Add gdb.Type.optimized_out method.
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
32d0add0 1@c Copyright (C) 2008-2015 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 147* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
148* Xmethods In Python:: Adding and replacing methods of C++ classes.
149* Xmethod API:: Xmethod types.
150* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
151* Inferiors In Python:: Python representation of inferiors (processes)
152* Events In Python:: Listening for events from @value{GDBN}.
153* Threads In Python:: Accessing inferior threads from Python.
154* Commands In Python:: Implementing new commands in Python.
155* Parameters In Python:: Adding new @value{GDBN} parameters.
156* Functions In Python:: Writing new convenience functions.
157* Progspaces In Python:: Program spaces.
158* Objfiles In Python:: Object files.
159* Frames In Python:: Accessing inferior stack frames from Python.
160* Blocks In Python:: Accessing blocks from Python.
161* Symbols In Python:: Python representation of symbols.
162* Symbol Tables In Python:: Python representation of symbol tables.
163* Line Tables In Python:: Python representation of line tables.
164* Breakpoints In Python:: Manipulating breakpoints using Python.
165* Finish Breakpoints in Python:: Setting Breakpoints on function return
166 using Python.
167* Lazy Strings In Python:: Python representation of lazy strings.
168* Architectures In Python:: Python representation of architectures.
169@end menu
170
171@node Basic Python
172@subsubsection Basic Python
173
174@cindex python stdout
175@cindex python pagination
176At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
177@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
178A Python program which outputs to one of these streams may have its
179output interrupted by the user (@pxref{Screen Size}). In this
180situation, a Python @code{KeyboardInterrupt} exception is thrown.
181
182Some care must be taken when writing Python code to run in
183@value{GDBN}. Two things worth noting in particular:
184
185@itemize @bullet
186@item
187@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
188Python code must not override these, or even change the options using
189@code{sigaction}. If your program changes the handling of these
190signals, @value{GDBN} will most likely stop working correctly. Note
191that it is unfortunately common for GUI toolkits to install a
192@code{SIGCHLD} handler.
193
194@item
195@value{GDBN} takes care to mark its internal file descriptors as
196close-on-exec. However, this cannot be done in a thread-safe way on
197all platforms. Your Python programs should be aware of this and
198should both create new file descriptors with the close-on-exec flag
199set and arrange to close unneeded file descriptors before starting a
200child process.
201@end itemize
202
203@cindex python functions
204@cindex python module
205@cindex gdb module
206@value{GDBN} introduces a new Python module, named @code{gdb}. All
207methods and classes added by @value{GDBN} are placed in this module.
208@value{GDBN} automatically @code{import}s the @code{gdb} module for
209use in all scripts evaluated by the @code{python} command.
210
211@findex gdb.PYTHONDIR
212@defvar gdb.PYTHONDIR
213A string containing the python directory (@pxref{Python}).
214@end defvar
215
216@findex gdb.execute
217@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
218Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
219If a GDB exception happens while @var{command} runs, it is
220translated as described in @ref{Exception Handling,,Exception Handling}.
221
697aa1b7 222The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
223command as having originated from the user invoking it interactively.
224It must be a boolean value. If omitted, it defaults to @code{False}.
225
226By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
227@value{GDBN}'s standard output (and to the log output if logging is
228turned on). If the @var{to_string} parameter is
329baa95
DE
229@code{True}, then output will be collected by @code{gdb.execute} and
230returned as a string. The default is @code{False}, in which case the
231return value is @code{None}. If @var{to_string} is @code{True}, the
232@value{GDBN} virtual terminal will be temporarily set to unlimited width
233and height, and its pagination will be disabled; @pxref{Screen Size}.
234@end defun
235
236@findex gdb.breakpoints
237@defun gdb.breakpoints ()
238Return a sequence holding all of @value{GDBN}'s breakpoints.
239@xref{Breakpoints In Python}, for more information.
240@end defun
241
242@findex gdb.parameter
243@defun gdb.parameter (parameter)
697aa1b7
EZ
244Return the value of a @value{GDBN} @var{parameter} given by its name,
245a string; the parameter name string may contain spaces if the parameter has a
246multi-part name. For example, @samp{print object} is a valid
247parameter name.
329baa95
DE
248
249If the named parameter does not exist, this function throws a
250@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
251parameter's value is converted to a Python value of the appropriate
252type, and returned.
253@end defun
254
255@findex gdb.history
256@defun gdb.history (number)
257Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 258History}). The @var{number} argument indicates which history element to return.
329baa95
DE
259If @var{number} is negative, then @value{GDBN} will take its absolute value
260and count backward from the last element (i.e., the most recent element) to
261find the value to return. If @var{number} is zero, then @value{GDBN} will
262return the most recent element. If the element specified by @var{number}
263doesn't exist in the value history, a @code{gdb.error} exception will be
264raised.
265
266If no exception is raised, the return value is always an instance of
267@code{gdb.Value} (@pxref{Values From Inferior}).
268@end defun
269
270@findex gdb.parse_and_eval
271@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
272Parse @var{expression}, which must be a string, as an expression in
273the current language, evaluate it, and return the result as a
274@code{gdb.Value}.
329baa95
DE
275
276This function can be useful when implementing a new command
277(@pxref{Commands In Python}), as it provides a way to parse the
278command's argument as an expression. It is also useful simply to
279compute values, for example, it is the only way to get the value of a
280convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
281@end defun
282
283@findex gdb.find_pc_line
284@defun gdb.find_pc_line (pc)
285Return the @code{gdb.Symtab_and_line} object corresponding to the
286@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
287value of @var{pc} is passed as an argument, then the @code{symtab} and
288@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
289will be @code{None} and 0 respectively.
290@end defun
291
292@findex gdb.post_event
293@defun gdb.post_event (event)
294Put @var{event}, a callable object taking no arguments, into
295@value{GDBN}'s internal event queue. This callable will be invoked at
296some later point, during @value{GDBN}'s event processing. Events
297posted using @code{post_event} will be run in the order in which they
298were posted; however, there is no way to know when they will be
299processed relative to other events inside @value{GDBN}.
300
301@value{GDBN} is not thread-safe. If your Python program uses multiple
302threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 303functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
304this. For example:
305
306@smallexample
307(@value{GDBP}) python
308>import threading
309>
310>class Writer():
311> def __init__(self, message):
312> self.message = message;
313> def __call__(self):
314> gdb.write(self.message)
315>
316>class MyThread1 (threading.Thread):
317> def run (self):
318> gdb.post_event(Writer("Hello "))
319>
320>class MyThread2 (threading.Thread):
321> def run (self):
322> gdb.post_event(Writer("World\n"))
323>
324>MyThread1().start()
325>MyThread2().start()
326>end
327(@value{GDBP}) Hello World
328@end smallexample
329@end defun
330
331@findex gdb.write
332@defun gdb.write (string @r{[}, stream{]})
333Print a string to @value{GDBN}'s paginated output stream. The
334optional @var{stream} determines the stream to print to. The default
335stream is @value{GDBN}'s standard output stream. Possible stream
336values are:
337
338@table @code
339@findex STDOUT
340@findex gdb.STDOUT
341@item gdb.STDOUT
342@value{GDBN}'s standard output stream.
343
344@findex STDERR
345@findex gdb.STDERR
346@item gdb.STDERR
347@value{GDBN}'s standard error stream.
348
349@findex STDLOG
350@findex gdb.STDLOG
351@item gdb.STDLOG
352@value{GDBN}'s log stream (@pxref{Logging Output}).
353@end table
354
355Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
356call this function and will automatically direct the output to the
357relevant stream.
358@end defun
359
360@findex gdb.flush
361@defun gdb.flush ()
362Flush the buffer of a @value{GDBN} paginated stream so that the
363contents are displayed immediately. @value{GDBN} will flush the
364contents of a stream automatically when it encounters a newline in the
365buffer. The optional @var{stream} determines the stream to flush. The
366default stream is @value{GDBN}'s standard output stream. Possible
367stream values are:
368
369@table @code
370@findex STDOUT
371@findex gdb.STDOUT
372@item gdb.STDOUT
373@value{GDBN}'s standard output stream.
374
375@findex STDERR
376@findex gdb.STDERR
377@item gdb.STDERR
378@value{GDBN}'s standard error stream.
379
380@findex STDLOG
381@findex gdb.STDLOG
382@item gdb.STDLOG
383@value{GDBN}'s log stream (@pxref{Logging Output}).
384
385@end table
386
387Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
388call this function for the relevant stream.
389@end defun
390
391@findex gdb.target_charset
392@defun gdb.target_charset ()
393Return the name of the current target character set (@pxref{Character
394Sets}). This differs from @code{gdb.parameter('target-charset')} in
395that @samp{auto} is never returned.
396@end defun
397
398@findex gdb.target_wide_charset
399@defun gdb.target_wide_charset ()
400Return the name of the current target wide character set
401(@pxref{Character Sets}). This differs from
402@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
403never returned.
404@end defun
405
406@findex gdb.solib_name
407@defun gdb.solib_name (address)
408Return the name of the shared library holding the given @var{address}
409as a string, or @code{None}.
410@end defun
411
412@findex gdb.decode_line
413@defun gdb.decode_line @r{[}expression@r{]}
414Return locations of the line specified by @var{expression}, or of the
415current line if no argument was given. This function returns a Python
416tuple containing two elements. The first element contains a string
417holding any unparsed section of @var{expression} (or @code{None} if
418the expression has been fully parsed). The second element contains
419either @code{None} or another tuple that contains all the locations
420that match the expression represented as @code{gdb.Symtab_and_line}
421objects (@pxref{Symbol Tables In Python}). If @var{expression} is
422provided, it is decoded the way that @value{GDBN}'s inbuilt
423@code{break} or @code{edit} commands do (@pxref{Specify Location}).
424@end defun
425
426@defun gdb.prompt_hook (current_prompt)
427@anchor{prompt_hook}
428
429If @var{prompt_hook} is callable, @value{GDBN} will call the method
430assigned to this operation before a prompt is displayed by
431@value{GDBN}.
432
433The parameter @code{current_prompt} contains the current @value{GDBN}
434prompt. This method must return a Python string, or @code{None}. If
435a string is returned, the @value{GDBN} prompt will be set to that
436string. If @code{None} is returned, @value{GDBN} will continue to use
437the current prompt.
438
439Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
440such as those used by readline for command input, and annotation
441related prompts are prohibited from being changed.
442@end defun
443
444@node Exception Handling
445@subsubsection Exception Handling
446@cindex python exceptions
447@cindex exceptions, python
448
449When executing the @code{python} command, Python exceptions
450uncaught within the Python code are translated to calls to
451@value{GDBN} error-reporting mechanism. If the command that called
452@code{python} does not handle the error, @value{GDBN} will
453terminate it and print an error message containing the Python
454exception name, the associated value, and the Python call stack
455backtrace at the point where the exception was raised. Example:
456
457@smallexample
458(@value{GDBP}) python print foo
459Traceback (most recent call last):
460 File "<string>", line 1, in <module>
461NameError: name 'foo' is not defined
462@end smallexample
463
464@value{GDBN} errors that happen in @value{GDBN} commands invoked by
465Python code are converted to Python exceptions. The type of the
466Python exception depends on the error.
467
468@ftable @code
469@item gdb.error
470This is the base class for most exceptions generated by @value{GDBN}.
471It is derived from @code{RuntimeError}, for compatibility with earlier
472versions of @value{GDBN}.
473
474If an error occurring in @value{GDBN} does not fit into some more
475specific category, then the generated exception will have this type.
476
477@item gdb.MemoryError
478This is a subclass of @code{gdb.error} which is thrown when an
479operation tried to access invalid memory in the inferior.
480
481@item KeyboardInterrupt
482User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
483prompt) is translated to a Python @code{KeyboardInterrupt} exception.
484@end ftable
485
486In all cases, your exception handler will see the @value{GDBN} error
487message as its value and the Python call stack backtrace at the Python
488statement closest to where the @value{GDBN} error occured as the
489traceback.
490
491@findex gdb.GdbError
492When implementing @value{GDBN} commands in Python via @code{gdb.Command},
493it is useful to be able to throw an exception that doesn't cause a
494traceback to be printed. For example, the user may have invoked the
495command incorrectly. Use the @code{gdb.GdbError} exception
496to handle this case. Example:
497
498@smallexample
499(gdb) python
500>class HelloWorld (gdb.Command):
501> """Greet the whole world."""
502> def __init__ (self):
503> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
504> def invoke (self, args, from_tty):
505> argv = gdb.string_to_argv (args)
506> if len (argv) != 0:
507> raise gdb.GdbError ("hello-world takes no arguments")
508> print "Hello, World!"
509>HelloWorld ()
510>end
511(gdb) hello-world 42
512hello-world takes no arguments
513@end smallexample
514
515@node Values From Inferior
516@subsubsection Values From Inferior
517@cindex values from inferior, with Python
518@cindex python, working with values from inferior
519
520@cindex @code{gdb.Value}
521@value{GDBN} provides values it obtains from the inferior program in
522an object of type @code{gdb.Value}. @value{GDBN} uses this object
523for its internal bookkeeping of the inferior's values, and for
524fetching values when necessary.
525
526Inferior values that are simple scalars can be used directly in
527Python expressions that are valid for the value's data type. Here's
528an example for an integer or floating-point value @code{some_val}:
529
530@smallexample
531bar = some_val + 2
532@end smallexample
533
534@noindent
535As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
536whose values are of the same type as those of @code{some_val}. Valid
537Python operations can also be performed on @code{gdb.Value} objects
538representing a @code{struct} or @code{class} object. For such cases,
539the overloaded operator (if present), is used to perform the operation.
540For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
541representing instances of a @code{class} which overloads the @code{+}
542operator, then one can use the @code{+} operator in their Python script
543as follows:
544
545@smallexample
546val3 = val1 + val2
547@end smallexample
548
549@noindent
550The result of the operation @code{val3} is also a @code{gdb.Value}
551object corresponding to the value returned by the overloaded @code{+}
552operator. In general, overloaded operators are invoked for the
553following operations: @code{+} (binary addition), @code{-} (binary
554subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
555@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
556
557Inferior values that are structures or instances of some class can
558be accessed using the Python @dfn{dictionary syntax}. For example, if
559@code{some_val} is a @code{gdb.Value} instance holding a structure, you
560can access its @code{foo} element with:
561
562@smallexample
563bar = some_val['foo']
564@end smallexample
565
566@cindex getting structure elements using gdb.Field objects as subscripts
567Again, @code{bar} will also be a @code{gdb.Value} object. Structure
568elements can also be accessed by using @code{gdb.Field} objects as
569subscripts (@pxref{Types In Python}, for more information on
570@code{gdb.Field} objects). For example, if @code{foo_field} is a
571@code{gdb.Field} object corresponding to element @code{foo} of the above
572structure, then @code{bar} can also be accessed as follows:
573
574@smallexample
575bar = some_val[foo_field]
576@end smallexample
577
578A @code{gdb.Value} that represents a function can be executed via
579inferior function call. Any arguments provided to the call must match
580the function's prototype, and must be provided in the order specified
581by that prototype.
582
583For example, @code{some_val} is a @code{gdb.Value} instance
584representing a function that takes two integers as arguments. To
585execute this function, call it like so:
586
587@smallexample
588result = some_val (10,20)
589@end smallexample
590
591Any values returned from a function call will be stored as a
592@code{gdb.Value}.
593
594The following attributes are provided:
595
596@defvar Value.address
597If this object is addressable, this read-only attribute holds a
598@code{gdb.Value} object representing the address. Otherwise,
599this attribute holds @code{None}.
600@end defvar
601
602@cindex optimized out value in Python
603@defvar Value.is_optimized_out
604This read-only boolean attribute is true if the compiler optimized out
605this value, thus it is not available for fetching from the inferior.
606@end defvar
607
608@defvar Value.type
609The type of this @code{gdb.Value}. The value of this attribute is a
610@code{gdb.Type} object (@pxref{Types In Python}).
611@end defvar
612
613@defvar Value.dynamic_type
614The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
615type information (@acronym{RTTI}) to determine the dynamic type of the
616value. If this value is of class type, it will return the class in
617which the value is embedded, if any. If this value is of pointer or
618reference to a class type, it will compute the dynamic type of the
619referenced object, and return a pointer or reference to that type,
620respectively. In all other cases, it will return the value's static
621type.
622
623Note that this feature will only work when debugging a C@t{++} program
624that includes @acronym{RTTI} for the object in question. Otherwise,
625it will just return the static type of the value as in @kbd{ptype foo}
626(@pxref{Symbols, ptype}).
627@end defvar
628
629@defvar Value.is_lazy
630The value of this read-only boolean attribute is @code{True} if this
631@code{gdb.Value} has not yet been fetched from the inferior.
632@value{GDBN} does not fetch values until necessary, for efficiency.
633For example:
634
635@smallexample
636myval = gdb.parse_and_eval ('somevar')
637@end smallexample
638
639The value of @code{somevar} is not fetched at this time. It will be
640fetched when the value is needed, or when the @code{fetch_lazy}
641method is invoked.
642@end defvar
643
644The following methods are provided:
645
646@defun Value.__init__ (@var{val})
647Many Python values can be converted directly to a @code{gdb.Value} via
648this object initializer. Specifically:
649
650@table @asis
651@item Python boolean
652A Python boolean is converted to the boolean type from the current
653language.
654
655@item Python integer
656A Python integer is converted to the C @code{long} type for the
657current architecture.
658
659@item Python long
660A Python long is converted to the C @code{long long} type for the
661current architecture.
662
663@item Python float
664A Python float is converted to the C @code{double} type for the
665current architecture.
666
667@item Python string
b3ce5e5f
DE
668A Python string is converted to a target string in the current target
669language using the current target encoding.
670If a character cannot be represented in the current target encoding,
671then an exception is thrown.
329baa95
DE
672
673@item @code{gdb.Value}
674If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
675
676@item @code{gdb.LazyString}
677If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
678Python}), then the lazy string's @code{value} method is called, and
679its result is used.
680@end table
681@end defun
682
683@defun Value.cast (type)
684Return a new instance of @code{gdb.Value} that is the result of
685casting this instance to the type described by @var{type}, which must
686be a @code{gdb.Type} object. If the cast cannot be performed for some
687reason, this method throws an exception.
688@end defun
689
690@defun Value.dereference ()
691For pointer data types, this method returns a new @code{gdb.Value} object
692whose contents is the object pointed to by the pointer. For example, if
693@code{foo} is a C pointer to an @code{int}, declared in your C program as
694
695@smallexample
696int *foo;
697@end smallexample
698
699@noindent
700then you can use the corresponding @code{gdb.Value} to access what
701@code{foo} points to like this:
702
703@smallexample
704bar = foo.dereference ()
705@end smallexample
706
707The result @code{bar} will be a @code{gdb.Value} object holding the
708value pointed to by @code{foo}.
709
710A similar function @code{Value.referenced_value} exists which also
711returns @code{gdb.Value} objects corresonding to the values pointed to
712by pointer values (and additionally, values referenced by reference
713values). However, the behavior of @code{Value.dereference}
714differs from @code{Value.referenced_value} by the fact that the
715behavior of @code{Value.dereference} is identical to applying the C
716unary operator @code{*} on a given value. For example, consider a
717reference to a pointer @code{ptrref}, declared in your C@t{++} program
718as
719
720@smallexample
721typedef int *intptr;
722...
723int val = 10;
724intptr ptr = &val;
725intptr &ptrref = ptr;
726@end smallexample
727
728Though @code{ptrref} is a reference value, one can apply the method
729@code{Value.dereference} to the @code{gdb.Value} object corresponding
730to it and obtain a @code{gdb.Value} which is identical to that
731corresponding to @code{val}. However, if you apply the method
732@code{Value.referenced_value}, the result would be a @code{gdb.Value}
733object identical to that corresponding to @code{ptr}.
734
735@smallexample
736py_ptrref = gdb.parse_and_eval ("ptrref")
737py_val = py_ptrref.dereference ()
738py_ptr = py_ptrref.referenced_value ()
739@end smallexample
740
741The @code{gdb.Value} object @code{py_val} is identical to that
742corresponding to @code{val}, and @code{py_ptr} is identical to that
743corresponding to @code{ptr}. In general, @code{Value.dereference} can
744be applied whenever the C unary operator @code{*} can be applied
745to the corresponding C value. For those cases where applying both
746@code{Value.dereference} and @code{Value.referenced_value} is allowed,
747the results obtained need not be identical (as we have seen in the above
748example). The results are however identical when applied on
749@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
750objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
751@end defun
752
753@defun Value.referenced_value ()
754For pointer or reference data types, this method returns a new
755@code{gdb.Value} object corresponding to the value referenced by the
756pointer/reference value. For pointer data types,
757@code{Value.dereference} and @code{Value.referenced_value} produce
758identical results. The difference between these methods is that
759@code{Value.dereference} cannot get the values referenced by reference
760values. For example, consider a reference to an @code{int}, declared
761in your C@t{++} program as
762
763@smallexample
764int val = 10;
765int &ref = val;
766@end smallexample
767
768@noindent
769then applying @code{Value.dereference} to the @code{gdb.Value} object
770corresponding to @code{ref} will result in an error, while applying
771@code{Value.referenced_value} will result in a @code{gdb.Value} object
772identical to that corresponding to @code{val}.
773
774@smallexample
775py_ref = gdb.parse_and_eval ("ref")
776er_ref = py_ref.dereference () # Results in error
777py_val = py_ref.referenced_value () # Returns the referenced value
778@end smallexample
779
780The @code{gdb.Value} object @code{py_val} is identical to that
781corresponding to @code{val}.
782@end defun
783
784@defun Value.dynamic_cast (type)
785Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
786operator were used. Consult a C@t{++} reference for details.
787@end defun
788
789@defun Value.reinterpret_cast (type)
790Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
791operator were used. Consult a C@t{++} reference for details.
792@end defun
793
794@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
795If this @code{gdb.Value} represents a string, then this method
796converts the contents to a Python string. Otherwise, this method will
797throw an exception.
