Tighten regexp of lib/completion-support.exp:test_gdb_complete_tab_multiple
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
61baf725 1@c Copyright (C) 2008-2017 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 147* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
148* Xmethods In Python:: Adding and replacing methods of C++ classes.
149* Xmethod API:: Xmethod types.
150* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
151* Inferiors In Python:: Python representation of inferiors (processes)
152* Events In Python:: Listening for events from @value{GDBN}.
153* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 154* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
155* Commands In Python:: Implementing new commands in Python.
156* Parameters In Python:: Adding new @value{GDBN} parameters.
157* Functions In Python:: Writing new convenience functions.
158* Progspaces In Python:: Program spaces.
159* Objfiles In Python:: Object files.
160* Frames In Python:: Accessing inferior stack frames from Python.
161* Blocks In Python:: Accessing blocks from Python.
162* Symbols In Python:: Python representation of symbols.
163* Symbol Tables In Python:: Python representation of symbol tables.
164* Line Tables In Python:: Python representation of line tables.
165* Breakpoints In Python:: Manipulating breakpoints using Python.
166* Finish Breakpoints in Python:: Setting Breakpoints on function return
167 using Python.
168* Lazy Strings In Python:: Python representation of lazy strings.
169* Architectures In Python:: Python representation of architectures.
170@end menu
171
172@node Basic Python
173@subsubsection Basic Python
174
175@cindex python stdout
176@cindex python pagination
177At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
178@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
179A Python program which outputs to one of these streams may have its
180output interrupted by the user (@pxref{Screen Size}). In this
181situation, a Python @code{KeyboardInterrupt} exception is thrown.
182
183Some care must be taken when writing Python code to run in
184@value{GDBN}. Two things worth noting in particular:
185
186@itemize @bullet
187@item
188@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
189Python code must not override these, or even change the options using
190@code{sigaction}. If your program changes the handling of these
191signals, @value{GDBN} will most likely stop working correctly. Note
192that it is unfortunately common for GUI toolkits to install a
193@code{SIGCHLD} handler.
194
195@item
196@value{GDBN} takes care to mark its internal file descriptors as
197close-on-exec. However, this cannot be done in a thread-safe way on
198all platforms. Your Python programs should be aware of this and
199should both create new file descriptors with the close-on-exec flag
200set and arrange to close unneeded file descriptors before starting a
201child process.
202@end itemize
203
204@cindex python functions
205@cindex python module
206@cindex gdb module
207@value{GDBN} introduces a new Python module, named @code{gdb}. All
208methods and classes added by @value{GDBN} are placed in this module.
209@value{GDBN} automatically @code{import}s the @code{gdb} module for
210use in all scripts evaluated by the @code{python} command.
211
212@findex gdb.PYTHONDIR
213@defvar gdb.PYTHONDIR
214A string containing the python directory (@pxref{Python}).
215@end defvar
216
217@findex gdb.execute
218@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
219Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
220If a GDB exception happens while @var{command} runs, it is
221translated as described in @ref{Exception Handling,,Exception Handling}.
222
697aa1b7 223The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
224command as having originated from the user invoking it interactively.
225It must be a boolean value. If omitted, it defaults to @code{False}.
226
227By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
228@value{GDBN}'s standard output (and to the log output if logging is
229turned on). If the @var{to_string} parameter is
329baa95
DE
230@code{True}, then output will be collected by @code{gdb.execute} and
231returned as a string. The default is @code{False}, in which case the
232return value is @code{None}. If @var{to_string} is @code{True}, the
233@value{GDBN} virtual terminal will be temporarily set to unlimited width
234and height, and its pagination will be disabled; @pxref{Screen Size}.
235@end defun
236
237@findex gdb.breakpoints
238@defun gdb.breakpoints ()
239Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
240@xref{Breakpoints In Python}, for more information. In @value{GDBN}
241version 7.11 and earlier, this function returned @code{None} if there
242were no breakpoints. This peculiarity was subsequently fixed, and now
243@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
244@end defun
245
d8ae99a7
PM
246@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
247Return a Python list holding a collection of newly set
248@code{gdb.Breakpoint} objects matching function names defined by the
249@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
250system functions (those not explicitly defined in the inferior) will
251also be included in the match. The @var{throttle} keyword takes an
252integer that defines the maximum number of pattern matches for
253functions matched by the @var{regex} pattern. If the number of
254matches exceeds the integer value of @var{throttle}, a
255@code{RuntimeError} will be raised and no breakpoints will be created.
256If @var{throttle} is not defined then there is no imposed limit on the
257maximum number of matches and breakpoints to be created. The
258@var{symtabs} keyword takes a Python iterable that yields a collection
259of @code{gdb.Symtab} objects and will restrict the search to those
260functions only contained within the @code{gdb.Symtab} objects.
261@end defun
262
329baa95
DE
263@findex gdb.parameter
264@defun gdb.parameter (parameter)
697aa1b7
EZ
265Return the value of a @value{GDBN} @var{parameter} given by its name,
266a string; the parameter name string may contain spaces if the parameter has a
267multi-part name. For example, @samp{print object} is a valid
268parameter name.
329baa95
DE
269
270If the named parameter does not exist, this function throws a
271@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
272parameter's value is converted to a Python value of the appropriate
273type, and returned.
274@end defun
275
276@findex gdb.history
277@defun gdb.history (number)
278Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 279History}). The @var{number} argument indicates which history element to return.
329baa95
DE
280If @var{number} is negative, then @value{GDBN} will take its absolute value
281and count backward from the last element (i.e., the most recent element) to
282find the value to return. If @var{number} is zero, then @value{GDBN} will
283return the most recent element. If the element specified by @var{number}
284doesn't exist in the value history, a @code{gdb.error} exception will be
285raised.
286
287If no exception is raised, the return value is always an instance of
288@code{gdb.Value} (@pxref{Values From Inferior}).
289@end defun
290
291@findex gdb.parse_and_eval
292@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
293Parse @var{expression}, which must be a string, as an expression in
294the current language, evaluate it, and return the result as a
295@code{gdb.Value}.
329baa95
DE
296
297This function can be useful when implementing a new command
298(@pxref{Commands In Python}), as it provides a way to parse the
299command's argument as an expression. It is also useful simply to
300compute values, for example, it is the only way to get the value of a
301convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
302@end defun
303
304@findex gdb.find_pc_line
305@defun gdb.find_pc_line (pc)
306Return the @code{gdb.Symtab_and_line} object corresponding to the
307@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
308value of @var{pc} is passed as an argument, then the @code{symtab} and
309@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
310will be @code{None} and 0 respectively.
311@end defun
312
313@findex gdb.post_event
314@defun gdb.post_event (event)
315Put @var{event}, a callable object taking no arguments, into
316@value{GDBN}'s internal event queue. This callable will be invoked at
317some later point, during @value{GDBN}'s event processing. Events
318posted using @code{post_event} will be run in the order in which they
319were posted; however, there is no way to know when they will be
320processed relative to other events inside @value{GDBN}.
321
322@value{GDBN} is not thread-safe. If your Python program uses multiple
323threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 324functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
325this. For example:
326
327@smallexample
328(@value{GDBP}) python
329>import threading
330>
331>class Writer():
332> def __init__(self, message):
333> self.message = message;
334> def __call__(self):
335> gdb.write(self.message)
336>
337>class MyThread1 (threading.Thread):
338> def run (self):
339> gdb.post_event(Writer("Hello "))
340>
341>class MyThread2 (threading.Thread):
342> def run (self):
343> gdb.post_event(Writer("World\n"))
344>
345>MyThread1().start()
346>MyThread2().start()
347>end
348(@value{GDBP}) Hello World
349@end smallexample
350@end defun
351
352@findex gdb.write
353@defun gdb.write (string @r{[}, stream{]})
354Print a string to @value{GDBN}'s paginated output stream. The
355optional @var{stream} determines the stream to print to. The default
356stream is @value{GDBN}'s standard output stream. Possible stream
357values are:
358
359@table @code
360@findex STDOUT
361@findex gdb.STDOUT
362@item gdb.STDOUT
363@value{GDBN}'s standard output stream.
364
365@findex STDERR
366@findex gdb.STDERR
367@item gdb.STDERR
368@value{GDBN}'s standard error stream.
369
370@findex STDLOG
371@findex gdb.STDLOG
372@item gdb.STDLOG
373@value{GDBN}'s log stream (@pxref{Logging Output}).
374@end table
375
376Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
377call this function and will automatically direct the output to the
378relevant stream.
379@end defun
380
381@findex gdb.flush
382@defun gdb.flush ()
383Flush the buffer of a @value{GDBN} paginated stream so that the
384contents are displayed immediately. @value{GDBN} will flush the
385contents of a stream automatically when it encounters a newline in the
386buffer. The optional @var{stream} determines the stream to flush. The
387default stream is @value{GDBN}'s standard output stream. Possible
388stream values are:
389
390@table @code
391@findex STDOUT
392@findex gdb.STDOUT
393@item gdb.STDOUT
394@value{GDBN}'s standard output stream.
395
396@findex STDERR
397@findex gdb.STDERR
398@item gdb.STDERR
399@value{GDBN}'s standard error stream.
400
401@findex STDLOG
402@findex gdb.STDLOG
403@item gdb.STDLOG
404@value{GDBN}'s log stream (@pxref{Logging Output}).
405
406@end table
407
408Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
409call this function for the relevant stream.
410@end defun
411
412@findex gdb.target_charset
413@defun gdb.target_charset ()
414Return the name of the current target character set (@pxref{Character
415Sets}). This differs from @code{gdb.parameter('target-charset')} in
416that @samp{auto} is never returned.
417@end defun
418
419@findex gdb.target_wide_charset
420@defun gdb.target_wide_charset ()
421Return the name of the current target wide character set
422(@pxref{Character Sets}). This differs from
423@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
424never returned.
425@end defun
426
427@findex gdb.solib_name
428@defun gdb.solib_name (address)
429Return the name of the shared library holding the given @var{address}
430as a string, or @code{None}.
431@end defun
432
433@findex gdb.decode_line
434@defun gdb.decode_line @r{[}expression@r{]}
435Return locations of the line specified by @var{expression}, or of the
436current line if no argument was given. This function returns a Python
437tuple containing two elements. The first element contains a string
438holding any unparsed section of @var{expression} (or @code{None} if
439the expression has been fully parsed). The second element contains
440either @code{None} or another tuple that contains all the locations
441that match the expression represented as @code{gdb.Symtab_and_line}
442objects (@pxref{Symbol Tables In Python}). If @var{expression} is
443provided, it is decoded the way that @value{GDBN}'s inbuilt
444@code{break} or @code{edit} commands do (@pxref{Specify Location}).
445@end defun
446
447@defun gdb.prompt_hook (current_prompt)
448@anchor{prompt_hook}
449
450If @var{prompt_hook} is callable, @value{GDBN} will call the method
451assigned to this operation before a prompt is displayed by
452@value{GDBN}.
453
454The parameter @code{current_prompt} contains the current @value{GDBN}
455prompt. This method must return a Python string, or @code{None}. If
456a string is returned, the @value{GDBN} prompt will be set to that
457string. If @code{None} is returned, @value{GDBN} will continue to use
458the current prompt.
459
460Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
461such as those used by readline for command input, and annotation
462related prompts are prohibited from being changed.
463@end defun
464
465@node Exception Handling
466@subsubsection Exception Handling
467@cindex python exceptions
468@cindex exceptions, python
469
470When executing the @code{python} command, Python exceptions
471uncaught within the Python code are translated to calls to
472@value{GDBN} error-reporting mechanism. If the command that called
473@code{python} does not handle the error, @value{GDBN} will
474terminate it and print an error message containing the Python
475exception name, the associated value, and the Python call stack
476backtrace at the point where the exception was raised. Example:
477
478@smallexample
479(@value{GDBP}) python print foo
480Traceback (most recent call last):
481 File "<string>", line 1, in <module>
482NameError: name 'foo' is not defined
483@end smallexample
484
485@value{GDBN} errors that happen in @value{GDBN} commands invoked by
486Python code are converted to Python exceptions. The type of the
487Python exception depends on the error.
488
489@ftable @code
490@item gdb.error
491This is the base class for most exceptions generated by @value{GDBN}.
492It is derived from @code{RuntimeError}, for compatibility with earlier
493versions of @value{GDBN}.
494
495If an error occurring in @value{GDBN} does not fit into some more
496specific category, then the generated exception will have this type.
497
498@item gdb.MemoryError
499This is a subclass of @code{gdb.error} which is thrown when an
500operation tried to access invalid memory in the inferior.
501
502@item KeyboardInterrupt
503User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
504prompt) is translated to a Python @code{KeyboardInterrupt} exception.
505@end ftable
506
507In all cases, your exception handler will see the @value{GDBN} error
508message as its value and the Python call stack backtrace at the Python
509statement closest to where the @value{GDBN} error occured as the
510traceback.
511
512@findex gdb.GdbError
513When implementing @value{GDBN} commands in Python via @code{gdb.Command},
514it is useful to be able to throw an exception that doesn't cause a
515traceback to be printed. For example, the user may have invoked the
516command incorrectly. Use the @code{gdb.GdbError} exception
517to handle this case. Example:
518
519@smallexample
520(gdb) python
521>class HelloWorld (gdb.Command):
522> """Greet the whole world."""
523> def __init__ (self):
524> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
525> def invoke (self, args, from_tty):
526> argv = gdb.string_to_argv (args)
527> if len (argv) != 0:
528> raise gdb.GdbError ("hello-world takes no arguments")
529> print "Hello, World!"
530>HelloWorld ()
531>end
532(gdb) hello-world 42
533hello-world takes no arguments
534@end smallexample
535
536@node Values From Inferior
537@subsubsection Values From Inferior
538@cindex values from inferior, with Python
539@cindex python, working with values from inferior
540
541@cindex @code{gdb.Value}
542@value{GDBN} provides values it obtains from the inferior program in
543an object of type @code{gdb.Value}. @value{GDBN} uses this object
544for its internal bookkeeping of the inferior's values, and for
545fetching values when necessary.
546
547Inferior values that are simple scalars can be used directly in
548Python expressions that are valid for the value's data type. Here's
549an example for an integer or floating-point value @code{some_val}:
550
551@smallexample
552bar = some_val + 2
553@end smallexample
554
555@noindent
556As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
557whose values are of the same type as those of @code{some_val}. Valid
558Python operations can also be performed on @code{gdb.Value} objects
559representing a @code{struct} or @code{class} object. For such cases,
560the overloaded operator (if present), is used to perform the operation.
561For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
562representing instances of a @code{class} which overloads the @code{+}
563operator, then one can use the @code{+} operator in their Python script
564as follows:
565
566@smallexample
567val3 = val1 + val2
568@end smallexample
569
570@noindent
571The result of the operation @code{val3} is also a @code{gdb.Value}
572object corresponding to the value returned by the overloaded @code{+}
573operator. In general, overloaded operators are invoked for the
574following operations: @code{+} (binary addition), @code{-} (binary
575subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
576@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
577
578Inferior values that are structures or instances of some class can
579be accessed using the Python @dfn{dictionary syntax}. For example, if
580@code{some_val} is a @code{gdb.Value} instance holding a structure, you
581can access its @code{foo} element with:
582
583@smallexample
584bar = some_val['foo']
585@end smallexample
586
587@cindex getting structure elements using gdb.Field objects as subscripts
588Again, @code{bar} will also be a @code{gdb.Value} object. Structure
589elements can also be accessed by using @code{gdb.Field} objects as
590subscripts (@pxref{Types In Python}, for more information on
591@code{gdb.Field} objects). For example, if @code{foo_field} is a
592@code{gdb.Field} object corresponding to element @code{foo} of the above
593structure, then @code{bar} can also be accessed as follows:
594
595@smallexample
596bar = some_val[foo_field]
597@end smallexample
598
599A @code{gdb.Value} that represents a function can be executed via
600inferior function call. Any arguments provided to the call must match
601the function's prototype, and must be provided in the order specified
602by that prototype.
603
604For example, @code{some_val} is a @code{gdb.Value} instance
605representing a function that takes two integers as arguments. To
606execute this function, call it like so:
607
608@smallexample
609result = some_val (10,20)
610@end smallexample
611
612Any values returned from a function call will be stored as a
613@code{gdb.Value}.
614
615The following attributes are provided:
616
617@defvar Value.address
618If this object is addressable, this read-only attribute holds a
619@code{gdb.Value} object representing the address. Otherwise,
620this attribute holds @code{None}.
621@end defvar
622
623@cindex optimized out value in Python
624@defvar Value.is_optimized_out
625This read-only boolean attribute is true if the compiler optimized out
626this value, thus it is not available for fetching from the inferior.
627@end defvar
628
629@defvar Value.type
630The type of this @code{gdb.Value}. The value of this attribute is a
631@code{gdb.Type} object (@pxref{Types In Python}).
632@end defvar
633
634@defvar Value.dynamic_type
635The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
636type information (@acronym{RTTI}) to determine the dynamic type of the
637value. If this value is of class type, it will return the class in
638which the value is embedded, if any. If this value is of pointer or
639reference to a class type, it will compute the dynamic type of the
640referenced object, and return a pointer or reference to that type,
641respectively. In all other cases, it will return the value's static
642type.
643
644Note that this feature will only work when debugging a C@t{++} program
645that includes @acronym{RTTI} for the object in question. Otherwise,
646it will just return the static type of the value as in @kbd{ptype foo}
647(@pxref{Symbols, ptype}).
648@end defvar
649
650@defvar Value.is_lazy
651The value of this read-only boolean attribute is @code{True} if this
652@code{gdb.Value} has not yet been fetched from the inferior.
653@value{GDBN} does not fetch values until necessary, for efficiency.
654For example:
655
656@smallexample
657myval = gdb.parse_and_eval ('somevar')
658@end smallexample
659
660The value of @code{somevar} is not fetched at this time. It will be
661fetched when the value is needed, or when the @code{fetch_lazy}
662method is invoked.
663@end defvar
664
665The following methods are provided:
666
667@defun Value.__init__ (@var{val})
668Many Python values can be converted directly to a @code{gdb.Value} via
669this object initializer. Specifically:
670
671@table @asis
672@item Python boolean
673A Python boolean is converted to the boolean type from the current
674language.
675
676@item Python integer
677A Python integer is converted to the C @code{long} type for the
678current architecture.
679
680@item Python long
681A Python long is converted to the C @code{long long} type for the
682current architecture.
683
684@item Python float
685A Python float is converted to the C @code{double} type for the
686current architecture.
687
688@item Python string
b3ce5e5f
DE
689A Python string is converted to a target string in the current target
690language using the current target encoding.
691If a character cannot be represented in the current target encoding,
692then an exception is thrown.
329baa95
DE
693
694@item @code{gdb.Value}
695If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
696
697@item @code{gdb.LazyString}
698If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
699Python}), then the lazy string's @code{value} method is called, and
700its result is used.
701@end table
702@end defun
703
704@defun Value.cast (type)
705Return a new instance of @code{gdb.Value} that is the result of
706casting this instance to the type described by @var{type}, which must
707be a @code{gdb.Type} object. If the cast cannot be performed for some
708reason, this method throws an exception.
709@end defun
710
711@defun Value.dereference ()
712For pointer data types, this method returns a new @code{gdb.Value} object
713whose contents is the object pointed to by the pointer. For example, if
714@code{foo} is a C pointer to an @code{int}, declared in your C program as
715
716@smallexample
717int *foo;
718@end smallexample
719
720@noindent
721then you can use the corresponding @code{gdb.Value} to access what
722@code{foo} points to like this:
723
724@smallexample
725bar = foo.dereference ()
726@end smallexample
727
728The result @code{bar} will be a @code{gdb.Value} object holding the
729value pointed to by @code{foo}.
730
731A similar function @code{Value.referenced_value} exists which also
732returns @code{gdb.Value} objects corresonding to the values pointed to
733by pointer values (and additionally, values referenced by reference
734values). However, the behavior of @code{Value.dereference}
735differs from @code{Value.referenced_value} by the fact that the
736behavior of @code{Value.dereference} is identical to applying the C
737unary operator @code{*} on a given value. For example, consider a
738reference to a pointer @code{ptrref}, declared in your C@t{++} program
739as
740
741@smallexample
742typedef int *intptr;
743...
744int val = 10;
745intptr ptr = &val;
746intptr &ptrref = ptr;
747@end smallexample
748
749Though @code{ptrref} is a reference value, one can apply the method
750@code{Value.dereference} to the @code{gdb.Value} object corresponding
751to it and obtain a @code{gdb.Value} which is identical to that
752corresponding to @code{val}. However, if you apply the method
753@code{Value.referenced_value}, the result would be a @code{gdb.Value}
754object identical to that corresponding to @code{ptr}.
755
756@smallexample
757py_ptrref = gdb.parse_and_eval ("ptrref")
758py_val = py_ptrref.dereference ()
759py_ptr = py_ptrref.referenced_value ()
760@end smallexample
761
762The @code{gdb.Value} object @code{py_val} is identical to that
763corresponding to @code{val}, and @code{py_ptr} is identical to that
764corresponding to @code{ptr}. In general, @code{Value.dereference} can
765be applied whenever the C unary operator @code{*} can be applied
766to the corresponding C value. For those cases where applying both
767@code{Value.dereference} and @code{Value.referenced_value} is allowed,
768the results obtained need not be identical (as we have seen in the above
769example). The results are however identical when applied on
770@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
771objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
772@end defun
773
774@defun Value.referenced_value ()
775For pointer or reference data types, this method returns a new
776@code{gdb.Value} object corresponding to the value referenced by the
777pointer/reference value. For pointer data types,
778@code{Value.dereference} and @code{Value.referenced_value} produce
779identical results. The difference between these methods is that
780@code{Value.dereference} cannot get the values referenced by reference
781values. For example, consider a reference to an @code{int}, declared
782in your C@t{++} program as
783
784@smallexample
785int val = 10;
786int &ref = val;
787@end smallexample
788
789@noindent
790then applying @code{Value.dereference} to the @code{gdb.Value} object
791corresponding to @code{ref} will result in an error, while applying
792@code{Value.referenced_value} will result in a @code{gdb.Value} object
793identical to that corresponding to @code{val}.
794
795@smallexample
796py_ref = gdb.parse_and_eval ("ref")
797er_ref = py_ref.dereference () # Results in error
798py_val = py_ref.referenced_value () # Returns the referenced value
799@end smallexample
800
801The @code{gdb.Value} object @code{py_val} is identical to that
802corresponding to @code{val}.
803@end defun
804
4c082a81
SC
805@defun Value.reference_value ()
806Return a @code{gdb.Value} object which is a reference to the value
807encapsulated by this instance.
808@end defun
809
810@defun Value.const_value ()
811Return a @code{gdb.Value} object which is a @code{const} version of the
812value encapsulated by this instance.
813@end defun
814
329baa95
DE
815@defun Value.dynamic_cast (type)
816Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
817operator were used. Consult a C@t{++} reference for details.
818@end defun
819
820@defun Value.reinterpret_cast (type)
821Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
822operator were used. Consult a C@t{++} reference for details.
823@end defun
824
825@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
826If this @code{gdb.Value} represents a string, then this method
827converts the contents to a Python string. Otherwise, this method will
828throw an exception.
829
b3ce5e5f
DE
830Values are interpreted as strings according to the rules of the
831current language. If the optional length argument is given, the
832string will be converted to that length, and will include any embedded
833zeroes that the string may contain. Otherwise, for languages
834where the string is zero-terminated, the entire string will be
835converted.
