* objc-lang.c (print_object_command): Use gdb_byte for c.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
8d5a9abc 3 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24#include "defs.h"
25#include "dwarf2expr.h"
26#include "elf/dwarf2.h"
27#include "frame.h"
28#include "frame-base.h"
29#include "frame-unwind.h"
30#include "gdbcore.h"
31#include "gdbtypes.h"
32#include "symtab.h"
33#include "objfiles.h"
34#include "regcache.h"
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
6896c0c7 39#include "complaints.h"
cfc14b3a
MK
40#include "dwarf2-frame.h"
41
42/* Call Frame Information (CFI). */
43
44/* Common Information Entry (CIE). */
45
46struct dwarf2_cie
47{
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
50 ULONGEST cie_pointer;
51
52 /* Constant that is factored out of all advance location
53 instructions. */
54 ULONGEST code_alignment_factor;
55
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor;
58
59 /* Return address column. */
60 ULONGEST return_address_register;
61
62 /* Instruction sequence to initialize a register set. */
63 unsigned char *initial_instructions;
64 unsigned char *end;
65
66 /* Encoding of addresses. */
67 unsigned char encoding;
68
7131cb6e
RH
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation;
71
cfc14b3a
MK
72 struct dwarf2_cie *next;
73};
74
75/* Frame Description Entry (FDE). */
76
77struct dwarf2_fde
78{
79 /* CIE for this FDE. */
80 struct dwarf2_cie *cie;
81
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location;
84
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range;
87
88 /* Instruction sequence. */
89 unsigned char *instructions;
90 unsigned char *end;
91
92 struct dwarf2_fde *next;
93};
94
95static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96\f
97
98/* Structure describing a frame state. */
99
100struct dwarf2_frame_state
101{
102 /* Each register save state can be described in terms of a CFA slot,
103 another register, or a location expression. */
104 struct dwarf2_frame_state_reg_info
105 {
05cbe71a 106 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
107 int num_regs;
108
109 /* Used to implement DW_CFA_remember_state. */
110 struct dwarf2_frame_state_reg_info *prev;
111 } regs;
112
113 LONGEST cfa_offset;
114 ULONGEST cfa_reg;
115 unsigned char *cfa_exp;
116 enum {
117 CFA_UNSET,
118 CFA_REG_OFFSET,
119 CFA_EXP
120 } cfa_how;
121
122 /* The PC described by the current frame state. */
123 CORE_ADDR pc;
124
125 /* Initial register set from the CIE.
126 Used to implement DW_CFA_restore. */
127 struct dwarf2_frame_state_reg_info initial;
128
129 /* The information we care about from the CIE. */
130 LONGEST data_align;
131 ULONGEST code_align;
132 ULONGEST retaddr_column;
133};
134
135/* Store the length the expression for the CFA in the `cfa_reg' field,
136 which is unused in that case. */
137#define cfa_exp_len cfa_reg
138
139/* Assert that the register set RS is large enough to store NUM_REGS
140 columns. If necessary, enlarge the register set. */
141
142static void
143dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144 int num_regs)
145{
146 size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148 if (num_regs <= rs->num_regs)
149 return;
150
151 rs->reg = (struct dwarf2_frame_state_reg *)
152 xrealloc (rs->reg, num_regs * size);
153
154 /* Initialize newly allocated registers. */
2473a4a9 155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
156 rs->num_regs = num_regs;
157}
158
159/* Copy the register columns in register set RS into newly allocated
160 memory and return a pointer to this newly created copy. */
161
162static struct dwarf2_frame_state_reg *
163dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164{
d10891d4 165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
166 struct dwarf2_frame_state_reg *reg;
167
168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169 memcpy (reg, rs->reg, size);
170
171 return reg;
172}
173
174/* Release the memory allocated to register set RS. */
175
176static void
177dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178{
179 if (rs)
180 {
181 dwarf2_frame_state_free_regs (rs->prev);
182
183 xfree (rs->reg);
184 xfree (rs);
185 }
186}
187
188/* Release the memory allocated to the frame state FS. */
189
190static void
191dwarf2_frame_state_free (void *p)
192{
193 struct dwarf2_frame_state *fs = p;
194
195 dwarf2_frame_state_free_regs (fs->initial.prev);
196 dwarf2_frame_state_free_regs (fs->regs.prev);
197 xfree (fs->initial.reg);
198 xfree (fs->regs.reg);
199 xfree (fs);
200}
201\f
202
203/* Helper functions for execute_stack_op. */
204
205static CORE_ADDR
206read_reg (void *baton, int reg)
207{
208 struct frame_info *next_frame = (struct frame_info *) baton;
05cbe71a 209 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a
MK
210 int regnum;
211 char *buf;
212
213 regnum = DWARF2_REG_TO_REGNUM (reg);
214
05cbe71a 215 buf = (char *) alloca (register_size (gdbarch, regnum));
cfc14b3a
MK
216 frame_unwind_register (next_frame, regnum, buf);
217 return extract_typed_address (buf, builtin_type_void_data_ptr);
218}
219
220static void
221read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
222{
223 read_memory (addr, buf, len);
224}
225
226static void
227no_get_frame_base (void *baton, unsigned char **start, size_t *length)
228{
229 internal_error (__FILE__, __LINE__,
e2e0b3e5 230 _("Support for DW_OP_fbreg is unimplemented"));
cfc14b3a
MK
231}
232
233static CORE_ADDR
234no_get_tls_address (void *baton, CORE_ADDR offset)
235{
236 internal_error (__FILE__, __LINE__,
e2e0b3e5 237 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
cfc14b3a
MK
238}
239
240static CORE_ADDR
241execute_stack_op (unsigned char *exp, ULONGEST len,
242 struct frame_info *next_frame, CORE_ADDR initial)
243{
244 struct dwarf_expr_context *ctx;
245 CORE_ADDR result;
246
247 ctx = new_dwarf_expr_context ();
248 ctx->baton = next_frame;
249 ctx->read_reg = read_reg;
250 ctx->read_mem = read_mem;
251 ctx->get_frame_base = no_get_frame_base;
252 ctx->get_tls_address = no_get_tls_address;
253
254 dwarf_expr_push (ctx, initial);
255 dwarf_expr_eval (ctx, exp, len);
256 result = dwarf_expr_fetch (ctx, 0);
257
258 if (ctx->in_reg)
259 result = read_reg (next_frame, result);
260
261 free_dwarf_expr_context (ctx);
262
263 return result;
264}
265\f
266
267static void
268execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
269 struct frame_info *next_frame,
270 struct dwarf2_frame_state *fs)
271{
272 CORE_ADDR pc = frame_pc_unwind (next_frame);
273 int bytes_read;
274
275 while (insn_ptr < insn_end && fs->pc <= pc)
276 {
277 unsigned char insn = *insn_ptr++;
278 ULONGEST utmp, reg;
279 LONGEST offset;
280
281 if ((insn & 0xc0) == DW_CFA_advance_loc)
282 fs->pc += (insn & 0x3f) * fs->code_align;