798
b3ce5e5f
DE
799Values are interpreted as strings according to the rules of the
800current language. If the optional length argument is given, the
801string will be converted to that length, and will include any embedded
802zeroes that the string may contain. Otherwise, for languages
803where the string is zero-terminated, the entire string will be
804converted.
329baa95 805
b3ce5e5f
DE
806For example, in C-like languages, a value is a string if it is a pointer
807to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
808or @code{char32_t}.
329baa95
DE
809
810If the optional @var{encoding} argument is given, it must be a string
811naming the encoding of the string in the @code{gdb.Value}, such as
812@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
813the same encodings as the corresponding argument to Python's
814@code{string.decode} method, and the Python codec machinery will be used
815to convert the string. If @var{encoding} is not given, or if
816@var{encoding} is the empty string, then either the @code{target-charset}
817(@pxref{Character Sets}) will be used, or a language-specific encoding
818will be used, if the current language is able to supply one.
819
820The optional @var{errors} argument is the same as the corresponding
821argument to Python's @code{string.decode} method.
822
823If the optional @var{length} argument is given, the string will be
824fetched and converted to the given length.
825@end defun
826
827@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
828If this @code{gdb.Value} represents a string, then this method
829converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
830In Python}). Otherwise, this method will throw an exception.
831
832If the optional @var{encoding} argument is given, it must be a string
833naming the encoding of the @code{gdb.LazyString}. Some examples are:
834@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
835@var{encoding} argument is an encoding that @value{GDBN} does
836recognize, @value{GDBN} will raise an error.
837
838When a lazy string is printed, the @value{GDBN} encoding machinery is
839used to convert the string during printing. If the optional
840@var{encoding} argument is not provided, or is an empty string,
841@value{GDBN} will automatically select the encoding most suitable for
842the string type. For further information on encoding in @value{GDBN}
843please see @ref{Character Sets}.
844
845If the optional @var{length} argument is given, the string will be
846fetched and encoded to the length of characters specified. If
847the @var{length} argument is not provided, the string will be fetched
848and encoded until a null of appropriate width is found.
849@end defun
850
851@defun Value.fetch_lazy ()
852If the @code{gdb.Value} object is currently a lazy value
853(@code{gdb.Value.is_lazy} is @code{True}), then the value is
854fetched from the inferior. Any errors that occur in the process
855will produce a Python exception.
856
857If the @code{gdb.Value} object is not a lazy value, this method
858has no effect.
859
860This method does not return a value.
861@end defun
862
863
864@node Types In Python
865@subsubsection Types In Python
866@cindex types in Python
867@cindex Python, working with types
868
869@tindex gdb.Type
870@value{GDBN} represents types from the inferior using the class
871@code{gdb.Type}.
872
873The following type-related functions are available in the @code{gdb}
874module:
875
876@findex gdb.lookup_type
877@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 878This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
879
880If @var{block} is given, then @var{name} is looked up in that scope.
881Otherwise, it is searched for globally.
882
883Ordinarily, this function will return an instance of @code{gdb.Type}.
884If the named type cannot be found, it will throw an exception.
885@end defun
886
887If the type is a structure or class type, or an enum type, the fields
888of that type can be accessed using the Python @dfn{dictionary syntax}.
889For example, if @code{some_type} is a @code{gdb.Type} instance holding
890a structure type, you can access its @code{foo} field with:
891
892@smallexample
893bar = some_type['foo']
894@end smallexample
895
896@code{bar} will be a @code{gdb.Field} object; see below under the
897description of the @code{Type.fields} method for a description of the
898@code{gdb.Field} class.
899
900An instance of @code{Type} has the following attributes:
901
902@defvar Type.code
903The type code for this type. The type code will be one of the
904@code{TYPE_CODE_} constants defined below.
905@end defvar
906
907@defvar Type.name
908The name of this type. If this type has no name, then @code{None}
909is returned.
910@end defvar
911
912@defvar Type.sizeof
913The size of this type, in target @code{char} units. Usually, a
914target's @code{char} type will be an 8-bit byte. However, on some
915unusual platforms, this type may have a different size.
916@end defvar
917
918@defvar Type.tag
919The tag name for this type. The tag name is the name after
920@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
921languages have this concept. If this type has no tag name, then
922@code{None} is returned.
923@end defvar
924
925The following methods are provided:
926
927@defun Type.fields ()
928For structure and union types, this method returns the fields. Range
929types have two fields, the minimum and maximum values. Enum types
930have one field per enum constant. Function and method types have one
931field per parameter. The base types of C@t{++} classes are also
932represented as fields. If the type has no fields, or does not fit
933into one of these categories, an empty sequence will be returned.
934
935Each field is a @code{gdb.Field} object, with some pre-defined attributes:
936@table @code
937@item bitpos
938This attribute is not available for @code{enum} or @code{static}
939(as in C@t{++} or Java) fields. The value is the position, counting
940in bits, from the start of the containing type.
941
942@item enumval
943This attribute is only available for @code{enum} fields, and its value
944is the enumeration member's integer representation.
945
946@item name
947The name of the field, or @code{None} for anonymous fields.
948
949@item artificial
950This is @code{True} if the field is artificial, usually meaning that
951it was provided by the compiler and not the user. This attribute is
952always provided, and is @code{False} if the field is not artificial.
953
954@item is_base_class
955This is @code{True} if the field represents a base class of a C@t{++}
956structure. This attribute is always provided, and is @code{False}
957if the field is not a base class of the type that is the argument of
958@code{fields}, or if that type was not a C@t{++} class.
959
960@item bitsize
961If the field is packed, or is a bitfield, then this will have a
962non-zero value, which is the size of the field in bits. Otherwise,
963this will be zero; in this case the field's size is given by its type.
964
965@item type
966The type of the field. This is usually an instance of @code{Type},
967but it can be @code{None} in some situations.
968
969@item parent_type
970The type which contains this field. This is an instance of
971@code{gdb.Type}.
972@end table
973@end defun
974
975@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
976Return a new @code{gdb.Type} object which represents an array of this
977type. If one argument is given, it is the inclusive upper bound of
978the array; in this case the lower bound is zero. If two arguments are
979given, the first argument is the lower bound of the array, and the
980second argument is the upper bound of the array. An array's length
981must not be negative, but the bounds can be.
982@end defun
983
984@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
985Return a new @code{gdb.Type} object which represents a vector of this
986type. If one argument is given, it is the inclusive upper bound of
987the vector; in this case the lower bound is zero. If two arguments are
988given, the first argument is the lower bound of the vector, and the
989second argument is the upper bound of the vector. A vector's length
990must not be negative, but the bounds can be.
991
992The difference between an @code{array} and a @code{vector} is that
993arrays behave like in C: when used in expressions they decay to a pointer
994to the first element whereas vectors are treated as first class values.
995@end defun
996
997@defun Type.const ()
998Return a new @code{gdb.Type} object which represents a
999@code{const}-qualified variant of this type.
1000@end defun
1001
1002@defun Type.volatile ()
1003Return a new @code{gdb.Type} object which represents a
1004@code{volatile}-qualified variant of this type.
1005@end defun
1006
1007@defun Type.unqualified ()
1008Return a new @code{gdb.Type} object which represents an unqualified
1009variant of this type. That is, the result is neither @code{const} nor
1010@code{volatile}.
1011@end defun
1012
1013@defun Type.range ()
1014Return a Python @code{Tuple} object that contains two elements: the
1015low bound of the argument type and the high bound of that type. If
1016the type does not have a range, @value{GDBN} will raise a
1017@code{gdb.error} exception (@pxref{Exception Handling}).
1018@end defun
1019
1020@defun Type.reference ()
1021Return a new @code{gdb.Type} object which represents a reference to this
1022type.
1023@end defun
1024
1025@defun Type.pointer ()
1026Return a new @code{gdb.Type} object which represents a pointer to this
1027type.
1028@end defun
1029
1030@defun Type.strip_typedefs ()
1031Return a new @code{gdb.Type} that represents the real type,
1032after removing all layers of typedefs.
1033@end defun
1034
1035@defun Type.target ()
1036Return a new @code{gdb.Type} object which represents the target type
1037of this type.
1038
1039For a pointer type, the target type is the type of the pointed-to
1040object. For an array type (meaning C-like arrays), the target type is
1041the type of the elements of the array. For a function or method type,
1042the target type is the type of the return value. For a complex type,
1043the target type is the type of the elements. For a typedef, the
1044target type is the aliased type.
1045
1046If the type does not have a target, this method will throw an
1047exception.
1048@end defun
1049
1050@defun Type.template_argument (n @r{[}, block@r{]})
1051If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1052return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1053value of the @var{n}th template argument (indexed starting at 0).
329baa95 1054
1a6a384b
JL
1055If this @code{gdb.Type} is not a template type, or if the type has fewer
1056than @var{n} template arguments, this will throw an exception.
1057Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1058
1059If @var{block} is given, then @var{name} is looked up in that scope.
1060Otherwise, it is searched for globally.
1061@end defun
1062
59fb7612
SS
1063@defun Type.optimized_out ()
1064Return @code{gdb.Value} instance of this type whose value is optimized
1065out. This allows a frame decorator to indicate that the value of an
1066argument or a local variable is not known.
1067@end defun
329baa95
DE
1068
1069Each type has a code, which indicates what category this type falls
1070into. The available type categories are represented by constants
1071defined in the @code{gdb} module:
1072
b3ce5e5f
DE
1073@vtable @code
1074@vindex TYPE_CODE_PTR
329baa95
DE
1075@item gdb.TYPE_CODE_PTR
1076The type is a pointer.
1077
b3ce5e5f 1078@vindex TYPE_CODE_ARRAY
329baa95
DE
1079@item gdb.TYPE_CODE_ARRAY
1080The type is an array.
1081
b3ce5e5f 1082@vindex TYPE_CODE_STRUCT
329baa95
DE
1083@item gdb.TYPE_CODE_STRUCT
1084The type is a structure.
1085
b3ce5e5f 1086@vindex TYPE_CODE_UNION
329baa95
DE
1087@item gdb.TYPE_CODE_UNION
1088The type is a union.
1089
b3ce5e5f 1090@vindex TYPE_CODE_ENUM
329baa95
DE
1091@item gdb.TYPE_CODE_ENUM
1092The type is an enum.
1093
b3ce5e5f 1094@vindex TYPE_CODE_FLAGS
329baa95
DE
1095@item gdb.TYPE_CODE_FLAGS
1096A bit flags type, used for things such as status registers.
1097
b3ce5e5f 1098@vindex TYPE_CODE_FUNC
329baa95
DE
1099@item gdb.TYPE_CODE_FUNC
1100The type is a function.
1101
b3ce5e5f 1102@vindex TYPE_CODE_INT
329baa95
DE
1103@item gdb.TYPE_CODE_INT
1104The type is an integer type.
1105
b3ce5e5f 1106@vindex TYPE_CODE_FLT
329baa95
DE
1107@item gdb.TYPE_CODE_FLT
1108A floating point type.
1109
b3ce5e5f 1110@vindex TYPE_CODE_VOID
329baa95
DE
1111@item gdb.TYPE_CODE_VOID
1112The special type @code{void}.
1113
b3ce5e5f 1114@vindex TYPE_CODE_SET
329baa95
DE
1115@item gdb.TYPE_CODE_SET
1116A Pascal set type.
1117
b3ce5e5f 1118@vindex TYPE_CODE_RANGE
329baa95
DE
1119@item gdb.TYPE_CODE_RANGE
1120A range type, that is, an integer type with bounds.
1121
b3ce5e5f 1122@vindex TYPE_CODE_STRING
329baa95
DE
1123@item gdb.TYPE_CODE_STRING
1124A string type. Note that this is only used for certain languages with
1125language-defined string types; C strings are not represented this way.
1126
b3ce5e5f 1127@vindex TYPE_CODE_BITSTRING
329baa95
DE
1128@item gdb.TYPE_CODE_BITSTRING
1129A string of bits. It is deprecated.
1130
b3ce5e5f 1131@vindex TYPE_CODE_ERROR
329baa95
DE
1132@item gdb.TYPE_CODE_ERROR
1133An unknown or erroneous type.
1134
b3ce5e5f 1135@vindex TYPE_CODE_METHOD
329baa95
DE
1136@item gdb.TYPE_CODE_METHOD
1137A method type, as found in C@t{++} or Java.
1138
b3ce5e5f 1139@vindex TYPE_CODE_METHODPTR
329baa95
DE
1140@item gdb.TYPE_CODE_METHODPTR
1141A pointer-to-member-function.
1142
b3ce5e5f 1143@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1144@item gdb.TYPE_CODE_MEMBERPTR
1145A pointer-to-member.
1146
b3ce5e5f 1147@vindex TYPE_CODE_REF
329baa95
DE
1148@item gdb.TYPE_CODE_REF
1149A reference type.
1150
b3ce5e5f 1151@vindex TYPE_CODE_CHAR
329baa95
DE
1152@item gdb.TYPE_CODE_CHAR
1153A character type.
1154
b3ce5e5f 1155@vindex TYPE_CODE_BOOL
329baa95
DE
1156@item gdb.TYPE_CODE_BOOL
1157A boolean type.
1158
b3ce5e5f 1159@vindex TYPE_CODE_COMPLEX
329baa95
DE
1160@item gdb.TYPE_CODE_COMPLEX
1161A complex float type.
1162
b3ce5e5f 1163@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1164@item gdb.TYPE_CODE_TYPEDEF
1165A typedef to some other type.
1166
b3ce5e5f 1167@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1168@item gdb.TYPE_CODE_NAMESPACE
1169A C@t{++} namespace.
1170
b3ce5e5f 1171@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1172@item gdb.TYPE_CODE_DECFLOAT
1173A decimal floating point type.
1174
b3ce5e5f 1175@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1176@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1177A function internal to @value{GDBN}. This is the type used to represent
1178convenience functions.
b3ce5e5f 1179@end vtable
329baa95
DE
1180
1181Further support for types is provided in the @code{gdb.types}
1182Python module (@pxref{gdb.types}).
1183
1184@node Pretty Printing API
1185@subsubsection Pretty Printing API
b3ce5e5f 1186@cindex python pretty printing api
329baa95
DE
1187
1188An example output is provided (@pxref{Pretty Printing}).
1189
1190A pretty-printer is just an object that holds a value and implements a
1191specific interface, defined here.
1192
1193@defun pretty_printer.children (self)
1194@value{GDBN} will call this method on a pretty-printer to compute the
1195children of the pretty-printer's value.
1196
1197This method must return an object conforming to the Python iterator
1198protocol. Each item returned by the iterator must be a tuple holding
1199two elements. The first element is the ``name'' of the child; the
1200second element is the child's value. The value can be any Python
1201object which is convertible to a @value{GDBN} value.
1202
1203This method is optional. If it does not exist, @value{GDBN} will act
1204as though the value has no children.
1205@end defun
1206
1207@defun pretty_printer.display_hint (self)
1208The CLI may call this method and use its result to change the
1209formatting of a value. The result will also be supplied to an MI
1210consumer as a @samp{displayhint} attribute of the variable being
1211printed.
1212
1213This method is optional. If it does exist, this method must return a
1214string.
1215
1216Some display hints are predefined by @value{GDBN}:
1217
1218@table @samp
1219@item array
1220Indicate that the object being printed is ``array-like''. The CLI
1221uses this to respect parameters such as @code{set print elements} and
1222@code{set print array}.
1223
1224@item map
1225Indicate that the object being printed is ``map-like'', and that the
1226children of this value can be assumed to alternate between keys and
1227values.
1228
1229@item string
1230Indicate that the object being printed is ``string-like''. If the
1231printer's @code{to_string} method returns a Python string of some
1232kind, then @value{GDBN} will call its internal language-specific
1233string-printing function to format the string. For the CLI this means
1234adding quotation marks, possibly escaping some characters, respecting
1235@code{set print elements}, and the like.
1236@end table
1237@end defun
1238
1239@defun pretty_printer.to_string (self)
1240@value{GDBN} will call this method to display the string
1241representation of the value passed to the object's constructor.
1242
1243When printing from the CLI, if the @code{to_string} method exists,
1244then @value{GDBN} will prepend its result to the values returned by
1245@code{children}. Exactly how this formatting is done is dependent on
1246the display hint, and may change as more hints are added. Also,
1247depending on the print settings (@pxref{Print Settings}), the CLI may
1248print just the result of @code{to_string} in a stack trace, omitting
1249the result of @code{children}.
1250
1251If this method returns a string, it is printed verbatim.
1252
1253Otherwise, if this method returns an instance of @code{gdb.Value},
1254then @value{GDBN} prints this value. This may result in a call to
1255another pretty-printer.
1256
1257If instead the method returns a Python value which is convertible to a
1258@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1259the resulting value. Again, this may result in a call to another
1260pretty-printer. Python scalars (integers, floats, and booleans) and
1261strings are convertible to @code{gdb.Value}; other types are not.
1262
1263Finally, if this method returns @code{None} then no further operations
1264are peformed in this method and nothing is printed.
1265
1266If the result is not one of these types, an exception is raised.
1267@end defun
1268
1269@value{GDBN} provides a function which can be used to look up the
1270default pretty-printer for a @code{gdb.Value}:
1271
1272@findex gdb.default_visualizer
1273@defun gdb.default_visualizer (value)
1274This function takes a @code{gdb.Value} object as an argument. If a
1275pretty-printer for this value exists, then it is returned. If no such
1276printer exists, then this returns @code{None}.
1277@end defun
1278
1279@node Selecting Pretty-Printers
1280@subsubsection Selecting Pretty-Printers
b3ce5e5f 1281@cindex selecting python pretty-printers
329baa95
DE
1282
1283The Python list @code{gdb.pretty_printers} contains an array of
1284functions or callable objects that have been registered via addition
1285as a pretty-printer. Printers in this list are called @code{global}
1286printers, they're available when debugging all inferiors.
1287Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1288Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1289attribute.
1290
1291Each function on these lists is passed a single @code{gdb.Value}
1292argument and should return a pretty-printer object conforming to the
1293interface definition above (@pxref{Pretty Printing API}). If a function
1294cannot create a pretty-printer for the value, it should return
1295@code{None}.
1296
1297@value{GDBN} first checks the @code{pretty_printers} attribute of each
1298@code{gdb.Objfile} in the current program space and iteratively calls
1299each enabled lookup routine in the list for that @code{gdb.Objfile}
1300until it receives a pretty-printer object.
1301If no pretty-printer is found in the objfile lists, @value{GDBN} then
1302searches the pretty-printer list of the current program space,
1303calling each enabled function until an object is returned.
1304After these lists have been exhausted, it tries the global
1305@code{gdb.pretty_printers} list, again calling each enabled function until an
1306object is returned.
1307
1308The order in which the objfiles are searched is not specified. For a
1309given list, functions are always invoked from the head of the list,
1310and iterated over sequentially until the end of the list, or a printer
1311object is returned.
1312
1313For various reasons a pretty-printer may not work.
1314For example, the underlying data structure may have changed and
1315the pretty-printer is out of date.
1316
1317The consequences of a broken pretty-printer are severe enough that
1318@value{GDBN} provides support for enabling and disabling individual
1319printers. For example, if @code{print frame-arguments} is on,
1320a backtrace can become highly illegible if any argument is printed
1321with a broken printer.
1322
1323Pretty-printers are enabled and disabled by attaching an @code{enabled}
1324attribute to the registered function or callable object. If this attribute
1325is present and its value is @code{False}, the printer is disabled, otherwise
1326the printer is enabled.
1327
1328@node Writing a Pretty-Printer
1329@subsubsection Writing a Pretty-Printer
1330@cindex writing a pretty-printer
1331
1332A pretty-printer consists of two parts: a lookup function to detect
1333if the type is supported, and the printer itself.
1334
1335Here is an example showing how a @code{std::string} printer might be
1336written. @xref{Pretty Printing API}, for details on the API this class
1337must provide.
1338
1339@smallexample
1340class StdStringPrinter(object):
1341 "Print a std::string"
1342
1343 def __init__(self, val):
1344 self.val = val
1345
1346 def to_string(self):
1347 return self.val['_M_dataplus']['_M_p']
1348
1349 def display_hint(self):
1350 return 'string'
1351@end smallexample
1352
1353And here is an example showing how a lookup function for the printer
1354example above might be written.
1355
1356@smallexample
1357def str_lookup_function(val):
1358 lookup_tag = val.type.tag
1359 if lookup_tag == None:
1360 return None
1361 regex = re.compile("^std::basic_string<char,.*>$")
1362 if regex.match(lookup_tag):
1363 return StdStringPrinter(val)
1364 return None
1365@end smallexample
1366
1367The example lookup function extracts the value's type, and attempts to
1368match it to a type that it can pretty-print. If it is a type the
1369printer can pretty-print, it will return a printer object. If not, it
1370returns @code{None}.
1371
1372We recommend that you put your core pretty-printers into a Python
1373package. If your pretty-printers are for use with a library, we
1374further recommend embedding a version number into the package name.
1375This practice will enable @value{GDBN} to load multiple versions of
1376your pretty-printers at the same time, because they will have
1377different names.
1378
1379You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1380can be evaluated multiple times without changing its meaning. An
1381ideal auto-load file will consist solely of @code{import}s of your
1382printer modules, followed by a call to a register pretty-printers with
1383the current objfile.
1384
1385Taken as a whole, this approach will scale nicely to multiple
1386inferiors, each potentially using a different library version.
1387Embedding a version number in the Python package name will ensure that
1388@value{GDBN} is able to load both sets of printers simultaneously.
1389Then, because the search for pretty-printers is done by objfile, and
1390because your auto-loaded code took care to register your library's
1391printers with a specific objfile, @value{GDBN} will find the correct
1392printers for the specific version of the library used by each
1393inferior.
1394
1395To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1396this code might appear in @code{gdb.libstdcxx.v6}:
1397
1398@smallexample
1399def register_printers(objfile):
1400 objfile.pretty_printers.append(str_lookup_function)
1401@end smallexample
1402
1403@noindent
1404And then the corresponding contents of the auto-load file would be:
1405
1406@smallexample
1407import gdb.libstdcxx.v6
1408gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1409@end smallexample
1410
1411The previous example illustrates a basic pretty-printer.