329baa95 836
b3ce5e5f
DE
837For example, in C-like languages, a value is a string if it is a pointer
838to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
839or @code{char32_t}.
329baa95
DE
840
841If the optional @var{encoding} argument is given, it must be a string
842naming the encoding of the string in the @code{gdb.Value}, such as
843@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
844the same encodings as the corresponding argument to Python's
845@code{string.decode} method, and the Python codec machinery will be used
846to convert the string. If @var{encoding} is not given, or if
847@var{encoding} is the empty string, then either the @code{target-charset}
848(@pxref{Character Sets}) will be used, or a language-specific encoding
849will be used, if the current language is able to supply one.
850
851The optional @var{errors} argument is the same as the corresponding
852argument to Python's @code{string.decode} method.
853
854If the optional @var{length} argument is given, the string will be
855fetched and converted to the given length.
856@end defun
857
858@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
859If this @code{gdb.Value} represents a string, then this method
860converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
861In Python}). Otherwise, this method will throw an exception.
862
863If the optional @var{encoding} argument is given, it must be a string
864naming the encoding of the @code{gdb.LazyString}. Some examples are:
865@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
866@var{encoding} argument is an encoding that @value{GDBN} does
867recognize, @value{GDBN} will raise an error.
868
869When a lazy string is printed, the @value{GDBN} encoding machinery is
870used to convert the string during printing. If the optional
871@var{encoding} argument is not provided, or is an empty string,
872@value{GDBN} will automatically select the encoding most suitable for
873the string type. For further information on encoding in @value{GDBN}
874please see @ref{Character Sets}.
875
876If the optional @var{length} argument is given, the string will be
877fetched and encoded to the length of characters specified. If
878the @var{length} argument is not provided, the string will be fetched
879and encoded until a null of appropriate width is found.
880@end defun
881
882@defun Value.fetch_lazy ()
883If the @code{gdb.Value} object is currently a lazy value
884(@code{gdb.Value.is_lazy} is @code{True}), then the value is
885fetched from the inferior. Any errors that occur in the process
886will produce a Python exception.
887
888If the @code{gdb.Value} object is not a lazy value, this method
889has no effect.
890
891This method does not return a value.
892@end defun
893
894
895@node Types In Python
896@subsubsection Types In Python
897@cindex types in Python
898@cindex Python, working with types
899
900@tindex gdb.Type
901@value{GDBN} represents types from the inferior using the class
902@code{gdb.Type}.
903
904The following type-related functions are available in the @code{gdb}
905module:
906
907@findex gdb.lookup_type
908@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 909This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
910
911If @var{block} is given, then @var{name} is looked up in that scope.
912Otherwise, it is searched for globally.
913
914Ordinarily, this function will return an instance of @code{gdb.Type}.
915If the named type cannot be found, it will throw an exception.
916@end defun
917
918If the type is a structure or class type, or an enum type, the fields
919of that type can be accessed using the Python @dfn{dictionary syntax}.
920For example, if @code{some_type} is a @code{gdb.Type} instance holding
921a structure type, you can access its @code{foo} field with:
922
923@smallexample
924bar = some_type['foo']
925@end smallexample
926
927@code{bar} will be a @code{gdb.Field} object; see below under the
928description of the @code{Type.fields} method for a description of the
929@code{gdb.Field} class.
930
931An instance of @code{Type} has the following attributes:
932
933@defvar Type.code
934The type code for this type. The type code will be one of the
935@code{TYPE_CODE_} constants defined below.
936@end defvar
937
938@defvar Type.name
939The name of this type. If this type has no name, then @code{None}
940is returned.
941@end defvar
942
943@defvar Type.sizeof
944The size of this type, in target @code{char} units. Usually, a
945target's @code{char} type will be an 8-bit byte. However, on some
946unusual platforms, this type may have a different size.
947@end defvar
948
949@defvar Type.tag
950The tag name for this type. The tag name is the name after
951@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
952languages have this concept. If this type has no tag name, then
953@code{None} is returned.
954@end defvar
955
956The following methods are provided:
957
958@defun Type.fields ()
959For structure and union types, this method returns the fields. Range
960types have two fields, the minimum and maximum values. Enum types
961have one field per enum constant. Function and method types have one
962field per parameter. The base types of C@t{++} classes are also
963represented as fields. If the type has no fields, or does not fit
964into one of these categories, an empty sequence will be returned.
965
966Each field is a @code{gdb.Field} object, with some pre-defined attributes:
967@table @code
968@item bitpos
969This attribute is not available for @code{enum} or @code{static}
9c37b5ae 970(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
971in bits, from the start of the containing type.
972
973@item enumval
974This attribute is only available for @code{enum} fields, and its value
975is the enumeration member's integer representation.
976
977@item name
978The name of the field, or @code{None} for anonymous fields.
979
980@item artificial
981This is @code{True} if the field is artificial, usually meaning that
982it was provided by the compiler and not the user. This attribute is
983always provided, and is @code{False} if the field is not artificial.
984
985@item is_base_class
986This is @code{True} if the field represents a base class of a C@t{++}
987structure. This attribute is always provided, and is @code{False}
988if the field is not a base class of the type that is the argument of
989@code{fields}, or if that type was not a C@t{++} class.
990
991@item bitsize
992If the field is packed, or is a bitfield, then this will have a
993non-zero value, which is the size of the field in bits. Otherwise,
994this will be zero; in this case the field's size is given by its type.
995
996@item type
997The type of the field. This is usually an instance of @code{Type},
998but it can be @code{None} in some situations.
999
1000@item parent_type
1001The type which contains this field. This is an instance of
1002@code{gdb.Type}.
1003@end table
1004@end defun
1005
1006@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1007Return a new @code{gdb.Type} object which represents an array of this
1008type. If one argument is given, it is the inclusive upper bound of
1009the array; in this case the lower bound is zero. If two arguments are
1010given, the first argument is the lower bound of the array, and the
1011second argument is the upper bound of the array. An array's length
1012must not be negative, but the bounds can be.
1013@end defun
1014
1015@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1016Return a new @code{gdb.Type} object which represents a vector of this
1017type. If one argument is given, it is the inclusive upper bound of
1018the vector; in this case the lower bound is zero. If two arguments are
1019given, the first argument is the lower bound of the vector, and the
1020second argument is the upper bound of the vector. A vector's length
1021must not be negative, but the bounds can be.
1022
1023The difference between an @code{array} and a @code{vector} is that
1024arrays behave like in C: when used in expressions they decay to a pointer
1025to the first element whereas vectors are treated as first class values.
1026@end defun
1027
1028@defun Type.const ()
1029Return a new @code{gdb.Type} object which represents a
1030@code{const}-qualified variant of this type.
1031@end defun
1032
1033@defun Type.volatile ()
1034Return a new @code{gdb.Type} object which represents a
1035@code{volatile}-qualified variant of this type.
1036@end defun
1037
1038@defun Type.unqualified ()
1039Return a new @code{gdb.Type} object which represents an unqualified
1040variant of this type. That is, the result is neither @code{const} nor
1041@code{volatile}.
1042@end defun
1043
1044@defun Type.range ()
1045Return a Python @code{Tuple} object that contains two elements: the
1046low bound of the argument type and the high bound of that type. If
1047the type does not have a range, @value{GDBN} will raise a
1048@code{gdb.error} exception (@pxref{Exception Handling}).
1049@end defun
1050
1051@defun Type.reference ()
1052Return a new @code{gdb.Type} object which represents a reference to this
1053type.
1054@end defun
1055
1056@defun Type.pointer ()
1057Return a new @code{gdb.Type} object which represents a pointer to this
1058type.
1059@end defun
1060
1061@defun Type.strip_typedefs ()
1062Return a new @code{gdb.Type} that represents the real type,
1063after removing all layers of typedefs.
1064@end defun
1065
1066@defun Type.target ()
1067Return a new @code{gdb.Type} object which represents the target type
1068of this type.
1069
1070For a pointer type, the target type is the type of the pointed-to
1071object. For an array type (meaning C-like arrays), the target type is
1072the type of the elements of the array. For a function or method type,
1073the target type is the type of the return value. For a complex type,
1074the target type is the type of the elements. For a typedef, the
1075target type is the aliased type.
1076
1077If the type does not have a target, this method will throw an
1078exception.
1079@end defun
1080
1081@defun Type.template_argument (n @r{[}, block@r{]})
1082If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1083return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1084value of the @var{n}th template argument (indexed starting at 0).
329baa95 1085
1a6a384b
JL
1086If this @code{gdb.Type} is not a template type, or if the type has fewer
1087than @var{n} template arguments, this will throw an exception.
1088Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1089
1090If @var{block} is given, then @var{name} is looked up in that scope.
1091Otherwise, it is searched for globally.
1092@end defun
1093
59fb7612
SS
1094@defun Type.optimized_out ()
1095Return @code{gdb.Value} instance of this type whose value is optimized
1096out. This allows a frame decorator to indicate that the value of an
1097argument or a local variable is not known.
1098@end defun
329baa95
DE
1099
1100Each type has a code, which indicates what category this type falls
1101into. The available type categories are represented by constants
1102defined in the @code{gdb} module:
1103
b3ce5e5f
DE
1104@vtable @code
1105@vindex TYPE_CODE_PTR
329baa95
DE
1106@item gdb.TYPE_CODE_PTR
1107The type is a pointer.
1108
b3ce5e5f 1109@vindex TYPE_CODE_ARRAY
329baa95
DE
1110@item gdb.TYPE_CODE_ARRAY
1111The type is an array.
1112
b3ce5e5f 1113@vindex TYPE_CODE_STRUCT
329baa95
DE
1114@item gdb.TYPE_CODE_STRUCT
1115The type is a structure.
1116
b3ce5e5f 1117@vindex TYPE_CODE_UNION
329baa95
DE
1118@item gdb.TYPE_CODE_UNION
1119The type is a union.
1120
b3ce5e5f 1121@vindex TYPE_CODE_ENUM
329baa95
DE
1122@item gdb.TYPE_CODE_ENUM
1123The type is an enum.
1124
b3ce5e5f 1125@vindex TYPE_CODE_FLAGS
329baa95
DE
1126@item gdb.TYPE_CODE_FLAGS
1127A bit flags type, used for things such as status registers.
1128
b3ce5e5f 1129@vindex TYPE_CODE_FUNC
329baa95
DE
1130@item gdb.TYPE_CODE_FUNC
1131The type is a function.
1132
b3ce5e5f 1133@vindex TYPE_CODE_INT
329baa95
DE
1134@item gdb.TYPE_CODE_INT
1135The type is an integer type.
1136
b3ce5e5f 1137@vindex TYPE_CODE_FLT
329baa95
DE
1138@item gdb.TYPE_CODE_FLT
1139A floating point type.
1140
b3ce5e5f 1141@vindex TYPE_CODE_VOID
329baa95
DE
1142@item gdb.TYPE_CODE_VOID
1143The special type @code{void}.
1144
b3ce5e5f 1145@vindex TYPE_CODE_SET
329baa95
DE
1146@item gdb.TYPE_CODE_SET
1147A Pascal set type.
1148
b3ce5e5f 1149@vindex TYPE_CODE_RANGE
329baa95
DE
1150@item gdb.TYPE_CODE_RANGE
1151A range type, that is, an integer type with bounds.
1152
b3ce5e5f 1153@vindex TYPE_CODE_STRING
329baa95
DE
1154@item gdb.TYPE_CODE_STRING
1155A string type. Note that this is only used for certain languages with
1156language-defined string types; C strings are not represented this way.
1157
b3ce5e5f 1158@vindex TYPE_CODE_BITSTRING
329baa95
DE
1159@item gdb.TYPE_CODE_BITSTRING
1160A string of bits. It is deprecated.
1161
b3ce5e5f 1162@vindex TYPE_CODE_ERROR
329baa95
DE
1163@item gdb.TYPE_CODE_ERROR
1164An unknown or erroneous type.
1165
b3ce5e5f 1166@vindex TYPE_CODE_METHOD
329baa95 1167@item gdb.TYPE_CODE_METHOD
9c37b5ae 1168A method type, as found in C@t{++}.
329baa95 1169
b3ce5e5f 1170@vindex TYPE_CODE_METHODPTR
329baa95
DE
1171@item gdb.TYPE_CODE_METHODPTR
1172A pointer-to-member-function.
1173
b3ce5e5f 1174@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1175@item gdb.TYPE_CODE_MEMBERPTR
1176A pointer-to-member.
1177
b3ce5e5f 1178@vindex TYPE_CODE_REF
329baa95
DE
1179@item gdb.TYPE_CODE_REF
1180A reference type.
1181
3fcf899d
AV
1182@vindex TYPE_CODE_RVALUE_REF
1183@item gdb.TYPE_CODE_RVALUE_REF
1184A C@t{++}11 rvalue reference type.
1185
b3ce5e5f 1186@vindex TYPE_CODE_CHAR
329baa95
DE
1187@item gdb.TYPE_CODE_CHAR
1188A character type.
1189
b3ce5e5f 1190@vindex TYPE_CODE_BOOL
329baa95
DE
1191@item gdb.TYPE_CODE_BOOL
1192A boolean type.
1193
b3ce5e5f 1194@vindex TYPE_CODE_COMPLEX
329baa95
DE
1195@item gdb.TYPE_CODE_COMPLEX
1196A complex float type.
1197
b3ce5e5f 1198@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1199@item gdb.TYPE_CODE_TYPEDEF
1200A typedef to some other type.
1201
b3ce5e5f 1202@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1203@item gdb.TYPE_CODE_NAMESPACE
1204A C@t{++} namespace.
1205
b3ce5e5f 1206@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1207@item gdb.TYPE_CODE_DECFLOAT
1208A decimal floating point type.
1209
b3ce5e5f 1210@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1211@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1212A function internal to @value{GDBN}. This is the type used to represent
1213convenience functions.
b3ce5e5f 1214@end vtable
329baa95
DE
1215
1216Further support for types is provided in the @code{gdb.types}
1217Python module (@pxref{gdb.types}).
1218
1219@node Pretty Printing API
1220@subsubsection Pretty Printing API
b3ce5e5f 1221@cindex python pretty printing api
329baa95
DE
1222
1223An example output is provided (@pxref{Pretty Printing}).
1224
1225A pretty-printer is just an object that holds a value and implements a
1226specific interface, defined here.
1227
1228@defun pretty_printer.children (self)
1229@value{GDBN} will call this method on a pretty-printer to compute the
1230children of the pretty-printer's value.
1231
1232This method must return an object conforming to the Python iterator
1233protocol. Each item returned by the iterator must be a tuple holding
1234two elements. The first element is the ``name'' of the child; the
1235second element is the child's value. The value can be any Python
1236object which is convertible to a @value{GDBN} value.
1237
1238This method is optional. If it does not exist, @value{GDBN} will act
1239as though the value has no children.
1240@end defun
1241
1242@defun pretty_printer.display_hint (self)
1243The CLI may call this method and use its result to change the
1244formatting of a value. The result will also be supplied to an MI
1245consumer as a @samp{displayhint} attribute of the variable being
1246printed.
1247
1248This method is optional. If it does exist, this method must return a
1249string.
1250
1251Some display hints are predefined by @value{GDBN}:
1252
1253@table @samp
1254@item array
1255Indicate that the object being printed is ``array-like''. The CLI
1256uses this to respect parameters such as @code{set print elements} and
1257@code{set print array}.
1258
1259@item map
1260Indicate that the object being printed is ``map-like'', and that the
1261children of this value can be assumed to alternate between keys and
1262values.
1263
1264@item string
1265Indicate that the object being printed is ``string-like''. If the
1266printer's @code{to_string} method returns a Python string of some
1267kind, then @value{GDBN} will call its internal language-specific
1268string-printing function to format the string. For the CLI this means
1269adding quotation marks, possibly escaping some characters, respecting
1270@code{set print elements}, and the like.
1271@end table
1272@end defun
1273
1274@defun pretty_printer.to_string (self)
1275@value{GDBN} will call this method to display the string
1276representation of the value passed to the object's constructor.
1277
1278When printing from the CLI, if the @code{to_string} method exists,
1279then @value{GDBN} will prepend its result to the values returned by
1280@code{children}. Exactly how this formatting is done is dependent on
1281the display hint, and may change as more hints are added. Also,
1282depending on the print settings (@pxref{Print Settings}), the CLI may
1283print just the result of @code{to_string} in a stack trace, omitting
1284the result of @code{children}.
1285
1286If this method returns a string, it is printed verbatim.
1287
1288Otherwise, if this method returns an instance of @code{gdb.Value},
1289then @value{GDBN} prints this value. This may result in a call to
1290another pretty-printer.
1291
1292If instead the method returns a Python value which is convertible to a
1293@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1294the resulting value. Again, this may result in a call to another
1295pretty-printer. Python scalars (integers, floats, and booleans) and
1296strings are convertible to @code{gdb.Value}; other types are not.
1297
1298Finally, if this method returns @code{None} then no further operations
1299are peformed in this method and nothing is printed.
1300
1301If the result is not one of these types, an exception is raised.
1302@end defun
1303
1304@value{GDBN} provides a function which can be used to look up the
1305default pretty-printer for a @code{gdb.Value}:
1306
1307@findex gdb.default_visualizer
1308@defun gdb.default_visualizer (value)
1309This function takes a @code{gdb.Value} object as an argument. If a
1310pretty-printer for this value exists, then it is returned. If no such
1311printer exists, then this returns @code{None}.
1312@end defun
1313
1314@node Selecting Pretty-Printers
1315@subsubsection Selecting Pretty-Printers
b3ce5e5f 1316@cindex selecting python pretty-printers
329baa95
DE
1317
1318The Python list @code{gdb.pretty_printers} contains an array of
1319functions or callable objects that have been registered via addition
1320as a pretty-printer. Printers in this list are called @code{global}
1321printers, they're available when debugging all inferiors.
1322Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1323Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1324attribute.
1325
1326Each function on these lists is passed a single @code{gdb.Value}
1327argument and should return a pretty-printer object conforming to the
1328interface definition above (@pxref{Pretty Printing API}). If a function
1329cannot create a pretty-printer for the value, it should return
1330@code{None}.
1331
1332@value{GDBN} first checks the @code{pretty_printers} attribute of each
1333@code{gdb.Objfile} in the current program space and iteratively calls
1334each enabled lookup routine in the list for that @code{gdb.Objfile}
1335until it receives a pretty-printer object.
1336If no pretty-printer is found in the objfile lists, @value{GDBN} then
1337searches the pretty-printer list of the current program space,
1338calling each enabled function until an object is returned.
1339After these lists have been exhausted, it tries the global
1340@code{gdb.pretty_printers} list, again calling each enabled function until an
1341object is returned.
1342
1343The order in which the objfiles are searched is not specified. For a
1344given list, functions are always invoked from the head of the list,
1345and iterated over sequentially until the end of the list, or a printer
1346object is returned.
1347
1348For various reasons a pretty-printer may not work.
1349For example, the underlying data structure may have changed and
1350the pretty-printer is out of date.
1351
1352The consequences of a broken pretty-printer are severe enough that
1353@value{GDBN} provides support for enabling and disabling individual
1354printers. For example, if @code{print frame-arguments} is on,
1355a backtrace can become highly illegible if any argument is printed
1356with a broken printer.
1357
1358Pretty-printers are enabled and disabled by attaching an @code{enabled}
1359attribute to the registered function or callable object. If this attribute
1360is present and its value is @code{False}, the printer is disabled, otherwise
1361the printer is enabled.
1362
1363@node Writing a Pretty-Printer
1364@subsubsection Writing a Pretty-Printer
1365@cindex writing a pretty-printer
1366
1367A pretty-printer consists of two parts: a lookup function to detect
1368if the type is supported, and the printer itself.
1369
1370Here is an example showing how a @code{std::string} printer might be
1371written. @xref{Pretty Printing API}, for details on the API this class
1372must provide.
1373
1374@smallexample
1375class StdStringPrinter(object):
1376 "Print a std::string"
1377
1378 def __init__(self, val):
1379 self.val = val
1380
1381 def to_string(self):
1382 return self.val['_M_dataplus']['_M_p']
1383
1384 def display_hint(self):
1385 return 'string'
1386@end smallexample
1387
1388And here is an example showing how a lookup function for the printer
1389example above might be written.
1390
1391@smallexample
1392def str_lookup_function(val):
1393 lookup_tag = val.type.tag
1394 if lookup_tag == None:
1395 return None
1396 regex = re.compile("^std::basic_string<char,.*>$")
1397 if regex.match(lookup_tag):
1398 return StdStringPrinter(val)
1399 return None
1400@end smallexample
1401
1402The example lookup function extracts the value's type, and attempts to
1403match it to a type that it can pretty-print. If it is a type the
1404printer can pretty-print, it will return a printer object. If not, it
1405returns @code{None}.
1406
1407We recommend that you put your core pretty-printers into a Python
1408package. If your pretty-printers are for use with a library, we
1409further recommend embedding a version number into the package name.
1410This practice will enable @value{GDBN} to load multiple versions of
1411your pretty-printers at the same time, because they will have
1412different names.
1413
1414You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1415can be evaluated multiple times without changing its meaning. An
1416ideal auto-load file will consist solely of @code{import}s of your
1417printer modules, followed by a call to a register pretty-printers with
1418the current objfile.
1419
1420Taken as a whole, this approach will scale nicely to multiple
1421inferiors, each potentially using a different library version.
1422Embedding a version number in the Python package name will ensure that
1423@value{GDBN} is able to load both sets of printers simultaneously.
1424Then, because the search for pretty-printers is done by objfile, and
1425because your auto-loaded code took care to register your library's
1426printers with a specific objfile, @value{GDBN} will find the correct
1427printers for the specific version of the library used by each
1428inferior.
1429
1430To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1431this code might appear in @code{gdb.libstdcxx.v6}:
1432
1433@smallexample
1434def register_printers(objfile):
1435 objfile.pretty_printers.append(str_lookup_function)
1436@end smallexample
1437
1438@noindent
1439And then the corresponding contents of the auto-load file would be:
1440
1441@smallexample
1442import gdb.libstdcxx.v6
1443gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1444@end smallexample
1445
1446The previous example illustrates a basic pretty-printer.
1447There are a few things that can be improved on.
1448The printer doesn't have a name, making it hard to identify in a
1449list of installed printers. The lookup function has a name, but
1450lookup functions can have arbitrary, even identical, names.
1451
1452Second, the printer only handles one type, whereas a library typically has
1453several types. One could install a lookup function for each desired type
1454in the library, but one could also have a single lookup function recognize
1455several types. The latter is the conventional way this is handled.
1456If a pretty-printer can handle multiple data types, then its
1457@dfn{subprinters} are the printers for the individual data types.
1458
1459The @code{gdb.printing} module provides a formal way of solving these
1460problems (@pxref{gdb.printing}).
1461Here is another example that handles multiple types.
1462
1463These are the types we are going to pretty-print:
1464
1465@smallexample
1466struct foo @{ int a, b; @};
1467struct bar @{ struct foo x, y; @};
1468@end smallexample
1469
1470Here are the printers:
1471
1472@smallexample
1473class fooPrinter:
1474 """Print a foo object."""
1475
1476 def __init__(self, val):
1477 self.val = val
1478
1479 def to_string(self):
1480 return ("a=<" + str(self.val["a"]) +
1481 "> b=<" + str(self.val["b"]) + ">")
1482
1483class barPrinter:
1484 """Print a bar object."""
