nds32: Rename __BIT() to N32_BIT().
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
61baf725 1@c Copyright (C) 2008-2017 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 147* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
148* Xmethods In Python:: Adding and replacing methods of C++ classes.
149* Xmethod API:: Xmethod types.
150* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
151* Inferiors In Python:: Python representation of inferiors (processes)
152* Events In Python:: Listening for events from @value{GDBN}.
153* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 154* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
155* Commands In Python:: Implementing new commands in Python.
156* Parameters In Python:: Adding new @value{GDBN} parameters.
157* Functions In Python:: Writing new convenience functions.
158* Progspaces In Python:: Program spaces.
159* Objfiles In Python:: Object files.
160* Frames In Python:: Accessing inferior stack frames from Python.
161* Blocks In Python:: Accessing blocks from Python.
162* Symbols In Python:: Python representation of symbols.
163* Symbol Tables In Python:: Python representation of symbol tables.
164* Line Tables In Python:: Python representation of line tables.
165* Breakpoints In Python:: Manipulating breakpoints using Python.
166* Finish Breakpoints in Python:: Setting Breakpoints on function return
167 using Python.
168* Lazy Strings In Python:: Python representation of lazy strings.
169* Architectures In Python:: Python representation of architectures.
170@end menu
171
172@node Basic Python
173@subsubsection Basic Python
174
175@cindex python stdout
176@cindex python pagination
177At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
178@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
179A Python program which outputs to one of these streams may have its
180output interrupted by the user (@pxref{Screen Size}). In this
181situation, a Python @code{KeyboardInterrupt} exception is thrown.
182
183Some care must be taken when writing Python code to run in
184@value{GDBN}. Two things worth noting in particular:
185
186@itemize @bullet
187@item
188@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
189Python code must not override these, or even change the options using
190@code{sigaction}. If your program changes the handling of these
191signals, @value{GDBN} will most likely stop working correctly. Note
192that it is unfortunately common for GUI toolkits to install a
193@code{SIGCHLD} handler.
194
195@item
196@value{GDBN} takes care to mark its internal file descriptors as
197close-on-exec. However, this cannot be done in a thread-safe way on
198all platforms. Your Python programs should be aware of this and
199should both create new file descriptors with the close-on-exec flag
200set and arrange to close unneeded file descriptors before starting a
201child process.
202@end itemize
203
204@cindex python functions
205@cindex python module
206@cindex gdb module
207@value{GDBN} introduces a new Python module, named @code{gdb}. All
208methods and classes added by @value{GDBN} are placed in this module.
209@value{GDBN} automatically @code{import}s the @code{gdb} module for
210use in all scripts evaluated by the @code{python} command.
211
212@findex gdb.PYTHONDIR
213@defvar gdb.PYTHONDIR
214A string containing the python directory (@pxref{Python}).
215@end defvar
216
217@findex gdb.execute
218@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
219Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
220If a GDB exception happens while @var{command} runs, it is
221translated as described in @ref{Exception Handling,,Exception Handling}.
222
697aa1b7 223The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
224command as having originated from the user invoking it interactively.
225It must be a boolean value. If omitted, it defaults to @code{False}.
226
227By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
228@value{GDBN}'s standard output (and to the log output if logging is
229turned on). If the @var{to_string} parameter is
329baa95
DE
230@code{True}, then output will be collected by @code{gdb.execute} and
231returned as a string. The default is @code{False}, in which case the
232return value is @code{None}. If @var{to_string} is @code{True}, the
233@value{GDBN} virtual terminal will be temporarily set to unlimited width
234and height, and its pagination will be disabled; @pxref{Screen Size}.
235@end defun
236
237@findex gdb.breakpoints
238@defun gdb.breakpoints ()
239Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
240@xref{Breakpoints In Python}, for more information. In @value{GDBN}
241version 7.11 and earlier, this function returned @code{None} if there
242were no breakpoints. This peculiarity was subsequently fixed, and now
243@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
244@end defun
245
246@findex gdb.parameter
247@defun gdb.parameter (parameter)
697aa1b7
EZ
248Return the value of a @value{GDBN} @var{parameter} given by its name,
249a string; the parameter name string may contain spaces if the parameter has a
250multi-part name. For example, @samp{print object} is a valid
251parameter name.
329baa95
DE
252
253If the named parameter does not exist, this function throws a
254@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
255parameter's value is converted to a Python value of the appropriate
256type, and returned.
257@end defun
258
259@findex gdb.history
260@defun gdb.history (number)
261Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 262History}). The @var{number} argument indicates which history element to return.
329baa95
DE
263If @var{number} is negative, then @value{GDBN} will take its absolute value
264and count backward from the last element (i.e., the most recent element) to
265find the value to return. If @var{number} is zero, then @value{GDBN} will
266return the most recent element. If the element specified by @var{number}
267doesn't exist in the value history, a @code{gdb.error} exception will be
268raised.
269
270If no exception is raised, the return value is always an instance of
271@code{gdb.Value} (@pxref{Values From Inferior}).
272@end defun
273
274@findex gdb.parse_and_eval
275@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
276Parse @var{expression}, which must be a string, as an expression in
277the current language, evaluate it, and return the result as a
278@code{gdb.Value}.
329baa95
DE
279
280This function can be useful when implementing a new command
281(@pxref{Commands In Python}), as it provides a way to parse the
282command's argument as an expression. It is also useful simply to
283compute values, for example, it is the only way to get the value of a
284convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
285@end defun
286
287@findex gdb.find_pc_line
288@defun gdb.find_pc_line (pc)
289Return the @code{gdb.Symtab_and_line} object corresponding to the
290@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
291value of @var{pc} is passed as an argument, then the @code{symtab} and
292@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
293will be @code{None} and 0 respectively.
294@end defun
295
296@findex gdb.post_event
297@defun gdb.post_event (event)
298Put @var{event}, a callable object taking no arguments, into
299@value{GDBN}'s internal event queue. This callable will be invoked at
300some later point, during @value{GDBN}'s event processing. Events
301posted using @code{post_event} will be run in the order in which they
302were posted; however, there is no way to know when they will be
303processed relative to other events inside @value{GDBN}.
304
305@value{GDBN} is not thread-safe. If your Python program uses multiple
306threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 307functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
308this. For example:
309
310@smallexample
311(@value{GDBP}) python
312>import threading
313>
314>class Writer():
315> def __init__(self, message):
316> self.message = message;
317> def __call__(self):
318> gdb.write(self.message)
319>
320>class MyThread1 (threading.Thread):
321> def run (self):
322> gdb.post_event(Writer("Hello "))
323>
324>class MyThread2 (threading.Thread):
325> def run (self):
326> gdb.post_event(Writer("World\n"))
327>
328>MyThread1().start()
329>MyThread2().start()
330>end
331(@value{GDBP}) Hello World
332@end smallexample
333@end defun
334
335@findex gdb.write
336@defun gdb.write (string @r{[}, stream{]})
337Print a string to @value{GDBN}'s paginated output stream. The
338optional @var{stream} determines the stream to print to. The default
339stream is @value{GDBN}'s standard output stream. Possible stream
340values are:
341
342@table @code
343@findex STDOUT
344@findex gdb.STDOUT
345@item gdb.STDOUT
346@value{GDBN}'s standard output stream.
347
348@findex STDERR
349@findex gdb.STDERR
350@item gdb.STDERR
351@value{GDBN}'s standard error stream.
352
353@findex STDLOG
354@findex gdb.STDLOG
355@item gdb.STDLOG
356@value{GDBN}'s log stream (@pxref{Logging Output}).
357@end table
358
359Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
360call this function and will automatically direct the output to the
361relevant stream.
362@end defun
363
364@findex gdb.flush
365@defun gdb.flush ()
366Flush the buffer of a @value{GDBN} paginated stream so that the
367contents are displayed immediately. @value{GDBN} will flush the
368contents of a stream automatically when it encounters a newline in the
369buffer. The optional @var{stream} determines the stream to flush. The
370default stream is @value{GDBN}'s standard output stream. Possible
371stream values are:
372
373@table @code
374@findex STDOUT
375@findex gdb.STDOUT
376@item gdb.STDOUT
377@value{GDBN}'s standard output stream.
378
379@findex STDERR
380@findex gdb.STDERR
381@item gdb.STDERR
382@value{GDBN}'s standard error stream.
383
384@findex STDLOG
385@findex gdb.STDLOG
386@item gdb.STDLOG
387@value{GDBN}'s log stream (@pxref{Logging Output}).
388
389@end table
390
391Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
392call this function for the relevant stream.
393@end defun
394
395@findex gdb.target_charset
396@defun gdb.target_charset ()
397Return the name of the current target character set (@pxref{Character
398Sets}). This differs from @code{gdb.parameter('target-charset')} in
399that @samp{auto} is never returned.
400@end defun
401
402@findex gdb.target_wide_charset
403@defun gdb.target_wide_charset ()
404Return the name of the current target wide character set
405(@pxref{Character Sets}). This differs from
406@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
407never returned.
408@end defun
409
410@findex gdb.solib_name
411@defun gdb.solib_name (address)
412Return the name of the shared library holding the given @var{address}
413as a string, or @code{None}.
414@end defun
415
416@findex gdb.decode_line
417@defun gdb.decode_line @r{[}expression@r{]}
418Return locations of the line specified by @var{expression}, or of the
419current line if no argument was given. This function returns a Python
420tuple containing two elements. The first element contains a string
421holding any unparsed section of @var{expression} (or @code{None} if
422the expression has been fully parsed). The second element contains
423either @code{None} or another tuple that contains all the locations
424that match the expression represented as @code{gdb.Symtab_and_line}
425objects (@pxref{Symbol Tables In Python}). If @var{expression} is
426provided, it is decoded the way that @value{GDBN}'s inbuilt
427@code{break} or @code{edit} commands do (@pxref{Specify Location}).
428@end defun
429
430@defun gdb.prompt_hook (current_prompt)
431@anchor{prompt_hook}
432
433If @var{prompt_hook} is callable, @value{GDBN} will call the method
434assigned to this operation before a prompt is displayed by
435@value{GDBN}.
436
437The parameter @code{current_prompt} contains the current @value{GDBN}
438prompt. This method must return a Python string, or @code{None}. If
439a string is returned, the @value{GDBN} prompt will be set to that
440string. If @code{None} is returned, @value{GDBN} will continue to use
441the current prompt.
442
443Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
444such as those used by readline for command input, and annotation
445related prompts are prohibited from being changed.
446@end defun
447
448@node Exception Handling
449@subsubsection Exception Handling
450@cindex python exceptions
451@cindex exceptions, python
452
453When executing the @code{python} command, Python exceptions
454uncaught within the Python code are translated to calls to
455@value{GDBN} error-reporting mechanism. If the command that called
456@code{python} does not handle the error, @value{GDBN} will
457terminate it and print an error message containing the Python
458exception name, the associated value, and the Python call stack
459backtrace at the point where the exception was raised. Example:
460
461@smallexample
462(@value{GDBP}) python print foo
463Traceback (most recent call last):
464 File "<string>", line 1, in <module>
465NameError: name 'foo' is not defined
466@end smallexample
467
468@value{GDBN} errors that happen in @value{GDBN} commands invoked by
469Python code are converted to Python exceptions. The type of the
470Python exception depends on the error.
471
472@ftable @code
473@item gdb.error
474This is the base class for most exceptions generated by @value{GDBN}.
475It is derived from @code{RuntimeError}, for compatibility with earlier
476versions of @value{GDBN}.
477
478If an error occurring in @value{GDBN} does not fit into some more
479specific category, then the generated exception will have this type.
480
481@item gdb.MemoryError
482This is a subclass of @code{gdb.error} which is thrown when an
483operation tried to access invalid memory in the inferior.
484
485@item KeyboardInterrupt
486User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
487prompt) is translated to a Python @code{KeyboardInterrupt} exception.
488@end ftable
489
490In all cases, your exception handler will see the @value{GDBN} error
491message as its value and the Python call stack backtrace at the Python
492statement closest to where the @value{GDBN} error occured as the
493traceback.
494
495@findex gdb.GdbError
496When implementing @value{GDBN} commands in Python via @code{gdb.Command},
497it is useful to be able to throw an exception that doesn't cause a
498traceback to be printed. For example, the user may have invoked the
499command incorrectly. Use the @code{gdb.GdbError} exception
500to handle this case. Example:
501
502@smallexample
503(gdb) python
504>class HelloWorld (gdb.Command):
505> """Greet the whole world."""
506> def __init__ (self):
507> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
508> def invoke (self, args, from_tty):
509> argv = gdb.string_to_argv (args)
510> if len (argv) != 0:
511> raise gdb.GdbError ("hello-world takes no arguments")
512> print "Hello, World!"
513>HelloWorld ()
514>end
515(gdb) hello-world 42
516hello-world takes no arguments
517@end smallexample
518
519@node Values From Inferior
520@subsubsection Values From Inferior
521@cindex values from inferior, with Python
522@cindex python, working with values from inferior
523
524@cindex @code{gdb.Value}
525@value{GDBN} provides values it obtains from the inferior program in
526an object of type @code{gdb.Value}. @value{GDBN} uses this object
527for its internal bookkeeping of the inferior's values, and for
528fetching values when necessary.
529
530Inferior values that are simple scalars can be used directly in
531Python expressions that are valid for the value's data type. Here's
532an example for an integer or floating-point value @code{some_val}:
533
534@smallexample
535bar = some_val + 2
536@end smallexample
537
538@noindent
539As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
540whose values are of the same type as those of @code{some_val}. Valid
541Python operations can also be performed on @code{gdb.Value} objects
542representing a @code{struct} or @code{class} object. For such cases,
543the overloaded operator (if present), is used to perform the operation.
544For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
545representing instances of a @code{class} which overloads the @code{+}
546operator, then one can use the @code{+} operator in their Python script
547as follows:
548
549@smallexample
550val3 = val1 + val2
551@end smallexample
552
553@noindent
554The result of the operation @code{val3} is also a @code{gdb.Value}
555object corresponding to the value returned by the overloaded @code{+}
556operator. In general, overloaded operators are invoked for the
557following operations: @code{+} (binary addition), @code{-} (binary
558subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
559@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
560
561Inferior values that are structures or instances of some class can
562be accessed using the Python @dfn{dictionary syntax}. For example, if
563@code{some_val} is a @code{gdb.Value} instance holding a structure, you
564can access its @code{foo} element with:
565
566@smallexample
567bar = some_val['foo']
568@end smallexample
569
570@cindex getting structure elements using gdb.Field objects as subscripts
571Again, @code{bar} will also be a @code{gdb.Value} object. Structure
572elements can also be accessed by using @code{gdb.Field} objects as
573subscripts (@pxref{Types In Python}, for more information on
574@code{gdb.Field} objects). For example, if @code{foo_field} is a
575@code{gdb.Field} object corresponding to element @code{foo} of the above
576structure, then @code{bar} can also be accessed as follows:
577
578@smallexample
579bar = some_val[foo_field]
580@end smallexample
581
582A @code{gdb.Value} that represents a function can be executed via
583inferior function call. Any arguments provided to the call must match
584the function's prototype, and must be provided in the order specified
585by that prototype.
586
587For example, @code{some_val} is a @code{gdb.Value} instance
588representing a function that takes two integers as arguments. To
589execute this function, call it like so:
590
591@smallexample
592result = some_val (10,20)
593@end smallexample
594
595Any values returned from a function call will be stored as a
596@code{gdb.Value}.
597
598The following attributes are provided:
599
600@defvar Value.address
601If this object is addressable, this read-only attribute holds a
602@code{gdb.Value} object representing the address. Otherwise,
603this attribute holds @code{None}.
604@end defvar
605
606@cindex optimized out value in Python
607@defvar Value.is_optimized_out
608This read-only boolean attribute is true if the compiler optimized out
609this value, thus it is not available for fetching from the inferior.
610@end defvar
611
612@defvar Value.type
613The type of this @code{gdb.Value}. The value of this attribute is a
614@code{gdb.Type} object (@pxref{Types In Python}).
615@end defvar
616
617@defvar Value.dynamic_type
618The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
619type information (@acronym{RTTI}) to determine the dynamic type of the
620value. If this value is of class type, it will return the class in
621which the value is embedded, if any. If this value is of pointer or
622reference to a class type, it will compute the dynamic type of the
623referenced object, and return a pointer or reference to that type,
624respectively. In all other cases, it will return the value's static
625type.
626
627Note that this feature will only work when debugging a C@t{++} program
628that includes @acronym{RTTI} for the object in question. Otherwise,
629it will just return the static type of the value as in @kbd{ptype foo}
630(@pxref{Symbols, ptype}).
631@end defvar
632
633@defvar Value.is_lazy
634The value of this read-only boolean attribute is @code{True} if this
635@code{gdb.Value} has not yet been fetched from the inferior.
636@value{GDBN} does not fetch values until necessary, for efficiency.
637For example:
638
639@smallexample
640myval = gdb.parse_and_eval ('somevar')
641@end smallexample
642
643The value of @code{somevar} is not fetched at this time. It will be
644fetched when the value is needed, or when the @code{fetch_lazy}
645method is invoked.
646@end defvar
647
648The following methods are provided:
649
650@defun Value.__init__ (@var{val})
651Many Python values can be converted directly to a @code{gdb.Value} via
652this object initializer. Specifically:
653
654@table @asis
655@item Python boolean
656A Python boolean is converted to the boolean type from the current
657language.
658
659@item Python integer
660A Python integer is converted to the C @code{long} type for the
661current architecture.
662
663@item Python long
664A Python long is converted to the C @code{long long} type for the
665current architecture.
666
667@item Python float
668A Python float is converted to the C @code{double} type for the
669current architecture.
670
671@item Python string
b3ce5e5f
DE
672A Python string is converted to a target string in the current target
673language using the current target encoding.
674If a character cannot be represented in the current target encoding,
675then an exception is thrown.
329baa95
DE
676
677@item @code{gdb.Value}
678If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
679
680@item @code{gdb.LazyString}
681If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
682Python}), then the lazy string's @code{value} method is called, and
683its result is used.
684@end table
685@end defun
686
687@defun Value.cast (type)
688Return a new instance of @code{gdb.Value} that is the result of
689casting this instance to the type described by @var{type}, which must
690be a @code{gdb.Type} object. If the cast cannot be performed for some
691reason, this method throws an exception.
692@end defun
693
694@defun Value.dereference ()
695For pointer data types, this method returns a new @code{gdb.Value} object
696whose contents is the object pointed to by the pointer. For example, if
697@code{foo} is a C pointer to an @code{int}, declared in your C program as
698
699@smallexample
700int *foo;
701@end smallexample
702
703@noindent
704then you can use the corresponding @code{gdb.Value} to access what
705@code{foo} points to like this:
706
707@smallexample
708bar = foo.dereference ()
709@end smallexample
710
711The result @code{bar} will be a @code{gdb.Value} object holding the
712value pointed to by @code{foo}.
713
714A similar function @code{Value.referenced_value} exists which also
715returns @code{gdb.Value} objects corresonding to the values pointed to
716by pointer values (and additionally, values referenced by reference
717values). However, the behavior of @code{Value.dereference}
718differs from @code{Value.referenced_value} by the fact that the
719behavior of @code{Value.dereference} is identical to applying the C
720unary operator @code{*} on a given value. For example, consider a
721reference to a pointer @code{ptrref}, declared in your C@t{++} program
722as
723
724@smallexample
725typedef int *intptr;
726...
727int val = 10;
728intptr ptr = &val;
729intptr &ptrref = ptr;
730@end smallexample
731
732Though @code{ptrref} is a reference value, one can apply the method
733@code{Value.dereference} to the @code{gdb.Value} object corresponding
734to it and obtain a @code{gdb.Value} which is identical to that
735corresponding to @code{val}. However, if you apply the method
736@code{Value.referenced_value}, the result would be a @code{gdb.Value}
737object identical to that corresponding to @code{ptr}.
738
739@smallexample
740py_ptrref = gdb.parse_and_eval ("ptrref")
741py_val = py_ptrref.dereference ()
742py_ptr = py_ptrref.referenced_value ()
743@end smallexample
744
745The @code{gdb.Value} object @code{py_val} is identical to that
746corresponding to @code{val}, and @code{py_ptr} is identical to that
747corresponding to @code{ptr}. In general, @code{Value.dereference} can
748be applied whenever the C unary operator @code{*} can be applied
749to the corresponding C value. For those cases where applying both
750@code{Value.dereference} and @code{Value.referenced_value} is allowed,
751the results obtained need not be identical (as we have seen in the above
752example). The results are however identical when applied on
753@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
754objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
755@end defun
756
757@defun Value.referenced_value ()
758For pointer or reference data types, this method returns a new
759@code{gdb.Value} object corresponding to the value referenced by the
760pointer/reference value. For pointer data types,
761@code{Value.dereference} and @code{Value.referenced_value} produce
762identical results. The difference between these methods is that
763@code{Value.dereference} cannot get the values referenced by reference
764values. For example, consider a reference to an @code{int}, declared
765in your C@t{++} program as
766
767@smallexample
768int val = 10;
769int &ref = val;
770@end smallexample
771
772@noindent
773then applying @code{Value.dereference} to the @code{gdb.Value} object
774corresponding to @code{ref} will result in an error, while applying
775@code{Value.referenced_value} will result in a @code{gdb.Value} object
776identical to that corresponding to @code{val}.
777
778@smallexample
779py_ref = gdb.parse_and_eval ("ref")
780er_ref = py_ref.dereference () # Results in error
781py_val = py_ref.referenced_value () # Returns the referenced value
782@end smallexample
783
784The @code{gdb.Value} object @code{py_val} is identical to that
785corresponding to @code{val}.
786@end defun
787
4c082a81
SC
788@defun Value.reference_value ()
789Return a @code{gdb.Value} object which is a reference to the value
790encapsulated by this instance.
791@end defun
792
793@defun Value.const_value ()
794Return a @code{gdb.Value} object which is a @code{const} version of the
795value encapsulated by this instance.
796@end defun
797
329baa95
DE
798@defun Value.dynamic_cast (type)
799Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
800operator were used. Consult a C@t{++} reference for details.
801@end defun
802
803@defun Value.reinterpret_cast (type)
804Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
805operator were used. Consult a C@t{++} reference for details.
806@end defun
807
808@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
809If this @code{gdb.Value} represents a string, then this method
810converts the contents to a Python string. Otherwise, this method will
811throw an exception.
812
b3ce5e5f
DE
813Values are interpreted as strings according to the rules of the
814current language. If the optional length argument is given, the
815string will be converted to that length, and will include any embedded
816zeroes that the string may contain. Otherwise, for languages
817where the string is zero-terminated, the entire string will be
818converted.
329baa95 819
b3ce5e5f
DE
820For example, in C-like languages, a value is a string if it is a pointer
821to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
822or @code{char32_t}.
329baa95
DE
823
824If the optional @var{encoding} argument is given, it must be a string
825naming the encoding of the string in the @code{gdb.Value}, such as
826@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
827the same encodings as the corresponding argument to Python's
828@code{string.decode} method, and the Python codec machinery will be used
829to convert the string. If @var{encoding} is not given, or if
830@var{encoding} is the empty string, then either the @code{target-charset}
831(@pxref{Character Sets}) will be used, or a language-specific encoding
832will be used, if the current language is able to supply one.
