2004-07-23 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
05cbe71a 3 Copyright 2003, 2004 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24#include "defs.h"
25#include "dwarf2expr.h"
26#include "elf/dwarf2.h"
27#include "frame.h"
28#include "frame-base.h"
29#include "frame-unwind.h"
30#include "gdbcore.h"
31#include "gdbtypes.h"
32#include "symtab.h"
33#include "objfiles.h"
34#include "regcache.h"
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
6896c0c7 39#include "complaints.h"
cfc14b3a
MK
40#include "dwarf2-frame.h"
41
42/* Call Frame Information (CFI). */
43
44/* Common Information Entry (CIE). */
45
46struct dwarf2_cie
47{
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
50 ULONGEST cie_pointer;
51
52 /* Constant that is factored out of all advance location
53 instructions. */
54 ULONGEST code_alignment_factor;
55
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor;
58
59 /* Return address column. */
60 ULONGEST return_address_register;
61
62 /* Instruction sequence to initialize a register set. */
63 unsigned char *initial_instructions;
64 unsigned char *end;
65
66 /* Encoding of addresses. */
67 unsigned char encoding;
68
7131cb6e
RH
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation;
71
cfc14b3a
MK
72 struct dwarf2_cie *next;
73};
74
75/* Frame Description Entry (FDE). */
76
77struct dwarf2_fde
78{
79 /* CIE for this FDE. */
80 struct dwarf2_cie *cie;
81
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location;
84
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range;
87
88 /* Instruction sequence. */
89 unsigned char *instructions;
90 unsigned char *end;
91
92 struct dwarf2_fde *next;
93};
94
95static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96\f
97
98/* Structure describing a frame state. */
99
100struct dwarf2_frame_state
101{
102 /* Each register save state can be described in terms of a CFA slot,
103 another register, or a location expression. */
104 struct dwarf2_frame_state_reg_info
105 {
05cbe71a 106 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
107 int num_regs;
108
109 /* Used to implement DW_CFA_remember_state. */
110 struct dwarf2_frame_state_reg_info *prev;
111 } regs;
112
113 LONGEST cfa_offset;
114 ULONGEST cfa_reg;
115 unsigned char *cfa_exp;
116 enum {
117 CFA_UNSET,
118 CFA_REG_OFFSET,
119 CFA_EXP
120 } cfa_how;
121
122 /* The PC described by the current frame state. */
123 CORE_ADDR pc;
124
125 /* Initial register set from the CIE.
126 Used to implement DW_CFA_restore. */
127 struct dwarf2_frame_state_reg_info initial;
128
129 /* The information we care about from the CIE. */
130 LONGEST data_align;
131 ULONGEST code_align;
132 ULONGEST retaddr_column;
133};
134
135/* Store the length the expression for the CFA in the `cfa_reg' field,
136 which is unused in that case. */
137#define cfa_exp_len cfa_reg
138
139/* Assert that the register set RS is large enough to store NUM_REGS
140 columns. If necessary, enlarge the register set. */
141
142static void
143dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144 int num_regs)
145{
146 size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148 if (num_regs <= rs->num_regs)
149 return;
150
151 rs->reg = (struct dwarf2_frame_state_reg *)
152 xrealloc (rs->reg, num_regs * size);
153
154 /* Initialize newly allocated registers. */
2473a4a9 155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
156 rs->num_regs = num_regs;
157}
158
159/* Copy the register columns in register set RS into newly allocated
160 memory and return a pointer to this newly created copy. */
161
162static struct dwarf2_frame_state_reg *
163dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164{
165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg_info);
166 struct dwarf2_frame_state_reg *reg;
167
168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169 memcpy (reg, rs->reg, size);
170
171 return reg;
172}
173
174/* Release the memory allocated to register set RS. */
175
176static void
177dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178{
179 if (rs)
180 {
181 dwarf2_frame_state_free_regs (rs->prev);
182
183 xfree (rs->reg);
184 xfree (rs);
185 }
186}
187
188/* Release the memory allocated to the frame state FS. */
189
190static void
191dwarf2_frame_state_free (void *p)
192{
193 struct dwarf2_frame_state *fs = p;
194
195 dwarf2_frame_state_free_regs (fs->initial.prev);
196 dwarf2_frame_state_free_regs (fs->regs.prev);
197 xfree (fs->initial.reg);
198 xfree (fs->regs.reg);
199 xfree (fs);
200}
201\f
202
203/* Helper functions for execute_stack_op. */
204
205static CORE_ADDR
206read_reg (void *baton, int reg)
207{
208 struct frame_info *next_frame = (struct frame_info *) baton;
05cbe71a 209 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a
MK
210 int regnum;
211 char *buf;
212
213 regnum = DWARF2_REG_TO_REGNUM (reg);
214
05cbe71a 215 buf = (char *) alloca (register_size (gdbarch, regnum));
cfc14b3a
MK
216 frame_unwind_register (next_frame, regnum, buf);
217 return extract_typed_address (buf, builtin_type_void_data_ptr);
218}
219
220static void
221read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
222{
223 read_memory (addr, buf, len);
224}
225
226static void
227no_get_frame_base (void *baton, unsigned char **start, size_t *length)
228{
229 internal_error (__FILE__, __LINE__,
230 "Support for DW_OP_fbreg is unimplemented");
231}
232
233static CORE_ADDR
234no_get_tls_address (void *baton, CORE_ADDR offset)
235{
236 internal_error (__FILE__, __LINE__,
237 "Support for DW_OP_GNU_push_tls_address is unimplemented");
238}
239
240static CORE_ADDR
241execute_stack_op (unsigned char *exp, ULONGEST len,
242 struct frame_info *next_frame, CORE_ADDR initial)
243{
244 struct dwarf_expr_context *ctx;
245 CORE_ADDR result;
246
247 ctx = new_dwarf_expr_context ();
248 ctx->baton = next_frame;
249 ctx->read_reg = read_reg;
250 ctx->read_mem = read_mem;
251 ctx->get_frame_base = no_get_frame_base;
252 ctx->get_tls_address = no_get_tls_address;
253
254 dwarf_expr_push (ctx, initial);
255 dwarf_expr_eval (ctx, exp, len);
256 result = dwarf_expr_fetch (ctx, 0);
257
258 if (ctx->in_reg)
259 result = read_reg (next_frame, result);
260
