value_maybe_namespace_elt: Remove unnecessary test of result != NULL.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
ecd75fc8 3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
0b722aec 34#include "record.h"
cfc14b3a 35
6896c0c7 36#include "complaints.h"
cfc14b3a 37#include "dwarf2-frame.h"
9f6f94ff
TT
38#include "ax.h"
39#include "dwarf2loc.h"
111c6489 40#include "dwarf2-frame-tailcall.h"
cfc14b3a 41
ae0d2f24
UW
42struct comp_unit;
43
cfc14b3a
MK
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
ae0d2f24
UW
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
cfc14b3a
MK
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
f664829e
DE
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
cfc14b3a 70
303b6f5d
DJ
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
cfc14b3a 74 /* Encoding of addresses. */
852483bc 75 gdb_byte encoding;
cfc14b3a 76
ae0d2f24
UW
77 /* Target address size in bytes. */
78 int addr_size;
79
0963b4bd 80 /* Target pointer size in bytes. */
8da614df
CV
81 int ptr_size;
82
7131cb6e
RH
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
56c987f6
AO
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
303b6f5d
DJ
89 /* The version recorded in the CIE. */
90 unsigned char version;
2dc7f7b3
TT
91
92 /* The segment size. */
93 unsigned char segment_size;
b01c8410 94};
303b6f5d 95
b01c8410
PP
96struct dwarf2_cie_table
97{
98 int num_entries;
99 struct dwarf2_cie **entries;
cfc14b3a
MK
100};
101
102/* Frame Description Entry (FDE). */
103
104struct dwarf2_fde
105{
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
f664829e
DE
116 const gdb_byte *instructions;
117 const gdb_byte *end;
cfc14b3a 118
4bf8967c
AS
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
b01c8410 122};
4bf8967c 123
b01c8410
PP
124struct dwarf2_fde_table
125{
126 int num_entries;
127 struct dwarf2_fde **entries;
cfc14b3a
MK
128};
129
ae0d2f24
UW
130/* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133struct comp_unit
134{
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
ae0d2f24 140 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 141 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
142
143 /* Length of the loaded .debug_frame section. */
c098b58b 144 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154};
155
ac56253d
TT
156static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
4fc771b8
DJ
158
159static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
ae0d2f24
UW
161
162static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 163 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
cfc14b3a
MK
166\f
167
168/* Structure describing a frame state. */
169
170struct dwarf2_frame_state
171{
172 /* Each register save state can be described in terms of a CFA slot,
173 another register, or a location expression. */
174 struct dwarf2_frame_state_reg_info
175 {
05cbe71a 176 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
177 int num_regs;
178
2fd481e1
PP
179 LONGEST cfa_offset;
180 ULONGEST cfa_reg;
181 enum {
182 CFA_UNSET,
183 CFA_REG_OFFSET,
184 CFA_EXP
185 } cfa_how;
0d45f56e 186 const gdb_byte *cfa_exp;
2fd481e1 187
cfc14b3a
MK
188 /* Used to implement DW_CFA_remember_state. */
189 struct dwarf2_frame_state_reg_info *prev;
190 } regs;
191
cfc14b3a
MK
192 /* The PC described by the current frame state. */
193 CORE_ADDR pc;
194
195 /* Initial register set from the CIE.
196 Used to implement DW_CFA_restore. */
197 struct dwarf2_frame_state_reg_info initial;
198
199 /* The information we care about from the CIE. */
200 LONGEST data_align;
201 ULONGEST code_align;
202 ULONGEST retaddr_column;
303b6f5d
DJ
203
204 /* Flags for known producer quirks. */
205
206 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
207 and DW_CFA_def_cfa_offset takes a factored offset. */
208 int armcc_cfa_offsets_sf;
209
210 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
211 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
212 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
213};
214
215/* Store the length the expression for the CFA in the `cfa_reg' field,
216 which is unused in that case. */
217#define cfa_exp_len cfa_reg
218
f57d151a 219/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
220 columns. If necessary, enlarge the register set. */
221
222static void
223dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
224 int num_regs)
225{
226 size_t size = sizeof (struct dwarf2_frame_state_reg);
227
228 if (num_regs <= rs->num_regs)
229 return;
230
231 rs->reg = (struct dwarf2_frame_state_reg *)
232 xrealloc (rs->reg, num_regs * size);
233
234 /* Initialize newly allocated registers. */
2473a4a9 235 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
236 rs->num_regs = num_regs;
237}
238
239/* Copy the register columns in register set RS into newly allocated
240 memory and return a pointer to this newly created copy. */
241
242static struct dwarf2_frame_state_reg *
243dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
244{
d10891d4 245 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
246 struct dwarf2_frame_state_reg *reg;
247
248 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
249 memcpy (reg, rs->reg, size);
250
251 return reg;
252}
253
254/* Release the memory allocated to register set RS. */
255
256static void
257dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
258{
259 if (rs)
260 {
261 dwarf2_frame_state_free_regs (rs->prev);
262
263 xfree (rs->reg);
264 xfree (rs);
265 }
266}
267
268/* Release the memory allocated to the frame state FS. */
269
270static void
271dwarf2_frame_state_free (void *p)
272{
273 struct dwarf2_frame_state *fs = p;
274
275 dwarf2_frame_state_free_regs (fs->initial.prev);
276 dwarf2_frame_state_free_regs (fs->regs.prev);
277 xfree (fs->initial.reg);
278 xfree (fs->regs.reg);