833
834The optional @var{errors} argument is the same as the corresponding
835argument to Python's @code{string.decode} method.
836
837If the optional @var{length} argument is given, the string will be
838fetched and converted to the given length.
839@end defun
840
841@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
842If this @code{gdb.Value} represents a string, then this method
843converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
844In Python}). Otherwise, this method will throw an exception.
845
846If the optional @var{encoding} argument is given, it must be a string
847naming the encoding of the @code{gdb.LazyString}. Some examples are:
848@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
849@var{encoding} argument is an encoding that @value{GDBN} does
850recognize, @value{GDBN} will raise an error.
851
852When a lazy string is printed, the @value{GDBN} encoding machinery is
853used to convert the string during printing. If the optional
854@var{encoding} argument is not provided, or is an empty string,
855@value{GDBN} will automatically select the encoding most suitable for
856the string type. For further information on encoding in @value{GDBN}
857please see @ref{Character Sets}.
858
859If the optional @var{length} argument is given, the string will be
860fetched and encoded to the length of characters specified. If
861the @var{length} argument is not provided, the string will be fetched
862and encoded until a null of appropriate width is found.
863@end defun
864
865@defun Value.fetch_lazy ()
866If the @code{gdb.Value} object is currently a lazy value
867(@code{gdb.Value.is_lazy} is @code{True}), then the value is
868fetched from the inferior. Any errors that occur in the process
869will produce a Python exception.
870
871If the @code{gdb.Value} object is not a lazy value, this method
872has no effect.
873
874This method does not return a value.
875@end defun
876
877
878@node Types In Python
879@subsubsection Types In Python
880@cindex types in Python
881@cindex Python, working with types
882
883@tindex gdb.Type
884@value{GDBN} represents types from the inferior using the class
885@code{gdb.Type}.
886
887The following type-related functions are available in the @code{gdb}
888module:
889
890@findex gdb.lookup_type
891@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 892This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
893
894If @var{block} is given, then @var{name} is looked up in that scope.
895Otherwise, it is searched for globally.
896
897Ordinarily, this function will return an instance of @code{gdb.Type}.
898If the named type cannot be found, it will throw an exception.
899@end defun
900
901If the type is a structure or class type, or an enum type, the fields
902of that type can be accessed using the Python @dfn{dictionary syntax}.
903For example, if @code{some_type} is a @code{gdb.Type} instance holding
904a structure type, you can access its @code{foo} field with:
905
906@smallexample
907bar = some_type['foo']
908@end smallexample
909
910@code{bar} will be a @code{gdb.Field} object; see below under the
911description of the @code{Type.fields} method for a description of the
912@code{gdb.Field} class.
913
914An instance of @code{Type} has the following attributes:
915
916@defvar Type.code
917The type code for this type. The type code will be one of the
918@code{TYPE_CODE_} constants defined below.
919@end defvar
920
921@defvar Type.name
922The name of this type. If this type has no name, then @code{None}
923is returned.
924@end defvar
925
926@defvar Type.sizeof
927The size of this type, in target @code{char} units. Usually, a
928target's @code{char} type will be an 8-bit byte. However, on some
929unusual platforms, this type may have a different size.
930@end defvar
931
932@defvar Type.tag
933The tag name for this type. The tag name is the name after
934@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
935languages have this concept. If this type has no tag name, then
936@code{None} is returned.
937@end defvar
938
939The following methods are provided:
940
941@defun Type.fields ()
942For structure and union types, this method returns the fields. Range
943types have two fields, the minimum and maximum values. Enum types
944have one field per enum constant. Function and method types have one
945field per parameter. The base types of C@t{++} classes are also
946represented as fields. If the type has no fields, or does not fit
947into one of these categories, an empty sequence will be returned.
948
949Each field is a @code{gdb.Field} object, with some pre-defined attributes:
950@table @code
951@item bitpos
952This attribute is not available for @code{enum} or @code{static}
9c37b5ae 953(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
954in bits, from the start of the containing type.
955
956@item enumval
957This attribute is only available for @code{enum} fields, and its value
958is the enumeration member's integer representation.
959
960@item name
961The name of the field, or @code{None} for anonymous fields.
962
963@item artificial
964This is @code{True} if the field is artificial, usually meaning that
965it was provided by the compiler and not the user. This attribute is
966always provided, and is @code{False} if the field is not artificial.
967
968@item is_base_class
969This is @code{True} if the field represents a base class of a C@t{++}
970structure. This attribute is always provided, and is @code{False}
971if the field is not a base class of the type that is the argument of
972@code{fields}, or if that type was not a C@t{++} class.
973
974@item bitsize
975If the field is packed, or is a bitfield, then this will have a
976non-zero value, which is the size of the field in bits. Otherwise,
977this will be zero; in this case the field's size is given by its type.
978
979@item type
980The type of the field. This is usually an instance of @code{Type},
981but it can be @code{None} in some situations.
982
983@item parent_type
984The type which contains this field. This is an instance of
985@code{gdb.Type}.
986@end table
987@end defun
988
989@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
990Return a new @code{gdb.Type} object which represents an array of this
991type. If one argument is given, it is the inclusive upper bound of
992the array; in this case the lower bound is zero. If two arguments are
993given, the first argument is the lower bound of the array, and the
994second argument is the upper bound of the array. An array's length
995must not be negative, but the bounds can be.
996@end defun
997
998@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
999Return a new @code{gdb.Type} object which represents a vector of this
1000type. If one argument is given, it is the inclusive upper bound of
1001the vector; in this case the lower bound is zero. If two arguments are
1002given, the first argument is the lower bound of the vector, and the
1003second argument is the upper bound of the vector. A vector's length
1004must not be negative, but the bounds can be.
1005
1006The difference between an @code{array} and a @code{vector} is that
1007arrays behave like in C: when used in expressions they decay to a pointer
1008to the first element whereas vectors are treated as first class values.
1009@end defun
1010
1011@defun Type.const ()
1012Return a new @code{gdb.Type} object which represents a
1013@code{const}-qualified variant of this type.
1014@end defun
1015
1016@defun Type.volatile ()
1017Return a new @code{gdb.Type} object which represents a
1018@code{volatile}-qualified variant of this type.
1019@end defun
1020
1021@defun Type.unqualified ()
1022Return a new @code{gdb.Type} object which represents an unqualified
1023variant of this type. That is, the result is neither @code{const} nor
1024@code{volatile}.
1025@end defun
1026
1027@defun Type.range ()
1028Return a Python @code{Tuple} object that contains two elements: the
1029low bound of the argument type and the high bound of that type. If
1030the type does not have a range, @value{GDBN} will raise a
1031@code{gdb.error} exception (@pxref{Exception Handling}).
1032@end defun
1033
1034@defun Type.reference ()
1035Return a new @code{gdb.Type} object which represents a reference to this
1036type.
1037@end defun
1038
1039@defun Type.pointer ()
1040Return a new @code{gdb.Type} object which represents a pointer to this
1041type.
1042@end defun
1043
1044@defun Type.strip_typedefs ()
1045Return a new @code{gdb.Type} that represents the real type,
1046after removing all layers of typedefs.
1047@end defun
1048
1049@defun Type.target ()
1050Return a new @code{gdb.Type} object which represents the target type
1051of this type.
1052
1053For a pointer type, the target type is the type of the pointed-to
1054object. For an array type (meaning C-like arrays), the target type is
1055the type of the elements of the array. For a function or method type,
1056the target type is the type of the return value. For a complex type,
1057the target type is the type of the elements. For a typedef, the
1058target type is the aliased type.
1059
1060If the type does not have a target, this method will throw an
1061exception.
1062@end defun
1063
1064@defun Type.template_argument (n @r{[}, block@r{]})
1065If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1066return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1067value of the @var{n}th template argument (indexed starting at 0).
329baa95 1068
1a6a384b
JL
1069If this @code{gdb.Type} is not a template type, or if the type has fewer
1070than @var{n} template arguments, this will throw an exception.
1071Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1072
1073If @var{block} is given, then @var{name} is looked up in that scope.
1074Otherwise, it is searched for globally.
1075@end defun
1076
59fb7612
SS
1077@defun Type.optimized_out ()
1078Return @code{gdb.Value} instance of this type whose value is optimized
1079out. This allows a frame decorator to indicate that the value of an
1080argument or a local variable is not known.
1081@end defun
329baa95
DE
1082
1083Each type has a code, which indicates what category this type falls
1084into. The available type categories are represented by constants
1085defined in the @code{gdb} module:
1086
b3ce5e5f
DE
1087@vtable @code
1088@vindex TYPE_CODE_PTR
329baa95
DE
1089@item gdb.TYPE_CODE_PTR
1090The type is a pointer.
1091
b3ce5e5f 1092@vindex TYPE_CODE_ARRAY
329baa95
DE
1093@item gdb.TYPE_CODE_ARRAY
1094The type is an array.
1095
b3ce5e5f 1096@vindex TYPE_CODE_STRUCT
329baa95
DE
1097@item gdb.TYPE_CODE_STRUCT
1098The type is a structure.
1099
b3ce5e5f 1100@vindex TYPE_CODE_UNION
329baa95
DE
1101@item gdb.TYPE_CODE_UNION
1102The type is a union.
1103
b3ce5e5f 1104@vindex TYPE_CODE_ENUM
329baa95
DE
1105@item gdb.TYPE_CODE_ENUM
1106The type is an enum.
1107
b3ce5e5f 1108@vindex TYPE_CODE_FLAGS
329baa95
DE
1109@item gdb.TYPE_CODE_FLAGS
1110A bit flags type, used for things such as status registers.
1111
b3ce5e5f 1112@vindex TYPE_CODE_FUNC
329baa95
DE
1113@item gdb.TYPE_CODE_FUNC
1114The type is a function.
1115
b3ce5e5f 1116@vindex TYPE_CODE_INT
329baa95
DE
1117@item gdb.TYPE_CODE_INT
1118The type is an integer type.
1119
b3ce5e5f 1120@vindex TYPE_CODE_FLT
329baa95
DE
1121@item gdb.TYPE_CODE_FLT
1122A floating point type.
1123
b3ce5e5f 1124@vindex TYPE_CODE_VOID
329baa95
DE
1125@item gdb.TYPE_CODE_VOID
1126The special type @code{void}.
1127
b3ce5e5f 1128@vindex TYPE_CODE_SET
329baa95
DE
1129@item gdb.TYPE_CODE_SET
1130A Pascal set type.
1131
b3ce5e5f 1132@vindex TYPE_CODE_RANGE
329baa95
DE
1133@item gdb.TYPE_CODE_RANGE
1134A range type, that is, an integer type with bounds.
1135
b3ce5e5f 1136@vindex TYPE_CODE_STRING
329baa95
DE
1137@item gdb.TYPE_CODE_STRING
1138A string type. Note that this is only used for certain languages with
1139language-defined string types; C strings are not represented this way.
1140
b3ce5e5f 1141@vindex TYPE_CODE_BITSTRING
329baa95
DE
1142@item gdb.TYPE_CODE_BITSTRING
1143A string of bits. It is deprecated.
1144
b3ce5e5f 1145@vindex TYPE_CODE_ERROR
329baa95
DE
1146@item gdb.TYPE_CODE_ERROR
1147An unknown or erroneous type.
1148
b3ce5e5f 1149@vindex TYPE_CODE_METHOD
329baa95 1150@item gdb.TYPE_CODE_METHOD
9c37b5ae 1151A method type, as found in C@t{++}.
329baa95 1152
b3ce5e5f 1153@vindex TYPE_CODE_METHODPTR
329baa95
DE
1154@item gdb.TYPE_CODE_METHODPTR
1155A pointer-to-member-function.
1156
b3ce5e5f 1157@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1158@item gdb.TYPE_CODE_MEMBERPTR
1159A pointer-to-member.
1160
b3ce5e5f 1161@vindex TYPE_CODE_REF
329baa95
DE
1162@item gdb.TYPE_CODE_REF
1163A reference type.
1164
3fcf899d
AV
1165@vindex TYPE_CODE_RVALUE_REF
1166@item gdb.TYPE_CODE_RVALUE_REF
1167A C@t{++}11 rvalue reference type.
1168
b3ce5e5f 1169@vindex TYPE_CODE_CHAR
329baa95
DE
1170@item gdb.TYPE_CODE_CHAR
1171A character type.
1172
b3ce5e5f 1173@vindex TYPE_CODE_BOOL
329baa95
DE
1174@item gdb.TYPE_CODE_BOOL
1175A boolean type.
1176
b3ce5e5f 1177@vindex TYPE_CODE_COMPLEX
329baa95
DE
1178@item gdb.TYPE_CODE_COMPLEX
1179A complex float type.
1180
b3ce5e5f 1181@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1182@item gdb.TYPE_CODE_TYPEDEF
1183A typedef to some other type.
1184
b3ce5e5f 1185@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1186@item gdb.TYPE_CODE_NAMESPACE
1187A C@t{++} namespace.
1188
b3ce5e5f 1189@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1190@item gdb.TYPE_CODE_DECFLOAT
1191A decimal floating point type.
1192
b3ce5e5f 1193@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1194@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1195A function internal to @value{GDBN}. This is the type used to represent
1196convenience functions.
b3ce5e5f 1197@end vtable
329baa95
DE
1198
1199Further support for types is provided in the @code{gdb.types}
1200Python module (@pxref{gdb.types}).
1201
1202@node Pretty Printing API
1203@subsubsection Pretty Printing API
b3ce5e5f 1204@cindex python pretty printing api
329baa95
DE
1205
1206An example output is provided (@pxref{Pretty Printing}).
1207
1208A pretty-printer is just an object that holds a value and implements a
1209specific interface, defined here.
1210
1211@defun pretty_printer.children (self)
1212@value{GDBN} will call this method on a pretty-printer to compute the
1213children of the pretty-printer's value.
1214
1215This method must return an object conforming to the Python iterator
1216protocol. Each item returned by the iterator must be a tuple holding
1217two elements. The first element is the ``name'' of the child; the
1218second element is the child's value. The value can be any Python
1219object which is convertible to a @value{GDBN} value.
1220
1221This method is optional. If it does not exist, @value{GDBN} will act
1222as though the value has no children.
1223@end defun
1224
1225@defun pretty_printer.display_hint (self)
1226The CLI may call this method and use its result to change the
1227formatting of a value. The result will also be supplied to an MI
1228consumer as a @samp{displayhint} attribute of the variable being
1229printed.
1230
1231This method is optional. If it does exist, this method must return a
1232string.
1233
1234Some display hints are predefined by @value{GDBN}:
1235
1236@table @samp
1237@item array
1238Indicate that the object being printed is ``array-like''. The CLI
1239uses this to respect parameters such as @code{set print elements} and
1240@code{set print array}.
1241
1242@item map
1243Indicate that the object being printed is ``map-like'', and that the
1244children of this value can be assumed to alternate between keys and
1245values.
1246
1247@item string
1248Indicate that the object being printed is ``string-like''. If the
1249printer's @code{to_string} method returns a Python string of some
1250kind, then @value{GDBN} will call its internal language-specific
1251string-printing function to format the string. For the CLI this means
1252adding quotation marks, possibly escaping some characters, respecting
1253@code{set print elements}, and the like.
1254@end table
1255@end defun
1256
1257@defun pretty_printer.to_string (self)
1258@value{GDBN} will call this method to display the string
1259representation of the value passed to the object's constructor.
1260
1261When printing from the CLI, if the @code{to_string} method exists,
1262then @value{GDBN} will prepend its result to the values returned by
1263@code{children}. Exactly how this formatting is done is dependent on
1264the display hint, and may change as more hints are added. Also,
1265depending on the print settings (@pxref{Print Settings}), the CLI may
1266print just the result of @code{to_string} in a stack trace, omitting
1267the result of @code{children}.
1268
1269If this method returns a string, it is printed verbatim.
1270
1271Otherwise, if this method returns an instance of @code{gdb.Value},
1272then @value{GDBN} prints this value. This may result in a call to
1273another pretty-printer.
1274
1275If instead the method returns a Python value which is convertible to a
1276@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1277the resulting value. Again, this may result in a call to another
1278pretty-printer. Python scalars (integers, floats, and booleans) and
1279strings are convertible to @code{gdb.Value}; other types are not.
1280
1281Finally, if this method returns @code{None} then no further operations
1282are peformed in this method and nothing is printed.
1283
1284If the result is not one of these types, an exception is raised.
1285@end defun
1286
1287@value{GDBN} provides a function which can be used to look up the
1288default pretty-printer for a @code{gdb.Value}:
1289
1290@findex gdb.default_visualizer
1291@defun gdb.default_visualizer (value)
1292This function takes a @code{gdb.Value} object as an argument. If a
1293pretty-printer for this value exists, then it is returned. If no such
1294printer exists, then this returns @code{None}.
1295@end defun
1296
1297@node Selecting Pretty-Printers
1298@subsubsection Selecting Pretty-Printers
b3ce5e5f 1299@cindex selecting python pretty-printers
329baa95
DE
1300
1301The Python list @code{gdb.pretty_printers} contains an array of
1302functions or callable objects that have been registered via addition
1303as a pretty-printer. Printers in this list are called @code{global}
1304printers, they're available when debugging all inferiors.
1305Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1306Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1307attribute.
1308
1309Each function on these lists is passed a single @code{gdb.Value}
1310argument and should return a pretty-printer object conforming to the
1311interface definition above (@pxref{Pretty Printing API}). If a function
1312cannot create a pretty-printer for the value, it should return
1313@code{None}.
1314
1315@value{GDBN} first checks the @code{pretty_printers} attribute of each
1316@code{gdb.Objfile} in the current program space and iteratively calls
1317each enabled lookup routine in the list for that @code{gdb.Objfile}
1318until it receives a pretty-printer object.
1319If no pretty-printer is found in the objfile lists, @value{GDBN} then
1320searches the pretty-printer list of the current program space,
1321calling each enabled function until an object is returned.
1322After these lists have been exhausted, it tries the global
1323@code{gdb.pretty_printers} list, again calling each enabled function until an
1324object is returned.
1325
1326The order in which the objfiles are searched is not specified. For a
1327given list, functions are always invoked from the head of the list,
1328and iterated over sequentially until the end of the list, or a printer
1329object is returned.
1330
1331For various reasons a pretty-printer may not work.
1332For example, the underlying data structure may have changed and
1333the pretty-printer is out of date.
1334
1335The consequences of a broken pretty-printer are severe enough that
1336@value{GDBN} provides support for enabling and disabling individual
1337printers. For example, if @code{print frame-arguments} is on,
1338a backtrace can become highly illegible if any argument is printed
1339with a broken printer.
1340
1341Pretty-printers are enabled and disabled by attaching an @code{enabled}
1342attribute to the registered function or callable object. If this attribute
1343is present and its value is @code{False}, the printer is disabled, otherwise
1344the printer is enabled.
1345
1346@node Writing a Pretty-Printer
1347@subsubsection Writing a Pretty-Printer
1348@cindex writing a pretty-printer
1349
1350A pretty-printer consists of two parts: a lookup function to detect
1351if the type is supported, and the printer itself.
1352
1353Here is an example showing how a @code{std::string} printer might be
1354written. @xref{Pretty Printing API}, for details on the API this class
1355must provide.
1356
1357@smallexample
1358class StdStringPrinter(object):
1359 "Print a std::string"
1360
1361 def __init__(self, val):
1362 self.val = val
1363
1364 def to_string(self):
1365 return self.val['_M_dataplus']['_M_p']
1366
1367 def display_hint(self):
1368 return 'string'
1369@end smallexample
1370
1371And here is an example showing how a lookup function for the printer
1372example above might be written.
1373
1374@smallexample
1375def str_lookup_function(val):
1376 lookup_tag = val.type.tag
1377 if lookup_tag == None:
1378 return None
1379 regex = re.compile("^std::basic_string<char,.*>$")
1380 if regex.match(lookup_tag):
1381 return StdStringPrinter(val)
1382 return None
1383@end smallexample
1384
1385The example lookup function extracts the value's type, and attempts to
1386match it to a type that it can pretty-print. If it is a type the
1387printer can pretty-print, it will return a printer object. If not, it
1388returns @code{None}.
1389
1390We recommend that you put your core pretty-printers into a Python
1391package. If your pretty-printers are for use with a library, we
1392further recommend embedding a version number into the package name.
1393This practice will enable @value{GDBN} to load multiple versions of
1394your pretty-printers at the same time, because they will have
1395different names.
1396
1397You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1398can be evaluated multiple times without changing its meaning. An
1399ideal auto-load file will consist solely of @code{import}s of your
1400printer modules, followed by a call to a register pretty-printers with
1401the current objfile.
1402
1403Taken as a whole, this approach will scale nicely to multiple
1404inferiors, each potentially using a different library version.
1405Embedding a version number in the Python package name will ensure that
1406@value{GDBN} is able to load both sets of printers simultaneously.
1407Then, because the search for pretty-printers is done by objfile, and
1408because your auto-loaded code took care to register your library's
1409printers with a specific objfile, @value{GDBN} will find the correct
1410printers for the specific version of the library used by each
1411inferior.
1412
1413To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1414this code might appear in @code{gdb.libstdcxx.v6}:
1415
1416@smallexample
1417def register_printers(objfile):
1418 objfile.pretty_printers.append(str_lookup_function)
1419@end smallexample
1420
1421@noindent
1422And then the corresponding contents of the auto-load file would be:
1423
1424@smallexample
1425import gdb.libstdcxx.v6
1426gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1427@end smallexample
1428
1429The previous example illustrates a basic pretty-printer.
1430There are a few things that can be improved on.
1431The printer doesn't have a name, making it hard to identify in a
1432list of installed printers. The lookup function has a name, but
1433lookup functions can have arbitrary, even identical, names.
1434
1435Second, the printer only handles one type, whereas a library typically has
1436several types. One could install a lookup function for each desired type
1437in the library, but one could also have a single lookup function recognize
1438several types. The latter is the conventional way this is handled.
1439If a pretty-printer can handle multiple data types, then its
1440@dfn{subprinters} are the printers for the individual data types.
1441
1442The @code{gdb.printing} module provides a formal way of solving these
1443problems (@pxref{gdb.printing}).
1444Here is another example that handles multiple types.
1445
1446These are the types we are going to pretty-print:
1447
1448@smallexample
1449struct foo @{ int a, b; @};
1450struct bar @{ struct foo x, y; @};
1451@end smallexample
1452
1453Here are the printers:
1454
1455@smallexample
1456class fooPrinter:
1457 """Print a foo object."""
1458
1459 def __init__(self, val):
1460 self.val = val
1461
1462 def to_string(self):
1463 return ("a=<" + str(self.val["a"]) +
1464 "> b=<" + str(self.val["b"]) + ">")
1465
1466class barPrinter:
1467 """Print a bar object."""
1468
1469 def __init__(self, val):
1470 self.val = val
1471
1472 def to_string(self):
1473 return ("x=<" + str(self.val["x"]) +
1474 "> y=<" + str(self.val["y"]) + ">")
1475@end smallexample
1476
1477This example doesn't need a lookup function, that is handled by the
1478@code{gdb.printing} module. Instead a function is provided to build up
1479the object that handles the lookup.
