windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
32d0add0 3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
0b722aec 34#include "record.h"
cfc14b3a 35
6896c0c7 36#include "complaints.h"
cfc14b3a 37#include "dwarf2-frame.h"
9f6f94ff
TT
38#include "ax.h"
39#include "dwarf2loc.h"
111c6489 40#include "dwarf2-frame-tailcall.h"
cfc14b3a 41
ae0d2f24
UW
42struct comp_unit;
43
cfc14b3a
MK
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
ae0d2f24
UW
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
cfc14b3a
MK
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
f664829e
DE
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
cfc14b3a 70
303b6f5d
DJ
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
cfc14b3a 74 /* Encoding of addresses. */
852483bc 75 gdb_byte encoding;
cfc14b3a 76
ae0d2f24
UW
77 /* Target address size in bytes. */
78 int addr_size;
79
0963b4bd 80 /* Target pointer size in bytes. */
8da614df
CV
81 int ptr_size;
82
7131cb6e
RH
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
56c987f6
AO
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
303b6f5d
DJ
89 /* The version recorded in the CIE. */
90 unsigned char version;
2dc7f7b3
TT
91
92 /* The segment size. */
93 unsigned char segment_size;
b01c8410 94};
303b6f5d 95
b01c8410
PP
96struct dwarf2_cie_table
97{
98 int num_entries;
99 struct dwarf2_cie **entries;
cfc14b3a
MK
100};
101
102/* Frame Description Entry (FDE). */
103
104struct dwarf2_fde
105{
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
f664829e
DE
116 const gdb_byte *instructions;
117 const gdb_byte *end;
cfc14b3a 118
4bf8967c
AS
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
b01c8410 122};
4bf8967c 123
b01c8410
PP
124struct dwarf2_fde_table
125{
126 int num_entries;
127 struct dwarf2_fde **entries;
cfc14b3a
MK
128};
129
ae0d2f24
UW
130/* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133struct comp_unit
134{
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
ae0d2f24 140 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 141 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
142
143 /* Length of the loaded .debug_frame section. */
c098b58b 144 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154};
155
ac56253d
TT
156static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
4fc771b8
DJ
158
159static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
ae0d2f24
UW
161
162static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 163 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
cfc14b3a
MK
166\f
167
52059ffd
TT
168enum cfa_how_kind
169{
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
173};
174
175struct dwarf2_frame_state_reg_info
176{
177 struct dwarf2_frame_state_reg *reg;
178 int num_regs;
179
180 LONGEST cfa_offset;
181 ULONGEST cfa_reg;
182 enum cfa_how_kind cfa_how;
183 const gdb_byte *cfa_exp;
184
185 /* Used to implement DW_CFA_remember_state. */
186 struct dwarf2_frame_state_reg_info *prev;
187};
188
cfc14b3a
MK
189/* Structure describing a frame state. */
190
191struct dwarf2_frame_state
192{
193 /* Each register save state can be described in terms of a CFA slot,
194 another register, or a location expression. */
52059ffd 195 struct dwarf2_frame_state_reg_info regs;
cfc14b3a 196
cfc14b3a
MK
197 /* The PC described by the current frame state. */
198 CORE_ADDR pc;
199
200 /* Initial register set from the CIE.
201 Used to implement DW_CFA_restore. */
202 struct dwarf2_frame_state_reg_info initial;
203
204 /* The information we care about from the CIE. */
205 LONGEST data_align;
206 ULONGEST code_align;
207 ULONGEST retaddr_column;
303b6f5d
DJ
208
209 /* Flags for known producer quirks. */
210
211 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
212 and DW_CFA_def_cfa_offset takes a factored offset. */
213 int armcc_cfa_offsets_sf;
214
215 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
216 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
217 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
218};
219
220/* Store the length the expression for the CFA in the `cfa_reg' field,
221 which is unused in that case. */
222#define cfa_exp_len cfa_reg
223
f57d151a 224/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
225 columns. If necessary, enlarge the register set. */
226
227static void
228dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
229 int num_regs)
230{
231 size_t size = sizeof (struct dwarf2_frame_state_reg);
232
233 if (num_regs <= rs->num_regs)
234 return;
235
236 rs->reg = (struct dwarf2_frame_state_reg *)
237 xrealloc (rs->reg, num_regs * size);
238
239 /* Initialize newly allocated registers. */
2473a4a9 240 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
241 rs->num_regs = num_regs;
242}
243
244/* Copy the register columns in register set RS into newly allocated
245 memory and return a pointer to this newly created copy. */
246
247static struct dwarf2_frame_state_reg *
248dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
249{
d10891d4 250 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
251 struct dwarf2_frame_state_reg *reg;
252
253 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
254 memcpy (reg, rs->reg, size);
255
256 return reg;
257}
258
259/* Release the memory allocated to register set RS. */
260
261static void
262dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
263{
264 if (rs)
265 {
266 dwarf2_frame_state_free_regs (rs->prev);
267
268 xfree (rs->reg);
269 xfree (rs);
270 }
271}
272
273/* Release the memory allocated to the frame state FS. */
274
275static void
276dwarf2_frame_state_free (void *p)
277{
278 struct dwarf2_frame_state *fs = p;
279
280 dwarf2_frame_state_free_regs (fs->initial.prev);
281 dwarf2_frame_state_free_regs (fs->regs.prev);
282 xfree (fs->initial.reg);
283 xfree (fs->regs.reg);
284 xfree (fs);
285}
286\f
287
288/* Helper functions for execute_stack_op. */
289
290static CORE_ADDR
b1370418 291read_addr_from_reg (void *baton, int reg)
cfc14b3a 292{
4a4e5149
DJ
293 struct frame_info *this_frame = (struct frame_info *) baton;
294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2ed3c037 295 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
f2da6b3a 296
2ed3c037 297 return address_from_register (regnum, this_frame);
cfc14b3a
MK
298}
299
0acf8b65
JB
300/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
301
302static struct value *
303get_reg_value (void *baton, struct type *type, int reg)
304{
305 struct frame_info *this_frame = (struct frame_info *) baton;
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
307 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
308
309 return value_from_register (type, regnum, this_frame);
310}
311
cfc14b3a 312static void
852483bc 313read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
314{
315 read_memory (addr, buf, len);
316}
317
a6a5a945
LM
318/* Execute the required actions for both the DW_CFA_restore and
319DW_CFA_restore_extended instructions. */
320static void
321dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
322 struct dwarf2_frame_state *fs, int eh_frame_p)
323{
324 ULONGEST reg;
325
326 gdb_assert (fs->initial.reg);
327 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329
330 /* Check if this register was explicitly initialized in the
331 CIE initial instructions. If not, default the rule to
332 UNSPECIFIED. */
333 if (reg < fs->initial.num_regs)
334 fs->regs.reg[reg] = fs->initial.reg[reg];
335 else
336 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
337
338 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
339 complaint (&symfile_complaints, _("\
340incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 341register %s (#%d) at %s"),
a6a5a945
LM
342 gdbarch_register_name
343 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
344 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 345 paddress (gdbarch, fs->pc));
a6a5a945
LM
346}
347
9e8b7a03
JK
348/* Virtual method table for execute_stack_op below. */
349
350static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
351{
b1370418 352 read_addr_from_reg,
0acf8b65 353 get_reg_value,
9e8b7a03 354 read_mem,
523f3620
JK
355 ctx_no_get_frame_base,
356 ctx_no_get_frame_cfa,
357 ctx_no_get_frame_pc,
358 ctx_no_get_tls_address,
359 ctx_no_dwarf_call,
8e3b41a9 360 ctx_no_get_base_type,
3019eac3
DE
361 ctx_no_push_dwarf_reg_entry_value,
362 ctx_no_get_addr_index
9e8b7a03
JK
363};
364
cfc14b3a 365static CORE_ADDR
0d45f56e 366execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
367 CORE_ADDR offset, struct frame_info *this_frame,
368 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
369{
370 struct dwarf_expr_context *ctx;
371 CORE_ADDR result;
4a227398 372 struct cleanup *old_chain;
cfc14b3a
MK
373
374 ctx = new_dwarf_expr_context ();
4a227398 375 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 376 make_cleanup_value_free_to_mark (value_mark ());
4a227398 377
f7fd4728 378 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 379 ctx->addr_size = addr_size;
181cebd4 380 ctx->ref_addr_size = -1;
ac56253d 381 ctx->offset = offset;
4a4e5149 382 ctx->baton = this_frame;
9e8b7a03 383 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 384
8a9b8146 385 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 386 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 387
f2c7657e
UW
388 if (ctx->location == DWARF_VALUE_MEMORY)
389 result = dwarf_expr_fetch_address (ctx, 0);
390 else if (ctx->location == DWARF_VALUE_REGISTER)
b1370418
JB
391 result = read_addr_from_reg (this_frame,
392 value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 393 else
cec03d70
TT
394 {
395 /* This is actually invalid DWARF, but if we ever do run across
396 it somehow, we might as well support it. So, instead, report
397 it as unimplemented. */
3e43a32a
MS
398 error (_("\
399Not implemented: computing unwound register using explicit value operator"));
cec03d70 400 }
cfc14b3a 401
4a227398 402 do_cleanups (old_chain);
cfc14b3a
MK
403
404 return result;
405}
406\f
407
111c6489
JK
408/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
409 PC. Modify FS state accordingly. Return current INSN_PTR where the
410 execution has stopped, one can resume it on the next call. */
411
412static const gdb_byte *
0d45f56e 413execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
414 const gdb_byte *insn_end, struct gdbarch *gdbarch,
415 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 416{
ae0d2f24 417 int eh_frame_p = fde->eh_frame_p;
507a579c 418 unsigned int bytes_read;
e17a4113 419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
420
421 while (insn_ptr < insn_end && fs->pc <= pc)
422 {
852483bc 423 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
424 uint64_t utmp, reg;
425 int64_t offset;
cfc14b3a
MK
426
427 if ((insn & 0xc0) == DW_CFA_advance_loc)
428 fs->pc += (insn & 0x3f) * fs->code_align;
429 else if ((insn & 0xc0) == DW_CFA_offset)
430 {
431 reg = insn & 0x3f;
4fc771b8 432 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 433 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
