* config/tc-xtensa.c (use_longcalls): Delete.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
8d5a9abc 3 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24#include "defs.h"
25#include "dwarf2expr.h"
26#include "elf/dwarf2.h"
27#include "frame.h"
28#include "frame-base.h"
29#include "frame-unwind.h"
30#include "gdbcore.h"
31#include "gdbtypes.h"
32#include "symtab.h"
33#include "objfiles.h"
34#include "regcache.h"
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
6896c0c7 39#include "complaints.h"
cfc14b3a
MK
40#include "dwarf2-frame.h"
41
42/* Call Frame Information (CFI). */
43
44/* Common Information Entry (CIE). */
45
46struct dwarf2_cie
47{
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
50 ULONGEST cie_pointer;
51
52 /* Constant that is factored out of all advance location
53 instructions. */
54 ULONGEST code_alignment_factor;
55
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor;
58
59 /* Return address column. */
60 ULONGEST return_address_register;
61
62 /* Instruction sequence to initialize a register set. */
63 unsigned char *initial_instructions;
64 unsigned char *end;
65
66 /* Encoding of addresses. */
67 unsigned char encoding;
68
7131cb6e
RH
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation;
71
cfc14b3a
MK
72 struct dwarf2_cie *next;
73};
74
75/* Frame Description Entry (FDE). */
76
77struct dwarf2_fde
78{
79 /* CIE for this FDE. */
80 struct dwarf2_cie *cie;
81
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location;
84
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range;
87
88 /* Instruction sequence. */
89 unsigned char *instructions;
90 unsigned char *end;
91
92 struct dwarf2_fde *next;
93};
94
95static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96\f
97
98/* Structure describing a frame state. */
99
100struct dwarf2_frame_state
101{
102 /* Each register save state can be described in terms of a CFA slot,
103 another register, or a location expression. */
104 struct dwarf2_frame_state_reg_info
105 {
05cbe71a 106 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
107 int num_regs;
108
109 /* Used to implement DW_CFA_remember_state. */
110 struct dwarf2_frame_state_reg_info *prev;
111 } regs;
112
113 LONGEST cfa_offset;
114 ULONGEST cfa_reg;
115 unsigned char *cfa_exp;
116 enum {
117 CFA_UNSET,
118 CFA_REG_OFFSET,
119 CFA_EXP
120 } cfa_how;
121
122 /* The PC described by the current frame state. */
123 CORE_ADDR pc;
124
125 /* Initial register set from the CIE.
126 Used to implement DW_CFA_restore. */
127 struct dwarf2_frame_state_reg_info initial;
128
129 /* The information we care about from the CIE. */
130 LONGEST data_align;
131 ULONGEST code_align;
132 ULONGEST retaddr_column;
133};
134
135/* Store the length the expression for the CFA in the `cfa_reg' field,
136 which is unused in that case. */
137#define cfa_exp_len cfa_reg
138
139/* Assert that the register set RS is large enough to store NUM_REGS
140 columns. If necessary, enlarge the register set. */
141
142static void
143dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144 int num_regs)
145{
146 size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148 if (num_regs <= rs->num_regs)
149 return;
150
151 rs->reg = (struct dwarf2_frame_state_reg *)
152 xrealloc (rs->reg, num_regs * size);
153
154 /* Initialize newly allocated registers. */
2473a4a9 155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
156 rs->num_regs = num_regs;
157}
158
159/* Copy the register columns in register set RS into newly allocated
160 memory and return a pointer to this newly created copy. */
161
162static struct dwarf2_frame_state_reg *
163dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164{
d10891d4 165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
166 struct dwarf2_frame_state_reg *reg;
167
168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169 memcpy (reg, rs->reg, size);
170
171 return reg;
172}
173
174/* Release the memory allocated to register set RS. */
175
176static void
177dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178{
179 if (rs)
180 {
181 dwarf2_frame_state_free_regs (rs->prev);
182
183 xfree (rs->reg);
184 xfree (rs);
185 }
186}
187
188/* Release the memory allocated to the frame state FS. */
189
190static void
191dwarf2_frame_state_free (void *p)
192{
193 struct dwarf2_frame_state *fs = p;
194
195 dwarf2_frame_state_free_regs (fs->initial.prev);
196 dwarf2_frame_state_free_regs (fs->regs.prev);
197 xfree (fs->initial.reg);
198 xfree (fs->regs.reg);
199 xfree (fs);
200}
201\f
202
203/* Helper functions for execute_stack_op. */
204
205static CORE_ADDR
206read_reg (void *baton, int reg)
207{
208 struct frame_info *next_frame = (struct frame_info *) baton;
05cbe71a 209 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a
MK
210 int regnum;
211 char *buf;
212
213 regnum = DWARF2_REG_TO_REGNUM (reg);
214
05cbe71a 215 buf = (char *) alloca (register_size (gdbarch, regnum));
cfc14b3a
MK
216 frame_unwind_register (next_frame, regnum, buf);
217 return extract_typed_address (buf, builtin_type_void_data_ptr);
218}
219
220static void
221read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
222{
223 read_memory (addr, buf, len);
224}
225
226static void
227no_get_frame_base (void *baton, unsigned char **start, size_t *length)
228{
229 internal_error (__FILE__, __LINE__,
e2e0b3e5 230 _("Support for DW_OP_fbreg is unimplemented"));
cfc14b3a
MK
231}
232
233static CORE_ADDR
234no_get_tls_address (void *baton, CORE_ADDR offset)
235{
236 internal_error (__FILE__, __LINE__,
e2e0b3e5 237 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
cfc14b3a
MK
238}
239
240static CORE_ADDR
241execute_stack_op (unsigned char *exp, ULONGEST len,
242 struct frame_info *next_frame, CORE_ADDR initial)
243{
244 struct dwarf_expr_context *ctx;
245 CORE_ADDR result;
246
247 ctx = new_dwarf_expr_context ();
248 ctx->baton = next_frame;
249 ctx->read_reg = read_reg;
250 ctx->read_mem = read_mem;
251 ctx->get_frame_base = no_get_frame_base;
252 ctx->get_tls_address = no_get_tls_address;
253
254 dwarf_expr_push (ctx, initial);
255 dwarf_expr_eval (ctx, exp, len);
256 result = dwarf_expr_fetch (ctx, 0);
257
258 if (ctx->in_reg)
259 result = read_reg (next_frame, result);
260
261 free_dwarf_expr_context (ctx);
262
263 return result;
264}
265\f
266
267static void
268execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
269 struct frame_info *next_frame,
270 struct dwarf2_frame_state *fs)
271{
272 CORE_ADDR pc = frame_pc_unwind (next_frame);
273 int bytes_read;
274
275 while (insn_ptr < insn_end && fs->pc <= pc)
276 {
277 unsigned char insn = *insn_ptr++;
278 ULONGEST utmp, reg;
279 LONGEST offset;
280
281 if ((insn & 0xc0) == DW_CFA_advance_loc)
