*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
6aba47ca 3 Copyright (C) 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
24#include "elf/dwarf2.h"
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
cfc14b3a
MK
34
35#include "gdb_assert.h"
36#include "gdb_string.h"
37
6896c0c7 38#include "complaints.h"
cfc14b3a
MK
39#include "dwarf2-frame.h"
40
41/* Call Frame Information (CFI). */
42
43/* Common Information Entry (CIE). */
44
45struct dwarf2_cie
46{
47 /* Offset into the .debug_frame section where this CIE was found.
48 Used to identify this CIE. */
49 ULONGEST cie_pointer;
50
51 /* Constant that is factored out of all advance location
52 instructions. */
53 ULONGEST code_alignment_factor;
54
55 /* Constants that is factored out of all offset instructions. */
56 LONGEST data_alignment_factor;
57
58 /* Return address column. */
59 ULONGEST return_address_register;
60
61 /* Instruction sequence to initialize a register set. */
852483bc
MK
62 gdb_byte *initial_instructions;
63 gdb_byte *end;
cfc14b3a 64
303b6f5d
DJ
65 /* Saved augmentation, in case it's needed later. */
66 char *augmentation;
67
cfc14b3a 68 /* Encoding of addresses. */
852483bc 69 gdb_byte encoding;
cfc14b3a 70
7131cb6e
RH
71 /* True if a 'z' augmentation existed. */
72 unsigned char saw_z_augmentation;
73
56c987f6
AO
74 /* True if an 'S' augmentation existed. */
75 unsigned char signal_frame;
76
303b6f5d
DJ
77 /* The version recorded in the CIE. */
78 unsigned char version;
79
cfc14b3a
MK
80 struct dwarf2_cie *next;
81};
82
83/* Frame Description Entry (FDE). */
84
85struct dwarf2_fde
86{
87 /* CIE for this FDE. */
88 struct dwarf2_cie *cie;
89
90 /* First location associated with this FDE. */
91 CORE_ADDR initial_location;
92
93 /* Number of bytes of program instructions described by this FDE. */
94 CORE_ADDR address_range;
95
96 /* Instruction sequence. */
852483bc
MK
97 gdb_byte *instructions;
98 gdb_byte *end;
cfc14b3a 99
4bf8967c
AS
100 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
101 section. */
102 unsigned char eh_frame_p;
103
cfc14b3a
MK
104 struct dwarf2_fde *next;
105};
106
107static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
4fc771b8
DJ
108
109static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
110 int eh_frame_p);
cfc14b3a
MK
111\f
112
113/* Structure describing a frame state. */
114
115struct dwarf2_frame_state
116{
117 /* Each register save state can be described in terms of a CFA slot,
118 another register, or a location expression. */
119 struct dwarf2_frame_state_reg_info
120 {
05cbe71a 121 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
122 int num_regs;
123
124 /* Used to implement DW_CFA_remember_state. */
125 struct dwarf2_frame_state_reg_info *prev;
126 } regs;
127
128 LONGEST cfa_offset;
129 ULONGEST cfa_reg;
852483bc 130 gdb_byte *cfa_exp;
cfc14b3a
MK
131 enum {
132 CFA_UNSET,
133 CFA_REG_OFFSET,
134 CFA_EXP
135 } cfa_how;
136
137 /* The PC described by the current frame state. */
138 CORE_ADDR pc;
139
140 /* Initial register set from the CIE.
141 Used to implement DW_CFA_restore. */
142 struct dwarf2_frame_state_reg_info initial;
143
144 /* The information we care about from the CIE. */
145 LONGEST data_align;
146 ULONGEST code_align;
147 ULONGEST retaddr_column;
303b6f5d
DJ
148
149 /* Flags for known producer quirks. */
150
151 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
152 and DW_CFA_def_cfa_offset takes a factored offset. */
153 int armcc_cfa_offsets_sf;
154
155 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
156 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
157 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
158};
159
160/* Store the length the expression for the CFA in the `cfa_reg' field,
161 which is unused in that case. */
162#define cfa_exp_len cfa_reg
163
f57d151a 164/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
165 columns. If necessary, enlarge the register set. */
166
167static void
168dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
169 int num_regs)
170{
171 size_t size = sizeof (struct dwarf2_frame_state_reg);
172
173 if (num_regs <= rs->num_regs)
174 return;
175
176 rs->reg = (struct dwarf2_frame_state_reg *)
177 xrealloc (rs->reg, num_regs * size);
178
179 /* Initialize newly allocated registers. */
2473a4a9 180 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
181 rs->num_regs = num_regs;
182}
183
184/* Copy the register columns in register set RS into newly allocated
185 memory and return a pointer to this newly created copy. */
186
187static struct dwarf2_frame_state_reg *
188dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
189{
d10891d4 190 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
191 struct dwarf2_frame_state_reg *reg;
192
193 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
194 memcpy (reg, rs->reg, size);
195
196 return reg;
197}
198
199/* Release the memory allocated to register set RS. */
200
201static void
202dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
203{
204 if (rs)
205 {
206 dwarf2_frame_state_free_regs (rs->prev);
207
208 xfree (rs->reg);
209 xfree (rs);
210 }
211}
212
213/* Release the memory allocated to the frame state FS. */
214
215static void
216dwarf2_frame_state_free (void *p)
217{
218 struct dwarf2_frame_state *fs = p;
219
220 dwarf2_frame_state_free_regs (fs->initial.prev);
221 dwarf2_frame_state_free_regs (fs->regs.prev);
222 xfree (fs->initial.reg);
223 xfree (fs->regs.reg);
224 xfree (fs);
225}
226\f
227
228/* Helper functions for execute_stack_op. */
229
230static CORE_ADDR
231read_reg (void *baton, int reg)
232{
233 struct frame_info *next_frame = (struct frame_info *) baton;
05cbe71a 234 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a 235 int regnum;
852483bc 236 gdb_byte *buf;
cfc14b3a 237
ad010def 238 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 239
852483bc 240 buf = alloca (register_size (gdbarch, regnum));
cfc14b3a 241 frame_unwind_register (next_frame, regnum, buf);
f2da6b3a
DJ
242
243 /* Convert the register to an integer. This returns a LONGEST
244 rather than a CORE_ADDR, but unpack_pointer does the same thing
245 under the covers, and this makes more sense for non-pointer
246 registers. Maybe read_reg and the associated interfaces should
247 deal with "struct value" instead of CORE_ADDR. */
248 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
249}
250
251static void
852483bc 252read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
253{
254 read_memory (addr, buf, len);
255}
256
257static void
852483bc 258no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
cfc14b3a
MK
259{
260 internal_error (__FILE__, __LINE__,
e2e0b3e5 261 _("Support for DW_OP_fbreg is unimplemented"));
cfc14b3a
MK
262}
263
264static CORE_ADDR
265no_get_tls_address (void *baton, CORE_ADDR offset)
266{
267 internal_error (__FILE__, __LINE__,
e2e0b3e5 268 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
cfc14b3a
MK
269}
270
271static CORE_ADDR
852483bc 272execute_stack_op (gdb_byte *exp, ULONGEST len,
cfc14b3a
MK
273 struct frame_info *next_frame, CORE_ADDR initial)
274{
275 struct dwarf_expr_context *ctx;
276 CORE_ADDR result;
277
278 ctx = new_dwarf_expr_context ();
279 ctx->baton = next_frame;
280 ctx->read_reg = read_reg;
281 ctx->read_mem = read_mem;
282 ctx->get_frame_base = no_get_frame_base;
283 ctx->get_tls_address = no_get_tls_address;
284
285 dwarf_expr_push (ctx, initial);
286 dwarf_expr_eval (ctx, exp, len);
287 result = dwarf_expr_fetch (ctx, 0);
288
289 if (ctx->in_reg)
290 result = read_reg (next_frame, result);
291
292 free_dwarf_expr_context (ctx);
293
294 return result;
295}
296\f
297
298static void
852483bc 299execute_cfa_program (gdb_byte *insn_ptr, gdb_byte *insn_end,
cfc14b3a 300 struct frame_info *next_frame,
4bf8967c 301 struct dwarf2_frame_state *fs, int eh_frame_p)
cfc14b3a
MK
302{
303 CORE_ADDR pc = frame_pc_unwind (next_frame);
304 int bytes_read;
4bf8967c 305 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a
MK
306
307 while (insn_ptr < insn_end && fs->pc <= pc)
308 {
852483bc 309 gdb_byte insn = *insn_ptr++;
cfc14b3a
MK
310 ULONGEST utmp, reg;
311 LONGEST offset;
312
313 if ((insn & 0xc0) == DW_CFA_advance_loc)
