Switch the license of all .c files to GPLv3.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
6aba47ca 3 Copyright (C) 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
24#include "elf/dwarf2.h"
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
cfc14b3a
MK
34
35#include "gdb_assert.h"
36#include "gdb_string.h"
37
6896c0c7 38#include "complaints.h"
cfc14b3a
MK
39#include "dwarf2-frame.h"
40
41/* Call Frame Information (CFI). */
42
43/* Common Information Entry (CIE). */
44
45struct dwarf2_cie
46{
47 /* Offset into the .debug_frame section where this CIE was found.
48 Used to identify this CIE. */
49 ULONGEST cie_pointer;
50
51 /* Constant that is factored out of all advance location
52 instructions. */
53 ULONGEST code_alignment_factor;
54
55 /* Constants that is factored out of all offset instructions. */
56 LONGEST data_alignment_factor;
57
58 /* Return address column. */
59 ULONGEST return_address_register;
60
61 /* Instruction sequence to initialize a register set. */
852483bc
MK
62 gdb_byte *initial_instructions;
63 gdb_byte *end;
cfc14b3a 64
303b6f5d
DJ
65 /* Saved augmentation, in case it's needed later. */
66 char *augmentation;
67
cfc14b3a 68 /* Encoding of addresses. */
852483bc 69 gdb_byte encoding;
cfc14b3a 70
7131cb6e
RH
71 /* True if a 'z' augmentation existed. */
72 unsigned char saw_z_augmentation;
73
56c987f6
AO
74 /* True if an 'S' augmentation existed. */
75 unsigned char signal_frame;
76
303b6f5d
DJ
77 /* The version recorded in the CIE. */
78 unsigned char version;
79
cfc14b3a
MK
80 struct dwarf2_cie *next;
81};
82
83/* Frame Description Entry (FDE). */
84
85struct dwarf2_fde
86{
87 /* CIE for this FDE. */
88 struct dwarf2_cie *cie;
89
90 /* First location associated with this FDE. */
91 CORE_ADDR initial_location;
92
93 /* Number of bytes of program instructions described by this FDE. */
94 CORE_ADDR address_range;
95
96 /* Instruction sequence. */
852483bc
MK
97 gdb_byte *instructions;
98 gdb_byte *end;
cfc14b3a 99
4bf8967c
AS
100 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
101 section. */
102 unsigned char eh_frame_p;
103
cfc14b3a
MK
104 struct dwarf2_fde *next;
105};
106
107static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
4fc771b8
DJ
108
109static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
110 int eh_frame_p);
cfc14b3a
MK
111\f
112
113/* Structure describing a frame state. */
114
115struct dwarf2_frame_state
116{
117 /* Each register save state can be described in terms of a CFA slot,
118 another register, or a location expression. */
119 struct dwarf2_frame_state_reg_info
120 {
05cbe71a 121 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
122 int num_regs;
123
124 /* Used to implement DW_CFA_remember_state. */
125 struct dwarf2_frame_state_reg_info *prev;
126 } regs;
127
128 LONGEST cfa_offset;
129 ULONGEST cfa_reg;
852483bc 130 gdb_byte *cfa_exp;
cfc14b3a
MK
131 enum {
132 CFA_UNSET,
133 CFA_REG_OFFSET,
134 CFA_EXP
135 } cfa_how;
136
137 /* The PC described by the current frame state. */
138 CORE_ADDR pc;
139
140 /* Initial register set from the CIE.
141 Used to implement DW_CFA_restore. */
142 struct dwarf2_frame_state_reg_info initial;
143
144 /* The information we care about from the CIE. */
145 LONGEST data_align;
146 ULONGEST code_align;
147 ULONGEST retaddr_column;
303b6f5d
DJ
148
149 /* Flags for known producer quirks. */
150
151 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
152 and DW_CFA_def_cfa_offset takes a factored offset. */
153 int armcc_cfa_offsets_sf;
154
155 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
156 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
157 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
158};
159
160/* Store the length the expression for the CFA in the `cfa_reg' field,
161 which is unused in that case. */
162#define cfa_exp_len cfa_reg
163
f57d151a 164/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
165 columns. If necessary, enlarge the register set. */
166
167static void
168dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
169 int num_regs)
170{
171 size_t size = sizeof (struct dwarf2_frame_state_reg);
172
173 if (num_regs <= rs->num_regs)
174 return;
175
176 rs->reg = (struct dwarf2_frame_state_reg *)
177 xrealloc (rs->reg, num_regs * size);
178
179 /* Initialize newly allocated registers. */
2473a4a9 180 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
181 rs->num_regs = num_regs;
182}
183
184/* Copy the register columns in register set RS into newly allocated
185 memory and return a pointer to this newly created copy. */
186
187static struct dwarf2_frame_state_reg *
188dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
189{
d10891d4 190 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
191 struct dwarf2_frame_state_reg *reg;
192
193 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
194 memcpy (reg, rs->reg, size);
195
196 return reg;
197}
198
199/* Release the memory allocated to register set RS. */
200
201static void
202dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
203{
204 if (rs)
205 {
206 dwarf2_frame_state_free_regs (rs->prev);
207
208 xfree (rs->reg);
209 xfree (rs);
210 }
211}
212
213/* Release the memory allocated to the frame state FS. */
214
215static void
216dwarf2_frame_state_free (void *p)
217{
218 struct dwarf2_frame_state *fs = p;
219
220 dwarf2_frame_state_free_regs (fs->initial.prev);
221 dwarf2_frame_state_free_regs (fs->regs.prev);
222 xfree (fs->initial.reg);
223 xfree (fs->regs.reg);
224 xfree (fs);
225}
226\f
227
228/* Helper functions for execute_stack_op. */
229
230static CORE_ADDR
231read_reg (void *baton, int reg)
232{
233 struct frame_info *next_frame = (struct frame_info *) baton;
05cbe71a 234 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a 235 int regnum;
852483bc 236 gdb_byte *buf;
cfc14b3a 237
055d23b8 238 regnum = gdbarch_dwarf2_reg_to_regnum (current_gdbarch, reg);
cfc14b3a 239
852483bc 240 buf = alloca (register_size (gdbarch, regnum));
cfc14b3a 241 frame_unwind_register (next_frame, regnum, buf);
f2da6b3a
DJ
242
243 /* Convert the register to an integer. This returns a LONGEST
244 rather than a CORE_ADDR, but unpack_pointer does the same thing
245 under the covers, and this makes more sense for non-pointer
246 registers. Maybe read_reg and the associated interfaces should
247 deal with "struct value" instead of CORE_ADDR. */
248 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
249}
250
251static void
852483bc 252read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
253{
254 read_memory (addr, buf, len);
255}
256
257static void
852483bc 258no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
cfc14b3a
MK
259{
260 internal_error (__FILE__, __LINE__,
e2e0b3e5 261 _("Support for DW_OP_fbreg is unimplemented"));
cfc14b3a
MK
262}
263
264static CORE_ADDR
265no_get_tls_address (void *baton, CORE_ADDR offset)
266{
267 internal_error (__FILE__, __LINE__,
e2e0b3e5 268 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
cfc14b3a
MK
269}
270
271static CORE_ADDR
852483bc 272execute_stack_op (gdb_byte *exp, ULONGEST len,
cfc14b3a
MK
273 struct frame_info *next_frame, CORE_ADDR initial)
274{
275 struct dwarf_expr_context *ctx;
276 CORE_ADDR result;
277
278 ctx = new_dwarf_expr_context ();
279 ctx->baton = next_frame;
280 ctx->read_reg = read_reg;
281 ctx->read_mem = read_mem;
282 ctx->get_frame_base = no_get_frame_base;
283 ctx->get_tls_address = no_get_tls_address;
284
285 dwarf_expr_push (ctx, initial);
286 dwarf_expr_eval (ctx, exp, len);
287 result = dwarf_expr_fetch (ctx, 0);
288
289 if (ctx->in_reg)
290 result = read_reg (next_frame, result);
291
292 free_dwarf_expr_context (ctx);
293
294 return result;
295}
296\f
297
298static void
852483bc 299execute_cfa_program (gdb_byte *insn_ptr, gdb_byte *insn_end,
cfc14b3a 300 struct frame_info *next_frame,
4bf8967c 301 struct dwarf2_frame_state *fs, int eh_frame_p)
cfc14b3a
MK
302{
303 CORE_ADDR pc = frame_pc_unwind (next_frame);
304 int bytes_read;
4bf8967c 305 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a
MK
306
307 while (insn_ptr < insn_end && fs->pc <= pc)
308 {
852483bc 309 gdb_byte insn = *insn_ptr++;
