Revert "Don't let two frames with the same id end up in the frame chain."
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
28e7fd62 3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
cfc14b3a
MK
34
35#include "gdb_assert.h"
0e9f083f 36#include <string.h>
cfc14b3a 37
6896c0c7 38#include "complaints.h"
cfc14b3a 39#include "dwarf2-frame.h"
9f6f94ff
TT
40#include "ax.h"
41#include "dwarf2loc.h"
8fbca658 42#include "exceptions.h"
111c6489 43#include "dwarf2-frame-tailcall.h"
cfc14b3a 44
ae0d2f24
UW
45struct comp_unit;
46
cfc14b3a
MK
47/* Call Frame Information (CFI). */
48
49/* Common Information Entry (CIE). */
50
51struct dwarf2_cie
52{
ae0d2f24
UW
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
cfc14b3a
MK
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
f664829e
DE
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
cfc14b3a 73
303b6f5d
DJ
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
cfc14b3a 77 /* Encoding of addresses. */
852483bc 78 gdb_byte encoding;
cfc14b3a 79
ae0d2f24
UW
80 /* Target address size in bytes. */
81 int addr_size;
82
0963b4bd 83 /* Target pointer size in bytes. */
8da614df
CV
84 int ptr_size;
85
7131cb6e
RH
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
56c987f6
AO
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
303b6f5d
DJ
92 /* The version recorded in the CIE. */
93 unsigned char version;
2dc7f7b3
TT
94
95 /* The segment size. */
96 unsigned char segment_size;
b01c8410 97};
303b6f5d 98
b01c8410
PP
99struct dwarf2_cie_table
100{
101 int num_entries;
102 struct dwarf2_cie **entries;
cfc14b3a
MK
103};
104
105/* Frame Description Entry (FDE). */
106
107struct dwarf2_fde
108{
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
f664829e
DE
119 const gdb_byte *instructions;
120 const gdb_byte *end;
cfc14b3a 121
4bf8967c
AS
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
b01c8410 125};
4bf8967c 126
b01c8410
PP
127struct dwarf2_fde_table
128{
129 int num_entries;
130 struct dwarf2_fde **entries;
cfc14b3a
MK
131};
132
ae0d2f24
UW
133/* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136struct comp_unit
137{
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
ae0d2f24 143 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 144 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
145
146 /* Length of the loaded .debug_frame section. */
c098b58b 147 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157};
158
ac56253d
TT
159static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
4fc771b8
DJ
161
162static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
ae0d2f24
UW
164
165static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 166 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
cfc14b3a
MK
169\f
170
171/* Structure describing a frame state. */
172
173struct dwarf2_frame_state
174{
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
05cbe71a 179 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
180 int num_regs;
181
2fd481e1
PP
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
0d45f56e 189 const gdb_byte *cfa_exp;
2fd481e1 190
cfc14b3a
MK
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
cfc14b3a
MK
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
303b6f5d
DJ
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
216};
217
218/* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220#define cfa_exp_len cfa_reg
221
f57d151a 222/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
223 columns. If necessary, enlarge the register set. */
224
225static void
226dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228{
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
2473a4a9 238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
239 rs->num_regs = num_regs;
240}
241
242/* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245static struct dwarf2_frame_state_reg *
246dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247{
d10891d4 248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255}
256
257/* Release the memory allocated to register set RS. */
258
259static void
260dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261{
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269}
270
271/* Release the memory allocated to the frame state FS. */
272
273static void
274dwarf2_frame_state_free (void *p)
275{
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283}
284\f
285
286/* Helper functions for execute_stack_op. */
287
288static CORE_ADDR
b1370418 289read_addr_from_reg (void *baton, int reg)
cfc14b3a 290{
4a4e5149
DJ
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 293 int regnum;
852483bc 294 gdb_byte *buf;
cfc14b3a 295
ad010def 296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 297
852483bc 298 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 299 get_frame_register (this_frame, regnum, buf);
f2da6b3a 300
4b4589ad 301 return unpack_pointer (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
302}
303
0acf8b65
JB
304/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
305
306static struct value *
307get_reg_value (void *baton, struct type *type, int reg)
308{
309 struct frame_info *this_frame = (struct frame_info *) baton;
310 struct gdbarch *gdbarch = get_frame_arch (this_frame);
311 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
312
313 return value_from_register (type, regnum, this_frame);
314}
315
cfc14b3a 316static void
852483bc 317read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
318{
319 read_memory (addr, buf, len);
320}
321
a6a5a945
LM
322/* Execute the required actions for both the DW_CFA_restore and
323DW_CFA_restore_extended instructions. */
324static void
325dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
326 struct dwarf2_frame_state *fs, int eh_frame_p)
327{
328 ULONGEST reg;
329
330 gdb_assert (fs->initial.reg);
331 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
332 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
333
334 /* Check if this register was explicitly initialized in the
335 CIE initial instructions. If not, default the rule to
336 UNSPECIFIED. */
337 if (reg < fs->initial.num_regs)
338 fs->regs.reg[reg] = fs->initial.reg[reg];
339 else
340 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
341
342 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
343 complaint (&symfile_complaints, _("\
344incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 345register %s (#%d) at %s"),
a6a5a945
LM
346 gdbarch_register_name
347 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
348 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 349 paddress (gdbarch, fs->pc));
a6a5a945
LM
350}
351
9e8b7a03
JK
352/* Virtual method table for execute_stack_op below. */
353
354static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
355{
b1370418 356 read_addr_from_reg,
0acf8b65 357 get_reg_value,
9e8b7a03 358 read_mem,
523f3620
JK
359 ctx_no_get_frame_base,
360 ctx_no_get_frame_cfa,
361 ctx_no_get_frame_pc,
362 ctx_no_get_tls_address,
363 ctx_no_dwarf_call,
8e3b41a9 364 ctx_no_get_base_type,
3019eac3
DE
365 ctx_no_push_dwarf_reg_entry_value,
366 ctx_no_get_addr_index
9e8b7a03
JK
367};
368
cfc14b3a 369static CORE_ADDR
0d45f56e 370execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
371 CORE_ADDR offset, struct frame_info *this_frame,
372 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
373{
374 struct dwarf_expr_context *ctx;
375 CORE_ADDR result;
4a227398 376 struct cleanup *old_chain;
cfc14b3a
MK
377
378 ctx = new_dwarf_expr_context ();
4a227398 379 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 380 make_cleanup_value_free_to_mark (value_mark ());
4a227398 381
f7fd4728 382 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 383 ctx->addr_size = addr_size;
181cebd4 384 ctx->ref_addr_size = -1;
ac56253d 385 ctx->offset = offset;
4a4e5149 386 ctx->baton = this_frame;
9e8b7a03 387 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 388
8a9b8146 389 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 390 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 391
f2c7657e
UW
392 if (ctx->location == DWARF_VALUE_MEMORY)
393 result = dwarf_expr_fetch_address (ctx, 0);
394 else if (ctx->location == DWARF_VALUE_REGISTER)
b1370418
JB
395 result = read_addr_from_reg (this_frame,
396 value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 397 else
cec03d70
TT
398 {
399 /* This is actually invalid DWARF, but if we ever do run across
400 it somehow, we might as well support it. So, instead, report
401 it as unimplemented. */
3e43a32a
MS
402 error (_("\
403Not implemented: computing unwound register using explicit value operator"));
cec03d70 404 }
cfc14b3a 405
4a227398 406 do_cleanups (old_chain);
cfc14b3a
MK
407
408 return result;
409}
410\f
411
111c6489
JK
412/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
413 PC. Modify FS state accordingly. Return current INSN_PTR where the
414 execution has stopped, one can resume it on the next call. */
415
416static const gdb_byte *
0d45f56e 417execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
418 const gdb_byte *insn_end, struct gdbarch *gdbarch,
419 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 420{
ae0d2f24 421 int eh_frame_p = fde->eh_frame_p;
507a579c 422 unsigned int bytes_read;
e17a4113 423 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
424
425 while (insn_ptr < insn_end && fs->pc <= pc)
426 {
852483bc 427 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
428 uint64_t utmp, reg;
429 int64_t offset;
cfc14b3a
MK
430
431 if ((insn & 0xc0) == DW_CFA_advance_loc)
432 fs->pc += (insn & 0x3f) * fs->code_align;
433 else if ((insn & 0xc0) == DW_CFA_offset)
434 {
435 reg = insn & 0x3f;
4fc771b8 436 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 437 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
438 offset = utmp * fs->data_align;
439 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 440 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
441 fs->regs.reg[reg].loc.offset = offset;
442 }
443 else if ((insn & 0xc0) == DW_CFA_restore)
444 {
cfc14b3a 445 reg = insn & 0x3f;
a6a5a945 446 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
447 }
448 else
449 {
450 switch (insn)
451 {
452 case DW_CFA_set_loc:
ae0d2f24 453 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 454 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
455 &bytes_read, fde->initial_location);
456 /* Apply the objfile offset for relocatable objects. */