279 xfree (fs);
280}
281\f
282
283/* Helper functions for execute_stack_op. */
284
285static CORE_ADDR
b1370418 286read_addr_from_reg (void *baton, int reg)
cfc14b3a 287{
4a4e5149
DJ
288 struct frame_info *this_frame = (struct frame_info *) baton;
289 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2ed3c037 290 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
f2da6b3a 291
2ed3c037 292 return address_from_register (regnum, this_frame);
cfc14b3a
MK
293}
294
0acf8b65
JB
295/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
296
297static struct value *
298get_reg_value (void *baton, struct type *type, int reg)
299{
300 struct frame_info *this_frame = (struct frame_info *) baton;
301 struct gdbarch *gdbarch = get_frame_arch (this_frame);
302 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
303
304 return value_from_register (type, regnum, this_frame);
305}
306
cfc14b3a 307static void
852483bc 308read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
309{
310 read_memory (addr, buf, len);
311}
312
a6a5a945
LM
313/* Execute the required actions for both the DW_CFA_restore and
314DW_CFA_restore_extended instructions. */
315static void
316dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
317 struct dwarf2_frame_state *fs, int eh_frame_p)
318{
319 ULONGEST reg;
320
321 gdb_assert (fs->initial.reg);
322 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
323 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
324
325 /* Check if this register was explicitly initialized in the
326 CIE initial instructions. If not, default the rule to
327 UNSPECIFIED. */
328 if (reg < fs->initial.num_regs)
329 fs->regs.reg[reg] = fs->initial.reg[reg];
330 else
331 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
332
333 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
334 complaint (&symfile_complaints, _("\
335incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 336register %s (#%d) at %s"),
a6a5a945
LM
337 gdbarch_register_name
338 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
339 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 340 paddress (gdbarch, fs->pc));
a6a5a945
LM
341}
342
9e8b7a03
JK
343/* Virtual method table for execute_stack_op below. */
344
345static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
346{
b1370418 347 read_addr_from_reg,
0acf8b65 348 get_reg_value,
9e8b7a03 349 read_mem,
523f3620
JK
350 ctx_no_get_frame_base,
351 ctx_no_get_frame_cfa,
352 ctx_no_get_frame_pc,
353 ctx_no_get_tls_address,
354 ctx_no_dwarf_call,
8e3b41a9 355 ctx_no_get_base_type,
3019eac3
DE
356 ctx_no_push_dwarf_reg_entry_value,
357 ctx_no_get_addr_index
9e8b7a03
JK
358};
359
cfc14b3a 360static CORE_ADDR
0d45f56e 361execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
362 CORE_ADDR offset, struct frame_info *this_frame,
363 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
364{
365 struct dwarf_expr_context *ctx;
366 CORE_ADDR result;
4a227398 367 struct cleanup *old_chain;
cfc14b3a
MK
368
369 ctx = new_dwarf_expr_context ();
4a227398 370 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 371 make_cleanup_value_free_to_mark (value_mark ());
4a227398 372
f7fd4728 373 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 374 ctx->addr_size = addr_size;
181cebd4 375 ctx->ref_addr_size = -1;
ac56253d 376 ctx->offset = offset;
4a4e5149 377 ctx->baton = this_frame;
9e8b7a03 378 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 379
8a9b8146 380 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 381 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 382
f2c7657e
UW
383 if (ctx->location == DWARF_VALUE_MEMORY)
384 result = dwarf_expr_fetch_address (ctx, 0);
385 else if (ctx->location == DWARF_VALUE_REGISTER)
b1370418
JB
386 result = read_addr_from_reg (this_frame,
387 value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 388 else
cec03d70
TT
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
3e43a32a
MS
393 error (_("\
394Not implemented: computing unwound register using explicit value operator"));
cec03d70 395 }
cfc14b3a 396
4a227398 397 do_cleanups (old_chain);
cfc14b3a
MK
398
399 return result;
400}
401\f
402
111c6489
JK
403/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407static const gdb_byte *
0d45f56e 408execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 411{
ae0d2f24 412 int eh_frame_p = fde->eh_frame_p;
507a579c 413 unsigned int bytes_read;
e17a4113 414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
852483bc 418 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
419 uint64_t utmp, reg;
420 int64_t offset;
cfc14b3a
MK
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
4fc771b8 427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
cfc14b3a 436 reg = insn & 0x3f;
a6a5a945 437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
ae0d2f24 444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 445 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
e17a4113 454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
e17a4113 459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
e17a4113 464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
f664829e 470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
f664829e 480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
482 break;
483
484 case DW_CFA_undefined:
f664829e 485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
489 break;
490
491 case DW_CFA_same_value:
f664829e 492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
496 break;
497
498 case DW_CFA_register:
f664829e 499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
70ba0933 512 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
cfc14b3a
MK
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
50ea7769
MK
523 if (old_rs == NULL)
524 {