cfc14b3a
MK
310 ULONGEST utmp, reg;
311 LONGEST offset;
312
313 if ((insn & 0xc0) == DW_CFA_advance_loc)
314 fs->pc += (insn & 0x3f) * fs->code_align;
315 else if ((insn & 0xc0) == DW_CFA_offset)
316 {
317 reg = insn & 0x3f;
4fc771b8 318 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
319 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
320 offset = utmp * fs->data_align;
321 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 322 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
323 fs->regs.reg[reg].loc.offset = offset;
324 }
325 else if ((insn & 0xc0) == DW_CFA_restore)
326 {
327 gdb_assert (fs->initial.reg);
328 reg = insn & 0x3f;
4fc771b8 329 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 330 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
92ad9f6b
FR
331 if (reg < fs->initial.num_regs)
332 fs->regs.reg[reg] = fs->initial.reg[reg];
333 else
334 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
335
336 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
337 complaint (&symfile_complaints, _("\
338incomplete CFI data; DW_CFA_restore unspecified\n\
339register %s (#%d) at 0x%s"),
c9f4d572 340 gdbarch_register_name
055d23b8
UW
341 (current_gdbarch, gdbarch_dwarf2_reg_to_regnum
342 (current_gdbarch, reg)),
343 gdbarch_dwarf2_reg_to_regnum (current_gdbarch, reg),
344 paddr (fs->pc));
cfc14b3a
MK
345 }
346 else
347 {
348 switch (insn)
349 {
350 case DW_CFA_set_loc:
351 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
352 insn_ptr += bytes_read;
353 break;
354
355 case DW_CFA_advance_loc1:
356 utmp = extract_unsigned_integer (insn_ptr, 1);
357 fs->pc += utmp * fs->code_align;
358 insn_ptr++;
359 break;
360 case DW_CFA_advance_loc2:
361 utmp = extract_unsigned_integer (insn_ptr, 2);
362 fs->pc += utmp * fs->code_align;
363 insn_ptr += 2;
364 break;
365 case DW_CFA_advance_loc4:
366 utmp = extract_unsigned_integer (insn_ptr, 4);
367 fs->pc += utmp * fs->code_align;
368 insn_ptr += 4;
369 break;
370
371 case DW_CFA_offset_extended:
372 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 373 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
374 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
375 offset = utmp * fs->data_align;
376 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 377 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
378 fs->regs.reg[reg].loc.offset = offset;
379 break;
380
381 case DW_CFA_restore_extended:
382 gdb_assert (fs->initial.reg);
383 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 384 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
385 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
386 fs->regs.reg[reg] = fs->initial.reg[reg];
387 break;
388
389 case DW_CFA_undefined:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 391 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 392 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 393 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
394 break;
395
396 case DW_CFA_same_value:
397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 398 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 399 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 400 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
401 break;
402
403 case DW_CFA_register:
404 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 405 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 406 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 407 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 408 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 409 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
410 fs->regs.reg[reg].loc.reg = utmp;
411 break;
412
413 case DW_CFA_remember_state:
414 {
415 struct dwarf2_frame_state_reg_info *new_rs;
416
417 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
418 *new_rs = fs->regs;
419 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
420 fs->regs.prev = new_rs;
421 }
422 break;
423
424 case DW_CFA_restore_state:
425 {
426 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
427
50ea7769
MK
428 if (old_rs == NULL)
429 {
e2e0b3e5
AC
430 complaint (&symfile_complaints, _("\
431bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs->pc));
50ea7769
MK
432 }
433 else
434 {
435 xfree (fs->regs.reg);
436 fs->regs = *old_rs;
437 xfree (old_rs);
438 }
cfc14b3a
MK
439 }
440 break;
441
442 case DW_CFA_def_cfa:
443 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
444 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
445
446 if (fs->armcc_cfa_offsets_sf)
447 utmp *= fs->data_align;
448
cfc14b3a
MK
449 fs->cfa_offset = utmp;
450 fs->cfa_how = CFA_REG_OFFSET;
451 break;
452
453 case DW_CFA_def_cfa_register:
454 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
4fc771b8
DJ
455 fs->cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->cfa_reg,
456 eh_frame_p);
cfc14b3a
MK
457 fs->cfa_how = CFA_REG_OFFSET;
458 break;
459
460 case DW_CFA_def_cfa_offset:
852483bc 461 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
462
463 if (fs->armcc_cfa_offsets_sf)
464 utmp *= fs->data_align;
465
852483bc 466 fs->cfa_offset = utmp;
cfc14b3a
MK
467 /* cfa_how deliberately not set. */
468 break;
469
a8504492
MK
470 case DW_CFA_nop:
471 break;
472
cfc14b3a
MK
473 case DW_CFA_def_cfa_expression:
474 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
475 fs->cfa_exp = insn_ptr;
476 fs->cfa_how = CFA_EXP;
477 insn_ptr += fs->cfa_exp_len;
478 break;
479
480 case DW_CFA_expression:
481 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 482 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
483 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
484 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
485 fs->regs.reg[reg].loc.exp = insn_ptr;
486 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 487 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
488 insn_ptr += utmp;
489 break;
490
a8504492
MK
491 case DW_CFA_offset_extended_sf:
492 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
a8504492 494 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 495 offset *= fs->data_align;
a8504492 496 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 497 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
498 fs->regs.reg[reg].loc.offset = offset;
499 break;
500
46ea248b
AO
501 case DW_CFA_val_offset:
502 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
505 offset = utmp * fs->data_align;
506 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
507 fs->regs.reg[reg].loc.offset = offset;
508 break;
509
510 case DW_CFA_val_offset_sf:
511 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
512 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
513 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
514 offset *= fs->data_align;
515 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
516 fs->regs.reg[reg].loc.offset = offset;
517 break;
518
519 case DW_CFA_val_expression:
520 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
521 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
522 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
523 fs->regs.reg[reg].loc.exp = insn_ptr;
524 fs->regs.reg[reg].exp_len = utmp;
525 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
526 insn_ptr += utmp;
527 break;
528
a8504492
MK
529 case DW_CFA_def_cfa_sf:
530 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
4fc771b8
DJ
531 fs->cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->cfa_reg,
532 eh_frame_p);
a8504492
MK
533 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
534 fs->cfa_offset = offset * fs->data_align;
535 fs->cfa_how = CFA_REG_OFFSET;
536 break;
537
538 case DW_CFA_def_cfa_offset_sf:
539 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
540 fs->cfa_offset = offset * fs->data_align;
541 /* cfa_how deliberately not set. */
cfc14b3a
MK
542 break;
543
a77f4086
MK
544 case DW_CFA_GNU_window_save:
545 /* This is SPARC-specific code, and contains hard-coded
546 constants for the register numbering scheme used by
547 GCC. Rather than having a architecture-specific
548 operation that's only ever used by a single
549 architecture, we provide the implementation here.
