Introduce obstack_new, poison other "typed" obstack functions
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
e2882c85 3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
0b722aec 34#include "record.h"
cfc14b3a 35
6896c0c7 36#include "complaints.h"
cfc14b3a 37#include "dwarf2-frame.h"
9f6f94ff
TT
38#include "ax.h"
39#include "dwarf2loc.h"
111c6489 40#include "dwarf2-frame-tailcall.h"
1c90d9f0
YQ
41#if GDB_SELF_TEST
42#include "selftest.h"
43#include "selftest-arch.h"
44#endif
cfc14b3a 45
ae0d2f24
UW
46struct comp_unit;
47
cfc14b3a
MK
48/* Call Frame Information (CFI). */
49
50/* Common Information Entry (CIE). */
51
52struct dwarf2_cie
53{
ae0d2f24
UW
54 /* Computation Unit for this CIE. */
55 struct comp_unit *unit;
56
cfc14b3a
MK
57 /* Offset into the .debug_frame section where this CIE was found.
58 Used to identify this CIE. */
59 ULONGEST cie_pointer;
60
61 /* Constant that is factored out of all advance location
62 instructions. */
63 ULONGEST code_alignment_factor;
64
65 /* Constants that is factored out of all offset instructions. */
66 LONGEST data_alignment_factor;
67
68 /* Return address column. */
69 ULONGEST return_address_register;
70
71 /* Instruction sequence to initialize a register set. */
f664829e
DE
72 const gdb_byte *initial_instructions;
73 const gdb_byte *end;
cfc14b3a 74
303b6f5d
DJ
75 /* Saved augmentation, in case it's needed later. */
76 char *augmentation;
77
cfc14b3a 78 /* Encoding of addresses. */
852483bc 79 gdb_byte encoding;
cfc14b3a 80
ae0d2f24
UW
81 /* Target address size in bytes. */
82 int addr_size;
83
0963b4bd 84 /* Target pointer size in bytes. */
8da614df
CV
85 int ptr_size;
86
7131cb6e
RH
87 /* True if a 'z' augmentation existed. */
88 unsigned char saw_z_augmentation;
89
56c987f6
AO
90 /* True if an 'S' augmentation existed. */
91 unsigned char signal_frame;
92
303b6f5d
DJ
93 /* The version recorded in the CIE. */
94 unsigned char version;
2dc7f7b3
TT
95
96 /* The segment size. */
97 unsigned char segment_size;
b01c8410 98};
303b6f5d 99
b01c8410
PP
100struct dwarf2_cie_table
101{
102 int num_entries;
103 struct dwarf2_cie **entries;
cfc14b3a
MK
104};
105
106/* Frame Description Entry (FDE). */
107
108struct dwarf2_fde
109{
110 /* CIE for this FDE. */
111 struct dwarf2_cie *cie;
112
113 /* First location associated with this FDE. */
114 CORE_ADDR initial_location;
115
116 /* Number of bytes of program instructions described by this FDE. */
117 CORE_ADDR address_range;
118
119 /* Instruction sequence. */
f664829e
DE
120 const gdb_byte *instructions;
121 const gdb_byte *end;
cfc14b3a 122
4bf8967c
AS
123 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
124 section. */
125 unsigned char eh_frame_p;
b01c8410 126};
4bf8967c 127
b01c8410
PP
128struct dwarf2_fde_table
129{
130 int num_entries;
131 struct dwarf2_fde **entries;
cfc14b3a
MK
132};
133
ae0d2f24
UW
134/* A minimal decoding of DWARF2 compilation units. We only decode
135 what's needed to get to the call frame information. */
136
137struct comp_unit
138{
139 /* Keep the bfd convenient. */
140 bfd *abfd;
141
142 struct objfile *objfile;
143
ae0d2f24 144 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 145 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
146
147 /* Length of the loaded .debug_frame section. */
c098b58b 148 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
149
150 /* Pointer to the .debug_frame section. */
151 asection *dwarf_frame_section;
152
153 /* Base for DW_EH_PE_datarel encodings. */
154 bfd_vma dbase;
155
156 /* Base for DW_EH_PE_textrel encodings. */
157 bfd_vma tbase;
158};
159
ac56253d
TT
160static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
161 CORE_ADDR *out_offset);
4fc771b8
DJ
162
163static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
164 int eh_frame_p);
ae0d2f24
UW
165
166static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 167 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
168 unsigned int *bytes_read_ptr,
169 CORE_ADDR func_base);
cfc14b3a
MK
170\f
171
cfc14b3a
MK
172/* Store the length the expression for the CFA in the `cfa_reg' field,
173 which is unused in that case. */
174#define cfa_exp_len cfa_reg
175
afe37d6b
YQ
176dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
177 : pc (pc_), data_align (cie->data_alignment_factor),
178 code_align (cie->code_alignment_factor),
179 retaddr_column (cie->return_address_register)
cfc14b3a 180{
afe37d6b 181}
cfc14b3a
MK
182\f
183
184/* Helper functions for execute_stack_op. */
185
186static CORE_ADDR
192ca6d8 187read_addr_from_reg (struct frame_info *this_frame, int reg)
cfc14b3a 188{
4a4e5149 189 struct gdbarch *gdbarch = get_frame_arch (this_frame);
0fde2c53 190 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
f2da6b3a 191
2ed3c037 192 return address_from_register (regnum, this_frame);
cfc14b3a
MK
193}
194
a6a5a945
LM
195/* Execute the required actions for both the DW_CFA_restore and
196DW_CFA_restore_extended instructions. */
197static void
198dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
199 struct dwarf2_frame_state *fs, int eh_frame_p)
200{
201 ULONGEST reg;
202
203 gdb_assert (fs->initial.reg);
204 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
1c90d9f0 205 fs->regs.alloc_regs (reg + 1);
a6a5a945
LM
206
207 /* Check if this register was explicitly initialized in the
208 CIE initial instructions. If not, default the rule to
209 UNSPECIFIED. */
210 if (reg < fs->initial.num_regs)
211 fs->regs.reg[reg] = fs->initial.reg[reg];
212 else
213 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
214
215 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
0fde2c53
DE
216 {
217 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
218
219 complaint (&symfile_complaints, _("\
a6a5a945 220incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 221register %s (#%d) at %s"),
0fde2c53
DE
222 gdbarch_register_name (gdbarch, regnum), regnum,
223 paddress (gdbarch, fs->pc));
224 }
a6a5a945
LM
225}
226
192ca6d8 227class dwarf_expr_executor : public dwarf_expr_context
9e8b7a03 228{
192ca6d8
TT
229 public:
230
231 struct frame_info *this_frame;
232
632e107b 233 CORE_ADDR read_addr_from_reg (int reg) override
192ca6d8
TT
234 {
235 return ::read_addr_from_reg (this_frame, reg);
236 }
237
632e107b 238 struct value *get_reg_value (struct type *type, int reg) override
192ca6d8
TT
239 {
240 struct gdbarch *gdbarch = get_frame_arch (this_frame);
241 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
242
243 return value_from_register (type, regnum, this_frame);
244 }
245
632e107b 246 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
247 {
248 read_memory (addr, buf, len);
249 }
befbff86 250
632e107b 251 void get_frame_base (const gdb_byte **start, size_t *length) override
befbff86
TT
252 {
253 invalid ("DW_OP_fbreg");
254 }
255
256 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
257 union call_site_parameter_u kind_u,
632e107b 258 int deref_size) override
befbff86 259 {
216f72a1 260 invalid ("DW_OP_entry_value");
befbff86
TT
261 }
262
632e107b 263 CORE_ADDR get_object_address () override
befbff86
TT
264 {
265 invalid ("DW_OP_push_object_address");
266 }
267
632e107b 268 CORE_ADDR get_frame_cfa () override
befbff86
TT
269 {
270 invalid ("DW_OP_call_frame_cfa");
271 }
272
632e107b 273 CORE_ADDR get_tls_address (CORE_ADDR offset) override
befbff86
TT
274 {
275 invalid ("DW_OP_form_tls_address");
276 }
277
632e107b 278 void dwarf_call (cu_offset die_offset) override
befbff86
TT
279 {
280 invalid ("DW_OP_call*");
281 }
282
632e107b 283 CORE_ADDR get_addr_index (unsigned int index) override
befbff86
TT
284 {
285 invalid ("DW_OP_GNU_addr_index");
286 }
287
288 private:
289
290 void invalid (const char *op) ATTRIBUTE_NORETURN
291 {
292 error (_("%s is invalid in this context"), op);
293 }
9e8b7a03
JK
294};
295
cfc14b3a 296static CORE_ADDR
0d45f56e 297execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
298 CORE_ADDR offset, struct frame_info *this_frame,
299 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a 300{
cfc14b3a
MK
301 CORE_ADDR result;
302
192ca6d8 303 dwarf_expr_executor ctx;
eb115069 304 scoped_value_mark free_values;
4a227398 305
192ca6d8 306 ctx.this_frame = this_frame;
718b9626
TT
307 ctx.gdbarch = get_frame_arch (this_frame);
308 ctx.addr_size = addr_size;
309 ctx.ref_addr_size = -1;
310 ctx.offset = offset;
cfc14b3a 311
595d2e30
TT
312 ctx.push_address (initial, initial_in_stack_memory);
313 ctx.eval (exp, len);
cfc14b3a 314
718b9626 315 if (ctx.location == DWARF_VALUE_MEMORY)
595d2e30 316 result = ctx.fetch_address (0);
718b9626 317 else if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 318 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
f2c7657e 319 else
cec03d70
TT
320 {
321 /* This is actually invalid DWARF, but if we ever do run across
322 it somehow, we might as well support it. So, instead, report
323 it as unimplemented. */
3e43a32a
MS
324 error (_("\
325Not implemented: computing unwound register using explicit value operator"));
cec03d70 326 }
cfc14b3a 327
cfc14b3a
MK
328 return result;
329}
330\f
331
111c6489
JK
332/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
333 PC. Modify FS state accordingly. Return current INSN_PTR where the
334 execution has stopped, one can resume it on the next call. */
335
336static const gdb_byte *
0d45f56e 337execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
338 const gdb_byte *insn_end, struct gdbarch *gdbarch,
339 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 340{
ae0d2f24 341 int eh_frame_p = fde->eh_frame_p;
507a579c 342 unsigned int bytes_read;
e17a4113 343 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
344
345 while (insn_ptr < insn_end && fs->pc <= pc)
346 {
852483bc 347 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
348 uint64_t utmp, reg;
349 int64_t offset;
cfc14b3a
MK
350
351 if ((insn & 0xc0) == DW_CFA_advance_loc)
352 fs->pc += (insn & 0x3f) * fs->code_align;
353 else if ((insn & 0xc0) == DW_CFA_offset)
354 {
355 reg = insn & 0x3f;
4fc771b8 356 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 357 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a 358 offset = utmp * fs->data_align;
1c90d9f0 359 fs->regs.alloc_regs (reg + 1);
05cbe71a 360 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
361 fs->regs.reg[reg].loc.offset = offset;
362 }
363 else if ((insn & 0xc0) == DW_CFA_restore)
364 {
cfc14b3a 365 reg = insn & 0x3f;
a6a5a945 366 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
367 }
368 else
369 {
370 switch (insn)
371 {
372 case DW_CFA_set_loc:
ae0d2f24 373 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 374 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
375 &bytes_read, fde->initial_location);
376 /* Apply the objfile offset for relocatable objects. */
377 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
378 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