1480
1481@smallexample
1482import gdb.printing
1483
1484def build_pretty_printer():
1485 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1486 "my_library")
1487 pp.add_printer('foo', '^foo$', fooPrinter)
1488 pp.add_printer('bar', '^bar$', barPrinter)
1489 return pp
1490@end smallexample
1491
1492And here is the autoload support:
1493
1494@smallexample
1495import gdb.printing
1496import my_library
1497gdb.printing.register_pretty_printer(
1498 gdb.current_objfile(),
1499 my_library.build_pretty_printer())
1500@end smallexample
1501
1502Finally, when this printer is loaded into @value{GDBN}, here is the
1503corresponding output of @samp{info pretty-printer}:
1504
1505@smallexample
1506(gdb) info pretty-printer
1507my_library.so:
1508 my_library
1509 foo
1510 bar
1511@end smallexample
1512
1513@node Type Printing API
1514@subsubsection Type Printing API
1515@cindex type printing API for Python
1516
1517@value{GDBN} provides a way for Python code to customize type display.
1518This is mainly useful for substituting canonical typedef names for
1519types.
1520
1521@cindex type printer
1522A @dfn{type printer} is just a Python object conforming to a certain
1523protocol. A simple base class implementing the protocol is provided;
1524see @ref{gdb.types}. A type printer must supply at least:
1525
1526@defivar type_printer enabled
1527A boolean which is True if the printer is enabled, and False
1528otherwise. This is manipulated by the @code{enable type-printer}
1529and @code{disable type-printer} commands.
1530@end defivar
1531
1532@defivar type_printer name
1533The name of the type printer. This must be a string. This is used by
1534the @code{enable type-printer} and @code{disable type-printer}
1535commands.
1536@end defivar
1537
1538@defmethod type_printer instantiate (self)
1539This is called by @value{GDBN} at the start of type-printing. It is
1540only called if the type printer is enabled. This method must return a
1541new object that supplies a @code{recognize} method, as described below.
1542@end defmethod
1543
1544
1545When displaying a type, say via the @code{ptype} command, @value{GDBN}
1546will compute a list of type recognizers. This is done by iterating
1547first over the per-objfile type printers (@pxref{Objfiles In Python}),
1548followed by the per-progspace type printers (@pxref{Progspaces In
1549Python}), and finally the global type printers.
1550
1551@value{GDBN} will call the @code{instantiate} method of each enabled
1552type printer. If this method returns @code{None}, then the result is
1553ignored; otherwise, it is appended to the list of recognizers.
1554
1555Then, when @value{GDBN} is going to display a type name, it iterates
1556over the list of recognizers. For each one, it calls the recognition
1557function, stopping if the function returns a non-@code{None} value.
1558The recognition function is defined as:
1559
1560@defmethod type_recognizer recognize (self, type)
1561If @var{type} is not recognized, return @code{None}. Otherwise,
1562return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1563The @var{type} argument will be an instance of @code{gdb.Type}
1564(@pxref{Types In Python}).
329baa95
DE
1565@end defmethod
1566
1567@value{GDBN} uses this two-pass approach so that type printers can
1568efficiently cache information without holding on to it too long. For
1569example, it can be convenient to look up type information in a type
1570printer and hold it for a recognizer's lifetime; if a single pass were
1571done then type printers would have to make use of the event system in
1572order to avoid holding information that could become stale as the
1573inferior changed.
1574
1575@node Frame Filter API
1576@subsubsection Filtering Frames.
1577@cindex frame filters api
1578
1579Frame filters are Python objects that manipulate the visibility of a
1580frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1581@value{GDBN}.
1582
1583Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1584commands (@pxref{GDB/MI}), those that return a collection of frames
1585are affected. The commands that work with frame filters are:
1586
1587@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1588@code{-stack-list-frames}
1589(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1590@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1591-stack-list-variables command}), @code{-stack-list-arguments}
1592@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1593@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1594-stack-list-locals command}).
1595
1596A frame filter works by taking an iterator as an argument, applying
1597actions to the contents of that iterator, and returning another
1598iterator (or, possibly, the same iterator it was provided in the case
1599where the filter does not perform any operations). Typically, frame
1600filters utilize tools such as the Python's @code{itertools} module to
1601work with and create new iterators from the source iterator.
1602Regardless of how a filter chooses to apply actions, it must not alter
1603the underlying @value{GDBN} frame or frames, or attempt to alter the
1604call-stack within @value{GDBN}. This preserves data integrity within
1605@value{GDBN}. Frame filters are executed on a priority basis and care
1606should be taken that some frame filters may have been executed before,
1607and that some frame filters will be executed after.
1608
1609An important consideration when designing frame filters, and well
1610worth reflecting upon, is that frame filters should avoid unwinding
1611the call stack if possible. Some stacks can run very deep, into the
1612tens of thousands in some cases. To search every frame when a frame
1613filter executes may be too expensive at that step. The frame filter
1614cannot know how many frames it has to iterate over, and it may have to
1615iterate through them all. This ends up duplicating effort as
1616@value{GDBN} performs this iteration when it prints the frames. If
1617the filter can defer unwinding frames until frame decorators are
1618executed, after the last filter has executed, it should. @xref{Frame
1619Decorator API}, for more information on decorators. Also, there are
1620examples for both frame decorators and filters in later chapters.
1621@xref{Writing a Frame Filter}, for more information.
1622
1623The Python dictionary @code{gdb.frame_filters} contains key/object
1624pairings that comprise a frame filter. Frame filters in this
1625dictionary are called @code{global} frame filters, and they are
1626available when debugging all inferiors. These frame filters must
1627register with the dictionary directly. In addition to the
1628@code{global} dictionary, there are other dictionaries that are loaded
1629with different inferiors via auto-loading (@pxref{Python
1630Auto-loading}). The two other areas where frame filter dictionaries
1631can be found are: @code{gdb.Progspace} which contains a
1632@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1633object which also contains a @code{frame_filters} dictionary
1634attribute.
1635
1636When a command is executed from @value{GDBN} that is compatible with
1637frame filters, @value{GDBN} combines the @code{global},
1638@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1639loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1640several frames, and thus several object files, might be in use.
1641@value{GDBN} then prunes any frame filter whose @code{enabled}
1642attribute is @code{False}. This pruned list is then sorted according
1643to the @code{priority} attribute in each filter.
1644
1645Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1646creates an iterator which wraps each frame in the call stack in a
1647@code{FrameDecorator} object, and calls each filter in order. The
1648output from the previous filter will always be the input to the next
1649filter, and so on.
1650
1651Frame filters have a mandatory interface which each frame filter must
1652implement, defined here:
1653
1654@defun FrameFilter.filter (iterator)
1655@value{GDBN} will call this method on a frame filter when it has
1656reached the order in the priority list for that filter.
1657
1658For example, if there are four frame filters:
1659
1660@smallexample
1661Name Priority
1662
1663Filter1 5
1664Filter2 10
1665Filter3 100
1666Filter4 1
1667@end smallexample
1668
1669The order that the frame filters will be called is:
1670
1671@smallexample
1672Filter3 -> Filter2 -> Filter1 -> Filter4
1673@end smallexample
1674
1675Note that the output from @code{Filter3} is passed to the input of
1676@code{Filter2}, and so on.
1677
1678This @code{filter} method is passed a Python iterator. This iterator
1679contains a sequence of frame decorators that wrap each
1680@code{gdb.Frame}, or a frame decorator that wraps another frame
1681decorator. The first filter that is executed in the sequence of frame
1682filters will receive an iterator entirely comprised of default
1683@code{FrameDecorator} objects. However, after each frame filter is
1684executed, the previous frame filter may have wrapped some or all of
1685the frame decorators with their own frame decorator. As frame
1686decorators must also conform to a mandatory interface, these
1687decorators can be assumed to act in a uniform manner (@pxref{Frame
1688Decorator API}).
1689
1690This method must return an object conforming to the Python iterator
1691protocol. Each item in the iterator must be an object conforming to
1692the frame decorator interface. If a frame filter does not wish to
1693perform any operations on this iterator, it should return that
1694iterator untouched.
1695
1696This method is not optional. If it does not exist, @value{GDBN} will
1697raise and print an error.
1698@end defun
1699
1700@defvar FrameFilter.name
1701The @code{name} attribute must be Python string which contains the
1702name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1703Management}). This attribute may contain any combination of letters
1704or numbers. Care should be taken to ensure that it is unique. This
1705attribute is mandatory.
1706@end defvar
1707
1708@defvar FrameFilter.enabled
1709The @code{enabled} attribute must be Python boolean. This attribute
1710indicates to @value{GDBN} whether the frame filter is enabled, and
1711should be considered when frame filters are executed. If
1712@code{enabled} is @code{True}, then the frame filter will be executed
1713when any of the backtrace commands detailed earlier in this chapter
1714are executed. If @code{enabled} is @code{False}, then the frame
1715filter will not be executed. This attribute is mandatory.
1716@end defvar
1717
1718@defvar FrameFilter.priority
1719The @code{priority} attribute must be Python integer. This attribute
1720controls the order of execution in relation to other frame filters.
1721There are no imposed limits on the range of @code{priority} other than
1722it must be a valid integer. The higher the @code{priority} attribute,
1723the sooner the frame filter will be executed in relation to other
1724frame filters. Although @code{priority} can be negative, it is
1725recommended practice to assume zero is the lowest priority that a
1726frame filter can be assigned. Frame filters that have the same
1727priority are executed in unsorted order in that priority slot. This
1728attribute is mandatory.
1729@end defvar
1730
1731@node Frame Decorator API
1732@subsubsection Decorating Frames.
1733@cindex frame decorator api
1734
1735Frame decorators are sister objects to frame filters (@pxref{Frame
1736Filter API}). Frame decorators are applied by a frame filter and can
1737only be used in conjunction with frame filters.
1738
1739The purpose of a frame decorator is to customize the printed content
1740of each @code{gdb.Frame} in commands where frame filters are executed.
1741This concept is called decorating a frame. Frame decorators decorate
1742a @code{gdb.Frame} with Python code contained within each API call.
1743This separates the actual data contained in a @code{gdb.Frame} from
1744the decorated data produced by a frame decorator. This abstraction is
1745necessary to maintain integrity of the data contained in each
1746@code{gdb.Frame}.
1747
1748Frame decorators have a mandatory interface, defined below.
1749
1750@value{GDBN} already contains a frame decorator called
1751@code{FrameDecorator}. This contains substantial amounts of
1752boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1753recommended that other frame decorators inherit and extend this
1754object, and only to override the methods needed.
1755
1756@defun FrameDecorator.elided (self)
1757
1758The @code{elided} method groups frames together in a hierarchical
1759system. An example would be an interpreter, where multiple low-level
1760frames make up a single call in the interpreted language. In this
1761example, the frame filter would elide the low-level frames and present
1762a single high-level frame, representing the call in the interpreted
1763language, to the user.
1764
1765The @code{elided} function must return an iterable and this iterable
1766must contain the frames that are being elided wrapped in a suitable
1767frame decorator. If no frames are being elided this function may
1768return an empty iterable, or @code{None}. Elided frames are indented
1769from normal frames in a @code{CLI} backtrace, or in the case of
1770@code{GDB/MI}, are placed in the @code{children} field of the eliding
1771frame.
1772
1773It is the frame filter's task to also filter out the elided frames from
1774the source iterator. This will avoid printing the frame twice.
1775@end defun
1776
1777@defun FrameDecorator.function (self)
1778
1779This method returns the name of the function in the frame that is to
1780be printed.
1781
1782This method must return a Python string describing the function, or
1783@code{None}.
1784
1785If this function returns @code{None}, @value{GDBN} will not print any
1786data for this field.
1787@end defun
1788
1789@defun FrameDecorator.address (self)
1790
1791This method returns the address of the frame that is to be printed.
1792
1793This method must return a Python numeric integer type of sufficient
1794size to describe the address of the frame, or @code{None}.
1795
1796If this function returns a @code{None}, @value{GDBN} will not print
1797any data for this field.
1798@end defun
1799
1800@defun FrameDecorator.filename (self)
1801
1802This method returns the filename and path associated with this frame.
1803
1804This method must return a Python string containing the filename and
1805the path to the object file backing the frame, or @code{None}.
1806
1807If this function returns a @code{None}, @value{GDBN} will not print
1808any data for this field.
1809@end defun
1810
1811@defun FrameDecorator.line (self):
1812
1813This method returns the line number associated with the current
1814position within the function addressed by this frame.
1815
1816This method must return a Python integer type, or @code{None}.
1817
1818If this function returns a @code{None}, @value{GDBN} will not print
1819any data for this field.
1820@end defun
1821
1822@defun FrameDecorator.frame_args (self)
1823@anchor{frame_args}
1824
1825This method must return an iterable, or @code{None}. Returning an
1826empty iterable, or @code{None} means frame arguments will not be
1827printed for this frame. This iterable must contain objects that
1828implement two methods, described here.
1829
1830This object must implement a @code{argument} method which takes a
1831single @code{self} parameter and must return a @code{gdb.Symbol}
1832(@pxref{Symbols In Python}), or a Python string. The object must also
1833implement a @code{value} method which takes a single @code{self}
1834parameter and must return a @code{gdb.Value} (@pxref{Values From
1835Inferior}), a Python value, or @code{None}. If the @code{value}
1836method returns @code{None}, and the @code{argument} method returns a
1837@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1838the @code{gdb.Symbol} automatically.
1839
1840A brief example:
1841
1842@smallexample
1843class SymValueWrapper():
1844
1845 def __init__(self, symbol, value):
1846 self.sym = symbol
1847 self.val = value
1848
1849 def value(self):
1850 return self.val
1851
1852 def symbol(self):
1853 return self.sym
1854
1855class SomeFrameDecorator()
1856...
1857...
1858 def frame_args(self):
1859 args = []
1860 try:
1861 block = self.inferior_frame.block()
1862 except:
1863 return None
1864
1865 # Iterate over all symbols in a block. Only add
1866 # symbols that are arguments.
1867 for sym in block:
1868 if not sym.is_argument:
1869 continue
1870 args.append(SymValueWrapper(sym,None))
1871
1872 # Add example synthetic argument.
1873 args.append(SymValueWrapper(``foo'', 42))
1874
1875 return args
1876@end smallexample
1877@end defun
1878
1879@defun FrameDecorator.frame_locals (self)
1880
1881This method must return an iterable or @code{None}. Returning an
1882empty iterable, or @code{None} means frame local arguments will not be
1883printed for this frame.
1884
1885The object interface, the description of the various strategies for
1886reading frame locals, and the example are largely similar to those
1887described in the @code{frame_args} function, (@pxref{frame_args,,The
1888frame filter frame_args function}). Below is a modified example:
1889
1890@smallexample
1891class SomeFrameDecorator()
1892...
1893...
1894 def frame_locals(self):
1895 vars = []
1896 try:
1897 block = self.inferior_frame.block()
1898 except:
1899 return None
1900
1901 # Iterate over all symbols in a block. Add all
1902 # symbols, except arguments.
1903 for sym in block:
1904 if sym.is_argument:
1905 continue
1906 vars.append(SymValueWrapper(sym,None))
1907
1908 # Add an example of a synthetic local variable.
1909 vars.append(SymValueWrapper(``bar'', 99))
1910
1911 return vars
1912@end smallexample
1913@end defun
1914
1915@defun FrameDecorator.inferior_frame (self):
1916
1917This method must return the underlying @code{gdb.Frame} that this
1918frame decorator is decorating. @value{GDBN} requires the underlying
1919frame for internal frame information to determine how to print certain
1920values when printing a frame.
1921@end defun
1922
1923@node Writing a Frame Filter
1924@subsubsection Writing a Frame Filter
1925@cindex writing a frame filter
1926
1927There are three basic elements that a frame filter must implement: it
1928must correctly implement the documented interface (@pxref{Frame Filter
1929API}), it must register itself with @value{GDBN}, and finally, it must
1930decide if it is to work on the data provided by @value{GDBN}. In all
1931cases, whether it works on the iterator or not, each frame filter must
1932return an iterator. A bare-bones frame filter follows the pattern in
1933the following example.
1934
1935@smallexample
1936import gdb
1937
1938class FrameFilter():
1939
1940 def __init__(self):
1941 # Frame filter attribute creation.
1942 #
1943 # 'name' is the name of the filter that GDB will display.
1944 #
1945 # 'priority' is the priority of the filter relative to other
1946 # filters.
1947 #
1948 # 'enabled' is a boolean that indicates whether this filter is
1949 # enabled and should be executed.
1950
1951 self.name = "Foo"
1952 self.priority = 100
1953 self.enabled = True
1954
1955 # Register this frame filter with the global frame_filters
1956 # dictionary.
1957 gdb.frame_filters[self.name] = self
1958
1959 def filter(self, frame_iter):
1960 # Just return the iterator.
1961 return frame_iter
1962@end smallexample
1963
1964The frame filter in the example above implements the three
1965requirements for all frame filters. It implements the API, self
1966registers, and makes a decision on the iterator (in this case, it just
1967returns the iterator untouched).
1968
1969The first step is attribute creation and assignment, and as shown in
1970the comments the filter assigns the following attributes: @code{name},
1971@code{priority} and whether the filter should be enabled with the
1972@code{enabled} attribute.
1973
1974The second step is registering the frame filter with the dictionary or
1975dictionaries that the frame filter has interest in. As shown in the
1976comments, this filter just registers itself with the global dictionary
1977@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
1978is a dictionary that is initialized in the @code{gdb} module when
1979@value{GDBN} starts. What dictionary a filter registers with is an
1980important consideration. Generally, if a filter is specific to a set
1981of code, it should be registered either in the @code{objfile} or
1982@code{progspace} dictionaries as they are specific to the program
1983currently loaded in @value{GDBN}. The global dictionary is always
1984present in @value{GDBN} and is never unloaded. Any filters registered
1985with the global dictionary will exist until @value{GDBN} exits. To
1986avoid filters that may conflict, it is generally better to register
1987frame filters against the dictionaries that more closely align with
1988the usage of the filter currently in question. @xref{Python
1989Auto-loading}, for further information on auto-loading Python scripts.
1990
1991@value{GDBN} takes a hands-off approach to frame filter registration,
1992therefore it is the frame filter's responsibility to ensure
1993registration has occurred, and that any exceptions are handled
1994appropriately. In particular, you may wish to handle exceptions
1995relating to Python dictionary key uniqueness. It is mandatory that
1996the dictionary key is the same as frame filter's @code{name}
1997attribute. When a user manages frame filters (@pxref{Frame Filter
1998Management}), the names @value{GDBN} will display are those contained
1999in the @code{name} attribute.
2000
2001The final step of this example is the implementation of the
2002@code{filter} method. As shown in the example comments, we define the
2003@code{filter} method and note that the method must take an iterator,
2004and also must return an iterator. In this bare-bones example, the
2005frame filter is not very useful as it just returns the iterator
2006untouched. However this is a valid operation for frame filters that
2007have the @code{enabled} attribute set, but decide not to operate on
2008any frames.
2009
2010In the next example, the frame filter operates on all frames and
2011utilizes a frame decorator to perform some work on the frames.
2012@xref{Frame Decorator API}, for further information on the frame
2013decorator interface.
2014
2015This example works on inlined frames. It highlights frames which are
2016inlined by tagging them with an ``[inlined]'' tag. By applying a
2017frame decorator to all frames with the Python @code{itertools imap}
2018method, the example defers actions to the frame decorator. Frame
2019decorators are only processed when @value{GDBN} prints the backtrace.
2020
2021This introduces a new decision making topic: whether to perform
2022decision making operations at the filtering step, or at the printing
2023step. In this example's approach, it does not perform any filtering
2024decisions at the filtering step beyond mapping a frame decorator to
2025each frame. This allows the actual decision making to be performed
2026when each frame is printed. This is an important consideration, and
2027well worth reflecting upon when designing a frame filter. An issue
2028that frame filters should avoid is unwinding the stack if possible.
2029Some stacks can run very deep, into the tens of thousands in some
2030cases. To search every frame to determine if it is inlined ahead of
2031time may be too expensive at the filtering step. The frame filter
2032cannot know how many frames it has to iterate over, and it would have
2033to iterate through them all. This ends up duplicating effort as
2034@value{GDBN} performs this iteration when it prints the frames.
2035
2036In this example decision making can be deferred to the printing step.
2037As each frame is printed, the frame decorator can examine each frame
2038in turn when @value{GDBN} iterates. From a performance viewpoint,
2039this is the most appropriate decision to make as it avoids duplicating
2040the effort that the printing step would undertake anyway. Also, if
2041there are many frame filters unwinding the stack during filtering, it
2042can substantially delay the printing of the backtrace which will
2043result in large memory usage, and a poor user experience.
2044
2045@smallexample
2046class InlineFilter():
2047
2048 def __init__(self):
2049 self.name = "InlinedFrameFilter"
2050 self.priority = 100
2051 self.enabled = True
2052 gdb.frame_filters[self.name] = self
2053
2054 def filter(self, frame_iter):
2055 frame_iter = itertools.imap(InlinedFrameDecorator,
2056 frame_iter)
2057 return frame_iter
2058@end smallexample
2059
2060This frame filter is somewhat similar to the earlier example, except
2061that the @code{filter} method applies a frame decorator object called
2062@code{InlinedFrameDecorator} to each element in the iterator. The
2063@code{imap} Python method is light-weight. It does not proactively
2064iterate over the iterator, but rather creates a new iterator which
2065wraps the existing one.
2066
2067Below is the frame decorator for this example.
2068
2069@smallexample
2070class InlinedFrameDecorator(FrameDecorator):
2071
2072 def __init__(self, fobj):
2073 super(InlinedFrameDecorator, self).__init__(fobj)
2074
2075 def function(self):
2076 frame = fobj.inferior_frame()
2077 name = str(frame.name())
2078
2079 if frame.type() == gdb.INLINE_FRAME:
2080 name = name + " [inlined]"
2081
2082 return name
2083@end smallexample
2084
2085This frame decorator only defines and overrides the @code{function}
2086method. It lets the supplied @code{FrameDecorator}, which is shipped
2087with @value{GDBN}, perform the other work associated with printing
2088this frame.
2089
2090The combination of these two objects create this output from a
2091backtrace:
2092
2093@smallexample
2094#0 0x004004e0 in bar () at inline.c:11
2095#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2096#2 0x00400566 in main () at inline.c:31
2097@end smallexample
2098
2099So in the case of this example, a frame decorator is applied to all
2100frames, regardless of whether they may be inlined or not. As
2101@value{GDBN} iterates over the iterator produced by the frame filters,
2102@value{GDBN} executes each frame decorator which then makes a decision
2103on what to print in the @code{function} callback. Using a strategy
2104like this is a way to defer decisions on the frame content to printing
2105time.
2106
2107@subheading Eliding Frames
2108
2109It might be that the above example is not desirable for representing
2110inlined frames, and a hierarchical approach may be preferred. If we
2111want to hierarchically represent frames, the @code{elided} frame
2112decorator interface might be preferable.
2113
2114This example approaches the issue with the @code{elided} method. This
2115example is quite long, but very simplistic. It is out-of-scope for
2116this section to write a complete example that comprehensively covers
2117all approaches of finding and printing inlined frames. However, this
2118example illustrates the approach an author might use.