283 else if ((insn & 0xc0) == DW_CFA_offset)
284 {
285 reg = insn & 0x3f;
286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287 offset = utmp * fs->data_align;
288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
290 fs->regs.reg[reg].loc.offset = offset;
291 }
292 else if ((insn & 0xc0) == DW_CFA_restore)
293 {
294 gdb_assert (fs->initial.reg);
295 reg = insn & 0x3f;
296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297 fs->regs.reg[reg] = fs->initial.reg[reg];
298 }
299 else
300 {
301 switch (insn)
302 {
303 case DW_CFA_set_loc:
304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305 insn_ptr += bytes_read;
306 break;
307
308 case DW_CFA_advance_loc1:
309 utmp = extract_unsigned_integer (insn_ptr, 1);
310 fs->pc += utmp * fs->code_align;
311 insn_ptr++;
312 break;
313 case DW_CFA_advance_loc2:
314 utmp = extract_unsigned_integer (insn_ptr, 2);
315 fs->pc += utmp * fs->code_align;
316 insn_ptr += 2;
317 break;
318 case DW_CFA_advance_loc4:
319 utmp = extract_unsigned_integer (insn_ptr, 4);
320 fs->pc += utmp * fs->code_align;
321 insn_ptr += 4;
322 break;
323
324 case DW_CFA_offset_extended:
325 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327 offset = utmp * fs->data_align;
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
330 fs->regs.reg[reg].loc.offset = offset;
331 break;
332
333 case DW_CFA_restore_extended:
334 gdb_assert (fs->initial.reg);
335 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337 fs->regs.reg[reg] = fs->initial.reg[reg];
338 break;
339
340 case DW_CFA_undefined:
341 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
344 break;
345
346 case DW_CFA_same_value:
347 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
350 break;
351
352 case DW_CFA_register:
353 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
357 fs->regs.reg[reg].loc.reg = utmp;
358 break;
359
360 case DW_CFA_remember_state:
361 {
362 struct dwarf2_frame_state_reg_info *new_rs;
363
364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365 *new_rs = fs->regs;
366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367 fs->regs.prev = new_rs;
368 }
369 break;
370
371 case DW_CFA_restore_state:
372 {
373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
50ea7769
MK
375 if (old_rs == NULL)
376 {
e2e0b3e5
AC
377 complaint (&symfile_complaints, _("\
378bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs->pc));
50ea7769
MK
379 }
380 else
381 {
382 xfree (fs->regs.reg);
383 fs->regs = *old_rs;
384 xfree (old_rs);
385 }
cfc14b3a
MK
386 }
387 break;
388
389 case DW_CFA_def_cfa:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
392 fs->cfa_offset = utmp;
393 fs->cfa_how = CFA_REG_OFFSET;
394 break;
395
396 case DW_CFA_def_cfa_register:
397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
398 fs->cfa_how = CFA_REG_OFFSET;
399 break;
400
401 case DW_CFA_def_cfa_offset:
402 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
403 /* cfa_how deliberately not set. */
404 break;
405
a8504492
MK
406 case DW_CFA_nop:
407 break;
408
cfc14b3a
MK
409 case DW_CFA_def_cfa_expression:
410 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
411 fs->cfa_exp = insn_ptr;
412 fs->cfa_how = CFA_EXP;
413 insn_ptr += fs->cfa_exp_len;
414 break;
415
416 case DW_CFA_expression:
417 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
418 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
419 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
420 fs->regs.reg[reg].loc.exp = insn_ptr;
421 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 422 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
423 insn_ptr += utmp;
424 break;
425
a8504492
MK
426 case DW_CFA_offset_extended_sf:
427 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
428 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 429 offset *= fs->data_align;
a8504492 430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
432 fs->regs.reg[reg].loc.offset = offset;
433 break;
434
435 case DW_CFA_def_cfa_sf:
436 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
437 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
438 fs->cfa_offset = offset * fs->data_align;
439 fs->cfa_how = CFA_REG_OFFSET;
440 break;
441
442 case DW_CFA_def_cfa_offset_sf:
443 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
444 fs->cfa_offset = offset * fs->data_align;
445 /* cfa_how deliberately not set. */
cfc14b3a
MK
446 break;
447
a77f4086
MK
448 case DW_CFA_GNU_window_save:
449 /* This is SPARC-specific code, and contains hard-coded
450 constants for the register numbering scheme used by
451 GCC. Rather than having a architecture-specific
452 operation that's only ever used by a single
453 architecture, we provide the implementation here.
454 Incidentally that's what GCC does too in its
455 unwinder. */
456 {
457 struct gdbarch *gdbarch = get_frame_arch (next_frame);
458 int size = register_size(gdbarch, 0);
459 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
460 for (reg = 8; reg < 16; reg++)
461 {
462 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
463 fs->regs.reg[reg].loc.reg = reg + 16;
464 }
465 for (reg = 16; reg < 32; reg++)
466 {
467 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
468 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
469 }
470 }
471 break;
472
cfc14b3a
MK
473 case DW_CFA_GNU_args_size:
474 /* Ignored. */
475 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
476 break;
477
478 default:
e2e0b3e5 479 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
cfc14b3a
MK
480 }
481 }
482 }
483
484 /* Don't allow remember/restore between CIE and FDE programs. */
485 dwarf2_frame_state_free_regs (fs->regs.prev);
486 fs->regs.prev = NULL;
487}
8f22cb90 488\f
cfc14b3a 489
8f22cb90 490/* Architecture-specific operations. */
cfc14b3a 491
8f22cb90
MK
492/* Per-architecture data key. */
493static struct gdbarch_data *dwarf2_frame_data;
494
495struct dwarf2_frame_ops
496{
497 /* Pre-initialize the register state REG for register REGNUM. */
498 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
3ed09a32
DJ
499
500 /* Check whether the frame preceding NEXT_FRAME will be a signal
501 trampoline. */
502 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
cfc14b3a
MK
503};
504
8f22cb90
MK
505/* Default architecture-specific register state initialization
506 function. */
507
508static void
509dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
510 struct dwarf2_frame_state_reg *reg)
511{
512 /* If we have a register that acts as a program counter, mark it as
513 a destination for the return address. If we have a register that
514 serves as the stack pointer, arrange for it to be filled with the
515 call frame address (CFA). The other registers are marked as
516 unspecified.
