* gdb.base/fileio.exp: Add "$gdb_prompt $" anchors to patterns
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright 2003 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24#include "defs.h"
25#include "dwarf2expr.h"
26#include "elf/dwarf2.h"
27#include "frame.h"
28#include "frame-base.h"
29#include "frame-unwind.h"
30#include "gdbcore.h"
31#include "gdbtypes.h"
32#include "symtab.h"
33#include "objfiles.h"
34#include "regcache.h"
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
6896c0c7 39#include "complaints.h"
cfc14b3a
MK
40#include "dwarf2-frame.h"
41
42/* Call Frame Information (CFI). */
43
44/* Common Information Entry (CIE). */
45
46struct dwarf2_cie
47{
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
50 ULONGEST cie_pointer;
51
52 /* Constant that is factored out of all advance location
53 instructions. */
54 ULONGEST code_alignment_factor;
55
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor;
58
59 /* Return address column. */
60 ULONGEST return_address_register;
61
62 /* Instruction sequence to initialize a register set. */
63 unsigned char *initial_instructions;
64 unsigned char *end;
65
66 /* Encoding of addresses. */
67 unsigned char encoding;
68
7131cb6e
RH
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation;
71
cfc14b3a
MK
72 struct dwarf2_cie *next;
73};
74
75/* Frame Description Entry (FDE). */
76
77struct dwarf2_fde
78{
79 /* CIE for this FDE. */
80 struct dwarf2_cie *cie;
81
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location;
84
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range;
87
88 /* Instruction sequence. */
89 unsigned char *instructions;
90 unsigned char *end;
91
92 struct dwarf2_fde *next;
93};
94
95static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96\f
97
98/* Structure describing a frame state. */
99
3e2c4033
AC
100enum dwarf2_reg_rule
101{
e4e9607c 102 /* Make certain that 0 maps onto the correct enum value; the
3e2c4033
AC
103 corresponding structure is being initialized using memset zero.
104 This indicates that CFI didn't provide any information at all
3e74aeed 105 about a register, leaving how to obtain its value totally
3e2c4033
AC
106 unspecified. */
107 REG_UNSPECIFIED = 0,
35889917 108
3e2c4033 109 /* The term "undefined" comes from the DWARF2 CFI spec which this
e4e9607c
MK
110 code is moddeling; it indicates that the register's value is
111 "undefined". GCC uses the less formal term "unsaved". Its
112 definition is a combination of REG_UNDEFINED and REG_UNSPECIFIED.
113 The failure to differentiate the two helps explain a few problems
114 with the CFI generated by GCC. */
3e2c4033
AC
115 REG_UNDEFINED,
116 REG_SAVED_OFFSET,
117 REG_SAVED_REG,
118 REG_SAVED_EXP,
35889917
MK
119 REG_SAME_VALUE,
120
121 /* These aren't defined by the DWARF2 CFI specification, but are
122 used internally by GDB. */
123 REG_RA, /* Return Address. */
124 REG_CFA /* Call Frame Address. */
3e2c4033
AC
125};
126
cfc14b3a
MK
127struct dwarf2_frame_state
128{
129 /* Each register save state can be described in terms of a CFA slot,
130 another register, or a location expression. */
131 struct dwarf2_frame_state_reg_info
132 {
133 struct dwarf2_frame_state_reg
134 {
135 union {
136 LONGEST offset;
137 ULONGEST reg;
138 unsigned char *exp;
139 } loc;
140 ULONGEST exp_len;
3e2c4033 141 enum dwarf2_reg_rule how;
cfc14b3a
MK
142 } *reg;
143 int num_regs;
144
145 /* Used to implement DW_CFA_remember_state. */
146 struct dwarf2_frame_state_reg_info *prev;
147 } regs;
148
149 LONGEST cfa_offset;
150 ULONGEST cfa_reg;
151 unsigned char *cfa_exp;
152 enum {
153 CFA_UNSET,
154 CFA_REG_OFFSET,
155 CFA_EXP
156 } cfa_how;
157
158 /* The PC described by the current frame state. */
159 CORE_ADDR pc;
160
161 /* Initial register set from the CIE.
162 Used to implement DW_CFA_restore. */
163 struct dwarf2_frame_state_reg_info initial;
164
165 /* The information we care about from the CIE. */
166 LONGEST data_align;
167 ULONGEST code_align;
168 ULONGEST retaddr_column;
169};
170
171/* Store the length the expression for the CFA in the `cfa_reg' field,
172 which is unused in that case. */
173#define cfa_exp_len cfa_reg
174
175/* Assert that the register set RS is large enough to store NUM_REGS
176 columns. If necessary, enlarge the register set. */
177
178static void
179dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
180 int num_regs)
181{
182 size_t size = sizeof (struct dwarf2_frame_state_reg);
183
184 if (num_regs <= rs->num_regs)
185 return;
186
187 rs->reg = (struct dwarf2_frame_state_reg *)
188 xrealloc (rs->reg, num_regs * size);
189
190 /* Initialize newly allocated registers. */
2473a4a9 191 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
192 rs->num_regs = num_regs;
193}
194
195/* Copy the register columns in register set RS into newly allocated
196 memory and return a pointer to this newly created copy. */
197
198static struct dwarf2_frame_state_reg *
199dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
200{
201 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg_info);
202 struct dwarf2_frame_state_reg *reg;
203
204 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
205 memcpy (reg, rs->reg, size);
206
207 return reg;
208}
209
210/* Release the memory allocated to register set RS. */
211
212static void
213dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
214{
215 if (rs)
216 {
217 dwarf2_frame_state_free_regs (rs->prev);
218
219 xfree (rs->reg);
220 xfree (rs);
221 }
222}
223
224/* Release the memory allocated to the frame state FS. */
225
226static void