2119
2120This example comprises of three sections.
2121
2122@smallexample
2123class InlineFrameFilter():
2124
2125 def __init__(self):
2126 self.name = "InlinedFrameFilter"
2127 self.priority = 100
2128 self.enabled = True
2129 gdb.frame_filters[self.name] = self
2130
2131 def filter(self, frame_iter):
2132 return ElidingInlineIterator(frame_iter)
2133@end smallexample
2134
2135This frame filter is very similar to the other examples. The only
2136difference is this frame filter is wrapping the iterator provided to
2137it (@code{frame_iter}) with a custom iterator called
2138@code{ElidingInlineIterator}. This again defers actions to when
2139@value{GDBN} prints the backtrace, as the iterator is not traversed
2140until printing.
2141
2142The iterator for this example is as follows. It is in this section of
2143the example where decisions are made on the content of the backtrace.
2144
2145@smallexample
2146class ElidingInlineIterator:
2147 def __init__(self, ii):
2148 self.input_iterator = ii
2149
2150 def __iter__(self):
2151 return self
2152
2153 def next(self):
2154 frame = next(self.input_iterator)
2155
2156 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2157 return frame
2158
2159 try:
2160 eliding_frame = next(self.input_iterator)
2161 except StopIteration:
2162 return frame
2163 return ElidingFrameDecorator(eliding_frame, [frame])
2164@end smallexample
2165
2166This iterator implements the Python iterator protocol. When the
2167@code{next} function is called (when @value{GDBN} prints each frame),
2168the iterator checks if this frame decorator, @code{frame}, is wrapping
2169an inlined frame. If it is not, it returns the existing frame decorator
2170untouched. If it is wrapping an inlined frame, it assumes that the
2171inlined frame was contained within the next oldest frame,
2172@code{eliding_frame}, which it fetches. It then creates and returns a
2173frame decorator, @code{ElidingFrameDecorator}, which contains both the
2174elided frame, and the eliding frame.
2175
2176@smallexample
2177class ElidingInlineDecorator(FrameDecorator):
2178
2179 def __init__(self, frame, elided_frames):
2180 super(ElidingInlineDecorator, self).__init__(frame)
2181 self.frame = frame
2182 self.elided_frames = elided_frames
2183
2184 def elided(self):
2185 return iter(self.elided_frames)
2186@end smallexample
2187
2188This frame decorator overrides one function and returns the inlined
2189frame in the @code{elided} method. As before it lets
2190@code{FrameDecorator} do the rest of the work involved in printing
2191this frame. This produces the following output.
2192
2193@smallexample
2194#0 0x004004e0 in bar () at inline.c:11
2195#2 0x00400529 in main () at inline.c:25
2196 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2197@end smallexample
2198
2199In that output, @code{max} which has been inlined into @code{main} is
2200printed hierarchically. Another approach would be to combine the
2201@code{function} method, and the @code{elided} method to both print a
2202marker in the inlined frame, and also show the hierarchical
2203relationship.
2204
d11916aa
SS
2205@node Unwinding Frames in Python
2206@subsubsection Unwinding Frames in Python
2207@cindex unwinding frames in Python
2208
2209In @value{GDBN} terminology ``unwinding'' is the process of finding
2210the previous frame (that is, caller's) from the current one. An
2211unwinder has three methods. The first one checks if it can handle
2212given frame (``sniff'' it). For the frames it can sniff an unwinder
2213provides two additional methods: it can return frame's ID, and it can
2214fetch registers from the previous frame. A running @value{GDBN}
2215mantains a list of the unwinders and calls each unwinder's sniffer in
2216turn until it finds the one that recognizes the current frame. There
2217is an API to register an unwinder.
2218
2219The unwinders that come with @value{GDBN} handle standard frames.
2220However, mixed language applications (for example, an application
2221running Java Virtual Machine) sometimes use frame layouts that cannot
2222be handled by the @value{GDBN} unwinders. You can write Python code
2223that can handle such custom frames.
2224
2225You implement a frame unwinder in Python as a class with which has two
2226attributes, @code{name} and @code{enabled}, with obvious meanings, and
2227a single method @code{__call__}, which examines a given frame and
2228returns an object (an instance of @code{gdb.UnwindInfo class)}
2229describing it. If an unwinder does not recognize a frame, it should
2230return @code{None}. The code in @value{GDBN} that enables writing
2231unwinders in Python uses this object to return frame's ID and previous
2232frame registers when @value{GDBN} core asks for them.
2233
2234@subheading Unwinder Input
2235
2236An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2237provides a method to read frame's registers:
2238
2239@defun PendingFrame.read_register (reg)
2240This method returns the contents of the register @var{regn} in the
2241frame as a @code{gdb.Value} object. @var{reg} can be either a
2242register number or a register name; the values are platform-specific.
2243They are usually found in the corresponding
2244@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree.
2245@end defun
2246
2247It also provides a factory method to create a @code{gdb.UnwindInfo}
2248instance to be returned to @value{GDBN}:
2249
2250@defun PendingFrame.create_unwind_info (frame_id)
2251Returns a new @code{gdb.UnwindInfo} instance identified by given
2252@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2253using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2254determine which function will be used, as follows:
2255
2256@table @code
2257@item sp, pc, special
2258@code{frame_id_build_special (@var{frame_id}.sp, @var{frame_id}.pc, @var{frame_id}.special)}
2259
2260@item sp, pc
2261@code{frame_id_build (@var{frame_id}.sp, @var{frame_id}.pc)}
2262
2263This is the most common case.
2264
2265@item sp
2266@code{frame_id_build_wild (@var{frame_id}.sp)}
2267@end table
2268The attribute values should be @code{gdb.Value}
2269
2270@end defun
2271
2272@subheading Unwinder Output: UnwindInfo
2273
2274Use @code{PendingFrame.create_unwind_info} method described above to
2275create a @code{gdb.UnwindInfo} instance. Use the following method to
2276specify caller registers that have been saved in this frame:
2277
2278@defun gdb.UnwindInfo.add_saved_register (reg, value)
2279@var{reg} identifies the register. It can be a number or a name, just
2280as for the @code{PendingFrame.read_register} method above.
2281@var{value} is a register value (a @code{gdb.Value} object).
2282@end defun
2283
2284@subheading Unwinder Skeleton Code
2285
2286@value{GDBN} comes with the module containing the base @code{Unwinder}
2287class. Derive your unwinder class from it and structure the code as
2288follows:
2289
2290@smallexample
2291from gdb.unwinders import Unwinder
2292
2293class FrameId(object):
2294 def __init__(self, sp, pc):
2295 self.sp = sp
2296 self.pc = pc
2297
2298
2299class MyUnwinder(Unwinder):
2300 def __init__(....):
2301 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2302
2303 def __call__(pending_frame):
2304 if not <we recognize frame>:
2305 return None
2306 # Create UnwindInfo. Usually the frame is identified by the stack
2307 # pointer and the program counter.
2308 sp = pending_frame.read_register(<SP number>)
2309 pc = pending_frame.read_register(<PC number>)
2310 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2311
2312 # Find the values of the registers in the caller's frame and
2313 # save them in the result:
2314 unwind_info.add_saved_register(<register>, <value>)
2315 ....
2316
2317 # Return the result:
2318 return unwind_info
2319
2320@end smallexample
2321
2322@subheading Registering a Unwinder
2323
2324An object file, a program space, and the @value{GDBN} proper can have
2325unwinders registered with it.
2326
2327The @code{gdb.unwinders} module provides the function to register a
2328unwinder:
2329
2330@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2331@var{locus} is specifies an object file or a program space to which
2332@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2333@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2334added @var{unwinder} will be called before any other unwinder from the
2335same locus. Two unwinders in the same locus cannot have the same
2336name. An attempt to add a unwinder with already existing name raises
2337an exception unless @var{replace} is @code{True}, in which case the
2338old unwinder is deleted.
2339@end defun
2340
2341@subheading Unwinder Precedence
2342
2343@value{GDBN} first calls the unwinders from all the object files in no
2344particular order, then the unwinders from the current program space,
2345and finally the unwinders from @value{GDBN}.
2346
0c6e92a5
SC
2347@node Xmethods In Python
2348@subsubsection Xmethods In Python
2349@cindex xmethods in Python
2350
2351@dfn{Xmethods} are additional methods or replacements for existing
2352methods of a C@t{++} class. This feature is useful for those cases
2353where a method defined in C@t{++} source code could be inlined or
2354optimized out by the compiler, making it unavailable to @value{GDBN}.
2355For such cases, one can define an xmethod to serve as a replacement
2356for the method defined in the C@t{++} source code. @value{GDBN} will
2357then invoke the xmethod, instead of the C@t{++} method, to
2358evaluate expressions. One can also use xmethods when debugging
2359with core files. Moreover, when debugging live programs, invoking an
2360xmethod need not involve running the inferior (which can potentially
2361perturb its state). Hence, even if the C@t{++} method is available, it
2362is better to use its replacement xmethod if one is defined.
2363
2364The xmethods feature in Python is available via the concepts of an
2365@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2366implement an xmethod, one has to implement a matcher and a
2367corresponding worker for it (more than one worker can be
2368implemented, each catering to a different overloaded instance of the
2369method). Internally, @value{GDBN} invokes the @code{match} method of a
2370matcher to match the class type and method name. On a match, the
2371@code{match} method returns a list of matching @emph{worker} objects.
2372Each worker object typically corresponds to an overloaded instance of
2373the xmethod. They implement a @code{get_arg_types} method which
2374returns a sequence of types corresponding to the arguments the xmethod
2375requires. @value{GDBN} uses this sequence of types to perform
2376overload resolution and picks a winning xmethod worker. A winner
2377is also selected from among the methods @value{GDBN} finds in the
2378C@t{++} source code. Next, the winning xmethod worker and the
2379winning C@t{++} method are compared to select an overall winner. In
2380case of a tie between a xmethod worker and a C@t{++} method, the
2381xmethod worker is selected as the winner. That is, if a winning
2382xmethod worker is found to be equivalent to the winning C@t{++}
2383method, then the xmethod worker is treated as a replacement for
2384the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2385method. If the winning xmethod worker is the overall winner, then
897c3d32 2386the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2387of the worker object.
2388
2389If one wants to implement an xmethod as a replacement for an
2390existing C@t{++} method, then they have to implement an equivalent
2391xmethod which has exactly the same name and takes arguments of
2392exactly the same type as the C@t{++} method. If the user wants to
2393invoke the C@t{++} method even though a replacement xmethod is
2394available for that method, then they can disable the xmethod.
2395
2396@xref{Xmethod API}, for API to implement xmethods in Python.
2397@xref{Writing an Xmethod}, for implementing xmethods in Python.
2398
2399@node Xmethod API
2400@subsubsection Xmethod API
2401@cindex xmethod API
2402
2403The @value{GDBN} Python API provides classes, interfaces and functions
2404to implement, register and manipulate xmethods.
2405@xref{Xmethods In Python}.
2406
2407An xmethod matcher should be an instance of a class derived from
2408@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2409object with similar interface and attributes. An instance of
2410@code{XMethodMatcher} has the following attributes:
2411
2412@defvar name
2413The name of the matcher.
2414@end defvar
2415
2416@defvar enabled
2417A boolean value indicating whether the matcher is enabled or disabled.
2418@end defvar
2419
2420@defvar methods
2421A list of named methods managed by the matcher. Each object in the list
2422is an instance of the class @code{XMethod} defined in the module
2423@code{gdb.xmethod}, or any object with the following attributes:
2424
2425@table @code
2426
2427@item name
2428Name of the xmethod which should be unique for each xmethod
2429managed by the matcher.
2430
2431@item enabled
2432A boolean value indicating whether the xmethod is enabled or
2433disabled.
2434
2435@end table
2436
2437The class @code{XMethod} is a convenience class with same
2438attributes as above along with the following constructor:
2439
dd5d5494 2440@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2441Constructs an enabled xmethod with name @var{name}.
2442@end defun
2443@end defvar
2444
2445@noindent
2446The @code{XMethodMatcher} class has the following methods:
2447
dd5d5494 2448@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2449Constructs an enabled xmethod matcher with name @var{name}. The
2450@code{methods} attribute is initialized to @code{None}.
2451@end defun
2452
dd5d5494 2453@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2454Derived classes should override this method. It should return a
2455xmethod worker object (or a sequence of xmethod worker
2456objects) matching the @var{class_type} and @var{method_name}.
2457@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2458is a string value. If the matcher manages named methods as listed in
2459its @code{methods} attribute, then only those worker objects whose
2460corresponding entries in the @code{methods} list are enabled should be
2461returned.
2462@end defun
2463
2464An xmethod worker should be an instance of a class derived from
2465@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2466or support the following interface:
2467
dd5d5494 2468@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2469This method returns a sequence of @code{gdb.Type} objects corresponding
2470to the arguments that the xmethod takes. It can return an empty
2471sequence or @code{None} if the xmethod does not take any arguments.
2472If the xmethod takes a single argument, then a single
2473@code{gdb.Type} object corresponding to it can be returned.
2474@end defun
2475
2ce1cdbf
DE
2476@defun XMethodWorker.get_result_type (self, *args)
2477This method returns a @code{gdb.Type} object representing the type
2478of the result of invoking this xmethod.
2479The @var{args} argument is the same tuple of arguments that would be
2480passed to the @code{__call__} method of this worker.
2481@end defun
2482
dd5d5494 2483@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2484This is the method which does the @emph{work} of the xmethod. The
2485@var{args} arguments is the tuple of arguments to the xmethod. Each
2486element in this tuple is a gdb.Value object. The first element is
2487always the @code{this} pointer value.
2488@end defun
2489
2490For @value{GDBN} to lookup xmethods, the xmethod matchers
2491should be registered using the following function defined in the module
2492@code{gdb.xmethod}:
2493
dd5d5494 2494@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2495The @code{matcher} is registered with @code{locus}, replacing an
2496existing matcher with the same name as @code{matcher} if
2497@code{replace} is @code{True}. @code{locus} can be a
2498@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2499@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2500@code{None}. If it is @code{None}, then @code{matcher} is registered
2501globally.
2502@end defun
2503
2504@node Writing an Xmethod
2505@subsubsection Writing an Xmethod
2506@cindex writing xmethods in Python
2507
2508Implementing xmethods in Python will require implementing xmethod
2509matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2510the following C@t{++} class:
2511
2512@smallexample
2513class MyClass
2514@{
2515public:
2516 MyClass (int a) : a_(a) @{ @}
2517
2518 int geta (void) @{ return a_; @}
2519 int operator+ (int b);
2520
2521private:
2522 int a_;
2523@};
2524
2525int
2526MyClass::operator+ (int b)
2527@{
2528 return a_ + b;
2529@}
2530@end smallexample
2531
2532@noindent
2533Let us define two xmethods for the class @code{MyClass}, one
2534replacing the method @code{geta}, and another adding an overloaded
2535flavor of @code{operator+} which takes a @code{MyClass} argument (the
2536C@t{++} code above already has an overloaded @code{operator+}
2537which takes an @code{int} argument). The xmethod matcher can be
2538defined as follows:
2539
2540@smallexample
2541class MyClass_geta(gdb.xmethod.XMethod):
2542 def __init__(self):
2543 gdb.xmethod.XMethod.__init__(self, 'geta')
2544
2545 def get_worker(self, method_name):
2546 if method_name == 'geta':
2547 return MyClassWorker_geta()
2548
2549
2550class MyClass_sum(gdb.xmethod.XMethod):
2551 def __init__(self):
2552 gdb.xmethod.XMethod.__init__(self, 'sum')
2553
2554 def get_worker(self, method_name):
2555 if method_name == 'operator+':
2556 return MyClassWorker_plus()
2557
2558
2559class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2560 def __init__(self):
2561 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2562 # List of methods 'managed' by this matcher
2563 self.methods = [MyClass_geta(), MyClass_sum()]
2564
2565 def match(self, class_type, method_name):
2566 if class_type.tag != 'MyClass':
2567 return None
2568 workers = []
2569 for method in self.methods:
2570 if method.enabled:
2571 worker = method.get_worker(method_name)
2572 if worker:
2573 workers.append(worker)
2574
2575 return workers
2576@end smallexample
2577
2578@noindent
2579Notice that the @code{match} method of @code{MyClassMatcher} returns
2580a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2581method, and a worker object of type @code{MyClassWorker_plus} for the
2582@code{operator+} method. This is done indirectly via helper classes
2583derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2584@code{methods} attribute in a matcher as it is optional. However, if a
2585matcher manages more than one xmethod, it is a good practice to list the
2586xmethods in the @code{methods} attribute of the matcher. This will then
2587facilitate enabling and disabling individual xmethods via the
2588@code{enable/disable} commands. Notice also that a worker object is
2589returned only if the corresponding entry in the @code{methods} attribute
2590of the matcher is enabled.
2591
2592The implementation of the worker classes returned by the matcher setup
2593above is as follows:
2594
2595@smallexample
2596class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2597 def get_arg_types(self):
2598 return None
2ce1cdbf
DE
2599
2600 def get_result_type(self, obj):
2601 return gdb.lookup_type('int')
0c6e92a5
SC
2602
2603 def __call__(self, obj):
2604 return obj['a_']
2605
2606
2607class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2608 def get_arg_types(self):
2609 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2610
2611 def get_result_type(self, obj):
2612 return gdb.lookup_type('int')
0c6e92a5
SC
2613
2614 def __call__(self, obj, other):
2615 return obj['a_'] + other['a_']
2616@end smallexample
2617
2618For @value{GDBN} to actually lookup a xmethod, it has to be
2619registered with it. The matcher defined above is registered with
2620@value{GDBN} globally as follows:
2621
2622@smallexample
2623gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2624@end smallexample
2625
2626If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2627code as follows:
2628
2629@smallexample
2630MyClass obj(5);
2631@end smallexample
2632
2633@noindent
2634then, after loading the Python script defining the xmethod matchers
2635and workers into @code{GDBN}, invoking the method @code{geta} or using
2636the operator @code{+} on @code{obj} will invoke the xmethods
2637defined above:
2638
2639@smallexample
2640(gdb) p obj.geta()
2641$1 = 5
2642
2643(gdb) p obj + obj
2644$2 = 10
2645@end smallexample
2646
2647Consider another example with a C++ template class:
2648
2649@smallexample
2650template <class T>
2651class MyTemplate
2652@{
2653public:
2654 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2655 ~MyTemplate () @{ delete [] data_; @}
2656
2657 int footprint (void)
2658 @{
2659 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2660 @}
2661
2662private:
2663 int dsize_;
2664 T *data_;
2665@};
2666@end smallexample
2667
2668Let us implement an xmethod for the above class which serves as a
2669replacement for the @code{footprint} method. The full code listing
2670of the xmethod workers and xmethod matchers is as follows:
2671
2672@smallexample
2673class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2674 def __init__(self, class_type):
2675 self.class_type = class_type
2ce1cdbf 2676
0c6e92a5
SC
2677 def get_arg_types(self):
2678 return None
2ce1cdbf
DE
2679
2680 def get_result_type(self):
2681 return gdb.lookup_type('int')
2682
0c6e92a5
SC
2683 def __call__(self, obj):
2684 return (self.class_type.sizeof +
2685 obj['dsize_'] *
2686 self.class_type.template_argument(0).sizeof)
2687
2688
2689class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2690 def __init__(self):
2691 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2692
2693 def match(self, class_type, method_name):
2694 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2695 class_type.tag) and
2696 method_name == 'footprint'):
2697 return MyTemplateWorker_footprint(class_type)
2698@end smallexample
2699
2700Notice that, in this example, we have not used the @code{methods}
2701attribute of the matcher as the matcher manages only one xmethod. The
2702user can enable/disable this xmethod by enabling/disabling the matcher
2703itself.
2704
329baa95
DE
2705@node Inferiors In Python
2706@subsubsection Inferiors In Python
2707@cindex inferiors in Python
2708
2709@findex gdb.Inferior
2710Programs which are being run under @value{GDBN} are called inferiors
2711(@pxref{Inferiors and Programs}). Python scripts can access
2712information about and manipulate inferiors controlled by @value{GDBN}
2713via objects of the @code{gdb.Inferior} class.
2714
2715The following inferior-related functions are available in the @code{gdb}
2716module:
2717
2718@defun gdb.inferiors ()
2719Return a tuple containing all inferior objects.
2720@end defun
2721
2722@defun gdb.selected_inferior ()
2723Return an object representing the current inferior.
2724@end defun
2725
2726A @code{gdb.Inferior} object has the following attributes:
2727
2728@defvar Inferior.num
2729ID of inferior, as assigned by GDB.
2730@end defvar
2731
2732@defvar Inferior.pid
2733Process ID of the inferior, as assigned by the underlying operating
2734system.
2735@end defvar
2736
2737@defvar Inferior.was_attached
2738Boolean signaling whether the inferior was created using `attach', or
2739started by @value{GDBN} itself.
2740@end defvar
2741
2742A @code{gdb.Inferior} object has the following methods:
2743
2744@defun Inferior.is_valid ()
2745Returns @code{True} if the @code{gdb.Inferior} object is valid,
2746@code{False} if not. A @code{gdb.Inferior} object will become invalid
2747if the inferior no longer exists within @value{GDBN}. All other
2748@code{gdb.Inferior} methods will throw an exception if it is invalid
2749at the time the method is called.
2750@end defun
2751
2752@defun Inferior.threads ()
2753This method returns a tuple holding all the threads which are valid
2754when it is called. If there are no valid threads, the method will
2755return an empty tuple.
2756@end defun
2757
2758@findex Inferior.read_memory
2759@defun Inferior.read_memory (address, length)
a86c90e6 2760Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2761@var{address}. Returns a buffer object, which behaves much like an array
2762or a string. It can be modified and given to the
79778b30 2763@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2764value is a @code{memoryview} object.
2765@end defun
2766
2767@findex Inferior.write_memory
2768@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2769Write the contents of @var{buffer} to the inferior, starting at
2770@var{address}. The @var{buffer} parameter must be a Python object
2771which supports the buffer protocol, i.e., a string, an array or the
2772object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2773determines the number of addressable memory units from @var{buffer} to be
2774written.
329baa95
DE
2775@end defun
2776
2777@findex gdb.search_memory
2778@defun Inferior.search_memory (address, length, pattern)
2779Search a region of the inferior memory starting at @var{address} with
2780the given @var{length} using the search pattern supplied in
2781@var{pattern}. The @var{pattern} parameter must be a Python object
2782which supports the buffer protocol, i.e., a string, an array or the
2783object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2784containing the address where the pattern was found, or @code{None} if
2785the pattern could not be found.
2786@end defun
2787
2788@node Events In Python
2789@subsubsection Events In Python
2790@cindex inferior events in Python
2791
2792@value{GDBN} provides a general event facility so that Python code can be
2793notified of various state changes, particularly changes that occur in
2794the inferior.
2795
2796An @dfn{event} is just an object that describes some state change. The
2797type of the object and its attributes will vary depending on the details
2798of the change. All the existing events are described below.
2799
2800In order to be notified of an event, you must register an event handler
2801with an @dfn{event registry}. An event registry is an object in the
2802@code{gdb.events} module which dispatches particular events. A registry
2803provides methods to register and unregister event handlers:
2804
2805@defun EventRegistry.connect (object)
2806Add the given callable @var{object} to the registry. This object will be
2807called when an event corresponding to this registry occurs.
