Initial conversion of dwarf_expr_ctx
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
618f726f 3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
0b722aec 34#include "record.h"
cfc14b3a 35
6896c0c7 36#include "complaints.h"
cfc14b3a 37#include "dwarf2-frame.h"
9f6f94ff
TT
38#include "ax.h"
39#include "dwarf2loc.h"
111c6489 40#include "dwarf2-frame-tailcall.h"
cfc14b3a 41
ae0d2f24
UW
42struct comp_unit;
43
cfc14b3a
MK
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
ae0d2f24
UW
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
cfc14b3a
MK
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
f664829e
DE
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
cfc14b3a 70
303b6f5d
DJ
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
cfc14b3a 74 /* Encoding of addresses. */
852483bc 75 gdb_byte encoding;
cfc14b3a 76
ae0d2f24
UW
77 /* Target address size in bytes. */
78 int addr_size;
79
0963b4bd 80 /* Target pointer size in bytes. */
8da614df
CV
81 int ptr_size;
82
7131cb6e
RH
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
56c987f6
AO
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
303b6f5d
DJ
89 /* The version recorded in the CIE. */
90 unsigned char version;
2dc7f7b3
TT
91
92 /* The segment size. */
93 unsigned char segment_size;
b01c8410 94};
303b6f5d 95
b01c8410
PP
96struct dwarf2_cie_table
97{
98 int num_entries;
99 struct dwarf2_cie **entries;
cfc14b3a
MK
100};
101
102/* Frame Description Entry (FDE). */
103
104struct dwarf2_fde
105{
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
f664829e
DE
116 const gdb_byte *instructions;
117 const gdb_byte *end;
cfc14b3a 118
4bf8967c
AS
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
b01c8410 122};
4bf8967c 123
b01c8410
PP
124struct dwarf2_fde_table
125{
126 int num_entries;
127 struct dwarf2_fde **entries;
cfc14b3a
MK
128};
129
ae0d2f24
UW
130/* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133struct comp_unit
134{
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
ae0d2f24 140 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 141 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
142
143 /* Length of the loaded .debug_frame section. */
c098b58b 144 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154};
155
ac56253d
TT
156static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
4fc771b8
DJ
158
159static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
ae0d2f24
UW
161
162static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 163 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
cfc14b3a
MK
166\f
167
52059ffd
TT
168enum cfa_how_kind
169{
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
173};
174
175struct dwarf2_frame_state_reg_info
176{
177 struct dwarf2_frame_state_reg *reg;
178 int num_regs;
179
180 LONGEST cfa_offset;
181 ULONGEST cfa_reg;
182 enum cfa_how_kind cfa_how;
183 const gdb_byte *cfa_exp;
184
185 /* Used to implement DW_CFA_remember_state. */
186 struct dwarf2_frame_state_reg_info *prev;
187};
188
cfc14b3a
MK
189/* Structure describing a frame state. */
190
191struct dwarf2_frame_state
192{
193 /* Each register save state can be described in terms of a CFA slot,
194 another register, or a location expression. */
52059ffd 195 struct dwarf2_frame_state_reg_info regs;
cfc14b3a 196
cfc14b3a
MK
197 /* The PC described by the current frame state. */
198 CORE_ADDR pc;
199
200 /* Initial register set from the CIE.
201 Used to implement DW_CFA_restore. */
202 struct dwarf2_frame_state_reg_info initial;
203
204 /* The information we care about from the CIE. */
205 LONGEST data_align;
206 ULONGEST code_align;
207 ULONGEST retaddr_column;
303b6f5d
DJ
208
209 /* Flags for known producer quirks. */
210
211 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
212 and DW_CFA_def_cfa_offset takes a factored offset. */
213 int armcc_cfa_offsets_sf;
214
215 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
216 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
217 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
218};
219
220/* Store the length the expression for the CFA in the `cfa_reg' field,
221 which is unused in that case. */
222#define cfa_exp_len cfa_reg
223
f57d151a 224/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
225 columns. If necessary, enlarge the register set. */
226
227static void
228dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
229 int num_regs)
230{
231 size_t size = sizeof (struct dwarf2_frame_state_reg);
232
233 if (num_regs <= rs->num_regs)
234 return;
235
236 rs->reg = (struct dwarf2_frame_state_reg *)
237 xrealloc (rs->reg, num_regs * size);
238
239 /* Initialize newly allocated registers. */
2473a4a9 240 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
241 rs->num_regs = num_regs;
242}
243
244/* Copy the register columns in register set RS into newly allocated
245 memory and return a pointer to this newly created copy. */
246
247static struct dwarf2_frame_state_reg *
248dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
249{
d10891d4 250 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
251 struct dwarf2_frame_state_reg *reg;
252
253 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
254 memcpy (reg, rs->reg, size);
255
256 return reg;
257}
258
259/* Release the memory allocated to register set RS. */
260
261static void
262dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
263{
264 if (rs)
265 {
266 dwarf2_frame_state_free_regs (rs->prev);
267
268 xfree (rs->reg);
269 xfree (rs);
270 }
271}
272
273/* Release the memory allocated to the frame state FS. */
274
275static void
276dwarf2_frame_state_free (void *p)
277{
9a3c8263 278 struct dwarf2_frame_state *fs = (struct dwarf2_frame_state *) p;
cfc14b3a
MK
279
280 dwarf2_frame_state_free_regs (fs->initial.prev);
281 dwarf2_frame_state_free_regs (fs->regs.prev);
282 xfree (fs->initial.reg);
283 xfree (fs->regs.reg);
284 xfree (fs);
285}
286\f
287
288/* Helper functions for execute_stack_op. */
289
290static CORE_ADDR
b1370418 291read_addr_from_reg (void *baton, int reg)
cfc14b3a 292{
4a4e5149
DJ
293 struct frame_info *this_frame = (struct frame_info *) baton;
294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
0fde2c53 295 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
f2da6b3a 296
2ed3c037 297 return address_from_register (regnum, this_frame);
cfc14b3a
MK
298}
299
0acf8b65
JB
300/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
301
302static struct value *
303get_reg_value (void *baton, struct type *type, int reg)
304{
305 struct frame_info *this_frame = (struct frame_info *) baton;
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
0fde2c53 307 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
0acf8b65
JB
308
309 return value_from_register (type, regnum, this_frame);
310}
311
cfc14b3a 312static void
852483bc 313read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
314{
315 read_memory (addr, buf, len);
316}
317
a6a5a945
LM
318/* Execute the required actions for both the DW_CFA_restore and
319DW_CFA_restore_extended instructions. */
320static void
321dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
322 struct dwarf2_frame_state *fs, int eh_frame_p)
323{
324 ULONGEST reg;
325
326 gdb_assert (fs->initial.reg);
327 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329
330 /* Check if this register was explicitly initialized in the
331 CIE initial instructions. If not, default the rule to
332 UNSPECIFIED. */
333 if (reg < fs->initial.num_regs)
334 fs->regs.reg[reg] = fs->initial.reg[reg];
335 else
336 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
337
338 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
0fde2c53
DE
339 {
340 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
341
342 complaint (&symfile_complaints, _("\
a6a5a945 343incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 344register %s (#%d) at %s"),
0fde2c53
DE
345 gdbarch_register_name (gdbarch, regnum), regnum,
346 paddress (gdbarch, fs->pc));
347 }
a6a5a945
LM
348}
349
9e8b7a03
JK
350/* Virtual method table for execute_stack_op below. */
351
352static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
353{
b1370418 354 read_addr_from_reg,
0acf8b65 355 get_reg_value,
9e8b7a03 356 read_mem,
523f3620
JK
357 ctx_no_get_frame_base,
358 ctx_no_get_frame_cfa,
359 ctx_no_get_frame_pc,
360 ctx_no_get_tls_address,
361 ctx_no_dwarf_call,
8e3b41a9 362 ctx_no_get_base_type,
3019eac3
DE
363 ctx_no_push_dwarf_reg_entry_value,
364 ctx_no_get_addr_index
9e8b7a03
JK
365};
366
cfc14b3a 367static CORE_ADDR
0d45f56e 368execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
369 CORE_ADDR offset, struct frame_info *this_frame,
370 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a 371{
cfc14b3a 372 CORE_ADDR result;
4a227398 373 struct cleanup *old_chain;
cfc14b3a 374
718b9626
TT
375 dwarf_expr_context ctx;
376 old_chain = make_cleanup_value_free_to_mark (value_mark ());
4a227398 377
718b9626
TT
378 ctx.gdbarch = get_frame_arch (this_frame);
379 ctx.addr_size = addr_size;
380 ctx.ref_addr_size = -1;
381 ctx.offset = offset;
382 ctx.baton = this_frame;
383 ctx.funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 384
718b9626
TT
385 dwarf_expr_push_address (&ctx, initial, initial_in_stack_memory);
386 dwarf_expr_eval (&ctx, exp, len);
cfc14b3a 387
718b9626
TT
388 if (ctx.location == DWARF_VALUE_MEMORY)
389 result = dwarf_expr_fetch_address (&ctx, 0);
390 else if (ctx.location == DWARF_VALUE_REGISTER)
b1370418 391 result = read_addr_from_reg (this_frame,
718b9626 392 value_as_long (dwarf_expr_fetch (&ctx, 0)));
f2c7657e 393 else
cec03d70
TT
394 {
395 /* This is actually invalid DWARF, but if we ever do run across
396 it somehow, we might as well support it. So, instead, report
397 it as unimplemented. */
3e43a32a
MS
398 error (_("\
399Not implemented: computing unwound register using explicit value operator"));
cec03d70 400 }
cfc14b3a 401
4a227398 402 do_cleanups (old_chain);
cfc14b3a
MK
403
404 return result;
405}
406\f
407
111c6489
JK
408/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
409 PC. Modify FS state accordingly. Return current INSN_PTR where the
410 execution has stopped, one can resume it on the next call. */
411
412static const gdb_byte *
0d45f56e 413execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
414 const gdb_byte *insn_end, struct gdbarch *gdbarch,
415 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 416{
ae0d2f24 417 int eh_frame_p = fde->eh_frame_p;
507a579c 418 unsigned int bytes_read;
e17a4113 419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
420
421 while (insn_ptr < insn_end && fs->pc <= pc)
422 {
852483bc 423 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
424 uint64_t utmp, reg;
425 int64_t offset;
cfc14b3a
MK
426
427 if ((insn & 0xc0) == DW_CFA_advance_loc)
428 fs->pc += (insn & 0x3f) * fs->code_align;
429 else if ((insn & 0xc0) == DW_CFA_offset)
430 {
431 reg = insn & 0x3f;
4fc771b8 432 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 433 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
