* arm-tdep.c (skip_prologue_function): New function.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
4c38e0a4 3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010
0fb0cc75 4 Free Software Foundation, Inc.
cfc14b3a
MK
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
22
23#include "defs.h"
24#include "dwarf2expr.h"
fa8f86ff 25#include "dwarf2.h"
cfc14b3a
MK
26#include "frame.h"
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
31#include "symtab.h"
32#include "objfiles.h"
33#include "regcache.h"
f2da6b3a 34#include "value.h"
cfc14b3a
MK
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
6896c0c7 39#include "complaints.h"
cfc14b3a
MK
40#include "dwarf2-frame.h"
41
ae0d2f24
UW
42struct comp_unit;
43
cfc14b3a
MK
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
ae0d2f24
UW
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
cfc14b3a
MK
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
852483bc
MK
68 gdb_byte *initial_instructions;
69 gdb_byte *end;
cfc14b3a 70
303b6f5d
DJ
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
cfc14b3a 74 /* Encoding of addresses. */
852483bc 75 gdb_byte encoding;
cfc14b3a 76
ae0d2f24
UW
77 /* Target address size in bytes. */
78 int addr_size;
79
7131cb6e
RH
80 /* True if a 'z' augmentation existed. */
81 unsigned char saw_z_augmentation;
82
56c987f6
AO
83 /* True if an 'S' augmentation existed. */
84 unsigned char signal_frame;
85
303b6f5d
DJ
86 /* The version recorded in the CIE. */
87 unsigned char version;
b01c8410 88};
303b6f5d 89
b01c8410
PP
90struct dwarf2_cie_table
91{
92 int num_entries;
93 struct dwarf2_cie **entries;
cfc14b3a
MK
94};
95
96/* Frame Description Entry (FDE). */
97
98struct dwarf2_fde
99{
100 /* CIE for this FDE. */
101 struct dwarf2_cie *cie;
102
103 /* First location associated with this FDE. */
104 CORE_ADDR initial_location;
105
106 /* Number of bytes of program instructions described by this FDE. */
107 CORE_ADDR address_range;
108
109 /* Instruction sequence. */
852483bc
MK
110 gdb_byte *instructions;
111 gdb_byte *end;
cfc14b3a 112
4bf8967c
AS
113 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
114 section. */
115 unsigned char eh_frame_p;
b01c8410 116};
4bf8967c 117
b01c8410
PP
118struct dwarf2_fde_table
119{
120 int num_entries;
121 struct dwarf2_fde **entries;
cfc14b3a
MK
122};
123
ae0d2f24
UW
124/* A minimal decoding of DWARF2 compilation units. We only decode
125 what's needed to get to the call frame information. */
126
127struct comp_unit
128{
129 /* Keep the bfd convenient. */
130 bfd *abfd;
131
132 struct objfile *objfile;
133
ae0d2f24
UW
134 /* Pointer to the .debug_frame section loaded into memory. */
135 gdb_byte *dwarf_frame_buffer;
136
137 /* Length of the loaded .debug_frame section. */
c098b58b 138 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
139
140 /* Pointer to the .debug_frame section. */
141 asection *dwarf_frame_section;
142
143 /* Base for DW_EH_PE_datarel encodings. */
144 bfd_vma dbase;
145
146 /* Base for DW_EH_PE_textrel encodings. */
147 bfd_vma tbase;
148};
149
cfc14b3a 150static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
4fc771b8
DJ
151
152static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
153 int eh_frame_p);
ae0d2f24
UW
154
155static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
156 int ptr_len, gdb_byte *buf,
157 unsigned int *bytes_read_ptr,
158 CORE_ADDR func_base);
cfc14b3a
MK
159\f
160
161/* Structure describing a frame state. */
162
163struct dwarf2_frame_state
164{
165 /* Each register save state can be described in terms of a CFA slot,
166 another register, or a location expression. */
167 struct dwarf2_frame_state_reg_info
168 {
05cbe71a 169 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
170 int num_regs;
171
2fd481e1
PP
172 LONGEST cfa_offset;
173 ULONGEST cfa_reg;
174 enum {
175 CFA_UNSET,
176 CFA_REG_OFFSET,
177 CFA_EXP
178 } cfa_how;
179 gdb_byte *cfa_exp;
180
cfc14b3a
MK
181 /* Used to implement DW_CFA_remember_state. */
182 struct dwarf2_frame_state_reg_info *prev;
183 } regs;
184
cfc14b3a
MK
185 /* The PC described by the current frame state. */
186 CORE_ADDR pc;
187
188 /* Initial register set from the CIE.
189 Used to implement DW_CFA_restore. */
190 struct dwarf2_frame_state_reg_info initial;
191
192 /* The information we care about from the CIE. */
193 LONGEST data_align;
194 ULONGEST code_align;
195 ULONGEST retaddr_column;
303b6f5d
DJ
196
197 /* Flags for known producer quirks. */
198
199 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
200 and DW_CFA_def_cfa_offset takes a factored offset. */
201 int armcc_cfa_offsets_sf;
202
203 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
204 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
205 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
206};
207
208/* Store the length the expression for the CFA in the `cfa_reg' field,
209 which is unused in that case. */
210#define cfa_exp_len cfa_reg
211
f57d151a 212/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
213 columns. If necessary, enlarge the register set. */
214
215static void
216dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
217 int num_regs)
218{
219 size_t size = sizeof (struct dwarf2_frame_state_reg);
220
221 if (num_regs <= rs->num_regs)
222 return;
223
224 rs->reg = (struct dwarf2_frame_state_reg *)
225 xrealloc (rs->reg, num_regs * size);
226
227 /* Initialize newly allocated registers. */
2473a4a9 228 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
229 rs->num_regs = num_regs;
230}
231
232/* Copy the register columns in register set RS into newly allocated
233 memory and return a pointer to this newly created copy. */
234
235static struct dwarf2_frame_state_reg *
236dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
237{
d10891d4 238 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
239 struct dwarf2_frame_state_reg *reg;
240
241 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
242 memcpy (reg, rs->reg, size);
243
244 return reg;
245}
246
247/* Release the memory allocated to register set RS. */
248
249static void
250dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
251{
252 if (rs)
253 {
254 dwarf2_frame_state_free_regs (rs->prev);
255
256 xfree (rs->reg);
257 xfree (rs);
258 }
259}
260
261/* Release the memory allocated to the frame state FS. */
262
263static void
264dwarf2_frame_state_free (void *p)
265{
266 struct dwarf2_frame_state *fs = p;
267
268 dwarf2_frame_state_free_regs (fs->initial.prev);
269 dwarf2_frame_state_free_regs (fs->regs.prev);
270 xfree (fs->initial.reg);
271 xfree (fs->regs.reg);
272 xfree (fs);
273}
274\f
275
276/* Helper functions for execute_stack_op. */
277
278static CORE_ADDR
279read_reg (void *baton, int reg)
280{
4a4e5149
DJ
281 struct frame_info *this_frame = (struct frame_info *) baton;
282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 283 int regnum;
852483bc 284 gdb_byte *buf;
cfc14b3a 285
ad010def 286 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 287
852483bc 288 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 289 get_frame_register (this_frame, regnum, buf);
f2da6b3a
DJ
290
291 /* Convert the register to an integer. This returns a LONGEST
292 rather than a CORE_ADDR, but unpack_pointer does the same thing
293 under the covers, and this makes more sense for non-pointer
294 registers. Maybe read_reg and the associated interfaces should
295 deal with "struct value" instead of CORE_ADDR. */
296 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
297}
298
299static void
852483bc 300read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
301{
302 read_memory (addr, buf, len);
303}
304
305static void
852483bc 306no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
cfc14b3a
MK
307{
308 internal_error (__FILE__, __LINE__,
e2e0b3e5 309 _("Support for DW_OP_fbreg is unimplemented"));
cfc14b3a
MK
310}
311
e7802207
TT
312/* Helper function for execute_stack_op. */
313
314static CORE_ADDR
315no_get_frame_cfa (void *baton)
316{
317 internal_error (__FILE__, __LINE__,
318 _("Support for DW_OP_call_frame_cfa is unimplemented"));
319}
320
cfc14b3a
MK
321static CORE_ADDR
322no_get_tls_address (void *baton, CORE_ADDR offset)
323{
324 internal_error (__FILE__, __LINE__,
e2e0b3e5 325 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
cfc14b3a
MK
326}
327
a6a5a945
LM
328/* Execute the required actions for both the DW_CFA_restore and
329DW_CFA_restore_extended instructions. */
330static void
331dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
332 struct dwarf2_frame_state *fs, int eh_frame_p)
333{
334 ULONGEST reg;
335
336 gdb_assert (fs->initial.reg);
337 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
338 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
339
340 /* Check if this register was explicitly initialized in the
341 CIE initial instructions. If not, default the rule to
342 UNSPECIFIED. */
343 if (reg < fs->initial.num_regs)
344 fs->regs.reg[reg] = fs->initial.reg[reg];
345 else
346 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
347
348 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
349 complaint (&symfile_complaints, _("\
350incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 351register %s (#%d) at %s"),
a6a5a945
LM
352 gdbarch_register_name
353 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
354 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 355 paddress (gdbarch, fs->pc));
a6a5a945
LM
356}
357
cfc14b3a 358static CORE_ADDR
ae0d2f24 359execute_stack_op (gdb_byte *exp, ULONGEST len, int addr_size,
44353522
DE
360 struct frame_info *this_frame, CORE_ADDR initial,
361 int initial_in_stack_memory)
cfc14b3a
MK
362{
363 struct dwarf_expr_context *ctx;
364 CORE_ADDR result;
4a227398 365 struct cleanup *old_chain;
cfc14b3a
MK
366
367 ctx = new_dwarf_expr_context ();