227dwarf2_frame_state_free (void *p)
228{
229 struct dwarf2_frame_state *fs = p;
230
231 dwarf2_frame_state_free_regs (fs->initial.prev);
232 dwarf2_frame_state_free_regs (fs->regs.prev);
233 xfree (fs->initial.reg);
234 xfree (fs->regs.reg);
235 xfree (fs);
236}
237\f
238
239/* Helper functions for execute_stack_op. */
240
241static CORE_ADDR
242read_reg (void *baton, int reg)
243{
244 struct frame_info *next_frame = (struct frame_info *) baton;
245 int regnum;
246 char *buf;
247
248 regnum = DWARF2_REG_TO_REGNUM (reg);
249
250 buf = (char *) alloca (register_size (current_gdbarch, regnum));
251 frame_unwind_register (next_frame, regnum, buf);
252 return extract_typed_address (buf, builtin_type_void_data_ptr);
253}
254
255static void
256read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
257{
258 read_memory (addr, buf, len);
259}
260
261static void
262no_get_frame_base (void *baton, unsigned char **start, size_t *length)
263{
264 internal_error (__FILE__, __LINE__,
265 "Support for DW_OP_fbreg is unimplemented");
266}
267
268static CORE_ADDR
269no_get_tls_address (void *baton, CORE_ADDR offset)
270{
271 internal_error (__FILE__, __LINE__,
272 "Support for DW_OP_GNU_push_tls_address is unimplemented");
273}
274
275static CORE_ADDR
276execute_stack_op (unsigned char *exp, ULONGEST len,
277 struct frame_info *next_frame, CORE_ADDR initial)
278{
279 struct dwarf_expr_context *ctx;
280 CORE_ADDR result;
281
282 ctx = new_dwarf_expr_context ();
283 ctx->baton = next_frame;
284 ctx->read_reg = read_reg;
285 ctx->read_mem = read_mem;
286 ctx->get_frame_base = no_get_frame_base;
287 ctx->get_tls_address = no_get_tls_address;
288
289 dwarf_expr_push (ctx, initial);
290 dwarf_expr_eval (ctx, exp, len);
291 result = dwarf_expr_fetch (ctx, 0);
292
293 if (ctx->in_reg)
294 result = read_reg (next_frame, result);
295
296 free_dwarf_expr_context (ctx);
297
298 return result;
299}
300\f
301
302static void
303execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
304 struct frame_info *next_frame,
305 struct dwarf2_frame_state *fs)
306{
307 CORE_ADDR pc = frame_pc_unwind (next_frame);
308 int bytes_read;
309
310 while (insn_ptr < insn_end && fs->pc <= pc)
311 {
312 unsigned char insn = *insn_ptr++;
313 ULONGEST utmp, reg;
314 LONGEST offset;
315
316 if ((insn & 0xc0) == DW_CFA_advance_loc)
317 fs->pc += (insn & 0x3f) * fs->code_align;
318 else if ((insn & 0xc0) == DW_CFA_offset)
319 {
320 reg = insn & 0x3f;
321 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
322 offset = utmp * fs->data_align;
323 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
324 fs->regs.reg[reg].how = REG_SAVED_OFFSET;
325 fs->regs.reg[reg].loc.offset = offset;
326 }
327 else if ((insn & 0xc0) == DW_CFA_restore)
328 {
329 gdb_assert (fs->initial.reg);
330 reg = insn & 0x3f;
331 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
332 fs->regs.reg[reg] = fs->initial.reg[reg];
333 }
334 else
335 {
336 switch (insn)
337 {
338 case DW_CFA_set_loc:
339 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
340 insn_ptr += bytes_read;
341 break;
342
343 case DW_CFA_advance_loc1:
344 utmp = extract_unsigned_integer (insn_ptr, 1);
345 fs->pc += utmp * fs->code_align;
346 insn_ptr++;
347 break;
348 case DW_CFA_advance_loc2:
349 utmp = extract_unsigned_integer (insn_ptr, 2);
350 fs->pc += utmp * fs->code_align;
351 insn_ptr += 2;
352 break;
353 case DW_CFA_advance_loc4:
354 utmp = extract_unsigned_integer (insn_ptr, 4);
355 fs->pc += utmp * fs->code_align;
356 insn_ptr += 4;
357 break;
358
359 case DW_CFA_offset_extended:
360 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
361 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
362 offset = utmp * fs->data_align;
363 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
364 fs->regs.reg[reg].how = REG_SAVED_OFFSET;
365 fs->regs.reg[reg].loc.offset = offset;
366 break;
367
368 case DW_CFA_restore_extended:
369 gdb_assert (fs->initial.reg);
370 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
371 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
372 fs->regs.reg[reg] = fs->initial.reg[reg];
373 break;
374
375 case DW_CFA_undefined:
376 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
377 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
3e2c4033 378 fs->regs.reg[reg].how = REG_UNDEFINED;
cfc14b3a
MK
379 break;
380
381 case DW_CFA_same_value:
382 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
383 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
3e2c4033 384 fs->regs.reg[reg].how = REG_SAME_VALUE;
cfc14b3a
MK
385 break;
386
387 case DW_CFA_register:
388 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
389 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
390 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
cbdfc7c0 391 fs->regs.reg[reg].how = REG_SAVED_REG;
cfc14b3a
MK
392 fs->regs.reg[reg].loc.reg = utmp;
393 break;
394
395 case DW_CFA_remember_state:
396 {
397 struct dwarf2_frame_state_reg_info *new_rs;
398
399 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
400 *new_rs = fs->regs;
401 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
402 fs->regs.prev = new_rs;
403 }
404 break;
405
406 case DW_CFA_restore_state:
407 {
408 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
409
410 gdb_assert (old_rs);
411
412 xfree (fs->regs.reg);
413 fs->regs = *old_rs;
414 xfree (old_rs);
415 }
416 break;
417
418 case DW_CFA_def_cfa:
419 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
420 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
421 fs->cfa_offset = utmp;
422 fs->cfa_how = CFA_REG_OFFSET;