e2e0b3e5 525 complaint (&symfile_complaints, _("\
5af949e3
UW
526bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
50ea7769
MK
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
cfc14b3a
MK
535 }
536 break;
537
538 case DW_CFA_def_cfa:
f664829e
DE
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
540 fs->regs.cfa_reg = reg;
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
542
543 if (fs->armcc_cfa_offsets_sf)
544 utmp *= fs->data_align;
545
2fd481e1
PP
546 fs->regs.cfa_offset = utmp;
547 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
548 break;
549
550 case DW_CFA_def_cfa_register:
f664829e
DE
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
555 break;
556
557 case DW_CFA_def_cfa_offset:
f664829e 558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
2fd481e1 563 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
564 /* cfa_how deliberately not set. */
565 break;
566
a8504492
MK
567 case DW_CFA_nop:
568 break;
569
cfc14b3a 570 case DW_CFA_def_cfa_expression:
f664829e
DE
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
576 break;
577
578 case DW_CFA_expression:
f664829e 579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
586 insn_ptr += utmp;
587 break;
588
a8504492 589 case DW_CFA_offset_extended_sf:
f664829e 590 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 592 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 593 offset *= fs->data_align;
a8504492 594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
46ea248b 599 case DW_CFA_val_offset:
f664829e 600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 602 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
f664829e 609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 611 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
f664829e 618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
a8504492 627 case DW_CFA_def_cfa_sf:
f664829e
DE
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 630 eh_frame_p);
f664829e 631 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
632 fs->regs.cfa_offset = offset * fs->data_align;
633 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
634 break;
635
636 case DW_CFA_def_cfa_offset_sf:
f664829e 637 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 638 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 639 /* cfa_how deliberately not set. */
cfc14b3a
MK
640 break;
641
a77f4086
MK
642 case DW_CFA_GNU_window_save:
643 /* This is SPARC-specific code, and contains hard-coded
644 constants for the register numbering scheme used by
645 GCC. Rather than having a architecture-specific
646 operation that's only ever used by a single
647 architecture, we provide the implementation here.
648 Incidentally that's what GCC does too in its
649 unwinder. */
650 {
4a4e5149 651 int size = register_size (gdbarch, 0);
9a619af0 652
a77f4086
MK
653 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
654 for (reg = 8; reg < 16; reg++)
655 {
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
657 fs->regs.reg[reg].loc.reg = reg + 16;
658 }
659 for (reg = 16; reg < 32; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
662 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
663 }
664 }
665 break;
666
cfc14b3a
MK
667 case DW_CFA_GNU_args_size:
668 /* Ignored. */
f664829e 669 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
670 break;
671
58894217 672 case DW_CFA_GNU_negative_offset_extended:
f664829e 673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 674 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
675 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
676 offset = utmp * fs->data_align;
58894217
JK
677 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
678 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
679 fs->regs.reg[reg].loc.offset = -offset;
680 break;
681
cfc14b3a 682 default:
3e43a32a
MS
683 internal_error (__FILE__, __LINE__,
684 _("Unknown CFI encountered."));
cfc14b3a
MK
685 }
686 }
687 }
688
111c6489
JK
689 if (fs->initial.reg == NULL)
690 {
691 /* Don't allow remember/restore between CIE and FDE programs. */
692 dwarf2_frame_state_free_regs (fs->regs.prev);
693 fs->regs.prev = NULL;
694 }
695
696 return insn_ptr;
cfc14b3a 697}
8f22cb90 698\f
cfc14b3a 699
8f22cb90 700/* Architecture-specific operations. */
cfc14b3a 701
8f22cb90
MK
702/* Per-architecture data key. */
703static struct gdbarch_data *dwarf2_frame_data;
704
705struct dwarf2_frame_ops
706{
707 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
708 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
709 struct frame_info *);
3ed09a32 710
4a4e5149 711 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 712 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 713
4fc771b8
DJ
714 /* Convert .eh_frame register number to DWARF register number, or
715 adjust .debug_frame register number. */
716 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
717};
718
8f22cb90
MK
719/* Default architecture-specific register state initialization
720 function. */
721
722static void
723dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 724 struct dwarf2_frame_state_reg *reg,
4a4e5149 725 struct frame_info *this_frame)
8f22cb90
MK
726{
727 /* If we have a register that acts as a program counter, mark it as
728 a destination for the return address. If we have a register that
729 serves as the stack pointer, arrange for it to be filled with the
730 call frame address (CFA). The other registers are marked as
731 unspecified.
732
733 We copy the return address to the program counter, since many
734 parts in GDB assume that it is possible to get the return address
735 by unwinding the program counter register. However, on ISA's
736 with a dedicated return address register, the CFI usually only
737 contains information to unwind that return address register.