379 insn_ptr += bytes_read;
380 break;
381
382 case DW_CFA_advance_loc1:
e17a4113 383 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
384 fs->pc += utmp * fs->code_align;
385 insn_ptr++;
386 break;
387 case DW_CFA_advance_loc2:
e17a4113 388 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
389 fs->pc += utmp * fs->code_align;
390 insn_ptr += 2;
391 break;
392 case DW_CFA_advance_loc4:
e17a4113 393 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
394 fs->pc += utmp * fs->code_align;
395 insn_ptr += 4;
396 break;
397
398 case DW_CFA_offset_extended:
f664829e 399 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 400 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 401 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a 402 offset = utmp * fs->data_align;
1c90d9f0 403 fs->regs.alloc_regs (reg + 1);
05cbe71a 404 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
405 fs->regs.reg[reg].loc.offset = offset;
406 break;
407
408 case DW_CFA_restore_extended:
f664829e 409 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 410 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
411 break;
412
413 case DW_CFA_undefined:
f664829e 414 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 415 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 416 fs->regs.alloc_regs (reg + 1);
05cbe71a 417 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
418 break;
419
420 case DW_CFA_same_value:
f664829e 421 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 422 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 423 fs->regs.alloc_regs (reg + 1);
05cbe71a 424 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
425 break;
426
427 case DW_CFA_register:
f664829e 428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 429 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 430 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 431 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
1c90d9f0 432 fs->regs.alloc_regs (reg + 1);
05cbe71a 433 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
434 fs->regs.reg[reg].loc.reg = utmp;
435 break;
436
437 case DW_CFA_remember_state:
438 {
439 struct dwarf2_frame_state_reg_info *new_rs;
440
1c90d9f0 441 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
cfc14b3a
MK
442 fs->regs.prev = new_rs;
443 }
444 break;
445
446 case DW_CFA_restore_state:
447 {
448 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
449
50ea7769
MK
450 if (old_rs == NULL)
451 {
e2e0b3e5 452 complaint (&symfile_complaints, _("\
5af949e3
UW
453bad CFI data; mismatched DW_CFA_restore_state at %s"),
454 paddress (gdbarch, fs->pc));
50ea7769
MK
455 }
456 else
1c90d9f0 457 fs->regs = std::move (*old_rs);
cfc14b3a
MK
458 }
459 break;
460
461 case DW_CFA_def_cfa:
f664829e
DE
462 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
463 fs->regs.cfa_reg = reg;
464 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
465
466 if (fs->armcc_cfa_offsets_sf)
467 utmp *= fs->data_align;
468
2fd481e1
PP
469 fs->regs.cfa_offset = utmp;
470 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
471 break;
472
473 case DW_CFA_def_cfa_register:
f664829e
DE
474 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
475 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
476 eh_frame_p);
477 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
478 break;
479
480 case DW_CFA_def_cfa_offset:
f664829e 481 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
482
483 if (fs->armcc_cfa_offsets_sf)
484 utmp *= fs->data_align;
485
2fd481e1 486 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
487 /* cfa_how deliberately not set. */
488 break;
489
a8504492
MK
490 case DW_CFA_nop:
491 break;
492
cfc14b3a 493 case DW_CFA_def_cfa_expression:
f664829e
DE
494 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
495 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
496 fs->regs.cfa_exp = insn_ptr;
497 fs->regs.cfa_how = CFA_EXP;
498 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
499 break;
500
501 case DW_CFA_expression:
f664829e 502 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 503 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 504 fs->regs.alloc_regs (reg + 1);
f664829e 505 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
b348037f
YQ
506 fs->regs.reg[reg].loc.exp.start = insn_ptr;
507 fs->regs.reg[reg].loc.exp.len = utmp;
05cbe71a 508 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
509 insn_ptr += utmp;
510 break;
511
a8504492 512 case DW_CFA_offset_extended_sf:
f664829e 513 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 514 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 515 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 516 offset *= fs->data_align;
1c90d9f0 517 fs->regs.alloc_regs (reg + 1);
05cbe71a 518 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
519 fs->regs.reg[reg].loc.offset = offset;
520 break;
521
46ea248b 522 case DW_CFA_val_offset:
f664829e 523 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 524 fs->regs.alloc_regs (reg + 1);
f664829e 525 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
526 offset = utmp * fs->data_align;
527 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
528 fs->regs.reg[reg].loc.offset = offset;
529 break;
530
531 case DW_CFA_val_offset_sf:
f664829e 532 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 533 fs->regs.alloc_regs (reg + 1);
f664829e 534 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
535 offset *= fs->data_align;
536 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
537 fs->regs.reg[reg].loc.offset = offset;
538 break;
539
540 case DW_CFA_val_expression:
f664829e 541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 542 fs->regs.alloc_regs (reg + 1);
f664829e 543 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
b348037f
YQ
544 fs->regs.reg[reg].loc.exp.start = insn_ptr;
545 fs->regs.reg[reg].loc.exp.len = utmp;
46ea248b
AO
546 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
547 insn_ptr += utmp;
548 break;
549
a8504492 550 case DW_CFA_def_cfa_sf:
f664829e
DE
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 553 eh_frame_p);
f664829e 554 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
555 fs->regs.cfa_offset = offset * fs->data_align;
556 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
557 break;
558
559 case DW_CFA_def_cfa_offset_sf:
f664829e 560 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 561 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 562 /* cfa_how deliberately not set. */
cfc14b3a
MK
563 break;
564
565 case DW_CFA_GNU_args_size:
566 /* Ignored. */
f664829e 567 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
568 break;
569
58894217 570 case DW_CFA_GNU_negative_offset_extended:
f664829e 571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 572 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
573 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
574 offset = utmp * fs->data_align;
1c90d9f0 575 fs->regs.alloc_regs (reg + 1);
58894217
JK
576 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
577 fs->regs.reg[reg].loc.offset = -offset;
578 break;
579
cfc14b3a 580 default:
b41c5a85
JW
581 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
582 {
583 /* Handle vendor-specific CFI for different architectures. */
584 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
585 error (_("Call Frame Instruction op %d in vendor extension "
586 "space is not handled on this architecture."),
587 insn);
588 }
589 else
590 internal_error (__FILE__, __LINE__,
591 _("Unknown CFI encountered."));
cfc14b3a
MK
592 }
593 }
594 }
595
111c6489
JK
596 if (fs->initial.reg == NULL)
597 {
598 /* Don't allow remember/restore between CIE and FDE programs. */
1c90d9f0 599 delete fs->regs.prev;
111c6489
JK
600 fs->regs.prev = NULL;
601 }
602
603 return insn_ptr;
cfc14b3a 604}
1c90d9f0
YQ
605
606#if GDB_SELF_TEST
607
608namespace selftests {
609
610/* Unit test to function execute_cfa_program. */
611
612static void
613execute_cfa_program_test (struct gdbarch *gdbarch)
614{
615 struct dwarf2_fde fde;
616 struct dwarf2_cie cie;
617
618 memset (&fde, 0, sizeof fde);
619 memset (&cie, 0, sizeof cie);
620
621 cie.data_alignment_factor = -4;
622 cie.code_alignment_factor = 2;
623 fde.cie = &cie;
624
625 dwarf2_frame_state fs (0, fde.cie);
626
627 gdb_byte insns[] =
628 {
629 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
630 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
631 DW_CFA_remember_state,
632 DW_CFA_restore_state,
633 };
634
635 const gdb_byte *insn_end = insns + sizeof (insns);
636 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
637 0, &fs);
638
639 SELF_CHECK (out == insn_end);
640 SELF_CHECK (fs.pc == 0);
641
642 /* The instructions above only use r1 and r2, but the register numbers
643 used are adjusted by dwarf2_frame_adjust_regnum. */
644 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
645 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
646
647 SELF_CHECK (fs.regs.num_regs == (std::max (r1, r2) + 1));
648
649 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
650 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
651
652 for (auto i = 0; i < fs.regs.num_regs; i++)
653 if (i != r2)
654 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
655
656 SELF_CHECK (fs.regs.cfa_reg == 1);
657 SELF_CHECK (fs.regs.cfa_offset == 4);
658 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
659 SELF_CHECK (fs.regs.cfa_exp == NULL);
660 SELF_CHECK (fs.regs.prev == NULL);
661}
662
663} // namespace selftests
664#endif /* GDB_SELF_TEST */
665
8f22cb90 666\f
cfc14b3a 667
8f22cb90 668/* Architecture-specific operations. */
cfc14b3a 669
8f22cb90
MK
670/* Per-architecture data key. */
671static struct gdbarch_data *dwarf2_frame_data;
672
673struct dwarf2_frame_ops
674{
675 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
676 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
677 struct frame_info *);
3ed09a32 678
4a4e5149 679 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 680 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 681
4fc771b8
DJ
682 /* Convert .eh_frame register number to DWARF register number, or
683 adjust .debug_frame register number. */
684 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
685};
686
8f22cb90
MK
687/* Default architecture-specific register state initialization
688 function. */
689
690static void
691dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 692 struct dwarf2_frame_state_reg *reg,
4a4e5149 693 struct frame_info *this_frame)
8f22cb90
MK
694{
695 /* If we have a register that acts as a program counter, mark it as
696 a destination for the return address. If we have a register that
697 serves as the stack pointer, arrange for it to be filled with the
698 call frame address (CFA). The other registers are marked as
699 unspecified.