2808@end defun
2809
2810@defun EventRegistry.disconnect (object)
2811Remove the given @var{object} from the registry. Once removed, the object
2812will no longer receive notifications of events.
2813@end defun
2814
2815Here is an example:
2816
2817@smallexample
2818def exit_handler (event):
2819 print "event type: exit"
2820 print "exit code: %d" % (event.exit_code)
2821
2822gdb.events.exited.connect (exit_handler)
2823@end smallexample
2824
2825In the above example we connect our handler @code{exit_handler} to the
2826registry @code{events.exited}. Once connected, @code{exit_handler} gets
2827called when the inferior exits. The argument @dfn{event} in this example is
2828of type @code{gdb.ExitedEvent}. As you can see in the example the
2829@code{ExitedEvent} object has an attribute which indicates the exit code of
2830the inferior.
2831
2832The following is a listing of the event registries that are available and
2833details of the events they emit:
2834
2835@table @code
2836
2837@item events.cont
2838Emits @code{gdb.ThreadEvent}.
2839
2840Some events can be thread specific when @value{GDBN} is running in non-stop
2841mode. When represented in Python, these events all extend
2842@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2843events which are emitted by this or other modules might extend this event.
2844Examples of these events are @code{gdb.BreakpointEvent} and
2845@code{gdb.ContinueEvent}.
2846
2847@defvar ThreadEvent.inferior_thread
2848In non-stop mode this attribute will be set to the specific thread which was
2849involved in the emitted event. Otherwise, it will be set to @code{None}.
2850@end defvar
2851
2852Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2853
2854This event indicates that the inferior has been continued after a stop. For
2855inherited attribute refer to @code{gdb.ThreadEvent} above.
2856
2857@item events.exited
2858Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2859@code{events.ExitedEvent} has two attributes:
2860@defvar ExitedEvent.exit_code
2861An integer representing the exit code, if available, which the inferior
2862has returned. (The exit code could be unavailable if, for example,
2863@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2864the attribute does not exist.
2865@end defvar
373832b6 2866@defvar ExitedEvent.inferior
329baa95
DE
2867A reference to the inferior which triggered the @code{exited} event.
2868@end defvar
2869
2870@item events.stop
2871Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2872
2873Indicates that the inferior has stopped. All events emitted by this registry
2874extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2875will indicate the stopped thread when @value{GDBN} is running in non-stop
2876mode. Refer to @code{gdb.ThreadEvent} above for more details.
2877
2878Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2879
2880This event indicates that the inferior or one of its threads has received as
2881signal. @code{gdb.SignalEvent} has the following attributes:
2882
2883@defvar SignalEvent.stop_signal
2884A string representing the signal received by the inferior. A list of possible
2885signal values can be obtained by running the command @code{info signals} in
2886the @value{GDBN} command prompt.
2887@end defvar
2888
2889Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2890
2891@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2892been hit, and has the following attributes:
2893
2894@defvar BreakpointEvent.breakpoints
2895A sequence containing references to all the breakpoints (type
2896@code{gdb.Breakpoint}) that were hit.
2897@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2898@end defvar
2899@defvar BreakpointEvent.breakpoint
2900A reference to the first breakpoint that was hit.
2901This function is maintained for backward compatibility and is now deprecated
2902in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
2903@end defvar
2904
2905@item events.new_objfile
2906Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
2907been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
2908
2909@defvar NewObjFileEvent.new_objfile
2910A reference to the object file (@code{gdb.Objfile}) which has been loaded.
2911@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
2912@end defvar
2913
4ffbba72
DE
2914@item events.clear_objfiles
2915Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
2916files for a program space has been reset.
2917@code{gdb.ClearObjFilesEvent} has one attribute:
2918
2919@defvar ClearObjFilesEvent.progspace
2920A reference to the program space (@code{gdb.Progspace}) whose objfile list has
2921been cleared. @xref{Progspaces In Python}.
2922@end defvar
2923
162078c8
NB
2924@item events.inferior_call_pre
2925Emits @code{gdb.InferiorCallPreEvent} which indicates that a function in
2926the inferior is about to be called.
2927
2928@defvar InferiorCallPreEvent.ptid
2929The thread in which the call will be run.
2930@end defvar
2931
2932@defvar InferiorCallPreEvent.address
2933The location of the function to be called.
2934@end defvar
2935
2936@item events.inferior_call_post
2937Emits @code{gdb.InferiorCallPostEvent} which indicates that a function in
2938the inferior has returned.
2939
2940@defvar InferiorCallPostEvent.ptid
2941The thread in which the call was run.
2942@end defvar
2943
2944@defvar InferiorCallPostEvent.address
2945The location of the function that was called.
2946@end defvar
2947
2948@item events.memory_changed
2949Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
2950inferior has been modified by the @value{GDBN} user, for instance via a
2951command like @w{@code{set *addr = value}}. The event has the following
2952attributes:
2953
2954@defvar MemoryChangedEvent.address
2955The start address of the changed region.
2956@end defvar
2957
2958@defvar MemoryChangedEvent.length
2959Length in bytes of the changed region.
2960@end defvar
2961
2962@item events.register_changed
2963Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
2964inferior has been modified by the @value{GDBN} user.
2965
2966@defvar RegisterChangedEvent.frame
2967A gdb.Frame object representing the frame in which the register was modified.
2968@end defvar
2969@defvar RegisterChangedEvent.regnum
2970Denotes which register was modified.
2971@end defvar
2972
dac790e1
TT
2973@item events.breakpoint_created
2974This is emitted when a new breakpoint has been created. The argument
2975that is passed is the new @code{gdb.Breakpoint} object.
2976
2977@item events.breakpoint_modified
2978This is emitted when a breakpoint has been modified in some way. The
2979argument that is passed is the new @code{gdb.Breakpoint} object.
2980
2981@item events.breakpoint_deleted
2982This is emitted when a breakpoint has been deleted. The argument that
2983is passed is the @code{gdb.Breakpoint} object. When this event is
2984emitted, the @code{gdb.Breakpoint} object will already be in its
2985invalid state; that is, the @code{is_valid} method will return
2986@code{False}.
2987
3f77c769
TT
2988@item events.before_prompt
2989This event carries no payload. It is emitted each time @value{GDBN}
2990presents a prompt to the user.
2991
329baa95
DE
2992@end table
2993
2994@node Threads In Python
2995@subsubsection Threads In Python
2996@cindex threads in python
2997
2998@findex gdb.InferiorThread
2999Python scripts can access information about, and manipulate inferior threads
3000controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3001
3002The following thread-related functions are available in the @code{gdb}
3003module:
3004
3005@findex gdb.selected_thread
3006@defun gdb.selected_thread ()
3007This function returns the thread object for the selected thread. If there
3008is no selected thread, this will return @code{None}.
3009@end defun
3010
3011A @code{gdb.InferiorThread} object has the following attributes:
3012
3013@defvar InferiorThread.name
3014The name of the thread. If the user specified a name using
3015@code{thread name}, then this returns that name. Otherwise, if an
3016OS-supplied name is available, then it is returned. Otherwise, this
3017returns @code{None}.
3018
3019This attribute can be assigned to. The new value must be a string
3020object, which sets the new name, or @code{None}, which removes any
3021user-specified thread name.
3022@end defvar
3023
3024@defvar InferiorThread.num
5d5658a1 3025The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3026@end defvar
3027
22a02324
PA
3028@defvar InferiorThread.global_num
3029The global ID of the thread, as assigned by GDB. You can use this to
3030make Python breakpoints thread-specific, for example
3031(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3032@end defvar
3033
329baa95
DE
3034@defvar InferiorThread.ptid
3035ID of the thread, as assigned by the operating system. This attribute is a
3036tuple containing three integers. The first is the Process ID (PID); the second
3037is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3038Either the LWPID or TID may be 0, which indicates that the operating system
3039does not use that identifier.
3040@end defvar
3041
84654457
PA
3042@defvar InferiorThread.inferior
3043The inferior this thread belongs to. This attribute is represented as
3044a @code{gdb.Inferior} object. This attribute is not writable.
3045@end defvar
3046
329baa95
DE
3047A @code{gdb.InferiorThread} object has the following methods:
3048
3049@defun InferiorThread.is_valid ()
3050Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3051@code{False} if not. A @code{gdb.InferiorThread} object will become
3052invalid if the thread exits, or the inferior that the thread belongs
3053is deleted. All other @code{gdb.InferiorThread} methods will throw an
3054exception if it is invalid at the time the method is called.
3055@end defun
3056
3057@defun InferiorThread.switch ()
3058This changes @value{GDBN}'s currently selected thread to the one represented
3059by this object.
3060@end defun
3061
3062@defun InferiorThread.is_stopped ()
3063Return a Boolean indicating whether the thread is stopped.
3064@end defun
3065
3066@defun InferiorThread.is_running ()
3067Return a Boolean indicating whether the thread is running.
3068@end defun
3069
3070@defun InferiorThread.is_exited ()
3071Return a Boolean indicating whether the thread is exited.
3072@end defun
3073
0a0faf9f
TW
3074@node Recordings In Python
3075@subsubsection Recordings In Python
3076@cindex recordings in python
3077
3078The following recordings-related functions
3079(@pxref{Process Record and Replay}) are available in the @code{gdb}
3080module:
3081
3082@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3083Start a recording using the given @var{method} and @var{format}. If
3084no @var{format} is given, the default format for the recording method
3085is used. If no @var{method} is given, the default method will be used.
3086Returns a @code{gdb.Record} object on success. Throw an exception on
3087failure.
3088
3089The following strings can be passed as @var{method}:
3090
3091@itemize @bullet
3092@item
3093@code{"full"}
3094@item
3095@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3096@code{"bts"} or leave out for default format.
3097@end itemize
3098@end defun
3099
3100@defun gdb.current_recording ()
3101Access a currently running recording. Return a @code{gdb.Record}
3102object on success. Return @code{None} if no recording is currently
3103active.
3104@end defun
3105
3106@defun gdb.stop_recording ()
3107Stop the current recording. Throw an exception if no recording is
3108currently active. All record objects become invalid after this call.
3109@end defun
3110
3111A @code{gdb.Record} object has the following attributes:
3112
0a0faf9f
TW
3113@defvar Record.method
3114A string with the current recording method, e.g.@: @code{full} or
3115@code{btrace}.
3116@end defvar
3117
3118@defvar Record.format
3119A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3120@code{None}.
3121@end defvar
3122
3123@defvar Record.begin
3124A method specific instruction object representing the first instruction
3125in this recording.
3126@end defvar
3127
3128@defvar Record.end
3129A method specific instruction object representing the current
3130instruction, that is not actually part of the recording.
3131@end defvar
3132
3133@defvar Record.replay_position
3134The instruction representing the current replay position. If there is
3135no replay active, this will be @code{None}.
3136@end defvar
3137
3138@defvar Record.instruction_history
3139A list with all recorded instructions.
3140@end defvar
3141
3142@defvar Record.function_call_history
3143A list with all recorded function call segments.
3144@end defvar
3145
3146A @code{gdb.Record} object has the following methods:
3147
3148@defun Record.goto (instruction)
3149Move the replay position to the given @var{instruction}.
3150@end defun
3151
d050f7d7
TW
3152The common @code{gdb.Instruction} class that recording method specific
3153instruction objects inherit from, has the following attributes:
0a0faf9f 3154
d050f7d7 3155@defvar Instruction.pc
913aeadd 3156An integer representing this instruction's address.
0a0faf9f
TW
3157@end defvar
3158
d050f7d7 3159@defvar Instruction.data
913aeadd
TW
3160A buffer with the raw instruction data. In Python 3, the return value is a
3161@code{memoryview} object.
0a0faf9f
TW
3162@end defvar
3163
d050f7d7 3164@defvar Instruction.decoded
913aeadd 3165A human readable string with the disassembled instruction.
0a0faf9f
TW
3166@end defvar
3167
d050f7d7 3168@defvar Instruction.size
913aeadd 3169The size of the instruction in bytes.
0a0faf9f
TW
3170@end defvar
3171
d050f7d7
TW
3172Additionally @code{gdb.RecordInstruction} has the following attributes:
3173
3174@defvar RecordInstruction.number
3175An integer identifying this instruction. @code{number} corresponds to
3176the numbers seen in @code{record instruction-history}
3177(@pxref{Process Record and Replay}).
3178@end defvar
3179
3180@defvar RecordInstruction.sal
3181A @code{gdb.Symtab_and_line} object representing the associated symtab
3182and line of this instruction. May be @code{None} if no debug information is
3183available.
3184@end defvar
3185
0ed5da75 3186@defvar RecordInstruction.is_speculative
d050f7d7 3187A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3188@end defvar
3189
3190If an error occured during recording or decoding a recording, this error is
3191represented by a @code{gdb.RecordGap} object in the instruction list. It has
3192the following attributes:
3193
3194@defvar RecordGap.number
3195An integer identifying this gap. @code{number} corresponds to the numbers seen
3196in @code{record instruction-history} (@pxref{Process Record and Replay}).
3197@end defvar
3198
3199@defvar RecordGap.error_code
3200A numerical representation of the reason for the gap. The value is specific to
3201the current recording method.
3202@end defvar
3203
3204@defvar RecordGap.error_string
3205A human readable string with the reason for the gap.
0a0faf9f
TW
3206@end defvar
3207
14f819c8 3208A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3209
14f819c8
TW
3210@defvar RecordFunctionSegment.number
3211An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3212the numbers seen in @code{record function-call-history}
3213(@pxref{Process Record and Replay}).
3214@end defvar
3215
14f819c8 3216@defvar RecordFunctionSegment.symbol
0a0faf9f 3217A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3218@code{None} if no debug information is available.
0a0faf9f
TW
3219@end defvar
3220
14f819c8 3221@defvar RecordFunctionSegment.level
0a0faf9f
TW
3222An integer representing the function call's stack level. May be
3223@code{None} if the function call is a gap.
3224@end defvar
3225
14f819c8 3226@defvar RecordFunctionSegment.instructions
0ed5da75 3227A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3228associated with this function call.
0a0faf9f
TW
3229@end defvar
3230
14f819c8
TW
3231@defvar RecordFunctionSegment.up
3232A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3233function segment. If the call has not been recorded, this will be the
3234function segment to which control returns. If neither the call nor the
3235return have been recorded, this will be @code{None}.
3236@end defvar
3237
14f819c8
TW
3238@defvar RecordFunctionSegment.prev
3239A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3240segment of this function call. May be @code{None}.
3241@end defvar
3242
14f819c8
TW
3243@defvar RecordFunctionSegment.next
3244A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3245this function call. May be @code{None}.
3246@end defvar
3247
3248The following example demonstrates the usage of these objects and
3249functions to create a function that will rewind a record to the last
3250time a function in a different file was executed. This would typically
3251be used to track the execution of user provided callback functions in a
3252library which typically are not visible in a back trace.
3253
3254@smallexample
3255def bringback ():
3256 rec = gdb.current_recording ()
3257 if not rec:
3258 return
3259
3260 insn = rec.instruction_history
3261 if len (insn) == 0:
3262 return
3263
3264 try:
3265 position = insn.index (rec.replay_position)
3266 except:
3267 position = -1
3268 try:
3269 filename = insn[position].sal.symtab.fullname ()
3270 except:
3271 filename = None
3272
3273 for i in reversed (insn[:position]):
3274 try:
3275 current = i.sal.symtab.fullname ()
3276 except:
3277 current = None
3278
3279 if filename == current:
3280 continue
3281
3282 rec.goto (i)
3283 return
3284@end smallexample
3285
3286Another possible application is to write a function that counts the
3287number of code executions in a given line range. This line range can
3288contain parts of functions or span across several functions and is not
3289limited to be contiguous.
3290
3291@smallexample
3292def countrange (filename, linerange):
3293 count = 0
3294
3295 def filter_only (file_name):
3296 for call in gdb.current_recording ().function_call_history:
3297 try:
3298 if file_name in call.symbol.symtab.fullname ():
3299 yield call
3300 except:
3301 pass
3302
3303 for c in filter_only (filename):
3304 for i in c.instructions:
3305 try:
3306 if i.sal.line in linerange:
3307 count += 1
3308 break;
3309 except:
3310 pass
3311
3312 return count
3313@end smallexample
3314
329baa95
DE
3315@node Commands In Python
3316@subsubsection Commands In Python
3317
3318@cindex commands in python
3319@cindex python commands
3320You can implement new @value{GDBN} CLI commands in Python. A CLI
3321command is implemented using an instance of the @code{gdb.Command}
3322class, most commonly using a subclass.
3323
3324@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3325The object initializer for @code{Command} registers the new command
3326with @value{GDBN}. This initializer is normally invoked from the
3327subclass' own @code{__init__} method.
3328
3329@var{name} is the name of the command. If @var{name} consists of
3330multiple words, then the initial words are looked for as prefix
3331commands. In this case, if one of the prefix commands does not exist,
3332an exception is raised.
3333
3334There is no support for multi-line commands.
3335
3336@var{command_class} should be one of the @samp{COMMAND_} constants
3337defined below. This argument tells @value{GDBN} how to categorize the
3338new command in the help system.
3339
3340@var{completer_class} is an optional argument. If given, it should be
3341one of the @samp{COMPLETE_} constants defined below. This argument
3342tells @value{GDBN} how to perform completion for this command. If not
3343given, @value{GDBN} will attempt to complete using the object's
3344@code{complete} method (see below); if no such method is found, an
3345error will occur when completion is attempted.
3346
3347@var{prefix} is an optional argument. If @code{True}, then the new
3348command is a prefix command; sub-commands of this command may be
3349registered.
3350
3351The help text for the new command is taken from the Python
3352documentation string for the command's class, if there is one. If no
3353documentation string is provided, the default value ``This command is
3354not documented.'' is used.
3355@end defun
3356
3357@cindex don't repeat Python command
3358@defun Command.dont_repeat ()
3359By default, a @value{GDBN} command is repeated when the user enters a
3360blank line at the command prompt. A command can suppress this
3361behavior by invoking the @code{dont_repeat} method. This is similar
3362to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3363@end defun
3364
3365@defun Command.invoke (argument, from_tty)
3366This method is called by @value{GDBN} when this command is invoked.
3367
3368@var{argument} is a string. It is the argument to the command, after
3369leading and trailing whitespace has been stripped.
3370
3371@var{from_tty} is a boolean argument. When true, this means that the
3372command was entered by the user at the terminal; when false it means
3373that the command came from elsewhere.
3374
3375If this method throws an exception, it is turned into a @value{GDBN}
3376@code{error} call. Otherwise, the return value is ignored.
3377
3378@findex gdb.string_to_argv
3379To break @var{argument} up into an argv-like string use
3380@code{gdb.string_to_argv}. This function behaves identically to
3381@value{GDBN}'s internal argument lexer @code{buildargv}.
3382It is recommended to use this for consistency.
3383Arguments are separated by spaces and may be quoted.
3384Example:
3385
3386@smallexample
3387print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3388['1', '2 "3', '4 "5', "6 '7"]
3389@end smallexample
3390
3391@end defun
3392
3393@cindex completion of Python commands
3394@defun Command.complete (text, word)
3395This method is called by @value{GDBN} when the user attempts
3396completion on this command. All forms of completion are handled by
3397this method, that is, the @key{TAB} and @key{M-?} key bindings
3398(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3399complete}).
3400
697aa1b7
EZ
3401The arguments @var{text} and @var{word} are both strings; @var{text}
3402holds the complete command line up to the cursor's location, while
329baa95
DE
3403@var{word} holds the last word of the command line; this is computed
3404using a word-breaking heuristic.
3405
3406The @code{complete} method can return several values:
3407@itemize @bullet
3408@item
3409If the return value is a sequence, the contents of the sequence are
3410used as the completions. It is up to @code{complete} to ensure that the
3411contents actually do complete the word. A zero-length sequence is
3412allowed, it means that there were no completions available. Only
3413string elements of the sequence are used; other elements in the
3414sequence are ignored.
3415
3416@item
3417If the return value is one of the @samp{COMPLETE_} constants defined
3418below, then the corresponding @value{GDBN}-internal completion
3419function is invoked, and its result is used.
3420
3421@item
3422All other results are treated as though there were no available
3423completions.
3424@end itemize
3425@end defun
3426
3427When a new command is registered, it must be declared as a member of
3428some general class of commands. This is used to classify top-level
3429commands in the on-line help system; note that prefix commands are not
3430listed under their own category but rather that of their top-level
3431command. The available classifications are represented by constants
3432defined in the @code{gdb} module:
3433
3434@table @code
3435@findex COMMAND_NONE
3436@findex gdb.COMMAND_NONE
3437@item gdb.COMMAND_NONE
3438The command does not belong to any particular class. A command in
3439this category will not be displayed in any of the help categories.
3440
3441@findex COMMAND_RUNNING
3442@findex gdb.COMMAND_RUNNING
3443@item gdb.COMMAND_RUNNING
3444The command is related to running the inferior. For example,
3445@code{start}, @code{step}, and @code{continue} are in this category.
3446Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3447commands in this category.
3448
3449@findex COMMAND_DATA
3450@findex gdb.COMMAND_DATA
3451@item gdb.COMMAND_DATA
3452The command is related to data or variables. For example,
3453@code{call}, @code{find}, and @code{print} are in this category. Type
3454@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3455in this category.
3456
3457@findex COMMAND_STACK
3458@findex gdb.COMMAND_STACK
3459@item gdb.COMMAND_STACK
3460The command has to do with manipulation of the stack. For example,
3461@code{backtrace}, @code{frame}, and @code{return} are in this
3462category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3463list of commands in this category.
3464
3465@findex COMMAND_FILES
3466@findex gdb.COMMAND_FILES
3467@item gdb.COMMAND_FILES
3468This class is used for file-related commands. For example,
3469@code{file}, @code{list} and @code{section} are in this category.
3470Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3471commands in this category.
3472
3473@findex COMMAND_SUPPORT
3474@findex gdb.COMMAND_SUPPORT
3475@item gdb.COMMAND_SUPPORT
3476This should be used for ``support facilities'', generally meaning
3477things that are useful to the user when interacting with @value{GDBN},
3478but not related to the state of the inferior. For example,
3479@code{help}, @code{make}, and @code{shell} are in this category. Type
3480@kbd{help support} at the @value{GDBN} prompt to see a list of
3481commands in this category.
3482
3483@findex COMMAND_STATUS
3484@findex gdb.COMMAND_STATUS
3485@item gdb.COMMAND_STATUS
3486The command is an @samp{info}-related command, that is, related to the
3487state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3488and @code{show} are in this category. Type @kbd{help status} at the
3489@value{GDBN} prompt to see a list of commands in this category.
3490
3491@findex COMMAND_BREAKPOINTS
3492@findex gdb.COMMAND_BREAKPOINTS
3493@item gdb.COMMAND_BREAKPOINTS
3494The command has to do with breakpoints. For example, @code{break},
3495@code{clear}, and @code{delete} are in this category. Type @kbd{help
3496breakpoints} at the @value{GDBN} prompt to see a list of commands in
3497this category.