4a227398
TT
368 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
369
f7fd4728 370 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 371 ctx->addr_size = addr_size;
4a4e5149 372 ctx->baton = this_frame;
cfc14b3a
MK
373 ctx->read_reg = read_reg;
374 ctx->read_mem = read_mem;
375 ctx->get_frame_base = no_get_frame_base;
e7802207 376 ctx->get_frame_cfa = no_get_frame_cfa;
cfc14b3a
MK
377 ctx->get_tls_address = no_get_tls_address;
378
44353522 379 dwarf_expr_push (ctx, initial, initial_in_stack_memory);
cfc14b3a
MK
380 dwarf_expr_eval (ctx, exp, len);
381 result = dwarf_expr_fetch (ctx, 0);
382
cec03d70 383 if (ctx->location == DWARF_VALUE_REGISTER)
4a4e5149 384 result = read_reg (this_frame, result);
cec03d70
TT
385 else if (ctx->location != DWARF_VALUE_MEMORY)
386 {
387 /* This is actually invalid DWARF, but if we ever do run across
388 it somehow, we might as well support it. So, instead, report
389 it as unimplemented. */
390 error (_("Not implemented: computing unwound register using explicit value operator"));
391 }
cfc14b3a 392
4a227398 393 do_cleanups (old_chain);
cfc14b3a
MK
394
395 return result;
396}
397\f
398
399static void
ae0d2f24 400execute_cfa_program (struct dwarf2_fde *fde, gdb_byte *insn_ptr,
4a4e5149 401 gdb_byte *insn_end, struct frame_info *this_frame,
ae0d2f24 402 struct dwarf2_frame_state *fs)
cfc14b3a 403{
ae0d2f24 404 int eh_frame_p = fde->eh_frame_p;
4a4e5149 405 CORE_ADDR pc = get_frame_pc (this_frame);
cfc14b3a 406 int bytes_read;
4a4e5149 407 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 408 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
409
410 while (insn_ptr < insn_end && fs->pc <= pc)
411 {
852483bc 412 gdb_byte insn = *insn_ptr++;
cfc14b3a
MK
413 ULONGEST utmp, reg;
414 LONGEST offset;
415
416 if ((insn & 0xc0) == DW_CFA_advance_loc)
417 fs->pc += (insn & 0x3f) * fs->code_align;
418 else if ((insn & 0xc0) == DW_CFA_offset)
419 {
420 reg = insn & 0x3f;
4fc771b8 421 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
422 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
423 offset = utmp * fs->data_align;
424 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 425 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
426 fs->regs.reg[reg].loc.offset = offset;
427 }
428 else if ((insn & 0xc0) == DW_CFA_restore)
429 {
cfc14b3a 430 reg = insn & 0x3f;
a6a5a945 431 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
432 }
433 else
434 {
435 switch (insn)
436 {
437 case DW_CFA_set_loc:
ae0d2f24
UW
438 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
439 fde->cie->addr_size, insn_ptr,
440 &bytes_read, fde->initial_location);
441 /* Apply the objfile offset for relocatable objects. */
442 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
443 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
444 insn_ptr += bytes_read;
445 break;
446
447 case DW_CFA_advance_loc1:
e17a4113 448 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
449 fs->pc += utmp * fs->code_align;
450 insn_ptr++;
451 break;
452 case DW_CFA_advance_loc2:
e17a4113 453 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
454 fs->pc += utmp * fs->code_align;
455 insn_ptr += 2;
456 break;
457 case DW_CFA_advance_loc4:
e17a4113 458 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
459 fs->pc += utmp * fs->code_align;
460 insn_ptr += 4;
461 break;
462
463 case DW_CFA_offset_extended:
464 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 465 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
466 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
467 offset = utmp * fs->data_align;
468 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 469 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
470 fs->regs.reg[reg].loc.offset = offset;
471 break;
472
473 case DW_CFA_restore_extended:
cfc14b3a 474 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 475 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
476 break;
477
478 case DW_CFA_undefined:
479 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 480 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 481 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 482 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
483 break;
484
485 case DW_CFA_same_value:
486 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 487 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 488 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 489 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
490 break;
491
492 case DW_CFA_register:
493 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 494 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 495 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 496 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 497 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 498 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
499 fs->regs.reg[reg].loc.reg = utmp;
500 break;
501
502 case DW_CFA_remember_state:
503 {
504 struct dwarf2_frame_state_reg_info *new_rs;
505
506 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
507 *new_rs = fs->regs;
508 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
509 fs->regs.prev = new_rs;
510 }
511 break;
512
513 case DW_CFA_restore_state:
514 {
515 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
516
50ea7769
MK
517 if (old_rs == NULL)
518 {
e2e0b3e5 519 complaint (&symfile_complaints, _("\
5af949e3
UW
520bad CFI data; mismatched DW_CFA_restore_state at %s"),
521 paddress (gdbarch, fs->pc));
50ea7769
MK
522 }
523 else
524 {
525 xfree (fs->regs.reg);
526 fs->regs = *old_rs;
527 xfree (old_rs);
528 }
cfc14b3a
MK
529 }
530 break;
531
532 case DW_CFA_def_cfa:
2fd481e1 533 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
cfc14b3a 534 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
535
536 if (fs->armcc_cfa_offsets_sf)
537 utmp *= fs->data_align;
538
2fd481e1
PP
539 fs->regs.cfa_offset = utmp;
540 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
541 break;
542
543 case DW_CFA_def_cfa_register:
2fd481e1
PP
544 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
545 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
546 fs->regs.cfa_reg,
547 eh_frame_p);
548 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
549 break;
550
551 case DW_CFA_def_cfa_offset:
852483bc 552 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
553
554 if (fs->armcc_cfa_offsets_sf)
555 utmp *= fs->data_align;
556
2fd481e1 557 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
558 /* cfa_how deliberately not set. */
559 break;
560
a8504492
MK
561 case DW_CFA_nop:
562 break;
563
cfc14b3a 564 case DW_CFA_def_cfa_expression:
2fd481e1
PP
565 insn_ptr = read_uleb128 (insn_ptr, insn_end,
566 &fs->regs.cfa_exp_len);
567 fs->regs.cfa_exp = insn_ptr;
568 fs->regs.cfa_how = CFA_EXP;
569 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
570 break;
571
572 case DW_CFA_expression:
573 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 574 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
575 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
576 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
577 fs->regs.reg[reg].loc.exp = insn_ptr;
578 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 579 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
580 insn_ptr += utmp;
581 break;
582
a8504492
MK
583 case DW_CFA_offset_extended_sf:
584 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 585 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
a8504492 586 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 587 offset *= fs->data_align;
a8504492 588 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 589 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
590 fs->regs.reg[reg].loc.offset = offset;
591 break;
592
46ea248b
AO
593 case DW_CFA_val_offset:
594 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
595 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
596 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
597 offset = utmp * fs->data_align;
598 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
599 fs->regs.reg[reg].loc.offset = offset;
600 break;
601
602 case DW_CFA_val_offset_sf:
603 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
604 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
605 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
606 offset *= fs->data_align;
607 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
608 fs->regs.reg[reg].loc.offset = offset;
609 break;
610
611 case DW_CFA_val_expression:
612 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
613 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
614 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
615 fs->regs.reg[reg].loc.exp = insn_ptr;
616 fs->regs.reg[reg].exp_len = utmp;
617 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
618 insn_ptr += utmp;
619 break;
620
a8504492 621 case DW_CFA_def_cfa_sf:
2fd481e1
PP
622 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
623 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
624 fs->regs.cfa_reg,
625 eh_frame_p);
a8504492 626 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
627 fs->regs.cfa_offset = offset * fs->data_align;
628 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
629 break;
630
631 case DW_CFA_def_cfa_offset_sf:
632 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 633 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 634 /* cfa_how deliberately not set. */
cfc14b3a
MK
635 break;
636
a77f4086
MK
637 case DW_CFA_GNU_window_save:
638 /* This is SPARC-specific code, and contains hard-coded
639 constants for the register numbering scheme used by
640 GCC. Rather than having a architecture-specific
641 operation that's only ever used by a single
642 architecture, we provide the implementation here.
