record-btrace: add record goto target methods
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
ecd75fc8 3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
cfc14b3a
MK
34
35#include "gdb_assert.h"
0e9f083f 36#include <string.h>
cfc14b3a 37
6896c0c7 38#include "complaints.h"
cfc14b3a 39#include "dwarf2-frame.h"
9f6f94ff
TT
40#include "ax.h"
41#include "dwarf2loc.h"
8fbca658 42#include "exceptions.h"
111c6489 43#include "dwarf2-frame-tailcall.h"
cfc14b3a 44
ae0d2f24
UW
45struct comp_unit;
46
cfc14b3a
MK
47/* Call Frame Information (CFI). */
48
49/* Common Information Entry (CIE). */
50
51struct dwarf2_cie
52{
ae0d2f24
UW
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
cfc14b3a
MK
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
f664829e
DE
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
cfc14b3a 73
303b6f5d
DJ
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
cfc14b3a 77 /* Encoding of addresses. */
852483bc 78 gdb_byte encoding;
cfc14b3a 79
ae0d2f24
UW
80 /* Target address size in bytes. */
81 int addr_size;
82
0963b4bd 83 /* Target pointer size in bytes. */
8da614df
CV
84 int ptr_size;
85
7131cb6e
RH
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
56c987f6
AO
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
303b6f5d
DJ
92 /* The version recorded in the CIE. */
93 unsigned char version;
2dc7f7b3
TT
94
95 /* The segment size. */
96 unsigned char segment_size;
b01c8410 97};
303b6f5d 98
b01c8410
PP
99struct dwarf2_cie_table
100{
101 int num_entries;
102 struct dwarf2_cie **entries;
cfc14b3a
MK
103};
104
105/* Frame Description Entry (FDE). */
106
107struct dwarf2_fde
108{
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
f664829e
DE
119 const gdb_byte *instructions;
120 const gdb_byte *end;
cfc14b3a 121
4bf8967c
AS
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
b01c8410 125};
4bf8967c 126
b01c8410
PP
127struct dwarf2_fde_table
128{
129 int num_entries;
130 struct dwarf2_fde **entries;
cfc14b3a
MK
131};
132
ae0d2f24
UW
133/* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136struct comp_unit
137{
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
ae0d2f24 143 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 144 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
145
146 /* Length of the loaded .debug_frame section. */
c098b58b 147 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157};
158
ac56253d
TT
159static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
4fc771b8
DJ
161
162static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
ae0d2f24
UW
164
165static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 166 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
cfc14b3a
MK
169\f
170
171/* Structure describing a frame state. */
172
173struct dwarf2_frame_state
174{
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
05cbe71a 179 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
180 int num_regs;
181
2fd481e1
PP
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
0d45f56e 189 const gdb_byte *cfa_exp;
2fd481e1 190
cfc14b3a
MK
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
cfc14b3a
MK
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
303b6f5d
DJ
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
216};
217
218/* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220#define cfa_exp_len cfa_reg
221
f57d151a 222/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
223 columns. If necessary, enlarge the register set. */
224
225static void
226dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228{
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
2473a4a9 238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
239 rs->num_regs = num_regs;
240}
241
242/* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245static struct dwarf2_frame_state_reg *
246dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247{
d10891d4 248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255}
256
257/* Release the memory allocated to register set RS. */
258
259static void
260dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261{
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269}
270
271/* Release the memory allocated to the frame state FS. */
272
273static void
274dwarf2_frame_state_free (void *p)
275{
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283}
284\f
285
286/* Helper functions for execute_stack_op. */
287
288static CORE_ADDR
b1370418 289read_addr_from_reg (void *baton, int reg)
cfc14b3a 290{
4a4e5149
DJ
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 293 int regnum;
852483bc 294 gdb_byte *buf;
cfc14b3a 295
ad010def 296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 297
852483bc 298 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 299 get_frame_register (this_frame, regnum, buf);
f2da6b3a 300
4b4589ad 301 return unpack_pointer (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
302}
303
0acf8b65
JB
304/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
305
306static struct value *
307get_reg_value (void *baton, struct type *type, int reg)
308{
309 struct frame_info *this_frame = (struct frame_info *) baton;
310 struct gdbarch *gdbarch = get_frame_arch (this_frame);
311 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
312
313 return value_from_register (type, regnum, this_frame);
314}
315
cfc14b3a 316static void
852483bc 317read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
318{
319 read_memory (addr, buf, len);
320}
321
a6a5a945
LM
322/* Execute the required actions for both the DW_CFA_restore and
323DW_CFA_restore_extended instructions. */
324static void
325dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
326 struct dwarf2_frame_state *fs, int eh_frame_p)
327{
328 ULONGEST reg;
329
330 gdb_assert (fs->initial.reg);
331 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
332 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
333
334 /* Check if this register was explicitly initialized in the
335 CIE initial instructions. If not, default the rule to
336 UNSPECIFIED. */
337 if (reg < fs->initial.num_regs)
338 fs->regs.reg[reg] = fs->initial.reg[reg];
339 else
340 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
341
342 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
343 complaint (&symfile_complaints, _("\
344incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 345register %s (#%d) at %s"),
a6a5a945
LM
346 gdbarch_register_name
347 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
348 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 349 paddress (gdbarch, fs->pc));
a6a5a945
LM
350}
351
9e8b7a03
JK
352/* Virtual method table for execute_stack_op below. */
353
354static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
355{
b1370418 356 read_addr_from_reg,
0acf8b65 357 get_reg_value,
9e8b7a03 358 read_mem,
523f3620
JK
359 ctx_no_get_frame_base,
360 ctx_no_get_frame_cfa,
361 ctx_no_get_frame_pc,
362 ctx_no_get_tls_address,
363 ctx_no_dwarf_call,
8e3b41a9 364 ctx_no_get_base_type,
3019eac3
DE
365 ctx_no_push_dwarf_reg_entry_value,
366 ctx_no_get_addr_index
9e8b7a03
JK
367};
368
cfc14b3a 369static CORE_ADDR
0d45f56e 370execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
371 CORE_ADDR offset, struct frame_info *this_frame,
372 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
373{
374 struct dwarf_expr_context *ctx;
375 CORE_ADDR result;
4a227398 376 struct cleanup *old_chain;
cfc14b3a
MK
377
378 ctx = new_dwarf_expr_context ();
4a227398 379 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 380 make_cleanup_value_free_to_mark (value_mark ());
4a227398 381
f7fd4728 382 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 383 ctx->addr_size = addr_size;
181cebd4 384 ctx->ref_addr_size = -1;
ac56253d 385 ctx->offset = offset;
4a4e5149 386 ctx->baton = this_frame;
9e8b7a03 387 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 388
8a9b8146 389 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 390 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 391
f2c7657e
UW
392 if (ctx->location == DWARF_VALUE_MEMORY)
393 result = dwarf_expr_fetch_address (ctx, 0);
394 else if (ctx->location == DWARF_VALUE_REGISTER)
b1370418
JB
395 result = read_addr_from_reg (this_frame,
396 value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 397 else
cec03d70
TT
398 {
399 /* This is actually invalid DWARF, but if we ever do run across
400 it somehow, we might as well support it. So, instead, report
401 it as unimplemented. */
3e43a32a
MS
402 error (_("\
403Not implemented: computing unwound register using explicit value operator"));
cec03d70 404 }
cfc14b3a 405
4a227398 406 do_cleanups (old_chain);
cfc14b3a
MK
407
408 return result;
409}
410\f
411
111c6489
JK
412/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
413 PC. Modify FS state accordingly. Return current INSN_PTR where the
414 execution has stopped, one can resume it on the next call. */
415
416static const gdb_byte *
0d45f56e 417execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
418 const gdb_byte *insn_end, struct gdbarch *gdbarch,
419 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 420{
ae0d2f24 421 int eh_frame_p = fde->eh_frame_p;
507a579c 422 unsigned int bytes_read;
e17a4113 423 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
424
425 while (insn_ptr < insn_end && fs->pc <= pc)
426 {
852483bc 427 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
428 uint64_t utmp, reg;
429 int64_t offset;
cfc14b3a
MK
430
431 if ((insn & 0xc0) == DW_CFA_advance_loc)
432 fs->pc += (insn & 0x3f) * fs->code_align;
433 else if ((insn & 0xc0) == DW_CFA_offset)
434 {
435 reg = insn & 0x3f;
4fc771b8 436 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 437 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
438 offset = utmp * fs->data_align;
439 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 440 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
441 fs->regs.reg[reg].loc.offset = offset;
442 }
443 else if ((insn & 0xc0) == DW_CFA_restore)
444 {
cfc14b3a 445 reg = insn & 0x3f;
a6a5a945 446 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
447 }
448 else
449 {
450 switch (insn)
451 {
452 case DW_CFA_set_loc:
ae0d2f24 453 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 454 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
455 &bytes_read, fde->initial_location);
456 /* Apply the objfile offset for relocatable objects. */