434 offset = utmp * fs->data_align;
435 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 436 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
437 fs->regs.reg[reg].loc.offset = offset;
438 }
439 else if ((insn & 0xc0) == DW_CFA_restore)
440 {
cfc14b3a 441 reg = insn & 0x3f;
a6a5a945 442 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
443 }
444 else
445 {
446 switch (insn)
447 {
448 case DW_CFA_set_loc:
ae0d2f24 449 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 450 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
451 &bytes_read, fde->initial_location);
452 /* Apply the objfile offset for relocatable objects. */
453 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
454 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
455 insn_ptr += bytes_read;
456 break;
457
458 case DW_CFA_advance_loc1:
e17a4113 459 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
460 fs->pc += utmp * fs->code_align;
461 insn_ptr++;
462 break;
463 case DW_CFA_advance_loc2:
e17a4113 464 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 2;
467 break;
468 case DW_CFA_advance_loc4:
e17a4113 469 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
470 fs->pc += utmp * fs->code_align;
471 insn_ptr += 4;
472 break;
473
474 case DW_CFA_offset_extended:
f664829e 475 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 476 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 477 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
478 offset = utmp * fs->data_align;
479 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 480 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
481 fs->regs.reg[reg].loc.offset = offset;
482 break;
483
484 case DW_CFA_restore_extended:
f664829e 485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 486 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
487 break;
488
489 case DW_CFA_undefined:
f664829e 490 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 491 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 492 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 493 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
494 break;
495
496 case DW_CFA_same_value:
f664829e 497 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 498 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 499 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 500 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
501 break;
502
503 case DW_CFA_register:
f664829e 504 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 505 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 506 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 507 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 508 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 509 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
510 fs->regs.reg[reg].loc.reg = utmp;
511 break;
512
513 case DW_CFA_remember_state:
514 {
515 struct dwarf2_frame_state_reg_info *new_rs;
516
70ba0933 517 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
cfc14b3a
MK
518 *new_rs = fs->regs;
519 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
520 fs->regs.prev = new_rs;
521 }
522 break;
523
524 case DW_CFA_restore_state:
525 {
526 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
527
50ea7769
MK
528 if (old_rs == NULL)
529 {
e2e0b3e5 530 complaint (&symfile_complaints, _("\
5af949e3
UW
531bad CFI data; mismatched DW_CFA_restore_state at %s"),
532 paddress (gdbarch, fs->pc));
50ea7769
MK
533 }
534 else
535 {
536 xfree (fs->regs.reg);
537 fs->regs = *old_rs;
538 xfree (old_rs);
539 }
cfc14b3a
MK
540 }
541 break;
542
543 case DW_CFA_def_cfa:
f664829e
DE
544 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
545 fs->regs.cfa_reg = reg;
546 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
547
548 if (fs->armcc_cfa_offsets_sf)
549 utmp *= fs->data_align;
550
2fd481e1
PP
551 fs->regs.cfa_offset = utmp;
552 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
553 break;
554
555 case DW_CFA_def_cfa_register:
f664829e
DE
556 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
557 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
558 eh_frame_p);
559 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
560 break;
561
562 case DW_CFA_def_cfa_offset:
f664829e 563 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
564
565 if (fs->armcc_cfa_offsets_sf)
566 utmp *= fs->data_align;
567
2fd481e1 568 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
569 /* cfa_how deliberately not set. */
570 break;
571
a8504492
MK
572 case DW_CFA_nop:
573 break;
574
cfc14b3a 575 case DW_CFA_def_cfa_expression:
f664829e
DE
576 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
577 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
578 fs->regs.cfa_exp = insn_ptr;
579 fs->regs.cfa_how = CFA_EXP;
580 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
581 break;
582
583 case DW_CFA_expression:
f664829e 584 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 585 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 586 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 587 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
588 fs->regs.reg[reg].loc.exp = insn_ptr;
589 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 590 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
591 insn_ptr += utmp;
592 break;
593
a8504492 594 case DW_CFA_offset_extended_sf:
f664829e 595 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 596 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 597 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 598 offset *= fs->data_align;
a8504492 599 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 600 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
601 fs->regs.reg[reg].loc.offset = offset;
602 break;
603
46ea248b 604 case DW_CFA_val_offset:
f664829e 605 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 606 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 607 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
608 offset = utmp * fs->data_align;
609 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
610 fs->regs.reg[reg].loc.offset = offset;
611 break;
612
613 case DW_CFA_val_offset_sf:
f664829e 614 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 615 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 616 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
617 offset *= fs->data_align;
618 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
619 fs->regs.reg[reg].loc.offset = offset;
620 break;
621
622 case DW_CFA_val_expression:
f664829e 623 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 624 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 625 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
626 fs->regs.reg[reg].loc.exp = insn_ptr;
627 fs->regs.reg[reg].exp_len = utmp;
628 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
629 insn_ptr += utmp;
630 break;
631
a8504492 632 case DW_CFA_def_cfa_sf:
f664829e
DE
633 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
634 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 635 eh_frame_p);
f664829e 636 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
637 fs->regs.cfa_offset = offset * fs->data_align;
638 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
639 break;
640
641 case DW_CFA_def_cfa_offset_sf:
f664829e 642 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 643 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 644 /* cfa_how deliberately not set. */
cfc14b3a
MK
645 break;
646
a77f4086
MK
647 case DW_CFA_GNU_window_save:
648 /* This is SPARC-specific code, and contains hard-coded
649 constants for the register numbering scheme used by
650 GCC. Rather than having a architecture-specific
651 operation that's only ever used by a single
652 architecture, we provide the implementation here.
653 Incidentally that's what GCC does too in its
654 unwinder. */
655 {
4a4e5149 656 int size = register_size (gdbarch, 0);
9a619af0 657
a77f4086
MK
658 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
659 for (reg = 8; reg < 16; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
662 fs->regs.reg[reg].loc.reg = reg + 16;
663 }
664 for (reg = 16; reg < 32; reg++)
665 {
666 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
667 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
668 }
669 }
670 break;
671
cfc14b3a
MK
672 case DW_CFA_GNU_args_size:
673 /* Ignored. */
f664829e 674 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
675 break;
676
58894217 677 case DW_CFA_GNU_negative_offset_extended:
f664829e 678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 679 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
680 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
681 offset = utmp * fs->data_align;
58894217
JK
682 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
683 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
684 fs->regs.reg[reg].loc.offset = -offset;
685 break;
686
cfc14b3a 687 default:
3e43a32a
MS
688 internal_error (__FILE__, __LINE__,
689 _("Unknown CFI encountered."));
cfc14b3a
MK
690 }
691 }
692 }
693
111c6489
JK
694 if (fs->initial.reg == NULL)
695 {
696 /* Don't allow remember/restore between CIE and FDE programs. */
697 dwarf2_frame_state_free_regs (fs->regs.prev);
698 fs->regs.prev = NULL;
699 }
700
701 return insn_ptr;
cfc14b3a 702}
8f22cb90 703\f
cfc14b3a 704
8f22cb90 705/* Architecture-specific operations. */
cfc14b3a 706
8f22cb90
MK
707/* Per-architecture data key. */
708static struct gdbarch_data *dwarf2_frame_data;
709
710struct dwarf2_frame_ops
711{
712 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
713 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
714 struct frame_info *);
3ed09a32 715
4a4e5149 716 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 717 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 718
4fc771b8
DJ
719 /* Convert .eh_frame register number to DWARF register number, or
720 adjust .debug_frame register number. */
721 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
722};
723
8f22cb90
MK
724/* Default architecture-specific register state initialization
725 function. */
726
727static void
728dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 729 struct dwarf2_frame_state_reg *reg,
4a4e5149 730 struct frame_info *this_frame)
8f22cb90
MK
731{
732 /* If we have a register that acts as a program counter, mark it as
733 a destination for the return address. If we have a register that
734 serves as the stack pointer, arrange for it to be filled with the
735 call frame address (CFA). The other registers are marked as
736 unspecified.
737
738 We copy the return address to the program counter, since many
739 parts in GDB assume that it is possible to get the return address
740 by unwinding the program counter register. However, on ISA's
741 with a dedicated return address register, the CFI usually only
742 contains information to unwind that return address register.