643 Incidentally that's what GCC does too in its
644 unwinder. */
645 {
4a4e5149 646 int size = register_size (gdbarch, 0);
a77f4086
MK
647 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
648 for (reg = 8; reg < 16; reg++)
649 {
650 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
651 fs->regs.reg[reg].loc.reg = reg + 16;
652 }
653 for (reg = 16; reg < 32; reg++)
654 {
655 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
656 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
657 }
658 }
659 break;
660
cfc14b3a
MK
661 case DW_CFA_GNU_args_size:
662 /* Ignored. */
663 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
664 break;
665
58894217
JK
666 case DW_CFA_GNU_negative_offset_extended:
667 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 668 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
58894217
JK
669 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
670 offset *= fs->data_align;
671 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
672 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
673 fs->regs.reg[reg].loc.offset = -offset;
674 break;
675
cfc14b3a 676 default:
e2e0b3e5 677 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
cfc14b3a
MK
678 }
679 }
680 }
681
682 /* Don't allow remember/restore between CIE and FDE programs. */
683 dwarf2_frame_state_free_regs (fs->regs.prev);
684 fs->regs.prev = NULL;
685}
8f22cb90 686\f
cfc14b3a 687
8f22cb90 688/* Architecture-specific operations. */
cfc14b3a 689
8f22cb90
MK
690/* Per-architecture data key. */
691static struct gdbarch_data *dwarf2_frame_data;
692
693struct dwarf2_frame_ops
694{
695 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
696 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
697 struct frame_info *);
3ed09a32 698
4a4e5149 699 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 700 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 701
4fc771b8
DJ
702 /* Convert .eh_frame register number to DWARF register number, or
703 adjust .debug_frame register number. */
704 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
705};
706
8f22cb90
MK
707/* Default architecture-specific register state initialization
708 function. */
709
710static void
711dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 712 struct dwarf2_frame_state_reg *reg,
4a4e5149 713 struct frame_info *this_frame)
8f22cb90
MK
714{
715 /* If we have a register that acts as a program counter, mark it as
716 a destination for the return address. If we have a register that
717 serves as the stack pointer, arrange for it to be filled with the
718 call frame address (CFA). The other registers are marked as
719 unspecified.
720
721 We copy the return address to the program counter, since many
722 parts in GDB assume that it is possible to get the return address
723 by unwinding the program counter register. However, on ISA's
724 with a dedicated return address register, the CFI usually only
725 contains information to unwind that return address register.
726
727 The reason we're treating the stack pointer special here is
728 because in many cases GCC doesn't emit CFI for the stack pointer
729 and implicitly assumes that it is equal to the CFA. This makes
730 some sense since the DWARF specification (version 3, draft 8,
731 p. 102) says that:
732
733 "Typically, the CFA is defined to be the value of the stack
734 pointer at the call site in the previous frame (which may be
735 different from its value on entry to the current frame)."
736
737 However, this isn't true for all platforms supported by GCC
738 (e.g. IBM S/390 and zSeries). Those architectures should provide
739 their own architecture-specific initialization function. */
05cbe71a 740
ad010def 741 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 742 reg->how = DWARF2_FRAME_REG_RA;
ad010def 743 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
744 reg->how = DWARF2_FRAME_REG_CFA;
745}
05cbe71a 746
8f22cb90 747/* Return a default for the architecture-specific operations. */
05cbe71a 748
8f22cb90 749static void *
030f20e1 750dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
751{
752 struct dwarf2_frame_ops *ops;
753
030f20e1 754 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
755 ops->init_reg = dwarf2_frame_default_init_reg;
756 return ops;
757}
05cbe71a 758
8f22cb90
MK
759/* Set the architecture-specific register state initialization
760 function for GDBARCH to INIT_REG. */
761
762void
763dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
764 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
765 struct dwarf2_frame_state_reg *,
766 struct frame_info *))
8f22cb90 767{
030f20e1 768 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 769
8f22cb90
MK
770 ops->init_reg = init_reg;
771}
772
773/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
774
775static void
776dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 777 struct dwarf2_frame_state_reg *reg,
4a4e5149 778 struct frame_info *this_frame)
05cbe71a 779{
030f20e1 780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 781
4a4e5149 782 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 783}
3ed09a32
DJ
784
785/* Set the architecture-specific signal trampoline recognition
786 function for GDBARCH to SIGNAL_FRAME_P. */
787
788void
789dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
790 int (*signal_frame_p) (struct gdbarch *,
791 struct frame_info *))
792{
793 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
794
795 ops->signal_frame_p = signal_frame_p;
796}
797
798/* Query the architecture-specific signal frame recognizer for
4a4e5149 799 THIS_FRAME. */
3ed09a32
DJ
800
801static int
802dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 803 struct frame_info *this_frame)
3ed09a32
DJ
804{
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 if (ops->signal_frame_p == NULL)
808 return 0;
4a4e5149 809 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 810}
4bf8967c 811
4fc771b8
DJ
812/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
813 register numbers. */
4bf8967c
AS
814
815void
4fc771b8
DJ
816dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
817 int (*adjust_regnum) (struct gdbarch *,
818 int, int))
4bf8967c
AS
819{
820 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
821
4fc771b8 822 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
823}
824
4fc771b8
DJ
825/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
826 register. */
4bf8967c 827
4fc771b8
DJ
828static int
829dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
4bf8967c
AS
830{
831 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
832
4fc771b8 833 if (ops->adjust_regnum == NULL)
4bf8967c 834 return regnum;
4fc771b8 835 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 836}
303b6f5d
DJ
837
838static void
839dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
840 struct dwarf2_fde *fde)
841{
842 static const char *arm_idents[] = {
843 "ARM C Compiler, ADS",
844 "Thumb C Compiler, ADS",
845 "ARM C++ Compiler, ADS",
846 "Thumb C++ Compiler, ADS",
847 "ARM/Thumb C/C++ Compiler, RVCT"
848 };
849 int i;
850
851 struct symtab *s;
852
853 s = find_pc_symtab (fs->pc);
854 if (s == NULL || s->producer == NULL)
855 return;
856
857 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
858 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
859 {
860 if (fde->cie->version == 1)
861 fs->armcc_cfa_offsets_sf = 1;
862
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_reversed = 1;
865
866 /* The reversed offset problem is present in some compilers
867 using DWARF3, but it was eventually fixed. Check the ARM
868 defined augmentations, which are in the format "armcc" followed
869 by a list of one-character options. The "+" option means
870 this problem is fixed (no quirk needed). If the armcc
871 augmentation is missing, the quirk is needed. */
872 if (fde->cie->version == 3
873 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
874 || strchr (fde->cie->augmentation + 5, '+') == NULL))
875 fs->armcc_cfa_offsets_reversed = 1;
876
877 return;
878 }
879}
8f22cb90
MK
880\f
881
882struct dwarf2_frame_cache
883{
884 /* DWARF Call Frame Address. */
885 CORE_ADDR cfa;
886
0228dfb9
DJ
887 /* Set if the return address column was marked as undefined. */
888 int undefined_retaddr;
889
8f22cb90
MK
890 /* Saved registers, indexed by GDB register number, not by DWARF
891 register number. */
892 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
893
894 /* Return address register. */
895 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
896
897 /* Target address size in bytes. */
898 int addr_size;
8f22cb90 899};
05cbe71a 900
b9362cc7 901static struct dwarf2_frame_cache *
4a4e5149 902dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
903{
904 struct cleanup *old_chain;
4a4e5149 905 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
906 const int num_regs = gdbarch_num_regs (gdbarch)
907 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
908 struct dwarf2_frame_cache *cache;
909 struct dwarf2_frame_state *fs;
910 struct dwarf2_fde *fde;
cfc14b3a
MK
911
912 if (*this_cache)
913 return *this_cache;
914
915 /* Allocate a new cache. */
916 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
917 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
918
919 /* Allocate and initialize the frame state. */
920 fs = XMALLOC (struct dwarf2_frame_state);
921 memset (fs, 0, sizeof (struct dwarf2_frame_state));
922 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
923
924 /* Unwind the PC.
