[AArch64] Fix mis-detection of unpredictable load/store operations with FP regs.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
ecd75fc8 3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
0b722aec 34#include "record.h"
cfc14b3a 35
6896c0c7 36#include "complaints.h"
cfc14b3a 37#include "dwarf2-frame.h"
9f6f94ff
TT
38#include "ax.h"
39#include "dwarf2loc.h"
111c6489 40#include "dwarf2-frame-tailcall.h"
cfc14b3a 41
ae0d2f24
UW
42struct comp_unit;
43
cfc14b3a
MK
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
ae0d2f24
UW
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
cfc14b3a
MK
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
f664829e
DE
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
cfc14b3a 70
303b6f5d
DJ
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
cfc14b3a 74 /* Encoding of addresses. */
852483bc 75 gdb_byte encoding;
cfc14b3a 76
ae0d2f24
UW
77 /* Target address size in bytes. */
78 int addr_size;
79
0963b4bd 80 /* Target pointer size in bytes. */
8da614df
CV
81 int ptr_size;
82
7131cb6e
RH
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
56c987f6
AO
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
303b6f5d
DJ
89 /* The version recorded in the CIE. */
90 unsigned char version;
2dc7f7b3
TT
91
92 /* The segment size. */
93 unsigned char segment_size;
b01c8410 94};
303b6f5d 95
b01c8410
PP
96struct dwarf2_cie_table
97{
98 int num_entries;
99 struct dwarf2_cie **entries;
cfc14b3a
MK
100};
101
102/* Frame Description Entry (FDE). */
103
104struct dwarf2_fde
105{
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
f664829e
DE
116 const gdb_byte *instructions;
117 const gdb_byte *end;
cfc14b3a 118
4bf8967c
AS
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
b01c8410 122};
4bf8967c 123
b01c8410
PP
124struct dwarf2_fde_table
125{
126 int num_entries;
127 struct dwarf2_fde **entries;
cfc14b3a
MK
128};
129
ae0d2f24
UW
130/* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133struct comp_unit
134{
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
ae0d2f24 140 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 141 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
142
143 /* Length of the loaded .debug_frame section. */
c098b58b 144 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154};
155
ac56253d
TT
156static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
4fc771b8
DJ
158
159static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
ae0d2f24
UW
161
162static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 163 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
cfc14b3a
MK
166\f
167
168/* Structure describing a frame state. */
169
170struct dwarf2_frame_state
171{
172 /* Each register save state can be described in terms of a CFA slot,
173 another register, or a location expression. */
174 struct dwarf2_frame_state_reg_info
175 {
05cbe71a 176 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
177 int num_regs;
178
2fd481e1
PP
179 LONGEST cfa_offset;
180 ULONGEST cfa_reg;
181 enum {
182 CFA_UNSET,
183 CFA_REG_OFFSET,
184 CFA_EXP
185 } cfa_how;
0d45f56e 186 const gdb_byte *cfa_exp;
2fd481e1 187
cfc14b3a
MK
188 /* Used to implement DW_CFA_remember_state. */
189 struct dwarf2_frame_state_reg_info *prev;
190 } regs;
191
cfc14b3a
MK
192 /* The PC described by the current frame state. */
193 CORE_ADDR pc;
194
195 /* Initial register set from the CIE.
196 Used to implement DW_CFA_restore. */
197 struct dwarf2_frame_state_reg_info initial;
198
199 /* The information we care about from the CIE. */
200 LONGEST data_align;
201 ULONGEST code_align;
202 ULONGEST retaddr_column;
303b6f5d
DJ
203
204 /* Flags for known producer quirks. */
205
206 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
207 and DW_CFA_def_cfa_offset takes a factored offset. */
208 int armcc_cfa_offsets_sf;
209
210 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
211 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
212 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
213};
214
215/* Store the length the expression for the CFA in the `cfa_reg' field,
216 which is unused in that case. */
217#define cfa_exp_len cfa_reg
218
f57d151a 219/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
220 columns. If necessary, enlarge the register set. */
221
222static void
223dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
224 int num_regs)
225{
226 size_t size = sizeof (struct dwarf2_frame_state_reg);
227
228 if (num_regs <= rs->num_regs)
229 return;
230
231 rs->reg = (struct dwarf2_frame_state_reg *)
232 xrealloc (rs->reg, num_regs * size);
233
234 /* Initialize newly allocated registers. */
2473a4a9 235 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
236 rs->num_regs = num_regs;
237}
238
239/* Copy the register columns in register set RS into newly allocated
240 memory and return a pointer to this newly created copy. */
241
242static struct dwarf2_frame_state_reg *
243dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
244{
d10891d4 245 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
246 struct dwarf2_frame_state_reg *reg;
247
248 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
249 memcpy (reg, rs->reg, size);
250
251 return reg;
252}
253
254/* Release the memory allocated to register set RS. */
255
256static void
257dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
258{
259 if (rs)
260 {
261 dwarf2_frame_state_free_regs (rs->prev);
262
263 xfree (rs->reg);
264 xfree (rs);
265 }
266}
267
268/* Release the memory allocated to the frame state FS. */
269
270static void
271dwarf2_frame_state_free (void *p)
272{
273 struct dwarf2_frame_state *fs = p;
274
275 dwarf2_frame_state_free_regs (fs->initial.prev);
276 dwarf2_frame_state_free_regs (fs->regs.prev);
277 xfree (fs->initial.reg);
278 xfree (fs->regs.reg);
279 xfree (fs);
280}
281\f
282
283/* Helper functions for execute_stack_op. */
284
285static CORE_ADDR
b1370418 286read_addr_from_reg (void *baton, int reg)
cfc14b3a 287{
4a4e5149
DJ
288 struct frame_info *this_frame = (struct frame_info *) baton;
289 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2ed3c037 290 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
f2da6b3a 291
2ed3c037 292 return address_from_register (regnum, this_frame);
cfc14b3a
MK
293}
294
0acf8b65
JB
295/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
296
297static struct value *
298get_reg_value (void *baton, struct type *type, int reg)
299{
300 struct frame_info *this_frame = (struct frame_info *) baton;
301 struct gdbarch *gdbarch = get_frame_arch (this_frame);
302 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
303
304 return value_from_register (type, regnum, this_frame);
305}
306
cfc14b3a 307static void
852483bc 308read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
309{
310 read_memory (addr, buf, len);
311}
312
a6a5a945
LM
313/* Execute the required actions for both the DW_CFA_restore and
314DW_CFA_restore_extended instructions. */
315static void
316dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
317 struct dwarf2_frame_state *fs, int eh_frame_p)
318{
319 ULONGEST reg;
320
321 gdb_assert (fs->initial.reg);
322 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
323 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
324
325 /* Check if this register was explicitly initialized in the
326 CIE initial instructions. If not, default the rule to
327 UNSPECIFIED. */
328 if (reg < fs->initial.num_regs)
329 fs->regs.reg[reg] = fs->initial.reg[reg];
330 else
331 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
332
333 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
334 complaint (&symfile_complaints, _("\
335incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 336register %s (#%d) at %s"),
a6a5a945
LM
337 gdbarch_register_name
338 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
339 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 340 paddress (gdbarch, fs->pc));
a6a5a945
LM
341}
342
9e8b7a03
JK
343/* Virtual method table for execute_stack_op below. */
344
345static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
346{
b1370418 347 read_addr_from_reg,
0acf8b65 348 get_reg_value,
9e8b7a03 349 read_mem,
523f3620
JK
350 ctx_no_get_frame_base,
351 ctx_no_get_frame_cfa,
352 ctx_no_get_frame_pc,
353 ctx_no_get_tls_address,
354 ctx_no_dwarf_call,
8e3b41a9 355 ctx_no_get_base_type,
3019eac3
DE
356 ctx_no_push_dwarf_reg_entry_value,
357 ctx_no_get_addr_index
9e8b7a03
JK
358};
359
cfc14b3a 360static CORE_ADDR
0d45f56e 361execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
362 CORE_ADDR offset, struct frame_info *this_frame,
363 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
364{
365 struct dwarf_expr_context *ctx;
366 CORE_ADDR result;
4a227398 367 struct cleanup *old_chain;
cfc14b3a
MK
368
369 ctx = new_dwarf_expr_context ();
4a227398 370 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 371 make_cleanup_value_free_to_mark (value_mark ());