434 offset = utmp * fs->data_align;
435 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 436 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
437 fs->regs.reg[reg].loc.offset = offset;
438 }
439 else if ((insn & 0xc0) == DW_CFA_restore)
440 {
cfc14b3a 441 reg = insn & 0x3f;
a6a5a945 442 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
443 }
444 else
445 {
446 switch (insn)
447 {
448 case DW_CFA_set_loc:
ae0d2f24 449 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 450 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
451 &bytes_read, fde->initial_location);
452 /* Apply the objfile offset for relocatable objects. */
453 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
454 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
455 insn_ptr += bytes_read;
456 break;
457
458 case DW_CFA_advance_loc1:
e17a4113 459 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
460 fs->pc += utmp * fs->code_align;
461 insn_ptr++;
462 break;
463 case DW_CFA_advance_loc2:
e17a4113 464 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 2;
467 break;
468 case DW_CFA_advance_loc4:
e17a4113 469 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
470 fs->pc += utmp * fs->code_align;
471 insn_ptr += 4;
472 break;
473
474 case DW_CFA_offset_extended:
f664829e 475 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 476 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 477 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
478 offset = utmp * fs->data_align;
479 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 480 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
481 fs->regs.reg[reg].loc.offset = offset;
482 break;
483
484 case DW_CFA_restore_extended:
f664829e 485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 486 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
487 break;
488
489 case DW_CFA_undefined:
f664829e 490 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 491 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 492 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 493 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
494 break;
495
496 case DW_CFA_same_value:
f664829e 497 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 498 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 499 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 500 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
501 break;
502
503 case DW_CFA_register:
f664829e 504 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 505 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 506 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 507 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 508 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 509 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
510 fs->regs.reg[reg].loc.reg = utmp;
511 break;
512
513 case DW_CFA_remember_state:
514 {
515 struct dwarf2_frame_state_reg_info *new_rs;
516
70ba0933 517 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
cfc14b3a
MK
518 *new_rs = fs->regs;
519 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
520 fs->regs.prev = new_rs;
521 }
522 break;
523
524 case DW_CFA_restore_state:
525 {
526 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
527
50ea7769
MK
528 if (old_rs == NULL)
529 {
e2e0b3e5 530 complaint (&symfile_complaints, _("\
5af949e3
UW
531bad CFI data; mismatched DW_CFA_restore_state at %s"),
532 paddress (gdbarch, fs->pc));
50ea7769
MK
533 }
534 else
535 {
536 xfree (fs->regs.reg);
537 fs->regs = *old_rs;
538 xfree (old_rs);
539 }
cfc14b3a
MK
540 }
541 break;
542
543 case DW_CFA_def_cfa:
f664829e
DE
544 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
545 fs->regs.cfa_reg = reg;
546 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
547
548 if (fs->armcc_cfa_offsets_sf)
549 utmp *= fs->data_align;
550
2fd481e1
PP
551 fs->regs.cfa_offset = utmp;
552 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
553 break;
554
555 case DW_CFA_def_cfa_register:
f664829e
DE
556 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
557 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
558 eh_frame_p);
559 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
560 break;
561
562 case DW_CFA_def_cfa_offset:
f664829e 563 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
564
565 if (fs->armcc_cfa_offsets_sf)
566 utmp *= fs->data_align;
567
2fd481e1 568 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
569 /* cfa_how deliberately not set. */
570 break;
571
a8504492
MK
572 case DW_CFA_nop:
573 break;
574
cfc14b3a 575 case DW_CFA_def_cfa_expression:
f664829e
DE
576 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
577 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
578 fs->regs.cfa_exp = insn_ptr;
579 fs->regs.cfa_how = CFA_EXP;
580 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
581 break;
582
583 case DW_CFA_expression:
f664829e 584 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 585 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 586 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 587 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
588 fs->regs.reg[reg].loc.exp = insn_ptr;
589 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 590 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
591 insn_ptr += utmp;
592 break;
593
a8504492 594 case DW_CFA_offset_extended_sf:
f664829e 595 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 596 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 597 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 598 offset *= fs->data_align;
a8504492 599 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 600 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
601 fs->regs.reg[reg].loc.offset = offset;
602 break;
603
46ea248b 604 case DW_CFA_val_offset:
f664829e 605 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 606 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 607 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
608 offset = utmp * fs->data_align;
609 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
610 fs->regs.reg[reg].loc.offset = offset;
611 break;
612
613 case DW_CFA_val_offset_sf:
f664829e 614 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 615 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 616 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
617 offset *= fs->data_align;
618 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
619 fs->regs.reg[reg].loc.offset = offset;
620 break;
621
622 case DW_CFA_val_expression:
f664829e 623 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 624 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 625 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
626 fs->regs.reg[reg].loc.exp = insn_ptr;
627 fs->regs.reg[reg].exp_len = utmp;
628 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
629 insn_ptr += utmp;
630 break;
631
a8504492 632 case DW_CFA_def_cfa_sf:
f664829e
DE
633 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
634 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 635 eh_frame_p);
f664829e 636 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
637 fs->regs.cfa_offset = offset * fs->data_align;
638 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
639 break;
640
641 case DW_CFA_def_cfa_offset_sf:
f664829e 642 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 643 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 644 /* cfa_how deliberately not set. */
cfc14b3a
MK
645 break;
646
a77f4086
MK
647 case DW_CFA_GNU_window_save:
648 /* This is SPARC-specific code, and contains hard-coded
649 constants for the register numbering scheme used by
650 GCC. Rather than having a architecture-specific
651 operation that's only ever used by a single
652 architecture, we provide the implementation here.
653 Incidentally that's what GCC does too in its
654 unwinder. */
655 {
4a4e5149 656 int size = register_size (gdbarch, 0);
9a619af0 657
a77f4086
MK
658 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
659 for (reg = 8; reg < 16; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
662 fs->regs.reg[reg].loc.reg = reg + 16;
663 }
664 for (reg = 16; reg < 32; reg++)
665 {
666 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
667 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
668 }
669 }
670 break;
671
cfc14b3a
MK
672 case DW_CFA_GNU_args_size:
673 /* Ignored. */
f664829e 674 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
675 break;
676
58894217 677 case DW_CFA_GNU_negative_offset_extended:
f664829e 678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 679 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
680 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
681 offset = utmp * fs->data_align;
58894217
JK
682 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
683 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
684 fs->regs.reg[reg].loc.offset = -offset;
685 break;
686
cfc14b3a 687 default:
3e43a32a
MS
688 internal_error (__FILE__, __LINE__,
689 _("Unknown CFI encountered."));
cfc14b3a
MK
690 }
691 }
692 }
693
111c6489
JK
694 if (fs->initial.reg == NULL)
695 {
696 /* Don't allow remember/restore between CIE and FDE programs. */
697 dwarf2_frame_state_free_regs (fs->regs.prev);
698 fs->regs.prev = NULL;
699 }
700
701 return insn_ptr;
cfc14b3a 702}
8f22cb90 703\f
cfc14b3a 704
8f22cb90 705/* Architecture-specific operations. */
cfc14b3a 706
8f22cb90
MK
707/* Per-architecture data key. */
708static struct gdbarch_data *dwarf2_frame_data;
709
710struct dwarf2_frame_ops
711{
712 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
713 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
714 struct frame_info *);
3ed09a32 715
4a4e5149 716 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 717 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 718
4fc771b8
DJ
719 /* Convert .eh_frame register number to DWARF register number, or
720 adjust .debug_frame register number. */
721 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
722};
723
8f22cb90
MK
724/* Default architecture-specific register state initialization
725 function. */
726
727static void
728dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 729 struct dwarf2_frame_state_reg *reg,
4a4e5149 730 struct frame_info *this_frame)
8f22cb90
MK
731{
732 /* If we have a register that acts as a program counter, mark it as
733 a destination for the return address. If we have a register that
734 serves as the stack pointer, arrange for it to be filled with the
735 call frame address (CFA). The other registers are marked as
736 unspecified.
737
738 We copy the return address to the program counter, since many
739 parts in GDB assume that it is possible to get the return address
740 by unwinding the program counter register. However, on ISA's
741 with a dedicated return address register, the CFI usually only
742 contains information to unwind that return address register.