457 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
458 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
459 insn_ptr += bytes_read;
460 break;
461
462 case DW_CFA_advance_loc1:
e17a4113 463 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
464 fs->pc += utmp * fs->code_align;
465 insn_ptr++;
466 break;
467 case DW_CFA_advance_loc2:
e17a4113 468 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
469 fs->pc += utmp * fs->code_align;
470 insn_ptr += 2;
471 break;
472 case DW_CFA_advance_loc4:
e17a4113 473 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
474 fs->pc += utmp * fs->code_align;
475 insn_ptr += 4;
476 break;
477
478 case DW_CFA_offset_extended:
f664829e 479 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 480 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 481 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
482 offset = utmp * fs->data_align;
483 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 484 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
485 fs->regs.reg[reg].loc.offset = offset;
486 break;
487
488 case DW_CFA_restore_extended:
f664829e 489 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 490 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
491 break;
492
493 case DW_CFA_undefined:
f664829e 494 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 495 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 496 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 497 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
498 break;
499
500 case DW_CFA_same_value:
f664829e 501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 502 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
505 break;
506
507 case DW_CFA_register:
f664829e 508 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 509 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 510 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 511 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 512 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 513 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
514 fs->regs.reg[reg].loc.reg = utmp;
515 break;
516
517 case DW_CFA_remember_state:
518 {
519 struct dwarf2_frame_state_reg_info *new_rs;
520
521 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
522 *new_rs = fs->regs;
523 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
524 fs->regs.prev = new_rs;
525 }
526 break;
527
528 case DW_CFA_restore_state:
529 {
530 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
531
50ea7769
MK
532 if (old_rs == NULL)
533 {
e2e0b3e5 534 complaint (&symfile_complaints, _("\
5af949e3
UW
535bad CFI data; mismatched DW_CFA_restore_state at %s"),
536 paddress (gdbarch, fs->pc));
50ea7769
MK
537 }
538 else
539 {
540 xfree (fs->regs.reg);
541 fs->regs = *old_rs;
542 xfree (old_rs);
543 }
cfc14b3a
MK
544 }
545 break;
546
547 case DW_CFA_def_cfa:
f664829e
DE
548 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
549 fs->regs.cfa_reg = reg;
550 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
551
552 if (fs->armcc_cfa_offsets_sf)
553 utmp *= fs->data_align;
554
2fd481e1
PP
555 fs->regs.cfa_offset = utmp;
556 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
557 break;
558
559 case DW_CFA_def_cfa_register:
f664829e
DE
560 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
561 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
562 eh_frame_p);
563 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
564 break;
565
566 case DW_CFA_def_cfa_offset:
f664829e 567 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
568
569 if (fs->armcc_cfa_offsets_sf)
570 utmp *= fs->data_align;
571
2fd481e1 572 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
573 /* cfa_how deliberately not set. */
574 break;
575
a8504492
MK
576 case DW_CFA_nop:
577 break;
578
cfc14b3a 579 case DW_CFA_def_cfa_expression:
f664829e
DE
580 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
581 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
582 fs->regs.cfa_exp = insn_ptr;
583 fs->regs.cfa_how = CFA_EXP;
584 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
585 break;
586
587 case DW_CFA_expression:
f664829e 588 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 589 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 590 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 591 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
592 fs->regs.reg[reg].loc.exp = insn_ptr;
593 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 594 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
595 insn_ptr += utmp;
596 break;
597
a8504492 598 case DW_CFA_offset_extended_sf:
f664829e 599 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 600 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 601 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 602 offset *= fs->data_align;
a8504492 603 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
46ea248b 608 case DW_CFA_val_offset:
f664829e 609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 611 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
612 offset = utmp * fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_offset_sf:
f664829e 618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 620 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
621 offset *= fs->data_align;
622 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
623 fs->regs.reg[reg].loc.offset = offset;
624 break;
625
626 case DW_CFA_val_expression:
f664829e 627 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 628 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 629 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
630 fs->regs.reg[reg].loc.exp = insn_ptr;
631 fs->regs.reg[reg].exp_len = utmp;
632 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
633 insn_ptr += utmp;
634 break;
635
a8504492 636 case DW_CFA_def_cfa_sf:
f664829e
DE
637 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
638 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 639 eh_frame_p);
f664829e 640 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
641 fs->regs.cfa_offset = offset * fs->data_align;
642 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
643 break;
644
645 case DW_CFA_def_cfa_offset_sf:
f664829e 646 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 647 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 648 /* cfa_how deliberately not set. */
cfc14b3a
MK
649 break;
650
a77f4086
MK
651 case DW_CFA_GNU_window_save:
652 /* This is SPARC-specific code, and contains hard-coded
653 constants for the register numbering scheme used by
654 GCC. Rather than having a architecture-specific
655 operation that's only ever used by a single
656 architecture, we provide the implementation here.
657 Incidentally that's what GCC does too in its
658 unwinder. */
659 {
4a4e5149 660 int size = register_size (gdbarch, 0);
9a619af0 661
a77f4086
MK
662 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
663 for (reg = 8; reg < 16; reg++)
664 {
665 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
666 fs->regs.reg[reg].loc.reg = reg + 16;
667 }
668 for (reg = 16; reg < 32; reg++)
669 {
670 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
671 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
672 }
673 }
674 break;
675
cfc14b3a
MK
676 case DW_CFA_GNU_args_size:
677 /* Ignored. */
f664829e 678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
679 break;
680
58894217 681 case DW_CFA_GNU_negative_offset_extended:
f664829e 682 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 683 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
684 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
685 offset = utmp * fs->data_align;
58894217
JK
686 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
687 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
688 fs->regs.reg[reg].loc.offset = -offset;
689 break;
690
cfc14b3a 691 default:
3e43a32a
MS
692 internal_error (__FILE__, __LINE__,
693 _("Unknown CFI encountered."));
cfc14b3a
MK
694 }
695 }
696 }
697
111c6489
JK
698 if (fs->initial.reg == NULL)
699 {
700 /* Don't allow remember/restore between CIE and FDE programs. */
701 dwarf2_frame_state_free_regs (fs->regs.prev);
702 fs->regs.prev = NULL;
703 }
704
705 return insn_ptr;
cfc14b3a 706}
8f22cb90 707\f
cfc14b3a 708
8f22cb90 709/* Architecture-specific operations. */
cfc14b3a 710
8f22cb90
MK
711/* Per-architecture data key. */
712static struct gdbarch_data *dwarf2_frame_data;
713
714struct dwarf2_frame_ops
715{
716 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
717 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
718 struct frame_info *);
3ed09a32 719
4a4e5149 720 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 721 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 722
4fc771b8
DJ
723 /* Convert .eh_frame register number to DWARF register number, or
724 adjust .debug_frame register number. */
725 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
726};
727
8f22cb90
MK
728/* Default architecture-specific register state initialization
729 function. */
730
731static void
732dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 733 struct dwarf2_frame_state_reg *reg,
4a4e5149 734 struct frame_info *this_frame)
8f22cb90
MK
735{
736 /* If we have a register that acts as a program counter, mark it as
737 a destination for the return address. If we have a register that
738 serves as the stack pointer, arrange for it to be filled with the
739 call frame address (CFA). The other registers are marked as
740 unspecified.
741
742 We copy the return address to the program counter, since many
743 parts in GDB assume that it is possible to get the return address
744 by unwinding the program counter register. However, on ISA's
745 with a dedicated return address register, the CFI usually only
746 contains information to unwind that return address register.
747
748 The reason we're treating the stack pointer special here is
749 because in many cases GCC doesn't emit CFI for the stack pointer
750 and implicitly assumes that it is equal to the CFA. This makes
751 some sense since the DWARF specification (version 3, draft 8,
752 p. 102) says that:
753
754 "Typically, the CFA is defined to be the value of the stack
755 pointer at the call site in the previous frame (which may be
756 different from its value on entry to the current frame)."