1485
1486 def __init__(self, val):
1487 self.val = val
1488
1489 def to_string(self):
1490 return ("x=<" + str(self.val["x"]) +
1491 "> y=<" + str(self.val["y"]) + ">")
1492@end smallexample
1493
1494This example doesn't need a lookup function, that is handled by the
1495@code{gdb.printing} module. Instead a function is provided to build up
1496the object that handles the lookup.
1497
1498@smallexample
1499import gdb.printing
1500
1501def build_pretty_printer():
1502 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1503 "my_library")
1504 pp.add_printer('foo', '^foo$', fooPrinter)
1505 pp.add_printer('bar', '^bar$', barPrinter)
1506 return pp
1507@end smallexample
1508
1509And here is the autoload support:
1510
1511@smallexample
1512import gdb.printing
1513import my_library
1514gdb.printing.register_pretty_printer(
1515 gdb.current_objfile(),
1516 my_library.build_pretty_printer())
1517@end smallexample
1518
1519Finally, when this printer is loaded into @value{GDBN}, here is the
1520corresponding output of @samp{info pretty-printer}:
1521
1522@smallexample
1523(gdb) info pretty-printer
1524my_library.so:
1525 my_library
1526 foo
1527 bar
1528@end smallexample
1529
1530@node Type Printing API
1531@subsubsection Type Printing API
1532@cindex type printing API for Python
1533
1534@value{GDBN} provides a way for Python code to customize type display.
1535This is mainly useful for substituting canonical typedef names for
1536types.
1537
1538@cindex type printer
1539A @dfn{type printer} is just a Python object conforming to a certain
1540protocol. A simple base class implementing the protocol is provided;
1541see @ref{gdb.types}. A type printer must supply at least:
1542
1543@defivar type_printer enabled
1544A boolean which is True if the printer is enabled, and False
1545otherwise. This is manipulated by the @code{enable type-printer}
1546and @code{disable type-printer} commands.
1547@end defivar
1548
1549@defivar type_printer name
1550The name of the type printer. This must be a string. This is used by
1551the @code{enable type-printer} and @code{disable type-printer}
1552commands.
1553@end defivar
1554
1555@defmethod type_printer instantiate (self)
1556This is called by @value{GDBN} at the start of type-printing. It is
1557only called if the type printer is enabled. This method must return a
1558new object that supplies a @code{recognize} method, as described below.
1559@end defmethod
1560
1561
1562When displaying a type, say via the @code{ptype} command, @value{GDBN}
1563will compute a list of type recognizers. This is done by iterating
1564first over the per-objfile type printers (@pxref{Objfiles In Python}),
1565followed by the per-progspace type printers (@pxref{Progspaces In
1566Python}), and finally the global type printers.
1567
1568@value{GDBN} will call the @code{instantiate} method of each enabled
1569type printer. If this method returns @code{None}, then the result is
1570ignored; otherwise, it is appended to the list of recognizers.
1571
1572Then, when @value{GDBN} is going to display a type name, it iterates
1573over the list of recognizers. For each one, it calls the recognition
1574function, stopping if the function returns a non-@code{None} value.
1575The recognition function is defined as:
1576
1577@defmethod type_recognizer recognize (self, type)
1578If @var{type} is not recognized, return @code{None}. Otherwise,
1579return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1580The @var{type} argument will be an instance of @code{gdb.Type}
1581(@pxref{Types In Python}).
329baa95
DE
1582@end defmethod
1583
1584@value{GDBN} uses this two-pass approach so that type printers can
1585efficiently cache information without holding on to it too long. For
1586example, it can be convenient to look up type information in a type
1587printer and hold it for a recognizer's lifetime; if a single pass were
1588done then type printers would have to make use of the event system in
1589order to avoid holding information that could become stale as the
1590inferior changed.
1591
1592@node Frame Filter API
1593@subsubsection Filtering Frames.
1594@cindex frame filters api
1595
1596Frame filters are Python objects that manipulate the visibility of a
1597frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1598@value{GDBN}.
1599
1600Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1601commands (@pxref{GDB/MI}), those that return a collection of frames
1602are affected. The commands that work with frame filters are:
1603
1604@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1605@code{-stack-list-frames}
1606(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1607@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1608-stack-list-variables command}), @code{-stack-list-arguments}
1609@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1610@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1611-stack-list-locals command}).
1612
1613A frame filter works by taking an iterator as an argument, applying
1614actions to the contents of that iterator, and returning another
1615iterator (or, possibly, the same iterator it was provided in the case
1616where the filter does not perform any operations). Typically, frame
1617filters utilize tools such as the Python's @code{itertools} module to
1618work with and create new iterators from the source iterator.
1619Regardless of how a filter chooses to apply actions, it must not alter
1620the underlying @value{GDBN} frame or frames, or attempt to alter the
1621call-stack within @value{GDBN}. This preserves data integrity within
1622@value{GDBN}. Frame filters are executed on a priority basis and care
1623should be taken that some frame filters may have been executed before,
1624and that some frame filters will be executed after.
1625
1626An important consideration when designing frame filters, and well
1627worth reflecting upon, is that frame filters should avoid unwinding
1628the call stack if possible. Some stacks can run very deep, into the
1629tens of thousands in some cases. To search every frame when a frame
1630filter executes may be too expensive at that step. The frame filter
1631cannot know how many frames it has to iterate over, and it may have to
1632iterate through them all. This ends up duplicating effort as
1633@value{GDBN} performs this iteration when it prints the frames. If
1634the filter can defer unwinding frames until frame decorators are
1635executed, after the last filter has executed, it should. @xref{Frame
1636Decorator API}, for more information on decorators. Also, there are
1637examples for both frame decorators and filters in later chapters.
1638@xref{Writing a Frame Filter}, for more information.
1639
1640The Python dictionary @code{gdb.frame_filters} contains key/object
1641pairings that comprise a frame filter. Frame filters in this
1642dictionary are called @code{global} frame filters, and they are
1643available when debugging all inferiors. These frame filters must
1644register with the dictionary directly. In addition to the
1645@code{global} dictionary, there are other dictionaries that are loaded
1646with different inferiors via auto-loading (@pxref{Python
1647Auto-loading}). The two other areas where frame filter dictionaries
1648can be found are: @code{gdb.Progspace} which contains a
1649@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1650object which also contains a @code{frame_filters} dictionary
1651attribute.
1652
1653When a command is executed from @value{GDBN} that is compatible with
1654frame filters, @value{GDBN} combines the @code{global},
1655@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1656loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1657several frames, and thus several object files, might be in use.
1658@value{GDBN} then prunes any frame filter whose @code{enabled}
1659attribute is @code{False}. This pruned list is then sorted according
1660to the @code{priority} attribute in each filter.
1661
1662Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1663creates an iterator which wraps each frame in the call stack in a
1664@code{FrameDecorator} object, and calls each filter in order. The
1665output from the previous filter will always be the input to the next
1666filter, and so on.
1667
1668Frame filters have a mandatory interface which each frame filter must
1669implement, defined here:
1670
1671@defun FrameFilter.filter (iterator)
1672@value{GDBN} will call this method on a frame filter when it has
1673reached the order in the priority list for that filter.
1674
1675For example, if there are four frame filters:
1676
1677@smallexample
1678Name Priority
1679
1680Filter1 5
1681Filter2 10
1682Filter3 100
1683Filter4 1
1684@end smallexample
1685
1686The order that the frame filters will be called is:
1687
1688@smallexample
1689Filter3 -> Filter2 -> Filter1 -> Filter4
1690@end smallexample
1691
1692Note that the output from @code{Filter3} is passed to the input of
1693@code{Filter2}, and so on.
1694
1695This @code{filter} method is passed a Python iterator. This iterator
1696contains a sequence of frame decorators that wrap each
1697@code{gdb.Frame}, or a frame decorator that wraps another frame
1698decorator. The first filter that is executed in the sequence of frame
1699filters will receive an iterator entirely comprised of default
1700@code{FrameDecorator} objects. However, after each frame filter is
1701executed, the previous frame filter may have wrapped some or all of
1702the frame decorators with their own frame decorator. As frame
1703decorators must also conform to a mandatory interface, these
1704decorators can be assumed to act in a uniform manner (@pxref{Frame
1705Decorator API}).
1706
1707This method must return an object conforming to the Python iterator
1708protocol. Each item in the iterator must be an object conforming to
1709the frame decorator interface. If a frame filter does not wish to
1710perform any operations on this iterator, it should return that
1711iterator untouched.
1712
1713This method is not optional. If it does not exist, @value{GDBN} will
1714raise and print an error.
1715@end defun
1716
1717@defvar FrameFilter.name
1718The @code{name} attribute must be Python string which contains the
1719name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1720Management}). This attribute may contain any combination of letters
1721or numbers. Care should be taken to ensure that it is unique. This
1722attribute is mandatory.
1723@end defvar
1724
1725@defvar FrameFilter.enabled
1726The @code{enabled} attribute must be Python boolean. This attribute
1727indicates to @value{GDBN} whether the frame filter is enabled, and
1728should be considered when frame filters are executed. If
1729@code{enabled} is @code{True}, then the frame filter will be executed
1730when any of the backtrace commands detailed earlier in this chapter
1731are executed. If @code{enabled} is @code{False}, then the frame
1732filter will not be executed. This attribute is mandatory.
1733@end defvar
1734
1735@defvar FrameFilter.priority
1736The @code{priority} attribute must be Python integer. This attribute
1737controls the order of execution in relation to other frame filters.
1738There are no imposed limits on the range of @code{priority} other than
1739it must be a valid integer. The higher the @code{priority} attribute,
1740the sooner the frame filter will be executed in relation to other
1741frame filters. Although @code{priority} can be negative, it is
1742recommended practice to assume zero is the lowest priority that a
1743frame filter can be assigned. Frame filters that have the same
1744priority are executed in unsorted order in that priority slot. This
1745attribute is mandatory.
1746@end defvar
1747
1748@node Frame Decorator API
1749@subsubsection Decorating Frames.
1750@cindex frame decorator api
1751
1752Frame decorators are sister objects to frame filters (@pxref{Frame
1753Filter API}). Frame decorators are applied by a frame filter and can
1754only be used in conjunction with frame filters.
1755
1756The purpose of a frame decorator is to customize the printed content
1757of each @code{gdb.Frame} in commands where frame filters are executed.
1758This concept is called decorating a frame. Frame decorators decorate
1759a @code{gdb.Frame} with Python code contained within each API call.
1760This separates the actual data contained in a @code{gdb.Frame} from
1761the decorated data produced by a frame decorator. This abstraction is
1762necessary to maintain integrity of the data contained in each
1763@code{gdb.Frame}.
1764
1765Frame decorators have a mandatory interface, defined below.
1766
1767@value{GDBN} already contains a frame decorator called
1768@code{FrameDecorator}. This contains substantial amounts of
1769boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1770recommended that other frame decorators inherit and extend this
1771object, and only to override the methods needed.
1772
1773@defun FrameDecorator.elided (self)
1774
1775The @code{elided} method groups frames together in a hierarchical
1776system. An example would be an interpreter, where multiple low-level
1777frames make up a single call in the interpreted language. In this
1778example, the frame filter would elide the low-level frames and present
1779a single high-level frame, representing the call in the interpreted
1780language, to the user.
1781
1782The @code{elided} function must return an iterable and this iterable
1783must contain the frames that are being elided wrapped in a suitable
1784frame decorator. If no frames are being elided this function may
1785return an empty iterable, or @code{None}. Elided frames are indented
1786from normal frames in a @code{CLI} backtrace, or in the case of
1787@code{GDB/MI}, are placed in the @code{children} field of the eliding
1788frame.
1789
1790It is the frame filter's task to also filter out the elided frames from
1791the source iterator. This will avoid printing the frame twice.
1792@end defun
1793
1794@defun FrameDecorator.function (self)
1795
1796This method returns the name of the function in the frame that is to
1797be printed.
1798
1799This method must return a Python string describing the function, or
1800@code{None}.
1801
1802If this function returns @code{None}, @value{GDBN} will not print any
1803data for this field.
1804@end defun
1805
1806@defun FrameDecorator.address (self)
1807
1808This method returns the address of the frame that is to be printed.
1809
1810This method must return a Python numeric integer type of sufficient
1811size to describe the address of the frame, or @code{None}.
1812
1813If this function returns a @code{None}, @value{GDBN} will not print
1814any data for this field.
1815@end defun
1816
1817@defun FrameDecorator.filename (self)
1818
1819This method returns the filename and path associated with this frame.
1820
1821This method must return a Python string containing the filename and
1822the path to the object file backing the frame, or @code{None}.
1823
1824If this function returns a @code{None}, @value{GDBN} will not print
1825any data for this field.
1826@end defun
1827
1828@defun FrameDecorator.line (self):
1829
1830This method returns the line number associated with the current
1831position within the function addressed by this frame.
1832
1833This method must return a Python integer type, or @code{None}.
1834
1835If this function returns a @code{None}, @value{GDBN} will not print
1836any data for this field.
1837@end defun
1838
1839@defun FrameDecorator.frame_args (self)
1840@anchor{frame_args}
1841
1842This method must return an iterable, or @code{None}. Returning an
1843empty iterable, or @code{None} means frame arguments will not be
1844printed for this frame. This iterable must contain objects that
1845implement two methods, described here.
1846
1847This object must implement a @code{argument} method which takes a
1848single @code{self} parameter and must return a @code{gdb.Symbol}
1849(@pxref{Symbols In Python}), or a Python string. The object must also
1850implement a @code{value} method which takes a single @code{self}
1851parameter and must return a @code{gdb.Value} (@pxref{Values From
1852Inferior}), a Python value, or @code{None}. If the @code{value}
1853method returns @code{None}, and the @code{argument} method returns a
1854@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1855the @code{gdb.Symbol} automatically.
1856
1857A brief example:
1858
1859@smallexample
1860class SymValueWrapper():
1861
1862 def __init__(self, symbol, value):
1863 self.sym = symbol
1864 self.val = value
1865
1866 def value(self):
1867 return self.val
1868
1869 def symbol(self):
1870 return self.sym
1871
1872class SomeFrameDecorator()
1873...
1874...
1875 def frame_args(self):
1876 args = []
1877 try:
1878 block = self.inferior_frame.block()
1879 except:
1880 return None
1881
1882 # Iterate over all symbols in a block. Only add
1883 # symbols that are arguments.
1884 for sym in block:
1885 if not sym.is_argument:
1886 continue
1887 args.append(SymValueWrapper(sym,None))
1888
1889 # Add example synthetic argument.
1890 args.append(SymValueWrapper(``foo'', 42))
1891
1892 return args
1893@end smallexample
1894@end defun
1895
1896@defun FrameDecorator.frame_locals (self)
1897
1898This method must return an iterable or @code{None}. Returning an
1899empty iterable, or @code{None} means frame local arguments will not be
1900printed for this frame.
1901
1902The object interface, the description of the various strategies for
1903reading frame locals, and the example are largely similar to those
1904described in the @code{frame_args} function, (@pxref{frame_args,,The
1905frame filter frame_args function}). Below is a modified example:
1906
1907@smallexample
1908class SomeFrameDecorator()
1909...
1910...
1911 def frame_locals(self):
1912 vars = []
1913 try:
1914 block = self.inferior_frame.block()
1915 except:
1916 return None
1917
1918 # Iterate over all symbols in a block. Add all
1919 # symbols, except arguments.
1920 for sym in block:
1921 if sym.is_argument:
1922 continue
1923 vars.append(SymValueWrapper(sym,None))
1924
1925 # Add an example of a synthetic local variable.
1926 vars.append(SymValueWrapper(``bar'', 99))
1927
1928 return vars
1929@end smallexample
1930@end defun
1931
1932@defun FrameDecorator.inferior_frame (self):
1933
1934This method must return the underlying @code{gdb.Frame} that this
1935frame decorator is decorating. @value{GDBN} requires the underlying
1936frame for internal frame information to determine how to print certain
1937values when printing a frame.
1938@end defun
1939
1940@node Writing a Frame Filter
1941@subsubsection Writing a Frame Filter
1942@cindex writing a frame filter
1943
1944There are three basic elements that a frame filter must implement: it
1945must correctly implement the documented interface (@pxref{Frame Filter
1946API}), it must register itself with @value{GDBN}, and finally, it must
1947decide if it is to work on the data provided by @value{GDBN}. In all
1948cases, whether it works on the iterator or not, each frame filter must
1949return an iterator. A bare-bones frame filter follows the pattern in
1950the following example.
1951
1952@smallexample
1953import gdb
1954
1955class FrameFilter():
1956
1957 def __init__(self):
1958 # Frame filter attribute creation.
1959 #
1960 # 'name' is the name of the filter that GDB will display.
1961 #
1962 # 'priority' is the priority of the filter relative to other
1963 # filters.
1964 #
1965 # 'enabled' is a boolean that indicates whether this filter is
1966 # enabled and should be executed.
1967
1968 self.name = "Foo"
1969 self.priority = 100
1970 self.enabled = True
1971
1972 # Register this frame filter with the global frame_filters
1973 # dictionary.
1974 gdb.frame_filters[self.name] = self
1975
1976 def filter(self, frame_iter):
1977 # Just return the iterator.
1978 return frame_iter
1979@end smallexample
1980
1981The frame filter in the example above implements the three
1982requirements for all frame filters. It implements the API, self
1983registers, and makes a decision on the iterator (in this case, it just
1984returns the iterator untouched).
1985
1986The first step is attribute creation and assignment, and as shown in
1987the comments the filter assigns the following attributes: @code{name},
1988@code{priority} and whether the filter should be enabled with the
1989@code{enabled} attribute.
1990
1991The second step is registering the frame filter with the dictionary or
1992dictionaries that the frame filter has interest in. As shown in the
1993comments, this filter just registers itself with the global dictionary
1994@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
1995is a dictionary that is initialized in the @code{gdb} module when
1996@value{GDBN} starts. What dictionary a filter registers with is an
1997important consideration. Generally, if a filter is specific to a set
1998of code, it should be registered either in the @code{objfile} or
1999@code{progspace} dictionaries as they are specific to the program
2000currently loaded in @value{GDBN}. The global dictionary is always
2001present in @value{GDBN} and is never unloaded. Any filters registered
2002with the global dictionary will exist until @value{GDBN} exits. To
2003avoid filters that may conflict, it is generally better to register
2004frame filters against the dictionaries that more closely align with
2005the usage of the filter currently in question. @xref{Python
2006Auto-loading}, for further information on auto-loading Python scripts.
2007
2008@value{GDBN} takes a hands-off approach to frame filter registration,
2009therefore it is the frame filter's responsibility to ensure
2010registration has occurred, and that any exceptions are handled
2011appropriately. In particular, you may wish to handle exceptions
2012relating to Python dictionary key uniqueness. It is mandatory that
2013the dictionary key is the same as frame filter's @code{name}
2014attribute. When a user manages frame filters (@pxref{Frame Filter
2015Management}), the names @value{GDBN} will display are those contained
2016in the @code{name} attribute.
2017
2018The final step of this example is the implementation of the
2019@code{filter} method. As shown in the example comments, we define the
2020@code{filter} method and note that the method must take an iterator,
2021and also must return an iterator. In this bare-bones example, the
2022frame filter is not very useful as it just returns the iterator
2023untouched. However this is a valid operation for frame filters that
2024have the @code{enabled} attribute set, but decide not to operate on
2025any frames.
2026
2027In the next example, the frame filter operates on all frames and
2028utilizes a frame decorator to perform some work on the frames.
2029@xref{Frame Decorator API}, for further information on the frame
2030decorator interface.
2031
2032This example works on inlined frames. It highlights frames which are
2033inlined by tagging them with an ``[inlined]'' tag. By applying a
2034frame decorator to all frames with the Python @code{itertools imap}
2035method, the example defers actions to the frame decorator. Frame
2036decorators are only processed when @value{GDBN} prints the backtrace.
2037
2038This introduces a new decision making topic: whether to perform
2039decision making operations at the filtering step, or at the printing
2040step. In this example's approach, it does not perform any filtering
2041decisions at the filtering step beyond mapping a frame decorator to
2042each frame. This allows the actual decision making to be performed
2043when each frame is printed. This is an important consideration, and
2044well worth reflecting upon when designing a frame filter. An issue
2045that frame filters should avoid is unwinding the stack if possible.
2046Some stacks can run very deep, into the tens of thousands in some
2047cases. To search every frame to determine if it is inlined ahead of
2048time may be too expensive at the filtering step. The frame filter
2049cannot know how many frames it has to iterate over, and it would have
2050to iterate through them all. This ends up duplicating effort as
2051@value{GDBN} performs this iteration when it prints the frames.
2052
2053In this example decision making can be deferred to the printing step.
2054As each frame is printed, the frame decorator can examine each frame
2055in turn when @value{GDBN} iterates. From a performance viewpoint,
2056this is the most appropriate decision to make as it avoids duplicating
2057the effort that the printing step would undertake anyway. Also, if
2058there are many frame filters unwinding the stack during filtering, it
2059can substantially delay the printing of the backtrace which will
2060result in large memory usage, and a poor user experience.
2061
2062@smallexample
2063class InlineFilter():
2064
2065 def __init__(self):
2066 self.name = "InlinedFrameFilter"
2067 self.priority = 100
2068 self.enabled = True
2069 gdb.frame_filters[self.name] = self
2070
2071 def filter(self, frame_iter):
2072 frame_iter = itertools.imap(InlinedFrameDecorator,
2073 frame_iter)
2074 return frame_iter
2075@end smallexample
2076
2077This frame filter is somewhat similar to the earlier example, except
2078that the @code{filter} method applies a frame decorator object called
2079@code{InlinedFrameDecorator} to each element in the iterator. The
2080@code{imap} Python method is light-weight. It does not proactively
2081iterate over the iterator, but rather creates a new iterator which
2082wraps the existing one.
2083
2084Below is the frame decorator for this example.
2085
2086@smallexample
2087class InlinedFrameDecorator(FrameDecorator):
2088
2089 def __init__(self, fobj):
2090 super(InlinedFrameDecorator, self).__init__(fobj)
2091
2092 def function(self):
2093 frame = fobj.inferior_frame()
2094 name = str(frame.name())
2095
2096 if frame.type() == gdb.INLINE_FRAME:
2097 name = name + " [inlined]"
2098
2099 return name
2100@end smallexample
2101
2102This frame decorator only defines and overrides the @code{function}
2103method. It lets the supplied @code{FrameDecorator}, which is shipped
2104with @value{GDBN}, perform the other work associated with printing
2105this frame.
2106
2107The combination of these two objects create this output from a
2108backtrace:
2109
2110@smallexample
2111#0 0x004004e0 in bar () at inline.c:11
2112#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2113#2 0x00400566 in main () at inline.c:31
2114@end smallexample
2115
2116So in the case of this example, a frame decorator is applied to all
2117frames, regardless of whether they may be inlined or not. As
2118@value{GDBN} iterates over the iterator produced by the frame filters,
2119@value{GDBN} executes each frame decorator which then makes a decision
2120on what to print in the @code{function} callback. Using a strategy
2121like this is a way to defer decisions on the frame content to printing
2122time.
2123
2124@subheading Eliding Frames
2125
2126It might be that the above example is not desirable for representing
2127inlined frames, and a hierarchical approach may be preferred. If we
2128want to hierarchically represent frames, the @code{elided} frame
2129decorator interface might be preferable.
2130
2131This example approaches the issue with the @code{elided} method. This
2132example is quite long, but very simplistic. It is out-of-scope for
2133this section to write a complete example that comprehensively covers
2134all approaches of finding and printing inlined frames. However, this
2135example illustrates the approach an author might use.
2136
2137This example comprises of three sections.