1412There are a few things that can be improved on.
1413The printer doesn't have a name, making it hard to identify in a
1414list of installed printers. The lookup function has a name, but
1415lookup functions can have arbitrary, even identical, names.
1416
1417Second, the printer only handles one type, whereas a library typically has
1418several types. One could install a lookup function for each desired type
1419in the library, but one could also have a single lookup function recognize
1420several types. The latter is the conventional way this is handled.
1421If a pretty-printer can handle multiple data types, then its
1422@dfn{subprinters} are the printers for the individual data types.
1423
1424The @code{gdb.printing} module provides a formal way of solving these
1425problems (@pxref{gdb.printing}).
1426Here is another example that handles multiple types.
1427
1428These are the types we are going to pretty-print:
1429
1430@smallexample
1431struct foo @{ int a, b; @};
1432struct bar @{ struct foo x, y; @};
1433@end smallexample
1434
1435Here are the printers:
1436
1437@smallexample
1438class fooPrinter:
1439 """Print a foo object."""
1440
1441 def __init__(self, val):
1442 self.val = val
1443
1444 def to_string(self):
1445 return ("a=<" + str(self.val["a"]) +
1446 "> b=<" + str(self.val["b"]) + ">")
1447
1448class barPrinter:
1449 """Print a bar object."""
1450
1451 def __init__(self, val):
1452 self.val = val
1453
1454 def to_string(self):
1455 return ("x=<" + str(self.val["x"]) +
1456 "> y=<" + str(self.val["y"]) + ">")
1457@end smallexample
1458
1459This example doesn't need a lookup function, that is handled by the
1460@code{gdb.printing} module. Instead a function is provided to build up
1461the object that handles the lookup.
1462
1463@smallexample
1464import gdb.printing
1465
1466def build_pretty_printer():
1467 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1468 "my_library")
1469 pp.add_printer('foo', '^foo$', fooPrinter)
1470 pp.add_printer('bar', '^bar$', barPrinter)
1471 return pp
1472@end smallexample
1473
1474And here is the autoload support:
1475
1476@smallexample
1477import gdb.printing
1478import my_library
1479gdb.printing.register_pretty_printer(
1480 gdb.current_objfile(),
1481 my_library.build_pretty_printer())
1482@end smallexample
1483
1484Finally, when this printer is loaded into @value{GDBN}, here is the
1485corresponding output of @samp{info pretty-printer}:
1486
1487@smallexample
1488(gdb) info pretty-printer
1489my_library.so:
1490 my_library
1491 foo
1492 bar
1493@end smallexample
1494
1495@node Type Printing API
1496@subsubsection Type Printing API
1497@cindex type printing API for Python
1498
1499@value{GDBN} provides a way for Python code to customize type display.
1500This is mainly useful for substituting canonical typedef names for
1501types.
1502
1503@cindex type printer
1504A @dfn{type printer} is just a Python object conforming to a certain
1505protocol. A simple base class implementing the protocol is provided;
1506see @ref{gdb.types}. A type printer must supply at least:
1507
1508@defivar type_printer enabled
1509A boolean which is True if the printer is enabled, and False
1510otherwise. This is manipulated by the @code{enable type-printer}
1511and @code{disable type-printer} commands.
1512@end defivar
1513
1514@defivar type_printer name
1515The name of the type printer. This must be a string. This is used by
1516the @code{enable type-printer} and @code{disable type-printer}
1517commands.
1518@end defivar
1519
1520@defmethod type_printer instantiate (self)
1521This is called by @value{GDBN} at the start of type-printing. It is
1522only called if the type printer is enabled. This method must return a
1523new object that supplies a @code{recognize} method, as described below.
1524@end defmethod
1525
1526
1527When displaying a type, say via the @code{ptype} command, @value{GDBN}
1528will compute a list of type recognizers. This is done by iterating
1529first over the per-objfile type printers (@pxref{Objfiles In Python}),
1530followed by the per-progspace type printers (@pxref{Progspaces In
1531Python}), and finally the global type printers.
1532
1533@value{GDBN} will call the @code{instantiate} method of each enabled
1534type printer. If this method returns @code{None}, then the result is
1535ignored; otherwise, it is appended to the list of recognizers.
1536
1537Then, when @value{GDBN} is going to display a type name, it iterates
1538over the list of recognizers. For each one, it calls the recognition
1539function, stopping if the function returns a non-@code{None} value.
1540The recognition function is defined as:
1541
1542@defmethod type_recognizer recognize (self, type)
1543If @var{type} is not recognized, return @code{None}. Otherwise,
1544return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1545The @var{type} argument will be an instance of @code{gdb.Type}
1546(@pxref{Types In Python}).
329baa95
DE
1547@end defmethod
1548
1549@value{GDBN} uses this two-pass approach so that type printers can
1550efficiently cache information without holding on to it too long. For
1551example, it can be convenient to look up type information in a type
1552printer and hold it for a recognizer's lifetime; if a single pass were
1553done then type printers would have to make use of the event system in
1554order to avoid holding information that could become stale as the
1555inferior changed.
1556
1557@node Frame Filter API
1558@subsubsection Filtering Frames.
1559@cindex frame filters api
1560
1561Frame filters are Python objects that manipulate the visibility of a
1562frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1563@value{GDBN}.
1564
1565Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1566commands (@pxref{GDB/MI}), those that return a collection of frames
1567are affected. The commands that work with frame filters are:
1568
1569@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1570@code{-stack-list-frames}
1571(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1572@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1573-stack-list-variables command}), @code{-stack-list-arguments}
1574@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1575@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1576-stack-list-locals command}).
1577
1578A frame filter works by taking an iterator as an argument, applying
1579actions to the contents of that iterator, and returning another
1580iterator (or, possibly, the same iterator it was provided in the case
1581where the filter does not perform any operations). Typically, frame
1582filters utilize tools such as the Python's @code{itertools} module to
1583work with and create new iterators from the source iterator.
1584Regardless of how a filter chooses to apply actions, it must not alter
1585the underlying @value{GDBN} frame or frames, or attempt to alter the
1586call-stack within @value{GDBN}. This preserves data integrity within
1587@value{GDBN}. Frame filters are executed on a priority basis and care
1588should be taken that some frame filters may have been executed before,
1589and that some frame filters will be executed after.
1590
1591An important consideration when designing frame filters, and well
1592worth reflecting upon, is that frame filters should avoid unwinding
1593the call stack if possible. Some stacks can run very deep, into the
1594tens of thousands in some cases. To search every frame when a frame
1595filter executes may be too expensive at that step. The frame filter
1596cannot know how many frames it has to iterate over, and it may have to
1597iterate through them all. This ends up duplicating effort as
1598@value{GDBN} performs this iteration when it prints the frames. If
1599the filter can defer unwinding frames until frame decorators are
1600executed, after the last filter has executed, it should. @xref{Frame
1601Decorator API}, for more information on decorators. Also, there are
1602examples for both frame decorators and filters in later chapters.
1603@xref{Writing a Frame Filter}, for more information.
1604
1605The Python dictionary @code{gdb.frame_filters} contains key/object
1606pairings that comprise a frame filter. Frame filters in this
1607dictionary are called @code{global} frame filters, and they are
1608available when debugging all inferiors. These frame filters must
1609register with the dictionary directly. In addition to the
1610@code{global} dictionary, there are other dictionaries that are loaded
1611with different inferiors via auto-loading (@pxref{Python
1612Auto-loading}). The two other areas where frame filter dictionaries
1613can be found are: @code{gdb.Progspace} which contains a
1614@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1615object which also contains a @code{frame_filters} dictionary
1616attribute.
1617
1618When a command is executed from @value{GDBN} that is compatible with
1619frame filters, @value{GDBN} combines the @code{global},
1620@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1621loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1622several frames, and thus several object files, might be in use.
1623@value{GDBN} then prunes any frame filter whose @code{enabled}
1624attribute is @code{False}. This pruned list is then sorted according
1625to the @code{priority} attribute in each filter.
1626
1627Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1628creates an iterator which wraps each frame in the call stack in a
1629@code{FrameDecorator} object, and calls each filter in order. The
1630output from the previous filter will always be the input to the next
1631filter, and so on.
1632
1633Frame filters have a mandatory interface which each frame filter must
1634implement, defined here:
1635
1636@defun FrameFilter.filter (iterator)
1637@value{GDBN} will call this method on a frame filter when it has
1638reached the order in the priority list for that filter.
1639
1640For example, if there are four frame filters:
1641
1642@smallexample
1643Name Priority
1644
1645Filter1 5
1646Filter2 10
1647Filter3 100
1648Filter4 1
1649@end smallexample
1650
1651The order that the frame filters will be called is:
1652
1653@smallexample
1654Filter3 -> Filter2 -> Filter1 -> Filter4
1655@end smallexample
1656
1657Note that the output from @code{Filter3} is passed to the input of
1658@code{Filter2}, and so on.
1659
1660This @code{filter} method is passed a Python iterator. This iterator
1661contains a sequence of frame decorators that wrap each
1662@code{gdb.Frame}, or a frame decorator that wraps another frame
1663decorator. The first filter that is executed in the sequence of frame
1664filters will receive an iterator entirely comprised of default
1665@code{FrameDecorator} objects. However, after each frame filter is
1666executed, the previous frame filter may have wrapped some or all of
1667the frame decorators with their own frame decorator. As frame
1668decorators must also conform to a mandatory interface, these
1669decorators can be assumed to act in a uniform manner (@pxref{Frame
1670Decorator API}).
1671
1672This method must return an object conforming to the Python iterator
1673protocol. Each item in the iterator must be an object conforming to
1674the frame decorator interface. If a frame filter does not wish to
1675perform any operations on this iterator, it should return that
1676iterator untouched.
1677
1678This method is not optional. If it does not exist, @value{GDBN} will
1679raise and print an error.
1680@end defun
1681
1682@defvar FrameFilter.name
1683The @code{name} attribute must be Python string which contains the
1684name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1685Management}). This attribute may contain any combination of letters
1686or numbers. Care should be taken to ensure that it is unique. This
1687attribute is mandatory.
1688@end defvar
1689
1690@defvar FrameFilter.enabled
1691The @code{enabled} attribute must be Python boolean. This attribute
1692indicates to @value{GDBN} whether the frame filter is enabled, and
1693should be considered when frame filters are executed. If
1694@code{enabled} is @code{True}, then the frame filter will be executed
1695when any of the backtrace commands detailed earlier in this chapter
1696are executed. If @code{enabled} is @code{False}, then the frame
1697filter will not be executed. This attribute is mandatory.
1698@end defvar
1699
1700@defvar FrameFilter.priority
1701The @code{priority} attribute must be Python integer. This attribute
1702controls the order of execution in relation to other frame filters.
1703There are no imposed limits on the range of @code{priority} other than
1704it must be a valid integer. The higher the @code{priority} attribute,
1705the sooner the frame filter will be executed in relation to other
1706frame filters. Although @code{priority} can be negative, it is
1707recommended practice to assume zero is the lowest priority that a
1708frame filter can be assigned. Frame filters that have the same
1709priority are executed in unsorted order in that priority slot. This
1710attribute is mandatory.
1711@end defvar
1712
1713@node Frame Decorator API
1714@subsubsection Decorating Frames.
1715@cindex frame decorator api
1716
1717Frame decorators are sister objects to frame filters (@pxref{Frame
1718Filter API}). Frame decorators are applied by a frame filter and can
1719only be used in conjunction with frame filters.
1720
1721The purpose of a frame decorator is to customize the printed content
1722of each @code{gdb.Frame} in commands where frame filters are executed.
1723This concept is called decorating a frame. Frame decorators decorate
1724a @code{gdb.Frame} with Python code contained within each API call.
1725This separates the actual data contained in a @code{gdb.Frame} from
1726the decorated data produced by a frame decorator. This abstraction is
1727necessary to maintain integrity of the data contained in each
1728@code{gdb.Frame}.
1729
1730Frame decorators have a mandatory interface, defined below.
1731
1732@value{GDBN} already contains a frame decorator called
1733@code{FrameDecorator}. This contains substantial amounts of
1734boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1735recommended that other frame decorators inherit and extend this
1736object, and only to override the methods needed.
1737
1738@defun FrameDecorator.elided (self)
1739
1740The @code{elided} method groups frames together in a hierarchical
1741system. An example would be an interpreter, where multiple low-level
1742frames make up a single call in the interpreted language. In this
1743example, the frame filter would elide the low-level frames and present
1744a single high-level frame, representing the call in the interpreted
1745language, to the user.
1746
1747The @code{elided} function must return an iterable and this iterable
1748must contain the frames that are being elided wrapped in a suitable
1749frame decorator. If no frames are being elided this function may
1750return an empty iterable, or @code{None}. Elided frames are indented
1751from normal frames in a @code{CLI} backtrace, or in the case of
1752@code{GDB/MI}, are placed in the @code{children} field of the eliding
1753frame.
1754
1755It is the frame filter's task to also filter out the elided frames from
1756the source iterator. This will avoid printing the frame twice.
1757@end defun
1758
1759@defun FrameDecorator.function (self)
1760
1761This method returns the name of the function in the frame that is to
1762be printed.
1763
1764This method must return a Python string describing the function, or
1765@code{None}.
1766
1767If this function returns @code{None}, @value{GDBN} will not print any
1768data for this field.
1769@end defun
1770
1771@defun FrameDecorator.address (self)
1772
1773This method returns the address of the frame that is to be printed.
1774
1775This method must return a Python numeric integer type of sufficient
1776size to describe the address of the frame, or @code{None}.
1777
1778If this function returns a @code{None}, @value{GDBN} will not print
1779any data for this field.
1780@end defun
1781
1782@defun FrameDecorator.filename (self)
1783
1784This method returns the filename and path associated with this frame.
1785
1786This method must return a Python string containing the filename and
1787the path to the object file backing the frame, or @code{None}.
1788
1789If this function returns a @code{None}, @value{GDBN} will not print
1790any data for this field.
1791@end defun
1792
1793@defun FrameDecorator.line (self):
1794
1795This method returns the line number associated with the current
1796position within the function addressed by this frame.
1797
1798This method must return a Python integer type, or @code{None}.
1799
1800If this function returns a @code{None}, @value{GDBN} will not print
1801any data for this field.
1802@end defun
1803
1804@defun FrameDecorator.frame_args (self)
1805@anchor{frame_args}
1806
1807This method must return an iterable, or @code{None}. Returning an
1808empty iterable, or @code{None} means frame arguments will not be
1809printed for this frame. This iterable must contain objects that
1810implement two methods, described here.
1811
1812This object must implement a @code{argument} method which takes a
1813single @code{self} parameter and must return a @code{gdb.Symbol}
1814(@pxref{Symbols In Python}), or a Python string. The object must also
1815implement a @code{value} method which takes a single @code{self}
1816parameter and must return a @code{gdb.Value} (@pxref{Values From
1817Inferior}), a Python value, or @code{None}. If the @code{value}
1818method returns @code{None}, and the @code{argument} method returns a
1819@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1820the @code{gdb.Symbol} automatically.
1821
1822A brief example:
1823
1824@smallexample
1825class SymValueWrapper():
1826
1827 def __init__(self, symbol, value):
1828 self.sym = symbol
1829 self.val = value
1830
1831 def value(self):
1832 return self.val
1833
1834 def symbol(self):
1835 return self.sym
1836
1837class SomeFrameDecorator()
1838...
1839...
1840 def frame_args(self):
1841 args = []
1842 try:
1843 block = self.inferior_frame.block()
1844 except:
1845 return None
1846
1847 # Iterate over all symbols in a block. Only add
1848 # symbols that are arguments.
1849 for sym in block:
1850 if not sym.is_argument:
1851 continue
1852 args.append(SymValueWrapper(sym,None))
1853
1854 # Add example synthetic argument.
1855 args.append(SymValueWrapper(``foo'', 42))
1856
1857 return args
1858@end smallexample
1859@end defun
1860
1861@defun FrameDecorator.frame_locals (self)
1862
1863This method must return an iterable or @code{None}. Returning an
1864empty iterable, or @code{None} means frame local arguments will not be
1865printed for this frame.
1866
1867The object interface, the description of the various strategies for
1868reading frame locals, and the example are largely similar to those
1869described in the @code{frame_args} function, (@pxref{frame_args,,The
1870frame filter frame_args function}). Below is a modified example:
1871
1872@smallexample
1873class SomeFrameDecorator()
1874...
1875...
1876 def frame_locals(self):
1877 vars = []
1878 try:
1879 block = self.inferior_frame.block()
1880 except:
1881 return None
1882
1883 # Iterate over all symbols in a block. Add all
1884 # symbols, except arguments.
1885 for sym in block:
1886 if sym.is_argument:
1887 continue
1888 vars.append(SymValueWrapper(sym,None))
1889
1890 # Add an example of a synthetic local variable.
1891 vars.append(SymValueWrapper(``bar'', 99))
1892
1893 return vars
1894@end smallexample
1895@end defun
1896
1897@defun FrameDecorator.inferior_frame (self):
1898
1899This method must return the underlying @code{gdb.Frame} that this
1900frame decorator is decorating. @value{GDBN} requires the underlying
1901frame for internal frame information to determine how to print certain
1902values when printing a frame.
1903@end defun
1904
1905@node Writing a Frame Filter
1906@subsubsection Writing a Frame Filter
1907@cindex writing a frame filter
1908
1909There are three basic elements that a frame filter must implement: it
1910must correctly implement the documented interface (@pxref{Frame Filter
1911API}), it must register itself with @value{GDBN}, and finally, it must
1912decide if it is to work on the data provided by @value{GDBN}. In all
1913cases, whether it works on the iterator or not, each frame filter must
1914return an iterator. A bare-bones frame filter follows the pattern in
1915the following example.
1916
1917@smallexample
1918import gdb
1919
1920class FrameFilter():
1921
1922 def __init__(self):
1923 # Frame filter attribute creation.
1924 #
1925 # 'name' is the name of the filter that GDB will display.
1926 #
1927 # 'priority' is the priority of the filter relative to other
1928 # filters.
1929 #
1930 # 'enabled' is a boolean that indicates whether this filter is
1931 # enabled and should be executed.
1932
1933 self.name = "Foo"
1934 self.priority = 100
1935 self.enabled = True
1936
1937 # Register this frame filter with the global frame_filters
1938 # dictionary.
1939 gdb.frame_filters[self.name] = self
1940
1941 def filter(self, frame_iter):
1942 # Just return the iterator.
1943 return frame_iter
1944@end smallexample
1945
1946The frame filter in the example above implements the three
1947requirements for all frame filters. It implements the API, self
1948registers, and makes a decision on the iterator (in this case, it just
1949returns the iterator untouched).
1950
1951The first step is attribute creation and assignment, and as shown in
1952the comments the filter assigns the following attributes: @code{name},
1953@code{priority} and whether the filter should be enabled with the
1954@code{enabled} attribute.
1955
1956The second step is registering the frame filter with the dictionary or
1957dictionaries that the frame filter has interest in. As shown in the
1958comments, this filter just registers itself with the global dictionary
1959@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
1960is a dictionary that is initialized in the @code{gdb} module when
1961@value{GDBN} starts. What dictionary a filter registers with is an
1962important consideration. Generally, if a filter is specific to a set
1963of code, it should be registered either in the @code{objfile} or
1964@code{progspace} dictionaries as they are specific to the program
1965currently loaded in @value{GDBN}. The global dictionary is always
1966present in @value{GDBN} and is never unloaded. Any filters registered
1967with the global dictionary will exist until @value{GDBN} exits. To
1968avoid filters that may conflict, it is generally better to register
1969frame filters against the dictionaries that more closely align with
1970the usage of the filter currently in question. @xref{Python
1971Auto-loading}, for further information on auto-loading Python scripts.
1972
1973@value{GDBN} takes a hands-off approach to frame filter registration,
1974therefore it is the frame filter's responsibility to ensure
1975registration has occurred, and that any exceptions are handled
1976appropriately. In particular, you may wish to handle exceptions
1977relating to Python dictionary key uniqueness. It is mandatory that
1978the dictionary key is the same as frame filter's @code{name}
1979attribute. When a user manages frame filters (@pxref{Frame Filter
1980Management}), the names @value{GDBN} will display are those contained
1981in the @code{name} attribute.
1982
1983The final step of this example is the implementation of the
1984@code{filter} method. As shown in the example comments, we define the
1985@code{filter} method and note that the method must take an iterator,
1986and also must return an iterator. In this bare-bones example, the
1987frame filter is not very useful as it just returns the iterator
1988untouched. However this is a valid operation for frame filters that
1989have the @code{enabled} attribute set, but decide not to operate on
1990any frames.
1991
1992In the next example, the frame filter operates on all frames and
1993utilizes a frame decorator to perform some work on the frames.
1994@xref{Frame Decorator API}, for further information on the frame
1995decorator interface.
1996
1997This example works on inlined frames. It highlights frames which are
1998inlined by tagging them with an ``[inlined]'' tag. By applying a
1999frame decorator to all frames with the Python @code{itertools imap}
2000method, the example defers actions to the frame decorator. Frame
2001decorators are only processed when @value{GDBN} prints the backtrace.
2002
2003This introduces a new decision making topic: whether to perform
2004decision making operations at the filtering step, or at the printing
2005step. In this example's approach, it does not perform any filtering
2006decisions at the filtering step beyond mapping a frame decorator to
2007each frame. This allows the actual decision making to be performed
2008when each frame is printed. This is an important consideration, and
2009well worth reflecting upon when designing a frame filter. An issue
2010that frame filters should avoid is unwinding the stack if possible.
2011Some stacks can run very deep, into the tens of thousands in some
2012cases. To search every frame to determine if it is inlined ahead of
2013time may be too expensive at the filtering step. The frame filter
2014cannot know how many frames it has to iterate over, and it would have
2015to iterate through them all. This ends up duplicating effort as
2016@value{GDBN} performs this iteration when it prints the frames.