314 fs->pc += (insn & 0x3f) * fs->code_align;
315 else if ((insn & 0xc0) == DW_CFA_offset)
316 {
317 reg = insn & 0x3f;
4fc771b8 318 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
319 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
320 offset = utmp * fs->data_align;
321 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 322 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
323 fs->regs.reg[reg].loc.offset = offset;
324 }
325 else if ((insn & 0xc0) == DW_CFA_restore)
326 {
327 gdb_assert (fs->initial.reg);
328 reg = insn & 0x3f;
4fc771b8 329 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 330 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
92ad9f6b
FR
331 if (reg < fs->initial.num_regs)
332 fs->regs.reg[reg] = fs->initial.reg[reg];
333 else
334 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
335
336 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
337 complaint (&symfile_complaints, _("\
338incomplete CFI data; DW_CFA_restore unspecified\n\
339register %s (#%d) at 0x%s"),
c9f4d572 340 gdbarch_register_name
ad010def
UW
341 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
342 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
055d23b8 343 paddr (fs->pc));
cfc14b3a
MK
344 }
345 else
346 {
347 switch (insn)
348 {
349 case DW_CFA_set_loc:
350 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
351 insn_ptr += bytes_read;
352 break;
353
354 case DW_CFA_advance_loc1:
355 utmp = extract_unsigned_integer (insn_ptr, 1);
356 fs->pc += utmp * fs->code_align;
357 insn_ptr++;
358 break;
359 case DW_CFA_advance_loc2:
360 utmp = extract_unsigned_integer (insn_ptr, 2);
361 fs->pc += utmp * fs->code_align;
362 insn_ptr += 2;
363 break;
364 case DW_CFA_advance_loc4:
365 utmp = extract_unsigned_integer (insn_ptr, 4);
366 fs->pc += utmp * fs->code_align;
367 insn_ptr += 4;
368 break;
369
370 case DW_CFA_offset_extended:
371 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 372 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
373 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
374 offset = utmp * fs->data_align;
375 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 376 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
377 fs->regs.reg[reg].loc.offset = offset;
378 break;
379
380 case DW_CFA_restore_extended:
381 gdb_assert (fs->initial.reg);
382 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 383 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
384 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
385 fs->regs.reg[reg] = fs->initial.reg[reg];
386 break;
387
388 case DW_CFA_undefined:
389 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 390 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 391 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 392 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
393 break;
394
395 case DW_CFA_same_value:
396 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 397 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 398 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 399 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
400 break;
401
402 case DW_CFA_register:
403 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 404 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 405 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 406 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 407 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 408 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
409 fs->regs.reg[reg].loc.reg = utmp;
410 break;
411
412 case DW_CFA_remember_state:
413 {
414 struct dwarf2_frame_state_reg_info *new_rs;
415
416 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
417 *new_rs = fs->regs;
418 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
419 fs->regs.prev = new_rs;
420 }
421 break;
422
423 case DW_CFA_restore_state:
424 {
425 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
426
50ea7769
MK
427 if (old_rs == NULL)
428 {
e2e0b3e5
AC
429 complaint (&symfile_complaints, _("\
430bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs->pc));
50ea7769
MK
431 }
432 else
433 {
434 xfree (fs->regs.reg);
435 fs->regs = *old_rs;
436 xfree (old_rs);
437 }
cfc14b3a
MK
438 }
439 break;
440
441 case DW_CFA_def_cfa:
442 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
443 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
444
445 if (fs->armcc_cfa_offsets_sf)
446 utmp *= fs->data_align;
447
cfc14b3a
MK
448 fs->cfa_offset = utmp;
449 fs->cfa_how = CFA_REG_OFFSET;
450 break;
451
452 case DW_CFA_def_cfa_register:
453 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
4fc771b8
DJ
454 fs->cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->cfa_reg,
455 eh_frame_p);
cfc14b3a
MK
456 fs->cfa_how = CFA_REG_OFFSET;
457 break;
458
459 case DW_CFA_def_cfa_offset:
852483bc 460 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
461
462 if (fs->armcc_cfa_offsets_sf)
463 utmp *= fs->data_align;
464
852483bc 465 fs->cfa_offset = utmp;
cfc14b3a
MK
466 /* cfa_how deliberately not set. */
467 break;
468
a8504492
MK
469 case DW_CFA_nop:
470 break;
471
cfc14b3a
MK
472 case DW_CFA_def_cfa_expression:
473 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
474 fs->cfa_exp = insn_ptr;
475 fs->cfa_how = CFA_EXP;
476 insn_ptr += fs->cfa_exp_len;
477 break;
478
479 case DW_CFA_expression:
480 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 481 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
482 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
483 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
484 fs->regs.reg[reg].loc.exp = insn_ptr;
485 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 486 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
487 insn_ptr += utmp;
488 break;
489
a8504492
MK
490 case DW_CFA_offset_extended_sf:
491 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 492 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
a8504492 493 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 494 offset *= fs->data_align;
a8504492 495 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 496 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
497 fs->regs.reg[reg].loc.offset = offset;
498 break;
499
46ea248b
AO
500 case DW_CFA_val_offset:
501 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
502 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
503 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
504 offset = utmp * fs->data_align;
505 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
506 fs->regs.reg[reg].loc.offset = offset;
507 break;
508
509 case DW_CFA_val_offset_sf:
510 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
511 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
512 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
513 offset *= fs->data_align;
514 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
515 fs->regs.reg[reg].loc.offset = offset;
516 break;
517
518 case DW_CFA_val_expression:
519 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
520 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
521 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
522 fs->regs.reg[reg].loc.exp = insn_ptr;
523 fs->regs.reg[reg].exp_len = utmp;
524 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
525 insn_ptr += utmp;
526 break;
527
a8504492
MK
528 case DW_CFA_def_cfa_sf:
529 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
4fc771b8
DJ
530 fs->cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->cfa_reg,
531 eh_frame_p);
a8504492
MK
532 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
533 fs->cfa_offset = offset * fs->data_align;
534 fs->cfa_how = CFA_REG_OFFSET;
535 break;
536
537 case DW_CFA_def_cfa_offset_sf:
538 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
539 fs->cfa_offset = offset * fs->data_align;
540 /* cfa_how deliberately not set. */
cfc14b3a
MK
541 break;
542
a77f4086
MK
543 case DW_CFA_GNU_window_save:
544 /* This is SPARC-specific code, and contains hard-coded
545 constants for the register numbering scheme used by
546 GCC. Rather than having a architecture-specific
547 operation that's only ever used by a single
548 architecture, we provide the implementation here.