3498
3499@findex COMMAND_TRACEPOINTS
3500@findex gdb.COMMAND_TRACEPOINTS
3501@item gdb.COMMAND_TRACEPOINTS
3502The command has to do with tracepoints. For example, @code{trace},
3503@code{actions}, and @code{tfind} are in this category. Type
3504@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3505commands in this category.
3506
3507@findex COMMAND_USER
3508@findex gdb.COMMAND_USER
3509@item gdb.COMMAND_USER
3510The command is a general purpose command for the user, and typically
3511does not fit in one of the other categories.
3512Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3513a list of commands in this category, as well as the list of gdb macros
3514(@pxref{Sequences}).
3515
3516@findex COMMAND_OBSCURE
3517@findex gdb.COMMAND_OBSCURE
3518@item gdb.COMMAND_OBSCURE
3519The command is only used in unusual circumstances, or is not of
3520general interest to users. For example, @code{checkpoint},
3521@code{fork}, and @code{stop} are in this category. Type @kbd{help
3522obscure} at the @value{GDBN} prompt to see a list of commands in this
3523category.
3524
3525@findex COMMAND_MAINTENANCE
3526@findex gdb.COMMAND_MAINTENANCE
3527@item gdb.COMMAND_MAINTENANCE
3528The command is only useful to @value{GDBN} maintainers. The
3529@code{maintenance} and @code{flushregs} commands are in this category.
3530Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3531commands in this category.
3532@end table
3533
3534A new command can use a predefined completion function, either by
3535specifying it via an argument at initialization, or by returning it
3536from the @code{complete} method. These predefined completion
3537constants are all defined in the @code{gdb} module:
3538
b3ce5e5f
DE
3539@vtable @code
3540@vindex COMPLETE_NONE
329baa95
DE
3541@item gdb.COMPLETE_NONE
3542This constant means that no completion should be done.
3543
b3ce5e5f 3544@vindex COMPLETE_FILENAME
329baa95
DE
3545@item gdb.COMPLETE_FILENAME
3546This constant means that filename completion should be performed.
3547
b3ce5e5f 3548@vindex COMPLETE_LOCATION
329baa95
DE
3549@item gdb.COMPLETE_LOCATION
3550This constant means that location completion should be done.
3551@xref{Specify Location}.
3552
b3ce5e5f 3553@vindex COMPLETE_COMMAND
329baa95
DE
3554@item gdb.COMPLETE_COMMAND
3555This constant means that completion should examine @value{GDBN}
3556command names.
3557
b3ce5e5f 3558@vindex COMPLETE_SYMBOL
329baa95
DE
3559@item gdb.COMPLETE_SYMBOL
3560This constant means that completion should be done using symbol names
3561as the source.
3562
b3ce5e5f 3563@vindex COMPLETE_EXPRESSION
329baa95
DE
3564@item gdb.COMPLETE_EXPRESSION
3565This constant means that completion should be done on expressions.
3566Often this means completing on symbol names, but some language
3567parsers also have support for completing on field names.
b3ce5e5f 3568@end vtable
329baa95
DE
3569
3570The following code snippet shows how a trivial CLI command can be
3571implemented in Python:
3572
3573@smallexample
3574class HelloWorld (gdb.Command):
3575 """Greet the whole world."""
3576
3577 def __init__ (self):
3578 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3579
3580 def invoke (self, arg, from_tty):
3581 print "Hello, World!"
3582
3583HelloWorld ()
3584@end smallexample
3585
3586The last line instantiates the class, and is necessary to trigger the
3587registration of the command with @value{GDBN}. Depending on how the
3588Python code is read into @value{GDBN}, you may need to import the
3589@code{gdb} module explicitly.
3590
3591@node Parameters In Python
3592@subsubsection Parameters In Python
3593
3594@cindex parameters in python
3595@cindex python parameters
3596@tindex gdb.Parameter
3597@tindex Parameter
3598You can implement new @value{GDBN} parameters using Python. A new
3599parameter is implemented as an instance of the @code{gdb.Parameter}
3600class.
3601
3602Parameters are exposed to the user via the @code{set} and
3603@code{show} commands. @xref{Help}.
3604
3605There are many parameters that already exist and can be set in
3606@value{GDBN}. Two examples are: @code{set follow fork} and
3607@code{set charset}. Setting these parameters influences certain
3608behavior in @value{GDBN}. Similarly, you can define parameters that
3609can be used to influence behavior in custom Python scripts and commands.
3610
3611@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3612The object initializer for @code{Parameter} registers the new
3613parameter with @value{GDBN}. This initializer is normally invoked
3614from the subclass' own @code{__init__} method.
3615
3616@var{name} is the name of the new parameter. If @var{name} consists
3617of multiple words, then the initial words are looked for as prefix
3618parameters. An example of this can be illustrated with the
3619@code{set print} set of parameters. If @var{name} is
3620@code{print foo}, then @code{print} will be searched as the prefix
3621parameter. In this case the parameter can subsequently be accessed in
3622@value{GDBN} as @code{set print foo}.
3623
3624If @var{name} consists of multiple words, and no prefix parameter group
3625can be found, an exception is raised.
3626
3627@var{command-class} should be one of the @samp{COMMAND_} constants
3628(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3629categorize the new parameter in the help system.
3630
3631@var{parameter-class} should be one of the @samp{PARAM_} constants
3632defined below. This argument tells @value{GDBN} the type of the new
3633parameter; this information is used for input validation and
3634completion.
3635
3636If @var{parameter-class} is @code{PARAM_ENUM}, then
3637@var{enum-sequence} must be a sequence of strings. These strings
3638represent the possible values for the parameter.
3639
3640If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3641of a fourth argument will cause an exception to be thrown.
3642
3643The help text for the new parameter is taken from the Python
3644documentation string for the parameter's class, if there is one. If
3645there is no documentation string, a default value is used.
3646@end defun
3647
3648@defvar Parameter.set_doc
3649If this attribute exists, and is a string, then its value is used as
3650the help text for this parameter's @code{set} command. The value is
3651examined when @code{Parameter.__init__} is invoked; subsequent changes
3652have no effect.
3653@end defvar
3654
3655@defvar Parameter.show_doc
3656If this attribute exists, and is a string, then its value is used as
3657the help text for this parameter's @code{show} command. The value is
3658examined when @code{Parameter.__init__} is invoked; subsequent changes
3659have no effect.
3660@end defvar
3661
3662@defvar Parameter.value
3663The @code{value} attribute holds the underlying value of the
3664parameter. It can be read and assigned to just as any other
3665attribute. @value{GDBN} does validation when assignments are made.
3666@end defvar
3667
3668There are two methods that should be implemented in any
3669@code{Parameter} class. These are:
3670
3671@defun Parameter.get_set_string (self)
3672@value{GDBN} will call this method when a @var{parameter}'s value has
3673been changed via the @code{set} API (for example, @kbd{set foo off}).
3674The @code{value} attribute has already been populated with the new
3675value and may be used in output. This method must return a string.
3676@end defun
3677
3678@defun Parameter.get_show_string (self, svalue)
3679@value{GDBN} will call this method when a @var{parameter}'s
3680@code{show} API has been invoked (for example, @kbd{show foo}). The
3681argument @code{svalue} receives the string representation of the
3682current value. This method must return a string.
3683@end defun
3684
3685When a new parameter is defined, its type must be specified. The
3686available types are represented by constants defined in the @code{gdb}
3687module:
3688
3689@table @code
3690@findex PARAM_BOOLEAN
3691@findex gdb.PARAM_BOOLEAN
3692@item gdb.PARAM_BOOLEAN
3693The value is a plain boolean. The Python boolean values, @code{True}
3694and @code{False} are the only valid values.
3695
3696@findex PARAM_AUTO_BOOLEAN
3697@findex gdb.PARAM_AUTO_BOOLEAN
3698@item gdb.PARAM_AUTO_BOOLEAN
3699The value has three possible states: true, false, and @samp{auto}. In
3700Python, true and false are represented using boolean constants, and
3701@samp{auto} is represented using @code{None}.
3702
3703@findex PARAM_UINTEGER
3704@findex gdb.PARAM_UINTEGER
3705@item gdb.PARAM_UINTEGER
3706The value is an unsigned integer. The value of 0 should be
3707interpreted to mean ``unlimited''.
3708
3709@findex PARAM_INTEGER
3710@findex gdb.PARAM_INTEGER
3711@item gdb.PARAM_INTEGER
3712The value is a signed integer. The value of 0 should be interpreted
3713to mean ``unlimited''.
3714
3715@findex PARAM_STRING
3716@findex gdb.PARAM_STRING
3717@item gdb.PARAM_STRING
3718The value is a string. When the user modifies the string, any escape
3719sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3720translated into corresponding characters and encoded into the current
3721host charset.
3722
3723@findex PARAM_STRING_NOESCAPE
3724@findex gdb.PARAM_STRING_NOESCAPE
3725@item gdb.PARAM_STRING_NOESCAPE
3726The value is a string. When the user modifies the string, escapes are
3727passed through untranslated.
3728
3729@findex PARAM_OPTIONAL_FILENAME
3730@findex gdb.PARAM_OPTIONAL_FILENAME
3731@item gdb.PARAM_OPTIONAL_FILENAME
3732The value is a either a filename (a string), or @code{None}.
3733
3734@findex PARAM_FILENAME
3735@findex gdb.PARAM_FILENAME
3736@item gdb.PARAM_FILENAME
3737The value is a filename. This is just like
3738@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3739
3740@findex PARAM_ZINTEGER
3741@findex gdb.PARAM_ZINTEGER
3742@item gdb.PARAM_ZINTEGER
3743The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3744is interpreted as itself.
3745
3746@findex PARAM_ENUM
3747@findex gdb.PARAM_ENUM
3748@item gdb.PARAM_ENUM
3749The value is a string, which must be one of a collection string
3750constants provided when the parameter is created.
3751@end table
3752
3753@node Functions In Python
3754@subsubsection Writing new convenience functions
3755
3756@cindex writing convenience functions
3757@cindex convenience functions in python
3758@cindex python convenience functions
3759@tindex gdb.Function
3760@tindex Function
3761You can implement new convenience functions (@pxref{Convenience Vars})
3762in Python. A convenience function is an instance of a subclass of the
3763class @code{gdb.Function}.
3764
3765@defun Function.__init__ (name)
3766The initializer for @code{Function} registers the new function with
3767@value{GDBN}. The argument @var{name} is the name of the function,
3768a string. The function will be visible to the user as a convenience
3769variable of type @code{internal function}, whose name is the same as
3770the given @var{name}.
3771
3772The documentation for the new function is taken from the documentation
3773string for the new class.
3774@end defun
3775
3776@defun Function.invoke (@var{*args})
3777When a convenience function is evaluated, its arguments are converted
3778to instances of @code{gdb.Value}, and then the function's
3779@code{invoke} method is called. Note that @value{GDBN} does not
3780predetermine the arity of convenience functions. Instead, all
3781available arguments are passed to @code{invoke}, following the
3782standard Python calling convention. In particular, a convenience
3783function can have default values for parameters without ill effect.
3784
3785The return value of this method is used as its value in the enclosing
3786expression. If an ordinary Python value is returned, it is converted
3787to a @code{gdb.Value} following the usual rules.
3788@end defun
3789
3790The following code snippet shows how a trivial convenience function can
3791be implemented in Python:
3792
3793@smallexample
3794class Greet (gdb.Function):
3795 """Return string to greet someone.
3796Takes a name as argument."""
3797
3798 def __init__ (self):
3799 super (Greet, self).__init__ ("greet")
3800
3801 def invoke (self, name):
3802 return "Hello, %s!" % name.string ()
3803
3804Greet ()
3805@end smallexample
3806
3807The last line instantiates the class, and is necessary to trigger the
3808registration of the function with @value{GDBN}. Depending on how the
3809Python code is read into @value{GDBN}, you may need to import the
3810@code{gdb} module explicitly.
3811
3812Now you can use the function in an expression:
3813
3814@smallexample
3815(gdb) print $greet("Bob")
3816$1 = "Hello, Bob!"
3817@end smallexample
3818
3819@node Progspaces In Python
3820@subsubsection Program Spaces In Python
3821
3822@cindex progspaces in python
3823@tindex gdb.Progspace
3824@tindex Progspace
3825A program space, or @dfn{progspace}, represents a symbolic view
3826of an address space.
3827It consists of all of the objfiles of the program.
3828@xref{Objfiles In Python}.
3829@xref{Inferiors and Programs, program spaces}, for more details
3830about program spaces.
3831
3832The following progspace-related functions are available in the
3833@code{gdb} module:
3834
3835@findex gdb.current_progspace
3836@defun gdb.current_progspace ()
3837This function returns the program space of the currently selected inferior.
3838@xref{Inferiors and Programs}.
3839@end defun
3840
3841@findex gdb.progspaces
3842@defun gdb.progspaces ()
3843Return a sequence of all the progspaces currently known to @value{GDBN}.
3844@end defun
3845
3846Each progspace is represented by an instance of the @code{gdb.Progspace}
3847class.
3848
3849@defvar Progspace.filename
3850The file name of the progspace as a string.
3851@end defvar
3852
3853@defvar Progspace.pretty_printers
3854The @code{pretty_printers} attribute is a list of functions. It is
3855used to look up pretty-printers. A @code{Value} is passed to each
3856function in order; if the function returns @code{None}, then the
3857search continues. Otherwise, the return value should be an object
3858which is used to format the value. @xref{Pretty Printing API}, for more
3859information.
3860@end defvar
3861
3862@defvar Progspace.type_printers
3863The @code{type_printers} attribute is a list of type printer objects.
3864@xref{Type Printing API}, for more information.
3865@end defvar
3866
3867@defvar Progspace.frame_filters
3868The @code{frame_filters} attribute is a dictionary of frame filter
3869objects. @xref{Frame Filter API}, for more information.
3870@end defvar
3871
02be9a71
DE
3872One may add arbitrary attributes to @code{gdb.Progspace} objects
3873in the usual Python way.
3874This is useful if, for example, one needs to do some extra record keeping
3875associated with the program space.
3876
3877In this contrived example, we want to perform some processing when
3878an objfile with a certain symbol is loaded, but we only want to do
3879this once because it is expensive. To achieve this we record the results
3880with the program space because we can't predict when the desired objfile
3881will be loaded.
3882
3883@smallexample
3884(gdb) python
3885def clear_objfiles_handler(event):
3886 event.progspace.expensive_computation = None
3887def expensive(symbol):
3888 """A mock routine to perform an "expensive" computation on symbol."""
3889 print "Computing the answer to the ultimate question ..."
3890 return 42
3891def new_objfile_handler(event):
3892 objfile = event.new_objfile
3893 progspace = objfile.progspace
3894 if not hasattr(progspace, 'expensive_computation') or \
3895 progspace.expensive_computation is None:
3896 # We use 'main' for the symbol to keep the example simple.
3897 # Note: There's no current way to constrain the lookup
3898 # to one objfile.
3899 symbol = gdb.lookup_global_symbol('main')
3900 if symbol is not None:
3901 progspace.expensive_computation = expensive(symbol)
3902gdb.events.clear_objfiles.connect(clear_objfiles_handler)
3903gdb.events.new_objfile.connect(new_objfile_handler)
3904end
3905(gdb) file /tmp/hello
3906Reading symbols from /tmp/hello...done.
3907Computing the answer to the ultimate question ...
3908(gdb) python print gdb.current_progspace().expensive_computation
390942
3910(gdb) run
3911Starting program: /tmp/hello
3912Hello.
3913[Inferior 1 (process 4242) exited normally]
3914@end smallexample
3915
329baa95
DE
3916@node Objfiles In Python
3917@subsubsection Objfiles In Python
3918
3919@cindex objfiles in python
3920@tindex gdb.Objfile
3921@tindex Objfile
3922@value{GDBN} loads symbols for an inferior from various
3923symbol-containing files (@pxref{Files}). These include the primary
3924executable file, any shared libraries used by the inferior, and any
3925separate debug info files (@pxref{Separate Debug Files}).
3926@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
3927
3928The following objfile-related functions are available in the
3929@code{gdb} module:
3930
3931@findex gdb.current_objfile
3932@defun gdb.current_objfile ()
3933When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
3934sets the ``current objfile'' to the corresponding objfile. This
3935function returns the current objfile. If there is no current objfile,
3936this function returns @code{None}.
3937@end defun
3938
3939@findex gdb.objfiles
3940@defun gdb.objfiles ()
3941Return a sequence of all the objfiles current known to @value{GDBN}.
3942@xref{Objfiles In Python}.
3943@end defun
3944
6dddd6a5
DE
3945@findex gdb.lookup_objfile
3946@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
3947Look up @var{name}, a file name or build ID, in the list of objfiles
3948for the current program space (@pxref{Progspaces In Python}).
3949If the objfile is not found throw the Python @code{ValueError} exception.
3950
3951If @var{name} is a relative file name, then it will match any
3952source file name with the same trailing components. For example, if
3953@var{name} is @samp{gcc/expr.c}, then it will match source file
3954name of @file{/build/trunk/gcc/expr.c}, but not
3955@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
3956
3957If @var{by_build_id} is provided and is @code{True} then @var{name}
3958is the build ID of the objfile. Otherwise, @var{name} is a file name.
3959This is supported only on some operating systems, notably those which use
3960the ELF format for binary files and the @sc{gnu} Binutils. For more details
3961about this feature, see the description of the @option{--build-id}
3962command-line option in @ref{Options, , Command Line Options, ld.info,
3963The GNU Linker}.
3964@end defun
3965
329baa95
DE
3966Each objfile is represented by an instance of the @code{gdb.Objfile}
3967class.
3968
3969@defvar Objfile.filename
1b549396
DE
3970The file name of the objfile as a string, with symbolic links resolved.
3971
3972The value is @code{None} if the objfile is no longer valid.
3973See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
3974@end defvar
3975
3a8b707a
DE
3976@defvar Objfile.username
3977The file name of the objfile as specified by the user as a string.
3978
3979The value is @code{None} if the objfile is no longer valid.
3980See the @code{gdb.Objfile.is_valid} method, described below.
3981@end defvar
3982
a0be3e44
DE
3983@defvar Objfile.owner
3984For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
3985object that debug info is being provided for.
3986Otherwise this is @code{None}.
3987Separate debug info objfiles are added with the
3988@code{gdb.Objfile.add_separate_debug_file} method, described below.
3989@end defvar
3990
7c50a931
DE
3991@defvar Objfile.build_id
3992The build ID of the objfile as a string.
3993If the objfile does not have a build ID then the value is @code{None}.
3994
3995This is supported only on some operating systems, notably those which use
3996the ELF format for binary files and the @sc{gnu} Binutils. For more details
3997about this feature, see the description of the @option{--build-id}
3998command-line option in @ref{Options, , Command Line Options, ld.info,
3999The GNU Linker}.
4000@end defvar
4001
d096d8c1
DE
4002@defvar Objfile.progspace
4003The containing program space of the objfile as a @code{gdb.Progspace}
4004object. @xref{Progspaces In Python}.
4005@end defvar
4006
329baa95
DE
4007@defvar Objfile.pretty_printers
4008The @code{pretty_printers} attribute is a list of functions. It is
4009used to look up pretty-printers. A @code{Value} is passed to each
4010function in order; if the function returns @code{None}, then the
4011search continues. Otherwise, the return value should be an object
4012which is used to format the value. @xref{Pretty Printing API}, for more
4013information.
4014@end defvar
4015
4016@defvar Objfile.type_printers
4017The @code{type_printers} attribute is a list of type printer objects.
4018@xref{Type Printing API}, for more information.
4019@end defvar
4020
4021@defvar Objfile.frame_filters
4022The @code{frame_filters} attribute is a dictionary of frame filter
4023objects. @xref{Frame Filter API}, for more information.
4024@end defvar
4025
02be9a71
DE
4026One may add arbitrary attributes to @code{gdb.Objfile} objects
4027in the usual Python way.
4028This is useful if, for example, one needs to do some extra record keeping
4029associated with the objfile.
4030
4031In this contrived example we record the time when @value{GDBN}
4032loaded the objfile.
4033
4034@smallexample
4035(gdb) python
4036import datetime
4037def new_objfile_handler(event):
4038 # Set the time_loaded attribute of the new objfile.
4039 event.new_objfile.time_loaded = datetime.datetime.today()
4040gdb.events.new_objfile.connect(new_objfile_handler)
4041end
4042(gdb) file ./hello
4043Reading symbols from ./hello...done.
4044(gdb) python print gdb.objfiles()[0].time_loaded
40452014-10-09 11:41:36.770345
4046@end smallexample
4047
329baa95
DE
4048A @code{gdb.Objfile} object has the following methods:
4049
4050@defun Objfile.is_valid ()
4051Returns @code{True} if the @code{gdb.Objfile} object is valid,
4052@code{False} if not. A @code{gdb.Objfile} object can become invalid
4053if the object file it refers to is not loaded in @value{GDBN} any
4054longer. All other @code{gdb.Objfile} methods will throw an exception
4055if it is invalid at the time the method is called.
4056@end defun
4057
86e4ed39
DE
4058@defun Objfile.add_separate_debug_file (file)
4059Add @var{file} to the list of files that @value{GDBN} will search for
4060debug information for the objfile.
4061This is useful when the debug info has been removed from the program
4062and stored in a separate file. @value{GDBN} has built-in support for
4063finding separate debug info files (@pxref{Separate Debug Files}), but if
4064the file doesn't live in one of the standard places that @value{GDBN}
4065searches then this function can be used to add a debug info file
4066from a different place.
4067@end defun
4068
329baa95
DE
4069@node Frames In Python
4070@subsubsection Accessing inferior stack frames from Python.
4071
4072@cindex frames in python
4073When the debugged program stops, @value{GDBN} is able to analyze its call
4074stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4075represents a frame in the stack. A @code{gdb.Frame} object is only valid
4076while its corresponding frame exists in the inferior's stack. If you try
4077to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4078exception (@pxref{Exception Handling}).
4079
4080Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4081operator, like:
4082
4083@smallexample
4084(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4085True
4086@end smallexample
4087
4088The following frame-related functions are available in the @code{gdb} module:
4089
4090@findex gdb.selected_frame
4091@defun gdb.selected_frame ()
4092Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4093@end defun
4094
4095@findex gdb.newest_frame
4096@defun gdb.newest_frame ()
4097Return the newest frame object for the selected thread.
4098@end defun
4099
4100@defun gdb.frame_stop_reason_string (reason)
4101Return a string explaining the reason why @value{GDBN} stopped unwinding
4102frames, as expressed by the given @var{reason} code (an integer, see the
4103@code{unwind_stop_reason} method further down in this section).
4104@end defun
4105
e0f3fd7c
TT
4106@findex gdb.invalidate_cached_frames
4107@defun gdb.invalidate_cached_frames
4108@value{GDBN} internally keeps a cache of the frames that have been
4109unwound. This function invalidates this cache.
4110
4111This function should not generally be called by ordinary Python code.
4112It is documented for the sake of completeness.
4113@end defun
4114
329baa95
DE
4115A @code{gdb.Frame} object has the following methods:
4116
4117@defun Frame.is_valid ()
4118Returns true if the @code{gdb.Frame} object is valid, false if not.
4119A frame object can become invalid if the frame it refers to doesn't
4120exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4121an exception if it is invalid at the time the method is called.