2138
2139@smallexample
2140class InlineFrameFilter():
2141
2142 def __init__(self):
2143 self.name = "InlinedFrameFilter"
2144 self.priority = 100
2145 self.enabled = True
2146 gdb.frame_filters[self.name] = self
2147
2148 def filter(self, frame_iter):
2149 return ElidingInlineIterator(frame_iter)
2150@end smallexample
2151
2152This frame filter is very similar to the other examples. The only
2153difference is this frame filter is wrapping the iterator provided to
2154it (@code{frame_iter}) with a custom iterator called
2155@code{ElidingInlineIterator}. This again defers actions to when
2156@value{GDBN} prints the backtrace, as the iterator is not traversed
2157until printing.
2158
2159The iterator for this example is as follows. It is in this section of
2160the example where decisions are made on the content of the backtrace.
2161
2162@smallexample
2163class ElidingInlineIterator:
2164 def __init__(self, ii):
2165 self.input_iterator = ii
2166
2167 def __iter__(self):
2168 return self
2169
2170 def next(self):
2171 frame = next(self.input_iterator)
2172
2173 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2174 return frame
2175
2176 try:
2177 eliding_frame = next(self.input_iterator)
2178 except StopIteration:
2179 return frame
2180 return ElidingFrameDecorator(eliding_frame, [frame])
2181@end smallexample
2182
2183This iterator implements the Python iterator protocol. When the
2184@code{next} function is called (when @value{GDBN} prints each frame),
2185the iterator checks if this frame decorator, @code{frame}, is wrapping
2186an inlined frame. If it is not, it returns the existing frame decorator
2187untouched. If it is wrapping an inlined frame, it assumes that the
2188inlined frame was contained within the next oldest frame,
2189@code{eliding_frame}, which it fetches. It then creates and returns a
2190frame decorator, @code{ElidingFrameDecorator}, which contains both the
2191elided frame, and the eliding frame.
2192
2193@smallexample
2194class ElidingInlineDecorator(FrameDecorator):
2195
2196 def __init__(self, frame, elided_frames):
2197 super(ElidingInlineDecorator, self).__init__(frame)
2198 self.frame = frame
2199 self.elided_frames = elided_frames
2200
2201 def elided(self):
2202 return iter(self.elided_frames)
2203@end smallexample
2204
2205This frame decorator overrides one function and returns the inlined
2206frame in the @code{elided} method. As before it lets
2207@code{FrameDecorator} do the rest of the work involved in printing
2208this frame. This produces the following output.
2209
2210@smallexample
2211#0 0x004004e0 in bar () at inline.c:11
2212#2 0x00400529 in main () at inline.c:25
2213 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2214@end smallexample
2215
2216In that output, @code{max} which has been inlined into @code{main} is
2217printed hierarchically. Another approach would be to combine the
2218@code{function} method, and the @code{elided} method to both print a
2219marker in the inlined frame, and also show the hierarchical
2220relationship.
2221
d11916aa
SS
2222@node Unwinding Frames in Python
2223@subsubsection Unwinding Frames in Python
2224@cindex unwinding frames in Python
2225
2226In @value{GDBN} terminology ``unwinding'' is the process of finding
2227the previous frame (that is, caller's) from the current one. An
2228unwinder has three methods. The first one checks if it can handle
2229given frame (``sniff'' it). For the frames it can sniff an unwinder
2230provides two additional methods: it can return frame's ID, and it can
2231fetch registers from the previous frame. A running @value{GDBN}
2232mantains a list of the unwinders and calls each unwinder's sniffer in
2233turn until it finds the one that recognizes the current frame. There
2234is an API to register an unwinder.
2235
2236The unwinders that come with @value{GDBN} handle standard frames.
2237However, mixed language applications (for example, an application
2238running Java Virtual Machine) sometimes use frame layouts that cannot
2239be handled by the @value{GDBN} unwinders. You can write Python code
2240that can handle such custom frames.
2241
2242You implement a frame unwinder in Python as a class with which has two
2243attributes, @code{name} and @code{enabled}, with obvious meanings, and
2244a single method @code{__call__}, which examines a given frame and
2245returns an object (an instance of @code{gdb.UnwindInfo class)}
2246describing it. If an unwinder does not recognize a frame, it should
2247return @code{None}. The code in @value{GDBN} that enables writing
2248unwinders in Python uses this object to return frame's ID and previous
2249frame registers when @value{GDBN} core asks for them.
2250
2251@subheading Unwinder Input
2252
2253An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2254provides a method to read frame's registers:
2255
2256@defun PendingFrame.read_register (reg)
2257This method returns the contents of the register @var{regn} in the
2258frame as a @code{gdb.Value} object. @var{reg} can be either a
2259register number or a register name; the values are platform-specific.
2260They are usually found in the corresponding
2261@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree.
2262@end defun
2263
2264It also provides a factory method to create a @code{gdb.UnwindInfo}
2265instance to be returned to @value{GDBN}:
2266
2267@defun PendingFrame.create_unwind_info (frame_id)
2268Returns a new @code{gdb.UnwindInfo} instance identified by given
2269@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2270using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2271determine which function will be used, as follows:
2272
2273@table @code
2274@item sp, pc, special
2275@code{frame_id_build_special (@var{frame_id}.sp, @var{frame_id}.pc, @var{frame_id}.special)}
2276
2277@item sp, pc
2278@code{frame_id_build (@var{frame_id}.sp, @var{frame_id}.pc)}
2279
2280This is the most common case.
2281
2282@item sp
2283@code{frame_id_build_wild (@var{frame_id}.sp)}
2284@end table
2285The attribute values should be @code{gdb.Value}
2286
2287@end defun
2288
2289@subheading Unwinder Output: UnwindInfo
2290
2291Use @code{PendingFrame.create_unwind_info} method described above to
2292create a @code{gdb.UnwindInfo} instance. Use the following method to
2293specify caller registers that have been saved in this frame:
2294
2295@defun gdb.UnwindInfo.add_saved_register (reg, value)
2296@var{reg} identifies the register. It can be a number or a name, just
2297as for the @code{PendingFrame.read_register} method above.
2298@var{value} is a register value (a @code{gdb.Value} object).
2299@end defun
2300
2301@subheading Unwinder Skeleton Code
2302
2303@value{GDBN} comes with the module containing the base @code{Unwinder}
2304class. Derive your unwinder class from it and structure the code as
2305follows:
2306
2307@smallexample
2308from gdb.unwinders import Unwinder
2309
2310class FrameId(object):
2311 def __init__(self, sp, pc):
2312 self.sp = sp
2313 self.pc = pc
2314
2315
2316class MyUnwinder(Unwinder):
2317 def __init__(....):
2318 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2319
2320 def __call__(pending_frame):
2321 if not <we recognize frame>:
2322 return None
2323 # Create UnwindInfo. Usually the frame is identified by the stack
2324 # pointer and the program counter.
2325 sp = pending_frame.read_register(<SP number>)
2326 pc = pending_frame.read_register(<PC number>)
2327 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2328
2329 # Find the values of the registers in the caller's frame and
2330 # save them in the result:
2331 unwind_info.add_saved_register(<register>, <value>)
2332 ....
2333
2334 # Return the result:
2335 return unwind_info
2336
2337@end smallexample
2338
2339@subheading Registering a Unwinder
2340
2341An object file, a program space, and the @value{GDBN} proper can have
2342unwinders registered with it.
2343
2344The @code{gdb.unwinders} module provides the function to register a
2345unwinder:
2346
2347@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2348@var{locus} is specifies an object file or a program space to which
2349@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2350@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2351added @var{unwinder} will be called before any other unwinder from the
2352same locus. Two unwinders in the same locus cannot have the same
2353name. An attempt to add a unwinder with already existing name raises
2354an exception unless @var{replace} is @code{True}, in which case the
2355old unwinder is deleted.
2356@end defun
2357
2358@subheading Unwinder Precedence
2359
2360@value{GDBN} first calls the unwinders from all the object files in no
2361particular order, then the unwinders from the current program space,
2362and finally the unwinders from @value{GDBN}.
2363
0c6e92a5
SC
2364@node Xmethods In Python
2365@subsubsection Xmethods In Python
2366@cindex xmethods in Python
2367
2368@dfn{Xmethods} are additional methods or replacements for existing
2369methods of a C@t{++} class. This feature is useful for those cases
2370where a method defined in C@t{++} source code could be inlined or
2371optimized out by the compiler, making it unavailable to @value{GDBN}.
2372For such cases, one can define an xmethod to serve as a replacement
2373for the method defined in the C@t{++} source code. @value{GDBN} will
2374then invoke the xmethod, instead of the C@t{++} method, to
2375evaluate expressions. One can also use xmethods when debugging
2376with core files. Moreover, when debugging live programs, invoking an
2377xmethod need not involve running the inferior (which can potentially
2378perturb its state). Hence, even if the C@t{++} method is available, it
2379is better to use its replacement xmethod if one is defined.
2380
2381The xmethods feature in Python is available via the concepts of an
2382@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2383implement an xmethod, one has to implement a matcher and a
2384corresponding worker for it (more than one worker can be
2385implemented, each catering to a different overloaded instance of the
2386method). Internally, @value{GDBN} invokes the @code{match} method of a
2387matcher to match the class type and method name. On a match, the
2388@code{match} method returns a list of matching @emph{worker} objects.
2389Each worker object typically corresponds to an overloaded instance of
2390the xmethod. They implement a @code{get_arg_types} method which
2391returns a sequence of types corresponding to the arguments the xmethod
2392requires. @value{GDBN} uses this sequence of types to perform
2393overload resolution and picks a winning xmethod worker. A winner
2394is also selected from among the methods @value{GDBN} finds in the
2395C@t{++} source code. Next, the winning xmethod worker and the
2396winning C@t{++} method are compared to select an overall winner. In
2397case of a tie between a xmethod worker and a C@t{++} method, the
2398xmethod worker is selected as the winner. That is, if a winning
2399xmethod worker is found to be equivalent to the winning C@t{++}
2400method, then the xmethod worker is treated as a replacement for
2401the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2402method. If the winning xmethod worker is the overall winner, then
897c3d32 2403the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2404of the worker object.
2405
2406If one wants to implement an xmethod as a replacement for an
2407existing C@t{++} method, then they have to implement an equivalent
2408xmethod which has exactly the same name and takes arguments of
2409exactly the same type as the C@t{++} method. If the user wants to
2410invoke the C@t{++} method even though a replacement xmethod is
2411available for that method, then they can disable the xmethod.
2412
2413@xref{Xmethod API}, for API to implement xmethods in Python.
2414@xref{Writing an Xmethod}, for implementing xmethods in Python.
2415
2416@node Xmethod API
2417@subsubsection Xmethod API
2418@cindex xmethod API
2419
2420The @value{GDBN} Python API provides classes, interfaces and functions
2421to implement, register and manipulate xmethods.
2422@xref{Xmethods In Python}.
2423
2424An xmethod matcher should be an instance of a class derived from
2425@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2426object with similar interface and attributes. An instance of
2427@code{XMethodMatcher} has the following attributes:
2428
2429@defvar name
2430The name of the matcher.
2431@end defvar
2432
2433@defvar enabled
2434A boolean value indicating whether the matcher is enabled or disabled.
2435@end defvar
2436
2437@defvar methods
2438A list of named methods managed by the matcher. Each object in the list
2439is an instance of the class @code{XMethod} defined in the module
2440@code{gdb.xmethod}, or any object with the following attributes:
2441
2442@table @code
2443
2444@item name
2445Name of the xmethod which should be unique for each xmethod
2446managed by the matcher.
2447
2448@item enabled
2449A boolean value indicating whether the xmethod is enabled or
2450disabled.
2451
2452@end table
2453
2454The class @code{XMethod} is a convenience class with same
2455attributes as above along with the following constructor:
2456
dd5d5494 2457@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2458Constructs an enabled xmethod with name @var{name}.
2459@end defun
2460@end defvar
2461
2462@noindent
2463The @code{XMethodMatcher} class has the following methods:
2464
dd5d5494 2465@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2466Constructs an enabled xmethod matcher with name @var{name}. The
2467@code{methods} attribute is initialized to @code{None}.
2468@end defun
2469
dd5d5494 2470@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2471Derived classes should override this method. It should return a
2472xmethod worker object (or a sequence of xmethod worker
2473objects) matching the @var{class_type} and @var{method_name}.
2474@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2475is a string value. If the matcher manages named methods as listed in
2476its @code{methods} attribute, then only those worker objects whose
2477corresponding entries in the @code{methods} list are enabled should be
2478returned.
2479@end defun
2480
2481An xmethod worker should be an instance of a class derived from
2482@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2483or support the following interface:
2484
dd5d5494 2485@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2486This method returns a sequence of @code{gdb.Type} objects corresponding
2487to the arguments that the xmethod takes. It can return an empty
2488sequence or @code{None} if the xmethod does not take any arguments.
2489If the xmethod takes a single argument, then a single
2490@code{gdb.Type} object corresponding to it can be returned.
2491@end defun
2492
2ce1cdbf
DE
2493@defun XMethodWorker.get_result_type (self, *args)
2494This method returns a @code{gdb.Type} object representing the type
2495of the result of invoking this xmethod.
2496The @var{args} argument is the same tuple of arguments that would be
2497passed to the @code{__call__} method of this worker.
2498@end defun
2499
dd5d5494 2500@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2501This is the method which does the @emph{work} of the xmethod. The
2502@var{args} arguments is the tuple of arguments to the xmethod. Each
2503element in this tuple is a gdb.Value object. The first element is
2504always the @code{this} pointer value.
2505@end defun
2506
2507For @value{GDBN} to lookup xmethods, the xmethod matchers
2508should be registered using the following function defined in the module
2509@code{gdb.xmethod}:
2510
dd5d5494 2511@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2512The @code{matcher} is registered with @code{locus}, replacing an
2513existing matcher with the same name as @code{matcher} if
2514@code{replace} is @code{True}. @code{locus} can be a
2515@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2516@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2517@code{None}. If it is @code{None}, then @code{matcher} is registered
2518globally.
2519@end defun
2520
2521@node Writing an Xmethod
2522@subsubsection Writing an Xmethod
2523@cindex writing xmethods in Python
2524
2525Implementing xmethods in Python will require implementing xmethod
2526matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2527the following C@t{++} class:
2528
2529@smallexample
2530class MyClass
2531@{
2532public:
2533 MyClass (int a) : a_(a) @{ @}
2534
2535 int geta (void) @{ return a_; @}
2536 int operator+ (int b);
2537
2538private:
2539 int a_;
2540@};
2541
2542int
2543MyClass::operator+ (int b)
2544@{
2545 return a_ + b;
2546@}
2547@end smallexample
2548
2549@noindent
2550Let us define two xmethods for the class @code{MyClass}, one
2551replacing the method @code{geta}, and another adding an overloaded
2552flavor of @code{operator+} which takes a @code{MyClass} argument (the
2553C@t{++} code above already has an overloaded @code{operator+}
2554which takes an @code{int} argument). The xmethod matcher can be
2555defined as follows:
2556
2557@smallexample
2558class MyClass_geta(gdb.xmethod.XMethod):
2559 def __init__(self):
2560 gdb.xmethod.XMethod.__init__(self, 'geta')
2561
2562 def get_worker(self, method_name):
2563 if method_name == 'geta':
2564 return MyClassWorker_geta()
2565
2566
2567class MyClass_sum(gdb.xmethod.XMethod):
2568 def __init__(self):
2569 gdb.xmethod.XMethod.__init__(self, 'sum')
2570
2571 def get_worker(self, method_name):
2572 if method_name == 'operator+':
2573 return MyClassWorker_plus()
2574
2575
2576class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2577 def __init__(self):
2578 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2579 # List of methods 'managed' by this matcher
2580 self.methods = [MyClass_geta(), MyClass_sum()]
2581
2582 def match(self, class_type, method_name):
2583 if class_type.tag != 'MyClass':
2584 return None
2585 workers = []
2586 for method in self.methods:
2587 if method.enabled:
2588 worker = method.get_worker(method_name)
2589 if worker:
2590 workers.append(worker)
2591
2592 return workers
2593@end smallexample
2594
2595@noindent
2596Notice that the @code{match} method of @code{MyClassMatcher} returns
2597a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2598method, and a worker object of type @code{MyClassWorker_plus} for the
2599@code{operator+} method. This is done indirectly via helper classes
2600derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2601@code{methods} attribute in a matcher as it is optional. However, if a
2602matcher manages more than one xmethod, it is a good practice to list the
2603xmethods in the @code{methods} attribute of the matcher. This will then
2604facilitate enabling and disabling individual xmethods via the
2605@code{enable/disable} commands. Notice also that a worker object is
2606returned only if the corresponding entry in the @code{methods} attribute
2607of the matcher is enabled.
2608
2609The implementation of the worker classes returned by the matcher setup
2610above is as follows:
2611
2612@smallexample
2613class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2614 def get_arg_types(self):
2615 return None
2ce1cdbf
DE
2616
2617 def get_result_type(self, obj):
2618 return gdb.lookup_type('int')
0c6e92a5
SC
2619
2620 def __call__(self, obj):
2621 return obj['a_']
2622
2623
2624class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2625 def get_arg_types(self):
2626 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2627
2628 def get_result_type(self, obj):
2629 return gdb.lookup_type('int')
0c6e92a5
SC
2630
2631 def __call__(self, obj, other):
2632 return obj['a_'] + other['a_']
2633@end smallexample
2634
2635For @value{GDBN} to actually lookup a xmethod, it has to be
2636registered with it. The matcher defined above is registered with
2637@value{GDBN} globally as follows:
2638
2639@smallexample
2640gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2641@end smallexample
2642
2643If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2644code as follows:
2645
2646@smallexample
2647MyClass obj(5);
2648@end smallexample
2649
2650@noindent
2651then, after loading the Python script defining the xmethod matchers
2652and workers into @code{GDBN}, invoking the method @code{geta} or using
2653the operator @code{+} on @code{obj} will invoke the xmethods
2654defined above:
2655
2656@smallexample
2657(gdb) p obj.geta()
2658$1 = 5
2659
2660(gdb) p obj + obj
2661$2 = 10
2662@end smallexample
2663
2664Consider another example with a C++ template class:
2665
2666@smallexample
2667template <class T>
2668class MyTemplate
2669@{
2670public:
2671 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2672 ~MyTemplate () @{ delete [] data_; @}
2673
2674 int footprint (void)
2675 @{
2676 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2677 @}
2678
2679private:
2680 int dsize_;
2681 T *data_;
2682@};
2683@end smallexample
2684
2685Let us implement an xmethod for the above class which serves as a
2686replacement for the @code{footprint} method. The full code listing
2687of the xmethod workers and xmethod matchers is as follows:
2688
2689@smallexample
2690class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2691 def __init__(self, class_type):
2692 self.class_type = class_type
2ce1cdbf 2693
0c6e92a5
SC
2694 def get_arg_types(self):
2695 return None
2ce1cdbf
DE
2696
2697 def get_result_type(self):
2698 return gdb.lookup_type('int')
2699
0c6e92a5
SC
2700 def __call__(self, obj):
2701 return (self.class_type.sizeof +
2702 obj['dsize_'] *
2703 self.class_type.template_argument(0).sizeof)
2704
2705
2706class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2707 def __init__(self):
2708 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2709
2710 def match(self, class_type, method_name):
2711 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2712 class_type.tag) and
2713 method_name == 'footprint'):
2714 return MyTemplateWorker_footprint(class_type)
2715@end smallexample
2716
2717Notice that, in this example, we have not used the @code{methods}
2718attribute of the matcher as the matcher manages only one xmethod. The
2719user can enable/disable this xmethod by enabling/disabling the matcher
2720itself.
2721
329baa95
DE
2722@node Inferiors In Python
2723@subsubsection Inferiors In Python
2724@cindex inferiors in Python
2725
2726@findex gdb.Inferior
2727Programs which are being run under @value{GDBN} are called inferiors
2728(@pxref{Inferiors and Programs}). Python scripts can access
2729information about and manipulate inferiors controlled by @value{GDBN}
2730via objects of the @code{gdb.Inferior} class.
2731
2732The following inferior-related functions are available in the @code{gdb}
2733module:
2734
2735@defun gdb.inferiors ()
2736Return a tuple containing all inferior objects.
2737@end defun
2738
2739@defun gdb.selected_inferior ()
2740Return an object representing the current inferior.
2741@end defun
2742
2743A @code{gdb.Inferior} object has the following attributes:
2744
2745@defvar Inferior.num
2746ID of inferior, as assigned by GDB.
2747@end defvar
2748
2749@defvar Inferior.pid
2750Process ID of the inferior, as assigned by the underlying operating
2751system.
2752@end defvar
2753
2754@defvar Inferior.was_attached
2755Boolean signaling whether the inferior was created using `attach', or
2756started by @value{GDBN} itself.
2757@end defvar
2758
2759A @code{gdb.Inferior} object has the following methods:
2760
2761@defun Inferior.is_valid ()
2762Returns @code{True} if the @code{gdb.Inferior} object is valid,
2763@code{False} if not. A @code{gdb.Inferior} object will become invalid
2764if the inferior no longer exists within @value{GDBN}. All other
2765@code{gdb.Inferior} methods will throw an exception if it is invalid
2766at the time the method is called.
2767@end defun
2768
2769@defun Inferior.threads ()
2770This method returns a tuple holding all the threads which are valid
2771when it is called. If there are no valid threads, the method will
2772return an empty tuple.
2773@end defun
2774
2775@findex Inferior.read_memory
2776@defun Inferior.read_memory (address, length)
a86c90e6 2777Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2778@var{address}. Returns a buffer object, which behaves much like an array
2779or a string. It can be modified and given to the
79778b30 2780@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2781value is a @code{memoryview} object.
2782@end defun
2783
2784@findex Inferior.write_memory
2785@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2786Write the contents of @var{buffer} to the inferior, starting at
2787@var{address}. The @var{buffer} parameter must be a Python object
2788which supports the buffer protocol, i.e., a string, an array or the
2789object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2790determines the number of addressable memory units from @var{buffer} to be
2791written.
329baa95
DE
2792@end defun
2793
2794@findex gdb.search_memory
2795@defun Inferior.search_memory (address, length, pattern)
2796Search a region of the inferior memory starting at @var{address} with
2797the given @var{length} using the search pattern supplied in
2798@var{pattern}. The @var{pattern} parameter must be a Python object
2799which supports the buffer protocol, i.e., a string, an array or the
2800object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2801containing the address where the pattern was found, or @code{None} if
2802the pattern could not be found.
2803@end defun
2804
da2c323b
KB
2805@findex Inferior.thread_from_thread_handle
2806@defun Inferior.thread_from_thread_handle (thread_handle)
2807Return the thread object corresponding to @var{thread_handle}, a thread
2808library specific data structure such as @code{pthread_t} for pthreads
2809library implementations.
2810@end defun
2811
329baa95
DE
2812@node Events In Python
2813@subsubsection Events In Python
2814@cindex inferior events in Python
2815
2816@value{GDBN} provides a general event facility so that Python code can be
2817notified of various state changes, particularly changes that occur in
2818the inferior.
2819
2820An @dfn{event} is just an object that describes some state change. The
2821type of the object and its attributes will vary depending on the details
2822of the change. All the existing events are described below.
2823
2824In order to be notified of an event, you must register an event handler
2825with an @dfn{event registry}. An event registry is an object in the
2826@code{gdb.events} module which dispatches particular events. A registry
2827provides methods to register and unregister event handlers:
2828
2829@defun EventRegistry.connect (object)
2830Add the given callable @var{object} to the registry. This object will be
2831called when an event corresponding to this registry occurs.