423 break;
424
425 case DW_CFA_def_cfa_register:
426 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
427 fs->cfa_how = CFA_REG_OFFSET;
428 break;
429
430 case DW_CFA_def_cfa_offset:
431 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
432 /* cfa_how deliberately not set. */
433 break;
434
435 case DW_CFA_def_cfa_expression:
436 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
437 fs->cfa_exp = insn_ptr;
438 fs->cfa_how = CFA_EXP;
439 insn_ptr += fs->cfa_exp_len;
440 break;
441
442 case DW_CFA_expression:
443 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
444 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
445 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
446 fs->regs.reg[reg].loc.exp = insn_ptr;
447 fs->regs.reg[reg].exp_len = utmp;
448 fs->regs.reg[reg].how = REG_SAVED_EXP;
449 insn_ptr += utmp;
450 break;
451
452 case DW_CFA_nop:
453 break;
454
455 case DW_CFA_GNU_args_size:
456 /* Ignored. */
457 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
458 break;
459
460 default:
461 internal_error (__FILE__, __LINE__, "Unknown CFI encountered.");
462 }
463 }
464 }
465
466 /* Don't allow remember/restore between CIE and FDE programs. */
467 dwarf2_frame_state_free_regs (fs->regs.prev);
468 fs->regs.prev = NULL;
469}
470
471struct dwarf2_frame_cache
472{
473 /* DWARF Call Frame Address. */
474 CORE_ADDR cfa;
475
476 /* Saved registers, indexed by GDB register number, not by DWARF
477 register number. */
478 struct dwarf2_frame_state_reg *reg;
479};
480
b9362cc7 481static struct dwarf2_frame_cache *
cfc14b3a
MK
482dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
483{
484 struct cleanup *old_chain;
3e2c4033 485 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
cfc14b3a
MK
486 struct dwarf2_frame_cache *cache;
487 struct dwarf2_frame_state *fs;
488 struct dwarf2_fde *fde;
cfc14b3a
MK
489
490 if (*this_cache)
491 return *this_cache;
492
493 /* Allocate a new cache. */
494 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
495 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
496
497 /* Allocate and initialize the frame state. */
498 fs = XMALLOC (struct dwarf2_frame_state);
499 memset (fs, 0, sizeof (struct dwarf2_frame_state));
500 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
501
502 /* Unwind the PC.
503
504 Note that if NEXT_FRAME is never supposed to return (i.e. a call
505 to abort), the compiler might optimize away the instruction at
506 NEXT_FRAME's return address. As a result the return address will
507 point at some random instruction, and the CFI for that
e4e9607c 508 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
509 this problem by substracting 1 from the return address to get an
510 address in the middle of a presumed call instruction (or the
511 instruction in the associated delay slot). This should only be
512 done for "normal" frames and not for resume-type frames (signal
e4e9607c
MK
513 handlers, sentinel frames, dummy frames). The function
514 frame_unwind_address_in_block does just this. It's not clear how
515 reliable the method is though; there is the potential for the
516 register state pre-call being different to that on return. */
1ce5d6dd 517 fs->pc = frame_unwind_address_in_block (next_frame);
cfc14b3a
MK
518
519 /* Find the correct FDE. */
520 fde = dwarf2_frame_find_fde (&fs->pc);
521 gdb_assert (fde != NULL);
522
523 /* Extract any interesting information from the CIE. */
524 fs->data_align = fde->cie->data_alignment_factor;
525 fs->code_align = fde->cie->code_alignment_factor;
526 fs->retaddr_column = fde->cie->return_address_register;
527
528 /* First decode all the insns in the CIE. */
529 execute_cfa_program (fde->cie->initial_instructions,
530 fde->cie->end, next_frame, fs);
531
532 /* Save the initialized register set. */
533 fs->initial = fs->regs;
534 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
535
536 /* Then decode the insns in the FDE up to our target PC. */
537 execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
538
539 /* Caclulate the CFA. */
540 switch (fs->cfa_how)
541 {
542 case CFA_REG_OFFSET:
543 cache->cfa = read_reg (next_frame, fs->cfa_reg);
544 cache->cfa += fs->cfa_offset;
545 break;
546
547 case CFA_EXP:
548 cache->cfa =
549 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
550 break;
551
552 default:
553 internal_error (__FILE__, __LINE__, "Unknown CFA rule.");
554 }
555
35889917
MK
556 /* Initialize the register rules. If we have a register that acts
557 as a program counter, mark it as a destination for the return
558 address. If we have a register that serves as the stack pointer,
559 arrange for it to be filled with the call frame address (CFA).
560 The other registers are marked as unspecified.
561
562 We copy the return address to the program counter, since many
563 parts in GDB assume that it is possible to get the return address
564 by unwind the program counter register. However, on ISA's with a
565 dedicated return address register, the CFI usually only contains
566 information to unwind that return address register.
567
568 The reason we're treating the stack pointer special here is
569 because in many cases GCC doesn't emit CFI for the stack pointer
570 and implicitly assumes that it is equal to the CFA. This makes
571 some sense since the DWARF specification (version 3, draft 8,
572 p. 102) says that:
573
574 "Typically, the CFA is defined to be the value of the stack
575 pointer at the call site in the previous frame (which may be
576 different from its value on entry to the current frame)."