4a227398 372
f7fd4728 373 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 374 ctx->addr_size = addr_size;
181cebd4 375 ctx->ref_addr_size = -1;
ac56253d 376 ctx->offset = offset;
4a4e5149 377 ctx->baton = this_frame;
9e8b7a03 378 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 379
8a9b8146 380 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 381 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 382
f2c7657e
UW
383 if (ctx->location == DWARF_VALUE_MEMORY)
384 result = dwarf_expr_fetch_address (ctx, 0);
385 else if (ctx->location == DWARF_VALUE_REGISTER)
b1370418
JB
386 result = read_addr_from_reg (this_frame,
387 value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 388 else
cec03d70
TT
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
3e43a32a
MS
393 error (_("\
394Not implemented: computing unwound register using explicit value operator"));
cec03d70 395 }
cfc14b3a 396
4a227398 397 do_cleanups (old_chain);
cfc14b3a
MK
398
399 return result;
400}
401\f
402
111c6489
JK
403/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407static const gdb_byte *
0d45f56e 408execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 411{
ae0d2f24 412 int eh_frame_p = fde->eh_frame_p;
507a579c 413 unsigned int bytes_read;
e17a4113 414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
852483bc 418 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
419 uint64_t utmp, reg;
420 int64_t offset;
cfc14b3a
MK
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
4fc771b8 427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
cfc14b3a 436 reg = insn & 0x3f;
a6a5a945 437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
ae0d2f24 444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 445 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
e17a4113 454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
e17a4113 459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
e17a4113 464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
f664829e 470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
f664829e 480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
482 break;
483
484 case DW_CFA_undefined:
f664829e 485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
489 break;
490
491 case DW_CFA_same_value:
f664829e 492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
496 break;
497
498 case DW_CFA_register:
f664829e 499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
70ba0933 512 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
cfc14b3a
MK
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
50ea7769
MK
523 if (old_rs == NULL)
524 {
e2e0b3e5 525 complaint (&symfile_complaints, _("\
5af949e3
UW
526bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
50ea7769
MK
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
cfc14b3a
MK
535 }
536 break;
537
538 case DW_CFA_def_cfa:
f664829e
DE
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
540 fs->regs.cfa_reg = reg;
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
542
543 if (fs->armcc_cfa_offsets_sf)
544 utmp *= fs->data_align;
545
2fd481e1
PP
546 fs->regs.cfa_offset = utmp;
547 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
548 break;
549
550 case DW_CFA_def_cfa_register:
f664829e
DE
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
555 break;
556
557 case DW_CFA_def_cfa_offset:
f664829e 558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
2fd481e1 563 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
564 /* cfa_how deliberately not set. */
565 break;
566
a8504492
MK
567 case DW_CFA_nop:
568 break;
569
cfc14b3a 570 case DW_CFA_def_cfa_expression:
f664829e
DE
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
576 break;
577
578 case DW_CFA_expression:
f664829e 579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
586 insn_ptr += utmp;
587 break;
588
a8504492 589 case DW_CFA_offset_extended_sf:
f664829e 590 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 592 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 593 offset *= fs->data_align;
a8504492 594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
46ea248b 599 case DW_CFA_val_offset:
f664829e 600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 602 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
f664829e 609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 611 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
f664829e 618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
a8504492 627 case DW_CFA_def_cfa_sf:
f664829e
DE
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 630 eh_frame_p);
f664829e 631 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
632 fs->regs.cfa_offset = offset * fs->data_align;
633 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
634 break;
635
636 case DW_CFA_def_cfa_offset_sf:
f664829e 637 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 638 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 639 /* cfa_how deliberately not set. */
cfc14b3a
MK
640 break;
641
a77f4086
MK
642 case DW_CFA_GNU_window_save:
643 /* This is SPARC-specific code, and contains hard-coded
644 constants for the register numbering scheme used by
645 GCC. Rather than having a architecture-specific
646 operation that's only ever used by a single
647 architecture, we provide the implementation here.
648 Incidentally that's what GCC does too in its
649 unwinder. */
650 {
4a4e5149 651 int size = register_size (gdbarch, 0);
9a619af0 652
a77f4086
MK
653 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
654 for (reg = 8; reg < 16; reg++)
655 {
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
657 fs->regs.reg[reg].loc.reg = reg + 16;
658 }
659 for (reg = 16; reg < 32; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
662 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
663 }
664 }
665 break;
666
cfc14b3a
MK
667 case DW_CFA_GNU_args_size:
668 /* Ignored. */
f664829e 669 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
670 break;
671
58894217 672 case DW_CFA_GNU_negative_offset_extended:
f664829e 673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 674 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
675 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
676 offset = utmp * fs->data_align;
58894217
JK
677 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
678 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
679 fs->regs.reg[reg].loc.offset = -offset;
680 break;
681
cfc14b3a 682 default:
3e43a32a
MS
683 internal_error (__FILE__, __LINE__,
684 _("Unknown CFI encountered."));
cfc14b3a
MK
685 }
686 }
687 }
688
111c6489
JK
689 if (fs->initial.reg == NULL)
690 {
691 /* Don't allow remember/restore between CIE and FDE programs. */
692 dwarf2_frame_state_free_regs (fs->regs.prev);
693 fs->regs.prev = NULL;
694 }
695
696 return insn_ptr;
cfc14b3a 697}
8f22cb90 698\f
cfc14b3a 699
8f22cb90 700/* Architecture-specific operations. */
cfc14b3a 701
8f22cb90
MK
702/* Per-architecture data key. */
703static struct gdbarch_data *dwarf2_frame_data;
704
705struct dwarf2_frame_ops
706{
707 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
708 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
709 struct frame_info *);
3ed09a32 710
4a4e5149 711 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 712 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 713
4fc771b8
DJ
714 /* Convert .eh_frame register number to DWARF register number, or
715 adjust .debug_frame register number. */
716 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
717};
718
8f22cb90
MK
719/* Default architecture-specific register state initialization
720 function. */
721
722static void
723dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 724 struct dwarf2_frame_state_reg *reg,
4a4e5149 725 struct frame_info *this_frame)
8f22cb90
MK
726{
727 /* If we have a register that acts as a program counter, mark it as
728 a destination for the return address. If we have a register that
729 serves as the stack pointer, arrange for it to be filled with the
730 call frame address (CFA). The other registers are marked as
731 unspecified.
732
733 We copy the return address to the program counter, since many
734 parts in GDB assume that it is possible to get the return address
735 by unwinding the program counter register. However, on ISA's
736 with a dedicated return address register, the CFI usually only
737 contains information to unwind that return address register.
738
739 The reason we're treating the stack pointer special here is
740 because in many cases GCC doesn't emit CFI for the stack pointer
741 and implicitly assumes that it is equal to the CFA. This makes
742 some sense since the DWARF specification (version 3, draft 8,
743 p. 102) says that:
744
745 "Typically, the CFA is defined to be the value of the stack
746 pointer at the call site in the previous frame (which may be
747 different from its value on entry to the current frame)."