457 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
458 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
459 insn_ptr += bytes_read;
460 break;
461
462 case DW_CFA_advance_loc1:
e17a4113 463 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
464 fs->pc += utmp * fs->code_align;
465 insn_ptr++;
466 break;
467 case DW_CFA_advance_loc2:
e17a4113 468 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
469 fs->pc += utmp * fs->code_align;
470 insn_ptr += 2;
471 break;
472 case DW_CFA_advance_loc4:
e17a4113 473 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
474 fs->pc += utmp * fs->code_align;
475 insn_ptr += 4;
476 break;
477
478 case DW_CFA_offset_extended:
f664829e 479 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 480 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 481 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
482 offset = utmp * fs->data_align;
483 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 484 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
485 fs->regs.reg[reg].loc.offset = offset;
486 break;
487
488 case DW_CFA_restore_extended:
f664829e 489 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 490 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
491 break;
492
493 case DW_CFA_undefined:
f664829e 494 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 495 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 496 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 497 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
498 break;
499
500 case DW_CFA_same_value:
f664829e 501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 502 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
505 break;
506
507 case DW_CFA_register:
f664829e 508 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 509 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 510 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 511 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 512 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 513 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
514 fs->regs.reg[reg].loc.reg = utmp;
515 break;
516
517 case DW_CFA_remember_state:
518 {
519 struct dwarf2_frame_state_reg_info *new_rs;
520
70ba0933 521 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
cfc14b3a
MK
522 *new_rs = fs->regs;
523 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
524 fs->regs.prev = new_rs;
525 }
526 break;
527
528 case DW_CFA_restore_state:
529 {
530 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
531
50ea7769
MK
532 if (old_rs == NULL)
533 {
e2e0b3e5 534 complaint (&symfile_complaints, _("\
5af949e3
UW
535bad CFI data; mismatched DW_CFA_restore_state at %s"),
536 paddress (gdbarch, fs->pc));
50ea7769
MK
537 }
538 else
539 {
540 xfree (fs->regs.reg);
541 fs->regs = *old_rs;
542 xfree (old_rs);
543 }
cfc14b3a
MK
544 }
545 break;
546
547 case DW_CFA_def_cfa:
f664829e
DE
548 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
549 fs->regs.cfa_reg = reg;
550 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
551
552 if (fs->armcc_cfa_offsets_sf)
553 utmp *= fs->data_align;
554
2fd481e1
PP
555 fs->regs.cfa_offset = utmp;
556 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
557 break;
558
559 case DW_CFA_def_cfa_register:
f664829e
DE
560 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
561 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
562 eh_frame_p);
563 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
564 break;
565
566 case DW_CFA_def_cfa_offset:
f664829e 567 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
568
569 if (fs->armcc_cfa_offsets_sf)
570 utmp *= fs->data_align;
571
2fd481e1 572 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
573 /* cfa_how deliberately not set. */
574 break;
575
a8504492
MK
576 case DW_CFA_nop:
577 break;
578
cfc14b3a 579 case DW_CFA_def_cfa_expression:
f664829e
DE
580 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
581 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
582 fs->regs.cfa_exp = insn_ptr;
583 fs->regs.cfa_how = CFA_EXP;
584 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
585 break;
586
587 case DW_CFA_expression:
f664829e 588 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 589 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 590 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 591 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
592 fs->regs.reg[reg].loc.exp = insn_ptr;
593 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 594 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
595 insn_ptr += utmp;
596 break;
597
a8504492 598 case DW_CFA_offset_extended_sf:
f664829e 599 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 600 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 601 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 602 offset *= fs->data_align;
a8504492 603 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
46ea248b 608 case DW_CFA_val_offset:
f664829e 609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 611 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
612 offset = utmp * fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_offset_sf:
f664829e 618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 620 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
621 offset *= fs->data_align;
622 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
623 fs->regs.reg[reg].loc.offset = offset;
624 break;
625
626 case DW_CFA_val_expression:
f664829e 627 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 628 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 629 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
630 fs->regs.reg[reg].loc.exp = insn_ptr;
631 fs->regs.reg[reg].exp_len = utmp;
632 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
633 insn_ptr += utmp;
634 break;
635
a8504492 636 case DW_CFA_def_cfa_sf:
f664829e
DE
637 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
638 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 639 eh_frame_p);
f664829e 640 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
641 fs->regs.cfa_offset = offset * fs->data_align;
642 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
643 break;
644
645 case DW_CFA_def_cfa_offset_sf:
f664829e 646 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 647 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 648 /* cfa_how deliberately not set. */
cfc14b3a
MK
649 break;
650
a77f4086
MK
651 case DW_CFA_GNU_window_save:
652 /* This is SPARC-specific code, and contains hard-coded
653 constants for the register numbering scheme used by
654 GCC. Rather than having a architecture-specific
655 operation that's only ever used by a single
656 architecture, we provide the implementation here.
657 Incidentally that's what GCC does too in its
658 unwinder. */
659 {
4a4e5149 660 int size = register_size (gdbarch, 0);
9a619af0 661
a77f4086
MK
662 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
663 for (reg = 8; reg < 16; reg++)
664 {
665 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
666 fs->regs.reg[reg].loc.reg = reg + 16;
667 }
668 for (reg = 16; reg < 32; reg++)
669 {
670 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
671 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
672 }
673 }
674 break;
675
cfc14b3a
MK
676 case DW_CFA_GNU_args_size:
677 /* Ignored. */
f664829e 678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
679 break;
680
58894217 681 case DW_CFA_GNU_negative_offset_extended:
f664829e 682 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 683 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
684 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
685 offset = utmp * fs->data_align;
58894217
JK
686 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
687 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
688 fs->regs.reg[reg].loc.offset = -offset;
689 break;
690
cfc14b3a 691 default:
3e43a32a
MS
692 internal_error (__FILE__, __LINE__,
693 _("Unknown CFI encountered."));
cfc14b3a
MK
694 }
695 }
696 }
697
111c6489
JK
698 if (fs->initial.reg == NULL)
699 {
700 /* Don't allow remember/restore between CIE and FDE programs. */
701 dwarf2_frame_state_free_regs (fs->regs.prev);
702 fs->regs.prev = NULL;
703 }
704
705 return insn_ptr;
cfc14b3a 706}
8f22cb90 707\f
cfc14b3a 708
8f22cb90 709/* Architecture-specific operations. */
cfc14b3a 710
8f22cb90
MK
711/* Per-architecture data key. */
712static struct gdbarch_data *dwarf2_frame_data;
713
714struct dwarf2_frame_ops
715{
716 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
717 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
718 struct frame_info *);
3ed09a32 719
4a4e5149 720 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 721 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 722
4fc771b8
DJ
723 /* Convert .eh_frame register number to DWARF register number, or
724 adjust .debug_frame register number. */
725 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
726};
727
8f22cb90
MK
728/* Default architecture-specific register state initialization
729 function. */
730
731static void
732dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 733 struct dwarf2_frame_state_reg *reg,
4a4e5149 734 struct frame_info *this_frame)
8f22cb90
MK
735{
736 /* If we have a register that acts as a program counter, mark it as
737 a destination for the return address. If we have a register that
738 serves as the stack pointer, arrange for it to be filled with the
739 call frame address (CFA). The other registers are marked as
740 unspecified.
741
742 We copy the return address to the program counter, since many
743 parts in GDB assume that it is possible to get the return address
744 by unwinding the program counter register. However, on ISA's
745 with a dedicated return address register, the CFI usually only
746 contains information to unwind that return address register.
747
748 The reason we're treating the stack pointer special here is
749 because in many cases GCC doesn't emit CFI for the stack pointer
750 and implicitly assumes that it is equal to the CFA. This makes
751 some sense since the DWARF specification (version 3, draft 8,
752 p. 102) says that:
753
754 "Typically, the CFA is defined to be the value of the stack
755 pointer at the call site in the previous frame (which may be
756 different from its value on entry to the current frame)."