2017
2018In this example decision making can be deferred to the printing step.
2019As each frame is printed, the frame decorator can examine each frame
2020in turn when @value{GDBN} iterates. From a performance viewpoint,
2021this is the most appropriate decision to make as it avoids duplicating
2022the effort that the printing step would undertake anyway. Also, if
2023there are many frame filters unwinding the stack during filtering, it
2024can substantially delay the printing of the backtrace which will
2025result in large memory usage, and a poor user experience.
2026
2027@smallexample
2028class InlineFilter():
2029
2030 def __init__(self):
2031 self.name = "InlinedFrameFilter"
2032 self.priority = 100
2033 self.enabled = True
2034 gdb.frame_filters[self.name] = self
2035
2036 def filter(self, frame_iter):
2037 frame_iter = itertools.imap(InlinedFrameDecorator,
2038 frame_iter)
2039 return frame_iter
2040@end smallexample
2041
2042This frame filter is somewhat similar to the earlier example, except
2043that the @code{filter} method applies a frame decorator object called
2044@code{InlinedFrameDecorator} to each element in the iterator. The
2045@code{imap} Python method is light-weight. It does not proactively
2046iterate over the iterator, but rather creates a new iterator which
2047wraps the existing one.
2048
2049Below is the frame decorator for this example.
2050
2051@smallexample
2052class InlinedFrameDecorator(FrameDecorator):
2053
2054 def __init__(self, fobj):
2055 super(InlinedFrameDecorator, self).__init__(fobj)
2056
2057 def function(self):
2058 frame = fobj.inferior_frame()
2059 name = str(frame.name())
2060
2061 if frame.type() == gdb.INLINE_FRAME:
2062 name = name + " [inlined]"
2063
2064 return name
2065@end smallexample
2066
2067This frame decorator only defines and overrides the @code{function}
2068method. It lets the supplied @code{FrameDecorator}, which is shipped
2069with @value{GDBN}, perform the other work associated with printing
2070this frame.
2071
2072The combination of these two objects create this output from a
2073backtrace:
2074
2075@smallexample
2076#0 0x004004e0 in bar () at inline.c:11
2077#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2078#2 0x00400566 in main () at inline.c:31
2079@end smallexample
2080
2081So in the case of this example, a frame decorator is applied to all
2082frames, regardless of whether they may be inlined or not. As
2083@value{GDBN} iterates over the iterator produced by the frame filters,
2084@value{GDBN} executes each frame decorator which then makes a decision
2085on what to print in the @code{function} callback. Using a strategy
2086like this is a way to defer decisions on the frame content to printing
2087time.
2088
2089@subheading Eliding Frames
2090
2091It might be that the above example is not desirable for representing
2092inlined frames, and a hierarchical approach may be preferred. If we
2093want to hierarchically represent frames, the @code{elided} frame
2094decorator interface might be preferable.
2095
2096This example approaches the issue with the @code{elided} method. This
2097example is quite long, but very simplistic. It is out-of-scope for
2098this section to write a complete example that comprehensively covers
2099all approaches of finding and printing inlined frames. However, this
2100example illustrates the approach an author might use.
2101
2102This example comprises of three sections.
2103
2104@smallexample
2105class InlineFrameFilter():
2106
2107 def __init__(self):
2108 self.name = "InlinedFrameFilter"
2109 self.priority = 100
2110 self.enabled = True
2111 gdb.frame_filters[self.name] = self
2112
2113 def filter(self, frame_iter):
2114 return ElidingInlineIterator(frame_iter)
2115@end smallexample
2116
2117This frame filter is very similar to the other examples. The only
2118difference is this frame filter is wrapping the iterator provided to
2119it (@code{frame_iter}) with a custom iterator called
2120@code{ElidingInlineIterator}. This again defers actions to when
2121@value{GDBN} prints the backtrace, as the iterator is not traversed
2122until printing.
2123
2124The iterator for this example is as follows. It is in this section of
2125the example where decisions are made on the content of the backtrace.
2126
2127@smallexample
2128class ElidingInlineIterator:
2129 def __init__(self, ii):
2130 self.input_iterator = ii
2131
2132 def __iter__(self):
2133 return self
2134
2135 def next(self):
2136 frame = next(self.input_iterator)
2137
2138 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2139 return frame
2140
2141 try:
2142 eliding_frame = next(self.input_iterator)
2143 except StopIteration:
2144 return frame
2145 return ElidingFrameDecorator(eliding_frame, [frame])
2146@end smallexample
2147
2148This iterator implements the Python iterator protocol. When the
2149@code{next} function is called (when @value{GDBN} prints each frame),
2150the iterator checks if this frame decorator, @code{frame}, is wrapping
2151an inlined frame. If it is not, it returns the existing frame decorator
2152untouched. If it is wrapping an inlined frame, it assumes that the
2153inlined frame was contained within the next oldest frame,
2154@code{eliding_frame}, which it fetches. It then creates and returns a
2155frame decorator, @code{ElidingFrameDecorator}, which contains both the
2156elided frame, and the eliding frame.
2157
2158@smallexample
2159class ElidingInlineDecorator(FrameDecorator):
2160
2161 def __init__(self, frame, elided_frames):
2162 super(ElidingInlineDecorator, self).__init__(frame)
2163 self.frame = frame
2164 self.elided_frames = elided_frames
2165
2166 def elided(self):
2167 return iter(self.elided_frames)
2168@end smallexample
2169
2170This frame decorator overrides one function and returns the inlined
2171frame in the @code{elided} method. As before it lets
2172@code{FrameDecorator} do the rest of the work involved in printing
2173this frame. This produces the following output.
2174
2175@smallexample
2176#0 0x004004e0 in bar () at inline.c:11
2177#2 0x00400529 in main () at inline.c:25
2178 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2179@end smallexample
2180
2181In that output, @code{max} which has been inlined into @code{main} is
2182printed hierarchically. Another approach would be to combine the
2183@code{function} method, and the @code{elided} method to both print a
2184marker in the inlined frame, and also show the hierarchical
2185relationship.
2186
d11916aa
SS
2187@node Unwinding Frames in Python
2188@subsubsection Unwinding Frames in Python
2189@cindex unwinding frames in Python
2190
2191In @value{GDBN} terminology ``unwinding'' is the process of finding
2192the previous frame (that is, caller's) from the current one. An
2193unwinder has three methods. The first one checks if it can handle
2194given frame (``sniff'' it). For the frames it can sniff an unwinder
2195provides two additional methods: it can return frame's ID, and it can
2196fetch registers from the previous frame. A running @value{GDBN}
2197mantains a list of the unwinders and calls each unwinder's sniffer in
2198turn until it finds the one that recognizes the current frame. There
2199is an API to register an unwinder.
2200
2201The unwinders that come with @value{GDBN} handle standard frames.
2202However, mixed language applications (for example, an application
2203running Java Virtual Machine) sometimes use frame layouts that cannot
2204be handled by the @value{GDBN} unwinders. You can write Python code
2205that can handle such custom frames.
2206
2207You implement a frame unwinder in Python as a class with which has two
2208attributes, @code{name} and @code{enabled}, with obvious meanings, and
2209a single method @code{__call__}, which examines a given frame and
2210returns an object (an instance of @code{gdb.UnwindInfo class)}
2211describing it. If an unwinder does not recognize a frame, it should
2212return @code{None}. The code in @value{GDBN} that enables writing
2213unwinders in Python uses this object to return frame's ID and previous
2214frame registers when @value{GDBN} core asks for them.
2215
2216@subheading Unwinder Input
2217
2218An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2219provides a method to read frame's registers:
2220
2221@defun PendingFrame.read_register (reg)
2222This method returns the contents of the register @var{regn} in the
2223frame as a @code{gdb.Value} object. @var{reg} can be either a
2224register number or a register name; the values are platform-specific.
2225They are usually found in the corresponding
2226@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree.
2227@end defun
2228
2229It also provides a factory method to create a @code{gdb.UnwindInfo}
2230instance to be returned to @value{GDBN}:
2231
2232@defun PendingFrame.create_unwind_info (frame_id)
2233Returns a new @code{gdb.UnwindInfo} instance identified by given
2234@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2235using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2236determine which function will be used, as follows:
2237
2238@table @code
2239@item sp, pc, special
2240@code{frame_id_build_special (@var{frame_id}.sp, @var{frame_id}.pc, @var{frame_id}.special)}
2241
2242@item sp, pc
2243@code{frame_id_build (@var{frame_id}.sp, @var{frame_id}.pc)}
2244
2245This is the most common case.
2246
2247@item sp
2248@code{frame_id_build_wild (@var{frame_id}.sp)}
2249@end table
2250The attribute values should be @code{gdb.Value}
2251
2252@end defun
2253
2254@subheading Unwinder Output: UnwindInfo
2255
2256Use @code{PendingFrame.create_unwind_info} method described above to
2257create a @code{gdb.UnwindInfo} instance. Use the following method to
2258specify caller registers that have been saved in this frame:
2259
2260@defun gdb.UnwindInfo.add_saved_register (reg, value)
2261@var{reg} identifies the register. It can be a number or a name, just
2262as for the @code{PendingFrame.read_register} method above.
2263@var{value} is a register value (a @code{gdb.Value} object).
2264@end defun
2265
2266@subheading Unwinder Skeleton Code
2267
2268@value{GDBN} comes with the module containing the base @code{Unwinder}
2269class. Derive your unwinder class from it and structure the code as
2270follows:
2271
2272@smallexample
2273from gdb.unwinders import Unwinder
2274
2275class FrameId(object):
2276 def __init__(self, sp, pc):
2277 self.sp = sp
2278 self.pc = pc
2279
2280
2281class MyUnwinder(Unwinder):
2282 def __init__(....):
2283 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2284
2285 def __call__(pending_frame):
2286 if not <we recognize frame>:
2287 return None
2288 # Create UnwindInfo. Usually the frame is identified by the stack
2289 # pointer and the program counter.
2290 sp = pending_frame.read_register(<SP number>)
2291 pc = pending_frame.read_register(<PC number>)
2292 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2293
2294 # Find the values of the registers in the caller's frame and
2295 # save them in the result:
2296 unwind_info.add_saved_register(<register>, <value>)
2297 ....
2298
2299 # Return the result:
2300 return unwind_info
2301
2302@end smallexample
2303
2304@subheading Registering a Unwinder
2305
2306An object file, a program space, and the @value{GDBN} proper can have
2307unwinders registered with it.
2308
2309The @code{gdb.unwinders} module provides the function to register a
2310unwinder:
2311
2312@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2313@var{locus} is specifies an object file or a program space to which
2314@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2315@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2316added @var{unwinder} will be called before any other unwinder from the
2317same locus. Two unwinders in the same locus cannot have the same
2318name. An attempt to add a unwinder with already existing name raises
2319an exception unless @var{replace} is @code{True}, in which case the
2320old unwinder is deleted.
2321@end defun
2322
2323@subheading Unwinder Precedence
2324
2325@value{GDBN} first calls the unwinders from all the object files in no
2326particular order, then the unwinders from the current program space,
2327and finally the unwinders from @value{GDBN}.
2328
0c6e92a5
SC
2329@node Xmethods In Python
2330@subsubsection Xmethods In Python
2331@cindex xmethods in Python
2332
2333@dfn{Xmethods} are additional methods or replacements for existing
2334methods of a C@t{++} class. This feature is useful for those cases
2335where a method defined in C@t{++} source code could be inlined or
2336optimized out by the compiler, making it unavailable to @value{GDBN}.
2337For such cases, one can define an xmethod to serve as a replacement
2338for the method defined in the C@t{++} source code. @value{GDBN} will
2339then invoke the xmethod, instead of the C@t{++} method, to
2340evaluate expressions. One can also use xmethods when debugging
2341with core files. Moreover, when debugging live programs, invoking an
2342xmethod need not involve running the inferior (which can potentially
2343perturb its state). Hence, even if the C@t{++} method is available, it
2344is better to use its replacement xmethod if one is defined.
2345
2346The xmethods feature in Python is available via the concepts of an
2347@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2348implement an xmethod, one has to implement a matcher and a
2349corresponding worker for it (more than one worker can be
2350implemented, each catering to a different overloaded instance of the
2351method). Internally, @value{GDBN} invokes the @code{match} method of a
2352matcher to match the class type and method name. On a match, the
2353@code{match} method returns a list of matching @emph{worker} objects.
2354Each worker object typically corresponds to an overloaded instance of
2355the xmethod. They implement a @code{get_arg_types} method which
2356returns a sequence of types corresponding to the arguments the xmethod
2357requires. @value{GDBN} uses this sequence of types to perform
2358overload resolution and picks a winning xmethod worker. A winner
2359is also selected from among the methods @value{GDBN} finds in the
2360C@t{++} source code. Next, the winning xmethod worker and the
2361winning C@t{++} method are compared to select an overall winner. In
2362case of a tie between a xmethod worker and a C@t{++} method, the
2363xmethod worker is selected as the winner. That is, if a winning
2364xmethod worker is found to be equivalent to the winning C@t{++}
2365method, then the xmethod worker is treated as a replacement for
2366the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2367method. If the winning xmethod worker is the overall winner, then
897c3d32 2368the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2369of the worker object.
2370
2371If one wants to implement an xmethod as a replacement for an
2372existing C@t{++} method, then they have to implement an equivalent
2373xmethod which has exactly the same name and takes arguments of
2374exactly the same type as the C@t{++} method. If the user wants to
2375invoke the C@t{++} method even though a replacement xmethod is
2376available for that method, then they can disable the xmethod.
2377
2378@xref{Xmethod API}, for API to implement xmethods in Python.
2379@xref{Writing an Xmethod}, for implementing xmethods in Python.
2380
2381@node Xmethod API
2382@subsubsection Xmethod API
2383@cindex xmethod API
2384
2385The @value{GDBN} Python API provides classes, interfaces and functions
2386to implement, register and manipulate xmethods.
2387@xref{Xmethods In Python}.
2388
2389An xmethod matcher should be an instance of a class derived from
2390@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2391object with similar interface and attributes. An instance of
2392@code{XMethodMatcher} has the following attributes:
2393
2394@defvar name
2395The name of the matcher.
2396@end defvar
2397
2398@defvar enabled
2399A boolean value indicating whether the matcher is enabled or disabled.
2400@end defvar
2401
2402@defvar methods
2403A list of named methods managed by the matcher. Each object in the list
2404is an instance of the class @code{XMethod} defined in the module
2405@code{gdb.xmethod}, or any object with the following attributes:
2406
2407@table @code
2408
2409@item name
2410Name of the xmethod which should be unique for each xmethod
2411managed by the matcher.
2412
2413@item enabled
2414A boolean value indicating whether the xmethod is enabled or
2415disabled.
2416
2417@end table
2418
2419The class @code{XMethod} is a convenience class with same
2420attributes as above along with the following constructor:
2421
dd5d5494 2422@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2423Constructs an enabled xmethod with name @var{name}.
2424@end defun
2425@end defvar
2426
2427@noindent
2428The @code{XMethodMatcher} class has the following methods:
2429
dd5d5494 2430@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2431Constructs an enabled xmethod matcher with name @var{name}. The
2432@code{methods} attribute is initialized to @code{None}.
2433@end defun
2434
dd5d5494 2435@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2436Derived classes should override this method. It should return a
2437xmethod worker object (or a sequence of xmethod worker
2438objects) matching the @var{class_type} and @var{method_name}.
2439@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2440is a string value. If the matcher manages named methods as listed in
2441its @code{methods} attribute, then only those worker objects whose
2442corresponding entries in the @code{methods} list are enabled should be
2443returned.
2444@end defun
2445
2446An xmethod worker should be an instance of a class derived from
2447@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2448or support the following interface:
2449
dd5d5494 2450@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2451This method returns a sequence of @code{gdb.Type} objects corresponding
2452to the arguments that the xmethod takes. It can return an empty
2453sequence or @code{None} if the xmethod does not take any arguments.
2454If the xmethod takes a single argument, then a single
2455@code{gdb.Type} object corresponding to it can be returned.
2456@end defun
2457
dd5d5494 2458@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2459This is the method which does the @emph{work} of the xmethod. The
2460@var{args} arguments is the tuple of arguments to the xmethod. Each
2461element in this tuple is a gdb.Value object. The first element is
2462always the @code{this} pointer value.
2463@end defun
2464
2465For @value{GDBN} to lookup xmethods, the xmethod matchers
2466should be registered using the following function defined in the module
2467@code{gdb.xmethod}:
2468
dd5d5494 2469@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2470The @code{matcher} is registered with @code{locus}, replacing an
2471existing matcher with the same name as @code{matcher} if
2472@code{replace} is @code{True}. @code{locus} can be a
2473@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2474@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2475@code{None}. If it is @code{None}, then @code{matcher} is registered
2476globally.
2477@end defun
2478
2479@node Writing an Xmethod
2480@subsubsection Writing an Xmethod
2481@cindex writing xmethods in Python
2482
2483Implementing xmethods in Python will require implementing xmethod
2484matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2485the following C@t{++} class:
2486
2487@smallexample
2488class MyClass
2489@{
2490public:
2491 MyClass (int a) : a_(a) @{ @}
2492
2493 int geta (void) @{ return a_; @}
2494 int operator+ (int b);
2495
2496private:
2497 int a_;
2498@};
2499
2500int
2501MyClass::operator+ (int b)
2502@{
2503 return a_ + b;
2504@}
2505@end smallexample
2506
2507@noindent
2508Let us define two xmethods for the class @code{MyClass}, one
2509replacing the method @code{geta}, and another adding an overloaded
2510flavor of @code{operator+} which takes a @code{MyClass} argument (the
2511C@t{++} code above already has an overloaded @code{operator+}
2512which takes an @code{int} argument). The xmethod matcher can be
2513defined as follows:
2514
2515@smallexample
2516class MyClass_geta(gdb.xmethod.XMethod):
2517 def __init__(self):
2518 gdb.xmethod.XMethod.__init__(self, 'geta')
2519
2520 def get_worker(self, method_name):
2521 if method_name == 'geta':
2522 return MyClassWorker_geta()
2523
2524
2525class MyClass_sum(gdb.xmethod.XMethod):
2526 def __init__(self):
2527 gdb.xmethod.XMethod.__init__(self, 'sum')
2528
2529 def get_worker(self, method_name):
2530 if method_name == 'operator+':
2531 return MyClassWorker_plus()
2532
2533
2534class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2535 def __init__(self):
2536 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2537 # List of methods 'managed' by this matcher
2538 self.methods = [MyClass_geta(), MyClass_sum()]
2539
2540 def match(self, class_type, method_name):
2541 if class_type.tag != 'MyClass':
2542 return None
2543 workers = []
2544 for method in self.methods:
2545 if method.enabled:
2546 worker = method.get_worker(method_name)
2547 if worker:
2548 workers.append(worker)
2549
2550 return workers
2551@end smallexample
2552
2553@noindent
2554Notice that the @code{match} method of @code{MyClassMatcher} returns
2555a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2556method, and a worker object of type @code{MyClassWorker_plus} for the
2557@code{operator+} method. This is done indirectly via helper classes
2558derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2559@code{methods} attribute in a matcher as it is optional. However, if a
2560matcher manages more than one xmethod, it is a good practice to list the
2561xmethods in the @code{methods} attribute of the matcher. This will then
2562facilitate enabling and disabling individual xmethods via the
2563@code{enable/disable} commands. Notice also that a worker object is
2564returned only if the corresponding entry in the @code{methods} attribute
2565of the matcher is enabled.
2566
2567The implementation of the worker classes returned by the matcher setup
2568above is as follows:
2569
2570@smallexample
2571class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2572 def get_arg_types(self):
2573 return None
2574
2575 def __call__(self, obj):
2576 return obj['a_']
2577
2578
2579class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2580 def get_arg_types(self):
2581 return gdb.lookup_type('MyClass')
2582
2583 def __call__(self, obj, other):
2584 return obj['a_'] + other['a_']
2585@end smallexample
2586
2587For @value{GDBN} to actually lookup a xmethod, it has to be
2588registered with it. The matcher defined above is registered with
2589@value{GDBN} globally as follows:
2590
2591@smallexample
2592gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2593@end smallexample
2594
2595If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2596code as follows:
2597
2598@smallexample
2599MyClass obj(5);
2600@end smallexample
2601
2602@noindent
2603then, after loading the Python script defining the xmethod matchers
2604and workers into @code{GDBN}, invoking the method @code{geta} or using
2605the operator @code{+} on @code{obj} will invoke the xmethods
2606defined above:
2607
2608@smallexample
2609(gdb) p obj.geta()
2610$1 = 5
2611
2612(gdb) p obj + obj
2613$2 = 10
2614@end smallexample
2615
2616Consider another example with a C++ template class:
2617
2618@smallexample
2619template <class T>
2620class MyTemplate
2621@{
2622public:
2623 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2624 ~MyTemplate () @{ delete [] data_; @}
2625
2626 int footprint (void)
2627 @{
2628 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2629 @}
2630
2631private:
2632 int dsize_;
2633 T *data_;
2634@};
2635@end smallexample
2636
2637Let us implement an xmethod for the above class which serves as a
2638replacement for the @code{footprint} method. The full code listing
2639of the xmethod workers and xmethod matchers is as follows:
2640
2641@smallexample
2642class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2643 def __init__(self, class_type):
2644 self.class_type = class_type
2645
2646 def get_arg_types(self):
2647 return None
2648
2649 def __call__(self, obj):
2650 return (self.class_type.sizeof +
2651 obj['dsize_'] *
2652 self.class_type.template_argument(0).sizeof)
2653
2654
2655class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2656 def __init__(self):
2657 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2658
2659 def match(self, class_type, method_name):
2660 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2661 class_type.tag) and
2662 method_name == 'footprint'):
2663 return MyTemplateWorker_footprint(class_type)
2664@end smallexample
2665
2666Notice that, in this example, we have not used the @code{methods}
2667attribute of the matcher as the matcher manages only one xmethod. The
2668user can enable/disable this xmethod by enabling/disabling the matcher
2669itself.