748
749 However, this isn't true for all platforms supported by GCC
750 (e.g. IBM S/390 and zSeries). Those architectures should provide
751 their own architecture-specific initialization function. */
05cbe71a 752
ad010def 753 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 754 reg->how = DWARF2_FRAME_REG_RA;
ad010def 755 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
756 reg->how = DWARF2_FRAME_REG_CFA;
757}
05cbe71a 758
8f22cb90 759/* Return a default for the architecture-specific operations. */
05cbe71a 760
8f22cb90 761static void *
030f20e1 762dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
763{
764 struct dwarf2_frame_ops *ops;
765
030f20e1 766 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
767 ops->init_reg = dwarf2_frame_default_init_reg;
768 return ops;
769}
05cbe71a 770
8f22cb90
MK
771/* Set the architecture-specific register state initialization
772 function for GDBARCH to INIT_REG. */
773
774void
775dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
776 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
777 struct dwarf2_frame_state_reg *,
778 struct frame_info *))
8f22cb90 779{
030f20e1 780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 781
8f22cb90
MK
782 ops->init_reg = init_reg;
783}
784
785/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
786
787static void
788dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 789 struct dwarf2_frame_state_reg *reg,
4a4e5149 790 struct frame_info *this_frame)
05cbe71a 791{
030f20e1 792 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 793
4a4e5149 794 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 795}
3ed09a32
DJ
796
797/* Set the architecture-specific signal trampoline recognition
798 function for GDBARCH to SIGNAL_FRAME_P. */
799
800void
801dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
802 int (*signal_frame_p) (struct gdbarch *,
803 struct frame_info *))
804{
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 ops->signal_frame_p = signal_frame_p;
808}
809
810/* Query the architecture-specific signal frame recognizer for
4a4e5149 811 THIS_FRAME. */
3ed09a32
DJ
812
813static int
814dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 815 struct frame_info *this_frame)
3ed09a32
DJ
816{
817 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
818
819 if (ops->signal_frame_p == NULL)
820 return 0;
4a4e5149 821 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 822}
4bf8967c 823
4fc771b8
DJ
824/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
825 register numbers. */
4bf8967c
AS
826
827void
4fc771b8
DJ
828dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
829 int (*adjust_regnum) (struct gdbarch *,
830 int, int))
4bf8967c
AS
831{
832 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
833
4fc771b8 834 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
835}
836
4fc771b8
DJ
837/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
838 register. */
4bf8967c 839
4fc771b8 840static int
3e43a32a
MS
841dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
842 int regnum, int eh_frame_p)
4bf8967c
AS
843{
844 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
845
4fc771b8 846 if (ops->adjust_regnum == NULL)
4bf8967c 847 return regnum;
4fc771b8 848 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 849}
303b6f5d
DJ
850
851static void
852dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
853 struct dwarf2_fde *fde)
854{
303b6f5d
DJ
855 struct symtab *s;
856
857 s = find_pc_symtab (fs->pc);
a6c727b2 858 if (s == NULL)
303b6f5d
DJ
859 return;
860
a6c727b2
DJ
861 if (producer_is_realview (s->producer))
862 {
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_sf = 1;
865
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_reversed = 1;
868
869 /* The reversed offset problem is present in some compilers
870 using DWARF3, but it was eventually fixed. Check the ARM
871 defined augmentations, which are in the format "armcc" followed
872 by a list of one-character options. The "+" option means
873 this problem is fixed (no quirk needed). If the armcc
874 augmentation is missing, the quirk is needed. */
875 if (fde->cie->version == 3
876 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
877 || strchr (fde->cie->augmentation + 5, '+') == NULL))
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 return;
881 }
303b6f5d 882}
8f22cb90
MK
883\f
884
9f6f94ff
TT
885void
886dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
887 struct gdbarch *gdbarch,
888 CORE_ADDR pc,
889 struct dwarf2_per_cu_data *data)
890{
9f6f94ff 891 struct dwarf2_fde *fde;
22e048c9 892 CORE_ADDR text_offset;
9f6f94ff
TT
893 struct dwarf2_frame_state fs;
894 int addr_size;
895
896 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
897
898 fs.pc = pc;
899
900 /* Find the correct FDE. */
901 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
902 if (fde == NULL)
903 error (_("Could not compute CFA; needed to translate this expression"));
904
905 /* Extract any interesting information from the CIE. */
906 fs.data_align = fde->cie->data_alignment_factor;
907 fs.code_align = fde->cie->code_alignment_factor;
908 fs.retaddr_column = fde->cie->return_address_register;
909 addr_size = fde->cie->addr_size;
910
911 /* Check for "quirks" - known bugs in producers. */
912 dwarf2_frame_find_quirks (&fs, fde);
913
914 /* First decode all the insns in the CIE. */
915 execute_cfa_program (fde, fde->cie->initial_instructions,
916 fde->cie->end, gdbarch, pc, &fs);
917
918 /* Save the initialized register set. */
919 fs.initial = fs.regs;
920 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
921
922 /* Then decode the insns in the FDE up to our target PC. */
923 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
924
925 /* Calculate the CFA. */
926 switch (fs.regs.cfa_how)
927 {
928 case CFA_REG_OFFSET:
929 {
930 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
931
932 if (regnum == -1)
933 error (_("Unable to access DWARF register number %d"),
934 (int) fs.regs.cfa_reg); /* FIXME */
935 ax_reg (expr, regnum);
936
937 if (fs.regs.cfa_offset != 0)
938 {
939 if (fs.armcc_cfa_offsets_reversed)
940 ax_const_l (expr, -fs.regs.cfa_offset);
941 else
942 ax_const_l (expr, fs.regs.cfa_offset);
943 ax_simple (expr, aop_add);
944 }
945 }
946 break;
947
948 case CFA_EXP:
949 ax_const_l (expr, text_offset);
950 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
951 fs.regs.cfa_exp,
952 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
953 data);
954 break;
955
956 default:
957 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
958 }
959}
960
961\f
8f22cb90
MK
962struct dwarf2_frame_cache
963{
964 /* DWARF Call Frame Address. */
965 CORE_ADDR cfa;
966
8fbca658
PA
967 /* Set if the return address column was marked as unavailable
968 (required non-collected memory or registers to compute). */
969 int unavailable_retaddr;
970
0228dfb9
DJ
971 /* Set if the return address column was marked as undefined. */
972 int undefined_retaddr;
973
8f22cb90
MK
974 /* Saved registers, indexed by GDB register number, not by DWARF
975 register number. */
976 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
977
978 /* Return address register. */
979 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
980
981 /* Target address size in bytes. */
982 int addr_size;
ac56253d
TT
983
984 /* The .text offset. */
985 CORE_ADDR text_offset;
111c6489 986
1ec56e88
PA
987 /* True if we already checked whether this frame is the bottom frame
988 of a virtual tail call frame chain. */
989 int checked_tailcall_bottom;
990
111c6489
JK
991 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
992 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
993 involved. Non-bottom frames of a virtual tail call frames chain use
994 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
995 them. */
996 void *tailcall_cache;
1ec56e88
PA
997
998 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
999 base to get the SP, to simulate the return address pushed on the
1000 stack. */
1001 LONGEST entry_cfa_sp_offset;
1002 int entry_cfa_sp_offset_p;
8f22cb90 1003};
05cbe71a 1004
78ac5f83
TT
1005/* A cleanup that sets a pointer to NULL. */
1006
1007static void
1008clear_pointer_cleanup (void *arg)
1009{
1010 void **ptr = arg;
1011
1012 *ptr = NULL;
1013}
1014
b9362cc7 1015static struct dwarf2_frame_cache *
4a4e5149 1016dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1017{
78ac5f83 1018 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1019 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1020 const int num_regs = gdbarch_num_regs (gdbarch)
1021 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1022 struct dwarf2_frame_cache *cache;
1023 struct dwarf2_frame_state *fs;
1024 struct dwarf2_fde *fde;
8fbca658 1025 volatile struct gdb_exception ex;
111c6489 1026 CORE_ADDR entry_pc;
111c6489 1027 const gdb_byte *instr;
cfc14b3a
MK
1028
1029 if (*this_cache)
1030 return *this_cache;
1031
1032 /* Allocate a new cache. */
1033 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1034 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1035 *this_cache = cache;
78ac5f83 1036 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1037
1038 /* Allocate and initialize the frame state. */
41bf6aca 1039 fs = XCNEW (struct dwarf2_frame_state);
cfc14b3a
MK
1040 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1041
1042 /* Unwind the PC.
