PR python/18938: source -s foo.py with foo.py a symlink to foo.notpy fails
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
32d0add0 3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
0b722aec 34#include "record.h"
cfc14b3a 35
6896c0c7 36#include "complaints.h"
cfc14b3a 37#include "dwarf2-frame.h"
9f6f94ff
TT
38#include "ax.h"
39#include "dwarf2loc.h"
111c6489 40#include "dwarf2-frame-tailcall.h"
cfc14b3a 41
ae0d2f24
UW
42struct comp_unit;
43
cfc14b3a
MK
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
ae0d2f24
UW
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
cfc14b3a
MK
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
f664829e
DE
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
cfc14b3a 70
303b6f5d
DJ
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
cfc14b3a 74 /* Encoding of addresses. */
852483bc 75 gdb_byte encoding;
cfc14b3a 76
ae0d2f24
UW
77 /* Target address size in bytes. */
78 int addr_size;
79
0963b4bd 80 /* Target pointer size in bytes. */
8da614df
CV
81 int ptr_size;
82
7131cb6e
RH
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
56c987f6
AO
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
303b6f5d
DJ
89 /* The version recorded in the CIE. */
90 unsigned char version;
2dc7f7b3
TT
91
92 /* The segment size. */
93 unsigned char segment_size;
b01c8410 94};
303b6f5d 95
b01c8410
PP
96struct dwarf2_cie_table
97{
98 int num_entries;
99 struct dwarf2_cie **entries;
cfc14b3a
MK
100};
101
102/* Frame Description Entry (FDE). */
103
104struct dwarf2_fde
105{
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
f664829e
DE
116 const gdb_byte *instructions;
117 const gdb_byte *end;
cfc14b3a 118
4bf8967c
AS
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
b01c8410 122};
4bf8967c 123
b01c8410
PP
124struct dwarf2_fde_table
125{
126 int num_entries;
127 struct dwarf2_fde **entries;
cfc14b3a
MK
128};
129
ae0d2f24
UW
130/* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133struct comp_unit
134{
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
ae0d2f24 140 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 141 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
142
143 /* Length of the loaded .debug_frame section. */
c098b58b 144 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154};
155
ac56253d
TT
156static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
4fc771b8
DJ
158
159static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
ae0d2f24
UW
161
162static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 163 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
cfc14b3a
MK
166\f
167
52059ffd
TT
168enum cfa_how_kind
169{
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
173};
174
175struct dwarf2_frame_state_reg_info
176{
177 struct dwarf2_frame_state_reg *reg;
178 int num_regs;
179
180 LONGEST cfa_offset;
181 ULONGEST cfa_reg;
182 enum cfa_how_kind cfa_how;
183 const gdb_byte *cfa_exp;
184
185 /* Used to implement DW_CFA_remember_state. */
186 struct dwarf2_frame_state_reg_info *prev;
187};
188
cfc14b3a
MK
189/* Structure describing a frame state. */
190
191struct dwarf2_frame_state
192{
193 /* Each register save state can be described in terms of a CFA slot,
194 another register, or a location expression. */
52059ffd 195 struct dwarf2_frame_state_reg_info regs;
cfc14b3a 196
cfc14b3a
MK
197 /* The PC described by the current frame state. */
198 CORE_ADDR pc;
199
200 /* Initial register set from the CIE.
201 Used to implement DW_CFA_restore. */
202 struct dwarf2_frame_state_reg_info initial;
203
204 /* The information we care about from the CIE. */
205 LONGEST data_align;
206 ULONGEST code_align;
207 ULONGEST retaddr_column;
303b6f5d
DJ
208
209 /* Flags for known producer quirks. */
210
211 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
212 and DW_CFA_def_cfa_offset takes a factored offset. */
213 int armcc_cfa_offsets_sf;
214
215 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
216 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
217 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
218};
219
220/* Store the length the expression for the CFA in the `cfa_reg' field,
221 which is unused in that case. */
222#define cfa_exp_len cfa_reg
223
f57d151a 224/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
225 columns. If necessary, enlarge the register set. */
226
227static void
228dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
229 int num_regs)
230{
231 size_t size = sizeof (struct dwarf2_frame_state_reg);
232
233 if (num_regs <= rs->num_regs)
234 return;
235
236 rs->reg = (struct dwarf2_frame_state_reg *)
237 xrealloc (rs->reg, num_regs * size);
238
239 /* Initialize newly allocated registers. */
2473a4a9 240 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
241 rs->num_regs = num_regs;
242}
243
244/* Copy the register columns in register set RS into newly allocated
245 memory and return a pointer to this newly created copy. */
246
247static struct dwarf2_frame_state_reg *
248dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
249{
d10891d4 250 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
251 struct dwarf2_frame_state_reg *reg;
252
253 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
254 memcpy (reg, rs->reg, size);
255
256 return reg;
257}
258
259/* Release the memory allocated to register set RS. */
260
261static void
262dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
263{
264 if (rs)
265 {
266 dwarf2_frame_state_free_regs (rs->prev);
267
268 xfree (rs->reg);
269 xfree (rs);
270 }
271}
272
273/* Release the memory allocated to the frame state FS. */
274
275static void
276dwarf2_frame_state_free (void *p)
277{
9a3c8263 278 struct dwarf2_frame_state *fs = (struct dwarf2_frame_state *) p;
cfc14b3a
MK
279
280 dwarf2_frame_state_free_regs (fs->initial.prev);
281 dwarf2_frame_state_free_regs (fs->regs.prev);
282 xfree (fs->initial.reg);
283 xfree (fs->regs.reg);
284 xfree (fs);
285}
286\f
287
288/* Helper functions for execute_stack_op. */
289
290static CORE_ADDR
b1370418 291read_addr_from_reg (void *baton, int reg)
cfc14b3a 292{
4a4e5149
DJ
293 struct frame_info *this_frame = (struct frame_info *) baton;
294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2ed3c037 295 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
f2da6b3a 296
2ed3c037 297 return address_from_register (regnum, this_frame);
cfc14b3a
MK
298}
299
0acf8b65
JB
300/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
301
302static struct value *
303get_reg_value (void *baton, struct type *type, int reg)
304{
305 struct frame_info *this_frame = (struct frame_info *) baton;
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
307 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
308
309 return value_from_register (type, regnum, this_frame);
310}
311
cfc14b3a 312static void
852483bc 313read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
314{
315 read_memory (addr, buf, len);
316}
317
a6a5a945
LM
318/* Execute the required actions for both the DW_CFA_restore and
319DW_CFA_restore_extended instructions. */
320static void
321dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
322 struct dwarf2_frame_state *fs, int eh_frame_p)
323{
324 ULONGEST reg;
325
326 gdb_assert (fs->initial.reg);
327 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329
330 /* Check if this register was explicitly initialized in the
331 CIE initial instructions. If not, default the rule to
332 UNSPECIFIED. */
333 if (reg < fs->initial.num_regs)
334 fs->regs.reg[reg] = fs->initial.reg[reg];
335 else
336 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
337
338 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
339 complaint (&symfile_complaints, _("\
340incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 341register %s (#%d) at %s"),
a6a5a945
LM
342 gdbarch_register_name
343 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
344 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 345 paddress (gdbarch, fs->pc));
a6a5a945
LM
346}
347
9e8b7a03
JK
348/* Virtual method table for execute_stack_op below. */
349
350static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
351{
b1370418 352 read_addr_from_reg,
0acf8b65 353 get_reg_value,
9e8b7a03 354 read_mem,
523f3620
JK
355 ctx_no_get_frame_base,
356 ctx_no_get_frame_cfa,
357 ctx_no_get_frame_pc,
358 ctx_no_get_tls_address,
359 ctx_no_dwarf_call,
8e3b41a9 360 ctx_no_get_base_type,
3019eac3
DE
361 ctx_no_push_dwarf_reg_entry_value,
362 ctx_no_get_addr_index
9e8b7a03
JK
363};
364
cfc14b3a 365static CORE_ADDR
0d45f56e 366execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
367 CORE_ADDR offset, struct frame_info *this_frame,
368 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
369{
370 struct dwarf_expr_context *ctx;
371 CORE_ADDR result;
4a227398 372 struct cleanup *old_chain;
cfc14b3a
MK
373
374 ctx = new_dwarf_expr_context ();
4a227398 375 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 376 make_cleanup_value_free_to_mark (value_mark ());
4a227398 377
f7fd4728 378 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 379 ctx->addr_size = addr_size;
181cebd4 380 ctx->ref_addr_size = -1;
ac56253d 381 ctx->offset = offset;
4a4e5149 382 ctx->baton = this_frame;
9e8b7a03 383 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 384
8a9b8146 385 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 386 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 387
f2c7657e
UW
388 if (ctx->location == DWARF_VALUE_MEMORY)
389 result = dwarf_expr_fetch_address (ctx, 0);
390 else if (ctx->location == DWARF_VALUE_REGISTER)
b1370418
JB
391 result = read_addr_from_reg (this_frame,
392 value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 393 else
cec03d70
TT
394 {
395 /* This is actually invalid DWARF, but if we ever do run across
396 it somehow, we might as well support it. So, instead, report
397 it as unimplemented. */
3e43a32a
MS
398 error (_("\
399Not implemented: computing unwound register using explicit value operator"));
cec03d70 400 }
cfc14b3a 401
4a227398 402 do_cleanups (old_chain);
cfc14b3a
MK
403
404 return result;
405}
406\f
407
111c6489
JK
408/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
409 PC. Modify FS state accordingly. Return current INSN_PTR where the
410 execution has stopped, one can resume it on the next call. */
411
412static const gdb_byte *
0d45f56e 413execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
414 const gdb_byte *insn_end, struct gdbarch *gdbarch,
415 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 416{
ae0d2f24 417 int eh_frame_p = fde->eh_frame_p;
507a579c 418 unsigned int bytes_read;
e17a4113 419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
420
421 while (insn_ptr < insn_end && fs->pc <= pc)
422 {
852483bc 423 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
424 uint64_t utmp, reg;
425 int64_t offset;
cfc14b3a
MK
426
427 if ((insn & 0xc0) == DW_CFA_advance_loc)
428 fs->pc += (insn & 0x3f) * fs->code_align;
429 else if ((insn & 0xc0) == DW_CFA_offset)
430 {
431 reg = insn & 0x3f;