743
744 The reason we're treating the stack pointer special here is
745 because in many cases GCC doesn't emit CFI for the stack pointer
746 and implicitly assumes that it is equal to the CFA. This makes
747 some sense since the DWARF specification (version 3, draft 8,
748 p. 102) says that:
749
750 "Typically, the CFA is defined to be the value of the stack
751 pointer at the call site in the previous frame (which may be
752 different from its value on entry to the current frame)."
753
754 However, this isn't true for all platforms supported by GCC
755 (e.g. IBM S/390 and zSeries). Those architectures should provide
756 their own architecture-specific initialization function. */
05cbe71a 757
ad010def 758 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 759 reg->how = DWARF2_FRAME_REG_RA;
ad010def 760 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
761 reg->how = DWARF2_FRAME_REG_CFA;
762}
05cbe71a 763
8f22cb90 764/* Return a default for the architecture-specific operations. */
05cbe71a 765
8f22cb90 766static void *
030f20e1 767dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
768{
769 struct dwarf2_frame_ops *ops;
770
030f20e1 771 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
772 ops->init_reg = dwarf2_frame_default_init_reg;
773 return ops;
774}
05cbe71a 775
8f22cb90
MK
776/* Set the architecture-specific register state initialization
777 function for GDBARCH to INIT_REG. */
778
779void
780dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
781 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
782 struct dwarf2_frame_state_reg *,
783 struct frame_info *))
8f22cb90 784{
9a3c8263
SM
785 struct dwarf2_frame_ops *ops
786 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 787
8f22cb90
MK
788 ops->init_reg = init_reg;
789}
790
791/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
792
793static void
794dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 795 struct dwarf2_frame_state_reg *reg,
4a4e5149 796 struct frame_info *this_frame)
05cbe71a 797{
9a3c8263
SM
798 struct dwarf2_frame_ops *ops
799 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 800
4a4e5149 801 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 802}
3ed09a32
DJ
803
804/* Set the architecture-specific signal trampoline recognition
805 function for GDBARCH to SIGNAL_FRAME_P. */
806
807void
808dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
809 int (*signal_frame_p) (struct gdbarch *,
810 struct frame_info *))
811{
9a3c8263
SM
812 struct dwarf2_frame_ops *ops
813 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
814
815 ops->signal_frame_p = signal_frame_p;
816}
817
818/* Query the architecture-specific signal frame recognizer for
4a4e5149 819 THIS_FRAME. */
3ed09a32
DJ
820
821static int
822dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 823 struct frame_info *this_frame)
3ed09a32 824{
9a3c8263
SM
825 struct dwarf2_frame_ops *ops
826 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
827
828 if (ops->signal_frame_p == NULL)
829 return 0;
4a4e5149 830 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 831}
4bf8967c 832
4fc771b8
DJ
833/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
834 register numbers. */
4bf8967c
AS
835
836void
4fc771b8
DJ
837dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
838 int (*adjust_regnum) (struct gdbarch *,
839 int, int))
4bf8967c 840{
9a3c8263
SM
841 struct dwarf2_frame_ops *ops
842 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 843
4fc771b8 844 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
845}
846
4fc771b8
DJ
847/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
848 register. */
4bf8967c 849
4fc771b8 850static int
3e43a32a
MS
851dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
852 int regnum, int eh_frame_p)
4bf8967c 853{
9a3c8263
SM
854 struct dwarf2_frame_ops *ops
855 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 856
4fc771b8 857 if (ops->adjust_regnum == NULL)
4bf8967c 858 return regnum;
4fc771b8 859 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 860}
303b6f5d
DJ
861
862static void
863dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
864 struct dwarf2_fde *fde)
865{
43f3e411 866 struct compunit_symtab *cust;
303b6f5d 867
43f3e411
DE
868 cust = find_pc_compunit_symtab (fs->pc);
869 if (cust == NULL)
303b6f5d
DJ
870 return;
871
43f3e411 872 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
a6c727b2
DJ
873 {
874 if (fde->cie->version == 1)
875 fs->armcc_cfa_offsets_sf = 1;
876
877 if (fde->cie->version == 1)
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 /* The reversed offset problem is present in some compilers
881 using DWARF3, but it was eventually fixed. Check the ARM
882 defined augmentations, which are in the format "armcc" followed
883 by a list of one-character options. The "+" option means
884 this problem is fixed (no quirk needed). If the armcc
885 augmentation is missing, the quirk is needed. */
886 if (fde->cie->version == 3
61012eef 887 && (!startswith (fde->cie->augmentation, "armcc")
a6c727b2
DJ
888 || strchr (fde->cie->augmentation + 5, '+') == NULL))
889 fs->armcc_cfa_offsets_reversed = 1;
890
891 return;
892 }
303b6f5d 893}
8f22cb90
MK
894\f
895
a8fd5589
TT
896/* See dwarf2-frame.h. */
897
898int
899dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
900 struct dwarf2_per_cu_data *data,
901 int *regnum_out, LONGEST *offset_out,
902 CORE_ADDR *text_offset_out,
903 const gdb_byte **cfa_start_out,
904 const gdb_byte **cfa_end_out)
9f6f94ff 905{
9f6f94ff 906 struct dwarf2_fde *fde;
22e048c9 907 CORE_ADDR text_offset;
9f6f94ff 908 struct dwarf2_frame_state fs;
9f6f94ff
TT
909
910 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
911
912 fs.pc = pc;
913
914 /* Find the correct FDE. */
915 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
916 if (fde == NULL)
917 error (_("Could not compute CFA; needed to translate this expression"));
918
919 /* Extract any interesting information from the CIE. */
920 fs.data_align = fde->cie->data_alignment_factor;
921 fs.code_align = fde->cie->code_alignment_factor;
922 fs.retaddr_column = fde->cie->return_address_register;
9f6f94ff
TT
923
924 /* Check for "quirks" - known bugs in producers. */
925 dwarf2_frame_find_quirks (&fs, fde);
926
927 /* First decode all the insns in the CIE. */
928 execute_cfa_program (fde, fde->cie->initial_instructions,
929 fde->cie->end, gdbarch, pc, &fs);
930
931 /* Save the initialized register set. */
932 fs.initial = fs.regs;
933 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
934
935 /* Then decode the insns in the FDE up to our target PC. */
936 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
937
938 /* Calculate the CFA. */
939 switch (fs.regs.cfa_how)
940 {
941 case CFA_REG_OFFSET:
942 {
0fde2c53 943 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
a8fd5589
TT
944
945 *regnum_out = regnum;
946 if (fs.armcc_cfa_offsets_reversed)
947 *offset_out = -fs.regs.cfa_offset;
948 else
949 *offset_out = fs.regs.cfa_offset;
950 return 1;
9f6f94ff 951 }
9f6f94ff
TT
952
953 case CFA_EXP:
a8fd5589
TT
954 *text_offset_out = text_offset;
955 *cfa_start_out = fs.regs.cfa_exp;
956 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
957 return 0;
9f6f94ff
TT
958
959 default:
960 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
961 }
962}
963
964\f
8f22cb90
MK
965struct dwarf2_frame_cache
966{
967 /* DWARF Call Frame Address. */
968 CORE_ADDR cfa;
969
8fbca658
PA
970 /* Set if the return address column was marked as unavailable
971 (required non-collected memory or registers to compute). */
972 int unavailable_retaddr;
973
0228dfb9
DJ
974 /* Set if the return address column was marked as undefined. */
975 int undefined_retaddr;
976
8f22cb90
MK
977 /* Saved registers, indexed by GDB register number, not by DWARF
978 register number. */
979 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
980
981 /* Return address register. */
982 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
983
984 /* Target address size in bytes. */
985 int addr_size;
ac56253d
TT
986
987 /* The .text offset. */
988 CORE_ADDR text_offset;
111c6489 989
1ec56e88
PA
990 /* True if we already checked whether this frame is the bottom frame
991 of a virtual tail call frame chain. */
992 int checked_tailcall_bottom;
993
111c6489
JK
994 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
995 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
996 involved. Non-bottom frames of a virtual tail call frames chain use
997 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
998 them. */
999 void *tailcall_cache;
1ec56e88
PA
1000
1001 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1002 base to get the SP, to simulate the return address pushed on the
1003 stack. */
1004 LONGEST entry_cfa_sp_offset;
1005 int entry_cfa_sp_offset_p;
8f22cb90 1006};
05cbe71a 1007
78ac5f83
TT
1008/* A cleanup that sets a pointer to NULL. */
1009
1010static void
1011clear_pointer_cleanup (void *arg)
1012{
9a3c8263 1013 void **ptr = (void **) arg;
78ac5f83
TT
1014
1015 *ptr = NULL;
1016}
1017
b9362cc7 1018static struct dwarf2_frame_cache *
4a4e5149 1019dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1020{
78ac5f83 1021 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1022 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1023 const int num_regs = gdbarch_num_regs (gdbarch)
1024 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1025 struct dwarf2_frame_cache *cache;
1026 struct dwarf2_frame_state *fs;
1027 struct dwarf2_fde *fde;
111c6489 1028 CORE_ADDR entry_pc;
111c6489 1029 const gdb_byte *instr;
cfc14b3a
MK
1030
1031 if (*this_cache)
9a3c8263 1032 return (struct dwarf2_frame_cache *) *this_cache;
cfc14b3a
MK
1033
1034 /* Allocate a new cache. */
1035 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1036 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1037 *this_cache = cache;
78ac5f83 1038 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1039
1040 /* Allocate and initialize the frame state. */
41bf6aca 1041 fs = XCNEW (struct dwarf2_frame_state);
cfc14b3a
MK
1042 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1043
1044 /* Unwind the PC.