549 Incidentally that's what GCC does too in its
550 unwinder. */
551 {
552 struct gdbarch *gdbarch = get_frame_arch (next_frame);
553 int size = register_size(gdbarch, 0);
554 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
555 for (reg = 8; reg < 16; reg++)
556 {
557 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
558 fs->regs.reg[reg].loc.reg = reg + 16;
559 }
560 for (reg = 16; reg < 32; reg++)
561 {
562 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
563 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
564 }
565 }
566 break;
567
cfc14b3a
MK
568 case DW_CFA_GNU_args_size:
569 /* Ignored. */
570 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
571 break;
572
58894217
JK
573 case DW_CFA_GNU_negative_offset_extended:
574 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 575 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
58894217
JK
576 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
577 offset *= fs->data_align;
578 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
579 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
580 fs->regs.reg[reg].loc.offset = -offset;
581 break;
582
cfc14b3a 583 default:
e2e0b3e5 584 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
cfc14b3a
MK
585 }
586 }
587 }
588
589 /* Don't allow remember/restore between CIE and FDE programs. */
590 dwarf2_frame_state_free_regs (fs->regs.prev);
591 fs->regs.prev = NULL;
592}
8f22cb90 593\f
cfc14b3a 594
8f22cb90 595/* Architecture-specific operations. */
cfc14b3a 596
8f22cb90
MK
597/* Per-architecture data key. */
598static struct gdbarch_data *dwarf2_frame_data;
599
600struct dwarf2_frame_ops
601{
602 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
603 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
604 struct frame_info *);
3ed09a32
DJ
605
606 /* Check whether the frame preceding NEXT_FRAME will be a signal
607 trampoline. */
608 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 609
4fc771b8
DJ
610 /* Convert .eh_frame register number to DWARF register number, or
611 adjust .debug_frame register number. */
612 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
613};
614
8f22cb90
MK
615/* Default architecture-specific register state initialization
616 function. */
617
618static void
619dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1
DM
620 struct dwarf2_frame_state_reg *reg,
621 struct frame_info *next_frame)
8f22cb90
MK
622{
623 /* If we have a register that acts as a program counter, mark it as
624 a destination for the return address. If we have a register that
625 serves as the stack pointer, arrange for it to be filled with the
626 call frame address (CFA). The other registers are marked as
627 unspecified.
628
629 We copy the return address to the program counter, since many
630 parts in GDB assume that it is possible to get the return address
631 by unwinding the program counter register. However, on ISA's
632 with a dedicated return address register, the CFI usually only
633 contains information to unwind that return address register.
634
635 The reason we're treating the stack pointer special here is
636 because in many cases GCC doesn't emit CFI for the stack pointer
637 and implicitly assumes that it is equal to the CFA. This makes
638 some sense since the DWARF specification (version 3, draft 8,
639 p. 102) says that:
640
641 "Typically, the CFA is defined to be the value of the stack
642 pointer at the call site in the previous frame (which may be
643 different from its value on entry to the current frame)."
644
645 However, this isn't true for all platforms supported by GCC
646 (e.g. IBM S/390 and zSeries). Those architectures should provide
647 their own architecture-specific initialization function. */
05cbe71a 648
ad010def 649 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 650 reg->how = DWARF2_FRAME_REG_RA;
ad010def 651 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
652 reg->how = DWARF2_FRAME_REG_CFA;
653}
05cbe71a 654
8f22cb90 655/* Return a default for the architecture-specific operations. */
05cbe71a 656
8f22cb90 657static void *
030f20e1 658dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
659{
660 struct dwarf2_frame_ops *ops;
661
030f20e1 662 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
663 ops->init_reg = dwarf2_frame_default_init_reg;
664 return ops;
665}
05cbe71a 666
8f22cb90
MK
667/* Set the architecture-specific register state initialization
668 function for GDBARCH to INIT_REG. */
669
670void
671dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
672 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
673 struct dwarf2_frame_state_reg *,
674 struct frame_info *))
8f22cb90 675{
030f20e1 676 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 677
8f22cb90
MK
678 ops->init_reg = init_reg;
679}
680
681/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
682
683static void
684dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1
DM
685 struct dwarf2_frame_state_reg *reg,
686 struct frame_info *next_frame)
05cbe71a 687{
030f20e1 688 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 689
aff37fc1 690 ops->init_reg (gdbarch, regnum, reg, next_frame);
05cbe71a 691}
3ed09a32
DJ
692
693/* Set the architecture-specific signal trampoline recognition
694 function for GDBARCH to SIGNAL_FRAME_P. */
695
696void
697dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
698 int (*signal_frame_p) (struct gdbarch *,
699 struct frame_info *))
700{
701 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
702
703 ops->signal_frame_p = signal_frame_p;
704}
705
706/* Query the architecture-specific signal frame recognizer for
707 NEXT_FRAME. */
708
709static int
710dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
711 struct frame_info *next_frame)
712{
713 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
714
715 if (ops->signal_frame_p == NULL)
716 return 0;
717 return ops->signal_frame_p (gdbarch, next_frame);
718}
4bf8967c 719
4fc771b8
DJ
720/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
721 register numbers. */
4bf8967c
AS
722
723void
4fc771b8
DJ
724dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
725 int (*adjust_regnum) (struct gdbarch *,
726 int, int))
4bf8967c
AS
727{
728 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
729
4fc771b8 730 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
731}
732
4fc771b8
DJ
733/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
734 register. */
4bf8967c 735
4fc771b8
DJ
736static int
737dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
4bf8967c
AS
738{
739 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
740
4fc771b8 741 if (ops->adjust_regnum == NULL)
4bf8967c 742 return regnum;
4fc771b8 743 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 744}
303b6f5d
DJ
745
746static void
747dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
748 struct dwarf2_fde *fde)
749{
750 static const char *arm_idents[] = {
751 "ARM C Compiler, ADS",
752 "Thumb C Compiler, ADS",
753 "ARM C++ Compiler, ADS",
754 "Thumb C++ Compiler, ADS",
755 "ARM/Thumb C/C++ Compiler, RVCT"
756 };
757 int i;
758
759 struct symtab *s;
760
761 s = find_pc_symtab (fs->pc);
762 if (s == NULL || s->producer == NULL)
763 return;
764
765 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
766 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
767 {
768 if (fde->cie->version == 1)
769 fs->armcc_cfa_offsets_sf = 1;
770
771 if (fde->cie->version == 1)
772 fs->armcc_cfa_offsets_reversed = 1;
773
774 /* The reversed offset problem is present in some compilers
775 using DWARF3, but it was eventually fixed. Check the ARM
776 defined augmentations, which are in the format "armcc" followed
777 by a list of one-character options. The "+" option means
778 this problem is fixed (no quirk needed). If the armcc
779 augmentation is missing, the quirk is needed. */
780 if (fde->cie->version == 3
781 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
782 || strchr (fde->cie->augmentation + 5, '+') == NULL))
783 fs->armcc_cfa_offsets_reversed = 1;
784
785 return;
786 }
787}
8f22cb90
MK
788\f
789
790struct dwarf2_frame_cache
791{
792 /* DWARF Call Frame Address. */
793 CORE_ADDR cfa;
794
0228dfb9
DJ
795 /* Set if the return address column was marked as undefined. */
796 int undefined_retaddr;
797
8f22cb90
MK
798 /* Saved registers, indexed by GDB register number, not by DWARF
799 register number. */
800 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
801
802 /* Return address register. */
803 struct dwarf2_frame_state_reg retaddr_reg;
8f22cb90 804};
05cbe71a 805
b9362cc7 806static struct dwarf2_frame_cache *
cfc14b3a
MK
807dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
808{
809 struct cleanup *old_chain;
05cbe71a 810 struct gdbarch *gdbarch = get_frame_arch (next_frame);
ad010def
UW
811 const int num_regs = gdbarch_num_regs (gdbarch)
812 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
813 struct dwarf2_frame_cache *cache;
814 struct dwarf2_frame_state *fs;
815 struct dwarf2_fde *fde;
cfc14b3a
MK
816
817 if (*this_cache)
818 return *this_cache;
819
820 /* Allocate a new cache. */
821 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
822 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
823
824 /* Allocate and initialize the frame state. */
825 fs = XMALLOC (struct dwarf2_frame_state);
826 memset (fs, 0, sizeof (struct dwarf2_frame_state));
827 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
828
829 /* Unwind the PC.