550 Incidentally that's what GCC does too in its
551 unwinder. */
552 {
553 struct gdbarch *gdbarch = get_frame_arch (next_frame);
554 int size = register_size(gdbarch, 0);
555 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
556 for (reg = 8; reg < 16; reg++)
557 {
558 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
559 fs->regs.reg[reg].loc.reg = reg + 16;
560 }
561 for (reg = 16; reg < 32; reg++)
562 {
563 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
564 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
565 }
566 }
567 break;
568
cfc14b3a
MK
569 case DW_CFA_GNU_args_size:
570 /* Ignored. */
571 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
572 break;
573
58894217
JK
574 case DW_CFA_GNU_negative_offset_extended:
575 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 576 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
58894217
JK
577 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
578 offset *= fs->data_align;
579 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
580 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
581 fs->regs.reg[reg].loc.offset = -offset;
582 break;
583
cfc14b3a 584 default:
e2e0b3e5 585 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
cfc14b3a
MK
586 }
587 }
588 }
589
590 /* Don't allow remember/restore between CIE and FDE programs. */
591 dwarf2_frame_state_free_regs (fs->regs.prev);
592 fs->regs.prev = NULL;
593}
8f22cb90 594\f
cfc14b3a 595
8f22cb90 596/* Architecture-specific operations. */
cfc14b3a 597
8f22cb90
MK
598/* Per-architecture data key. */
599static struct gdbarch_data *dwarf2_frame_data;
600
601struct dwarf2_frame_ops
602{
603 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
604 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
605 struct frame_info *);
3ed09a32
DJ
606
607 /* Check whether the frame preceding NEXT_FRAME will be a signal
608 trampoline. */
609 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 610
4fc771b8
DJ
611 /* Convert .eh_frame register number to DWARF register number, or
612 adjust .debug_frame register number. */
613 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
614};
615
8f22cb90
MK
616/* Default architecture-specific register state initialization
617 function. */
618
619static void
620dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1
DM
621 struct dwarf2_frame_state_reg *reg,
622 struct frame_info *next_frame)
8f22cb90
MK
623{
624 /* If we have a register that acts as a program counter, mark it as
625 a destination for the return address. If we have a register that
626 serves as the stack pointer, arrange for it to be filled with the
627 call frame address (CFA). The other registers are marked as
628 unspecified.
629
630 We copy the return address to the program counter, since many
631 parts in GDB assume that it is possible to get the return address
632 by unwinding the program counter register. However, on ISA's
633 with a dedicated return address register, the CFI usually only
634 contains information to unwind that return address register.
635
636 The reason we're treating the stack pointer special here is
637 because in many cases GCC doesn't emit CFI for the stack pointer
638 and implicitly assumes that it is equal to the CFA. This makes
639 some sense since the DWARF specification (version 3, draft 8,
640 p. 102) says that:
641
642 "Typically, the CFA is defined to be the value of the stack
643 pointer at the call site in the previous frame (which may be
644 different from its value on entry to the current frame)."
645
646 However, this isn't true for all platforms supported by GCC
647 (e.g. IBM S/390 and zSeries). Those architectures should provide
648 their own architecture-specific initialization function. */
05cbe71a 649
3e8c568d 650 if (regnum == gdbarch_pc_regnum (current_gdbarch))
8f22cb90 651 reg->how = DWARF2_FRAME_REG_RA;
3e8c568d 652 else if (regnum == gdbarch_sp_regnum (current_gdbarch))
8f22cb90
MK
653 reg->how = DWARF2_FRAME_REG_CFA;
654}
05cbe71a 655
8f22cb90 656/* Return a default for the architecture-specific operations. */
05cbe71a 657
8f22cb90 658static void *
030f20e1 659dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
660{
661 struct dwarf2_frame_ops *ops;
662
030f20e1 663 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
664 ops->init_reg = dwarf2_frame_default_init_reg;
665 return ops;
666}
05cbe71a 667
8f22cb90
MK
668/* Set the architecture-specific register state initialization
669 function for GDBARCH to INIT_REG. */
670
671void
672dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
673 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
674 struct dwarf2_frame_state_reg *,
675 struct frame_info *))
8f22cb90 676{
030f20e1 677 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 678
8f22cb90
MK
679 ops->init_reg = init_reg;
680}
681
682/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
683
684static void
685dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1
DM
686 struct dwarf2_frame_state_reg *reg,
687 struct frame_info *next_frame)
05cbe71a 688{
030f20e1 689 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 690
aff37fc1 691 ops->init_reg (gdbarch, regnum, reg, next_frame);
05cbe71a 692}
3ed09a32
DJ
693
694/* Set the architecture-specific signal trampoline recognition
695 function for GDBARCH to SIGNAL_FRAME_P. */
696
697void
698dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
699 int (*signal_frame_p) (struct gdbarch *,
700 struct frame_info *))
701{
702 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
703
704 ops->signal_frame_p = signal_frame_p;
705}
706
707/* Query the architecture-specific signal frame recognizer for
708 NEXT_FRAME. */
709
710static int
711dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
712 struct frame_info *next_frame)
713{
714 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
715
716 if (ops->signal_frame_p == NULL)
717 return 0;
718 return ops->signal_frame_p (gdbarch, next_frame);
719}
4bf8967c 720
4fc771b8
DJ
721/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
722 register numbers. */
4bf8967c
AS
723
724void
4fc771b8
DJ
725dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
726 int (*adjust_regnum) (struct gdbarch *,
727 int, int))
4bf8967c
AS
728{
729 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
730
4fc771b8 731 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
732}
733
4fc771b8
DJ
734/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
735 register. */
4bf8967c 736
4fc771b8
DJ
737static int
738dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
4bf8967c
AS
739{
740 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
741
4fc771b8 742 if (ops->adjust_regnum == NULL)
4bf8967c 743 return regnum;
4fc771b8 744 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 745}
303b6f5d
DJ
746
747static void
748dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
749 struct dwarf2_fde *fde)
750{
751 static const char *arm_idents[] = {
752 "ARM C Compiler, ADS",
753 "Thumb C Compiler, ADS",
754 "ARM C++ Compiler, ADS",
755 "Thumb C++ Compiler, ADS",
756 "ARM/Thumb C/C++ Compiler, RVCT"
757 };
758 int i;
759
760 struct symtab *s;
761
762 s = find_pc_symtab (fs->pc);
763 if (s == NULL || s->producer == NULL)
764 return;
765
766 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
767 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
768 {
769 if (fde->cie->version == 1)
770 fs->armcc_cfa_offsets_sf = 1;
771
772 if (fde->cie->version == 1)
773 fs->armcc_cfa_offsets_reversed = 1;
774
775 /* The reversed offset problem is present in some compilers
776 using DWARF3, but it was eventually fixed. Check the ARM
777 defined augmentations, which are in the format "armcc" followed
778 by a list of one-character options. The "+" option means
779 this problem is fixed (no quirk needed). If the armcc
780 augmentation is missing, the quirk is needed. */
781 if (fde->cie->version == 3
782 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
783 || strchr (fde->cie->augmentation + 5, '+') == NULL))
784 fs->armcc_cfa_offsets_reversed = 1;
785
786 return;
787 }
788}
8f22cb90
MK
789\f
790
791struct dwarf2_frame_cache
792{
793 /* DWARF Call Frame Address. */
794 CORE_ADDR cfa;
795
0228dfb9
DJ
796 /* Set if the return address column was marked as undefined. */
797 int undefined_retaddr;
798
8f22cb90
MK
799 /* Saved registers, indexed by GDB register number, not by DWARF
800 register number. */
801 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
802
803 /* Return address register. */
804 struct dwarf2_frame_state_reg retaddr_reg;
8f22cb90 805};
05cbe71a 806
b9362cc7 807static struct dwarf2_frame_cache *
cfc14b3a
MK
808dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
809{
810 struct cleanup *old_chain;
05cbe71a 811 struct gdbarch *gdbarch = get_frame_arch (next_frame);
f57d151a
UW
812 const int num_regs = gdbarch_num_regs (current_gdbarch)
813 + gdbarch_num_pseudo_regs (current_gdbarch);
cfc14b3a
MK
814 struct dwarf2_frame_cache *cache;
815 struct dwarf2_frame_state *fs;
816 struct dwarf2_fde *fde;
cfc14b3a
MK
817
818 if (*this_cache)
819 return *this_cache;
820
821 /* Allocate a new cache. */
822 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
823 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
824
825 /* Allocate and initialize the frame state. */
826 fs = XMALLOC (struct dwarf2_frame_state);
827 memset (fs, 0, sizeof (struct dwarf2_frame_state));
828 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
829
830 /* Unwind the PC.