517
518 We copy the return address to the program counter, since many
519 parts in GDB assume that it is possible to get the return address
520 by unwinding the program counter register. However, on ISA's
521 with a dedicated return address register, the CFI usually only
522 contains information to unwind that return address register.
523
524 The reason we're treating the stack pointer special here is
525 because in many cases GCC doesn't emit CFI for the stack pointer
526 and implicitly assumes that it is equal to the CFA. This makes
527 some sense since the DWARF specification (version 3, draft 8,
528 p. 102) says that:
529
530 "Typically, the CFA is defined to be the value of the stack
531 pointer at the call site in the previous frame (which may be
532 different from its value on entry to the current frame)."
533
534 However, this isn't true for all platforms supported by GCC
535 (e.g. IBM S/390 and zSeries). Those architectures should provide
536 their own architecture-specific initialization function. */
05cbe71a 537
8f22cb90
MK
538 if (regnum == PC_REGNUM)
539 reg->how = DWARF2_FRAME_REG_RA;
540 else if (regnum == SP_REGNUM)
541 reg->how = DWARF2_FRAME_REG_CFA;
542}
05cbe71a 543
8f22cb90 544/* Return a default for the architecture-specific operations. */
05cbe71a 545
8f22cb90 546static void *
030f20e1 547dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
548{
549 struct dwarf2_frame_ops *ops;
550
030f20e1 551 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
552 ops->init_reg = dwarf2_frame_default_init_reg;
553 return ops;
554}
05cbe71a 555
8f22cb90
MK
556/* Set the architecture-specific register state initialization
557 function for GDBARCH to INIT_REG. */
558
559void
560dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
561 void (*init_reg) (struct gdbarch *, int,
562 struct dwarf2_frame_state_reg *))
563{
030f20e1 564 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 565
8f22cb90
MK
566 ops->init_reg = init_reg;
567}
568
569/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
570
571static void
572dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
573 struct dwarf2_frame_state_reg *reg)
574{
030f20e1 575 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 576
8f22cb90 577 ops->init_reg (gdbarch, regnum, reg);
05cbe71a 578}
3ed09a32
DJ
579
580/* Set the architecture-specific signal trampoline recognition
581 function for GDBARCH to SIGNAL_FRAME_P. */
582
583void
584dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
585 int (*signal_frame_p) (struct gdbarch *,
586 struct frame_info *))
587{
588 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
589
590 ops->signal_frame_p = signal_frame_p;
591}
592
593/* Query the architecture-specific signal frame recognizer for
594 NEXT_FRAME. */
595
596static int
597dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
598 struct frame_info *next_frame)
599{
600 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
601
602 if (ops->signal_frame_p == NULL)
603 return 0;
604 return ops->signal_frame_p (gdbarch, next_frame);
605}
8f22cb90
MK
606\f
607
608struct dwarf2_frame_cache
609{
610 /* DWARF Call Frame Address. */
611 CORE_ADDR cfa;
612
0228dfb9
DJ
613 /* Set if the return address column was marked as undefined. */
614 int undefined_retaddr;
615
8f22cb90
MK
616 /* Saved registers, indexed by GDB register number, not by DWARF
617 register number. */
618 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
619
620 /* Return address register. */
621 struct dwarf2_frame_state_reg retaddr_reg;
8f22cb90 622};
05cbe71a 623
b9362cc7 624static struct dwarf2_frame_cache *
cfc14b3a
MK
625dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
626{
627 struct cleanup *old_chain;
05cbe71a 628 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3e2c4033 629 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
cfc14b3a
MK
630 struct dwarf2_frame_cache *cache;
631 struct dwarf2_frame_state *fs;
632 struct dwarf2_fde *fde;
cfc14b3a
MK
633
634 if (*this_cache)
635 return *this_cache;
636
637 /* Allocate a new cache. */
638 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
639 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
640
641 /* Allocate and initialize the frame state. */
642 fs = XMALLOC (struct dwarf2_frame_state);
643 memset (fs, 0, sizeof (struct dwarf2_frame_state));
644 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
645
646 /* Unwind the PC.
647
648 Note that if NEXT_FRAME is never supposed to return (i.e. a call
649 to abort), the compiler might optimize away the instruction at
650 NEXT_FRAME's return address. As a result the return address will
651 point at some random instruction, and the CFI for that
e4e9607c 652 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
653 this problem by substracting 1 from the return address to get an
654 address in the middle of a presumed call instruction (or the
655 instruction in the associated delay slot). This should only be
656 done for "normal" frames and not for resume-type frames (signal
e4e9607c
MK
657 handlers, sentinel frames, dummy frames). The function
658 frame_unwind_address_in_block does just this. It's not clear how
659 reliable the method is though; there is the potential for the
660 register state pre-call being different to that on return. */
1ce5d6dd 661 fs->pc = frame_unwind_address_in_block (next_frame);
cfc14b3a
MK
662
663 /* Find the correct FDE. */
664 fde = dwarf2_frame_find_fde (&fs->pc);
665 gdb_assert (fde != NULL);
666
667 /* Extract any interesting information from the CIE. */
668 fs->data_align = fde->cie->data_alignment_factor;
669 fs->code_align = fde->cie->code_alignment_factor;
670 fs->retaddr_column = fde->cie->return_address_register;
671
672 /* First decode all the insns in the CIE. */
673 execute_cfa_program (fde->cie->initial_instructions,
674 fde->cie->end, next_frame, fs);
675
676 /* Save the initialized register set. */
677 fs->initial = fs->regs;
678 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
679
680 /* Then decode the insns in the FDE up to our target PC. */
681 execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
682
683 /* Caclulate the CFA. */
684 switch (fs->cfa_how)
685 {
686 case CFA_REG_OFFSET:
687 cache->cfa = read_reg (next_frame, fs->cfa_reg);
688 cache->cfa += fs->cfa_offset;
689 break;
690
691 case CFA_EXP:
692 cache->cfa =
693 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
694 break;
695
696 default:
e2e0b3e5 697 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
cfc14b3a
MK
698 }
699
05cbe71a 700 /* Initialize the register state. */
3e2c4033
AC
701 {
702 int regnum;
e4e9607c 703
3e2c4033 704 for (regnum = 0; regnum < num_regs; regnum++)
05cbe71a 705 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
3e2c4033
AC
706 }
707
708 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
709 location information in the cache. Note that we don't skip the
710 return address column; it's perfectly all right for it to
711 correspond to a real register. If it doesn't correspond to a
712 real register, or if we shouldn't treat it as such,
713 DWARF2_REG_TO_REGNUM should be defined to return a number outside
714 the range [0, NUM_REGS). */
3e2c4033
AC
715 {
716 int column; /* CFI speak for "register number". */
e4e9607c 717
3e2c4033
AC
718 for (column = 0; column < fs->regs.num_regs; column++)
719 {
3e2c4033 720 /* Use the GDB register number as the destination index. */
79c4cb80 721 int regnum = DWARF2_REG_TO_REGNUM (column);
3e2c4033
AC
722
723 /* If there's no corresponding GDB register, ignore it. */
724 if (regnum < 0 || regnum >= num_regs)
725 continue;
726
727 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
728 of all debug info registers. If it doesn't, complain (but
729 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
730 unspecified register implies "same value" when CFI (draft
731 7) specifies nothing at all. Such a register could equally
732 be interpreted as "undefined". Also note that this check
e4e9607c
MK
733 isn't sufficient; it only checks that all registers in the
734 range [0 .. max column] are specified, and won't detect
3e2c4033 735 problems when a debug info register falls outside of the
e4e9607c 736 table. We need a way of iterating through all the valid
3e2c4033 737 DWARF2 register numbers. */
05cbe71a 738 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
739 {
740 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5
AC
741 complaint (&symfile_complaints, _("\
742incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
f059bf6f
AC
743 gdbarch_register_name (gdbarch, regnum),
744 paddr_nz (fs->pc));
745 }
35889917
MK
746 else
747 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
748 }
749 }
cfc14b3a 750
8d5a9abc
MK
751 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
752 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
753 {
754 int regnum;
755
756 for (regnum = 0; regnum < num_regs; regnum++)
757 {
8d5a9abc
MK
758 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
759 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 760 {
05cbe71a
MK
761 struct dwarf2_frame_state_reg *retaddr_reg =
762 &fs->regs.reg[fs->retaddr_column];
763
d4f10bf2
MK
764 /* It seems rather bizarre to specify an "empty" column as
765 the return adress column. However, this is exactly
766 what GCC does on some targets. It turns out that GCC
767 assumes that the return address can be found in the
768 register corresponding to the return address column.