2832@end defun
2833
2834@defun EventRegistry.disconnect (object)
2835Remove the given @var{object} from the registry. Once removed, the object
2836will no longer receive notifications of events.
2837@end defun
2838
2839Here is an example:
2840
2841@smallexample
2842def exit_handler (event):
2843 print "event type: exit"
2844 print "exit code: %d" % (event.exit_code)
2845
2846gdb.events.exited.connect (exit_handler)
2847@end smallexample
2848
2849In the above example we connect our handler @code{exit_handler} to the
2850registry @code{events.exited}. Once connected, @code{exit_handler} gets
2851called when the inferior exits. The argument @dfn{event} in this example is
2852of type @code{gdb.ExitedEvent}. As you can see in the example the
2853@code{ExitedEvent} object has an attribute which indicates the exit code of
2854the inferior.
2855
2856The following is a listing of the event registries that are available and
2857details of the events they emit:
2858
2859@table @code
2860
2861@item events.cont
2862Emits @code{gdb.ThreadEvent}.
2863
2864Some events can be thread specific when @value{GDBN} is running in non-stop
2865mode. When represented in Python, these events all extend
2866@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2867events which are emitted by this or other modules might extend this event.
2868Examples of these events are @code{gdb.BreakpointEvent} and
2869@code{gdb.ContinueEvent}.
2870
2871@defvar ThreadEvent.inferior_thread
2872In non-stop mode this attribute will be set to the specific thread which was
2873involved in the emitted event. Otherwise, it will be set to @code{None}.
2874@end defvar
2875
2876Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2877
2878This event indicates that the inferior has been continued after a stop. For
2879inherited attribute refer to @code{gdb.ThreadEvent} above.
2880
2881@item events.exited
2882Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2883@code{events.ExitedEvent} has two attributes:
2884@defvar ExitedEvent.exit_code
2885An integer representing the exit code, if available, which the inferior
2886has returned. (The exit code could be unavailable if, for example,
2887@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2888the attribute does not exist.
2889@end defvar
373832b6 2890@defvar ExitedEvent.inferior
329baa95
DE
2891A reference to the inferior which triggered the @code{exited} event.
2892@end defvar
2893
2894@item events.stop
2895Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2896
2897Indicates that the inferior has stopped. All events emitted by this registry
2898extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2899will indicate the stopped thread when @value{GDBN} is running in non-stop
2900mode. Refer to @code{gdb.ThreadEvent} above for more details.
2901
2902Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2903
2904This event indicates that the inferior or one of its threads has received as
2905signal. @code{gdb.SignalEvent} has the following attributes:
2906
2907@defvar SignalEvent.stop_signal
2908A string representing the signal received by the inferior. A list of possible
2909signal values can be obtained by running the command @code{info signals} in
2910the @value{GDBN} command prompt.
2911@end defvar
2912
2913Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2914
2915@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2916been hit, and has the following attributes:
2917
2918@defvar BreakpointEvent.breakpoints
2919A sequence containing references to all the breakpoints (type
2920@code{gdb.Breakpoint}) that were hit.
2921@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2922@end defvar
2923@defvar BreakpointEvent.breakpoint
2924A reference to the first breakpoint that was hit.
2925This function is maintained for backward compatibility and is now deprecated
2926in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
2927@end defvar
2928
2929@item events.new_objfile
2930Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
2931been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
2932
2933@defvar NewObjFileEvent.new_objfile
2934A reference to the object file (@code{gdb.Objfile}) which has been loaded.
2935@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
2936@end defvar
2937
4ffbba72
DE
2938@item events.clear_objfiles
2939Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
2940files for a program space has been reset.
2941@code{gdb.ClearObjFilesEvent} has one attribute:
2942
2943@defvar ClearObjFilesEvent.progspace
2944A reference to the program space (@code{gdb.Progspace}) whose objfile list has
2945been cleared. @xref{Progspaces In Python}.
2946@end defvar
2947
162078c8
NB
2948@item events.inferior_call_pre
2949Emits @code{gdb.InferiorCallPreEvent} which indicates that a function in
2950the inferior is about to be called.
2951
2952@defvar InferiorCallPreEvent.ptid
2953The thread in which the call will be run.
2954@end defvar
2955
2956@defvar InferiorCallPreEvent.address
2957The location of the function to be called.
2958@end defvar
2959
2960@item events.inferior_call_post
2961Emits @code{gdb.InferiorCallPostEvent} which indicates that a function in
2962the inferior has returned.
2963
2964@defvar InferiorCallPostEvent.ptid
2965The thread in which the call was run.
2966@end defvar
2967
2968@defvar InferiorCallPostEvent.address
2969The location of the function that was called.
2970@end defvar
2971
2972@item events.memory_changed
2973Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
2974inferior has been modified by the @value{GDBN} user, for instance via a
2975command like @w{@code{set *addr = value}}. The event has the following
2976attributes:
2977
2978@defvar MemoryChangedEvent.address
2979The start address of the changed region.
2980@end defvar
2981
2982@defvar MemoryChangedEvent.length
2983Length in bytes of the changed region.
2984@end defvar
2985
2986@item events.register_changed
2987Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
2988inferior has been modified by the @value{GDBN} user.
2989
2990@defvar RegisterChangedEvent.frame
2991A gdb.Frame object representing the frame in which the register was modified.
2992@end defvar
2993@defvar RegisterChangedEvent.regnum
2994Denotes which register was modified.
2995@end defvar
2996
dac790e1
TT
2997@item events.breakpoint_created
2998This is emitted when a new breakpoint has been created. The argument
2999that is passed is the new @code{gdb.Breakpoint} object.
3000
3001@item events.breakpoint_modified
3002This is emitted when a breakpoint has been modified in some way. The
3003argument that is passed is the new @code{gdb.Breakpoint} object.
3004
3005@item events.breakpoint_deleted
3006This is emitted when a breakpoint has been deleted. The argument that
3007is passed is the @code{gdb.Breakpoint} object. When this event is
3008emitted, the @code{gdb.Breakpoint} object will already be in its
3009invalid state; that is, the @code{is_valid} method will return
3010@code{False}.
3011
3f77c769
TT
3012@item events.before_prompt
3013This event carries no payload. It is emitted each time @value{GDBN}
3014presents a prompt to the user.
3015
7c96f8c1
TT
3016@item events.new_inferior
3017This is emitted when a new inferior is created. Note that the
3018inferior is not necessarily running; in fact, it may not even have an
3019associated executable.
3020
3021The event is of type @code{gdb.NewInferiorEvent}. This has a single
3022attribute:
3023
3024@defvar NewInferiorEvent.inferior
3025The new inferior, a @code{gdb.Inferior} object.
3026@end defvar
3027
3028@item events.inferior_deleted
3029This is emitted when an inferior has been deleted. Note that this is
3030not the same as process exit; it is notified when the inferior itself
3031is removed, say via @code{remove-inferiors}.
3032
3033The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3034attribute:
3035
3036@defvar NewInferiorEvent.inferior
3037The inferior that is being removed, a @code{gdb.Inferior} object.
3038@end defvar
3039
3040@item events.new_thread
3041This is emitted when @value{GDBN} notices a new thread. The event is of
3042type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3043This has a single attribute:
3044
3045@defvar NewThreadEvent.inferior_thread
3046The new thread.
3047@end defvar
3048
329baa95
DE
3049@end table
3050
3051@node Threads In Python
3052@subsubsection Threads In Python
3053@cindex threads in python
3054
3055@findex gdb.InferiorThread
3056Python scripts can access information about, and manipulate inferior threads
3057controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3058
3059The following thread-related functions are available in the @code{gdb}
3060module:
3061
3062@findex gdb.selected_thread
3063@defun gdb.selected_thread ()
3064This function returns the thread object for the selected thread. If there
3065is no selected thread, this will return @code{None}.
3066@end defun
3067
3068A @code{gdb.InferiorThread} object has the following attributes:
3069
3070@defvar InferiorThread.name
3071The name of the thread. If the user specified a name using
3072@code{thread name}, then this returns that name. Otherwise, if an
3073OS-supplied name is available, then it is returned. Otherwise, this
3074returns @code{None}.
3075
3076This attribute can be assigned to. The new value must be a string
3077object, which sets the new name, or @code{None}, which removes any
3078user-specified thread name.
3079@end defvar
3080
3081@defvar InferiorThread.num
5d5658a1 3082The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3083@end defvar
3084
22a02324
PA
3085@defvar InferiorThread.global_num
3086The global ID of the thread, as assigned by GDB. You can use this to
3087make Python breakpoints thread-specific, for example
3088(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3089@end defvar
3090
329baa95
DE
3091@defvar InferiorThread.ptid
3092ID of the thread, as assigned by the operating system. This attribute is a
3093tuple containing three integers. The first is the Process ID (PID); the second
3094is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3095Either the LWPID or TID may be 0, which indicates that the operating system
3096does not use that identifier.
3097@end defvar
3098
84654457
PA
3099@defvar InferiorThread.inferior
3100The inferior this thread belongs to. This attribute is represented as
3101a @code{gdb.Inferior} object. This attribute is not writable.
3102@end defvar
3103
329baa95
DE
3104A @code{gdb.InferiorThread} object has the following methods:
3105
3106@defun InferiorThread.is_valid ()
3107Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3108@code{False} if not. A @code{gdb.InferiorThread} object will become
3109invalid if the thread exits, or the inferior that the thread belongs
3110is deleted. All other @code{gdb.InferiorThread} methods will throw an
3111exception if it is invalid at the time the method is called.
3112@end defun
3113
3114@defun InferiorThread.switch ()
3115This changes @value{GDBN}'s currently selected thread to the one represented
3116by this object.
3117@end defun
3118
3119@defun InferiorThread.is_stopped ()
3120Return a Boolean indicating whether the thread is stopped.
3121@end defun
3122
3123@defun InferiorThread.is_running ()
3124Return a Boolean indicating whether the thread is running.
3125@end defun
3126
3127@defun InferiorThread.is_exited ()
3128Return a Boolean indicating whether the thread is exited.
3129@end defun
3130
0a0faf9f
TW
3131@node Recordings In Python
3132@subsubsection Recordings In Python
3133@cindex recordings in python
3134
3135The following recordings-related functions
3136(@pxref{Process Record and Replay}) are available in the @code{gdb}
3137module:
3138
3139@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3140Start a recording using the given @var{method} and @var{format}. If
3141no @var{format} is given, the default format for the recording method
3142is used. If no @var{method} is given, the default method will be used.
3143Returns a @code{gdb.Record} object on success. Throw an exception on
3144failure.
3145
3146The following strings can be passed as @var{method}:
3147
3148@itemize @bullet
3149@item
3150@code{"full"}
3151@item
3152@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3153@code{"bts"} or leave out for default format.
3154@end itemize
3155@end defun
3156
3157@defun gdb.current_recording ()
3158Access a currently running recording. Return a @code{gdb.Record}
3159object on success. Return @code{None} if no recording is currently
3160active.
3161@end defun
3162
3163@defun gdb.stop_recording ()
3164Stop the current recording. Throw an exception if no recording is
3165currently active. All record objects become invalid after this call.
3166@end defun
3167
3168A @code{gdb.Record} object has the following attributes:
3169
0a0faf9f
TW
3170@defvar Record.method
3171A string with the current recording method, e.g.@: @code{full} or
3172@code{btrace}.
3173@end defvar
3174
3175@defvar Record.format
3176A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3177@code{None}.
3178@end defvar
3179
3180@defvar Record.begin
3181A method specific instruction object representing the first instruction
3182in this recording.
3183@end defvar
3184
3185@defvar Record.end
3186A method specific instruction object representing the current
3187instruction, that is not actually part of the recording.
3188@end defvar
3189
3190@defvar Record.replay_position
3191The instruction representing the current replay position. If there is
3192no replay active, this will be @code{None}.
3193@end defvar
3194
3195@defvar Record.instruction_history
3196A list with all recorded instructions.
3197@end defvar
3198
3199@defvar Record.function_call_history
3200A list with all recorded function call segments.
3201@end defvar
3202
3203A @code{gdb.Record} object has the following methods:
3204
3205@defun Record.goto (instruction)
3206Move the replay position to the given @var{instruction}.
3207@end defun
3208
d050f7d7
TW
3209The common @code{gdb.Instruction} class that recording method specific
3210instruction objects inherit from, has the following attributes:
0a0faf9f 3211
d050f7d7 3212@defvar Instruction.pc
913aeadd 3213An integer representing this instruction's address.
0a0faf9f
TW
3214@end defvar
3215
d050f7d7 3216@defvar Instruction.data
913aeadd
TW
3217A buffer with the raw instruction data. In Python 3, the return value is a
3218@code{memoryview} object.
0a0faf9f
TW
3219@end defvar
3220
d050f7d7 3221@defvar Instruction.decoded
913aeadd 3222A human readable string with the disassembled instruction.
0a0faf9f
TW
3223@end defvar
3224
d050f7d7 3225@defvar Instruction.size
913aeadd 3226The size of the instruction in bytes.
0a0faf9f
TW
3227@end defvar
3228
d050f7d7
TW
3229Additionally @code{gdb.RecordInstruction} has the following attributes:
3230
3231@defvar RecordInstruction.number
3232An integer identifying this instruction. @code{number} corresponds to
3233the numbers seen in @code{record instruction-history}
3234(@pxref{Process Record and Replay}).
3235@end defvar
3236
3237@defvar RecordInstruction.sal
3238A @code{gdb.Symtab_and_line} object representing the associated symtab
3239and line of this instruction. May be @code{None} if no debug information is
3240available.
3241@end defvar
3242
0ed5da75 3243@defvar RecordInstruction.is_speculative
d050f7d7 3244A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3245@end defvar
3246
3247If an error occured during recording or decoding a recording, this error is
3248represented by a @code{gdb.RecordGap} object in the instruction list. It has
3249the following attributes:
3250
3251@defvar RecordGap.number
3252An integer identifying this gap. @code{number} corresponds to the numbers seen
3253in @code{record instruction-history} (@pxref{Process Record and Replay}).
3254@end defvar
3255
3256@defvar RecordGap.error_code
3257A numerical representation of the reason for the gap. The value is specific to
3258the current recording method.
3259@end defvar
3260
3261@defvar RecordGap.error_string
3262A human readable string with the reason for the gap.
0a0faf9f
TW
3263@end defvar
3264
14f819c8 3265A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3266
14f819c8
TW
3267@defvar RecordFunctionSegment.number
3268An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3269the numbers seen in @code{record function-call-history}
3270(@pxref{Process Record and Replay}).
3271@end defvar
3272
14f819c8 3273@defvar RecordFunctionSegment.symbol
0a0faf9f 3274A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3275@code{None} if no debug information is available.
0a0faf9f
TW
3276@end defvar
3277
14f819c8 3278@defvar RecordFunctionSegment.level
0a0faf9f
TW
3279An integer representing the function call's stack level. May be
3280@code{None} if the function call is a gap.
3281@end defvar
3282
14f819c8 3283@defvar RecordFunctionSegment.instructions
0ed5da75 3284A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3285associated with this function call.
0a0faf9f
TW
3286@end defvar
3287
14f819c8
TW
3288@defvar RecordFunctionSegment.up
3289A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3290function segment. If the call has not been recorded, this will be the
3291function segment to which control returns. If neither the call nor the
3292return have been recorded, this will be @code{None}.
3293@end defvar
3294
14f819c8
TW
3295@defvar RecordFunctionSegment.prev
3296A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3297segment of this function call. May be @code{None}.
3298@end defvar
3299
14f819c8
TW
3300@defvar RecordFunctionSegment.next
3301A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3302this function call. May be @code{None}.
3303@end defvar
3304
3305The following example demonstrates the usage of these objects and
3306functions to create a function that will rewind a record to the last
3307time a function in a different file was executed. This would typically
3308be used to track the execution of user provided callback functions in a
3309library which typically are not visible in a back trace.
3310
3311@smallexample
3312def bringback ():
3313 rec = gdb.current_recording ()
3314 if not rec:
3315 return
3316
3317 insn = rec.instruction_history
3318 if len (insn) == 0:
3319 return
3320
3321 try:
3322 position = insn.index (rec.replay_position)
3323 except:
3324 position = -1
3325 try:
3326 filename = insn[position].sal.symtab.fullname ()
3327 except:
3328 filename = None
3329
3330 for i in reversed (insn[:position]):
3331 try:
3332 current = i.sal.symtab.fullname ()
3333 except:
3334 current = None
3335
3336 if filename == current:
3337 continue
3338
3339 rec.goto (i)
3340 return
3341@end smallexample
3342
3343Another possible application is to write a function that counts the
3344number of code executions in a given line range. This line range can
3345contain parts of functions or span across several functions and is not
3346limited to be contiguous.
3347
3348@smallexample
3349def countrange (filename, linerange):
3350 count = 0
3351
3352 def filter_only (file_name):
3353 for call in gdb.current_recording ().function_call_history:
3354 try:
3355 if file_name in call.symbol.symtab.fullname ():
3356 yield call
3357 except:
3358 pass
3359
3360 for c in filter_only (filename):
3361 for i in c.instructions:
3362 try:
3363 if i.sal.line in linerange:
3364 count += 1
3365 break;
3366 except:
3367 pass
3368
3369 return count
3370@end smallexample
3371
329baa95
DE
3372@node Commands In Python
3373@subsubsection Commands In Python
3374
3375@cindex commands in python
3376@cindex python commands
3377You can implement new @value{GDBN} CLI commands in Python. A CLI
3378command is implemented using an instance of the @code{gdb.Command}
3379class, most commonly using a subclass.
3380
3381@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3382The object initializer for @code{Command} registers the new command
3383with @value{GDBN}. This initializer is normally invoked from the
3384subclass' own @code{__init__} method.
3385
3386@var{name} is the name of the command. If @var{name} consists of
3387multiple words, then the initial words are looked for as prefix
3388commands. In this case, if one of the prefix commands does not exist,
3389an exception is raised.
3390
3391There is no support for multi-line commands.
3392
3393@var{command_class} should be one of the @samp{COMMAND_} constants
3394defined below. This argument tells @value{GDBN} how to categorize the
3395new command in the help system.
3396
3397@var{completer_class} is an optional argument. If given, it should be
3398one of the @samp{COMPLETE_} constants defined below. This argument
3399tells @value{GDBN} how to perform completion for this command. If not
3400given, @value{GDBN} will attempt to complete using the object's
3401@code{complete} method (see below); if no such method is found, an
3402error will occur when completion is attempted.
3403
3404@var{prefix} is an optional argument. If @code{True}, then the new
3405command is a prefix command; sub-commands of this command may be
3406registered.
3407
3408The help text for the new command is taken from the Python
3409documentation string for the command's class, if there is one. If no
3410documentation string is provided, the default value ``This command is
3411not documented.'' is used.
3412@end defun
3413
3414@cindex don't repeat Python command
3415@defun Command.dont_repeat ()
3416By default, a @value{GDBN} command is repeated when the user enters a
3417blank line at the command prompt. A command can suppress this
3418behavior by invoking the @code{dont_repeat} method. This is similar
3419to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3420@end defun
3421
3422@defun Command.invoke (argument, from_tty)
3423This method is called by @value{GDBN} when this command is invoked.
3424
3425@var{argument} is a string. It is the argument to the command, after
3426leading and trailing whitespace has been stripped.
3427
3428@var{from_tty} is a boolean argument. When true, this means that the
3429command was entered by the user at the terminal; when false it means
3430that the command came from elsewhere.
3431
3432If this method throws an exception, it is turned into a @value{GDBN}
3433@code{error} call. Otherwise, the return value is ignored.
3434
3435@findex gdb.string_to_argv
3436To break @var{argument} up into an argv-like string use
3437@code{gdb.string_to_argv}. This function behaves identically to
3438@value{GDBN}'s internal argument lexer @code{buildargv}.
3439It is recommended to use this for consistency.
3440Arguments are separated by spaces and may be quoted.
3441Example:
3442
3443@smallexample
3444print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3445['1', '2 "3', '4 "5', "6 '7"]
3446@end smallexample
3447
3448@end defun
3449
3450@cindex completion of Python commands
3451@defun Command.complete (text, word)
3452This method is called by @value{GDBN} when the user attempts
3453completion on this command. All forms of completion are handled by
3454this method, that is, the @key{TAB} and @key{M-?} key bindings
3455(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3456complete}).
3457
697aa1b7
EZ
3458The arguments @var{text} and @var{word} are both strings; @var{text}
3459holds the complete command line up to the cursor's location, while
329baa95
DE
3460@var{word} holds the last word of the command line; this is computed
3461using a word-breaking heuristic.
3462
3463The @code{complete} method can return several values:
3464@itemize @bullet
3465@item
3466If the return value is a sequence, the contents of the sequence are
3467used as the completions. It is up to @code{complete} to ensure that the
3468contents actually do complete the word. A zero-length sequence is
3469allowed, it means that there were no completions available. Only
3470string elements of the sequence are used; other elements in the
3471sequence are ignored.
3472
3473@item
3474If the return value is one of the @samp{COMPLETE_} constants defined
3475below, then the corresponding @value{GDBN}-internal completion
3476function is invoked, and its result is used.
3477
3478@item
3479All other results are treated as though there were no available
3480completions.
3481@end itemize
3482@end defun
3483
3484When a new command is registered, it must be declared as a member of
3485some general class of commands. This is used to classify top-level
3486commands in the on-line help system; note that prefix commands are not
3487listed under their own category but rather that of their top-level
3488command. The available classifications are represented by constants
3489defined in the @code{gdb} module:
3490
3491@table @code
3492@findex COMMAND_NONE
3493@findex gdb.COMMAND_NONE
3494@item gdb.COMMAND_NONE
3495The command does not belong to any particular class. A command in
3496this category will not be displayed in any of the help categories.
3497
3498@findex COMMAND_RUNNING
3499@findex gdb.COMMAND_RUNNING
3500@item gdb.COMMAND_RUNNING
3501The command is related to running the inferior. For example,
3502@code{start}, @code{step}, and @code{continue} are in this category.
3503Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3504commands in this category.
3505
3506@findex COMMAND_DATA
3507@findex gdb.COMMAND_DATA
3508@item gdb.COMMAND_DATA
3509The command is related to data or variables. For example,
3510@code{call}, @code{find}, and @code{print} are in this category. Type
3511@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3512in this category.
3513
3514@findex COMMAND_STACK
3515@findex gdb.COMMAND_STACK
3516@item gdb.COMMAND_STACK
3517The command has to do with manipulation of the stack. For example,
3518@code{backtrace}, @code{frame}, and @code{return} are in this
3519category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3520list of commands in this category.
3521
3522@findex COMMAND_FILES
3523@findex gdb.COMMAND_FILES
3524@item gdb.COMMAND_FILES
3525This class is used for file-related commands. For example,
3526@code{file}, @code{list} and @code{section} are in this category.
3527Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3528commands in this category.
3529
3530@findex COMMAND_SUPPORT
3531@findex gdb.COMMAND_SUPPORT
3532@item gdb.COMMAND_SUPPORT
3533This should be used for ``support facilities'', generally meaning
3534things that are useful to the user when interacting with @value{GDBN},
3535but not related to the state of the inferior. For example,
3536@code{help}, @code{make}, and @code{shell} are in this category. Type
3537@kbd{help support} at the @value{GDBN} prompt to see a list of
3538commands in this category.
3539
3540@findex COMMAND_STATUS
3541@findex gdb.COMMAND_STATUS
3542@item gdb.COMMAND_STATUS
3543The command is an @samp{info}-related command, that is, related to the
3544state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3545and @code{show} are in this category. Type @kbd{help status} at the
3546@value{GDBN} prompt to see a list of commands in this category.
