* defs.h (strlen_paddr, paddr, paddr_nz): Remove.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
0fb0cc75
JB
3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
cfc14b3a
MK
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
22
23#include "defs.h"
24#include "dwarf2expr.h"
25#include "elf/dwarf2.h"
26#include "frame.h"
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
31#include "symtab.h"
32#include "objfiles.h"
33#include "regcache.h"
f2da6b3a 34#include "value.h"
cfc14b3a
MK
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
6896c0c7 39#include "complaints.h"
cfc14b3a
MK
40#include "dwarf2-frame.h"
41
ae0d2f24
UW
42struct comp_unit;
43
cfc14b3a
MK
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
ae0d2f24
UW
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
cfc14b3a
MK
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
852483bc
MK
68 gdb_byte *initial_instructions;
69 gdb_byte *end;
cfc14b3a 70
303b6f5d
DJ
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
cfc14b3a 74 /* Encoding of addresses. */
852483bc 75 gdb_byte encoding;
cfc14b3a 76
ae0d2f24
UW
77 /* Target address size in bytes. */
78 int addr_size;
79
7131cb6e
RH
80 /* True if a 'z' augmentation existed. */
81 unsigned char saw_z_augmentation;
82
56c987f6
AO
83 /* True if an 'S' augmentation existed. */
84 unsigned char signal_frame;
85
303b6f5d
DJ
86 /* The version recorded in the CIE. */
87 unsigned char version;
88
cfc14b3a
MK
89 struct dwarf2_cie *next;
90};
91
92/* Frame Description Entry (FDE). */
93
94struct dwarf2_fde
95{
96 /* CIE for this FDE. */
97 struct dwarf2_cie *cie;
98
99 /* First location associated with this FDE. */
100 CORE_ADDR initial_location;
101
102 /* Number of bytes of program instructions described by this FDE. */
103 CORE_ADDR address_range;
104
105 /* Instruction sequence. */
852483bc
MK
106 gdb_byte *instructions;
107 gdb_byte *end;
cfc14b3a 108
4bf8967c
AS
109 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
110 section. */
111 unsigned char eh_frame_p;
112
cfc14b3a
MK
113 struct dwarf2_fde *next;
114};
115
ae0d2f24
UW
116/* A minimal decoding of DWARF2 compilation units. We only decode
117 what's needed to get to the call frame information. */
118
119struct comp_unit
120{
121 /* Keep the bfd convenient. */
122 bfd *abfd;
123
124 struct objfile *objfile;
125
126 /* Linked list of CIEs for this object. */
127 struct dwarf2_cie *cie;
128
129 /* Pointer to the .debug_frame section loaded into memory. */
130 gdb_byte *dwarf_frame_buffer;
131
132 /* Length of the loaded .debug_frame section. */
c098b58b 133 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
134
135 /* Pointer to the .debug_frame section. */
136 asection *dwarf_frame_section;
137
138 /* Base for DW_EH_PE_datarel encodings. */
139 bfd_vma dbase;
140
141 /* Base for DW_EH_PE_textrel encodings. */
142 bfd_vma tbase;
143};
144
cfc14b3a 145static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
4fc771b8
DJ
146
147static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
148 int eh_frame_p);
ae0d2f24
UW
149
150static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
151 int ptr_len, gdb_byte *buf,
152 unsigned int *bytes_read_ptr,
153 CORE_ADDR func_base);
cfc14b3a
MK
154\f
155
156/* Structure describing a frame state. */
157
158struct dwarf2_frame_state
159{
160 /* Each register save state can be described in terms of a CFA slot,
161 another register, or a location expression. */
162 struct dwarf2_frame_state_reg_info
163 {
05cbe71a 164 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
165 int num_regs;
166
2fd481e1
PP
167 LONGEST cfa_offset;
168 ULONGEST cfa_reg;
169 enum {
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
173 } cfa_how;
174 gdb_byte *cfa_exp;
175
cfc14b3a
MK
176 /* Used to implement DW_CFA_remember_state. */
177 struct dwarf2_frame_state_reg_info *prev;
178 } regs;
179
cfc14b3a
MK
180 /* The PC described by the current frame state. */
181 CORE_ADDR pc;
182
183 /* Initial register set from the CIE.
184 Used to implement DW_CFA_restore. */
185 struct dwarf2_frame_state_reg_info initial;
186
187 /* The information we care about from the CIE. */
188 LONGEST data_align;
189 ULONGEST code_align;
190 ULONGEST retaddr_column;
303b6f5d
DJ
191
192 /* Flags for known producer quirks. */
193
194 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
195 and DW_CFA_def_cfa_offset takes a factored offset. */
196 int armcc_cfa_offsets_sf;
197
198 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
199 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
200 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
201};
202
203/* Store the length the expression for the CFA in the `cfa_reg' field,
204 which is unused in that case. */
205#define cfa_exp_len cfa_reg
206
f57d151a 207/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
208 columns. If necessary, enlarge the register set. */
209
210static void
211dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
212 int num_regs)
213{
214 size_t size = sizeof (struct dwarf2_frame_state_reg);
215
216 if (num_regs <= rs->num_regs)
217 return;
218
219 rs->reg = (struct dwarf2_frame_state_reg *)
220 xrealloc (rs->reg, num_regs * size);
221
222 /* Initialize newly allocated registers. */
2473a4a9 223 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
224 rs->num_regs = num_regs;
225}
226
227/* Copy the register columns in register set RS into newly allocated
228 memory and return a pointer to this newly created copy. */
229
230static struct dwarf2_frame_state_reg *
231dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
232{
d10891d4 233 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
234 struct dwarf2_frame_state_reg *reg;
235
236 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
237 memcpy (reg, rs->reg, size);
238
239 return reg;
240}
241
242/* Release the memory allocated to register set RS. */
243
244static void
245dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
246{
247 if (rs)
248 {
249 dwarf2_frame_state_free_regs (rs->prev);
250
251 xfree (rs->reg);
252 xfree (rs);
253 }
254}
255
256/* Release the memory allocated to the frame state FS. */
257
258static void
259dwarf2_frame_state_free (void *p)
260{
261 struct dwarf2_frame_state *fs = p;
262
263 dwarf2_frame_state_free_regs (fs->initial.prev);
264 dwarf2_frame_state_free_regs (fs->regs.prev);
265 xfree (fs->initial.reg);
266 xfree (fs->regs.reg);
267 xfree (fs);
268}
269\f
270
271/* Helper functions for execute_stack_op. */
272
273static CORE_ADDR
274read_reg (void *baton, int reg)
275{
4a4e5149
DJ
276 struct frame_info *this_frame = (struct frame_info *) baton;
277 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 278 int regnum;
852483bc 279 gdb_byte *buf;
cfc14b3a 280
ad010def 281 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 282
852483bc 283 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 284 get_frame_register (this_frame, regnum, buf);
f2da6b3a
DJ
285
286 /* Convert the register to an integer. This returns a LONGEST
287 rather than a CORE_ADDR, but unpack_pointer does the same thing
288 under the covers, and this makes more sense for non-pointer
289 registers. Maybe read_reg and the associated interfaces should
290 deal with "struct value" instead of CORE_ADDR. */
291 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
292}
293
294static void
852483bc 295read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
296{
297 read_memory (addr, buf, len);
298}
299
300static void
852483bc 301no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
cfc14b3a
MK
302{
303 internal_error (__FILE__, __LINE__,
e2e0b3e5 304 _("Support for DW_OP_fbreg is unimplemented"));
cfc14b3a
MK
305}
306
307static CORE_ADDR
308no_get_tls_address (void *baton, CORE_ADDR offset)
309{
310 internal_error (__FILE__, __LINE__,
e2e0b3e5 311 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
cfc14b3a
MK
312}
313
a6a5a945
LM
314/* Execute the required actions for both the DW_CFA_restore and
315DW_CFA_restore_extended instructions. */
316static void
317dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
318 struct dwarf2_frame_state *fs, int eh_frame_p)
319{
320 ULONGEST reg;
321
322 gdb_assert (fs->initial.reg);
323 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
324 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
325
326 /* Check if this register was explicitly initialized in the
327 CIE initial instructions. If not, default the rule to
328 UNSPECIFIED. */
329 if (reg < fs->initial.num_regs)
330 fs->regs.reg[reg] = fs->initial.reg[reg];
331 else
332 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
333
334 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
335 complaint (&symfile_complaints, _("\
336incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 337register %s (#%d) at %s"),
a6a5a945
LM
338 gdbarch_register_name
339 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
340 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 341 paddress (gdbarch, fs->pc));
a6a5a945
LM
342}
343
cfc14b3a 344static CORE_ADDR
ae0d2f24 345execute_stack_op (gdb_byte *exp, ULONGEST len, int addr_size,
4a4e5149 346 struct frame_info *this_frame, CORE_ADDR initial)
cfc14b3a
MK
347{