4fc771b8 432 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 433 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
434 offset = utmp * fs->data_align;
435 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 436 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
437 fs->regs.reg[reg].loc.offset = offset;
438 }
439 else if ((insn & 0xc0) == DW_CFA_restore)
440 {
cfc14b3a 441 reg = insn & 0x3f;
a6a5a945 442 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
443 }
444 else
445 {
446 switch (insn)
447 {
448 case DW_CFA_set_loc:
ae0d2f24 449 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 450 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
451 &bytes_read, fde->initial_location);
452 /* Apply the objfile offset for relocatable objects. */
453 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
454 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
455 insn_ptr += bytes_read;
456 break;
457
458 case DW_CFA_advance_loc1:
e17a4113 459 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
460 fs->pc += utmp * fs->code_align;
461 insn_ptr++;
462 break;
463 case DW_CFA_advance_loc2:
e17a4113 464 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 2;
467 break;
468 case DW_CFA_advance_loc4:
e17a4113 469 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
470 fs->pc += utmp * fs->code_align;
471 insn_ptr += 4;
472 break;
473
474 case DW_CFA_offset_extended:
f664829e 475 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 476 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 477 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
478 offset = utmp * fs->data_align;
479 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 480 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
481 fs->regs.reg[reg].loc.offset = offset;
482 break;
483
484 case DW_CFA_restore_extended:
f664829e 485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 486 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
487 break;
488
489 case DW_CFA_undefined:
f664829e 490 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 491 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 492 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 493 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
494 break;
495
496 case DW_CFA_same_value:
f664829e 497 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 498 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 499 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 500 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
501 break;
502
503 case DW_CFA_register:
f664829e 504 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 505 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 506 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 507 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 508 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 509 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
510 fs->regs.reg[reg].loc.reg = utmp;
511 break;
512
513 case DW_CFA_remember_state:
514 {
515 struct dwarf2_frame_state_reg_info *new_rs;
516
70ba0933 517 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
cfc14b3a
MK
518 *new_rs = fs->regs;
519 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
520 fs->regs.prev = new_rs;
521 }
522 break;
523
524 case DW_CFA_restore_state:
525 {
526 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
527
50ea7769
MK
528 if (old_rs == NULL)
529 {
e2e0b3e5 530 complaint (&symfile_complaints, _("\
5af949e3
UW
531bad CFI data; mismatched DW_CFA_restore_state at %s"),
532 paddress (gdbarch, fs->pc));
50ea7769
MK
533 }
534 else
535 {
536 xfree (fs->regs.reg);
537 fs->regs = *old_rs;
538 xfree (old_rs);
539 }
cfc14b3a
MK
540 }
541 break;
542
543 case DW_CFA_def_cfa:
f664829e
DE
544 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
545 fs->regs.cfa_reg = reg;
546 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
547
548 if (fs->armcc_cfa_offsets_sf)
549 utmp *= fs->data_align;
550
2fd481e1
PP
551 fs->regs.cfa_offset = utmp;
552 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
553 break;
554
555 case DW_CFA_def_cfa_register:
f664829e
DE
556 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
557 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
558 eh_frame_p);
559 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
560 break;
561
562 case DW_CFA_def_cfa_offset:
f664829e 563 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
564
565 if (fs->armcc_cfa_offsets_sf)
566 utmp *= fs->data_align;
567
2fd481e1 568 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
569 /* cfa_how deliberately not set. */
570 break;
571
a8504492
MK
572 case DW_CFA_nop:
573 break;
574
cfc14b3a 575 case DW_CFA_def_cfa_expression:
f664829e
DE
576 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
577 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
578 fs->regs.cfa_exp = insn_ptr;
579 fs->regs.cfa_how = CFA_EXP;
580 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
581 break;
582
583 case DW_CFA_expression:
f664829e 584 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 585 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 586 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 587 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
588 fs->regs.reg[reg].loc.exp = insn_ptr;
589 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 590 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
591 insn_ptr += utmp;
592 break;
593
a8504492 594 case DW_CFA_offset_extended_sf:
f664829e 595 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 596 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 597 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 598 offset *= fs->data_align;
a8504492 599 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 600 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
601 fs->regs.reg[reg].loc.offset = offset;
602 break;
603
46ea248b 604 case DW_CFA_val_offset:
f664829e 605 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 606 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 607 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
608 offset = utmp * fs->data_align;
609 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
610 fs->regs.reg[reg].loc.offset = offset;
611 break;
612
613 case DW_CFA_val_offset_sf:
f664829e 614 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 615 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 616 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
617 offset *= fs->data_align;
618 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
619 fs->regs.reg[reg].loc.offset = offset;
620 break;
621
622 case DW_CFA_val_expression:
f664829e 623 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 624 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 625 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
626 fs->regs.reg[reg].loc.exp = insn_ptr;
627 fs->regs.reg[reg].exp_len = utmp;
628 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
629 insn_ptr += utmp;
630 break;
631
a8504492 632 case DW_CFA_def_cfa_sf:
f664829e
DE
633 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
634 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 635 eh_frame_p);
f664829e 636 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
637 fs->regs.cfa_offset = offset * fs->data_align;
638 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
639 break;
640
641 case DW_CFA_def_cfa_offset_sf:
f664829e 642 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 643 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 644 /* cfa_how deliberately not set. */
cfc14b3a
MK
645 break;
646
a77f4086
MK
647 case DW_CFA_GNU_window_save:
648 /* This is SPARC-specific code, and contains hard-coded
649 constants for the register numbering scheme used by
650 GCC. Rather than having a architecture-specific
651 operation that's only ever used by a single
652 architecture, we provide the implementation here.
653 Incidentally that's what GCC does too in its
654 unwinder. */
655 {
4a4e5149 656 int size = register_size (gdbarch, 0);
9a619af0 657
a77f4086
MK
658 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
659 for (reg = 8; reg < 16; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
662 fs->regs.reg[reg].loc.reg = reg + 16;
663 }
664 for (reg = 16; reg < 32; reg++)
665 {
666 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
667 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
668 }
669 }
670 break;
671
cfc14b3a
MK
672 case DW_CFA_GNU_args_size:
673 /* Ignored. */
f664829e 674 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
675 break;
676
58894217 677 case DW_CFA_GNU_negative_offset_extended:
f664829e 678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 679 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
680 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
681 offset = utmp * fs->data_align;
58894217
JK
682 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
683 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
684 fs->regs.reg[reg].loc.offset = -offset;
685 break;
686
cfc14b3a 687 default:
3e43a32a
MS
688 internal_error (__FILE__, __LINE__,
689 _("Unknown CFI encountered."));
cfc14b3a
MK
690 }
691 }
692 }
693
111c6489
JK
694 if (fs->initial.reg == NULL)
695 {
696 /* Don't allow remember/restore between CIE and FDE programs. */
697 dwarf2_frame_state_free_regs (fs->regs.prev);
698 fs->regs.prev = NULL;
699 }
700
701 return insn_ptr;
cfc14b3a 702}
8f22cb90 703\f
cfc14b3a 704
8f22cb90 705/* Architecture-specific operations. */
cfc14b3a 706
8f22cb90
MK
707/* Per-architecture data key. */
708static struct gdbarch_data *dwarf2_frame_data;
709
710struct dwarf2_frame_ops
711{
712 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
713 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
714 struct frame_info *);
3ed09a32 715
4a4e5149 716 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 717 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 718
4fc771b8
DJ
719 /* Convert .eh_frame register number to DWARF register number, or
720 adjust .debug_frame register number. */
721 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
722};
723
8f22cb90
MK
724/* Default architecture-specific register state initialization
725 function. */
726
727static void
728dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 729 struct dwarf2_frame_state_reg *reg,
4a4e5149 730 struct frame_info *this_frame)
8f22cb90
MK
731{
732 /* If we have a register that acts as a program counter, mark it as
733 a destination for the return address. If we have a register that
734 serves as the stack pointer, arrange for it to be filled with the
735 call frame address (CFA). The other registers are marked as
736 unspecified.
737
738 We copy the return address to the program counter, since many
739 parts in GDB assume that it is possible to get the return address
740 by unwinding the program counter register. However, on ISA's
741 with a dedicated return address register, the CFI usually only
742 contains information to unwind that return address register.