1043
4a4e5149 1044 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1045 to abort), the compiler might optimize away the instruction at
4a4e5149 1046 its return address. As a result the return address will
cfc14b3a 1047 point at some random instruction, and the CFI for that
e4e9607c 1048 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1049 this problem by substracting 1 from the return address to get an
1050 address in the middle of a presumed call instruction (or the
1051 instruction in the associated delay slot). This should only be
1052 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1053 handlers, sentinel frames, dummy frames). The function
ad1193e7 1054 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1055 reliable the method is though; there is the potential for the
1056 register state pre-call being different to that on return. */
4a4e5149 1057 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1058
1059 /* Find the correct FDE. */
ac56253d 1060 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1061 gdb_assert (fde != NULL);
1062
1063 /* Extract any interesting information from the CIE. */
1064 fs->data_align = fde->cie->data_alignment_factor;
1065 fs->code_align = fde->cie->code_alignment_factor;
1066 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1067 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1068
303b6f5d
DJ
1069 /* Check for "quirks" - known bugs in producers. */
1070 dwarf2_frame_find_quirks (fs, fde);
1071
cfc14b3a 1072 /* First decode all the insns in the CIE. */
ae0d2f24 1073 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1074 fde->cie->end, gdbarch,
1075 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1076
1077 /* Save the initialized register set. */
1078 fs->initial = fs->regs;
1079 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1080
111c6489
JK
1081 if (get_frame_func_if_available (this_frame, &entry_pc))
1082 {
1083 /* Decode the insns in the FDE up to the entry PC. */
1084 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1085 entry_pc, fs);
1086
1087 if (fs->regs.cfa_how == CFA_REG_OFFSET
1088 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1089 == gdbarch_sp_regnum (gdbarch)))
1090 {
1ec56e88
PA
1091 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1092 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1093 }
1094 }
1095 else
1096 instr = fde->instructions;
1097
cfc14b3a 1098 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1099 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1100 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1101
8fbca658 1102 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1103 {
8fbca658
PA
1104 /* Calculate the CFA. */
1105 switch (fs->regs.cfa_how)
1106 {
1107 case CFA_REG_OFFSET:
b1370418 1108 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1109 if (fs->armcc_cfa_offsets_reversed)
1110 cache->cfa -= fs->regs.cfa_offset;
1111 else
1112 cache->cfa += fs->regs.cfa_offset;
1113 break;
1114
1115 case CFA_EXP:
1116 cache->cfa =
1117 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1118 cache->addr_size, cache->text_offset,
1119 this_frame, 0, 0);
1120 break;
1121
1122 default:
1123 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1124 }
1125 }
1126 if (ex.reason < 0)
1127 {
1128 if (ex.error == NOT_AVAILABLE_ERROR)
1129 {
1130 cache->unavailable_retaddr = 1;
5a1cf4d6 1131 do_cleanups (old_chain);
78ac5f83 1132 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1133 return cache;
1134 }
cfc14b3a 1135
8fbca658 1136 throw_exception (ex);
cfc14b3a
MK
1137 }
1138
05cbe71a 1139 /* Initialize the register state. */
3e2c4033
AC
1140 {
1141 int regnum;
e4e9607c 1142
3e2c4033 1143 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1144 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1145 }
1146
1147 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1148 location information in the cache. Note that we don't skip the
1149 return address column; it's perfectly all right for it to
1150 correspond to a real register. If it doesn't correspond to a
1151 real register, or if we shouldn't treat it as such,
055d23b8 1152 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1153 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1154 {
1155 int column; /* CFI speak for "register number". */
e4e9607c 1156
3e2c4033
AC
1157 for (column = 0; column < fs->regs.num_regs; column++)
1158 {
3e2c4033 1159 /* Use the GDB register number as the destination index. */
ad010def 1160 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1161
1162 /* If there's no corresponding GDB register, ignore it. */
1163 if (regnum < 0 || regnum >= num_regs)
1164 continue;
1165
1166 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1167 of all debug info registers. If it doesn't, complain (but
1168 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1169 unspecified register implies "same value" when CFI (draft
1170 7) specifies nothing at all. Such a register could equally
1171 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1172 isn't sufficient; it only checks that all registers in the
1173 range [0 .. max column] are specified, and won't detect
3e2c4033 1174 problems when a debug info register falls outside of the
e4e9607c 1175 table. We need a way of iterating through all the valid
3e2c4033 1176 DWARF2 register numbers. */
05cbe71a 1177 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1178 {
1179 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1180 complaint (&symfile_complaints, _("\
5af949e3 1181incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1182 gdbarch_register_name (gdbarch, regnum),
5af949e3 1183 paddress (gdbarch, fs->pc));
f059bf6f 1184 }
35889917
MK
1185 else
1186 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1187 }
1188 }
cfc14b3a 1189
8d5a9abc
MK
1190 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1191 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1192 {
1193 int regnum;
1194
1195 for (regnum = 0; regnum < num_regs; regnum++)
1196 {
8d5a9abc
MK
1197 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1198 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1199 {
05cbe71a
MK
1200 struct dwarf2_frame_state_reg *retaddr_reg =
1201 &fs->regs.reg[fs->retaddr_column];
1202
d4f10bf2
MK
1203 /* It seems rather bizarre to specify an "empty" column as
1204 the return adress column. However, this is exactly
1205 what GCC does on some targets. It turns out that GCC
1206 assumes that the return address can be found in the
1207 register corresponding to the return address column.
8d5a9abc
MK
1208 Incidentally, that's how we should treat a return
1209 address column specifying "same value" too. */
d4f10bf2 1210 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1211 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1212 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1213 {
1214 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1215 cache->reg[regnum] = *retaddr_reg;
1216 else
1217 cache->retaddr_reg = *retaddr_reg;
1218 }
35889917
MK
1219 else
1220 {
8d5a9abc
MK
1221 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1222 {
1223 cache->reg[regnum].loc.reg = fs->retaddr_column;
1224 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1225 }
1226 else
1227 {
1228 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1229 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1230 }
35889917
MK
1231 }
1232 }
1233 }
1234 }
cfc14b3a 1235
0228dfb9
DJ
1236 if (fs->retaddr_column < fs->regs.num_regs
1237 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1238 cache->undefined_retaddr = 1;
1239
cfc14b3a 1240 do_cleanups (old_chain);
78ac5f83 1241 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1242 return cache;
1243}
1244
8fbca658
PA
1245static enum unwind_stop_reason
1246dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1247 void **this_cache)
1248{
1249 struct dwarf2_frame_cache *cache
1250 = dwarf2_frame_cache (this_frame, this_cache);
1251
1252 if (cache->unavailable_retaddr)
1253 return UNWIND_UNAVAILABLE;
1254
1255 if (cache->undefined_retaddr)
1256 return UNWIND_OUTERMOST;
1257
1258 return UNWIND_NO_REASON;
1259}
1260
cfc14b3a 1261static void
4a4e5149 1262dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1263 struct frame_id *this_id)
1264{
1265 struct dwarf2_frame_cache *cache =
4a4e5149 1266 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1267
8fbca658 1268 if (cache->unavailable_retaddr)
5ce0145d
PA
1269 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1270 else if (cache->undefined_retaddr)
8fbca658 1271 return;
5ce0145d
PA
1272 else
1273 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1274}
1275
4a4e5149
DJ
1276static struct value *
1277dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1278 int regnum)
93d42b30 1279{
4a4e5149 1280 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1281 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1282 dwarf2_frame_cache (this_frame, this_cache);
1283 CORE_ADDR addr;
1284 int realnum;
cfc14b3a 1285
1ec56e88
PA
1286 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1287 call frame chain. */
1288 if (!cache->checked_tailcall_bottom)
1289 {
1290 cache->checked_tailcall_bottom = 1;
1291 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1292 (cache->entry_cfa_sp_offset_p
1293 ? &cache->entry_cfa_sp_offset : NULL));
1294 }
1295
111c6489
JK
1296 /* Non-bottom frames of a virtual tail call frames chain use
1297 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1298 them. If dwarf2_tailcall_prev_register_first does not have specific value
1299 unwind the register, tail call frames are assumed to have the register set
1300 of the top caller. */
1301 if (cache->tailcall_cache)
1302 {
1303 struct value *val;
1304
1305 val = dwarf2_tailcall_prev_register_first (this_frame,
1306 &cache->tailcall_cache,
1307 regnum);
1308 if (val)
1309 return val;
1310 }
1311
cfc14b3a
MK
1312 switch (cache->reg[regnum].how)
1313 {
05cbe71a 1314 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1315 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1316 mark it as optimized away; the value isn't available. */
4a4e5149 1317 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1318
05cbe71a 1319 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1320 addr = cache->cfa + cache->reg[regnum].loc.offset;
1321 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1322
05cbe71a 1323 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1324 realnum
1325 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1326 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1327
05cbe71a 1328 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1329 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1330 cache->reg[regnum].exp_len,
ac56253d
TT
1331 cache->addr_size, cache->text_offset,
1332 this_frame, cache->cfa, 1);
4a4e5149 1333 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1334
46ea248b 1335 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1336 addr = cache->cfa + cache->reg[regnum].loc.offset;
1337 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1338
1339 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1340 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1341 cache->reg[regnum].exp_len,
ac56253d
TT
1342 cache->addr_size, cache->text_offset,
1343 this_frame, cache->cfa, 1);
4a4e5149 1344 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1345
05cbe71a 1346 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1347 /* GCC, in its infinite wisdom decided to not provide unwind
1348 information for registers that are "same value". Since
1349 DWARF2 (3 draft 7) doesn't define such behavior, said
1350 registers are actually undefined (which is different to CFI
1351 "undefined"). Code above issues a complaint about this.
1352 Here just fudge the books, assume GCC, and that the value is
1353 more inner on the stack. */
4a4e5149 1354 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1355
05cbe71a 1356 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1357 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1358
05cbe71a 1359 case DWARF2_FRAME_REG_CFA:
4a4e5149 1360 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1361
ea7963f0 1362 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1363 addr = cache->cfa + cache->reg[regnum].loc.offset;
1364 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1365
8d5a9abc 1366 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1367 addr = cache->reg[regnum].loc.offset;
1368 regnum = gdbarch_dwarf2_reg_to_regnum
1369 (gdbarch, cache->retaddr_reg.loc.reg);
1370 addr += get_frame_register_unsigned (this_frame, regnum);
1371 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1372
b39cc962
DJ
1373 case DWARF2_FRAME_REG_FN:
1374 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1375
cfc14b3a 1376 default:
e2e0b3e5 1377 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1378 }
1379}
1380
111c6489
JK
1381/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1382 call frames chain. */
1383
1384static void
1385dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1386{
1387 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1388
1389 if (cache->tailcall_cache)
1390 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1391}
1392
4a4e5149
DJ
1393static int
1394dwarf2_frame_sniffer (const struct frame_unwind *self,
1395 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1396{
1ce5d6dd 1397 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1398 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1399 end up returning something past the end of this function's body.