757
758 However, this isn't true for all platforms supported by GCC
759 (e.g. IBM S/390 and zSeries). Those architectures should provide
760 their own architecture-specific initialization function. */
05cbe71a 761
ad010def 762 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 763 reg->how = DWARF2_FRAME_REG_RA;
ad010def 764 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
765 reg->how = DWARF2_FRAME_REG_CFA;
766}
05cbe71a 767
8f22cb90 768/* Return a default for the architecture-specific operations. */
05cbe71a 769
8f22cb90 770static void *
030f20e1 771dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
772{
773 struct dwarf2_frame_ops *ops;
774
030f20e1 775 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
776 ops->init_reg = dwarf2_frame_default_init_reg;
777 return ops;
778}
05cbe71a 779
8f22cb90
MK
780/* Set the architecture-specific register state initialization
781 function for GDBARCH to INIT_REG. */
782
783void
784dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
785 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
786 struct dwarf2_frame_state_reg *,
787 struct frame_info *))
8f22cb90 788{
030f20e1 789 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 790
8f22cb90
MK
791 ops->init_reg = init_reg;
792}
793
794/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
795
796static void
797dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 798 struct dwarf2_frame_state_reg *reg,
4a4e5149 799 struct frame_info *this_frame)
05cbe71a 800{
030f20e1 801 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 802
4a4e5149 803 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 804}
3ed09a32
DJ
805
806/* Set the architecture-specific signal trampoline recognition
807 function for GDBARCH to SIGNAL_FRAME_P. */
808
809void
810dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
811 int (*signal_frame_p) (struct gdbarch *,
812 struct frame_info *))
813{
814 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
815
816 ops->signal_frame_p = signal_frame_p;
817}
818
819/* Query the architecture-specific signal frame recognizer for
4a4e5149 820 THIS_FRAME. */
3ed09a32
DJ
821
822static int
823dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 824 struct frame_info *this_frame)
3ed09a32
DJ
825{
826 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
827
828 if (ops->signal_frame_p == NULL)
829 return 0;
4a4e5149 830 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 831}
4bf8967c 832
4fc771b8
DJ
833/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
834 register numbers. */
4bf8967c
AS
835
836void
4fc771b8
DJ
837dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
838 int (*adjust_regnum) (struct gdbarch *,
839 int, int))
4bf8967c
AS
840{
841 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
842
4fc771b8 843 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
844}
845
4fc771b8
DJ
846/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
847 register. */
4bf8967c 848
4fc771b8 849static int
3e43a32a
MS
850dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
851 int regnum, int eh_frame_p)
4bf8967c
AS
852{
853 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
854
4fc771b8 855 if (ops->adjust_regnum == NULL)
4bf8967c 856 return regnum;
4fc771b8 857 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 858}
303b6f5d
DJ
859
860static void
861dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
862 struct dwarf2_fde *fde)
863{
303b6f5d
DJ
864 struct symtab *s;
865
866 s = find_pc_symtab (fs->pc);
a6c727b2 867 if (s == NULL)
303b6f5d
DJ
868 return;
869
a6c727b2
DJ
870 if (producer_is_realview (s->producer))
871 {
872 if (fde->cie->version == 1)
873 fs->armcc_cfa_offsets_sf = 1;
874
875 if (fde->cie->version == 1)
876 fs->armcc_cfa_offsets_reversed = 1;
877
878 /* The reversed offset problem is present in some compilers
879 using DWARF3, but it was eventually fixed. Check the ARM
880 defined augmentations, which are in the format "armcc" followed
881 by a list of one-character options. The "+" option means
882 this problem is fixed (no quirk needed). If the armcc
883 augmentation is missing, the quirk is needed. */
884 if (fde->cie->version == 3
885 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
886 || strchr (fde->cie->augmentation + 5, '+') == NULL))
887 fs->armcc_cfa_offsets_reversed = 1;
888
889 return;
890 }
303b6f5d 891}
8f22cb90
MK
892\f
893
9f6f94ff
TT
894void
895dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
896 struct gdbarch *gdbarch,
897 CORE_ADDR pc,
898 struct dwarf2_per_cu_data *data)
899{
9f6f94ff 900 struct dwarf2_fde *fde;
22e048c9 901 CORE_ADDR text_offset;
9f6f94ff
TT
902 struct dwarf2_frame_state fs;
903 int addr_size;
904
905 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
906
907 fs.pc = pc;
908
909 /* Find the correct FDE. */
910 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
911 if (fde == NULL)
912 error (_("Could not compute CFA; needed to translate this expression"));
913
914 /* Extract any interesting information from the CIE. */
915 fs.data_align = fde->cie->data_alignment_factor;
916 fs.code_align = fde->cie->code_alignment_factor;
917 fs.retaddr_column = fde->cie->return_address_register;
918 addr_size = fde->cie->addr_size;
919
920 /* Check for "quirks" - known bugs in producers. */
921 dwarf2_frame_find_quirks (&fs, fde);
922
923 /* First decode all the insns in the CIE. */
924 execute_cfa_program (fde, fde->cie->initial_instructions,
925 fde->cie->end, gdbarch, pc, &fs);
926
927 /* Save the initialized register set. */
928 fs.initial = fs.regs;
929 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
930
931 /* Then decode the insns in the FDE up to our target PC. */
932 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
933
934 /* Calculate the CFA. */
935 switch (fs.regs.cfa_how)
936 {
937 case CFA_REG_OFFSET:
938 {
939 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
940
941 if (regnum == -1)
942 error (_("Unable to access DWARF register number %d"),
943 (int) fs.regs.cfa_reg); /* FIXME */
944 ax_reg (expr, regnum);
945
946 if (fs.regs.cfa_offset != 0)
947 {
948 if (fs.armcc_cfa_offsets_reversed)
949 ax_const_l (expr, -fs.regs.cfa_offset);
950 else
951 ax_const_l (expr, fs.regs.cfa_offset);
952 ax_simple (expr, aop_add);
953 }
954 }
955 break;
956
957 case CFA_EXP:
958 ax_const_l (expr, text_offset);
959 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
960 fs.regs.cfa_exp,
961 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
962 data);
963 break;
964
965 default:
966 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
967 }
968}
969
970\f
8f22cb90
MK
971struct dwarf2_frame_cache
972{
973 /* DWARF Call Frame Address. */
974 CORE_ADDR cfa;
975
8fbca658
PA
976 /* Set if the return address column was marked as unavailable
977 (required non-collected memory or registers to compute). */
978 int unavailable_retaddr;
979
0228dfb9
DJ
980 /* Set if the return address column was marked as undefined. */
981 int undefined_retaddr;
982
8f22cb90
MK
983 /* Saved registers, indexed by GDB register number, not by DWARF
984 register number. */
985 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
986
987 /* Return address register. */
988 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
989
990 /* Target address size in bytes. */
991 int addr_size;
ac56253d
TT
992
993 /* The .text offset. */
994 CORE_ADDR text_offset;
111c6489 995
1ec56e88
PA
996 /* True if we already checked whether this frame is the bottom frame
997 of a virtual tail call frame chain. */
998 int checked_tailcall_bottom;
999
111c6489
JK
1000 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
1001 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1002 involved. Non-bottom frames of a virtual tail call frames chain use
1003 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1004 them. */
1005 void *tailcall_cache;
1ec56e88
PA
1006
1007 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1008 base to get the SP, to simulate the return address pushed on the
1009 stack. */
1010 LONGEST entry_cfa_sp_offset;
1011 int entry_cfa_sp_offset_p;
8f22cb90 1012};
05cbe71a 1013
78ac5f83
TT
1014/* A cleanup that sets a pointer to NULL. */
1015
1016static void
1017clear_pointer_cleanup (void *arg)
1018{
1019 void **ptr = arg;
1020
1021 *ptr = NULL;
1022}
1023
b9362cc7 1024static struct dwarf2_frame_cache *
4a4e5149 1025dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1026{
78ac5f83 1027 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1028 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1029 const int num_regs = gdbarch_num_regs (gdbarch)
1030 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1031 struct dwarf2_frame_cache *cache;
1032 struct dwarf2_frame_state *fs;
1033 struct dwarf2_fde *fde;
8fbca658 1034 volatile struct gdb_exception ex;
111c6489 1035 CORE_ADDR entry_pc;
111c6489 1036 const gdb_byte *instr;
cfc14b3a
MK
1037
1038 if (*this_cache)
1039 return *this_cache;
1040
1041 /* Allocate a new cache. */
1042 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1043 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1044 *this_cache = cache;
78ac5f83 1045 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1046
1047 /* Allocate and initialize the frame state. */
41bf6aca 1048 fs = XCNEW (struct dwarf2_frame_state);
cfc14b3a
MK
1049 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1050
1051 /* Unwind the PC.