577
578 However, this isn't true for all platforms supported by GCC
579 (e.g. IBM S/390 and zSeries). For those targets we should
580 override the defaults given here. */
3e2c4033
AC
581 {
582 int regnum;
e4e9607c 583
3e2c4033 584 for (regnum = 0; regnum < num_regs; regnum++)
35889917
MK
585 {
586 if (regnum == PC_REGNUM)
587 cache->reg[regnum].how = REG_RA;
588 else if (regnum == SP_REGNUM)
589 cache->reg[regnum].how = REG_CFA;
590 else
591 cache->reg[regnum].how = REG_UNSPECIFIED;
592 }
3e2c4033
AC
593 }
594
595 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
596 location information in the cache. Note that we don't skip the
597 return address column; it's perfectly all right for it to
598 correspond to a real register. If it doesn't correspond to a
599 real register, or if we shouldn't treat it as such,
600 DWARF2_REG_TO_REGNUM should be defined to return a number outside
601 the range [0, NUM_REGS). */
3e2c4033
AC
602 {
603 int column; /* CFI speak for "register number". */
e4e9607c 604
3e2c4033
AC
605 for (column = 0; column < fs->regs.num_regs; column++)
606 {
3e2c4033 607 /* Use the GDB register number as the destination index. */
79c4cb80 608 int regnum = DWARF2_REG_TO_REGNUM (column);
3e2c4033
AC
609
610 /* If there's no corresponding GDB register, ignore it. */
611 if (regnum < 0 || regnum >= num_regs)
612 continue;
613
614 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
615 of all debug info registers. If it doesn't, complain (but
616 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
617 unspecified register implies "same value" when CFI (draft
618 7) specifies nothing at all. Such a register could equally
619 be interpreted as "undefined". Also note that this check
e4e9607c
MK
620 isn't sufficient; it only checks that all registers in the
621 range [0 .. max column] are specified, and won't detect
3e2c4033 622 problems when a debug info register falls outside of the
e4e9607c 623 table. We need a way of iterating through all the valid
3e2c4033
AC
624 DWARF2 register numbers. */
625 if (fs->regs.reg[column].how == REG_UNSPECIFIED)
626 complaint (&symfile_complaints,
627 "Incomplete CFI data; unspecified registers at 0x%s",
628 paddr (fs->pc));
35889917
MK
629 else
630 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
631 }
632 }
cfc14b3a 633
35889917
MK
634 /* Eliminate any REG_RA rules. */
635 {
636 int regnum;
637
638 for (regnum = 0; regnum < num_regs; regnum++)
639 {
640 if (cache->reg[regnum].how == REG_RA)
641 {
642 if (fs->retaddr_column < fs->regs.num_regs)
643 cache->reg[regnum] = fs->regs.reg[fs->retaddr_column];
644 else
645 {
646 /* It turns out that GCC assumes that if the return
647 address column is "empty" the return address can be
648 found in the register corresponding to the return
649 address column. */
650 cache->reg[regnum].loc.reg = fs->retaddr_column;
651 cache->reg[regnum].how = REG_SAVED_REG;
652 }
653 }
654 }
655 }
cfc14b3a
MK
656
657 do_cleanups (old_chain);
658
659 *this_cache = cache;
660 return cache;
661}
662
663static void
664dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
665 struct frame_id *this_id)
666{
667 struct dwarf2_frame_cache *cache =
668 dwarf2_frame_cache (next_frame, this_cache);
669
670 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
671}
672
673static void
674dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
675 int regnum, int *optimizedp,
676 enum lval_type *lvalp, CORE_ADDR *addrp,
677 int *realnump, void *valuep)
678{
679 struct dwarf2_frame_cache *cache =
680 dwarf2_frame_cache (next_frame, this_cache);
681
682 switch (cache->reg[regnum].how)
683 {
3e2c4033
AC
684 case REG_UNDEFINED:
685 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 686 mark it as optimized away; the value isn't available. */
cfc14b3a
MK
687 *optimizedp = 1;
688 *lvalp = not_lval;
689 *addrp = 0;
690 *realnump = -1;
35889917 691 if (valuep)
cfc14b3a
MK
692 {
693 /* In some cases, for example %eflags on the i386, we have
694 to provide a sane value, even though this register wasn't
695 saved. Assume we can get it from NEXT_FRAME. */
696 frame_unwind_register (next_frame, regnum, valuep);
697 }
698 break;
699
700 case REG_SAVED_OFFSET:
701 *optimizedp = 0;
702 *lvalp = lval_memory;
703 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
704 *realnump = -1;
705 if (valuep)
706 {
707 /* Read the value in from memory. */
708 read_memory (*addrp, valuep,
709 register_size (current_gdbarch, regnum));
710 }
711 break;
712
713 case REG_SAVED_REG:
714 regnum = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
715 frame_register_unwind (next_frame, regnum,
716 optimizedp, lvalp, addrp, realnump, valuep);
717 break;
718
719 case REG_SAVED_EXP:
720 *optimizedp = 0;
721 *lvalp = lval_memory;
722 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
723 cache->reg[regnum].exp_len,
724 next_frame, cache->cfa);
725 *realnump = -1;
726 if (valuep)
727 {
728 /* Read the value in from memory. */
729 read_memory (*addrp, valuep,
730 register_size (current_gdbarch, regnum));
731 }
732 break;
733
3e2c4033
AC
734 case REG_UNSPECIFIED:
735 /* GCC, in its infinite wisdom decided to not provide unwind
736 information for registers that are "same value". Since
737 DWARF2 (3 draft 7) doesn't define such behavior, said
738 registers are actually undefined (which is different to CFI
739 "undefined"). Code above issues a complaint about this.
740 Here just fudge the books, assume GCC, and that the value is
741 more inner on the stack. */
35889917
MK
742 frame_register_unwind (next_frame, regnum,
743 optimizedp, lvalp, addrp, realnump, valuep);
3e2c4033
AC
744 break;
745
746 case REG_SAME_VALUE:
cfc14b3a
MK
747 frame_register_unwind (next_frame, regnum,
748 optimizedp, lvalp, addrp, realnump, valuep);
749 break;
750
35889917
MK
751 case REG_CFA:
752 *optimizedp = 0;
753 *lvalp = not_lval;
754 *addrp = 0;
755 *realnump = -1;
756 if (valuep)
757 {
758 /* Store the value. */
759 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
760 }
761 break;
762
cfc14b3a
MK
763 default:
764 internal_error (__FILE__, __LINE__, "Unknown register rule.");
765 }
766}
767
768static const struct frame_unwind dwarf2_frame_unwind =
769{
770 NORMAL_FRAME,
771 dwarf2_frame_this_id,
772 dwarf2_frame_prev_register
773};
774
775const struct frame_unwind *
336d1bba 776dwarf2_frame_sniffer (struct frame_info *next_frame)
cfc14b3a 777{
1ce5d6dd
AC
778 /* Grab an address that is guarenteed to reside somewhere within the
779 function. frame_pc_unwind(), for a no-return next function, can
780 end up returning something past the end of this function's body. */
781 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
782 if (dwarf2_frame_find_fde (&block_addr))
cfc14b3a
MK
783 return &dwarf2_frame_unwind;
784
785 return NULL;
786}
787\f
788
789/* There is no explicitly defined relationship between the CFA and the
790 location of frame's local variables and arguments/parameters.