743
744 The reason we're treating the stack pointer special here is
745 because in many cases GCC doesn't emit CFI for the stack pointer
746 and implicitly assumes that it is equal to the CFA. This makes
747 some sense since the DWARF specification (version 3, draft 8,
748 p. 102) says that:
749
750 "Typically, the CFA is defined to be the value of the stack
751 pointer at the call site in the previous frame (which may be
752 different from its value on entry to the current frame)."
753
754 However, this isn't true for all platforms supported by GCC
755 (e.g. IBM S/390 and zSeries). Those architectures should provide
756 their own architecture-specific initialization function. */
05cbe71a 757
ad010def 758 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 759 reg->how = DWARF2_FRAME_REG_RA;
ad010def 760 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
761 reg->how = DWARF2_FRAME_REG_CFA;
762}
05cbe71a 763
8f22cb90 764/* Return a default for the architecture-specific operations. */
05cbe71a 765
8f22cb90 766static void *
030f20e1 767dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
768{
769 struct dwarf2_frame_ops *ops;
770
030f20e1 771 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
772 ops->init_reg = dwarf2_frame_default_init_reg;
773 return ops;
774}
05cbe71a 775
8f22cb90
MK
776/* Set the architecture-specific register state initialization
777 function for GDBARCH to INIT_REG. */
778
779void
780dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
781 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
782 struct dwarf2_frame_state_reg *,
783 struct frame_info *))
8f22cb90 784{
030f20e1 785 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 786
8f22cb90
MK
787 ops->init_reg = init_reg;
788}
789
790/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
791
792static void
793dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 794 struct dwarf2_frame_state_reg *reg,
4a4e5149 795 struct frame_info *this_frame)
05cbe71a 796{
030f20e1 797 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 798
4a4e5149 799 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 800}
3ed09a32
DJ
801
802/* Set the architecture-specific signal trampoline recognition
803 function for GDBARCH to SIGNAL_FRAME_P. */
804
805void
806dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
807 int (*signal_frame_p) (struct gdbarch *,
808 struct frame_info *))
809{
810 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
811
812 ops->signal_frame_p = signal_frame_p;
813}
814
815/* Query the architecture-specific signal frame recognizer for
4a4e5149 816 THIS_FRAME. */
3ed09a32
DJ
817
818static int
819dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 820 struct frame_info *this_frame)
3ed09a32
DJ
821{
822 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
823
824 if (ops->signal_frame_p == NULL)
825 return 0;
4a4e5149 826 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 827}
4bf8967c 828
4fc771b8
DJ
829/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
830 register numbers. */
4bf8967c
AS
831
832void
4fc771b8
DJ
833dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
834 int (*adjust_regnum) (struct gdbarch *,
835 int, int))
4bf8967c
AS
836{
837 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
838
4fc771b8 839 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
840}
841
4fc771b8
DJ
842/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
843 register. */
4bf8967c 844
4fc771b8 845static int
3e43a32a
MS
846dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
847 int regnum, int eh_frame_p)
4bf8967c
AS
848{
849 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
850
4fc771b8 851 if (ops->adjust_regnum == NULL)
4bf8967c 852 return regnum;
4fc771b8 853 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 854}
303b6f5d
DJ
855
856static void
857dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
858 struct dwarf2_fde *fde)
859{
43f3e411 860 struct compunit_symtab *cust;
303b6f5d 861
43f3e411
DE
862 cust = find_pc_compunit_symtab (fs->pc);
863 if (cust == NULL)
303b6f5d
DJ
864 return;
865
43f3e411 866 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
a6c727b2
DJ
867 {
868 if (fde->cie->version == 1)
869 fs->armcc_cfa_offsets_sf = 1;
870
871 if (fde->cie->version == 1)
872 fs->armcc_cfa_offsets_reversed = 1;
873
874 /* The reversed offset problem is present in some compilers
875 using DWARF3, but it was eventually fixed. Check the ARM
876 defined augmentations, which are in the format "armcc" followed
877 by a list of one-character options. The "+" option means
878 this problem is fixed (no quirk needed). If the armcc
879 augmentation is missing, the quirk is needed. */
880 if (fde->cie->version == 3
61012eef 881 && (!startswith (fde->cie->augmentation, "armcc")
a6c727b2
DJ
882 || strchr (fde->cie->augmentation + 5, '+') == NULL))
883 fs->armcc_cfa_offsets_reversed = 1;
884
885 return;
886 }
303b6f5d 887}
8f22cb90
MK
888\f
889
a8fd5589
TT
890/* See dwarf2-frame.h. */
891
892int
893dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
894 struct dwarf2_per_cu_data *data,
895 int *regnum_out, LONGEST *offset_out,
896 CORE_ADDR *text_offset_out,
897 const gdb_byte **cfa_start_out,
898 const gdb_byte **cfa_end_out)
9f6f94ff 899{
9f6f94ff 900 struct dwarf2_fde *fde;
22e048c9 901 CORE_ADDR text_offset;
9f6f94ff
TT
902 struct dwarf2_frame_state fs;
903 int addr_size;
904
905 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
906
907 fs.pc = pc;
908
909 /* Find the correct FDE. */
910 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
911 if (fde == NULL)
912 error (_("Could not compute CFA; needed to translate this expression"));
913
914 /* Extract any interesting information from the CIE. */
915 fs.data_align = fde->cie->data_alignment_factor;
916 fs.code_align = fde->cie->code_alignment_factor;
917 fs.retaddr_column = fde->cie->return_address_register;
918 addr_size = fde->cie->addr_size;
919
920 /* Check for "quirks" - known bugs in producers. */
921 dwarf2_frame_find_quirks (&fs, fde);
922
923 /* First decode all the insns in the CIE. */
924 execute_cfa_program (fde, fde->cie->initial_instructions,
925 fde->cie->end, gdbarch, pc, &fs);
926
927 /* Save the initialized register set. */
928 fs.initial = fs.regs;
929 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
930
931 /* Then decode the insns in the FDE up to our target PC. */
932 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
933
934 /* Calculate the CFA. */
935 switch (fs.regs.cfa_how)
936 {
937 case CFA_REG_OFFSET:
938 {
939 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
940
941 if (regnum == -1)
942 error (_("Unable to access DWARF register number %d"),
943 (int) fs.regs.cfa_reg); /* FIXME */
a8fd5589
TT
944
945 *regnum_out = regnum;
946 if (fs.armcc_cfa_offsets_reversed)
947 *offset_out = -fs.regs.cfa_offset;
948 else
949 *offset_out = fs.regs.cfa_offset;
950 return 1;
9f6f94ff 951 }
9f6f94ff
TT
952
953 case CFA_EXP:
a8fd5589
TT
954 *text_offset_out = text_offset;
955 *cfa_start_out = fs.regs.cfa_exp;
956 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
957 return 0;
9f6f94ff
TT
958
959 default:
960 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
961 }
962}
963
964\f
8f22cb90
MK
965struct dwarf2_frame_cache
966{
967 /* DWARF Call Frame Address. */
968 CORE_ADDR cfa;
969
8fbca658
PA
970 /* Set if the return address column was marked as unavailable
971 (required non-collected memory or registers to compute). */
972 int unavailable_retaddr;
973
0228dfb9
DJ
974 /* Set if the return address column was marked as undefined. */
975 int undefined_retaddr;
976
8f22cb90
MK
977 /* Saved registers, indexed by GDB register number, not by DWARF
978 register number. */
979 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
980
981 /* Return address register. */
982 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
983
984 /* Target address size in bytes. */
985 int addr_size;
ac56253d
TT
986
987 /* The .text offset. */
988 CORE_ADDR text_offset;
111c6489 989
1ec56e88
PA
990 /* True if we already checked whether this frame is the bottom frame
991 of a virtual tail call frame chain. */
992 int checked_tailcall_bottom;
993
111c6489
JK
994 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
995 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
996 involved. Non-bottom frames of a virtual tail call frames chain use
997 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
998 them. */
999 void *tailcall_cache;
1ec56e88
PA
1000
1001 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1002 base to get the SP, to simulate the return address pushed on the
1003 stack. */
1004 LONGEST entry_cfa_sp_offset;
1005 int entry_cfa_sp_offset_p;
8f22cb90 1006};
05cbe71a 1007
78ac5f83
TT
1008/* A cleanup that sets a pointer to NULL. */
1009
1010static void
1011clear_pointer_cleanup (void *arg)
1012{
1013 void **ptr = arg;
1014
1015 *ptr = NULL;
1016}
1017
b9362cc7 1018static struct dwarf2_frame_cache *
4a4e5149 1019dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1020{
78ac5f83 1021 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1022 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1023 const int num_regs = gdbarch_num_regs (gdbarch)
1024 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1025 struct dwarf2_frame_cache *cache;
1026 struct dwarf2_frame_state *fs;
1027 struct dwarf2_fde *fde;
111c6489 1028 CORE_ADDR entry_pc;
111c6489 1029 const gdb_byte *instr;
cfc14b3a
MK
1030
1031 if (*this_cache)
1032 return *this_cache;
1033
1034 /* Allocate a new cache. */
1035 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1036 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1037 *this_cache = cache;
78ac5f83 1038 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1039
1040 /* Allocate and initialize the frame state. */
41bf6aca 1041 fs = XCNEW (struct dwarf2_frame_state);
cfc14b3a
MK
1042 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1043
1044 /* Unwind the PC.