8d5a9abc
MK
769 Incidentally, that's how we should treat a return
770 address column specifying "same value" too. */
d4f10bf2 771 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
772 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
773 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
774 {
775 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
776 cache->reg[regnum] = *retaddr_reg;
777 else
778 cache->retaddr_reg = *retaddr_reg;
779 }
35889917
MK
780 else
781 {
8d5a9abc
MK
782 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
783 {
784 cache->reg[regnum].loc.reg = fs->retaddr_column;
785 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
786 }
787 else
788 {
789 cache->retaddr_reg.loc.reg = fs->retaddr_column;
790 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
791 }
35889917
MK
792 }
793 }
794 }
795 }
cfc14b3a 796
0228dfb9
DJ
797 if (fs->retaddr_column < fs->regs.num_regs
798 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
799 cache->undefined_retaddr = 1;
800
cfc14b3a
MK
801 do_cleanups (old_chain);
802
803 *this_cache = cache;
804 return cache;
805}
806
807static void
808dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
809 struct frame_id *this_id)
810{
811 struct dwarf2_frame_cache *cache =
812 dwarf2_frame_cache (next_frame, this_cache);
813
0228dfb9
DJ
814 if (cache->undefined_retaddr)
815 return;
816
cfc14b3a
MK
817 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
818}
819
820static void
821dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
822 int regnum, int *optimizedp,
823 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 824 int *realnump, gdb_byte *valuep)
cfc14b3a 825{
05cbe71a 826 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a
MK
827 struct dwarf2_frame_cache *cache =
828 dwarf2_frame_cache (next_frame, this_cache);
829
830 switch (cache->reg[regnum].how)
831 {
05cbe71a 832 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 833 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 834 mark it as optimized away; the value isn't available. */
cfc14b3a
MK
835 *optimizedp = 1;
836 *lvalp = not_lval;
837 *addrp = 0;
838 *realnump = -1;
35889917 839 if (valuep)
cfc14b3a
MK
840 {
841 /* In some cases, for example %eflags on the i386, we have
842 to provide a sane value, even though this register wasn't
843 saved. Assume we can get it from NEXT_FRAME. */
844 frame_unwind_register (next_frame, regnum, valuep);
845 }
846 break;
847
05cbe71a 848 case DWARF2_FRAME_REG_SAVED_OFFSET:
cfc14b3a
MK
849 *optimizedp = 0;
850 *lvalp = lval_memory;
851 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
852 *realnump = -1;
853 if (valuep)
854 {
855 /* Read the value in from memory. */
05cbe71a 856 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
cfc14b3a
MK
857 }
858 break;
859
05cbe71a 860 case DWARF2_FRAME_REG_SAVED_REG:
00b25ff3
AC
861 *optimizedp = 0;
862 *lvalp = lval_register;
863 *addrp = 0;
864 *realnump = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
865 if (valuep)
866 frame_unwind_register (next_frame, (*realnump), valuep);
cfc14b3a
MK
867 break;
868
05cbe71a 869 case DWARF2_FRAME_REG_SAVED_EXP:
cfc14b3a
MK
870 *optimizedp = 0;
871 *lvalp = lval_memory;
872 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
873 cache->reg[regnum].exp_len,
874 next_frame, cache->cfa);
875 *realnump = -1;
876 if (valuep)
877 {
878 /* Read the value in from memory. */
05cbe71a 879 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
cfc14b3a
MK
880 }
881 break;
882
05cbe71a 883 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
884 /* GCC, in its infinite wisdom decided to not provide unwind
885 information for registers that are "same value". Since
886 DWARF2 (3 draft 7) doesn't define such behavior, said
887 registers are actually undefined (which is different to CFI
888 "undefined"). Code above issues a complaint about this.