831
832 Note that if NEXT_FRAME is never supposed to return (i.e. a call
833 to abort), the compiler might optimize away the instruction at
834 NEXT_FRAME's return address. As a result the return address will
835 point at some random instruction, and the CFI for that
e4e9607c 836 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
837 this problem by substracting 1 from the return address to get an
838 address in the middle of a presumed call instruction (or the
839 instruction in the associated delay slot). This should only be
840 done for "normal" frames and not for resume-type frames (signal
e4e9607c
MK
841 handlers, sentinel frames, dummy frames). The function
842 frame_unwind_address_in_block does just this. It's not clear how
843 reliable the method is though; there is the potential for the
844 register state pre-call being different to that on return. */
93d42b30 845 fs->pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
cfc14b3a
MK
846
847 /* Find the correct FDE. */
848 fde = dwarf2_frame_find_fde (&fs->pc);
849 gdb_assert (fde != NULL);
850
851 /* Extract any interesting information from the CIE. */
852 fs->data_align = fde->cie->data_alignment_factor;
853 fs->code_align = fde->cie->code_alignment_factor;
854 fs->retaddr_column = fde->cie->return_address_register;
855
303b6f5d
DJ
856 /* Check for "quirks" - known bugs in producers. */
857 dwarf2_frame_find_quirks (fs, fde);
858
cfc14b3a
MK
859 /* First decode all the insns in the CIE. */
860 execute_cfa_program (fde->cie->initial_instructions,
4bf8967c 861 fde->cie->end, next_frame, fs, fde->eh_frame_p);
cfc14b3a
MK
862
863 /* Save the initialized register set. */
864 fs->initial = fs->regs;
865 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
866
867 /* Then decode the insns in the FDE up to our target PC. */
4bf8967c
AS
868 execute_cfa_program (fde->instructions, fde->end, next_frame, fs,
869 fde->eh_frame_p);
cfc14b3a
MK
870
871 /* Caclulate the CFA. */
872 switch (fs->cfa_how)
873 {
874 case CFA_REG_OFFSET:
875 cache->cfa = read_reg (next_frame, fs->cfa_reg);
303b6f5d
DJ
876 if (fs->armcc_cfa_offsets_reversed)
877 cache->cfa -= fs->cfa_offset;
878 else
879 cache->cfa += fs->cfa_offset;
cfc14b3a
MK
880 break;
881
882 case CFA_EXP:
883 cache->cfa =
884 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
885 break;
886
887 default:
e2e0b3e5 888 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
cfc14b3a
MK
889 }
890
05cbe71a 891 /* Initialize the register state. */
3e2c4033
AC
892 {
893 int regnum;
e4e9607c 894
3e2c4033 895 for (regnum = 0; regnum < num_regs; regnum++)
aff37fc1 896 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], next_frame);
3e2c4033
AC
897 }
898
899 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
900 location information in the cache. Note that we don't skip the
901 return address column; it's perfectly all right for it to
902 correspond to a real register. If it doesn't correspond to a
903 real register, or if we shouldn't treat it as such,
055d23b8 904 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 905 the range [0, gdbarch_num_regs). */
3e2c4033
AC
906 {
907 int column; /* CFI speak for "register number". */
e4e9607c 908
3e2c4033
AC
909 for (column = 0; column < fs->regs.num_regs; column++)
910 {
3e2c4033 911 /* Use the GDB register number as the destination index. */
055d23b8 912 int regnum = gdbarch_dwarf2_reg_to_regnum (current_gdbarch, column);
3e2c4033
AC
913
914 /* If there's no corresponding GDB register, ignore it. */
915 if (regnum < 0 || regnum >= num_regs)
916 continue;
917
918 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
919 of all debug info registers. If it doesn't, complain (but
920 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
921 unspecified register implies "same value" when CFI (draft
922 7) specifies nothing at all. Such a register could equally
923 be interpreted as "undefined". Also note that this check
e4e9607c
MK
924 isn't sufficient; it only checks that all registers in the
925 range [0 .. max column] are specified, and won't detect
3e2c4033 926 problems when a debug info register falls outside of the
e4e9607c 927 table. We need a way of iterating through all the valid
3e2c4033 928 DWARF2 register numbers. */
05cbe71a 929 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
930 {
931 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5
AC
932 complaint (&symfile_complaints, _("\
933incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
f059bf6f
AC
934 gdbarch_register_name (gdbarch, regnum),
935 paddr_nz (fs->pc));
936 }
35889917
MK
937 else
938 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
939 }
940 }
cfc14b3a 941
8d5a9abc
MK
942 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
943 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
944 {
945 int regnum;
946
947 for (regnum = 0; regnum < num_regs; regnum++)
948 {
8d5a9abc
MK
949 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
950 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 951 {
05cbe71a
MK
952 struct dwarf2_frame_state_reg *retaddr_reg =
953 &fs->regs.reg[fs->retaddr_column];
954
d4f10bf2
MK
955 /* It seems rather bizarre to specify an "empty" column as
956 the return adress column. However, this is exactly
957 what GCC does on some targets. It turns out that GCC
958 assumes that the return address can be found in the
959 register corresponding to the return address column.
8d5a9abc
MK
960 Incidentally, that's how we should treat a return
961 address column specifying "same value" too. */
d4f10bf2 962 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
963 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
964 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
965 {
966 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
967 cache->reg[regnum] = *retaddr_reg;
968 else
969 cache->retaddr_reg = *retaddr_reg;
970 }
35889917
MK
971 else
972 {
8d5a9abc
MK
973 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
974 {
975 cache->reg[regnum].loc.reg = fs->retaddr_column;
976 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
977 }
978 else
979 {
980 cache->retaddr_reg.loc.reg = fs->retaddr_column;
981 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
982 }
35889917
MK
983 }
984 }
985 }
986 }
cfc14b3a 987
0228dfb9
DJ
988 if (fs->retaddr_column < fs->regs.num_regs
989 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
990 cache->undefined_retaddr = 1;
991
cfc14b3a
MK
992 do_cleanups (old_chain);
993
994 *this_cache = cache;
995 return cache;
996}
997
998static void
999dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
1000 struct frame_id *this_id)
1001{
1002 struct dwarf2_frame_cache *cache =
1003 dwarf2_frame_cache (next_frame, this_cache);
1004
0228dfb9
DJ
1005 if (cache->undefined_retaddr)
1006 return;
1007
93d42b30
DJ
1008 (*this_id) = frame_id_build (cache->cfa,
1009 frame_func_unwind (next_frame, NORMAL_FRAME));
1010}
1011
1012static void
1013dwarf2_signal_frame_this_id (struct frame_info *next_frame, void **this_cache,
1014 struct frame_id *this_id)
1015{
1016 struct dwarf2_frame_cache *cache =
1017 dwarf2_frame_cache (next_frame, this_cache);
1018
1019 if (cache->undefined_retaddr)
1020 return;
1021
1022 (*this_id) = frame_id_build (cache->cfa,
1023 frame_func_unwind (next_frame, SIGTRAMP_FRAME));
cfc14b3a
MK
1024}
1025
1026static void
1027dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1028 int regnum, int *optimizedp,
1029 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1030 int *realnump, gdb_byte *valuep)
cfc14b3a 1031{
05cbe71a 1032 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a
MK
1033 struct dwarf2_frame_cache *cache =
1034 dwarf2_frame_cache (next_frame, this_cache);
1035
1036 switch (cache->reg[regnum].how)
1037 {
05cbe71a 1038 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1039 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1040 mark it as optimized away; the value isn't available. */
cfc14b3a
MK
1041 *optimizedp = 1;
1042 *lvalp = not_lval;
1043 *addrp = 0;
1044 *realnump = -1;
35889917 1045 if (valuep)
cfc14b3a
MK
1046 {
1047 /* In some cases, for example %eflags on the i386, we have
1048 to provide a sane value, even though this register wasn't
1049 saved. Assume we can get it from NEXT_FRAME. */
1050 frame_unwind_register (next_frame, regnum, valuep);
1051 }
1052 break;
1053
05cbe71a 1054 case DWARF2_FRAME_REG_SAVED_OFFSET:
cfc14b3a
MK
1055 *optimizedp = 0;
1056 *lvalp = lval_memory;
1057 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
1058 *realnump = -1;
1059 if (valuep)
1060 {
1061 /* Read the value in from memory. */
05cbe71a 1062 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
cfc14b3a
MK
1063 }
1064 break;
1065
05cbe71a 1066 case DWARF2_FRAME_REG_SAVED_REG:
00b25ff3
AC
1067 *optimizedp = 0;
1068 *lvalp = lval_register;
1069 *addrp = 0;
055d23b8
UW
1070 *realnump = gdbarch_dwarf2_reg_to_regnum
1071 (current_gdbarch, cache->reg[regnum].loc.reg);
00b25ff3
AC
1072 if (valuep)
1073 frame_unwind_register (next_frame, (*realnump), valuep);
cfc14b3a
MK
1074 break;
1075
05cbe71a 1076 case DWARF2_FRAME_REG_SAVED_EXP:
cfc14b3a
MK
1077 *optimizedp = 0;
1078 *lvalp = lval_memory;
1079 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
1080 cache->reg[regnum].exp_len,
1081 next_frame, cache->cfa);
1082 *realnump = -1;
1083 if (valuep)
1084 {
1085 /* Read the value in from memory. */
05cbe71a 1086 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
cfc14b3a
MK
1087 }
1088 break;
1089
46ea248b
AO
1090 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1091 *optimizedp = 0;
1092 *lvalp = not_lval;
1093 *addrp = 0;
1094 *realnump = -1;
1095 if (valuep)
1096 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1097 cache->cfa + cache->reg[regnum].loc.offset);
1098 break;
1099
1100 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1101 *optimizedp = 0;
1102 *lvalp = not_lval;
1103 *addrp = 0;
1104 *realnump = -1;
1105 if (valuep)
1106 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1107 execute_stack_op (cache->reg[regnum].loc.exp,
1108 cache->reg[regnum].exp_len,
1109 next_frame, cache->cfa));
1110 break;
1111
05cbe71a 1112 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1113 /* GCC, in its infinite wisdom decided to not provide unwind
1114 information for registers that are "same value". Since
1115 DWARF2 (3 draft 7) doesn't define such behavior, said
1116 registers are actually undefined (which is different to CFI
1117 "undefined"). Code above issues a complaint about this.