791 Therefore, frame base methods on this page should probably only be
792 used as a last resort, just to avoid printing total garbage as a
793 response to the "info frame" command. */
794
795static CORE_ADDR
796dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
797{
798 struct dwarf2_frame_cache *cache =
799 dwarf2_frame_cache (next_frame, this_cache);
800
801 return cache->cfa;
802}
803
804static const struct frame_base dwarf2_frame_base =
805{
806 &dwarf2_frame_unwind,
807 dwarf2_frame_base_address,
808 dwarf2_frame_base_address,
809 dwarf2_frame_base_address
810};
811
812const struct frame_base *
336d1bba 813dwarf2_frame_base_sniffer (struct frame_info *next_frame)
cfc14b3a 814{
336d1bba 815 CORE_ADDR pc = frame_pc_unwind (next_frame);
cfc14b3a
MK
816 if (dwarf2_frame_find_fde (&pc))
817 return &dwarf2_frame_base;
818
819 return NULL;
820}
821\f
822/* A minimal decoding of DWARF2 compilation units. We only decode
823 what's needed to get to the call frame information. */
824
825struct comp_unit
826{
827 /* Keep the bfd convenient. */
828 bfd *abfd;
829
830 struct objfile *objfile;
831
832 /* Linked list of CIEs for this object. */
833 struct dwarf2_cie *cie;
834
835 /* Address size for this unit - from unit header. */
836 unsigned char addr_size;
837
838 /* Pointer to the .debug_frame section loaded into memory. */
839 char *dwarf_frame_buffer;
840
841 /* Length of the loaded .debug_frame section. */
842 unsigned long dwarf_frame_size;
843
844 /* Pointer to the .debug_frame section. */
845 asection *dwarf_frame_section;
0912c7f2
MK
846
847 /* Base for DW_EH_PE_datarel encodings. */
848 bfd_vma dbase;
0fd85043
CV
849
850 /* Base for DW_EH_PE_textrel encodings. */
851 bfd_vma tbase;
cfc14b3a
MK
852};
853
0d0e1a63
MK
854const struct objfile_data *dwarf2_frame_data;
855
cfc14b3a
MK
856static unsigned int
857read_1_byte (bfd *bfd, char *buf)
858{
859 return bfd_get_8 (abfd, (bfd_byte *) buf);
860}
861
862static unsigned int
863read_4_bytes (bfd *abfd, char *buf)
864{
865 return bfd_get_32 (abfd, (bfd_byte *) buf);
866}
867
868static ULONGEST
869read_8_bytes (bfd *abfd, char *buf)
870{
871 return bfd_get_64 (abfd, (bfd_byte *) buf);
872}
873
874static ULONGEST
875read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
876{
877 ULONGEST result;
878 unsigned int num_read;
879 int shift;
880 unsigned char byte;
881
882 result = 0;
883 shift = 0;
884 num_read = 0;
885
886 do
887 {
888 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
889 buf++;
890 num_read++;
891 result |= ((byte & 0x7f) << shift);
892 shift += 7;
893 }
894 while (byte & 0x80);
895
896 *bytes_read_ptr = num_read;
897
898 return result;
899}
900
901static LONGEST
902read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
903{
904 LONGEST result;
905 int shift;
906 unsigned int num_read;
907 unsigned char byte;
908
909 result = 0;
910 shift = 0;
911 num_read = 0;
912
913 do
914 {
915 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
916 buf++;
917 num_read++;
918 result |= ((byte & 0x7f) << shift);
919 shift += 7;
920 }
921 while (byte & 0x80);
922
923 if ((shift < 32) && (byte & 0x40))
924 result |= -(1 << shift);
925
926 *bytes_read_ptr = num_read;
927
928 return result;
929}
930
931static ULONGEST
932read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
933{
934 LONGEST result;
935
936 result = bfd_get_32 (abfd, (bfd_byte *) buf);
937 if (result == 0xffffffff)
938 {
939 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
940 *bytes_read_ptr = 12;
941 }
942 else
943 *bytes_read_ptr = 4;
944
945 return result;
946}
947\f
948
949/* Pointer encoding helper functions. */
950
951/* GCC supports exception handling based on DWARF2 CFI. However, for
952 technical reasons, it encodes addresses in its FDE's in a different
953 way. Several "pointer encodings" are supported. The encoding
954 that's used for a particular FDE is determined by the 'R'
955 augmentation in the associated CIE. The argument of this
956 augmentation is a single byte.