738
739 The reason we're treating the stack pointer special here is
740 because in many cases GCC doesn't emit CFI for the stack pointer
741 and implicitly assumes that it is equal to the CFA. This makes
742 some sense since the DWARF specification (version 3, draft 8,
743 p. 102) says that:
744
745 "Typically, the CFA is defined to be the value of the stack
746 pointer at the call site in the previous frame (which may be
747 different from its value on entry to the current frame)."
748
749 However, this isn't true for all platforms supported by GCC
750 (e.g. IBM S/390 and zSeries). Those architectures should provide
751 their own architecture-specific initialization function. */
05cbe71a 752
ad010def 753 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 754 reg->how = DWARF2_FRAME_REG_RA;
ad010def 755 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
756 reg->how = DWARF2_FRAME_REG_CFA;
757}
05cbe71a 758
8f22cb90 759/* Return a default for the architecture-specific operations. */
05cbe71a 760
8f22cb90 761static void *
030f20e1 762dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
763{
764 struct dwarf2_frame_ops *ops;
765
030f20e1 766 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
767 ops->init_reg = dwarf2_frame_default_init_reg;
768 return ops;
769}
05cbe71a 770
8f22cb90
MK
771/* Set the architecture-specific register state initialization
772 function for GDBARCH to INIT_REG. */
773
774void
775dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
776 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
777 struct dwarf2_frame_state_reg *,
778 struct frame_info *))
8f22cb90 779{
030f20e1 780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 781
8f22cb90
MK
782 ops->init_reg = init_reg;
783}
784
785/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
786
787static void
788dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 789 struct dwarf2_frame_state_reg *reg,
4a4e5149 790 struct frame_info *this_frame)
05cbe71a 791{
030f20e1 792 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 793
4a4e5149 794 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 795}
3ed09a32
DJ
796
797/* Set the architecture-specific signal trampoline recognition
798 function for GDBARCH to SIGNAL_FRAME_P. */
799
800void
801dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
802 int (*signal_frame_p) (struct gdbarch *,
803 struct frame_info *))
804{
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 ops->signal_frame_p = signal_frame_p;
808}
809
810/* Query the architecture-specific signal frame recognizer for
4a4e5149 811 THIS_FRAME. */
3ed09a32
DJ
812
813static int
814dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 815 struct frame_info *this_frame)
3ed09a32
DJ
816{
817 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
818
819 if (ops->signal_frame_p == NULL)
820 return 0;
4a4e5149 821 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 822}
4bf8967c 823
4fc771b8
DJ
824/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
825 register numbers. */
4bf8967c
AS
826
827void
4fc771b8
DJ
828dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
829 int (*adjust_regnum) (struct gdbarch *,
830 int, int))
4bf8967c
AS
831{
832 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
833
4fc771b8 834 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
835}
836
4fc771b8
DJ
837/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
838 register. */
4bf8967c 839
4fc771b8 840static int
3e43a32a
MS
841dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
842 int regnum, int eh_frame_p)
4bf8967c
AS
843{
844 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
845
4fc771b8 846 if (ops->adjust_regnum == NULL)
4bf8967c 847 return regnum;
4fc771b8 848 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 849}
303b6f5d
DJ
850
851static void
852dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
853 struct dwarf2_fde *fde)
854{
43f3e411 855 struct compunit_symtab *cust;
303b6f5d 856
43f3e411
DE
857 cust = find_pc_compunit_symtab (fs->pc);
858 if (cust == NULL)
303b6f5d
DJ
859 return;
860
43f3e411 861 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
a6c727b2
DJ
862 {
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_sf = 1;
865
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_reversed = 1;
868
869 /* The reversed offset problem is present in some compilers
870 using DWARF3, but it was eventually fixed. Check the ARM
871 defined augmentations, which are in the format "armcc" followed
872 by a list of one-character options. The "+" option means
873 this problem is fixed (no quirk needed). If the armcc
874 augmentation is missing, the quirk is needed. */
875 if (fde->cie->version == 3
876 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
877 || strchr (fde->cie->augmentation + 5, '+') == NULL))
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 return;
881 }
303b6f5d 882}
8f22cb90
MK
883\f
884
a8fd5589
TT
885/* See dwarf2-frame.h. */
886
887int
888dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
889 struct dwarf2_per_cu_data *data,
890 int *regnum_out, LONGEST *offset_out,
891 CORE_ADDR *text_offset_out,
892 const gdb_byte **cfa_start_out,
893 const gdb_byte **cfa_end_out)
9f6f94ff 894{
9f6f94ff 895 struct dwarf2_fde *fde;
22e048c9 896 CORE_ADDR text_offset;
9f6f94ff
TT
897 struct dwarf2_frame_state fs;
898 int addr_size;
899
900 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
901
902 fs.pc = pc;
903
904 /* Find the correct FDE. */
905 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
906 if (fde == NULL)
907 error (_("Could not compute CFA; needed to translate this expression"));
908
909 /* Extract any interesting information from the CIE. */
910 fs.data_align = fde->cie->data_alignment_factor;
911 fs.code_align = fde->cie->code_alignment_factor;
912 fs.retaddr_column = fde->cie->return_address_register;
913 addr_size = fde->cie->addr_size;
914
915 /* Check for "quirks" - known bugs in producers. */
916 dwarf2_frame_find_quirks (&fs, fde);
917
918 /* First decode all the insns in the CIE. */
919 execute_cfa_program (fde, fde->cie->initial_instructions,
920 fde->cie->end, gdbarch, pc, &fs);
921
922 /* Save the initialized register set. */
923 fs.initial = fs.regs;
924 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
925
926 /* Then decode the insns in the FDE up to our target PC. */
927 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
928
929 /* Calculate the CFA. */
930 switch (fs.regs.cfa_how)
931 {
932 case CFA_REG_OFFSET:
933 {
934 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
935
936 if (regnum == -1)
937 error (_("Unable to access DWARF register number %d"),
938 (int) fs.regs.cfa_reg); /* FIXME */
a8fd5589
TT
939
940 *regnum_out = regnum;
941 if (fs.armcc_cfa_offsets_reversed)
942 *offset_out = -fs.regs.cfa_offset;
943 else
944 *offset_out = fs.regs.cfa_offset;
945 return 1;
9f6f94ff 946 }
9f6f94ff
TT
947
948 case CFA_EXP:
a8fd5589
TT
949 *text_offset_out = text_offset;
950 *cfa_start_out = fs.regs.cfa_exp;
951 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
952 return 0;
9f6f94ff
TT
953
954 default:
955 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
956 }
957}
958
959\f
8f22cb90
MK
960struct dwarf2_frame_cache
961{
962 /* DWARF Call Frame Address. */
963 CORE_ADDR cfa;
964
8fbca658
PA
965 /* Set if the return address column was marked as unavailable
966 (required non-collected memory or registers to compute). */
967 int unavailable_retaddr;
968
0228dfb9
DJ
969 /* Set if the return address column was marked as undefined. */
970 int undefined_retaddr;
971
8f22cb90
MK
972 /* Saved registers, indexed by GDB register number, not by DWARF
973 register number. */
974 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
975
976 /* Return address register. */
977 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
978
979 /* Target address size in bytes. */
980 int addr_size;
ac56253d
TT
981
982 /* The .text offset. */
983 CORE_ADDR text_offset;
111c6489 984
1ec56e88
PA
985 /* True if we already checked whether this frame is the bottom frame
986 of a virtual tail call frame chain. */
987 int checked_tailcall_bottom;
988
111c6489
JK
989 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
990 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
991 involved. Non-bottom frames of a virtual tail call frames chain use
992 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
993 them. */
994 void *tailcall_cache;
1ec56e88
PA
995
996 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
997 base to get the SP, to simulate the return address pushed on the
998 stack. */
999 LONGEST entry_cfa_sp_offset;
1000 int entry_cfa_sp_offset_p;
8f22cb90 1001};
05cbe71a 1002
78ac5f83
TT
1003/* A cleanup that sets a pointer to NULL. */
1004
1005static void
1006clear_pointer_cleanup (void *arg)
1007{
1008 void **ptr = arg;
1009
1010 *ptr = NULL;
1011}
1012
b9362cc7 1013static struct dwarf2_frame_cache *
4a4e5149 1014dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1015{
78ac5f83 1016 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1017 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1018 const int num_regs = gdbarch_num_regs (gdbarch)
1019 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1020 struct dwarf2_frame_cache *cache;
1021 struct dwarf2_frame_state *fs;
1022 struct dwarf2_fde *fde;
8fbca658 1023 volatile struct gdb_exception ex;
111c6489 1024 CORE_ADDR entry_pc;
111c6489 1025 const gdb_byte *instr;
cfc14b3a
MK
1026
1027 if (*this_cache)
1028 return *this_cache;
1029
1030 /* Allocate a new cache. */
1031 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1032 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1033 *this_cache = cache;
78ac5f83 1034 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1035
1036 /* Allocate and initialize the frame state. */
41bf6aca 1037 fs = XCNEW (struct dwarf2_frame_state);
cfc14b3a
MK
1038 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1039
1040 /* Unwind the PC.