925
4a4e5149 926 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 927 to abort), the compiler might optimize away the instruction at
4a4e5149 928 its return address. As a result the return address will
cfc14b3a 929 point at some random instruction, and the CFI for that
e4e9607c 930 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
931 this problem by substracting 1 from the return address to get an
932 address in the middle of a presumed call instruction (or the
933 instruction in the associated delay slot). This should only be
934 done for "normal" frames and not for resume-type frames (signal
e4e9607c 935 handlers, sentinel frames, dummy frames). The function
ad1193e7 936 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
937 reliable the method is though; there is the potential for the
938 register state pre-call being different to that on return. */
4a4e5149 939 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
940
941 /* Find the correct FDE. */
942 fde = dwarf2_frame_find_fde (&fs->pc);
943 gdb_assert (fde != NULL);
944
945 /* Extract any interesting information from the CIE. */
946 fs->data_align = fde->cie->data_alignment_factor;
947 fs->code_align = fde->cie->code_alignment_factor;
948 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 949 cache->addr_size = fde->cie->addr_size;
cfc14b3a 950
303b6f5d
DJ
951 /* Check for "quirks" - known bugs in producers. */
952 dwarf2_frame_find_quirks (fs, fde);
953
cfc14b3a 954 /* First decode all the insns in the CIE. */
ae0d2f24 955 execute_cfa_program (fde, fde->cie->initial_instructions,
4a4e5149 956 fde->cie->end, this_frame, fs);
cfc14b3a
MK
957
958 /* Save the initialized register set. */
959 fs->initial = fs->regs;
960 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
961
962 /* Then decode the insns in the FDE up to our target PC. */
4a4e5149 963 execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs);
cfc14b3a 964
938f5214 965 /* Calculate the CFA. */
2fd481e1 966 switch (fs->regs.cfa_how)
cfc14b3a
MK
967 {
968 case CFA_REG_OFFSET:
2fd481e1 969 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
303b6f5d 970 if (fs->armcc_cfa_offsets_reversed)
2fd481e1 971 cache->cfa -= fs->regs.cfa_offset;
303b6f5d 972 else
2fd481e1 973 cache->cfa += fs->regs.cfa_offset;
cfc14b3a
MK
974 break;
975
976 case CFA_EXP:
977 cache->cfa =
2fd481e1 978 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
44353522 979 cache->addr_size, this_frame, 0, 0);
cfc14b3a
MK
980 break;
981
982 default:
e2e0b3e5 983 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
cfc14b3a
MK
984 }
985
05cbe71a 986 /* Initialize the register state. */
3e2c4033
AC
987 {
988 int regnum;
e4e9607c 989
3e2c4033 990 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 991 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
992 }
993
994 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
995 location information in the cache. Note that we don't skip the
996 return address column; it's perfectly all right for it to
997 correspond to a real register. If it doesn't correspond to a
998 real register, or if we shouldn't treat it as such,
055d23b8 999 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1000 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1001 {
1002 int column; /* CFI speak for "register number". */
e4e9607c 1003
3e2c4033
AC
1004 for (column = 0; column < fs->regs.num_regs; column++)
1005 {
3e2c4033 1006 /* Use the GDB register number as the destination index. */
ad010def 1007 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1008
1009 /* If there's no corresponding GDB register, ignore it. */
1010 if (regnum < 0 || regnum >= num_regs)
1011 continue;
1012
1013 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1014 of all debug info registers. If it doesn't, complain (but
1015 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1016 unspecified register implies "same value" when CFI (draft
1017 7) specifies nothing at all. Such a register could equally
1018 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1019 isn't sufficient; it only checks that all registers in the
1020 range [0 .. max column] are specified, and won't detect
3e2c4033 1021 problems when a debug info register falls outside of the
e4e9607c 1022 table. We need a way of iterating through all the valid
3e2c4033 1023 DWARF2 register numbers. */
05cbe71a 1024 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1025 {
1026 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1027 complaint (&symfile_complaints, _("\
5af949e3 1028incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1029 gdbarch_register_name (gdbarch, regnum),
5af949e3 1030 paddress (gdbarch, fs->pc));
f059bf6f 1031 }
35889917
MK
1032 else
1033 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1034 }
1035 }
cfc14b3a 1036
8d5a9abc
MK
1037 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1038 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1039 {
1040 int regnum;
1041
1042 for (regnum = 0; regnum < num_regs; regnum++)
1043 {
8d5a9abc
MK
1044 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1045 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1046 {
05cbe71a
MK
1047 struct dwarf2_frame_state_reg *retaddr_reg =
1048 &fs->regs.reg[fs->retaddr_column];
1049
d4f10bf2
MK
1050 /* It seems rather bizarre to specify an "empty" column as
1051 the return adress column. However, this is exactly
1052 what GCC does on some targets. It turns out that GCC
1053 assumes that the return address can be found in the
1054 register corresponding to the return address column.
8d5a9abc
MK
1055 Incidentally, that's how we should treat a return
1056 address column specifying "same value" too. */
d4f10bf2 1057 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1058 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1059 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1060 {
1061 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1062 cache->reg[regnum] = *retaddr_reg;
1063 else
1064 cache->retaddr_reg = *retaddr_reg;
1065 }
35889917
MK
1066 else
1067 {
8d5a9abc
MK
1068 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1069 {
1070 cache->reg[regnum].loc.reg = fs->retaddr_column;
1071 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1072 }
1073 else
1074 {
1075 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1076 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1077 }
35889917
MK
1078 }
1079 }
1080 }
1081 }
cfc14b3a 1082
0228dfb9
DJ
1083 if (fs->retaddr_column < fs->regs.num_regs
1084 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1085 cache->undefined_retaddr = 1;
1086
cfc14b3a
MK
1087 do_cleanups (old_chain);
1088
1089 *this_cache = cache;
1090 return cache;
1091}
1092
1093static void
4a4e5149 1094dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1095 struct frame_id *this_id)
1096{
1097 struct dwarf2_frame_cache *cache =
4a4e5149 1098 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1099
0228dfb9
DJ
1100 if (cache->undefined_retaddr)
1101 return;
1102
4a4e5149 1103 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1104}
1105
4a4e5149
DJ
1106static struct value *
1107dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1108 int regnum)
93d42b30 1109{
4a4e5149 1110 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1111 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1112 dwarf2_frame_cache (this_frame, this_cache);
1113 CORE_ADDR addr;
1114 int realnum;
cfc14b3a
MK
1115
1116 switch (cache->reg[regnum].how)
1117 {
05cbe71a 1118 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1119 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1120 mark it as optimized away; the value isn't available. */
4a4e5149 1121 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1122
05cbe71a 1123 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1124 addr = cache->cfa + cache->reg[regnum].loc.offset;
1125 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1126
05cbe71a 1127 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1128 realnum
1129 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1130 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1131
05cbe71a 1132 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1133 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1134 cache->reg[regnum].exp_len,
44353522 1135 cache->addr_size, this_frame, cache->cfa, 1);
4a4e5149 1136 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1137
46ea248b 1138 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1139 addr = cache->cfa + cache->reg[regnum].loc.offset;
1140 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1141
1142 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1143 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1144 cache->reg[regnum].exp_len,
44353522 1145 cache->addr_size, this_frame, cache->cfa, 1);
4a4e5149 1146 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1147
05cbe71a 1148 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1149 /* GCC, in its infinite wisdom decided to not provide unwind
1150 information for registers that are "same value". Since
1151 DWARF2 (3 draft 7) doesn't define such behavior, said
1152 registers are actually undefined (which is different to CFI
1153 "undefined"). Code above issues a complaint about this.