757
758 However, this isn't true for all platforms supported by GCC
759 (e.g. IBM S/390 and zSeries). Those architectures should provide
760 their own architecture-specific initialization function. */
05cbe71a 761
ad010def 762 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 763 reg->how = DWARF2_FRAME_REG_RA;
ad010def 764 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
765 reg->how = DWARF2_FRAME_REG_CFA;
766}
05cbe71a 767
8f22cb90 768/* Return a default for the architecture-specific operations. */
05cbe71a 769
8f22cb90 770static void *
030f20e1 771dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
772{
773 struct dwarf2_frame_ops *ops;
774
030f20e1 775 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
776 ops->init_reg = dwarf2_frame_default_init_reg;
777 return ops;
778}
05cbe71a 779
8f22cb90
MK
780/* Set the architecture-specific register state initialization
781 function for GDBARCH to INIT_REG. */
782
783void
784dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
785 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
786 struct dwarf2_frame_state_reg *,
787 struct frame_info *))
8f22cb90 788{
030f20e1 789 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 790
8f22cb90
MK
791 ops->init_reg = init_reg;
792}
793
794/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
795
796static void
797dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 798 struct dwarf2_frame_state_reg *reg,
4a4e5149 799 struct frame_info *this_frame)
05cbe71a 800{
030f20e1 801 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 802
4a4e5149 803 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 804}
3ed09a32
DJ
805
806/* Set the architecture-specific signal trampoline recognition
807 function for GDBARCH to SIGNAL_FRAME_P. */
808
809void
810dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
811 int (*signal_frame_p) (struct gdbarch *,
812 struct frame_info *))
813{
814 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
815
816 ops->signal_frame_p = signal_frame_p;
817}
818
819/* Query the architecture-specific signal frame recognizer for
4a4e5149 820 THIS_FRAME. */
3ed09a32
DJ
821
822static int
823dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 824 struct frame_info *this_frame)
3ed09a32
DJ
825{
826 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
827
828 if (ops->signal_frame_p == NULL)
829 return 0;
4a4e5149 830 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 831}
4bf8967c 832
4fc771b8
DJ
833/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
834 register numbers. */
4bf8967c
AS
835
836void
4fc771b8
DJ
837dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
838 int (*adjust_regnum) (struct gdbarch *,
839 int, int))
4bf8967c
AS
840{
841 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
842
4fc771b8 843 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
844}
845
4fc771b8
DJ
846/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
847 register. */
4bf8967c 848
4fc771b8 849static int
3e43a32a
MS
850dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
851 int regnum, int eh_frame_p)
4bf8967c
AS
852{
853 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
854
4fc771b8 855 if (ops->adjust_regnum == NULL)
4bf8967c 856 return regnum;
4fc771b8 857 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 858}
303b6f5d
DJ
859
860static void
861dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
862 struct dwarf2_fde *fde)
863{
303b6f5d
DJ
864 struct symtab *s;
865
866 s = find_pc_symtab (fs->pc);
a6c727b2 867 if (s == NULL)
303b6f5d
DJ
868 return;
869
a6c727b2
DJ
870 if (producer_is_realview (s->producer))
871 {
872 if (fde->cie->version == 1)
873 fs->armcc_cfa_offsets_sf = 1;
874
875 if (fde->cie->version == 1)
876 fs->armcc_cfa_offsets_reversed = 1;
877
878 /* The reversed offset problem is present in some compilers
879 using DWARF3, but it was eventually fixed. Check the ARM
880 defined augmentations, which are in the format "armcc" followed
881 by a list of one-character options. The "+" option means
882 this problem is fixed (no quirk needed). If the armcc
883 augmentation is missing, the quirk is needed. */
884 if (fde->cie->version == 3
885 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
886 || strchr (fde->cie->augmentation + 5, '+') == NULL))
887 fs->armcc_cfa_offsets_reversed = 1;
888
889 return;
890 }
303b6f5d 891}
8f22cb90
MK
892\f
893
9f6f94ff
TT
894void
895dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
896 struct gdbarch *gdbarch,
897 CORE_ADDR pc,
898 struct dwarf2_per_cu_data *data)
899{
9f6f94ff 900 struct dwarf2_fde *fde;
22e048c9 901 CORE_ADDR text_offset;
9f6f94ff
TT
902 struct dwarf2_frame_state fs;
903 int addr_size;
904
905 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
906
907 fs.pc = pc;
908
909 /* Find the correct FDE. */
910 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
911 if (fde == NULL)
912 error (_("Could not compute CFA; needed to translate this expression"));
913
914 /* Extract any interesting information from the CIE. */
915 fs.data_align = fde->cie->data_alignment_factor;
916 fs.code_align = fde->cie->code_alignment_factor;
917 fs.retaddr_column = fde->cie->return_address_register;
918 addr_size = fde->cie->addr_size;
919
920 /* Check for "quirks" - known bugs in producers. */
921 dwarf2_frame_find_quirks (&fs, fde);
922
923 /* First decode all the insns in the CIE. */
924 execute_cfa_program (fde, fde->cie->initial_instructions,
925 fde->cie->end, gdbarch, pc, &fs);
926
927 /* Save the initialized register set. */
928 fs.initial = fs.regs;
929 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
930
931 /* Then decode the insns in the FDE up to our target PC. */
932 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
933
934 /* Calculate the CFA. */
935 switch (fs.regs.cfa_how)
936 {
937 case CFA_REG_OFFSET:
938 {
939 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
940
941 if (regnum == -1)
942 error (_("Unable to access DWARF register number %d"),
943 (int) fs.regs.cfa_reg); /* FIXME */
944 ax_reg (expr, regnum);
945
946 if (fs.regs.cfa_offset != 0)
947 {
948 if (fs.armcc_cfa_offsets_reversed)
949 ax_const_l (expr, -fs.regs.cfa_offset);
950 else
951 ax_const_l (expr, fs.regs.cfa_offset);
952 ax_simple (expr, aop_add);
953 }
954 }
955 break;
956
957 case CFA_EXP:
958 ax_const_l (expr, text_offset);
959 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
960 fs.regs.cfa_exp,
961 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
962 data);
963 break;
964
965 default:
966 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
967 }
968}
969
970\f
8f22cb90
MK
971struct dwarf2_frame_cache
972{
973 /* DWARF Call Frame Address. */
974 CORE_ADDR cfa;
975
8fbca658
PA
976 /* Set if the return address column was marked as unavailable
977 (required non-collected memory or registers to compute). */
978 int unavailable_retaddr;
979
0228dfb9
DJ
980 /* Set if the return address column was marked as undefined. */
981 int undefined_retaddr;
982
8f22cb90
MK
983 /* Saved registers, indexed by GDB register number, not by DWARF
984 register number. */
985 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
986
987 /* Return address register. */
988 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
989
990 /* Target address size in bytes. */
991 int addr_size;
ac56253d
TT
992
993 /* The .text offset. */
994 CORE_ADDR text_offset;
111c6489
JK
995
996 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
997 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
998 involved. Non-bottom frames of a virtual tail call frames chain use
999 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1000 them. */
1001 void *tailcall_cache;
8f22cb90 1002};
05cbe71a 1003
78ac5f83
TT
1004/* A cleanup that sets a pointer to NULL. */
1005
1006static void
1007clear_pointer_cleanup (void *arg)
1008{
1009 void **ptr = arg;
1010
1011 *ptr = NULL;
1012}
1013
b9362cc7 1014static struct dwarf2_frame_cache *
4a4e5149 1015dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1016{
78ac5f83 1017 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1018 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1019 const int num_regs = gdbarch_num_regs (gdbarch)
1020 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1021 struct dwarf2_frame_cache *cache;
1022 struct dwarf2_frame_state *fs;
1023 struct dwarf2_fde *fde;
8fbca658 1024 volatile struct gdb_exception ex;
111c6489 1025 CORE_ADDR entry_pc;
1bd122fa
PA
1026 LONGEST entry_cfa_sp_offset;
1027 int entry_cfa_sp_offset_p = 0;
111c6489 1028 const gdb_byte *instr;
cfc14b3a
MK
1029
1030 if (*this_cache)
1031 return *this_cache;
1032
1033 /* Allocate a new cache. */
1034 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1035 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1036 *this_cache = cache;
78ac5f83 1037 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1038
1039 /* Allocate and initialize the frame state. */
8fbca658 1040 fs = XZALLOC (struct dwarf2_frame_state);
cfc14b3a
MK
1041 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1042
1043 /* Unwind the PC.