1052
4a4e5149 1053 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1054 to abort), the compiler might optimize away the instruction at
4a4e5149 1055 its return address. As a result the return address will
cfc14b3a 1056 point at some random instruction, and the CFI for that
e4e9607c 1057 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1058 this problem by substracting 1 from the return address to get an
1059 address in the middle of a presumed call instruction (or the
1060 instruction in the associated delay slot). This should only be
1061 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1062 handlers, sentinel frames, dummy frames). The function
ad1193e7 1063 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1064 reliable the method is though; there is the potential for the
1065 register state pre-call being different to that on return. */
4a4e5149 1066 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1067
1068 /* Find the correct FDE. */
ac56253d 1069 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1070 gdb_assert (fde != NULL);
1071
1072 /* Extract any interesting information from the CIE. */
1073 fs->data_align = fde->cie->data_alignment_factor;
1074 fs->code_align = fde->cie->code_alignment_factor;
1075 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1076 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1077
303b6f5d
DJ
1078 /* Check for "quirks" - known bugs in producers. */
1079 dwarf2_frame_find_quirks (fs, fde);
1080
cfc14b3a 1081 /* First decode all the insns in the CIE. */
ae0d2f24 1082 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1083 fde->cie->end, gdbarch,
1084 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1085
1086 /* Save the initialized register set. */
1087 fs->initial = fs->regs;
1088 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1089
111c6489
JK
1090 if (get_frame_func_if_available (this_frame, &entry_pc))
1091 {
1092 /* Decode the insns in the FDE up to the entry PC. */
1093 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1094 entry_pc, fs);
1095
1096 if (fs->regs.cfa_how == CFA_REG_OFFSET
1097 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1098 == gdbarch_sp_regnum (gdbarch)))
1099 {
1ec56e88
PA
1100 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1101 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1102 }
1103 }
1104 else
1105 instr = fde->instructions;
1106
cfc14b3a 1107 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1108 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1109 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1110
8fbca658 1111 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1112 {
8fbca658
PA
1113 /* Calculate the CFA. */
1114 switch (fs->regs.cfa_how)
1115 {
1116 case CFA_REG_OFFSET:
b1370418 1117 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1118 if (fs->armcc_cfa_offsets_reversed)
1119 cache->cfa -= fs->regs.cfa_offset;
1120 else
1121 cache->cfa += fs->regs.cfa_offset;
1122 break;
1123
1124 case CFA_EXP:
1125 cache->cfa =
1126 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1127 cache->addr_size, cache->text_offset,
1128 this_frame, 0, 0);
1129 break;
1130
1131 default:
1132 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1133 }
1134 }
1135 if (ex.reason < 0)
1136 {
1137 if (ex.error == NOT_AVAILABLE_ERROR)
1138 {
1139 cache->unavailable_retaddr = 1;
5a1cf4d6 1140 do_cleanups (old_chain);
78ac5f83 1141 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1142 return cache;
1143 }
cfc14b3a 1144
8fbca658 1145 throw_exception (ex);
cfc14b3a
MK
1146 }
1147
05cbe71a 1148 /* Initialize the register state. */
3e2c4033
AC
1149 {
1150 int regnum;
e4e9607c 1151
3e2c4033 1152 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1153 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1154 }
1155
1156 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1157 location information in the cache. Note that we don't skip the
1158 return address column; it's perfectly all right for it to
1159 correspond to a real register. If it doesn't correspond to a
1160 real register, or if we shouldn't treat it as such,
055d23b8 1161 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1162 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1163 {
1164 int column; /* CFI speak for "register number". */
e4e9607c 1165
3e2c4033
AC
1166 for (column = 0; column < fs->regs.num_regs; column++)
1167 {
3e2c4033 1168 /* Use the GDB register number as the destination index. */
ad010def 1169 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1170
1171 /* If there's no corresponding GDB register, ignore it. */
1172 if (regnum < 0 || regnum >= num_regs)
1173 continue;
1174
1175 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1176 of all debug info registers. If it doesn't, complain (but
1177 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1178 unspecified register implies "same value" when CFI (draft
1179 7) specifies nothing at all. Such a register could equally
1180 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1181 isn't sufficient; it only checks that all registers in the
1182 range [0 .. max column] are specified, and won't detect
3e2c4033 1183 problems when a debug info register falls outside of the
e4e9607c 1184 table. We need a way of iterating through all the valid
3e2c4033 1185 DWARF2 register numbers. */
05cbe71a 1186 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1187 {
1188 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1189 complaint (&symfile_complaints, _("\
5af949e3 1190incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1191 gdbarch_register_name (gdbarch, regnum),
5af949e3 1192 paddress (gdbarch, fs->pc));
f059bf6f 1193 }
35889917
MK
1194 else
1195 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1196 }
1197 }
cfc14b3a 1198
8d5a9abc
MK
1199 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1200 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1201 {
1202 int regnum;
1203
1204 for (regnum = 0; regnum < num_regs; regnum++)
1205 {
8d5a9abc
MK
1206 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1207 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1208 {
05cbe71a
MK
1209 struct dwarf2_frame_state_reg *retaddr_reg =
1210 &fs->regs.reg[fs->retaddr_column];
1211
d4f10bf2
MK
1212 /* It seems rather bizarre to specify an "empty" column as
1213 the return adress column. However, this is exactly
1214 what GCC does on some targets. It turns out that GCC
1215 assumes that the return address can be found in the
1216 register corresponding to the return address column.
8d5a9abc
MK
1217 Incidentally, that's how we should treat a return
1218 address column specifying "same value" too. */
d4f10bf2 1219 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1220 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1221 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1222 {
1223 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1224 cache->reg[regnum] = *retaddr_reg;
1225 else
1226 cache->retaddr_reg = *retaddr_reg;
1227 }
35889917
MK
1228 else
1229 {
8d5a9abc
MK
1230 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1231 {
1232 cache->reg[regnum].loc.reg = fs->retaddr_column;
1233 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1234 }
1235 else
1236 {
1237 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1238 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1239 }
35889917
MK
1240 }
1241 }
1242 }
1243 }
cfc14b3a 1244
0228dfb9
DJ
1245 if (fs->retaddr_column < fs->regs.num_regs
1246 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1247 cache->undefined_retaddr = 1;
1248
cfc14b3a 1249 do_cleanups (old_chain);
78ac5f83 1250 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1251 return cache;
1252}
1253
8fbca658
PA
1254static enum unwind_stop_reason
1255dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1256 void **this_cache)
1257{
1258 struct dwarf2_frame_cache *cache
1259 = dwarf2_frame_cache (this_frame, this_cache);
1260
1261 if (cache->unavailable_retaddr)
1262 return UNWIND_UNAVAILABLE;
1263
1264 if (cache->undefined_retaddr)
1265 return UNWIND_OUTERMOST;
1266
1267 return UNWIND_NO_REASON;
1268}
1269
cfc14b3a 1270static void
4a4e5149 1271dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1272 struct frame_id *this_id)
1273{
1274 struct dwarf2_frame_cache *cache =
4a4e5149 1275 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1276
8fbca658 1277 if (cache->unavailable_retaddr)
5ce0145d
PA
1278 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1279 else if (cache->undefined_retaddr)
8fbca658 1280 return;
5ce0145d
PA
1281 else
1282 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1283}
1284
4a4e5149
DJ
1285static struct value *
1286dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1287 int regnum)
93d42b30 1288{
4a4e5149 1289 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1290 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1291 dwarf2_frame_cache (this_frame, this_cache);
1292 CORE_ADDR addr;
1293 int realnum;
cfc14b3a 1294
1ec56e88
PA
1295 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1296 call frame chain. */
1297 if (!cache->checked_tailcall_bottom)
1298 {
1299 cache->checked_tailcall_bottom = 1;
1300 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1301 (cache->entry_cfa_sp_offset_p
1302 ? &cache->entry_cfa_sp_offset : NULL));
1303 }
1304
111c6489
JK
1305 /* Non-bottom frames of a virtual tail call frames chain use
1306 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1307 them. If dwarf2_tailcall_prev_register_first does not have specific value
1308 unwind the register, tail call frames are assumed to have the register set
1309 of the top caller. */
1310 if (cache->tailcall_cache)
1311 {
1312 struct value *val;
1313
1314 val = dwarf2_tailcall_prev_register_first (this_frame,
1315 &cache->tailcall_cache,
1316 regnum);
1317 if (val)
1318 return val;
1319 }
1320
cfc14b3a
MK
1321 switch (cache->reg[regnum].how)
1322 {
05cbe71a 1323 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1324 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1325 mark it as optimized away; the value isn't available. */
4a4e5149 1326 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1327
05cbe71a 1328 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1329 addr = cache->cfa + cache->reg[regnum].loc.offset;
1330 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1331
05cbe71a 1332 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1333 realnum
1334 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1335 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1336
05cbe71a 1337 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1338 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1339 cache->reg[regnum].exp_len,
ac56253d
TT
1340 cache->addr_size, cache->text_offset,
1341 this_frame, cache->cfa, 1);
4a4e5149 1342 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1343
46ea248b 1344 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1345 addr = cache->cfa + cache->reg[regnum].loc.offset;
1346 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1347
1348 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1349 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1350 cache->reg[regnum].exp_len,
ac56253d
TT
1351 cache->addr_size, cache->text_offset,
1352 this_frame, cache->cfa, 1);
4a4e5149 1353 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1354
05cbe71a 1355 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1356 /* GCC, in its infinite wisdom decided to not provide unwind
1357 information for registers that are "same value". Since
1358 DWARF2 (3 draft 7) doesn't define such behavior, said
1359 registers are actually undefined (which is different to CFI
1360 "undefined"). Code above issues a complaint about this.