1045
4a4e5149 1046 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1047 to abort), the compiler might optimize away the instruction at
4a4e5149 1048 its return address. As a result the return address will
cfc14b3a 1049 point at some random instruction, and the CFI for that
e4e9607c 1050 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1051 this problem by substracting 1 from the return address to get an
1052 address in the middle of a presumed call instruction (or the
1053 instruction in the associated delay slot). This should only be
1054 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1055 handlers, sentinel frames, dummy frames). The function
ad1193e7 1056 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1057 reliable the method is though; there is the potential for the
1058 register state pre-call being different to that on return. */
4a4e5149 1059 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1060
1061 /* Find the correct FDE. */
ac56253d 1062 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1063 gdb_assert (fde != NULL);
1064
1065 /* Extract any interesting information from the CIE. */
1066 fs->data_align = fde->cie->data_alignment_factor;
1067 fs->code_align = fde->cie->code_alignment_factor;
1068 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1069 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1070
303b6f5d
DJ
1071 /* Check for "quirks" - known bugs in producers. */
1072 dwarf2_frame_find_quirks (fs, fde);
1073
cfc14b3a 1074 /* First decode all the insns in the CIE. */
ae0d2f24 1075 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1076 fde->cie->end, gdbarch,
1077 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1078
1079 /* Save the initialized register set. */
1080 fs->initial = fs->regs;
1081 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1082
111c6489
JK
1083 if (get_frame_func_if_available (this_frame, &entry_pc))
1084 {
1085 /* Decode the insns in the FDE up to the entry PC. */
1086 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1087 entry_pc, fs);
1088
1089 if (fs->regs.cfa_how == CFA_REG_OFFSET
0fde2c53 1090 && (dwarf_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
111c6489
JK
1091 == gdbarch_sp_regnum (gdbarch)))
1092 {
1ec56e88
PA
1093 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1094 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1095 }
1096 }
1097 else
1098 instr = fde->instructions;
1099
cfc14b3a 1100 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1101 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1102 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1103
492d29ea 1104 TRY
cfc14b3a 1105 {
8fbca658
PA
1106 /* Calculate the CFA. */
1107 switch (fs->regs.cfa_how)
1108 {
1109 case CFA_REG_OFFSET:
b1370418 1110 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1111 if (fs->armcc_cfa_offsets_reversed)
1112 cache->cfa -= fs->regs.cfa_offset;
1113 else
1114 cache->cfa += fs->regs.cfa_offset;
1115 break;
1116
1117 case CFA_EXP:
1118 cache->cfa =
1119 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1120 cache->addr_size, cache->text_offset,
1121 this_frame, 0, 0);
1122 break;
1123
1124 default:
1125 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1126 }
1127 }
492d29ea 1128 CATCH (ex, RETURN_MASK_ERROR)
8fbca658
PA
1129 {
1130 if (ex.error == NOT_AVAILABLE_ERROR)
1131 {
1132 cache->unavailable_retaddr = 1;
5a1cf4d6 1133 do_cleanups (old_chain);
78ac5f83 1134 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1135 return cache;
1136 }
cfc14b3a 1137
8fbca658 1138 throw_exception (ex);
cfc14b3a 1139 }
492d29ea 1140 END_CATCH
cfc14b3a 1141
05cbe71a 1142 /* Initialize the register state. */
3e2c4033
AC
1143 {
1144 int regnum;
e4e9607c 1145
3e2c4033 1146 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1147 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1148 }
1149
1150 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1151 location information in the cache. Note that we don't skip the
1152 return address column; it's perfectly all right for it to
0fde2c53 1153 correspond to a real register. */
3e2c4033
AC
1154 {
1155 int column; /* CFI speak for "register number". */
e4e9607c 1156
3e2c4033
AC
1157 for (column = 0; column < fs->regs.num_regs; column++)
1158 {
3e2c4033 1159 /* Use the GDB register number as the destination index. */
0fde2c53 1160 int regnum = dwarf_reg_to_regnum (gdbarch, column);
3e2c4033 1161
0fde2c53 1162 /* Protect against a target returning a bad register. */
3e2c4033
AC
1163 if (regnum < 0 || regnum >= num_regs)
1164 continue;
1165
1166 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1167 of all debug info registers. If it doesn't, complain (but
1168 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1169 unspecified register implies "same value" when CFI (draft
1170 7) specifies nothing at all. Such a register could equally
1171 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1172 isn't sufficient; it only checks that all registers in the
1173 range [0 .. max column] are specified, and won't detect
3e2c4033 1174 problems when a debug info register falls outside of the
e4e9607c 1175 table. We need a way of iterating through all the valid
3e2c4033 1176 DWARF2 register numbers. */
05cbe71a 1177 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1178 {
1179 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1180 complaint (&symfile_complaints, _("\
5af949e3 1181incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1182 gdbarch_register_name (gdbarch, regnum),
5af949e3 1183 paddress (gdbarch, fs->pc));
f059bf6f 1184 }
35889917
MK
1185 else
1186 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1187 }
1188 }
cfc14b3a 1189
8d5a9abc
MK
1190 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1191 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1192 {
1193 int regnum;
1194
1195 for (regnum = 0; regnum < num_regs; regnum++)
1196 {
8d5a9abc
MK
1197 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1198 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1199 {
05cbe71a
MK
1200 struct dwarf2_frame_state_reg *retaddr_reg =
1201 &fs->regs.reg[fs->retaddr_column];
1202
d4f10bf2
MK
1203 /* It seems rather bizarre to specify an "empty" column as
1204 the return adress column. However, this is exactly
1205 what GCC does on some targets. It turns out that GCC
1206 assumes that the return address can be found in the
1207 register corresponding to the return address column.
8d5a9abc
MK
1208 Incidentally, that's how we should treat a return
1209 address column specifying "same value" too. */
d4f10bf2 1210 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1211 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1212 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1213 {
1214 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1215 cache->reg[regnum] = *retaddr_reg;
1216 else
1217 cache->retaddr_reg = *retaddr_reg;
1218 }
35889917
MK
1219 else
1220 {
8d5a9abc
MK
1221 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1222 {
1223 cache->reg[regnum].loc.reg = fs->retaddr_column;
1224 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1225 }
1226 else
1227 {
1228 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1229 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1230 }
35889917
MK
1231 }
1232 }
1233 }
1234 }
cfc14b3a 1235
0228dfb9
DJ
1236 if (fs->retaddr_column < fs->regs.num_regs
1237 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1238 cache->undefined_retaddr = 1;
1239
cfc14b3a 1240 do_cleanups (old_chain);
78ac5f83 1241 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1242 return cache;
1243}
1244
8fbca658
PA
1245static enum unwind_stop_reason
1246dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1247 void **this_cache)
1248{
1249 struct dwarf2_frame_cache *cache
1250 = dwarf2_frame_cache (this_frame, this_cache);
1251
1252 if (cache->unavailable_retaddr)
1253 return UNWIND_UNAVAILABLE;
1254
1255 if (cache->undefined_retaddr)
1256 return UNWIND_OUTERMOST;
1257
1258 return UNWIND_NO_REASON;
1259}
1260
cfc14b3a 1261static void
4a4e5149 1262dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1263 struct frame_id *this_id)
1264{
1265 struct dwarf2_frame_cache *cache =
4a4e5149 1266 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1267
8fbca658 1268 if (cache->unavailable_retaddr)
5ce0145d
PA
1269 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1270 else if (cache->undefined_retaddr)
8fbca658 1271 return;
5ce0145d
PA
1272 else
1273 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1274}
1275
4a4e5149
DJ
1276static struct value *
1277dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1278 int regnum)
93d42b30 1279{
4a4e5149 1280 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1281 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1282 dwarf2_frame_cache (this_frame, this_cache);
1283 CORE_ADDR addr;
1284 int realnum;
cfc14b3a 1285
1ec56e88
PA
1286 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1287 call frame chain. */
1288 if (!cache->checked_tailcall_bottom)
1289 {
1290 cache->checked_tailcall_bottom = 1;
1291 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1292 (cache->entry_cfa_sp_offset_p
1293 ? &cache->entry_cfa_sp_offset : NULL));
1294 }
1295
111c6489
JK
1296 /* Non-bottom frames of a virtual tail call frames chain use
1297 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1298 them. If dwarf2_tailcall_prev_register_first does not have specific value
1299 unwind the register, tail call frames are assumed to have the register set
1300 of the top caller. */
1301 if (cache->tailcall_cache)
1302 {
1303 struct value *val;
1304
1305 val = dwarf2_tailcall_prev_register_first (this_frame,
1306 &cache->tailcall_cache,
1307 regnum);
1308 if (val)
1309 return val;
1310 }
1311
cfc14b3a
MK
1312 switch (cache->reg[regnum].how)
1313 {
05cbe71a 1314 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1315 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1316 mark it as optimized away; the value isn't available. */
4a4e5149 1317 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1318
05cbe71a 1319 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1320 addr = cache->cfa + cache->reg[regnum].loc.offset;
1321 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1322
05cbe71a 1323 case DWARF2_FRAME_REG_SAVED_REG:
0fde2c53
DE
1324 realnum = dwarf_reg_to_regnum_or_error
1325 (gdbarch, cache->reg[regnum].loc.reg);
4a4e5149 1326 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1327
05cbe71a 1328 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1329 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1330 cache->reg[regnum].exp_len,
ac56253d
TT
1331 cache->addr_size, cache->text_offset,
1332 this_frame, cache->cfa, 1);
4a4e5149 1333 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1334
46ea248b 1335 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1336 addr = cache->cfa + cache->reg[regnum].loc.offset;
1337 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1338
1339 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1340 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1341 cache->reg[regnum].exp_len,
ac56253d
TT
1342 cache->addr_size, cache->text_offset,
1343 this_frame, cache->cfa, 1);
4a4e5149 1344 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1345
05cbe71a 1346 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1347 /* GCC, in its infinite wisdom decided to not provide unwind
1348 information for registers that are "same value". Since
1349 DWARF2 (3 draft 7) doesn't define such behavior, said
1350 registers are actually undefined (which is different to CFI
1351 "undefined"). Code above issues a complaint about this.