1044
4a4e5149 1045 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1046 to abort), the compiler might optimize away the instruction at
4a4e5149 1047 its return address. As a result the return address will
cfc14b3a 1048 point at some random instruction, and the CFI for that
e4e9607c 1049 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1050 this problem by substracting 1 from the return address to get an
1051 address in the middle of a presumed call instruction (or the
1052 instruction in the associated delay slot). This should only be
1053 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1054 handlers, sentinel frames, dummy frames). The function
ad1193e7 1055 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1056 reliable the method is though; there is the potential for the
1057 register state pre-call being different to that on return. */
4a4e5149 1058 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1059
1060 /* Find the correct FDE. */
ac56253d 1061 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1062 gdb_assert (fde != NULL);
1063
1064 /* Extract any interesting information from the CIE. */
1065 fs->data_align = fde->cie->data_alignment_factor;
1066 fs->code_align = fde->cie->code_alignment_factor;
1067 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1068 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1069
303b6f5d
DJ
1070 /* Check for "quirks" - known bugs in producers. */
1071 dwarf2_frame_find_quirks (fs, fde);
1072
cfc14b3a 1073 /* First decode all the insns in the CIE. */
ae0d2f24 1074 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1075 fde->cie->end, gdbarch,
1076 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1077
1078 /* Save the initialized register set. */
1079 fs->initial = fs->regs;
1080 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1081
111c6489
JK
1082 if (get_frame_func_if_available (this_frame, &entry_pc))
1083 {
1084 /* Decode the insns in the FDE up to the entry PC. */
1085 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1086 entry_pc, fs);
1087
1088 if (fs->regs.cfa_how == CFA_REG_OFFSET
1089 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1090 == gdbarch_sp_regnum (gdbarch)))
1091 {
1bd122fa
PA
1092 entry_cfa_sp_offset = fs->regs.cfa_offset;
1093 entry_cfa_sp_offset_p = 1;
111c6489
JK
1094 }
1095 }
1096 else
1097 instr = fde->instructions;
1098
cfc14b3a 1099 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1100 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1101 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1102
8fbca658 1103 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1104 {
8fbca658
PA
1105 /* Calculate the CFA. */
1106 switch (fs->regs.cfa_how)
1107 {
1108 case CFA_REG_OFFSET:
b1370418 1109 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1110 if (fs->armcc_cfa_offsets_reversed)
1111 cache->cfa -= fs->regs.cfa_offset;
1112 else
1113 cache->cfa += fs->regs.cfa_offset;
1114 break;
1115
1116 case CFA_EXP:
1117 cache->cfa =
1118 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1119 cache->addr_size, cache->text_offset,
1120 this_frame, 0, 0);
1121 break;
1122
1123 default:
1124 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1125 }
1126 }
1127 if (ex.reason < 0)
1128 {
1129 if (ex.error == NOT_AVAILABLE_ERROR)
1130 {
1131 cache->unavailable_retaddr = 1;
5a1cf4d6 1132 do_cleanups (old_chain);
78ac5f83 1133 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1134 return cache;
1135 }
cfc14b3a 1136
8fbca658 1137 throw_exception (ex);
cfc14b3a
MK
1138 }
1139
05cbe71a 1140 /* Initialize the register state. */
3e2c4033
AC
1141 {
1142 int regnum;
e4e9607c 1143
3e2c4033 1144 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1145 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1146 }
1147
1148 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1149 location information in the cache. Note that we don't skip the
1150 return address column; it's perfectly all right for it to
1151 correspond to a real register. If it doesn't correspond to a
1152 real register, or if we shouldn't treat it as such,
055d23b8 1153 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1154 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1155 {
1156 int column; /* CFI speak for "register number". */
e4e9607c 1157
3e2c4033
AC
1158 for (column = 0; column < fs->regs.num_regs; column++)
1159 {
3e2c4033 1160 /* Use the GDB register number as the destination index. */
ad010def 1161 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1162
1163 /* If there's no corresponding GDB register, ignore it. */
1164 if (regnum < 0 || regnum >= num_regs)
1165 continue;
1166
1167 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1168 of all debug info registers. If it doesn't, complain (but
1169 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1170 unspecified register implies "same value" when CFI (draft
1171 7) specifies nothing at all. Such a register could equally
1172 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1173 isn't sufficient; it only checks that all registers in the
1174 range [0 .. max column] are specified, and won't detect
3e2c4033 1175 problems when a debug info register falls outside of the
e4e9607c 1176 table. We need a way of iterating through all the valid
3e2c4033 1177 DWARF2 register numbers. */
05cbe71a 1178 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1179 {
1180 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1181 complaint (&symfile_complaints, _("\
5af949e3 1182incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1183 gdbarch_register_name (gdbarch, regnum),
5af949e3 1184 paddress (gdbarch, fs->pc));
f059bf6f 1185 }
35889917
MK
1186 else
1187 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1188 }
1189 }
cfc14b3a 1190
8d5a9abc
MK
1191 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1192 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1193 {
1194 int regnum;
1195
1196 for (regnum = 0; regnum < num_regs; regnum++)
1197 {
8d5a9abc
MK
1198 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1199 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1200 {
05cbe71a
MK
1201 struct dwarf2_frame_state_reg *retaddr_reg =
1202 &fs->regs.reg[fs->retaddr_column];
1203
d4f10bf2
MK
1204 /* It seems rather bizarre to specify an "empty" column as
1205 the return adress column. However, this is exactly
1206 what GCC does on some targets. It turns out that GCC
1207 assumes that the return address can be found in the
1208 register corresponding to the return address column.
8d5a9abc
MK
1209 Incidentally, that's how we should treat a return
1210 address column specifying "same value" too. */
d4f10bf2 1211 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1212 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1213 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1214 {
1215 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1216 cache->reg[regnum] = *retaddr_reg;
1217 else
1218 cache->retaddr_reg = *retaddr_reg;
1219 }
35889917
MK
1220 else
1221 {
8d5a9abc
MK
1222 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1223 {
1224 cache->reg[regnum].loc.reg = fs->retaddr_column;
1225 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1226 }
1227 else
1228 {
1229 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1230 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1231 }
35889917
MK
1232 }
1233 }
1234 }
1235 }
cfc14b3a 1236
0228dfb9
DJ
1237 if (fs->retaddr_column < fs->regs.num_regs
1238 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1239 cache->undefined_retaddr = 1;
1240
cfc14b3a 1241 do_cleanups (old_chain);
1bd122fa
PA
1242
1243 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1244 starting at THIS_FRAME. */
1245 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1246 (entry_cfa_sp_offset_p
1247 ? &entry_cfa_sp_offset : NULL));
1248
78ac5f83 1249 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1250 return cache;
1251}
1252
8fbca658
PA
1253static enum unwind_stop_reason
1254dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1255 void **this_cache)
1256{
1257 struct dwarf2_frame_cache *cache
1258 = dwarf2_frame_cache (this_frame, this_cache);
1259
1260 if (cache->unavailable_retaddr)
1261 return UNWIND_UNAVAILABLE;
1262
1263 if (cache->undefined_retaddr)
1264 return UNWIND_OUTERMOST;
1265
1266 return UNWIND_NO_REASON;
1267}
1268
cfc14b3a 1269static void
4a4e5149 1270dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1271 struct frame_id *this_id)
1272{
1273 struct dwarf2_frame_cache *cache =
4a4e5149 1274 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1275
8fbca658
PA
1276 if (cache->unavailable_retaddr)
1277 return;
1278
0228dfb9
DJ
1279 if (cache->undefined_retaddr)
1280 return;
1281
4a4e5149 1282 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1283}
1284
4a4e5149
DJ
1285static struct value *
1286dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1287 int regnum)
93d42b30 1288{
4a4e5149 1289 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1290 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1291 dwarf2_frame_cache (this_frame, this_cache);
1292 CORE_ADDR addr;
1293 int realnum;
cfc14b3a 1294
111c6489
JK
1295 /* Non-bottom frames of a virtual tail call frames chain use
1296 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1297 them. If dwarf2_tailcall_prev_register_first does not have specific value
1298 unwind the register, tail call frames are assumed to have the register set
1299 of the top caller. */
1300 if (cache->tailcall_cache)
1301 {
1302 struct value *val;
1303
1304 val = dwarf2_tailcall_prev_register_first (this_frame,
1305 &cache->tailcall_cache,
1306 regnum);
1307 if (val)
1308 return val;
1309 }
1310
cfc14b3a
MK
1311 switch (cache->reg[regnum].how)
1312 {
05cbe71a 1313 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1314 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1315 mark it as optimized away; the value isn't available. */
4a4e5149 1316 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1317
05cbe71a 1318 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1319 addr = cache->cfa + cache->reg[regnum].loc.offset;
1320 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1321
05cbe71a 1322 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1323 realnum
1324 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1325 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1326
05cbe71a 1327 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1328 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1329 cache->reg[regnum].exp_len,
ac56253d
TT
1330 cache->addr_size, cache->text_offset,
1331 this_frame, cache->cfa, 1);
4a4e5149 1332 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1333
46ea248b 1334 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1335 addr = cache->cfa + cache->reg[regnum].loc.offset;
1336 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1337
1338 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1339 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1340 cache->reg[regnum].exp_len,
ac56253d
TT
1341 cache->addr_size, cache->text_offset,
1342 this_frame, cache->cfa, 1);
4a4e5149 1343 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1344
05cbe71a 1345 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1346 /* GCC, in its infinite wisdom decided to not provide unwind
1347 information for registers that are "same value". Since
1348 DWARF2 (3 draft 7) doesn't define such behavior, said
1349 registers are actually undefined (which is different to CFI
1350 "undefined"). Code above issues a complaint about this.
1351 Here just fudge the books, assume GCC, and that the value is
1352 more inner on the stack. */
4a4e5149 1353 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1354
05cbe71a 1355 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1356 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1357
05cbe71a 1358 case DWARF2_FRAME_REG_CFA:
4a4e5149 1359 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1360
ea7963f0 1361 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1362 addr = cache->cfa + cache->reg[regnum].loc.offset;
1363 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1364
8d5a9abc 1365 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1366 addr = cache->reg[regnum].loc.offset;
1367 regnum = gdbarch_dwarf2_reg_to_regnum
1368 (gdbarch, cache->retaddr_reg.loc.reg);
1369 addr += get_frame_register_unsigned (this_frame, regnum);
1370 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1371
b39cc962
DJ
1372 case DWARF2_FRAME_REG_FN:
1373 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1374
cfc14b3a 1375 default:
e2e0b3e5 1376 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1377 }
1378}
1379
111c6489
JK
1380/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1381 call frames chain. */
1382
1383static void
1384dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1385{
1386 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1387
1388 if (cache->tailcall_cache)
1389 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1390}
1391
4a4e5149
DJ
1392static int
1393dwarf2_frame_sniffer (const struct frame_unwind *self,
1394 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1395{
1ce5d6dd 1396 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1397 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1398 end up returning something past the end of this function's body.
