end defun
4629
4630@defvar Breakpoint.enabled
4631This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
4632@code{False} otherwise. This attribute is writable. You can use it to enable
4633or disable the breakpoint.
329baa95
DE
4634@end defvar
4635
4636@defvar Breakpoint.silent
4637This attribute is @code{True} if the breakpoint is silent, and
4638@code{False} otherwise. This attribute is writable.
4639
4640Note that a breakpoint can also be silent if it has commands and the
4641first command is @code{silent}. This is not reported by the
4642@code{silent} attribute.
4643@end defvar
4644
4645@defvar Breakpoint.thread
4646If the breakpoint is thread-specific, this attribute holds the thread
4647id. If the breakpoint is not thread-specific, this attribute is
4648@code{None}. This attribute is writable.
4649@end defvar
4650
4651@defvar Breakpoint.task
4652If the breakpoint is Ada task-specific, this attribute holds the Ada task
4653id. If the breakpoint is not task-specific (or the underlying
4654language is not Ada), this attribute is @code{None}. This attribute
4655is writable.
4656@end defvar
4657
4658@defvar Breakpoint.ignore_count
4659This attribute holds the ignore count for the breakpoint, an integer.
4660This attribute is writable.
4661@end defvar
4662
4663@defvar Breakpoint.number
4664This attribute holds the breakpoint's number --- the identifier used by
4665the user to manipulate the breakpoint. This attribute is not writable.
4666@end defvar
4667
4668@defvar Breakpoint.type
4669This attribute holds the breakpoint's type --- the identifier used to
4670determine the actual breakpoint type or use-case. This attribute is not
4671writable.
4672@end defvar
4673
4674@defvar Breakpoint.visible
4675This attribute tells whether the breakpoint is visible to the user
4676when set, or when the @samp{info breakpoints} command is run. This
4677attribute is not writable.
4678@end defvar
4679
4680@defvar Breakpoint.temporary
4681This attribute indicates whether the breakpoint was created as a
4682temporary breakpoint. Temporary breakpoints are automatically deleted
4683after that breakpoint has been hit. Access to this attribute, and all
4684other attributes and functions other than the @code{is_valid}
4685function, will result in an error after the breakpoint has been hit
4686(as it has been automatically deleted). This attribute is not
4687writable.
4688@end defvar
4689
4690The available types are represented by constants defined in the @code{gdb}
4691module:
4692
b3ce5e5f
DE
4693@vtable @code
4694@vindex BP_BREAKPOINT
329baa95
DE
4695@item gdb.BP_BREAKPOINT
4696Normal code breakpoint.
4697
b3ce5e5f 4698@vindex BP_WATCHPOINT
329baa95
DE
4699@item gdb.BP_WATCHPOINT
4700Watchpoint breakpoint.
4701
b3ce5e5f 4702@vindex BP_HARDWARE_WATCHPOINT
329baa95
DE
4703@item gdb.BP_HARDWARE_WATCHPOINT
4704Hardware assisted watchpoint.
4705
b3ce5e5f 4706@vindex BP_READ_WATCHPOINT
329baa95
DE
4707@item gdb.BP_READ_WATCHPOINT
4708Hardware assisted read watchpoint.
4709
b3ce5e5f 4710@vindex BP_ACCESS_WATCHPOINT
329baa95
DE
4711@item gdb.BP_ACCESS_WATCHPOINT
4712Hardware assisted access watchpoint.
b3ce5e5f 4713@end vtable
329baa95
DE
4714
4715@defvar Breakpoint.hit_count
4716This attribute holds the hit count for the breakpoint, an integer.
4717This attribute is writable, but currently it can only be set to zero.
4718@end defvar
4719
4720@defvar Breakpoint.location
4721This attribute holds the location of the breakpoint, as specified by
4722the user. It is a string. If the breakpoint does not have a location
4723(that is, it is a watchpoint) the attribute's value is @code{None}. This
4724attribute is not writable.
4725@end defvar
4726
4727@defvar Breakpoint.expression
4728This attribute holds a breakpoint expression, as specified by
4729the user. It is a string. If the breakpoint does not have an
4730expression (the breakpoint is not a watchpoint) the attribute's value
4731is @code{None}. This attribute is not writable.
4732@end defvar
4733
4734@defvar Breakpoint.condition
4735This attribute holds the condition of the breakpoint, as specified by
4736the user. It is a string. If there is no condition, this attribute's
4737value is @code{None}. This attribute is writable.
4738@end defvar
4739
4740@defvar Breakpoint.commands
4741This attribute holds the commands attached to the breakpoint. If
4742there are commands, this attribute's value is a string holding all the
4743commands, separated by newlines. If there are no commands, this
4744attribute is @code{None}. This attribute is not writable.