743
744 The reason we're treating the stack pointer special here is
745 because in many cases GCC doesn't emit CFI for the stack pointer
746 and implicitly assumes that it is equal to the CFA. This makes
747 some sense since the DWARF specification (version 3, draft 8,
748 p. 102) says that:
749
750 "Typically, the CFA is defined to be the value of the stack
751 pointer at the call site in the previous frame (which may be
752 different from its value on entry to the current frame)."
753
754 However, this isn't true for all platforms supported by GCC
755 (e.g. IBM S/390 and zSeries). Those architectures should provide
756 their own architecture-specific initialization function. */
05cbe71a 757
ad010def 758 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 759 reg->how = DWARF2_FRAME_REG_RA;
ad010def 760 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
761 reg->how = DWARF2_FRAME_REG_CFA;
762}
05cbe71a 763
8f22cb90 764/* Return a default for the architecture-specific operations. */
05cbe71a 765
8f22cb90 766static void *
030f20e1 767dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
768{
769 struct dwarf2_frame_ops *ops;
770
030f20e1 771 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
772 ops->init_reg = dwarf2_frame_default_init_reg;
773 return ops;
774}
05cbe71a 775
8f22cb90
MK
776/* Set the architecture-specific register state initialization
777 function for GDBARCH to INIT_REG. */
778
779void
780dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
781 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
782 struct dwarf2_frame_state_reg *,
783 struct frame_info *))
8f22cb90 784{
9a3c8263
SM
785 struct dwarf2_frame_ops *ops
786 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 787
8f22cb90
MK
788 ops->init_reg = init_reg;
789}
790
791/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
792
793static void
794dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 795 struct dwarf2_frame_state_reg *reg,
4a4e5149 796 struct frame_info *this_frame)
05cbe71a 797{
9a3c8263
SM
798 struct dwarf2_frame_ops *ops
799 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 800
4a4e5149 801 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 802}
3ed09a32
DJ
803
804/* Set the architecture-specific signal trampoline recognition
805 function for GDBARCH to SIGNAL_FRAME_P. */
806
807void
808dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
809 int (*signal_frame_p) (struct gdbarch *,
810 struct frame_info *))
811{
9a3c8263
SM
812 struct dwarf2_frame_ops *ops
813 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
814
815 ops->signal_frame_p = signal_frame_p;
816}
817
818/* Query the architecture-specific signal frame recognizer for
4a4e5149 819 THIS_FRAME. */
3ed09a32
DJ
820
821static int
822dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 823 struct frame_info *this_frame)
3ed09a32 824{
9a3c8263
SM
825 struct dwarf2_frame_ops *ops
826 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
827
828 if (ops->signal_frame_p == NULL)
829 return 0;
4a4e5149 830 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 831}
4bf8967c 832
4fc771b8
DJ
833/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
834 register numbers. */
4bf8967c
AS
835
836void
4fc771b8
DJ
837dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
838 int (*adjust_regnum) (struct gdbarch *,
839 int, int))
4bf8967c 840{
9a3c8263
SM
841 struct dwarf2_frame_ops *ops
842 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 843
4fc771b8 844 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
845}
846
4fc771b8
DJ
847/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
848 register. */
4bf8967c 849
4fc771b8 850static int
3e43a32a
MS
851dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
852 int regnum, int eh_frame_p)
4bf8967c 853{
9a3c8263
SM
854 struct dwarf2_frame_ops *ops
855 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 856
4fc771b8 857 if (ops->adjust_regnum == NULL)
4bf8967c 858 return regnum;
4fc771b8 859 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 860}
303b6f5d
DJ
861
862static void
863dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
864 struct dwarf2_fde *fde)
865{
43f3e411 866 struct compunit_symtab *cust;
303b6f5d 867
43f3e411
DE
868 cust = find_pc_compunit_symtab (fs->pc);
869 if (cust == NULL)
303b6f5d
DJ
870 return;
871
43f3e411 872 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
a6c727b2
DJ
873 {
874 if (fde->cie->version == 1)
875 fs->armcc_cfa_offsets_sf = 1;
876
877 if (fde->cie->version == 1)
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 /* The reversed offset problem is present in some compilers
881 using DWARF3, but it was eventually fixed. Check the ARM
882 defined augmentations, which are in the format "armcc" followed
883 by a list of one-character options. The "+" option means
884 this problem is fixed (no quirk needed). If the armcc
885 augmentation is missing, the quirk is needed. */
886 if (fde->cie->version == 3
61012eef 887 && (!startswith (fde->cie->augmentation, "armcc")
a6c727b2
DJ
888 || strchr (fde->cie->augmentation + 5, '+') == NULL))
889 fs->armcc_cfa_offsets_reversed = 1;
890
891 return;
892 }
303b6f5d 893}
8f22cb90
MK
894\f
895
a8fd5589
TT
896/* See dwarf2-frame.h. */
897
898int
899dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
900 struct dwarf2_per_cu_data *data,
901 int *regnum_out, LONGEST *offset_out,
902 CORE_ADDR *text_offset_out,
903 const gdb_byte **cfa_start_out,
904 const gdb_byte **cfa_end_out)
9f6f94ff 905{
9f6f94ff 906 struct dwarf2_fde *fde;
22e048c9 907 CORE_ADDR text_offset;
9f6f94ff
TT
908 struct dwarf2_frame_state fs;
909 int addr_size;
910
911 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
912
913 fs.pc = pc;
914
915 /* Find the correct FDE. */
916 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
917 if (fde == NULL)
918 error (_("Could not compute CFA; needed to translate this expression"));
919
920 /* Extract any interesting information from the CIE. */
921 fs.data_align = fde->cie->data_alignment_factor;
922 fs.code_align = fde->cie->code_alignment_factor;
923 fs.retaddr_column = fde->cie->return_address_register;
924 addr_size = fde->cie->addr_size;
925
926 /* Check for "quirks" - known bugs in producers. */
927 dwarf2_frame_find_quirks (&fs, fde);
928
929 /* First decode all the insns in the CIE. */
930 execute_cfa_program (fde, fde->cie->initial_instructions,
931 fde->cie->end, gdbarch, pc, &fs);
932
933 /* Save the initialized register set. */
934 fs.initial = fs.regs;
935 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
936
937 /* Then decode the insns in the FDE up to our target PC. */
938 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
939
940 /* Calculate the CFA. */
941 switch (fs.regs.cfa_how)
942 {
943 case CFA_REG_OFFSET:
944 {
945 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
946
947 if (regnum == -1)
948 error (_("Unable to access DWARF register number %d"),
949 (int) fs.regs.cfa_reg); /* FIXME */
a8fd5589
TT
950
951 *regnum_out = regnum;
952 if (fs.armcc_cfa_offsets_reversed)
953 *offset_out = -fs.regs.cfa_offset;
954 else
955 *offset_out = fs.regs.cfa_offset;
956 return 1;
9f6f94ff 957 }
9f6f94ff
TT
958
959 case CFA_EXP:
a8fd5589
TT
960 *text_offset_out = text_offset;
961 *cfa_start_out = fs.regs.cfa_exp;
962 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
963 return 0;
9f6f94ff
TT
964
965 default:
966 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
967 }
968}
969
970\f
8f22cb90
MK
971struct dwarf2_frame_cache
972{
973 /* DWARF Call Frame Address. */
974 CORE_ADDR cfa;
975
8fbca658
PA
976 /* Set if the return address column was marked as unavailable
977 (required non-collected memory or registers to compute). */
978 int unavailable_retaddr;
979
0228dfb9
DJ
980 /* Set if the return address column was marked as undefined. */
981 int undefined_retaddr;
982
8f22cb90
MK
983 /* Saved registers, indexed by GDB register number, not by DWARF
984 register number. */
985 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
986
987 /* Return address register. */
988 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
989
990 /* Target address size in bytes. */
991 int addr_size;
ac56253d
TT
992
993 /* The .text offset. */
994 CORE_ADDR text_offset;
111c6489 995
1ec56e88
PA
996 /* True if we already checked whether this frame is the bottom frame
997 of a virtual tail call frame chain. */
998 int checked_tailcall_bottom;
999
111c6489
JK
1000 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
1001 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1002 involved. Non-bottom frames of a virtual tail call frames chain use
1003 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1004 them. */
1005 void *tailcall_cache;
1ec56e88
PA
1006
1007 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1008 base to get the SP, to simulate the return address pushed on the
1009 stack. */
1010 LONGEST entry_cfa_sp_offset;
1011 int entry_cfa_sp_offset_p;
8f22cb90 1012};
05cbe71a 1013
78ac5f83
TT
1014/* A cleanup that sets a pointer to NULL. */
1015
1016static void
1017clear_pointer_cleanup (void *arg)
1018{
9a3c8263 1019 void **ptr = (void **) arg;
78ac5f83
TT
1020
1021 *ptr = NULL;
1022}
1023
b9362cc7 1024static struct dwarf2_frame_cache *
4a4e5149 1025dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1026{
78ac5f83 1027 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1028 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1029 const int num_regs = gdbarch_num_regs (gdbarch)
1030 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1031 struct dwarf2_frame_cache *cache;
1032 struct dwarf2_frame_state *fs;
1033 struct dwarf2_fde *fde;
111c6489 1034 CORE_ADDR entry_pc;
111c6489 1035 const gdb_byte *instr;
cfc14b3a
MK
1036
1037 if (*this_cache)
9a3c8263 1038 return (struct dwarf2_frame_cache *) *this_cache;
cfc14b3a
MK
1039
1040 /* Allocate a new cache. */
1041 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1042 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1043 *this_cache = cache;
78ac5f83 1044 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1045
1046 /* Allocate and initialize the frame state. */
41bf6aca 1047 fs = XCNEW (struct dwarf2_frame_state);
cfc14b3a
MK
1048 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1049
1050 /* Unwind the PC.