1118 Here just fudge the books, assume GCC, and that the value is
1119 more inner on the stack. */
00b25ff3
AC
1120 *optimizedp = 0;
1121 *lvalp = lval_register;
1122 *addrp = 0;
1123 *realnump = regnum;
1124 if (valuep)
1125 frame_unwind_register (next_frame, (*realnump), valuep);
3e2c4033
AC
1126 break;
1127
05cbe71a 1128 case DWARF2_FRAME_REG_SAME_VALUE:
00b25ff3
AC
1129 *optimizedp = 0;
1130 *lvalp = lval_register;
1131 *addrp = 0;
1132 *realnump = regnum;
1133 if (valuep)
1134 frame_unwind_register (next_frame, (*realnump), valuep);
cfc14b3a
MK
1135 break;
1136
05cbe71a 1137 case DWARF2_FRAME_REG_CFA:
35889917
MK
1138 *optimizedp = 0;
1139 *lvalp = not_lval;
1140 *addrp = 0;
1141 *realnump = -1;
1142 if (valuep)
14d06750 1143 pack_long (valuep, register_type (gdbarch, regnum), cache->cfa);
35889917
MK
1144 break;
1145
ea7963f0
FR
1146 case DWARF2_FRAME_REG_CFA_OFFSET:
1147 *optimizedp = 0;
1148 *lvalp = not_lval;
1149 *addrp = 0;
1150 *realnump = -1;
1151 if (valuep)
14d06750
DJ
1152 pack_long (valuep, register_type (gdbarch, regnum),
1153 cache->cfa + cache->reg[regnum].loc.offset);
ea7963f0
FR
1154 break;
1155
8d5a9abc
MK
1156 case DWARF2_FRAME_REG_RA_OFFSET:
1157 *optimizedp = 0;
1158 *lvalp = not_lval;
1159 *addrp = 0;
1160 *realnump = -1;
1161 if (valuep)
1162 {
1163 CORE_ADDR pc = cache->reg[regnum].loc.offset;
1164
055d23b8
UW
1165 regnum = gdbarch_dwarf2_reg_to_regnum
1166 (current_gdbarch, cache->retaddr_reg.loc.reg);
8d5a9abc 1167 pc += frame_unwind_register_unsigned (next_frame, regnum);
14d06750 1168 pack_long (valuep, register_type (gdbarch, regnum), pc);
8d5a9abc
MK
1169 }
1170 break;
1171
cfc14b3a 1172 default:
e2e0b3e5 1173 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1174 }
1175}
1176
1177static const struct frame_unwind dwarf2_frame_unwind =
1178{
1179 NORMAL_FRAME,
1180 dwarf2_frame_this_id,
1181 dwarf2_frame_prev_register
1182};
1183
3ed09a32
DJ
1184static const struct frame_unwind dwarf2_signal_frame_unwind =
1185{
1186 SIGTRAMP_FRAME,
93d42b30 1187 dwarf2_signal_frame_this_id,
3ed09a32
DJ
1188 dwarf2_frame_prev_register
1189};
1190
cfc14b3a 1191const struct frame_unwind *
336d1bba 1192dwarf2_frame_sniffer (struct frame_info *next_frame)
cfc14b3a 1193{
1ce5d6dd
AC
1194 /* Grab an address that is guarenteed to reside somewhere within the
1195 function. frame_pc_unwind(), for a no-return next function, can
93d42b30
DJ
1196 end up returning something past the end of this function's body.
1197 If the frame we're sniffing for is a signal frame whose start
1198 address is placed on the stack by the OS, its FDE must
1199 extend one byte before its start address or we will miss it. */
1200 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1201 NORMAL_FRAME);
56c987f6
AO
1202 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1203 if (!fde)
3ed09a32
DJ
1204 return NULL;
1205
1206 /* On some targets, signal trampolines may have unwind information.
1207 We need to recognize them so that we set the frame type
1208 correctly. */
1209
56c987f6
AO
1210 if (fde->cie->signal_frame
1211 || dwarf2_frame_signal_frame_p (get_frame_arch (next_frame),
1212 next_frame))
3ed09a32 1213 return &dwarf2_signal_frame_unwind;
cfc14b3a 1214
3ed09a32 1215 return &dwarf2_frame_unwind;
cfc14b3a
MK
1216}
1217\f
1218
1219/* There is no explicitly defined relationship between the CFA and the
1220 location of frame's local variables and arguments/parameters.