3547
3548@findex COMMAND_BREAKPOINTS
3549@findex gdb.COMMAND_BREAKPOINTS
3550@item gdb.COMMAND_BREAKPOINTS
3551The command has to do with breakpoints. For example, @code{break},
3552@code{clear}, and @code{delete} are in this category. Type @kbd{help
3553breakpoints} at the @value{GDBN} prompt to see a list of commands in
3554this category.
3555
3556@findex COMMAND_TRACEPOINTS
3557@findex gdb.COMMAND_TRACEPOINTS
3558@item gdb.COMMAND_TRACEPOINTS
3559The command has to do with tracepoints. For example, @code{trace},
3560@code{actions}, and @code{tfind} are in this category. Type
3561@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3562commands in this category.
3563
3564@findex COMMAND_USER
3565@findex gdb.COMMAND_USER
3566@item gdb.COMMAND_USER
3567The command is a general purpose command for the user, and typically
3568does not fit in one of the other categories.
3569Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3570a list of commands in this category, as well as the list of gdb macros
3571(@pxref{Sequences}).
3572
3573@findex COMMAND_OBSCURE
3574@findex gdb.COMMAND_OBSCURE
3575@item gdb.COMMAND_OBSCURE
3576The command is only used in unusual circumstances, or is not of
3577general interest to users. For example, @code{checkpoint},
3578@code{fork}, and @code{stop} are in this category. Type @kbd{help
3579obscure} at the @value{GDBN} prompt to see a list of commands in this
3580category.
3581
3582@findex COMMAND_MAINTENANCE
3583@findex gdb.COMMAND_MAINTENANCE
3584@item gdb.COMMAND_MAINTENANCE
3585The command is only useful to @value{GDBN} maintainers. The
3586@code{maintenance} and @code{flushregs} commands are in this category.
3587Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3588commands in this category.
3589@end table
3590
3591A new command can use a predefined completion function, either by
3592specifying it via an argument at initialization, or by returning it
3593from the @code{complete} method. These predefined completion
3594constants are all defined in the @code{gdb} module:
3595
b3ce5e5f
DE
3596@vtable @code
3597@vindex COMPLETE_NONE
329baa95
DE
3598@item gdb.COMPLETE_NONE
3599This constant means that no completion should be done.
3600
b3ce5e5f 3601@vindex COMPLETE_FILENAME
329baa95
DE
3602@item gdb.COMPLETE_FILENAME
3603This constant means that filename completion should be performed.
3604
b3ce5e5f 3605@vindex COMPLETE_LOCATION
329baa95
DE
3606@item gdb.COMPLETE_LOCATION
3607This constant means that location completion should be done.
3608@xref{Specify Location}.
3609
b3ce5e5f 3610@vindex COMPLETE_COMMAND
329baa95
DE
3611@item gdb.COMPLETE_COMMAND
3612This constant means that completion should examine @value{GDBN}
3613command names.
3614
b3ce5e5f 3615@vindex COMPLETE_SYMBOL
329baa95
DE
3616@item gdb.COMPLETE_SYMBOL
3617This constant means that completion should be done using symbol names
3618as the source.
3619
b3ce5e5f 3620@vindex COMPLETE_EXPRESSION
329baa95
DE
3621@item gdb.COMPLETE_EXPRESSION
3622This constant means that completion should be done on expressions.
3623Often this means completing on symbol names, but some language
3624parsers also have support for completing on field names.
b3ce5e5f 3625@end vtable
329baa95
DE
3626
3627The following code snippet shows how a trivial CLI command can be
3628implemented in Python:
3629
3630@smallexample
3631class HelloWorld (gdb.Command):
3632 """Greet the whole world."""
3633
3634 def __init__ (self):
3635 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3636
3637 def invoke (self, arg, from_tty):
3638 print "Hello, World!"
3639
3640HelloWorld ()
3641@end smallexample
3642
3643The last line instantiates the class, and is necessary to trigger the
3644registration of the command with @value{GDBN}. Depending on how the
3645Python code is read into @value{GDBN}, you may need to import the
3646@code{gdb} module explicitly.
3647
3648@node Parameters In Python
3649@subsubsection Parameters In Python
3650
3651@cindex parameters in python
3652@cindex python parameters
3653@tindex gdb.Parameter
3654@tindex Parameter
3655You can implement new @value{GDBN} parameters using Python. A new
3656parameter is implemented as an instance of the @code{gdb.Parameter}
3657class.
3658
3659Parameters are exposed to the user via the @code{set} and
3660@code{show} commands. @xref{Help}.
3661
3662There are many parameters that already exist and can be set in
3663@value{GDBN}. Two examples are: @code{set follow fork} and
3664@code{set charset}. Setting these parameters influences certain
3665behavior in @value{GDBN}. Similarly, you can define parameters that
3666can be used to influence behavior in custom Python scripts and commands.
3667
3668@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3669The object initializer for @code{Parameter} registers the new
3670parameter with @value{GDBN}. This initializer is normally invoked
3671from the subclass' own @code{__init__} method.
3672
3673@var{name} is the name of the new parameter. If @var{name} consists
3674of multiple words, then the initial words are looked for as prefix
3675parameters. An example of this can be illustrated with the
3676@code{set print} set of parameters. If @var{name} is
3677@code{print foo}, then @code{print} will be searched as the prefix
3678parameter. In this case the parameter can subsequently be accessed in
3679@value{GDBN} as @code{set print foo}.
3680
3681If @var{name} consists of multiple words, and no prefix parameter group
3682can be found, an exception is raised.
3683
3684@var{command-class} should be one of the @samp{COMMAND_} constants
3685(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3686categorize the new parameter in the help system.
3687
3688@var{parameter-class} should be one of the @samp{PARAM_} constants
3689defined below. This argument tells @value{GDBN} the type of the new
3690parameter; this information is used for input validation and
3691completion.
3692
3693If @var{parameter-class} is @code{PARAM_ENUM}, then
3694@var{enum-sequence} must be a sequence of strings. These strings
3695represent the possible values for the parameter.
3696
3697If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3698of a fourth argument will cause an exception to be thrown.
3699
3700The help text for the new parameter is taken from the Python
3701documentation string for the parameter's class, if there is one. If
3702there is no documentation string, a default value is used.
3703@end defun
3704
3705@defvar Parameter.set_doc
3706If this attribute exists, and is a string, then its value is used as
3707the help text for this parameter's @code{set} command. The value is
3708examined when @code{Parameter.__init__} is invoked; subsequent changes
3709have no effect.
3710@end defvar
3711
3712@defvar Parameter.show_doc
3713If this attribute exists, and is a string, then its value is used as
3714the help text for this parameter's @code{show} command. The value is
3715examined when @code{Parameter.__init__} is invoked; subsequent changes
3716have no effect.
3717@end defvar
3718
3719@defvar Parameter.value
3720The @code{value} attribute holds the underlying value of the
3721parameter. It can be read and assigned to just as any other
3722attribute. @value{GDBN} does validation when assignments are made.
3723@end defvar
3724
3725There are two methods that should be implemented in any
3726@code{Parameter} class. These are:
3727
3728@defun Parameter.get_set_string (self)
3729@value{GDBN} will call this method when a @var{parameter}'s value has
3730been changed via the @code{set} API (for example, @kbd{set foo off}).
3731The @code{value} attribute has already been populated with the new
3732value and may be used in output. This method must return a string.
3733@end defun
3734
3735@defun Parameter.get_show_string (self, svalue)
3736@value{GDBN} will call this method when a @var{parameter}'s
3737@code{show} API has been invoked (for example, @kbd{show foo}). The
3738argument @code{svalue} receives the string representation of the
3739current value. This method must return a string.
3740@end defun
3741
3742When a new parameter is defined, its type must be specified. The
3743available types are represented by constants defined in the @code{gdb}
3744module:
3745
3746@table @code
3747@findex PARAM_BOOLEAN
3748@findex gdb.PARAM_BOOLEAN
3749@item gdb.PARAM_BOOLEAN
3750The value is a plain boolean. The Python boolean values, @code{True}
3751and @code{False} are the only valid values.
3752
3753@findex PARAM_AUTO_BOOLEAN
3754@findex gdb.PARAM_AUTO_BOOLEAN
3755@item gdb.PARAM_AUTO_BOOLEAN
3756The value has three possible states: true, false, and @samp{auto}. In
3757Python, true and false are represented using boolean constants, and
3758@samp{auto} is represented using @code{None}.
3759
3760@findex PARAM_UINTEGER
3761@findex gdb.PARAM_UINTEGER
3762@item gdb.PARAM_UINTEGER
3763The value is an unsigned integer. The value of 0 should be
3764interpreted to mean ``unlimited''.
3765
3766@findex PARAM_INTEGER
3767@findex gdb.PARAM_INTEGER
3768@item gdb.PARAM_INTEGER
3769The value is a signed integer. The value of 0 should be interpreted
3770to mean ``unlimited''.
3771
3772@findex PARAM_STRING
3773@findex gdb.PARAM_STRING
3774@item gdb.PARAM_STRING
3775The value is a string. When the user modifies the string, any escape
3776sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3777translated into corresponding characters and encoded into the current
3778host charset.
3779
3780@findex PARAM_STRING_NOESCAPE
3781@findex gdb.PARAM_STRING_NOESCAPE
3782@item gdb.PARAM_STRING_NOESCAPE
3783The value is a string. When the user modifies the string, escapes are
3784passed through untranslated.
3785
3786@findex PARAM_OPTIONAL_FILENAME
3787@findex gdb.PARAM_OPTIONAL_FILENAME
3788@item gdb.PARAM_OPTIONAL_FILENAME
3789The value is a either a filename (a string), or @code{None}.
3790
3791@findex PARAM_FILENAME
3792@findex gdb.PARAM_FILENAME
3793@item gdb.PARAM_FILENAME
3794The value is a filename. This is just like
3795@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3796
3797@findex PARAM_ZINTEGER
3798@findex gdb.PARAM_ZINTEGER
3799@item gdb.PARAM_ZINTEGER
3800The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3801is interpreted as itself.
3802
3803@findex PARAM_ENUM
3804@findex gdb.PARAM_ENUM
3805@item gdb.PARAM_ENUM
3806The value is a string, which must be one of a collection string
3807constants provided when the parameter is created.
3808@end table
3809
3810@node Functions In Python
3811@subsubsection Writing new convenience functions
3812
3813@cindex writing convenience functions
3814@cindex convenience functions in python
3815@cindex python convenience functions
3816@tindex gdb.Function
3817@tindex Function
3818You can implement new convenience functions (@pxref{Convenience Vars})
3819in Python. A convenience function is an instance of a subclass of the
3820class @code{gdb.Function}.
3821
3822@defun Function.__init__ (name)
3823The initializer for @code{Function} registers the new function with
3824@value{GDBN}. The argument @var{name} is the name of the function,
3825a string. The function will be visible to the user as a convenience
3826variable of type @code{internal function}, whose name is the same as
3827the given @var{name}.
3828
3829The documentation for the new function is taken from the documentation
3830string for the new class.
3831@end defun
3832
3833@defun Function.invoke (@var{*args})
3834When a convenience function is evaluated, its arguments are converted
3835to instances of @code{gdb.Value}, and then the function's
3836@code{invoke} method is called. Note that @value{GDBN} does not
3837predetermine the arity of convenience functions. Instead, all
3838available arguments are passed to @code{invoke}, following the
3839standard Python calling convention. In particular, a convenience
3840function can have default values for parameters without ill effect.
3841
3842The return value of this method is used as its value in the enclosing
3843expression. If an ordinary Python value is returned, it is converted
3844to a @code{gdb.Value} following the usual rules.
3845@end defun
3846
3847The following code snippet shows how a trivial convenience function can
3848be implemented in Python:
3849
3850@smallexample
3851class Greet (gdb.Function):
3852 """Return string to greet someone.
3853Takes a name as argument."""
3854
3855 def __init__ (self):
3856 super (Greet, self).__init__ ("greet")
3857
3858 def invoke (self, name):
3859 return "Hello, %s!" % name.string ()
3860
3861Greet ()
3862@end smallexample
3863
3864The last line instantiates the class, and is necessary to trigger the
3865registration of the function with @value{GDBN}. Depending on how the
3866Python code is read into @value{GDBN}, you may need to import the
3867@code{gdb} module explicitly.
3868
3869Now you can use the function in an expression:
3870
3871@smallexample
3872(gdb) print $greet("Bob")
3873$1 = "Hello, Bob!"
3874@end smallexample
3875
3876@node Progspaces In Python
3877@subsubsection Program Spaces In Python
3878
3879@cindex progspaces in python
3880@tindex gdb.Progspace
3881@tindex Progspace
3882A program space, or @dfn{progspace}, represents a symbolic view
3883of an address space.
3884It consists of all of the objfiles of the program.
3885@xref{Objfiles In Python}.
3886@xref{Inferiors and Programs, program spaces}, for more details
3887about program spaces.
3888
3889The following progspace-related functions are available in the
3890@code{gdb} module:
3891
3892@findex gdb.current_progspace
3893@defun gdb.current_progspace ()
3894This function returns the program space of the currently selected inferior.
3895@xref{Inferiors and Programs}.
3896@end defun
3897
3898@findex gdb.progspaces
3899@defun gdb.progspaces ()
3900Return a sequence of all the progspaces currently known to @value{GDBN}.
3901@end defun
3902
3903Each progspace is represented by an instance of the @code{gdb.Progspace}
3904class.
3905
3906@defvar Progspace.filename
3907The file name of the progspace as a string.
3908@end defvar
3909
3910@defvar Progspace.pretty_printers
3911The @code{pretty_printers} attribute is a list of functions. It is
3912used to look up pretty-printers. A @code{Value} is passed to each
3913function in order; if the function returns @code{None}, then the
3914search continues. Otherwise, the return value should be an object
3915which is used to format the value. @xref{Pretty Printing API}, for more
3916information.
3917@end defvar
3918
3919@defvar Progspace.type_printers
3920The @code{type_printers} attribute is a list of type printer objects.
3921@xref{Type Printing API}, for more information.
3922@end defvar
3923
3924@defvar Progspace.frame_filters
3925The @code{frame_filters} attribute is a dictionary of frame filter
3926objects. @xref{Frame Filter API}, for more information.
3927@end defvar
3928
02be9a71
DE
3929One may add arbitrary attributes to @code{gdb.Progspace} objects
3930in the usual Python way.
3931This is useful if, for example, one needs to do some extra record keeping
3932associated with the program space.
3933
3934In this contrived example, we want to perform some processing when
3935an objfile with a certain symbol is loaded, but we only want to do
3936this once because it is expensive. To achieve this we record the results
3937with the program space because we can't predict when the desired objfile
3938will be loaded.
3939
3940@smallexample
3941(gdb) python
3942def clear_objfiles_handler(event):
3943 event.progspace.expensive_computation = None
3944def expensive(symbol):
3945 """A mock routine to perform an "expensive" computation on symbol."""
3946 print "Computing the answer to the ultimate question ..."
3947 return 42
3948def new_objfile_handler(event):
3949 objfile = event.new_objfile
3950 progspace = objfile.progspace
3951 if not hasattr(progspace, 'expensive_computation') or \
3952 progspace.expensive_computation is None:
3953 # We use 'main' for the symbol to keep the example simple.
3954 # Note: There's no current way to constrain the lookup
3955 # to one objfile.
3956 symbol = gdb.lookup_global_symbol('main')
3957 if symbol is not None:
3958 progspace.expensive_computation = expensive(symbol)
3959gdb.events.clear_objfiles.connect(clear_objfiles_handler)
3960gdb.events.new_objfile.connect(new_objfile_handler)
3961end
3962(gdb) file /tmp/hello
3963Reading symbols from /tmp/hello...done.
3964Computing the answer to the ultimate question ...
3965(gdb) python print gdb.current_progspace().expensive_computation
396642
3967(gdb) run
3968Starting program: /tmp/hello
3969Hello.
3970[Inferior 1 (process 4242) exited normally]
3971@end smallexample
3972
329baa95
DE
3973@node Objfiles In Python
3974@subsubsection Objfiles In Python
3975
3976@cindex objfiles in python
3977@tindex gdb.Objfile
3978@tindex Objfile
3979@value{GDBN} loads symbols for an inferior from various
3980symbol-containing files (@pxref{Files}). These include the primary
3981executable file, any shared libraries used by the inferior, and any
3982separate debug info files (@pxref{Separate Debug Files}).
3983@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
3984
3985The following objfile-related functions are available in the
3986@code{gdb} module:
3987
3988@findex gdb.current_objfile
3989@defun gdb.current_objfile ()
3990When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
3991sets the ``current objfile'' to the corresponding objfile. This
3992function returns the current objfile. If there is no current objfile,
3993this function returns @code{None}.
3994@end defun
3995
3996@findex gdb.objfiles
3997@defun gdb.objfiles ()
3998Return a sequence of all the objfiles current known to @value{GDBN}.
3999@xref{Objfiles In Python}.
4000@end defun
4001
6dddd6a5
DE
4002@findex gdb.lookup_objfile
4003@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4004Look up @var{name}, a file name or build ID, in the list of objfiles
4005for the current program space (@pxref{Progspaces In Python}).
4006If the objfile is not found throw the Python @code{ValueError} exception.
4007
4008If @var{name} is a relative file name, then it will match any
4009source file name with the same trailing components. For example, if
4010@var{name} is @samp{gcc/expr.c}, then it will match source file
4011name of @file{/build/trunk/gcc/expr.c}, but not
4012@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4013
4014If @var{by_build_id} is provided and is @code{True} then @var{name}
4015is the build ID of the objfile. Otherwise, @var{name} is a file name.
4016This is supported only on some operating systems, notably those which use
4017the ELF format for binary files and the @sc{gnu} Binutils. For more details
4018about this feature, see the description of the @option{--build-id}
4019command-line option in @ref{Options, , Command Line Options, ld.info,
4020The GNU Linker}.
4021@end defun
4022
329baa95
DE
4023Each objfile is represented by an instance of the @code{gdb.Objfile}
4024class.
4025
4026@defvar Objfile.filename
1b549396
DE
4027The file name of the objfile as a string, with symbolic links resolved.
4028
4029The value is @code{None} if the objfile is no longer valid.
4030See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4031@end defvar
4032
3a8b707a
DE
4033@defvar Objfile.username
4034The file name of the objfile as specified by the user as a string.
4035
4036The value is @code{None} if the objfile is no longer valid.
4037See the @code{gdb.Objfile.is_valid} method, described below.
4038@end defvar
4039
a0be3e44
DE
4040@defvar Objfile.owner
4041For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4042object that debug info is being provided for.
4043Otherwise this is @code{None}.
4044Separate debug info objfiles are added with the
4045@code{gdb.Objfile.add_separate_debug_file} method, described below.
4046@end defvar
4047
7c50a931
DE
4048@defvar Objfile.build_id
4049The build ID of the objfile as a string.
4050If the objfile does not have a build ID then the value is @code{None}.
4051
4052This is supported only on some operating systems, notably those which use
4053the ELF format for binary files and the @sc{gnu} Binutils. For more details
4054about this feature, see the description of the @option{--build-id}
4055command-line option in @ref{Options, , Command Line Options, ld.info,
4056The GNU Linker}.
4057@end defvar
4058
d096d8c1
DE
4059@defvar Objfile.progspace
4060The containing program space of the objfile as a @code{gdb.Progspace}
4061object. @xref{Progspaces In Python}.
4062@end defvar
4063
329baa95
DE
4064@defvar Objfile.pretty_printers
4065The @code{pretty_printers} attribute is a list of functions. It is
4066used to look up pretty-printers. A @code{Value} is passed to each
4067function in order; if the function returns @code{None}, then the
4068search continues. Otherwise, the return value should be an object
4069which is used to format the value. @xref{Pretty Printing API}, for more
4070information.
4071@end defvar
4072
4073@defvar Objfile.type_printers
4074The @code{type_printers} attribute is a list of type printer objects.
4075@xref{Type Printing API}, for more information.
4076@end defvar
4077
4078@defvar Objfile.frame_filters
4079The @code{frame_filters} attribute is a dictionary of frame filter
4080objects. @xref{Frame Filter API}, for more information.
4081@end defvar
4082
02be9a71
DE
4083One may add arbitrary attributes to @code{gdb.Objfile} objects
4084in the usual Python way.
4085This is useful if, for example, one needs to do some extra record keeping
4086associated with the objfile.
4087
4088In this contrived example we record the time when @value{GDBN}
4089loaded the objfile.
4090
4091@smallexample
4092(gdb) python
4093import datetime
4094def new_objfile_handler(event):
4095 # Set the time_loaded attribute of the new objfile.
4096 event.new_objfile.time_loaded = datetime.datetime.today()
4097gdb.events.new_objfile.connect(new_objfile_handler)
4098end
4099(gdb) file ./hello
4100Reading symbols from ./hello...done.
4101(gdb) python print gdb.objfiles()[0].time_loaded
41022014-10-09 11:41:36.770345
4103@end smallexample
4104
329baa95
DE
4105A @code{gdb.Objfile} object has the following methods:
4106
4107@defun Objfile.is_valid ()
4108Returns @code{True} if the @code{gdb.Objfile} object is valid,
4109@code{False} if not. A @code{gdb.Objfile} object can become invalid
4110if the object file it refers to is not loaded in @value{GDBN} any
4111longer. All other @code{gdb.Objfile} methods will throw an exception
4112if it is invalid at the time the method is called.
4113@end defun
4114
86e4ed39
DE
4115@defun Objfile.add_separate_debug_file (file)
4116Add @var{file} to the list of files that @value{GDBN} will search for
4117debug information for the objfile.
4118This is useful when the debug info has been removed from the program
4119and stored in a separate file. @value{GDBN} has built-in support for
4120finding separate debug info files (@pxref{Separate Debug Files}), but if
4121the file doesn't live in one of the standard places that @value{GDBN}
4122searches then this function can be used to add a debug info file
4123from a different place.
4124@end defun
4125
329baa95
DE
4126@node Frames In Python
4127@subsubsection Accessing inferior stack frames from Python.
4128
4129@cindex frames in python
4130When the debugged program stops, @value{GDBN} is able to analyze its call
4131stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4132represents a frame in the stack. A @code{gdb.Frame} object is only valid
4133while its corresponding frame exists in the inferior's stack. If you try
4134to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4135exception (@pxref{Exception Handling}).
4136
4137Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4138operator, like:
4139
4140@smallexample
4141(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4142True
4143@end smallexample
4144
4145The following frame-related functions are available in the @code{gdb} module:
4146
4147@findex gdb.selected_frame
4148@defun gdb.selected_frame ()
4149Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4150@end defun
4151
4152@findex gdb.newest_frame
4153@defun gdb.newest_frame ()
4154Return the newest frame object for the selected thread.
4155@end defun
4156
4157@defun gdb.frame_stop_reason_string (reason)
4158Return a string explaining the reason why @value{GDBN} stopped unwinding
4159frames, as expressed by the given @var{reason} code (an integer, see the
4160@code{unwind_stop_reason} method further down in this section).
4161@end defun
4162
e0f3fd7c
TT
4163@findex gdb.invalidate_cached_frames
4164@defun gdb.invalidate_cached_frames
4165@value{GDBN} internally keeps a cache of the frames that have been
4166unwound. This function invalidates this cache.
4167
4168This function should not generally be called by ordinary Python code.
4169It is documented for the sake of completeness.