700
701 We copy the return address to the program counter, since many
702 parts in GDB assume that it is possible to get the return address
703 by unwinding the program counter register. However, on ISA's
704 with a dedicated return address register, the CFI usually only
705 contains information to unwind that return address register.
706
707 The reason we're treating the stack pointer special here is
708 because in many cases GCC doesn't emit CFI for the stack pointer
709 and implicitly assumes that it is equal to the CFA. This makes
710 some sense since the DWARF specification (version 3, draft 8,
711 p. 102) says that:
712
713 "Typically, the CFA is defined to be the value of the stack
714 pointer at the call site in the previous frame (which may be
715 different from its value on entry to the current frame)."
716
717 However, this isn't true for all platforms supported by GCC
718 (e.g. IBM S/390 and zSeries). Those architectures should provide
719 their own architecture-specific initialization function. */
05cbe71a 720
ad010def 721 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 722 reg->how = DWARF2_FRAME_REG_RA;
ad010def 723 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
724 reg->how = DWARF2_FRAME_REG_CFA;
725}
05cbe71a 726
8f22cb90 727/* Return a default for the architecture-specific operations. */
05cbe71a 728
8f22cb90 729static void *
030f20e1 730dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
731{
732 struct dwarf2_frame_ops *ops;
733
030f20e1 734 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
735 ops->init_reg = dwarf2_frame_default_init_reg;
736 return ops;
737}
05cbe71a 738
8f22cb90
MK
739/* Set the architecture-specific register state initialization
740 function for GDBARCH to INIT_REG. */
741
742void
743dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
744 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
745 struct dwarf2_frame_state_reg *,
746 struct frame_info *))
8f22cb90 747{
9a3c8263
SM
748 struct dwarf2_frame_ops *ops
749 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 750
8f22cb90
MK
751 ops->init_reg = init_reg;
752}
753
754/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
755
756static void
757dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 758 struct dwarf2_frame_state_reg *reg,
4a4e5149 759 struct frame_info *this_frame)
05cbe71a 760{
9a3c8263
SM
761 struct dwarf2_frame_ops *ops
762 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 763
4a4e5149 764 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 765}
3ed09a32
DJ
766
767/* Set the architecture-specific signal trampoline recognition
768 function for GDBARCH to SIGNAL_FRAME_P. */
769
770void
771dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
772 int (*signal_frame_p) (struct gdbarch *,
773 struct frame_info *))
774{
9a3c8263
SM
775 struct dwarf2_frame_ops *ops
776 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
777
778 ops->signal_frame_p = signal_frame_p;
779}
780
781/* Query the architecture-specific signal frame recognizer for
4a4e5149 782 THIS_FRAME. */
3ed09a32
DJ
783
784static int
785dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 786 struct frame_info *this_frame)
3ed09a32 787{
9a3c8263
SM
788 struct dwarf2_frame_ops *ops
789 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
790
791 if (ops->signal_frame_p == NULL)
792 return 0;
4a4e5149 793 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 794}
4bf8967c 795
4fc771b8
DJ
796/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
797 register numbers. */
4bf8967c
AS
798
799void
4fc771b8
DJ
800dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
801 int (*adjust_regnum) (struct gdbarch *,
802 int, int))
4bf8967c 803{
9a3c8263
SM
804 struct dwarf2_frame_ops *ops
805 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 806
4fc771b8 807 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
808}
809
4fc771b8
DJ
810/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
811 register. */
4bf8967c 812
4fc771b8 813static int
3e43a32a
MS
814dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
815 int regnum, int eh_frame_p)
4bf8967c 816{
9a3c8263
SM
817 struct dwarf2_frame_ops *ops
818 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 819
4fc771b8 820 if (ops->adjust_regnum == NULL)
4bf8967c 821 return regnum;
4fc771b8 822 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 823}
303b6f5d
DJ
824
825static void
826dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
827 struct dwarf2_fde *fde)
828{
43f3e411 829 struct compunit_symtab *cust;
303b6f5d 830
43f3e411
DE
831 cust = find_pc_compunit_symtab (fs->pc);
832 if (cust == NULL)
303b6f5d
DJ
833 return;
834
43f3e411 835 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
a6c727b2
DJ
836 {
837 if (fde->cie->version == 1)
838 fs->armcc_cfa_offsets_sf = 1;
839
840 if (fde->cie->version == 1)
841 fs->armcc_cfa_offsets_reversed = 1;
842
843 /* The reversed offset problem is present in some compilers
844 using DWARF3, but it was eventually fixed. Check the ARM
845 defined augmentations, which are in the format "armcc" followed
846 by a list of one-character options. The "+" option means
847 this problem is fixed (no quirk needed). If the armcc
848 augmentation is missing, the quirk is needed. */
849 if (fde->cie->version == 3
61012eef 850 && (!startswith (fde->cie->augmentation, "armcc")
a6c727b2
DJ
851 || strchr (fde->cie->augmentation + 5, '+') == NULL))
852 fs->armcc_cfa_offsets_reversed = 1;
853
854 return;
855 }
303b6f5d 856}
8f22cb90
MK
857\f
858
a8fd5589
TT
859/* See dwarf2-frame.h. */
860
861int
862dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
863 struct dwarf2_per_cu_data *data,
864 int *regnum_out, LONGEST *offset_out,
865 CORE_ADDR *text_offset_out,
866 const gdb_byte **cfa_start_out,
867 const gdb_byte **cfa_end_out)
9f6f94ff 868{
9f6f94ff 869 struct dwarf2_fde *fde;
22e048c9 870 CORE_ADDR text_offset;
afe37d6b 871 CORE_ADDR pc1 = pc;
9f6f94ff
TT
872
873 /* Find the correct FDE. */
afe37d6b 874 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
9f6f94ff
TT
875 if (fde == NULL)
876 error (_("Could not compute CFA; needed to translate this expression"));
877
afe37d6b 878 dwarf2_frame_state fs (pc1, fde->cie);
9f6f94ff
TT
879
880 /* Check for "quirks" - known bugs in producers. */
881 dwarf2_frame_find_quirks (&fs, fde);
882
883 /* First decode all the insns in the CIE. */
884 execute_cfa_program (fde, fde->cie->initial_instructions,
885 fde->cie->end, gdbarch, pc, &fs);
886
887 /* Save the initialized register set. */
888 fs.initial = fs.regs;
9f6f94ff
TT
889
890 /* Then decode the insns in the FDE up to our target PC. */
891 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
892
893 /* Calculate the CFA. */
894 switch (fs.regs.cfa_how)
895 {
896 case CFA_REG_OFFSET:
897 {
0fde2c53 898 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
a8fd5589
TT
899
900 *regnum_out = regnum;
901 if (fs.armcc_cfa_offsets_reversed)
902 *offset_out = -fs.regs.cfa_offset;
903 else
904 *offset_out = fs.regs.cfa_offset;
905 return 1;
9f6f94ff 906 }
9f6f94ff
TT
907
908 case CFA_EXP:
a8fd5589
TT
909 *text_offset_out = text_offset;
910 *cfa_start_out = fs.regs.cfa_exp;
911 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
912 return 0;
9f6f94ff
TT
913
914 default:
915 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
916 }
917}
918
919\f
8f22cb90
MK
920struct dwarf2_frame_cache
921{
922 /* DWARF Call Frame Address. */
923 CORE_ADDR cfa;
924
8fbca658
PA
925 /* Set if the return address column was marked as unavailable
926 (required non-collected memory or registers to compute). */
927 int unavailable_retaddr;
928
0228dfb9
DJ
929 /* Set if the return address column was marked as undefined. */
930 int undefined_retaddr;
931
8f22cb90
MK
932 /* Saved registers, indexed by GDB register number, not by DWARF
933 register number. */
934 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
935
936 /* Return address register. */
937 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
938
939 /* Target address size in bytes. */
940 int addr_size;
ac56253d
TT
941
942 /* The .text offset. */
943 CORE_ADDR text_offset;
111c6489 944
1ec56e88
PA
945 /* True if we already checked whether this frame is the bottom frame
946 of a virtual tail call frame chain. */
947 int checked_tailcall_bottom;
948
111c6489
JK
949 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
950 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
951 involved. Non-bottom frames of a virtual tail call frames chain use
952 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
953 them. */
954 void *tailcall_cache;
1ec56e88
PA
955
956 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
957 base to get the SP, to simulate the return address pushed on the
958 stack. */
959 LONGEST entry_cfa_sp_offset;
960 int entry_cfa_sp_offset_p;
8f22cb90 961};
05cbe71a 962
b9362cc7 963static struct dwarf2_frame_cache *
4a4e5149 964dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 965{
4a4e5149 966 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
967 const int num_regs = gdbarch_num_regs (gdbarch)
968 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a 969 struct dwarf2_frame_cache *cache;
cfc14b3a 970 struct dwarf2_fde *fde;
111c6489 971 CORE_ADDR entry_pc;
111c6489 972 const gdb_byte *instr;
cfc14b3a
MK
973
974 if (*this_cache)
9a3c8263 975 return (struct dwarf2_frame_cache *) *this_cache;
cfc14b3a
MK
976
977 /* Allocate a new cache. */
978 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
979 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 980 *this_cache = cache;
cfc14b3a 981
cfc14b3a
MK
982 /* Unwind the PC.