348 struct dwarf_expr_context *ctx;
349 CORE_ADDR result;
350
351 ctx = new_dwarf_expr_context ();
f7fd4728 352 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 353 ctx->addr_size = addr_size;
4a4e5149 354 ctx->baton = this_frame;
cfc14b3a
MK
355 ctx->read_reg = read_reg;
356 ctx->read_mem = read_mem;
357 ctx->get_frame_base = no_get_frame_base;
358 ctx->get_tls_address = no_get_tls_address;
359
360 dwarf_expr_push (ctx, initial);
361 dwarf_expr_eval (ctx, exp, len);
362 result = dwarf_expr_fetch (ctx, 0);
363
364 if (ctx->in_reg)
4a4e5149 365 result = read_reg (this_frame, result);
cfc14b3a
MK
366
367 free_dwarf_expr_context (ctx);
368
369 return result;
370}
371\f
372
373static void
ae0d2f24 374execute_cfa_program (struct dwarf2_fde *fde, gdb_byte *insn_ptr,
4a4e5149 375 gdb_byte *insn_end, struct frame_info *this_frame,
ae0d2f24 376 struct dwarf2_frame_state *fs)
cfc14b3a 377{
ae0d2f24 378 int eh_frame_p = fde->eh_frame_p;
4a4e5149 379 CORE_ADDR pc = get_frame_pc (this_frame);
cfc14b3a 380 int bytes_read;
4a4e5149 381 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a
MK
382
383 while (insn_ptr < insn_end && fs->pc <= pc)
384 {
852483bc 385 gdb_byte insn = *insn_ptr++;
cfc14b3a
MK
386 ULONGEST utmp, reg;
387 LONGEST offset;
388
389 if ((insn & 0xc0) == DW_CFA_advance_loc)
390 fs->pc += (insn & 0x3f) * fs->code_align;
391 else if ((insn & 0xc0) == DW_CFA_offset)
392 {
393 reg = insn & 0x3f;
4fc771b8 394 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
395 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
396 offset = utmp * fs->data_align;
397 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 398 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
399 fs->regs.reg[reg].loc.offset = offset;
400 }
401 else if ((insn & 0xc0) == DW_CFA_restore)
402 {
cfc14b3a 403 reg = insn & 0x3f;
a6a5a945 404 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
405 }
406 else
407 {
408 switch (insn)
409 {
410 case DW_CFA_set_loc:
ae0d2f24
UW
411 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
412 fde->cie->addr_size, insn_ptr,
413 &bytes_read, fde->initial_location);
414 /* Apply the objfile offset for relocatable objects. */
415 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
416 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
417 insn_ptr += bytes_read;
418 break;
419
420 case DW_CFA_advance_loc1:
421 utmp = extract_unsigned_integer (insn_ptr, 1);
422 fs->pc += utmp * fs->code_align;
423 insn_ptr++;
424 break;
425 case DW_CFA_advance_loc2:
426 utmp = extract_unsigned_integer (insn_ptr, 2);
427 fs->pc += utmp * fs->code_align;
428 insn_ptr += 2;
429 break;
430 case DW_CFA_advance_loc4:
431 utmp = extract_unsigned_integer (insn_ptr, 4);
432 fs->pc += utmp * fs->code_align;
433 insn_ptr += 4;
434 break;
435
436 case DW_CFA_offset_extended:
437 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 438 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
439 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
440 offset = utmp * fs->data_align;
441 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 442 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
443 fs->regs.reg[reg].loc.offset = offset;
444 break;
445
446 case DW_CFA_restore_extended:
cfc14b3a 447 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 448 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
449 break;
450
451 case DW_CFA_undefined:
452 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 453 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 454 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 455 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
456 break;
457
458 case DW_CFA_same_value:
459 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 460 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 461 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 462 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
463 break;
464
465 case DW_CFA_register:
466 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 467 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 468 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 469 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 470 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 471 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
472 fs->regs.reg[reg].loc.reg = utmp;
473 break;
474
475 case DW_CFA_remember_state:
476 {
477 struct dwarf2_frame_state_reg_info *new_rs;
478
479 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
480 *new_rs = fs->regs;
481 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
482 fs->regs.prev = new_rs;
483 }
484 break;
485
486 case DW_CFA_restore_state:
487 {
488 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
489
50ea7769
MK
490 if (old_rs == NULL)
491 {
e2e0b3e5 492 complaint (&symfile_complaints, _("\
5af949e3
UW
493bad CFI data; mismatched DW_CFA_restore_state at %s"),
494 paddress (gdbarch, fs->pc));
50ea7769
MK
495 }
496 else
497 {
498 xfree (fs->regs.reg);
499 fs->regs = *old_rs;
500 xfree (old_rs);
501 }
cfc14b3a
MK
502 }
503 break;
504
505 case DW_CFA_def_cfa:
2fd481e1 506 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
cfc14b3a 507 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
508
509 if (fs->armcc_cfa_offsets_sf)
510 utmp *= fs->data_align;
511
2fd481e1
PP
512 fs->regs.cfa_offset = utmp;
513 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
514 break;
515
516 case DW_CFA_def_cfa_register:
2fd481e1
PP
517 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
518 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
519 fs->regs.cfa_reg,
520 eh_frame_p);
521 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
522 break;
523
524 case DW_CFA_def_cfa_offset:
852483bc 525 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
526
527 if (fs->armcc_cfa_offsets_sf)
528 utmp *= fs->data_align;
529
2fd481e1 530 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
531 /* cfa_how deliberately not set. */
532 break;
533
a8504492
MK
534 case DW_CFA_nop:
535 break;
536
cfc14b3a 537 case DW_CFA_def_cfa_expression:
2fd481e1
PP
538 insn_ptr = read_uleb128 (insn_ptr, insn_end,
539 &fs->regs.cfa_exp_len);
540 fs->regs.cfa_exp = insn_ptr;
541 fs->regs.cfa_how = CFA_EXP;
542 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
543 break;
544
545 case DW_CFA_expression:
546 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 547 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
548 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
549 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
550 fs->regs.reg[reg].loc.exp = insn_ptr;
551 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 552 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
553 insn_ptr += utmp;
554 break;
555
a8504492
MK
556 case DW_CFA_offset_extended_sf:
557 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 558 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
a8504492 559 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 560 offset *= fs->data_align;
a8504492 561 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 562 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
563 fs->regs.reg[reg].loc.offset = offset;
564 break;
565
46ea248b
AO
566 case DW_CFA_val_offset:
567 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
568 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
569 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
570 offset = utmp * fs->data_align;
571 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
572 fs->regs.reg[reg].loc.offset = offset;
573 break;
574
575 case DW_CFA_val_offset_sf:
576 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
577 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
578 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
579 offset *= fs->data_align;
580 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
581 fs->regs.reg[reg].loc.offset = offset;
582 break;
583
584 case DW_CFA_val_expression:
585 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
586 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
587 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
588 fs->regs.reg[reg].loc.exp = insn_ptr;
589 fs->regs.reg[reg].exp_len = utmp;
590 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
591 insn_ptr += utmp;
592 break;
593
a8504492 594 case DW_CFA_def_cfa_sf:
2fd481e1
PP
595 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
596 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
597 fs->regs.cfa_reg,
598 eh_frame_p);
a8504492 599 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
600 fs->regs.cfa_offset = offset * fs->data_align;
601 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
602 break;
603
604 case DW_CFA_def_cfa_offset_sf:
605 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 606 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 607 /* cfa_how deliberately not set. */
cfc14b3a
MK
608 break;
609
a77f4086
MK
610 case DW_CFA_GNU_window_save:
611 /* This is SPARC-specific code, and contains hard-coded
612 constants for the register numbering scheme used by
613 GCC. Rather than having a architecture-specific
614 operation that's only ever used by a single
615 architecture, we provide the implementation here.