957
958 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
959 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
960 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
961 address should be interpreted (absolute, relative to the current
962 position in the FDE, ...). Bit 7, indicates that the address
963 should be dereferenced. */
964
965static unsigned char
966encoding_for_size (unsigned int size)
967{
968 switch (size)
969 {
970 case 2:
971 return DW_EH_PE_udata2;
972 case 4:
973 return DW_EH_PE_udata4;
974 case 8:
975 return DW_EH_PE_udata8;
976 default:
977 internal_error (__FILE__, __LINE__, "Unsupported address size");
978 }
979}
980
981static unsigned int
982size_of_encoded_value (unsigned char encoding)
983{
984 if (encoding == DW_EH_PE_omit)
985 return 0;
986
987 switch (encoding & 0x07)
988 {
989 case DW_EH_PE_absptr:
990 return TYPE_LENGTH (builtin_type_void_data_ptr);
991 case DW_EH_PE_udata2:
992 return 2;
993 case DW_EH_PE_udata4:
994 return 4;
995 case DW_EH_PE_udata8:
996 return 8;
997 default:
998 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
999 }
1000}
1001
1002static CORE_ADDR
1003read_encoded_value (struct comp_unit *unit, unsigned char encoding,
1004 char *buf, unsigned int *bytes_read_ptr)
1005{
68f6cf99
MK
1006 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1007 ptrdiff_t offset;
cfc14b3a
MK
1008 CORE_ADDR base;
1009
1010 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1011 FDE's. */
1012 if (encoding & DW_EH_PE_indirect)
1013 internal_error (__FILE__, __LINE__,
1014 "Unsupported encoding: DW_EH_PE_indirect");
1015
68f6cf99
MK
1016 *bytes_read_ptr = 0;
1017
cfc14b3a
MK
1018 switch (encoding & 0x70)
1019 {
1020 case DW_EH_PE_absptr:
1021 base = 0;
1022 break;
1023 case DW_EH_PE_pcrel:
1024 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1025 base += (buf - unit->dwarf_frame_buffer);
1026 break;
0912c7f2
MK
1027 case DW_EH_PE_datarel:
1028 base = unit->dbase;
1029 break;
0fd85043
CV
1030 case DW_EH_PE_textrel:
1031 base = unit->tbase;
1032 break;
68f6cf99
MK
1033 case DW_EH_PE_aligned:
1034 base = 0;
1035 offset = buf - unit->dwarf_frame_buffer;
1036 if ((offset % ptr_len) != 0)
1037 {
1038 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1039 buf += *bytes_read_ptr;
1040 }
1041 break;
cfc14b3a
MK
1042 default:
1043 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1044 }
1045
1046 if ((encoding & 0x0f) == 0x00)
68f6cf99 1047 encoding |= encoding_for_size (ptr_len);
cfc14b3a
MK
1048
1049 switch (encoding & 0x0f)
1050 {
1051 case DW_EH_PE_udata2:
68f6cf99 1052 *bytes_read_ptr += 2;
cfc14b3a
MK
1053 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1054 case DW_EH_PE_udata4:
68f6cf99 1055 *bytes_read_ptr += 4;
cfc14b3a
MK
1056 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1057 case DW_EH_PE_udata8:
68f6cf99 1058 *bytes_read_ptr += 8;
cfc14b3a
MK
1059 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1060 case DW_EH_PE_sdata2:
68f6cf99 1061 *bytes_read_ptr += 2;
cfc14b3a
MK
1062 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1063 case DW_EH_PE_sdata4:
68f6cf99 1064 *bytes_read_ptr += 4;
cfc14b3a
MK
1065 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1066 case DW_EH_PE_sdata8:
68f6cf99 1067 *bytes_read_ptr += 8;
cfc14b3a
MK
1068 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1069 default:
1070 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1071 }
1072}
1073\f
1074
1075/* GCC uses a single CIE for all FDEs in a .debug_frame section.
1076 That's why we use a simple linked list here. */
1077
1078static struct dwarf2_cie *
1079find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1080{
1081 struct dwarf2_cie *cie = unit->cie;
1082
1083 while (cie)
1084 {
1085 if (cie->cie_pointer == cie_pointer)
1086 return cie;
1087
1088 cie = cie->next;
1089 }
1090
1091 return NULL;
1092}
1093
1094static void
1095add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1096{
1097 cie->next = unit->cie;
1098 unit->cie = cie;
1099}
1100
1101/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1102 inital location associated with it into *PC. */
1103
1104static struct dwarf2_fde *
1105dwarf2_frame_find_fde (CORE_ADDR *pc)
1106{
1107 struct objfile *objfile;
1108
1109 ALL_OBJFILES (objfile)
1110 {
1111 struct dwarf2_fde *fde;
1112 CORE_ADDR offset;
1113
0d0e1a63 1114 fde = objfile_data (objfile, dwarf2_frame_data);
4ae9ee8e
DJ
1115 if (fde == NULL)
1116 continue;
1117
1118 gdb_assert (objfile->section_offsets);
1119 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1120
cfc14b3a
MK
1121 while (fde)
1122 {
1123 if (*pc >= fde->initial_location + offset
1124 && *pc < fde->initial_location + offset + fde->address_range)
1125 {
1126 *pc = fde->initial_location + offset;
1127 return fde;
1128 }
1129
1130 fde = fde->next;
1131 }
1132 }
1133
1134 return NULL;
1135}
1136
1137static void
1138add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1139{
0d0e1a63
MK
1140 fde->next = objfile_data (unit->objfile, dwarf2_frame_data);
1141 set_objfile_data (unit->objfile, dwarf2_frame_data, fde);
cfc14b3a
MK
1142}
1143
1144#ifdef CC_HAS_LONG_LONG
1145#define DW64_CIE_ID 0xffffffffffffffffULL
1146#else
1147#define DW64_CIE_ID ~0
1148#endif
1149
6896c0c7
RH
1150static char *decode_frame_entry (struct comp_unit *unit, char *start,
1151 int eh_frame_p);
cfc14b3a 1152
6896c0c7
RH
1153/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1154 the next byte to be processed. */
cfc14b3a 1155static char *
6896c0c7 1156decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
cfc14b3a 1157{
6896c0c7 1158 char *buf;
cfc14b3a
MK
1159 LONGEST length;
1160 unsigned int bytes_read;
6896c0c7
RH
1161 int dwarf64_p;
1162 ULONGEST cie_id;
cfc14b3a 1163 ULONGEST cie_pointer;
cfc14b3a
MK
1164 char *end;
1165
6896c0c7 1166 buf = start;
cfc14b3a
MK
1167 length = read_initial_length (unit->abfd, buf, &bytes_read);
1168 buf += bytes_read;
1169 end = buf + length;
1170
6896c0c7
RH
1171 /* Are we still within the section? */
1172 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1173 return NULL;
1174
cfc14b3a
MK
1175 if (length == 0)
1176 return end;
1177
6896c0c7
RH
1178 /* Distinguish between 32 and 64-bit encoded frame info. */