1051
4a4e5149 1052 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1053 to abort), the compiler might optimize away the instruction at
4a4e5149 1054 its return address. As a result the return address will
cfc14b3a 1055 point at some random instruction, and the CFI for that
e4e9607c 1056 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1057 this problem by substracting 1 from the return address to get an
1058 address in the middle of a presumed call instruction (or the
1059 instruction in the associated delay slot). This should only be
1060 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1061 handlers, sentinel frames, dummy frames). The function
ad1193e7 1062 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1063 reliable the method is though; there is the potential for the
1064 register state pre-call being different to that on return. */
4a4e5149 1065 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1066
1067 /* Find the correct FDE. */
ac56253d 1068 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1069 gdb_assert (fde != NULL);
1070
1071 /* Extract any interesting information from the CIE. */
1072 fs->data_align = fde->cie->data_alignment_factor;
1073 fs->code_align = fde->cie->code_alignment_factor;
1074 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1075 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1076
303b6f5d
DJ
1077 /* Check for "quirks" - known bugs in producers. */
1078 dwarf2_frame_find_quirks (fs, fde);
1079
cfc14b3a 1080 /* First decode all the insns in the CIE. */
ae0d2f24 1081 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1082 fde->cie->end, gdbarch,
1083 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1084
1085 /* Save the initialized register set. */
1086 fs->initial = fs->regs;
1087 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1088
111c6489
JK
1089 if (get_frame_func_if_available (this_frame, &entry_pc))
1090 {
1091 /* Decode the insns in the FDE up to the entry PC. */
1092 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1093 entry_pc, fs);
1094
1095 if (fs->regs.cfa_how == CFA_REG_OFFSET
1096 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1097 == gdbarch_sp_regnum (gdbarch)))
1098 {
1ec56e88
PA
1099 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1100 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1101 }
1102 }
1103 else
1104 instr = fde->instructions;
1105
cfc14b3a 1106 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1107 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1108 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1109
492d29ea 1110 TRY
cfc14b3a 1111 {
8fbca658
PA
1112 /* Calculate the CFA. */
1113 switch (fs->regs.cfa_how)
1114 {
1115 case CFA_REG_OFFSET:
b1370418 1116 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1117 if (fs->armcc_cfa_offsets_reversed)
1118 cache->cfa -= fs->regs.cfa_offset;
1119 else
1120 cache->cfa += fs->regs.cfa_offset;
1121 break;
1122
1123 case CFA_EXP:
1124 cache->cfa =
1125 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1126 cache->addr_size, cache->text_offset,
1127 this_frame, 0, 0);
1128 break;
1129
1130 default:
1131 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1132 }
1133 }
492d29ea 1134 CATCH (ex, RETURN_MASK_ERROR)
8fbca658
PA
1135 {
1136 if (ex.error == NOT_AVAILABLE_ERROR)
1137 {
1138 cache->unavailable_retaddr = 1;
5a1cf4d6 1139 do_cleanups (old_chain);
78ac5f83 1140 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1141 return cache;
1142 }
cfc14b3a 1143
8fbca658 1144 throw_exception (ex);
cfc14b3a 1145 }
492d29ea 1146 END_CATCH
cfc14b3a 1147
05cbe71a 1148 /* Initialize the register state. */
3e2c4033
AC
1149 {
1150 int regnum;
e4e9607c 1151
3e2c4033 1152 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1153 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1154 }
1155
1156 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1157 location information in the cache. Note that we don't skip the
1158 return address column; it's perfectly all right for it to
1159 correspond to a real register. If it doesn't correspond to a
1160 real register, or if we shouldn't treat it as such,
055d23b8 1161 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1162 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1163 {
1164 int column; /* CFI speak for "register number". */
e4e9607c 1165
3e2c4033
AC
1166 for (column = 0; column < fs->regs.num_regs; column++)
1167 {
3e2c4033 1168 /* Use the GDB register number as the destination index. */
ad010def 1169 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1170
1171 /* If there's no corresponding GDB register, ignore it. */
1172 if (regnum < 0 || regnum >= num_regs)
1173 continue;
1174
1175 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1176 of all debug info registers. If it doesn't, complain (but
1177 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1178 unspecified register implies "same value" when CFI (draft
1179 7) specifies nothing at all. Such a register could equally
1180 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1181 isn't sufficient; it only checks that all registers in the
1182 range [0 .. max column] are specified, and won't detect
3e2c4033 1183 problems when a debug info register falls outside of the
e4e9607c 1184 table. We need a way of iterating through all the valid
3e2c4033 1185 DWARF2 register numbers. */
05cbe71a 1186 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1187 {
1188 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1189 complaint (&symfile_complaints, _("\
5af949e3 1190incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1191 gdbarch_register_name (gdbarch, regnum),
5af949e3 1192 paddress (gdbarch, fs->pc));
f059bf6f 1193 }
35889917
MK
1194 else
1195 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1196 }
1197 }
cfc14b3a 1198
8d5a9abc
MK
1199 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1200 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1201 {
1202 int regnum;
1203
1204 for (regnum = 0; regnum < num_regs; regnum++)
1205 {
8d5a9abc
MK
1206 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1207 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1208 {
05cbe71a
MK
1209 struct dwarf2_frame_state_reg *retaddr_reg =
1210 &fs->regs.reg[fs->retaddr_column];
1211
d4f10bf2
MK
1212 /* It seems rather bizarre to specify an "empty" column as
1213 the return adress column. However, this is exactly
1214 what GCC does on some targets. It turns out that GCC
1215 assumes that the return address can be found in the
1216 register corresponding to the return address column.
8d5a9abc
MK
1217 Incidentally, that's how we should treat a return
1218 address column specifying "same value" too. */
d4f10bf2 1219 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1220 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1221 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1222 {
1223 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1224 cache->reg[regnum] = *retaddr_reg;
1225 else
1226 cache->retaddr_reg = *retaddr_reg;
1227 }
35889917
MK
1228 else
1229 {
8d5a9abc
MK
1230 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1231 {
1232 cache->reg[regnum].loc.reg = fs->retaddr_column;
1233 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1234 }
1235 else
1236 {
1237 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1238 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1239 }
35889917
MK
1240 }
1241 }
1242 }
1243 }
cfc14b3a 1244
0228dfb9
DJ
1245 if (fs->retaddr_column < fs->regs.num_regs
1246 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1247 cache->undefined_retaddr = 1;
1248
cfc14b3a 1249 do_cleanups (old_chain);
78ac5f83 1250 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1251 return cache;
1252}
1253
8fbca658
PA
1254static enum unwind_stop_reason
1255dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1256 void **this_cache)
1257{
1258 struct dwarf2_frame_cache *cache
1259 = dwarf2_frame_cache (this_frame, this_cache);
1260
1261 if (cache->unavailable_retaddr)
1262 return UNWIND_UNAVAILABLE;
1263
1264 if (cache->undefined_retaddr)
1265 return UNWIND_OUTERMOST;
1266
1267 return UNWIND_NO_REASON;
1268}
1269
cfc14b3a 1270static void
4a4e5149 1271dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1272 struct frame_id *this_id)
1273{
1274 struct dwarf2_frame_cache *cache =
4a4e5149 1275 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1276
8fbca658 1277 if (cache->unavailable_retaddr)
5ce0145d
PA
1278 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1279 else if (cache->undefined_retaddr)
8fbca658 1280 return;
5ce0145d
PA
1281 else
1282 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1283}
1284
4a4e5149
DJ
1285static struct value *
1286dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1287 int regnum)
93d42b30 1288{
4a4e5149 1289 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1290 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1291 dwarf2_frame_cache (this_frame, this_cache);
1292 CORE_ADDR addr;
1293 int realnum;
cfc14b3a 1294
1ec56e88
PA
1295 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1296 call frame chain. */
1297 if (!cache->checked_tailcall_bottom)
1298 {
1299 cache->checked_tailcall_bottom = 1;
1300 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1301 (cache->entry_cfa_sp_offset_p
1302 ? &cache->entry_cfa_sp_offset : NULL));
1303 }
1304
111c6489
JK
1305 /* Non-bottom frames of a virtual tail call frames chain use
1306 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1307 them. If dwarf2_tailcall_prev_register_first does not have specific value
1308 unwind the register, tail call frames are assumed to have the register set
1309 of the top caller. */
1310 if (cache->tailcall_cache)
1311 {
1312 struct value *val;
1313
1314 val = dwarf2_tailcall_prev_register_first (this_frame,
1315 &cache->tailcall_cache,
1316 regnum);
1317 if (val)
1318 return val;
1319 }
1320
cfc14b3a
MK
1321 switch (cache->reg[regnum].how)
1322 {
05cbe71a 1323 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1324 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1325 mark it as optimized away; the value isn't available. */
4a4e5149 1326 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1327
05cbe71a 1328 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1329 addr = cache->cfa + cache->reg[regnum].loc.offset;
1330 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1331
05cbe71a 1332 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1333 realnum
1334 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1335 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1336
05cbe71a 1337 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1338 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1339 cache->reg[regnum].exp_len,
ac56253d
TT
1340 cache->addr_size, cache->text_offset,
1341 this_frame, cache->cfa, 1);
4a4e5149 1342 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1343
46ea248b 1344 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1345 addr = cache->cfa + cache->reg[regnum].loc.offset;
1346 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1347
1348 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1349 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1350 cache->reg[regnum].exp_len,
ac56253d
TT
1351 cache->addr_size, cache->text_offset,
1352 this_frame, cache->cfa, 1);
4a4e5149 1353 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1354
05cbe71a 1355 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1356 /* GCC, in its infinite wisdom decided to not provide unwind
1357 information for registers that are "same value". Since
1358 DWARF2 (3 draft 7) doesn't define such behavior, said
1359 registers are actually undefined (which is different to CFI
1360 "undefined"). Code above issues a complaint about this.