261 free_dwarf_expr_context (ctx);
262
263 return result;
264}
265\f
266
267static void
268execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
269 struct frame_info *next_frame,
270 struct dwarf2_frame_state *fs)
271{
272 CORE_ADDR pc = frame_pc_unwind (next_frame);
273 int bytes_read;
274
275 while (insn_ptr < insn_end && fs->pc <= pc)
276 {
277 unsigned char insn = *insn_ptr++;
278 ULONGEST utmp, reg;
279 LONGEST offset;
280
281 if ((insn & 0xc0) == DW_CFA_advance_loc)
282 fs->pc += (insn & 0x3f) * fs->code_align;
283 else if ((insn & 0xc0) == DW_CFA_offset)
284 {
285 reg = insn & 0x3f;
286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287 offset = utmp * fs->data_align;
288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
290 fs->regs.reg[reg].loc.offset = offset;
291 }
292 else if ((insn & 0xc0) == DW_CFA_restore)
293 {
294 gdb_assert (fs->initial.reg);
295 reg = insn & 0x3f;
296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297 fs->regs.reg[reg] = fs->initial.reg[reg];
298 }
299 else
300 {
301 switch (insn)
302 {
303 case DW_CFA_set_loc:
304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305 insn_ptr += bytes_read;
306 break;
307
308 case DW_CFA_advance_loc1:
309 utmp = extract_unsigned_integer (insn_ptr, 1);
310 fs->pc += utmp * fs->code_align;
311 insn_ptr++;
312 break;
313 case DW_CFA_advance_loc2:
314 utmp = extract_unsigned_integer (insn_ptr, 2);
315 fs->pc += utmp * fs->code_align;
316 insn_ptr += 2;
317 break;
318 case DW_CFA_advance_loc4:
319 utmp = extract_unsigned_integer (insn_ptr, 4);
320 fs->pc += utmp * fs->code_align;
321 insn_ptr += 4;
322 break;
323
324 case DW_CFA_offset_extended:
325 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327 offset = utmp * fs->data_align;
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
330 fs->regs.reg[reg].loc.offset = offset;
331 break;
332
333 case DW_CFA_restore_extended:
334 gdb_assert (fs->initial.reg);
335 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337 fs->regs.reg[reg] = fs->initial.reg[reg];
338 break;
339
340 case DW_CFA_undefined:
341 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
344 break;
345
346 case DW_CFA_same_value:
347 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
350 break;
351
352 case DW_CFA_register:
353 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
357 fs->regs.reg[reg].loc.reg = utmp;
358 break;
359
360 case DW_CFA_remember_state:
361 {
362 struct dwarf2_frame_state_reg_info *new_rs;
363
364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365 *new_rs = fs->regs;
366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367 fs->regs.prev = new_rs;
368 }
369 break;
370
371 case DW_CFA_restore_state:
372 {
373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
50ea7769
MK
375 if (old_rs == NULL)
376 {
377 complaint (&symfile_complaints, "\
378bad CFI data; mismatched DW_CFA_restore_state at 0x%s", paddr (fs->pc));
379 }
380 else
381 {
382 xfree (fs->regs.reg);
383 fs->regs = *old_rs;
384 xfree (old_rs);
385 }
cfc14b3a
MK
386 }
387 break;
388
389 case DW_CFA_def_cfa:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
392 fs->cfa_offset = utmp;
393 fs->cfa_how = CFA_REG_OFFSET;
394 break;
395
396 case DW_CFA_def_cfa_register:
397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
398 fs->cfa_how = CFA_REG_OFFSET;
399 break;
400
401 case DW_CFA_def_cfa_offset:
402 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
403 /* cfa_how deliberately not set. */
404 break;
405
a8504492
MK
406 case DW_CFA_nop:
407 break;
408
cfc14b3a
MK
409 case DW_CFA_def_cfa_expression:
410 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
411 fs->cfa_exp = insn_ptr;
412 fs->cfa_how = CFA_EXP;
413 insn_ptr += fs->cfa_exp_len;
414 break;
415
416 case DW_CFA_expression:
417 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
418 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
419 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
420 fs->regs.reg[reg].loc.exp = insn_ptr;
421 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 422 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
423 insn_ptr += utmp;
424 break;
425
a8504492
MK
426 case DW_CFA_offset_extended_sf:
427 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
428 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 429 offset *= fs->data_align;
a8504492 430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
432 fs->regs.reg[reg].loc.offset = offset;
433 break;
434
435 case DW_CFA_def_cfa_sf:
436 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
437 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
438 fs->cfa_offset = offset * fs->data_align;
439 fs->cfa_how = CFA_REG_OFFSET;
440 break;
441
442 case DW_CFA_def_cfa_offset_sf:
443 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
444 fs->cfa_offset = offset * fs->data_align;
445 /* cfa_how deliberately not set. */
cfc14b3a
MK
446 break;
447
448 case DW_CFA_GNU_args_size:
449 /* Ignored. */
450 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
451 break;
452
453 default:
454 internal_error (__FILE__, __LINE__, "Unknown CFI encountered.");
455 }
456 }
457 }
458
459 /* Don't allow remember/restore between CIE and FDE programs. */
460 dwarf2_frame_state_free_regs (fs->regs.prev);
461 fs->regs.prev = NULL;
462}
8f22cb90 463\f
cfc14b3a 464
8f22cb90 465/* Architecture-specific operations. */
cfc14b3a 466
8f22cb90
MK
467/* Per-architecture data key. */
468static struct gdbarch_data *dwarf2_frame_data;
469
470struct dwarf2_frame_ops
471{
472 /* Pre-initialize the register state REG for register REGNUM. */
473 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
cfc14b3a
MK
474};
475
8f22cb90
MK
476/* Default architecture-specific register state initialization
477 function. */
478
479static void
480dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
481 struct dwarf2_frame_state_reg *reg)
482{
483 /* If we have a register that acts as a program counter, mark it as
484 a destination for the return address. If we have a register that
485 serves as the stack pointer, arrange for it to be filled with the
486 call frame address (CFA). The other registers are marked as
487 unspecified.