616 Incidentally that's what GCC does too in its
617 unwinder. */
618 {
4a4e5149 619 int size = register_size (gdbarch, 0);
a77f4086
MK
620 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
621 for (reg = 8; reg < 16; reg++)
622 {
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
624 fs->regs.reg[reg].loc.reg = reg + 16;
625 }
626 for (reg = 16; reg < 32; reg++)
627 {
628 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
629 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
630 }
631 }
632 break;
633
cfc14b3a
MK
634 case DW_CFA_GNU_args_size:
635 /* Ignored. */
636 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
637 break;
638
58894217
JK
639 case DW_CFA_GNU_negative_offset_extended:
640 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 641 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
58894217
JK
642 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
643 offset *= fs->data_align;
644 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
645 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
646 fs->regs.reg[reg].loc.offset = -offset;
647 break;
648
cfc14b3a 649 default:
e2e0b3e5 650 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
cfc14b3a
MK
651 }
652 }
653 }
654
655 /* Don't allow remember/restore between CIE and FDE programs. */
656 dwarf2_frame_state_free_regs (fs->regs.prev);
657 fs->regs.prev = NULL;
658}
8f22cb90 659\f
cfc14b3a 660
8f22cb90 661/* Architecture-specific operations. */
cfc14b3a 662
8f22cb90
MK
663/* Per-architecture data key. */
664static struct gdbarch_data *dwarf2_frame_data;
665
666struct dwarf2_frame_ops
667{
668 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
669 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
670 struct frame_info *);
3ed09a32 671
4a4e5149 672 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 673 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 674
4fc771b8
DJ
675 /* Convert .eh_frame register number to DWARF register number, or
676 adjust .debug_frame register number. */
677 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
678};
679
8f22cb90
MK
680/* Default architecture-specific register state initialization
681 function. */
682
683static void
684dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 685 struct dwarf2_frame_state_reg *reg,
4a4e5149 686 struct frame_info *this_frame)
8f22cb90
MK
687{
688 /* If we have a register that acts as a program counter, mark it as
689 a destination for the return address. If we have a register that
690 serves as the stack pointer, arrange for it to be filled with the
691 call frame address (CFA). The other registers are marked as
692 unspecified.
693
694 We copy the return address to the program counter, since many
695 parts in GDB assume that it is possible to get the return address
696 by unwinding the program counter register. However, on ISA's
697 with a dedicated return address register, the CFI usually only
698 contains information to unwind that return address register.
699
700 The reason we're treating the stack pointer special here is
701 because in many cases GCC doesn't emit CFI for the stack pointer
702 and implicitly assumes that it is equal to the CFA. This makes
703 some sense since the DWARF specification (version 3, draft 8,
704 p. 102) says that:
705
706 "Typically, the CFA is defined to be the value of the stack
707 pointer at the call site in the previous frame (which may be
708 different from its value on entry to the current frame)."
709
710 However, this isn't true for all platforms supported by GCC
711 (e.g. IBM S/390 and zSeries). Those architectures should provide
712 their own architecture-specific initialization function. */
05cbe71a 713
ad010def 714 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 715 reg->how = DWARF2_FRAME_REG_RA;
ad010def 716 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
717 reg->how = DWARF2_FRAME_REG_CFA;
718}
05cbe71a 719
8f22cb90 720/* Return a default for the architecture-specific operations. */
05cbe71a 721
8f22cb90 722static void *
030f20e1 723dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
724{
725 struct dwarf2_frame_ops *ops;
726
030f20e1 727 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
728 ops->init_reg = dwarf2_frame_default_init_reg;
729 return ops;
730}
05cbe71a 731
8f22cb90
MK
732/* Set the architecture-specific register state initialization
733 function for GDBARCH to INIT_REG. */
734
735void
736dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
737 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
738 struct dwarf2_frame_state_reg *,
739 struct frame_info *))
8f22cb90 740{
030f20e1 741 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 742
8f22cb90
MK
743 ops->init_reg = init_reg;
744}
745
746/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
747
748static void
749dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 750 struct dwarf2_frame_state_reg *reg,
4a4e5149 751 struct frame_info *this_frame)
05cbe71a 752{
030f20e1 753 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 754
4a4e5149 755 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 756}
3ed09a32
DJ
757
758/* Set the architecture-specific signal trampoline recognition
759 function for GDBARCH to SIGNAL_FRAME_P. */
760
761void
762dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
763 int (*signal_frame_p) (struct gdbarch *,
764 struct frame_info *))
765{
766 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
767
768 ops->signal_frame_p = signal_frame_p;
769}
770
771/* Query the architecture-specific signal frame recognizer for
4a4e5149 772 THIS_FRAME. */
3ed09a32
DJ
773
774static int
775dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 776 struct frame_info *this_frame)
3ed09a32
DJ
777{
778 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
779
780 if (ops->signal_frame_p == NULL)
781 return 0;
4a4e5149 782 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 783}
4bf8967c 784
4fc771b8
DJ
785/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
786 register numbers. */
4bf8967c
AS
787
788void
4fc771b8
DJ
789dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
790 int (*adjust_regnum) (struct gdbarch *,
791 int, int))
4bf8967c
AS
792{
793 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
794
4fc771b8 795 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
796}
797
4fc771b8
DJ
798/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
799 register. */
4bf8967c 800
4fc771b8
DJ
801static int
802dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
4bf8967c
AS
803{
804 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
805
4fc771b8 806 if (ops->adjust_regnum == NULL)
4bf8967c 807 return regnum;
4fc771b8 808 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 809}
303b6f5d
DJ
810
811static void
812dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
813 struct dwarf2_fde *fde)
814{
815 static const char *arm_idents[] = {
816 "ARM C Compiler, ADS",
817 "Thumb C Compiler, ADS",
818 "ARM C++ Compiler, ADS",
819 "Thumb C++ Compiler, ADS",
820 "ARM/Thumb C/C++ Compiler, RVCT"
821 };
822 int i;
823
824 struct symtab *s;
825
826 s = find_pc_symtab (fs->pc);
827 if (s == NULL || s->producer == NULL)
828 return;
829
830 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
831 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
832 {
833 if (fde->cie->version == 1)
834 fs->armcc_cfa_offsets_sf = 1;
835
836 if (fde->cie->version == 1)
837 fs->armcc_cfa_offsets_reversed = 1;
838
839 /* The reversed offset problem is present in some compilers