1400 If the frame we're sniffing for is a signal frame whose start
1401 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1402 extend one byte before its start address or we could potentially
1403 select the FDE of the previous function. */
1404 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1405 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1406
56c987f6 1407 if (!fde)
4a4e5149 1408 return 0;
3ed09a32
DJ
1409
1410 /* On some targets, signal trampolines may have unwind information.
1411 We need to recognize them so that we set the frame type
1412 correctly. */
1413
56c987f6 1414 if (fde->cie->signal_frame
4a4e5149
DJ
1415 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1416 this_frame))
1417 return self->type == SIGTRAMP_FRAME;
1418
111c6489
JK
1419 if (self->type != NORMAL_FRAME)
1420 return 0;
1421
111c6489 1422 return 1;
4a4e5149
DJ
1423}
1424
1425static const struct frame_unwind dwarf2_frame_unwind =
1426{
1427 NORMAL_FRAME,
8fbca658 1428 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1429 dwarf2_frame_this_id,
1430 dwarf2_frame_prev_register,
1431 NULL,
111c6489
JK
1432 dwarf2_frame_sniffer,
1433 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1434};
1435
1436static const struct frame_unwind dwarf2_signal_frame_unwind =
1437{
1438 SIGTRAMP_FRAME,
8fbca658 1439 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1440 dwarf2_frame_this_id,
1441 dwarf2_frame_prev_register,
1442 NULL,
111c6489
JK
1443 dwarf2_frame_sniffer,
1444
1445 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1446 NULL
4a4e5149 1447};
cfc14b3a 1448
4a4e5149
DJ
1449/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1450
1451void
1452dwarf2_append_unwinders (struct gdbarch *gdbarch)
1453{
111c6489
JK
1454 /* TAILCALL_FRAME must be first to find the record by
1455 dwarf2_tailcall_sniffer_first. */
1456 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1457
4a4e5149
DJ
1458 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1459 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1460}
1461\f
1462
1463/* There is no explicitly defined relationship between the CFA and the
1464 location of frame's local variables and arguments/parameters.
1465 Therefore, frame base methods on this page should probably only be
1466 used as a last resort, just to avoid printing total garbage as a
1467 response to the "info frame" command. */
1468
1469static CORE_ADDR
4a4e5149 1470dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1471{
1472 struct dwarf2_frame_cache *cache =
4a4e5149 1473 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1474
1475 return cache->cfa;
1476}
1477
1478static const struct frame_base dwarf2_frame_base =
1479{
1480 &dwarf2_frame_unwind,
1481 dwarf2_frame_base_address,
1482 dwarf2_frame_base_address,
1483 dwarf2_frame_base_address
1484};
1485
1486const struct frame_base *
4a4e5149 1487dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1488{
4a4e5149 1489 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1490
ac56253d 1491 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1492 return &dwarf2_frame_base;
1493
1494 return NULL;
1495}
e7802207
TT
1496
1497/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1498 the DWARF unwinder. This is used to implement
1499 DW_OP_call_frame_cfa. */
1500
1501CORE_ADDR
1502dwarf2_frame_cfa (struct frame_info *this_frame)
1503{
0b722aec
MM
1504 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1505 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1506 throw_error (NOT_AVAILABLE_ERROR,
1507 _("cfa not available for record btrace target"));
1508
e7802207
TT
1509 while (get_frame_type (this_frame) == INLINE_FRAME)
1510 this_frame = get_prev_frame (this_frame);
32261e52
MM
1511 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1512 throw_error (NOT_AVAILABLE_ERROR,
1513 _("can't compute CFA for this frame: "
1514 "required registers or memory are unavailable"));
e7802207
TT
1515 /* This restriction could be lifted if other unwinders are known to
1516 compute the frame base in a way compatible with the DWARF
1517 unwinder. */
111c6489
JK
1518 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1519 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
e7802207
TT
1520 error (_("can't compute CFA for this frame"));
1521 return get_frame_base (this_frame);
1522}
cfc14b3a 1523\f
8f22cb90 1524const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1525
cfc14b3a 1526static unsigned int
f664829e 1527read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1528{
852483bc 1529 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1530}
1531
1532static unsigned int
f664829e 1533read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1534{
852483bc 1535 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1536}
1537
1538static ULONGEST
f664829e 1539read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1540{
852483bc 1541 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1542}
1543
1544static ULONGEST
f664829e
DE
1545read_initial_length (bfd *abfd, const gdb_byte *buf,
1546 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1547{
1548 LONGEST result;
1549
852483bc 1550 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1551 if (result == 0xffffffff)
1552 {
852483bc 1553 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1554 *bytes_read_ptr = 12;
1555 }
1556 else
1557 *bytes_read_ptr = 4;
1558
1559 return result;
1560}
1561\f
1562
1563/* Pointer encoding helper functions. */
1564
1565/* GCC supports exception handling based on DWARF2 CFI. However, for
1566 technical reasons, it encodes addresses in its FDE's in a different
1567 way. Several "pointer encodings" are supported. The encoding
1568 that's used for a particular FDE is determined by the 'R'
1569 augmentation in the associated CIE. The argument of this
1570 augmentation is a single byte.
1571
1572 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1573 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1574 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1575 address should be interpreted (absolute, relative to the current
1576 position in the FDE, ...). Bit 7, indicates that the address
1577 should be dereferenced. */
1578
852483bc 1579static gdb_byte
cfc14b3a
MK
1580encoding_for_size (unsigned int size)
1581{
1582 switch (size)
1583 {
1584 case 2:
1585 return DW_EH_PE_udata2;
1586 case 4:
1587 return DW_EH_PE_udata4;
1588 case 8:
1589 return DW_EH_PE_udata8;
1590 default:
e2e0b3e5 1591 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1592 }
1593}
1594
cfc14b3a 1595static CORE_ADDR
852483bc 1596read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1597 int ptr_len, const gdb_byte *buf,
1598 unsigned int *bytes_read_ptr,
ae0d2f24 1599 CORE_ADDR func_base)
cfc14b3a 1600{
68f6cf99 1601 ptrdiff_t offset;
cfc14b3a
MK
1602 CORE_ADDR base;
1603
1604 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1605 FDE's. */
1606 if (encoding & DW_EH_PE_indirect)
1607 internal_error (__FILE__, __LINE__,
e2e0b3e5 1608 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1609
68f6cf99
MK
1610 *bytes_read_ptr = 0;
1611
cfc14b3a
MK
1612 switch (encoding & 0x70)
1613 {
1614 case DW_EH_PE_absptr:
1615 base = 0;
1616 break;
1617 case DW_EH_PE_pcrel:
f2fec864 1618 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1619 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1620 break;
0912c7f2
MK
1621 case DW_EH_PE_datarel:
1622 base = unit->dbase;
1623 break;
0fd85043
CV
1624 case DW_EH_PE_textrel:
1625 base = unit->tbase;
1626 break;
03ac2a74 1627 case DW_EH_PE_funcrel:
ae0d2f24 1628 base = func_base;
03ac2a74 1629 break;
68f6cf99
MK
1630 case DW_EH_PE_aligned:
1631 base = 0;
852483bc 1632 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1633 if ((offset % ptr_len) != 0)
1634 {
1635 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1636 buf += *bytes_read_ptr;
1637 }
1638 break;
cfc14b3a 1639 default:
3e43a32a
MS
1640 internal_error (__FILE__, __LINE__,
1641 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1642 }
1643
b04de778 1644 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1645 {
1646 encoding |= encoding_for_size (ptr_len);
1647 if (bfd_get_sign_extend_vma (unit->abfd))
1648 encoding |= DW_EH_PE_signed;
1649 }
cfc14b3a
MK
1650
1651 switch (encoding & 0x0f)
1652 {
a81b10ae
MK
1653 case DW_EH_PE_uleb128:
1654 {
9fccedf7 1655 uint64_t value;
0d45f56e 1656 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1657
f664829e 1658 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1659 return base + value;
1660 }
cfc14b3a 1661 case DW_EH_PE_udata2:
68f6cf99 1662 *bytes_read_ptr += 2;
cfc14b3a
MK
1663 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1664 case DW_EH_PE_udata4:
68f6cf99 1665 *bytes_read_ptr += 4;
cfc14b3a
MK
1666 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1667 case DW_EH_PE_udata8:
68f6cf99 1668 *bytes_read_ptr += 8;
cfc14b3a 1669 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1670 case DW_EH_PE_sleb128:
1671 {
9fccedf7 1672 int64_t value;
0d45f56e 1673 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1674
f664829e 1675 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1676 return base + value;
1677 }
cfc14b3a 1678 case DW_EH_PE_sdata2:
68f6cf99 1679 *bytes_read_ptr += 2;
cfc14b3a
MK
1680 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1681 case DW_EH_PE_sdata4:
68f6cf99 1682 *bytes_read_ptr += 4;
cfc14b3a
MK
1683 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1684 case DW_EH_PE_sdata8:
68f6cf99 1685 *bytes_read_ptr += 8;
cfc14b3a
MK
1686 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1687 default:
3e43a32a
MS
1688 internal_error (__FILE__, __LINE__,
1689 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1690 }
1691}
1692\f
1693
b01c8410
PP
1694static int
1695bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1696{
b01c8410
PP
1697 ULONGEST cie_pointer = *(ULONGEST *) key;
1698 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1699
b01c8410
PP
1700 if (cie_pointer == cie->cie_pointer)
1701 return 0;
cfc14b3a 1702
b01c8410
PP
1703 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1704}
1705
1706/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1707static struct dwarf2_cie *
1708find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1709{
1710 struct dwarf2_cie **p_cie;
cfc14b3a 1711
65a97ab3
PP
1712 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1713 bsearch be non-NULL. */
1714 if (cie_table->entries == NULL)
1715 {
1716 gdb_assert (cie_table->num_entries == 0);
1717 return NULL;
1718 }
1719
b01c8410
PP
1720 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1721 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1722 if (p_cie != NULL)
1723 return *p_cie;
cfc14b3a
MK
1724 return NULL;
1725}
1726
b01c8410 1727/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1728static void
b01c8410 1729add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1730{
b01c8410
PP
1731 const int n = cie_table->num_entries;
1732
1733 gdb_assert (n < 1
1734 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1735
1736 cie_table->entries =
1737 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1738 cie_table->entries[n] = cie;
1739 cie_table->num_entries = n + 1;
1740}
1741
1742static int
1743bsearch_fde_cmp (const void *key, const void *element)
1744{
1745 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1746 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1747
b01c8410
PP
1748 if (seek_pc < fde->initial_location)
1749 return -1;
1750 if (seek_pc < fde->initial_location + fde->address_range)
1751 return 0;
1752 return 1;
cfc14b3a
MK
1753}
1754
1755/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1756 inital location associated with it into *PC. */
1757
1758static struct dwarf2_fde *
ac56253d 1759dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1760{
1761 struct objfile *objfile;
1762
1763 ALL_OBJFILES (objfile)
1764 {
b01c8410
PP
1765 struct dwarf2_fde_table *fde_table;
1766 struct dwarf2_fde **p_fde;
cfc14b3a 1767 CORE_ADDR offset;
b01c8410 1768 CORE_ADDR seek_pc;
cfc14b3a 1769
b01c8410
PP
1770 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1771 if (fde_table == NULL)
be391dca
TT
1772 {
1773 dwarf2_build_frame_info (objfile);
1774 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1775 }
1776 gdb_assert (fde_table != NULL);
1777
1778 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1779 continue;
1780
1781 gdb_assert (objfile->section_offsets);
1782 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1783
b01c8410
PP
1784 gdb_assert (fde_table->num_entries > 0);
1785 if (*pc < offset + fde_table->entries[0]->initial_location)
1786 continue;
1787
1788 seek_pc = *pc - offset;
1789 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1790 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1791 if (p_fde != NULL)
1792 {
1793 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1794 if (out_offset)
1795 *out_offset = offset;
b01c8410
PP
1796 return *p_fde;
1797 }
cfc14b3a 1798 }
cfc14b3a
MK
1799 return NULL;
1800}
1801
b01c8410 1802/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1803static void
b01c8410 1804add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1805{
b01c8410
PP
1806 if (fde->address_range == 0)
1807 /* Discard useless FDEs. */
1808 return;
1809
1810 fde_table->num_entries += 1;
1811 fde_table->entries =
1812 xrealloc (fde_table->entries,
1813 fde_table->num_entries * sizeof (fde_table->entries[0]));
1814 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1815}
1816
cfc14b3a 1817#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1818
8bd90839
FM
1819/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1820 or any of them. */
1821
1822enum eh_frame_type
1823{
1824 EH_CIE_TYPE_ID = 1 << 0,
1825 EH_FDE_TYPE_ID = 1 << 1,
1826 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1827};
1828
f664829e
DE
1829static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1830 const gdb_byte *start,
1831 int eh_frame_p,
1832 struct dwarf2_cie_table *cie_table,
1833 struct dwarf2_fde_table *fde_table,
1834 enum eh_frame_type entry_type);
8bd90839
FM
1835
1836/* Decode the next CIE or FDE, entry_type specifies the expected type.
1837 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1838
f664829e
DE
1839static const gdb_byte *
1840decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1841 int eh_frame_p,
b01c8410 1842 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1843 struct dwarf2_fde_table *fde_table,
1844 enum eh_frame_type entry_type)
cfc14b3a 1845{
5e2b427d 1846 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1847 const gdb_byte *buf, *end;
cfc14b3a
MK
1848 LONGEST length;
1849 unsigned int bytes_read;
6896c0c7
RH
1850 int dwarf64_p;
1851 ULONGEST cie_id;
cfc14b3a 1852 ULONGEST cie_pointer;
9fccedf7
DE
1853 int64_t sleb128;
1854 uint64_t uleb128;
cfc14b3a 1855
6896c0c7 1856 buf = start;
cfc14b3a
MK
1857 length = read_initial_length (unit->abfd, buf, &bytes_read);
1858 buf += bytes_read;
1859 end = buf + length;
1860
0963b4bd 1861 /* Are we still within the section? */
6896c0c7
RH
1862 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1863 return NULL;
1864
cfc14b3a
MK
1865 if (length == 0)
1866 return end;
1867
6896c0c7
RH
1868 /* Distinguish between 32 and 64-bit encoded frame info. */
1869 dwarf64_p = (bytes_read == 12);
cfc14b3a 1870
6896c0c7 1871 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1872 if (eh_frame_p)
1873 cie_id = 0;
1874 else if (dwarf64_p)
1875 cie_id = DW64_CIE_ID;
6896c0c7
RH
1876 else
1877 cie_id = DW_CIE_ID;
cfc14b3a
MK
1878
1879 if (dwarf64_p)
1880 {
1881 cie_pointer = read_8_bytes (unit->abfd, buf);
1882 buf += 8;
1883 }
1884 else
1885 {
1886 cie_pointer = read_4_bytes (unit->abfd, buf);
1887 buf += 4;
1888 }
1889
1890 if (cie_pointer == cie_id)
1891 {
1892 /* This is a CIE. */
1893 struct dwarf2_cie *cie;
1894 char *augmentation;
28ba0b33 1895 unsigned int cie_version;
cfc14b3a 1896
8bd90839
FM
1897 /* Check that a CIE was expected. */
1898 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1899 error (_("Found a CIE when not expecting it."));
1900
cfc14b3a
MK
1901 /* Record the offset into the .debug_frame section of this CIE. */
1902 cie_pointer = start - unit->dwarf_frame_buffer;
1903
1904 /* Check whether we've already read it. */
b01c8410 1905 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1906 return end;
1907
1908 cie = (struct dwarf2_cie *)
8b92e4d5 1909 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1910 sizeof (struct dwarf2_cie));
1911 cie->initial_instructions = NULL;
1912 cie->cie_pointer = cie_pointer;
1913
1914 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1915 depends on the target address size. */
1916 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1917
56c987f6
AO
1918 /* We'll determine the final value later, but we need to
1919 initialize it conservatively. */
1920 cie->signal_frame = 0;
1921
cfc14b3a 1922 /* Check version number. */
28ba0b33 1923 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1924 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1925 return NULL;
303b6f5d 1926 cie->version = cie_version;
cfc14b3a
MK
1927 buf += 1;
1928
1929 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1930 cie->augmentation = augmentation = (char *) buf;
852483bc 1931 buf += (strlen (augmentation) + 1);
cfc14b3a 1932
303b6f5d
DJ
1933 /* Ignore armcc augmentations. We only use them for quirks,
1934 and that doesn't happen until later. */
1935 if (strncmp (augmentation, "armcc", 5) == 0)
1936 augmentation += strlen (augmentation);
1937
cfc14b3a
MK
1938 /* The GCC 2.x "eh" augmentation has a pointer immediately
1939 following the augmentation string, so it must be handled
1940 first. */
1941 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1942 {
1943 /* Skip. */
5e2b427d 1944 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1945 augmentation += 2;
1946 }
1947
2dc7f7b3
TT
1948 if (cie->version >= 4)
1949 {
1950 /* FIXME: check that this is the same as from the CU header. */
1951 cie->addr_size = read_1_byte (unit->abfd, buf);
1952 ++buf;
1953 cie->segment_size = read_1_byte (unit->abfd, buf);
1954 ++buf;
1955 }
1956 else
1957 {
8da614df 1958 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1959 cie->segment_size = 0;
1960 }
8da614df
CV
1961 /* Address values in .eh_frame sections are defined to have the
1962 target's pointer size. Watchout: This breaks frame info for