1361 Here just fudge the books, assume GCC, and that the value is
1362 more inner on the stack. */
4a4e5149 1363 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1364
05cbe71a 1365 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1366 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1367
05cbe71a 1368 case DWARF2_FRAME_REG_CFA:
4a4e5149 1369 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1370
ea7963f0 1371 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1372 addr = cache->cfa + cache->reg[regnum].loc.offset;
1373 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1374
8d5a9abc 1375 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1376 addr = cache->reg[regnum].loc.offset;
1377 regnum = gdbarch_dwarf2_reg_to_regnum
1378 (gdbarch, cache->retaddr_reg.loc.reg);
1379 addr += get_frame_register_unsigned (this_frame, regnum);
1380 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1381
b39cc962
DJ
1382 case DWARF2_FRAME_REG_FN:
1383 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1384
cfc14b3a 1385 default:
e2e0b3e5 1386 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1387 }
1388}
1389
111c6489
JK
1390/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1391 call frames chain. */
1392
1393static void
1394dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1395{
1396 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1397
1398 if (cache->tailcall_cache)
1399 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1400}
1401
4a4e5149
DJ
1402static int
1403dwarf2_frame_sniffer (const struct frame_unwind *self,
1404 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1405{
1ce5d6dd 1406 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1407 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1408 end up returning something past the end of this function's body.
1409 If the frame we're sniffing for is a signal frame whose start
1410 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1411 extend one byte before its start address or we could potentially
1412 select the FDE of the previous function. */
1413 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1414 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1415
56c987f6 1416 if (!fde)
4a4e5149 1417 return 0;
3ed09a32
DJ
1418
1419 /* On some targets, signal trampolines may have unwind information.
1420 We need to recognize them so that we set the frame type
1421 correctly. */
1422
56c987f6 1423 if (fde->cie->signal_frame
4a4e5149
DJ
1424 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1425 this_frame))
1426 return self->type == SIGTRAMP_FRAME;
1427
111c6489
JK
1428 if (self->type != NORMAL_FRAME)
1429 return 0;
1430
111c6489 1431 return 1;
4a4e5149
DJ
1432}
1433
1434static const struct frame_unwind dwarf2_frame_unwind =
1435{
1436 NORMAL_FRAME,
8fbca658 1437 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1438 dwarf2_frame_this_id,
1439 dwarf2_frame_prev_register,
1440 NULL,
111c6489
JK
1441 dwarf2_frame_sniffer,
1442 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1443};
1444
1445static const struct frame_unwind dwarf2_signal_frame_unwind =
1446{
1447 SIGTRAMP_FRAME,
8fbca658 1448 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1449 dwarf2_frame_this_id,
1450 dwarf2_frame_prev_register,
1451 NULL,
111c6489
JK
1452 dwarf2_frame_sniffer,
1453
1454 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1455 NULL
4a4e5149 1456};
cfc14b3a 1457
4a4e5149
DJ
1458/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1459
1460void
1461dwarf2_append_unwinders (struct gdbarch *gdbarch)
1462{
111c6489
JK
1463 /* TAILCALL_FRAME must be first to find the record by
1464 dwarf2_tailcall_sniffer_first. */
1465 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1466
4a4e5149
DJ
1467 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1468 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1469}
1470\f
1471
1472/* There is no explicitly defined relationship between the CFA and the
1473 location of frame's local variables and arguments/parameters.
1474 Therefore, frame base methods on this page should probably only be
1475 used as a last resort, just to avoid printing total garbage as a
1476 response to the "info frame" command. */
1477
1478static CORE_ADDR
4a4e5149 1479dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1480{
1481 struct dwarf2_frame_cache *cache =
4a4e5149 1482 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1483
1484 return cache->cfa;
1485}
1486
1487static const struct frame_base dwarf2_frame_base =
1488{
1489 &dwarf2_frame_unwind,
1490 dwarf2_frame_base_address,
1491 dwarf2_frame_base_address,
1492 dwarf2_frame_base_address
1493};
1494
1495const struct frame_base *
4a4e5149 1496dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1497{
4a4e5149 1498 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1499
ac56253d 1500 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1501 return &dwarf2_frame_base;
1502
1503 return NULL;
1504}
e7802207
TT
1505
1506/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1507 the DWARF unwinder. This is used to implement
1508 DW_OP_call_frame_cfa. */
1509
1510CORE_ADDR
1511dwarf2_frame_cfa (struct frame_info *this_frame)
1512{
0b722aec
MM
1513 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1514 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1515 throw_error (NOT_AVAILABLE_ERROR,
1516 _("cfa not available for record btrace target"));
1517
e7802207
TT
1518 while (get_frame_type (this_frame) == INLINE_FRAME)
1519 this_frame = get_prev_frame (this_frame);
32261e52
MM
1520 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1521 throw_error (NOT_AVAILABLE_ERROR,
1522 _("can't compute CFA for this frame: "
1523 "required registers or memory are unavailable"));
14aba1ac
JB
1524
1525 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1526 throw_error (NOT_AVAILABLE_ERROR,
1527 _("can't compute CFA for this frame: "
1528 "frame base not available"));
1529
e7802207
TT
1530 return get_frame_base (this_frame);
1531}
cfc14b3a 1532\f
8f22cb90 1533const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1534
cfc14b3a 1535static unsigned int
f664829e 1536read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1537{
852483bc 1538 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1539}
1540
1541static unsigned int
f664829e 1542read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1543{
852483bc 1544 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1545}
1546
1547static ULONGEST
f664829e 1548read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1549{
852483bc 1550 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1551}
1552
1553static ULONGEST
f664829e
DE
1554read_initial_length (bfd *abfd, const gdb_byte *buf,
1555 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1556{
1557 LONGEST result;
1558
852483bc 1559 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1560 if (result == 0xffffffff)
1561 {
852483bc 1562 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1563 *bytes_read_ptr = 12;
1564 }
1565 else
1566 *bytes_read_ptr = 4;
1567
1568 return result;
1569}
1570\f
1571
1572/* Pointer encoding helper functions. */
1573
1574/* GCC supports exception handling based on DWARF2 CFI. However, for
1575 technical reasons, it encodes addresses in its FDE's in a different
1576 way. Several "pointer encodings" are supported. The encoding
1577 that's used for a particular FDE is determined by the 'R'
1578 augmentation in the associated CIE. The argument of this
1579 augmentation is a single byte.