983
4a4e5149 984 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 985 to abort), the compiler might optimize away the instruction at
4a4e5149 986 its return address. As a result the return address will
cfc14b3a 987 point at some random instruction, and the CFI for that
e4e9607c 988 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
989 this problem by substracting 1 from the return address to get an
990 address in the middle of a presumed call instruction (or the
991 instruction in the associated delay slot). This should only be
992 done for "normal" frames and not for resume-type frames (signal
e4e9607c 993 handlers, sentinel frames, dummy frames). The function
ad1193e7 994 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
995 reliable the method is though; there is the potential for the
996 register state pre-call being different to that on return. */
afe37d6b 997 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
cfc14b3a
MK
998
999 /* Find the correct FDE. */
afe37d6b 1000 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
cfc14b3a
MK
1001 gdb_assert (fde != NULL);
1002
afe37d6b
YQ
1003 /* Allocate and initialize the frame state. */
1004 struct dwarf2_frame_state fs (pc1, fde->cie);
1005
ae0d2f24 1006 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1007
303b6f5d 1008 /* Check for "quirks" - known bugs in producers. */
afe37d6b 1009 dwarf2_frame_find_quirks (&fs, fde);
303b6f5d 1010
cfc14b3a 1011 /* First decode all the insns in the CIE. */
ae0d2f24 1012 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1 1013 fde->cie->end, gdbarch,
afe37d6b 1014 get_frame_address_in_block (this_frame), &fs);
cfc14b3a
MK
1015
1016 /* Save the initialized register set. */
afe37d6b 1017 fs.initial = fs.regs;
cfc14b3a 1018
111c6489
JK
1019 if (get_frame_func_if_available (this_frame, &entry_pc))
1020 {
1021 /* Decode the insns in the FDE up to the entry PC. */
1022 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
afe37d6b 1023 entry_pc, &fs);
111c6489 1024
afe37d6b
YQ
1025 if (fs.regs.cfa_how == CFA_REG_OFFSET
1026 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
111c6489
JK
1027 == gdbarch_sp_regnum (gdbarch)))
1028 {
afe37d6b 1029 cache->entry_cfa_sp_offset = fs.regs.cfa_offset;
1ec56e88 1030 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1031 }
1032 }
1033 else
1034 instr = fde->instructions;
1035
cfc14b3a 1036 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1037 execute_cfa_program (fde, instr, fde->end, gdbarch,
afe37d6b 1038 get_frame_address_in_block (this_frame), &fs);
cfc14b3a 1039
492d29ea 1040 TRY
cfc14b3a 1041 {
8fbca658 1042 /* Calculate the CFA. */
afe37d6b 1043 switch (fs.regs.cfa_how)
8fbca658
PA
1044 {
1045 case CFA_REG_OFFSET:
afe37d6b
YQ
1046 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1047 if (fs.armcc_cfa_offsets_reversed)
1048 cache->cfa -= fs.regs.cfa_offset;
8fbca658 1049 else
afe37d6b 1050 cache->cfa += fs.regs.cfa_offset;
8fbca658
PA
1051 break;
1052
1053 case CFA_EXP:
1054 cache->cfa =
afe37d6b 1055 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
8fbca658
PA
1056 cache->addr_size, cache->text_offset,
1057 this_frame, 0, 0);
1058 break;
1059
1060 default:
1061 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1062 }
1063 }
492d29ea 1064 CATCH (ex, RETURN_MASK_ERROR)
8fbca658
PA
1065 {
1066 if (ex.error == NOT_AVAILABLE_ERROR)
1067 {
1068 cache->unavailable_retaddr = 1;
1069 return cache;
1070 }
cfc14b3a 1071
8fbca658 1072 throw_exception (ex);
cfc14b3a 1073 }
492d29ea 1074 END_CATCH
cfc14b3a 1075
05cbe71a 1076 /* Initialize the register state. */
3e2c4033
AC
1077 {
1078 int regnum;
e4e9607c 1079
3e2c4033 1080 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1081 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1082 }
1083
1084 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1085 location information in the cache. Note that we don't skip the
1086 return address column; it's perfectly all right for it to
0fde2c53 1087 correspond to a real register. */
3e2c4033
AC
1088 {
1089 int column; /* CFI speak for "register number". */
e4e9607c 1090
afe37d6b 1091 for (column = 0; column < fs.regs.num_regs; column++)
3e2c4033 1092 {
3e2c4033 1093 /* Use the GDB register number as the destination index. */
0fde2c53 1094 int regnum = dwarf_reg_to_regnum (gdbarch, column);
3e2c4033 1095
0fde2c53 1096 /* Protect against a target returning a bad register. */
3e2c4033
AC
1097 if (regnum < 0 || regnum >= num_regs)
1098 continue;
1099
1100 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1101 of all debug info registers. If it doesn't, complain (but
1102 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1103 unspecified register implies "same value" when CFI (draft
1104 7) specifies nothing at all. Such a register could equally
1105 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1106 isn't sufficient; it only checks that all registers in the
1107 range [0 .. max column] are specified, and won't detect
3e2c4033 1108 problems when a debug info register falls outside of the
e4e9607c 1109 table. We need a way of iterating through all the valid
3e2c4033 1110 DWARF2 register numbers. */
afe37d6b 1111 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1112 {
1113 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1114 complaint (&symfile_complaints, _("\
5af949e3 1115incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1116 gdbarch_register_name (gdbarch, regnum),
afe37d6b 1117 paddress (gdbarch, fs.pc));
f059bf6f 1118 }
35889917 1119 else
afe37d6b 1120 cache->reg[regnum] = fs.regs.reg[column];
3e2c4033
AC
1121 }
1122 }
cfc14b3a 1123
8d5a9abc
MK
1124 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1125 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1126 {
1127 int regnum;
1128
1129 for (regnum = 0; regnum < num_regs; regnum++)
1130 {
8d5a9abc
MK
1131 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1132 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1133 {
05cbe71a 1134 struct dwarf2_frame_state_reg *retaddr_reg =
afe37d6b 1135 &fs.regs.reg[fs.retaddr_column];
05cbe71a 1136
d4f10bf2
MK
1137 /* It seems rather bizarre to specify an "empty" column as
1138 the return adress column. However, this is exactly
1139 what GCC does on some targets. It turns out that GCC
1140 assumes that the return address can be found in the
1141 register corresponding to the return address column.
8d5a9abc
MK
1142 Incidentally, that's how we should treat a return
1143 address column specifying "same value" too. */
afe37d6b 1144 if (fs.retaddr_column < fs.regs.num_regs
05cbe71a
MK
1145 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1146 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1147 {
1148 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1149 cache->reg[regnum] = *retaddr_reg;
1150 else
1151 cache->retaddr_reg = *retaddr_reg;
1152 }
35889917
MK
1153 else
1154 {
8d5a9abc
MK
1155 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1156 {
afe37d6b 1157 cache->reg[regnum].loc.reg = fs.retaddr_column;
8d5a9abc
MK
1158 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1159 }
1160 else
1161 {
afe37d6b 1162 cache->retaddr_reg.loc.reg = fs.retaddr_column;
8d5a9abc
MK
1163 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1164 }
35889917
MK
1165 }
1166 }
1167 }
1168 }
cfc14b3a 1169
afe37d6b
YQ
1170 if (fs.retaddr_column < fs.regs.num_regs
1171 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
0228dfb9
DJ
1172 cache->undefined_retaddr = 1;
1173
cfc14b3a
MK
1174 return cache;
1175}
1176
8fbca658
PA
1177static enum unwind_stop_reason
1178dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1179 void **this_cache)
1180{
1181 struct dwarf2_frame_cache *cache
1182 = dwarf2_frame_cache (this_frame, this_cache);
1183
1184 if (cache->unavailable_retaddr)
1185 return UNWIND_UNAVAILABLE;
1186
1187 if (cache->undefined_retaddr)
1188 return UNWIND_OUTERMOST;
1189
1190 return UNWIND_NO_REASON;
1191}
1192
cfc14b3a 1193static void
4a4e5149 1194dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1195 struct frame_id *this_id)
1196{
1197 struct dwarf2_frame_cache *cache =
4a4e5149 1198 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1199
8fbca658 1200 if (cache->unavailable_retaddr)
5ce0145d
PA
1201 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1202 else if (cache->undefined_retaddr)
8fbca658 1203 return;
5ce0145d
PA
1204 else
1205 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1206}
1207
4a4e5149
DJ
1208static struct value *
1209dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1210 int regnum)
93d42b30 1211{
4a4e5149 1212 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1213 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1214 dwarf2_frame_cache (this_frame, this_cache);
1215 CORE_ADDR addr;
1216 int realnum;
cfc14b3a 1217
1ec56e88
PA
1218 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1219 call frame chain. */
1220 if (!cache->checked_tailcall_bottom)
1221 {
1222 cache->checked_tailcall_bottom = 1;
1223 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1224 (cache->entry_cfa_sp_offset_p
1225 ? &cache->entry_cfa_sp_offset : NULL));
1226 }
1227
111c6489
JK
1228 /* Non-bottom frames of a virtual tail call frames chain use
1229 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1230 them. If dwarf2_tailcall_prev_register_first does not have specific value
1231 unwind the register, tail call frames are assumed to have the register set
1232 of the top caller. */
1233 if (cache->tailcall_cache)
1234 {
1235 struct value *val;
1236
1237 val = dwarf2_tailcall_prev_register_first (this_frame,
1238 &cache->tailcall_cache,
1239 regnum);
1240 if (val)
1241 return val;
1242 }
1243
cfc14b3a
MK
1244 switch (cache->reg[regnum].how)
1245 {
05cbe71a 1246 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1247 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1248 mark it as optimized away; the value isn't available. */
4a4e5149 1249 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1250
05cbe71a 1251 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1252 addr = cache->cfa + cache->reg[regnum].loc.offset;
1253 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1254
05cbe71a 1255 case DWARF2_FRAME_REG_SAVED_REG:
0fde2c53
DE
1256 realnum = dwarf_reg_to_regnum_or_error
1257 (gdbarch, cache->reg[regnum].loc.reg);
4a4e5149 1258 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1259
05cbe71a 1260 case DWARF2_FRAME_REG_SAVED_EXP:
b348037f
YQ
1261 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1262 cache->reg[regnum].loc.exp.len,
ac56253d
TT
1263 cache->addr_size, cache->text_offset,
1264 this_frame, cache->cfa, 1);
4a4e5149 1265 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1266
46ea248b 1267 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1268 addr = cache->cfa + cache->reg[regnum].loc.offset;
1269 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1270
1271 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
b348037f
YQ
1272 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1273 cache->reg[regnum].loc.exp.len,
ac56253d
TT
1274 cache->addr_size, cache->text_offset,
1275 this_frame, cache->cfa, 1);
4a4e5149 1276 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1277
05cbe71a 1278 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1279 /* GCC, in its infinite wisdom decided to not provide unwind
1280 information for registers that are "same value". Since
1281 DWARF2 (3 draft 7) doesn't define such behavior, said
1282 registers are actually undefined (which is different to CFI
1283 "undefined"). Code above issues a complaint about this.