1045
4a4e5149 1046 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1047 to abort), the compiler might optimize away the instruction at
4a4e5149 1048 its return address. As a result the return address will
cfc14b3a 1049 point at some random instruction, and the CFI for that
e4e9607c 1050 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1051 this problem by substracting 1 from the return address to get an
1052 address in the middle of a presumed call instruction (or the
1053 instruction in the associated delay slot). This should only be
1054 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1055 handlers, sentinel frames, dummy frames). The function
ad1193e7 1056 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1057 reliable the method is though; there is the potential for the
1058 register state pre-call being different to that on return. */
4a4e5149 1059 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1060
1061 /* Find the correct FDE. */
ac56253d 1062 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1063 gdb_assert (fde != NULL);
1064
1065 /* Extract any interesting information from the CIE. */
1066 fs->data_align = fde->cie->data_alignment_factor;
1067 fs->code_align = fde->cie->code_alignment_factor;
1068 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1069 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1070
303b6f5d
DJ
1071 /* Check for "quirks" - known bugs in producers. */
1072 dwarf2_frame_find_quirks (fs, fde);
1073
cfc14b3a 1074 /* First decode all the insns in the CIE. */
ae0d2f24 1075 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1076 fde->cie->end, gdbarch,
1077 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1078
1079 /* Save the initialized register set. */
1080 fs->initial = fs->regs;
1081 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1082
111c6489
JK
1083 if (get_frame_func_if_available (this_frame, &entry_pc))
1084 {
1085 /* Decode the insns in the FDE up to the entry PC. */
1086 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1087 entry_pc, fs);
1088
1089 if (fs->regs.cfa_how == CFA_REG_OFFSET
1090 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1091 == gdbarch_sp_regnum (gdbarch)))
1092 {
1ec56e88
PA
1093 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1094 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1095 }
1096 }
1097 else
1098 instr = fde->instructions;
1099
cfc14b3a 1100 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1101 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1102 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1103
492d29ea 1104 TRY
cfc14b3a 1105 {
8fbca658
PA
1106 /* Calculate the CFA. */
1107 switch (fs->regs.cfa_how)
1108 {
1109 case CFA_REG_OFFSET:
b1370418 1110 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1111 if (fs->armcc_cfa_offsets_reversed)
1112 cache->cfa -= fs->regs.cfa_offset;
1113 else
1114 cache->cfa += fs->regs.cfa_offset;
1115 break;
1116
1117 case CFA_EXP:
1118 cache->cfa =
1119 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1120 cache->addr_size, cache->text_offset,
1121 this_frame, 0, 0);
1122 break;
1123
1124 default:
1125 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1126 }
1127 }
492d29ea 1128 CATCH (ex, RETURN_MASK_ERROR)
8fbca658
PA
1129 {
1130 if (ex.error == NOT_AVAILABLE_ERROR)
1131 {
1132 cache->unavailable_retaddr = 1;
5a1cf4d6 1133 do_cleanups (old_chain);
78ac5f83 1134 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1135 return cache;
1136 }
cfc14b3a 1137
8fbca658 1138 throw_exception (ex);
cfc14b3a 1139 }
492d29ea 1140 END_CATCH
cfc14b3a 1141
05cbe71a 1142 /* Initialize the register state. */
3e2c4033
AC
1143 {
1144 int regnum;
e4e9607c 1145
3e2c4033 1146 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1147 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1148 }
1149
1150 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1151 location information in the cache. Note that we don't skip the
1152 return address column; it's perfectly all right for it to
1153 correspond to a real register. If it doesn't correspond to a
1154 real register, or if we shouldn't treat it as such,
055d23b8 1155 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1156 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1157 {
1158 int column; /* CFI speak for "register number". */
e4e9607c 1159
3e2c4033
AC
1160 for (column = 0; column < fs->regs.num_regs; column++)
1161 {
3e2c4033 1162 /* Use the GDB register number as the destination index. */
ad010def 1163 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1164
1165 /* If there's no corresponding GDB register, ignore it. */
1166 if (regnum < 0 || regnum >= num_regs)
1167 continue;
1168
1169 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1170 of all debug info registers. If it doesn't, complain (but
1171 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1172 unspecified register implies "same value" when CFI (draft
1173 7) specifies nothing at all. Such a register could equally
1174 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1175 isn't sufficient; it only checks that all registers in the
1176 range [0 .. max column] are specified, and won't detect
3e2c4033 1177 problems when a debug info register falls outside of the
e4e9607c 1178 table. We need a way of iterating through all the valid
3e2c4033 1179 DWARF2 register numbers. */
05cbe71a 1180 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1181 {
1182 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1183 complaint (&symfile_complaints, _("\
5af949e3 1184incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1185 gdbarch_register_name (gdbarch, regnum),
5af949e3 1186 paddress (gdbarch, fs->pc));
f059bf6f 1187 }
35889917
MK
1188 else
1189 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1190 }
1191 }
cfc14b3a 1192
8d5a9abc
MK
1193 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1194 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1195 {
1196 int regnum;
1197
1198 for (regnum = 0; regnum < num_regs; regnum++)
1199 {
8d5a9abc
MK
1200 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1201 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1202 {
05cbe71a
MK
1203 struct dwarf2_frame_state_reg *retaddr_reg =
1204 &fs->regs.reg[fs->retaddr_column];
1205
d4f10bf2
MK
1206 /* It seems rather bizarre to specify an "empty" column as
1207 the return adress column. However, this is exactly
1208 what GCC does on some targets. It turns out that GCC
1209 assumes that the return address can be found in the
1210 register corresponding to the return address column.
8d5a9abc
MK
1211 Incidentally, that's how we should treat a return
1212 address column specifying "same value" too. */
d4f10bf2 1213 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1214 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1215 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1216 {
1217 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1218 cache->reg[regnum] = *retaddr_reg;
1219 else
1220 cache->retaddr_reg = *retaddr_reg;
1221 }
35889917
MK
1222 else
1223 {
8d5a9abc
MK
1224 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1225 {
1226 cache->reg[regnum].loc.reg = fs->retaddr_column;
1227 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1228 }
1229 else
1230 {
1231 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1232 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1233 }
35889917
MK
1234 }
1235 }
1236 }
1237 }
cfc14b3a 1238
0228dfb9
DJ
1239 if (fs->retaddr_column < fs->regs.num_regs
1240 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1241 cache->undefined_retaddr = 1;
1242
cfc14b3a 1243 do_cleanups (old_chain);
78ac5f83 1244 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1245 return cache;
1246}
1247
8fbca658
PA
1248static enum unwind_stop_reason
1249dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1250 void **this_cache)
1251{
1252 struct dwarf2_frame_cache *cache
1253 = dwarf2_frame_cache (this_frame, this_cache);
1254
1255 if (cache->unavailable_retaddr)
1256 return UNWIND_UNAVAILABLE;
1257
1258 if (cache->undefined_retaddr)
1259 return UNWIND_OUTERMOST;
1260
1261 return UNWIND_NO_REASON;
1262}
1263
cfc14b3a 1264static void
4a4e5149 1265dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1266 struct frame_id *this_id)
1267{
1268 struct dwarf2_frame_cache *cache =
4a4e5149 1269 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1270
8fbca658 1271 if (cache->unavailable_retaddr)
5ce0145d
PA
1272 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1273 else if (cache->undefined_retaddr)
8fbca658 1274 return;
5ce0145d
PA
1275 else
1276 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1277}
1278
4a4e5149
DJ
1279static struct value *
1280dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1281 int regnum)
93d42b30 1282{
4a4e5149 1283 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1284 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1285 dwarf2_frame_cache (this_frame, this_cache);
1286 CORE_ADDR addr;
1287 int realnum;
cfc14b3a 1288
1ec56e88
PA
1289 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1290 call frame chain. */
1291 if (!cache->checked_tailcall_bottom)
1292 {
1293 cache->checked_tailcall_bottom = 1;
1294 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1295 (cache->entry_cfa_sp_offset_p
1296 ? &cache->entry_cfa_sp_offset : NULL));
1297 }
1298
111c6489
JK
1299 /* Non-bottom frames of a virtual tail call frames chain use
1300 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1301 them. If dwarf2_tailcall_prev_register_first does not have specific value
1302 unwind the register, tail call frames are assumed to have the register set
1303 of the top caller. */
1304 if (cache->tailcall_cache)
1305 {
1306 struct value *val;
1307
1308 val = dwarf2_tailcall_prev_register_first (this_frame,
1309 &cache->tailcall_cache,
1310 regnum);
1311 if (val)
1312 return val;
1313 }
1314
cfc14b3a
MK
1315 switch (cache->reg[regnum].how)
1316 {
05cbe71a 1317 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1318 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1319 mark it as optimized away; the value isn't available. */
4a4e5149 1320 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1321
05cbe71a 1322 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1323 addr = cache->cfa + cache->reg[regnum].loc.offset;
1324 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1325
05cbe71a 1326 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1327 realnum
1328 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1329 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1330
05cbe71a 1331 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1332 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1333 cache->reg[regnum].exp_len,
ac56253d
TT
1334 cache->addr_size, cache->text_offset,
1335 this_frame, cache->cfa, 1);
4a4e5149 1336 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1337
46ea248b 1338 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1339 addr = cache->cfa + cache->reg[regnum].loc.offset;
1340 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1341
1342 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1343 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1344 cache->reg[regnum].exp_len,
ac56253d
TT
1345 cache->addr_size, cache->text_offset,
1346 this_frame, cache->cfa, 1);
4a4e5149 1347 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1348
05cbe71a 1349 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1350 /* GCC, in its infinite wisdom decided to not provide unwind
1351 information for registers that are "same value". Since
1352 DWARF2 (3 draft 7) doesn't define such behavior, said
1353 registers are actually undefined (which is different to CFI
1354 "undefined"). Code above issues a complaint about this.