2670
329baa95
DE
2671@node Inferiors In Python
2672@subsubsection Inferiors In Python
2673@cindex inferiors in Python
2674
2675@findex gdb.Inferior
2676Programs which are being run under @value{GDBN} are called inferiors
2677(@pxref{Inferiors and Programs}). Python scripts can access
2678information about and manipulate inferiors controlled by @value{GDBN}
2679via objects of the @code{gdb.Inferior} class.
2680
2681The following inferior-related functions are available in the @code{gdb}
2682module:
2683
2684@defun gdb.inferiors ()
2685Return a tuple containing all inferior objects.
2686@end defun
2687
2688@defun gdb.selected_inferior ()
2689Return an object representing the current inferior.
2690@end defun
2691
2692A @code{gdb.Inferior} object has the following attributes:
2693
2694@defvar Inferior.num
2695ID of inferior, as assigned by GDB.
2696@end defvar
2697
2698@defvar Inferior.pid
2699Process ID of the inferior, as assigned by the underlying operating
2700system.
2701@end defvar
2702
2703@defvar Inferior.was_attached
2704Boolean signaling whether the inferior was created using `attach', or
2705started by @value{GDBN} itself.
2706@end defvar
2707
2708A @code{gdb.Inferior} object has the following methods:
2709
2710@defun Inferior.is_valid ()
2711Returns @code{True} if the @code{gdb.Inferior} object is valid,
2712@code{False} if not. A @code{gdb.Inferior} object will become invalid
2713if the inferior no longer exists within @value{GDBN}. All other
2714@code{gdb.Inferior} methods will throw an exception if it is invalid
2715at the time the method is called.
2716@end defun
2717
2718@defun Inferior.threads ()
2719This method returns a tuple holding all the threads which are valid
2720when it is called. If there are no valid threads, the method will
2721return an empty tuple.
2722@end defun
2723
2724@findex Inferior.read_memory
2725@defun Inferior.read_memory (address, length)
2726Read @var{length} bytes of memory from the inferior, starting at
2727@var{address}. Returns a buffer object, which behaves much like an array
2728or a string. It can be modified and given to the
2729@code{Inferior.write_memory} function. In @code{Python} 3, the return
2730value is a @code{memoryview} object.
2731@end defun
2732
2733@findex Inferior.write_memory
2734@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2735Write the contents of @var{buffer} to the inferior, starting at
2736@var{address}. The @var{buffer} parameter must be a Python object
2737which supports the buffer protocol, i.e., a string, an array or the
2738object returned from @code{Inferior.read_memory}. If given, @var{length}
2739determines the number of bytes from @var{buffer} to be written.
2740@end defun
2741
2742@findex gdb.search_memory
2743@defun Inferior.search_memory (address, length, pattern)
2744Search a region of the inferior memory starting at @var{address} with
2745the given @var{length} using the search pattern supplied in
2746@var{pattern}. The @var{pattern} parameter must be a Python object
2747which supports the buffer protocol, i.e., a string, an array or the
2748object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2749containing the address where the pattern was found, or @code{None} if
2750the pattern could not be found.
2751@end defun
2752
2753@node Events In Python
2754@subsubsection Events In Python
2755@cindex inferior events in Python
2756
2757@value{GDBN} provides a general event facility so that Python code can be
2758notified of various state changes, particularly changes that occur in
2759the inferior.
2760
2761An @dfn{event} is just an object that describes some state change. The
2762type of the object and its attributes will vary depending on the details
2763of the change. All the existing events are described below.
2764
2765In order to be notified of an event, you must register an event handler
2766with an @dfn{event registry}. An event registry is an object in the
2767@code{gdb.events} module which dispatches particular events. A registry
2768provides methods to register and unregister event handlers:
2769
2770@defun EventRegistry.connect (object)
2771Add the given callable @var{object} to the registry. This object will be
2772called when an event corresponding to this registry occurs.
2773@end defun
2774
2775@defun EventRegistry.disconnect (object)
2776Remove the given @var{object} from the registry. Once removed, the object
2777will no longer receive notifications of events.
2778@end defun
2779
2780Here is an example:
2781
2782@smallexample
2783def exit_handler (event):
2784 print "event type: exit"
2785 print "exit code: %d" % (event.exit_code)
2786
2787gdb.events.exited.connect (exit_handler)
2788@end smallexample
2789
2790In the above example we connect our handler @code{exit_handler} to the
2791registry @code{events.exited}. Once connected, @code{exit_handler} gets
2792called when the inferior exits. The argument @dfn{event} in this example is
2793of type @code{gdb.ExitedEvent}. As you can see in the example the
2794@code{ExitedEvent} object has an attribute which indicates the exit code of
2795the inferior.
2796
2797The following is a listing of the event registries that are available and
2798details of the events they emit:
2799
2800@table @code
2801
2802@item events.cont
2803Emits @code{gdb.ThreadEvent}.
2804
2805Some events can be thread specific when @value{GDBN} is running in non-stop
2806mode. When represented in Python, these events all extend
2807@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2808events which are emitted by this or other modules might extend this event.
2809Examples of these events are @code{gdb.BreakpointEvent} and
2810@code{gdb.ContinueEvent}.
2811
2812@defvar ThreadEvent.inferior_thread
2813In non-stop mode this attribute will be set to the specific thread which was
2814involved in the emitted event. Otherwise, it will be set to @code{None}.
2815@end defvar
2816
2817Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2818
2819This event indicates that the inferior has been continued after a stop. For
2820inherited attribute refer to @code{gdb.ThreadEvent} above.
2821
2822@item events.exited
2823Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2824@code{events.ExitedEvent} has two attributes:
2825@defvar ExitedEvent.exit_code
2826An integer representing the exit code, if available, which the inferior
2827has returned. (The exit code could be unavailable if, for example,
2828@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2829the attribute does not exist.
2830@end defvar
2831@defvar ExitedEvent inferior
2832A reference to the inferior which triggered the @code{exited} event.
2833@end defvar
2834
2835@item events.stop
2836Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2837
2838Indicates that the inferior has stopped. All events emitted by this registry
2839extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2840will indicate the stopped thread when @value{GDBN} is running in non-stop
2841mode. Refer to @code{gdb.ThreadEvent} above for more details.
2842
2843Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2844
2845This event indicates that the inferior or one of its threads has received as
2846signal. @code{gdb.SignalEvent} has the following attributes:
2847
2848@defvar SignalEvent.stop_signal
2849A string representing the signal received by the inferior. A list of possible
2850signal values can be obtained by running the command @code{info signals} in
2851the @value{GDBN} command prompt.
2852@end defvar
2853
2854Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2855
2856@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2857been hit, and has the following attributes:
2858
2859@defvar BreakpointEvent.breakpoints
2860A sequence containing references to all the breakpoints (type
2861@code{gdb.Breakpoint}) that were hit.
2862@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2863@end defvar
2864@defvar BreakpointEvent.breakpoint
2865A reference to the first breakpoint that was hit.
2866This function is maintained for backward compatibility and is now deprecated
2867in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
2868@end defvar
2869
2870@item events.new_objfile
2871Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
2872been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
2873
2874@defvar NewObjFileEvent.new_objfile
2875A reference to the object file (@code{gdb.Objfile}) which has been loaded.
2876@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
2877@end defvar
2878
4ffbba72
DE
2879@item events.clear_objfiles
2880Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
2881files for a program space has been reset.
2882@code{gdb.ClearObjFilesEvent} has one attribute:
2883
2884@defvar ClearObjFilesEvent.progspace
2885A reference to the program space (@code{gdb.Progspace}) whose objfile list has
2886been cleared. @xref{Progspaces In Python}.
2887@end defvar
2888
162078c8
NB
2889@item events.inferior_call_pre
2890Emits @code{gdb.InferiorCallPreEvent} which indicates that a function in
2891the inferior is about to be called.
2892
2893@defvar InferiorCallPreEvent.ptid
2894The thread in which the call will be run.
2895@end defvar
2896
2897@defvar InferiorCallPreEvent.address
2898The location of the function to be called.
2899@end defvar
2900
2901@item events.inferior_call_post
2902Emits @code{gdb.InferiorCallPostEvent} which indicates that a function in
2903the inferior has returned.
2904
2905@defvar InferiorCallPostEvent.ptid
2906The thread in which the call was run.
2907@end defvar
2908
2909@defvar InferiorCallPostEvent.address
2910The location of the function that was called.
2911@end defvar
2912
2913@item events.memory_changed
2914Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
2915inferior has been modified by the @value{GDBN} user, for instance via a
2916command like @w{@code{set *addr = value}}. The event has the following
2917attributes:
2918
2919@defvar MemoryChangedEvent.address
2920The start address of the changed region.
2921@end defvar
2922
2923@defvar MemoryChangedEvent.length
2924Length in bytes of the changed region.
2925@end defvar
2926
2927@item events.register_changed
2928Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
2929inferior has been modified by the @value{GDBN} user.
2930
2931@defvar RegisterChangedEvent.frame
2932A gdb.Frame object representing the frame in which the register was modified.
2933@end defvar
2934@defvar RegisterChangedEvent.regnum
2935Denotes which register was modified.
2936@end defvar
2937
329baa95
DE
2938@end table
2939
2940@node Threads In Python
2941@subsubsection Threads In Python
2942@cindex threads in python
2943
2944@findex gdb.InferiorThread
2945Python scripts can access information about, and manipulate inferior threads
2946controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
2947
2948The following thread-related functions are available in the @code{gdb}
2949module:
2950
2951@findex gdb.selected_thread
2952@defun gdb.selected_thread ()
2953This function returns the thread object for the selected thread. If there
2954is no selected thread, this will return @code{None}.
2955@end defun
2956
2957A @code{gdb.InferiorThread} object has the following attributes:
2958
2959@defvar InferiorThread.name
2960The name of the thread. If the user specified a name using
2961@code{thread name}, then this returns that name. Otherwise, if an
2962OS-supplied name is available, then it is returned. Otherwise, this
2963returns @code{None}.
2964
2965This attribute can be assigned to. The new value must be a string
2966object, which sets the new name, or @code{None}, which removes any
2967user-specified thread name.
2968@end defvar
2969
2970@defvar InferiorThread.num
2971ID of the thread, as assigned by GDB.
2972@end defvar
2973
2974@defvar InferiorThread.ptid
2975ID of the thread, as assigned by the operating system. This attribute is a
2976tuple containing three integers. The first is the Process ID (PID); the second
2977is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
2978Either the LWPID or TID may be 0, which indicates that the operating system
2979does not use that identifier.
2980@end defvar
2981
2982A @code{gdb.InferiorThread} object has the following methods:
2983
2984@defun InferiorThread.is_valid ()
2985Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
2986@code{False} if not. A @code{gdb.InferiorThread} object will become
2987invalid if the thread exits, or the inferior that the thread belongs
2988is deleted. All other @code{gdb.InferiorThread} methods will throw an
2989exception if it is invalid at the time the method is called.
2990@end defun
2991
2992@defun InferiorThread.switch ()
2993This changes @value{GDBN}'s currently selected thread to the one represented
2994by this object.
2995@end defun
2996
2997@defun InferiorThread.is_stopped ()
2998Return a Boolean indicating whether the thread is stopped.
2999@end defun
3000
3001@defun InferiorThread.is_running ()
3002Return a Boolean indicating whether the thread is running.
3003@end defun
3004
3005@defun InferiorThread.is_exited ()
3006Return a Boolean indicating whether the thread is exited.
3007@end defun
3008
3009@node Commands In Python
3010@subsubsection Commands In Python
3011
3012@cindex commands in python
3013@cindex python commands
3014You can implement new @value{GDBN} CLI commands in Python. A CLI
3015command is implemented using an instance of the @code{gdb.Command}
3016class, most commonly using a subclass.
3017
3018@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3019The object initializer for @code{Command} registers the new command
3020with @value{GDBN}. This initializer is normally invoked from the
3021subclass' own @code{__init__} method.
3022
3023@var{name} is the name of the command. If @var{name} consists of
3024multiple words, then the initial words are looked for as prefix
3025commands. In this case, if one of the prefix commands does not exist,
3026an exception is raised.
3027
3028There is no support for multi-line commands.
3029
3030@var{command_class} should be one of the @samp{COMMAND_} constants
3031defined below. This argument tells @value{GDBN} how to categorize the
3032new command in the help system.
3033
3034@var{completer_class} is an optional argument. If given, it should be
3035one of the @samp{COMPLETE_} constants defined below. This argument
3036tells @value{GDBN} how to perform completion for this command. If not
3037given, @value{GDBN} will attempt to complete using the object's
3038@code{complete} method (see below); if no such method is found, an
3039error will occur when completion is attempted.
3040
3041@var{prefix} is an optional argument. If @code{True}, then the new
3042command is a prefix command; sub-commands of this command may be
3043registered.
3044
3045The help text for the new command is taken from the Python
3046documentation string for the command's class, if there is one. If no
3047documentation string is provided, the default value ``This command is
3048not documented.'' is used.
3049@end defun
3050
3051@cindex don't repeat Python command
3052@defun Command.dont_repeat ()
3053By default, a @value{GDBN} command is repeated when the user enters a
3054blank line at the command prompt. A command can suppress this
3055behavior by invoking the @code{dont_repeat} method. This is similar
3056to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3057@end defun
3058
3059@defun Command.invoke (argument, from_tty)
3060This method is called by @value{GDBN} when this command is invoked.
3061
3062@var{argument} is a string. It is the argument to the command, after
3063leading and trailing whitespace has been stripped.
3064
3065@var{from_tty} is a boolean argument. When true, this means that the
3066command was entered by the user at the terminal; when false it means
3067that the command came from elsewhere.
3068
3069If this method throws an exception, it is turned into a @value{GDBN}
3070@code{error} call. Otherwise, the return value is ignored.
3071
3072@findex gdb.string_to_argv
3073To break @var{argument} up into an argv-like string use
3074@code{gdb.string_to_argv}. This function behaves identically to
3075@value{GDBN}'s internal argument lexer @code{buildargv}.
3076It is recommended to use this for consistency.
3077Arguments are separated by spaces and may be quoted.
3078Example:
3079
3080@smallexample
3081print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3082['1', '2 "3', '4 "5', "6 '7"]
3083@end smallexample
3084
3085@end defun
3086
3087@cindex completion of Python commands
3088@defun Command.complete (text, word)
3089This method is called by @value{GDBN} when the user attempts
3090completion on this command. All forms of completion are handled by
3091this method, that is, the @key{TAB} and @key{M-?} key bindings
3092(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3093complete}).
3094
697aa1b7
EZ
3095The arguments @var{text} and @var{word} are both strings; @var{text}
3096holds the complete command line up to the cursor's location, while
329baa95
DE
3097@var{word} holds the last word of the command line; this is computed
3098using a word-breaking heuristic.
3099
3100The @code{complete} method can return several values:
3101@itemize @bullet
3102@item
3103If the return value is a sequence, the contents of the sequence are
3104used as the completions. It is up to @code{complete} to ensure that the
3105contents actually do complete the word. A zero-length sequence is
3106allowed, it means that there were no completions available. Only
3107string elements of the sequence are used; other elements in the
3108sequence are ignored.
3109
3110@item
3111If the return value is one of the @samp{COMPLETE_} constants defined
3112below, then the corresponding @value{GDBN}-internal completion
3113function is invoked, and its result is used.
3114
3115@item
3116All other results are treated as though there were no available
3117completions.
3118@end itemize
3119@end defun
3120
3121When a new command is registered, it must be declared as a member of
3122some general class of commands. This is used to classify top-level
3123commands in the on-line help system; note that prefix commands are not
3124listed under their own category but rather that of their top-level
3125command. The available classifications are represented by constants
3126defined in the @code{gdb} module:
3127
3128@table @code
3129@findex COMMAND_NONE
3130@findex gdb.COMMAND_NONE
3131@item gdb.COMMAND_NONE
3132The command does not belong to any particular class. A command in
3133this category will not be displayed in any of the help categories.
3134
3135@findex COMMAND_RUNNING
3136@findex gdb.COMMAND_RUNNING
3137@item gdb.COMMAND_RUNNING
3138The command is related to running the inferior. For example,
3139@code{start}, @code{step}, and @code{continue} are in this category.
3140Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3141commands in this category.
3142
3143@findex COMMAND_DATA
3144@findex gdb.COMMAND_DATA
3145@item gdb.COMMAND_DATA
3146The command is related to data or variables. For example,
3147@code{call}, @code{find}, and @code{print} are in this category. Type
3148@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3149in this category.
3150
3151@findex COMMAND_STACK
3152@findex gdb.COMMAND_STACK
3153@item gdb.COMMAND_STACK
3154The command has to do with manipulation of the stack. For example,
3155@code{backtrace}, @code{frame}, and @code{return} are in this
3156category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3157list of commands in this category.
3158
3159@findex COMMAND_FILES
3160@findex gdb.COMMAND_FILES
3161@item gdb.COMMAND_FILES
3162This class is used for file-related commands. For example,
3163@code{file}, @code{list} and @code{section} are in this category.
3164Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3165commands in this category.
3166
3167@findex COMMAND_SUPPORT
3168@findex gdb.COMMAND_SUPPORT
3169@item gdb.COMMAND_SUPPORT
3170This should be used for ``support facilities'', generally meaning
3171things that are useful to the user when interacting with @value{GDBN},
3172but not related to the state of the inferior. For example,
3173@code{help}, @code{make}, and @code{shell} are in this category. Type
3174@kbd{help support} at the @value{GDBN} prompt to see a list of
3175commands in this category.
3176
3177@findex COMMAND_STATUS
3178@findex gdb.COMMAND_STATUS
3179@item gdb.COMMAND_STATUS
3180The command is an @samp{info}-related command, that is, related to the
3181state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3182and @code{show} are in this category. Type @kbd{help status} at the
3183@value{GDBN} prompt to see a list of commands in this category.
3184
3185@findex COMMAND_BREAKPOINTS
3186@findex gdb.COMMAND_BREAKPOINTS
3187@item gdb.COMMAND_BREAKPOINTS
3188The command has to do with breakpoints. For example, @code{break},
3189@code{clear}, and @code{delete} are in this category. Type @kbd{help
3190breakpoints} at the @value{GDBN} prompt to see a list of commands in
3191this category.
3192
3193@findex COMMAND_TRACEPOINTS
3194@findex gdb.COMMAND_TRACEPOINTS
3195@item gdb.COMMAND_TRACEPOINTS
3196The command has to do with tracepoints. For example, @code{trace},
3197@code{actions}, and @code{tfind} are in this category. Type
3198@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3199commands in this category.
3200
3201@findex COMMAND_USER
3202@findex gdb.COMMAND_USER
3203@item gdb.COMMAND_USER
3204The command is a general purpose command for the user, and typically
3205does not fit in one of the other categories.
3206Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3207a list of commands in this category, as well as the list of gdb macros
3208(@pxref{Sequences}).
3209
3210@findex COMMAND_OBSCURE
3211@findex gdb.COMMAND_OBSCURE
3212@item gdb.COMMAND_OBSCURE
3213The command is only used in unusual circumstances, or is not of
3214general interest to users. For example, @code{checkpoint},
3215@code{fork}, and @code{stop} are in this category. Type @kbd{help
3216obscure} at the @value{GDBN} prompt to see a list of commands in this
3217category.
3218
3219@findex COMMAND_MAINTENANCE
3220@findex gdb.COMMAND_MAINTENANCE
3221@item gdb.COMMAND_MAINTENANCE
3222The command is only useful to @value{GDBN} maintainers. The
3223@code{maintenance} and @code{flushregs} commands are in this category.
3224Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3225commands in this category.
3226@end table
3227
3228A new command can use a predefined completion function, either by
3229specifying it via an argument at initialization, or by returning it
3230from the @code{complete} method. These predefined completion
3231constants are all defined in the @code{gdb} module:
3232
b3ce5e5f
DE
3233@vtable @code
3234@vindex COMPLETE_NONE
329baa95
DE
3235@item gdb.COMPLETE_NONE
3236This constant means that no completion should be done.
3237
b3ce5e5f 3238@vindex COMPLETE_FILENAME
329baa95
DE
3239@item gdb.COMPLETE_FILENAME
3240This constant means that filename completion should be performed.
3241
b3ce5e5f 3242@vindex COMPLETE_LOCATION
329baa95
DE
3243@item gdb.COMPLETE_LOCATION
3244This constant means that location completion should be done.
3245@xref{Specify Location}.
3246
b3ce5e5f 3247@vindex COMPLETE_COMMAND
329baa95
DE
3248@item gdb.COMPLETE_COMMAND
3249This constant means that completion should examine @value{GDBN}
3250command names.
3251
b3ce5e5f 3252@vindex COMPLETE_SYMBOL
329baa95
DE
3253@item gdb.COMPLETE_SYMBOL
3254This constant means that completion should be done using symbol names
3255as the source.
3256
b3ce5e5f 3257@vindex COMPLETE_EXPRESSION
329baa95
DE
3258@item gdb.COMPLETE_EXPRESSION
3259This constant means that completion should be done on expressions.
3260Often this means completing on symbol names, but some language
3261parsers also have support for completing on field names.
b3ce5e5f 3262@end vtable
329baa95
DE
3263
3264The following code snippet shows how a trivial CLI command can be
3265implemented in Python:
3266
3267@smallexample
3268class HelloWorld (gdb.Command):
3269 """Greet the whole world."""
3270
3271 def __init__ (self):
3272 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3273
3274 def invoke (self, arg, from_tty):
3275 print "Hello, World!"
3276
3277HelloWorld ()
3278@end smallexample
3279
3280The last line instantiates the class, and is necessary to trigger the
3281registration of the command with @value{GDBN}. Depending on how the
3282Python code is read into @value{GDBN}, you may need to import the
3283@code{gdb} module explicitly.
3284
3285@node Parameters In Python
3286@subsubsection Parameters In Python
3287
3288@cindex parameters in python
3289@cindex python parameters
3290@tindex gdb.Parameter
3291@tindex Parameter
3292You can implement new @value{GDBN} parameters using Python. A new
3293parameter is implemented as an instance of the @code{gdb.Parameter}
3294class.