282 fs->pc += (insn & 0x3f) * fs->code_align;
283 else if ((insn & 0xc0) == DW_CFA_offset)
284 {
285 reg = insn & 0x3f;
286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287 offset = utmp * fs->data_align;
288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
290 fs->regs.reg[reg].loc.offset = offset;
291 }
292 else if ((insn & 0xc0) == DW_CFA_restore)
293 {
294 gdb_assert (fs->initial.reg);
295 reg = insn & 0x3f;
296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297 fs->regs.reg[reg] = fs->initial.reg[reg];
298 }
299 else
300 {
301 switch (insn)
302 {
303 case DW_CFA_set_loc:
304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305 insn_ptr += bytes_read;
306 break;
307
308 case DW_CFA_advance_loc1:
309 utmp = extract_unsigned_integer (insn_ptr, 1);
310 fs->pc += utmp * fs->code_align;
311 insn_ptr++;
312 break;
313 case DW_CFA_advance_loc2:
314 utmp = extract_unsigned_integer (insn_ptr, 2);
315 fs->pc += utmp * fs->code_align;
316 insn_ptr += 2;
317 break;
318 case DW_CFA_advance_loc4:
319 utmp = extract_unsigned_integer (insn_ptr, 4);
320 fs->pc += utmp * fs->code_align;
321 insn_ptr += 4;
322 break;
323
324 case DW_CFA_offset_extended:
325 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327 offset = utmp * fs->data_align;
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
330 fs->regs.reg[reg].loc.offset = offset;
331 break;
332
333 case DW_CFA_restore_extended:
334 gdb_assert (fs->initial.reg);
335 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337 fs->regs.reg[reg] = fs->initial.reg[reg];
338 break;
339
340 case DW_CFA_undefined:
341 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
344 break;
345
346 case DW_CFA_same_value:
347 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
350 break;
351
352 case DW_CFA_register:
353 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
357 fs->regs.reg[reg].loc.reg = utmp;
358 break;
359
360 case DW_CFA_remember_state:
361 {
362 struct dwarf2_frame_state_reg_info *new_rs;
363
364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365 *new_rs = fs->regs;
366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367 fs->regs.prev = new_rs;
368 }
369 break;
370
371 case DW_CFA_restore_state:
372 {
373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
50ea7769
MK
375 if (old_rs == NULL)
376 {
e2e0b3e5
AC
377 complaint (&symfile_complaints, _("\
378bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs->pc));
50ea7769
MK
379 }
380 else
381 {
382 xfree (fs->regs.reg);
383 fs->regs = *old_rs;
384 xfree (old_rs);
385 }
cfc14b3a
MK
386 }
387 break;
388
389 case DW_CFA_def_cfa:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
392 fs->cfa_offset = utmp;
393 fs->cfa_how = CFA_REG_OFFSET;
394 break;
395
396 case DW_CFA_def_cfa_register:
397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
398 fs->cfa_how = CFA_REG_OFFSET;
399 break;
400
401 case DW_CFA_def_cfa_offset:
402 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
403 /* cfa_how deliberately not set. */
404 break;
405
a8504492
MK
406 case DW_CFA_nop:
407 break;
408
cfc14b3a
MK
409 case DW_CFA_def_cfa_expression:
410 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
411 fs->cfa_exp = insn_ptr;
412 fs->cfa_how = CFA_EXP;
413 insn_ptr += fs->cfa_exp_len;
414 break;
415
416 case DW_CFA_expression:
417 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
418 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
419 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
420 fs->regs.reg[reg].loc.exp = insn_ptr;
421 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 422 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
423 insn_ptr += utmp;
424 break;
425
a8504492
MK
426 case DW_CFA_offset_extended_sf:
427 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
428 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 429 offset *= fs->data_align;
a8504492 430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
432 fs->regs.reg[reg].loc.offset = offset;
433 break;
434
435 case DW_CFA_def_cfa_sf:
436 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
437 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
438 fs->cfa_offset = offset * fs->data_align;
439 fs->cfa_how = CFA_REG_OFFSET;
440 break;
441
442 case DW_CFA_def_cfa_offset_sf:
443 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
444 fs->cfa_offset = offset * fs->data_align;
445 /* cfa_how deliberately not set. */
cfc14b3a
MK
446 break;
447
448 case DW_CFA_GNU_args_size:
449 /* Ignored. */
450 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
451 break;
452
453 default:
e2e0b3e5 454 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
cfc14b3a
MK
455 }
456 }
457 }
458
459 /* Don't allow remember/restore between CIE and FDE programs. */
460 dwarf2_frame_state_free_regs (fs->regs.prev);
461 fs->regs.prev = NULL;
462}
8f22cb90 463\f
cfc14b3a 464
8f22cb90 465/* Architecture-specific operations. */
cfc14b3a 466
8f22cb90
MK
467/* Per-architecture data key. */
468static struct gdbarch_data *dwarf2_frame_data;
469
470struct dwarf2_frame_ops
471{
472 /* Pre-initialize the register state REG for register REGNUM. */
473 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
3ed09a32
DJ
474
475 /* Check whether the frame preceding NEXT_FRAME will be a signal
476 trampoline. */
477 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
cfc14b3a
MK
478};
479
8f22cb90
MK
480/* Default architecture-specific register state initialization
481 function. */
482
483static void
484dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
485 struct dwarf2_frame_state_reg *reg)
486{
487 /* If we have a register that acts as a program counter, mark it as
488 a destination for the return address. If we have a register that
489 serves as the stack pointer, arrange for it to be filled with the
490 call frame address (CFA). The other registers are marked as
491 unspecified.
492
493 We copy the return address to the program counter, since many
494 parts in GDB assume that it is possible to get the return address
495 by unwinding the program counter register. However, on ISA's
496 with a dedicated return address register, the CFI usually only
497 contains information to unwind that return address register.
498
499 The reason we're treating the stack pointer special here is
500 because in many cases GCC doesn't emit CFI for the stack pointer
501 and implicitly assumes that it is equal to the CFA. This makes
502 some sense since the DWARF specification (version 3, draft 8,
503 p. 102) says that:
504
505 "Typically, the CFA is defined to be the value of the stack
506 pointer at the call site in the previous frame (which may be
507 different from its value on entry to the current frame)."