1355 Here just fudge the books, assume GCC, and that the value is
1356 more inner on the stack. */
4a4e5149 1357 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1358
05cbe71a 1359 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1360 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1361
05cbe71a 1362 case DWARF2_FRAME_REG_CFA:
4a4e5149 1363 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1364
ea7963f0 1365 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1366 addr = cache->cfa + cache->reg[regnum].loc.offset;
1367 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1368
8d5a9abc 1369 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1370 addr = cache->reg[regnum].loc.offset;
1371 regnum = gdbarch_dwarf2_reg_to_regnum
1372 (gdbarch, cache->retaddr_reg.loc.reg);
1373 addr += get_frame_register_unsigned (this_frame, regnum);
1374 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1375
b39cc962
DJ
1376 case DWARF2_FRAME_REG_FN:
1377 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1378
cfc14b3a 1379 default:
e2e0b3e5 1380 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1381 }
1382}
1383
111c6489
JK
1384/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1385 call frames chain. */
1386
1387static void
1388dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1389{
1390 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1391
1392 if (cache->tailcall_cache)
1393 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1394}
1395
4a4e5149
DJ
1396static int
1397dwarf2_frame_sniffer (const struct frame_unwind *self,
1398 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1399{
1ce5d6dd 1400 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1401 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1402 end up returning something past the end of this function's body.
1403 If the frame we're sniffing for is a signal frame whose start
1404 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1405 extend one byte before its start address or we could potentially
1406 select the FDE of the previous function. */
1407 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1408 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1409
56c987f6 1410 if (!fde)
4a4e5149 1411 return 0;
3ed09a32
DJ
1412
1413 /* On some targets, signal trampolines may have unwind information.
1414 We need to recognize them so that we set the frame type
1415 correctly. */
1416
56c987f6 1417 if (fde->cie->signal_frame
4a4e5149
DJ
1418 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1419 this_frame))
1420 return self->type == SIGTRAMP_FRAME;
1421
111c6489
JK
1422 if (self->type != NORMAL_FRAME)
1423 return 0;
1424
111c6489 1425 return 1;
4a4e5149
DJ
1426}
1427
1428static const struct frame_unwind dwarf2_frame_unwind =
1429{
1430 NORMAL_FRAME,
8fbca658 1431 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1432 dwarf2_frame_this_id,
1433 dwarf2_frame_prev_register,
1434 NULL,
111c6489
JK
1435 dwarf2_frame_sniffer,
1436 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1437};
1438
1439static const struct frame_unwind dwarf2_signal_frame_unwind =
1440{
1441 SIGTRAMP_FRAME,
8fbca658 1442 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1443 dwarf2_frame_this_id,
1444 dwarf2_frame_prev_register,
1445 NULL,
111c6489
JK
1446 dwarf2_frame_sniffer,
1447
1448 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1449 NULL
4a4e5149 1450};
cfc14b3a 1451
4a4e5149
DJ
1452/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1453
1454void
1455dwarf2_append_unwinders (struct gdbarch *gdbarch)
1456{
111c6489
JK
1457 /* TAILCALL_FRAME must be first to find the record by
1458 dwarf2_tailcall_sniffer_first. */
1459 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1460
4a4e5149
DJ
1461 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1462 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1463}
1464\f
1465
1466/* There is no explicitly defined relationship between the CFA and the
1467 location of frame's local variables and arguments/parameters.
1468 Therefore, frame base methods on this page should probably only be
1469 used as a last resort, just to avoid printing total garbage as a
1470 response to the "info frame" command. */
1471
1472static CORE_ADDR
4a4e5149 1473dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1474{
1475 struct dwarf2_frame_cache *cache =
4a4e5149 1476 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1477
1478 return cache->cfa;
1479}
1480
1481static const struct frame_base dwarf2_frame_base =
1482{
1483 &dwarf2_frame_unwind,
1484 dwarf2_frame_base_address,
1485 dwarf2_frame_base_address,
1486 dwarf2_frame_base_address
1487};
1488
1489const struct frame_base *
4a4e5149 1490dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1491{
4a4e5149 1492 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1493
ac56253d 1494 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1495 return &dwarf2_frame_base;
1496
1497 return NULL;
1498}
e7802207
TT
1499
1500/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1501 the DWARF unwinder. This is used to implement
1502 DW_OP_call_frame_cfa. */
1503
1504CORE_ADDR
1505dwarf2_frame_cfa (struct frame_info *this_frame)
1506{
0b722aec
MM
1507 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1508 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1509 throw_error (NOT_AVAILABLE_ERROR,
1510 _("cfa not available for record btrace target"));
1511
e7802207
TT
1512 while (get_frame_type (this_frame) == INLINE_FRAME)
1513 this_frame = get_prev_frame (this_frame);
32261e52
MM
1514 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1515 throw_error (NOT_AVAILABLE_ERROR,
1516 _("can't compute CFA for this frame: "
1517 "required registers or memory are unavailable"));
14aba1ac
JB
1518
1519 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1520 throw_error (NOT_AVAILABLE_ERROR,
1521 _("can't compute CFA for this frame: "
1522 "frame base not available"));
1523
e7802207
TT
1524 return get_frame_base (this_frame);
1525}
cfc14b3a 1526\f
8f22cb90 1527const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1528
cfc14b3a 1529static unsigned int
f664829e 1530read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1531{
852483bc 1532 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1533}
1534
1535static unsigned int
f664829e 1536read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1537{
852483bc 1538 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1539}
1540
1541static ULONGEST
f664829e 1542read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1543{
852483bc 1544 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1545}
1546
1547static ULONGEST
f664829e
DE
1548read_initial_length (bfd *abfd, const gdb_byte *buf,
1549 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1550{
1551 LONGEST result;
1552
852483bc 1553 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1554 if (result == 0xffffffff)
1555 {
852483bc 1556 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1557 *bytes_read_ptr = 12;
1558 }
1559 else
1560 *bytes_read_ptr = 4;
1561
1562 return result;
1563}
1564\f
1565
1566/* Pointer encoding helper functions. */
1567
1568/* GCC supports exception handling based on DWARF2 CFI. However, for
1569 technical reasons, it encodes addresses in its FDE's in a different
1570 way. Several "pointer encodings" are supported. The encoding
1571 that's used for a particular FDE is determined by the 'R'
1572 augmentation in the associated CIE. The argument of this
1573 augmentation is a single byte.