3295
3296Parameters are exposed to the user via the @code{set} and
3297@code{show} commands. @xref{Help}.
3298
3299There are many parameters that already exist and can be set in
3300@value{GDBN}. Two examples are: @code{set follow fork} and
3301@code{set charset}. Setting these parameters influences certain
3302behavior in @value{GDBN}. Similarly, you can define parameters that
3303can be used to influence behavior in custom Python scripts and commands.
3304
3305@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3306The object initializer for @code{Parameter} registers the new
3307parameter with @value{GDBN}. This initializer is normally invoked
3308from the subclass' own @code{__init__} method.
3309
3310@var{name} is the name of the new parameter. If @var{name} consists
3311of multiple words, then the initial words are looked for as prefix
3312parameters. An example of this can be illustrated with the
3313@code{set print} set of parameters. If @var{name} is
3314@code{print foo}, then @code{print} will be searched as the prefix
3315parameter. In this case the parameter can subsequently be accessed in
3316@value{GDBN} as @code{set print foo}.
3317
3318If @var{name} consists of multiple words, and no prefix parameter group
3319can be found, an exception is raised.
3320
3321@var{command-class} should be one of the @samp{COMMAND_} constants
3322(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3323categorize the new parameter in the help system.
3324
3325@var{parameter-class} should be one of the @samp{PARAM_} constants
3326defined below. This argument tells @value{GDBN} the type of the new
3327parameter; this information is used for input validation and
3328completion.
3329
3330If @var{parameter-class} is @code{PARAM_ENUM}, then
3331@var{enum-sequence} must be a sequence of strings. These strings
3332represent the possible values for the parameter.
3333
3334If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3335of a fourth argument will cause an exception to be thrown.
3336
3337The help text for the new parameter is taken from the Python
3338documentation string for the parameter's class, if there is one. If
3339there is no documentation string, a default value is used.
3340@end defun
3341
3342@defvar Parameter.set_doc
3343If this attribute exists, and is a string, then its value is used as
3344the help text for this parameter's @code{set} command. The value is
3345examined when @code{Parameter.__init__} is invoked; subsequent changes
3346have no effect.
3347@end defvar
3348
3349@defvar Parameter.show_doc
3350If this attribute exists, and is a string, then its value is used as
3351the help text for this parameter's @code{show} command. The value is
3352examined when @code{Parameter.__init__} is invoked; subsequent changes
3353have no effect.
3354@end defvar
3355
3356@defvar Parameter.value
3357The @code{value} attribute holds the underlying value of the
3358parameter. It can be read and assigned to just as any other
3359attribute. @value{GDBN} does validation when assignments are made.
3360@end defvar
3361
3362There are two methods that should be implemented in any
3363@code{Parameter} class. These are:
3364
3365@defun Parameter.get_set_string (self)
3366@value{GDBN} will call this method when a @var{parameter}'s value has
3367been changed via the @code{set} API (for example, @kbd{set foo off}).
3368The @code{value} attribute has already been populated with the new
3369value and may be used in output. This method must return a string.
3370@end defun
3371
3372@defun Parameter.get_show_string (self, svalue)
3373@value{GDBN} will call this method when a @var{parameter}'s
3374@code{show} API has been invoked (for example, @kbd{show foo}). The
3375argument @code{svalue} receives the string representation of the
3376current value. This method must return a string.
3377@end defun
3378
3379When a new parameter is defined, its type must be specified. The
3380available types are represented by constants defined in the @code{gdb}
3381module:
3382
3383@table @code
3384@findex PARAM_BOOLEAN
3385@findex gdb.PARAM_BOOLEAN
3386@item gdb.PARAM_BOOLEAN
3387The value is a plain boolean. The Python boolean values, @code{True}
3388and @code{False} are the only valid values.
3389
3390@findex PARAM_AUTO_BOOLEAN
3391@findex gdb.PARAM_AUTO_BOOLEAN
3392@item gdb.PARAM_AUTO_BOOLEAN
3393The value has three possible states: true, false, and @samp{auto}. In
3394Python, true and false are represented using boolean constants, and
3395@samp{auto} is represented using @code{None}.
3396
3397@findex PARAM_UINTEGER
3398@findex gdb.PARAM_UINTEGER
3399@item gdb.PARAM_UINTEGER
3400The value is an unsigned integer. The value of 0 should be
3401interpreted to mean ``unlimited''.
3402
3403@findex PARAM_INTEGER
3404@findex gdb.PARAM_INTEGER
3405@item gdb.PARAM_INTEGER
3406The value is a signed integer. The value of 0 should be interpreted
3407to mean ``unlimited''.
3408
3409@findex PARAM_STRING
3410@findex gdb.PARAM_STRING
3411@item gdb.PARAM_STRING
3412The value is a string. When the user modifies the string, any escape
3413sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3414translated into corresponding characters and encoded into the current
3415host charset.
3416
3417@findex PARAM_STRING_NOESCAPE
3418@findex gdb.PARAM_STRING_NOESCAPE
3419@item gdb.PARAM_STRING_NOESCAPE
3420The value is a string. When the user modifies the string, escapes are
3421passed through untranslated.
3422
3423@findex PARAM_OPTIONAL_FILENAME
3424@findex gdb.PARAM_OPTIONAL_FILENAME
3425@item gdb.PARAM_OPTIONAL_FILENAME
3426The value is a either a filename (a string), or @code{None}.
3427
3428@findex PARAM_FILENAME
3429@findex gdb.PARAM_FILENAME
3430@item gdb.PARAM_FILENAME
3431The value is a filename. This is just like
3432@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3433
3434@findex PARAM_ZINTEGER
3435@findex gdb.PARAM_ZINTEGER
3436@item gdb.PARAM_ZINTEGER
3437The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3438is interpreted as itself.
3439
3440@findex PARAM_ENUM
3441@findex gdb.PARAM_ENUM
3442@item gdb.PARAM_ENUM
3443The value is a string, which must be one of a collection string
3444constants provided when the parameter is created.
3445@end table
3446
3447@node Functions In Python
3448@subsubsection Writing new convenience functions
3449
3450@cindex writing convenience functions
3451@cindex convenience functions in python
3452@cindex python convenience functions
3453@tindex gdb.Function
3454@tindex Function
3455You can implement new convenience functions (@pxref{Convenience Vars})
3456in Python. A convenience function is an instance of a subclass of the
3457class @code{gdb.Function}.
3458
3459@defun Function.__init__ (name)
3460The initializer for @code{Function} registers the new function with
3461@value{GDBN}. The argument @var{name} is the name of the function,
3462a string. The function will be visible to the user as a convenience
3463variable of type @code{internal function}, whose name is the same as
3464the given @var{name}.
3465
3466The documentation for the new function is taken from the documentation
3467string for the new class.
3468@end defun
3469
3470@defun Function.invoke (@var{*args})
3471When a convenience function is evaluated, its arguments are converted
3472to instances of @code{gdb.Value}, and then the function's
3473@code{invoke} method is called. Note that @value{GDBN} does not
3474predetermine the arity of convenience functions. Instead, all
3475available arguments are passed to @code{invoke}, following the
3476standard Python calling convention. In particular, a convenience
3477function can have default values for parameters without ill effect.
3478
3479The return value of this method is used as its value in the enclosing
3480expression. If an ordinary Python value is returned, it is converted
3481to a @code{gdb.Value} following the usual rules.
3482@end defun
3483
3484The following code snippet shows how a trivial convenience function can
3485be implemented in Python:
3486
3487@smallexample
3488class Greet (gdb.Function):
3489 """Return string to greet someone.
3490Takes a name as argument."""
3491
3492 def __init__ (self):
3493 super (Greet, self).__init__ ("greet")
3494
3495 def invoke (self, name):
3496 return "Hello, %s!" % name.string ()
3497
3498Greet ()
3499@end smallexample
3500
3501The last line instantiates the class, and is necessary to trigger the
3502registration of the function with @value{GDBN}. Depending on how the
3503Python code is read into @value{GDBN}, you may need to import the
3504@code{gdb} module explicitly.
3505
3506Now you can use the function in an expression:
3507
3508@smallexample
3509(gdb) print $greet("Bob")
3510$1 = "Hello, Bob!"
3511@end smallexample
3512
3513@node Progspaces In Python
3514@subsubsection Program Spaces In Python
3515
3516@cindex progspaces in python
3517@tindex gdb.Progspace
3518@tindex Progspace
3519A program space, or @dfn{progspace}, represents a symbolic view
3520of an address space.
3521It consists of all of the objfiles of the program.
3522@xref{Objfiles In Python}.
3523@xref{Inferiors and Programs, program spaces}, for more details
3524about program spaces.
3525
3526The following progspace-related functions are available in the
3527@code{gdb} module:
3528
3529@findex gdb.current_progspace
3530@defun gdb.current_progspace ()
3531This function returns the program space of the currently selected inferior.
3532@xref{Inferiors and Programs}.
3533@end defun
3534
3535@findex gdb.progspaces
3536@defun gdb.progspaces ()
3537Return a sequence of all the progspaces currently known to @value{GDBN}.
3538@end defun
3539
3540Each progspace is represented by an instance of the @code{gdb.Progspace}
3541class.
3542
3543@defvar Progspace.filename
3544The file name of the progspace as a string.
3545@end defvar
3546
3547@defvar Progspace.pretty_printers
3548The @code{pretty_printers} attribute is a list of functions. It is
3549used to look up pretty-printers. A @code{Value} is passed to each
3550function in order; if the function returns @code{None}, then the
3551search continues. Otherwise, the return value should be an object
3552which is used to format the value. @xref{Pretty Printing API}, for more
3553information.
3554@end defvar
3555
3556@defvar Progspace.type_printers
3557The @code{type_printers} attribute is a list of type printer objects.
3558@xref{Type Printing API}, for more information.
3559@end defvar
3560
3561@defvar Progspace.frame_filters
3562The @code{frame_filters} attribute is a dictionary of frame filter
3563objects. @xref{Frame Filter API}, for more information.
3564@end defvar
3565
02be9a71
DE
3566One may add arbitrary attributes to @code{gdb.Progspace} objects
3567in the usual Python way.
3568This is useful if, for example, one needs to do some extra record keeping
3569associated with the program space.
3570
3571In this contrived example, we want to perform some processing when
3572an objfile with a certain symbol is loaded, but we only want to do
3573this once because it is expensive. To achieve this we record the results
3574with the program space because we can't predict when the desired objfile
3575will be loaded.
3576
3577@smallexample
3578(gdb) python
3579def clear_objfiles_handler(event):
3580 event.progspace.expensive_computation = None
3581def expensive(symbol):
3582 """A mock routine to perform an "expensive" computation on symbol."""
3583 print "Computing the answer to the ultimate question ..."
3584 return 42
3585def new_objfile_handler(event):
3586 objfile = event.new_objfile
3587 progspace = objfile.progspace
3588 if not hasattr(progspace, 'expensive_computation') or \
3589 progspace.expensive_computation is None:
3590 # We use 'main' for the symbol to keep the example simple.
3591 # Note: There's no current way to constrain the lookup
3592 # to one objfile.
3593 symbol = gdb.lookup_global_symbol('main')
3594 if symbol is not None:
3595 progspace.expensive_computation = expensive(symbol)
3596gdb.events.clear_objfiles.connect(clear_objfiles_handler)
3597gdb.events.new_objfile.connect(new_objfile_handler)
3598end
3599(gdb) file /tmp/hello
3600Reading symbols from /tmp/hello...done.
3601Computing the answer to the ultimate question ...
3602(gdb) python print gdb.current_progspace().expensive_computation
360342
3604(gdb) run
3605Starting program: /tmp/hello
3606Hello.
3607[Inferior 1 (process 4242) exited normally]
3608@end smallexample
3609
329baa95
DE
3610@node Objfiles In Python
3611@subsubsection Objfiles In Python
3612
3613@cindex objfiles in python
3614@tindex gdb.Objfile
3615@tindex Objfile
3616@value{GDBN} loads symbols for an inferior from various
3617symbol-containing files (@pxref{Files}). These include the primary
3618executable file, any shared libraries used by the inferior, and any
3619separate debug info files (@pxref{Separate Debug Files}).
3620@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
3621
3622The following objfile-related functions are available in the
3623@code{gdb} module:
3624
3625@findex gdb.current_objfile
3626@defun gdb.current_objfile ()
3627When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
3628sets the ``current objfile'' to the corresponding objfile. This
3629function returns the current objfile. If there is no current objfile,
3630this function returns @code{None}.
3631@end defun
3632
3633@findex gdb.objfiles
3634@defun gdb.objfiles ()
3635Return a sequence of all the objfiles current known to @value{GDBN}.
3636@xref{Objfiles In Python}.
3637@end defun
3638
6dddd6a5
DE
3639@findex gdb.lookup_objfile
3640@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
3641Look up @var{name}, a file name or build ID, in the list of objfiles
3642for the current program space (@pxref{Progspaces In Python}).
3643If the objfile is not found throw the Python @code{ValueError} exception.
3644
3645If @var{name} is a relative file name, then it will match any
3646source file name with the same trailing components. For example, if
3647@var{name} is @samp{gcc/expr.c}, then it will match source file
3648name of @file{/build/trunk/gcc/expr.c}, but not
3649@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
3650
3651If @var{by_build_id} is provided and is @code{True} then @var{name}
3652is the build ID of the objfile. Otherwise, @var{name} is a file name.
3653This is supported only on some operating systems, notably those which use
3654the ELF format for binary files and the @sc{gnu} Binutils. For more details
3655about this feature, see the description of the @option{--build-id}
3656command-line option in @ref{Options, , Command Line Options, ld.info,
3657The GNU Linker}.
3658@end defun
3659
329baa95
DE
3660Each objfile is represented by an instance of the @code{gdb.Objfile}
3661class.
3662
3663@defvar Objfile.filename
1b549396
DE
3664The file name of the objfile as a string, with symbolic links resolved.
3665
3666The value is @code{None} if the objfile is no longer valid.
3667See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
3668@end defvar
3669
3a8b707a
DE
3670@defvar Objfile.username
3671The file name of the objfile as specified by the user as a string.
3672
3673The value is @code{None} if the objfile is no longer valid.
3674See the @code{gdb.Objfile.is_valid} method, described below.
3675@end defvar
3676
a0be3e44
DE
3677@defvar Objfile.owner
3678For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
3679object that debug info is being provided for.
3680Otherwise this is @code{None}.
3681Separate debug info objfiles are added with the
3682@code{gdb.Objfile.add_separate_debug_file} method, described below.
3683@end defvar
3684
7c50a931
DE
3685@defvar Objfile.build_id
3686The build ID of the objfile as a string.
3687If the objfile does not have a build ID then the value is @code{None}.
3688
3689This is supported only on some operating systems, notably those which use
3690the ELF format for binary files and the @sc{gnu} Binutils. For more details
3691about this feature, see the description of the @option{--build-id}
3692command-line option in @ref{Options, , Command Line Options, ld.info,
3693The GNU Linker}.
3694@end defvar
3695
d096d8c1
DE
3696@defvar Objfile.progspace
3697The containing program space of the objfile as a @code{gdb.Progspace}
3698object. @xref{Progspaces In Python}.
3699@end defvar
3700
329baa95
DE
3701@defvar Objfile.pretty_printers
3702The @code{pretty_printers} attribute is a list of functions. It is
3703used to look up pretty-printers. A @code{Value} is passed to each
3704function in order; if the function returns @code{None}, then the
3705search continues. Otherwise, the return value should be an object
3706which is used to format the value. @xref{Pretty Printing API}, for more
3707information.
3708@end defvar
3709
3710@defvar Objfile.type_printers
3711The @code{type_printers} attribute is a list of type printer objects.
3712@xref{Type Printing API}, for more information.
3713@end defvar
3714
3715@defvar Objfile.frame_filters
3716The @code{frame_filters} attribute is a dictionary of frame filter
3717objects. @xref{Frame Filter API}, for more information.
3718@end defvar
3719
02be9a71
DE
3720One may add arbitrary attributes to @code{gdb.Objfile} objects
3721in the usual Python way.
3722This is useful if, for example, one needs to do some extra record keeping
3723associated with the objfile.
3724
3725In this contrived example we record the time when @value{GDBN}
3726loaded the objfile.
3727
3728@smallexample
3729(gdb) python
3730import datetime
3731def new_objfile_handler(event):
3732 # Set the time_loaded attribute of the new objfile.
3733 event.new_objfile.time_loaded = datetime.datetime.today()
3734gdb.events.new_objfile.connect(new_objfile_handler)
3735end
3736(gdb) file ./hello
3737Reading symbols from ./hello...done.
3738(gdb) python print gdb.objfiles()[0].time_loaded
37392014-10-09 11:41:36.770345
3740@end smallexample
3741
329baa95
DE
3742A @code{gdb.Objfile} object has the following methods:
3743
3744@defun Objfile.is_valid ()
3745Returns @code{True} if the @code{gdb.Objfile} object is valid,
3746@code{False} if not. A @code{gdb.Objfile} object can become invalid
3747if the object file it refers to is not loaded in @value{GDBN} any
3748longer. All other @code{gdb.Objfile} methods will throw an exception
3749if it is invalid at the time the method is called.
3750@end defun
3751
86e4ed39
DE
3752@defun Objfile.add_separate_debug_file (file)
3753Add @var{file} to the list of files that @value{GDBN} will search for
3754debug information for the objfile.
3755This is useful when the debug info has been removed from the program
3756and stored in a separate file. @value{GDBN} has built-in support for
3757finding separate debug info files (@pxref{Separate Debug Files}), but if
3758the file doesn't live in one of the standard places that @value{GDBN}
3759searches then this function can be used to add a debug info file
3760from a different place.
3761@end defun
3762
329baa95
DE
3763@node Frames In Python
3764@subsubsection Accessing inferior stack frames from Python.
3765
3766@cindex frames in python
3767When the debugged program stops, @value{GDBN} is able to analyze its call
3768stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
3769represents a frame in the stack. A @code{gdb.Frame} object is only valid
3770while its corresponding frame exists in the inferior's stack. If you try
3771to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
3772exception (@pxref{Exception Handling}).
3773
3774Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
3775operator, like:
3776
3777@smallexample
3778(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
3779True
3780@end smallexample
3781
3782The following frame-related functions are available in the @code{gdb} module:
3783
3784@findex gdb.selected_frame
3785@defun gdb.selected_frame ()
3786Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
3787@end defun
3788
3789@findex gdb.newest_frame
3790@defun gdb.newest_frame ()
3791Return the newest frame object for the selected thread.
3792@end defun
3793
3794@defun gdb.frame_stop_reason_string (reason)
3795Return a string explaining the reason why @value{GDBN} stopped unwinding
3796frames, as expressed by the given @var{reason} code (an integer, see the
3797@code{unwind_stop_reason} method further down in this section).
3798@end defun
3799
3800A @code{gdb.Frame} object has the following methods:
3801
3802@defun Frame.is_valid ()
3803Returns true if the @code{gdb.Frame} object is valid, false if not.
3804A frame object can become invalid if the frame it refers to doesn't
3805exist anymore in the inferior. All @code{gdb.Frame} methods will throw
3806an exception if it is invalid at the time the method is called.
3807@end defun
3808
3809@defun Frame.name ()
3810Returns the function name of the frame, or @code{None} if it can't be
3811obtained.
3812@end defun
3813
3814@defun Frame.architecture ()
3815Returns the @code{gdb.Architecture} object corresponding to the frame's
3816architecture. @xref{Architectures In Python}.
3817@end defun
3818
3819@defun Frame.type ()
3820Returns the type of the frame. The value can be one of:
3821@table @code
3822@item gdb.NORMAL_FRAME
3823An ordinary stack frame.
3824
3825@item gdb.DUMMY_FRAME
3826A fake stack frame that was created by @value{GDBN} when performing an
3827inferior function call.
3828
3829@item gdb.INLINE_FRAME
3830A frame representing an inlined function. The function was inlined
3831into a @code{gdb.NORMAL_FRAME} that is older than this one.
3832
3833@item gdb.TAILCALL_FRAME
3834A frame representing a tail call. @xref{Tail Call Frames}.
3835
3836@item gdb.SIGTRAMP_FRAME
3837A signal trampoline frame. This is the frame created by the OS when
3838it calls into a signal handler.
3839
3840@item gdb.ARCH_FRAME
3841A fake stack frame representing a cross-architecture call.
3842
3843@item gdb.SENTINEL_FRAME
3844This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
3845newest frame.
3846@end table
3847@end defun
3848
3849@defun Frame.unwind_stop_reason ()
3850Return an integer representing the reason why it's not possible to find
3851more frames toward the outermost frame. Use
3852@code{gdb.frame_stop_reason_string} to convert the value returned by this
3853function to a string. The value can be one of:
3854
3855@table @code
3856@item gdb.FRAME_UNWIND_NO_REASON
3857No particular reason (older frames should be available).
3858
3859@item gdb.FRAME_UNWIND_NULL_ID
3860The previous frame's analyzer returns an invalid result. This is no
3861longer used by @value{GDBN}, and is kept only for backward
3862compatibility.
3863
3864@item gdb.FRAME_UNWIND_OUTERMOST
3865This frame is the outermost.
3866
3867@item gdb.FRAME_UNWIND_UNAVAILABLE
3868Cannot unwind further, because that would require knowing the
3869values of registers or memory that have not been collected.
3870
3871@item gdb.FRAME_UNWIND_INNER_ID
3872This frame ID looks like it ought to belong to a NEXT frame,
3873but we got it for a PREV frame. Normally, this is a sign of
3874unwinder failure. It could also indicate stack corruption.
3875
3876@item gdb.FRAME_UNWIND_SAME_ID
3877This frame has the same ID as the previous one. That means
3878that unwinding further would almost certainly give us another
3879frame with exactly the same ID, so break the chain. Normally,
3880this is a sign of unwinder failure. It could also indicate
3881stack corruption.