488
489 We copy the return address to the program counter, since many
490 parts in GDB assume that it is possible to get the return address
491 by unwinding the program counter register. However, on ISA's
492 with a dedicated return address register, the CFI usually only
493 contains information to unwind that return address register.
494
495 The reason we're treating the stack pointer special here is
496 because in many cases GCC doesn't emit CFI for the stack pointer
497 and implicitly assumes that it is equal to the CFA. This makes
498 some sense since the DWARF specification (version 3, draft 8,
499 p. 102) says that:
500
501 "Typically, the CFA is defined to be the value of the stack
502 pointer at the call site in the previous frame (which may be
503 different from its value on entry to the current frame)."
504
505 However, this isn't true for all platforms supported by GCC
506 (e.g. IBM S/390 and zSeries). Those architectures should provide
507 their own architecture-specific initialization function. */
05cbe71a 508
8f22cb90
MK
509 if (regnum == PC_REGNUM)
510 reg->how = DWARF2_FRAME_REG_RA;
511 else if (regnum == SP_REGNUM)
512 reg->how = DWARF2_FRAME_REG_CFA;
513}
05cbe71a 514
8f22cb90 515/* Return a default for the architecture-specific operations. */
05cbe71a 516
8f22cb90 517static void *
030f20e1 518dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
519{
520 struct dwarf2_frame_ops *ops;
521
030f20e1 522 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
523 ops->init_reg = dwarf2_frame_default_init_reg;
524 return ops;
525}
05cbe71a 526
8f22cb90
MK
527/* Set the architecture-specific register state initialization
528 function for GDBARCH to INIT_REG. */
529
530void
531dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
532 void (*init_reg) (struct gdbarch *, int,
533 struct dwarf2_frame_state_reg *))
534{
030f20e1 535 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 536
8f22cb90
MK
537 ops->init_reg = init_reg;
538}
539
540/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
541
542static void
543dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
544 struct dwarf2_frame_state_reg *reg)
545{
030f20e1 546 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 547
8f22cb90 548 ops->init_reg (gdbarch, regnum, reg);
05cbe71a 549}
8f22cb90
MK
550\f
551
552struct dwarf2_frame_cache
553{
554 /* DWARF Call Frame Address. */
555 CORE_ADDR cfa;
556
557 /* Saved registers, indexed by GDB register number, not by DWARF
558 register number. */
559 struct dwarf2_frame_state_reg *reg;
560};
05cbe71a 561
b9362cc7 562static struct dwarf2_frame_cache *
cfc14b3a
MK
563dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
564{
565 struct cleanup *old_chain;
05cbe71a 566 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3e2c4033 567 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
cfc14b3a
MK
568 struct dwarf2_frame_cache *cache;
569 struct dwarf2_frame_state *fs;
570 struct dwarf2_fde *fde;
cfc14b3a
MK
571
572 if (*this_cache)
573 return *this_cache;
574
575 /* Allocate a new cache. */
576 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
577 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
578
579 /* Allocate and initialize the frame state. */
580 fs = XMALLOC (struct dwarf2_frame_state);
581 memset (fs, 0, sizeof (struct dwarf2_frame_state));
582 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
583
584 /* Unwind the PC.
585
586 Note that if NEXT_FRAME is never supposed to return (i.e. a call
587 to abort), the compiler might optimize away the instruction at
588 NEXT_FRAME's return address. As a result the return address will
589 point at some random instruction, and the CFI for that
e4e9607c 590 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
591 this problem by substracting 1 from the return address to get an
592 address in the middle of a presumed call instruction (or the
593 instruction in the associated delay slot). This should only be
594 done for "normal" frames and not for resume-type frames (signal
e4e9607c
MK
595 handlers, sentinel frames, dummy frames). The function
596 frame_unwind_address_in_block does just this. It's not clear how
597 reliable the method is though; there is the potential for the
598 register state pre-call being different to that on return. */
1ce5d6dd 599 fs->pc = frame_unwind_address_in_block (next_frame);
cfc14b3a
MK
600
601 /* Find the correct FDE. */
602 fde = dwarf2_frame_find_fde (&fs->pc);
603 gdb_assert (fde != NULL);
604
605 /* Extract any interesting information from the CIE. */
606 fs->data_align = fde->cie->data_alignment_factor;
607 fs->code_align = fde->cie->code_alignment_factor;
608 fs->retaddr_column = fde->cie->return_address_register;
609
610 /* First decode all the insns in the CIE. */
611 execute_cfa_program (fde->cie->initial_instructions,
612 fde->cie->end, next_frame, fs);
613
614 /* Save the initialized register set. */
615 fs->initial = fs->regs;
616 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
617
618 /* Then decode the insns in the FDE up to our target PC. */
619 execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
620
621 /* Caclulate the CFA. */
622 switch (fs->cfa_how)
623 {
624 case CFA_REG_OFFSET:
625 cache->cfa = read_reg (next_frame, fs->cfa_reg);
626 cache->cfa += fs->cfa_offset;
627 break;
628
629 case CFA_EXP:
630 cache->cfa =
631 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
632 break;
633
634 default:
635 internal_error (__FILE__, __LINE__, "Unknown CFA rule.");
636 }
637
05cbe71a 638 /* Initialize the register state. */
3e2c4033
AC
639 {
640 int regnum;
e4e9607c 641
3e2c4033 642 for (regnum = 0; regnum < num_regs; regnum++)
05cbe71a 643 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
3e2c4033
AC
644 }
645
646 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
647 location information in the cache. Note that we don't skip the
648 return address column; it's perfectly all right for it to
649 correspond to a real register. If it doesn't correspond to a
650 real register, or if we shouldn't treat it as such,
651 DWARF2_REG_TO_REGNUM should be defined to return a number outside
652 the range [0, NUM_REGS). */
3e2c4033
AC
653 {
654 int column; /* CFI speak for "register number". */
e4e9607c 655
3e2c4033
AC
656 for (column = 0; column < fs->regs.num_regs; column++)
657 {
3e2c4033 658 /* Use the GDB register number as the destination index. */
79c4cb80 659 int regnum = DWARF2_REG_TO_REGNUM (column);
3e2c4033
AC
660
661 /* If there's no corresponding GDB register, ignore it. */
662 if (regnum < 0 || regnum >= num_regs)
663 continue;
664
665 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
666 of all debug info registers. If it doesn't, complain (but
667 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
668 unspecified register implies "same value" when CFI (draft
669 7) specifies nothing at all. Such a register could equally
670 be interpreted as "undefined". Also note that this check
e4e9607c
MK
671 isn't sufficient; it only checks that all registers in the
672 range [0 .. max column] are specified, and won't detect
3e2c4033 673 problems when a debug info register falls outside of the
e4e9607c 674 table. We need a way of iterating through all the valid
3e2c4033 675 DWARF2 register numbers. */
05cbe71a 676 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
3e2c4033
AC
677 complaint (&symfile_complaints,
678 "Incomplete CFI data; unspecified registers at 0x%s",
679 paddr (fs->pc));
35889917
MK
680 else
681 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
682 }
683 }
cfc14b3a 684
05cbe71a 685 /* Eliminate any DWARF2_FRAME_REG_RA rules. */
35889917
MK
686 {
687 int regnum;
688
689 for (regnum = 0; regnum < num_regs; regnum++)
690 {
05cbe71a 691 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
35889917 692 {
05cbe71a
MK
693 struct dwarf2_frame_state_reg *retaddr_reg =
694 &fs->regs.reg[fs->retaddr_column];
695
d4f10bf2
MK
696 /* It seems rather bizarre to specify an "empty" column as
697 the return adress column. However, this is exactly
698 what GCC does on some targets. It turns out that GCC
699 assumes that the return address can be found in the
700 register corresponding to the return address column.