4122@end defun
4123
4124@defun Frame.name ()
4125Returns the function name of the frame, or @code{None} if it can't be
4126obtained.
4127@end defun
4128
4129@defun Frame.architecture ()
4130Returns the @code{gdb.Architecture} object corresponding to the frame's
4131architecture. @xref{Architectures In Python}.
4132@end defun
4133
4134@defun Frame.type ()
4135Returns the type of the frame. The value can be one of:
4136@table @code
4137@item gdb.NORMAL_FRAME
4138An ordinary stack frame.
4139
4140@item gdb.DUMMY_FRAME
4141A fake stack frame that was created by @value{GDBN} when performing an
4142inferior function call.
4143
4144@item gdb.INLINE_FRAME
4145A frame representing an inlined function. The function was inlined
4146into a @code{gdb.NORMAL_FRAME} that is older than this one.
4147
4148@item gdb.TAILCALL_FRAME
4149A frame representing a tail call. @xref{Tail Call Frames}.
4150
4151@item gdb.SIGTRAMP_FRAME
4152A signal trampoline frame. This is the frame created by the OS when
4153it calls into a signal handler.
4154
4155@item gdb.ARCH_FRAME
4156A fake stack frame representing a cross-architecture call.
4157
4158@item gdb.SENTINEL_FRAME
4159This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4160newest frame.
4161@end table
4162@end defun
4163
4164@defun Frame.unwind_stop_reason ()
4165Return an integer representing the reason why it's not possible to find
4166more frames toward the outermost frame. Use
4167@code{gdb.frame_stop_reason_string} to convert the value returned by this
4168function to a string. The value can be one of:
4169
4170@table @code
4171@item gdb.FRAME_UNWIND_NO_REASON
4172No particular reason (older frames should be available).
4173
4174@item gdb.FRAME_UNWIND_NULL_ID
4175The previous frame's analyzer returns an invalid result. This is no
4176longer used by @value{GDBN}, and is kept only for backward
4177compatibility.
4178
4179@item gdb.FRAME_UNWIND_OUTERMOST
4180This frame is the outermost.
4181
4182@item gdb.FRAME_UNWIND_UNAVAILABLE
4183Cannot unwind further, because that would require knowing the
4184values of registers or memory that have not been collected.
4185
4186@item gdb.FRAME_UNWIND_INNER_ID
4187This frame ID looks like it ought to belong to a NEXT frame,
4188but we got it for a PREV frame. Normally, this is a sign of
4189unwinder failure. It could also indicate stack corruption.
4190
4191@item gdb.FRAME_UNWIND_SAME_ID
4192This frame has the same ID as the previous one. That means
4193that unwinding further would almost certainly give us another
4194frame with exactly the same ID, so break the chain. Normally,
4195this is a sign of unwinder failure. It could also indicate
4196stack corruption.
4197
4198@item gdb.FRAME_UNWIND_NO_SAVED_PC
4199The frame unwinder did not find any saved PC, but we needed
4200one to unwind further.
4201
53e8a631
AB
4202@item gdb.FRAME_UNWIND_MEMORY_ERROR
4203The frame unwinder caused an error while trying to access memory.
4204
329baa95
DE
4205@item gdb.FRAME_UNWIND_FIRST_ERROR
4206Any stop reason greater or equal to this value indicates some kind
4207of error. This special value facilitates writing code that tests
4208for errors in unwinding in a way that will work correctly even if
4209the list of the other values is modified in future @value{GDBN}
4210versions. Using it, you could write:
4211@smallexample
4212reason = gdb.selected_frame().unwind_stop_reason ()
4213reason_str = gdb.frame_stop_reason_string (reason)
4214if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4215 print "An error occured: %s" % reason_str
4216@end smallexample
4217@end table
4218
4219@end defun
4220
4221@defun Frame.pc ()
4222Returns the frame's resume address.
4223@end defun
4224
4225@defun Frame.block ()
4226Return the frame's code block. @xref{Blocks In Python}.
4227@end defun
4228
4229@defun Frame.function ()
4230Return the symbol for the function corresponding to this frame.
4231@xref{Symbols In Python}.
4232@end defun
4233
4234@defun Frame.older ()
4235Return the frame that called this frame.
4236@end defun
4237
4238@defun Frame.newer ()
4239Return the frame called by this frame.
4240@end defun
4241
4242@defun Frame.find_sal ()
4243Return the frame's symtab and line object.
4244@xref{Symbol Tables In Python}.
4245@end defun
4246
5f3b99cf
SS
4247@defun Frame.read_register (register)
4248Return the value of @var{register} in this frame. The @var{register}
4249argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4250Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4251does not exist.
4252@end defun
4253
329baa95
DE
4254@defun Frame.read_var (variable @r{[}, block@r{]})
4255Return the value of @var{variable} in this frame. If the optional
4256argument @var{block} is provided, search for the variable from that
4257block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4258determined by the frame's current program counter). The @var{variable}
4259argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4260@code{gdb.Block} object.
4261@end defun
4262
4263@defun Frame.select ()
4264Set this frame to be the selected frame. @xref{Stack, ,Examining the
4265Stack}.
4266@end defun
4267
4268@node Blocks In Python
4269@subsubsection Accessing blocks from Python.
4270
4271@cindex blocks in python
4272@tindex gdb.Block
4273
4274In @value{GDBN}, symbols are stored in blocks. A block corresponds
4275roughly to a scope in the source code. Blocks are organized
4276hierarchically, and are represented individually in Python as a
4277@code{gdb.Block}. Blocks rely on debugging information being
4278available.
4279
4280A frame has a block. Please see @ref{Frames In Python}, for a more
4281in-depth discussion of frames.
4282
4283The outermost block is known as the @dfn{global block}. The global
4284block typically holds public global variables and functions.
4285
4286The block nested just inside the global block is the @dfn{static
4287block}. The static block typically holds file-scoped variables and
4288functions.
4289
4290@value{GDBN} provides a method to get a block's superblock, but there
4291is currently no way to examine the sub-blocks of a block, or to
4292iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4293Python}).
4294
4295Here is a short example that should help explain blocks:
4296
4297@smallexample
4298/* This is in the global block. */
4299int global;
4300
4301/* This is in the static block. */
4302static int file_scope;
4303
4304/* 'function' is in the global block, and 'argument' is
4305 in a block nested inside of 'function'. */
4306int function (int argument)
4307@{
4308 /* 'local' is in a block inside 'function'. It may or may
4309 not be in the same block as 'argument'. */
4310 int local;
4311
4312 @{
4313 /* 'inner' is in a block whose superblock is the one holding
4314 'local'. */
4315 int inner;
4316
4317 /* If this call is expanded by the compiler, you may see
4318 a nested block here whose function is 'inline_function'
4319 and whose superblock is the one holding 'inner'. */
4320 inline_function ();
4321 @}
4322@}
4323@end smallexample
4324
4325A @code{gdb.Block} is iterable. The iterator returns the symbols
4326(@pxref{Symbols In Python}) local to the block. Python programs
4327should not assume that a specific block object will always contain a
4328given symbol, since changes in @value{GDBN} features and
4329infrastructure may cause symbols move across blocks in a symbol
4330table.
4331
4332The following block-related functions are available in the @code{gdb}
4333module:
4334
4335@findex gdb.block_for_pc
4336@defun gdb.block_for_pc (pc)
4337Return the innermost @code{gdb.Block} containing the given @var{pc}
4338value. If the block cannot be found for the @var{pc} value specified,
4339the function will return @code{None}.
4340@end defun
4341
4342A @code{gdb.Block} object has the following methods:
4343
4344@defun Block.is_valid ()
4345Returns @code{True} if the @code{gdb.Block} object is valid,
4346@code{False} if not. A block object can become invalid if the block it
4347refers to doesn't exist anymore in the inferior. All other
4348@code{gdb.Block} methods will throw an exception if it is invalid at
4349the time the method is called. The block's validity is also checked
4350during iteration over symbols of the block.
4351@end defun
4352
4353A @code{gdb.Block} object has the following attributes:
4354
4355@defvar Block.start
4356The start address of the block. This attribute is not writable.
4357@end defvar
4358
4359@defvar Block.end
4360The end address of the block. This attribute is not writable.
4361@end defvar
4362
4363@defvar Block.function
4364The name of the block represented as a @code{gdb.Symbol}. If the
4365block is not named, then this attribute holds @code{None}. This
4366attribute is not writable.
4367
4368For ordinary function blocks, the superblock is the static block.
4369However, you should note that it is possible for a function block to
4370have a superblock that is not the static block -- for instance this
4371happens for an inlined function.
4372@end defvar
4373
4374@defvar Block.superblock
4375The block containing this block. If this parent block does not exist,
4376this attribute holds @code{None}. This attribute is not writable.
4377@end defvar
4378
4379@defvar Block.global_block
4380The global block associated with this block. This attribute is not
4381writable.
4382@end defvar
4383
4384@defvar Block.static_block
4385The static block associated with this block. This attribute is not
4386writable.
4387@end defvar
4388
4389@defvar Block.is_global
4390@code{True} if the @code{gdb.Block} object is a global block,
4391@code{False} if not. This attribute is not
4392writable.
4393@end defvar
4394
4395@defvar Block.is_static
4396@code{True} if the @code{gdb.Block} object is a static block,
4397@code{False} if not. This attribute is not writable.
4398@end defvar
4399
4400@node Symbols In Python
4401@subsubsection Python representation of Symbols.
4402
4403@cindex symbols in python
4404@tindex gdb.Symbol
4405
4406@value{GDBN} represents every variable, function and type as an
4407entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4408Similarly, Python represents these symbols in @value{GDBN} with the
4409@code{gdb.Symbol} object.
4410
4411The following symbol-related functions are available in the @code{gdb}
4412module:
4413
4414@findex gdb.lookup_symbol
4415@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4416This function searches for a symbol by name. The search scope can be
4417restricted to the parameters defined in the optional domain and block
4418arguments.
4419
4420@var{name} is the name of the symbol. It must be a string. The
4421optional @var{block} argument restricts the search to symbols visible
4422in that @var{block}. The @var{block} argument must be a
4423@code{gdb.Block} object. If omitted, the block for the current frame
4424is used. The optional @var{domain} argument restricts
4425the search to the domain type. The @var{domain} argument must be a
4426domain constant defined in the @code{gdb} module and described later
4427in this chapter.
4428
4429The result is a tuple of two elements.
4430The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4431is not found.
4432If the symbol is found, the second element is @code{True} if the symbol
4433is a field of a method's object (e.g., @code{this} in C@t{++}),
4434otherwise it is @code{False}.
4435If the symbol is not found, the second element is @code{False}.
4436@end defun
4437
4438@findex gdb.lookup_global_symbol
4439@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4440This function searches for a global symbol by name.
4441The search scope can be restricted to by the domain argument.
4442
4443@var{name} is the name of the symbol. It must be a string.
4444The optional @var{domain} argument restricts the search to the domain type.
4445The @var{domain} argument must be a domain constant defined in the @code{gdb}
4446module and described later in this chapter.
4447
4448The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4449is not found.
4450@end defun
4451
4452A @code{gdb.Symbol} object has the following attributes:
4453
4454@defvar Symbol.type
4455The type of the symbol or @code{None} if no type is recorded.
4456This attribute is represented as a @code{gdb.Type} object.
4457@xref{Types In Python}. This attribute is not writable.
4458@end defvar
4459
4460@defvar Symbol.symtab
4461The symbol table in which the symbol appears. This attribute is
4462represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4463Python}. This attribute is not writable.
4464@end defvar
4465
4466@defvar Symbol.line
4467The line number in the source code at which the symbol was defined.
4468This is an integer.
4469@end defvar
4470
4471@defvar Symbol.name
4472The name of the symbol as a string. This attribute is not writable.
4473@end defvar
4474
4475@defvar Symbol.linkage_name
4476The name of the symbol, as used by the linker (i.e., may be mangled).
4477This attribute is not writable.
4478@end defvar
4479
4480@defvar Symbol.print_name
4481The name of the symbol in a form suitable for output. This is either
4482@code{name} or @code{linkage_name}, depending on whether the user
4483asked @value{GDBN} to display demangled or mangled names.
4484@end defvar
4485
4486@defvar Symbol.addr_class
4487The address class of the symbol. This classifies how to find the value
4488of a symbol. Each address class is a constant defined in the
4489@code{gdb} module and described later in this chapter.
4490@end defvar
4491
4492@defvar Symbol.needs_frame
4493This is @code{True} if evaluating this symbol's value requires a frame
4494(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4495local variables will require a frame, but other symbols will not.
4496@end defvar
4497
4498@defvar Symbol.is_argument
4499@code{True} if the symbol is an argument of a function.
4500@end defvar
4501
4502@defvar Symbol.is_constant
4503@code{True} if the symbol is a constant.
4504@end defvar
4505
4506@defvar Symbol.is_function
4507@code{True} if the symbol is a function or a method.
4508@end defvar
4509
4510@defvar Symbol.is_variable
4511@code{True} if the symbol is a variable.
4512@end defvar
4513
4514A @code{gdb.Symbol} object has the following methods:
4515
4516@defun Symbol.is_valid ()
4517Returns @code{True} if the @code{gdb.Symbol} object is valid,
4518@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4519the symbol it refers to does not exist in @value{GDBN} any longer.
4520All other @code{gdb.Symbol} methods will throw an exception if it is
4521invalid at the time the method is called.
4522@end defun
4523
4524@defun Symbol.value (@r{[}frame@r{]})
4525Compute the value of the symbol, as a @code{gdb.Value}. For
4526functions, this computes the address of the function, cast to the
4527appropriate type. If the symbol requires a frame in order to compute
4528its value, then @var{frame} must be given. If @var{frame} is not
4529given, or if @var{frame} is invalid, then this method will throw an
4530exception.
4531@end defun
4532
4533The available domain categories in @code{gdb.Symbol} are represented
4534as constants in the @code{gdb} module:
4535
b3ce5e5f
DE
4536@vtable @code
4537@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4538@item gdb.SYMBOL_UNDEF_DOMAIN
4539This is used when a domain has not been discovered or none of the
4540following domains apply. This usually indicates an error either
4541in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4542
4543@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4544@item gdb.SYMBOL_VAR_DOMAIN
4545This domain contains variables, function names, typedef names and enum
4546type values.
b3ce5e5f
DE
4547
4548@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4549@item gdb.SYMBOL_STRUCT_DOMAIN
4550This domain holds struct, union and enum type names.
b3ce5e5f
DE
4551
4552@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4553@item gdb.SYMBOL_LABEL_DOMAIN
4554This domain contains names of labels (for gotos).
b3ce5e5f
DE
4555
4556@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4557@item gdb.SYMBOL_VARIABLES_DOMAIN
4558This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4559contains everything minus functions and types.
b3ce5e5f
DE
4560
4561@vindex SYMBOL_FUNCTIONS_DOMAIN
eb83230b 4562@item gdb.SYMBOL_FUNCTIONS_DOMAIN
329baa95 4563This domain contains all functions.
b3ce5e5f
DE
4564
4565@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4566@item gdb.SYMBOL_TYPES_DOMAIN
4567This domain contains all types.
b3ce5e5f 4568@end vtable
329baa95
DE
4569
4570The available address class categories in @code{gdb.Symbol} are represented
4571as constants in the @code{gdb} module:
4572
b3ce5e5f
DE
4573@vtable @code
4574@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4575@item gdb.SYMBOL_LOC_UNDEF
4576If this is returned by address class, it indicates an error either in
4577the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4578
4579@vindex SYMBOL_LOC_CONST
329baa95
DE
4580@item gdb.SYMBOL_LOC_CONST
4581Value is constant int.
b3ce5e5f
DE
4582
4583@vindex SYMBOL_LOC_STATIC
329baa95
DE
4584@item gdb.SYMBOL_LOC_STATIC
4585Value is at a fixed address.
b3ce5e5f
DE
4586
4587@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4588@item gdb.SYMBOL_LOC_REGISTER
4589Value is in a register.
b3ce5e5f
DE
4590
4591@vindex SYMBOL_LOC_ARG
329baa95
DE
4592@item gdb.SYMBOL_LOC_ARG
4593Value is an argument. This value is at the offset stored within the
4594symbol inside the frame's argument list.
b3ce5e5f
DE
4595
4596@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4597@item gdb.SYMBOL_LOC_REF_ARG
4598Value address is stored in the frame's argument list. Just like
4599@code{LOC_ARG} except that the value's address is stored at the
4600offset, not the value itself.
b3ce5e5f
DE
4601
4602@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4603@item gdb.SYMBOL_LOC_REGPARM_ADDR
4604Value is a specified register. Just like @code{LOC_REGISTER} except
4605the register holds the address of the argument instead of the argument
4606itself.
b3ce5e5f
DE
4607
4608@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4609@item gdb.SYMBOL_LOC_LOCAL
4610Value is a local variable.
b3ce5e5f
DE
4611
4612@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4613@item gdb.SYMBOL_LOC_TYPEDEF
4614Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4615have this class.
b3ce5e5f
DE
4616
4617@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4618@item gdb.SYMBOL_LOC_BLOCK
4619Value is a block.
b3ce5e5f
DE
4620
4621@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4622@item gdb.SYMBOL_LOC_CONST_BYTES
4623Value is a byte-sequence.
b3ce5e5f
DE
4624
4625@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4626@item gdb.SYMBOL_LOC_UNRESOLVED
4627Value is at a fixed address, but the address of the variable has to be
4628determined from the minimal symbol table whenever the variable is
4629referenced.
b3ce5e5f
DE
4630
4631@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4632@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4633The value does not actually exist in the program.
b3ce5e5f
DE
4634
4635@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4636@item gdb.SYMBOL_LOC_COMPUTED
4637The value's address is a computed location.
b3ce5e5f 4638@end vtable
329baa95
DE
4639
4640@node Symbol Tables In Python
4641@subsubsection Symbol table representation in Python.
4642
4643@cindex symbol tables in python
4644@tindex gdb.Symtab
4645@tindex gdb.Symtab_and_line
4646
4647Access to symbol table data maintained by @value{GDBN} on the inferior
4648is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4649@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4650from the @code{find_sal} method in @code{gdb.Frame} object.
4651@xref{Frames In Python}.
4652
4653For more information on @value{GDBN}'s symbol table management, see
4654@ref{Symbols, ,Examining the Symbol Table}, for more information.
4655
4656A @code{gdb.Symtab_and_line} object has the following attributes:
4657
4658@defvar Symtab_and_line.symtab
4659The symbol table object (@code{gdb.Symtab}) for this frame.
4660This attribute is not writable.
4661@end defvar
4662
4663@defvar Symtab_and_line.pc
4664Indicates the start of the address range occupied by code for the
4665current source line. This attribute is not writable.
4666@end defvar
4667
4668@defvar Symtab_and_line.last
4669Indicates the end of the address range occupied by code for the current
4670source line. This attribute is not writable.
4671@end defvar
4672
4673@defvar Symtab_and_line.line
4674Indicates the current line number for this object. This
4675attribute is not writable.
4676@end defvar
4677
4678A @code{gdb.Symtab_and_line} object has the following methods:
4679
4680@defun Symtab_and_line.is_valid ()
4681Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4682@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4683invalid if the Symbol table and line object it refers to does not
4684exist in @value{GDBN} any longer. All other
4685@code{gdb.Symtab_and_line} methods will throw an exception if it is
4686invalid at the time the method is called.
4687@end defun
4688
4689A @code{gdb.Symtab} object has the following attributes:
4690
4691@defvar Symtab.filename
4692The symbol table's source filename. This attribute is not writable.
4693@end defvar
4694
4695@defvar Symtab.objfile
4696The symbol table's backing object file. @xref{Objfiles In Python}.
4697This attribute is not writable.
4698@end defvar
4699
2b4fd423
DE
4700@defvar Symtab.producer
4701The name and possibly version number of the program that
4702compiled the code in the symbol table.
4703The contents of this string is up to the compiler.
4704If no producer information is available then @code{None} is returned.
4705This attribute is not writable.
4706@end defvar
4707
329baa95
DE
4708A @code{gdb.Symtab} object has the following methods:
4709
4710@defun Symtab.is_valid ()
4711Returns @code{True} if the @code{gdb.Symtab} object is valid,
4712@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4713the symbol table it refers to does not exist in @value{GDBN} any
4714longer. All other @code{gdb.Symtab} methods will throw an exception
4715if it is invalid at the time the method is called.
4716@end defun
4717
4718@defun Symtab.fullname ()
4719Return the symbol table's source absolute file name.
4720@end defun
4721
4722@defun Symtab.global_block ()
4723Return the global block of the underlying symbol table.
4724@xref{Blocks In Python}.
4725@end defun
4726
4727@defun Symtab.static_block ()
4728Return the static block of the underlying symbol table.
4729@xref{Blocks In Python}.
4730@end defun
4731
4732@defun Symtab.linetable ()
4733Return the line table associated with the symbol table.
4734@xref{Line Tables In Python}.
4735@end defun
4736
4737@node Line Tables In Python
4738@subsubsection Manipulating line tables using Python
4739
4740@cindex line tables in python
4741@tindex gdb.LineTable
4742
4743Python code can request and inspect line table information from a
4744symbol table that is loaded in @value{GDBN}. A line table is a
4745mapping of source lines to their executable locations in memory. To
4746acquire the line table information for a particular symbol table, use
4747the @code{linetable} function (@pxref{Symbol Tables In Python}).
4748
4749A @code{gdb.LineTable} is iterable. The iterator returns
4750@code{LineTableEntry} objects that correspond to the source line and
4751address for each line table entry. @code{LineTableEntry} objects have
4752the following attributes:
4753
4754@defvar LineTableEntry.line
4755The source line number for this line table entry. This number
4756corresponds to the actual line of source. This attribute is not
4757writable.
4758@end defvar
4759
4760@defvar LineTableEntry.pc
4761The address that is associated with the line table entry where the
4762executable code for that source line resides in memory. This
4763attribute is not writable.
4764@end defvar
4765
4766As there can be multiple addresses for a single source line, you may
4767receive multiple @code{LineTableEntry} objects with matching
4768@code{line} attributes, but with different @code{pc} attributes. The
4769iterator is sorted in ascending @code{pc} order. Here is a small
4770example illustrating iterating over a line table.
4771
4772@smallexample
4773symtab = gdb.selected_frame().find_sal().symtab
4774linetable = symtab.linetable()
4775for line in linetable:
4776 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4777@end smallexample
4778
4779This will have the following output:
4780
4781@smallexample
4782Line: 33 Address: 0x4005c8L
4783Line: 37 Address: 0x4005caL
4784Line: 39 Address: 0x4005d2L
4785Line: 40 Address: 0x4005f8L
4786Line: 42 Address: 0x4005ffL
4787Line: 44 Address: 0x400608L
4788Line: 42 Address: 0x40060cL
4789Line: 45 Address: 0x400615L
4790@end smallexample
4791
4792In addition to being able to iterate over a @code{LineTable}, it also
4793has the following direct access methods:
4794
4795@defun LineTable.line (line)
4796Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4797entries in the line table for the given @var{line}, which specifies
4798the source code line. If there are no entries for that source code
329baa95
DE
4799@var{line}, the Python @code{None} is returned.