830
831 Note that if NEXT_FRAME is never supposed to return (i.e. a call
832 to abort), the compiler might optimize away the instruction at
833 NEXT_FRAME's return address. As a result the return address will
834 point at some random instruction, and the CFI for that
e4e9607c 835 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
836 this problem by substracting 1 from the return address to get an
837 address in the middle of a presumed call instruction (or the
838 instruction in the associated delay slot). This should only be
839 done for "normal" frames and not for resume-type frames (signal
e4e9607c
MK
840 handlers, sentinel frames, dummy frames). The function
841 frame_unwind_address_in_block does just this. It's not clear how
842 reliable the method is though; there is the potential for the
843 register state pre-call being different to that on return. */
93d42b30 844 fs->pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
cfc14b3a
MK
845
846 /* Find the correct FDE. */
847 fde = dwarf2_frame_find_fde (&fs->pc);
848 gdb_assert (fde != NULL);
849
850 /* Extract any interesting information from the CIE. */
851 fs->data_align = fde->cie->data_alignment_factor;
852 fs->code_align = fde->cie->code_alignment_factor;
853 fs->retaddr_column = fde->cie->return_address_register;
854
303b6f5d
DJ
855 /* Check for "quirks" - known bugs in producers. */
856 dwarf2_frame_find_quirks (fs, fde);
857
cfc14b3a
MK
858 /* First decode all the insns in the CIE. */
859 execute_cfa_program (fde->cie->initial_instructions,
4bf8967c 860 fde->cie->end, next_frame, fs, fde->eh_frame_p);
cfc14b3a
MK
861
862 /* Save the initialized register set. */
863 fs->initial = fs->regs;
864 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
865
866 /* Then decode the insns in the FDE up to our target PC. */
4bf8967c
AS
867 execute_cfa_program (fde->instructions, fde->end, next_frame, fs,
868 fde->eh_frame_p);
cfc14b3a
MK
869
870 /* Caclulate the CFA. */
871 switch (fs->cfa_how)
872 {
873 case CFA_REG_OFFSET:
874 cache->cfa = read_reg (next_frame, fs->cfa_reg);
303b6f5d
DJ
875 if (fs->armcc_cfa_offsets_reversed)
876 cache->cfa -= fs->cfa_offset;
877 else
878 cache->cfa += fs->cfa_offset;
cfc14b3a
MK
879 break;
880
881 case CFA_EXP:
882 cache->cfa =
883 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
884 break;
885
886 default:
e2e0b3e5 887 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
cfc14b3a
MK
888 }
889
05cbe71a 890 /* Initialize the register state. */
3e2c4033
AC
891 {
892 int regnum;
e4e9607c 893
3e2c4033 894 for (regnum = 0; regnum < num_regs; regnum++)
aff37fc1 895 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], next_frame);
3e2c4033
AC
896 }
897
898 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
899 location information in the cache. Note that we don't skip the
900 return address column; it's perfectly all right for it to
901 correspond to a real register. If it doesn't correspond to a
902 real register, or if we shouldn't treat it as such,
055d23b8 903 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 904 the range [0, gdbarch_num_regs). */
3e2c4033
AC
905 {
906 int column; /* CFI speak for "register number". */
e4e9607c 907
3e2c4033
AC
908 for (column = 0; column < fs->regs.num_regs; column++)
909 {
3e2c4033 910 /* Use the GDB register number as the destination index. */
ad010def 911 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
912
913 /* If there's no corresponding GDB register, ignore it. */
914 if (regnum < 0 || regnum >= num_regs)
915 continue;
916
917 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
918 of all debug info registers. If it doesn't, complain (but
919 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
920 unspecified register implies "same value" when CFI (draft
921 7) specifies nothing at all. Such a register could equally
922 be interpreted as "undefined". Also note that this check
e4e9607c
MK
923 isn't sufficient; it only checks that all registers in the
924 range [0 .. max column] are specified, and won't detect
3e2c4033 925 problems when a debug info register falls outside of the
e4e9607c 926 table. We need a way of iterating through all the valid
3e2c4033 927 DWARF2 register numbers. */
05cbe71a 928 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
929 {
930 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5
AC
931 complaint (&symfile_complaints, _("\
932incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
f059bf6f
AC
933 gdbarch_register_name (gdbarch, regnum),
934 paddr_nz (fs->pc));
935 }
35889917
MK
936 else
937 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
938 }
939 }
cfc14b3a 940
8d5a9abc
MK
941 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
942 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
943 {
944 int regnum;
945
946 for (regnum = 0; regnum < num_regs; regnum++)
947 {
8d5a9abc
MK
948 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
949 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 950 {
05cbe71a
MK
951 struct dwarf2_frame_state_reg *retaddr_reg =
952 &fs->regs.reg[fs->retaddr_column];
953
d4f10bf2
MK
954 /* It seems rather bizarre to specify an "empty" column as
955 the return adress column. However, this is exactly
956 what GCC does on some targets. It turns out that GCC
957 assumes that the return address can be found in the
958 register corresponding to the return address column.
8d5a9abc
MK
959 Incidentally, that's how we should treat a return
960 address column specifying "same value" too. */
d4f10bf2 961 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
962 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
963 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
964 {
965 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
966 cache->reg[regnum] = *retaddr_reg;
967 else
968 cache->retaddr_reg = *retaddr_reg;
969 }
35889917
MK
970 else
971 {
8d5a9abc
MK
972 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
973 {
974 cache->reg[regnum].loc.reg = fs->retaddr_column;
975 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
976 }
977 else
978 {
979 cache->retaddr_reg.loc.reg = fs->retaddr_column;
980 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
981 }
35889917
MK
982 }
983 }
984 }
985 }
cfc14b3a 986
0228dfb9
DJ
987 if (fs->retaddr_column < fs->regs.num_regs
988 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
989 cache->undefined_retaddr = 1;
990
cfc14b3a
MK
991 do_cleanups (old_chain);
992
993 *this_cache = cache;
994 return cache;
995}
996
997static void
998dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
999 struct frame_id *this_id)
1000{
1001 struct dwarf2_frame_cache *cache =
1002 dwarf2_frame_cache (next_frame, this_cache);
1003
0228dfb9
DJ
1004 if (cache->undefined_retaddr)
1005 return;
1006
93d42b30
DJ
1007 (*this_id) = frame_id_build (cache->cfa,
1008 frame_func_unwind (next_frame, NORMAL_FRAME));
1009}
1010
1011static void
1012dwarf2_signal_frame_this_id (struct frame_info *next_frame, void **this_cache,
1013 struct frame_id *this_id)
1014{
1015 struct dwarf2_frame_cache *cache =
1016 dwarf2_frame_cache (next_frame, this_cache);
1017
1018 if (cache->undefined_retaddr)
1019 return;
1020
1021 (*this_id) = frame_id_build (cache->cfa,
1022 frame_func_unwind (next_frame, SIGTRAMP_FRAME));
cfc14b3a
MK
1023}
1024
1025static void
1026dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1027 int regnum, int *optimizedp,
1028 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1029 int *realnump, gdb_byte *valuep)
cfc14b3a 1030{
05cbe71a 1031 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a
MK
1032 struct dwarf2_frame_cache *cache =
1033 dwarf2_frame_cache (next_frame, this_cache);
1034
1035 switch (cache->reg[regnum].how)
1036 {
05cbe71a 1037 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1038 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1039 mark it as optimized away; the value isn't available. */
cfc14b3a
MK
1040 *optimizedp = 1;
1041 *lvalp = not_lval;
1042 *addrp = 0;
1043 *realnump = -1;
35889917 1044 if (valuep)
cfc14b3a
MK
1045 {
1046 /* In some cases, for example %eflags on the i386, we have
1047 to provide a sane value, even though this register wasn't
1048 saved. Assume we can get it from NEXT_FRAME. */
1049 frame_unwind_register (next_frame, regnum, valuep);
1050 }
1051 break;
1052
05cbe71a 1053 case DWARF2_FRAME_REG_SAVED_OFFSET:
cfc14b3a
MK
1054 *optimizedp = 0;
1055 *lvalp = lval_memory;
1056 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
1057 *realnump = -1;
1058 if (valuep)
1059 {
1060 /* Read the value in from memory. */
05cbe71a 1061 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
cfc14b3a
MK
1062 }
1063 break;
1064
05cbe71a 1065 case DWARF2_FRAME_REG_SAVED_REG:
00b25ff3
AC
1066 *optimizedp = 0;
1067 *lvalp = lval_register;
1068 *addrp = 0;
055d23b8 1069 *realnump = gdbarch_dwarf2_reg_to_regnum
ad010def 1070 (gdbarch, cache->reg[regnum].loc.reg);
00b25ff3
AC
1071 if (valuep)
1072 frame_unwind_register (next_frame, (*realnump), valuep);
cfc14b3a
MK
1073 break;
1074
05cbe71a 1075 case DWARF2_FRAME_REG_SAVED_EXP:
cfc14b3a
MK
1076 *optimizedp = 0;
1077 *lvalp = lval_memory;
1078 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
1079 cache->reg[regnum].exp_len,
1080 next_frame, cache->cfa);
1081 *realnump = -1;
1082 if (valuep)
1083 {
1084 /* Read the value in from memory. */
05cbe71a 1085 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
cfc14b3a
MK
1086 }
1087 break;
1088
46ea248b
AO
1089 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1090 *optimizedp = 0;
1091 *lvalp = not_lval;
1092 *addrp = 0;
1093 *realnump = -1;
1094 if (valuep)
1095 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1096 cache->cfa + cache->reg[regnum].loc.offset);
1097 break;
1098
1099 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1100 *optimizedp = 0;
1101 *lvalp = not_lval;
1102 *addrp = 0;
1103 *realnump = -1;
1104 if (valuep)
1105 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1106 execute_stack_op (cache->reg[regnum].loc.exp,
1107 cache->reg[regnum].exp_len,
1108 next_frame, cache->cfa));
1109 break;
1110
05cbe71a 1111 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1112 /* GCC, in its infinite wisdom decided to not provide unwind
1113 information for registers that are "same value". Since
1114 DWARF2 (3 draft 7) doesn't define such behavior, said
1115 registers are actually undefined (which is different to CFI
1116 "undefined"). Code above issues a complaint about this.