4745@end defvar
4746
4747@node Finish Breakpoints in Python
4748@subsubsection Finish Breakpoints
4749
4750@cindex python finish breakpoints
4751@tindex gdb.FinishBreakpoint
4752
4753A finish breakpoint is a temporary breakpoint set at the return address of
4754a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
4755extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
4756and deleted when the execution will run out of the breakpoint scope (i.e.@:
4757@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
4758Finish breakpoints are thread specific and must be create with the right
4759thread selected.
4760
4761@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
4762Create a finish breakpoint at the return address of the @code{gdb.Frame}
4763object @var{frame}. If @var{frame} is not provided, this defaults to the
4764newest frame. The optional @var{internal} argument allows the breakpoint to
4765become invisible to the user. @xref{Breakpoints In Python}, for further
4766details about this argument.
4767@end defun
4768
4769@defun FinishBreakpoint.out_of_scope (self)
4770In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
4771@code{return} command, @dots{}), a function may not properly terminate, and
4772thus never hit the finish breakpoint. When @value{GDBN} notices such a
4773situation, the @code{out_of_scope} callback will be triggered.
4774
4775You may want to sub-class @code{gdb.FinishBreakpoint} and override this
4776method:
4777
4778@smallexample
4779class MyFinishBreakpoint (gdb.FinishBreakpoint)
4780 def stop (self):
4781 print "normal finish"
4782 return True
4783
4784 def out_of_scope ():
4785 print "abnormal finish"
4786@end smallexample
4787@end defun
4788
4789@defvar FinishBreakpoint.return_value
4790When @value{GDBN} is stopped at a finish breakpoint and the frame
4791used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
4792attribute will contain a @code{gdb.Value} object corresponding to the return
4793value of the function. The value will be @code{None} if the function return
4794type is @code{void} or if the return value was not computable. This attribute
4795is not writable.
4796@end defvar
4797
4798@node Lazy Strings In Python
4799@subsubsection Python representation of lazy strings.
4800
4801@cindex lazy strings in python
4802@tindex gdb.LazyString
4803
4804A @dfn{lazy string} is a string whose contents is not retrieved or
4805encoded until it is needed.
4806
4807A @code{gdb.LazyString} is represented in @value{GDBN} as an
4808@code{address} that points to a region of memory, an @code{encoding}
4809that will be used to encode that region of memory, and a @code{length}
4810to delimit the region of memory that represents the string. The
4811difference between a @code{gdb.LazyString} and a string wrapped within
4812a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
4813differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
4814retrieved and encoded during printing, while a @code{gdb.Value}
4815wrapping a string is immediately retrieved and encoded on creation.
4816
4817A @code{gdb.LazyString} object has the following functions:
4818
4819@defun LazyString.value ()
4820Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
4821will point to the string in memory, but will lose all the delayed
4822retrieval, encoding and handling that @value{GDBN} applies to a
4823@code{gdb.LazyString}.
4824@end defun
4825
4826@defvar LazyString.address
4827This attribute holds the address of the string. This attribute is not
4828writable.
4829@end defvar
4830
4831@defvar LazyString.length
4832This attribute holds the length of the string in characters. If the
4833length is -1, then the string will be fetched and encoded up to the
4834first null of appropriate width. This attribute is not writable.
4835@end defvar
4836
4837@defvar LazyString.encoding
4838This attribute holds the encoding that will be applied to the string
4839when the string is printed by @value{GDBN}. If the encoding is not
4840set, or contains an empty string, then @value{GDBN} will select the
4841most appropriate encoding when the string is printed. This attribute
4842is not writable.
4843@end defvar
4844
4845@defvar LazyString.type
4846This attribute holds the type that is represented by the lazy string's
4847type. For a lazy string this will always be a pointer type. To
4848resolve this to the lazy string's character type, use the type's
4849@code{target} method. @xref{Types In Python}. This attribute is not
4850writable.
4851@end defvar
4852
4853@node Architectures In Python
4854@subsubsection Python representation of architectures
4855@cindex Python architectures
4856
4857@value{GDBN} uses architecture specific parameters and artifacts in a
4858number of its various computations. An architecture is represented
4859by an instance of the @code{gdb.Architecture} class.
4860
4861A @code{gdb.Architecture} class has the following methods:
4862
4863@defun Architecture.name ()
4864Return the name (string value) of the architecture.
4865@end defun
4866
4867@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
4868Return a list of disassembled instructions starting from the memory
4869address @var{start_pc}. The optional arguments @var{end_pc} and
4870@var{count} determine the number of instructions in the returned list.