889 Here just fudge the books, assume GCC, and that the value is
890 more inner on the stack. */
00b25ff3
AC
891 *optimizedp = 0;
892 *lvalp = lval_register;
893 *addrp = 0;
894 *realnump = regnum;
895 if (valuep)
896 frame_unwind_register (next_frame, (*realnump), valuep);
3e2c4033
AC
897 break;
898
05cbe71a 899 case DWARF2_FRAME_REG_SAME_VALUE:
00b25ff3
AC
900 *optimizedp = 0;
901 *lvalp = lval_register;
902 *addrp = 0;
903 *realnump = regnum;
904 if (valuep)
905 frame_unwind_register (next_frame, (*realnump), valuep);
cfc14b3a
MK
906 break;
907
05cbe71a 908 case DWARF2_FRAME_REG_CFA:
35889917
MK
909 *optimizedp = 0;
910 *lvalp = not_lval;
911 *addrp = 0;
912 *realnump = -1;
913 if (valuep)
914 {
915 /* Store the value. */
916 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
917 }
918 break;
919
8d5a9abc
MK
920 case DWARF2_FRAME_REG_RA_OFFSET:
921 *optimizedp = 0;
922 *lvalp = not_lval;
923 *addrp = 0;
924 *realnump = -1;
925 if (valuep)
926 {
927 CORE_ADDR pc = cache->reg[regnum].loc.offset;
928
929 regnum = DWARF2_REG_TO_REGNUM (cache->retaddr_reg.loc.reg);
930 pc += frame_unwind_register_unsigned (next_frame, regnum);
931 store_typed_address (valuep, builtin_type_void_func_ptr, pc);
932 }
933 break;
934
cfc14b3a 935 default:
e2e0b3e5 936 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
937 }
938}
939
940static const struct frame_unwind dwarf2_frame_unwind =
941{
942 NORMAL_FRAME,
943 dwarf2_frame_this_id,
944 dwarf2_frame_prev_register
945};
946
3ed09a32
DJ
947static const struct frame_unwind dwarf2_signal_frame_unwind =
948{
949 SIGTRAMP_FRAME,
950 dwarf2_frame_this_id,
951 dwarf2_frame_prev_register
952};
953
cfc14b3a 954const struct frame_unwind *
336d1bba 955dwarf2_frame_sniffer (struct frame_info *next_frame)
cfc14b3a 956{
1ce5d6dd
AC
957 /* Grab an address that is guarenteed to reside somewhere within the
958 function. frame_pc_unwind(), for a no-return next function, can
959 end up returning something past the end of this function's body. */
960 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
3ed09a32
DJ
961 if (!dwarf2_frame_find_fde (&block_addr))
962 return NULL;
963
964 /* On some targets, signal trampolines may have unwind information.
965 We need to recognize them so that we set the frame type
966 correctly. */
967
968 if (dwarf2_frame_signal_frame_p (get_frame_arch (next_frame),
969 next_frame))
970 return &dwarf2_signal_frame_unwind;
cfc14b3a 971
3ed09a32 972 return &dwarf2_frame_unwind;
cfc14b3a
MK
973}
974\f
975
976/* There is no explicitly defined relationship between the CFA and the
977 location of frame's local variables and arguments/parameters.
978 Therefore, frame base methods on this page should probably only be
979 used as a last resort, just to avoid printing total garbage as a
980 response to the "info frame" command. */
981
982static CORE_ADDR
983dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
984{
985 struct dwarf2_frame_cache *cache =
986 dwarf2_frame_cache (next_frame, this_cache);
987
988 return cache->cfa;
989}
990
991static const struct frame_base dwarf2_frame_base =
992{
993 &dwarf2_frame_unwind,
994 dwarf2_frame_base_address,
995 dwarf2_frame_base_address,
996 dwarf2_frame_base_address
997};
998
999const struct frame_base *
336d1bba 1000dwarf2_frame_base_sniffer (struct frame_info *next_frame)
cfc14b3a 1001{
336d1bba 1002 CORE_ADDR pc = frame_pc_unwind (next_frame);
cfc14b3a
MK
1003 if (dwarf2_frame_find_fde (&pc))
1004 return &dwarf2_frame_base;
1005
1006 return NULL;
1007}
1008\f
1009/* A minimal decoding of DWARF2 compilation units. We only decode
1010 what's needed to get to the call frame information. */
1011
1012struct comp_unit
1013{
1014 /* Keep the bfd convenient. */
1015 bfd *abfd;
1016
1017 struct objfile *objfile;
1018
1019 /* Linked list of CIEs for this object. */
1020 struct dwarf2_cie *cie;
1021
cfc14b3a
MK
1022 /* Pointer to the .debug_frame section loaded into memory. */
1023 char *dwarf_frame_buffer;
1024
1025 /* Length of the loaded .debug_frame section. */
1026 unsigned long dwarf_frame_size;
1027
1028 /* Pointer to the .debug_frame section. */
1029 asection *dwarf_frame_section;
0912c7f2
MK
1030
1031 /* Base for DW_EH_PE_datarel encodings. */
1032 bfd_vma dbase;
0fd85043
CV
1033
1034 /* Base for DW_EH_PE_textrel encodings. */
1035 bfd_vma tbase;
cfc14b3a
MK
1036};
1037
8f22cb90 1038const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1039
cfc14b3a
MK
1040static unsigned int
1041read_1_byte (bfd *bfd, char *buf)
1042{
1043 return bfd_get_8 (abfd, (bfd_byte *) buf);
1044}
1045
1046static unsigned int
1047read_4_bytes (bfd *abfd, char *buf)
1048{
1049 return bfd_get_32 (abfd, (bfd_byte *) buf);
1050}
1051
1052static ULONGEST
1053read_8_bytes (bfd *abfd, char *buf)
1054{
1055 return bfd_get_64 (abfd, (bfd_byte *) buf);
1056}
1057
1058static ULONGEST
1059read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
1060{
1061 ULONGEST result;
1062 unsigned int num_read;
1063 int shift;
1064 unsigned char byte;
1065
1066 result = 0;
1067 shift = 0;
1068 num_read = 0;
1069
1070 do
1071 {
1072 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1073 buf++;
1074 num_read++;
1075 result |= ((byte & 0x7f) << shift);
1076 shift += 7;
1077 }
1078 while (byte & 0x80);
1079
1080 *bytes_read_ptr = num_read;
1081
1082 return result;
1083}
1084
1085static LONGEST
1086read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
1087{
1088 LONGEST result;
1089 int shift;
1090 unsigned int num_read;
1091 unsigned char byte;
1092
1093 result = 0;
1094 shift = 0;
1095 num_read = 0;
1096
1097 do
1098 {
1099 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1100 buf++;
1101 num_read++;
1102 result |= ((byte & 0x7f) << shift);
1103 shift += 7;
1104 }
1105 while (byte & 0x80);
1106
1107 if ((shift < 32) && (byte & 0x40))
1108 result |= -(1 << shift);
1109
1110 *bytes_read_ptr = num_read;
1111
1112 return result;
1113}
1114
1115static ULONGEST
1116read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
1117{
1118 LONGEST result;
1119
1120 result = bfd_get_32 (abfd, (bfd_byte *) buf);
1121 if (result == 0xffffffff)
1122 {
1123 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
1124 *bytes_read_ptr = 12;
1125 }
1126 else
1127 *bytes_read_ptr = 4;
1128
1129 return result;
1130}
1131\f
1132
1133/* Pointer encoding helper functions. */
1134
1135/* GCC supports exception handling based on DWARF2 CFI. However, for
1136 technical reasons, it encodes addresses in its FDE's in a different
1137 way. Several "pointer encodings" are supported. The encoding
1138 that's used for a particular FDE is determined by the 'R'
1139 augmentation in the associated CIE. The argument of this
1140 augmentation is a single byte.