1117 Here just fudge the books, assume GCC, and that the value is
1118 more inner on the stack. */
00b25ff3
AC
1119 *optimizedp = 0;
1120 *lvalp = lval_register;
1121 *addrp = 0;
1122 *realnump = regnum;
1123 if (valuep)
1124 frame_unwind_register (next_frame, (*realnump), valuep);
3e2c4033
AC
1125 break;
1126
05cbe71a 1127 case DWARF2_FRAME_REG_SAME_VALUE:
00b25ff3
AC
1128 *optimizedp = 0;
1129 *lvalp = lval_register;
1130 *addrp = 0;
1131 *realnump = regnum;
1132 if (valuep)
1133 frame_unwind_register (next_frame, (*realnump), valuep);
cfc14b3a
MK
1134 break;
1135
05cbe71a 1136 case DWARF2_FRAME_REG_CFA:
35889917
MK
1137 *optimizedp = 0;
1138 *lvalp = not_lval;
1139 *addrp = 0;
1140 *realnump = -1;
1141 if (valuep)
14d06750 1142 pack_long (valuep, register_type (gdbarch, regnum), cache->cfa);
35889917
MK
1143 break;
1144
ea7963f0
FR
1145 case DWARF2_FRAME_REG_CFA_OFFSET:
1146 *optimizedp = 0;
1147 *lvalp = not_lval;
1148 *addrp = 0;
1149 *realnump = -1;
1150 if (valuep)
14d06750
DJ
1151 pack_long (valuep, register_type (gdbarch, regnum),
1152 cache->cfa + cache->reg[regnum].loc.offset);
ea7963f0
FR
1153 break;
1154
8d5a9abc
MK
1155 case DWARF2_FRAME_REG_RA_OFFSET:
1156 *optimizedp = 0;
1157 *lvalp = not_lval;
1158 *addrp = 0;
1159 *realnump = -1;
1160 if (valuep)
1161 {
1162 CORE_ADDR pc = cache->reg[regnum].loc.offset;
1163
055d23b8 1164 regnum = gdbarch_dwarf2_reg_to_regnum
ad010def 1165 (gdbarch, cache->retaddr_reg.loc.reg);
8d5a9abc 1166 pc += frame_unwind_register_unsigned (next_frame, regnum);
14d06750 1167 pack_long (valuep, register_type (gdbarch, regnum), pc);
8d5a9abc
MK
1168 }
1169 break;
1170
cfc14b3a 1171 default:
e2e0b3e5 1172 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1173 }
1174}
1175
1176static const struct frame_unwind dwarf2_frame_unwind =
1177{
1178 NORMAL_FRAME,
1179 dwarf2_frame_this_id,
1180 dwarf2_frame_prev_register
1181};
1182
3ed09a32
DJ
1183static const struct frame_unwind dwarf2_signal_frame_unwind =
1184{
1185 SIGTRAMP_FRAME,
93d42b30 1186 dwarf2_signal_frame_this_id,
3ed09a32
DJ
1187 dwarf2_frame_prev_register
1188};
1189
cfc14b3a 1190const struct frame_unwind *
336d1bba 1191dwarf2_frame_sniffer (struct frame_info *next_frame)
cfc14b3a 1192{
1ce5d6dd
AC
1193 /* Grab an address that is guarenteed to reside somewhere within the
1194 function. frame_pc_unwind(), for a no-return next function, can
93d42b30
DJ
1195 end up returning something past the end of this function's body.
1196 If the frame we're sniffing for is a signal frame whose start
1197 address is placed on the stack by the OS, its FDE must
1198 extend one byte before its start address or we will miss it. */
1199 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1200 NORMAL_FRAME);
56c987f6
AO
1201 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1202 if (!fde)
3ed09a32
DJ
1203 return NULL;
1204
1205 /* On some targets, signal trampolines may have unwind information.
1206 We need to recognize them so that we set the frame type
1207 correctly. */
1208
56c987f6
AO
1209 if (fde->cie->signal_frame
1210 || dwarf2_frame_signal_frame_p (get_frame_arch (next_frame),
1211 next_frame))
3ed09a32 1212 return &dwarf2_signal_frame_unwind;
cfc14b3a 1213
3ed09a32 1214 return &dwarf2_frame_unwind;
cfc14b3a
MK
1215}
1216\f
1217
1218/* There is no explicitly defined relationship between the CFA and the
1219 location of frame's local variables and arguments/parameters.