1154 Here just fudge the books, assume GCC, and that the value is
1155 more inner on the stack. */
4a4e5149 1156 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1157
05cbe71a 1158 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1159 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1160
05cbe71a 1161 case DWARF2_FRAME_REG_CFA:
4a4e5149 1162 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1163
ea7963f0 1164 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1165 addr = cache->cfa + cache->reg[regnum].loc.offset;
1166 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1167
8d5a9abc 1168 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1169 addr = cache->reg[regnum].loc.offset;
1170 regnum = gdbarch_dwarf2_reg_to_regnum
1171 (gdbarch, cache->retaddr_reg.loc.reg);
1172 addr += get_frame_register_unsigned (this_frame, regnum);
1173 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1174
b39cc962
DJ
1175 case DWARF2_FRAME_REG_FN:
1176 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1177
cfc14b3a 1178 default:
e2e0b3e5 1179 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1180 }
1181}
1182
4a4e5149
DJ
1183static int
1184dwarf2_frame_sniffer (const struct frame_unwind *self,
1185 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1186{
1ce5d6dd 1187 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1188 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1189 end up returning something past the end of this function's body.
1190 If the frame we're sniffing for is a signal frame whose start
1191 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1192 extend one byte before its start address or we could potentially
1193 select the FDE of the previous function. */
1194 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
56c987f6
AO
1195 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1196 if (!fde)
4a4e5149 1197 return 0;
3ed09a32
DJ
1198
1199 /* On some targets, signal trampolines may have unwind information.
1200 We need to recognize them so that we set the frame type
1201 correctly. */
1202
56c987f6 1203 if (fde->cie->signal_frame
4a4e5149
DJ
1204 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1205 this_frame))
1206 return self->type == SIGTRAMP_FRAME;
1207
1208 return self->type != SIGTRAMP_FRAME;
1209}
1210
1211static const struct frame_unwind dwarf2_frame_unwind =
1212{
1213 NORMAL_FRAME,
1214 dwarf2_frame_this_id,
1215 dwarf2_frame_prev_register,
1216 NULL,
1217 dwarf2_frame_sniffer
1218};
1219
1220static const struct frame_unwind dwarf2_signal_frame_unwind =
1221{
1222 SIGTRAMP_FRAME,
1223 dwarf2_frame_this_id,
1224 dwarf2_frame_prev_register,
1225 NULL,
1226 dwarf2_frame_sniffer
1227};
cfc14b3a 1228
4a4e5149
DJ
1229/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1230
1231void
1232dwarf2_append_unwinders (struct gdbarch *gdbarch)
1233{
1234 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1235 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1236}
1237\f
1238
1239/* There is no explicitly defined relationship between the CFA and the
1240 location of frame's local variables and arguments/parameters.
1241 Therefore, frame base methods on this page should probably only be
1242 used as a last resort, just to avoid printing total garbage as a
1243 response to the "info frame" command. */
1244
1245static CORE_ADDR
4a4e5149 1246dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1247{
1248 struct dwarf2_frame_cache *cache =
4a4e5149 1249 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1250
1251 return cache->cfa;
1252}
1253
1254static const struct frame_base dwarf2_frame_base =
1255{
1256 &dwarf2_frame_unwind,
1257 dwarf2_frame_base_address,
1258 dwarf2_frame_base_address,
1259 dwarf2_frame_base_address
1260};
1261
1262const struct frame_base *
4a4e5149 1263dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1264{
4a4e5149 1265 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
93d42b30 1266 if (dwarf2_frame_find_fde (&block_addr))
cfc14b3a
MK
1267 return &dwarf2_frame_base;
1268
1269 return NULL;
1270}
e7802207
TT
1271
1272/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1273 the DWARF unwinder. This is used to implement
1274 DW_OP_call_frame_cfa. */
1275
1276CORE_ADDR
1277dwarf2_frame_cfa (struct frame_info *this_frame)
1278{
1279 while (get_frame_type (this_frame) == INLINE_FRAME)
1280 this_frame = get_prev_frame (this_frame);
1281 /* This restriction could be lifted if other unwinders are known to
1282 compute the frame base in a way compatible with the DWARF
1283 unwinder. */
1284 if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind))
1285 error (_("can't compute CFA for this frame"));
1286 return get_frame_base (this_frame);
1287}
cfc14b3a 1288\f
8f22cb90 1289const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1290
cfc14b3a 1291static unsigned int
852483bc 1292read_1_byte (bfd *abfd, gdb_byte *buf)
cfc14b3a 1293{
852483bc 1294 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1295}
1296
1297static unsigned int
852483bc 1298read_4_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1299{
852483bc 1300 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1301}
1302
1303static ULONGEST
852483bc 1304read_8_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1305{
852483bc 1306 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1307}
1308
1309static ULONGEST
852483bc 1310read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1311{
1312 ULONGEST result;
1313 unsigned int num_read;
1314 int shift;
852483bc 1315 gdb_byte byte;
cfc14b3a
MK
1316
1317 result = 0;
1318 shift = 0;
1319 num_read = 0;
1320
1321 do
1322 {
1323 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1324 buf++;
1325 num_read++;
1326 result |= ((byte & 0x7f) << shift);
1327 shift += 7;
1328 }
1329 while (byte & 0x80);
1330
1331 *bytes_read_ptr = num_read;
1332
1333 return result;
1334}
1335
1336static LONGEST
852483bc 1337read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1338{
1339 LONGEST result;
1340 int shift;
1341 unsigned int num_read;
852483bc 1342 gdb_byte byte;
cfc14b3a
MK
1343
1344 result = 0;
1345 shift = 0;
1346 num_read = 0;
1347
1348 do
1349 {
1350 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1351 buf++;
1352 num_read++;
1353 result |= ((byte & 0x7f) << shift);
1354 shift += 7;
1355 }
1356 while (byte & 0x80);
1357
77e0b926
DJ
1358 if (shift < 8 * sizeof (result) && (byte & 0x40))
1359 result |= -(((LONGEST)1) << shift);
cfc14b3a
MK
1360
1361 *bytes_read_ptr = num_read;
1362
1363 return result;
1364}
1365
1366static ULONGEST
852483bc 1367read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1368{
1369 LONGEST result;
1370
852483bc 1371 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1372 if (result == 0xffffffff)
1373 {
852483bc 1374 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1375 *bytes_read_ptr = 12;
1376 }
1377 else
1378 *bytes_read_ptr = 4;
1379
1380 return result;
1381}
1382\f
1383
1384/* Pointer encoding helper functions. */
1385
1386/* GCC supports exception handling based on DWARF2 CFI. However, for
1387 technical reasons, it encodes addresses in its FDE's in a different
1388 way. Several "pointer encodings" are supported. The encoding
1389 that's used for a particular FDE is determined by the 'R'
1390 augmentation in the associated CIE. The argument of this
1391 augmentation is a single byte.