508
509 However, this isn't true for all platforms supported by GCC
510 (e.g. IBM S/390 and zSeries). Those architectures should provide
511 their own architecture-specific initialization function. */
05cbe71a 512
8f22cb90
MK
513 if (regnum == PC_REGNUM)
514 reg->how = DWARF2_FRAME_REG_RA;
515 else if (regnum == SP_REGNUM)
516 reg->how = DWARF2_FRAME_REG_CFA;
517}
05cbe71a 518
8f22cb90 519/* Return a default for the architecture-specific operations. */
05cbe71a 520
8f22cb90 521static void *
030f20e1 522dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
523{
524 struct dwarf2_frame_ops *ops;
525
030f20e1 526 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
527 ops->init_reg = dwarf2_frame_default_init_reg;
528 return ops;
529}
05cbe71a 530
8f22cb90
MK
531/* Set the architecture-specific register state initialization
532 function for GDBARCH to INIT_REG. */
533
534void
535dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
536 void (*init_reg) (struct gdbarch *, int,
537 struct dwarf2_frame_state_reg *))
538{
030f20e1 539 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 540
8f22cb90
MK
541 ops->init_reg = init_reg;
542}
543
544/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
545
546static void
547dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
548 struct dwarf2_frame_state_reg *reg)
549{
030f20e1 550 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 551
8f22cb90 552 ops->init_reg (gdbarch, regnum, reg);
05cbe71a 553}
3ed09a32
DJ
554
555/* Set the architecture-specific signal trampoline recognition
556 function for GDBARCH to SIGNAL_FRAME_P. */
557
558void
559dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
560 int (*signal_frame_p) (struct gdbarch *,
561 struct frame_info *))
562{
563 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
564
565 ops->signal_frame_p = signal_frame_p;
566}
567
568/* Query the architecture-specific signal frame recognizer for
569 NEXT_FRAME. */
570
571static int
572dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
573 struct frame_info *next_frame)
574{
575 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
576
577 if (ops->signal_frame_p == NULL)
578 return 0;
579 return ops->signal_frame_p (gdbarch, next_frame);
580}
8f22cb90
MK
581\f
582
583struct dwarf2_frame_cache
584{
585 /* DWARF Call Frame Address. */
586 CORE_ADDR cfa;
587
588 /* Saved registers, indexed by GDB register number, not by DWARF
589 register number. */
590 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
591
592 /* Return address register. */
593 struct dwarf2_frame_state_reg retaddr_reg;
8f22cb90 594};
05cbe71a 595
b9362cc7 596static struct dwarf2_frame_cache *
cfc14b3a
MK
597dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
598{
599 struct cleanup *old_chain;
05cbe71a 600 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3e2c4033 601 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
cfc14b3a
MK
602 struct dwarf2_frame_cache *cache;
603 struct dwarf2_frame_state *fs;
604 struct dwarf2_fde *fde;
cfc14b3a
MK
605
606 if (*this_cache)
607 return *this_cache;
608
609 /* Allocate a new cache. */
610 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
611 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
612
613 /* Allocate and initialize the frame state. */
614 fs = XMALLOC (struct dwarf2_frame_state);
615 memset (fs, 0, sizeof (struct dwarf2_frame_state));
616 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
617
618 /* Unwind the PC.
619
620 Note that if NEXT_FRAME is never supposed to return (i.e. a call
621 to abort), the compiler might optimize away the instruction at
622 NEXT_FRAME's return address. As a result the return address will
623 point at some random instruction, and the CFI for that
e4e9607c 624 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
625 this problem by substracting 1 from the return address to get an
626 address in the middle of a presumed call instruction (or the
627 instruction in the associated delay slot). This should only be
628 done for "normal" frames and not for resume-type frames (signal
e4e9607c
MK
629 handlers, sentinel frames, dummy frames). The function
630 frame_unwind_address_in_block does just this. It's not clear how
631 reliable the method is though; there is the potential for the
632 register state pre-call being different to that on return. */
1ce5d6dd 633 fs->pc = frame_unwind_address_in_block (next_frame);
cfc14b3a
MK
634
635 /* Find the correct FDE. */
636 fde = dwarf2_frame_find_fde (&fs->pc);
637 gdb_assert (fde != NULL);
638
639 /* Extract any interesting information from the CIE. */
640 fs->data_align = fde->cie->data_alignment_factor;
641 fs->code_align = fde->cie->code_alignment_factor;
642 fs->retaddr_column = fde->cie->return_address_register;
643
644 /* First decode all the insns in the CIE. */
645 execute_cfa_program (fde->cie->initial_instructions,
646 fde->cie->end, next_frame, fs);
647
648 /* Save the initialized register set. */
649 fs->initial = fs->regs;
650 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
651
652 /* Then decode the insns in the FDE up to our target PC. */
653 execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
654
655 /* Caclulate the CFA. */
656 switch (fs->cfa_how)
657 {
658 case CFA_REG_OFFSET:
659 cache->cfa = read_reg (next_frame, fs->cfa_reg);
660 cache->cfa += fs->cfa_offset;
661 break;
662
663 case CFA_EXP:
664 cache->cfa =
665 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
666 break;
667
668 default:
e2e0b3e5 669 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
cfc14b3a
MK
670 }
671
05cbe71a 672 /* Initialize the register state. */
3e2c4033
AC
673 {
674 int regnum;
e4e9607c 675
3e2c4033 676 for (regnum = 0; regnum < num_regs; regnum++)
05cbe71a 677 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
3e2c4033
AC
678 }
679
680 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
681 location information in the cache. Note that we don't skip the
682 return address column; it's perfectly all right for it to
683 correspond to a real register. If it doesn't correspond to a
684 real register, or if we shouldn't treat it as such,
685 DWARF2_REG_TO_REGNUM should be defined to return a number outside
686 the range [0, NUM_REGS). */
3e2c4033
AC
687 {
688 int column; /* CFI speak for "register number". */
e4e9607c 689
3e2c4033
AC
690 for (column = 0; column < fs->regs.num_regs; column++)
691 {
3e2c4033 692 /* Use the GDB register number as the destination index. */
79c4cb80 693 int regnum = DWARF2_REG_TO_REGNUM (column);
3e2c4033
AC
694
695 /* If there's no corresponding GDB register, ignore it. */
696 if (regnum < 0 || regnum >= num_regs)
697 continue;
698
699 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
700 of all debug info registers. If it doesn't, complain (but
701 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
702 unspecified register implies "same value" when CFI (draft
703 7) specifies nothing at all. Such a register could equally
704 be interpreted as "undefined". Also note that this check
e4e9607c
MK
705 isn't sufficient; it only checks that all registers in the
706 range [0 .. max column] are specified, and won't detect
3e2c4033 707 problems when a debug info register falls outside of the
e4e9607c 708 table. We need a way of iterating through all the valid
3e2c4033 709 DWARF2 register numbers. */
05cbe71a 710 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
711 {
712 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5
AC
713 complaint (&symfile_complaints, _("\
714incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
f059bf6f
AC
715 gdbarch_register_name (gdbarch, regnum),
716 paddr_nz (fs->pc));
717 }
35889917
MK
718 else
719 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
720 }
721 }
cfc14b3a 722
8d5a9abc
MK
723 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
724 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
725 {
726 int regnum;
727
728 for (regnum = 0; regnum < num_regs; regnum++)
729 {
8d5a9abc
MK
730 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
731 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 732 {
05cbe71a
MK
733 struct dwarf2_frame_state_reg *retaddr_reg =
734 &fs->regs.reg[fs->retaddr_column];
735
d4f10bf2
MK
736 /* It seems rather bizarre to specify an "empty" column as
737 the return adress column. However, this is exactly
738 what GCC does on some targets. It turns out that GCC
739 assumes that the return address can be found in the
740 register corresponding to the return address column.