701 Incidentally, that's how should treat a return address
702 column specifying "same value" too. */
703 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
704 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
705 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
706 cache->reg[regnum] = *retaddr_reg;
35889917
MK
707 else
708 {
35889917 709 cache->reg[regnum].loc.reg = fs->retaddr_column;
05cbe71a 710 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
35889917
MK
711 }
712 }
713 }
714 }
cfc14b3a
MK
715
716 do_cleanups (old_chain);
717
718 *this_cache = cache;
719 return cache;
720}
721
722static void
723dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
724 struct frame_id *this_id)
725{
726 struct dwarf2_frame_cache *cache =
727 dwarf2_frame_cache (next_frame, this_cache);
728
729 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
730}
731
732static void
733dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
734 int regnum, int *optimizedp,
735 enum lval_type *lvalp, CORE_ADDR *addrp,
736 int *realnump, void *valuep)
737{
05cbe71a 738 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a
MK
739 struct dwarf2_frame_cache *cache =
740 dwarf2_frame_cache (next_frame, this_cache);
741
742 switch (cache->reg[regnum].how)
743 {
05cbe71a 744 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 745 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 746 mark it as optimized away; the value isn't available. */
cfc14b3a
MK
747 *optimizedp = 1;
748 *lvalp = not_lval;
749 *addrp = 0;
750 *realnump = -1;
35889917 751 if (valuep)
cfc14b3a
MK
752 {
753 /* In some cases, for example %eflags on the i386, we have
754 to provide a sane value, even though this register wasn't
755 saved. Assume we can get it from NEXT_FRAME. */
756 frame_unwind_register (next_frame, regnum, valuep);
757 }
758 break;
759
05cbe71a 760 case DWARF2_FRAME_REG_SAVED_OFFSET:
cfc14b3a
MK
761 *optimizedp = 0;
762 *lvalp = lval_memory;
763 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
764 *realnump = -1;
765 if (valuep)
766 {
767 /* Read the value in from memory. */
05cbe71a 768 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
cfc14b3a
MK
769 }
770 break;
771
05cbe71a 772 case DWARF2_FRAME_REG_SAVED_REG:
cfc14b3a
MK
773 regnum = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
774 frame_register_unwind (next_frame, regnum,
775 optimizedp, lvalp, addrp, realnump, valuep);
776 break;
777
05cbe71a 778 case DWARF2_FRAME_REG_SAVED_EXP:
cfc14b3a
MK
779 *optimizedp = 0;
780 *lvalp = lval_memory;
781 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
782 cache->reg[regnum].exp_len,
783 next_frame, cache->cfa);
784 *realnump = -1;
785 if (valuep)
786 {
787 /* Read the value in from memory. */
05cbe71a 788 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
cfc14b3a
MK
789 }
790 break;
791
05cbe71a 792 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
793 /* GCC, in its infinite wisdom decided to not provide unwind
794 information for registers that are "same value". Since
795 DWARF2 (3 draft 7) doesn't define such behavior, said
796 registers are actually undefined (which is different to CFI
797 "undefined"). Code above issues a complaint about this.
798 Here just fudge the books, assume GCC, and that the value is
799 more inner on the stack. */
35889917
MK
800 frame_register_unwind (next_frame, regnum,
801 optimizedp, lvalp, addrp, realnump, valuep);
3e2c4033
AC
802 break;
803
05cbe71a 804 case DWARF2_FRAME_REG_SAME_VALUE:
cfc14b3a
MK
805 frame_register_unwind (next_frame, regnum,
806 optimizedp, lvalp, addrp, realnump, valuep);
807 break;
808
05cbe71a 809 case DWARF2_FRAME_REG_CFA:
35889917
MK
810 *optimizedp = 0;
811 *lvalp = not_lval;
812 *addrp = 0;
813 *realnump = -1;
814 if (valuep)
815 {
816 /* Store the value. */
817 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
818 }
819 break;
820
cfc14b3a
MK
821 default:
822 internal_error (__FILE__, __LINE__, "Unknown register rule.");
823 }
824}
825
826static const struct frame_unwind dwarf2_frame_unwind =
827{
828 NORMAL_FRAME,
829 dwarf2_frame_this_id,
830 dwarf2_frame_prev_register
831};
832
833const struct frame_unwind *
336d1bba 834dwarf2_frame_sniffer (struct frame_info *next_frame)
cfc14b3a 835{
1ce5d6dd
AC
836 /* Grab an address that is guarenteed to reside somewhere within the
837 function. frame_pc_unwind(), for a no-return next function, can
838 end up returning something past the end of this function's body. */
839 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
840 if (dwarf2_frame_find_fde (&block_addr))
cfc14b3a
MK
841 return &dwarf2_frame_unwind;
842
843 return NULL;
844}
845\f
846
847/* There is no explicitly defined relationship between the CFA and the
848 location of frame's local variables and arguments/parameters.