1392
1393 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1394 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1395 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1396 address should be interpreted (absolute, relative to the current
1397 position in the FDE, ...). Bit 7, indicates that the address
1398 should be dereferenced. */
1399
852483bc 1400static gdb_byte
cfc14b3a
MK
1401encoding_for_size (unsigned int size)
1402{
1403 switch (size)
1404 {
1405 case 2:
1406 return DW_EH_PE_udata2;
1407 case 4:
1408 return DW_EH_PE_udata4;
1409 case 8:
1410 return DW_EH_PE_udata8;
1411 default:
e2e0b3e5 1412 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1413 }
1414}
1415
cfc14b3a 1416static CORE_ADDR
852483bc 1417read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
ae0d2f24
UW
1418 int ptr_len, gdb_byte *buf, unsigned int *bytes_read_ptr,
1419 CORE_ADDR func_base)
cfc14b3a 1420{
68f6cf99 1421 ptrdiff_t offset;
cfc14b3a
MK
1422 CORE_ADDR base;
1423
1424 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1425 FDE's. */
1426 if (encoding & DW_EH_PE_indirect)
1427 internal_error (__FILE__, __LINE__,
e2e0b3e5 1428 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1429
68f6cf99
MK
1430 *bytes_read_ptr = 0;
1431
cfc14b3a
MK
1432 switch (encoding & 0x70)
1433 {
1434 case DW_EH_PE_absptr:
1435 base = 0;
1436 break;
1437 case DW_EH_PE_pcrel:
f2fec864 1438 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1439 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1440 break;
0912c7f2
MK
1441 case DW_EH_PE_datarel:
1442 base = unit->dbase;
1443 break;
0fd85043
CV
1444 case DW_EH_PE_textrel:
1445 base = unit->tbase;
1446 break;
03ac2a74 1447 case DW_EH_PE_funcrel:
ae0d2f24 1448 base = func_base;
03ac2a74 1449 break;
68f6cf99
MK
1450 case DW_EH_PE_aligned:
1451 base = 0;
852483bc 1452 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1453 if ((offset % ptr_len) != 0)
1454 {
1455 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1456 buf += *bytes_read_ptr;
1457 }
1458 break;
cfc14b3a 1459 default:
e2e0b3e5 1460 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1461 }
1462
b04de778 1463 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1464 {
1465 encoding |= encoding_for_size (ptr_len);
1466 if (bfd_get_sign_extend_vma (unit->abfd))
1467 encoding |= DW_EH_PE_signed;
1468 }
cfc14b3a
MK
1469
1470 switch (encoding & 0x0f)
1471 {
a81b10ae
MK
1472 case DW_EH_PE_uleb128:
1473 {
1474 ULONGEST value;
852483bc 1475 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1476 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1477 return base + value;
1478 }
cfc14b3a 1479 case DW_EH_PE_udata2:
68f6cf99 1480 *bytes_read_ptr += 2;
cfc14b3a
MK
1481 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1482 case DW_EH_PE_udata4:
68f6cf99 1483 *bytes_read_ptr += 4;
cfc14b3a
MK
1484 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1485 case DW_EH_PE_udata8:
68f6cf99 1486 *bytes_read_ptr += 8;
cfc14b3a 1487 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1488 case DW_EH_PE_sleb128:
1489 {
1490 LONGEST value;
852483bc 1491 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1492 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1493 return base + value;
1494 }
cfc14b3a 1495 case DW_EH_PE_sdata2:
68f6cf99 1496 *bytes_read_ptr += 2;
cfc14b3a
MK
1497 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1498 case DW_EH_PE_sdata4:
68f6cf99 1499 *bytes_read_ptr += 4;
cfc14b3a
MK
1500 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1501 case DW_EH_PE_sdata8:
68f6cf99 1502 *bytes_read_ptr += 8;
cfc14b3a
MK
1503 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1504 default:
e2e0b3e5 1505 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1506 }
1507}
1508\f
1509
b01c8410
PP
1510static int
1511bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1512{
b01c8410
PP
1513 ULONGEST cie_pointer = *(ULONGEST *) key;
1514 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1515
b01c8410
PP
1516 if (cie_pointer == cie->cie_pointer)
1517 return 0;
cfc14b3a 1518
b01c8410
PP
1519 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1520}
1521
1522/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1523static struct dwarf2_cie *
1524find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1525{
1526 struct dwarf2_cie **p_cie;
cfc14b3a 1527
65a97ab3
PP
1528 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1529 bsearch be non-NULL. */
1530 if (cie_table->entries == NULL)
1531 {
1532 gdb_assert (cie_table->num_entries == 0);
1533 return NULL;
1534 }
1535
b01c8410
PP
1536 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1537 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1538 if (p_cie != NULL)
1539 return *p_cie;
cfc14b3a
MK
1540 return NULL;
1541}
1542
b01c8410 1543/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1544static void
b01c8410 1545add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1546{
b01c8410
PP
1547 const int n = cie_table->num_entries;
1548
1549 gdb_assert (n < 1
1550 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1551
1552 cie_table->entries =
1553 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1554 cie_table->entries[n] = cie;
1555 cie_table->num_entries = n + 1;
1556}
1557
1558static int
1559bsearch_fde_cmp (const void *key, const void *element)
1560{
1561 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1562 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1563 if (seek_pc < fde->initial_location)
1564 return -1;
1565 if (seek_pc < fde->initial_location + fde->address_range)
1566 return 0;
1567 return 1;
cfc14b3a
MK
1568}
1569
1570/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1571 inital location associated with it into *PC. */
1572
1573static struct dwarf2_fde *
1574dwarf2_frame_find_fde (CORE_ADDR *pc)
1575{
1576 struct objfile *objfile;
1577
1578 ALL_OBJFILES (objfile)
1579 {
b01c8410
PP
1580 struct dwarf2_fde_table *fde_table;
1581 struct dwarf2_fde **p_fde;
cfc14b3a 1582 CORE_ADDR offset;
b01c8410 1583 CORE_ADDR seek_pc;
cfc14b3a 1584
b01c8410
PP
1585 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1586 if (fde_table == NULL)
be391dca
TT
1587 {
1588 dwarf2_build_frame_info (objfile);
1589 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1590 }
1591 gdb_assert (fde_table != NULL);
1592
1593 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1594 continue;
1595
1596 gdb_assert (objfile->section_offsets);
1597 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1598
b01c8410
PP
1599 gdb_assert (fde_table->num_entries > 0);
1600 if (*pc < offset + fde_table->entries[0]->initial_location)
1601 continue;
1602
1603 seek_pc = *pc - offset;
1604 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1605 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1606 if (p_fde != NULL)
1607 {
1608 *pc = (*p_fde)->initial_location + offset;
1609 return *p_fde;
1610 }
cfc14b3a 1611 }
cfc14b3a
MK
1612 return NULL;
1613}
1614
b01c8410 1615/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1616static void
b01c8410 1617add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1618{
b01c8410
PP
1619 if (fde->address_range == 0)
1620 /* Discard useless FDEs. */
1621 return;
1622
1623 fde_table->num_entries += 1;
1624 fde_table->entries =
1625 xrealloc (fde_table->entries,
1626 fde_table->num_entries * sizeof (fde_table->entries[0]));
1627 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1628}
1629
1630#ifdef CC_HAS_LONG_LONG
1631#define DW64_CIE_ID 0xffffffffffffffffULL
1632#else
1633#define DW64_CIE_ID ~0
1634#endif
1635
852483bc 1636static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
b01c8410
PP
1637 int eh_frame_p,
1638 struct dwarf2_cie_table *cie_table,
1639 struct dwarf2_fde_table *fde_table);
cfc14b3a 1640
6896c0c7
RH
1641/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1642 the next byte to be processed. */
852483bc 1643static gdb_byte *
b01c8410
PP
1644decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1645 struct dwarf2_cie_table *cie_table,
1646 struct dwarf2_fde_table *fde_table)
cfc14b3a 1647{
5e2b427d 1648 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
852483bc 1649 gdb_byte *buf, *end;
cfc14b3a
MK
1650 LONGEST length;
1651 unsigned int bytes_read;
6896c0c7
RH
1652 int dwarf64_p;
1653 ULONGEST cie_id;
cfc14b3a 1654 ULONGEST cie_pointer;
cfc14b3a 1655
6896c0c7 1656 buf = start;
cfc14b3a
MK
1657 length = read_initial_length (unit->abfd, buf, &bytes_read);
1658 buf += bytes_read;
1659 end = buf + length;
1660
6896c0c7
RH
1661 /* Are we still within the section? */
1662 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1663 return NULL;
1664
cfc14b3a
MK
1665 if (length == 0)
1666 return end;
1667
6896c0c7
RH
1668 /* Distinguish between 32 and 64-bit encoded frame info. */
1669 dwarf64_p = (bytes_read == 12);
cfc14b3a 1670
6896c0c7 1671 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1672 if (eh_frame_p)
1673 cie_id = 0;
1674 else if (dwarf64_p)
1675 cie_id = DW64_CIE_ID;
6896c0c7
RH
1676 else