1221 Therefore, frame base methods on this page should probably only be
1222 used as a last resort, just to avoid printing total garbage as a
1223 response to the "info frame" command. */
1224
1225static CORE_ADDR
1226dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
1227{
1228 struct dwarf2_frame_cache *cache =
1229 dwarf2_frame_cache (next_frame, this_cache);
1230
1231 return cache->cfa;
1232}
1233
1234static const struct frame_base dwarf2_frame_base =
1235{
1236 &dwarf2_frame_unwind,
1237 dwarf2_frame_base_address,
1238 dwarf2_frame_base_address,
1239 dwarf2_frame_base_address
1240};
1241
1242const struct frame_base *
336d1bba 1243dwarf2_frame_base_sniffer (struct frame_info *next_frame)
cfc14b3a 1244{
93d42b30
DJ
1245 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1246 NORMAL_FRAME);
1247 if (dwarf2_frame_find_fde (&block_addr))
cfc14b3a
MK
1248 return &dwarf2_frame_base;
1249
1250 return NULL;
1251}
1252\f
1253/* A minimal decoding of DWARF2 compilation units. We only decode
1254 what's needed to get to the call frame information. */
1255
1256struct comp_unit
1257{
1258 /* Keep the bfd convenient. */
1259 bfd *abfd;
1260
1261 struct objfile *objfile;
1262
1263 /* Linked list of CIEs for this object. */
1264 struct dwarf2_cie *cie;
1265
cfc14b3a 1266 /* Pointer to the .debug_frame section loaded into memory. */
852483bc 1267 gdb_byte *dwarf_frame_buffer;
cfc14b3a
MK
1268
1269 /* Length of the loaded .debug_frame section. */
1270 unsigned long dwarf_frame_size;
1271
1272 /* Pointer to the .debug_frame section. */
1273 asection *dwarf_frame_section;
0912c7f2
MK
1274
1275 /* Base for DW_EH_PE_datarel encodings. */
1276 bfd_vma dbase;
0fd85043
CV
1277
1278 /* Base for DW_EH_PE_textrel encodings. */
1279 bfd_vma tbase;
cfc14b3a
MK
1280};
1281
8f22cb90 1282const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1283
cfc14b3a 1284static unsigned int
852483bc 1285read_1_byte (bfd *abfd, gdb_byte *buf)
cfc14b3a 1286{
852483bc 1287 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1288}
1289
1290static unsigned int
852483bc 1291read_4_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1292{
852483bc 1293 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1294}
1295
1296static ULONGEST
852483bc 1297read_8_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1298{
852483bc 1299 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1300}
1301
1302static ULONGEST
852483bc 1303read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1304{
1305 ULONGEST result;
1306 unsigned int num_read;
1307 int shift;
852483bc 1308 gdb_byte byte;
cfc14b3a
MK
1309
1310 result = 0;
1311 shift = 0;
1312 num_read = 0;
1313
1314 do
1315 {
1316 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1317 buf++;
1318 num_read++;
1319 result |= ((byte & 0x7f) << shift);
1320 shift += 7;
1321 }
1322 while (byte & 0x80);
1323
1324 *bytes_read_ptr = num_read;
1325
1326 return result;
1327}
1328
1329static LONGEST
852483bc 1330read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1331{
1332 LONGEST result;
1333 int shift;
1334 unsigned int num_read;
852483bc 1335 gdb_byte byte;
cfc14b3a
MK
1336
1337 result = 0;
1338 shift = 0;
1339 num_read = 0;
1340
1341 do
1342 {
1343 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1344 buf++;
1345 num_read++;
1346 result |= ((byte & 0x7f) << shift);
1347 shift += 7;
1348 }
1349 while (byte & 0x80);
1350
77e0b926
DJ
1351 if (shift < 8 * sizeof (result) && (byte & 0x40))
1352 result |= -(((LONGEST)1) << shift);
cfc14b3a
MK
1353
1354 *bytes_read_ptr = num_read;
1355
1356 return result;
1357}
1358
1359static ULONGEST
852483bc 1360read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1361{
1362 LONGEST result;
1363
852483bc 1364 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1365 if (result == 0xffffffff)
1366 {
852483bc 1367 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1368 *bytes_read_ptr = 12;
1369 }
1370 else
1371 *bytes_read_ptr = 4;
1372
1373 return result;
1374}
1375\f
1376
1377/* Pointer encoding helper functions. */
1378
1379/* GCC supports exception handling based on DWARF2 CFI. However, for
1380 technical reasons, it encodes addresses in its FDE's in a different
1381 way. Several "pointer encodings" are supported. The encoding
1382 that's used for a particular FDE is determined by the 'R'
1383 augmentation in the associated CIE. The argument of this
1384 augmentation is a single byte.
1385
1386 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1387 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1388 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1389 address should be interpreted (absolute, relative to the current
1390 position in the FDE, ...). Bit 7, indicates that the address
1391 should be dereferenced. */
1392
852483bc 1393static gdb_byte
cfc14b3a
MK
1394encoding_for_size (unsigned int size)
1395{
1396 switch (size)
1397 {
1398 case 2:
1399 return DW_EH_PE_udata2;
1400 case 4:
1401 return DW_EH_PE_udata4;
1402 case 8:
1403 return DW_EH_PE_udata8;
1404 default:
e2e0b3e5 1405 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1406 }
1407}
1408
1409static unsigned int
852483bc 1410size_of_encoded_value (gdb_byte encoding)
cfc14b3a
MK
1411{
1412 if (encoding == DW_EH_PE_omit)
1413 return 0;
1414
1415 switch (encoding & 0x07)
1416 {
1417 case DW_EH_PE_absptr:
1418 return TYPE_LENGTH (builtin_type_void_data_ptr);
1419 case DW_EH_PE_udata2:
1420 return 2;
1421 case DW_EH_PE_udata4:
1422 return 4;
1423 case DW_EH_PE_udata8:
1424 return 8;
1425 default:
e2e0b3e5 1426 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1427 }
1428}
1429
1430static CORE_ADDR
852483bc
MK
1431read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1432 gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a 1433{
68f6cf99
MK
1434 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1435 ptrdiff_t offset;
cfc14b3a
MK
1436 CORE_ADDR base;
1437
1438 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1439 FDE's. */
1440 if (encoding & DW_EH_PE_indirect)
1441 internal_error (__FILE__, __LINE__,
e2e0b3e5 1442 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1443
68f6cf99
MK
1444 *bytes_read_ptr = 0;
1445
cfc14b3a
MK
1446 switch (encoding & 0x70)
1447 {
1448 case DW_EH_PE_absptr:
1449 base = 0;
1450 break;
1451 case DW_EH_PE_pcrel:
f2fec864 1452 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1453 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1454 break;
0912c7f2
MK
1455 case DW_EH_PE_datarel:
1456 base = unit->dbase;
1457 break;
0fd85043
CV
1458 case DW_EH_PE_textrel:
1459 base = unit->tbase;
1460 break;
03ac2a74
MK
1461 case DW_EH_PE_funcrel:
1462 /* FIXME: kettenis/20040501: For now just pretend
1463 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1464 reading the initial location of an FDE it should be treated
1465 as such, and currently that's the only place where this code
1466 is used. */
1467 base = 0;
1468 break;
68f6cf99
MK
1469 case DW_EH_PE_aligned:
1470 base = 0;
852483bc 1471 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1472 if ((offset % ptr_len) != 0)
1473 {
1474 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1475 buf += *bytes_read_ptr;
1476 }
1477 break;
cfc14b3a 1478 default:
e2e0b3e5 1479 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1480 }
1481
b04de778 1482 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1483 {
1484 encoding |= encoding_for_size (ptr_len);
1485 if (bfd_get_sign_extend_vma (unit->abfd))
1486 encoding |= DW_EH_PE_signed;
1487 }
cfc14b3a
MK
1488
1489 switch (encoding & 0x0f)
1490 {
a81b10ae
MK
1491 case DW_EH_PE_uleb128:
1492 {
1493 ULONGEST value;
852483bc 1494 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1495 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1496 return base + value;
1497 }
cfc14b3a 1498 case DW_EH_PE_udata2:
68f6cf99 1499 *bytes_read_ptr += 2;
cfc14b3a
MK
1500 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1501 case DW_EH_PE_udata4:
68f6cf99 1502 *bytes_read_ptr += 4;
cfc14b3a
MK
1503 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1504 case DW_EH_PE_udata8:
68f6cf99 1505 *bytes_read_ptr += 8;
cfc14b3a 1506 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1507 case DW_EH_PE_sleb128:
1508 {
1509 LONGEST value;
852483bc 1510 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1511 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1512 return base + value;
1513 }
cfc14b3a 1514 case DW_EH_PE_sdata2:
68f6cf99 1515 *bytes_read_ptr += 2;
cfc14b3a
MK
1516 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1517 case DW_EH_PE_sdata4:
68f6cf99 1518 *bytes_read_ptr += 4;
cfc14b3a
MK
1519 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1520 case DW_EH_PE_sdata8:
68f6cf99 1521 *bytes_read_ptr += 8;
cfc14b3a
MK
1522 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1523 default:
e2e0b3e5 1524 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1525 }
1526}
1527\f
1528
1529/* GCC uses a single CIE for all FDEs in a .debug_frame section.