1220 Therefore, frame base methods on this page should probably only be
1221 used as a last resort, just to avoid printing total garbage as a
1222 response to the "info frame" command. */
1223
1224static CORE_ADDR
1225dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
1226{
1227 struct dwarf2_frame_cache *cache =
1228 dwarf2_frame_cache (next_frame, this_cache);
1229
1230 return cache->cfa;
1231}
1232
1233static const struct frame_base dwarf2_frame_base =
1234{
1235 &dwarf2_frame_unwind,
1236 dwarf2_frame_base_address,
1237 dwarf2_frame_base_address,
1238 dwarf2_frame_base_address
1239};
1240
1241const struct frame_base *
336d1bba 1242dwarf2_frame_base_sniffer (struct frame_info *next_frame)
cfc14b3a 1243{
93d42b30
DJ
1244 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1245 NORMAL_FRAME);
1246 if (dwarf2_frame_find_fde (&block_addr))
cfc14b3a
MK
1247 return &dwarf2_frame_base;
1248
1249 return NULL;
1250}
1251\f
1252/* A minimal decoding of DWARF2 compilation units. We only decode
1253 what's needed to get to the call frame information. */
1254
1255struct comp_unit
1256{
1257 /* Keep the bfd convenient. */
1258 bfd *abfd;
1259
1260 struct objfile *objfile;
1261
1262 /* Linked list of CIEs for this object. */
1263 struct dwarf2_cie *cie;
1264
cfc14b3a 1265 /* Pointer to the .debug_frame section loaded into memory. */
852483bc 1266 gdb_byte *dwarf_frame_buffer;
cfc14b3a
MK
1267
1268 /* Length of the loaded .debug_frame section. */
1269 unsigned long dwarf_frame_size;
1270
1271 /* Pointer to the .debug_frame section. */
1272 asection *dwarf_frame_section;
0912c7f2
MK
1273
1274 /* Base for DW_EH_PE_datarel encodings. */
1275 bfd_vma dbase;
0fd85043
CV
1276
1277 /* Base for DW_EH_PE_textrel encodings. */
1278 bfd_vma tbase;
cfc14b3a
MK
1279};
1280
8f22cb90 1281const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1282
cfc14b3a 1283static unsigned int
852483bc 1284read_1_byte (bfd *abfd, gdb_byte *buf)
cfc14b3a 1285{
852483bc 1286 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1287}
1288
1289static unsigned int
852483bc 1290read_4_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1291{
852483bc 1292 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1293}
1294
1295static ULONGEST
852483bc 1296read_8_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1297{
852483bc 1298 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1299}
1300
1301static ULONGEST
852483bc 1302read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1303{
1304 ULONGEST result;
1305 unsigned int num_read;
1306 int shift;
852483bc 1307 gdb_byte byte;
cfc14b3a
MK
1308
1309 result = 0;
1310 shift = 0;
1311 num_read = 0;
1312
1313 do
1314 {
1315 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1316 buf++;
1317 num_read++;
1318 result |= ((byte & 0x7f) << shift);
1319 shift += 7;
1320 }
1321 while (byte & 0x80);
1322
1323 *bytes_read_ptr = num_read;
1324
1325 return result;
1326}
1327
1328static LONGEST
852483bc 1329read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1330{
1331 LONGEST result;
1332 int shift;
1333 unsigned int num_read;
852483bc 1334 gdb_byte byte;
cfc14b3a
MK
1335
1336 result = 0;
1337 shift = 0;
1338 num_read = 0;
1339
1340 do
1341 {
1342 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1343 buf++;
1344 num_read++;
1345 result |= ((byte & 0x7f) << shift);
1346 shift += 7;
1347 }
1348 while (byte & 0x80);
1349
77e0b926
DJ
1350 if (shift < 8 * sizeof (result) && (byte & 0x40))
1351 result |= -(((LONGEST)1) << shift);
cfc14b3a
MK
1352
1353 *bytes_read_ptr = num_read;
1354
1355 return result;
1356}
1357
1358static ULONGEST
852483bc 1359read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1360{
1361 LONGEST result;
1362
852483bc 1363 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1364 if (result == 0xffffffff)
1365 {
852483bc 1366 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1367 *bytes_read_ptr = 12;
1368 }
1369 else
1370 *bytes_read_ptr = 4;
1371
1372 return result;
1373}
1374\f
1375
1376/* Pointer encoding helper functions. */
1377
1378/* GCC supports exception handling based on DWARF2 CFI. However, for
1379 technical reasons, it encodes addresses in its FDE's in a different
1380 way. Several "pointer encodings" are supported. The encoding
1381 that's used for a particular FDE is determined by the 'R'
1382 augmentation in the associated CIE. The argument of this
1383 augmentation is a single byte.
1384
1385 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1386 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1387 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1388 address should be interpreted (absolute, relative to the current
1389 position in the FDE, ...). Bit 7, indicates that the address
1390 should be dereferenced. */
1391
852483bc 1392static gdb_byte
cfc14b3a
MK
1393encoding_for_size (unsigned int size)
1394{
1395 switch (size)
1396 {
1397 case 2:
1398 return DW_EH_PE_udata2;
1399 case 4:
1400 return DW_EH_PE_udata4;
1401 case 8:
1402 return DW_EH_PE_udata8;
1403 default:
e2e0b3e5 1404 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1405 }
1406}
1407
1408static unsigned int
852483bc 1409size_of_encoded_value (gdb_byte encoding)
cfc14b3a
MK
1410{
1411 if (encoding == DW_EH_PE_omit)
1412 return 0;
1413
1414 switch (encoding & 0x07)
1415 {
1416 case DW_EH_PE_absptr:
1417 return TYPE_LENGTH (builtin_type_void_data_ptr);
1418 case DW_EH_PE_udata2:
1419 return 2;
1420 case DW_EH_PE_udata4:
1421 return 4;
1422 case DW_EH_PE_udata8:
1423 return 8;
1424 default:
e2e0b3e5 1425 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1426 }
1427}
1428
1429static CORE_ADDR
852483bc
MK
1430read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1431 gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a 1432{
68f6cf99
MK
1433 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1434 ptrdiff_t offset;
cfc14b3a
MK
1435 CORE_ADDR base;
1436
1437 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1438 FDE's. */
1439 if (encoding & DW_EH_PE_indirect)
1440 internal_error (__FILE__, __LINE__,
e2e0b3e5 1441 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1442
68f6cf99
MK
1443 *bytes_read_ptr = 0;
1444
cfc14b3a
MK
1445 switch (encoding & 0x70)
1446 {
1447 case DW_EH_PE_absptr:
1448 base = 0;
1449 break;
1450 case DW_EH_PE_pcrel:
f2fec864 1451 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1452 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1453 break;
0912c7f2
MK
1454 case DW_EH_PE_datarel:
1455 base = unit->dbase;
1456 break;
0fd85043
CV
1457 case DW_EH_PE_textrel:
1458 base = unit->tbase;
1459 break;
03ac2a74
MK
1460 case DW_EH_PE_funcrel:
1461 /* FIXME: kettenis/20040501: For now just pretend
1462 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1463 reading the initial location of an FDE it should be treated
1464 as such, and currently that's the only place where this code
1465 is used. */
1466 base = 0;
1467 break;
68f6cf99
MK
1468 case DW_EH_PE_aligned:
1469 base = 0;
852483bc 1470 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1471 if ((offset % ptr_len) != 0)
1472 {
1473 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1474 buf += *bytes_read_ptr;
1475 }
1476 break;
cfc14b3a 1477 default:
e2e0b3e5 1478 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1479 }
1480
b04de778 1481 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1482 {
1483 encoding |= encoding_for_size (ptr_len);
1484 if (bfd_get_sign_extend_vma (unit->abfd))
1485 encoding |= DW_EH_PE_signed;
1486 }
cfc14b3a
MK
1487
1488 switch (encoding & 0x0f)
1489 {
a81b10ae
MK
1490 case DW_EH_PE_uleb128:
1491 {
1492 ULONGEST value;
852483bc 1493 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1494 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1495 return base + value;
1496 }
cfc14b3a 1497 case DW_EH_PE_udata2:
68f6cf99 1498 *bytes_read_ptr += 2;
cfc14b3a
MK
1499 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1500 case DW_EH_PE_udata4:
68f6cf99 1501 *bytes_read_ptr += 4;
cfc14b3a
MK
1502 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1503 case DW_EH_PE_udata8:
68f6cf99 1504 *bytes_read_ptr += 8;
cfc14b3a 1505 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1506 case DW_EH_PE_sleb128:
1507 {
1508 LONGEST value;
852483bc 1509 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1510 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1511 return base + value;
1512 }
cfc14b3a 1513 case DW_EH_PE_sdata2:
68f6cf99 1514 *bytes_read_ptr += 2;
cfc14b3a
MK
1515 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1516 case DW_EH_PE_sdata4:
68f6cf99 1517 *bytes_read_ptr += 4;
cfc14b3a
MK
1518 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1519 case DW_EH_PE_sdata8:
68f6cf99 1520 *bytes_read_ptr += 8;
cfc14b3a
MK
1521 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1522 default:
e2e0b3e5 1523 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1524 }
1525}
1526\f
1527
1528/* GCC uses a single CIE for all FDEs in a .debug_frame section.