1677 cie_id = DW_CIE_ID;
cfc14b3a
MK
1678
1679 if (dwarf64_p)
1680 {
1681 cie_pointer = read_8_bytes (unit->abfd, buf);
1682 buf += 8;
1683 }
1684 else
1685 {
1686 cie_pointer = read_4_bytes (unit->abfd, buf);
1687 buf += 4;
1688 }
1689
1690 if (cie_pointer == cie_id)
1691 {
1692 /* This is a CIE. */
1693 struct dwarf2_cie *cie;
1694 char *augmentation;
28ba0b33 1695 unsigned int cie_version;
cfc14b3a
MK
1696
1697 /* Record the offset into the .debug_frame section of this CIE. */
1698 cie_pointer = start - unit->dwarf_frame_buffer;
1699
1700 /* Check whether we've already read it. */
b01c8410 1701 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1702 return end;
1703
1704 cie = (struct dwarf2_cie *)
8b92e4d5 1705 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1706 sizeof (struct dwarf2_cie));
1707 cie->initial_instructions = NULL;
1708 cie->cie_pointer = cie_pointer;
1709
1710 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1711 depends on the target address size. */
1712 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1713
ae0d2f24
UW
1714 /* The target address size. For .eh_frame FDEs this is considered
1715 equal to the size of a target pointer. For .dwarf_frame FDEs,
1716 this is supposed to be the target address size from the associated
1717 CU header. FIXME: We do not have a good way to determine the
1718 latter. Always use the target pointer size for now. */
5e2b427d 1719 cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
ae0d2f24 1720
56c987f6
AO
1721 /* We'll determine the final value later, but we need to
1722 initialize it conservatively. */
1723 cie->signal_frame = 0;
1724
cfc14b3a 1725 /* Check version number. */
28ba0b33
PB
1726 cie_version = read_1_byte (unit->abfd, buf);
1727 if (cie_version != 1 && cie_version != 3)
6896c0c7 1728 return NULL;
303b6f5d 1729 cie->version = cie_version;
cfc14b3a
MK
1730 buf += 1;
1731
1732 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1733 cie->augmentation = augmentation = (char *) buf;
852483bc 1734 buf += (strlen (augmentation) + 1);
cfc14b3a 1735
303b6f5d
DJ
1736 /* Ignore armcc augmentations. We only use them for quirks,
1737 and that doesn't happen until later. */
1738 if (strncmp (augmentation, "armcc", 5) == 0)
1739 augmentation += strlen (augmentation);
1740
cfc14b3a
MK
1741 /* The GCC 2.x "eh" augmentation has a pointer immediately
1742 following the augmentation string, so it must be handled
1743 first. */
1744 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1745 {
1746 /* Skip. */
5e2b427d 1747 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1748 augmentation += 2;
1749 }
1750
1751 cie->code_alignment_factor =
1752 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1753 buf += bytes_read;
1754
1755 cie->data_alignment_factor =
1756 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1757 buf += bytes_read;
1758
28ba0b33
PB
1759 if (cie_version == 1)
1760 {
1761 cie->return_address_register = read_1_byte (unit->abfd, buf);
1762 bytes_read = 1;
1763 }
1764 else
1765 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1766 &bytes_read);
4fc771b8 1767 cie->return_address_register
5e2b427d 1768 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1769 cie->return_address_register,
1770 eh_frame_p);
4bf8967c 1771
28ba0b33 1772 buf += bytes_read;
cfc14b3a 1773
7131cb6e
RH
1774 cie->saw_z_augmentation = (*augmentation == 'z');
1775 if (cie->saw_z_augmentation)
cfc14b3a
MK
1776 {
1777 ULONGEST length;
1778
1779 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1780 buf += bytes_read;
6896c0c7
RH
1781 if (buf > end)
1782 return NULL;
cfc14b3a
MK
1783 cie->initial_instructions = buf + length;
1784 augmentation++;
1785 }
1786
1787 while (*augmentation)
1788 {
1789 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1790 if (*augmentation == 'L')
1791 {
1792 /* Skip. */
1793 buf++;
1794 augmentation++;
1795 }
1796
1797 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1798 else if (*augmentation == 'R')
1799 {
1800 cie->encoding = *buf++;
1801 augmentation++;
1802 }
1803
1804 /* "P" indicates a personality routine in the CIE augmentation. */
1805 else if (*augmentation == 'P')
1806 {
1234d960 1807 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1808 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
ae0d2f24
UW
1809 read_encoded_value (unit, encoding, cie->addr_size,
1810 buf, &bytes_read, 0);
f724bf08 1811 buf += bytes_read;
cfc14b3a
MK
1812 augmentation++;
1813 }
1814
56c987f6
AO
1815 /* "S" indicates a signal frame, such that the return
1816 address must not be decremented to locate the call frame
1817 info for the previous frame; it might even be the first
1818 instruction of a function, so decrementing it would take
1819 us to a different function. */
1820 else if (*augmentation == 'S')
1821 {
1822 cie->signal_frame = 1;
1823 augmentation++;
1824 }
1825
3e9a2e52
DJ
1826 /* Otherwise we have an unknown augmentation. Assume that either
1827 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
1828 else
1829 {
3e9a2e52
DJ
1830 if (cie->initial_instructions)
1831 buf = cie->initial_instructions;
cfc14b3a
MK
1832 break;
1833 }
1834 }
1835
1836 cie->initial_instructions = buf;
1837 cie->end = end;
b01c8410 1838 cie->unit = unit;
cfc14b3a 1839
b01c8410 1840 add_cie (cie_table, cie);
cfc14b3a
MK
1841 }
1842 else
1843 {
1844 /* This is a FDE. */
1845 struct dwarf2_fde *fde;
1846
6896c0c7
RH
1847 /* In an .eh_frame section, the CIE pointer is the delta between the
1848 address within the FDE where the CIE pointer is stored and the
1849 address of the CIE. Convert it to an offset into the .eh_frame
1850 section. */
cfc14b3a
MK
1851 if (eh_frame_p)
1852 {
cfc14b3a
MK
1853 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1854 cie_pointer -= (dwarf64_p ? 8 : 4);
1855 }
1856
6896c0c7
RH
1857 /* In either case, validate the result is still within the section. */
1858 if (cie_pointer >= unit->dwarf_frame_size)
1859 return NULL;
1860
cfc14b3a 1861 fde = (struct dwarf2_fde *)
8b92e4d5 1862 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 1863 sizeof (struct dwarf2_fde));
b01c8410 1864 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
1865 if (fde->cie == NULL)
1866 {
1867 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
b01c8410
PP
1868 eh_frame_p, cie_table, fde_table);
1869 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
1870 }
1871
1872 gdb_assert (fde->cie != NULL);
1873
1874 fde->initial_location =
ae0d2f24
UW
1875 read_encoded_value (unit, fde->cie->encoding, fde->cie->addr_size,
1876 buf, &bytes_read, 0);
cfc14b3a
MK
1877 buf += bytes_read;
1878
1879 fde->address_range =
ae0d2f24
UW
1880 read_encoded_value (unit, fde->cie->encoding & 0x0f,
1881 fde->cie->addr_size, buf, &bytes_read, 0);
cfc14b3a
MK
1882 buf += bytes_read;
1883
7131cb6e
RH
1884 /* A 'z' augmentation in the CIE implies the presence of an
1885 augmentation field in the FDE as well. The only thing known
1886 to be in here at present is the LSDA entry for EH. So we
1887 can skip the whole thing. */
1888 if (fde->cie->saw_z_augmentation)
1889 {
1890 ULONGEST length;
1891
1892 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1893 buf += bytes_read + length;
6896c0c7
RH
1894 if (buf > end)
1895 return NULL;
7131cb6e
RH
1896 }
1897
cfc14b3a
MK
1898 fde->instructions = buf;
1899 fde->end = end;
1900
4bf8967c
AS
1901 fde->eh_frame_p = eh_frame_p;
1902
b01c8410 1903 add_fde (fde_table, fde);
cfc14b3a
MK
1904 }
1905
1906 return end;
1907}
6896c0c7
RH
1908
1909/* Read a CIE or FDE in BUF and decode it. */
852483bc 1910static gdb_byte *
b01c8410
PP
1911decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1912 struct dwarf2_cie_table *cie_table,
1913 struct dwarf2_fde_table *fde_table)
6896c0c7
RH
1914{
1915 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
852483bc 1916 gdb_byte *ret;
6896c0c7
RH
1917 const char *msg;
1918 ptrdiff_t start_offset;
1919
1920 while (1)
1921 {
b01c8410
PP
1922 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
1923 cie_table, fde_table);
6896c0c7
RH
1924 if (ret != NULL)
1925 break;
1926
1927 /* We have corrupt input data of some form. */
1928
1929 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1930 and mismatches wrt padding and alignment of debug sections. */
1931 /* Note that there is no requirement in the standard for any
1932 alignment at all in the frame unwind sections. Testing for
1933 alignment before trying to interpret data would be incorrect.
1934
1935 However, GCC traditionally arranged for frame sections to be
1936 sized such that the FDE length and CIE fields happen to be
1937 aligned (in theory, for performance). This, unfortunately,
1938 was done with .align directives, which had the side effect of
1939 forcing the section to be aligned by the linker.
1940
1941 This becomes a problem when you have some other producer that
1942 creates frame sections that are not as strictly aligned. That
1943 produces a hole in the frame info that gets filled by the
1944 linker with zeros.