1963 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1964 section exists as well. */
8da614df
CV
1965 if (eh_frame_p)
1966 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1967 else
1968 cie->ptr_size = cie->addr_size;
2dc7f7b3 1969
f664829e
DE
1970 buf = gdb_read_uleb128 (buf, end, &uleb128);
1971 if (buf == NULL)
1972 return NULL;
1973 cie->code_alignment_factor = uleb128;
cfc14b3a 1974
f664829e
DE
1975 buf = gdb_read_sleb128 (buf, end, &sleb128);
1976 if (buf == NULL)
1977 return NULL;
1978 cie->data_alignment_factor = sleb128;
cfc14b3a 1979
28ba0b33
PB
1980 if (cie_version == 1)
1981 {
1982 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1983 ++buf;
28ba0b33
PB
1984 }
1985 else
f664829e
DE
1986 {
1987 buf = gdb_read_uleb128 (buf, end, &uleb128);
1988 if (buf == NULL)
1989 return NULL;
1990 cie->return_address_register = uleb128;
1991 }
1992
4fc771b8 1993 cie->return_address_register
5e2b427d 1994 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1995 cie->return_address_register,
1996 eh_frame_p);
4bf8967c 1997
7131cb6e
RH
1998 cie->saw_z_augmentation = (*augmentation == 'z');
1999 if (cie->saw_z_augmentation)
cfc14b3a 2000 {
9fccedf7 2001 uint64_t length;
cfc14b3a 2002
f664829e
DE
2003 buf = gdb_read_uleb128 (buf, end, &length);
2004 if (buf == NULL)
6896c0c7 2005 return NULL;
cfc14b3a
MK
2006 cie->initial_instructions = buf + length;
2007 augmentation++;
2008 }
2009
2010 while (*augmentation)
2011 {
2012 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2013 if (*augmentation == 'L')
2014 {
2015 /* Skip. */
2016 buf++;
2017 augmentation++;
2018 }
2019
2020 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2021 else if (*augmentation == 'R')
2022 {
2023 cie->encoding = *buf++;
2024 augmentation++;
2025 }
2026
2027 /* "P" indicates a personality routine in the CIE augmentation. */
2028 else if (*augmentation == 'P')
2029 {
1234d960 2030 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2031 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2032 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2033 buf, &bytes_read, 0);
f724bf08 2034 buf += bytes_read;
cfc14b3a
MK
2035 augmentation++;
2036 }
2037
56c987f6
AO
2038 /* "S" indicates a signal frame, such that the return
2039 address must not be decremented to locate the call frame
2040 info for the previous frame; it might even be the first
2041 instruction of a function, so decrementing it would take
2042 us to a different function. */
2043 else if (*augmentation == 'S')
2044 {
2045 cie->signal_frame = 1;
2046 augmentation++;
2047 }
2048
3e9a2e52
DJ
2049 /* Otherwise we have an unknown augmentation. Assume that either
2050 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2051 else
2052 {
3e9a2e52
DJ
2053 if (cie->initial_instructions)
2054 buf = cie->initial_instructions;
cfc14b3a
MK
2055 break;
2056 }
2057 }
2058
2059 cie->initial_instructions = buf;
2060 cie->end = end;
b01c8410 2061 cie->unit = unit;
cfc14b3a 2062
b01c8410 2063 add_cie (cie_table, cie);
cfc14b3a
MK
2064 }
2065 else
2066 {
2067 /* This is a FDE. */
2068 struct dwarf2_fde *fde;
2069
8bd90839
FM
2070 /* Check that an FDE was expected. */
2071 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2072 error (_("Found an FDE when not expecting it."));
2073
6896c0c7
RH
2074 /* In an .eh_frame section, the CIE pointer is the delta between the
2075 address within the FDE where the CIE pointer is stored and the
2076 address of the CIE. Convert it to an offset into the .eh_frame
2077 section. */
cfc14b3a
MK
2078 if (eh_frame_p)
2079 {
cfc14b3a
MK
2080 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2081 cie_pointer -= (dwarf64_p ? 8 : 4);
2082 }
2083
6896c0c7
RH
2084 /* In either case, validate the result is still within the section. */
2085 if (cie_pointer >= unit->dwarf_frame_size)
2086 return NULL;
2087
cfc14b3a 2088 fde = (struct dwarf2_fde *)
8b92e4d5 2089 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2090 sizeof (struct dwarf2_fde));
b01c8410 2091 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2092 if (fde->cie == NULL)
2093 {
2094 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2095 eh_frame_p, cie_table, fde_table,
2096 EH_CIE_TYPE_ID);
b01c8410 2097 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2098 }
2099
2100 gdb_assert (fde->cie != NULL);
2101
2102 fde->initial_location =
8da614df 2103 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
ae0d2f24 2104 buf, &bytes_read, 0);
cfc14b3a
MK
2105 buf += bytes_read;
2106
2107 fde->address_range =
ae0d2f24 2108 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2109 fde->cie->ptr_size, buf, &bytes_read, 0);
cfc14b3a
MK
2110 buf += bytes_read;
2111
7131cb6e
RH
2112 /* A 'z' augmentation in the CIE implies the presence of an
2113 augmentation field in the FDE as well. The only thing known
2114 to be in here at present is the LSDA entry for EH. So we
2115 can skip the whole thing. */
2116 if (fde->cie->saw_z_augmentation)
2117 {
9fccedf7 2118 uint64_t length;
7131cb6e 2119
f664829e
DE
2120 buf = gdb_read_uleb128 (buf, end, &length);
2121 if (buf == NULL)
2122 return NULL;
2123 buf += length;
6896c0c7
RH
2124 if (buf > end)
2125 return NULL;
7131cb6e
RH
2126 }
2127
cfc14b3a
MK
2128 fde->instructions = buf;
2129 fde->end = end;
2130
4bf8967c
AS
2131 fde->eh_frame_p = eh_frame_p;
2132
b01c8410 2133 add_fde (fde_table, fde);
cfc14b3a
MK
2134 }
2135
2136 return end;
2137}
6896c0c7 2138
8bd90839
FM
2139/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2140 expect an FDE or a CIE. */
2141
f664829e
DE
2142static const gdb_byte *
2143decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2144 int eh_frame_p,
b01c8410 2145 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2146 struct dwarf2_fde_table *fde_table,
2147 enum eh_frame_type entry_type)
6896c0c7
RH
2148{
2149 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2150 const gdb_byte *ret;
6896c0c7
RH
2151 ptrdiff_t start_offset;
2152
2153 while (1)
2154 {
b01c8410 2155 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2156 cie_table, fde_table, entry_type);
6896c0c7
RH
2157 if (ret != NULL)
2158 break;
2159
2160 /* We have corrupt input data of some form. */
2161
2162 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2163 and mismatches wrt padding and alignment of debug sections. */
2164 /* Note that there is no requirement in the standard for any
2165 alignment at all in the frame unwind sections. Testing for
2166 alignment before trying to interpret data would be incorrect.
2167
2168 However, GCC traditionally arranged for frame sections to be
2169 sized such that the FDE length and CIE fields happen to be
2170 aligned (in theory, for performance). This, unfortunately,
2171 was done with .align directives, which had the side effect of
2172 forcing the section to be aligned by the linker.
2173
2174 This becomes a problem when you have some other producer that
2175 creates frame sections that are not as strictly aligned. That
2176 produces a hole in the frame info that gets filled by the
2177 linker with zeros.
2178
2179 The GCC behaviour is arguably a bug, but it's effectively now
2180 part of the ABI, so we're now stuck with it, at least at the
2181 object file level. A smart linker may decide, in the process
2182 of compressing duplicate CIE information, that it can rewrite
2183 the entire output section without this extra padding. */
2184
2185 start_offset = start - unit->dwarf_frame_buffer;
2186 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2187 {
2188 start += 4 - (start_offset & 3);
2189 workaround = ALIGN4;
2190 continue;
2191 }
2192 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2193 {
2194 start += 8 - (start_offset & 7);
2195 workaround = ALIGN8;
2196 continue;
2197 }
2198
2199 /* Nothing left to try. Arrange to return as if we've consumed
2200 the entire input section. Hopefully we'll get valid info from
2201 the other of .debug_frame/.eh_frame. */
2202 workaround = FAIL;
2203 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2204 break;
2205 }
2206
2207 switch (workaround)
2208 {
2209 case NONE:
2210 break;
2211
2212 case ALIGN4:
3e43a32a
MS
2213 complaint (&symfile_complaints, _("\
2214Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2215 unit->dwarf_frame_section->owner->filename,
2216 unit->dwarf_frame_section->name);
2217 break;
2218
2219 case ALIGN8:
3e43a32a
MS
2220 complaint (&symfile_complaints, _("\
2221Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2222 unit->dwarf_frame_section->owner->filename,
2223 unit->dwarf_frame_section->name);
2224 break;
2225
2226 default:
2227 complaint (&symfile_complaints,
e2e0b3e5 2228 _("Corrupt data in %s:%s"),
6896c0c7
RH
2229 unit->dwarf_frame_section->owner->filename,
2230 unit->dwarf_frame_section->name);
2231 break;
2232 }
2233
2234 return ret;
2235}
cfc14b3a 2236\f
b01c8410
PP
2237static int
2238qsort_fde_cmp (const void *a, const void *b)
2239{
2240 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2241 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2242
b01c8410 2243 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2244 {
2245 if (aa->address_range != bb->address_range
2246 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2247 /* Linker bug, e.g. gold/10400.