1399 If the frame we're sniffing for is a signal frame whose start
1400 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1401 extend one byte before its start address or we could potentially
1402 select the FDE of the previous function. */
1403 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1404 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1405
56c987f6 1406 if (!fde)
4a4e5149 1407 return 0;
3ed09a32
DJ
1408
1409 /* On some targets, signal trampolines may have unwind information.
1410 We need to recognize them so that we set the frame type
1411 correctly. */
1412
56c987f6 1413 if (fde->cie->signal_frame
4a4e5149
DJ
1414 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1415 this_frame))
1416 return self->type == SIGTRAMP_FRAME;
1417
111c6489
JK
1418 if (self->type != NORMAL_FRAME)
1419 return 0;
1420
1bd122fa
PA
1421 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1422 dwarf2_tailcall_sniffer_first. */
1423 dwarf2_frame_cache (this_frame, this_cache);
1424
111c6489 1425 return 1;
4a4e5149
DJ
1426}
1427
1428static const struct frame_unwind dwarf2_frame_unwind =
1429{
1430 NORMAL_FRAME,
8fbca658 1431 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1432 dwarf2_frame_this_id,
1433 dwarf2_frame_prev_register,
1434 NULL,
111c6489
JK
1435 dwarf2_frame_sniffer,
1436 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1437};
1438
1439static const struct frame_unwind dwarf2_signal_frame_unwind =
1440{
1441 SIGTRAMP_FRAME,
8fbca658 1442 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1443 dwarf2_frame_this_id,
1444 dwarf2_frame_prev_register,
1445 NULL,
111c6489
JK
1446 dwarf2_frame_sniffer,
1447
1448 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1449 NULL
4a4e5149 1450};
cfc14b3a 1451
4a4e5149
DJ
1452/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1453
1454void
1455dwarf2_append_unwinders (struct gdbarch *gdbarch)
1456{
111c6489
JK
1457 /* TAILCALL_FRAME must be first to find the record by
1458 dwarf2_tailcall_sniffer_first. */
1459 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1460
4a4e5149
DJ
1461 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1462 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1463}
1464\f
1465
1466/* There is no explicitly defined relationship between the CFA and the
1467 location of frame's local variables and arguments/parameters.
1468 Therefore, frame base methods on this page should probably only be
1469 used as a last resort, just to avoid printing total garbage as a
1470 response to the "info frame" command. */
1471
1472static CORE_ADDR
4a4e5149 1473dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1474{
1475 struct dwarf2_frame_cache *cache =
4a4e5149 1476 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1477
1478 return cache->cfa;
1479}
1480
1481static const struct frame_base dwarf2_frame_base =
1482{
1483 &dwarf2_frame_unwind,
1484 dwarf2_frame_base_address,
1485 dwarf2_frame_base_address,
1486 dwarf2_frame_base_address
1487};
1488
1489const struct frame_base *
4a4e5149 1490dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1491{
4a4e5149 1492 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1493
ac56253d 1494 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1495 return &dwarf2_frame_base;
1496
1497 return NULL;
1498}
e7802207
TT
1499
1500/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1501 the DWARF unwinder. This is used to implement
1502 DW_OP_call_frame_cfa. */
1503
1504CORE_ADDR
1505dwarf2_frame_cfa (struct frame_info *this_frame)
1506{
1507 while (get_frame_type (this_frame) == INLINE_FRAME)
1508 this_frame = get_prev_frame (this_frame);
1509 /* This restriction could be lifted if other unwinders are known to
1510 compute the frame base in a way compatible with the DWARF
1511 unwinder. */
111c6489
JK
1512 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1513 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
e7802207 1514 error (_("can't compute CFA for this frame"));
c0bf857d
PA
1515 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1516 throw_error (NOT_AVAILABLE_ERROR,
1517 _("can't compute CFA for this frame: "
1518 "required registers or memory are unavailable"));
e7802207
TT
1519 return get_frame_base (this_frame);
1520}
cfc14b3a 1521\f
8f22cb90 1522const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1523
cfc14b3a 1524static unsigned int
f664829e 1525read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1526{
852483bc 1527 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1528}
1529
1530static unsigned int
f664829e 1531read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1532{
852483bc 1533 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1534}
1535
1536static ULONGEST
f664829e 1537read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1538{
852483bc 1539 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1540}
1541
1542static ULONGEST
f664829e
DE
1543read_initial_length (bfd *abfd, const gdb_byte *buf,
1544 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1545{
1546 LONGEST result;
1547
852483bc 1548 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1549 if (result == 0xffffffff)
1550 {
852483bc 1551 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1552 *bytes_read_ptr = 12;
1553 }
1554 else
1555 *bytes_read_ptr = 4;
1556
1557 return result;
1558}
1559\f
1560
1561/* Pointer encoding helper functions. */
1562
1563/* GCC supports exception handling based on DWARF2 CFI. However, for
1564 technical reasons, it encodes addresses in its FDE's in a different
1565 way. Several "pointer encodings" are supported. The encoding
1566 that's used for a particular FDE is determined by the 'R'
1567 augmentation in the associated CIE. The argument of this
1568 augmentation is a single byte.
1569
1570 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1571 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1572 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1573 address should be interpreted (absolute, relative to the current
1574 position in the FDE, ...). Bit 7, indicates that the address
1575 should be dereferenced. */
1576
852483bc 1577static gdb_byte
cfc14b3a
MK
1578encoding_for_size (unsigned int size)
1579{
1580 switch (size)
1581 {
1582 case 2:
1583 return DW_EH_PE_udata2;
1584 case 4:
1585 return DW_EH_PE_udata4;
1586 case 8:
1587 return DW_EH_PE_udata8;
1588 default:
e2e0b3e5 1589 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1590 }
1591}
1592
cfc14b3a 1593static CORE_ADDR
852483bc 1594read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1595 int ptr_len, const gdb_byte *buf,
1596 unsigned int *bytes_read_ptr,
ae0d2f24 1597 CORE_ADDR func_base)
cfc14b3a 1598{
68f6cf99 1599 ptrdiff_t offset;
cfc14b3a
MK
1600 CORE_ADDR base;
1601
1602 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1603 FDE's. */
1604 if (encoding & DW_EH_PE_indirect)
1605 internal_error (__FILE__, __LINE__,
e2e0b3e5 1606 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1607
68f6cf99
MK
1608 *bytes_read_ptr = 0;
1609
cfc14b3a
MK
1610 switch (encoding & 0x70)
1611 {
1612 case DW_EH_PE_absptr:
1613 base = 0;
1614 break;
1615 case DW_EH_PE_pcrel:
f2fec864 1616 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1617 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1618 break;
0912c7f2
MK
1619 case DW_EH_PE_datarel:
1620 base = unit->dbase;
1621 break;
0fd85043
CV
1622 case DW_EH_PE_textrel:
1623 base = unit->tbase;
1624 break;
03ac2a74 1625 case DW_EH_PE_funcrel:
ae0d2f24 1626 base = func_base;
03ac2a74 1627 break;
68f6cf99
MK
1628 case DW_EH_PE_aligned:
1629 base = 0;
852483bc 1630 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1631 if ((offset % ptr_len) != 0)
1632 {
1633 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1634 buf += *bytes_read_ptr;
1635 }
1636 break;
cfc14b3a 1637 default:
3e43a32a
MS
1638 internal_error (__FILE__, __LINE__,
1639 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1640 }
1641
b04de778 1642 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1643 {
1644 encoding |= encoding_for_size (ptr_len);
1645 if (bfd_get_sign_extend_vma (unit->abfd))
1646 encoding |= DW_EH_PE_signed;
1647 }
cfc14b3a
MK
1648
1649 switch (encoding & 0x0f)
1650 {
a81b10ae
MK
1651 case DW_EH_PE_uleb128:
1652 {
9fccedf7 1653 uint64_t value;
0d45f56e 1654 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1655
f664829e 1656 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1657 return base + value;
1658 }
cfc14b3a 1659 case DW_EH_PE_udata2:
68f6cf99 1660 *bytes_read_ptr += 2;
cfc14b3a
MK
1661 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1662 case DW_EH_PE_udata4:
68f6cf99 1663 *bytes_read_ptr += 4;
cfc14b3a
MK
1664 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1665 case DW_EH_PE_udata8:
68f6cf99 1666 *bytes_read_ptr += 8;
cfc14b3a 1667 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1668 case DW_EH_PE_sleb128:
1669 {
9fccedf7 1670 int64_t value;
0d45f56e 1671 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1672
f664829e 1673 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1674 return base + value;
1675 }
cfc14b3a 1676 case DW_EH_PE_sdata2:
68f6cf99 1677 *bytes_read_ptr += 2;
cfc14b3a
MK