8d5a9abc
MK
741 Incidentally, that's how we should treat a return
742 address column specifying "same value" too. */
d4f10bf2 743 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
744 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
745 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
746 {
747 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
748 cache->reg[regnum] = *retaddr_reg;
749 else
750 cache->retaddr_reg = *retaddr_reg;
751 }
35889917
MK
752 else
753 {
8d5a9abc
MK
754 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
755 {
756 cache->reg[regnum].loc.reg = fs->retaddr_column;
757 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
758 }
759 else
760 {
761 cache->retaddr_reg.loc.reg = fs->retaddr_column;
762 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
763 }
35889917
MK
764 }
765 }
766 }
767 }
cfc14b3a
MK
768
769 do_cleanups (old_chain);
770
771 *this_cache = cache;
772 return cache;
773}
774
775static void
776dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
777 struct frame_id *this_id)
778{
779 struct dwarf2_frame_cache *cache =
780 dwarf2_frame_cache (next_frame, this_cache);
781
782 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
783}
784
785static void
786dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
787 int regnum, int *optimizedp,
788 enum lval_type *lvalp, CORE_ADDR *addrp,
789 int *realnump, void *valuep)
790{
05cbe71a 791 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a
MK
792 struct dwarf2_frame_cache *cache =
793 dwarf2_frame_cache (next_frame, this_cache);
794
795 switch (cache->reg[regnum].how)
796 {
05cbe71a 797 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 798 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 799 mark it as optimized away; the value isn't available. */
cfc14b3a
MK
800 *optimizedp = 1;
801 *lvalp = not_lval;
802 *addrp = 0;
803 *realnump = -1;
35889917 804 if (valuep)
cfc14b3a
MK
805 {
806 /* In some cases, for example %eflags on the i386, we have
807 to provide a sane value, even though this register wasn't
808 saved. Assume we can get it from NEXT_FRAME. */
809 frame_unwind_register (next_frame, regnum, valuep);
810 }
811 break;
812
05cbe71a 813 case DWARF2_FRAME_REG_SAVED_OFFSET:
cfc14b3a
MK
814 *optimizedp = 0;
815 *lvalp = lval_memory;
816 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
817 *realnump = -1;
818 if (valuep)
819 {
820 /* Read the value in from memory. */
05cbe71a 821 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
cfc14b3a
MK
822 }
823 break;
824
05cbe71a 825 case DWARF2_FRAME_REG_SAVED_REG:
00b25ff3
AC
826 *optimizedp = 0;
827 *lvalp = lval_register;
828 *addrp = 0;
829 *realnump = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
830 if (valuep)
831 frame_unwind_register (next_frame, (*realnump), valuep);
cfc14b3a
MK
832 break;
833
05cbe71a 834 case DWARF2_FRAME_REG_SAVED_EXP:
cfc14b3a
MK
835 *optimizedp = 0;
836 *lvalp = lval_memory;
837 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
838 cache->reg[regnum].exp_len,
839 next_frame, cache->cfa);
840 *realnump = -1;
841 if (valuep)
842 {
843 /* Read the value in from memory. */
05cbe71a 844 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
cfc14b3a
MK
845 }
846 break;
847
05cbe71a 848 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
849 /* GCC, in its infinite wisdom decided to not provide unwind
850 information for registers that are "same value". Since
851 DWARF2 (3 draft 7) doesn't define such behavior, said
852 registers are actually undefined (which is different to CFI
853 "undefined"). Code above issues a complaint about this.
854 Here just fudge the books, assume GCC, and that the value is
855 more inner on the stack. */
00b25ff3
AC
856 *optimizedp = 0;
857 *lvalp = lval_register;
858 *addrp = 0;
859 *realnump = regnum;
860 if (valuep)
861 frame_unwind_register (next_frame, (*realnump), valuep);
3e2c4033
AC
862 break;
863
05cbe71a 864 case DWARF2_FRAME_REG_SAME_VALUE:
00b25ff3
AC
865 *optimizedp = 0;
866 *lvalp = lval_register;
867 *addrp = 0;
868 *realnump = regnum;
869 if (valuep)
870 frame_unwind_register (next_frame, (*realnump), valuep);
cfc14b3a
MK
871 break;
872
05cbe71a 873 case DWARF2_FRAME_REG_CFA:
35889917
MK
874 *optimizedp = 0;
875 *lvalp = not_lval;
876 *addrp = 0;
877 *realnump = -1;
878 if (valuep)
879 {
880 /* Store the value. */
881 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
882 }
883 break;
884
8d5a9abc
MK
885 case DWARF2_FRAME_REG_RA_OFFSET:
886 *optimizedp = 0;
887 *lvalp = not_lval;
888 *addrp = 0;
889 *realnump = -1;
890 if (valuep)
891 {
892 CORE_ADDR pc = cache->reg[regnum].loc.offset;
893
894 regnum = DWARF2_REG_TO_REGNUM (cache->retaddr_reg.loc.reg);
895 pc += frame_unwind_register_unsigned (next_frame, regnum);
896 store_typed_address (valuep, builtin_type_void_func_ptr, pc);
897 }
898 break;
899
cfc14b3a 900 default:
e2e0b3e5 901 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
902 }
903}
904
905static const struct frame_unwind dwarf2_frame_unwind =
906{
907 NORMAL_FRAME,
908 dwarf2_frame_this_id,
909 dwarf2_frame_prev_register
910};
911
3ed09a32
DJ
912static const struct frame_unwind dwarf2_signal_frame_unwind =
913{
914 SIGTRAMP_FRAME,
915 dwarf2_frame_this_id,
916 dwarf2_frame_prev_register
917};
918
cfc14b3a 919const struct frame_unwind *
336d1bba 920dwarf2_frame_sniffer (struct frame_info *next_frame)
cfc14b3a 921{
1ce5d6dd
AC
922 /* Grab an address that is guarenteed to reside somewhere within the
923 function. frame_pc_unwind(), for a no-return next function, can
924 end up returning something past the end of this function's body. */
925 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
3ed09a32
DJ
926 if (!dwarf2_frame_find_fde (&block_addr))
927 return NULL;
928
929 /* On some targets, signal trampolines may have unwind information.