1041
4a4e5149 1042 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1043 to abort), the compiler might optimize away the instruction at
4a4e5149 1044 its return address. As a result the return address will
cfc14b3a 1045 point at some random instruction, and the CFI for that
e4e9607c 1046 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1047 this problem by substracting 1 from the return address to get an
1048 address in the middle of a presumed call instruction (or the
1049 instruction in the associated delay slot). This should only be
1050 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1051 handlers, sentinel frames, dummy frames). The function
ad1193e7 1052 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1053 reliable the method is though; there is the potential for the
1054 register state pre-call being different to that on return. */
4a4e5149 1055 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1056
1057 /* Find the correct FDE. */
ac56253d 1058 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1059 gdb_assert (fde != NULL);
1060
1061 /* Extract any interesting information from the CIE. */
1062 fs->data_align = fde->cie->data_alignment_factor;
1063 fs->code_align = fde->cie->code_alignment_factor;
1064 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1065 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1066
303b6f5d
DJ
1067 /* Check for "quirks" - known bugs in producers. */
1068 dwarf2_frame_find_quirks (fs, fde);
1069
cfc14b3a 1070 /* First decode all the insns in the CIE. */
ae0d2f24 1071 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1072 fde->cie->end, gdbarch,
1073 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1074
1075 /* Save the initialized register set. */
1076 fs->initial = fs->regs;
1077 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1078
111c6489
JK
1079 if (get_frame_func_if_available (this_frame, &entry_pc))
1080 {
1081 /* Decode the insns in the FDE up to the entry PC. */
1082 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1083 entry_pc, fs);
1084
1085 if (fs->regs.cfa_how == CFA_REG_OFFSET
1086 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1087 == gdbarch_sp_regnum (gdbarch)))
1088 {
1ec56e88
PA
1089 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1090 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1091 }
1092 }
1093 else
1094 instr = fde->instructions;
1095
cfc14b3a 1096 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1097 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1098 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1099
8fbca658 1100 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1101 {
8fbca658
PA
1102 /* Calculate the CFA. */
1103 switch (fs->regs.cfa_how)
1104 {
1105 case CFA_REG_OFFSET:
b1370418 1106 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1107 if (fs->armcc_cfa_offsets_reversed)
1108 cache->cfa -= fs->regs.cfa_offset;
1109 else
1110 cache->cfa += fs->regs.cfa_offset;
1111 break;
1112
1113 case CFA_EXP:
1114 cache->cfa =
1115 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1116 cache->addr_size, cache->text_offset,
1117 this_frame, 0, 0);
1118 break;
1119
1120 default:
1121 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1122 }
1123 }
1124 if (ex.reason < 0)
1125 {
1126 if (ex.error == NOT_AVAILABLE_ERROR)
1127 {
1128 cache->unavailable_retaddr = 1;
5a1cf4d6 1129 do_cleanups (old_chain);
78ac5f83 1130 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1131 return cache;
1132 }
cfc14b3a 1133
8fbca658 1134 throw_exception (ex);
cfc14b3a
MK
1135 }
1136
05cbe71a 1137 /* Initialize the register state. */
3e2c4033
AC
1138 {
1139 int regnum;
e4e9607c 1140
3e2c4033 1141 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1142 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1143 }
1144
1145 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1146 location information in the cache. Note that we don't skip the
1147 return address column; it's perfectly all right for it to
1148 correspond to a real register. If it doesn't correspond to a
1149 real register, or if we shouldn't treat it as such,
055d23b8 1150 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1151 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1152 {
1153 int column; /* CFI speak for "register number". */
e4e9607c 1154
3e2c4033
AC
1155 for (column = 0; column < fs->regs.num_regs; column++)
1156 {
3e2c4033 1157 /* Use the GDB register number as the destination index. */
ad010def 1158 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1159
1160 /* If there's no corresponding GDB register, ignore it. */
1161 if (regnum < 0 || regnum >= num_regs)
1162 continue;
1163
1164 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1165 of all debug info registers. If it doesn't, complain (but
1166 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1167 unspecified register implies "same value" when CFI (draft
1168 7) specifies nothing at all. Such a register could equally
1169 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1170 isn't sufficient; it only checks that all registers in the
1171 range [0 .. max column] are specified, and won't detect
3e2c4033 1172 problems when a debug info register falls outside of the
e4e9607c 1173 table. We need a way of iterating through all the valid
3e2c4033 1174 DWARF2 register numbers. */
05cbe71a 1175 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1176 {
1177 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1178 complaint (&symfile_complaints, _("\
5af949e3 1179incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1180 gdbarch_register_name (gdbarch, regnum),
5af949e3 1181 paddress (gdbarch, fs->pc));
f059bf6f 1182 }
35889917
MK
1183 else
1184 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1185 }
1186 }
cfc14b3a 1187
8d5a9abc
MK
1188 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1189 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1190 {
1191 int regnum;
1192
1193 for (regnum = 0; regnum < num_regs; regnum++)
1194 {
8d5a9abc
MK
1195 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1196 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1197 {
05cbe71a
MK
1198 struct dwarf2_frame_state_reg *retaddr_reg =
1199 &fs->regs.reg[fs->retaddr_column];
1200
d4f10bf2
MK
1201 /* It seems rather bizarre to specify an "empty" column as
1202 the return adress column. However, this is exactly
1203 what GCC does on some targets. It turns out that GCC
1204 assumes that the return address can be found in the
1205 register corresponding to the return address column.