1361 Here just fudge the books, assume GCC, and that the value is
1362 more inner on the stack. */
4a4e5149 1363 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1364
05cbe71a 1365 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1366 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1367
05cbe71a 1368 case DWARF2_FRAME_REG_CFA:
4a4e5149 1369 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1370
ea7963f0 1371 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1372 addr = cache->cfa + cache->reg[regnum].loc.offset;
1373 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1374
8d5a9abc 1375 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1376 addr = cache->reg[regnum].loc.offset;
1377 regnum = gdbarch_dwarf2_reg_to_regnum
1378 (gdbarch, cache->retaddr_reg.loc.reg);
1379 addr += get_frame_register_unsigned (this_frame, regnum);
1380 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1381
b39cc962
DJ
1382 case DWARF2_FRAME_REG_FN:
1383 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1384
cfc14b3a 1385 default:
e2e0b3e5 1386 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1387 }
1388}
1389
111c6489
JK
1390/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1391 call frames chain. */
1392
1393static void
1394dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1395{
1396 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1397
1398 if (cache->tailcall_cache)
1399 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1400}
1401
4a4e5149
DJ
1402static int
1403dwarf2_frame_sniffer (const struct frame_unwind *self,
1404 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1405{
1ce5d6dd 1406 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1407 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1408 end up returning something past the end of this function's body.
1409 If the frame we're sniffing for is a signal frame whose start
1410 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1411 extend one byte before its start address or we could potentially
1412 select the FDE of the previous function. */
1413 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1414 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1415
56c987f6 1416 if (!fde)
4a4e5149 1417 return 0;
3ed09a32
DJ
1418
1419 /* On some targets, signal trampolines may have unwind information.
1420 We need to recognize them so that we set the frame type
1421 correctly. */
1422
56c987f6 1423 if (fde->cie->signal_frame
4a4e5149
DJ
1424 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1425 this_frame))
1426 return self->type == SIGTRAMP_FRAME;
1427
111c6489
JK
1428 if (self->type != NORMAL_FRAME)
1429 return 0;
1430
111c6489 1431 return 1;
4a4e5149
DJ
1432}
1433
1434static const struct frame_unwind dwarf2_frame_unwind =
1435{
1436 NORMAL_FRAME,
8fbca658 1437 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1438 dwarf2_frame_this_id,
1439 dwarf2_frame_prev_register,
1440 NULL,
111c6489
JK
1441 dwarf2_frame_sniffer,
1442 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1443};
1444
1445static const struct frame_unwind dwarf2_signal_frame_unwind =
1446{
1447 SIGTRAMP_FRAME,
8fbca658 1448 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1449 dwarf2_frame_this_id,
1450 dwarf2_frame_prev_register,
1451 NULL,
111c6489
JK
1452 dwarf2_frame_sniffer,
1453
1454 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1455 NULL
4a4e5149 1456};
cfc14b3a 1457
4a4e5149
DJ
1458/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1459
1460void
1461dwarf2_append_unwinders (struct gdbarch *gdbarch)
1462{
111c6489
JK
1463 /* TAILCALL_FRAME must be first to find the record by
1464 dwarf2_tailcall_sniffer_first. */
1465 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1466
4a4e5149
DJ
1467 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1468 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1469}
1470\f
1471
1472/* There is no explicitly defined relationship between the CFA and the
1473 location of frame's local variables and arguments/parameters.
1474 Therefore, frame base methods on this page should probably only be
1475 used as a last resort, just to avoid printing total garbage as a
1476 response to the "info frame" command. */
1477
1478static CORE_ADDR
4a4e5149 1479dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1480{
1481 struct dwarf2_frame_cache *cache =
4a4e5149 1482 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1483
1484 return cache->cfa;
1485}
1486
1487static const struct frame_base dwarf2_frame_base =
1488{
1489 &dwarf2_frame_unwind,
1490 dwarf2_frame_base_address,
1491 dwarf2_frame_base_address,
1492 dwarf2_frame_base_address
1493};
1494
1495const struct frame_base *
4a4e5149 1496dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1497{
4a4e5149 1498 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1499
ac56253d 1500 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1501 return &dwarf2_frame_base;
1502
1503 return NULL;
1504}
e7802207
TT
1505
1506/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1507 the DWARF unwinder. This is used to implement
1508 DW_OP_call_frame_cfa. */
1509
1510CORE_ADDR
1511dwarf2_frame_cfa (struct frame_info *this_frame)
1512{
1513 while (get_frame_type (this_frame) == INLINE_FRAME)
1514 this_frame = get_prev_frame (this_frame);
32261e52
MM
1515 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1516 throw_error (NOT_AVAILABLE_ERROR,
1517 _("can't compute CFA for this frame: "
1518 "required registers or memory are unavailable"));
e7802207
TT
1519 /* This restriction could be lifted if other unwinders are known to
1520 compute the frame base in a way compatible with the DWARF
1521 unwinder. */
111c6489
JK
1522 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1523 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
e7802207
TT
1524 error (_("can't compute CFA for this frame"));
1525 return get_frame_base (this_frame);
1526}
cfc14b3a 1527\f
8f22cb90 1528const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1529
cfc14b3a 1530static unsigned int
f664829e 1531read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1532{
852483bc 1533 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1534}
1535
1536static unsigned int
f664829e 1537read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1538{
852483bc 1539 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1540}
1541
1542static ULONGEST
f664829e 1543read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1544{
852483bc 1545 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1546}
1547
1548static ULONGEST
f664829e
DE
1549read_initial_length (bfd *abfd, const gdb_byte *buf,
1550 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1551{
1552 LONGEST result;
1553
852483bc 1554 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1555 if (result == 0xffffffff)
1556 {
852483bc 1557 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1558 *bytes_read_ptr = 12;
1559 }
1560 else
1561 *bytes_read_ptr = 4;
1562
1563 return result;
1564}
1565\f
1566
1567/* Pointer encoding helper functions. */
1568
1569/* GCC supports exception handling based on DWARF2 CFI. However, for
1570 technical reasons, it encodes addresses in its FDE's in a different
1571 way. Several "pointer encodings" are supported. The encoding
1572 that's used for a particular FDE is determined by the 'R'
1573 augmentation in the associated CIE. The argument of this
1574 augmentation is a single byte.
1575
1576 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1577 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1578 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1579 address should be interpreted (absolute, relative to the current
1580 position in the FDE, ...). Bit 7, indicates that the address
1581 should be dereferenced. */
1582
852483bc 1583static gdb_byte
cfc14b3a
MK
1584encoding_for_size (unsigned int size)
1585{
1586 switch (size)
1587 {
1588 case 2:
1589 return DW_EH_PE_udata2;
1590 case 4:
1591 return DW_EH_PE_udata4;
1592 case 8:
1593 return DW_EH_PE_udata8;
1594 default:
e2e0b3e5 1595 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1596 }
1597}
1598
cfc14b3a 1599static CORE_ADDR
852483bc 1600read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1601 int ptr_len, const gdb_byte *buf,
1602 unsigned int *bytes_read_ptr,
ae0d2f24 1603 CORE_ADDR func_base)
cfc14b3a 1604{
68f6cf99 1605 ptrdiff_t offset;
cfc14b3a
MK
1606 CORE_ADDR base;
1607
1608 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1609 FDE's. */
1610 if (encoding & DW_EH_PE_indirect)
1611 internal_error (__FILE__, __LINE__,
e2e0b3e5 1612 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1613
68f6cf99
MK
1614 *bytes_read_ptr = 0;
1615
cfc14b3a
MK
1616 switch (encoding & 0x70)
1617 {
1618 case DW_EH_PE_absptr:
1619 base = 0;
1620 break;
1621 case DW_EH_PE_pcrel:
f2fec864 1622 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1623 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1624 break;
0912c7f2
MK
1625 case DW_EH_PE_datarel:
1626 base = unit->dbase;
1627 break;
0fd85043
CV
1628 case DW_EH_PE_textrel:
1629 base = unit->tbase;
1630 break;
03ac2a74 1631 case DW_EH_PE_funcrel:
ae0d2f24 1632 base = func_base;
03ac2a74 1633 break;
68f6cf99
MK
1634 case DW_EH_PE_aligned:
1635 base = 0;
852483bc 1636 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1637 if ((offset % ptr_len) != 0)
1638 {
1639 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1640 buf += *bytes_read_ptr;
1641 }
1642 break;
cfc14b3a 1643 default:
3e43a32a
MS
1644 internal_error (__FILE__, __LINE__,
1645 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1646 }
1647
b04de778 1648 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1649 {
1650 encoding |= encoding_for_size (ptr_len);