930 We need to recognize them so that we set the frame type
931 correctly. */
932
933 if (dwarf2_frame_signal_frame_p (get_frame_arch (next_frame),
934 next_frame))
935 return &dwarf2_signal_frame_unwind;
cfc14b3a 936
3ed09a32 937 return &dwarf2_frame_unwind;
cfc14b3a
MK
938}
939\f
940
941/* There is no explicitly defined relationship between the CFA and the
942 location of frame's local variables and arguments/parameters.
943 Therefore, frame base methods on this page should probably only be
944 used as a last resort, just to avoid printing total garbage as a
945 response to the "info frame" command. */
946
947static CORE_ADDR
948dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
949{
950 struct dwarf2_frame_cache *cache =
951 dwarf2_frame_cache (next_frame, this_cache);
952
953 return cache->cfa;
954}
955
956static const struct frame_base dwarf2_frame_base =
957{
958 &dwarf2_frame_unwind,
959 dwarf2_frame_base_address,
960 dwarf2_frame_base_address,
961 dwarf2_frame_base_address
962};
963
964const struct frame_base *
336d1bba 965dwarf2_frame_base_sniffer (struct frame_info *next_frame)
cfc14b3a 966{
336d1bba 967 CORE_ADDR pc = frame_pc_unwind (next_frame);
cfc14b3a
MK
968 if (dwarf2_frame_find_fde (&pc))
969 return &dwarf2_frame_base;
970
971 return NULL;
972}
973\f
974/* A minimal decoding of DWARF2 compilation units. We only decode
975 what's needed to get to the call frame information. */
976
977struct comp_unit
978{
979 /* Keep the bfd convenient. */
980 bfd *abfd;
981
982 struct objfile *objfile;
983
984 /* Linked list of CIEs for this object. */
985 struct dwarf2_cie *cie;
986
cfc14b3a
MK
987 /* Pointer to the .debug_frame section loaded into memory. */
988 char *dwarf_frame_buffer;
989
990 /* Length of the loaded .debug_frame section. */
991 unsigned long dwarf_frame_size;
992
993 /* Pointer to the .debug_frame section. */
994 asection *dwarf_frame_section;
0912c7f2
MK
995
996 /* Base for DW_EH_PE_datarel encodings. */
997 bfd_vma dbase;
0fd85043
CV
998
999 /* Base for DW_EH_PE_textrel encodings. */
1000 bfd_vma tbase;
cfc14b3a
MK
1001};
1002
8f22cb90 1003const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1004
cfc14b3a
MK
1005static unsigned int
1006read_1_byte (bfd *bfd, char *buf)
1007{
1008 return bfd_get_8 (abfd, (bfd_byte *) buf);
1009}
1010
1011static unsigned int
1012read_4_bytes (bfd *abfd, char *buf)
1013{
1014 return bfd_get_32 (abfd, (bfd_byte *) buf);
1015}
1016
1017static ULONGEST
1018read_8_bytes (bfd *abfd, char *buf)
1019{
1020 return bfd_get_64 (abfd, (bfd_byte *) buf);
1021}
1022
1023static ULONGEST
1024read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
1025{
1026 ULONGEST result;
1027 unsigned int num_read;
1028 int shift;
1029 unsigned char byte;
1030
1031 result = 0;
1032 shift = 0;
1033 num_read = 0;
1034
1035 do
1036 {
1037 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1038 buf++;
1039 num_read++;
1040 result |= ((byte & 0x7f) << shift);
1041 shift += 7;
1042 }
1043 while (byte & 0x80);
1044
1045 *bytes_read_ptr = num_read;
1046
1047 return result;
1048}
1049
1050static LONGEST
1051read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
1052{
1053 LONGEST result;
1054 int shift;
1055 unsigned int num_read;
1056 unsigned char byte;
1057
1058 result = 0;
1059 shift = 0;
1060 num_read = 0;
1061
1062 do
1063 {
1064 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1065 buf++;
1066 num_read++;
1067 result |= ((byte & 0x7f) << shift);
1068 shift += 7;
1069 }
1070 while (byte & 0x80);
1071
1072 if ((shift < 32) && (byte & 0x40))
1073 result |= -(1 << shift);
1074
1075 *bytes_read_ptr = num_read;
1076
1077 return result;
1078}
1079
1080static ULONGEST
1081read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
1082{
1083 LONGEST result;
1084
1085 result = bfd_get_32 (abfd, (bfd_byte *) buf);
1086 if (result == 0xffffffff)
1087 {
1088 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
1089 *bytes_read_ptr = 12;
1090 }
1091 else
1092 *bytes_read_ptr = 4;
1093
1094 return result;
1095}
1096\f
1097
1098/* Pointer encoding helper functions. */
1099
1100/* GCC supports exception handling based on DWARF2 CFI. However, for
1101 technical reasons, it encodes addresses in its FDE's in a different
1102 way. Several "pointer encodings" are supported. The encoding
1103 that's used for a particular FDE is determined by the 'R'
1104 augmentation in the associated CIE. The argument of this
1105 augmentation is a single byte.