1141
1142 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1143 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1144 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1145 address should be interpreted (absolute, relative to the current
1146 position in the FDE, ...). Bit 7, indicates that the address
1147 should be dereferenced. */
1148
1149static unsigned char
1150encoding_for_size (unsigned int size)
1151{
1152 switch (size)
1153 {
1154 case 2:
1155 return DW_EH_PE_udata2;
1156 case 4:
1157 return DW_EH_PE_udata4;
1158 case 8:
1159 return DW_EH_PE_udata8;
1160 default:
e2e0b3e5 1161 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1162 }
1163}
1164
1165static unsigned int
1166size_of_encoded_value (unsigned char encoding)
1167{
1168 if (encoding == DW_EH_PE_omit)
1169 return 0;
1170
1171 switch (encoding & 0x07)
1172 {
1173 case DW_EH_PE_absptr:
1174 return TYPE_LENGTH (builtin_type_void_data_ptr);
1175 case DW_EH_PE_udata2:
1176 return 2;
1177 case DW_EH_PE_udata4:
1178 return 4;
1179 case DW_EH_PE_udata8:
1180 return 8;
1181 default:
e2e0b3e5 1182 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1183 }
1184}
1185
1186static CORE_ADDR
1187read_encoded_value (struct comp_unit *unit, unsigned char encoding,
a81b10ae 1188 unsigned char *buf, unsigned int *bytes_read_ptr)
cfc14b3a 1189{
68f6cf99
MK
1190 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1191 ptrdiff_t offset;
cfc14b3a
MK
1192 CORE_ADDR base;
1193
1194 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1195 FDE's. */
1196 if (encoding & DW_EH_PE_indirect)
1197 internal_error (__FILE__, __LINE__,
e2e0b3e5 1198 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1199
68f6cf99
MK
1200 *bytes_read_ptr = 0;
1201
cfc14b3a
MK
1202 switch (encoding & 0x70)
1203 {
1204 case DW_EH_PE_absptr:
1205 base = 0;
1206 break;
1207 case DW_EH_PE_pcrel:
1208 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
a81b10ae 1209 base += ((char *) buf - unit->dwarf_frame_buffer);
cfc14b3a 1210 break;
0912c7f2
MK
1211 case DW_EH_PE_datarel:
1212 base = unit->dbase;
1213 break;
0fd85043
CV
1214 case DW_EH_PE_textrel:
1215 base = unit->tbase;
1216 break;
03ac2a74
MK
1217 case DW_EH_PE_funcrel:
1218 /* FIXME: kettenis/20040501: For now just pretend
1219 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1220 reading the initial location of an FDE it should be treated
1221 as such, and currently that's the only place where this code
1222 is used. */
1223 base = 0;
1224 break;
68f6cf99
MK
1225 case DW_EH_PE_aligned:
1226 base = 0;
a81b10ae 1227 offset = (char *) buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1228 if ((offset % ptr_len) != 0)
1229 {
1230 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1231 buf += *bytes_read_ptr;
1232 }
1233 break;
cfc14b3a 1234 default:
e2e0b3e5 1235 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1236 }
1237
b04de778 1238 if ((encoding & 0x07) == 0x00)
68f6cf99 1239 encoding |= encoding_for_size (ptr_len);
cfc14b3a
MK
1240
1241 switch (encoding & 0x0f)
1242 {
a81b10ae
MK
1243 case DW_EH_PE_uleb128:
1244 {
1245 ULONGEST value;
1246 unsigned char *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1247 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1248 return base + value;
1249 }
cfc14b3a 1250 case DW_EH_PE_udata2:
68f6cf99 1251 *bytes_read_ptr += 2;
cfc14b3a
MK
1252 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1253 case DW_EH_PE_udata4:
68f6cf99 1254 *bytes_read_ptr += 4;
cfc14b3a
MK
1255 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1256 case DW_EH_PE_udata8:
68f6cf99 1257 *bytes_read_ptr += 8;
cfc14b3a 1258 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1259 case DW_EH_PE_sleb128:
1260 {
1261 LONGEST value;
1262 char *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1263 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1264 return base + value;
1265 }
cfc14b3a 1266 case DW_EH_PE_sdata2:
68f6cf99 1267 *bytes_read_ptr += 2;
cfc14b3a
MK
1268 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1269 case DW_EH_PE_sdata4:
68f6cf99 1270 *bytes_read_ptr += 4;
cfc14b3a
MK
1271 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1272 case DW_EH_PE_sdata8:
68f6cf99 1273 *bytes_read_ptr += 8;
cfc14b3a
MK
1274 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1275 default:
e2e0b3e5 1276 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1277 }
1278}
1279\f
1280
1281/* GCC uses a single CIE for all FDEs in a .debug_frame section.