1352 Here just fudge the books, assume GCC, and that the value is
1353 more inner on the stack. */
4a4e5149 1354 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1355
05cbe71a 1356 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1357 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1358
05cbe71a 1359 case DWARF2_FRAME_REG_CFA:
4a4e5149 1360 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1361
ea7963f0 1362 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1363 addr = cache->cfa + cache->reg[regnum].loc.offset;
1364 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1365
8d5a9abc 1366 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149 1367 addr = cache->reg[regnum].loc.offset;
0fde2c53 1368 regnum = dwarf_reg_to_regnum_or_error
4a4e5149
DJ
1369 (gdbarch, cache->retaddr_reg.loc.reg);
1370 addr += get_frame_register_unsigned (this_frame, regnum);
1371 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1372
b39cc962
DJ
1373 case DWARF2_FRAME_REG_FN:
1374 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1375
cfc14b3a 1376 default:
e2e0b3e5 1377 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1378 }
1379}
1380
111c6489
JK
1381/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1382 call frames chain. */
1383
1384static void
1385dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1386{
1387 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1388
1389 if (cache->tailcall_cache)
1390 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1391}
1392
4a4e5149
DJ
1393static int
1394dwarf2_frame_sniffer (const struct frame_unwind *self,
1395 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1396{
1ce5d6dd 1397 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1398 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1399 end up returning something past the end of this function's body.
1400 If the frame we're sniffing for is a signal frame whose start
1401 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1402 extend one byte before its start address or we could potentially
1403 select the FDE of the previous function. */
1404 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1405 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1406
56c987f6 1407 if (!fde)
4a4e5149 1408 return 0;
3ed09a32
DJ
1409
1410 /* On some targets, signal trampolines may have unwind information.
1411 We need to recognize them so that we set the frame type
1412 correctly. */
1413
56c987f6 1414 if (fde->cie->signal_frame
4a4e5149
DJ
1415 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1416 this_frame))
1417 return self->type == SIGTRAMP_FRAME;
1418
111c6489
JK
1419 if (self->type != NORMAL_FRAME)
1420 return 0;
1421
111c6489 1422 return 1;
4a4e5149
DJ
1423}
1424
1425static const struct frame_unwind dwarf2_frame_unwind =
1426{
1427 NORMAL_FRAME,
8fbca658 1428 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1429 dwarf2_frame_this_id,
1430 dwarf2_frame_prev_register,
1431 NULL,
111c6489
JK
1432 dwarf2_frame_sniffer,
1433 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1434};
1435
1436static const struct frame_unwind dwarf2_signal_frame_unwind =
1437{
1438 SIGTRAMP_FRAME,
8fbca658 1439 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1440 dwarf2_frame_this_id,
1441 dwarf2_frame_prev_register,
1442 NULL,
111c6489
JK
1443 dwarf2_frame_sniffer,
1444
1445 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1446 NULL
4a4e5149 1447};
cfc14b3a 1448
4a4e5149
DJ
1449/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1450
1451void
1452dwarf2_append_unwinders (struct gdbarch *gdbarch)
1453{
111c6489
JK
1454 /* TAILCALL_FRAME must be first to find the record by
1455 dwarf2_tailcall_sniffer_first. */
1456 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1457
4a4e5149
DJ
1458 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1459 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1460}
1461\f
1462
1463/* There is no explicitly defined relationship between the CFA and the
1464 location of frame's local variables and arguments/parameters.
1465 Therefore, frame base methods on this page should probably only be
1466 used as a last resort, just to avoid printing total garbage as a
1467 response to the "info frame" command. */
1468
1469static CORE_ADDR
4a4e5149 1470dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1471{
1472 struct dwarf2_frame_cache *cache =
4a4e5149 1473 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1474
1475 return cache->cfa;
1476}
1477
1478static const struct frame_base dwarf2_frame_base =
1479{
1480 &dwarf2_frame_unwind,
1481 dwarf2_frame_base_address,
1482 dwarf2_frame_base_address,
1483 dwarf2_frame_base_address
1484};
1485
1486const struct frame_base *
4a4e5149 1487dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1488{
4a4e5149 1489 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1490
ac56253d 1491 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1492 return &dwarf2_frame_base;
1493
1494 return NULL;
1495}
e7802207
TT
1496
1497/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1498 the DWARF unwinder. This is used to implement
1499 DW_OP_call_frame_cfa. */
1500
1501CORE_ADDR
1502dwarf2_frame_cfa (struct frame_info *this_frame)
1503{
0b722aec
MM
1504 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1505 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1506 throw_error (NOT_AVAILABLE_ERROR,
1507 _("cfa not available for record btrace target"));
1508
e7802207
TT
1509 while (get_frame_type (this_frame) == INLINE_FRAME)
1510 this_frame = get_prev_frame (this_frame);
32261e52
MM
1511 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1512 throw_error (NOT_AVAILABLE_ERROR,
1513 _("can't compute CFA for this frame: "
1514 "required registers or memory are unavailable"));
14aba1ac
JB
1515
1516 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1517 throw_error (NOT_AVAILABLE_ERROR,
1518 _("can't compute CFA for this frame: "
1519 "frame base not available"));
1520
e7802207
TT
1521 return get_frame_base (this_frame);
1522}
cfc14b3a 1523\f
8f22cb90 1524const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1525
cfc14b3a 1526static unsigned int
f664829e 1527read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1528{
852483bc 1529 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1530}
1531
1532static unsigned int
f664829e 1533read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1534{
852483bc 1535 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1536}
1537
1538static ULONGEST
f664829e 1539read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1540{
852483bc 1541 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1542}
1543
1544static ULONGEST
f664829e
DE
1545read_initial_length (bfd *abfd, const gdb_byte *buf,
1546 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1547{
1548 LONGEST result;
1549
852483bc 1550 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1551 if (result == 0xffffffff)
1552 {
852483bc 1553 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1554 *bytes_read_ptr = 12;
1555 }
1556 else
1557 *bytes_read_ptr = 4;
1558
1559 return result;
1560}
1561\f
1562
1563/* Pointer encoding helper functions. */
1564
1565/* GCC supports exception handling based on DWARF2 CFI. However, for
1566 technical reasons, it encodes addresses in its FDE's in a different
1567 way. Several "pointer encodings" are supported. The encoding
1568 that's used for a particular FDE is determined by the 'R'
1569 augmentation in the associated CIE. The argument of this
1570 augmentation is a single byte.