1580
1581 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1582 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1583 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1584 address should be interpreted (absolute, relative to the current
1585 position in the FDE, ...). Bit 7, indicates that the address
1586 should be dereferenced. */
1587
852483bc 1588static gdb_byte
cfc14b3a
MK
1589encoding_for_size (unsigned int size)
1590{
1591 switch (size)
1592 {
1593 case 2:
1594 return DW_EH_PE_udata2;
1595 case 4:
1596 return DW_EH_PE_udata4;
1597 case 8:
1598 return DW_EH_PE_udata8;
1599 default:
e2e0b3e5 1600 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1601 }
1602}
1603
cfc14b3a 1604static CORE_ADDR
852483bc 1605read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1606 int ptr_len, const gdb_byte *buf,
1607 unsigned int *bytes_read_ptr,
ae0d2f24 1608 CORE_ADDR func_base)
cfc14b3a 1609{
68f6cf99 1610 ptrdiff_t offset;
cfc14b3a
MK
1611 CORE_ADDR base;
1612
1613 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1614 FDE's. */
1615 if (encoding & DW_EH_PE_indirect)
1616 internal_error (__FILE__, __LINE__,
e2e0b3e5 1617 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1618
68f6cf99
MK
1619 *bytes_read_ptr = 0;
1620
cfc14b3a
MK
1621 switch (encoding & 0x70)
1622 {
1623 case DW_EH_PE_absptr:
1624 base = 0;
1625 break;
1626 case DW_EH_PE_pcrel:
f2fec864 1627 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1628 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1629 break;
0912c7f2
MK
1630 case DW_EH_PE_datarel:
1631 base = unit->dbase;
1632 break;
0fd85043
CV
1633 case DW_EH_PE_textrel:
1634 base = unit->tbase;
1635 break;
03ac2a74 1636 case DW_EH_PE_funcrel:
ae0d2f24 1637 base = func_base;
03ac2a74 1638 break;
68f6cf99
MK
1639 case DW_EH_PE_aligned:
1640 base = 0;
852483bc 1641 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1642 if ((offset % ptr_len) != 0)
1643 {
1644 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1645 buf += *bytes_read_ptr;
1646 }
1647 break;
cfc14b3a 1648 default:
3e43a32a
MS
1649 internal_error (__FILE__, __LINE__,
1650 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1651 }
1652
b04de778 1653 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1654 {
1655 encoding |= encoding_for_size (ptr_len);
1656 if (bfd_get_sign_extend_vma (unit->abfd))
1657 encoding |= DW_EH_PE_signed;
1658 }
cfc14b3a
MK
1659
1660 switch (encoding & 0x0f)
1661 {
a81b10ae
MK
1662 case DW_EH_PE_uleb128:
1663 {
9fccedf7 1664 uint64_t value;
0d45f56e 1665 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1666
f664829e 1667 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1668 return base + value;
1669 }
cfc14b3a 1670 case DW_EH_PE_udata2:
68f6cf99 1671 *bytes_read_ptr += 2;
cfc14b3a
MK
1672 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1673 case DW_EH_PE_udata4:
68f6cf99 1674 *bytes_read_ptr += 4;
cfc14b3a
MK
1675 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1676 case DW_EH_PE_udata8:
68f6cf99 1677 *bytes_read_ptr += 8;
cfc14b3a 1678 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1679 case DW_EH_PE_sleb128:
1680 {
9fccedf7 1681 int64_t value;
0d45f56e 1682 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1683
f664829e 1684 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1685 return base + value;
1686 }
cfc14b3a 1687 case DW_EH_PE_sdata2:
68f6cf99 1688 *bytes_read_ptr += 2;
cfc14b3a
MK
1689 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1690 case DW_EH_PE_sdata4:
68f6cf99 1691 *bytes_read_ptr += 4;
cfc14b3a
MK
1692 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1693 case DW_EH_PE_sdata8:
68f6cf99 1694 *bytes_read_ptr += 8;
cfc14b3a
MK
1695 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1696 default:
3e43a32a
MS
1697 internal_error (__FILE__, __LINE__,
1698 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1699 }
1700}
1701\f
1702
b01c8410
PP
1703static int
1704bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1705{
b01c8410
PP
1706 ULONGEST cie_pointer = *(ULONGEST *) key;
1707 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1708
b01c8410
PP
1709 if (cie_pointer == cie->cie_pointer)
1710 return 0;
cfc14b3a 1711
b01c8410
PP
1712 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1713}
1714
1715/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1716static struct dwarf2_cie *
1717find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1718{
1719 struct dwarf2_cie **p_cie;
cfc14b3a 1720
65a97ab3
PP
1721 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1722 bsearch be non-NULL. */
1723 if (cie_table->entries == NULL)
1724 {
1725 gdb_assert (cie_table->num_entries == 0);
1726 return NULL;
1727 }
1728
9a3c8263
SM
1729 p_cie = ((struct dwarf2_cie **)
1730 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1731 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
b01c8410
PP
1732 if (p_cie != NULL)
1733 return *p_cie;
cfc14b3a
MK
1734 return NULL;
1735}
1736
b01c8410 1737/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1738static void
b01c8410 1739add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1740{
b01c8410
PP
1741 const int n = cie_table->num_entries;
1742
1743 gdb_assert (n < 1
1744 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1745
224c3ddb
SM
1746 cie_table->entries
1747 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
b01c8410
PP
1748 cie_table->entries[n] = cie;
1749 cie_table->num_entries = n + 1;
1750}
1751
1752static int
1753bsearch_fde_cmp (const void *key, const void *element)
1754{
1755 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1756 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1757
b01c8410
PP
1758 if (seek_pc < fde->initial_location)
1759 return -1;
1760 if (seek_pc < fde->initial_location + fde->address_range)
1761 return 0;
1762 return 1;
cfc14b3a
MK
1763}
1764
1765/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1766 inital location associated with it into *PC. */
1767
1768static struct dwarf2_fde *
ac56253d 1769dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1770{
1771 struct objfile *objfile;
1772
1773 ALL_OBJFILES (objfile)
1774 {
b01c8410
PP
1775 struct dwarf2_fde_table *fde_table;
1776 struct dwarf2_fde **p_fde;
cfc14b3a 1777 CORE_ADDR offset;
b01c8410 1778 CORE_ADDR seek_pc;
cfc14b3a 1779
9a3c8263
SM
1780 fde_table = ((struct dwarf2_fde_table *)
1781 objfile_data (objfile, dwarf2_frame_objfile_data));
b01c8410 1782 if (fde_table == NULL)
be391dca
TT
1783 {
1784 dwarf2_build_frame_info (objfile);
9a3c8263
SM
1785 fde_table = ((struct dwarf2_fde_table *)
1786 objfile_data (objfile, dwarf2_frame_objfile_data));
be391dca
TT
1787 }
1788 gdb_assert (fde_table != NULL);
1789
1790 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1791 continue;
1792
1793 gdb_assert (objfile->section_offsets);
1794 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1795
b01c8410
PP
1796 gdb_assert (fde_table->num_entries > 0);
1797 if (*pc < offset + fde_table->entries[0]->initial_location)
1798 continue;
1799
1800 seek_pc = *pc - offset;
9a3c8263
SM
1801 p_fde = ((struct dwarf2_fde **)
1802 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1803 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
b01c8410
PP
1804 if (p_fde != NULL)
1805 {
1806 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1807 if (out_offset)
1808 *out_offset = offset;
b01c8410
PP
1809 return *p_fde;
1810 }
cfc14b3a 1811 }
cfc14b3a
MK
1812 return NULL;
1813}
1814
b01c8410 1815/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1816static void
b01c8410 1817add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1818{
b01c8410
PP
1819 if (fde->address_range == 0)
1820 /* Discard useless FDEs. */
1821 return;
1822
1823 fde_table->num_entries += 1;
224c3ddb
SM
1824 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1825 fde_table->num_entries);
b01c8410 1826 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1827}
1828
cfc14b3a 1829#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1830
8bd90839
FM
1831/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1832 or any of them. */
1833
1834enum eh_frame_type
1835{
1836 EH_CIE_TYPE_ID = 1 << 0,
1837 EH_FDE_TYPE_ID = 1 << 1,
1838 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1839};
1840
f664829e
DE
1841static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1842 const gdb_byte *start,
1843 int eh_frame_p,
1844 struct dwarf2_cie_table *cie_table,
1845 struct dwarf2_fde_table *fde_table,
1846 enum eh_frame_type entry_type);
8bd90839
FM
1847
1848/* Decode the next CIE or FDE, entry_type specifies the expected type.
1849 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1850
f664829e
DE
1851static const gdb_byte *
1852decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1853 int eh_frame_p,
b01c8410 1854 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1855 struct dwarf2_fde_table *fde_table,
1856 enum eh_frame_type entry_type)
cfc14b3a 1857{
5e2b427d 1858 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1859 const gdb_byte *buf, *end;
cfc14b3a
MK
1860 LONGEST length;
1861 unsigned int bytes_read;
6896c0c7
RH
1862 int dwarf64_p;
1863 ULONGEST cie_id;
cfc14b3a 1864 ULONGEST cie_pointer;
9fccedf7
DE
1865 int64_t sleb128;
1866 uint64_t uleb128;
cfc14b3a 1867
6896c0c7 1868 buf = start;
cfc14b3a
MK
1869 length = read_initial_length (unit->abfd, buf, &bytes_read);
1870 buf += bytes_read;
1871 end = buf + length;
1872
0963b4bd 1873 /* Are we still within the section? */
6896c0c7
RH
1874 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1875 return NULL;
1876
cfc14b3a
MK
1877 if (length == 0)
1878 return end;
1879
6896c0c7
RH
1880 /* Distinguish between 32 and 64-bit encoded frame info. */
1881 dwarf64_p = (bytes_read == 12);
cfc14b3a 1882
6896c0c7 1883 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1884 if (eh_frame_p)
1885 cie_id = 0;
1886 else if (dwarf64_p)
1887 cie_id = DW64_CIE_ID;
6896c0c7
RH
1888 else
1889 cie_id = DW_CIE_ID;
cfc14b3a
MK
1890
1891 if (dwarf64_p)