1282 That's why we use a simple linked list here. */
1283
1284static struct dwarf2_cie *
1285find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1286{
1287 struct dwarf2_cie *cie = unit->cie;
1288
1289 while (cie)
1290 {
1291 if (cie->cie_pointer == cie_pointer)
1292 return cie;
1293
1294 cie = cie->next;
1295 }
1296
1297 return NULL;
1298}
1299
1300static void
1301add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1302{
1303 cie->next = unit->cie;
1304 unit->cie = cie;
1305}
1306
1307/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1308 inital location associated with it into *PC. */
1309
1310static struct dwarf2_fde *
1311dwarf2_frame_find_fde (CORE_ADDR *pc)
1312{
1313 struct objfile *objfile;
1314
1315 ALL_OBJFILES (objfile)
1316 {
1317 struct dwarf2_fde *fde;
1318 CORE_ADDR offset;
1319
8f22cb90 1320 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
4ae9ee8e
DJ
1321 if (fde == NULL)
1322 continue;
1323
1324 gdb_assert (objfile->section_offsets);
1325 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1326
cfc14b3a
MK
1327 while (fde)
1328 {
1329 if (*pc >= fde->initial_location + offset
1330 && *pc < fde->initial_location + offset + fde->address_range)
1331 {
1332 *pc = fde->initial_location + offset;
1333 return fde;
1334 }
1335
1336 fde = fde->next;
1337 }
1338 }
1339
1340 return NULL;
1341}
1342
1343static void
1344add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1345{
8f22cb90
MK
1346 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1347 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
cfc14b3a
MK
1348}
1349
1350#ifdef CC_HAS_LONG_LONG
1351#define DW64_CIE_ID 0xffffffffffffffffULL
1352#else
1353#define DW64_CIE_ID ~0
1354#endif
1355
6896c0c7
RH
1356static char *decode_frame_entry (struct comp_unit *unit, char *start,
1357 int eh_frame_p);
cfc14b3a 1358
6896c0c7
RH
1359/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1360 the next byte to be processed. */
cfc14b3a 1361static char *
6896c0c7 1362decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
cfc14b3a 1363{
6896c0c7 1364 char *buf;
cfc14b3a
MK
1365 LONGEST length;
1366 unsigned int bytes_read;
6896c0c7
RH
1367 int dwarf64_p;
1368 ULONGEST cie_id;
cfc14b3a 1369 ULONGEST cie_pointer;
cfc14b3a
MK
1370 char *end;
1371
6896c0c7 1372 buf = start;
cfc14b3a
MK
1373 length = read_initial_length (unit->abfd, buf, &bytes_read);
1374 buf += bytes_read;
1375 end = buf + length;
1376
6896c0c7
RH
1377 /* Are we still within the section? */
1378 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1379 return NULL;
1380
cfc14b3a
MK
1381 if (length == 0)
1382 return end;
1383
6896c0c7
RH
1384 /* Distinguish between 32 and 64-bit encoded frame info. */
1385 dwarf64_p = (bytes_read == 12);
cfc14b3a 1386
6896c0c7 1387 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1388 if (eh_frame_p)
1389 cie_id = 0;
1390 else if (dwarf64_p)
1391 cie_id = DW64_CIE_ID;
6896c0c7
RH
1392 else
1393 cie_id = DW_CIE_ID;
cfc14b3a
MK
1394
1395 if (dwarf64_p)
1396 {
1397 cie_pointer = read_8_bytes (unit->abfd, buf);
1398 buf += 8;
1399 }
1400 else
1401 {
1402 cie_pointer = read_4_bytes (unit->abfd, buf);
1403 buf += 4;
1404 }
1405
1406 if (cie_pointer == cie_id)
1407 {
1408 /* This is a CIE. */
1409 struct dwarf2_cie *cie;
1410 char *augmentation;
28ba0b33 1411 unsigned int cie_version;
cfc14b3a
MK
1412
1413 /* Record the offset into the .debug_frame section of this CIE. */
1414 cie_pointer = start - unit->dwarf_frame_buffer;
1415
1416 /* Check whether we've already read it. */
1417 if (find_cie (unit, cie_pointer))
1418 return end;
1419
1420 cie = (struct dwarf2_cie *)
8b92e4d5 1421 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1422 sizeof (struct dwarf2_cie));
1423 cie->initial_instructions = NULL;
1424 cie->cie_pointer = cie_pointer;
1425
1426 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1427 depends on the target address size. */
1428 cie->encoding = DW_EH_PE_absptr;
cfc14b3a
MK
1429
1430 /* Check version number. */
28ba0b33
PB
1431 cie_version = read_1_byte (unit->abfd, buf);
1432 if (cie_version != 1 && cie_version != 3)
6896c0c7 1433 return NULL;
cfc14b3a
MK
1434 buf += 1;
1435
1436 /* Interpret the interesting bits of the augmentation. */
1437 augmentation = buf;
1438 buf = augmentation + strlen (augmentation) + 1;
1439
1440 /* The GCC 2.x "eh" augmentation has a pointer immediately
1441 following the augmentation string, so it must be handled
1442 first. */
1443 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1444 {
1445 /* Skip. */
1446 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1447 augmentation += 2;
1448 }
1449
1450 cie->code_alignment_factor =
1451 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1452 buf += bytes_read;
1453
1454 cie->data_alignment_factor =
1455 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1456 buf += bytes_read;
1457
28ba0b33
PB
1458 if (cie_version == 1)
1459 {
1460 cie->return_address_register = read_1_byte (unit->abfd, buf);
1461 bytes_read = 1;
1462 }
1463 else
1464 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1465 &bytes_read);
1466 buf += bytes_read;
cfc14b3a 1467
7131cb6e
RH
1468 cie->saw_z_augmentation = (*augmentation == 'z');
1469 if (cie->saw_z_augmentation)
cfc14b3a
MK
1470 {
1471 ULONGEST length;
1472
1473 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1474 buf += bytes_read;
6896c0c7
RH
1475 if (buf > end)
1476 return NULL;
cfc14b3a
MK
1477 cie->initial_instructions = buf + length;
1478 augmentation++;
1479 }
1480
1481 while (*augmentation)
1482 {
1483 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1484 if (*augmentation == 'L')
1485 {
1486 /* Skip. */
1487 buf++;
1488 augmentation++;
1489 }
1490
1491 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1492 else if (*augmentation == 'R')
1493 {
1494 cie->encoding = *buf++;
1495 augmentation++;
1496 }
1497
1498 /* "P" indicates a personality routine in the CIE augmentation. */
1499 else if (*augmentation == 'P')
1500 {
1234d960
MK
1501 /* Skip. Avoid indirection since we throw away the result. */
1502 unsigned char encoding = (*buf++) & ~DW_EH_PE_indirect;
f724bf08
MK
1503 read_encoded_value (unit, encoding, buf, &bytes_read);
1504 buf += bytes_read;
cfc14b3a
MK
1505 augmentation++;
1506 }
1507
1508 /* Otherwise we have an unknown augmentation.
1509 Bail out unless we saw a 'z' prefix. */
1510 else
1511 {
1512 if (cie->initial_instructions == NULL)
1513 return end;
1514
1515 /* Skip unknown augmentations. */
1516 buf = cie->initial_instructions;
1517 break;
1518 }
1519 }
1520
1521 cie->initial_instructions = buf;
1522 cie->end = end;
1523
1524 add_cie (unit, cie);
1525 }
1526 else
1527 {
1528 /* This is a FDE. */
1529 struct dwarf2_fde *fde;
1530
6896c0c7
RH
1531 /* In an .eh_frame section, the CIE pointer is the delta between the
1532 address within the FDE where the CIE pointer is stored and the
1533 address of the CIE. Convert it to an offset into the .eh_frame
1534 section. */
cfc14b3a
MK
1535 if (eh_frame_p)
1536 {
cfc14b3a
MK
1537 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1538 cie_pointer -= (dwarf64_p ? 8 : 4);
1539 }
1540
6896c0c7
RH
1541 /* In either case, validate the result is still within the section. */
1542 if (cie_pointer >= unit->dwarf_frame_size)
1543 return NULL;
1544
cfc14b3a 1545 fde = (struct dwarf2_fde *)
8b92e4d5 1546 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1547 sizeof (struct dwarf2_fde));
1548 fde->cie = find_cie (unit, cie_pointer);
1549 if (fde->cie == NULL)
1550 {
1551 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1552 eh_frame_p);
1553 fde->cie = find_cie (unit, cie_pointer);
1554 }
1555
1556 gdb_assert (fde->cie != NULL);
1557
1558 fde->initial_location =
1559 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1560 buf += bytes_read;
1561
1562 fde->address_range =
1563 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1564 buf += bytes_read;
1565
7131cb6e
RH
1566 /* A 'z' augmentation in the CIE implies the presence of an
1567 augmentation field in the FDE as well. The only thing known
1568 to be in here at present is the LSDA entry for EH. So we
1569 can skip the whole thing. */
1570 if (fde->cie->saw_z_augmentation)
1571 {
1572 ULONGEST length;
1573
1574 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1575 buf += bytes_read + length;
6896c0c7
RH
1576 if (buf > end)
1577 return NULL;
7131cb6e
RH
1578 }
1579
cfc14b3a
MK
1580 fde->instructions = buf;
1581 fde->end = end;
1582
1583 add_fde (unit, fde);
1584 }
1585
1586 return end;
1587}
6896c0c7
RH
1588
1589/* Read a CIE or FDE in BUF and decode it. */
1590static char *
1591decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1592{
1593 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1594 char *ret;
1595 const char *msg;
1596 ptrdiff_t start_offset;
1597
1598 while (1)
1599 {
1600 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1601 if (ret != NULL)
1602 break;
1603
1604 /* We have corrupt input data of some form. */
1605
1606 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1607 and mismatches wrt padding and alignment of debug sections. */
1608 /* Note that there is no requirement in the standard for any
1609 alignment at all in the frame unwind sections. Testing for
1610 alignment before trying to interpret data would be incorrect.