1574
1575 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1576 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1577 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1578 address should be interpreted (absolute, relative to the current
1579 position in the FDE, ...). Bit 7, indicates that the address
1580 should be dereferenced. */
1581
852483bc 1582static gdb_byte
cfc14b3a
MK
1583encoding_for_size (unsigned int size)
1584{
1585 switch (size)
1586 {
1587 case 2:
1588 return DW_EH_PE_udata2;
1589 case 4:
1590 return DW_EH_PE_udata4;
1591 case 8:
1592 return DW_EH_PE_udata8;
1593 default:
e2e0b3e5 1594 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1595 }
1596}
1597
cfc14b3a 1598static CORE_ADDR
852483bc 1599read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1600 int ptr_len, const gdb_byte *buf,
1601 unsigned int *bytes_read_ptr,
ae0d2f24 1602 CORE_ADDR func_base)
cfc14b3a 1603{
68f6cf99 1604 ptrdiff_t offset;
cfc14b3a
MK
1605 CORE_ADDR base;
1606
1607 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1608 FDE's. */
1609 if (encoding & DW_EH_PE_indirect)
1610 internal_error (__FILE__, __LINE__,
e2e0b3e5 1611 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1612
68f6cf99
MK
1613 *bytes_read_ptr = 0;
1614
cfc14b3a
MK
1615 switch (encoding & 0x70)
1616 {
1617 case DW_EH_PE_absptr:
1618 base = 0;
1619 break;
1620 case DW_EH_PE_pcrel:
f2fec864 1621 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1622 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1623 break;
0912c7f2
MK
1624 case DW_EH_PE_datarel:
1625 base = unit->dbase;
1626 break;
0fd85043
CV
1627 case DW_EH_PE_textrel:
1628 base = unit->tbase;
1629 break;
03ac2a74 1630 case DW_EH_PE_funcrel:
ae0d2f24 1631 base = func_base;
03ac2a74 1632 break;
68f6cf99
MK
1633 case DW_EH_PE_aligned:
1634 base = 0;
852483bc 1635 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1636 if ((offset % ptr_len) != 0)
1637 {
1638 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1639 buf += *bytes_read_ptr;
1640 }
1641 break;
cfc14b3a 1642 default:
3e43a32a
MS
1643 internal_error (__FILE__, __LINE__,
1644 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1645 }
1646
b04de778 1647 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1648 {
1649 encoding |= encoding_for_size (ptr_len);
1650 if (bfd_get_sign_extend_vma (unit->abfd))
1651 encoding |= DW_EH_PE_signed;
1652 }
cfc14b3a
MK
1653
1654 switch (encoding & 0x0f)
1655 {
a81b10ae
MK
1656 case DW_EH_PE_uleb128:
1657 {
9fccedf7 1658 uint64_t value;
0d45f56e 1659 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1660
f664829e 1661 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1662 return base + value;
1663 }
cfc14b3a 1664 case DW_EH_PE_udata2:
68f6cf99 1665 *bytes_read_ptr += 2;
cfc14b3a
MK
1666 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1667 case DW_EH_PE_udata4:
68f6cf99 1668 *bytes_read_ptr += 4;
cfc14b3a
MK
1669 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1670 case DW_EH_PE_udata8:
68f6cf99 1671 *bytes_read_ptr += 8;
cfc14b3a 1672 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1673 case DW_EH_PE_sleb128:
1674 {
9fccedf7 1675 int64_t value;
0d45f56e 1676 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1677
f664829e 1678 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1679 return base + value;
1680 }
cfc14b3a 1681 case DW_EH_PE_sdata2:
68f6cf99 1682 *bytes_read_ptr += 2;
cfc14b3a
MK
1683 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1684 case DW_EH_PE_sdata4:
68f6cf99 1685 *bytes_read_ptr += 4;
cfc14b3a
MK
1686 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1687 case DW_EH_PE_sdata8:
68f6cf99 1688 *bytes_read_ptr += 8;
cfc14b3a
MK
1689 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1690 default:
3e43a32a
MS
1691 internal_error (__FILE__, __LINE__,
1692 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1693 }
1694}
1695\f
1696
b01c8410
PP
1697static int
1698bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1699{
b01c8410
PP
1700 ULONGEST cie_pointer = *(ULONGEST *) key;
1701 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1702
b01c8410
PP
1703 if (cie_pointer == cie->cie_pointer)
1704 return 0;
cfc14b3a 1705
b01c8410
PP
1706 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1707}
1708
1709/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1710static struct dwarf2_cie *
1711find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1712{
1713 struct dwarf2_cie **p_cie;
cfc14b3a 1714
65a97ab3
PP
1715 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1716 bsearch be non-NULL. */
1717 if (cie_table->entries == NULL)
1718 {
1719 gdb_assert (cie_table->num_entries == 0);
1720 return NULL;
1721 }
1722
b01c8410
PP
1723 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1724 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1725 if (p_cie != NULL)
1726 return *p_cie;
cfc14b3a
MK
1727 return NULL;
1728}
1729
b01c8410 1730/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1731static void
b01c8410 1732add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1733{
b01c8410
PP
1734 const int n = cie_table->num_entries;
1735
1736 gdb_assert (n < 1
1737 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1738
1739 cie_table->entries =
1740 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1741 cie_table->entries[n] = cie;
1742 cie_table->num_entries = n + 1;
1743}
1744
1745static int
1746bsearch_fde_cmp (const void *key, const void *element)
1747{
1748 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1749 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1750
b01c8410
PP
1751 if (seek_pc < fde->initial_location)
1752 return -1;
1753 if (seek_pc < fde->initial_location + fde->address_range)
1754 return 0;
1755 return 1;
cfc14b3a
MK
1756}
1757
1758/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1759 inital location associated with it into *PC. */
1760
1761static struct dwarf2_fde *
ac56253d 1762dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1763{
1764 struct objfile *objfile;
1765
1766 ALL_OBJFILES (objfile)
1767 {
b01c8410
PP
1768 struct dwarf2_fde_table *fde_table;
1769 struct dwarf2_fde **p_fde;
cfc14b3a 1770 CORE_ADDR offset;
b01c8410 1771 CORE_ADDR seek_pc;
cfc14b3a 1772
b01c8410
PP
1773 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1774 if (fde_table == NULL)
be391dca
TT
1775 {
1776 dwarf2_build_frame_info (objfile);
1777 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1778 }
1779 gdb_assert (fde_table != NULL);
1780
1781 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1782 continue;
1783
1784 gdb_assert (objfile->section_offsets);
1785 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1786
b01c8410
PP
1787 gdb_assert (fde_table->num_entries > 0);
1788 if (*pc < offset + fde_table->entries[0]->initial_location)
1789 continue;
1790
1791 seek_pc = *pc - offset;
1792 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1793 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1794 if (p_fde != NULL)
1795 {
1796 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1797 if (out_offset)
1798 *out_offset = offset;
b01c8410
PP
1799 return *p_fde;
1800 }
cfc14b3a 1801 }
cfc14b3a
MK
1802 return NULL;
1803}
1804
b01c8410 1805/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1806static void
b01c8410 1807add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1808{
b01c8410
PP
1809 if (fde->address_range == 0)
1810 /* Discard useless FDEs. */
1811 return;
1812
1813 fde_table->num_entries += 1;
1814 fde_table->entries =
1815 xrealloc (fde_table->entries,
1816 fde_table->num_entries * sizeof (fde_table->entries[0]));
1817 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1818}
1819
cfc14b3a 1820#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1821
8bd90839
FM
1822/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1823 or any of them. */
1824
1825enum eh_frame_type
1826{
1827 EH_CIE_TYPE_ID = 1 << 0,
1828 EH_FDE_TYPE_ID = 1 << 1,
1829 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1830};
1831
f664829e
DE
1832static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1833 const gdb_byte *start,
1834 int eh_frame_p,
1835 struct dwarf2_cie_table *cie_table,
1836 struct dwarf2_fde_table *fde_table,
1837 enum eh_frame_type entry_type);
8bd90839
FM
1838
1839/* Decode the next CIE or FDE, entry_type specifies the expected type.
1840 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1841
f664829e
DE
1842static const gdb_byte *
1843decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1844 int eh_frame_p,
b01c8410 1845 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1846 struct dwarf2_fde_table *fde_table,
1847 enum eh_frame_type entry_type)
cfc14b3a 1848{
5e2b427d 1849 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1850 const gdb_byte *buf, *end;
cfc14b3a
MK
1851 LONGEST length;
1852 unsigned int bytes_read;
6896c0c7
RH
1853 int dwarf64_p;
1854 ULONGEST cie_id;
cfc14b3a 1855 ULONGEST cie_pointer;
9fccedf7
DE
1856 int64_t sleb128;
1857 uint64_t uleb128;
cfc14b3a 1858
6896c0c7 1859 buf = start;
cfc14b3a
MK
1860 length = read_initial_length (unit->abfd, buf, &bytes_read);
1861 buf += bytes_read;
1862 end = buf + length;
1863
0963b4bd 1864 /* Are we still within the section? */
6896c0c7
RH
1865 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1866 return NULL;
1867
cfc14b3a
MK
1868 if (length == 0)
1869 return end;
1870
6896c0c7
RH
1871 /* Distinguish between 32 and 64-bit encoded frame info. */
1872 dwarf64_p = (bytes_read == 12);
cfc14b3a 1873
6896c0c7 1874 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1875 if (eh_frame_p)
1876 cie_id = 0;
1877 else if (dwarf64_p)
1878 cie_id = DW64_CIE_ID;
6896c0c7
RH
1879 else
1880 cie_id = DW_CIE_ID;
cfc14b3a
MK
1881
1882 if (dwarf64_p)
1883 {
1884 cie_pointer = read_8_bytes (unit->abfd, buf);
1885 buf += 8;
1886 }
1887 else
1888 {
1889 cie_pointer = read_4_bytes (unit->abfd, buf);
1890 buf += 4;
1891 }
1892