1106
1107 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1108 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1109 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1110 address should be interpreted (absolute, relative to the current
1111 position in the FDE, ...). Bit 7, indicates that the address
1112 should be dereferenced. */
1113
1114static unsigned char
1115encoding_for_size (unsigned int size)
1116{
1117 switch (size)
1118 {
1119 case 2:
1120 return DW_EH_PE_udata2;
1121 case 4:
1122 return DW_EH_PE_udata4;
1123 case 8:
1124 return DW_EH_PE_udata8;
1125 default:
e2e0b3e5 1126 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1127 }
1128}
1129
1130static unsigned int
1131size_of_encoded_value (unsigned char encoding)
1132{
1133 if (encoding == DW_EH_PE_omit)
1134 return 0;
1135
1136 switch (encoding & 0x07)
1137 {
1138 case DW_EH_PE_absptr:
1139 return TYPE_LENGTH (builtin_type_void_data_ptr);
1140 case DW_EH_PE_udata2:
1141 return 2;
1142 case DW_EH_PE_udata4:
1143 return 4;
1144 case DW_EH_PE_udata8:
1145 return 8;
1146 default:
e2e0b3e5 1147 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1148 }
1149}
1150
1151static CORE_ADDR
1152read_encoded_value (struct comp_unit *unit, unsigned char encoding,
a81b10ae 1153 unsigned char *buf, unsigned int *bytes_read_ptr)
cfc14b3a 1154{
68f6cf99
MK
1155 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1156 ptrdiff_t offset;
cfc14b3a
MK
1157 CORE_ADDR base;
1158
1159 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1160 FDE's. */
1161 if (encoding & DW_EH_PE_indirect)
1162 internal_error (__FILE__, __LINE__,
e2e0b3e5 1163 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1164
68f6cf99
MK
1165 *bytes_read_ptr = 0;
1166
cfc14b3a
MK
1167 switch (encoding & 0x70)
1168 {
1169 case DW_EH_PE_absptr:
1170 base = 0;
1171 break;
1172 case DW_EH_PE_pcrel:
1173 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
a81b10ae 1174 base += ((char *) buf - unit->dwarf_frame_buffer);
cfc14b3a 1175 break;
0912c7f2
MK
1176 case DW_EH_PE_datarel:
1177 base = unit->dbase;
1178 break;
0fd85043
CV
1179 case DW_EH_PE_textrel:
1180 base = unit->tbase;
1181 break;
03ac2a74
MK
1182 case DW_EH_PE_funcrel:
1183 /* FIXME: kettenis/20040501: For now just pretend
1184 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1185 reading the initial location of an FDE it should be treated
1186 as such, and currently that's the only place where this code
1187 is used. */
1188 base = 0;
1189 break;
68f6cf99
MK
1190 case DW_EH_PE_aligned:
1191 base = 0;
a81b10ae 1192 offset = (char *) buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1193 if ((offset % ptr_len) != 0)
1194 {
1195 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1196 buf += *bytes_read_ptr;
1197 }
1198 break;
cfc14b3a 1199 default:
e2e0b3e5 1200 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1201 }
1202
b04de778 1203 if ((encoding & 0x07) == 0x00)
68f6cf99 1204 encoding |= encoding_for_size (ptr_len);
cfc14b3a
MK
1205
1206 switch (encoding & 0x0f)
1207 {
a81b10ae
MK
1208 case DW_EH_PE_uleb128:
1209 {
1210 ULONGEST value;
1211 unsigned char *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1212 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1213 return base + value;
1214 }
cfc14b3a 1215 case DW_EH_PE_udata2:
68f6cf99 1216 *bytes_read_ptr += 2;
cfc14b3a
MK
1217 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1218 case DW_EH_PE_udata4:
68f6cf99 1219 *bytes_read_ptr += 4;
cfc14b3a
MK
1220 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1221 case DW_EH_PE_udata8:
68f6cf99 1222 *bytes_read_ptr += 8;
cfc14b3a 1223 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1224 case DW_EH_PE_sleb128:
1225 {
1226 LONGEST value;
1227 char *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1228 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1229 return base + value;
1230 }
cfc14b3a 1231 case DW_EH_PE_sdata2:
68f6cf99 1232 *bytes_read_ptr += 2;
cfc14b3a
MK
1233 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1234 case DW_EH_PE_sdata4:
68f6cf99 1235 *bytes_read_ptr += 4;
cfc14b3a
MK
1236 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1237 case DW_EH_PE_sdata8:
68f6cf99 1238 *bytes_read_ptr += 8;
cfc14b3a
MK
1239 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1240 default:
e2e0b3e5 1241 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1242 }
1243}
1244\f
1245
1246/* GCC uses a single CIE for all FDEs in a .debug_frame section.
1247 That's why we use a simple linked list here. */
1248
1249static struct dwarf2_cie *
1250find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1251{
1252 struct dwarf2_cie *cie = unit->cie;
1253
1254 while (cie)
1255 {
1256 if (cie->cie_pointer == cie_pointer)
1257 return cie;
1258
1259 cie = cie->next;
1260 }
1261
1262 return NULL;
1263}
1264
1265static void
1266add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1267{
1268 cie->next = unit->cie;
1269 unit->cie = cie;
1270}
1271
1272/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1273 inital location associated with it into *PC. */
1274
1275static struct dwarf2_fde *
1276dwarf2_frame_find_fde (CORE_ADDR *pc)
1277{
1278 struct objfile *objfile;
1279
1280 ALL_OBJFILES (objfile)
1281 {
1282 struct dwarf2_fde *fde;
1283 CORE_ADDR offset;
1284
8f22cb90 1285 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
4ae9ee8e
DJ
1286 if (fde == NULL)
1287 continue;
1288
1289 gdb_assert (objfile->section_offsets);
1290 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1291
cfc14b3a
MK
1292 while (fde)
1293 {
1294 if (*pc >= fde->initial_location + offset
1295 && *pc < fde->initial_location + offset + fde->address_range)
1296 {
1297 *pc = fde->initial_location + offset;
1298 return fde;
1299 }
1300
1301 fde = fde->next;
1302 }
1303 }
1304
1305 return NULL;
1306}
1307
1308static void
1309add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1310{
8f22cb90
MK
1311 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1312 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
cfc14b3a
MK
1313}
1314
1315#ifdef CC_HAS_LONG_LONG
1316#define DW64_CIE_ID 0xffffffffffffffffULL
1317#else
1318#define DW64_CIE_ID ~0
1319#endif
1320
6896c0c7
RH
1321static char *decode_frame_entry (struct comp_unit *unit, char *start,
1322 int eh_frame_p);
cfc14b3a 1323
6896c0c7
RH
1324/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1325 the next byte to be processed. */
cfc14b3a 1326static char *
6896c0c7 1327decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
cfc14b3a 1328{
6896c0c7 1329 char *buf;
cfc14b3a
MK
1330 LONGEST length;
1331 unsigned int bytes_read;
6896c0c7
RH
1332 int dwarf64_p;
1333 ULONGEST cie_id;
cfc14b3a 1334 ULONGEST cie_pointer;
cfc14b3a
MK
1335 char *end;
1336
6896c0c7 1337 buf = start;
cfc14b3a
MK
1338 length = read_initial_length (unit->abfd, buf, &bytes_read);
1339 buf += bytes_read;
1340 end = buf + length;