1284 Here just fudge the books, assume GCC, and that the value is
1285 more inner on the stack. */
4a4e5149 1286 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1287
05cbe71a 1288 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1289 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1290
05cbe71a 1291 case DWARF2_FRAME_REG_CFA:
4a4e5149 1292 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1293
ea7963f0 1294 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1295 addr = cache->cfa + cache->reg[regnum].loc.offset;
1296 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1297
8d5a9abc 1298 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149 1299 addr = cache->reg[regnum].loc.offset;
0fde2c53 1300 regnum = dwarf_reg_to_regnum_or_error
4a4e5149
DJ
1301 (gdbarch, cache->retaddr_reg.loc.reg);
1302 addr += get_frame_register_unsigned (this_frame, regnum);
1303 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1304
b39cc962
DJ
1305 case DWARF2_FRAME_REG_FN:
1306 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1307
cfc14b3a 1308 default:
e2e0b3e5 1309 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1310 }
1311}
1312
111c6489
JK
1313/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1314 call frames chain. */
1315
1316static void
1317dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1318{
1319 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1320
1321 if (cache->tailcall_cache)
1322 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1323}
1324
4a4e5149
DJ
1325static int
1326dwarf2_frame_sniffer (const struct frame_unwind *self,
1327 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1328{
1ce5d6dd 1329 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1330 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1331 end up returning something past the end of this function's body.
1332 If the frame we're sniffing for is a signal frame whose start
1333 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1334 extend one byte before its start address or we could potentially
1335 select the FDE of the previous function. */
1336 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1337 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1338
56c987f6 1339 if (!fde)
4a4e5149 1340 return 0;
3ed09a32
DJ
1341
1342 /* On some targets, signal trampolines may have unwind information.
1343 We need to recognize them so that we set the frame type
1344 correctly. */
1345
56c987f6 1346 if (fde->cie->signal_frame
4a4e5149
DJ
1347 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1348 this_frame))
1349 return self->type == SIGTRAMP_FRAME;
1350
111c6489
JK
1351 if (self->type != NORMAL_FRAME)
1352 return 0;
1353
111c6489 1354 return 1;
4a4e5149
DJ
1355}
1356
1357static const struct frame_unwind dwarf2_frame_unwind =
1358{
1359 NORMAL_FRAME,
8fbca658 1360 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1361 dwarf2_frame_this_id,
1362 dwarf2_frame_prev_register,
1363 NULL,
111c6489
JK
1364 dwarf2_frame_sniffer,
1365 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1366};
1367
1368static const struct frame_unwind dwarf2_signal_frame_unwind =
1369{
1370 SIGTRAMP_FRAME,
8fbca658 1371 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1372 dwarf2_frame_this_id,
1373 dwarf2_frame_prev_register,
1374 NULL,
111c6489
JK
1375 dwarf2_frame_sniffer,
1376
1377 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1378 NULL
4a4e5149 1379};
cfc14b3a 1380
4a4e5149
DJ
1381/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1382
1383void
1384dwarf2_append_unwinders (struct gdbarch *gdbarch)
1385{
111c6489
JK
1386 /* TAILCALL_FRAME must be first to find the record by
1387 dwarf2_tailcall_sniffer_first. */
1388 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1389
4a4e5149
DJ
1390 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1391 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1392}
1393\f
1394
1395/* There is no explicitly defined relationship between the CFA and the
1396 location of frame's local variables and arguments/parameters.
1397 Therefore, frame base methods on this page should probably only be
1398 used as a last resort, just to avoid printing total garbage as a
1399 response to the "info frame" command. */
1400
1401static CORE_ADDR
4a4e5149 1402dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1403{
1404 struct dwarf2_frame_cache *cache =
4a4e5149 1405 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1406
1407 return cache->cfa;
1408}
1409
1410static const struct frame_base dwarf2_frame_base =
1411{
1412 &dwarf2_frame_unwind,
1413 dwarf2_frame_base_address,
1414 dwarf2_frame_base_address,
1415 dwarf2_frame_base_address
1416};
1417
1418const struct frame_base *
4a4e5149 1419dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1420{
4a4e5149 1421 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1422
ac56253d 1423 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1424 return &dwarf2_frame_base;
1425
1426 return NULL;
1427}
e7802207
TT
1428
1429/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1430 the DWARF unwinder. This is used to implement
1431 DW_OP_call_frame_cfa. */
1432
1433CORE_ADDR
1434dwarf2_frame_cfa (struct frame_info *this_frame)
1435{
0b722aec
MM
1436 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1437 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1438 throw_error (NOT_AVAILABLE_ERROR,
1439 _("cfa not available for record btrace target"));
1440
e7802207
TT
1441 while (get_frame_type (this_frame) == INLINE_FRAME)
1442 this_frame = get_prev_frame (this_frame);
32261e52
MM
1443 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1444 throw_error (NOT_AVAILABLE_ERROR,
1445 _("can't compute CFA for this frame: "
1446 "required registers or memory are unavailable"));
14aba1ac
JB
1447
1448 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1449 throw_error (NOT_AVAILABLE_ERROR,
1450 _("can't compute CFA for this frame: "
1451 "frame base not available"));
1452
e7802207
TT
1453 return get_frame_base (this_frame);
1454}
cfc14b3a 1455\f
8f22cb90 1456const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1457
cfc14b3a 1458static unsigned int
f664829e 1459read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1460{
852483bc 1461 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1462}
1463
1464static unsigned int
f664829e 1465read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1466{
852483bc 1467 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1468}
1469
1470static ULONGEST
f664829e 1471read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1472{
852483bc 1473 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1474}
1475
1476static ULONGEST
f664829e
DE
1477read_initial_length (bfd *abfd, const gdb_byte *buf,
1478 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1479{
1480 LONGEST result;
1481
852483bc 1482 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1483 if (result == 0xffffffff)
1484 {
852483bc 1485 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1486 *bytes_read_ptr = 12;
1487 }
1488 else
1489 *bytes_read_ptr = 4;
1490
1491 return result;
1492}
1493\f
1494
1495/* Pointer encoding helper functions. */
1496
1497/* GCC supports exception handling based on DWARF2 CFI. However, for
1498 technical reasons, it encodes addresses in its FDE's in a different
1499 way. Several "pointer encodings" are supported. The encoding
1500 that's used for a particular FDE is determined by the 'R'
1501 augmentation in the associated CIE. The argument of this
1502 augmentation is a single byte.