840 using DWARF3, but it was eventually fixed. Check the ARM
841 defined augmentations, which are in the format "armcc" followed
842 by a list of one-character options. The "+" option means
843 this problem is fixed (no quirk needed). If the armcc
844 augmentation is missing, the quirk is needed. */
845 if (fde->cie->version == 3
846 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
847 || strchr (fde->cie->augmentation + 5, '+') == NULL))
848 fs->armcc_cfa_offsets_reversed = 1;
849
850 return;
851 }
852}
8f22cb90
MK
853\f
854
855struct dwarf2_frame_cache
856{
857 /* DWARF Call Frame Address. */
858 CORE_ADDR cfa;
859
0228dfb9
DJ
860 /* Set if the return address column was marked as undefined. */
861 int undefined_retaddr;
862
8f22cb90
MK
863 /* Saved registers, indexed by GDB register number, not by DWARF
864 register number. */
865 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
866
867 /* Return address register. */
868 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
869
870 /* Target address size in bytes. */
871 int addr_size;
8f22cb90 872};
05cbe71a 873
b9362cc7 874static struct dwarf2_frame_cache *
4a4e5149 875dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
876{
877 struct cleanup *old_chain;
4a4e5149 878 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
879 const int num_regs = gdbarch_num_regs (gdbarch)
880 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
881 struct dwarf2_frame_cache *cache;
882 struct dwarf2_frame_state *fs;
883 struct dwarf2_fde *fde;
cfc14b3a
MK
884
885 if (*this_cache)
886 return *this_cache;
887
888 /* Allocate a new cache. */
889 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
890 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
891
892 /* Allocate and initialize the frame state. */
893 fs = XMALLOC (struct dwarf2_frame_state);
894 memset (fs, 0, sizeof (struct dwarf2_frame_state));
895 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
896
897 /* Unwind the PC.
898
4a4e5149 899 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 900 to abort), the compiler might optimize away the instruction at
4a4e5149 901 its return address. As a result the return address will
cfc14b3a 902 point at some random instruction, and the CFI for that
e4e9607c 903 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
904 this problem by substracting 1 from the return address to get an
905 address in the middle of a presumed call instruction (or the
906 instruction in the associated delay slot). This should only be
907 done for "normal" frames and not for resume-type frames (signal
e4e9607c 908 handlers, sentinel frames, dummy frames). The function
ad1193e7 909 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
910 reliable the method is though; there is the potential for the
911 register state pre-call being different to that on return. */
4a4e5149 912 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
913
914 /* Find the correct FDE. */
915 fde = dwarf2_frame_find_fde (&fs->pc);
916 gdb_assert (fde != NULL);
917
918 /* Extract any interesting information from the CIE. */
919 fs->data_align = fde->cie->data_alignment_factor;
920 fs->code_align = fde->cie->code_alignment_factor;
921 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 922 cache->addr_size = fde->cie->addr_size;
cfc14b3a 923
303b6f5d
DJ
924 /* Check for "quirks" - known bugs in producers. */
925 dwarf2_frame_find_quirks (fs, fde);
926
cfc14b3a 927 /* First decode all the insns in the CIE. */
ae0d2f24 928 execute_cfa_program (fde, fde->cie->initial_instructions,
4a4e5149 929 fde->cie->end, this_frame, fs);
cfc14b3a
MK
930
931 /* Save the initialized register set. */
932 fs->initial = fs->regs;
933 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
934
935 /* Then decode the insns in the FDE up to our target PC. */
4a4e5149 936 execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs);
cfc14b3a 937
938f5214 938 /* Calculate the CFA. */
2fd481e1 939 switch (fs->regs.cfa_how)
cfc14b3a
MK
940 {
941 case CFA_REG_OFFSET:
2fd481e1 942 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
303b6f5d 943 if (fs->armcc_cfa_offsets_reversed)
2fd481e1 944 cache->cfa -= fs->regs.cfa_offset;
303b6f5d 945 else
2fd481e1 946 cache->cfa += fs->regs.cfa_offset;
cfc14b3a
MK
947 break;
948
949 case CFA_EXP:
950 cache->cfa =
2fd481e1 951 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
4a4e5149 952 cache->addr_size, this_frame, 0);
cfc14b3a
MK
953 break;
954
955 default:
e2e0b3e5 956 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
cfc14b3a
MK
957 }
958
05cbe71a 959 /* Initialize the register state. */
3e2c4033
AC
960 {
961 int regnum;
e4e9607c 962
3e2c4033 963 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 964 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
965 }
966
967 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
968 location information in the cache. Note that we don't skip the
969 return address column; it's perfectly all right for it to
970 correspond to a real register. If it doesn't correspond to a
971 real register, or if we shouldn't treat it as such,
055d23b8 972 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 973 the range [0, gdbarch_num_regs). */
3e2c4033
AC
974 {
975 int column; /* CFI speak for "register number". */
e4e9607c 976
3e2c4033
AC
977 for (column = 0; column < fs->regs.num_regs; column++)
978 {
3e2c4033 979 /* Use the GDB register number as the destination index. */
ad010def 980 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
981
982 /* If there's no corresponding GDB register, ignore it. */
983 if (regnum < 0 || regnum >= num_regs)
984 continue;
985
986 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
987 of all debug info registers. If it doesn't, complain (but
988 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
989 unspecified register implies "same value" when CFI (draft
990 7) specifies nothing at all. Such a register could equally
991 be interpreted as "undefined". Also note that this check
e4e9607c
MK
992 isn't sufficient; it only checks that all registers in the
993 range [0 .. max column] are specified, and won't detect
3e2c4033 994 problems when a debug info register falls outside of the
e4e9607c 995 table. We need a way of iterating through all the valid
3e2c4033 996 DWARF2 register numbers. */
05cbe71a 997 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
998 {
999 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1000 complaint (&symfile_complaints, _("\
5af949e3 1001incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1002 gdbarch_register_name (gdbarch, regnum),
5af949e3 1003 paddress (gdbarch, fs->pc));
f059bf6f 1004 }
35889917
MK
1005 else
1006 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1007 }
1008 }
cfc14b3a 1009
8d5a9abc
MK
1010 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1011 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1012 {
1013 int regnum;
1014
1015 for (regnum = 0; regnum < num_regs; regnum++)
1016 {
8d5a9abc
MK
1017 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1018 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1019 {
05cbe71a
MK
1020 struct dwarf2_frame_state_reg *retaddr_reg =
1021 &fs->regs.reg[fs->retaddr_column];
1022
d4f10bf2
MK
1023 /* It seems rather bizarre to specify an "empty" column as
1024 the return adress column. However, this is exactly
1025 what GCC does on some targets. It turns out that GCC
1026 assumes that the return address can be found in the
1027 register corresponding to the return address column.