1341
6896c0c7
RH
1342 /* Are we still within the section? */
1343 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1344 return NULL;
1345
cfc14b3a
MK
1346 if (length == 0)
1347 return end;
1348
6896c0c7
RH
1349 /* Distinguish between 32 and 64-bit encoded frame info. */
1350 dwarf64_p = (bytes_read == 12);
cfc14b3a 1351
6896c0c7 1352 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1353 if (eh_frame_p)
1354 cie_id = 0;
1355 else if (dwarf64_p)
1356 cie_id = DW64_CIE_ID;
6896c0c7
RH
1357 else
1358 cie_id = DW_CIE_ID;
cfc14b3a
MK
1359
1360 if (dwarf64_p)
1361 {
1362 cie_pointer = read_8_bytes (unit->abfd, buf);
1363 buf += 8;
1364 }
1365 else
1366 {
1367 cie_pointer = read_4_bytes (unit->abfd, buf);
1368 buf += 4;
1369 }
1370
1371 if (cie_pointer == cie_id)
1372 {
1373 /* This is a CIE. */
1374 struct dwarf2_cie *cie;
1375 char *augmentation;
28ba0b33 1376 unsigned int cie_version;
cfc14b3a
MK
1377
1378 /* Record the offset into the .debug_frame section of this CIE. */
1379 cie_pointer = start - unit->dwarf_frame_buffer;
1380
1381 /* Check whether we've already read it. */
1382 if (find_cie (unit, cie_pointer))
1383 return end;
1384
1385 cie = (struct dwarf2_cie *)
8b92e4d5 1386 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1387 sizeof (struct dwarf2_cie));
1388 cie->initial_instructions = NULL;
1389 cie->cie_pointer = cie_pointer;
1390
1391 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1392 depends on the target address size. */
1393 cie->encoding = DW_EH_PE_absptr;
cfc14b3a
MK
1394
1395 /* Check version number. */
28ba0b33
PB
1396 cie_version = read_1_byte (unit->abfd, buf);
1397 if (cie_version != 1 && cie_version != 3)
6896c0c7 1398 return NULL;
cfc14b3a
MK
1399 buf += 1;
1400
1401 /* Interpret the interesting bits of the augmentation. */
1402 augmentation = buf;
1403 buf = augmentation + strlen (augmentation) + 1;
1404
1405 /* The GCC 2.x "eh" augmentation has a pointer immediately
1406 following the augmentation string, so it must be handled
1407 first. */
1408 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1409 {
1410 /* Skip. */
1411 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1412 augmentation += 2;
1413 }
1414
1415 cie->code_alignment_factor =
1416 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1417 buf += bytes_read;
1418
1419 cie->data_alignment_factor =
1420 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1421 buf += bytes_read;
1422
28ba0b33
PB
1423 if (cie_version == 1)
1424 {
1425 cie->return_address_register = read_1_byte (unit->abfd, buf);
1426 bytes_read = 1;
1427 }
1428 else
1429 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1430 &bytes_read);
1431 buf += bytes_read;
cfc14b3a 1432
7131cb6e
RH
1433 cie->saw_z_augmentation = (*augmentation == 'z');
1434 if (cie->saw_z_augmentation)
cfc14b3a
MK
1435 {
1436 ULONGEST length;
1437
1438 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1439 buf += bytes_read;
6896c0c7
RH
1440 if (buf > end)
1441 return NULL;
cfc14b3a
MK
1442 cie->initial_instructions = buf + length;
1443 augmentation++;
1444 }
1445
1446 while (*augmentation)
1447 {
1448 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1449 if (*augmentation == 'L')
1450 {
1451 /* Skip. */
1452 buf++;
1453 augmentation++;
1454 }
1455
1456 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1457 else if (*augmentation == 'R')
1458 {
1459 cie->encoding = *buf++;
1460 augmentation++;
1461 }
1462
1463 /* "P" indicates a personality routine in the CIE augmentation. */
1464 else if (*augmentation == 'P')
1465 {
1234d960
MK
1466 /* Skip. Avoid indirection since we throw away the result. */
1467 unsigned char encoding = (*buf++) & ~DW_EH_PE_indirect;
f724bf08
MK
1468 read_encoded_value (unit, encoding, buf, &bytes_read);
1469 buf += bytes_read;
cfc14b3a
MK
1470 augmentation++;
1471 }
1472
1473 /* Otherwise we have an unknown augmentation.
1474 Bail out unless we saw a 'z' prefix. */
1475 else
1476 {
1477 if (cie->initial_instructions == NULL)
1478 return end;
1479
1480 /* Skip unknown augmentations. */
1481 buf = cie->initial_instructions;
1482 break;
1483 }
1484 }
1485
1486 cie->initial_instructions = buf;
1487 cie->end = end;
1488
1489 add_cie (unit, cie);
1490 }
1491 else
1492 {
1493 /* This is a FDE. */
1494 struct dwarf2_fde *fde;
1495
6896c0c7
RH
1496 /* In an .eh_frame section, the CIE pointer is the delta between the
1497 address within the FDE where the CIE pointer is stored and the
1498 address of the CIE. Convert it to an offset into the .eh_frame
1499 section. */
cfc14b3a
MK
1500 if (eh_frame_p)
1501 {
cfc14b3a
MK
1502 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1503 cie_pointer -= (dwarf64_p ? 8 : 4);
1504 }
1505
6896c0c7
RH
1506 /* In either case, validate the result is still within the section. */
1507 if (cie_pointer >= unit->dwarf_frame_size)
1508 return NULL;
1509
cfc14b3a 1510 fde = (struct dwarf2_fde *)
8b92e4d5 1511 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1512 sizeof (struct dwarf2_fde));
1513 fde->cie = find_cie (unit, cie_pointer);
1514 if (fde->cie == NULL)
1515 {
1516 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1517 eh_frame_p);
1518 fde->cie = find_cie (unit, cie_pointer);
1519 }
1520
1521 gdb_assert (fde->cie != NULL);
1522
1523 fde->initial_location =
1524 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1525 buf += bytes_read;
1526
1527 fde->address_range =
1528 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1529 buf += bytes_read;
1530
7131cb6e
RH
1531 /* A 'z' augmentation in the CIE implies the presence of an
1532 augmentation field in the FDE as well. The only thing known
1533 to be in here at present is the LSDA entry for EH. So we
1534 can skip the whole thing. */
1535 if (fde->cie->saw_z_augmentation)
1536 {
1537 ULONGEST length;
1538
1539 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1540 buf += bytes_read + length;
6896c0c7
RH
1541 if (buf > end)
1542 return NULL;
7131cb6e
RH
1543 }
1544
cfc14b3a
MK
1545 fde->instructions = buf;
1546 fde->end = end;
1547
1548 add_fde (unit, fde);
1549 }
1550
1551 return end;
1552}
6896c0c7
RH
1553
1554/* Read a CIE or FDE in BUF and decode it. */
1555static char *
1556decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1557{
1558 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1559 char *ret;
1560 const char *msg;
1561 ptrdiff_t start_offset;
1562
1563 while (1)
1564 {
1565 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1566 if (ret != NULL)
1567 break;
1568
1569 /* We have corrupt input data of some form. */
1570
1571 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1572 and mismatches wrt padding and alignment of debug sections. */
1573 /* Note that there is no requirement in the standard for any
1574 alignment at all in the frame unwind sections. Testing for
1575 alignment before trying to interpret data would be incorrect.