1611
1612 However, GCC traditionally arranged for frame sections to be
1613 sized such that the FDE length and CIE fields happen to be
1614 aligned (in theory, for performance). This, unfortunately,
1615 was done with .align directives, which had the side effect of
1616 forcing the section to be aligned by the linker.
1617
1618 This becomes a problem when you have some other producer that
1619 creates frame sections that are not as strictly aligned. That
1620 produces a hole in the frame info that gets filled by the
1621 linker with zeros.
1622
1623 The GCC behaviour is arguably a bug, but it's effectively now
1624 part of the ABI, so we're now stuck with it, at least at the
1625 object file level. A smart linker may decide, in the process
1626 of compressing duplicate CIE information, that it can rewrite
1627 the entire output section without this extra padding. */
1628
1629 start_offset = start - unit->dwarf_frame_buffer;
1630 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1631 {
1632 start += 4 - (start_offset & 3);
1633 workaround = ALIGN4;
1634 continue;
1635 }
1636 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1637 {
1638 start += 8 - (start_offset & 7);
1639 workaround = ALIGN8;
1640 continue;
1641 }
1642
1643 /* Nothing left to try. Arrange to return as if we've consumed
1644 the entire input section. Hopefully we'll get valid info from
1645 the other of .debug_frame/.eh_frame. */
1646 workaround = FAIL;
1647 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1648 break;
1649 }
1650
1651 switch (workaround)
1652 {
1653 case NONE:
1654 break;
1655
1656 case ALIGN4:
1657 complaint (&symfile_complaints,
e2e0b3e5 1658 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
1659 unit->dwarf_frame_section->owner->filename,
1660 unit->dwarf_frame_section->name);
1661 break;
1662
1663 case ALIGN8:
1664 complaint (&symfile_complaints,
e2e0b3e5 1665 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
1666 unit->dwarf_frame_section->owner->filename,
1667 unit->dwarf_frame_section->name);
1668 break;
1669
1670 default:
1671 complaint (&symfile_complaints,
e2e0b3e5 1672 _("Corrupt data in %s:%s"),
6896c0c7
RH
1673 unit->dwarf_frame_section->owner->filename,
1674 unit->dwarf_frame_section->name);
1675 break;
1676 }
1677
1678 return ret;
1679}
cfc14b3a
MK
1680\f
1681
1682/* FIXME: kettenis/20030504: This still needs to be integrated with
1683 dwarf2read.c in a better way. */
1684
1685/* Imported from dwarf2read.c. */
cfc14b3a 1686extern asection *dwarf_frame_section;
cfc14b3a
MK
1687extern asection *dwarf_eh_frame_section;
1688
1689/* Imported from dwarf2read.c. */
188dd5d6 1690extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
cfc14b3a
MK
1691
1692void
1693dwarf2_build_frame_info (struct objfile *objfile)
1694{
1695 struct comp_unit unit;
1696 char *frame_ptr;
1697
1698 /* Build a minimal decoding of the DWARF2 compilation unit. */
1699 unit.abfd = objfile->obfd;
1700 unit.objfile = objfile;
0912c7f2 1701 unit.dbase = 0;
0fd85043 1702 unit.tbase = 0;
cfc14b3a
MK
1703
1704 /* First add the information from the .eh_frame section. That way,
1705 the FDEs from that section are searched last. */
188dd5d6 1706 if (dwarf_eh_frame_section)
cfc14b3a 1707 {
0fd85043 1708 asection *got, *txt;
0912c7f2 1709
cfc14b3a
MK
1710 unit.cie = NULL;
1711 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a
MK
1712 dwarf_eh_frame_section);
1713
2c500098 1714 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
cfc14b3a
MK
1715 unit.dwarf_frame_section = dwarf_eh_frame_section;
1716
0912c7f2 1717 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
37b517aa
MK
1718 that is used for the i386/amd64 target, which currently is
1719 the only target in GCC that supports/uses the
1720 DW_EH_PE_datarel encoding. */
0912c7f2
MK
1721 got = bfd_get_section_by_name (unit.abfd, ".got");
1722 if (got)
1723 unit.dbase = got->vma;
1724
22c7ba1a
MK
1725 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1726 so far. */
0fd85043
CV
1727 txt = bfd_get_section_by_name (unit.abfd, ".text");
1728 if (txt)
1729 unit.tbase = txt->vma;
1730
cfc14b3a
MK
1731 frame_ptr = unit.dwarf_frame_buffer;
1732 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1733 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1734 }
1735
188dd5d6 1736 if (dwarf_frame_section)
cfc14b3a
MK
1737 {
1738 unit.cie = NULL;
1739 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a 1740 dwarf_frame_section);
2c500098 1741 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
cfc14b3a
MK
1742 unit.dwarf_frame_section = dwarf_frame_section;
1743
1744 frame_ptr = unit.dwarf_frame_buffer;
1745 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1746 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1747 }
1748}
0d0e1a63
MK
1749
1750/* Provide a prototype to silence -Wmissing-prototypes. */
1751void _initialize_dwarf2_frame (void);
1752
1753void
1754_initialize_dwarf2_frame (void)
1755{
030f20e1 1756 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 1757 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 1758}
This page took 0.274291 seconds and 4 git commands to generate.