849 Therefore, frame base methods on this page should probably only be
850 used as a last resort, just to avoid printing total garbage as a
851 response to the "info frame" command. */
852
853static CORE_ADDR
854dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
855{
856 struct dwarf2_frame_cache *cache =
857 dwarf2_frame_cache (next_frame, this_cache);
858
859 return cache->cfa;
860}
861
862static const struct frame_base dwarf2_frame_base =
863{
864 &dwarf2_frame_unwind,
865 dwarf2_frame_base_address,
866 dwarf2_frame_base_address,
867 dwarf2_frame_base_address
868};
869
870const struct frame_base *
336d1bba 871dwarf2_frame_base_sniffer (struct frame_info *next_frame)
cfc14b3a 872{
336d1bba 873 CORE_ADDR pc = frame_pc_unwind (next_frame);
cfc14b3a
MK
874 if (dwarf2_frame_find_fde (&pc))
875 return &dwarf2_frame_base;
876
877 return NULL;
878}
879\f
880/* A minimal decoding of DWARF2 compilation units. We only decode
881 what's needed to get to the call frame information. */
882
883struct comp_unit
884{
885 /* Keep the bfd convenient. */
886 bfd *abfd;
887
888 struct objfile *objfile;
889
890 /* Linked list of CIEs for this object. */
891 struct dwarf2_cie *cie;
892
893 /* Address size for this unit - from unit header. */
894 unsigned char addr_size;
895
896 /* Pointer to the .debug_frame section loaded into memory. */
897 char *dwarf_frame_buffer;
898
899 /* Length of the loaded .debug_frame section. */
900 unsigned long dwarf_frame_size;
901
902 /* Pointer to the .debug_frame section. */
903 asection *dwarf_frame_section;
0912c7f2
MK
904
905 /* Base for DW_EH_PE_datarel encodings. */
906 bfd_vma dbase;
0fd85043
CV
907
908 /* Base for DW_EH_PE_textrel encodings. */
909 bfd_vma tbase;
cfc14b3a
MK
910};
911
8f22cb90 912const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 913
cfc14b3a
MK
914static unsigned int
915read_1_byte (bfd *bfd, char *buf)
916{
917 return bfd_get_8 (abfd, (bfd_byte *) buf);
918}
919
920static unsigned int
921read_4_bytes (bfd *abfd, char *buf)
922{
923 return bfd_get_32 (abfd, (bfd_byte *) buf);
924}
925
926static ULONGEST
927read_8_bytes (bfd *abfd, char *buf)
928{
929 return bfd_get_64 (abfd, (bfd_byte *) buf);
930}
931
932static ULONGEST
933read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
934{
935 ULONGEST result;
936 unsigned int num_read;
937 int shift;
938 unsigned char byte;
939
940 result = 0;
941 shift = 0;
942 num_read = 0;
943
944 do
945 {
946 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
947 buf++;
948 num_read++;
949 result |= ((byte & 0x7f) << shift);
950 shift += 7;
951 }
952 while (byte & 0x80);
953
954 *bytes_read_ptr = num_read;
955
956 return result;
957}
958
959static LONGEST
960read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
961{
962 LONGEST result;
963 int shift;
964 unsigned int num_read;
965 unsigned char byte;
966
967 result = 0;
968 shift = 0;
969 num_read = 0;
970
971 do
972 {
973 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
974 buf++;
975 num_read++;
976 result |= ((byte & 0x7f) << shift);
977 shift += 7;
978 }
979 while (byte & 0x80);
980
981 if ((shift < 32) && (byte & 0x40))
982 result |= -(1 << shift);
983
984 *bytes_read_ptr = num_read;
985
986 return result;
987}
988
989static ULONGEST
990read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
991{
992 LONGEST result;
993
994 result = bfd_get_32 (abfd, (bfd_byte *) buf);
995 if (result == 0xffffffff)
996 {
997 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
998 *bytes_read_ptr = 12;
999 }
1000 else
1001 *bytes_read_ptr = 4;
1002
1003 return result;
1004}
1005\f
1006
1007/* Pointer encoding helper functions. */
1008
1009/* GCC supports exception handling based on DWARF2 CFI. However, for
1010 technical reasons, it encodes addresses in its FDE's in a different
1011 way. Several "pointer encodings" are supported. The encoding
1012 that's used for a particular FDE is determined by the 'R'
1013 augmentation in the associated CIE. The argument of this
1014 augmentation is a single byte.