1530 That's why we use a simple linked list here. */
1531
1532static struct dwarf2_cie *
1533find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1534{
1535 struct dwarf2_cie *cie = unit->cie;
1536
1537 while (cie)
1538 {
1539 if (cie->cie_pointer == cie_pointer)
1540 return cie;
1541
1542 cie = cie->next;
1543 }
1544
1545 return NULL;
1546}
1547
1548static void
1549add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1550{
1551 cie->next = unit->cie;
1552 unit->cie = cie;
1553}
1554
1555/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1556 inital location associated with it into *PC. */
1557
1558static struct dwarf2_fde *
1559dwarf2_frame_find_fde (CORE_ADDR *pc)
1560{
1561 struct objfile *objfile;
1562
1563 ALL_OBJFILES (objfile)
1564 {
1565 struct dwarf2_fde *fde;
1566 CORE_ADDR offset;
1567
8f22cb90 1568 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
4ae9ee8e
DJ
1569 if (fde == NULL)
1570 continue;
1571
1572 gdb_assert (objfile->section_offsets);
1573 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1574
cfc14b3a
MK
1575 while (fde)
1576 {
1577 if (*pc >= fde->initial_location + offset
1578 && *pc < fde->initial_location + offset + fde->address_range)
1579 {
1580 *pc = fde->initial_location + offset;
1581 return fde;
1582 }
1583
1584 fde = fde->next;
1585 }
1586 }
1587
1588 return NULL;
1589}
1590
1591static void
1592add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1593{
8f22cb90
MK
1594 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1595 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
cfc14b3a
MK
1596}
1597
1598#ifdef CC_HAS_LONG_LONG
1599#define DW64_CIE_ID 0xffffffffffffffffULL
1600#else
1601#define DW64_CIE_ID ~0
1602#endif
1603
852483bc
MK
1604static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1605 int eh_frame_p);
cfc14b3a 1606
6896c0c7
RH
1607/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1608 the next byte to be processed. */
852483bc
MK
1609static gdb_byte *
1610decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
cfc14b3a 1611{
852483bc 1612 gdb_byte *buf, *end;
cfc14b3a
MK
1613 LONGEST length;
1614 unsigned int bytes_read;
6896c0c7
RH
1615 int dwarf64_p;
1616 ULONGEST cie_id;
cfc14b3a 1617 ULONGEST cie_pointer;
cfc14b3a 1618
6896c0c7 1619 buf = start;
cfc14b3a
MK
1620 length = read_initial_length (unit->abfd, buf, &bytes_read);
1621 buf += bytes_read;
1622 end = buf + length;
1623
6896c0c7
RH
1624 /* Are we still within the section? */
1625 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1626 return NULL;
1627
cfc14b3a
MK
1628 if (length == 0)
1629 return end;
1630
6896c0c7
RH
1631 /* Distinguish between 32 and 64-bit encoded frame info. */
1632 dwarf64_p = (bytes_read == 12);
cfc14b3a 1633
6896c0c7 1634 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1635 if (eh_frame_p)
1636 cie_id = 0;
1637 else if (dwarf64_p)
1638 cie_id = DW64_CIE_ID;
6896c0c7
RH
1639 else
1640 cie_id = DW_CIE_ID;
cfc14b3a
MK
1641
1642 if (dwarf64_p)
1643 {
1644 cie_pointer = read_8_bytes (unit->abfd, buf);
1645 buf += 8;
1646 }
1647 else
1648 {
1649 cie_pointer = read_4_bytes (unit->abfd, buf);
1650 buf += 4;
1651 }
1652
1653 if (cie_pointer == cie_id)
1654 {
1655 /* This is a CIE. */
1656 struct dwarf2_cie *cie;
1657 char *augmentation;
28ba0b33 1658 unsigned int cie_version;
cfc14b3a
MK
1659
1660 /* Record the offset into the .debug_frame section of this CIE. */
1661 cie_pointer = start - unit->dwarf_frame_buffer;
1662
1663 /* Check whether we've already read it. */
1664 if (find_cie (unit, cie_pointer))
1665 return end;
1666
1667 cie = (struct dwarf2_cie *)
8b92e4d5 1668 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1669 sizeof (struct dwarf2_cie));
1670 cie->initial_instructions = NULL;
1671 cie->cie_pointer = cie_pointer;
1672
1673 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1674 depends on the target address size. */
1675 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1676
56c987f6
AO
1677 /* We'll determine the final value later, but we need to
1678 initialize it conservatively. */
1679 cie->signal_frame = 0;
1680
cfc14b3a 1681 /* Check version number. */
28ba0b33
PB
1682 cie_version = read_1_byte (unit->abfd, buf);
1683 if (cie_version != 1 && cie_version != 3)
6896c0c7 1684 return NULL;
303b6f5d 1685 cie->version = cie_version;
cfc14b3a
MK
1686 buf += 1;
1687
1688 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1689 cie->augmentation = augmentation = (char *) buf;
852483bc 1690 buf += (strlen (augmentation) + 1);
cfc14b3a 1691
303b6f5d
DJ
1692 /* Ignore armcc augmentations. We only use them for quirks,
1693 and that doesn't happen until later. */
1694 if (strncmp (augmentation, "armcc", 5) == 0)
1695 augmentation += strlen (augmentation);
1696
cfc14b3a
MK
1697 /* The GCC 2.x "eh" augmentation has a pointer immediately
1698 following the augmentation string, so it must be handled
1699 first. */
1700 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1701 {
1702 /* Skip. */
1703 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1704 augmentation += 2;
1705 }
1706
1707 cie->code_alignment_factor =
1708 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1709 buf += bytes_read;
1710
1711 cie->data_alignment_factor =
1712 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1713 buf += bytes_read;
1714
28ba0b33
PB
1715 if (cie_version == 1)
1716 {
1717 cie->return_address_register = read_1_byte (unit->abfd, buf);
1718 bytes_read = 1;
1719 }
1720 else
1721 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1722 &bytes_read);
4fc771b8
DJ
1723 cie->return_address_register
1724 = dwarf2_frame_adjust_regnum (current_gdbarch,
1725 cie->return_address_register,
1726 eh_frame_p);
4bf8967c 1727
28ba0b33 1728 buf += bytes_read;
cfc14b3a 1729
7131cb6e
RH
1730 cie->saw_z_augmentation = (*augmentation == 'z');
1731 if (cie->saw_z_augmentation)
cfc14b3a
MK
1732 {
1733 ULONGEST length;
1734
1735 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1736 buf += bytes_read;
6896c0c7
RH
1737 if (buf > end)
1738 return NULL;
cfc14b3a
MK
1739 cie->initial_instructions = buf + length;
1740 augmentation++;
1741 }
1742
1743 while (*augmentation)
1744 {
1745 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1746 if (*augmentation == 'L')
1747 {
1748 /* Skip. */
1749 buf++;
1750 augmentation++;
1751 }
1752
1753 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1754 else if (*augmentation == 'R')
1755 {
1756 cie->encoding = *buf++;
1757 augmentation++;
1758 }
1759
1760 /* "P" indicates a personality routine in the CIE augmentation. */
1761 else if (*augmentation == 'P')
1762 {
1234d960 1763 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1764 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
f724bf08
MK
1765 read_encoded_value (unit, encoding, buf, &bytes_read);
1766 buf += bytes_read;
cfc14b3a
MK
1767 augmentation++;
1768 }
1769
56c987f6
AO
1770 /* "S" indicates a signal frame, such that the return
1771 address must not be decremented to locate the call frame
1772 info for the previous frame; it might even be the first
1773 instruction of a function, so decrementing it would take
1774 us to a different function. */
1775 else if (*augmentation == 'S')
1776 {
1777 cie->signal_frame = 1;
1778 augmentation++;
1779 }
1780
3e9a2e52
DJ
1781 /* Otherwise we have an unknown augmentation. Assume that either
1782 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
1783 else
1784 {
3e9a2e52
DJ
1785 if (cie->initial_instructions)
1786 buf = cie->initial_instructions;
cfc14b3a
MK
1787 break;
1788 }
1789 }
1790
1791 cie->initial_instructions = buf;
1792 cie->end = end;
1793
1794 add_cie (unit, cie);
1795 }
1796 else
1797 {
1798 /* This is a FDE. */
1799 struct dwarf2_fde *fde;
1800
6896c0c7
RH
1801 /* In an .eh_frame section, the CIE pointer is the delta between the