1678 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1679 case DW_EH_PE_sdata4:
68f6cf99 1680 *bytes_read_ptr += 4;
cfc14b3a
MK
1681 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1682 case DW_EH_PE_sdata8:
68f6cf99 1683 *bytes_read_ptr += 8;
cfc14b3a
MK
1684 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1685 default:
3e43a32a
MS
1686 internal_error (__FILE__, __LINE__,
1687 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1688 }
1689}
1690\f
1691
b01c8410
PP
1692static int
1693bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1694{
b01c8410
PP
1695 ULONGEST cie_pointer = *(ULONGEST *) key;
1696 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1697
b01c8410
PP
1698 if (cie_pointer == cie->cie_pointer)
1699 return 0;
cfc14b3a 1700
b01c8410
PP
1701 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1702}
1703
1704/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1705static struct dwarf2_cie *
1706find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1707{
1708 struct dwarf2_cie **p_cie;
cfc14b3a 1709
65a97ab3
PP
1710 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1711 bsearch be non-NULL. */
1712 if (cie_table->entries == NULL)
1713 {
1714 gdb_assert (cie_table->num_entries == 0);
1715 return NULL;
1716 }
1717
b01c8410
PP
1718 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1719 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1720 if (p_cie != NULL)
1721 return *p_cie;
cfc14b3a
MK
1722 return NULL;
1723}
1724
b01c8410 1725/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1726static void
b01c8410 1727add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1728{
b01c8410
PP
1729 const int n = cie_table->num_entries;
1730
1731 gdb_assert (n < 1
1732 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1733
1734 cie_table->entries =
1735 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1736 cie_table->entries[n] = cie;
1737 cie_table->num_entries = n + 1;
1738}
1739
1740static int
1741bsearch_fde_cmp (const void *key, const void *element)
1742{
1743 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1744 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1745
b01c8410
PP
1746 if (seek_pc < fde->initial_location)
1747 return -1;
1748 if (seek_pc < fde->initial_location + fde->address_range)
1749 return 0;
1750 return 1;
cfc14b3a
MK
1751}
1752
1753/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1754 inital location associated with it into *PC. */
1755
1756static struct dwarf2_fde *
ac56253d 1757dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1758{
1759 struct objfile *objfile;
1760
1761 ALL_OBJFILES (objfile)
1762 {
b01c8410
PP
1763 struct dwarf2_fde_table *fde_table;
1764 struct dwarf2_fde **p_fde;
cfc14b3a 1765 CORE_ADDR offset;
b01c8410 1766 CORE_ADDR seek_pc;
cfc14b3a 1767
b01c8410
PP
1768 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1769 if (fde_table == NULL)
be391dca
TT
1770 {
1771 dwarf2_build_frame_info (objfile);
1772 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1773 }
1774 gdb_assert (fde_table != NULL);
1775
1776 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1777 continue;
1778
1779 gdb_assert (objfile->section_offsets);
1780 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1781
b01c8410
PP
1782 gdb_assert (fde_table->num_entries > 0);
1783 if (*pc < offset + fde_table->entries[0]->initial_location)
1784 continue;
1785
1786 seek_pc = *pc - offset;
1787 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1788 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1789 if (p_fde != NULL)
1790 {
1791 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1792 if (out_offset)
1793 *out_offset = offset;
b01c8410
PP
1794 return *p_fde;
1795 }
cfc14b3a 1796 }
cfc14b3a
MK
1797 return NULL;
1798}
1799
b01c8410 1800/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1801static void
b01c8410 1802add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1803{
b01c8410
PP
1804 if (fde->address_range == 0)
1805 /* Discard useless FDEs. */
1806 return;
1807
1808 fde_table->num_entries += 1;
1809 fde_table->entries =
1810 xrealloc (fde_table->entries,
1811 fde_table->num_entries * sizeof (fde_table->entries[0]));
1812 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1813}
1814
cfc14b3a 1815#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1816
8bd90839
FM
1817/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1818 or any of them. */
1819
1820enum eh_frame_type
1821{
1822 EH_CIE_TYPE_ID = 1 << 0,
1823 EH_FDE_TYPE_ID = 1 << 1,
1824 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1825};
1826
f664829e
DE
1827static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1828 const gdb_byte *start,
1829 int eh_frame_p,
1830 struct dwarf2_cie_table *cie_table,
1831 struct dwarf2_fde_table *fde_table,
1832 enum eh_frame_type entry_type);
8bd90839
FM
1833
1834/* Decode the next CIE or FDE, entry_type specifies the expected type.
1835 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1836
f664829e
DE
1837static const gdb_byte *
1838decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1839 int eh_frame_p,
b01c8410 1840 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1841 struct dwarf2_fde_table *fde_table,
1842 enum eh_frame_type entry_type)
cfc14b3a 1843{
5e2b427d 1844 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1845 const gdb_byte *buf, *end;
cfc14b3a
MK
1846 LONGEST length;
1847 unsigned int bytes_read;
6896c0c7
RH
1848 int dwarf64_p;
1849 ULONGEST cie_id;
cfc14b3a 1850 ULONGEST cie_pointer;
9fccedf7
DE
1851 int64_t sleb128;
1852 uint64_t uleb128;
cfc14b3a 1853
6896c0c7 1854 buf = start;
cfc14b3a
MK
1855 length = read_initial_length (unit->abfd, buf, &bytes_read);
1856 buf += bytes_read;
1857 end = buf + length;
1858
0963b4bd 1859 /* Are we still within the section? */
6896c0c7
RH
1860 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1861 return NULL;
1862
cfc14b3a
MK
1863 if (length == 0)
1864 return end;
1865
6896c0c7
RH
1866 /* Distinguish between 32 and 64-bit encoded frame info. */
1867 dwarf64_p = (bytes_read == 12);
cfc14b3a 1868
6896c0c7 1869 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1870 if (eh_frame_p)
1871 cie_id = 0;
1872 else if (dwarf64_p)
1873 cie_id = DW64_CIE_ID;
6896c0c7
RH
1874 else
1875 cie_id = DW_CIE_ID;
cfc14b3a
MK
1876
1877 if (dwarf64_p)
1878 {
1879 cie_pointer = read_8_bytes (unit->abfd, buf);
1880 buf += 8;
1881 }
1882 else
1883 {
1884 cie_pointer = read_4_bytes (unit->abfd, buf);
1885 buf += 4;
1886 }
1887
1888 if (cie_pointer == cie_id)
1889 {
1890 /* This is a CIE. */
1891 struct dwarf2_cie *cie;
1892 char *augmentation;
28ba0b33 1893 unsigned int cie_version;
cfc14b3a 1894
8bd90839
FM
1895 /* Check that a CIE was expected. */
1896 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1897 error (_("Found a CIE when not expecting it."));
1898
cfc14b3a
MK
1899 /* Record the offset into the .debug_frame section of this CIE. */
1900 cie_pointer = start - unit->dwarf_frame_buffer;
1901
1902 /* Check whether we've already read it. */
b01c8410 1903 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1904 return end;
1905
1906 cie = (struct dwarf2_cie *)
8b92e4d5 1907 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1908 sizeof (struct dwarf2_cie));
1909 cie->initial_instructions = NULL;
1910 cie->cie_pointer = cie_pointer;
1911
1912 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1913 depends on the target address size. */
1914 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1915
56c987f6
AO
1916 /* We'll determine the final value later, but we need to
1917 initialize it conservatively. */
1918 cie->signal_frame = 0;
1919
cfc14b3a 1920 /* Check version number. */
28ba0b33 1921 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1922 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1923 return NULL;
303b6f5d 1924 cie->version = cie_version;
cfc14b3a
MK
1925 buf += 1;
1926
1927 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1928 cie->augmentation = augmentation = (char *) buf;
852483bc 1929 buf += (strlen (augmentation) + 1);
cfc14b3a 1930
303b6f5d
DJ
1931 /* Ignore armcc augmentations. We only use them for quirks,
1932 and that doesn't happen until later. */
1933 if (strncmp (augmentation, "armcc", 5) == 0)
1934 augmentation += strlen (augmentation);
1935
cfc14b3a
MK
1936 /* The GCC 2.x "eh" augmentation has a pointer immediately
1937 following the augmentation string, so it must be handled
1938 first. */
1939 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1940 {
1941 /* Skip. */
5e2b427d 1942 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1943 augmentation += 2;
1944 }
1945
2dc7f7b3
TT
1946 if (cie->version >= 4)
1947 {
1948 /* FIXME: check that this is the same as from the CU header. */
1949 cie->addr_size = read_1_byte (unit->abfd, buf);
1950 ++buf;
1951 cie->segment_size = read_1_byte (unit->abfd, buf);
1952 ++buf;
1953 }
1954 else
1955 {
8da614df 1956 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1957 cie->segment_size = 0;
1958 }
8da614df
CV
1959 /* Address values in .eh_frame sections are defined to have the
1960 target's pointer size. Watchout: This breaks frame info for
1961 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1962 section exists as well. */