8d5a9abc
MK
1206 Incidentally, that's how we should treat a return
1207 address column specifying "same value" too. */
d4f10bf2 1208 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1209 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1210 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1211 {
1212 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1213 cache->reg[regnum] = *retaddr_reg;
1214 else
1215 cache->retaddr_reg = *retaddr_reg;
1216 }
35889917
MK
1217 else
1218 {
8d5a9abc
MK
1219 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1220 {
1221 cache->reg[regnum].loc.reg = fs->retaddr_column;
1222 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1223 }
1224 else
1225 {
1226 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1227 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1228 }
35889917
MK
1229 }
1230 }
1231 }
1232 }
cfc14b3a 1233
0228dfb9
DJ
1234 if (fs->retaddr_column < fs->regs.num_regs
1235 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1236 cache->undefined_retaddr = 1;
1237
cfc14b3a 1238 do_cleanups (old_chain);
78ac5f83 1239 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1240 return cache;
1241}
1242
8fbca658
PA
1243static enum unwind_stop_reason
1244dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1245 void **this_cache)
1246{
1247 struct dwarf2_frame_cache *cache
1248 = dwarf2_frame_cache (this_frame, this_cache);
1249
1250 if (cache->unavailable_retaddr)
1251 return UNWIND_UNAVAILABLE;
1252
1253 if (cache->undefined_retaddr)
1254 return UNWIND_OUTERMOST;
1255
1256 return UNWIND_NO_REASON;
1257}
1258
cfc14b3a 1259static void
4a4e5149 1260dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1261 struct frame_id *this_id)
1262{
1263 struct dwarf2_frame_cache *cache =
4a4e5149 1264 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1265
8fbca658 1266 if (cache->unavailable_retaddr)
5ce0145d
PA
1267 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1268 else if (cache->undefined_retaddr)
8fbca658 1269 return;
5ce0145d
PA
1270 else
1271 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1272}
1273
4a4e5149
DJ
1274static struct value *
1275dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1276 int regnum)
93d42b30 1277{
4a4e5149 1278 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1279 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1280 dwarf2_frame_cache (this_frame, this_cache);
1281 CORE_ADDR addr;
1282 int realnum;
cfc14b3a 1283
1ec56e88
PA
1284 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1285 call frame chain. */
1286 if (!cache->checked_tailcall_bottom)
1287 {
1288 cache->checked_tailcall_bottom = 1;
1289 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1290 (cache->entry_cfa_sp_offset_p
1291 ? &cache->entry_cfa_sp_offset : NULL));
1292 }
1293
111c6489
JK
1294 /* Non-bottom frames of a virtual tail call frames chain use
1295 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1296 them. If dwarf2_tailcall_prev_register_first does not have specific value
1297 unwind the register, tail call frames are assumed to have the register set
1298 of the top caller. */
1299 if (cache->tailcall_cache)
1300 {
1301 struct value *val;
1302
1303 val = dwarf2_tailcall_prev_register_first (this_frame,
1304 &cache->tailcall_cache,
1305 regnum);
1306 if (val)
1307 return val;
1308 }
1309
cfc14b3a
MK
1310 switch (cache->reg[regnum].how)
1311 {
05cbe71a 1312 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1313 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1314 mark it as optimized away; the value isn't available. */
4a4e5149 1315 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1316
05cbe71a 1317 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1318 addr = cache->cfa + cache->reg[regnum].loc.offset;
1319 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1320
05cbe71a 1321 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1322 realnum
1323 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1324 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1325
05cbe71a 1326 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1327 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1328 cache->reg[regnum].exp_len,
ac56253d
TT
1329 cache->addr_size, cache->text_offset,
1330 this_frame, cache->cfa, 1);
4a4e5149 1331 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1332
46ea248b 1333 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1334 addr = cache->cfa + cache->reg[regnum].loc.offset;
1335 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1336
1337 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1338 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1339 cache->reg[regnum].exp_len,
ac56253d
TT
1340 cache->addr_size, cache->text_offset,
1341 this_frame, cache->cfa, 1);
4a4e5149 1342 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1343
05cbe71a 1344 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1345 /* GCC, in its infinite wisdom decided to not provide unwind
1346 information for registers that are "same value". Since
1347 DWARF2 (3 draft 7) doesn't define such behavior, said
1348 registers are actually undefined (which is different to CFI
1349 "undefined"). Code above issues a complaint about this.
1350 Here just fudge the books, assume GCC, and that the value is
1351 more inner on the stack. */
4a4e5149 1352 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1353
05cbe71a 1354 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1355 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1356
05cbe71a 1357 case DWARF2_FRAME_REG_CFA:
4a4e5149 1358 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1359
ea7963f0 1360 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1361 addr = cache->cfa + cache->reg[regnum].loc.offset;
1362 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1363
8d5a9abc 1364 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1365 addr = cache->reg[regnum].loc.offset;
1366 regnum = gdbarch_dwarf2_reg_to_regnum
1367 (gdbarch, cache->retaddr_reg.loc.reg);
1368 addr += get_frame_register_unsigned (this_frame, regnum);
1369 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1370
b39cc962
DJ
1371 case DWARF2_FRAME_REG_FN:
1372 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1373
cfc14b3a 1374 default:
e2e0b3e5 1375 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1376 }
1377}
1378
111c6489
JK
1379/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1380 call frames chain. */
1381
1382static void
1383dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1384{
1385 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1386
1387 if (cache->tailcall_cache)
1388 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1389}
1390
4a4e5149
DJ
1391static int
1392dwarf2_frame_sniffer (const struct frame_unwind *self,
1393 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1394{
1ce5d6dd 1395 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1396 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1397 end up returning something past the end of this function's body.