1015
1016 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1017 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1018 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1019 address should be interpreted (absolute, relative to the current
1020 position in the FDE, ...). Bit 7, indicates that the address
1021 should be dereferenced. */
1022
1023static unsigned char
1024encoding_for_size (unsigned int size)
1025{
1026 switch (size)
1027 {
1028 case 2:
1029 return DW_EH_PE_udata2;
1030 case 4:
1031 return DW_EH_PE_udata4;
1032 case 8:
1033 return DW_EH_PE_udata8;
1034 default:
1035 internal_error (__FILE__, __LINE__, "Unsupported address size");
1036 }
1037}
1038
1039static unsigned int
1040size_of_encoded_value (unsigned char encoding)
1041{
1042 if (encoding == DW_EH_PE_omit)
1043 return 0;
1044
1045 switch (encoding & 0x07)
1046 {
1047 case DW_EH_PE_absptr:
1048 return TYPE_LENGTH (builtin_type_void_data_ptr);
1049 case DW_EH_PE_udata2:
1050 return 2;
1051 case DW_EH_PE_udata4:
1052 return 4;
1053 case DW_EH_PE_udata8:
1054 return 8;
1055 default:
1056 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1057 }
1058}
1059
1060static CORE_ADDR
1061read_encoded_value (struct comp_unit *unit, unsigned char encoding,
1062 char *buf, unsigned int *bytes_read_ptr)
1063{
68f6cf99
MK
1064 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1065 ptrdiff_t offset;
cfc14b3a
MK
1066 CORE_ADDR base;
1067
1068 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1069 FDE's. */
1070 if (encoding & DW_EH_PE_indirect)
1071 internal_error (__FILE__, __LINE__,
1072 "Unsupported encoding: DW_EH_PE_indirect");
1073
68f6cf99
MK
1074 *bytes_read_ptr = 0;
1075
cfc14b3a
MK
1076 switch (encoding & 0x70)
1077 {
1078 case DW_EH_PE_absptr:
1079 base = 0;
1080 break;
1081 case DW_EH_PE_pcrel:
1082 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1083 base += (buf - unit->dwarf_frame_buffer);
1084 break;
0912c7f2
MK
1085 case DW_EH_PE_datarel:
1086 base = unit->dbase;
1087 break;
0fd85043
CV
1088 case DW_EH_PE_textrel:
1089 base = unit->tbase;
1090 break;
03ac2a74
MK
1091 case DW_EH_PE_funcrel:
1092 /* FIXME: kettenis/20040501: For now just pretend
1093 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1094 reading the initial location of an FDE it should be treated
1095 as such, and currently that's the only place where this code
1096 is used. */
1097 base = 0;
1098 break;
68f6cf99
MK
1099 case DW_EH_PE_aligned:
1100 base = 0;
1101 offset = buf - unit->dwarf_frame_buffer;
1102 if ((offset % ptr_len) != 0)
1103 {
1104 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1105 buf += *bytes_read_ptr;
1106 }
1107 break;
cfc14b3a
MK
1108 default:
1109 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1110 }
1111
1112 if ((encoding & 0x0f) == 0x00)
68f6cf99 1113 encoding |= encoding_for_size (ptr_len);
cfc14b3a
MK
1114
1115 switch (encoding & 0x0f)
1116 {
1117 case DW_EH_PE_udata2:
68f6cf99 1118 *bytes_read_ptr += 2;
cfc14b3a
MK
1119 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1120 case DW_EH_PE_udata4:
68f6cf99 1121 *bytes_read_ptr += 4;
cfc14b3a
MK
1122 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1123 case DW_EH_PE_udata8:
68f6cf99 1124 *bytes_read_ptr += 8;
cfc14b3a
MK
1125 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1126 case DW_EH_PE_sdata2:
68f6cf99 1127 *bytes_read_ptr += 2;
cfc14b3a
MK
1128 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1129 case DW_EH_PE_sdata4:
68f6cf99 1130 *bytes_read_ptr += 4;
cfc14b3a
MK
1131 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1132 case DW_EH_PE_sdata8:
68f6cf99 1133 *bytes_read_ptr += 8;
cfc14b3a
MK
1134 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1135 default:
1136 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1137 }
1138}
1139\f
1140
1141/* GCC uses a single CIE for all FDEs in a .debug_frame section.
1142 That's why we use a simple linked list here. */
1143
1144static struct dwarf2_cie *
1145find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1146{
1147 struct dwarf2_cie *cie = unit->cie;
1148
1149 while (cie)
1150 {
1151 if (cie->cie_pointer == cie_pointer)
1152 return cie;
1153
1154 cie = cie->next;
1155 }
1156
1157 return NULL;
1158}
1159
1160static void
1161add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1162{
1163 cie->next = unit->cie;
1164 unit->cie = cie;
1165}
1166
1167/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1168 inital location associated with it into *PC. */
1169
1170static struct dwarf2_fde *
1171dwarf2_frame_find_fde (CORE_ADDR *pc)
1172{
1173 struct objfile *objfile;
1174
1175 ALL_OBJFILES (objfile)
1176 {
1177 struct dwarf2_fde *fde;
1178 CORE_ADDR offset;
1179
8f22cb90 1180 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
4ae9ee8e
DJ
1181 if (fde == NULL)
1182 continue;
1183
1184 gdb_assert (objfile->section_offsets);
1185 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1186
cfc14b3a
MK
1187 while (fde)
1188 {
1189 if (*pc >= fde->initial_location + offset
1190 && *pc < fde->initial_location + offset + fde->address_range)
1191 {
1192 *pc = fde->initial_location + offset;
1193 return fde;
1194 }
1195
1196 fde = fde->next;
1197 }
1198 }
1199
1200 return NULL;
1201}
1202
1203static void
1204add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1205{
8f22cb90
MK
1206 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1207 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
cfc14b3a
MK
1208}
1209
1210#ifdef CC_HAS_LONG_LONG
1211#define DW64_CIE_ID 0xffffffffffffffffULL
1212#else
1213#define DW64_CIE_ID ~0
1214#endif
1215
6896c0c7
RH
1216static char *decode_frame_entry (struct comp_unit *unit, char *start,
1217 int eh_frame_p);
cfc14b3a 1218
6896c0c7
RH
1219/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1220 the next byte to be processed. */
cfc14b3a 1221static char *
6896c0c7 1222decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
cfc14b3a 1223{
6896c0c7 1224 char *buf;
cfc14b3a
MK
1225 LONGEST length;
1226 unsigned int bytes_read;
6896c0c7
RH
1227 int dwarf64_p;
1228 ULONGEST cie_id;
cfc14b3a 1229 ULONGEST cie_pointer;
cfc14b3a
MK
1230 char *end;
1231
6896c0c7 1232 buf = start;
cfc14b3a
MK
1233 length = read_initial_length (unit->abfd, buf, &bytes_read);
1234 buf += bytes_read;
1235 end = buf + length;
1236
6896c0c7
RH
1237 /* Are we still within the section? */
1238 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1239 return NULL;
1240
cfc14b3a
MK
1241 if (length == 0)
1242 return end;
1243
6896c0c7
RH