1576
1577 However, GCC traditionally arranged for frame sections to be
1578 sized such that the FDE length and CIE fields happen to be
1579 aligned (in theory, for performance). This, unfortunately,
1580 was done with .align directives, which had the side effect of
1581 forcing the section to be aligned by the linker.
1582
1583 This becomes a problem when you have some other producer that
1584 creates frame sections that are not as strictly aligned. That
1585 produces a hole in the frame info that gets filled by the
1586 linker with zeros.
1587
1588 The GCC behaviour is arguably a bug, but it's effectively now
1589 part of the ABI, so we're now stuck with it, at least at the
1590 object file level. A smart linker may decide, in the process
1591 of compressing duplicate CIE information, that it can rewrite
1592 the entire output section without this extra padding. */
1593
1594 start_offset = start - unit->dwarf_frame_buffer;
1595 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1596 {
1597 start += 4 - (start_offset & 3);
1598 workaround = ALIGN4;
1599 continue;
1600 }
1601 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1602 {
1603 start += 8 - (start_offset & 7);
1604 workaround = ALIGN8;
1605 continue;
1606 }
1607
1608 /* Nothing left to try. Arrange to return as if we've consumed
1609 the entire input section. Hopefully we'll get valid info from
1610 the other of .debug_frame/.eh_frame. */
1611 workaround = FAIL;
1612 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1613 break;
1614 }
1615
1616 switch (workaround)
1617 {
1618 case NONE:
1619 break;
1620
1621 case ALIGN4:
1622 complaint (&symfile_complaints,
e2e0b3e5 1623 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
1624 unit->dwarf_frame_section->owner->filename,
1625 unit->dwarf_frame_section->name);
1626 break;
1627
1628 case ALIGN8:
1629 complaint (&symfile_complaints,
e2e0b3e5 1630 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
1631 unit->dwarf_frame_section->owner->filename,
1632 unit->dwarf_frame_section->name);
1633 break;
1634
1635 default:
1636 complaint (&symfile_complaints,
e2e0b3e5 1637 _("Corrupt data in %s:%s"),
6896c0c7
RH
1638 unit->dwarf_frame_section->owner->filename,
1639 unit->dwarf_frame_section->name);
1640 break;
1641 }
1642
1643 return ret;
1644}
cfc14b3a
MK
1645\f
1646
1647/* FIXME: kettenis/20030504: This still needs to be integrated with
1648 dwarf2read.c in a better way. */
1649
1650/* Imported from dwarf2read.c. */
cfc14b3a 1651extern asection *dwarf_frame_section;
cfc14b3a
MK
1652extern asection *dwarf_eh_frame_section;
1653
1654/* Imported from dwarf2read.c. */
188dd5d6 1655extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
cfc14b3a
MK
1656
1657void
1658dwarf2_build_frame_info (struct objfile *objfile)
1659{
1660 struct comp_unit unit;
1661 char *frame_ptr;
1662
1663 /* Build a minimal decoding of the DWARF2 compilation unit. */
1664 unit.abfd = objfile->obfd;
1665 unit.objfile = objfile;
0912c7f2 1666 unit.dbase = 0;
0fd85043 1667 unit.tbase = 0;
cfc14b3a
MK
1668
1669 /* First add the information from the .eh_frame section. That way,
1670 the FDEs from that section are searched last. */
188dd5d6 1671 if (dwarf_eh_frame_section)
cfc14b3a 1672 {
0fd85043 1673 asection *got, *txt;
0912c7f2 1674
cfc14b3a
MK
1675 unit.cie = NULL;
1676 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a
MK
1677 dwarf_eh_frame_section);
1678
2c500098 1679 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
cfc14b3a
MK
1680 unit.dwarf_frame_section = dwarf_eh_frame_section;
1681
0912c7f2 1682 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
37b517aa
MK
1683 that is used for the i386/amd64 target, which currently is
1684 the only target in GCC that supports/uses the
1685 DW_EH_PE_datarel encoding. */
0912c7f2
MK
1686 got = bfd_get_section_by_name (unit.abfd, ".got");
1687 if (got)
1688 unit.dbase = got->vma;
1689
22c7ba1a
MK
1690 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1691 so far. */
0fd85043
CV
1692 txt = bfd_get_section_by_name (unit.abfd, ".text");
1693 if (txt)
1694 unit.tbase = txt->vma;
1695
cfc14b3a
MK
1696 frame_ptr = unit.dwarf_frame_buffer;
1697 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1698 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1699 }
1700
188dd5d6 1701 if (dwarf_frame_section)
cfc14b3a
MK
1702 {
1703 unit.cie = NULL;
1704 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a 1705 dwarf_frame_section);
2c500098 1706 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
cfc14b3a
MK
1707 unit.dwarf_frame_section = dwarf_frame_section;
1708
1709 frame_ptr = unit.dwarf_frame_buffer;
1710 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1711 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1712 }
1713}
0d0e1a63
MK
1714
1715/* Provide a prototype to silence -Wmissing-prototypes. */
1716void _initialize_dwarf2_frame (void);
1717
1718void
1719_initialize_dwarf2_frame (void)
1720{
030f20e1 1721 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 1722 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 1723}
This page took 0.31239 seconds and 4 git commands to generate.