8d5a9abc
MK
1028 Incidentally, that's how we should treat a return
1029 address column specifying "same value" too. */
d4f10bf2 1030 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1031 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1032 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1033 {
1034 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1035 cache->reg[regnum] = *retaddr_reg;
1036 else
1037 cache->retaddr_reg = *retaddr_reg;
1038 }
35889917
MK
1039 else
1040 {
8d5a9abc
MK
1041 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1042 {
1043 cache->reg[regnum].loc.reg = fs->retaddr_column;
1044 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1045 }
1046 else
1047 {
1048 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1049 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1050 }
35889917
MK
1051 }
1052 }
1053 }
1054 }
cfc14b3a 1055
0228dfb9
DJ
1056 if (fs->retaddr_column < fs->regs.num_regs
1057 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1058 cache->undefined_retaddr = 1;
1059
cfc14b3a
MK
1060 do_cleanups (old_chain);
1061
1062 *this_cache = cache;
1063 return cache;
1064}
1065
1066static void
4a4e5149 1067dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1068 struct frame_id *this_id)
1069{
1070 struct dwarf2_frame_cache *cache =
4a4e5149 1071 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1072
0228dfb9
DJ
1073 if (cache->undefined_retaddr)
1074 return;
1075
4a4e5149 1076 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1077}
1078
4a4e5149
DJ
1079static struct value *
1080dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1081 int regnum)
93d42b30 1082{
4a4e5149 1083 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1084 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1085 dwarf2_frame_cache (this_frame, this_cache);
1086 CORE_ADDR addr;
1087 int realnum;
cfc14b3a
MK
1088
1089 switch (cache->reg[regnum].how)
1090 {
05cbe71a 1091 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1092 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1093 mark it as optimized away; the value isn't available. */
4a4e5149 1094 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1095
05cbe71a 1096 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1097 addr = cache->cfa + cache->reg[regnum].loc.offset;
1098 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1099
05cbe71a 1100 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1101 realnum
1102 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1103 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1104
05cbe71a 1105 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1106 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1107 cache->reg[regnum].exp_len,
1108 cache->addr_size, this_frame, cache->cfa);
1109 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1110
46ea248b 1111 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1112 addr = cache->cfa + cache->reg[regnum].loc.offset;
1113 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1114
1115 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1116 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1117 cache->reg[regnum].exp_len,
1118 cache->addr_size, this_frame, cache->cfa);
1119 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1120
05cbe71a 1121 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1122 /* GCC, in its infinite wisdom decided to not provide unwind
1123 information for registers that are "same value". Since
1124 DWARF2 (3 draft 7) doesn't define such behavior, said
1125 registers are actually undefined (which is different to CFI
1126 "undefined"). Code above issues a complaint about this.
1127 Here just fudge the books, assume GCC, and that the value is
1128 more inner on the stack. */
4a4e5149 1129 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1130
05cbe71a 1131 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1132 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1133
05cbe71a 1134 case DWARF2_FRAME_REG_CFA:
4a4e5149 1135 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1136
ea7963f0 1137 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1138 addr = cache->cfa + cache->reg[regnum].loc.offset;
1139 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1140
8d5a9abc 1141 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1142 addr = cache->reg[regnum].loc.offset;
1143 regnum = gdbarch_dwarf2_reg_to_regnum
1144 (gdbarch, cache->retaddr_reg.loc.reg);
1145 addr += get_frame_register_unsigned (this_frame, regnum);
1146 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1147
b39cc962
DJ
1148 case DWARF2_FRAME_REG_FN:
1149 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1150
cfc14b3a 1151 default:
e2e0b3e5 1152 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1153 }
1154}
1155
4a4e5149
DJ
1156static int
1157dwarf2_frame_sniffer (const struct frame_unwind *self,
1158 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1159{
1ce5d6dd 1160 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1161 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1162 end up returning something past the end of this function's body.
1163 If the frame we're sniffing for is a signal frame whose start
1164 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1165 extend one byte before its start address or we could potentially
1166 select the FDE of the previous function. */
1167 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
56c987f6
AO
1168 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1169 if (!fde)
4a4e5149 1170 return 0;
3ed09a32
DJ
1171
1172 /* On some targets, signal trampolines may have unwind information.
1173 We need to recognize them so that we set the frame type
1174 correctly. */
1175
56c987f6 1176 if (fde->cie->signal_frame
4a4e5149
DJ
1177 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1178 this_frame))
1179 return self->type == SIGTRAMP_FRAME;
1180
1181 return self->type != SIGTRAMP_FRAME;
1182}
1183
1184static const struct frame_unwind dwarf2_frame_unwind =
1185{
1186 NORMAL_FRAME,
1187 dwarf2_frame_this_id,
1188 dwarf2_frame_prev_register,
1189 NULL,
1190 dwarf2_frame_sniffer
1191};
1192
1193static const struct frame_unwind dwarf2_signal_frame_unwind =
1194{
1195 SIGTRAMP_FRAME,
1196 dwarf2_frame_this_id,
1197 dwarf2_frame_prev_register,
1198 NULL,
1199 dwarf2_frame_sniffer
1200};
cfc14b3a 1201
4a4e5149
DJ
1202/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1203
1204void
1205dwarf2_append_unwinders (struct gdbarch *gdbarch)
1206{
1207 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1208 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1209}
1210\f
1211
1212/* There is no explicitly defined relationship between the CFA and the
1213 location of frame's local variables and arguments/parameters.
1214 Therefore, frame base methods on this page should probably only be
1215 used as a last resort, just to avoid printing total garbage as a
1216 response to the "info frame" command. */
1217
1218static CORE_ADDR
4a4e5149 1219dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1220{
1221 struct dwarf2_frame_cache *cache =
4a4e5149 1222 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1223
1224 return cache->cfa;
1225}
1226
1227static const struct frame_base dwarf2_frame_base =
1228{
1229 &dwarf2_frame_unwind,
1230 dwarf2_frame_base_address,
1231 dwarf2_frame_base_address,
1232 dwarf2_frame_base_address
1233};
1234
1235const struct frame_base *
4a4e5149 1236dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1237{
4a4e5149 1238 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
93d42b30 1239 if (dwarf2_frame_find_fde (&block_addr))
cfc14b3a
MK
1240 return &dwarf2_frame_base;
1241
1242 return NULL;
1243}
1244\f
8f22cb90 1245const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1246
cfc14b3a 1247static unsigned int
852483bc 1248read_1_byte (bfd *abfd, gdb_byte *buf)
cfc14b3a 1249{
852483bc 1250 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1251}
1252
1253static unsigned int
852483bc 1254read_4_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1255{
852483bc 1256 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1257}
1258
1259static ULONGEST
852483bc 1260read_8_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1261{
852483bc 1262 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1263}
1264
1265static ULONGEST
852483bc 1266read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1267{
1268 ULONGEST result;
1269 unsigned int num_read;
1270 int shift;
852483bc 1271 gdb_byte byte;
cfc14b3a
MK
1272
1273 result = 0;
1274 shift = 0;
1275 num_read = 0;
1276
1277 do
1278 {
1279 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1280 buf++;
1281 num_read++;
1282 result |= ((byte & 0x7f) << shift);
1283 shift += 7;
1284 }
1285 while (byte & 0x80);
1286
1287 *bytes_read_ptr = num_read;
1288
1289 return result;
1290}
1291
1292static LONGEST
852483bc 1293read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1294{
1295 LONGEST result;
1296 int shift;
1297 unsigned int num_read;
852483bc 1298 gdb_byte byte;
cfc14b3a
MK
1299
1300 result = 0;
1301 shift = 0;
1302 num_read = 0;
1303
1304 do
1305 {
1306 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1307 buf++;
1308 num_read++;
1309 result |= ((byte & 0x7f) << shift);
1310 shift += 7;
1311 }
1312 while (byte & 0x80);
1313
77e0b926
DJ
1314 if (shift < 8 * sizeof (result) && (byte & 0x40))
1315 result |= -(((LONGEST)1) << shift);
cfc14b3a
MK
1316
1317 *bytes_read_ptr = num_read;
1318
1319 return result;
1320}
1321
1322static ULONGEST
852483bc 1323read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1324{
1325 LONGEST result;
1326
852483bc 1327 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1328 if (result == 0xffffffff)
1329 {
852483bc 1330 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1331 *bytes_read_ptr = 12;
1332 }
1333 else
1334 *bytes_read_ptr = 4;
1335
1336 return result;
1337}
1338\f
1339
1340/* Pointer encoding helper functions. */
1341
1342/* GCC supports exception handling based on DWARF2 CFI. However, for
1343 technical reasons, it encodes addresses in its FDE's in a different
1344 way. Several "pointer encodings" are supported. The encoding
1345 that's used for a particular FDE is determined by the 'R'
1346 augmentation in the associated CIE. The argument of this
1347 augmentation is a single byte.