2248 Work around it by keeping stable sort order. */
2249 return (a < b) ? -1 : 1;
2250 else
2251 /* Put eh_frame entries after debug_frame ones. */
2252 return aa->eh_frame_p - bb->eh_frame_p;
2253 }
b01c8410
PP
2254
2255 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2256}
2257
cfc14b3a
MK
2258void
2259dwarf2_build_frame_info (struct objfile *objfile)
2260{
ae0d2f24 2261 struct comp_unit *unit;
f664829e 2262 const gdb_byte *frame_ptr;
b01c8410
PP
2263 struct dwarf2_cie_table cie_table;
2264 struct dwarf2_fde_table fde_table;
be391dca 2265 struct dwarf2_fde_table *fde_table2;
8bd90839 2266 volatile struct gdb_exception e;
b01c8410
PP
2267
2268 cie_table.num_entries = 0;
2269 cie_table.entries = NULL;
2270
2271 fde_table.num_entries = 0;
2272 fde_table.entries = NULL;
cfc14b3a
MK
2273
2274 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2275 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2276 sizeof (struct comp_unit));
2277 unit->abfd = objfile->obfd;
2278 unit->objfile = objfile;
2279 unit->dbase = 0;
2280 unit->tbase = 0;
cfc14b3a 2281
d40102a1 2282 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2283 {
d40102a1
JB
2284 /* Do not read .eh_frame from separate file as they must be also
2285 present in the main file. */
2286 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2287 &unit->dwarf_frame_section,
2288 &unit->dwarf_frame_buffer,
2289 &unit->dwarf_frame_size);
2290 if (unit->dwarf_frame_size)
b01c8410 2291 {
d40102a1
JB
2292 asection *got, *txt;
2293
2294 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2295 that is used for the i386/amd64 target, which currently is
2296 the only target in GCC that supports/uses the
2297 DW_EH_PE_datarel encoding. */
2298 got = bfd_get_section_by_name (unit->abfd, ".got");
2299 if (got)
2300 unit->dbase = got->vma;
2301
2302 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2303 so far. */
2304 txt = bfd_get_section_by_name (unit->abfd, ".text");
2305 if (txt)
2306 unit->tbase = txt->vma;
2307
8bd90839
FM
2308 TRY_CATCH (e, RETURN_MASK_ERROR)
2309 {
2310 frame_ptr = unit->dwarf_frame_buffer;
2311 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2312 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2313 &cie_table, &fde_table,
2314 EH_CIE_OR_FDE_TYPE_ID);
2315 }
2316
2317 if (e.reason < 0)
2318 {
2319 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2320 objfile_name (objfile), e.message);
8bd90839
FM
2321
2322 if (fde_table.num_entries != 0)
2323 {
2324 xfree (fde_table.entries);
2325 fde_table.entries = NULL;
2326 fde_table.num_entries = 0;
2327 }
2328 /* The cie_table is discarded by the next if. */
2329 }
d40102a1
JB
2330
2331 if (cie_table.num_entries != 0)
2332 {
2333 /* Reinit cie_table: debug_frame has different CIEs. */
2334 xfree (cie_table.entries);
2335 cie_table.num_entries = 0;
2336 cie_table.entries = NULL;
2337 }
b01c8410 2338 }
cfc14b3a
MK
2339 }
2340
3017a003 2341 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2342 &unit->dwarf_frame_section,
2343 &unit->dwarf_frame_buffer,
2344 &unit->dwarf_frame_size);
2345 if (unit->dwarf_frame_size)
cfc14b3a 2346 {
8bd90839
FM
2347 int num_old_fde_entries = fde_table.num_entries;
2348
2349 TRY_CATCH (e, RETURN_MASK_ERROR)
2350 {
2351 frame_ptr = unit->dwarf_frame_buffer;
2352 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2353 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2354 &cie_table, &fde_table,
2355 EH_CIE_OR_FDE_TYPE_ID);
2356 }
2357 if (e.reason < 0)
2358 {
2359 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2360 objfile_name (objfile), e.message);
8bd90839
FM
2361
2362 if (fde_table.num_entries != 0)
2363 {
2364 fde_table.num_entries = num_old_fde_entries;
2365 if (num_old_fde_entries == 0)
2366 {
2367 xfree (fde_table.entries);
2368 fde_table.entries = NULL;
2369 }
2370 else
2371 {
2372 fde_table.entries = xrealloc (fde_table.entries,
2373 fde_table.num_entries *
2374 sizeof (fde_table.entries[0]));
2375 }
2376 }
2377 fde_table.num_entries = num_old_fde_entries;
2378 /* The cie_table is discarded by the next if. */
2379 }
b01c8410
PP
2380 }
2381
2382 /* Discard the cie_table, it is no longer needed. */
2383 if (cie_table.num_entries != 0)
2384 {
2385 xfree (cie_table.entries);
2386 cie_table.entries = NULL; /* Paranoia. */
2387 cie_table.num_entries = 0; /* Paranoia. */
2388 }
2389
be391dca
TT
2390 /* Copy fde_table to obstack: it is needed at runtime. */
2391 fde_table2 = (struct dwarf2_fde_table *)
2392 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2393
2394 if (fde_table.num_entries == 0)
2395 {
2396 fde_table2->entries = NULL;
2397 fde_table2->num_entries = 0;
2398 }
2399 else
b01c8410 2400 {
875cdfbb
PA
2401 struct dwarf2_fde *fde_prev = NULL;
2402 struct dwarf2_fde *first_non_zero_fde = NULL;
2403 int i;
b01c8410
PP
2404
2405 /* Prepare FDE table for lookups. */
2406 qsort (fde_table.entries, fde_table.num_entries,
2407 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2408
875cdfbb
PA
2409 /* Check for leftovers from --gc-sections. The GNU linker sets
2410 the relevant symbols to zero, but doesn't zero the FDE *end*
2411 ranges because there's no relocation there. It's (offset,
2412 length), not (start, end). On targets where address zero is
2413 just another valid address this can be a problem, since the
2414 FDEs appear to be non-empty in the output --- we could pick
2415 out the wrong FDE. To work around this, when overlaps are
2416 detected, we prefer FDEs that do not start at zero.
2417
2418 Start by finding the first FDE with non-zero start. Below
2419 we'll discard all FDEs that start at zero and overlap this
2420 one. */
2421 for (i = 0; i < fde_table.num_entries; i++)
2422 {
2423 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2424
875cdfbb
PA
2425 if (fde->initial_location != 0)
2426 {
2427 first_non_zero_fde = fde;
2428 break;
2429 }
2430 }
2431
2432 /* Since we'll be doing bsearch, squeeze out identical (except
2433 for eh_frame_p) fde entries so bsearch result is predictable.
2434 Also discard leftovers from --gc-sections. */
be391dca 2435 fde_table2->num_entries = 0;
875cdfbb
PA
2436 for (i = 0; i < fde_table.num_entries; i++)
2437 {
2438 struct dwarf2_fde *fde = fde_table.entries[i];
2439
2440 if (fde->initial_location == 0
2441 && first_non_zero_fde != NULL
2442 && (first_non_zero_fde->initial_location
2443 < fde->initial_location + fde->address_range))
2444 continue;
2445
2446 if (fde_prev != NULL
2447 && fde_prev->initial_location == fde->initial_location)
2448 continue;
2449
2450 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2451 sizeof (fde_table.entries[0]));
2452 ++fde_table2->num_entries;
2453 fde_prev = fde;
2454 }
b01c8410 2455 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2456
2457 /* Discard the original fde_table. */
2458 xfree (fde_table.entries);
cfc14b3a 2459 }
be391dca
TT
2460
2461 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2462}
0d0e1a63
MK
2463
2464/* Provide a prototype to silence -Wmissing-prototypes. */
2465void _initialize_dwarf2_frame (void);
2466
2467void
2468_initialize_dwarf2_frame (void)
2469{
030f20e1 2470 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2471 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2472}
This page took 1.010499 seconds and 4 git commands to generate.