1893 if (cie_pointer == cie_id)
1894 {
1895 /* This is a CIE. */
1896 struct dwarf2_cie *cie;
1897 char *augmentation;
28ba0b33 1898 unsigned int cie_version;
cfc14b3a 1899
8bd90839
FM
1900 /* Check that a CIE was expected. */
1901 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1902 error (_("Found a CIE when not expecting it."));
1903
cfc14b3a
MK
1904 /* Record the offset into the .debug_frame section of this CIE. */
1905 cie_pointer = start - unit->dwarf_frame_buffer;
1906
1907 /* Check whether we've already read it. */
b01c8410 1908 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1909 return end;
1910
1911 cie = (struct dwarf2_cie *)
8b92e4d5 1912 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1913 sizeof (struct dwarf2_cie));
1914 cie->initial_instructions = NULL;
1915 cie->cie_pointer = cie_pointer;
1916
1917 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1918 depends on the target address size. */
1919 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1920
56c987f6
AO
1921 /* We'll determine the final value later, but we need to
1922 initialize it conservatively. */
1923 cie->signal_frame = 0;
1924
cfc14b3a 1925 /* Check version number. */
28ba0b33 1926 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1927 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1928 return NULL;
303b6f5d 1929 cie->version = cie_version;
cfc14b3a
MK
1930 buf += 1;
1931
1932 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1933 cie->augmentation = augmentation = (char *) buf;
852483bc 1934 buf += (strlen (augmentation) + 1);
cfc14b3a 1935
303b6f5d
DJ
1936 /* Ignore armcc augmentations. We only use them for quirks,
1937 and that doesn't happen until later. */
61012eef 1938 if (startswith (augmentation, "armcc"))
303b6f5d
DJ
1939 augmentation += strlen (augmentation);
1940
cfc14b3a
MK
1941 /* The GCC 2.x "eh" augmentation has a pointer immediately
1942 following the augmentation string, so it must be handled
1943 first. */
1944 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1945 {
1946 /* Skip. */
5e2b427d 1947 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1948 augmentation += 2;
1949 }
1950
2dc7f7b3
TT
1951 if (cie->version >= 4)
1952 {
1953 /* FIXME: check that this is the same as from the CU header. */
1954 cie->addr_size = read_1_byte (unit->abfd, buf);
1955 ++buf;
1956 cie->segment_size = read_1_byte (unit->abfd, buf);
1957 ++buf;
1958 }
1959 else
1960 {
8da614df 1961 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1962 cie->segment_size = 0;
1963 }
8da614df
CV
1964 /* Address values in .eh_frame sections are defined to have the
1965 target's pointer size. Watchout: This breaks frame info for
1966 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1967 section exists as well. */
8da614df
CV
1968 if (eh_frame_p)
1969 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1970 else
1971 cie->ptr_size = cie->addr_size;
2dc7f7b3 1972
f664829e
DE
1973 buf = gdb_read_uleb128 (buf, end, &uleb128);
1974 if (buf == NULL)
1975 return NULL;
1976 cie->code_alignment_factor = uleb128;
cfc14b3a 1977
f664829e
DE
1978 buf = gdb_read_sleb128 (buf, end, &sleb128);
1979 if (buf == NULL)
1980 return NULL;
1981 cie->data_alignment_factor = sleb128;
cfc14b3a 1982
28ba0b33
PB
1983 if (cie_version == 1)
1984 {
1985 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1986 ++buf;
28ba0b33
PB
1987 }
1988 else
f664829e
DE
1989 {
1990 buf = gdb_read_uleb128 (buf, end, &uleb128);
1991 if (buf == NULL)
1992 return NULL;
1993 cie->return_address_register = uleb128;
1994 }
1995
4fc771b8 1996 cie->return_address_register
5e2b427d 1997 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1998 cie->return_address_register,
1999 eh_frame_p);
4bf8967c 2000
7131cb6e
RH
2001 cie->saw_z_augmentation = (*augmentation == 'z');
2002 if (cie->saw_z_augmentation)
cfc14b3a 2003 {
9fccedf7 2004 uint64_t length;
cfc14b3a 2005
f664829e
DE
2006 buf = gdb_read_uleb128 (buf, end, &length);
2007 if (buf == NULL)
6896c0c7 2008 return NULL;
cfc14b3a
MK
2009 cie->initial_instructions = buf + length;
2010 augmentation++;
2011 }
2012
2013 while (*augmentation)
2014 {
2015 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2016 if (*augmentation == 'L')
2017 {
2018 /* Skip. */
2019 buf++;
2020 augmentation++;
2021 }
2022
2023 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2024 else if (*augmentation == 'R')
2025 {
2026 cie->encoding = *buf++;
2027 augmentation++;
2028 }
2029
2030 /* "P" indicates a personality routine in the CIE augmentation. */
2031 else if (*augmentation == 'P')
2032 {
1234d960 2033 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2034 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2035 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2036 buf, &bytes_read, 0);
f724bf08 2037 buf += bytes_read;
cfc14b3a
MK
2038 augmentation++;
2039 }
2040
56c987f6
AO
2041 /* "S" indicates a signal frame, such that the return
2042 address must not be decremented to locate the call frame
2043 info for the previous frame; it might even be the first
2044 instruction of a function, so decrementing it would take
2045 us to a different function. */
2046 else if (*augmentation == 'S')
2047 {
2048 cie->signal_frame = 1;
2049 augmentation++;
2050 }
2051
3e9a2e52
DJ
2052 /* Otherwise we have an unknown augmentation. Assume that either
2053 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2054 else
2055 {
3e9a2e52
DJ
2056 if (cie->initial_instructions)
2057 buf = cie->initial_instructions;
cfc14b3a
MK
2058 break;
2059 }
2060 }
2061
2062 cie->initial_instructions = buf;
2063 cie->end = end;
b01c8410 2064 cie->unit = unit;
cfc14b3a 2065
b01c8410 2066 add_cie (cie_table, cie);
cfc14b3a
MK
2067 }
2068 else
2069 {
2070 /* This is a FDE. */
2071 struct dwarf2_fde *fde;
3e29f34a 2072 CORE_ADDR addr;
cfc14b3a 2073
8bd90839
FM
2074 /* Check that an FDE was expected. */
2075 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2076 error (_("Found an FDE when not expecting it."));
2077
6896c0c7
RH
2078 /* In an .eh_frame section, the CIE pointer is the delta between the
2079 address within the FDE where the CIE pointer is stored and the
2080 address of the CIE. Convert it to an offset into the .eh_frame
2081 section. */
cfc14b3a
MK
2082 if (eh_frame_p)
2083 {
cfc14b3a
MK
2084 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2085 cie_pointer -= (dwarf64_p ? 8 : 4);
2086 }
2087
6896c0c7
RH
2088 /* In either case, validate the result is still within the section. */
2089 if (cie_pointer >= unit->dwarf_frame_size)
2090 return NULL;
2091
cfc14b3a 2092 fde = (struct dwarf2_fde *)
8b92e4d5 2093 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2094 sizeof (struct dwarf2_fde));
b01c8410 2095 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2096 if (fde->cie == NULL)
2097 {
2098 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2099 eh_frame_p, cie_table, fde_table,
2100 EH_CIE_TYPE_ID);
b01c8410 2101 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2102 }
2103
2104 gdb_assert (fde->cie != NULL);
2105
3e29f34a
MR
2106 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2107 buf, &bytes_read, 0);
2108 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
cfc14b3a
MK
2109 buf += bytes_read;
2110
2111 fde->address_range =
ae0d2f24 2112 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2113 fde->cie->ptr_size, buf, &bytes_read, 0);
3e29f34a
MR
2114 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2115 fde->address_range = addr - fde->initial_location;
cfc14b3a
MK
2116 buf += bytes_read;
2117
7131cb6e
RH
2118 /* A 'z' augmentation in the CIE implies the presence of an
2119 augmentation field in the FDE as well. The only thing known
2120 to be in here at present is the LSDA entry for EH. So we
2121 can skip the whole thing. */
2122 if (fde->cie->saw_z_augmentation)
2123 {
9fccedf7 2124 uint64_t length;
7131cb6e 2125
f664829e
DE
2126 buf = gdb_read_uleb128 (buf, end, &length);
2127 if (buf == NULL)
2128 return NULL;
2129 buf += length;
6896c0c7
RH
2130 if (buf > end)
2131 return NULL;
7131cb6e
RH
2132 }
2133
cfc14b3a
MK
2134 fde->instructions = buf;
2135 fde->end = end;
2136
4bf8967c
AS
2137 fde->eh_frame_p = eh_frame_p;
2138
b01c8410 2139 add_fde (fde_table, fde);
cfc14b3a
MK
2140 }
2141
2142 return end;
2143}
6896c0c7 2144
8bd90839
FM
2145/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2146 expect an FDE or a CIE. */
2147
f664829e
DE
2148static const gdb_byte *
2149decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2150 int eh_frame_p,
b01c8410 2151 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2152 struct dwarf2_fde_table *fde_table,
2153 enum eh_frame_type entry_type)
6896c0c7
RH
2154{
2155 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2156 const gdb_byte *ret;
6896c0c7
RH
2157 ptrdiff_t start_offset;
2158
2159 while (1)
2160 {
b01c8410 2161 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2162 cie_table, fde_table, entry_type);
6896c0c7
RH
2163 if (ret != NULL)
2164 break;
2165
2166 /* We have corrupt input data of some form. */
2167
2168 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2169 and mismatches wrt padding and alignment of debug sections. */
2170 /* Note that there is no requirement in the standard for any
2171 alignment at all in the frame unwind sections. Testing for
2172 alignment before trying to interpret data would be incorrect.
2173
2174 However, GCC traditionally arranged for frame sections to be
2175 sized such that the FDE length and CIE fields happen to be
2176 aligned (in theory, for performance). This, unfortunately,
2177 was done with .align directives, which had the side effect of
2178 forcing the section to be aligned by the linker.
2179
2180 This becomes a problem when you have some other producer that
2181 creates frame sections that are not as strictly aligned. That
2182 produces a hole in the frame info that gets filled by the
2183 linker with zeros.