3882
3883@item gdb.FRAME_UNWIND_NO_SAVED_PC
3884The frame unwinder did not find any saved PC, but we needed
3885one to unwind further.
3886
53e8a631
AB
3887@item gdb.FRAME_UNWIND_MEMORY_ERROR
3888The frame unwinder caused an error while trying to access memory.
3889
329baa95
DE
3890@item gdb.FRAME_UNWIND_FIRST_ERROR
3891Any stop reason greater or equal to this value indicates some kind
3892of error. This special value facilitates writing code that tests
3893for errors in unwinding in a way that will work correctly even if
3894the list of the other values is modified in future @value{GDBN}
3895versions. Using it, you could write:
3896@smallexample
3897reason = gdb.selected_frame().unwind_stop_reason ()
3898reason_str = gdb.frame_stop_reason_string (reason)
3899if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
3900 print "An error occured: %s" % reason_str
3901@end smallexample
3902@end table
3903
3904@end defun
3905
3906@defun Frame.pc ()
3907Returns the frame's resume address.
3908@end defun
3909
3910@defun Frame.block ()
3911Return the frame's code block. @xref{Blocks In Python}.
3912@end defun
3913
3914@defun Frame.function ()
3915Return the symbol for the function corresponding to this frame.
3916@xref{Symbols In Python}.
3917@end defun
3918
3919@defun Frame.older ()
3920Return the frame that called this frame.
3921@end defun
3922
3923@defun Frame.newer ()
3924Return the frame called by this frame.
3925@end defun
3926
3927@defun Frame.find_sal ()
3928Return the frame's symtab and line object.
3929@xref{Symbol Tables In Python}.
3930@end defun
3931
5f3b99cf
SS
3932@defun Frame.read_register (register)
3933Return the value of @var{register} in this frame. The @var{register}
3934argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
3935Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
3936does not exist.
3937@end defun
3938
329baa95
DE
3939@defun Frame.read_var (variable @r{[}, block@r{]})
3940Return the value of @var{variable} in this frame. If the optional
3941argument @var{block} is provided, search for the variable from that
3942block; otherwise start at the frame's current block (which is
697aa1b7
EZ
3943determined by the frame's current program counter). The @var{variable}
3944argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
3945@code{gdb.Block} object.
3946@end defun
3947
3948@defun Frame.select ()
3949Set this frame to be the selected frame. @xref{Stack, ,Examining the
3950Stack}.
3951@end defun
3952
3953@node Blocks In Python
3954@subsubsection Accessing blocks from Python.
3955
3956@cindex blocks in python
3957@tindex gdb.Block
3958
3959In @value{GDBN}, symbols are stored in blocks. A block corresponds
3960roughly to a scope in the source code. Blocks are organized
3961hierarchically, and are represented individually in Python as a
3962@code{gdb.Block}. Blocks rely on debugging information being
3963available.
3964
3965A frame has a block. Please see @ref{Frames In Python}, for a more
3966in-depth discussion of frames.
3967
3968The outermost block is known as the @dfn{global block}. The global
3969block typically holds public global variables and functions.
3970
3971The block nested just inside the global block is the @dfn{static
3972block}. The static block typically holds file-scoped variables and
3973functions.
3974
3975@value{GDBN} provides a method to get a block's superblock, but there
3976is currently no way to examine the sub-blocks of a block, or to
3977iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
3978Python}).
3979
3980Here is a short example that should help explain blocks:
3981
3982@smallexample
3983/* This is in the global block. */
3984int global;
3985
3986/* This is in the static block. */
3987static int file_scope;
3988
3989/* 'function' is in the global block, and 'argument' is
3990 in a block nested inside of 'function'. */
3991int function (int argument)
3992@{
3993 /* 'local' is in a block inside 'function'. It may or may
3994 not be in the same block as 'argument'. */
3995 int local;
3996
3997 @{
3998 /* 'inner' is in a block whose superblock is the one holding
3999 'local'. */
4000 int inner;
4001
4002 /* If this call is expanded by the compiler, you may see
4003 a nested block here whose function is 'inline_function'
4004 and whose superblock is the one holding 'inner'. */
4005 inline_function ();
4006 @}
4007@}
4008@end smallexample
4009
4010A @code{gdb.Block} is iterable. The iterator returns the symbols
4011(@pxref{Symbols In Python}) local to the block. Python programs
4012should not assume that a specific block object will always contain a
4013given symbol, since changes in @value{GDBN} features and
4014infrastructure may cause symbols move across blocks in a symbol
4015table.
4016
4017The following block-related functions are available in the @code{gdb}
4018module:
4019
4020@findex gdb.block_for_pc
4021@defun gdb.block_for_pc (pc)
4022Return the innermost @code{gdb.Block} containing the given @var{pc}
4023value. If the block cannot be found for the @var{pc} value specified,
4024the function will return @code{None}.
4025@end defun
4026
4027A @code{gdb.Block} object has the following methods:
4028
4029@defun Block.is_valid ()
4030Returns @code{True} if the @code{gdb.Block} object is valid,
4031@code{False} if not. A block object can become invalid if the block it
4032refers to doesn't exist anymore in the inferior. All other
4033@code{gdb.Block} methods will throw an exception if it is invalid at
4034the time the method is called. The block's validity is also checked
4035during iteration over symbols of the block.
4036@end defun
4037
4038A @code{gdb.Block} object has the following attributes:
4039
4040@defvar Block.start
4041The start address of the block. This attribute is not writable.
4042@end defvar
4043
4044@defvar Block.end
4045The end address of the block. This attribute is not writable.
4046@end defvar
4047
4048@defvar Block.function
4049The name of the block represented as a @code{gdb.Symbol}. If the
4050block is not named, then this attribute holds @code{None}. This
4051attribute is not writable.
4052
4053For ordinary function blocks, the superblock is the static block.
4054However, you should note that it is possible for a function block to
4055have a superblock that is not the static block -- for instance this
4056happens for an inlined function.
4057@end defvar
4058
4059@defvar Block.superblock
4060The block containing this block. If this parent block does not exist,
4061this attribute holds @code{None}. This attribute is not writable.
4062@end defvar
4063
4064@defvar Block.global_block
4065The global block associated with this block. This attribute is not
4066writable.
4067@end defvar
4068
4069@defvar Block.static_block
4070The static block associated with this block. This attribute is not
4071writable.
4072@end defvar
4073
4074@defvar Block.is_global
4075@code{True} if the @code{gdb.Block} object is a global block,
4076@code{False} if not. This attribute is not
4077writable.
4078@end defvar
4079
4080@defvar Block.is_static
4081@code{True} if the @code{gdb.Block} object is a static block,
4082@code{False} if not. This attribute is not writable.
4083@end defvar
4084
4085@node Symbols In Python
4086@subsubsection Python representation of Symbols.
4087
4088@cindex symbols in python
4089@tindex gdb.Symbol
4090
4091@value{GDBN} represents every variable, function and type as an
4092entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4093Similarly, Python represents these symbols in @value{GDBN} with the
4094@code{gdb.Symbol} object.
4095
4096The following symbol-related functions are available in the @code{gdb}
4097module:
4098
4099@findex gdb.lookup_symbol
4100@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4101This function searches for a symbol by name. The search scope can be
4102restricted to the parameters defined in the optional domain and block
4103arguments.
4104
4105@var{name} is the name of the symbol. It must be a string. The
4106optional @var{block} argument restricts the search to symbols visible
4107in that @var{block}. The @var{block} argument must be a
4108@code{gdb.Block} object. If omitted, the block for the current frame
4109is used. The optional @var{domain} argument restricts
4110the search to the domain type. The @var{domain} argument must be a
4111domain constant defined in the @code{gdb} module and described later
4112in this chapter.
4113
4114The result is a tuple of two elements.
4115The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4116is not found.
4117If the symbol is found, the second element is @code{True} if the symbol
4118is a field of a method's object (e.g., @code{this} in C@t{++}),
4119otherwise it is @code{False}.
4120If the symbol is not found, the second element is @code{False}.
4121@end defun
4122
4123@findex gdb.lookup_global_symbol
4124@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4125This function searches for a global symbol by name.
4126The search scope can be restricted to by the domain argument.
4127
4128@var{name} is the name of the symbol. It must be a string.
4129The optional @var{domain} argument restricts the search to the domain type.
4130The @var{domain} argument must be a domain constant defined in the @code{gdb}
4131module and described later in this chapter.
4132
4133The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4134is not found.
4135@end defun
4136
4137A @code{gdb.Symbol} object has the following attributes:
4138
4139@defvar Symbol.type
4140The type of the symbol or @code{None} if no type is recorded.
4141This attribute is represented as a @code{gdb.Type} object.
4142@xref{Types In Python}. This attribute is not writable.
4143@end defvar
4144
4145@defvar Symbol.symtab
4146The symbol table in which the symbol appears. This attribute is
4147represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4148Python}. This attribute is not writable.
4149@end defvar
4150
4151@defvar Symbol.line
4152The line number in the source code at which the symbol was defined.
4153This is an integer.
4154@end defvar
4155
4156@defvar Symbol.name
4157The name of the symbol as a string. This attribute is not writable.
4158@end defvar
4159
4160@defvar Symbol.linkage_name
4161The name of the symbol, as used by the linker (i.e., may be mangled).
4162This attribute is not writable.
4163@end defvar
4164
4165@defvar Symbol.print_name
4166The name of the symbol in a form suitable for output. This is either
4167@code{name} or @code{linkage_name}, depending on whether the user
4168asked @value{GDBN} to display demangled or mangled names.
4169@end defvar
4170
4171@defvar Symbol.addr_class
4172The address class of the symbol. This classifies how to find the value
4173of a symbol. Each address class is a constant defined in the
4174@code{gdb} module and described later in this chapter.
4175@end defvar
4176
4177@defvar Symbol.needs_frame
4178This is @code{True} if evaluating this symbol's value requires a frame
4179(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4180local variables will require a frame, but other symbols will not.
4181@end defvar
4182
4183@defvar Symbol.is_argument
4184@code{True} if the symbol is an argument of a function.
4185@end defvar
4186
4187@defvar Symbol.is_constant
4188@code{True} if the symbol is a constant.
4189@end defvar
4190
4191@defvar Symbol.is_function
4192@code{True} if the symbol is a function or a method.
4193@end defvar
4194
4195@defvar Symbol.is_variable
4196@code{True} if the symbol is a variable.
4197@end defvar
4198
4199A @code{gdb.Symbol} object has the following methods:
4200
4201@defun Symbol.is_valid ()
4202Returns @code{True} if the @code{gdb.Symbol} object is valid,
4203@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4204the symbol it refers to does not exist in @value{GDBN} any longer.
4205All other @code{gdb.Symbol} methods will throw an exception if it is
4206invalid at the time the method is called.
4207@end defun
4208
4209@defun Symbol.value (@r{[}frame@r{]})
4210Compute the value of the symbol, as a @code{gdb.Value}. For
4211functions, this computes the address of the function, cast to the
4212appropriate type. If the symbol requires a frame in order to compute
4213its value, then @var{frame} must be given. If @var{frame} is not
4214given, or if @var{frame} is invalid, then this method will throw an
4215exception.
4216@end defun
4217
4218The available domain categories in @code{gdb.Symbol} are represented
4219as constants in the @code{gdb} module:
4220
b3ce5e5f
DE
4221@vtable @code
4222@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4223@item gdb.SYMBOL_UNDEF_DOMAIN
4224This is used when a domain has not been discovered or none of the
4225following domains apply. This usually indicates an error either
4226in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4227
4228@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4229@item gdb.SYMBOL_VAR_DOMAIN
4230This domain contains variables, function names, typedef names and enum
4231type values.
b3ce5e5f
DE
4232
4233@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4234@item gdb.SYMBOL_STRUCT_DOMAIN
4235This domain holds struct, union and enum type names.
b3ce5e5f
DE
4236
4237@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4238@item gdb.SYMBOL_LABEL_DOMAIN
4239This domain contains names of labels (for gotos).
b3ce5e5f
DE
4240
4241@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4242@item gdb.SYMBOL_VARIABLES_DOMAIN
4243This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4244contains everything minus functions and types.
b3ce5e5f
DE
4245
4246@vindex SYMBOL_FUNCTIONS_DOMAIN
329baa95
DE
4247@item gdb.SYMBOL_FUNCTION_DOMAIN
4248This domain contains all functions.
b3ce5e5f
DE
4249
4250@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4251@item gdb.SYMBOL_TYPES_DOMAIN
4252This domain contains all types.
b3ce5e5f 4253@end vtable
329baa95
DE
4254
4255The available address class categories in @code{gdb.Symbol} are represented
4256as constants in the @code{gdb} module:
4257
b3ce5e5f
DE
4258@vtable @code
4259@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4260@item gdb.SYMBOL_LOC_UNDEF
4261If this is returned by address class, it indicates an error either in
4262the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4263
4264@vindex SYMBOL_LOC_CONST
329baa95
DE
4265@item gdb.SYMBOL_LOC_CONST
4266Value is constant int.
b3ce5e5f
DE
4267
4268@vindex SYMBOL_LOC_STATIC
329baa95
DE
4269@item gdb.SYMBOL_LOC_STATIC
4270Value is at a fixed address.
b3ce5e5f
DE
4271
4272@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4273@item gdb.SYMBOL_LOC_REGISTER
4274Value is in a register.
b3ce5e5f
DE
4275
4276@vindex SYMBOL_LOC_ARG
329baa95
DE
4277@item gdb.SYMBOL_LOC_ARG
4278Value is an argument. This value is at the offset stored within the
4279symbol inside the frame's argument list.
b3ce5e5f
DE
4280
4281@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4282@item gdb.SYMBOL_LOC_REF_ARG
4283Value address is stored in the frame's argument list. Just like
4284@code{LOC_ARG} except that the value's address is stored at the
4285offset, not the value itself.
b3ce5e5f
DE
4286
4287@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4288@item gdb.SYMBOL_LOC_REGPARM_ADDR
4289Value is a specified register. Just like @code{LOC_REGISTER} except
4290the register holds the address of the argument instead of the argument
4291itself.
b3ce5e5f
DE
4292
4293@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4294@item gdb.SYMBOL_LOC_LOCAL
4295Value is a local variable.
b3ce5e5f
DE
4296
4297@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4298@item gdb.SYMBOL_LOC_TYPEDEF
4299Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4300have this class.
b3ce5e5f
DE
4301
4302@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4303@item gdb.SYMBOL_LOC_BLOCK
4304Value is a block.
b3ce5e5f
DE
4305
4306@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4307@item gdb.SYMBOL_LOC_CONST_BYTES
4308Value is a byte-sequence.
b3ce5e5f
DE
4309
4310@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4311@item gdb.SYMBOL_LOC_UNRESOLVED
4312Value is at a fixed address, but the address of the variable has to be
4313determined from the minimal symbol table whenever the variable is
4314referenced.
b3ce5e5f
DE
4315
4316@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4317@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4318The value does not actually exist in the program.
b3ce5e5f
DE
4319
4320@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4321@item gdb.SYMBOL_LOC_COMPUTED
4322The value's address is a computed location.
b3ce5e5f 4323@end vtable
329baa95
DE
4324
4325@node Symbol Tables In Python
4326@subsubsection Symbol table representation in Python.
4327
4328@cindex symbol tables in python
4329@tindex gdb.Symtab
4330@tindex gdb.Symtab_and_line
4331
4332Access to symbol table data maintained by @value{GDBN} on the inferior
4333is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4334@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4335from the @code{find_sal} method in @code{gdb.Frame} object.
4336@xref{Frames In Python}.
4337
4338For more information on @value{GDBN}'s symbol table management, see
4339@ref{Symbols, ,Examining the Symbol Table}, for more information.
4340
4341A @code{gdb.Symtab_and_line} object has the following attributes:
4342
4343@defvar Symtab_and_line.symtab
4344The symbol table object (@code{gdb.Symtab}) for this frame.
4345This attribute is not writable.
4346@end defvar
4347
4348@defvar Symtab_and_line.pc
4349Indicates the start of the address range occupied by code for the
4350current source line. This attribute is not writable.
4351@end defvar
4352
4353@defvar Symtab_and_line.last
4354Indicates the end of the address range occupied by code for the current
4355source line. This attribute is not writable.
4356@end defvar
4357
4358@defvar Symtab_and_line.line
4359Indicates the current line number for this object. This
4360attribute is not writable.
4361@end defvar
4362
4363A @code{gdb.Symtab_and_line} object has the following methods:
4364
4365@defun Symtab_and_line.is_valid ()
4366Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4367@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4368invalid if the Symbol table and line object it refers to does not
4369exist in @value{GDBN} any longer. All other
4370@code{gdb.Symtab_and_line} methods will throw an exception if it is
4371invalid at the time the method is called.
4372@end defun
4373
4374A @code{gdb.Symtab} object has the following attributes:
4375
4376@defvar Symtab.filename
4377The symbol table's source filename. This attribute is not writable.
4378@end defvar
4379
4380@defvar Symtab.objfile
4381The symbol table's backing object file. @xref{Objfiles In Python}.
4382This attribute is not writable.
4383@end defvar
4384
2b4fd423
DE
4385@defvar Symtab.producer
4386The name and possibly version number of the program that
4387compiled the code in the symbol table.
4388The contents of this string is up to the compiler.
4389If no producer information is available then @code{None} is returned.
4390This attribute is not writable.
4391@end defvar
4392
329baa95
DE
4393A @code{gdb.Symtab} object has the following methods:
4394
4395@defun Symtab.is_valid ()
4396Returns @code{True} if the @code{gdb.Symtab} object is valid,
4397@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4398the symbol table it refers to does not exist in @value{GDBN} any
4399longer. All other @code{gdb.Symtab} methods will throw an exception
4400if it is invalid at the time the method is called.
4401@end defun
4402
4403@defun Symtab.fullname ()
4404Return the symbol table's source absolute file name.
4405@end defun
4406
4407@defun Symtab.global_block ()
4408Return the global block of the underlying symbol table.
4409@xref{Blocks In Python}.
4410@end defun
4411
4412@defun Symtab.static_block ()
4413Return the static block of the underlying symbol table.
4414@xref{Blocks In Python}.
4415@end defun
4416
4417@defun Symtab.linetable ()
4418Return the line table associated with the symbol table.
4419@xref{Line Tables In Python}.
4420@end defun
4421
4422@node Line Tables In Python
4423@subsubsection Manipulating line tables using Python
4424
4425@cindex line tables in python
4426@tindex gdb.LineTable
4427
4428Python code can request and inspect line table information from a
4429symbol table that is loaded in @value{GDBN}. A line table is a
4430mapping of source lines to their executable locations in memory. To
4431acquire the line table information for a particular symbol table, use
4432the @code{linetable} function (@pxref{Symbol Tables In Python}).
4433
4434A @code{gdb.LineTable} is iterable. The iterator returns
4435@code{LineTableEntry} objects that correspond to the source line and
4436address for each line table entry. @code{LineTableEntry} objects have
4437the following attributes:
4438
4439@defvar LineTableEntry.line
4440The source line number for this line table entry. This number
4441corresponds to the actual line of source. This attribute is not
4442writable.
4443@end defvar
4444
4445@defvar LineTableEntry.pc
4446The address that is associated with the line table entry where the
4447executable code for that source line resides in memory. This
4448attribute is not writable.
4449@end defvar
4450
4451As there can be multiple addresses for a single source line, you may
4452receive multiple @code{LineTableEntry} objects with matching
4453@code{line} attributes, but with different @code{pc} attributes. The
4454iterator is sorted in ascending @code{pc} order. Here is a small
4455example illustrating iterating over a line table.
4456
4457@smallexample
4458symtab = gdb.selected_frame().find_sal().symtab
4459linetable = symtab.linetable()
4460for line in linetable:
4461 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4462@end smallexample
4463
4464This will have the following output:
4465
4466@smallexample
4467Line: 33 Address: 0x4005c8L
4468Line: 37 Address: 0x4005caL
4469Line: 39 Address: 0x4005d2L
4470Line: 40 Address: 0x4005f8L
4471Line: 42 Address: 0x4005ffL
4472Line: 44 Address: 0x400608L
4473Line: 42 Address: 0x40060cL
4474Line: 45 Address: 0x400615L
4475@end smallexample
4476
4477In addition to being able to iterate over a @code{LineTable}, it also
4478has the following direct access methods:
4479
4480@defun LineTable.line (line)
4481Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4482entries in the line table for the given @var{line}, which specifies
4483the source code line. If there are no entries for that source code
329baa95
DE
4484@var{line}, the Python @code{None} is returned.
4485@end defun
4486
4487@defun LineTable.has_line (line)
4488Return a Python @code{Boolean} indicating whether there is an entry in
4489the line table for this source line. Return @code{True} if an entry
4490is found, or @code{False} if not.
4491@end defun
4492
4493@defun LineTable.source_lines ()
4494Return a Python @code{List} of the source line numbers in the symbol
4495table. Only lines with executable code locations are returned. The
4496contents of the @code{List} will just be the source line entries
4497represented as Python @code{Long} values.
4498@end defun
4499
4500@node Breakpoints In Python
4501@subsubsection Manipulating breakpoints using Python
4502
4503@cindex breakpoints in python
4504@tindex gdb.Breakpoint
4505
4506Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4507class.
4508
4509@defun Breakpoint.__init__ (spec @r{[}, type @r{[}, wp_class @r{[},internal @r{[},temporary@r{]]]]})
697aa1b7
EZ
4510Create a new breakpoint according to @var{spec}, which is a string
4511naming the location of the breakpoint, or an expression that defines a
4512watchpoint. The contents can be any location recognized by the
4513@code{break} command, or in the case of a watchpoint, by the
4514@code{watch} command. The optional @var{type} denotes the breakpoint
4515to create from the types defined later in this chapter. This argument
4516can be either @code{gdb.BP_BREAKPOINT} or @code{gdb.BP_WATCHPOINT}; it
329baa95
DE
4517defaults to @code{gdb.BP_BREAKPOINT}. The optional @var{internal}
4518argument allows the breakpoint to become invisible to the user. The
4519breakpoint will neither be reported when created, nor will it be
4520listed in the output from @code{info breakpoints} (but will be listed
4521with the @code{maint info breakpoints} command). The optional
4522@var{temporary} argument makes the breakpoint a temporary breakpoint.