1651 if (bfd_get_sign_extend_vma (unit->abfd))
1652 encoding |= DW_EH_PE_signed;
1653 }
cfc14b3a
MK
1654
1655 switch (encoding & 0x0f)
1656 {
a81b10ae
MK
1657 case DW_EH_PE_uleb128:
1658 {
9fccedf7 1659 uint64_t value;
0d45f56e 1660 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1661
f664829e 1662 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1663 return base + value;
1664 }
cfc14b3a 1665 case DW_EH_PE_udata2:
68f6cf99 1666 *bytes_read_ptr += 2;
cfc14b3a
MK
1667 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1668 case DW_EH_PE_udata4:
68f6cf99 1669 *bytes_read_ptr += 4;
cfc14b3a
MK
1670 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1671 case DW_EH_PE_udata8:
68f6cf99 1672 *bytes_read_ptr += 8;
cfc14b3a 1673 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1674 case DW_EH_PE_sleb128:
1675 {
9fccedf7 1676 int64_t value;
0d45f56e 1677 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1678
f664829e 1679 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1680 return base + value;
1681 }
cfc14b3a 1682 case DW_EH_PE_sdata2:
68f6cf99 1683 *bytes_read_ptr += 2;
cfc14b3a
MK
1684 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1685 case DW_EH_PE_sdata4:
68f6cf99 1686 *bytes_read_ptr += 4;
cfc14b3a
MK
1687 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1688 case DW_EH_PE_sdata8:
68f6cf99 1689 *bytes_read_ptr += 8;
cfc14b3a
MK
1690 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1691 default:
3e43a32a
MS
1692 internal_error (__FILE__, __LINE__,
1693 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1694 }
1695}
1696\f
1697
b01c8410
PP
1698static int
1699bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1700{
b01c8410
PP
1701 ULONGEST cie_pointer = *(ULONGEST *) key;
1702 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1703
b01c8410
PP
1704 if (cie_pointer == cie->cie_pointer)
1705 return 0;
cfc14b3a 1706
b01c8410
PP
1707 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1708}
1709
1710/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1711static struct dwarf2_cie *
1712find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1713{
1714 struct dwarf2_cie **p_cie;
cfc14b3a 1715
65a97ab3
PP
1716 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1717 bsearch be non-NULL. */
1718 if (cie_table->entries == NULL)
1719 {
1720 gdb_assert (cie_table->num_entries == 0);
1721 return NULL;
1722 }
1723
b01c8410
PP
1724 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1725 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1726 if (p_cie != NULL)
1727 return *p_cie;
cfc14b3a
MK
1728 return NULL;
1729}
1730
b01c8410 1731/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1732static void
b01c8410 1733add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1734{
b01c8410
PP
1735 const int n = cie_table->num_entries;
1736
1737 gdb_assert (n < 1
1738 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1739
1740 cie_table->entries =
1741 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1742 cie_table->entries[n] = cie;
1743 cie_table->num_entries = n + 1;
1744}
1745
1746static int
1747bsearch_fde_cmp (const void *key, const void *element)
1748{
1749 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1750 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1751
b01c8410
PP
1752 if (seek_pc < fde->initial_location)
1753 return -1;
1754 if (seek_pc < fde->initial_location + fde->address_range)
1755 return 0;
1756 return 1;
cfc14b3a
MK
1757}
1758
1759/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1760 inital location associated with it into *PC. */
1761
1762static struct dwarf2_fde *
ac56253d 1763dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1764{
1765 struct objfile *objfile;
1766
1767 ALL_OBJFILES (objfile)
1768 {
b01c8410
PP
1769 struct dwarf2_fde_table *fde_table;
1770 struct dwarf2_fde **p_fde;
cfc14b3a 1771 CORE_ADDR offset;
b01c8410 1772 CORE_ADDR seek_pc;
cfc14b3a 1773
b01c8410
PP
1774 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1775 if (fde_table == NULL)
be391dca
TT
1776 {
1777 dwarf2_build_frame_info (objfile);
1778 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1779 }
1780 gdb_assert (fde_table != NULL);
1781
1782 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1783 continue;
1784
1785 gdb_assert (objfile->section_offsets);
1786 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1787
b01c8410
PP
1788 gdb_assert (fde_table->num_entries > 0);
1789 if (*pc < offset + fde_table->entries[0]->initial_location)
1790 continue;
1791
1792 seek_pc = *pc - offset;
1793 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1794 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1795 if (p_fde != NULL)
1796 {
1797 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1798 if (out_offset)
1799 *out_offset = offset;
b01c8410
PP
1800 return *p_fde;
1801 }
cfc14b3a 1802 }
cfc14b3a
MK
1803 return NULL;
1804}
1805
b01c8410 1806/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1807static void
b01c8410 1808add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1809{
b01c8410
PP
1810 if (fde->address_range == 0)
1811 /* Discard useless FDEs. */
1812 return;
1813
1814 fde_table->num_entries += 1;
1815 fde_table->entries =
1816 xrealloc (fde_table->entries,
1817 fde_table->num_entries * sizeof (fde_table->entries[0]));
1818 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1819}
1820
cfc14b3a 1821#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1822
8bd90839
FM
1823/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1824 or any of them. */
1825
1826enum eh_frame_type
1827{
1828 EH_CIE_TYPE_ID = 1 << 0,
1829 EH_FDE_TYPE_ID = 1 << 1,
1830 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1831};
1832
f664829e
DE
1833static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1834 const gdb_byte *start,
1835 int eh_frame_p,
1836 struct dwarf2_cie_table *cie_table,
1837 struct dwarf2_fde_table *fde_table,
1838 enum eh_frame_type entry_type);
8bd90839
FM
1839
1840/* Decode the next CIE or FDE, entry_type specifies the expected type.
1841 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1842
f664829e
DE
1843static const gdb_byte *
1844decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1845 int eh_frame_p,
b01c8410 1846 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1847 struct dwarf2_fde_table *fde_table,
1848 enum eh_frame_type entry_type)
cfc14b3a 1849{
5e2b427d 1850 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1851 const gdb_byte *buf, *end;
cfc14b3a
MK
1852 LONGEST length;
1853 unsigned int bytes_read;
6896c0c7
RH
1854 int dwarf64_p;
1855 ULONGEST cie_id;
cfc14b3a 1856 ULONGEST cie_pointer;
9fccedf7
DE
1857 int64_t sleb128;
1858 uint64_t uleb128;
cfc14b3a 1859
6896c0c7 1860 buf = start;
cfc14b3a
MK
1861 length = read_initial_length (unit->abfd, buf, &bytes_read);
1862 buf += bytes_read;
1863 end = buf + length;
1864
0963b4bd 1865 /* Are we still within the section? */
6896c0c7
RH
1866 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1867 return NULL;
1868
cfc14b3a
MK
1869 if (length == 0)
1870 return end;
1871
6896c0c7
RH
1872 /* Distinguish between 32 and 64-bit encoded frame info. */
1873 dwarf64_p = (bytes_read == 12);
cfc14b3a 1874
6896c0c7 1875 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1876 if (eh_frame_p)
1877 cie_id = 0;
1878 else if (dwarf64_p)
1879 cie_id = DW64_CIE_ID;
6896c0c7
RH
1880 else
1881 cie_id = DW_CIE_ID;
cfc14b3a
MK
1882
1883 if (dwarf64_p)
1884 {
1885 cie_pointer = read_8_bytes (unit->abfd, buf);
1886 buf += 8;
1887 }
1888 else
1889 {
1890 cie_pointer = read_4_bytes (unit->abfd, buf);
1891 buf += 4;
1892 }
1893
1894 if (cie_pointer == cie_id)
1895 {
1896 /* This is a CIE. */
1897 struct dwarf2_cie *cie;
1898 char *augmentation;
28ba0b33 1899 unsigned int cie_version;
cfc14b3a 1900
8bd90839
FM
1901 /* Check that a CIE was expected. */
1902 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1903 error (_("Found a CIE when not expecting it."));
1904
cfc14b3a
MK
1905 /* Record the offset into the .debug_frame section of this CIE. */
1906 cie_pointer = start - unit->dwarf_frame_buffer;
1907
1908 /* Check whether we've already read it. */
b01c8410 1909 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1910 return end;
1911
1912 cie = (struct dwarf2_cie *)
8b92e4d5 1913 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1914 sizeof (struct dwarf2_cie));
1915 cie->initial_instructions = NULL;
1916 cie->cie_pointer = cie_pointer;
1917
1918 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1919 depends on the target address size. */
1920 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1921
56c987f6
AO
1922 /* We'll determine the final value later, but we need to
1923 initialize it conservatively. */
1924 cie->signal_frame = 0;
1925
cfc14b3a 1926 /* Check version number. */
28ba0b33 1927 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1928 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1929 return NULL;
303b6f5d 1930 cie->version = cie_version;
cfc14b3a
MK
1931 buf += 1;
1932
1933 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1934 cie->augmentation = augmentation = (char *) buf;
852483bc 1935 buf += (strlen (augmentation) + 1);
cfc14b3a 1936
303b6f5d
DJ
1937 /* Ignore armcc augmentations. We only use them for quirks,
1938 and that doesn't happen until later. */
1939 if (strncmp (augmentation, "armcc", 5) == 0)
1940 augmentation += strlen (augmentation);
1941
cfc14b3a
MK
1942 /* The GCC 2.x "eh" augmentation has a pointer immediately
1943 following the augmentation string, so it must be handled
1944 first. */
1945 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1946 {
1947 /* Skip. */
5e2b427d 1948 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1949 augmentation += 2;
1950 }
1951
2dc7f7b3
TT