4170@end defun
4171
329baa95
DE
4172A @code{gdb.Frame} object has the following methods:
4173
4174@defun Frame.is_valid ()
4175Returns true if the @code{gdb.Frame} object is valid, false if not.
4176A frame object can become invalid if the frame it refers to doesn't
4177exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4178an exception if it is invalid at the time the method is called.
4179@end defun
4180
4181@defun Frame.name ()
4182Returns the function name of the frame, or @code{None} if it can't be
4183obtained.
4184@end defun
4185
4186@defun Frame.architecture ()
4187Returns the @code{gdb.Architecture} object corresponding to the frame's
4188architecture. @xref{Architectures In Python}.
4189@end defun
4190
4191@defun Frame.type ()
4192Returns the type of the frame. The value can be one of:
4193@table @code
4194@item gdb.NORMAL_FRAME
4195An ordinary stack frame.
4196
4197@item gdb.DUMMY_FRAME
4198A fake stack frame that was created by @value{GDBN} when performing an
4199inferior function call.
4200
4201@item gdb.INLINE_FRAME
4202A frame representing an inlined function. The function was inlined
4203into a @code{gdb.NORMAL_FRAME} that is older than this one.
4204
4205@item gdb.TAILCALL_FRAME
4206A frame representing a tail call. @xref{Tail Call Frames}.
4207
4208@item gdb.SIGTRAMP_FRAME
4209A signal trampoline frame. This is the frame created by the OS when
4210it calls into a signal handler.
4211
4212@item gdb.ARCH_FRAME
4213A fake stack frame representing a cross-architecture call.
4214
4215@item gdb.SENTINEL_FRAME
4216This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4217newest frame.
4218@end table
4219@end defun
4220
4221@defun Frame.unwind_stop_reason ()
4222Return an integer representing the reason why it's not possible to find
4223more frames toward the outermost frame. Use
4224@code{gdb.frame_stop_reason_string} to convert the value returned by this
4225function to a string. The value can be one of:
4226
4227@table @code
4228@item gdb.FRAME_UNWIND_NO_REASON
4229No particular reason (older frames should be available).
4230
4231@item gdb.FRAME_UNWIND_NULL_ID
4232The previous frame's analyzer returns an invalid result. This is no
4233longer used by @value{GDBN}, and is kept only for backward
4234compatibility.
4235
4236@item gdb.FRAME_UNWIND_OUTERMOST
4237This frame is the outermost.
4238
4239@item gdb.FRAME_UNWIND_UNAVAILABLE
4240Cannot unwind further, because that would require knowing the
4241values of registers or memory that have not been collected.
4242
4243@item gdb.FRAME_UNWIND_INNER_ID
4244This frame ID looks like it ought to belong to a NEXT frame,
4245but we got it for a PREV frame. Normally, this is a sign of
4246unwinder failure. It could also indicate stack corruption.
4247
4248@item gdb.FRAME_UNWIND_SAME_ID
4249This frame has the same ID as the previous one. That means
4250that unwinding further would almost certainly give us another
4251frame with exactly the same ID, so break the chain. Normally,
4252this is a sign of unwinder failure. It could also indicate
4253stack corruption.
4254
4255@item gdb.FRAME_UNWIND_NO_SAVED_PC
4256The frame unwinder did not find any saved PC, but we needed
4257one to unwind further.
4258
53e8a631
AB
4259@item gdb.FRAME_UNWIND_MEMORY_ERROR
4260The frame unwinder caused an error while trying to access memory.
4261
329baa95
DE
4262@item gdb.FRAME_UNWIND_FIRST_ERROR
4263Any stop reason greater or equal to this value indicates some kind
4264of error. This special value facilitates writing code that tests
4265for errors in unwinding in a way that will work correctly even if
4266the list of the other values is modified in future @value{GDBN}
4267versions. Using it, you could write:
4268@smallexample
4269reason = gdb.selected_frame().unwind_stop_reason ()
4270reason_str = gdb.frame_stop_reason_string (reason)
4271if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4272 print "An error occured: %s" % reason_str
4273@end smallexample
4274@end table
4275
4276@end defun
4277
4278@defun Frame.pc ()
4279Returns the frame's resume address.
4280@end defun
4281
4282@defun Frame.block ()
4283Return the frame's code block. @xref{Blocks In Python}.
4284@end defun
4285
4286@defun Frame.function ()
4287Return the symbol for the function corresponding to this frame.
4288@xref{Symbols In Python}.
4289@end defun
4290
4291@defun Frame.older ()
4292Return the frame that called this frame.
4293@end defun
4294
4295@defun Frame.newer ()
4296Return the frame called by this frame.
4297@end defun
4298
4299@defun Frame.find_sal ()
4300Return the frame's symtab and line object.
4301@xref{Symbol Tables In Python}.
4302@end defun
4303
5f3b99cf
SS
4304@defun Frame.read_register (register)
4305Return the value of @var{register} in this frame. The @var{register}
4306argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4307Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4308does not exist.
4309@end defun
4310
329baa95
DE
4311@defun Frame.read_var (variable @r{[}, block@r{]})
4312Return the value of @var{variable} in this frame. If the optional
4313argument @var{block} is provided, search for the variable from that
4314block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4315determined by the frame's current program counter). The @var{variable}
4316argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4317@code{gdb.Block} object.
4318@end defun
4319
4320@defun Frame.select ()
4321Set this frame to be the selected frame. @xref{Stack, ,Examining the
4322Stack}.
4323@end defun
4324
4325@node Blocks In Python
4326@subsubsection Accessing blocks from Python.
4327
4328@cindex blocks in python
4329@tindex gdb.Block
4330
4331In @value{GDBN}, symbols are stored in blocks. A block corresponds
4332roughly to a scope in the source code. Blocks are organized
4333hierarchically, and are represented individually in Python as a
4334@code{gdb.Block}. Blocks rely on debugging information being
4335available.
4336
4337A frame has a block. Please see @ref{Frames In Python}, for a more
4338in-depth discussion of frames.
4339
4340The outermost block is known as the @dfn{global block}. The global
4341block typically holds public global variables and functions.
4342
4343The block nested just inside the global block is the @dfn{static
4344block}. The static block typically holds file-scoped variables and
4345functions.
4346
4347@value{GDBN} provides a method to get a block's superblock, but there
4348is currently no way to examine the sub-blocks of a block, or to
4349iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4350Python}).
4351
4352Here is a short example that should help explain blocks:
4353
4354@smallexample
4355/* This is in the global block. */
4356int global;
4357
4358/* This is in the static block. */
4359static int file_scope;
4360
4361/* 'function' is in the global block, and 'argument' is
4362 in a block nested inside of 'function'. */
4363int function (int argument)
4364@{
4365 /* 'local' is in a block inside 'function'. It may or may
4366 not be in the same block as 'argument'. */
4367 int local;
4368
4369 @{
4370 /* 'inner' is in a block whose superblock is the one holding
4371 'local'. */
4372 int inner;
4373
4374 /* If this call is expanded by the compiler, you may see
4375 a nested block here whose function is 'inline_function'
4376 and whose superblock is the one holding 'inner'. */
4377 inline_function ();
4378 @}
4379@}
4380@end smallexample
4381
4382A @code{gdb.Block} is iterable. The iterator returns the symbols
4383(@pxref{Symbols In Python}) local to the block. Python programs
4384should not assume that a specific block object will always contain a
4385given symbol, since changes in @value{GDBN} features and
4386infrastructure may cause symbols move across blocks in a symbol
4387table.
4388
4389The following block-related functions are available in the @code{gdb}
4390module:
4391
4392@findex gdb.block_for_pc
4393@defun gdb.block_for_pc (pc)
4394Return the innermost @code{gdb.Block} containing the given @var{pc}
4395value. If the block cannot be found for the @var{pc} value specified,
4396the function will return @code{None}.
4397@end defun
4398
4399A @code{gdb.Block} object has the following methods:
4400
4401@defun Block.is_valid ()
4402Returns @code{True} if the @code{gdb.Block} object is valid,
4403@code{False} if not. A block object can become invalid if the block it
4404refers to doesn't exist anymore in the inferior. All other
4405@code{gdb.Block} methods will throw an exception if it is invalid at
4406the time the method is called. The block's validity is also checked
4407during iteration over symbols of the block.
4408@end defun
4409
4410A @code{gdb.Block} object has the following attributes:
4411
4412@defvar Block.start
4413The start address of the block. This attribute is not writable.
4414@end defvar
4415
4416@defvar Block.end
4417The end address of the block. This attribute is not writable.
4418@end defvar
4419
4420@defvar Block.function
4421The name of the block represented as a @code{gdb.Symbol}. If the
4422block is not named, then this attribute holds @code{None}. This
4423attribute is not writable.
4424
4425For ordinary function blocks, the superblock is the static block.
4426However, you should note that it is possible for a function block to
4427have a superblock that is not the static block -- for instance this
4428happens for an inlined function.
4429@end defvar
4430
4431@defvar Block.superblock
4432The block containing this block. If this parent block does not exist,
4433this attribute holds @code{None}. This attribute is not writable.
4434@end defvar
4435
4436@defvar Block.global_block
4437The global block associated with this block. This attribute is not
4438writable.
4439@end defvar
4440
4441@defvar Block.static_block
4442The static block associated with this block. This attribute is not
4443writable.
4444@end defvar
4445
4446@defvar Block.is_global
4447@code{True} if the @code{gdb.Block} object is a global block,
4448@code{False} if not. This attribute is not
4449writable.
4450@end defvar
4451
4452@defvar Block.is_static
4453@code{True} if the @code{gdb.Block} object is a static block,
4454@code{False} if not. This attribute is not writable.
4455@end defvar
4456
4457@node Symbols In Python
4458@subsubsection Python representation of Symbols.
4459
4460@cindex symbols in python
4461@tindex gdb.Symbol
4462
4463@value{GDBN} represents every variable, function and type as an
4464entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4465Similarly, Python represents these symbols in @value{GDBN} with the
4466@code{gdb.Symbol} object.
4467
4468The following symbol-related functions are available in the @code{gdb}
4469module:
4470
4471@findex gdb.lookup_symbol
4472@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4473This function searches for a symbol by name. The search scope can be
4474restricted to the parameters defined in the optional domain and block
4475arguments.
4476
4477@var{name} is the name of the symbol. It must be a string. The
4478optional @var{block} argument restricts the search to symbols visible
4479in that @var{block}. The @var{block} argument must be a
4480@code{gdb.Block} object. If omitted, the block for the current frame
4481is used. The optional @var{domain} argument restricts
4482the search to the domain type. The @var{domain} argument must be a
4483domain constant defined in the @code{gdb} module and described later
4484in this chapter.
4485
4486The result is a tuple of two elements.
4487The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4488is not found.
4489If the symbol is found, the second element is @code{True} if the symbol
4490is a field of a method's object (e.g., @code{this} in C@t{++}),
4491otherwise it is @code{False}.
4492If the symbol is not found, the second element is @code{False}.
4493@end defun
4494
4495@findex gdb.lookup_global_symbol
4496@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4497This function searches for a global symbol by name.
4498The search scope can be restricted to by the domain argument.
4499
4500@var{name} is the name of the symbol. It must be a string.
4501The optional @var{domain} argument restricts the search to the domain type.
4502The @var{domain} argument must be a domain constant defined in the @code{gdb}
4503module and described later in this chapter.
4504
4505The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4506is not found.
4507@end defun
4508
4509A @code{gdb.Symbol} object has the following attributes:
4510
4511@defvar Symbol.type
4512The type of the symbol or @code{None} if no type is recorded.
4513This attribute is represented as a @code{gdb.Type} object.
4514@xref{Types In Python}. This attribute is not writable.
4515@end defvar
4516
4517@defvar Symbol.symtab
4518The symbol table in which the symbol appears. This attribute is
4519represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4520Python}. This attribute is not writable.
4521@end defvar
4522
4523@defvar Symbol.line
4524The line number in the source code at which the symbol was defined.
4525This is an integer.
4526@end defvar
4527
4528@defvar Symbol.name
4529The name of the symbol as a string. This attribute is not writable.
4530@end defvar
4531
4532@defvar Symbol.linkage_name
4533The name of the symbol, as used by the linker (i.e., may be mangled).
4534This attribute is not writable.
4535@end defvar
4536
4537@defvar Symbol.print_name
4538The name of the symbol in a form suitable for output. This is either
4539@code{name} or @code{linkage_name}, depending on whether the user
4540asked @value{GDBN} to display demangled or mangled names.
4541@end defvar
4542
4543@defvar Symbol.addr_class
4544The address class of the symbol. This classifies how to find the value
4545of a symbol. Each address class is a constant defined in the
4546@code{gdb} module and described later in this chapter.
4547@end defvar
4548
4549@defvar Symbol.needs_frame
4550This is @code{True} if evaluating this symbol's value requires a frame
4551(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4552local variables will require a frame, but other symbols will not.
4553@end defvar
4554
4555@defvar Symbol.is_argument
4556@code{True} if the symbol is an argument of a function.
4557@end defvar
4558
4559@defvar Symbol.is_constant
4560@code{True} if the symbol is a constant.
4561@end defvar
4562
4563@defvar Symbol.is_function
4564@code{True} if the symbol is a function or a method.
4565@end defvar
4566
4567@defvar Symbol.is_variable
4568@code{True} if the symbol is a variable.
4569@end defvar
4570
4571A @code{gdb.Symbol} object has the following methods:
4572
4573@defun Symbol.is_valid ()
4574Returns @code{True} if the @code{gdb.Symbol} object is valid,
4575@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4576the symbol it refers to does not exist in @value{GDBN} any longer.
4577All other @code{gdb.Symbol} methods will throw an exception if it is
4578invalid at the time the method is called.
4579@end defun
4580
4581@defun Symbol.value (@r{[}frame@r{]})
4582Compute the value of the symbol, as a @code{gdb.Value}. For
4583functions, this computes the address of the function, cast to the
4584appropriate type. If the symbol requires a frame in order to compute
4585its value, then @var{frame} must be given. If @var{frame} is not
4586given, or if @var{frame} is invalid, then this method will throw an
4587exception.
4588@end defun
4589
4590The available domain categories in @code{gdb.Symbol} are represented
4591as constants in the @code{gdb} module:
4592
b3ce5e5f
DE
4593@vtable @code
4594@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4595@item gdb.SYMBOL_UNDEF_DOMAIN
4596This is used when a domain has not been discovered or none of the
4597following domains apply. This usually indicates an error either
4598in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4599
4600@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4601@item gdb.SYMBOL_VAR_DOMAIN
4602This domain contains variables, function names, typedef names and enum
4603type values.
b3ce5e5f
DE
4604
4605@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4606@item gdb.SYMBOL_STRUCT_DOMAIN
4607This domain holds struct, union and enum type names.
b3ce5e5f
DE
4608
4609@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4610@item gdb.SYMBOL_LABEL_DOMAIN
4611This domain contains names of labels (for gotos).
b3ce5e5f
DE
4612
4613@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4614@item gdb.SYMBOL_VARIABLES_DOMAIN
4615This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4616contains everything minus functions and types.
b3ce5e5f
DE
4617
4618@vindex SYMBOL_FUNCTIONS_DOMAIN
eb83230b 4619@item gdb.SYMBOL_FUNCTIONS_DOMAIN
329baa95 4620This domain contains all functions.
b3ce5e5f
DE
4621
4622@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4623@item gdb.SYMBOL_TYPES_DOMAIN
4624This domain contains all types.
b3ce5e5f 4625@end vtable
329baa95
DE
4626
4627The available address class categories in @code{gdb.Symbol} are represented
4628as constants in the @code{gdb} module:
4629
b3ce5e5f
DE
4630@vtable @code
4631@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4632@item gdb.SYMBOL_LOC_UNDEF
4633If this is returned by address class, it indicates an error either in
4634the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4635
4636@vindex SYMBOL_LOC_CONST
329baa95
DE
4637@item gdb.SYMBOL_LOC_CONST
4638Value is constant int.
b3ce5e5f
DE
4639
4640@vindex SYMBOL_LOC_STATIC
329baa95
DE
4641@item gdb.SYMBOL_LOC_STATIC
4642Value is at a fixed address.
b3ce5e5f
DE
4643
4644@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4645@item gdb.SYMBOL_LOC_REGISTER
4646Value is in a register.
b3ce5e5f
DE
4647
4648@vindex SYMBOL_LOC_ARG
329baa95
DE
4649@item gdb.SYMBOL_LOC_ARG
4650Value is an argument. This value is at the offset stored within the
4651symbol inside the frame's argument list.
b3ce5e5f
DE
4652
4653@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4654@item gdb.SYMBOL_LOC_REF_ARG
4655Value address is stored in the frame's argument list. Just like
4656@code{LOC_ARG} except that the value's address is stored at the
4657offset, not the value itself.
b3ce5e5f
DE
4658
4659@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4660@item gdb.SYMBOL_LOC_REGPARM_ADDR
4661Value is a specified register. Just like @code{LOC_REGISTER} except
4662the register holds the address of the argument instead of the argument
4663itself.
b3ce5e5f
DE
4664
4665@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4666@item gdb.SYMBOL_LOC_LOCAL
4667Value is a local variable.
b3ce5e5f
DE
4668
4669@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4670@item gdb.SYMBOL_LOC_TYPEDEF
4671Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4672have this class.
b3ce5e5f
DE
4673
4674@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4675@item gdb.SYMBOL_LOC_BLOCK
4676Value is a block.
b3ce5e5f
DE
4677
4678@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4679@item gdb.SYMBOL_LOC_CONST_BYTES
4680Value is a byte-sequence.
b3ce5e5f
DE
4681
4682@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4683@item gdb.SYMBOL_LOC_UNRESOLVED
4684Value is at a fixed address, but the address of the variable has to be
4685determined from the minimal symbol table whenever the variable is
4686referenced.
b3ce5e5f
DE
4687
4688@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4689@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4690The value does not actually exist in the program.
b3ce5e5f
DE
4691
4692@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4693@item gdb.SYMBOL_LOC_COMPUTED
4694The value's address is a computed location.
b3ce5e5f 4695@end vtable
329baa95
DE
4696
4697@node Symbol Tables In Python
4698@subsubsection Symbol table representation in Python.
4699
4700@cindex symbol tables in python
4701@tindex gdb.Symtab
4702@tindex gdb.Symtab_and_line
4703
4704Access to symbol table data maintained by @value{GDBN} on the inferior
4705is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4706@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4707from the @code{find_sal} method in @code{gdb.Frame} object.
4708@xref{Frames In Python}.
4709
4710For more information on @value{GDBN}'s symbol table management, see
4711@ref{Symbols, ,Examining the Symbol Table}, for more information.
4712
4713A @code{gdb.Symtab_and_line} object has the following attributes:
4714
4715@defvar Symtab_and_line.symtab
4716The symbol table object (@code{gdb.Symtab}) for this frame.
4717This attribute is not writable.
4718@end defvar
4719
4720@defvar Symtab_and_line.pc
4721Indicates the start of the address range occupied by code for the
4722current source line. This attribute is not writable.
4723@end defvar
4724
4725@defvar Symtab_and_line.last
4726Indicates the end of the address range occupied by code for the current
4727source line. This attribute is not writable.
4728@end defvar
4729
4730@defvar Symtab_and_line.line
4731Indicates the current line number for this object. This
4732attribute is not writable.
4733@end defvar
4734
4735A @code{gdb.Symtab_and_line} object has the following methods:
4736
4737@defun Symtab_and_line.is_valid ()
4738Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4739@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4740invalid if the Symbol table and line object it refers to does not
4741exist in @value{GDBN} any longer. All other
4742@code{gdb.Symtab_and_line} methods will throw an exception if it is
4743invalid at the time the method is called.
4744@end defun
4745
4746A @code{gdb.Symtab} object has the following attributes:
4747
4748@defvar Symtab.filename
4749The symbol table's source filename. This attribute is not writable.
4750@end defvar
4751
4752@defvar Symtab.objfile
4753The symbol table's backing object file. @xref{Objfiles In Python}.
4754This attribute is not writable.
4755@end defvar
4756
2b4fd423
DE
4757@defvar Symtab.producer
4758The name and possibly version number of the program that
4759compiled the code in the symbol table.
4760The contents of this string is up to the compiler.
4761If no producer information is available then @code{None} is returned.
4762This attribute is not writable.
4763@end defvar
4764
329baa95
DE
4765A @code{gdb.Symtab} object has the following methods:
4766
4767@defun Symtab.is_valid ()
4768Returns @code{True} if the @code{gdb.Symtab} object is valid,
4769@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4770the symbol table it refers to does not exist in @value{GDBN} any
4771longer. All other @code{gdb.Symtab} methods will throw an exception
4772if it is invalid at the time the method is called.
4773@end defun
4774
4775@defun Symtab.fullname ()
4776Return the symbol table's source absolute file name.
4777@end defun
4778
4779@defun Symtab.global_block ()
4780Return the global block of the underlying symbol table.
4781@xref{Blocks In Python}.
4782@end defun
4783
4784@defun Symtab.static_block ()
4785Return the static block of the underlying symbol table.
4786@xref{Blocks In Python}.
4787@end defun
4788
4789@defun Symtab.linetable ()
4790Return the line table associated with the symbol table.
4791@xref{Line Tables In Python}.
4792@end defun
4793
4794@node Line Tables In Python
4795@subsubsection Manipulating line tables using Python
4796
4797@cindex line tables in python
4798@tindex gdb.LineTable
4799
4800Python code can request and inspect line table information from a
4801symbol table that is loaded in @value{GDBN}. A line table is a
4802mapping of source lines to their executable locations in memory. To
4803acquire the line table information for a particular symbol table, use
4804the @code{linetable} function (@pxref{Symbol Tables In Python}).
4805
4806A @code{gdb.LineTable} is iterable. The iterator returns
4807@code{LineTableEntry} objects that correspond to the source line and
4808address for each line table entry. @code{LineTableEntry} objects have
4809the following attributes:
4810
4811@defvar LineTableEntry.line
4812The source line number for this line table entry. This number
4813corresponds to the actual line of source. This attribute is not
4814writable.
4815@end defvar
4816
4817@defvar LineTableEntry.pc
4818The address that is associated with the line table entry where the
4819executable code for that source line resides in memory. This
4820attribute is not writable.
4821@end defvar
4822
4823As there can be multiple addresses for a single source line, you may
4824receive multiple @code{LineTableEntry} objects with matching
4825@code{line} attributes, but with different @code{pc} attributes. The
4826iterator is sorted in ascending @code{pc} order. Here is a small
4827example illustrating iterating over a line table.
4828
4829@smallexample
4830symtab = gdb.selected_frame().find_sal().symtab
4831linetable = symtab.linetable()
4832for line in linetable:
4833 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4834@end smallexample
4835
4836This will have the following output:
4837
4838@smallexample
4839Line: 33 Address: 0x4005c8L
4840Line: 37 Address: 0x4005caL
4841Line: 39 Address: 0x4005d2L
4842Line: 40 Address: 0x4005f8L
4843Line: 42 Address: 0x4005ffL
4844Line: 44 Address: 0x400608L
4845Line: 42 Address: 0x40060cL
4846Line: 45 Address: 0x400615L
4847@end smallexample
4848
4849In addition to being able to iterate over a @code{LineTable}, it also
4850has the following direct access methods:
4851
4852@defun LineTable.line (line)
4853Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4854entries in the line table for the given @var{line}, which specifies
4855the source code line. If there are no entries for that source code
329baa95
DE
4856@var{line}, the Python @code{None} is returned.