1945
1946 The GCC behaviour is arguably a bug, but it's effectively now
1947 part of the ABI, so we're now stuck with it, at least at the
1948 object file level. A smart linker may decide, in the process
1949 of compressing duplicate CIE information, that it can rewrite
1950 the entire output section without this extra padding. */
1951
1952 start_offset = start - unit->dwarf_frame_buffer;
1953 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1954 {
1955 start += 4 - (start_offset & 3);
1956 workaround = ALIGN4;
1957 continue;
1958 }
1959 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1960 {
1961 start += 8 - (start_offset & 7);
1962 workaround = ALIGN8;
1963 continue;
1964 }
1965
1966 /* Nothing left to try. Arrange to return as if we've consumed
1967 the entire input section. Hopefully we'll get valid info from
1968 the other of .debug_frame/.eh_frame. */
1969 workaround = FAIL;
1970 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1971 break;
1972 }
1973
1974 switch (workaround)
1975 {
1976 case NONE:
1977 break;
1978
1979 case ALIGN4:
1980 complaint (&symfile_complaints,
e2e0b3e5 1981 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
1982 unit->dwarf_frame_section->owner->filename,
1983 unit->dwarf_frame_section->name);
1984 break;
1985
1986 case ALIGN8:
1987 complaint (&symfile_complaints,
e2e0b3e5 1988 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
1989 unit->dwarf_frame_section->owner->filename,
1990 unit->dwarf_frame_section->name);
1991 break;
1992
1993 default:
1994 complaint (&symfile_complaints,
e2e0b3e5 1995 _("Corrupt data in %s:%s"),
6896c0c7
RH
1996 unit->dwarf_frame_section->owner->filename,
1997 unit->dwarf_frame_section->name);
1998 break;
1999 }
2000
2001 return ret;
2002}
cfc14b3a
MK
2003\f
2004
cfc14b3a 2005/* Imported from dwarf2read.c. */
dce234bc
PP
2006extern void dwarf2_get_section_info (struct objfile *, const char *, asection **,
2007 gdb_byte **, bfd_size_type *);
cfc14b3a 2008
b01c8410
PP
2009static int
2010qsort_fde_cmp (const void *a, const void *b)
2011{
2012 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2013 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2014
b01c8410 2015 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2016 {
2017 if (aa->address_range != bb->address_range
2018 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2019 /* Linker bug, e.g. gold/10400.
2020 Work around it by keeping stable sort order. */
2021 return (a < b) ? -1 : 1;
2022 else
2023 /* Put eh_frame entries after debug_frame ones. */
2024 return aa->eh_frame_p - bb->eh_frame_p;
2025 }
b01c8410
PP
2026
2027 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2028}
2029
cfc14b3a
MK
2030void
2031dwarf2_build_frame_info (struct objfile *objfile)
2032{
ae0d2f24 2033 struct comp_unit *unit;
852483bc 2034 gdb_byte *frame_ptr;
b01c8410
PP
2035 struct dwarf2_cie_table cie_table;
2036 struct dwarf2_fde_table fde_table;
be391dca 2037 struct dwarf2_fde_table *fde_table2;
b01c8410
PP
2038
2039 cie_table.num_entries = 0;
2040 cie_table.entries = NULL;
2041
2042 fde_table.num_entries = 0;
2043 fde_table.entries = NULL;
cfc14b3a
MK
2044
2045 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2046 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2047 sizeof (struct comp_unit));
2048 unit->abfd = objfile->obfd;
2049 unit->objfile = objfile;
2050 unit->dbase = 0;
2051 unit->tbase = 0;
cfc14b3a 2052
dce234bc
PP
2053 dwarf2_get_section_info (objfile, ".eh_frame",
2054 &unit->dwarf_frame_section,
2055 &unit->dwarf_frame_buffer,
2056 &unit->dwarf_frame_size);
2057 if (unit->dwarf_frame_size)
cfc14b3a 2058 {
0fd85043 2059 asection *got, *txt;
0912c7f2 2060
0912c7f2 2061 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
37b517aa
MK
2062 that is used for the i386/amd64 target, which currently is
2063 the only target in GCC that supports/uses the
2064 DW_EH_PE_datarel encoding. */
ae0d2f24 2065 got = bfd_get_section_by_name (unit->abfd, ".got");
0912c7f2 2066 if (got)
ae0d2f24 2067 unit->dbase = got->vma;
0912c7f2 2068
22c7ba1a
MK
2069 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2070 so far. */
ae0d2f24 2071 txt = bfd_get_section_by_name (unit->abfd, ".text");
0fd85043 2072 if (txt)
ae0d2f24 2073 unit->tbase = txt->vma;
0fd85043 2074
ae0d2f24
UW
2075 frame_ptr = unit->dwarf_frame_buffer;
2076 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
b01c8410
PP
2077 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2078 &cie_table, &fde_table);
2079
2080 if (cie_table.num_entries != 0)
2081 {
2082 /* Reinit cie_table: debug_frame has different CIEs. */
2083 xfree (cie_table.entries);
2084 cie_table.num_entries = 0;
2085 cie_table.entries = NULL;
2086 }
cfc14b3a
MK
2087 }
2088
dce234bc
PP
2089 dwarf2_get_section_info (objfile, ".debug_frame",
2090 &unit->dwarf_frame_section,
2091 &unit->dwarf_frame_buffer,
2092 &unit->dwarf_frame_size);
2093 if (unit->dwarf_frame_size)
cfc14b3a 2094 {
ae0d2f24
UW
2095 frame_ptr = unit->dwarf_frame_buffer;
2096 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
b01c8410
PP
2097 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2098 &cie_table, &fde_table);
2099 }
2100
2101 /* Discard the cie_table, it is no longer needed. */
2102 if (cie_table.num_entries != 0)
2103 {
2104 xfree (cie_table.entries);
2105 cie_table.entries = NULL; /* Paranoia. */
2106 cie_table.num_entries = 0; /* Paranoia. */
2107 }
2108
be391dca
TT
2109 /* Copy fde_table to obstack: it is needed at runtime. */
2110 fde_table2 = (struct dwarf2_fde_table *)
2111 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2112
2113 if (fde_table.num_entries == 0)
2114 {
2115 fde_table2->entries = NULL;
2116 fde_table2->num_entries = 0;
2117 }
2118 else
b01c8410 2119 {
875cdfbb
PA
2120 struct dwarf2_fde *fde_prev = NULL;
2121 struct dwarf2_fde *first_non_zero_fde = NULL;
2122 int i;
b01c8410
PP
2123
2124 /* Prepare FDE table for lookups. */
2125 qsort (fde_table.entries, fde_table.num_entries,
2126 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2127
875cdfbb
PA
2128 /* Check for leftovers from --gc-sections. The GNU linker sets
2129 the relevant symbols to zero, but doesn't zero the FDE *end*
2130 ranges because there's no relocation there. It's (offset,
2131 length), not (start, end). On targets where address zero is
2132 just another valid address this can be a problem, since the
2133 FDEs appear to be non-empty in the output --- we could pick
2134 out the wrong FDE. To work around this, when overlaps are
2135 detected, we prefer FDEs that do not start at zero.
2136
2137 Start by finding the first FDE with non-zero start. Below
2138 we'll discard all FDEs that start at zero and overlap this
2139 one. */
2140 for (i = 0; i < fde_table.num_entries; i++)
2141 {
2142 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2143
875cdfbb
PA
2144 if (fde->initial_location != 0)
2145 {
2146 first_non_zero_fde = fde;
2147 break;
2148 }
2149 }
2150
2151 /* Since we'll be doing bsearch, squeeze out identical (except
2152 for eh_frame_p) fde entries so bsearch result is predictable.
2153 Also discard leftovers from --gc-sections. */
be391dca 2154 fde_table2->num_entries = 0;
875cdfbb
PA
2155 for (i = 0; i < fde_table.num_entries; i++)
2156 {
2157 struct dwarf2_fde *fde = fde_table.entries[i];
2158
2159 if (fde->initial_location == 0
2160 && first_non_zero_fde != NULL
2161 && (first_non_zero_fde->initial_location
2162 < fde->initial_location + fde->address_range))
2163 continue;
2164
2165 if (fde_prev != NULL
2166 && fde_prev->initial_location == fde->initial_location)
2167 continue;
2168
2169 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2170 sizeof (fde_table.entries[0]));
2171 ++fde_table2->num_entries;
2172 fde_prev = fde;
2173 }
b01c8410 2174 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2175
2176 /* Discard the original fde_table. */
2177 xfree (fde_table.entries);
cfc14b3a 2178 }
be391dca
TT
2179
2180 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2181}
0d0e1a63
MK
2182
2183/* Provide a prototype to silence -Wmissing-prototypes. */
2184void _initialize_dwarf2_frame (void);
2185
2186void
2187_initialize_dwarf2_frame (void)
2188{
030f20e1 2189 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2190 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2191}
This page took 0.873888 seconds and 4 git commands to generate.