1529 That's why we use a simple linked list here. */
1530
1531static struct dwarf2_cie *
1532find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1533{
1534 struct dwarf2_cie *cie = unit->cie;
1535
1536 while (cie)
1537 {
1538 if (cie->cie_pointer == cie_pointer)
1539 return cie;
1540
1541 cie = cie->next;
1542 }
1543
1544 return NULL;
1545}
1546
1547static void
1548add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1549{
1550 cie->next = unit->cie;
1551 unit->cie = cie;
1552}
1553
1554/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1555 inital location associated with it into *PC. */
1556
1557static struct dwarf2_fde *
1558dwarf2_frame_find_fde (CORE_ADDR *pc)
1559{
1560 struct objfile *objfile;
1561
1562 ALL_OBJFILES (objfile)
1563 {
1564 struct dwarf2_fde *fde;
1565 CORE_ADDR offset;
1566
8f22cb90 1567 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
4ae9ee8e
DJ
1568 if (fde == NULL)
1569 continue;
1570
1571 gdb_assert (objfile->section_offsets);
1572 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1573
cfc14b3a
MK
1574 while (fde)
1575 {
1576 if (*pc >= fde->initial_location + offset
1577 && *pc < fde->initial_location + offset + fde->address_range)
1578 {
1579 *pc = fde->initial_location + offset;
1580 return fde;
1581 }
1582
1583 fde = fde->next;
1584 }
1585 }
1586
1587 return NULL;
1588}
1589
1590static void
1591add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1592{
8f22cb90
MK
1593 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1594 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
cfc14b3a
MK
1595}
1596
1597#ifdef CC_HAS_LONG_LONG
1598#define DW64_CIE_ID 0xffffffffffffffffULL
1599#else
1600#define DW64_CIE_ID ~0
1601#endif
1602
852483bc
MK
1603static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1604 int eh_frame_p);
cfc14b3a 1605
6896c0c7
RH
1606/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1607 the next byte to be processed. */
852483bc
MK
1608static gdb_byte *
1609decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
cfc14b3a 1610{
852483bc 1611 gdb_byte *buf, *end;
cfc14b3a
MK
1612 LONGEST length;
1613 unsigned int bytes_read;
6896c0c7
RH
1614 int dwarf64_p;
1615 ULONGEST cie_id;
cfc14b3a 1616 ULONGEST cie_pointer;
cfc14b3a 1617
6896c0c7 1618 buf = start;
cfc14b3a
MK
1619 length = read_initial_length (unit->abfd, buf, &bytes_read);
1620 buf += bytes_read;
1621 end = buf + length;
1622
6896c0c7
RH
1623 /* Are we still within the section? */
1624 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1625 return NULL;
1626
cfc14b3a
MK
1627 if (length == 0)
1628 return end;
1629
6896c0c7
RH
1630 /* Distinguish between 32 and 64-bit encoded frame info. */
1631 dwarf64_p = (bytes_read == 12);
cfc14b3a 1632
6896c0c7 1633 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1634 if (eh_frame_p)
1635 cie_id = 0;
1636 else if (dwarf64_p)
1637 cie_id = DW64_CIE_ID;
6896c0c7
RH
1638 else
1639 cie_id = DW_CIE_ID;
cfc14b3a
MK
1640
1641 if (dwarf64_p)
1642 {
1643 cie_pointer = read_8_bytes (unit->abfd, buf);
1644 buf += 8;
1645 }
1646 else
1647 {
1648 cie_pointer = read_4_bytes (unit->abfd, buf);
1649 buf += 4;
1650 }
1651
1652 if (cie_pointer == cie_id)
1653 {
1654 /* This is a CIE. */
1655 struct dwarf2_cie *cie;
1656 char *augmentation;
28ba0b33 1657 unsigned int cie_version;
cfc14b3a
MK
1658
1659 /* Record the offset into the .debug_frame section of this CIE. */
1660 cie_pointer = start - unit->dwarf_frame_buffer;
1661
1662 /* Check whether we've already read it. */
1663 if (find_cie (unit, cie_pointer))
1664 return end;
1665
1666 cie = (struct dwarf2_cie *)
8b92e4d5 1667 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1668 sizeof (struct dwarf2_cie));
1669 cie->initial_instructions = NULL;
1670 cie->cie_pointer = cie_pointer;
1671
1672 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1673 depends on the target address size. */
1674 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1675
56c987f6
AO
1676 /* We'll determine the final value later, but we need to
1677 initialize it conservatively. */
1678 cie->signal_frame = 0;
1679
cfc14b3a 1680 /* Check version number. */
28ba0b33
PB
1681 cie_version = read_1_byte (unit->abfd, buf);
1682 if (cie_version != 1 && cie_version != 3)
6896c0c7 1683 return NULL;
303b6f5d 1684 cie->version = cie_version;
cfc14b3a
MK
1685 buf += 1;
1686
1687 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1688 cie->augmentation = augmentation = (char *) buf;
852483bc 1689 buf += (strlen (augmentation) + 1);
cfc14b3a 1690
303b6f5d
DJ
1691 /* Ignore armcc augmentations. We only use them for quirks,
1692 and that doesn't happen until later. */
1693 if (strncmp (augmentation, "armcc", 5) == 0)
1694 augmentation += strlen (augmentation);
1695
cfc14b3a
MK
1696 /* The GCC 2.x "eh" augmentation has a pointer immediately
1697 following the augmentation string, so it must be handled
1698 first. */
1699 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1700 {
1701 /* Skip. */
1702 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1703 augmentation += 2;
1704 }
1705
1706 cie->code_alignment_factor =
1707 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1708 buf += bytes_read;
1709
1710 cie->data_alignment_factor =
1711 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1712 buf += bytes_read;
1713
28ba0b33
PB
1714 if (cie_version == 1)
1715 {
1716 cie->return_address_register = read_1_byte (unit->abfd, buf);
1717 bytes_read = 1;
1718 }
1719 else
1720 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1721 &bytes_read);
4fc771b8
DJ
1722 cie->return_address_register
1723 = dwarf2_frame_adjust_regnum (current_gdbarch,
1724 cie->return_address_register,
1725 eh_frame_p);
4bf8967c 1726
28ba0b33 1727 buf += bytes_read;
cfc14b3a 1728
7131cb6e
RH
1729 cie->saw_z_augmentation = (*augmentation == 'z');
1730 if (cie->saw_z_augmentation)
cfc14b3a
MK
1731 {
1732 ULONGEST length;
1733
1734 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1735 buf += bytes_read;
6896c0c7
RH
1736 if (buf > end)
1737 return NULL;
cfc14b3a
MK
1738 cie->initial_instructions = buf + length;
1739 augmentation++;
1740 }
1741
1742 while (*augmentation)
1743 {
1744 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1745 if (*augmentation == 'L')
1746 {
1747 /* Skip. */
1748 buf++;
1749 augmentation++;
1750 }
1751
1752 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1753 else if (*augmentation == 'R')
1754 {
1755 cie->encoding = *buf++;
1756 augmentation++;
1757 }
1758
1759 /* "P" indicates a personality routine in the CIE augmentation. */
1760 else if (*augmentation == 'P')
1761 {
1234d960 1762 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1763 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
f724bf08
MK
1764 read_encoded_value (unit, encoding, buf, &bytes_read);
1765 buf += bytes_read;
cfc14b3a
MK
1766 augmentation++;
1767 }
1768
56c987f6
AO
1769 /* "S" indicates a signal frame, such that the return
1770 address must not be decremented to locate the call frame
1771 info for the previous frame; it might even be the first
1772 instruction of a function, so decrementing it would take
1773 us to a different function. */
1774 else if (*augmentation == 'S')
1775 {
1776 cie->signal_frame = 1;
1777 augmentation++;
1778 }
1779
3e9a2e52
DJ
1780 /* Otherwise we have an unknown augmentation. Assume that either
1781 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
1782 else
1783 {
3e9a2e52
DJ
1784 if (cie->initial_instructions)
1785 buf = cie->initial_instructions;
cfc14b3a
MK
1786 break;
1787 }
1788 }
1789
1790 cie->initial_instructions = buf;
1791 cie->end = end;
1792
1793 add_cie (unit, cie);
1794 }
1795 else
1796 {
1797 /* This is a FDE. */
1798 struct dwarf2_fde *fde;
1799
6896c0c7
RH
1800 /* In an .eh_frame section, the CIE pointer is the delta between the