2184
2185 The GCC behaviour is arguably a bug, but it's effectively now
2186 part of the ABI, so we're now stuck with it, at least at the
2187 object file level. A smart linker may decide, in the process
2188 of compressing duplicate CIE information, that it can rewrite
2189 the entire output section without this extra padding. */
2190
2191 start_offset = start - unit->dwarf_frame_buffer;
2192 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2193 {
2194 start += 4 - (start_offset & 3);
2195 workaround = ALIGN4;
2196 continue;
2197 }
2198 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2199 {
2200 start += 8 - (start_offset & 7);
2201 workaround = ALIGN8;
2202 continue;
2203 }
2204
2205 /* Nothing left to try. Arrange to return as if we've consumed
2206 the entire input section. Hopefully we'll get valid info from
2207 the other of .debug_frame/.eh_frame. */
2208 workaround = FAIL;
2209 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2210 break;
2211 }
2212
2213 switch (workaround)
2214 {
2215 case NONE:
2216 break;
2217
2218 case ALIGN4:
3e43a32a
MS
2219 complaint (&symfile_complaints, _("\
2220Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2221 unit->dwarf_frame_section->owner->filename,
2222 unit->dwarf_frame_section->name);
2223 break;
2224
2225 case ALIGN8:
3e43a32a
MS
2226 complaint (&symfile_complaints, _("\
2227Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2228 unit->dwarf_frame_section->owner->filename,
2229 unit->dwarf_frame_section->name);
2230 break;
2231
2232 default:
2233 complaint (&symfile_complaints,
e2e0b3e5 2234 _("Corrupt data in %s:%s"),
6896c0c7
RH
2235 unit->dwarf_frame_section->owner->filename,
2236 unit->dwarf_frame_section->name);
2237 break;
2238 }
2239
2240 return ret;
2241}
cfc14b3a 2242\f
b01c8410
PP
2243static int
2244qsort_fde_cmp (const void *a, const void *b)
2245{
2246 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2247 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2248
b01c8410 2249 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2250 {
2251 if (aa->address_range != bb->address_range
2252 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2253 /* Linker bug, e.g. gold/10400.
2254 Work around it by keeping stable sort order. */
2255 return (a < b) ? -1 : 1;
2256 else
2257 /* Put eh_frame entries after debug_frame ones. */
2258 return aa->eh_frame_p - bb->eh_frame_p;
2259 }
b01c8410
PP
2260
2261 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2262}
2263
cfc14b3a
MK
2264void
2265dwarf2_build_frame_info (struct objfile *objfile)
2266{
ae0d2f24 2267 struct comp_unit *unit;
f664829e 2268 const gdb_byte *frame_ptr;
b01c8410
PP
2269 struct dwarf2_cie_table cie_table;
2270 struct dwarf2_fde_table fde_table;
be391dca 2271 struct dwarf2_fde_table *fde_table2;
b01c8410
PP
2272
2273 cie_table.num_entries = 0;
2274 cie_table.entries = NULL;
2275
2276 fde_table.num_entries = 0;
2277 fde_table.entries = NULL;
cfc14b3a
MK
2278
2279 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2280 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2281 sizeof (struct comp_unit));
2282 unit->abfd = objfile->obfd;
2283 unit->objfile = objfile;
2284 unit->dbase = 0;
2285 unit->tbase = 0;
cfc14b3a 2286
d40102a1 2287 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2288 {
d40102a1
JB
2289 /* Do not read .eh_frame from separate file as they must be also
2290 present in the main file. */
2291 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2292 &unit->dwarf_frame_section,
2293 &unit->dwarf_frame_buffer,
2294 &unit->dwarf_frame_size);
2295 if (unit->dwarf_frame_size)
b01c8410 2296 {
d40102a1
JB
2297 asection *got, *txt;
2298
2299 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2300 that is used for the i386/amd64 target, which currently is
2301 the only target in GCC that supports/uses the
2302 DW_EH_PE_datarel encoding. */
2303 got = bfd_get_section_by_name (unit->abfd, ".got");
2304 if (got)
2305 unit->dbase = got->vma;
2306
2307 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2308 so far. */
2309 txt = bfd_get_section_by_name (unit->abfd, ".text");
2310 if (txt)
2311 unit->tbase = txt->vma;
2312
492d29ea 2313 TRY
8bd90839
FM
2314 {
2315 frame_ptr = unit->dwarf_frame_buffer;
2316 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2317 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2318 &cie_table, &fde_table,
2319 EH_CIE_OR_FDE_TYPE_ID);
2320 }
2321
492d29ea 2322 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2323 {
2324 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2325 objfile_name (objfile), e.message);
8bd90839
FM
2326
2327 if (fde_table.num_entries != 0)
2328 {
2329 xfree (fde_table.entries);
2330 fde_table.entries = NULL;
2331 fde_table.num_entries = 0;
2332 }
2333 /* The cie_table is discarded by the next if. */
2334 }
492d29ea 2335 END_CATCH
d40102a1
JB
2336
2337 if (cie_table.num_entries != 0)
2338 {
2339 /* Reinit cie_table: debug_frame has different CIEs. */
2340 xfree (cie_table.entries);
2341 cie_table.num_entries = 0;
2342 cie_table.entries = NULL;
2343 }
b01c8410 2344 }
cfc14b3a
MK
2345 }
2346
3017a003 2347 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2348 &unit->dwarf_frame_section,
2349 &unit->dwarf_frame_buffer,
2350 &unit->dwarf_frame_size);
2351 if (unit->dwarf_frame_size)
cfc14b3a 2352 {
8bd90839
FM
2353 int num_old_fde_entries = fde_table.num_entries;
2354
492d29ea 2355 TRY
8bd90839
FM
2356 {
2357 frame_ptr = unit->dwarf_frame_buffer;
2358 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2359 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2360 &cie_table, &fde_table,
2361 EH_CIE_OR_FDE_TYPE_ID);
2362 }
492d29ea 2363 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2364 {
2365 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2366 objfile_name (objfile), e.message);
8bd90839
FM
2367
2368 if (fde_table.num_entries != 0)
2369 {
2370 fde_table.num_entries = num_old_fde_entries;
2371 if (num_old_fde_entries == 0)
2372 {
2373 xfree (fde_table.entries);
2374 fde_table.entries = NULL;
2375 }
2376 else
2377 {
2378 fde_table.entries = xrealloc (fde_table.entries,
2379 fde_table.num_entries *
2380 sizeof (fde_table.entries[0]));
2381 }
2382 }
2383 fde_table.num_entries = num_old_fde_entries;
2384 /* The cie_table is discarded by the next if. */
2385 }
492d29ea 2386 END_CATCH
b01c8410
PP
2387 }
2388
2389 /* Discard the cie_table, it is no longer needed. */
2390 if (cie_table.num_entries != 0)
2391 {
2392 xfree (cie_table.entries);
2393 cie_table.entries = NULL; /* Paranoia. */
2394 cie_table.num_entries = 0; /* Paranoia. */
2395 }
2396
be391dca
TT
2397 /* Copy fde_table to obstack: it is needed at runtime. */
2398 fde_table2 = (struct dwarf2_fde_table *)
2399 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2400
2401 if (fde_table.num_entries == 0)
2402 {
2403 fde_table2->entries = NULL;
2404 fde_table2->num_entries = 0;
2405 }
2406 else
b01c8410 2407 {
875cdfbb
PA
2408 struct dwarf2_fde *fde_prev = NULL;
2409 struct dwarf2_fde *first_non_zero_fde = NULL;
2410 int i;
b01c8410
PP
2411
2412 /* Prepare FDE table for lookups. */
2413 qsort (fde_table.entries, fde_table.num_entries,
2414 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2415
875cdfbb
PA
2416 /* Check for leftovers from --gc-sections. The GNU linker sets
2417 the relevant symbols to zero, but doesn't zero the FDE *end*
2418 ranges because there's no relocation there. It's (offset,
2419 length), not (start, end). On targets where address zero is
2420 just another valid address this can be a problem, since the
2421 FDEs appear to be non-empty in the output --- we could pick
2422 out the wrong FDE. To work around this, when overlaps are
2423 detected, we prefer FDEs that do not start at zero.
2424
2425 Start by finding the first FDE with non-zero start. Below
2426 we'll discard all FDEs that start at zero and overlap this
2427 one. */
2428 for (i = 0; i < fde_table.num_entries; i++)
2429 {
2430 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2431
875cdfbb
PA
2432 if (fde->initial_location != 0)
2433 {
2434 first_non_zero_fde = fde;
2435 break;
2436 }
2437 }
2438
2439 /* Since we'll be doing bsearch, squeeze out identical (except
2440 for eh_frame_p) fde entries so bsearch result is predictable.
2441 Also discard leftovers from --gc-sections. */
be391dca 2442 fde_table2->num_entries = 0;
875cdfbb
PA
2443 for (i = 0; i < fde_table.num_entries; i++)
2444 {
2445 struct dwarf2_fde *fde = fde_table.entries[i];
2446
2447 if (fde->initial_location == 0
2448 && first_non_zero_fde != NULL
2449 && (first_non_zero_fde->initial_location
2450 < fde->initial_location + fde->address_range))
2451 continue;
2452
2453 if (fde_prev != NULL
2454 && fde_prev->initial_location == fde->initial_location)
2455 continue;
2456
2457 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2458 sizeof (fde_table.entries[0]));
2459 ++fde_table2->num_entries;
2460 fde_prev = fde;
2461 }
b01c8410 2462 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2463
2464 /* Discard the original fde_table. */
2465 xfree (fde_table.entries);
cfc14b3a 2466 }
be391dca
TT
2467
2468 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2469}
0d0e1a63
MK
2470
2471/* Provide a prototype to silence -Wmissing-prototypes. */
2472void _initialize_dwarf2_frame (void);
2473
2474void
2475_initialize_dwarf2_frame (void)
2476{
030f20e1 2477 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2478 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2479}
This page took 1.221708 seconds and 4 git commands to generate.