1179 dwarf64_p = (bytes_read == 12);
cfc14b3a 1180
6896c0c7 1181 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1182 if (eh_frame_p)
1183 cie_id = 0;
1184 else if (dwarf64_p)
1185 cie_id = DW64_CIE_ID;
6896c0c7
RH
1186 else
1187 cie_id = DW_CIE_ID;
cfc14b3a
MK
1188
1189 if (dwarf64_p)
1190 {
1191 cie_pointer = read_8_bytes (unit->abfd, buf);
1192 buf += 8;
1193 }
1194 else
1195 {
1196 cie_pointer = read_4_bytes (unit->abfd, buf);
1197 buf += 4;
1198 }
1199
1200 if (cie_pointer == cie_id)
1201 {
1202 /* This is a CIE. */
1203 struct dwarf2_cie *cie;
1204 char *augmentation;
1205
1206 /* Record the offset into the .debug_frame section of this CIE. */
1207 cie_pointer = start - unit->dwarf_frame_buffer;
1208
1209 /* Check whether we've already read it. */
1210 if (find_cie (unit, cie_pointer))
1211 return end;
1212
1213 cie = (struct dwarf2_cie *)
1214 obstack_alloc (&unit->objfile->psymbol_obstack,
1215 sizeof (struct dwarf2_cie));
1216 cie->initial_instructions = NULL;
1217 cie->cie_pointer = cie_pointer;
1218
1219 /* The encoding for FDE's in a normal .debug_frame section
1220 depends on the target address size as specified in the
1221 Compilation Unit Header. */
1222 cie->encoding = encoding_for_size (unit->addr_size);
1223
1224 /* Check version number. */
6896c0c7
RH
1225 if (read_1_byte (unit->abfd, buf) != DW_CIE_VERSION)
1226 return NULL;
cfc14b3a
MK
1227 buf += 1;
1228
1229 /* Interpret the interesting bits of the augmentation. */
1230 augmentation = buf;
1231 buf = augmentation + strlen (augmentation) + 1;
1232
1233 /* The GCC 2.x "eh" augmentation has a pointer immediately
1234 following the augmentation string, so it must be handled
1235 first. */
1236 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1237 {
1238 /* Skip. */
1239 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1240 augmentation += 2;
1241 }
1242
1243 cie->code_alignment_factor =
1244 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1245 buf += bytes_read;
1246
1247 cie->data_alignment_factor =
1248 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1249 buf += bytes_read;
1250
1251 cie->return_address_register = read_1_byte (unit->abfd, buf);
1252 buf += 1;
1253
7131cb6e
RH
1254 cie->saw_z_augmentation = (*augmentation == 'z');
1255 if (cie->saw_z_augmentation)
cfc14b3a
MK
1256 {
1257 ULONGEST length;
1258
1259 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1260 buf += bytes_read;
6896c0c7
RH
1261 if (buf > end)
1262 return NULL;
cfc14b3a
MK
1263 cie->initial_instructions = buf + length;
1264 augmentation++;
1265 }
1266
1267 while (*augmentation)
1268 {
1269 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1270 if (*augmentation == 'L')
1271 {
1272 /* Skip. */
1273 buf++;
1274 augmentation++;
1275 }
1276
1277 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1278 else if (*augmentation == 'R')
1279 {
1280 cie->encoding = *buf++;
1281 augmentation++;
1282 }
1283
1284 /* "P" indicates a personality routine in the CIE augmentation. */
1285 else if (*augmentation == 'P')
1286 {
1287 /* Skip. */
1288 buf += size_of_encoded_value (*buf++);
1289 augmentation++;
1290 }
1291
1292 /* Otherwise we have an unknown augmentation.
1293 Bail out unless we saw a 'z' prefix. */
1294 else
1295 {
1296 if (cie->initial_instructions == NULL)
1297 return end;
1298
1299 /* Skip unknown augmentations. */
1300 buf = cie->initial_instructions;
1301 break;
1302 }
1303 }
1304
1305 cie->initial_instructions = buf;
1306 cie->end = end;
1307
1308 add_cie (unit, cie);
1309 }
1310 else
1311 {
1312 /* This is a FDE. */
1313 struct dwarf2_fde *fde;
1314
6896c0c7
RH
1315 /* In an .eh_frame section, the CIE pointer is the delta between the
1316 address within the FDE where the CIE pointer is stored and the
1317 address of the CIE. Convert it to an offset into the .eh_frame
1318 section. */
cfc14b3a
MK
1319 if (eh_frame_p)
1320 {
cfc14b3a
MK
1321 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1322 cie_pointer -= (dwarf64_p ? 8 : 4);
1323 }
1324
6896c0c7
RH
1325 /* In either case, validate the result is still within the section. */
1326 if (cie_pointer >= unit->dwarf_frame_size)
1327 return NULL;
1328
cfc14b3a
MK
1329 fde = (struct dwarf2_fde *)
1330 obstack_alloc (&unit->objfile->psymbol_obstack,
1331 sizeof (struct dwarf2_fde));
1332 fde->cie = find_cie (unit, cie_pointer);
1333 if (fde->cie == NULL)
1334 {
1335 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1336 eh_frame_p);
1337 fde->cie = find_cie (unit, cie_pointer);
1338 }
1339
1340 gdb_assert (fde->cie != NULL);
1341
1342 fde->initial_location =
1343 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1344 buf += bytes_read;
1345
1346 fde->address_range =
1347 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1348 buf += bytes_read;
1349
7131cb6e
RH
1350 /* A 'z' augmentation in the CIE implies the presence of an
1351 augmentation field in the FDE as well. The only thing known
1352 to be in here at present is the LSDA entry for EH. So we
1353 can skip the whole thing. */
1354 if (fde->cie->saw_z_augmentation)
1355 {
1356 ULONGEST length;
1357
1358 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1359 buf += bytes_read + length;
6896c0c7
RH
1360 if (buf > end)
1361 return NULL;
7131cb6e
RH
1362 }
1363
cfc14b3a
MK
1364 fde->instructions = buf;
1365 fde->end = end;
1366
1367 add_fde (unit, fde);
1368 }
1369
1370 return end;
1371}
6896c0c7
RH
1372
1373/* Read a CIE or FDE in BUF and decode it. */
1374static char *
1375decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1376{
1377 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1378 char *ret;
1379 const char *msg;
1380 ptrdiff_t start_offset;
1381
1382 while (1)
1383 {
1384 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1385 if (ret != NULL)
1386 break;
1387
1388 /* We have corrupt input data of some form. */
1389
1390 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1391 and mismatches wrt padding and alignment of debug sections. */
1392 /* Note that there is no requirement in the standard for any
1393 alignment at all in the frame unwind sections. Testing for
1394 alignment before trying to interpret data would be incorrect.