4871If both the optional arguments @var{end_pc} and @var{count} are
4872specified, then a list of at most @var{count} disassembled instructions
4873whose start address falls in the closed memory address interval from
4874@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
4875specified, but @var{count} is specified, then @var{count} number of
4876instructions starting from the address @var{start_pc} are returned. If
4877@var{count} is not specified but @var{end_pc} is specified, then all
4878instructions whose start address falls in the closed memory address
4879interval from @var{start_pc} to @var{end_pc} are returned. If neither
4880@var{end_pc} nor @var{count} are specified, then a single instruction at
4881@var{start_pc} is returned. For all of these cases, each element of the
4882returned list is a Python @code{dict} with the following string keys:
4883
4884@table @code
4885
4886@item addr
4887The value corresponding to this key is a Python long integer capturing
4888the memory address of the instruction.
4889
4890@item asm
4891The value corresponding to this key is a string value which represents
4892the instruction with assembly language mnemonics. The assembly
4893language flavor used is the same as that specified by the current CLI
4894variable @code{disassembly-flavor}. @xref{Machine Code}.
4895
4896@item length
4897The value corresponding to this key is the length (integer value) of the
4898instruction in bytes.
4899
4900@end table
4901@end defun
4902
4903@node Python Auto-loading
4904@subsection Python Auto-loading
4905@cindex Python auto-loading
4906
4907When a new object file is read (for example, due to the @code{file}
4908command, or because the inferior has loaded a shared library),
4909@value{GDBN} will look for Python support scripts in several ways:
4910@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
4911@xref{Auto-loading extensions}.
4912
4913The auto-loading feature is useful for supplying application-specific
4914debugging commands and scripts.
4915
4916Auto-loading can be enabled or disabled,
4917and the list of auto-loaded scripts can be printed.
4918
4919@table @code
4920@anchor{set auto-load python-scripts}
4921@kindex set auto-load python-scripts
4922@item set auto-load python-scripts [on|off]
4923Enable or disable the auto-loading of Python scripts.
4924
4925@anchor{show auto-load python-scripts}
4926@kindex show auto-load python-scripts
4927@item show auto-load python-scripts
4928Show whether auto-loading of Python scripts is enabled or disabled.
4929
4930@anchor{info auto-load python-scripts}
4931@kindex info auto-load python-scripts
4932@cindex print list of auto-loaded Python scripts
4933@item info auto-load python-scripts [@var{regexp}]
4934Print the list of all Python scripts that @value{GDBN} auto-loaded.
4935
4936Also printed is the list of Python scripts that were mentioned in
9f050062
DE
4937the @code{.debug_gdb_scripts} section and were either not found
4938(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
4939@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
4940This is useful because their names are not printed when @value{GDBN}
4941tries to load them and fails. There may be many of them, and printing
4942an error message for each one is problematic.
4943
4944If @var{regexp} is supplied only Python scripts with matching names are printed.
4945
4946Example:
4947
4948@smallexample
4949(gdb) info auto-load python-scripts
4950Loaded Script
4951Yes py-section-script.py
4952 full name: /tmp/py-section-script.py
4953No my-foo-pretty-printers.py
4954@end smallexample
4955@end table
4956
9f050062 4957When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
4958@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
4959function (@pxref{Objfiles In Python}). This can be useful for
4960registering objfile-specific pretty-printers and frame-filters.
4961
4962@node Python modules
4963@subsection Python modules
4964@cindex python modules
4965
4966@value{GDBN} comes with several modules to assist writing Python code.
4967
4968@menu
4969* gdb.printing:: Building and registering pretty-printers.
4970* gdb.types:: Utilities for working with types.
4971* gdb.prompt:: Utilities for prompt value substitution.
4972@end menu
4973
4974@node gdb.printing
4975@subsubsection gdb.printing
4976@cindex gdb.printing
4977
4978This module provides a collection of utilities for working with
4979pretty-printers.
4980
4981@table @code
4982@item PrettyPrinter (@var{name}, @var{subprinters}=None)
4983This class specifies the API that makes @samp{info pretty-printer},
4984@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
4985Pretty-printers should generally inherit from this class.
4986
4987@item SubPrettyPrinter (@var{name})
4988For printers that handle multiple types, this class specifies the
4989corresponding API for the subprinters.
4990
4991@item RegexpCollectionPrettyPrinter (@var{name})
4992Utility class for handling multiple printers, all recognized via
4993regular expressions.
4994@xref{Writing a Pretty-Printer}, for an example.
4995
4996@item FlagEnumerationPrinter (@var{name})
4997A pretty-printer which handles printing of @code{enum} values. Unlike
4998@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
4999work properly when there is some overlap between the enumeration
697aa1b7
EZ
5000constants. The argument @var{name} is the name of the printer and
5001also the name of the @code{enum} type to look up.
329baa95
DE
5002
5003@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5004Register @var{printer} with the pretty-printer list of @var{obj}.
5005If @var{replace} is @code{True} then any existing copy of the printer
5006is replaced. Otherwise a @code{RuntimeError} exception is raised
5007if a printer with the same name already exists.