1801 address within the FDE where the CIE pointer is stored and the
1802 address of the CIE. Convert it to an offset into the .eh_frame
1803 section. */
cfc14b3a
MK
1804 if (eh_frame_p)
1805 {
cfc14b3a
MK
1806 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1807 cie_pointer -= (dwarf64_p ? 8 : 4);
1808 }
1809
6896c0c7
RH
1810 /* In either case, validate the result is still within the section. */
1811 if (cie_pointer >= unit->dwarf_frame_size)
1812 return NULL;
1813
cfc14b3a 1814 fde = (struct dwarf2_fde *)
8b92e4d5 1815 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1816 sizeof (struct dwarf2_fde));
1817 fde->cie = find_cie (unit, cie_pointer);
1818 if (fde->cie == NULL)
1819 {
1820 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1821 eh_frame_p);
1822 fde->cie = find_cie (unit, cie_pointer);
1823 }
1824
1825 gdb_assert (fde->cie != NULL);
1826
1827 fde->initial_location =
1828 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1829 buf += bytes_read;
1830
1831 fde->address_range =
1832 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1833 buf += bytes_read;
1834
7131cb6e
RH
1835 /* A 'z' augmentation in the CIE implies the presence of an
1836 augmentation field in the FDE as well. The only thing known
1837 to be in here at present is the LSDA entry for EH. So we
1838 can skip the whole thing. */
1839 if (fde->cie->saw_z_augmentation)
1840 {
1841 ULONGEST length;
1842
1843 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1844 buf += bytes_read + length;
6896c0c7
RH
1845 if (buf > end)
1846 return NULL;
7131cb6e
RH
1847 }
1848
cfc14b3a
MK
1849 fde->instructions = buf;
1850 fde->end = end;
1851
4bf8967c
AS
1852 fde->eh_frame_p = eh_frame_p;
1853
cfc14b3a
MK
1854 add_fde (unit, fde);
1855 }
1856
1857 return end;
1858}
6896c0c7
RH
1859
1860/* Read a CIE or FDE in BUF and decode it. */
852483bc
MK
1861static gdb_byte *
1862decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
6896c0c7
RH
1863{
1864 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
852483bc 1865 gdb_byte *ret;
6896c0c7
RH
1866 const char *msg;
1867 ptrdiff_t start_offset;
1868
1869 while (1)
1870 {
1871 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1872 if (ret != NULL)
1873 break;
1874
1875 /* We have corrupt input data of some form. */
1876
1877 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1878 and mismatches wrt padding and alignment of debug sections. */
1879 /* Note that there is no requirement in the standard for any
1880 alignment at all in the frame unwind sections. Testing for
1881 alignment before trying to interpret data would be incorrect.
1882
1883 However, GCC traditionally arranged for frame sections to be
1884 sized such that the FDE length and CIE fields happen to be
1885 aligned (in theory, for performance). This, unfortunately,
1886 was done with .align directives, which had the side effect of
1887 forcing the section to be aligned by the linker.
1888
1889 This becomes a problem when you have some other producer that
1890 creates frame sections that are not as strictly aligned. That
1891 produces a hole in the frame info that gets filled by the
1892 linker with zeros.
1893
1894 The GCC behaviour is arguably a bug, but it's effectively now
1895 part of the ABI, so we're now stuck with it, at least at the
1896 object file level. A smart linker may decide, in the process
1897 of compressing duplicate CIE information, that it can rewrite
1898 the entire output section without this extra padding. */
1899
1900 start_offset = start - unit->dwarf_frame_buffer;
1901 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1902 {
1903 start += 4 - (start_offset & 3);
1904 workaround = ALIGN4;
1905 continue;
1906 }
1907 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1908 {
1909 start += 8 - (start_offset & 7);
1910 workaround = ALIGN8;
1911 continue;
1912 }
1913
1914 /* Nothing left to try. Arrange to return as if we've consumed
1915 the entire input section. Hopefully we'll get valid info from
1916 the other of .debug_frame/.eh_frame. */
1917 workaround = FAIL;
1918 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1919 break;
1920 }
1921
1922 switch (workaround)
1923 {
1924 case NONE:
1925 break;
1926
1927 case ALIGN4:
1928 complaint (&symfile_complaints,
e2e0b3e5 1929 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
1930 unit->dwarf_frame_section->owner->filename,
1931 unit->dwarf_frame_section->name);
1932 break;
1933
1934 case ALIGN8:
1935 complaint (&symfile_complaints,
e2e0b3e5 1936 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
1937 unit->dwarf_frame_section->owner->filename,
1938 unit->dwarf_frame_section->name);
1939 break;
1940
1941 default:
1942 complaint (&symfile_complaints,
e2e0b3e5 1943 _("Corrupt data in %s:%s"),
6896c0c7
RH
1944 unit->dwarf_frame_section->owner->filename,
1945 unit->dwarf_frame_section->name);
1946 break;
1947 }
1948
1949 return ret;
1950}
cfc14b3a
MK
1951\f
1952
1953/* FIXME: kettenis/20030504: This still needs to be integrated with
1954 dwarf2read.c in a better way. */
1955
1956/* Imported from dwarf2read.c. */
cfc14b3a 1957extern asection *dwarf_frame_section;
cfc14b3a
MK
1958extern asection *dwarf_eh_frame_section;
1959
1960/* Imported from dwarf2read.c. */
1193688d 1961extern gdb_byte *dwarf2_read_section (struct objfile *objfile, asection *sectp);
cfc14b3a
MK
1962
1963void
1964dwarf2_build_frame_info (struct objfile *objfile)
1965{
1966 struct comp_unit unit;
852483bc 1967 gdb_byte *frame_ptr;
cfc14b3a
MK
1968
1969 /* Build a minimal decoding of the DWARF2 compilation unit. */
1970 unit.abfd = objfile->obfd;
1971 unit.objfile = objfile;
0912c7f2 1972 unit.dbase = 0;
0fd85043 1973 unit.tbase = 0;
cfc14b3a
MK
1974
1975 /* First add the information from the .eh_frame section. That way,
1976 the FDEs from that section are searched last. */
188dd5d6 1977 if (dwarf_eh_frame_section)
cfc14b3a 1978 {
0fd85043 1979 asection *got, *txt;
0912c7f2 1980
cfc14b3a
MK
1981 unit.cie = NULL;
1982 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a
MK
1983 dwarf_eh_frame_section);
1984
2c500098 1985 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
cfc14b3a
MK
1986 unit.dwarf_frame_section = dwarf_eh_frame_section;
1987
0912c7f2 1988 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
37b517aa
MK
1989 that is used for the i386/amd64 target, which currently is
1990 the only target in GCC that supports/uses the
1991 DW_EH_PE_datarel encoding. */
0912c7f2
MK
1992 got = bfd_get_section_by_name (unit.abfd, ".got");
1993 if (got)
1994 unit.dbase = got->vma;
1995
22c7ba1a
MK
1996 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1997 so far. */
0fd85043
CV
1998 txt = bfd_get_section_by_name (unit.abfd, ".text");
1999 if (txt)
2000 unit.tbase = txt->vma;
2001
cfc14b3a
MK
2002 frame_ptr = unit.dwarf_frame_buffer;
2003 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2004 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
2005 }
2006
188dd5d6 2007 if (dwarf_frame_section)
cfc14b3a
MK
2008 {
2009 unit.cie = NULL;
2010 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a 2011 dwarf_frame_section);
2c500098 2012 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
cfc14b3a
MK
2013 unit.dwarf_frame_section = dwarf_frame_section;
2014
2015 frame_ptr = unit.dwarf_frame_buffer;
2016 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2017 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
2018 }
2019}
0d0e1a63
MK
2020
2021/* Provide a prototype to silence -Wmissing-prototypes. */
2022void _initialize_dwarf2_frame (void);
2023
2024void
2025_initialize_dwarf2_frame (void)
2026{
030f20e1 2027 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2028 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2029}
This page took 0.460181 seconds and 4 git commands to generate.