1395
1396 However, GCC traditionally arranged for frame sections to be
1397 sized such that the FDE length and CIE fields happen to be
1398 aligned (in theory, for performance). This, unfortunately,
1399 was done with .align directives, which had the side effect of
1400 forcing the section to be aligned by the linker.
1401
1402 This becomes a problem when you have some other producer that
1403 creates frame sections that are not as strictly aligned. That
1404 produces a hole in the frame info that gets filled by the
1405 linker with zeros.
1406
1407 The GCC behaviour is arguably a bug, but it's effectively now
1408 part of the ABI, so we're now stuck with it, at least at the
1409 object file level. A smart linker may decide, in the process
1410 of compressing duplicate CIE information, that it can rewrite
1411 the entire output section without this extra padding. */
1412
1413 start_offset = start - unit->dwarf_frame_buffer;
1414 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1415 {
1416 start += 4 - (start_offset & 3);
1417 workaround = ALIGN4;
1418 continue;
1419 }
1420 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1421 {
1422 start += 8 - (start_offset & 7);
1423 workaround = ALIGN8;
1424 continue;
1425 }
1426
1427 /* Nothing left to try. Arrange to return as if we've consumed
1428 the entire input section. Hopefully we'll get valid info from
1429 the other of .debug_frame/.eh_frame. */
1430 workaround = FAIL;
1431 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1432 break;
1433 }
1434
1435 switch (workaround)
1436 {
1437 case NONE:
1438 break;
1439
1440 case ALIGN4:
1441 complaint (&symfile_complaints,
1442 "Corrupt data in %s:%s; align 4 workaround apparently succeeded",
1443 unit->dwarf_frame_section->owner->filename,
1444 unit->dwarf_frame_section->name);
1445 break;
1446
1447 case ALIGN8:
1448 complaint (&symfile_complaints,
1449 "Corrupt data in %s:%s; align 8 workaround apparently succeeded",
1450 unit->dwarf_frame_section->owner->filename,
1451 unit->dwarf_frame_section->name);
1452 break;
1453
1454 default:
1455 complaint (&symfile_complaints,
1456 "Corrupt data in %s:%s",
1457 unit->dwarf_frame_section->owner->filename,
1458 unit->dwarf_frame_section->name);
1459 break;
1460 }
1461
1462 return ret;
1463}
1464
cfc14b3a
MK
1465\f
1466
1467/* FIXME: kettenis/20030504: This still needs to be integrated with
1468 dwarf2read.c in a better way. */
1469
1470/* Imported from dwarf2read.c. */
cfc14b3a 1471extern asection *dwarf_frame_section;
cfc14b3a
MK
1472extern asection *dwarf_eh_frame_section;
1473
1474/* Imported from dwarf2read.c. */
188dd5d6 1475extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
cfc14b3a
MK
1476
1477void
1478dwarf2_build_frame_info (struct objfile *objfile)
1479{
1480 struct comp_unit unit;
1481 char *frame_ptr;
1482
1483 /* Build a minimal decoding of the DWARF2 compilation unit. */
1484 unit.abfd = objfile->obfd;
1485 unit.objfile = objfile;
1486 unit.addr_size = objfile->obfd->arch_info->bits_per_address / 8;
0912c7f2 1487 unit.dbase = 0;
0fd85043 1488 unit.tbase = 0;
cfc14b3a
MK
1489
1490 /* First add the information from the .eh_frame section. That way,
1491 the FDEs from that section are searched last. */
188dd5d6 1492 if (dwarf_eh_frame_section)
cfc14b3a 1493 {
0fd85043 1494 asection *got, *txt;
0912c7f2 1495
cfc14b3a
MK
1496 unit.cie = NULL;
1497 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a
MK
1498 dwarf_eh_frame_section);
1499
188dd5d6
DJ
1500 unit.dwarf_frame_size
1501 = bfd_get_section_size_before_reloc (dwarf_eh_frame_section);
cfc14b3a
MK
1502 unit.dwarf_frame_section = dwarf_eh_frame_section;
1503
0912c7f2 1504 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
37b517aa
MK
1505 that is used for the i386/amd64 target, which currently is
1506 the only target in GCC that supports/uses the
1507 DW_EH_PE_datarel encoding. */
0912c7f2
MK
1508 got = bfd_get_section_by_name (unit.abfd, ".got");
1509 if (got)
1510 unit.dbase = got->vma;
1511
22c7ba1a
MK
1512 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1513 so far. */
0fd85043
CV
1514 txt = bfd_get_section_by_name (unit.abfd, ".text");
1515 if (txt)
1516 unit.tbase = txt->vma;
1517
cfc14b3a
MK
1518 frame_ptr = unit.dwarf_frame_buffer;
1519 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1520 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1521 }
1522
188dd5d6 1523 if (dwarf_frame_section)
cfc14b3a
MK
1524 {
1525 unit.cie = NULL;
1526 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a 1527 dwarf_frame_section);
188dd5d6
DJ
1528 unit.dwarf_frame_size
1529 = bfd_get_section_size_before_reloc (dwarf_frame_section);
cfc14b3a
MK
1530 unit.dwarf_frame_section = dwarf_frame_section;
1531
1532 frame_ptr = unit.dwarf_frame_buffer;
1533 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1534 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1535 }
1536}
0d0e1a63
MK
1537
1538/* Provide a prototype to silence -Wmissing-prototypes. */
1539void _initialize_dwarf2_frame (void);
1540
1541void
1542_initialize_dwarf2_frame (void)
1543{
1544 dwarf2_frame_data = register_objfile_data ();
1545}
This page took 0.153927 seconds and 4 git commands to generate.