1952 if (cie->version >= 4)
1953 {
1954 /* FIXME: check that this is the same as from the CU header. */
1955 cie->addr_size = read_1_byte (unit->abfd, buf);
1956 ++buf;
1957 cie->segment_size = read_1_byte (unit->abfd, buf);
1958 ++buf;
1959 }
1960 else
1961 {
8da614df 1962 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1963 cie->segment_size = 0;
1964 }
8da614df
CV
1965 /* Address values in .eh_frame sections are defined to have the
1966 target's pointer size. Watchout: This breaks frame info for
1967 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1968 section exists as well. */
8da614df
CV
1969 if (eh_frame_p)
1970 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1971 else
1972 cie->ptr_size = cie->addr_size;
2dc7f7b3 1973
f664829e
DE
1974 buf = gdb_read_uleb128 (buf, end, &uleb128);
1975 if (buf == NULL)
1976 return NULL;
1977 cie->code_alignment_factor = uleb128;
cfc14b3a 1978
f664829e
DE
1979 buf = gdb_read_sleb128 (buf, end, &sleb128);
1980 if (buf == NULL)
1981 return NULL;
1982 cie->data_alignment_factor = sleb128;
cfc14b3a 1983
28ba0b33
PB
1984 if (cie_version == 1)
1985 {
1986 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1987 ++buf;
28ba0b33
PB
1988 }
1989 else
f664829e
DE
1990 {
1991 buf = gdb_read_uleb128 (buf, end, &uleb128);
1992 if (buf == NULL)
1993 return NULL;
1994 cie->return_address_register = uleb128;
1995 }
1996
4fc771b8 1997 cie->return_address_register
5e2b427d 1998 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1999 cie->return_address_register,
2000 eh_frame_p);
4bf8967c 2001
7131cb6e
RH
2002 cie->saw_z_augmentation = (*augmentation == 'z');
2003 if (cie->saw_z_augmentation)
cfc14b3a 2004 {
9fccedf7 2005 uint64_t length;
cfc14b3a 2006
f664829e
DE
2007 buf = gdb_read_uleb128 (buf, end, &length);
2008 if (buf == NULL)
6896c0c7 2009 return NULL;
cfc14b3a
MK
2010 cie->initial_instructions = buf + length;
2011 augmentation++;
2012 }
2013
2014 while (*augmentation)
2015 {
2016 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2017 if (*augmentation == 'L')
2018 {
2019 /* Skip. */
2020 buf++;
2021 augmentation++;
2022 }
2023
2024 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2025 else if (*augmentation == 'R')
2026 {
2027 cie->encoding = *buf++;
2028 augmentation++;
2029 }
2030
2031 /* "P" indicates a personality routine in the CIE augmentation. */
2032 else if (*augmentation == 'P')
2033 {
1234d960 2034 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2035 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2036 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2037 buf, &bytes_read, 0);
f724bf08 2038 buf += bytes_read;
cfc14b3a
MK
2039 augmentation++;
2040 }
2041
56c987f6
AO
2042 /* "S" indicates a signal frame, such that the return
2043 address must not be decremented to locate the call frame
2044 info for the previous frame; it might even be the first
2045 instruction of a function, so decrementing it would take
2046 us to a different function. */
2047 else if (*augmentation == 'S')
2048 {
2049 cie->signal_frame = 1;
2050 augmentation++;
2051 }
2052
3e9a2e52
DJ
2053 /* Otherwise we have an unknown augmentation. Assume that either
2054 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2055 else
2056 {
3e9a2e52
DJ
2057 if (cie->initial_instructions)
2058 buf = cie->initial_instructions;
cfc14b3a
MK
2059 break;
2060 }
2061 }
2062
2063 cie->initial_instructions = buf;
2064 cie->end = end;
b01c8410 2065 cie->unit = unit;
cfc14b3a 2066
b01c8410 2067 add_cie (cie_table, cie);
cfc14b3a
MK
2068 }
2069 else
2070 {
2071 /* This is a FDE. */
2072 struct dwarf2_fde *fde;
2073
8bd90839
FM
2074 /* Check that an FDE was expected. */
2075 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2076 error (_("Found an FDE when not expecting it."));
2077
6896c0c7
RH
2078 /* In an .eh_frame section, the CIE pointer is the delta between the
2079 address within the FDE where the CIE pointer is stored and the
2080 address of the CIE. Convert it to an offset into the .eh_frame
2081 section. */
cfc14b3a
MK
2082 if (eh_frame_p)
2083 {
cfc14b3a
MK
2084 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2085 cie_pointer -= (dwarf64_p ? 8 : 4);
2086 }
2087
6896c0c7
RH
2088 /* In either case, validate the result is still within the section. */
2089 if (cie_pointer >= unit->dwarf_frame_size)
2090 return NULL;
2091
cfc14b3a 2092 fde = (struct dwarf2_fde *)
8b92e4d5 2093 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2094 sizeof (struct dwarf2_fde));
b01c8410 2095 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2096 if (fde->cie == NULL)
2097 {
2098 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2099 eh_frame_p, cie_table, fde_table,
2100 EH_CIE_TYPE_ID);
b01c8410 2101 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2102 }
2103
2104 gdb_assert (fde->cie != NULL);
2105
2106 fde->initial_location =
8da614df 2107 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
ae0d2f24 2108 buf, &bytes_read, 0);
cfc14b3a
MK
2109 buf += bytes_read;
2110
2111 fde->address_range =
ae0d2f24 2112 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2113 fde->cie->ptr_size, buf, &bytes_read, 0);
cfc14b3a
MK
2114 buf += bytes_read;
2115
7131cb6e
RH
2116 /* A 'z' augmentation in the CIE implies the presence of an
2117 augmentation field in the FDE as well. The only thing known
2118 to be in here at present is the LSDA entry for EH. So we
2119 can skip the whole thing. */
2120 if (fde->cie->saw_z_augmentation)
2121 {
9fccedf7 2122 uint64_t length;
7131cb6e 2123
f664829e
DE
2124 buf = gdb_read_uleb128 (buf, end, &length);
2125 if (buf == NULL)
2126 return NULL;
2127 buf += length;
6896c0c7
RH
2128 if (buf > end)
2129 return NULL;
7131cb6e
RH
2130 }
2131
cfc14b3a
MK
2132 fde->instructions = buf;
2133 fde->end = end;
2134
4bf8967c
AS
2135 fde->eh_frame_p = eh_frame_p;
2136
b01c8410 2137 add_fde (fde_table, fde);
cfc14b3a
MK
2138 }
2139
2140 return end;
2141}
6896c0c7 2142
8bd90839
FM
2143/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2144 expect an FDE or a CIE. */
2145
f664829e
DE
2146static const gdb_byte *
2147decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2148 int eh_frame_p,
b01c8410 2149 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2150 struct dwarf2_fde_table *fde_table,
2151 enum eh_frame_type entry_type)
6896c0c7
RH
2152{
2153 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2154 const gdb_byte *ret;
6896c0c7
RH
2155 ptrdiff_t start_offset;
2156
2157 while (1)
2158 {
b01c8410 2159 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2160 cie_table, fde_table, entry_type);
6896c0c7
RH
2161 if (ret != NULL)
2162 break;
2163
2164 /* We have corrupt input data of some form. */
2165
2166 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2167 and mismatches wrt padding and alignment of debug sections. */
2168 /* Note that there is no requirement in the standard for any
2169 alignment at all in the frame unwind sections. Testing for
2170 alignment before trying to interpret data would be incorrect.
2171
2172 However, GCC traditionally arranged for frame sections to be
2173 sized such that the FDE length and CIE fields happen to be
2174 aligned (in theory, for performance). This, unfortunately,
2175 was done with .align directives, which had the side effect of
2176 forcing the section to be aligned by the linker.
2177
2178 This becomes a problem when you have some other producer that
2179 creates frame sections that are not as strictly aligned. That
2180 produces a hole in the frame info that gets filled by the
2181 linker with zeros.
2182
2183 The GCC behaviour is arguably a bug, but it's effectively now
2184 part of the ABI, so we're now stuck with it, at least at the
2185 object file level. A smart linker may decide, in the process
2186 of compressing duplicate CIE information, that it can rewrite
2187 the entire output section without this extra padding. */
2188
2189 start_offset = start - unit->dwarf_frame_buffer;
2190 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2191 {
2192 start += 4 - (start_offset & 3);
2193 workaround = ALIGN4;
2194 continue;
2195 }
2196 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2197 {
2198 start += 8 - (start_offset & 7);
2199 workaround = ALIGN8;
2200 continue;
2201 }
2202
2203 /* Nothing left to try. Arrange to return as if we've consumed
2204 the entire input section. Hopefully we'll get valid info from
2205 the other of .debug_frame/.eh_frame. */
2206 workaround = FAIL;
2207 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2208 break;
2209 }
2210
2211 switch (workaround)
2212 {
2213 case NONE:
2214 break;
2215
2216 case ALIGN4:
3e43a32a
MS
2217 complaint (&symfile_complaints, _("\
2218Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2219 unit->dwarf_frame_section->owner->filename,
2220 unit->dwarf_frame_section->name);
2221 break;
2222
2223 case ALIGN8:
3e43a32a
MS
2224 complaint (&symfile_complaints, _("\
2225Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2226 unit->dwarf_frame_section->owner->filename,
2227 unit->dwarf_frame_section->name);
2228 break;
2229
2230 default:
2231 complaint (&symfile_complaints,
e2e0b3e5 2232 _("Corrupt data in %s:%s"),
6896c0c7
RH
2233 unit->dwarf_frame_section->owner->filename,
2234 unit->dwarf_frame_section->name);
2235 break;
2236 }
2237
2238 return ret;
2239}
cfc14b3a 2240\f
b01c8410
PP
2241static int
2242qsort_fde_cmp (const void *a, const void *b)
2243{
2244 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2245 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2246
b01c8410 2247 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2248 {
2249 if (aa->address_range != bb->address_range
2250 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2251 /* Linker bug, e.g. gold/10400.