1348
1349 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1350 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1351 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1352 address should be interpreted (absolute, relative to the current
1353 position in the FDE, ...). Bit 7, indicates that the address
1354 should be dereferenced. */
1355
852483bc 1356static gdb_byte
cfc14b3a
MK
1357encoding_for_size (unsigned int size)
1358{
1359 switch (size)
1360 {
1361 case 2:
1362 return DW_EH_PE_udata2;
1363 case 4:
1364 return DW_EH_PE_udata4;
1365 case 8:
1366 return DW_EH_PE_udata8;
1367 default:
e2e0b3e5 1368 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1369 }
1370}
1371
cfc14b3a 1372static CORE_ADDR
852483bc 1373read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
ae0d2f24
UW
1374 int ptr_len, gdb_byte *buf, unsigned int *bytes_read_ptr,
1375 CORE_ADDR func_base)
cfc14b3a 1376{
68f6cf99 1377 ptrdiff_t offset;
cfc14b3a
MK
1378 CORE_ADDR base;
1379
1380 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1381 FDE's. */
1382 if (encoding & DW_EH_PE_indirect)
1383 internal_error (__FILE__, __LINE__,
e2e0b3e5 1384 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1385
68f6cf99
MK
1386 *bytes_read_ptr = 0;
1387
cfc14b3a
MK
1388 switch (encoding & 0x70)
1389 {
1390 case DW_EH_PE_absptr:
1391 base = 0;
1392 break;
1393 case DW_EH_PE_pcrel:
f2fec864 1394 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1395 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1396 break;
0912c7f2
MK
1397 case DW_EH_PE_datarel:
1398 base = unit->dbase;
1399 break;
0fd85043
CV
1400 case DW_EH_PE_textrel:
1401 base = unit->tbase;
1402 break;
03ac2a74 1403 case DW_EH_PE_funcrel:
ae0d2f24 1404 base = func_base;
03ac2a74 1405 break;
68f6cf99
MK
1406 case DW_EH_PE_aligned:
1407 base = 0;
852483bc 1408 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1409 if ((offset % ptr_len) != 0)
1410 {
1411 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1412 buf += *bytes_read_ptr;
1413 }
1414 break;
cfc14b3a 1415 default:
e2e0b3e5 1416 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1417 }
1418
b04de778 1419 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1420 {
1421 encoding |= encoding_for_size (ptr_len);
1422 if (bfd_get_sign_extend_vma (unit->abfd))
1423 encoding |= DW_EH_PE_signed;
1424 }
cfc14b3a
MK
1425
1426 switch (encoding & 0x0f)
1427 {
a81b10ae
MK
1428 case DW_EH_PE_uleb128:
1429 {
1430 ULONGEST value;
852483bc 1431 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1432 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1433 return base + value;
1434 }
cfc14b3a 1435 case DW_EH_PE_udata2:
68f6cf99 1436 *bytes_read_ptr += 2;
cfc14b3a
MK
1437 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1438 case DW_EH_PE_udata4:
68f6cf99 1439 *bytes_read_ptr += 4;
cfc14b3a
MK
1440 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1441 case DW_EH_PE_udata8:
68f6cf99 1442 *bytes_read_ptr += 8;
cfc14b3a 1443 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1444 case DW_EH_PE_sleb128:
1445 {
1446 LONGEST value;
852483bc 1447 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1448 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1449 return base + value;
1450 }
cfc14b3a 1451 case DW_EH_PE_sdata2:
68f6cf99 1452 *bytes_read_ptr += 2;
cfc14b3a
MK
1453 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1454 case DW_EH_PE_sdata4:
68f6cf99 1455 *bytes_read_ptr += 4;
cfc14b3a
MK
1456 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1457 case DW_EH_PE_sdata8:
68f6cf99 1458 *bytes_read_ptr += 8;
cfc14b3a
MK
1459 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1460 default:
e2e0b3e5 1461 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1462 }
1463}
1464\f
1465
1466/* GCC uses a single CIE for all FDEs in a .debug_frame section.
1467 That's why we use a simple linked list here. */
1468
1469static struct dwarf2_cie *
1470find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1471{
1472 struct dwarf2_cie *cie = unit->cie;
1473
1474 while (cie)
1475 {
1476 if (cie->cie_pointer == cie_pointer)
1477 return cie;
1478
1479 cie = cie->next;
1480 }
1481
1482 return NULL;
1483}
1484
1485static void
1486add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1487{
1488 cie->next = unit->cie;
1489 unit->cie = cie;
ae0d2f24 1490 cie->unit = unit;
cfc14b3a
MK
1491}
1492
1493/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1494 inital location associated with it into *PC. */
1495
1496static struct dwarf2_fde *
1497dwarf2_frame_find_fde (CORE_ADDR *pc)
1498{
1499 struct objfile *objfile;
1500
1501 ALL_OBJFILES (objfile)
1502 {
1503 struct dwarf2_fde *fde;
1504 CORE_ADDR offset;
1505
8f22cb90 1506 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
4ae9ee8e
DJ
1507 if (fde == NULL)
1508 continue;
1509
1510 gdb_assert (objfile->section_offsets);
1511 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1512
cfc14b3a
MK
1513 while (fde)
1514 {
1515 if (*pc >= fde->initial_location + offset
1516 && *pc < fde->initial_location + offset + fde->address_range)
1517 {
1518 *pc = fde->initial_location + offset;
1519 return fde;
1520 }
1521
1522 fde = fde->next;
1523 }
1524 }
1525
1526 return NULL;
1527}
1528
1529static void
1530add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1531{
8f22cb90
MK
1532 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1533 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
cfc14b3a
MK
1534}
1535
1536#ifdef CC_HAS_LONG_LONG
1537#define DW64_CIE_ID 0xffffffffffffffffULL
1538#else
1539#define DW64_CIE_ID ~0
1540#endif
1541
852483bc
MK
1542static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1543 int eh_frame_p);
cfc14b3a 1544
6896c0c7
RH
1545/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1546 the next byte to be processed. */
852483bc
MK
1547static gdb_byte *
1548decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
cfc14b3a 1549{
5e2b427d 1550 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
852483bc 1551 gdb_byte *buf, *end;
cfc14b3a
MK
1552 LONGEST length;
1553 unsigned int bytes_read;
6896c0c7
RH
1554 int dwarf64_p;
1555 ULONGEST cie_id;
cfc14b3a 1556 ULONGEST cie_pointer;
cfc14b3a 1557
6896c0c7 1558 buf = start;
cfc14b3a
MK
1559 length = read_initial_length (unit->abfd, buf, &bytes_read);
1560 buf += bytes_read;
1561 end = buf + length;
1562
6896c0c7
RH
1563 /* Are we still within the section? */
1564 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1565 return NULL;
1566
cfc14b3a
MK
1567 if (length == 0)
1568 return end;
1569
6896c0c7
RH
1570 /* Distinguish between 32 and 64-bit encoded frame info. */
1571 dwarf64_p = (bytes_read == 12);
cfc14b3a 1572
6896c0c7 1573 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1574 if (eh_frame_p)
1575 cie_id = 0;
1576 else if (dwarf64_p)
1577 cie_id = DW64_CIE_ID;
6896c0c7
RH
1578 else
1579 cie_id = DW_CIE_ID;
cfc14b3a
MK
1580
1581 if (dwarf64_p)
1582 {
1583 cie_pointer = read_8_bytes (unit->abfd, buf);
1584 buf += 8;
1585 }
1586 else
1587 {
1588 cie_pointer = read_4_bytes (unit->abfd, buf);
1589 buf += 4;
1590 }
1591
1592 if (cie_pointer == cie_id)
1593 {
1594 /* This is a CIE. */
1595 struct dwarf2_cie *cie;
1596 char *augmentation;
28ba0b33 1597 unsigned int cie_version;
cfc14b3a
MK
1598
1599 /* Record the offset into the .debug_frame section of this CIE. */
1600 cie_pointer = start - unit->dwarf_frame_buffer;
1601
1602 /* Check whether we've already read it. */
1603 if (find_cie (unit, cie_pointer))
1604 return end;