1244 /* Distinguish between 32 and 64-bit encoded frame info. */
1245 dwarf64_p = (bytes_read == 12);
cfc14b3a 1246
6896c0c7 1247 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1248 if (eh_frame_p)
1249 cie_id = 0;
1250 else if (dwarf64_p)
1251 cie_id = DW64_CIE_ID;
6896c0c7
RH
1252 else
1253 cie_id = DW_CIE_ID;
cfc14b3a
MK
1254
1255 if (dwarf64_p)
1256 {
1257 cie_pointer = read_8_bytes (unit->abfd, buf);
1258 buf += 8;
1259 }
1260 else
1261 {
1262 cie_pointer = read_4_bytes (unit->abfd, buf);
1263 buf += 4;
1264 }
1265
1266 if (cie_pointer == cie_id)
1267 {
1268 /* This is a CIE. */
1269 struct dwarf2_cie *cie;
1270 char *augmentation;
28ba0b33 1271 unsigned int cie_version;
cfc14b3a
MK
1272
1273 /* Record the offset into the .debug_frame section of this CIE. */
1274 cie_pointer = start - unit->dwarf_frame_buffer;
1275
1276 /* Check whether we've already read it. */
1277 if (find_cie (unit, cie_pointer))
1278 return end;
1279
1280 cie = (struct dwarf2_cie *)
8b92e4d5 1281 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1282 sizeof (struct dwarf2_cie));
1283 cie->initial_instructions = NULL;
1284 cie->cie_pointer = cie_pointer;
1285
1286 /* The encoding for FDE's in a normal .debug_frame section
1287 depends on the target address size as specified in the
1288 Compilation Unit Header. */
1289 cie->encoding = encoding_for_size (unit->addr_size);
1290
1291 /* Check version number. */
28ba0b33
PB
1292 cie_version = read_1_byte (unit->abfd, buf);
1293 if (cie_version != 1 && cie_version != 3)
6896c0c7 1294 return NULL;
cfc14b3a
MK
1295 buf += 1;
1296
1297 /* Interpret the interesting bits of the augmentation. */
1298 augmentation = buf;
1299 buf = augmentation + strlen (augmentation) + 1;
1300
1301 /* The GCC 2.x "eh" augmentation has a pointer immediately
1302 following the augmentation string, so it must be handled
1303 first. */
1304 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1305 {
1306 /* Skip. */
1307 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1308 augmentation += 2;
1309 }
1310
1311 cie->code_alignment_factor =
1312 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1313 buf += bytes_read;
1314
1315 cie->data_alignment_factor =
1316 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1317 buf += bytes_read;
1318
28ba0b33
PB
1319 if (cie_version == 1)
1320 {
1321 cie->return_address_register = read_1_byte (unit->abfd, buf);
1322 bytes_read = 1;
1323 }
1324 else
1325 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1326 &bytes_read);
1327 buf += bytes_read;
cfc14b3a 1328
7131cb6e
RH
1329 cie->saw_z_augmentation = (*augmentation == 'z');
1330 if (cie->saw_z_augmentation)
cfc14b3a
MK
1331 {
1332 ULONGEST length;
1333
1334 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1335 buf += bytes_read;
6896c0c7
RH
1336 if (buf > end)
1337 return NULL;
cfc14b3a
MK
1338 cie->initial_instructions = buf + length;
1339 augmentation++;
1340 }
1341
1342 while (*augmentation)
1343 {
1344 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1345 if (*augmentation == 'L')
1346 {
1347 /* Skip. */
1348 buf++;
1349 augmentation++;
1350 }
1351
1352 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1353 else if (*augmentation == 'R')
1354 {
1355 cie->encoding = *buf++;
1356 augmentation++;
1357 }
1358
1359 /* "P" indicates a personality routine in the CIE augmentation. */
1360 else if (*augmentation == 'P')
1361 {
1362 /* Skip. */
1363 buf += size_of_encoded_value (*buf++);
1364 augmentation++;
1365 }
1366
1367 /* Otherwise we have an unknown augmentation.
1368 Bail out unless we saw a 'z' prefix. */
1369 else
1370 {
1371 if (cie->initial_instructions == NULL)
1372 return end;
1373
1374 /* Skip unknown augmentations. */
1375 buf = cie->initial_instructions;
1376 break;
1377 }
1378 }
1379
1380 cie->initial_instructions = buf;
1381 cie->end = end;
1382
1383 add_cie (unit, cie);
1384 }
1385 else
1386 {
1387 /* This is a FDE. */
1388 struct dwarf2_fde *fde;
1389
6896c0c7
RH
1390 /* In an .eh_frame section, the CIE pointer is the delta between the
1391 address within the FDE where the CIE pointer is stored and the
1392 address of the CIE. Convert it to an offset into the .eh_frame
1393 section. */
cfc14b3a
MK
1394 if (eh_frame_p)
1395 {
cfc14b3a
MK
1396 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1397 cie_pointer -= (dwarf64_p ? 8 : 4);
1398 }
1399
6896c0c7
RH
1400 /* In either case, validate the result is still within the section. */
1401 if (cie_pointer >= unit->dwarf_frame_size)
1402 return NULL;
1403
cfc14b3a 1404 fde = (struct dwarf2_fde *)
8b92e4d5 1405 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1406 sizeof (struct dwarf2_fde));
1407 fde->cie = find_cie (unit, cie_pointer);
1408 if (fde->cie == NULL)
1409 {
1410 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1411 eh_frame_p);
1412 fde->cie = find_cie (unit, cie_pointer);
1413 }
1414
1415 gdb_assert (fde->cie != NULL);
1416
1417 fde->initial_location =
1418 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1419 buf += bytes_read;
1420
1421 fde->address_range =
1422 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1423 buf += bytes_read;
1424
7131cb6e
RH
1425 /* A 'z' augmentation in the CIE implies the presence of an
1426 augmentation field in the FDE as well. The only thing known
1427 to be in here at present is the LSDA entry for EH. So we
1428 can skip the whole thing. */
1429 if (fde->cie->saw_z_augmentation)
1430 {
1431 ULONGEST length;
1432
1433 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1434 buf += bytes_read + length;
6896c0c7
RH
1435 if (buf > end)
1436 return NULL;
7131cb6e
RH
1437 }
1438
cfc14b3a
MK
1439 fde->instructions = buf;
1440 fde->end = end;
1441
1442 add_fde (unit, fde);
1443 }
1444
1445 return end;
1446}
6896c0c7
RH
1447
1448/* Read a CIE or FDE in BUF and decode it. */
1449static char *
1450decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1451{
1452 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1453 char *ret;
1454 const char *msg;
1455 ptrdiff_t start_offset;
1456
1457 while (1)
1458 {
1459 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1460 if (ret != NULL)
1461 break;
1462
1463 /* We have corrupt input data of some form. */
1464
1465 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1466 and mismatches wrt padding and alignment of debug sections. */
1467 /* Note that there is no requirement in the standard for any
1468 alignment at all in the frame unwind sections. Testing for
1469 alignment before trying to interpret data would be incorrect.