2252 Work around it by keeping stable sort order. */
2253 return (a < b) ? -1 : 1;
2254 else
2255 /* Put eh_frame entries after debug_frame ones. */
2256 return aa->eh_frame_p - bb->eh_frame_p;
2257 }
b01c8410
PP
2258
2259 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2260}
2261
cfc14b3a
MK
2262void
2263dwarf2_build_frame_info (struct objfile *objfile)
2264{
ae0d2f24 2265 struct comp_unit *unit;
f664829e 2266 const gdb_byte *frame_ptr;
b01c8410
PP
2267 struct dwarf2_cie_table cie_table;
2268 struct dwarf2_fde_table fde_table;
be391dca 2269 struct dwarf2_fde_table *fde_table2;
8bd90839 2270 volatile struct gdb_exception e;
b01c8410
PP
2271
2272 cie_table.num_entries = 0;
2273 cie_table.entries = NULL;
2274
2275 fde_table.num_entries = 0;
2276 fde_table.entries = NULL;
cfc14b3a
MK
2277
2278 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2279 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2280 sizeof (struct comp_unit));
2281 unit->abfd = objfile->obfd;
2282 unit->objfile = objfile;
2283 unit->dbase = 0;
2284 unit->tbase = 0;
cfc14b3a 2285
d40102a1 2286 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2287 {
d40102a1
JB
2288 /* Do not read .eh_frame from separate file as they must be also
2289 present in the main file. */
2290 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2291 &unit->dwarf_frame_section,
2292 &unit->dwarf_frame_buffer,
2293 &unit->dwarf_frame_size);
2294 if (unit->dwarf_frame_size)
b01c8410 2295 {
d40102a1
JB
2296 asection *got, *txt;
2297
2298 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2299 that is used for the i386/amd64 target, which currently is
2300 the only target in GCC that supports/uses the
2301 DW_EH_PE_datarel encoding. */
2302 got = bfd_get_section_by_name (unit->abfd, ".got");
2303 if (got)
2304 unit->dbase = got->vma;
2305
2306 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2307 so far. */
2308 txt = bfd_get_section_by_name (unit->abfd, ".text");
2309 if (txt)
2310 unit->tbase = txt->vma;
2311
8bd90839
FM
2312 TRY_CATCH (e, RETURN_MASK_ERROR)
2313 {
2314 frame_ptr = unit->dwarf_frame_buffer;
2315 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2316 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2317 &cie_table, &fde_table,
2318 EH_CIE_OR_FDE_TYPE_ID);
2319 }
2320
2321 if (e.reason < 0)
2322 {
2323 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2324 objfile_name (objfile), e.message);
8bd90839
FM
2325
2326 if (fde_table.num_entries != 0)
2327 {
2328 xfree (fde_table.entries);
2329 fde_table.entries = NULL;
2330 fde_table.num_entries = 0;
2331 }
2332 /* The cie_table is discarded by the next if. */
2333 }
d40102a1
JB
2334
2335 if (cie_table.num_entries != 0)
2336 {
2337 /* Reinit cie_table: debug_frame has different CIEs. */
2338 xfree (cie_table.entries);
2339 cie_table.num_entries = 0;
2340 cie_table.entries = NULL;
2341 }
b01c8410 2342 }
cfc14b3a
MK
2343 }
2344
3017a003 2345 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2346 &unit->dwarf_frame_section,
2347 &unit->dwarf_frame_buffer,
2348 &unit->dwarf_frame_size);
2349 if (unit->dwarf_frame_size)
cfc14b3a 2350 {
8bd90839
FM
2351 int num_old_fde_entries = fde_table.num_entries;
2352
2353 TRY_CATCH (e, RETURN_MASK_ERROR)
2354 {
2355 frame_ptr = unit->dwarf_frame_buffer;
2356 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2357 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2358 &cie_table, &fde_table,
2359 EH_CIE_OR_FDE_TYPE_ID);
2360 }
2361 if (e.reason < 0)
2362 {
2363 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2364 objfile_name (objfile), e.message);
8bd90839
FM
2365
2366 if (fde_table.num_entries != 0)
2367 {
2368 fde_table.num_entries = num_old_fde_entries;
2369 if (num_old_fde_entries == 0)
2370 {
2371 xfree (fde_table.entries);
2372 fde_table.entries = NULL;
2373 }
2374 else
2375 {
2376 fde_table.entries = xrealloc (fde_table.entries,
2377 fde_table.num_entries *
2378 sizeof (fde_table.entries[0]));
2379 }
2380 }
2381 fde_table.num_entries = num_old_fde_entries;
2382 /* The cie_table is discarded by the next if. */
2383 }
b01c8410
PP
2384 }
2385
2386 /* Discard the cie_table, it is no longer needed. */
2387 if (cie_table.num_entries != 0)
2388 {
2389 xfree (cie_table.entries);
2390 cie_table.entries = NULL; /* Paranoia. */
2391 cie_table.num_entries = 0; /* Paranoia. */
2392 }
2393
be391dca
TT
2394 /* Copy fde_table to obstack: it is needed at runtime. */
2395 fde_table2 = (struct dwarf2_fde_table *)
2396 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2397
2398 if (fde_table.num_entries == 0)
2399 {
2400 fde_table2->entries = NULL;
2401 fde_table2->num_entries = 0;
2402 }
2403 else
b01c8410 2404 {
875cdfbb
PA
2405 struct dwarf2_fde *fde_prev = NULL;
2406 struct dwarf2_fde *first_non_zero_fde = NULL;
2407 int i;
b01c8410
PP
2408
2409 /* Prepare FDE table for lookups. */
2410 qsort (fde_table.entries, fde_table.num_entries,
2411 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2412
875cdfbb
PA
2413 /* Check for leftovers from --gc-sections. The GNU linker sets
2414 the relevant symbols to zero, but doesn't zero the FDE *end*
2415 ranges because there's no relocation there. It's (offset,
2416 length), not (start, end). On targets where address zero is
2417 just another valid address this can be a problem, since the
2418 FDEs appear to be non-empty in the output --- we could pick
2419 out the wrong FDE. To work around this, when overlaps are
2420 detected, we prefer FDEs that do not start at zero.
2421
2422 Start by finding the first FDE with non-zero start. Below
2423 we'll discard all FDEs that start at zero and overlap this
2424 one. */
2425 for (i = 0; i < fde_table.num_entries; i++)
2426 {
2427 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2428
875cdfbb
PA
2429 if (fde->initial_location != 0)
2430 {
2431 first_non_zero_fde = fde;
2432 break;
2433 }
2434 }
2435
2436 /* Since we'll be doing bsearch, squeeze out identical (except
2437 for eh_frame_p) fde entries so bsearch result is predictable.
2438 Also discard leftovers from --gc-sections. */
be391dca 2439 fde_table2->num_entries = 0;
875cdfbb
PA
2440 for (i = 0; i < fde_table.num_entries; i++)
2441 {
2442 struct dwarf2_fde *fde = fde_table.entries[i];
2443
2444 if (fde->initial_location == 0
2445 && first_non_zero_fde != NULL
2446 && (first_non_zero_fde->initial_location
2447 < fde->initial_location + fde->address_range))
2448 continue;
2449
2450 if (fde_prev != NULL
2451 && fde_prev->initial_location == fde->initial_location)
2452 continue;
2453
2454 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2455 sizeof (fde_table.entries[0]));
2456 ++fde_table2->num_entries;
2457 fde_prev = fde;
2458 }
b01c8410 2459 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2460
2461 /* Discard the original fde_table. */
2462 xfree (fde_table.entries);
cfc14b3a 2463 }
be391dca
TT
2464
2465 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2466}
0d0e1a63
MK
2467
2468/* Provide a prototype to silence -Wmissing-prototypes. */
2469void _initialize_dwarf2_frame (void);
2470
2471void
2472_initialize_dwarf2_frame (void)
2473{
030f20e1 2474 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2475 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2476}
This page took 0.924686 seconds and 4 git commands to generate.