8da614df
CV
1963 if (eh_frame_p)
1964 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1965 else
1966 cie->ptr_size = cie->addr_size;
2dc7f7b3 1967
f664829e
DE
1968 buf = gdb_read_uleb128 (buf, end, &uleb128);
1969 if (buf == NULL)
1970 return NULL;
1971 cie->code_alignment_factor = uleb128;
cfc14b3a 1972
f664829e
DE
1973 buf = gdb_read_sleb128 (buf, end, &sleb128);
1974 if (buf == NULL)
1975 return NULL;
1976 cie->data_alignment_factor = sleb128;
cfc14b3a 1977
28ba0b33
PB
1978 if (cie_version == 1)
1979 {
1980 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1981 ++buf;
28ba0b33
PB
1982 }
1983 else
f664829e
DE
1984 {
1985 buf = gdb_read_uleb128 (buf, end, &uleb128);
1986 if (buf == NULL)
1987 return NULL;
1988 cie->return_address_register = uleb128;
1989 }
1990
4fc771b8 1991 cie->return_address_register
5e2b427d 1992 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1993 cie->return_address_register,
1994 eh_frame_p);
4bf8967c 1995
7131cb6e
RH
1996 cie->saw_z_augmentation = (*augmentation == 'z');
1997 if (cie->saw_z_augmentation)
cfc14b3a 1998 {
9fccedf7 1999 uint64_t length;
cfc14b3a 2000
f664829e
DE
2001 buf = gdb_read_uleb128 (buf, end, &length);
2002 if (buf == NULL)
6896c0c7 2003 return NULL;
cfc14b3a
MK
2004 cie->initial_instructions = buf + length;
2005 augmentation++;
2006 }
2007
2008 while (*augmentation)
2009 {
2010 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2011 if (*augmentation == 'L')
2012 {
2013 /* Skip. */
2014 buf++;
2015 augmentation++;
2016 }
2017
2018 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2019 else if (*augmentation == 'R')
2020 {
2021 cie->encoding = *buf++;
2022 augmentation++;
2023 }
2024
2025 /* "P" indicates a personality routine in the CIE augmentation. */
2026 else if (*augmentation == 'P')
2027 {
1234d960 2028 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2029 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2030 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2031 buf, &bytes_read, 0);
f724bf08 2032 buf += bytes_read;
cfc14b3a
MK
2033 augmentation++;
2034 }
2035
56c987f6
AO
2036 /* "S" indicates a signal frame, such that the return
2037 address must not be decremented to locate the call frame
2038 info for the previous frame; it might even be the first
2039 instruction of a function, so decrementing it would take
2040 us to a different function. */
2041 else if (*augmentation == 'S')
2042 {
2043 cie->signal_frame = 1;
2044 augmentation++;
2045 }
2046
3e9a2e52
DJ
2047 /* Otherwise we have an unknown augmentation. Assume that either
2048 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2049 else
2050 {
3e9a2e52
DJ
2051 if (cie->initial_instructions)
2052 buf = cie->initial_instructions;
cfc14b3a
MK
2053 break;
2054 }
2055 }
2056
2057 cie->initial_instructions = buf;
2058 cie->end = end;
b01c8410 2059 cie->unit = unit;
cfc14b3a 2060
b01c8410 2061 add_cie (cie_table, cie);
cfc14b3a
MK
2062 }
2063 else
2064 {
2065 /* This is a FDE. */
2066 struct dwarf2_fde *fde;
2067
8bd90839
FM
2068 /* Check that an FDE was expected. */
2069 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2070 error (_("Found an FDE when not expecting it."));
2071
6896c0c7
RH
2072 /* In an .eh_frame section, the CIE pointer is the delta between the
2073 address within the FDE where the CIE pointer is stored and the
2074 address of the CIE. Convert it to an offset into the .eh_frame
2075 section. */
cfc14b3a
MK
2076 if (eh_frame_p)
2077 {
cfc14b3a
MK
2078 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2079 cie_pointer -= (dwarf64_p ? 8 : 4);
2080 }
2081
6896c0c7
RH
2082 /* In either case, validate the result is still within the section. */
2083 if (cie_pointer >= unit->dwarf_frame_size)
2084 return NULL;
2085
cfc14b3a 2086 fde = (struct dwarf2_fde *)
8b92e4d5 2087 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2088 sizeof (struct dwarf2_fde));
b01c8410 2089 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2090 if (fde->cie == NULL)
2091 {
2092 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2093 eh_frame_p, cie_table, fde_table,
2094 EH_CIE_TYPE_ID);
b01c8410 2095 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2096 }
2097
2098 gdb_assert (fde->cie != NULL);
2099
2100 fde->initial_location =
8da614df 2101 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
ae0d2f24 2102 buf, &bytes_read, 0);
cfc14b3a
MK
2103 buf += bytes_read;
2104
2105 fde->address_range =
ae0d2f24 2106 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2107 fde->cie->ptr_size, buf, &bytes_read, 0);
cfc14b3a
MK
2108 buf += bytes_read;
2109
7131cb6e
RH
2110 /* A 'z' augmentation in the CIE implies the presence of an
2111 augmentation field in the FDE as well. The only thing known
2112 to be in here at present is the LSDA entry for EH. So we
2113 can skip the whole thing. */
2114 if (fde->cie->saw_z_augmentation)
2115 {
9fccedf7 2116 uint64_t length;
7131cb6e 2117
f664829e
DE
2118 buf = gdb_read_uleb128 (buf, end, &length);
2119 if (buf == NULL)
2120 return NULL;
2121 buf += length;
6896c0c7
RH
2122 if (buf > end)
2123 return NULL;
7131cb6e
RH
2124 }
2125
cfc14b3a
MK
2126 fde->instructions = buf;
2127 fde->end = end;
2128
4bf8967c
AS
2129 fde->eh_frame_p = eh_frame_p;
2130
b01c8410 2131 add_fde (fde_table, fde);
cfc14b3a
MK
2132 }
2133
2134 return end;
2135}
6896c0c7 2136
8bd90839
FM
2137/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2138 expect an FDE or a CIE. */
2139
f664829e
DE
2140static const gdb_byte *
2141decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2142 int eh_frame_p,
b01c8410 2143 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2144 struct dwarf2_fde_table *fde_table,
2145 enum eh_frame_type entry_type)
6896c0c7
RH
2146{
2147 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2148 const gdb_byte *ret;
6896c0c7
RH
2149 ptrdiff_t start_offset;
2150
2151 while (1)
2152 {
b01c8410 2153 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2154 cie_table, fde_table, entry_type);
6896c0c7
RH
2155 if (ret != NULL)
2156 break;
2157
2158 /* We have corrupt input data of some form. */
2159
2160 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2161 and mismatches wrt padding and alignment of debug sections. */
2162 /* Note that there is no requirement in the standard for any
2163 alignment at all in the frame unwind sections. Testing for
2164 alignment before trying to interpret data would be incorrect.
2165
2166 However, GCC traditionally arranged for frame sections to be
2167 sized such that the FDE length and CIE fields happen to be
2168 aligned (in theory, for performance). This, unfortunately,
2169 was done with .align directives, which had the side effect of
2170 forcing the section to be aligned by the linker.
2171
2172 This becomes a problem when you have some other producer that
2173 creates frame sections that are not as strictly aligned. That
2174 produces a hole in the frame info that gets filled by the
2175 linker with zeros.
2176
2177 The GCC behaviour is arguably a bug, but it's effectively now
2178 part of the ABI, so we're now stuck with it, at least at the
2179 object file level. A smart linker may decide, in the process
2180 of compressing duplicate CIE information, that it can rewrite
2181 the entire output section without this extra padding. */
2182
2183 start_offset = start - unit->dwarf_frame_buffer;
2184 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2185 {
2186 start += 4 - (start_offset & 3);
2187 workaround = ALIGN4;
2188 continue;
2189 }
2190 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2191 {
2192 start += 8 - (start_offset & 7);
2193 workaround = ALIGN8;
2194 continue;
2195 }
2196
2197 /* Nothing left to try. Arrange to return as if we've consumed
2198 the entire input section. Hopefully we'll get valid info from
2199 the other of .debug_frame/.eh_frame. */
2200 workaround = FAIL;
2201 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2202 break;
2203 }
2204
2205 switch (workaround)
2206 {
2207 case NONE:
2208 break;
2209
2210 case ALIGN4:
3e43a32a
MS
2211 complaint (&symfile_complaints, _("\
2212Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2213 unit->dwarf_frame_section->owner->filename,
2214 unit->dwarf_frame_section->name);
2215 break;
2216
2217 case ALIGN8:
3e43a32a
MS
2218 complaint (&symfile_complaints, _("\
2219Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2220 unit->dwarf_frame_section->owner->filename,
2221 unit->dwarf_frame_section->name);
2222 break;
2223
2224 default:
2225 complaint (&symfile_complaints,
e2e0b3e5 2226 _("Corrupt data in %s:%s"),
6896c0c7
RH
2227 unit->dwarf_frame_section->owner->filename,
2228 unit->dwarf_frame_section->name);
2229 break;
2230 }
2231
2232 return ret;
2233}
cfc14b3a 2234\f
b01c8410
PP
2235static int
2236qsort_fde_cmp (const void *a, const void *b)
2237{
2238 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2239 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2240
b01c8410 2241 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2242 {
2243 if (aa->address_range != bb->address_range
2244 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2245 /* Linker bug, e.g. gold/10400.