1571
1572 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1573 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1574 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1575 address should be interpreted (absolute, relative to the current
1576 position in the FDE, ...). Bit 7, indicates that the address
1577 should be dereferenced. */
1578
852483bc 1579static gdb_byte
cfc14b3a
MK
1580encoding_for_size (unsigned int size)
1581{
1582 switch (size)
1583 {
1584 case 2:
1585 return DW_EH_PE_udata2;
1586 case 4:
1587 return DW_EH_PE_udata4;
1588 case 8:
1589 return DW_EH_PE_udata8;
1590 default:
e2e0b3e5 1591 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1592 }
1593}
1594
cfc14b3a 1595static CORE_ADDR
852483bc 1596read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1597 int ptr_len, const gdb_byte *buf,
1598 unsigned int *bytes_read_ptr,
ae0d2f24 1599 CORE_ADDR func_base)
cfc14b3a 1600{
68f6cf99 1601 ptrdiff_t offset;
cfc14b3a
MK
1602 CORE_ADDR base;
1603
1604 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1605 FDE's. */
1606 if (encoding & DW_EH_PE_indirect)
1607 internal_error (__FILE__, __LINE__,
e2e0b3e5 1608 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1609
68f6cf99
MK
1610 *bytes_read_ptr = 0;
1611
cfc14b3a
MK
1612 switch (encoding & 0x70)
1613 {
1614 case DW_EH_PE_absptr:
1615 base = 0;
1616 break;
1617 case DW_EH_PE_pcrel:
f2fec864 1618 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1619 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1620 break;
0912c7f2
MK
1621 case DW_EH_PE_datarel:
1622 base = unit->dbase;
1623 break;
0fd85043
CV
1624 case DW_EH_PE_textrel:
1625 base = unit->tbase;
1626 break;
03ac2a74 1627 case DW_EH_PE_funcrel:
ae0d2f24 1628 base = func_base;
03ac2a74 1629 break;
68f6cf99
MK
1630 case DW_EH_PE_aligned:
1631 base = 0;
852483bc 1632 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1633 if ((offset % ptr_len) != 0)
1634 {
1635 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1636 buf += *bytes_read_ptr;
1637 }
1638 break;
cfc14b3a 1639 default:
3e43a32a
MS
1640 internal_error (__FILE__, __LINE__,
1641 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1642 }
1643
b04de778 1644 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1645 {
1646 encoding |= encoding_for_size (ptr_len);
1647 if (bfd_get_sign_extend_vma (unit->abfd))
1648 encoding |= DW_EH_PE_signed;
1649 }
cfc14b3a
MK
1650
1651 switch (encoding & 0x0f)
1652 {
a81b10ae
MK
1653 case DW_EH_PE_uleb128:
1654 {
9fccedf7 1655 uint64_t value;
0d45f56e 1656 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1657
f664829e 1658 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1659 return base + value;
1660 }
cfc14b3a 1661 case DW_EH_PE_udata2:
68f6cf99 1662 *bytes_read_ptr += 2;
cfc14b3a
MK
1663 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1664 case DW_EH_PE_udata4:
68f6cf99 1665 *bytes_read_ptr += 4;
cfc14b3a
MK
1666 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1667 case DW_EH_PE_udata8:
68f6cf99 1668 *bytes_read_ptr += 8;
cfc14b3a 1669 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1670 case DW_EH_PE_sleb128:
1671 {
9fccedf7 1672 int64_t value;
0d45f56e 1673 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1674
f664829e 1675 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1676 return base + value;
1677 }
cfc14b3a 1678 case DW_EH_PE_sdata2:
68f6cf99 1679 *bytes_read_ptr += 2;
cfc14b3a
MK
1680 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1681 case DW_EH_PE_sdata4:
68f6cf99 1682 *bytes_read_ptr += 4;
cfc14b3a
MK
1683 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1684 case DW_EH_PE_sdata8:
68f6cf99 1685 *bytes_read_ptr += 8;
cfc14b3a
MK
1686 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1687 default:
3e43a32a
MS
1688 internal_error (__FILE__, __LINE__,
1689 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1690 }
1691}
1692\f
1693
b01c8410
PP
1694static int
1695bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1696{
b01c8410
PP
1697 ULONGEST cie_pointer = *(ULONGEST *) key;
1698 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1699
b01c8410
PP
1700 if (cie_pointer == cie->cie_pointer)
1701 return 0;
cfc14b3a 1702
b01c8410
PP
1703 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1704}
1705
1706/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1707static struct dwarf2_cie *
1708find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1709{
1710 struct dwarf2_cie **p_cie;
cfc14b3a 1711
65a97ab3
PP
1712 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1713 bsearch be non-NULL. */
1714 if (cie_table->entries == NULL)
1715 {
1716 gdb_assert (cie_table->num_entries == 0);
1717 return NULL;
1718 }
1719
9a3c8263
SM
1720 p_cie = ((struct dwarf2_cie **)
1721 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1722 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
b01c8410
PP
1723 if (p_cie != NULL)
1724 return *p_cie;
cfc14b3a
MK
1725 return NULL;
1726}
1727
b01c8410 1728/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1729static void
b01c8410 1730add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1731{
b01c8410
PP
1732 const int n = cie_table->num_entries;
1733
1734 gdb_assert (n < 1
1735 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1736
224c3ddb
SM
1737 cie_table->entries
1738 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
b01c8410
PP
1739 cie_table->entries[n] = cie;
1740 cie_table->num_entries = n + 1;
1741}
1742
1743static int
1744bsearch_fde_cmp (const void *key, const void *element)
1745{
1746 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1747 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1748
b01c8410
PP
1749 if (seek_pc < fde->initial_location)
1750 return -1;
1751 if (seek_pc < fde->initial_location + fde->address_range)
1752 return 0;
1753 return 1;
cfc14b3a
MK
1754}
1755
1756/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1757 inital location associated with it into *PC. */
1758
1759static struct dwarf2_fde *
ac56253d 1760dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1761{
1762 struct objfile *objfile;
1763
1764 ALL_OBJFILES (objfile)
1765 {
b01c8410
PP
1766 struct dwarf2_fde_table *fde_table;
1767 struct dwarf2_fde **p_fde;
cfc14b3a 1768 CORE_ADDR offset;
b01c8410 1769 CORE_ADDR seek_pc;
cfc14b3a 1770
9a3c8263
SM
1771 fde_table = ((struct dwarf2_fde_table *)
1772 objfile_data (objfile, dwarf2_frame_objfile_data));
b01c8410 1773 if (fde_table == NULL)
be391dca
TT
1774 {
1775 dwarf2_build_frame_info (objfile);
9a3c8263
SM
1776 fde_table = ((struct dwarf2_fde_table *)
1777 objfile_data (objfile, dwarf2_frame_objfile_data));
be391dca
TT
1778 }
1779 gdb_assert (fde_table != NULL);
1780
1781 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1782 continue;
1783
1784 gdb_assert (objfile->section_offsets);
1785 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1786
b01c8410
PP
1787 gdb_assert (fde_table->num_entries > 0);
1788 if (*pc < offset + fde_table->entries[0]->initial_location)
1789 continue;
1790
1791 seek_pc = *pc - offset;
9a3c8263
SM
1792 p_fde = ((struct dwarf2_fde **)
1793 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1794 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
b01c8410
PP
1795 if (p_fde != NULL)
1796 {
1797 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1798 if (out_offset)
1799 *out_offset = offset;
b01c8410
PP
1800 return *p_fde;
1801 }
cfc14b3a 1802 }
cfc14b3a
MK
1803 return NULL;
1804}
1805
b01c8410 1806/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1807static void
b01c8410 1808add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1809{
b01c8410
PP
1810 if (fde->address_range == 0)
1811 /* Discard useless FDEs. */
1812 return;
1813
1814 fde_table->num_entries += 1;
224c3ddb
SM
1815 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1816 fde_table->num_entries);
b01c8410 1817 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1818}
1819
cfc14b3a 1820#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1821
8bd90839
FM
1822/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1823 or any of them. */
1824
1825enum eh_frame_type
1826{
1827 EH_CIE_TYPE_ID = 1 << 0,
1828 EH_FDE_TYPE_ID = 1 << 1,
1829 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1830};
1831
f664829e
DE
1832static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1833 const gdb_byte *start,
1834 int eh_frame_p,
1835 struct dwarf2_cie_table *cie_table,
1836 struct dwarf2_fde_table *fde_table,
1837 enum eh_frame_type entry_type);
8bd90839
FM
1838
1839/* Decode the next CIE or FDE, entry_type specifies the expected type.
1840 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1841
f664829e
DE
1842static const gdb_byte *
1843decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1844 int eh_frame_p,
b01c8410 1845 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1846 struct dwarf2_fde_table *fde_table,
1847 enum eh_frame_type entry_type)
cfc14b3a 1848{
5e2b427d 1849 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1850 const gdb_byte *buf, *end;
cfc14b3a
MK
1851 LONGEST length;
1852 unsigned int bytes_read;
6896c0c7
RH
1853 int dwarf64_p;
1854 ULONGEST cie_id;
cfc14b3a 1855 ULONGEST cie_pointer;
9fccedf7
DE
1856 int64_t sleb128;
1857 uint64_t uleb128;
cfc14b3a 1858
6896c0c7 1859 buf = start;
cfc14b3a
MK
1860 length = read_initial_length (unit->abfd, buf, &bytes_read);
1861 buf += bytes_read;
1862 end = buf + length;
1863
0963b4bd 1864 /* Are we still within the section? */
6896c0c7
RH
1865 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1866 return NULL;
1867
cfc14b3a
MK
1868 if (length == 0)
1869 return end;
1870
6896c0c7
RH
1871 /* Distinguish between 32 and 64-bit encoded frame info. */
1872 dwarf64_p = (bytes_read == 12);
cfc14b3a 1873
6896c0c7 1874 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1875 if (eh_frame_p)
1876 cie_id = 0;
1877 else if (dwarf64_p)
1878 cie_id = DW64_CIE_ID;
6896c0c7
RH
1879 else
1880 cie_id = DW_CIE_ID;
cfc14b3a
MK
1881
1882 if (dwarf64_p)