1470
1471 However, GCC traditionally arranged for frame sections to be
1472 sized such that the FDE length and CIE fields happen to be
1473 aligned (in theory, for performance). This, unfortunately,
1474 was done with .align directives, which had the side effect of
1475 forcing the section to be aligned by the linker.
1476
1477 This becomes a problem when you have some other producer that
1478 creates frame sections that are not as strictly aligned. That
1479 produces a hole in the frame info that gets filled by the
1480 linker with zeros.
1481
1482 The GCC behaviour is arguably a bug, but it's effectively now
1483 part of the ABI, so we're now stuck with it, at least at the
1484 object file level. A smart linker may decide, in the process
1485 of compressing duplicate CIE information, that it can rewrite
1486 the entire output section without this extra padding. */
1487
1488 start_offset = start - unit->dwarf_frame_buffer;
1489 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1490 {
1491 start += 4 - (start_offset & 3);
1492 workaround = ALIGN4;
1493 continue;
1494 }
1495 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1496 {
1497 start += 8 - (start_offset & 7);
1498 workaround = ALIGN8;
1499 continue;
1500 }
1501
1502 /* Nothing left to try. Arrange to return as if we've consumed
1503 the entire input section. Hopefully we'll get valid info from
1504 the other of .debug_frame/.eh_frame. */
1505 workaround = FAIL;
1506 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1507 break;
1508 }
1509
1510 switch (workaround)
1511 {
1512 case NONE:
1513 break;
1514
1515 case ALIGN4:
1516 complaint (&symfile_complaints,
1517 "Corrupt data in %s:%s; align 4 workaround apparently succeeded",
1518 unit->dwarf_frame_section->owner->filename,
1519 unit->dwarf_frame_section->name);
1520 break;
1521
1522 case ALIGN8:
1523 complaint (&symfile_complaints,
1524 "Corrupt data in %s:%s; align 8 workaround apparently succeeded",
1525 unit->dwarf_frame_section->owner->filename,
1526 unit->dwarf_frame_section->name);
1527 break;
1528
1529 default:
1530 complaint (&symfile_complaints,
1531 "Corrupt data in %s:%s",
1532 unit->dwarf_frame_section->owner->filename,
1533 unit->dwarf_frame_section->name);
1534 break;
1535 }
1536
1537 return ret;
1538}
cfc14b3a
MK
1539\f
1540
1541/* FIXME: kettenis/20030504: This still needs to be integrated with
1542 dwarf2read.c in a better way. */
1543
1544/* Imported from dwarf2read.c. */
cfc14b3a 1545extern asection *dwarf_frame_section;
cfc14b3a
MK
1546extern asection *dwarf_eh_frame_section;
1547
1548/* Imported from dwarf2read.c. */
188dd5d6 1549extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
cfc14b3a
MK
1550
1551void
1552dwarf2_build_frame_info (struct objfile *objfile)
1553{
1554 struct comp_unit unit;
1555 char *frame_ptr;
1556
1557 /* Build a minimal decoding of the DWARF2 compilation unit. */
1558 unit.abfd = objfile->obfd;
1559 unit.objfile = objfile;
1560 unit.addr_size = objfile->obfd->arch_info->bits_per_address / 8;
0912c7f2 1561 unit.dbase = 0;
0fd85043 1562 unit.tbase = 0;
cfc14b3a
MK
1563
1564 /* First add the information from the .eh_frame section. That way,
1565 the FDEs from that section are searched last. */
188dd5d6 1566 if (dwarf_eh_frame_section)
cfc14b3a 1567 {
0fd85043 1568 asection *got, *txt;
0912c7f2 1569
cfc14b3a
MK
1570 unit.cie = NULL;
1571 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a
MK
1572 dwarf_eh_frame_section);
1573
2c500098 1574 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
cfc14b3a
MK
1575 unit.dwarf_frame_section = dwarf_eh_frame_section;
1576
0912c7f2 1577 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
37b517aa
MK
1578 that is used for the i386/amd64 target, which currently is
1579 the only target in GCC that supports/uses the
1580 DW_EH_PE_datarel encoding. */
0912c7f2
MK
1581 got = bfd_get_section_by_name (unit.abfd, ".got");
1582 if (got)
1583 unit.dbase = got->vma;
1584
22c7ba1a
MK
1585 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1586 so far. */
0fd85043
CV
1587 txt = bfd_get_section_by_name (unit.abfd, ".text");
1588 if (txt)
1589 unit.tbase = txt->vma;
1590
cfc14b3a
MK
1591 frame_ptr = unit.dwarf_frame_buffer;
1592 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1593 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1594 }
1595
188dd5d6 1596 if (dwarf_frame_section)
cfc14b3a
MK
1597 {
1598 unit.cie = NULL;
1599 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a 1600 dwarf_frame_section);
2c500098 1601 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
cfc14b3a
MK
1602 unit.dwarf_frame_section = dwarf_frame_section;
1603
1604 frame_ptr = unit.dwarf_frame_buffer;
1605 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1606 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1607 }
1608}
0d0e1a63
MK
1609
1610/* Provide a prototype to silence -Wmissing-prototypes. */
1611void _initialize_dwarf2_frame (void);
1612
1613void
1614_initialize_dwarf2_frame (void)
1615{
030f20e1 1616 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 1617 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 1618}
This page took 0.26048 seconds and 4 git commands to generate.