1892 {
1893 cie_pointer = read_8_bytes (unit->abfd, buf);
1894 buf += 8;
1895 }
1896 else
1897 {
1898 cie_pointer = read_4_bytes (unit->abfd, buf);
1899 buf += 4;
1900 }
1901
1902 if (cie_pointer == cie_id)
1903 {
1904 /* This is a CIE. */
1905 struct dwarf2_cie *cie;
1906 char *augmentation;
28ba0b33 1907 unsigned int cie_version;
cfc14b3a 1908
8bd90839
FM
1909 /* Check that a CIE was expected. */
1910 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1911 error (_("Found a CIE when not expecting it."));
1912
cfc14b3a
MK
1913 /* Record the offset into the .debug_frame section of this CIE. */
1914 cie_pointer = start - unit->dwarf_frame_buffer;
1915
1916 /* Check whether we've already read it. */
b01c8410 1917 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1918 return end;
1919
8d749320 1920 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
cfc14b3a
MK
1921 cie->initial_instructions = NULL;
1922 cie->cie_pointer = cie_pointer;
1923
1924 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1925 depends on the target address size. */
1926 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1927
56c987f6
AO
1928 /* We'll determine the final value later, but we need to
1929 initialize it conservatively. */
1930 cie->signal_frame = 0;
1931
cfc14b3a 1932 /* Check version number. */
28ba0b33 1933 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1934 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1935 return NULL;
303b6f5d 1936 cie->version = cie_version;
cfc14b3a
MK
1937 buf += 1;
1938
1939 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1940 cie->augmentation = augmentation = (char *) buf;
852483bc 1941 buf += (strlen (augmentation) + 1);
cfc14b3a 1942
303b6f5d
DJ
1943 /* Ignore armcc augmentations. We only use them for quirks,
1944 and that doesn't happen until later. */
61012eef 1945 if (startswith (augmentation, "armcc"))
303b6f5d
DJ
1946 augmentation += strlen (augmentation);
1947
cfc14b3a
MK
1948 /* The GCC 2.x "eh" augmentation has a pointer immediately
1949 following the augmentation string, so it must be handled
1950 first. */
1951 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1952 {
1953 /* Skip. */
5e2b427d 1954 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1955 augmentation += 2;
1956 }
1957
2dc7f7b3
TT
1958 if (cie->version >= 4)
1959 {
1960 /* FIXME: check that this is the same as from the CU header. */
1961 cie->addr_size = read_1_byte (unit->abfd, buf);
1962 ++buf;
1963 cie->segment_size = read_1_byte (unit->abfd, buf);
1964 ++buf;
1965 }
1966 else
1967 {
8da614df 1968 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1969 cie->segment_size = 0;
1970 }
8da614df
CV
1971 /* Address values in .eh_frame sections are defined to have the
1972 target's pointer size. Watchout: This breaks frame info for
1973 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1974 section exists as well. */
8da614df
CV
1975 if (eh_frame_p)
1976 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1977 else
1978 cie->ptr_size = cie->addr_size;
2dc7f7b3 1979
f664829e
DE
1980 buf = gdb_read_uleb128 (buf, end, &uleb128);
1981 if (buf == NULL)
1982 return NULL;
1983 cie->code_alignment_factor = uleb128;
cfc14b3a 1984
f664829e
DE
1985 buf = gdb_read_sleb128 (buf, end, &sleb128);
1986 if (buf == NULL)
1987 return NULL;
1988 cie->data_alignment_factor = sleb128;
cfc14b3a 1989
28ba0b33
PB
1990 if (cie_version == 1)
1991 {
1992 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1993 ++buf;
28ba0b33
PB
1994 }
1995 else
f664829e
DE
1996 {
1997 buf = gdb_read_uleb128 (buf, end, &uleb128);
1998 if (buf == NULL)
1999 return NULL;
2000 cie->return_address_register = uleb128;
2001 }
2002
4fc771b8 2003 cie->return_address_register
5e2b427d 2004 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
2005 cie->return_address_register,
2006 eh_frame_p);
4bf8967c 2007
7131cb6e
RH
2008 cie->saw_z_augmentation = (*augmentation == 'z');
2009 if (cie->saw_z_augmentation)
cfc14b3a 2010 {
9fccedf7 2011 uint64_t length;
cfc14b3a 2012
f664829e
DE
2013 buf = gdb_read_uleb128 (buf, end, &length);
2014 if (buf == NULL)
6896c0c7 2015 return NULL;
cfc14b3a
MK
2016 cie->initial_instructions = buf + length;
2017 augmentation++;
2018 }
2019
2020 while (*augmentation)
2021 {
2022 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2023 if (*augmentation == 'L')
2024 {
2025 /* Skip. */
2026 buf++;
2027 augmentation++;
2028 }
2029
2030 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2031 else if (*augmentation == 'R')
2032 {
2033 cie->encoding = *buf++;
2034 augmentation++;
2035 }
2036
2037 /* "P" indicates a personality routine in the CIE augmentation. */
2038 else if (*augmentation == 'P')
2039 {
1234d960 2040 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2041 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2042 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2043 buf, &bytes_read, 0);
f724bf08 2044 buf += bytes_read;
cfc14b3a
MK
2045 augmentation++;
2046 }
2047
56c987f6
AO
2048 /* "S" indicates a signal frame, such that the return
2049 address must not be decremented to locate the call frame
2050 info for the previous frame; it might even be the first
2051 instruction of a function, so decrementing it would take
2052 us to a different function. */
2053 else if (*augmentation == 'S')
2054 {
2055 cie->signal_frame = 1;
2056 augmentation++;
2057 }
2058
3e9a2e52
DJ
2059 /* Otherwise we have an unknown augmentation. Assume that either
2060 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2061 else
2062 {
3e9a2e52
DJ
2063 if (cie->initial_instructions)
2064 buf = cie->initial_instructions;
cfc14b3a
MK
2065 break;
2066 }
2067 }
2068
2069 cie->initial_instructions = buf;
2070 cie->end = end;
b01c8410 2071 cie->unit = unit;
cfc14b3a 2072
b01c8410 2073 add_cie (cie_table, cie);
cfc14b3a
MK
2074 }
2075 else
2076 {
2077 /* This is a FDE. */
2078 struct dwarf2_fde *fde;
3e29f34a 2079 CORE_ADDR addr;
cfc14b3a 2080
8bd90839
FM
2081 /* Check that an FDE was expected. */
2082 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2083 error (_("Found an FDE when not expecting it."));
2084
6896c0c7
RH
2085 /* In an .eh_frame section, the CIE pointer is the delta between the
2086 address within the FDE where the CIE pointer is stored and the
2087 address of the CIE. Convert it to an offset into the .eh_frame
2088 section. */
cfc14b3a
MK
2089 if (eh_frame_p)
2090 {
cfc14b3a
MK
2091 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2092 cie_pointer -= (dwarf64_p ? 8 : 4);
2093 }
2094
6896c0c7
RH
2095 /* In either case, validate the result is still within the section. */
2096 if (cie_pointer >= unit->dwarf_frame_size)
2097 return NULL;
2098
8d749320 2099 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
b01c8410 2100 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2101 if (fde->cie == NULL)
2102 {
2103 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2104 eh_frame_p, cie_table, fde_table,
2105 EH_CIE_TYPE_ID);
b01c8410 2106 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2107 }
2108
2109 gdb_assert (fde->cie != NULL);
2110
3e29f34a
MR
2111 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2112 buf, &bytes_read, 0);
2113 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
cfc14b3a
MK
2114 buf += bytes_read;
2115
2116 fde->address_range =
ae0d2f24 2117 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2118 fde->cie->ptr_size, buf, &bytes_read, 0);
3e29f34a
MR
2119 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2120 fde->address_range = addr - fde->initial_location;
cfc14b3a
MK
2121 buf += bytes_read;
2122
7131cb6e
RH
2123 /* A 'z' augmentation in the CIE implies the presence of an
2124 augmentation field in the FDE as well. The only thing known
2125 to be in here at present is the LSDA entry for EH. So we
2126 can skip the whole thing. */
2127 if (fde->cie->saw_z_augmentation)
2128 {
9fccedf7 2129 uint64_t length;
7131cb6e 2130
f664829e
DE
2131 buf = gdb_read_uleb128 (buf, end, &length);
2132 if (buf == NULL)
2133 return NULL;
2134 buf += length;
6896c0c7
RH
2135 if (buf > end)
2136 return NULL;
7131cb6e
RH
2137 }
2138
cfc14b3a
MK
2139 fde->instructions = buf;
2140 fde->end = end;
2141
4bf8967c
AS
2142 fde->eh_frame_p = eh_frame_p;
2143
b01c8410 2144 add_fde (fde_table, fde);
cfc14b3a
MK
2145 }
2146
2147 return end;
2148}
6896c0c7 2149
8bd90839
FM
2150/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2151 expect an FDE or a CIE. */
2152
f664829e
DE
2153static const gdb_byte *
2154decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2155 int eh_frame_p,
b01c8410 2156 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2157 struct dwarf2_fde_table *fde_table,
2158 enum eh_frame_type entry_type)
6896c0c7
RH
2159{
2160 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2161 const gdb_byte *ret;
6896c0c7
RH
2162 ptrdiff_t start_offset;
2163
2164 while (1)
2165 {
b01c8410 2166 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2167 cie_table, fde_table, entry_type);
6896c0c7
RH
2168 if (ret != NULL)
2169 break;
2170
2171 /* We have corrupt input data of some form. */
2172
2173 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2174 and mismatches wrt padding and alignment of debug sections. */
2175 /* Note that there is no requirement in the standard for any
2176 alignment at all in the frame unwind sections. Testing for
2177 alignment before trying to interpret data would be incorrect.
2178
2179 However, GCC traditionally arranged for frame sections to be
2180 sized such that the FDE length and CIE fields happen to be
2181 aligned (in theory, for performance). This, unfortunately,
2182 was done with .align directives, which had the side effect of
2183 forcing the section to be aligned by the linker.
2184
2185 This becomes a problem when you have some other producer that
2186 creates frame sections that are not as strictly aligned. That
2187 produces a hole in the frame info that gets filled by the
2188 linker with zeros.