1605
1606 cie = (struct dwarf2_cie *)
8b92e4d5 1607 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1608 sizeof (struct dwarf2_cie));
1609 cie->initial_instructions = NULL;
1610 cie->cie_pointer = cie_pointer;
1611
1612 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1613 depends on the target address size. */
1614 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1615
ae0d2f24
UW
1616 /* The target address size. For .eh_frame FDEs this is considered
1617 equal to the size of a target pointer. For .dwarf_frame FDEs,
1618 this is supposed to be the target address size from the associated
1619 CU header. FIXME: We do not have a good way to determine the
1620 latter. Always use the target pointer size for now. */
5e2b427d 1621 cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
ae0d2f24 1622
56c987f6
AO
1623 /* We'll determine the final value later, but we need to
1624 initialize it conservatively. */
1625 cie->signal_frame = 0;
1626
cfc14b3a 1627 /* Check version number. */
28ba0b33
PB
1628 cie_version = read_1_byte (unit->abfd, buf);
1629 if (cie_version != 1 && cie_version != 3)
6896c0c7 1630 return NULL;
303b6f5d 1631 cie->version = cie_version;
cfc14b3a
MK
1632 buf += 1;
1633
1634 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1635 cie->augmentation = augmentation = (char *) buf;
852483bc 1636 buf += (strlen (augmentation) + 1);
cfc14b3a 1637
303b6f5d
DJ
1638 /* Ignore armcc augmentations. We only use them for quirks,
1639 and that doesn't happen until later. */
1640 if (strncmp (augmentation, "armcc", 5) == 0)
1641 augmentation += strlen (augmentation);
1642
cfc14b3a
MK
1643 /* The GCC 2.x "eh" augmentation has a pointer immediately
1644 following the augmentation string, so it must be handled
1645 first. */
1646 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1647 {
1648 /* Skip. */
5e2b427d 1649 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1650 augmentation += 2;
1651 }
1652
1653 cie->code_alignment_factor =
1654 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1655 buf += bytes_read;
1656
1657 cie->data_alignment_factor =
1658 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1659 buf += bytes_read;
1660
28ba0b33
PB
1661 if (cie_version == 1)
1662 {
1663 cie->return_address_register = read_1_byte (unit->abfd, buf);
1664 bytes_read = 1;
1665 }
1666 else
1667 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1668 &bytes_read);
4fc771b8 1669 cie->return_address_register
5e2b427d 1670 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1671 cie->return_address_register,
1672 eh_frame_p);
4bf8967c 1673
28ba0b33 1674 buf += bytes_read;
cfc14b3a 1675
7131cb6e
RH
1676 cie->saw_z_augmentation = (*augmentation == 'z');
1677 if (cie->saw_z_augmentation)
cfc14b3a
MK
1678 {
1679 ULONGEST length;
1680
1681 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1682 buf += bytes_read;
6896c0c7
RH
1683 if (buf > end)
1684 return NULL;
cfc14b3a
MK
1685 cie->initial_instructions = buf + length;
1686 augmentation++;
1687 }
1688
1689 while (*augmentation)
1690 {
1691 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1692 if (*augmentation == 'L')
1693 {
1694 /* Skip. */
1695 buf++;
1696 augmentation++;
1697 }
1698
1699 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1700 else if (*augmentation == 'R')
1701 {
1702 cie->encoding = *buf++;
1703 augmentation++;
1704 }
1705
1706 /* "P" indicates a personality routine in the CIE augmentation. */
1707 else if (*augmentation == 'P')
1708 {
1234d960 1709 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1710 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
ae0d2f24
UW
1711 read_encoded_value (unit, encoding, cie->addr_size,
1712 buf, &bytes_read, 0);
f724bf08 1713 buf += bytes_read;
cfc14b3a
MK
1714 augmentation++;
1715 }
1716
56c987f6
AO
1717 /* "S" indicates a signal frame, such that the return
1718 address must not be decremented to locate the call frame
1719 info for the previous frame; it might even be the first
1720 instruction of a function, so decrementing it would take
1721 us to a different function. */
1722 else if (*augmentation == 'S')
1723 {
1724 cie->signal_frame = 1;
1725 augmentation++;
1726 }
1727
3e9a2e52
DJ
1728 /* Otherwise we have an unknown augmentation. Assume that either
1729 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
1730 else
1731 {
3e9a2e52
DJ
1732 if (cie->initial_instructions)
1733 buf = cie->initial_instructions;
cfc14b3a
MK
1734 break;
1735 }
1736 }
1737
1738 cie->initial_instructions = buf;
1739 cie->end = end;
1740
1741 add_cie (unit, cie);
1742 }
1743 else
1744 {
1745 /* This is a FDE. */
1746 struct dwarf2_fde *fde;
1747
6896c0c7
RH
1748 /* In an .eh_frame section, the CIE pointer is the delta between the
1749 address within the FDE where the CIE pointer is stored and the
1750 address of the CIE. Convert it to an offset into the .eh_frame
1751 section. */
cfc14b3a
MK
1752 if (eh_frame_p)
1753 {
cfc14b3a
MK
1754 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1755 cie_pointer -= (dwarf64_p ? 8 : 4);
1756 }
1757
6896c0c7
RH
1758 /* In either case, validate the result is still within the section. */
1759 if (cie_pointer >= unit->dwarf_frame_size)
1760 return NULL;
1761
cfc14b3a 1762 fde = (struct dwarf2_fde *)
8b92e4d5 1763 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1764 sizeof (struct dwarf2_fde));
1765 fde->cie = find_cie (unit, cie_pointer);
1766 if (fde->cie == NULL)
1767 {
1768 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1769 eh_frame_p);
1770 fde->cie = find_cie (unit, cie_pointer);
1771 }
1772
1773 gdb_assert (fde->cie != NULL);
1774
1775 fde->initial_location =
ae0d2f24
UW
1776 read_encoded_value (unit, fde->cie->encoding, fde->cie->addr_size,
1777 buf, &bytes_read, 0);
cfc14b3a
MK
1778 buf += bytes_read;
1779
1780 fde->address_range =
ae0d2f24
UW
1781 read_encoded_value (unit, fde->cie->encoding & 0x0f,
1782 fde->cie->addr_size, buf, &bytes_read, 0);
cfc14b3a
MK
1783 buf += bytes_read;
1784
7131cb6e
RH
1785 /* A 'z' augmentation in the CIE implies the presence of an
1786 augmentation field in the FDE as well. The only thing known
1787 to be in here at present is the LSDA entry for EH. So we
1788 can skip the whole thing. */
1789 if (fde->cie->saw_z_augmentation)
1790 {
1791 ULONGEST length;
1792
1793 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1794 buf += bytes_read + length;
6896c0c7
RH
1795 if (buf > end)
1796 return NULL;
7131cb6e
RH
1797 }
1798
cfc14b3a
MK
1799 fde->instructions = buf;
1800 fde->end = end;
1801
4bf8967c
AS
1802 fde->eh_frame_p = eh_frame_p;
1803
cfc14b3a
MK
1804 add_fde (unit, fde);
1805 }
1806
1807 return end;
1808}
6896c0c7
RH
1809
1810/* Read a CIE or FDE in BUF and decode it. */
852483bc
MK
1811static gdb_byte *
1812decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
6896c0c7
RH
1813{
1814 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
852483bc 1815 gdb_byte *ret;
6896c0c7
RH
1816 const char *msg;
1817 ptrdiff_t start_offset;
1818
1819 while (1)
1820 {
1821 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1822 if (ret != NULL)
1823 break;
1824
1825 /* We have corrupt input data of some form. */
1826
1827 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1828 and mismatches wrt padding and alignment of debug sections. */
1829 /* Note that there is no requirement in the standard for any
1830 alignment at all in the frame unwind sections. Testing for
1831 alignment before trying to interpret data would be incorrect.