5008@end table
5009
5010@node gdb.types
5011@subsubsection gdb.types
5012@cindex gdb.types
5013
5014This module provides a collection of utilities for working with
5015@code{gdb.Type} objects.
5016
5017@table @code
5018@item get_basic_type (@var{type})
5019Return @var{type} with const and volatile qualifiers stripped,
5020and with typedefs and C@t{++} references converted to the underlying type.
5021
5022C@t{++} example:
5023
5024@smallexample
5025typedef const int const_int;
5026const_int foo (3);
5027const_int& foo_ref (foo);
5028int main () @{ return 0; @}
5029@end smallexample
5030
5031Then in gdb:
5032
5033@smallexample
5034(gdb) start
5035(gdb) python import gdb.types
5036(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5037(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5038int
5039@end smallexample
5040
5041@item has_field (@var{type}, @var{field})
5042Return @code{True} if @var{type}, assumed to be a type with fields
5043(e.g., a structure or union), has field @var{field}.
5044
5045@item make_enum_dict (@var{enum_type})
5046Return a Python @code{dictionary} type produced from @var{enum_type}.
5047
5048@item deep_items (@var{type})
5049Returns a Python iterator similar to the standard
5050@code{gdb.Type.iteritems} method, except that the iterator returned
5051by @code{deep_items} will recursively traverse anonymous struct or
5052union fields. For example:
5053
5054@smallexample
5055struct A
5056@{
5057 int a;
5058 union @{
5059 int b0;
5060 int b1;
5061 @};
5062@};
5063@end smallexample
5064
5065@noindent
5066Then in @value{GDBN}:
5067@smallexample
5068(@value{GDBP}) python import gdb.types
5069(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5070(@value{GDBP}) python print struct_a.keys ()
5071@{['a', '']@}
5072(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5073@{['a', 'b0', 'b1']@}
5074@end smallexample
5075
5076@item get_type_recognizers ()
5077Return a list of the enabled type recognizers for the current context.
5078This is called by @value{GDBN} during the type-printing process
5079(@pxref{Type Printing API}).
5080
5081@item apply_type_recognizers (recognizers, type_obj)
5082Apply the type recognizers, @var{recognizers}, to the type object
5083@var{type_obj}. If any recognizer returns a string, return that
5084string. Otherwise, return @code{None}. This is called by
5085@value{GDBN} during the type-printing process (@pxref{Type Printing
5086API}).
5087
5088@item register_type_printer (locus, printer)
697aa1b7
EZ
5089This is a convenience function to register a type printer
5090@var{printer}. The printer must implement the type printer protocol.
5091The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5092the printer is registered with that objfile; a @code{gdb.Progspace},
5093in which case the printer is registered with that progspace; or
5094@code{None}, in which case the printer is registered globally.
329baa95
DE
5095
5096@item TypePrinter
5097This is a base class that implements the type printer protocol. Type
5098printers are encouraged, but not required, to derive from this class.
5099It defines a constructor:
5100
5101@defmethod TypePrinter __init__ (self, name)
5102Initialize the type printer with the given name. The new printer
5103starts in the enabled state.
5104@end defmethod
5105
5106@end table
5107
5108@node gdb.prompt
5109@subsubsection gdb.prompt
5110@cindex gdb.prompt
5111
5112This module provides a method for prompt value-substitution.
5113
5114@table @code
5115@item substitute_prompt (@var{string})
5116Return @var{string} with escape sequences substituted by values. Some
5117escape sequences take arguments. You can specify arguments inside
5118``@{@}'' immediately following the escape sequence.
5119
5120The escape sequences you can pass to this function are:
5121
5122@table @code
5123@item \\
5124Substitute a backslash.
5125@item \e
5126Substitute an ESC character.
5127@item \f
5128Substitute the selected frame; an argument names a frame parameter.
5129@item \n
5130Substitute a newline.
5131@item \p
5132Substitute a parameter's value; the argument names the parameter.
5133@item \r
5134Substitute a carriage return.
5135@item \t
5136Substitute the selected thread; an argument names a thread parameter.
5137@item \v
5138Substitute the version of GDB.
5139@item \w
5140Substitute the current working directory.
5141@item \[
5142Begin a sequence of non-printing characters. These sequences are
5143typically used with the ESC character, and are not counted in the string
5144length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5145blue-colored ``(gdb)'' prompt where the length is five.
5146@item \]
5147End a sequence of non-printing characters.
5148@end table
5149
5150For example:
5151
5152@smallexample
5153substitute_prompt (``frame: \f,
5154 print arguments: \p@{print frame-arguments@}'')
5155@end smallexample
5156
5157@exdent will return the string:
5158
5159@smallexample
5160"frame: main, print arguments: scalars"
5161@end smallexample
5162@end table
This page took 0.50443 seconds and 4 git commands to generate.