2189
2190 The GCC behaviour is arguably a bug, but it's effectively now
2191 part of the ABI, so we're now stuck with it, at least at the
2192 object file level. A smart linker may decide, in the process
2193 of compressing duplicate CIE information, that it can rewrite
2194 the entire output section without this extra padding. */
2195
2196 start_offset = start - unit->dwarf_frame_buffer;
2197 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2198 {
2199 start += 4 - (start_offset & 3);
2200 workaround = ALIGN4;
2201 continue;
2202 }
2203 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2204 {
2205 start += 8 - (start_offset & 7);
2206 workaround = ALIGN8;
2207 continue;
2208 }
2209
2210 /* Nothing left to try. Arrange to return as if we've consumed
2211 the entire input section. Hopefully we'll get valid info from
2212 the other of .debug_frame/.eh_frame. */
2213 workaround = FAIL;
2214 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2215 break;
2216 }
2217
2218 switch (workaround)
2219 {
2220 case NONE:
2221 break;
2222
2223 case ALIGN4:
3e43a32a
MS
2224 complaint (&symfile_complaints, _("\
2225Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2226 unit->dwarf_frame_section->owner->filename,
2227 unit->dwarf_frame_section->name);
2228 break;
2229
2230 case ALIGN8:
3e43a32a
MS
2231 complaint (&symfile_complaints, _("\
2232Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2233 unit->dwarf_frame_section->owner->filename,
2234 unit->dwarf_frame_section->name);
2235 break;
2236
2237 default:
2238 complaint (&symfile_complaints,
e2e0b3e5 2239 _("Corrupt data in %s:%s"),
6896c0c7
RH
2240 unit->dwarf_frame_section->owner->filename,
2241 unit->dwarf_frame_section->name);
2242 break;
2243 }
2244
2245 return ret;
2246}
cfc14b3a 2247\f
b01c8410
PP
2248static int
2249qsort_fde_cmp (const void *a, const void *b)
2250{
2251 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2252 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2253
b01c8410 2254 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2255 {
2256 if (aa->address_range != bb->address_range
2257 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2258 /* Linker bug, e.g. gold/10400.
2259 Work around it by keeping stable sort order. */
2260 return (a < b) ? -1 : 1;
2261 else
2262 /* Put eh_frame entries after debug_frame ones. */
2263 return aa->eh_frame_p - bb->eh_frame_p;
2264 }
b01c8410
PP
2265
2266 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2267}
2268
cfc14b3a
MK
2269void
2270dwarf2_build_frame_info (struct objfile *objfile)
2271{
ae0d2f24 2272 struct comp_unit *unit;
f664829e 2273 const gdb_byte *frame_ptr;
b01c8410
PP
2274 struct dwarf2_cie_table cie_table;
2275 struct dwarf2_fde_table fde_table;
be391dca 2276 struct dwarf2_fde_table *fde_table2;
b01c8410
PP
2277
2278 cie_table.num_entries = 0;
2279 cie_table.entries = NULL;
2280
2281 fde_table.num_entries = 0;
2282 fde_table.entries = NULL;
cfc14b3a
MK
2283
2284 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2285 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2286 sizeof (struct comp_unit));
2287 unit->abfd = objfile->obfd;
2288 unit->objfile = objfile;
2289 unit->dbase = 0;
2290 unit->tbase = 0;
cfc14b3a 2291
d40102a1 2292 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2293 {
d40102a1
JB
2294 /* Do not read .eh_frame from separate file as they must be also
2295 present in the main file. */
2296 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2297 &unit->dwarf_frame_section,
2298 &unit->dwarf_frame_buffer,
2299 &unit->dwarf_frame_size);
2300 if (unit->dwarf_frame_size)
b01c8410 2301 {
d40102a1
JB
2302 asection *got, *txt;
2303
2304 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2305 that is used for the i386/amd64 target, which currently is
2306 the only target in GCC that supports/uses the
2307 DW_EH_PE_datarel encoding. */
2308 got = bfd_get_section_by_name (unit->abfd, ".got");
2309 if (got)
2310 unit->dbase = got->vma;
2311
2312 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2313 so far. */
2314 txt = bfd_get_section_by_name (unit->abfd, ".text");
2315 if (txt)
2316 unit->tbase = txt->vma;
2317
492d29ea 2318 TRY
8bd90839
FM
2319 {
2320 frame_ptr = unit->dwarf_frame_buffer;
2321 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2322 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2323 &cie_table, &fde_table,
2324 EH_CIE_OR_FDE_TYPE_ID);
2325 }
2326
492d29ea 2327 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2328 {
2329 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2330 objfile_name (objfile), e.message);
8bd90839
FM
2331
2332 if (fde_table.num_entries != 0)
2333 {
2334 xfree (fde_table.entries);
2335 fde_table.entries = NULL;
2336 fde_table.num_entries = 0;
2337 }
2338 /* The cie_table is discarded by the next if. */
2339 }
492d29ea 2340 END_CATCH
d40102a1
JB
2341
2342 if (cie_table.num_entries != 0)
2343 {
2344 /* Reinit cie_table: debug_frame has different CIEs. */
2345 xfree (cie_table.entries);
2346 cie_table.num_entries = 0;
2347 cie_table.entries = NULL;
2348 }
b01c8410 2349 }
cfc14b3a
MK
2350 }
2351
3017a003 2352 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2353 &unit->dwarf_frame_section,
2354 &unit->dwarf_frame_buffer,
2355 &unit->dwarf_frame_size);
2356 if (unit->dwarf_frame_size)
cfc14b3a 2357 {
8bd90839
FM
2358 int num_old_fde_entries = fde_table.num_entries;
2359
492d29ea 2360 TRY
8bd90839
FM
2361 {
2362 frame_ptr = unit->dwarf_frame_buffer;
2363 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2364 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2365 &cie_table, &fde_table,
2366 EH_CIE_OR_FDE_TYPE_ID);
2367 }
492d29ea 2368 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2369 {
2370 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2371 objfile_name (objfile), e.message);
8bd90839
FM
2372
2373 if (fde_table.num_entries != 0)
2374 {
2375 fde_table.num_entries = num_old_fde_entries;
2376 if (num_old_fde_entries == 0)
2377 {
2378 xfree (fde_table.entries);
2379 fde_table.entries = NULL;
2380 }
2381 else
2382 {
224c3ddb
SM
2383 fde_table.entries
2384 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2385 fde_table.num_entries);
8bd90839
FM
2386 }
2387 }
2388 fde_table.num_entries = num_old_fde_entries;
2389 /* The cie_table is discarded by the next if. */
2390 }
492d29ea 2391 END_CATCH
b01c8410
PP
2392 }
2393
2394 /* Discard the cie_table, it is no longer needed. */
2395 if (cie_table.num_entries != 0)
2396 {
2397 xfree (cie_table.entries);
2398 cie_table.entries = NULL; /* Paranoia. */
2399 cie_table.num_entries = 0; /* Paranoia. */
2400 }
2401
be391dca 2402 /* Copy fde_table to obstack: it is needed at runtime. */
8d749320 2403 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
be391dca
TT
2404
2405 if (fde_table.num_entries == 0)
2406 {
2407 fde_table2->entries = NULL;
2408 fde_table2->num_entries = 0;
2409 }
2410 else
b01c8410 2411 {
875cdfbb
PA
2412 struct dwarf2_fde *fde_prev = NULL;
2413 struct dwarf2_fde *first_non_zero_fde = NULL;
2414 int i;
b01c8410
PP
2415
2416 /* Prepare FDE table for lookups. */
2417 qsort (fde_table.entries, fde_table.num_entries,
2418 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2419
875cdfbb
PA
2420 /* Check for leftovers from --gc-sections. The GNU linker sets
2421 the relevant symbols to zero, but doesn't zero the FDE *end*
2422 ranges because there's no relocation there. It's (offset,
2423 length), not (start, end). On targets where address zero is
2424 just another valid address this can be a problem, since the
2425 FDEs appear to be non-empty in the output --- we could pick
2426 out the wrong FDE. To work around this, when overlaps are
2427 detected, we prefer FDEs that do not start at zero.
2428
2429 Start by finding the first FDE with non-zero start. Below
2430 we'll discard all FDEs that start at zero and overlap this
2431 one. */
2432 for (i = 0; i < fde_table.num_entries; i++)
2433 {
2434 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2435
875cdfbb
PA
2436 if (fde->initial_location != 0)
2437 {
2438 first_non_zero_fde = fde;
2439 break;
2440 }
2441 }
2442
2443 /* Since we'll be doing bsearch, squeeze out identical (except
2444 for eh_frame_p) fde entries so bsearch result is predictable.
2445 Also discard leftovers from --gc-sections. */
be391dca 2446 fde_table2->num_entries = 0;
875cdfbb
PA
2447 for (i = 0; i < fde_table.num_entries; i++)
2448 {
2449 struct dwarf2_fde *fde = fde_table.entries[i];
2450
2451 if (fde->initial_location == 0
2452 && first_non_zero_fde != NULL
2453 && (first_non_zero_fde->initial_location
2454 < fde->initial_location + fde->address_range))
2455 continue;
2456
2457 if (fde_prev != NULL
2458 && fde_prev->initial_location == fde->initial_location)
2459 continue;
2460
2461 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2462 sizeof (fde_table.entries[0]));
2463 ++fde_table2->num_entries;
2464 fde_prev = fde;
2465 }
224c3ddb
SM
2466 fde_table2->entries
2467 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2468
2469 /* Discard the original fde_table. */
2470 xfree (fde_table.entries);
cfc14b3a 2471 }
be391dca
TT
2472
2473 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2474}
0d0e1a63
MK
2475
2476/* Provide a prototype to silence -Wmissing-prototypes. */
2477void _initialize_dwarf2_frame (void);
2478
2479void
2480_initialize_dwarf2_frame (void)
2481{
030f20e1 2482 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2483 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2484}
This page took 1.266623 seconds and 4 git commands to generate.