1802 address within the FDE where the CIE pointer is stored and the
1803 address of the CIE. Convert it to an offset into the .eh_frame
1804 section. */
cfc14b3a
MK
1805 if (eh_frame_p)
1806 {
cfc14b3a
MK
1807 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1808 cie_pointer -= (dwarf64_p ? 8 : 4);
1809 }
1810
6896c0c7
RH
1811 /* In either case, validate the result is still within the section. */
1812 if (cie_pointer >= unit->dwarf_frame_size)
1813 return NULL;
1814
cfc14b3a 1815 fde = (struct dwarf2_fde *)
8b92e4d5 1816 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1817 sizeof (struct dwarf2_fde));
1818 fde->cie = find_cie (unit, cie_pointer);
1819 if (fde->cie == NULL)
1820 {
1821 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1822 eh_frame_p);
1823 fde->cie = find_cie (unit, cie_pointer);
1824 }
1825
1826 gdb_assert (fde->cie != NULL);
1827
1828 fde->initial_location =
1829 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1830 buf += bytes_read;
1831
1832 fde->address_range =
1833 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1834 buf += bytes_read;
1835
7131cb6e
RH
1836 /* A 'z' augmentation in the CIE implies the presence of an
1837 augmentation field in the FDE as well. The only thing known
1838 to be in here at present is the LSDA entry for EH. So we
1839 can skip the whole thing. */
1840 if (fde->cie->saw_z_augmentation)
1841 {
1842 ULONGEST length;
1843
1844 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1845 buf += bytes_read + length;
6896c0c7
RH
1846 if (buf > end)
1847 return NULL;
7131cb6e
RH
1848 }
1849
cfc14b3a
MK
1850 fde->instructions = buf;
1851 fde->end = end;
1852
4bf8967c
AS
1853 fde->eh_frame_p = eh_frame_p;
1854
cfc14b3a
MK
1855 add_fde (unit, fde);
1856 }
1857
1858 return end;
1859}
6896c0c7
RH
1860
1861/* Read a CIE or FDE in BUF and decode it. */
852483bc
MK
1862static gdb_byte *
1863decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
6896c0c7
RH
1864{
1865 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
852483bc 1866 gdb_byte *ret;
6896c0c7
RH
1867 const char *msg;
1868 ptrdiff_t start_offset;
1869
1870 while (1)
1871 {
1872 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1873 if (ret != NULL)
1874 break;
1875
1876 /* We have corrupt input data of some form. */
1877
1878 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1879 and mismatches wrt padding and alignment of debug sections. */
1880 /* Note that there is no requirement in the standard for any
1881 alignment at all in the frame unwind sections. Testing for
1882 alignment before trying to interpret data would be incorrect.
1883
1884 However, GCC traditionally arranged for frame sections to be
1885 sized such that the FDE length and CIE fields happen to be
1886 aligned (in theory, for performance). This, unfortunately,
1887 was done with .align directives, which had the side effect of
1888 forcing the section to be aligned by the linker.
1889
1890 This becomes a problem when you have some other producer that
1891 creates frame sections that are not as strictly aligned. That
1892 produces a hole in the frame info that gets filled by the
1893 linker with zeros.
1894
1895 The GCC behaviour is arguably a bug, but it's effectively now
1896 part of the ABI, so we're now stuck with it, at least at the
1897 object file level. A smart linker may decide, in the process
1898 of compressing duplicate CIE information, that it can rewrite
1899 the entire output section without this extra padding. */
1900
1901 start_offset = start - unit->dwarf_frame_buffer;
1902 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1903 {
1904 start += 4 - (start_offset & 3);
1905 workaround = ALIGN4;
1906 continue;
1907 }
1908 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1909 {
1910 start += 8 - (start_offset & 7);
1911 workaround = ALIGN8;
1912 continue;
1913 }
1914
1915 /* Nothing left to try. Arrange to return as if we've consumed
1916 the entire input section. Hopefully we'll get valid info from
1917 the other of .debug_frame/.eh_frame. */
1918 workaround = FAIL;
1919 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1920 break;
1921 }
1922
1923 switch (workaround)
1924 {
1925 case NONE:
1926 break;
1927
1928 case ALIGN4:
1929 complaint (&symfile_complaints,
e2e0b3e5 1930 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
1931 unit->dwarf_frame_section->owner->filename,
1932 unit->dwarf_frame_section->name);
1933 break;
1934
1935 case ALIGN8:
1936 complaint (&symfile_complaints,
e2e0b3e5 1937 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
1938 unit->dwarf_frame_section->owner->filename,
1939 unit->dwarf_frame_section->name);
1940 break;
1941
1942 default:
1943 complaint (&symfile_complaints,
e2e0b3e5 1944 _("Corrupt data in %s:%s"),
6896c0c7
RH
1945 unit->dwarf_frame_section->owner->filename,
1946 unit->dwarf_frame_section->name);
1947 break;
1948 }
1949
1950 return ret;
1951}
cfc14b3a
MK
1952\f
1953
1954/* FIXME: kettenis/20030504: This still needs to be integrated with
1955 dwarf2read.c in a better way. */
1956
1957/* Imported from dwarf2read.c. */
cfc14b3a 1958extern asection *dwarf_frame_section;
cfc14b3a
MK
1959extern asection *dwarf_eh_frame_section;
1960
1961/* Imported from dwarf2read.c. */
1193688d 1962extern gdb_byte *dwarf2_read_section (struct objfile *objfile, asection *sectp);
cfc14b3a
MK
1963
1964void
1965dwarf2_build_frame_info (struct objfile *objfile)
1966{
1967 struct comp_unit unit;
852483bc 1968 gdb_byte *frame_ptr;
cfc14b3a
MK
1969
1970 /* Build a minimal decoding of the DWARF2 compilation unit. */
1971 unit.abfd = objfile->obfd;
1972 unit.objfile = objfile;
0912c7f2 1973 unit.dbase = 0;
0fd85043 1974 unit.tbase = 0;
cfc14b3a
MK
1975
1976 /* First add the information from the .eh_frame section. That way,
1977 the FDEs from that section are searched last. */
188dd5d6 1978 if (dwarf_eh_frame_section)
cfc14b3a 1979 {
0fd85043 1980 asection *got, *txt;
0912c7f2 1981
cfc14b3a
MK
1982 unit.cie = NULL;
1983 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a
MK
1984 dwarf_eh_frame_section);
1985
2c500098 1986 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
cfc14b3a
MK
1987 unit.dwarf_frame_section = dwarf_eh_frame_section;
1988
0912c7f2 1989 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
37b517aa
MK
1990 that is used for the i386/amd64 target, which currently is
1991 the only target in GCC that supports/uses the
1992 DW_EH_PE_datarel encoding. */
0912c7f2
MK
1993 got = bfd_get_section_by_name (unit.abfd, ".got");
1994 if (got)
1995 unit.dbase = got->vma;
1996
22c7ba1a
MK
1997 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1998 so far. */
0fd85043
CV
1999 txt = bfd_get_section_by_name (unit.abfd, ".text");
2000 if (txt)
2001 unit.tbase = txt->vma;
2002
cfc14b3a
MK
2003 frame_ptr = unit.dwarf_frame_buffer;
2004 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2005 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
2006 }
2007
188dd5d6 2008 if (dwarf_frame_section)
cfc14b3a
MK
2009 {
2010 unit.cie = NULL;
2011 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a 2012 dwarf_frame_section);
2c500098 2013 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
cfc14b3a
MK
2014 unit.dwarf_frame_section = dwarf_frame_section;
2015
2016 frame_ptr = unit.dwarf_frame_buffer;
2017 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2018 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
2019 }
2020}
0d0e1a63
MK
2021
2022/* Provide a prototype to silence -Wmissing-prototypes. */
2023void _initialize_dwarf2_frame (void);
2024
2025void
2026_initialize_dwarf2_frame (void)
2027{
030f20e1 2028 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2029 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2030}
This page took 0.359054 seconds and 4 git commands to generate.