1503
1504 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1505 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1506 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1507 address should be interpreted (absolute, relative to the current
1508 position in the FDE, ...). Bit 7, indicates that the address
1509 should be dereferenced. */
1510
852483bc 1511static gdb_byte
cfc14b3a
MK
1512encoding_for_size (unsigned int size)
1513{
1514 switch (size)
1515 {
1516 case 2:
1517 return DW_EH_PE_udata2;
1518 case 4:
1519 return DW_EH_PE_udata4;
1520 case 8:
1521 return DW_EH_PE_udata8;
1522 default:
e2e0b3e5 1523 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1524 }
1525}
1526
cfc14b3a 1527static CORE_ADDR
852483bc 1528read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1529 int ptr_len, const gdb_byte *buf,
1530 unsigned int *bytes_read_ptr,
ae0d2f24 1531 CORE_ADDR func_base)
cfc14b3a 1532{
68f6cf99 1533 ptrdiff_t offset;
cfc14b3a
MK
1534 CORE_ADDR base;
1535
1536 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1537 FDE's. */
1538 if (encoding & DW_EH_PE_indirect)
1539 internal_error (__FILE__, __LINE__,
e2e0b3e5 1540 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1541
68f6cf99
MK
1542 *bytes_read_ptr = 0;
1543
cfc14b3a
MK
1544 switch (encoding & 0x70)
1545 {
1546 case DW_EH_PE_absptr:
1547 base = 0;
1548 break;
1549 case DW_EH_PE_pcrel:
f2fec864 1550 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1551 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1552 break;
0912c7f2
MK
1553 case DW_EH_PE_datarel:
1554 base = unit->dbase;
1555 break;
0fd85043
CV
1556 case DW_EH_PE_textrel:
1557 base = unit->tbase;
1558 break;
03ac2a74 1559 case DW_EH_PE_funcrel:
ae0d2f24 1560 base = func_base;
03ac2a74 1561 break;
68f6cf99
MK
1562 case DW_EH_PE_aligned:
1563 base = 0;
852483bc 1564 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1565 if ((offset % ptr_len) != 0)
1566 {
1567 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1568 buf += *bytes_read_ptr;
1569 }
1570 break;
cfc14b3a 1571 default:
3e43a32a
MS
1572 internal_error (__FILE__, __LINE__,
1573 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1574 }
1575
b04de778 1576 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1577 {
1578 encoding |= encoding_for_size (ptr_len);
1579 if (bfd_get_sign_extend_vma (unit->abfd))
1580 encoding |= DW_EH_PE_signed;
1581 }
cfc14b3a
MK
1582
1583 switch (encoding & 0x0f)
1584 {
a81b10ae
MK
1585 case DW_EH_PE_uleb128:
1586 {
9fccedf7 1587 uint64_t value;
0d45f56e 1588 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1589
f664829e 1590 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1591 return base + value;
1592 }
cfc14b3a 1593 case DW_EH_PE_udata2:
68f6cf99 1594 *bytes_read_ptr += 2;
cfc14b3a
MK
1595 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1596 case DW_EH_PE_udata4:
68f6cf99 1597 *bytes_read_ptr += 4;
cfc14b3a
MK
1598 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1599 case DW_EH_PE_udata8:
68f6cf99 1600 *bytes_read_ptr += 8;
cfc14b3a 1601 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1602 case DW_EH_PE_sleb128:
1603 {
9fccedf7 1604 int64_t value;
0d45f56e 1605 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1606
f664829e 1607 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1608 return base + value;
1609 }
cfc14b3a 1610 case DW_EH_PE_sdata2:
68f6cf99 1611 *bytes_read_ptr += 2;
cfc14b3a
MK
1612 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1613 case DW_EH_PE_sdata4:
68f6cf99 1614 *bytes_read_ptr += 4;
cfc14b3a
MK
1615 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1616 case DW_EH_PE_sdata8:
68f6cf99 1617 *bytes_read_ptr += 8;
cfc14b3a
MK
1618 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1619 default:
3e43a32a
MS
1620 internal_error (__FILE__, __LINE__,
1621 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1622 }
1623}
1624\f
1625
b01c8410
PP
1626static int
1627bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1628{
b01c8410
PP
1629 ULONGEST cie_pointer = *(ULONGEST *) key;
1630 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1631
b01c8410
PP
1632 if (cie_pointer == cie->cie_pointer)
1633 return 0;
cfc14b3a 1634
b01c8410
PP
1635 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1636}
1637
1638/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1639static struct dwarf2_cie *
1640find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1641{
1642 struct dwarf2_cie **p_cie;
cfc14b3a 1643
65a97ab3
PP
1644 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1645 bsearch be non-NULL. */
1646 if (cie_table->entries == NULL)
1647 {
1648 gdb_assert (cie_table->num_entries == 0);
1649 return NULL;
1650 }
1651
9a3c8263
SM
1652 p_cie = ((struct dwarf2_cie **)
1653 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1654 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
b01c8410
PP
1655 if (p_cie != NULL)
1656 return *p_cie;
cfc14b3a
MK
1657 return NULL;
1658}
1659
b01c8410 1660/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1661static void
b01c8410 1662add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1663{
b01c8410
PP
1664 const int n = cie_table->num_entries;
1665
1666 gdb_assert (n < 1
1667 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1668
224c3ddb
SM
1669 cie_table->entries
1670 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
b01c8410
PP
1671 cie_table->entries[n] = cie;
1672 cie_table->num_entries = n + 1;
1673}
1674
1675static int
1676bsearch_fde_cmp (const void *key, const void *element)
1677{
1678 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1679 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1680
b01c8410
PP
1681 if (seek_pc < fde->initial_location)
1682 return -1;
1683 if (seek_pc < fde->initial_location + fde->address_range)
1684 return 0;
1685 return 1;
cfc14b3a
MK
1686}
1687
1688/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1689 inital location associated with it into *PC. */
1690
1691static struct dwarf2_fde *
ac56253d 1692dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1693{
1694 struct objfile *objfile;
1695
1696 ALL_OBJFILES (objfile)
1697 {
b01c8410
PP
1698 struct dwarf2_fde_table *fde_table;
1699 struct dwarf2_fde **p_fde;
cfc14b3a 1700 CORE_ADDR offset;
b01c8410 1701 CORE_ADDR seek_pc;
cfc14b3a 1702
9a3c8263
SM
1703 fde_table = ((struct dwarf2_fde_table *)
1704 objfile_data (objfile, dwarf2_frame_objfile_data));
b01c8410 1705 if (fde_table == NULL)
be391dca
TT
1706 {
1707 dwarf2_build_frame_info (objfile);
9a3c8263
SM
1708 fde_table = ((struct dwarf2_fde_table *)
1709 objfile_data (objfile, dwarf2_frame_objfile_data));
be391dca
TT
1710 }
1711 gdb_assert (fde_table != NULL);
1712
1713 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1714 continue;
1715
1716 gdb_assert (objfile->section_offsets);
1717 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1718
b01c8410
PP
1719 gdb_assert (fde_table->num_entries > 0);
1720 if (*pc < offset + fde_table->entries[0]->initial_location)
1721 continue;
1722
1723 seek_pc = *pc - offset;
9a3c8263
SM
1724 p_fde = ((struct dwarf2_fde **)
1725 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1726 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
b01c8410
PP
1727 if (p_fde != NULL)
1728 {
1729 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1730 if (out_offset)
1731 *out_offset = offset;
b01c8410
PP
1732 return *p_fde;
1733 }
cfc14b3a 1734 }
cfc14b3a
MK
1735 return NULL;
1736}
1737
b01c8410 1738/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1739static void
b01c8410 1740add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1741{
b01c8410
PP
1742 if (fde->address_range == 0)
1743 /* Discard useless FDEs. */
1744 return;
1745
1746 fde_table->num_entries += 1;
224c3ddb
SM
1747 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1748 fde_table->num_entries);
b01c8410 1749 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1750}
1751
cfc14b3a 1752#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1753
8bd90839
FM
1754/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1755 or any of them. */
1756
1757enum eh_frame_type
1758{
1759 EH_CIE_TYPE_ID = 1 << 0,
1760 EH_FDE_TYPE_ID = 1 << 1,
1761 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1762};
1763
f664829e
DE
1764static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1765 const gdb_byte *start,
1766 int eh_frame_p,
1767 struct dwarf2_cie_table *cie_table,
1768 struct dwarf2_fde_table *fde_table,
1769 enum eh_frame_type entry_type);
8bd90839
FM
1770
1771/* Decode the next CIE or FDE, entry_type specifies the expected type.