1832
1833 However, GCC traditionally arranged for frame sections to be
1834 sized such that the FDE length and CIE fields happen to be
1835 aligned (in theory, for performance). This, unfortunately,
1836 was done with .align directives, which had the side effect of
1837 forcing the section to be aligned by the linker.
1838
1839 This becomes a problem when you have some other producer that
1840 creates frame sections that are not as strictly aligned. That
1841 produces a hole in the frame info that gets filled by the
1842 linker with zeros.
1843
1844 The GCC behaviour is arguably a bug, but it's effectively now
1845 part of the ABI, so we're now stuck with it, at least at the
1846 object file level. A smart linker may decide, in the process
1847 of compressing duplicate CIE information, that it can rewrite
1848 the entire output section without this extra padding. */
1849
1850 start_offset = start - unit->dwarf_frame_buffer;
1851 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1852 {
1853 start += 4 - (start_offset & 3);
1854 workaround = ALIGN4;
1855 continue;
1856 }
1857 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1858 {
1859 start += 8 - (start_offset & 7);
1860 workaround = ALIGN8;
1861 continue;
1862 }
1863
1864 /* Nothing left to try. Arrange to return as if we've consumed
1865 the entire input section. Hopefully we'll get valid info from
1866 the other of .debug_frame/.eh_frame. */
1867 workaround = FAIL;
1868 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1869 break;
1870 }
1871
1872 switch (workaround)
1873 {
1874 case NONE:
1875 break;
1876
1877 case ALIGN4:
1878 complaint (&symfile_complaints,
e2e0b3e5 1879 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
1880 unit->dwarf_frame_section->owner->filename,
1881 unit->dwarf_frame_section->name);
1882 break;
1883
1884 case ALIGN8:
1885 complaint (&symfile_complaints,
e2e0b3e5 1886 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
1887 unit->dwarf_frame_section->owner->filename,
1888 unit->dwarf_frame_section->name);
1889 break;
1890
1891 default:
1892 complaint (&symfile_complaints,
e2e0b3e5 1893 _("Corrupt data in %s:%s"),
6896c0c7
RH
1894 unit->dwarf_frame_section->owner->filename,
1895 unit->dwarf_frame_section->name);
1896 break;
1897 }
1898
1899 return ret;
1900}
cfc14b3a
MK
1901\f
1902
cfc14b3a 1903/* Imported from dwarf2read.c. */
dce234bc
PP
1904extern void dwarf2_get_section_info (struct objfile *, const char *, asection **,
1905 gdb_byte **, bfd_size_type *);
cfc14b3a
MK
1906
1907void
1908dwarf2_build_frame_info (struct objfile *objfile)
1909{
ae0d2f24 1910 struct comp_unit *unit;
852483bc 1911 gdb_byte *frame_ptr;
cfc14b3a
MK
1912
1913 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
1914 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
1915 sizeof (struct comp_unit));
1916 unit->abfd = objfile->obfd;
1917 unit->objfile = objfile;
1918 unit->dbase = 0;
1919 unit->tbase = 0;
cfc14b3a
MK
1920
1921 /* First add the information from the .eh_frame section. That way,
1922 the FDEs from that section are searched last. */
dce234bc
PP
1923 dwarf2_get_section_info (objfile, ".eh_frame",
1924 &unit->dwarf_frame_section,
1925 &unit->dwarf_frame_buffer,
1926 &unit->dwarf_frame_size);
1927 if (unit->dwarf_frame_size)
cfc14b3a 1928 {
0fd85043 1929 asection *got, *txt;
0912c7f2 1930
ae0d2f24 1931 unit->cie = NULL;
0912c7f2 1932 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
37b517aa
MK
1933 that is used for the i386/amd64 target, which currently is
1934 the only target in GCC that supports/uses the
1935 DW_EH_PE_datarel encoding. */
ae0d2f24 1936 got = bfd_get_section_by_name (unit->abfd, ".got");
0912c7f2 1937 if (got)
ae0d2f24 1938 unit->dbase = got->vma;
0912c7f2 1939
22c7ba1a
MK
1940 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1941 so far. */
ae0d2f24 1942 txt = bfd_get_section_by_name (unit->abfd, ".text");
0fd85043 1943 if (txt)
ae0d2f24 1944 unit->tbase = txt->vma;
0fd85043 1945
ae0d2f24
UW
1946 frame_ptr = unit->dwarf_frame_buffer;
1947 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1948 frame_ptr = decode_frame_entry (unit, frame_ptr, 1);
cfc14b3a
MK
1949 }
1950
dce234bc
PP
1951 dwarf2_get_section_info (objfile, ".debug_frame",
1952 &unit->dwarf_frame_section,
1953 &unit->dwarf_frame_buffer,
1954 &unit->dwarf_frame_size);
1955 if (unit->dwarf_frame_size)
cfc14b3a 1956 {
ae0d2f24 1957 unit->cie = NULL;
ae0d2f24
UW
1958
1959 frame_ptr = unit->dwarf_frame_buffer;
1960 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1961 frame_ptr = decode_frame_entry (unit, frame_ptr, 0);
cfc14b3a
MK
1962 }
1963}
0d0e1a63
MK
1964
1965/* Provide a prototype to silence -Wmissing-prototypes. */
1966void _initialize_dwarf2_frame (void);
1967
1968void
1969_initialize_dwarf2_frame (void)
1970{
030f20e1 1971 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 1972 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 1973}
This page took 0.647013 seconds and 4 git commands to generate.