4857@end defun
4858
4859@defun LineTable.has_line (line)
4860Return a Python @code{Boolean} indicating whether there is an entry in
4861the line table for this source line. Return @code{True} if an entry
4862is found, or @code{False} if not.
4863@end defun
4864
4865@defun LineTable.source_lines ()
4866Return a Python @code{List} of the source line numbers in the symbol
4867table. Only lines with executable code locations are returned. The
4868contents of the @code{List} will just be the source line entries
4869represented as Python @code{Long} values.
4870@end defun
4871
4872@node Breakpoints In Python
4873@subsubsection Manipulating breakpoints using Python
4874
4875@cindex breakpoints in python
4876@tindex gdb.Breakpoint
4877
4878Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4879class.
4880
0b982d68
SM
4881A breakpoint can be created using one of the two forms of the
4882@code{gdb.Breakpoint} constructor. The first one accepts a string
4883like one would pass to the @code{break}
4884(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
4885(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
4886create both breakpoints and watchpoints. The second accepts separate Python
4887arguments similar to @ref{Explicit Locations}, and can only be used to create
4888breakpoints.
4889
4890@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{]})
4891Create a new breakpoint according to @var{spec}, which is a string naming the
4892location of a breakpoint, or an expression that defines a watchpoint. The
4893string should describe a location in a format recognized by the @code{break}
4894command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
4895watchpoint, by the @code{watch} command
4896(@pxref{Set Watchpoints, , Setting Watchpoints}).
4897
4898The optional @var{type} argument specifies the type of the breakpoint to create,
4899as defined below.
4900
4901The optional @var{wp_class} argument defines the class of watchpoint to create,
4902if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
4903defaults to @code{gdb.WP_WRITE}.
4904
4905The optional @var{internal} argument allows the breakpoint to become invisible
4906to the user. The breakpoint will neither be reported when created, nor will it
4907be listed in the output from @code{info breakpoints} (but will be listed with
4908the @code{maint info breakpoints} command).
4909
4910The optional @var{temporary} argument makes the breakpoint a temporary
4911breakpoint. Temporary breakpoints are deleted after they have been hit. Any
4912further access to the Python breakpoint after it has been hit will result in a
4913runtime error (as that breakpoint has now been automatically deleted).
4914@end defun
4915
4916@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{]})
4917This second form of creating a new breakpoint specifies the explicit
4918location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
4919be created in the specified source file @var{source}, at the specified
4920@var{function}, @var{label} and @var{line}.
4921
4922@var{internal} and @var{temporary} have the same usage as explained previously.
329baa95
DE
4923@end defun
4924
cda75e70
TT
4925The available types are represented by constants defined in the @code{gdb}
4926module:
4927
4928@vtable @code
4929@vindex BP_BREAKPOINT
4930@item gdb.BP_BREAKPOINT
4931Normal code breakpoint.
4932
4933@vindex BP_WATCHPOINT
4934@item gdb.BP_WATCHPOINT
4935Watchpoint breakpoint.
4936
4937@vindex BP_HARDWARE_WATCHPOINT
4938@item gdb.BP_HARDWARE_WATCHPOINT
4939Hardware assisted watchpoint.
4940
4941@vindex BP_READ_WATCHPOINT
4942@item gdb.BP_READ_WATCHPOINT
4943Hardware assisted read watchpoint.
4944
4945@vindex BP_ACCESS_WATCHPOINT
4946@item gdb.BP_ACCESS_WATCHPOINT
4947Hardware assisted access watchpoint.
4948@end vtable
4949
4950The available watchpoint types represented by constants are defined in the
4951@code{gdb} module:
4952
4953@vtable @code
4954@vindex WP_READ
4955@item gdb.WP_READ
4956Read only watchpoint.
4957
4958@vindex WP_WRITE
4959@item gdb.WP_WRITE
4960Write only watchpoint.
4961
4962@vindex WP_ACCESS
4963@item gdb.WP_ACCESS
4964Read/Write watchpoint.
4965@end vtable
4966
329baa95
DE
4967@defun Breakpoint.stop (self)
4968The @code{gdb.Breakpoint} class can be sub-classed and, in
4969particular, you may choose to implement the @code{stop} method.
4970If this method is defined in a sub-class of @code{gdb.Breakpoint},
4971it will be called when the inferior reaches any location of a
4972breakpoint which instantiates that sub-class. If the method returns
4973@code{True}, the inferior will be stopped at the location of the
4974breakpoint, otherwise the inferior will continue.
4975
4976If there are multiple breakpoints at the same location with a
4977@code{stop} method, each one will be called regardless of the
4978return status of the previous. This ensures that all @code{stop}
4979methods have a chance to execute at that location. In this scenario
4980if one of the methods returns @code{True} but the others return
4981@code{False}, the inferior will still be stopped.
4982
4983You should not alter the execution state of the inferior (i.e.@:, step,
4984next, etc.), alter the current frame context (i.e.@:, change the current
4985active frame), or alter, add or delete any breakpoint. As a general
4986rule, you should not alter any data within @value{GDBN} or the inferior
4987at this time.
4988
4989Example @code{stop} implementation:
4990
4991@smallexample
4992class MyBreakpoint (gdb.Breakpoint):
4993 def stop (self):
4994 inf_val = gdb.parse_and_eval("foo")
4995 if inf_val == 3:
4996 return True
4997 return False
4998@end smallexample
4999@end defun
5000
329baa95
DE
5001@defun Breakpoint.is_valid ()
5002Return @code{True} if this @code{Breakpoint} object is valid,
5003@code{False} otherwise. A @code{Breakpoint} object can become invalid
5004if the user deletes the breakpoint. In this case, the object still
5005exists, but the underlying breakpoint does not. In the cases of
5006watchpoint scope, the watchpoint remains valid even if execution of the
5007inferior leaves the scope of that watchpoint.
5008@end defun
5009
fab3a15d 5010@defun Breakpoint.delete ()
329baa95
DE
5011Permanently deletes the @value{GDBN} breakpoint. This also
5012invalidates the Python @code{Breakpoint} object. Any further access
5013to this object's attributes or methods will raise an error.
5014@end defun
5015
5016@defvar Breakpoint.enabled
5017This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5018@code{False} otherwise. This attribute is writable. You can use it to enable
5019or disable the breakpoint.
329baa95
DE
5020@end defvar
5021
5022@defvar Breakpoint.silent
5023This attribute is @code{True} if the breakpoint is silent, and
5024@code{False} otherwise. This attribute is writable.
5025
5026Note that a breakpoint can also be silent if it has commands and the
5027first command is @code{silent}. This is not reported by the
5028@code{silent} attribute.
5029@end defvar
5030
93daf339
TT
5031@defvar Breakpoint.pending
5032This attribute is @code{True} if the breakpoint is pending, and
5033@code{False} otherwise. @xref{Set Breaks}. This attribute is
5034read-only.
5035@end defvar
5036
22a02324 5037@anchor{python_breakpoint_thread}
329baa95 5038@defvar Breakpoint.thread
5d5658a1
PA
5039If the breakpoint is thread-specific, this attribute holds the
5040thread's global id. If the breakpoint is not thread-specific, this
5041attribute is @code{None}. This attribute is writable.
329baa95
DE
5042@end defvar
5043
5044@defvar Breakpoint.task
5045If the breakpoint is Ada task-specific, this attribute holds the Ada task
5046id. If the breakpoint is not task-specific (or the underlying
5047language is not Ada), this attribute is @code{None}. This attribute
5048is writable.
5049@end defvar
5050
5051@defvar Breakpoint.ignore_count
5052This attribute holds the ignore count for the breakpoint, an integer.
5053This attribute is writable.
5054@end defvar
5055
5056@defvar Breakpoint.number
5057This attribute holds the breakpoint's number --- the identifier used by
5058the user to manipulate the breakpoint. This attribute is not writable.
5059@end defvar
5060
5061@defvar Breakpoint.type
5062This attribute holds the breakpoint's type --- the identifier used to
5063determine the actual breakpoint type or use-case. This attribute is not
5064writable.
5065@end defvar
5066
5067@defvar Breakpoint.visible
5068This attribute tells whether the breakpoint is visible to the user
5069when set, or when the @samp{info breakpoints} command is run. This
5070attribute is not writable.
5071@end defvar
5072
5073@defvar Breakpoint.temporary
5074This attribute indicates whether the breakpoint was created as a
5075temporary breakpoint. Temporary breakpoints are automatically deleted
5076after that breakpoint has been hit. Access to this attribute, and all
5077other attributes and functions other than the @code{is_valid}
5078function, will result in an error after the breakpoint has been hit
5079(as it has been automatically deleted). This attribute is not
5080writable.
5081@end defvar
5082
329baa95
DE
5083@defvar Breakpoint.hit_count
5084This attribute holds the hit count for the breakpoint, an integer.
5085This attribute is writable, but currently it can only be set to zero.
5086@end defvar
5087
5088@defvar Breakpoint.location
5089This attribute holds the location of the breakpoint, as specified by
5090the user. It is a string. If the breakpoint does not have a location
5091(that is, it is a watchpoint) the attribute's value is @code{None}. This
5092attribute is not writable.
5093@end defvar
5094
5095@defvar Breakpoint.expression
5096This attribute holds a breakpoint expression, as specified by
5097the user. It is a string. If the breakpoint does not have an
5098expression (the breakpoint is not a watchpoint) the attribute's value
5099is @code{None}. This attribute is not writable.
5100@end defvar
5101
5102@defvar Breakpoint.condition
5103This attribute holds the condition of the breakpoint, as specified by
5104the user. It is a string. If there is no condition, this attribute's
5105value is @code{None}. This attribute is writable.
5106@end defvar
5107
5108@defvar Breakpoint.commands
5109This attribute holds the commands attached to the breakpoint. If
5110there are commands, this attribute's value is a string holding all the
5111commands, separated by newlines. If there are no commands, this
5112attribute is @code{None}. This attribute is not writable.
5113@end defvar
5114
5115@node Finish Breakpoints in Python
5116@subsubsection Finish Breakpoints
5117
5118@cindex python finish breakpoints
5119@tindex gdb.FinishBreakpoint
5120
5121A finish breakpoint is a temporary breakpoint set at the return address of
5122a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5123extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5124and deleted when the execution will run out of the breakpoint scope (i.e.@:
5125@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5126Finish breakpoints are thread specific and must be create with the right
5127thread selected.
5128
5129@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5130Create a finish breakpoint at the return address of the @code{gdb.Frame}
5131object @var{frame}. If @var{frame} is not provided, this defaults to the
5132newest frame. The optional @var{internal} argument allows the breakpoint to
5133become invisible to the user. @xref{Breakpoints In Python}, for further
5134details about this argument.
5135@end defun
5136
5137@defun FinishBreakpoint.out_of_scope (self)
5138In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5139@code{return} command, @dots{}), a function may not properly terminate, and
5140thus never hit the finish breakpoint. When @value{GDBN} notices such a
5141situation, the @code{out_of_scope} callback will be triggered.
5142
5143You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5144method:
5145
5146@smallexample
5147class MyFinishBreakpoint (gdb.FinishBreakpoint)
5148 def stop (self):
5149 print "normal finish"
5150 return True
5151
5152 def out_of_scope ():
5153 print "abnormal finish"
5154@end smallexample
5155@end defun
5156
5157@defvar FinishBreakpoint.return_value
5158When @value{GDBN} is stopped at a finish breakpoint and the frame
5159used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5160attribute will contain a @code{gdb.Value} object corresponding to the return
5161value of the function. The value will be @code{None} if the function return
5162type is @code{void} or if the return value was not computable. This attribute
5163is not writable.
5164@end defvar
5165
5166@node Lazy Strings In Python
5167@subsubsection Python representation of lazy strings.
5168
5169@cindex lazy strings in python
5170@tindex gdb.LazyString
5171
5172A @dfn{lazy string} is a string whose contents is not retrieved or
5173encoded until it is needed.
5174
5175A @code{gdb.LazyString} is represented in @value{GDBN} as an
5176@code{address} that points to a region of memory, an @code{encoding}
5177that will be used to encode that region of memory, and a @code{length}
5178to delimit the region of memory that represents the string. The
5179difference between a @code{gdb.LazyString} and a string wrapped within
5180a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5181differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5182retrieved and encoded during printing, while a @code{gdb.Value}
5183wrapping a string is immediately retrieved and encoded on creation.
5184
5185A @code{gdb.LazyString} object has the following functions:
5186
5187@defun LazyString.value ()
5188Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5189will point to the string in memory, but will lose all the delayed
5190retrieval, encoding and handling that @value{GDBN} applies to a
5191@code{gdb.LazyString}.
5192@end defun
5193
5194@defvar LazyString.address
5195This attribute holds the address of the string. This attribute is not
5196writable.
5197@end defvar
5198
5199@defvar LazyString.length
5200This attribute holds the length of the string in characters. If the
5201length is -1, then the string will be fetched and encoded up to the
5202first null of appropriate width. This attribute is not writable.
5203@end defvar
5204
5205@defvar LazyString.encoding
5206This attribute holds the encoding that will be applied to the string
5207when the string is printed by @value{GDBN}. If the encoding is not
5208set, or contains an empty string, then @value{GDBN} will select the
5209most appropriate encoding when the string is printed. This attribute
5210is not writable.
5211@end defvar
5212
5213@defvar LazyString.type
5214This attribute holds the type that is represented by the lazy string's
f8d99587 5215type. For a lazy string this is a pointer or array type. To
329baa95
DE
5216resolve this to the lazy string's character type, use the type's
5217@code{target} method. @xref{Types In Python}. This attribute is not
5218writable.
5219@end defvar
5220
5221@node Architectures In Python
5222@subsubsection Python representation of architectures
5223@cindex Python architectures
5224
5225@value{GDBN} uses architecture specific parameters and artifacts in a
5226number of its various computations. An architecture is represented
5227by an instance of the @code{gdb.Architecture} class.
5228
5229A @code{gdb.Architecture} class has the following methods:
5230
5231@defun Architecture.name ()
5232Return the name (string value) of the architecture.
5233@end defun
5234
5235@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5236Return a list of disassembled instructions starting from the memory
5237address @var{start_pc}. The optional arguments @var{end_pc} and
5238@var{count} determine the number of instructions in the returned list.
5239If both the optional arguments @var{end_pc} and @var{count} are
5240specified, then a list of at most @var{count} disassembled instructions
5241whose start address falls in the closed memory address interval from
5242@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5243specified, but @var{count} is specified, then @var{count} number of
5244instructions starting from the address @var{start_pc} are returned. If
5245@var{count} is not specified but @var{end_pc} is specified, then all
5246instructions whose start address falls in the closed memory address
5247interval from @var{start_pc} to @var{end_pc} are returned. If neither
5248@var{end_pc} nor @var{count} are specified, then a single instruction at
5249@var{start_pc} is returned. For all of these cases, each element of the
5250returned list is a Python @code{dict} with the following string keys:
5251
5252@table @code
5253
5254@item addr
5255The value corresponding to this key is a Python long integer capturing
5256the memory address of the instruction.
5257
5258@item asm
5259The value corresponding to this key is a string value which represents
5260the instruction with assembly language mnemonics. The assembly
5261language flavor used is the same as that specified by the current CLI
5262variable @code{disassembly-flavor}. @xref{Machine Code}.
5263
5264@item length
5265The value corresponding to this key is the length (integer value) of the
5266instruction in bytes.
5267
5268@end table
5269@end defun
5270
5271@node Python Auto-loading
5272@subsection Python Auto-loading
5273@cindex Python auto-loading
5274
5275When a new object file is read (for example, due to the @code{file}
5276command, or because the inferior has loaded a shared library),
5277@value{GDBN} will look for Python support scripts in several ways:
5278@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5279@xref{Auto-loading extensions}.
5280
5281The auto-loading feature is useful for supplying application-specific
5282debugging commands and scripts.
5283
5284Auto-loading can be enabled or disabled,
5285and the list of auto-loaded scripts can be printed.
5286
5287@table @code
5288@anchor{set auto-load python-scripts}
5289@kindex set auto-load python-scripts
5290@item set auto-load python-scripts [on|off]
5291Enable or disable the auto-loading of Python scripts.
5292
5293@anchor{show auto-load python-scripts}
5294@kindex show auto-load python-scripts
5295@item show auto-load python-scripts
5296Show whether auto-loading of Python scripts is enabled or disabled.
5297
5298@anchor{info auto-load python-scripts}
5299@kindex info auto-load python-scripts
5300@cindex print list of auto-loaded Python scripts
5301@item info auto-load python-scripts [@var{regexp}]
5302Print the list of all Python scripts that @value{GDBN} auto-loaded.
5303
5304Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5305the @code{.debug_gdb_scripts} section and were either not found
5306(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5307@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5308This is useful because their names are not printed when @value{GDBN}
5309tries to load them and fails. There may be many of them, and printing
5310an error message for each one is problematic.
5311
5312If @var{regexp} is supplied only Python scripts with matching names are printed.
5313
5314Example:
5315
5316@smallexample
5317(gdb) info auto-load python-scripts
5318Loaded Script
5319Yes py-section-script.py
5320 full name: /tmp/py-section-script.py
5321No my-foo-pretty-printers.py
5322@end smallexample
5323@end table
5324
9f050062 5325When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5326@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5327function (@pxref{Objfiles In Python}). This can be useful for
5328registering objfile-specific pretty-printers and frame-filters.
5329
5330@node Python modules
5331@subsection Python modules
5332@cindex python modules
5333
5334@value{GDBN} comes with several modules to assist writing Python code.
5335
5336@menu
5337* gdb.printing:: Building and registering pretty-printers.
5338* gdb.types:: Utilities for working with types.
5339* gdb.prompt:: Utilities for prompt value substitution.
5340@end menu
5341
5342@node gdb.printing
5343@subsubsection gdb.printing
5344@cindex gdb.printing
5345
5346This module provides a collection of utilities for working with
5347pretty-printers.
5348
5349@table @code
5350@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5351This class specifies the API that makes @samp{info pretty-printer},
5352@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5353Pretty-printers should generally inherit from this class.
5354
5355@item SubPrettyPrinter (@var{name})
5356For printers that handle multiple types, this class specifies the
5357corresponding API for the subprinters.
5358
5359@item RegexpCollectionPrettyPrinter (@var{name})
5360Utility class for handling multiple printers, all recognized via
5361regular expressions.
5362@xref{Writing a Pretty-Printer}, for an example.
5363
5364@item FlagEnumerationPrinter (@var{name})
5365A pretty-printer which handles printing of @code{enum} values. Unlike
5366@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5367work properly when there is some overlap between the enumeration
697aa1b7
EZ
5368constants. The argument @var{name} is the name of the printer and
5369also the name of the @code{enum} type to look up.
329baa95
DE
5370
5371@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5372Register @var{printer} with the pretty-printer list of @var{obj}.
5373If @var{replace} is @code{True} then any existing copy of the printer
5374is replaced. Otherwise a @code{RuntimeError} exception is raised
5375if a printer with the same name already exists.
5376@end table
5377
5378@node gdb.types
5379@subsubsection gdb.types
5380@cindex gdb.types
5381
5382This module provides a collection of utilities for working with
5383@code{gdb.Type} objects.
5384
5385@table @code
5386@item get_basic_type (@var{type})
5387Return @var{type} with const and volatile qualifiers stripped,
5388and with typedefs and C@t{++} references converted to the underlying type.
5389
5390C@t{++} example:
5391
5392@smallexample
5393typedef const int const_int;
5394const_int foo (3);
5395const_int& foo_ref (foo);
5396int main () @{ return 0; @}
5397@end smallexample
5398
5399Then in gdb:
5400
5401@smallexample
5402(gdb) start
5403(gdb) python import gdb.types
5404(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5405(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5406int
5407@end smallexample
5408
5409@item has_field (@var{type}, @var{field})
5410Return @code{True} if @var{type}, assumed to be a type with fields
5411(e.g., a structure or union), has field @var{field}.
5412
5413@item make_enum_dict (@var{enum_type})
5414Return a Python @code{dictionary} type produced from @var{enum_type}.
5415
5416@item deep_items (@var{type})
5417Returns a Python iterator similar to the standard
5418@code{gdb.Type.iteritems} method, except that the iterator returned
5419by @code{deep_items} will recursively traverse anonymous struct or
5420union fields. For example:
5421
5422@smallexample
5423struct A
5424@{
5425 int a;
5426 union @{
5427 int b0;
5428 int b1;
5429 @};
5430@};
5431@end smallexample
5432
5433@noindent
5434Then in @value{GDBN}:
5435@smallexample
5436(@value{GDBP}) python import gdb.types
5437(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5438(@value{GDBP}) python print struct_a.keys ()
5439@{['a', '']@}
5440(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5441@{['a', 'b0', 'b1']@}
5442@end smallexample
5443
5444@item get_type_recognizers ()
5445Return a list of the enabled type recognizers for the current context.
5446This is called by @value{GDBN} during the type-printing process
5447(@pxref{Type Printing API}).
5448
5449@item apply_type_recognizers (recognizers, type_obj)
5450Apply the type recognizers, @var{recognizers}, to the type object
5451@var{type_obj}. If any recognizer returns a string, return that
5452string. Otherwise, return @code{None}. This is called by
5453@value{GDBN} during the type-printing process (@pxref{Type Printing
5454API}).
5455
5456@item register_type_printer (locus, printer)
697aa1b7
EZ
5457This is a convenience function to register a type printer
5458@var{printer}. The printer must implement the type printer protocol.
5459The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5460the printer is registered with that objfile; a @code{gdb.Progspace},
5461in which case the printer is registered with that progspace; or
5462@code{None}, in which case the printer is registered globally.
329baa95
DE
5463
5464@item TypePrinter
5465This is a base class that implements the type printer protocol. Type
5466printers are encouraged, but not required, to derive from this class.
5467It defines a constructor:
5468
5469@defmethod TypePrinter __init__ (self, name)
5470Initialize the type printer with the given name. The new printer
5471starts in the enabled state.
5472@end defmethod
5473
5474@end table
5475
5476@node gdb.prompt
5477@subsubsection gdb.prompt
5478@cindex gdb.prompt
5479
5480This module provides a method for prompt value-substitution.
5481
5482@table @code
5483@item substitute_prompt (@var{string})
5484Return @var{string} with escape sequences substituted by values. Some
5485escape sequences take arguments. You can specify arguments inside
5486``@{@}'' immediately following the escape sequence.
5487
5488The escape sequences you can pass to this function are:
5489
5490@table @code
5491@item \\
5492Substitute a backslash.
5493@item \e
5494Substitute an ESC character.
5495@item \f
5496Substitute the selected frame; an argument names a frame parameter.
5497@item \n
5498Substitute a newline.
5499@item \p
5500Substitute a parameter's value; the argument names the parameter.
5501@item \r
5502Substitute a carriage return.
5503@item \t
5504Substitute the selected thread; an argument names a thread parameter.
5505@item \v
5506Substitute the version of GDB.
5507@item \w
5508Substitute the current working directory.
5509@item \[
5510Begin a sequence of non-printing characters. These sequences are
5511typically used with the ESC character, and are not counted in the string
5512length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5513blue-colored ``(gdb)'' prompt where the length is five.
5514@item \]
5515End a sequence of non-printing characters.
5516@end table
5517
5518For example:
5519
5520@smallexample
5521substitute_prompt (``frame: \f,
5522 print arguments: \p@{print frame-arguments@}'')
5523@end smallexample
5524
5525@exdent will return the string:
5526
5527@smallexample
5528"frame: main, print arguments: scalars"
5529@end smallexample
5530@end table
This page took 0.784251 seconds and 4 git commands to generate.