1883 {
1884 cie_pointer = read_8_bytes (unit->abfd, buf);
1885 buf += 8;
1886 }
1887 else
1888 {
1889 cie_pointer = read_4_bytes (unit->abfd, buf);
1890 buf += 4;
1891 }
1892
1893 if (cie_pointer == cie_id)
1894 {
1895 /* This is a CIE. */
1896 struct dwarf2_cie *cie;
1897 char *augmentation;
28ba0b33 1898 unsigned int cie_version;
cfc14b3a 1899
8bd90839
FM
1900 /* Check that a CIE was expected. */
1901 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1902 error (_("Found a CIE when not expecting it."));
1903
cfc14b3a
MK
1904 /* Record the offset into the .debug_frame section of this CIE. */
1905 cie_pointer = start - unit->dwarf_frame_buffer;
1906
1907 /* Check whether we've already read it. */
b01c8410 1908 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1909 return end;
1910
8d749320 1911 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
cfc14b3a
MK
1912 cie->initial_instructions = NULL;
1913 cie->cie_pointer = cie_pointer;
1914
1915 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1916 depends on the target address size. */
1917 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1918
56c987f6
AO
1919 /* We'll determine the final value later, but we need to
1920 initialize it conservatively. */
1921 cie->signal_frame = 0;
1922
cfc14b3a 1923 /* Check version number. */
28ba0b33 1924 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1925 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1926 return NULL;
303b6f5d 1927 cie->version = cie_version;
cfc14b3a
MK
1928 buf += 1;
1929
1930 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1931 cie->augmentation = augmentation = (char *) buf;
852483bc 1932 buf += (strlen (augmentation) + 1);
cfc14b3a 1933
303b6f5d
DJ
1934 /* Ignore armcc augmentations. We only use them for quirks,
1935 and that doesn't happen until later. */
61012eef 1936 if (startswith (augmentation, "armcc"))
303b6f5d
DJ
1937 augmentation += strlen (augmentation);
1938
cfc14b3a
MK
1939 /* The GCC 2.x "eh" augmentation has a pointer immediately
1940 following the augmentation string, so it must be handled
1941 first. */
1942 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1943 {
1944 /* Skip. */
5e2b427d 1945 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1946 augmentation += 2;
1947 }
1948
2dc7f7b3
TT
1949 if (cie->version >= 4)
1950 {
1951 /* FIXME: check that this is the same as from the CU header. */
1952 cie->addr_size = read_1_byte (unit->abfd, buf);
1953 ++buf;
1954 cie->segment_size = read_1_byte (unit->abfd, buf);
1955 ++buf;
1956 }
1957 else
1958 {
8da614df 1959 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1960 cie->segment_size = 0;
1961 }
8da614df
CV
1962 /* Address values in .eh_frame sections are defined to have the
1963 target's pointer size. Watchout: This breaks frame info for
1964 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1965 section exists as well. */
8da614df
CV
1966 if (eh_frame_p)
1967 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1968 else
1969 cie->ptr_size = cie->addr_size;
2dc7f7b3 1970
f664829e
DE
1971 buf = gdb_read_uleb128 (buf, end, &uleb128);
1972 if (buf == NULL)
1973 return NULL;
1974 cie->code_alignment_factor = uleb128;
cfc14b3a 1975
f664829e
DE
1976 buf = gdb_read_sleb128 (buf, end, &sleb128);
1977 if (buf == NULL)
1978 return NULL;
1979 cie->data_alignment_factor = sleb128;
cfc14b3a 1980
28ba0b33
PB
1981 if (cie_version == 1)
1982 {
1983 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1984 ++buf;
28ba0b33
PB
1985 }
1986 else
f664829e
DE
1987 {
1988 buf = gdb_read_uleb128 (buf, end, &uleb128);
1989 if (buf == NULL)
1990 return NULL;
1991 cie->return_address_register = uleb128;
1992 }
1993
4fc771b8 1994 cie->return_address_register
5e2b427d 1995 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1996 cie->return_address_register,
1997 eh_frame_p);
4bf8967c 1998
7131cb6e
RH
1999 cie->saw_z_augmentation = (*augmentation == 'z');
2000 if (cie->saw_z_augmentation)
cfc14b3a 2001 {
9fccedf7 2002 uint64_t length;
cfc14b3a 2003
f664829e
DE
2004 buf = gdb_read_uleb128 (buf, end, &length);
2005 if (buf == NULL)
6896c0c7 2006 return NULL;
cfc14b3a
MK
2007 cie->initial_instructions = buf + length;
2008 augmentation++;
2009 }
2010
2011 while (*augmentation)
2012 {
2013 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2014 if (*augmentation == 'L')
2015 {
2016 /* Skip. */
2017 buf++;
2018 augmentation++;
2019 }
2020
2021 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2022 else if (*augmentation == 'R')
2023 {
2024 cie->encoding = *buf++;
2025 augmentation++;
2026 }
2027
2028 /* "P" indicates a personality routine in the CIE augmentation. */
2029 else if (*augmentation == 'P')
2030 {
1234d960 2031 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2032 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2033 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2034 buf, &bytes_read, 0);
f724bf08 2035 buf += bytes_read;
cfc14b3a
MK
2036 augmentation++;
2037 }
2038
56c987f6
AO
2039 /* "S" indicates a signal frame, such that the return
2040 address must not be decremented to locate the call frame
2041 info for the previous frame; it might even be the first
2042 instruction of a function, so decrementing it would take
2043 us to a different function. */
2044 else if (*augmentation == 'S')
2045 {
2046 cie->signal_frame = 1;
2047 augmentation++;
2048 }
2049
3e9a2e52
DJ
2050 /* Otherwise we have an unknown augmentation. Assume that either
2051 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2052 else
2053 {
3e9a2e52
DJ
2054 if (cie->initial_instructions)
2055 buf = cie->initial_instructions;
cfc14b3a
MK
2056 break;
2057 }
2058 }
2059
2060 cie->initial_instructions = buf;
2061 cie->end = end;
b01c8410 2062 cie->unit = unit;
cfc14b3a 2063
b01c8410 2064 add_cie (cie_table, cie);
cfc14b3a
MK
2065 }
2066 else
2067 {
2068 /* This is a FDE. */
2069 struct dwarf2_fde *fde;
3e29f34a 2070 CORE_ADDR addr;
cfc14b3a 2071
8bd90839
FM
2072 /* Check that an FDE was expected. */
2073 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2074 error (_("Found an FDE when not expecting it."));
2075
6896c0c7
RH
2076 /* In an .eh_frame section, the CIE pointer is the delta between the
2077 address within the FDE where the CIE pointer is stored and the
2078 address of the CIE. Convert it to an offset into the .eh_frame
2079 section. */
cfc14b3a
MK
2080 if (eh_frame_p)
2081 {
cfc14b3a
MK
2082 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2083 cie_pointer -= (dwarf64_p ? 8 : 4);
2084 }
2085
6896c0c7
RH
2086 /* In either case, validate the result is still within the section. */
2087 if (cie_pointer >= unit->dwarf_frame_size)
2088 return NULL;
2089
8d749320 2090 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
b01c8410 2091 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2092 if (fde->cie == NULL)
2093 {
2094 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2095 eh_frame_p, cie_table, fde_table,
2096 EH_CIE_TYPE_ID);
b01c8410 2097 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2098 }
2099
2100 gdb_assert (fde->cie != NULL);
2101
3e29f34a
MR
2102 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2103 buf, &bytes_read, 0);
2104 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
cfc14b3a
MK
2105 buf += bytes_read;
2106
2107 fde->address_range =
ae0d2f24 2108 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2109 fde->cie->ptr_size, buf, &bytes_read, 0);
3e29f34a
MR
2110 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2111 fde->address_range = addr - fde->initial_location;
cfc14b3a
MK
2112 buf += bytes_read;
2113
7131cb6e
RH
2114 /* A 'z' augmentation in the CIE implies the presence of an
2115 augmentation field in the FDE as well. The only thing known
2116 to be in here at present is the LSDA entry for EH. So we
2117 can skip the whole thing. */
2118 if (fde->cie->saw_z_augmentation)
2119 {
9fccedf7 2120 uint64_t length;
7131cb6e 2121
f664829e
DE
2122 buf = gdb_read_uleb128 (buf, end, &length);
2123 if (buf == NULL)
2124 return NULL;
2125 buf += length;
6896c0c7
RH
2126 if (buf > end)
2127 return NULL;
7131cb6e
RH
2128 }
2129
cfc14b3a
MK
2130 fde->instructions = buf;
2131 fde->end = end;
2132
4bf8967c
AS
2133 fde->eh_frame_p = eh_frame_p;
2134
b01c8410 2135 add_fde (fde_table, fde);
cfc14b3a
MK
2136 }
2137
2138 return end;
2139}
6896c0c7 2140
8bd90839
FM
2141/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2142 expect an FDE or a CIE. */
2143
f664829e
DE
2144static const gdb_byte *
2145decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2146 int eh_frame_p,
b01c8410 2147 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2148 struct dwarf2_fde_table *fde_table,
2149 enum eh_frame_type entry_type)
6896c0c7
RH
2150{
2151 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2152 const gdb_byte *ret;
6896c0c7
RH
2153 ptrdiff_t start_offset;
2154
2155 while (1)
2156 {
b01c8410 2157 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2158 cie_table, fde_table, entry_type);
6896c0c7
RH
2159 if (ret != NULL)
2160 break;
2161
2162 /* We have corrupt input data of some form. */
2163
2164 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2165 and mismatches wrt padding and alignment of debug sections. */
2166 /* Note that there is no requirement in the standard for any
2167 alignment at all in the frame unwind sections. Testing for
2168 alignment before trying to interpret data would be incorrect.
2169
2170 However, GCC traditionally arranged for frame sections to be
2171 sized such that the FDE length and CIE fields happen to be
2172 aligned (in theory, for performance). This, unfortunately,
2173 was done with .align directives, which had the side effect of
2174 forcing the section to be aligned by the linker.
2175
2176 This becomes a problem when you have some other producer that
2177 creates frame sections that are not as strictly aligned. That
2178 produces a hole in the frame info that gets filled by the
2179 linker with zeros.