4523Temporary breakpoints are deleted after they have been hit. Any
4524further access to the Python breakpoint after it has been hit will
4525result in a runtime error (as that breakpoint has now been
4526automatically deleted). The optional @var{wp_class} argument defines
4527the class of watchpoint to create, if @var{type} is
4528@code{gdb.BP_WATCHPOINT}. If a watchpoint class is not provided, it
4529is assumed to be a @code{gdb.WP_WRITE} class.
4530@end defun
4531
4532@defun Breakpoint.stop (self)
4533The @code{gdb.Breakpoint} class can be sub-classed and, in
4534particular, you may choose to implement the @code{stop} method.
4535If this method is defined in a sub-class of @code{gdb.Breakpoint},
4536it will be called when the inferior reaches any location of a
4537breakpoint which instantiates that sub-class. If the method returns
4538@code{True}, the inferior will be stopped at the location of the
4539breakpoint, otherwise the inferior will continue.
4540
4541If there are multiple breakpoints at the same location with a
4542@code{stop} method, each one will be called regardless of the
4543return status of the previous. This ensures that all @code{stop}
4544methods have a chance to execute at that location. In this scenario
4545if one of the methods returns @code{True} but the others return
4546@code{False}, the inferior will still be stopped.
4547
4548You should not alter the execution state of the inferior (i.e.@:, step,
4549next, etc.), alter the current frame context (i.e.@:, change the current
4550active frame), or alter, add or delete any breakpoint. As a general
4551rule, you should not alter any data within @value{GDBN} or the inferior
4552at this time.
4553
4554Example @code{stop} implementation:
4555
4556@smallexample
4557class MyBreakpoint (gdb.Breakpoint):
4558 def stop (self):
4559 inf_val = gdb.parse_and_eval("foo")
4560 if inf_val == 3:
4561 return True
4562 return False
4563@end smallexample
4564@end defun
4565
4566The available watchpoint types represented by constants are defined in the
4567@code{gdb} module:
4568
b3ce5e5f
DE
4569@vtable @code
4570@vindex WP_READ
329baa95
DE
4571@item gdb.WP_READ
4572Read only watchpoint.
4573
b3ce5e5f 4574@vindex WP_WRITE
329baa95
DE
4575@item gdb.WP_WRITE
4576Write only watchpoint.
4577
b3ce5e5f 4578@vindex WP_ACCESS
329baa95
DE
4579@item gdb.WP_ACCESS
4580Read/Write watchpoint.
b3ce5e5f 4581@end vtable
329baa95
DE
4582
4583@defun Breakpoint.is_valid ()
4584Return @code{True} if this @code{Breakpoint} object is valid,
4585@code{False} otherwise. A @code{Breakpoint} object can become invalid
4586if the user deletes the breakpoint. In this case, the object still
4587exists, but the underlying breakpoint does not. In the cases of
4588watchpoint scope, the watchpoint remains valid even if execution of the
4589inferior leaves the scope of that watchpoint.
4590@end defun
4591
fab3a15d 4592@defun Breakpoint.delete ()
329baa95
DE
4593Permanently deletes the @value{GDBN} breakpoint. This also
4594invalidates the Python @code{Breakpoint} object. Any further access
4595to this object's attributes or methods will raise an error.
4596@end defun
4597
4598@defvar Breakpoint.enabled
4599This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
4600@code{False} otherwise. This attribute is writable. You can use it to enable
4601or disable the breakpoint.
329baa95
DE
4602@end defvar
4603
4604@defvar Breakpoint.silent
4605This attribute is @code{True} if the breakpoint is silent, and
4606@code{False} otherwise. This attribute is writable.
4607
4608Note that a breakpoint can also be silent if it has commands and the
4609first command is @code{silent}. This is not reported by the
4610@code{silent} attribute.
4611@end defvar
4612
4613@defvar Breakpoint.thread
4614If the breakpoint is thread-specific, this attribute holds the thread
4615id. If the breakpoint is not thread-specific, this attribute is
4616@code{None}. This attribute is writable.
4617@end defvar
4618
4619@defvar Breakpoint.task
4620If the breakpoint is Ada task-specific, this attribute holds the Ada task
4621id. If the breakpoint is not task-specific (or the underlying
4622language is not Ada), this attribute is @code{None}. This attribute
4623is writable.
4624@end defvar
4625
4626@defvar Breakpoint.ignore_count
4627This attribute holds the ignore count for the breakpoint, an integer.
4628This attribute is writable.
4629@end defvar
4630
4631@defvar Breakpoint.number
4632This attribute holds the breakpoint's number --- the identifier used by
4633the user to manipulate the breakpoint. This attribute is not writable.
4634@end defvar
4635
4636@defvar Breakpoint.type
4637This attribute holds the breakpoint's type --- the identifier used to
4638determine the actual breakpoint type or use-case. This attribute is not
4639writable.
4640@end defvar
4641
4642@defvar Breakpoint.visible
4643This attribute tells whether the breakpoint is visible to the user
4644when set, or when the @samp{info breakpoints} command is run. This
4645attribute is not writable.
4646@end defvar
4647
4648@defvar Breakpoint.temporary
4649This attribute indicates whether the breakpoint was created as a
4650temporary breakpoint. Temporary breakpoints are automatically deleted
4651after that breakpoint has been hit. Access to this attribute, and all
4652other attributes and functions other than the @code{is_valid}
4653function, will result in an error after the breakpoint has been hit
4654(as it has been automatically deleted). This attribute is not
4655writable.
4656@end defvar
4657
4658The available types are represented by constants defined in the @code{gdb}
4659module:
4660
b3ce5e5f
DE
4661@vtable @code
4662@vindex BP_BREAKPOINT
329baa95
DE
4663@item gdb.BP_BREAKPOINT
4664Normal code breakpoint.
4665
b3ce5e5f 4666@vindex BP_WATCHPOINT
329baa95
DE
4667@item gdb.BP_WATCHPOINT
4668Watchpoint breakpoint.
4669
b3ce5e5f 4670@vindex BP_HARDWARE_WATCHPOINT
329baa95
DE
4671@item gdb.BP_HARDWARE_WATCHPOINT
4672Hardware assisted watchpoint.
4673
b3ce5e5f 4674@vindex BP_READ_WATCHPOINT
329baa95
DE
4675@item gdb.BP_READ_WATCHPOINT
4676Hardware assisted read watchpoint.
4677
b3ce5e5f 4678@vindex BP_ACCESS_WATCHPOINT
329baa95
DE
4679@item gdb.BP_ACCESS_WATCHPOINT
4680Hardware assisted access watchpoint.
b3ce5e5f 4681@end vtable
329baa95
DE
4682
4683@defvar Breakpoint.hit_count
4684This attribute holds the hit count for the breakpoint, an integer.
4685This attribute is writable, but currently it can only be set to zero.
4686@end defvar
4687
4688@defvar Breakpoint.location
4689This attribute holds the location of the breakpoint, as specified by
4690the user. It is a string. If the breakpoint does not have a location
4691(that is, it is a watchpoint) the attribute's value is @code{None}. This
4692attribute is not writable.
4693@end defvar
4694
4695@defvar Breakpoint.expression
4696This attribute holds a breakpoint expression, as specified by
4697the user. It is a string. If the breakpoint does not have an
4698expression (the breakpoint is not a watchpoint) the attribute's value
4699is @code{None}. This attribute is not writable.
4700@end defvar
4701
4702@defvar Breakpoint.condition
4703This attribute holds the condition of the breakpoint, as specified by
4704the user. It is a string. If there is no condition, this attribute's
4705value is @code{None}. This attribute is writable.
4706@end defvar
4707
4708@defvar Breakpoint.commands
4709This attribute holds the commands attached to the breakpoint. If
4710there are commands, this attribute's value is a string holding all the
4711commands, separated by newlines. If there are no commands, this
4712attribute is @code{None}. This attribute is not writable.
4713@end defvar
4714
4715@node Finish Breakpoints in Python
4716@subsubsection Finish Breakpoints
4717
4718@cindex python finish breakpoints
4719@tindex gdb.FinishBreakpoint
4720
4721A finish breakpoint is a temporary breakpoint set at the return address of
4722a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
4723extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
4724and deleted when the execution will run out of the breakpoint scope (i.e.@:
4725@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
4726Finish breakpoints are thread specific and must be create with the right
4727thread selected.
4728
4729@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
4730Create a finish breakpoint at the return address of the @code{gdb.Frame}
4731object @var{frame}. If @var{frame} is not provided, this defaults to the
4732newest frame. The optional @var{internal} argument allows the breakpoint to
4733become invisible to the user. @xref{Breakpoints In Python}, for further
4734details about this argument.
4735@end defun
4736
4737@defun FinishBreakpoint.out_of_scope (self)
4738In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
4739@code{return} command, @dots{}), a function may not properly terminate, and
4740thus never hit the finish breakpoint. When @value{GDBN} notices such a
4741situation, the @code{out_of_scope} callback will be triggered.
4742
4743You may want to sub-class @code{gdb.FinishBreakpoint} and override this
4744method:
4745
4746@smallexample
4747class MyFinishBreakpoint (gdb.FinishBreakpoint)
4748 def stop (self):
4749 print "normal finish"
4750 return True
4751
4752 def out_of_scope ():
4753 print "abnormal finish"
4754@end smallexample
4755@end defun
4756
4757@defvar FinishBreakpoint.return_value
4758When @value{GDBN} is stopped at a finish breakpoint and the frame
4759used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
4760attribute will contain a @code{gdb.Value} object corresponding to the return
4761value of the function. The value will be @code{None} if the function return
4762type is @code{void} or if the return value was not computable. This attribute
4763is not writable.
4764@end defvar
4765
4766@node Lazy Strings In Python
4767@subsubsection Python representation of lazy strings.
4768
4769@cindex lazy strings in python
4770@tindex gdb.LazyString
4771
4772A @dfn{lazy string} is a string whose contents is not retrieved or
4773encoded until it is needed.
4774
4775A @code{gdb.LazyString} is represented in @value{GDBN} as an
4776@code{address} that points to a region of memory, an @code{encoding}
4777that will be used to encode that region of memory, and a @code{length}
4778to delimit the region of memory that represents the string. The
4779difference between a @code{gdb.LazyString} and a string wrapped within
4780a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
4781differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
4782retrieved and encoded during printing, while a @code{gdb.Value}
4783wrapping a string is immediately retrieved and encoded on creation.
4784
4785A @code{gdb.LazyString} object has the following functions:
4786
4787@defun LazyString.value ()
4788Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
4789will point to the string in memory, but will lose all the delayed
4790retrieval, encoding and handling that @value{GDBN} applies to a
4791@code{gdb.LazyString}.
4792@end defun
4793
4794@defvar LazyString.address
4795This attribute holds the address of the string. This attribute is not
4796writable.
4797@end defvar
4798
4799@defvar LazyString.length
4800This attribute holds the length of the string in characters. If the
4801length is -1, then the string will be fetched and encoded up to the
4802first null of appropriate width. This attribute is not writable.
4803@end defvar
4804
4805@defvar LazyString.encoding
4806This attribute holds the encoding that will be applied to the string
4807when the string is printed by @value{GDBN}. If the encoding is not
4808set, or contains an empty string, then @value{GDBN} will select the
4809most appropriate encoding when the string is printed. This attribute
4810is not writable.
4811@end defvar
4812
4813@defvar LazyString.type
4814This attribute holds the type that is represented by the lazy string's
4815type. For a lazy string this will always be a pointer type. To
4816resolve this to the lazy string's character type, use the type's
4817@code{target} method. @xref{Types In Python}. This attribute is not
4818writable.
4819@end defvar
4820
4821@node Architectures In Python
4822@subsubsection Python representation of architectures
4823@cindex Python architectures
4824
4825@value{GDBN} uses architecture specific parameters and artifacts in a
4826number of its various computations. An architecture is represented
4827by an instance of the @code{gdb.Architecture} class.
4828
4829A @code{gdb.Architecture} class has the following methods:
4830
4831@defun Architecture.name ()
4832Return the name (string value) of the architecture.
4833@end defun
4834
4835@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
4836Return a list of disassembled instructions starting from the memory
4837address @var{start_pc}. The optional arguments @var{end_pc} and
4838@var{count} determine the number of instructions in the returned list.
4839If both the optional arguments @var{end_pc} and @var{count} are
4840specified, then a list of at most @var{count} disassembled instructions
4841whose start address falls in the closed memory address interval from
4842@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
4843specified, but @var{count} is specified, then @var{count} number of
4844instructions starting from the address @var{start_pc} are returned. If
4845@var{count} is not specified but @var{end_pc} is specified, then all
4846instructions whose start address falls in the closed memory address
4847interval from @var{start_pc} to @var{end_pc} are returned. If neither
4848@var{end_pc} nor @var{count} are specified, then a single instruction at
4849@var{start_pc} is returned. For all of these cases, each element of the
4850returned list is a Python @code{dict} with the following string keys:
4851
4852@table @code
4853
4854@item addr
4855The value corresponding to this key is a Python long integer capturing
4856the memory address of the instruction.
4857
4858@item asm
4859The value corresponding to this key is a string value which represents
4860the instruction with assembly language mnemonics. The assembly
4861language flavor used is the same as that specified by the current CLI
4862variable @code{disassembly-flavor}. @xref{Machine Code}.
4863
4864@item length
4865The value corresponding to this key is the length (integer value) of the
4866instruction in bytes.
4867
4868@end table
4869@end defun
4870
4871@node Python Auto-loading
4872@subsection Python Auto-loading
4873@cindex Python auto-loading
4874
4875When a new object file is read (for example, due to the @code{file}
4876command, or because the inferior has loaded a shared library),
4877@value{GDBN} will look for Python support scripts in several ways:
4878@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
4879@xref{Auto-loading extensions}.
4880
4881The auto-loading feature is useful for supplying application-specific
4882debugging commands and scripts.
4883
4884Auto-loading can be enabled or disabled,
4885and the list of auto-loaded scripts can be printed.
4886
4887@table @code
4888@anchor{set auto-load python-scripts}
4889@kindex set auto-load python-scripts
4890@item set auto-load python-scripts [on|off]
4891Enable or disable the auto-loading of Python scripts.
4892
4893@anchor{show auto-load python-scripts}
4894@kindex show auto-load python-scripts
4895@item show auto-load python-scripts
4896Show whether auto-loading of Python scripts is enabled or disabled.
4897
4898@anchor{info auto-load python-scripts}
4899@kindex info auto-load python-scripts
4900@cindex print list of auto-loaded Python scripts
4901@item info auto-load python-scripts [@var{regexp}]
4902Print the list of all Python scripts that @value{GDBN} auto-loaded.
4903
4904Also printed is the list of Python scripts that were mentioned in
9f050062
DE
4905the @code{.debug_gdb_scripts} section and were either not found
4906(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
4907@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
4908This is useful because their names are not printed when @value{GDBN}
4909tries to load them and fails. There may be many of them, and printing
4910an error message for each one is problematic.
4911
4912If @var{regexp} is supplied only Python scripts with matching names are printed.
4913
4914Example:
4915
4916@smallexample
4917(gdb) info auto-load python-scripts
4918Loaded Script
4919Yes py-section-script.py
4920 full name: /tmp/py-section-script.py
4921No my-foo-pretty-printers.py
4922@end smallexample
4923@end table
4924
9f050062 4925When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
4926@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
4927function (@pxref{Objfiles In Python}). This can be useful for
4928registering objfile-specific pretty-printers and frame-filters.
4929
4930@node Python modules
4931@subsection Python modules
4932@cindex python modules
4933
4934@value{GDBN} comes with several modules to assist writing Python code.
4935
4936@menu
4937* gdb.printing:: Building and registering pretty-printers.
4938* gdb.types:: Utilities for working with types.
4939* gdb.prompt:: Utilities for prompt value substitution.
4940@end menu
4941
4942@node gdb.printing
4943@subsubsection gdb.printing
4944@cindex gdb.printing
4945
4946This module provides a collection of utilities for working with
4947pretty-printers.
4948
4949@table @code
4950@item PrettyPrinter (@var{name}, @var{subprinters}=None)
4951This class specifies the API that makes @samp{info pretty-printer},
4952@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
4953Pretty-printers should generally inherit from this class.
4954
4955@item SubPrettyPrinter (@var{name})
4956For printers that handle multiple types, this class specifies the
4957corresponding API for the subprinters.
4958
4959@item RegexpCollectionPrettyPrinter (@var{name})
4960Utility class for handling multiple printers, all recognized via
4961regular expressions.
4962@xref{Writing a Pretty-Printer}, for an example.
4963
4964@item FlagEnumerationPrinter (@var{name})
4965A pretty-printer which handles printing of @code{enum} values. Unlike
4966@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
4967work properly when there is some overlap between the enumeration
697aa1b7
EZ
4968constants. The argument @var{name} is the name of the printer and
4969also the name of the @code{enum} type to look up.
329baa95
DE
4970
4971@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
4972Register @var{printer} with the pretty-printer list of @var{obj}.
4973If @var{replace} is @code{True} then any existing copy of the printer
4974is replaced. Otherwise a @code{RuntimeError} exception is raised
4975if a printer with the same name already exists.
4976@end table
4977
4978@node gdb.types
4979@subsubsection gdb.types
4980@cindex gdb.types
4981
4982This module provides a collection of utilities for working with
4983@code{gdb.Type} objects.
4984
4985@table @code
4986@item get_basic_type (@var{type})
4987Return @var{type} with const and volatile qualifiers stripped,
4988and with typedefs and C@t{++} references converted to the underlying type.
4989
4990C@t{++} example:
4991
4992@smallexample
4993typedef const int const_int;
4994const_int foo (3);
4995const_int& foo_ref (foo);
4996int main () @{ return 0; @}
4997@end smallexample
4998
4999Then in gdb:
5000
5001@smallexample
5002(gdb) start
5003(gdb) python import gdb.types
5004(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5005(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5006int
5007@end smallexample
5008
5009@item has_field (@var{type}, @var{field})
5010Return @code{True} if @var{type}, assumed to be a type with fields
5011(e.g., a structure or union), has field @var{field}.
5012
5013@item make_enum_dict (@var{enum_type})
5014Return a Python @code{dictionary} type produced from @var{enum_type}.
5015
5016@item deep_items (@var{type})
5017Returns a Python iterator similar to the standard
5018@code{gdb.Type.iteritems} method, except that the iterator returned
5019by @code{deep_items} will recursively traverse anonymous struct or
5020union fields. For example:
5021
5022@smallexample
5023struct A
5024@{
5025 int a;
5026 union @{
5027 int b0;
5028 int b1;
5029 @};
5030@};
5031@end smallexample
5032
5033@noindent
5034Then in @value{GDBN}:
5035@smallexample
5036(@value{GDBP}) python import gdb.types
5037(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5038(@value{GDBP}) python print struct_a.keys ()
5039@{['a', '']@}
5040(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5041@{['a', 'b0', 'b1']@}
5042@end smallexample
5043
5044@item get_type_recognizers ()
5045Return a list of the enabled type recognizers for the current context.
5046This is called by @value{GDBN} during the type-printing process
5047(@pxref{Type Printing API}).
5048
5049@item apply_type_recognizers (recognizers, type_obj)
5050Apply the type recognizers, @var{recognizers}, to the type object
5051@var{type_obj}. If any recognizer returns a string, return that
5052string. Otherwise, return @code{None}. This is called by
5053@value{GDBN} during the type-printing process (@pxref{Type Printing
5054API}).
5055
5056@item register_type_printer (locus, printer)
697aa1b7
EZ
5057This is a convenience function to register a type printer
5058@var{printer}. The printer must implement the type printer protocol.
5059The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5060the printer is registered with that objfile; a @code{gdb.Progspace},
5061in which case the printer is registered with that progspace; or
5062@code{None}, in which case the printer is registered globally.
329baa95
DE
5063
5064@item TypePrinter
5065This is a base class that implements the type printer protocol. Type
5066printers are encouraged, but not required, to derive from this class.
5067It defines a constructor:
5068
5069@defmethod TypePrinter __init__ (self, name)
5070Initialize the type printer with the given name. The new printer
5071starts in the enabled state.
5072@end defmethod
5073
5074@end table
5075
5076@node gdb.prompt
5077@subsubsection gdb.prompt
5078@cindex gdb.prompt
5079
5080This module provides a method for prompt value-substitution.
5081
5082@table @code
5083@item substitute_prompt (@var{string})
5084Return @var{string} with escape sequences substituted by values. Some
5085escape sequences take arguments. You can specify arguments inside
5086``@{@}'' immediately following the escape sequence.
5087
5088The escape sequences you can pass to this function are:
5089
5090@table @code
5091@item \\
5092Substitute a backslash.
5093@item \e
5094Substitute an ESC character.
5095@item \f
5096Substitute the selected frame; an argument names a frame parameter.
5097@item \n
5098Substitute a newline.
5099@item \p
5100Substitute a parameter's value; the argument names the parameter.
5101@item \r
5102Substitute a carriage return.
5103@item \t
5104Substitute the selected thread; an argument names a thread parameter.
5105@item \v
5106Substitute the version of GDB.
5107@item \w
5108Substitute the current working directory.
5109@item \[
5110Begin a sequence of non-printing characters. These sequences are
5111typically used with the ESC character, and are not counted in the string
5112length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5113blue-colored ``(gdb)'' prompt where the length is five.
5114@item \]
5115End a sequence of non-printing characters.
5116@end table
5117
5118For example:
5119
5120@smallexample
5121substitute_prompt (``frame: \f,
5122 print arguments: \p@{print frame-arguments@}'')
5123@end smallexample
5124
5125@exdent will return the string:
5126
5127@smallexample
5128"frame: main, print arguments: scalars"
5129@end smallexample
5130@end table
This page took 0.34009 seconds and 4 git commands to generate.