4800@end defun
4801
4802@defun LineTable.has_line (line)
4803Return a Python @code{Boolean} indicating whether there is an entry in
4804the line table for this source line. Return @code{True} if an entry
4805is found, or @code{False} if not.
4806@end defun
4807
4808@defun LineTable.source_lines ()
4809Return a Python @code{List} of the source line numbers in the symbol
4810table. Only lines with executable code locations are returned. The
4811contents of the @code{List} will just be the source line entries
4812represented as Python @code{Long} values.
4813@end defun
4814
4815@node Breakpoints In Python
4816@subsubsection Manipulating breakpoints using Python
4817
4818@cindex breakpoints in python
4819@tindex gdb.Breakpoint
4820
4821Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4822class.
4823
4824@defun Breakpoint.__init__ (spec @r{[}, type @r{[}, wp_class @r{[},internal @r{[},temporary@r{]]]]})
697aa1b7
EZ
4825Create a new breakpoint according to @var{spec}, which is a string
4826naming the location of the breakpoint, or an expression that defines a
4827watchpoint. The contents can be any location recognized by the
4828@code{break} command, or in the case of a watchpoint, by the
4829@code{watch} command. The optional @var{type} denotes the breakpoint
4830to create from the types defined later in this chapter. This argument
4831can be either @code{gdb.BP_BREAKPOINT} or @code{gdb.BP_WATCHPOINT}; it
329baa95
DE
4832defaults to @code{gdb.BP_BREAKPOINT}. The optional @var{internal}
4833argument allows the breakpoint to become invisible to the user. The
4834breakpoint will neither be reported when created, nor will it be
4835listed in the output from @code{info breakpoints} (but will be listed
4836with the @code{maint info breakpoints} command). The optional
4837@var{temporary} argument makes the breakpoint a temporary breakpoint.
4838Temporary breakpoints are deleted after they have been hit. Any
4839further access to the Python breakpoint after it has been hit will
4840result in a runtime error (as that breakpoint has now been
4841automatically deleted). The optional @var{wp_class} argument defines
4842the class of watchpoint to create, if @var{type} is
4843@code{gdb.BP_WATCHPOINT}. If a watchpoint class is not provided, it
4844is assumed to be a @code{gdb.WP_WRITE} class.
4845@end defun
4846
cda75e70
TT
4847The available types are represented by constants defined in the @code{gdb}
4848module:
4849
4850@vtable @code
4851@vindex BP_BREAKPOINT
4852@item gdb.BP_BREAKPOINT
4853Normal code breakpoint.
4854
4855@vindex BP_WATCHPOINT
4856@item gdb.BP_WATCHPOINT
4857Watchpoint breakpoint.
4858
4859@vindex BP_HARDWARE_WATCHPOINT
4860@item gdb.BP_HARDWARE_WATCHPOINT
4861Hardware assisted watchpoint.
4862
4863@vindex BP_READ_WATCHPOINT
4864@item gdb.BP_READ_WATCHPOINT
4865Hardware assisted read watchpoint.
4866
4867@vindex BP_ACCESS_WATCHPOINT
4868@item gdb.BP_ACCESS_WATCHPOINT
4869Hardware assisted access watchpoint.
4870@end vtable
4871
4872The available watchpoint types represented by constants are defined in the
4873@code{gdb} module:
4874
4875@vtable @code
4876@vindex WP_READ
4877@item gdb.WP_READ
4878Read only watchpoint.
4879
4880@vindex WP_WRITE
4881@item gdb.WP_WRITE
4882Write only watchpoint.
4883
4884@vindex WP_ACCESS
4885@item gdb.WP_ACCESS
4886Read/Write watchpoint.
4887@end vtable
4888
329baa95
DE
4889@defun Breakpoint.stop (self)
4890The @code{gdb.Breakpoint} class can be sub-classed and, in
4891particular, you may choose to implement the @code{stop} method.
4892If this method is defined in a sub-class of @code{gdb.Breakpoint},
4893it will be called when the inferior reaches any location of a
4894breakpoint which instantiates that sub-class. If the method returns
4895@code{True}, the inferior will be stopped at the location of the
4896breakpoint, otherwise the inferior will continue.
4897
4898If there are multiple breakpoints at the same location with a
4899@code{stop} method, each one will be called regardless of the
4900return status of the previous. This ensures that all @code{stop}
4901methods have a chance to execute at that location. In this scenario
4902if one of the methods returns @code{True} but the others return
4903@code{False}, the inferior will still be stopped.
4904
4905You should not alter the execution state of the inferior (i.e.@:, step,
4906next, etc.), alter the current frame context (i.e.@:, change the current
4907active frame), or alter, add or delete any breakpoint. As a general
4908rule, you should not alter any data within @value{GDBN} or the inferior
4909at this time.
4910
4911Example @code{stop} implementation:
4912
4913@smallexample
4914class MyBreakpoint (gdb.Breakpoint):
4915 def stop (self):
4916 inf_val = gdb.parse_and_eval("foo")
4917 if inf_val == 3:
4918 return True
4919 return False
4920@end smallexample
4921@end defun
4922
329baa95
DE
4923@defun Breakpoint.is_valid ()
4924Return @code{True} if this @code{Breakpoint} object is valid,
4925@code{False} otherwise. A @code{Breakpoint} object can become invalid
4926if the user deletes the breakpoint. In this case, the object still
4927exists, but the underlying breakpoint does not. In the cases of
4928watchpoint scope, the watchpoint remains valid even if execution of the
4929inferior leaves the scope of that watchpoint.
4930@end defun
4931
fab3a15d 4932@defun Breakpoint.delete ()
329baa95
DE
4933Permanently deletes the @value{GDBN} breakpoint. This also
4934invalidates the Python @code{Breakpoint} object. Any further access
4935to this object's attributes or methods will raise an error.
4936@end defun
4937
4938@defvar Breakpoint.enabled
4939This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
4940@code{False} otherwise. This attribute is writable. You can use it to enable
4941or disable the breakpoint.
329baa95
DE
4942@end defvar
4943
4944@defvar Breakpoint.silent
4945This attribute is @code{True} if the breakpoint is silent, and
4946@code{False} otherwise. This attribute is writable.
4947
4948Note that a breakpoint can also be silent if it has commands and the
4949first command is @code{silent}. This is not reported by the
4950@code{silent} attribute.
4951@end defvar
4952
93daf339
TT
4953@defvar Breakpoint.pending
4954This attribute is @code{True} if the breakpoint is pending, and
4955@code{False} otherwise. @xref{Set Breaks}. This attribute is
4956read-only.
4957@end defvar
4958
22a02324 4959@anchor{python_breakpoint_thread}
329baa95 4960@defvar Breakpoint.thread
5d5658a1
PA
4961If the breakpoint is thread-specific, this attribute holds the
4962thread's global id. If the breakpoint is not thread-specific, this
4963attribute is @code{None}. This attribute is writable.
329baa95
DE
4964@end defvar
4965
4966@defvar Breakpoint.task
4967If the breakpoint is Ada task-specific, this attribute holds the Ada task
4968id. If the breakpoint is not task-specific (or the underlying
4969language is not Ada), this attribute is @code{None}. This attribute
4970is writable.
4971@end defvar
4972
4973@defvar Breakpoint.ignore_count
4974This attribute holds the ignore count for the breakpoint, an integer.
4975This attribute is writable.
4976@end defvar
4977
4978@defvar Breakpoint.number
4979This attribute holds the breakpoint's number --- the identifier used by
4980the user to manipulate the breakpoint. This attribute is not writable.
4981@end defvar
4982
4983@defvar Breakpoint.type
4984This attribute holds the breakpoint's type --- the identifier used to
4985determine the actual breakpoint type or use-case. This attribute is not
4986writable.
4987@end defvar
4988
4989@defvar Breakpoint.visible
4990This attribute tells whether the breakpoint is visible to the user
4991when set, or when the @samp{info breakpoints} command is run. This
4992attribute is not writable.
4993@end defvar
4994
4995@defvar Breakpoint.temporary
4996This attribute indicates whether the breakpoint was created as a
4997temporary breakpoint. Temporary breakpoints are automatically deleted
4998after that breakpoint has been hit. Access to this attribute, and all
4999other attributes and functions other than the @code{is_valid}
5000function, will result in an error after the breakpoint has been hit
5001(as it has been automatically deleted). This attribute is not
5002writable.
5003@end defvar
5004
329baa95
DE
5005@defvar Breakpoint.hit_count
5006This attribute holds the hit count for the breakpoint, an integer.
5007This attribute is writable, but currently it can only be set to zero.
5008@end defvar
5009
5010@defvar Breakpoint.location
5011This attribute holds the location of the breakpoint, as specified by
5012the user. It is a string. If the breakpoint does not have a location
5013(that is, it is a watchpoint) the attribute's value is @code{None}. This
5014attribute is not writable.
5015@end defvar
5016
5017@defvar Breakpoint.expression
5018This attribute holds a breakpoint expression, as specified by
5019the user. It is a string. If the breakpoint does not have an
5020expression (the breakpoint is not a watchpoint) the attribute's value
5021is @code{None}. This attribute is not writable.
5022@end defvar
5023
5024@defvar Breakpoint.condition
5025This attribute holds the condition of the breakpoint, as specified by
5026the user. It is a string. If there is no condition, this attribute's
5027value is @code{None}. This attribute is writable.
5028@end defvar
5029
5030@defvar Breakpoint.commands
5031This attribute holds the commands attached to the breakpoint. If
5032there are commands, this attribute's value is a string holding all the
5033commands, separated by newlines. If there are no commands, this
5034attribute is @code{None}. This attribute is not writable.
5035@end defvar
5036
5037@node Finish Breakpoints in Python
5038@subsubsection Finish Breakpoints
5039
5040@cindex python finish breakpoints
5041@tindex gdb.FinishBreakpoint
5042
5043A finish breakpoint is a temporary breakpoint set at the return address of
5044a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5045extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5046and deleted when the execution will run out of the breakpoint scope (i.e.@:
5047@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5048Finish breakpoints are thread specific and must be create with the right
5049thread selected.
5050
5051@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5052Create a finish breakpoint at the return address of the @code{gdb.Frame}
5053object @var{frame}. If @var{frame} is not provided, this defaults to the
5054newest frame. The optional @var{internal} argument allows the breakpoint to
5055become invisible to the user. @xref{Breakpoints In Python}, for further
5056details about this argument.
5057@end defun
5058
5059@defun FinishBreakpoint.out_of_scope (self)
5060In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5061@code{return} command, @dots{}), a function may not properly terminate, and
5062thus never hit the finish breakpoint. When @value{GDBN} notices such a
5063situation, the @code{out_of_scope} callback will be triggered.
5064
5065You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5066method:
5067
5068@smallexample
5069class MyFinishBreakpoint (gdb.FinishBreakpoint)
5070 def stop (self):
5071 print "normal finish"
5072 return True
5073
5074 def out_of_scope ():
5075 print "abnormal finish"
5076@end smallexample
5077@end defun
5078
5079@defvar FinishBreakpoint.return_value
5080When @value{GDBN} is stopped at a finish breakpoint and the frame
5081used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5082attribute will contain a @code{gdb.Value} object corresponding to the return
5083value of the function. The value will be @code{None} if the function return
5084type is @code{void} or if the return value was not computable. This attribute
5085is not writable.
5086@end defvar
5087
5088@node Lazy Strings In Python
5089@subsubsection Python representation of lazy strings.
5090
5091@cindex lazy strings in python
5092@tindex gdb.LazyString
5093
5094A @dfn{lazy string} is a string whose contents is not retrieved or
5095encoded until it is needed.
5096
5097A @code{gdb.LazyString} is represented in @value{GDBN} as an
5098@code{address} that points to a region of memory, an @code{encoding}
5099that will be used to encode that region of memory, and a @code{length}
5100to delimit the region of memory that represents the string. The
5101difference between a @code{gdb.LazyString} and a string wrapped within
5102a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5103differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5104retrieved and encoded during printing, while a @code{gdb.Value}
5105wrapping a string is immediately retrieved and encoded on creation.
5106
5107A @code{gdb.LazyString} object has the following functions:
5108
5109@defun LazyString.value ()
5110Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5111will point to the string in memory, but will lose all the delayed
5112retrieval, encoding and handling that @value{GDBN} applies to a
5113@code{gdb.LazyString}.
5114@end defun
5115
5116@defvar LazyString.address
5117This attribute holds the address of the string. This attribute is not
5118writable.
5119@end defvar
5120
5121@defvar LazyString.length
5122This attribute holds the length of the string in characters. If the
5123length is -1, then the string will be fetched and encoded up to the
5124first null of appropriate width. This attribute is not writable.
5125@end defvar
5126
5127@defvar LazyString.encoding
5128This attribute holds the encoding that will be applied to the string
5129when the string is printed by @value{GDBN}. If the encoding is not
5130set, or contains an empty string, then @value{GDBN} will select the
5131most appropriate encoding when the string is printed. This attribute
5132is not writable.
5133@end defvar
5134
5135@defvar LazyString.type
5136This attribute holds the type that is represented by the lazy string's
f8d99587 5137type. For a lazy string this is a pointer or array type. To
329baa95
DE
5138resolve this to the lazy string's character type, use the type's
5139@code{target} method. @xref{Types In Python}. This attribute is not
5140writable.
5141@end defvar
5142
5143@node Architectures In Python
5144@subsubsection Python representation of architectures
5145@cindex Python architectures
5146
5147@value{GDBN} uses architecture specific parameters and artifacts in a
5148number of its various computations. An architecture is represented
5149by an instance of the @code{gdb.Architecture} class.
5150
5151A @code{gdb.Architecture} class has the following methods:
5152
5153@defun Architecture.name ()
5154Return the name (string value) of the architecture.
5155@end defun
5156
5157@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5158Return a list of disassembled instructions starting from the memory
5159address @var{start_pc}. The optional arguments @var{end_pc} and
5160@var{count} determine the number of instructions in the returned list.
5161If both the optional arguments @var{end_pc} and @var{count} are
5162specified, then a list of at most @var{count} disassembled instructions
5163whose start address falls in the closed memory address interval from
5164@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5165specified, but @var{count} is specified, then @var{count} number of
5166instructions starting from the address @var{start_pc} are returned. If
5167@var{count} is not specified but @var{end_pc} is specified, then all
5168instructions whose start address falls in the closed memory address
5169interval from @var{start_pc} to @var{end_pc} are returned. If neither
5170@var{end_pc} nor @var{count} are specified, then a single instruction at
5171@var{start_pc} is returned. For all of these cases, each element of the
5172returned list is a Python @code{dict} with the following string keys:
5173
5174@table @code
5175
5176@item addr
5177The value corresponding to this key is a Python long integer capturing
5178the memory address of the instruction.
5179
5180@item asm
5181The value corresponding to this key is a string value which represents
5182the instruction with assembly language mnemonics. The assembly
5183language flavor used is the same as that specified by the current CLI
5184variable @code{disassembly-flavor}. @xref{Machine Code}.
5185
5186@item length
5187The value corresponding to this key is the length (integer value) of the
5188instruction in bytes.
5189
5190@end table
5191@end defun
5192
5193@node Python Auto-loading
5194@subsection Python Auto-loading
5195@cindex Python auto-loading
5196
5197When a new object file is read (for example, due to the @code{file}
5198command, or because the inferior has loaded a shared library),
5199@value{GDBN} will look for Python support scripts in several ways:
5200@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5201@xref{Auto-loading extensions}.
5202
5203The auto-loading feature is useful for supplying application-specific
5204debugging commands and scripts.
5205
5206Auto-loading can be enabled or disabled,
5207and the list of auto-loaded scripts can be printed.
5208
5209@table @code
5210@anchor{set auto-load python-scripts}
5211@kindex set auto-load python-scripts
5212@item set auto-load python-scripts [on|off]
5213Enable or disable the auto-loading of Python scripts.
5214
5215@anchor{show auto-load python-scripts}
5216@kindex show auto-load python-scripts
5217@item show auto-load python-scripts
5218Show whether auto-loading of Python scripts is enabled or disabled.
5219
5220@anchor{info auto-load python-scripts}
5221@kindex info auto-load python-scripts
5222@cindex print list of auto-loaded Python scripts
5223@item info auto-load python-scripts [@var{regexp}]
5224Print the list of all Python scripts that @value{GDBN} auto-loaded.
5225
5226Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5227the @code{.debug_gdb_scripts} section and were either not found
5228(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5229@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5230This is useful because their names are not printed when @value{GDBN}
5231tries to load them and fails. There may be many of them, and printing
5232an error message for each one is problematic.
5233
5234If @var{regexp} is supplied only Python scripts with matching names are printed.
5235
5236Example:
5237
5238@smallexample
5239(gdb) info auto-load python-scripts
5240Loaded Script
5241Yes py-section-script.py
5242 full name: /tmp/py-section-script.py
5243No my-foo-pretty-printers.py
5244@end smallexample
5245@end table
5246
9f050062 5247When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5248@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5249function (@pxref{Objfiles In Python}). This can be useful for
5250registering objfile-specific pretty-printers and frame-filters.
5251
5252@node Python modules
5253@subsection Python modules
5254@cindex python modules
5255
5256@value{GDBN} comes with several modules to assist writing Python code.
5257
5258@menu
5259* gdb.printing:: Building and registering pretty-printers.
5260* gdb.types:: Utilities for working with types.
5261* gdb.prompt:: Utilities for prompt value substitution.
5262@end menu
5263
5264@node gdb.printing
5265@subsubsection gdb.printing
5266@cindex gdb.printing
5267
5268This module provides a collection of utilities for working with
5269pretty-printers.
5270
5271@table @code
5272@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5273This class specifies the API that makes @samp{info pretty-printer},
5274@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5275Pretty-printers should generally inherit from this class.
5276
5277@item SubPrettyPrinter (@var{name})
5278For printers that handle multiple types, this class specifies the
5279corresponding API for the subprinters.
5280
5281@item RegexpCollectionPrettyPrinter (@var{name})
5282Utility class for handling multiple printers, all recognized via
5283regular expressions.
5284@xref{Writing a Pretty-Printer}, for an example.
5285
5286@item FlagEnumerationPrinter (@var{name})
5287A pretty-printer which handles printing of @code{enum} values. Unlike
5288@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5289work properly when there is some overlap between the enumeration
697aa1b7
EZ
5290constants. The argument @var{name} is the name of the printer and
5291also the name of the @code{enum} type to look up.
329baa95
DE
5292
5293@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5294Register @var{printer} with the pretty-printer list of @var{obj}.
5295If @var{replace} is @code{True} then any existing copy of the printer
5296is replaced. Otherwise a @code{RuntimeError} exception is raised
5297if a printer with the same name already exists.
5298@end table
5299
5300@node gdb.types
5301@subsubsection gdb.types
5302@cindex gdb.types
5303
5304This module provides a collection of utilities for working with
5305@code{gdb.Type} objects.
5306
5307@table @code
5308@item get_basic_type (@var{type})
5309Return @var{type} with const and volatile qualifiers stripped,
5310and with typedefs and C@t{++} references converted to the underlying type.
5311
5312C@t{++} example:
5313
5314@smallexample
5315typedef const int const_int;
5316const_int foo (3);
5317const_int& foo_ref (foo);
5318int main () @{ return 0; @}
5319@end smallexample
5320
5321Then in gdb:
5322
5323@smallexample
5324(gdb) start
5325(gdb) python import gdb.types
5326(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5327(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5328int
5329@end smallexample
5330
5331@item has_field (@var{type}, @var{field})
5332Return @code{True} if @var{type}, assumed to be a type with fields
5333(e.g., a structure or union), has field @var{field}.
5334
5335@item make_enum_dict (@var{enum_type})
5336Return a Python @code{dictionary} type produced from @var{enum_type}.
5337
5338@item deep_items (@var{type})
5339Returns a Python iterator similar to the standard
5340@code{gdb.Type.iteritems} method, except that the iterator returned
5341by @code{deep_items} will recursively traverse anonymous struct or
5342union fields. For example:
5343
5344@smallexample
5345struct A
5346@{
5347 int a;
5348 union @{
5349 int b0;
5350 int b1;
5351 @};
5352@};
5353@end smallexample
5354
5355@noindent
5356Then in @value{GDBN}:
5357@smallexample
5358(@value{GDBP}) python import gdb.types
5359(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5360(@value{GDBP}) python print struct_a.keys ()
5361@{['a', '']@}
5362(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5363@{['a', 'b0', 'b1']@}
5364@end smallexample
5365
5366@item get_type_recognizers ()
5367Return a list of the enabled type recognizers for the current context.
5368This is called by @value{GDBN} during the type-printing process
5369(@pxref{Type Printing API}).
5370
5371@item apply_type_recognizers (recognizers, type_obj)
5372Apply the type recognizers, @var{recognizers}, to the type object
5373@var{type_obj}. If any recognizer returns a string, return that
5374string. Otherwise, return @code{None}. This is called by
5375@value{GDBN} during the type-printing process (@pxref{Type Printing
5376API}).
5377
5378@item register_type_printer (locus, printer)
697aa1b7
EZ
5379This is a convenience function to register a type printer
5380@var{printer}. The printer must implement the type printer protocol.
5381The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5382the printer is registered with that objfile; a @code{gdb.Progspace},
5383in which case the printer is registered with that progspace; or
5384@code{None}, in which case the printer is registered globally.
329baa95
DE
5385
5386@item TypePrinter
5387This is a base class that implements the type printer protocol. Type
5388printers are encouraged, but not required, to derive from this class.
5389It defines a constructor:
5390
5391@defmethod TypePrinter __init__ (self, name)
5392Initialize the type printer with the given name. The new printer
5393starts in the enabled state.
5394@end defmethod
5395
5396@end table
5397
5398@node gdb.prompt
5399@subsubsection gdb.prompt
5400@cindex gdb.prompt
5401
5402This module provides a method for prompt value-substitution.
5403
5404@table @code
5405@item substitute_prompt (@var{string})
5406Return @var{string} with escape sequences substituted by values. Some
5407escape sequences take arguments. You can specify arguments inside
5408``@{@}'' immediately following the escape sequence.
5409
5410The escape sequences you can pass to this function are:
5411
5412@table @code
5413@item \\
5414Substitute a backslash.
5415@item \e
5416Substitute an ESC character.
5417@item \f
5418Substitute the selected frame; an argument names a frame parameter.
5419@item \n
5420Substitute a newline.
5421@item \p
5422Substitute a parameter's value; the argument names the parameter.
5423@item \r
5424Substitute a carriage return.
5425@item \t
5426Substitute the selected thread; an argument names a thread parameter.
5427@item \v
5428Substitute the version of GDB.
5429@item \w
5430Substitute the current working directory.
5431@item \[
5432Begin a sequence of non-printing characters. These sequences are
5433typically used with the ESC character, and are not counted in the string
5434length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5435blue-colored ``(gdb)'' prompt where the length is five.
5436@item \]
5437End a sequence of non-printing characters.
5438@end table
5439
5440For example:
5441
5442@smallexample
5443substitute_prompt (``frame: \f,
5444 print arguments: \p@{print frame-arguments@}'')
5445@end smallexample
5446
5447@exdent will return the string:
5448
5449@smallexample
5450"frame: main, print arguments: scalars"
5451@end smallexample
5452@end table
This page took 1.150235 seconds and 4 git commands to generate.