2180
2181 The GCC behaviour is arguably a bug, but it's effectively now
2182 part of the ABI, so we're now stuck with it, at least at the
2183 object file level. A smart linker may decide, in the process
2184 of compressing duplicate CIE information, that it can rewrite
2185 the entire output section without this extra padding. */
2186
2187 start_offset = start - unit->dwarf_frame_buffer;
2188 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2189 {
2190 start += 4 - (start_offset & 3);
2191 workaround = ALIGN4;
2192 continue;
2193 }
2194 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2195 {
2196 start += 8 - (start_offset & 7);
2197 workaround = ALIGN8;
2198 continue;
2199 }
2200
2201 /* Nothing left to try. Arrange to return as if we've consumed
2202 the entire input section. Hopefully we'll get valid info from
2203 the other of .debug_frame/.eh_frame. */
2204 workaround = FAIL;
2205 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2206 break;
2207 }
2208
2209 switch (workaround)
2210 {
2211 case NONE:
2212 break;
2213
2214 case ALIGN4:
3e43a32a
MS
2215 complaint (&symfile_complaints, _("\
2216Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2217 unit->dwarf_frame_section->owner->filename,
2218 unit->dwarf_frame_section->name);
2219 break;
2220
2221 case ALIGN8:
3e43a32a
MS
2222 complaint (&symfile_complaints, _("\
2223Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2224 unit->dwarf_frame_section->owner->filename,
2225 unit->dwarf_frame_section->name);
2226 break;
2227
2228 default:
2229 complaint (&symfile_complaints,
e2e0b3e5 2230 _("Corrupt data in %s:%s"),
6896c0c7
RH
2231 unit->dwarf_frame_section->owner->filename,
2232 unit->dwarf_frame_section->name);
2233 break;
2234 }
2235
2236 return ret;
2237}
cfc14b3a 2238\f
b01c8410
PP
2239static int
2240qsort_fde_cmp (const void *a, const void *b)
2241{
2242 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2243 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2244
b01c8410 2245 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2246 {
2247 if (aa->address_range != bb->address_range
2248 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2249 /* Linker bug, e.g. gold/10400.
2250 Work around it by keeping stable sort order. */
2251 return (a < b) ? -1 : 1;
2252 else
2253 /* Put eh_frame entries after debug_frame ones. */
2254 return aa->eh_frame_p - bb->eh_frame_p;
2255 }
b01c8410
PP
2256
2257 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2258}
2259
cfc14b3a
MK
2260void
2261dwarf2_build_frame_info (struct objfile *objfile)
2262{
ae0d2f24 2263 struct comp_unit *unit;
f664829e 2264 const gdb_byte *frame_ptr;
b01c8410
PP
2265 struct dwarf2_cie_table cie_table;
2266 struct dwarf2_fde_table fde_table;
be391dca 2267 struct dwarf2_fde_table *fde_table2;
b01c8410
PP
2268
2269 cie_table.num_entries = 0;
2270 cie_table.entries = NULL;
2271
2272 fde_table.num_entries = 0;
2273 fde_table.entries = NULL;
cfc14b3a
MK
2274
2275 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2276 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2277 sizeof (struct comp_unit));
2278 unit->abfd = objfile->obfd;
2279 unit->objfile = objfile;
2280 unit->dbase = 0;
2281 unit->tbase = 0;
cfc14b3a 2282
d40102a1 2283 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2284 {
d40102a1
JB
2285 /* Do not read .eh_frame from separate file as they must be also
2286 present in the main file. */
2287 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2288 &unit->dwarf_frame_section,
2289 &unit->dwarf_frame_buffer,
2290 &unit->dwarf_frame_size);
2291 if (unit->dwarf_frame_size)
b01c8410 2292 {
d40102a1
JB
2293 asection *got, *txt;
2294
2295 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2296 that is used for the i386/amd64 target, which currently is
2297 the only target in GCC that supports/uses the
2298 DW_EH_PE_datarel encoding. */
2299 got = bfd_get_section_by_name (unit->abfd, ".got");
2300 if (got)
2301 unit->dbase = got->vma;
2302
2303 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2304 so far. */
2305 txt = bfd_get_section_by_name (unit->abfd, ".text");
2306 if (txt)
2307 unit->tbase = txt->vma;
2308
492d29ea 2309 TRY
8bd90839
FM
2310 {
2311 frame_ptr = unit->dwarf_frame_buffer;
2312 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2313 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2314 &cie_table, &fde_table,
2315 EH_CIE_OR_FDE_TYPE_ID);
2316 }
2317
492d29ea 2318 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2319 {
2320 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2321 objfile_name (objfile), e.message);
8bd90839
FM
2322
2323 if (fde_table.num_entries != 0)
2324 {
2325 xfree (fde_table.entries);
2326 fde_table.entries = NULL;
2327 fde_table.num_entries = 0;
2328 }
2329 /* The cie_table is discarded by the next if. */
2330 }
492d29ea 2331 END_CATCH
d40102a1
JB
2332
2333 if (cie_table.num_entries != 0)
2334 {
2335 /* Reinit cie_table: debug_frame has different CIEs. */
2336 xfree (cie_table.entries);
2337 cie_table.num_entries = 0;
2338 cie_table.entries = NULL;
2339 }
b01c8410 2340 }
cfc14b3a
MK
2341 }
2342
3017a003 2343 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2344 &unit->dwarf_frame_section,
2345 &unit->dwarf_frame_buffer,
2346 &unit->dwarf_frame_size);
2347 if (unit->dwarf_frame_size)
cfc14b3a 2348 {
8bd90839
FM
2349 int num_old_fde_entries = fde_table.num_entries;
2350
492d29ea 2351 TRY
8bd90839
FM
2352 {
2353 frame_ptr = unit->dwarf_frame_buffer;
2354 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2355 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2356 &cie_table, &fde_table,
2357 EH_CIE_OR_FDE_TYPE_ID);
2358 }
492d29ea 2359 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2360 {
2361 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2362 objfile_name (objfile), e.message);
8bd90839
FM
2363
2364 if (fde_table.num_entries != 0)
2365 {
2366 fde_table.num_entries = num_old_fde_entries;
2367 if (num_old_fde_entries == 0)
2368 {
2369 xfree (fde_table.entries);
2370 fde_table.entries = NULL;
2371 }
2372 else
2373 {
224c3ddb
SM
2374 fde_table.entries
2375 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2376 fde_table.num_entries);
8bd90839
FM
2377 }
2378 }
2379 fde_table.num_entries = num_old_fde_entries;
2380 /* The cie_table is discarded by the next if. */
2381 }
492d29ea 2382 END_CATCH
b01c8410
PP
2383 }
2384
2385 /* Discard the cie_table, it is no longer needed. */
2386 if (cie_table.num_entries != 0)
2387 {
2388 xfree (cie_table.entries);
2389 cie_table.entries = NULL; /* Paranoia. */
2390 cie_table.num_entries = 0; /* Paranoia. */
2391 }
2392
be391dca 2393 /* Copy fde_table to obstack: it is needed at runtime. */
8d749320 2394 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
be391dca
TT
2395
2396 if (fde_table.num_entries == 0)
2397 {
2398 fde_table2->entries = NULL;
2399 fde_table2->num_entries = 0;
2400 }
2401 else
b01c8410 2402 {
875cdfbb
PA
2403 struct dwarf2_fde *fde_prev = NULL;
2404 struct dwarf2_fde *first_non_zero_fde = NULL;
2405 int i;
b01c8410
PP
2406
2407 /* Prepare FDE table for lookups. */
2408 qsort (fde_table.entries, fde_table.num_entries,
2409 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2410
875cdfbb
PA
2411 /* Check for leftovers from --gc-sections. The GNU linker sets
2412 the relevant symbols to zero, but doesn't zero the FDE *end*
2413 ranges because there's no relocation there. It's (offset,
2414 length), not (start, end). On targets where address zero is
2415 just another valid address this can be a problem, since the
2416 FDEs appear to be non-empty in the output --- we could pick
2417 out the wrong FDE. To work around this, when overlaps are
2418 detected, we prefer FDEs that do not start at zero.
2419
2420 Start by finding the first FDE with non-zero start. Below
2421 we'll discard all FDEs that start at zero and overlap this
2422 one. */
2423 for (i = 0; i < fde_table.num_entries; i++)
2424 {
2425 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2426
875cdfbb
PA
2427 if (fde->initial_location != 0)
2428 {
2429 first_non_zero_fde = fde;
2430 break;
2431 }
2432 }
2433
2434 /* Since we'll be doing bsearch, squeeze out identical (except
2435 for eh_frame_p) fde entries so bsearch result is predictable.
2436 Also discard leftovers from --gc-sections. */
be391dca 2437 fde_table2->num_entries = 0;
875cdfbb
PA
2438 for (i = 0; i < fde_table.num_entries; i++)
2439 {
2440 struct dwarf2_fde *fde = fde_table.entries[i];
2441
2442 if (fde->initial_location == 0
2443 && first_non_zero_fde != NULL
2444 && (first_non_zero_fde->initial_location
2445 < fde->initial_location + fde->address_range))
2446 continue;
2447
2448 if (fde_prev != NULL
2449 && fde_prev->initial_location == fde->initial_location)
2450 continue;
2451
2452 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2453 sizeof (fde_table.entries[0]));
2454 ++fde_table2->num_entries;
2455 fde_prev = fde;
2456 }
224c3ddb
SM
2457 fde_table2->entries
2458 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2459
2460 /* Discard the original fde_table. */
2461 xfree (fde_table.entries);
cfc14b3a 2462 }
be391dca
TT
2463
2464 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2465}
0d0e1a63
MK
2466
2467/* Provide a prototype to silence -Wmissing-prototypes. */
2468void _initialize_dwarf2_frame (void);
2469
2470void
2471_initialize_dwarf2_frame (void)
2472{
030f20e1 2473 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2474 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2475}
This page took 1.232126 seconds and 4 git commands to generate.