1772 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1773
f664829e
DE
1774static const gdb_byte *
1775decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1776 int eh_frame_p,
b01c8410 1777 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1778 struct dwarf2_fde_table *fde_table,
1779 enum eh_frame_type entry_type)
cfc14b3a 1780{
5e2b427d 1781 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1782 const gdb_byte *buf, *end;
cfc14b3a
MK
1783 LONGEST length;
1784 unsigned int bytes_read;
6896c0c7
RH
1785 int dwarf64_p;
1786 ULONGEST cie_id;
cfc14b3a 1787 ULONGEST cie_pointer;
9fccedf7
DE
1788 int64_t sleb128;
1789 uint64_t uleb128;
cfc14b3a 1790
6896c0c7 1791 buf = start;
cfc14b3a
MK
1792 length = read_initial_length (unit->abfd, buf, &bytes_read);
1793 buf += bytes_read;
1794 end = buf + length;
1795
0963b4bd 1796 /* Are we still within the section? */
6896c0c7
RH
1797 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1798 return NULL;
1799
cfc14b3a
MK
1800 if (length == 0)
1801 return end;
1802
6896c0c7
RH
1803 /* Distinguish between 32 and 64-bit encoded frame info. */
1804 dwarf64_p = (bytes_read == 12);
cfc14b3a 1805
6896c0c7 1806 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1807 if (eh_frame_p)
1808 cie_id = 0;
1809 else if (dwarf64_p)
1810 cie_id = DW64_CIE_ID;
6896c0c7
RH
1811 else
1812 cie_id = DW_CIE_ID;
cfc14b3a
MK
1813
1814 if (dwarf64_p)
1815 {
1816 cie_pointer = read_8_bytes (unit->abfd, buf);
1817 buf += 8;
1818 }
1819 else
1820 {
1821 cie_pointer = read_4_bytes (unit->abfd, buf);
1822 buf += 4;
1823 }
1824
1825 if (cie_pointer == cie_id)
1826 {
1827 /* This is a CIE. */
1828 struct dwarf2_cie *cie;
1829 char *augmentation;
28ba0b33 1830 unsigned int cie_version;
cfc14b3a 1831
8bd90839
FM
1832 /* Check that a CIE was expected. */
1833 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1834 error (_("Found a CIE when not expecting it."));
1835
cfc14b3a
MK
1836 /* Record the offset into the .debug_frame section of this CIE. */
1837 cie_pointer = start - unit->dwarf_frame_buffer;
1838
1839 /* Check whether we've already read it. */
b01c8410 1840 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1841 return end;
1842
8d749320 1843 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
cfc14b3a
MK
1844 cie->initial_instructions = NULL;
1845 cie->cie_pointer = cie_pointer;
1846
1847 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1848 depends on the target address size. */
1849 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1850
56c987f6
AO
1851 /* We'll determine the final value later, but we need to
1852 initialize it conservatively. */
1853 cie->signal_frame = 0;
1854
cfc14b3a 1855 /* Check version number. */
28ba0b33 1856 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1857 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1858 return NULL;
303b6f5d 1859 cie->version = cie_version;
cfc14b3a
MK
1860 buf += 1;
1861
1862 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1863 cie->augmentation = augmentation = (char *) buf;
852483bc 1864 buf += (strlen (augmentation) + 1);
cfc14b3a 1865
303b6f5d
DJ
1866 /* Ignore armcc augmentations. We only use them for quirks,
1867 and that doesn't happen until later. */
61012eef 1868 if (startswith (augmentation, "armcc"))
303b6f5d
DJ
1869 augmentation += strlen (augmentation);
1870
cfc14b3a
MK
1871 /* The GCC 2.x "eh" augmentation has a pointer immediately
1872 following the augmentation string, so it must be handled
1873 first. */
1874 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1875 {
1876 /* Skip. */
5e2b427d 1877 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1878 augmentation += 2;
1879 }
1880
2dc7f7b3
TT
1881 if (cie->version >= 4)
1882 {
1883 /* FIXME: check that this is the same as from the CU header. */
1884 cie->addr_size = read_1_byte (unit->abfd, buf);
1885 ++buf;
1886 cie->segment_size = read_1_byte (unit->abfd, buf);
1887 ++buf;
1888 }
1889 else
1890 {
8da614df 1891 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1892 cie->segment_size = 0;
1893 }
8da614df
CV
1894 /* Address values in .eh_frame sections are defined to have the
1895 target's pointer size. Watchout: This breaks frame info for
1896 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1897 section exists as well. */
8da614df
CV
1898 if (eh_frame_p)
1899 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1900 else
1901 cie->ptr_size = cie->addr_size;
2dc7f7b3 1902
f664829e
DE
1903 buf = gdb_read_uleb128 (buf, end, &uleb128);
1904 if (buf == NULL)
1905 return NULL;
1906 cie->code_alignment_factor = uleb128;
cfc14b3a 1907
f664829e
DE
1908 buf = gdb_read_sleb128 (buf, end, &sleb128);
1909 if (buf == NULL)
1910 return NULL;
1911 cie->data_alignment_factor = sleb128;
cfc14b3a 1912
28ba0b33
PB
1913 if (cie_version == 1)
1914 {
1915 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1916 ++buf;
28ba0b33
PB
1917 }
1918 else
f664829e
DE
1919 {
1920 buf = gdb_read_uleb128 (buf, end, &uleb128);
1921 if (buf == NULL)
1922 return NULL;
1923 cie->return_address_register = uleb128;
1924 }
1925
4fc771b8 1926 cie->return_address_register
5e2b427d 1927 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1928 cie->return_address_register,
1929 eh_frame_p);
4bf8967c 1930
7131cb6e
RH
1931 cie->saw_z_augmentation = (*augmentation == 'z');
1932 if (cie->saw_z_augmentation)
cfc14b3a 1933 {
9fccedf7 1934 uint64_t length;
cfc14b3a 1935
f664829e
DE
1936 buf = gdb_read_uleb128 (buf, end, &length);
1937 if (buf == NULL)
6896c0c7 1938 return NULL;
cfc14b3a
MK
1939 cie->initial_instructions = buf + length;
1940 augmentation++;
1941 }
1942
1943 while (*augmentation)
1944 {
1945 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1946 if (*augmentation == 'L')
1947 {
1948 /* Skip. */
1949 buf++;
1950 augmentation++;
1951 }
1952
1953 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1954 else if (*augmentation == 'R')
1955 {
1956 cie->encoding = *buf++;
1957 augmentation++;
1958 }
1959
1960 /* "P" indicates a personality routine in the CIE augmentation. */
1961 else if (*augmentation == 'P')
1962 {
1234d960 1963 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1964 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 1965 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 1966 buf, &bytes_read, 0);
f724bf08 1967 buf += bytes_read;
cfc14b3a
MK
1968 augmentation++;
1969 }
1970
56c987f6
AO
1971 /* "S" indicates a signal frame, such that the return
1972 address must not be decremented to locate the call frame
1973 info for the previous frame; it might even be the first
1974 instruction of a function, so decrementing it would take
1975 us to a different function. */
1976 else if (*augmentation == 'S')
1977 {
1978 cie->signal_frame = 1;
1979 augmentation++;
1980 }
1981
3e9a2e52
DJ
1982 /* Otherwise we have an unknown augmentation. Assume that either
1983 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
1984 else
1985 {
3e9a2e52
DJ
1986 if (cie->initial_instructions)
1987 buf = cie->initial_instructions;
cfc14b3a
MK
1988 break;
1989 }
1990 }
1991
1992 cie->initial_instructions = buf;
1993 cie->end = end;
b01c8410 1994 cie->unit = unit;
cfc14b3a 1995
b01c8410 1996 add_cie (cie_table, cie);
cfc14b3a
MK
1997 }
1998 else
1999 {
2000 /* This is a FDE. */
2001 struct dwarf2_fde *fde;
3e29f34a 2002 CORE_ADDR addr;
cfc14b3a 2003
8bd90839
FM
2004 /* Check that an FDE was expected. */
2005 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2006 error (_("Found an FDE when not expecting it."));
2007
6896c0c7
RH
2008 /* In an .eh_frame section, the CIE pointer is the delta between the
2009 address within the FDE where the CIE pointer is stored and the
2010 address of the CIE. Convert it to an offset into the .eh_frame
2011 section. */
cfc14b3a
MK
2012 if (eh_frame_p)
2013 {
cfc14b3a
MK
2014 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2015 cie_pointer -= (dwarf64_p ? 8 : 4);
2016 }
2017
6896c0c7
RH
2018 /* In either case, validate the result is still within the section. */
2019 if (cie_pointer >= unit->dwarf_frame_size)
2020 return NULL;
2021
8d749320 2022 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
b01c8410 2023 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2024 if (fde->cie == NULL)
2025 {
2026 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2027 eh_frame_p, cie_table, fde_table,
2028 EH_CIE_TYPE_ID);
b01c8410 2029 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2030 }
2031
2032 gdb_assert (fde->cie != NULL);
2033
3e29f34a
MR
2034 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2035 buf, &bytes_read, 0);
2036 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
cfc14b3a
MK
2037 buf += bytes_read;
2038
2039 fde->address_range =
ae0d2f24 2040 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2041 fde->cie->ptr_size, buf, &bytes_read, 0);
3e29f34a
MR
2042 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2043 fde->address_range = addr - fde->initial_location;
cfc14b3a
MK
2044 buf += bytes_read;
2045
7131cb6e
RH
2046 /* A 'z' augmentation in the CIE implies the presence of an
2047 augmentation field in the FDE as well. The only thing known
2048 to be in here at present is the LSDA entry for EH. So we
2049 can skip the whole thing. */
2050 if (fde->cie->saw_z_augmentation)
2051 {
9fccedf7 2052 uint64_t length;
7131cb6e 2053
f664829e
DE
2054 buf = gdb_read_uleb128 (buf, end, &length);
2055 if (buf == NULL)
2056 return NULL;
2057 buf += length;
6896c0c7
RH
2058 if (buf > end)
2059 return NULL;
7131cb6e
RH
2060 }
2061
cfc14b3a
MK
2062 fde->instructions = buf;
2063 fde->end = end;
2064
4bf8967c
AS
2065 fde->eh_frame_p = eh_frame_p;
2066
b01c8410 2067 add_fde (fde_table, fde);
cfc14b3a
MK
2068 }
2069
2070 return end;
2071}
6896c0c7 2072
8bd90839
FM
2073/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2074 expect an FDE or a CIE. */
2075
f664829e
DE
2076static const gdb_byte *
2077decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2078 int eh_frame_p,
b01c8410 2079 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2080 struct dwarf2_fde_table *fde_table,
2081 enum eh_frame_type entry_type)
6896c0c7
RH
2082{
2083 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2084 const gdb_byte *ret;
6896c0c7
RH
2085 ptrdiff_t start_offset;
2086
2087 while (1)
2088 {
b01c8410 2089 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2090 cie_table, fde_table, entry_type);
6896c0c7
RH
2091 if (ret != NULL)
2092 break;
2093
2094 /* We have corrupt input data of some form. */
2095
2096 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2097 and mismatches wrt padding and alignment of debug sections. */
2098 /* Note that there is no requirement in the standard for any
2099 alignment at all in the frame unwind sections. Testing for
2100 alignment before trying to interpret data would be incorrect.
2101
2102 However, GCC traditionally arranged for frame sections to be
2103 sized such that the FDE length and CIE fields happen to be
2104 aligned (in theory, for performance). This, unfortunately,
2105 was done with .align directives, which had the side effect of
2106 forcing the section to be aligned by the linker.
2107
2108 This becomes a problem when you have some other producer that
2109 creates frame sections that are not as strictly aligned. That
2110 produces a hole in the frame info that gets filled by the
2111 linker with zeros.