2246 Work around it by keeping stable sort order. */
2247 return (a < b) ? -1 : 1;
2248 else
2249 /* Put eh_frame entries after debug_frame ones. */
2250 return aa->eh_frame_p - bb->eh_frame_p;
2251 }
b01c8410
PP
2252
2253 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2254}
2255
cfc14b3a
MK
2256void
2257dwarf2_build_frame_info (struct objfile *objfile)
2258{
ae0d2f24 2259 struct comp_unit *unit;
f664829e 2260 const gdb_byte *frame_ptr;
b01c8410
PP
2261 struct dwarf2_cie_table cie_table;
2262 struct dwarf2_fde_table fde_table;
be391dca 2263 struct dwarf2_fde_table *fde_table2;
8bd90839 2264 volatile struct gdb_exception e;
b01c8410
PP
2265
2266 cie_table.num_entries = 0;
2267 cie_table.entries = NULL;
2268
2269 fde_table.num_entries = 0;
2270 fde_table.entries = NULL;
cfc14b3a
MK
2271
2272 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2273 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2274 sizeof (struct comp_unit));
2275 unit->abfd = objfile->obfd;
2276 unit->objfile = objfile;
2277 unit->dbase = 0;
2278 unit->tbase = 0;
cfc14b3a 2279
d40102a1 2280 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2281 {
d40102a1
JB
2282 /* Do not read .eh_frame from separate file as they must be also
2283 present in the main file. */
2284 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2285 &unit->dwarf_frame_section,
2286 &unit->dwarf_frame_buffer,
2287 &unit->dwarf_frame_size);
2288 if (unit->dwarf_frame_size)
b01c8410 2289 {
d40102a1
JB
2290 asection *got, *txt;
2291
2292 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2293 that is used for the i386/amd64 target, which currently is
2294 the only target in GCC that supports/uses the
2295 DW_EH_PE_datarel encoding. */
2296 got = bfd_get_section_by_name (unit->abfd, ".got");
2297 if (got)
2298 unit->dbase = got->vma;
2299
2300 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2301 so far. */
2302 txt = bfd_get_section_by_name (unit->abfd, ".text");
2303 if (txt)
2304 unit->tbase = txt->vma;
2305
8bd90839
FM
2306 TRY_CATCH (e, RETURN_MASK_ERROR)
2307 {
2308 frame_ptr = unit->dwarf_frame_buffer;
2309 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2310 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2311 &cie_table, &fde_table,
2312 EH_CIE_OR_FDE_TYPE_ID);
2313 }
2314
2315 if (e.reason < 0)
2316 {
2317 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2318 objfile_name (objfile), e.message);
8bd90839
FM
2319
2320 if (fde_table.num_entries != 0)
2321 {
2322 xfree (fde_table.entries);
2323 fde_table.entries = NULL;
2324 fde_table.num_entries = 0;
2325 }
2326 /* The cie_table is discarded by the next if. */
2327 }
d40102a1
JB
2328
2329 if (cie_table.num_entries != 0)
2330 {
2331 /* Reinit cie_table: debug_frame has different CIEs. */
2332 xfree (cie_table.entries);
2333 cie_table.num_entries = 0;
2334 cie_table.entries = NULL;
2335 }
b01c8410 2336 }
cfc14b3a
MK
2337 }
2338
3017a003 2339 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2340 &unit->dwarf_frame_section,
2341 &unit->dwarf_frame_buffer,
2342 &unit->dwarf_frame_size);
2343 if (unit->dwarf_frame_size)
cfc14b3a 2344 {
8bd90839
FM
2345 int num_old_fde_entries = fde_table.num_entries;
2346
2347 TRY_CATCH (e, RETURN_MASK_ERROR)
2348 {
2349 frame_ptr = unit->dwarf_frame_buffer;
2350 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2351 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2352 &cie_table, &fde_table,
2353 EH_CIE_OR_FDE_TYPE_ID);
2354 }
2355 if (e.reason < 0)
2356 {
2357 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2358 objfile_name (objfile), e.message);
8bd90839
FM
2359
2360 if (fde_table.num_entries != 0)
2361 {
2362 fde_table.num_entries = num_old_fde_entries;
2363 if (num_old_fde_entries == 0)
2364 {
2365 xfree (fde_table.entries);
2366 fde_table.entries = NULL;
2367 }
2368 else
2369 {
2370 fde_table.entries = xrealloc (fde_table.entries,
2371 fde_table.num_entries *
2372 sizeof (fde_table.entries[0]));
2373 }
2374 }
2375 fde_table.num_entries = num_old_fde_entries;
2376 /* The cie_table is discarded by the next if. */
2377 }
b01c8410
PP
2378 }
2379
2380 /* Discard the cie_table, it is no longer needed. */
2381 if (cie_table.num_entries != 0)
2382 {
2383 xfree (cie_table.entries);
2384 cie_table.entries = NULL; /* Paranoia. */
2385 cie_table.num_entries = 0; /* Paranoia. */
2386 }
2387
be391dca
TT
2388 /* Copy fde_table to obstack: it is needed at runtime. */
2389 fde_table2 = (struct dwarf2_fde_table *)
2390 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2391
2392 if (fde_table.num_entries == 0)
2393 {
2394 fde_table2->entries = NULL;
2395 fde_table2->num_entries = 0;
2396 }
2397 else
b01c8410 2398 {
875cdfbb
PA
2399 struct dwarf2_fde *fde_prev = NULL;
2400 struct dwarf2_fde *first_non_zero_fde = NULL;
2401 int i;
b01c8410
PP
2402
2403 /* Prepare FDE table for lookups. */
2404 qsort (fde_table.entries, fde_table.num_entries,
2405 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2406
875cdfbb
PA
2407 /* Check for leftovers from --gc-sections. The GNU linker sets
2408 the relevant symbols to zero, but doesn't zero the FDE *end*
2409 ranges because there's no relocation there. It's (offset,
2410 length), not (start, end). On targets where address zero is
2411 just another valid address this can be a problem, since the
2412 FDEs appear to be non-empty in the output --- we could pick
2413 out the wrong FDE. To work around this, when overlaps are
2414 detected, we prefer FDEs that do not start at zero.
2415
2416 Start by finding the first FDE with non-zero start. Below
2417 we'll discard all FDEs that start at zero and overlap this
2418 one. */
2419 for (i = 0; i < fde_table.num_entries; i++)
2420 {
2421 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2422
875cdfbb
PA
2423 if (fde->initial_location != 0)
2424 {
2425 first_non_zero_fde = fde;
2426 break;
2427 }
2428 }
2429
2430 /* Since we'll be doing bsearch, squeeze out identical (except
2431 for eh_frame_p) fde entries so bsearch result is predictable.
2432 Also discard leftovers from --gc-sections. */
be391dca 2433 fde_table2->num_entries = 0;
875cdfbb
PA
2434 for (i = 0; i < fde_table.num_entries; i++)
2435 {
2436 struct dwarf2_fde *fde = fde_table.entries[i];
2437
2438 if (fde->initial_location == 0
2439 && first_non_zero_fde != NULL
2440 && (first_non_zero_fde->initial_location
2441 < fde->initial_location + fde->address_range))
2442 continue;
2443
2444 if (fde_prev != NULL
2445 && fde_prev->initial_location == fde->initial_location)
2446 continue;
2447
2448 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2449 sizeof (fde_table.entries[0]));
2450 ++fde_table2->num_entries;
2451 fde_prev = fde;
2452 }
b01c8410 2453 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2454
2455 /* Discard the original fde_table. */
2456 xfree (fde_table.entries);
cfc14b3a 2457 }
be391dca
TT
2458
2459 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2460}
0d0e1a63
MK
2461
2462/* Provide a prototype to silence -Wmissing-prototypes. */
2463void _initialize_dwarf2_frame (void);
2464
2465void
2466_initialize_dwarf2_frame (void)
2467{
030f20e1 2468 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2469 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2470}
This page took 0.983646 seconds and 4 git commands to generate.