2112
2113 The GCC behaviour is arguably a bug, but it's effectively now
2114 part of the ABI, so we're now stuck with it, at least at the
2115 object file level. A smart linker may decide, in the process
2116 of compressing duplicate CIE information, that it can rewrite
2117 the entire output section without this extra padding. */
2118
2119 start_offset = start - unit->dwarf_frame_buffer;
2120 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2121 {
2122 start += 4 - (start_offset & 3);
2123 workaround = ALIGN4;
2124 continue;
2125 }
2126 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2127 {
2128 start += 8 - (start_offset & 7);
2129 workaround = ALIGN8;
2130 continue;
2131 }
2132
2133 /* Nothing left to try. Arrange to return as if we've consumed
2134 the entire input section. Hopefully we'll get valid info from
2135 the other of .debug_frame/.eh_frame. */
2136 workaround = FAIL;
2137 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2138 break;
2139 }
2140
2141 switch (workaround)
2142 {
2143 case NONE:
2144 break;
2145
2146 case ALIGN4:
3e43a32a
MS
2147 complaint (&symfile_complaints, _("\
2148Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2149 unit->dwarf_frame_section->owner->filename,
2150 unit->dwarf_frame_section->name);
2151 break;
2152
2153 case ALIGN8:
3e43a32a
MS
2154 complaint (&symfile_complaints, _("\
2155Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2156 unit->dwarf_frame_section->owner->filename,
2157 unit->dwarf_frame_section->name);
2158 break;
2159
2160 default:
2161 complaint (&symfile_complaints,
e2e0b3e5 2162 _("Corrupt data in %s:%s"),
6896c0c7
RH
2163 unit->dwarf_frame_section->owner->filename,
2164 unit->dwarf_frame_section->name);
2165 break;
2166 }
2167
2168 return ret;
2169}
cfc14b3a 2170\f
b01c8410
PP
2171static int
2172qsort_fde_cmp (const void *a, const void *b)
2173{
2174 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2175 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2176
b01c8410 2177 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2178 {
2179 if (aa->address_range != bb->address_range
2180 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2181 /* Linker bug, e.g. gold/10400.
2182 Work around it by keeping stable sort order. */
2183 return (a < b) ? -1 : 1;
2184 else
2185 /* Put eh_frame entries after debug_frame ones. */
2186 return aa->eh_frame_p - bb->eh_frame_p;
2187 }
b01c8410
PP
2188
2189 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2190}
2191
cfc14b3a
MK
2192void
2193dwarf2_build_frame_info (struct objfile *objfile)
2194{
ae0d2f24 2195 struct comp_unit *unit;
f664829e 2196 const gdb_byte *frame_ptr;
b01c8410
PP
2197 struct dwarf2_cie_table cie_table;
2198 struct dwarf2_fde_table fde_table;
be391dca 2199 struct dwarf2_fde_table *fde_table2;
b01c8410
PP
2200
2201 cie_table.num_entries = 0;
2202 cie_table.entries = NULL;
2203
2204 fde_table.num_entries = 0;
2205 fde_table.entries = NULL;
cfc14b3a
MK
2206
2207 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2208 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2209 sizeof (struct comp_unit));
2210 unit->abfd = objfile->obfd;
2211 unit->objfile = objfile;
2212 unit->dbase = 0;
2213 unit->tbase = 0;
cfc14b3a 2214
d40102a1 2215 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2216 {
d40102a1
JB
2217 /* Do not read .eh_frame from separate file as they must be also
2218 present in the main file. */
2219 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2220 &unit->dwarf_frame_section,
2221 &unit->dwarf_frame_buffer,
2222 &unit->dwarf_frame_size);
2223 if (unit->dwarf_frame_size)
b01c8410 2224 {
d40102a1
JB
2225 asection *got, *txt;
2226
2227 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2228 that is used for the i386/amd64 target, which currently is
2229 the only target in GCC that supports/uses the
2230 DW_EH_PE_datarel encoding. */
2231 got = bfd_get_section_by_name (unit->abfd, ".got");
2232 if (got)
2233 unit->dbase = got->vma;
2234
2235 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2236 so far. */
2237 txt = bfd_get_section_by_name (unit->abfd, ".text");
2238 if (txt)
2239 unit->tbase = txt->vma;
2240
492d29ea 2241 TRY
8bd90839
FM
2242 {
2243 frame_ptr = unit->dwarf_frame_buffer;
2244 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2245 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2246 &cie_table, &fde_table,
2247 EH_CIE_OR_FDE_TYPE_ID);
2248 }
2249
492d29ea 2250 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2251 {
2252 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2253 objfile_name (objfile), e.message);
8bd90839
FM
2254
2255 if (fde_table.num_entries != 0)
2256 {
2257 xfree (fde_table.entries);
2258 fde_table.entries = NULL;
2259 fde_table.num_entries = 0;
2260 }
2261 /* The cie_table is discarded by the next if. */
2262 }
492d29ea 2263 END_CATCH
d40102a1
JB
2264
2265 if (cie_table.num_entries != 0)
2266 {
2267 /* Reinit cie_table: debug_frame has different CIEs. */
2268 xfree (cie_table.entries);
2269 cie_table.num_entries = 0;
2270 cie_table.entries = NULL;
2271 }
b01c8410 2272 }
cfc14b3a
MK
2273 }
2274
3017a003 2275 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2276 &unit->dwarf_frame_section,
2277 &unit->dwarf_frame_buffer,
2278 &unit->dwarf_frame_size);
2279 if (unit->dwarf_frame_size)
cfc14b3a 2280 {
8bd90839
FM
2281 int num_old_fde_entries = fde_table.num_entries;
2282
492d29ea 2283 TRY
8bd90839
FM
2284 {
2285 frame_ptr = unit->dwarf_frame_buffer;
2286 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2287 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2288 &cie_table, &fde_table,
2289 EH_CIE_OR_FDE_TYPE_ID);
2290 }
492d29ea 2291 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2292 {
2293 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2294 objfile_name (objfile), e.message);
8bd90839
FM
2295
2296 if (fde_table.num_entries != 0)
2297 {
2298 fde_table.num_entries = num_old_fde_entries;
2299 if (num_old_fde_entries == 0)
2300 {
2301 xfree (fde_table.entries);
2302 fde_table.entries = NULL;
2303 }
2304 else
2305 {
224c3ddb
SM
2306 fde_table.entries
2307 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2308 fde_table.num_entries);
8bd90839
FM
2309 }
2310 }
2311 fde_table.num_entries = num_old_fde_entries;
2312 /* The cie_table is discarded by the next if. */
2313 }
492d29ea 2314 END_CATCH
b01c8410
PP
2315 }
2316
2317 /* Discard the cie_table, it is no longer needed. */
2318 if (cie_table.num_entries != 0)
2319 {
2320 xfree (cie_table.entries);
2321 cie_table.entries = NULL; /* Paranoia. */
2322 cie_table.num_entries = 0; /* Paranoia. */
2323 }
2324
be391dca 2325 /* Copy fde_table to obstack: it is needed at runtime. */
8d749320 2326 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
be391dca
TT
2327
2328 if (fde_table.num_entries == 0)
2329 {
2330 fde_table2->entries = NULL;
2331 fde_table2->num_entries = 0;
2332 }
2333 else
b01c8410 2334 {
875cdfbb
PA
2335 struct dwarf2_fde *fde_prev = NULL;
2336 struct dwarf2_fde *first_non_zero_fde = NULL;
2337 int i;
b01c8410
PP
2338
2339 /* Prepare FDE table for lookups. */
2340 qsort (fde_table.entries, fde_table.num_entries,
2341 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2342
875cdfbb
PA
2343 /* Check for leftovers from --gc-sections. The GNU linker sets
2344 the relevant symbols to zero, but doesn't zero the FDE *end*
2345 ranges because there's no relocation there. It's (offset,
2346 length), not (start, end). On targets where address zero is
2347 just another valid address this can be a problem, since the
2348 FDEs appear to be non-empty in the output --- we could pick
2349 out the wrong FDE. To work around this, when overlaps are
2350 detected, we prefer FDEs that do not start at zero.
2351
2352 Start by finding the first FDE with non-zero start. Below
2353 we'll discard all FDEs that start at zero and overlap this
2354 one. */
2355 for (i = 0; i < fde_table.num_entries; i++)
2356 {
2357 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2358
875cdfbb
PA
2359 if (fde->initial_location != 0)
2360 {
2361 first_non_zero_fde = fde;
2362 break;
2363 }
2364 }
2365
2366 /* Since we'll be doing bsearch, squeeze out identical (except
2367 for eh_frame_p) fde entries so bsearch result is predictable.
2368 Also discard leftovers from --gc-sections. */
be391dca 2369 fde_table2->num_entries = 0;
875cdfbb
PA
2370 for (i = 0; i < fde_table.num_entries; i++)
2371 {
2372 struct dwarf2_fde *fde = fde_table.entries[i];
2373
2374 if (fde->initial_location == 0
2375 && first_non_zero_fde != NULL
2376 && (first_non_zero_fde->initial_location
2377 < fde->initial_location + fde->address_range))
2378 continue;
2379
2380 if (fde_prev != NULL
2381 && fde_prev->initial_location == fde->initial_location)
2382 continue;
2383
2384 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2385 sizeof (fde_table.entries[0]));
2386 ++fde_table2->num_entries;
2387 fde_prev = fde;
2388 }
224c3ddb
SM
2389 fde_table2->entries
2390 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2391
2392 /* Discard the original fde_table. */
2393 xfree (fde_table.entries);
cfc14b3a 2394 }
be391dca
TT
2395
2396 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2397}
0d0e1a63 2398
0d0e1a63
MK
2399void
2400_initialize_dwarf2_frame (void)
2401{
030f20e1 2402 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2403 dwarf2_frame_objfile_data = register_objfile_data ();
1c90d9f0
YQ
2404
2405#if GDB_SELF_TEST
1526853e
SM
2406 selftests::register_test_foreach_arch ("execute_cfa_program",
2407 selftests::execute_cfa_program_test);
1c90d9f0 2408#endif
0d0e1a63 2409}
This page took 1.38427 seconds and 4 git commands to generate.