1398 If the frame we're sniffing for is a signal frame whose start
1399 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1400 extend one byte before its start address or we could potentially
1401 select the FDE of the previous function. */
1402 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1403 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1404
56c987f6 1405 if (!fde)
4a4e5149 1406 return 0;
3ed09a32
DJ
1407
1408 /* On some targets, signal trampolines may have unwind information.
1409 We need to recognize them so that we set the frame type
1410 correctly. */
1411
56c987f6 1412 if (fde->cie->signal_frame
4a4e5149
DJ
1413 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1414 this_frame))
1415 return self->type == SIGTRAMP_FRAME;
1416
111c6489
JK
1417 if (self->type != NORMAL_FRAME)
1418 return 0;
1419
111c6489 1420 return 1;
4a4e5149
DJ
1421}
1422
1423static const struct frame_unwind dwarf2_frame_unwind =
1424{
1425 NORMAL_FRAME,
8fbca658 1426 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1427 dwarf2_frame_this_id,
1428 dwarf2_frame_prev_register,
1429 NULL,
111c6489
JK
1430 dwarf2_frame_sniffer,
1431 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1432};
1433
1434static const struct frame_unwind dwarf2_signal_frame_unwind =
1435{
1436 SIGTRAMP_FRAME,
8fbca658 1437 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1438 dwarf2_frame_this_id,
1439 dwarf2_frame_prev_register,
1440 NULL,
111c6489
JK
1441 dwarf2_frame_sniffer,
1442
1443 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1444 NULL
4a4e5149 1445};
cfc14b3a 1446
4a4e5149
DJ
1447/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1448
1449void
1450dwarf2_append_unwinders (struct gdbarch *gdbarch)
1451{
111c6489
JK
1452 /* TAILCALL_FRAME must be first to find the record by
1453 dwarf2_tailcall_sniffer_first. */
1454 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1455
4a4e5149
DJ
1456 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1457 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1458}
1459\f
1460
1461/* There is no explicitly defined relationship between the CFA and the
1462 location of frame's local variables and arguments/parameters.
1463 Therefore, frame base methods on this page should probably only be
1464 used as a last resort, just to avoid printing total garbage as a
1465 response to the "info frame" command. */
1466
1467static CORE_ADDR
4a4e5149 1468dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1469{
1470 struct dwarf2_frame_cache *cache =
4a4e5149 1471 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1472
1473 return cache->cfa;
1474}
1475
1476static const struct frame_base dwarf2_frame_base =
1477{
1478 &dwarf2_frame_unwind,
1479 dwarf2_frame_base_address,
1480 dwarf2_frame_base_address,
1481 dwarf2_frame_base_address
1482};
1483
1484const struct frame_base *
4a4e5149 1485dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1486{
4a4e5149 1487 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1488
ac56253d 1489 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1490 return &dwarf2_frame_base;
1491
1492 return NULL;
1493}
e7802207
TT
1494
1495/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1496 the DWARF unwinder. This is used to implement
1497 DW_OP_call_frame_cfa. */
1498
1499CORE_ADDR
1500dwarf2_frame_cfa (struct frame_info *this_frame)
1501{
0b722aec
MM
1502 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1503 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1504 throw_error (NOT_AVAILABLE_ERROR,
1505 _("cfa not available for record btrace target"));
1506
e7802207
TT
1507 while (get_frame_type (this_frame) == INLINE_FRAME)
1508 this_frame = get_prev_frame (this_frame);
32261e52
MM
1509 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1510 throw_error (NOT_AVAILABLE_ERROR,
1511 _("can't compute CFA for this frame: "
1512 "required registers or memory are unavailable"));
e7802207
TT
1513 /* This restriction could be lifted if other unwinders are known to
1514 compute the frame base in a way compatible with the DWARF
1515 unwinder. */
111c6489
JK
1516 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1517 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
e7802207
TT
1518 error (_("can't compute CFA for this frame"));
1519 return get_frame_base (this_frame);
1520}
cfc14b3a 1521\f
8f22cb90 1522const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1523
cfc14b3a 1524static unsigned int
f664829e 1525read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1526{
852483bc 1527 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1528}
1529
1530static unsigned int
f664829e 1531read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1532{
852483bc 1533 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1534}
1535
1536static ULONGEST
f664829e 1537read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1538{
852483bc 1539 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1540}
1541
1542static ULONGEST
f664829e
DE
1543read_initial_length (bfd *abfd, const gdb_byte *buf,
1544 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1545{
1546 LONGEST result;
1547
852483bc 1548 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1549 if (result == 0xffffffff)
1550 {
852483bc 1551 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1552 *bytes_read_ptr = 12;
1553 }
1554 else
1555 *bytes_read_ptr = 4;
1556
1557 return result;
1558}
1559\f
1560
1561/* Pointer encoding helper functions. */
1562
1563/* GCC supports exception handling based on DWARF2 CFI. However, for
1564 technical reasons, it encodes addresses in its FDE's in a different
1565 way. Several "pointer encodings" are supported. The encoding
1566 that's used for a particular FDE is determined by the 'R'
1567 augmentation in the associated CIE. The argument of this
1568 augmentation is a single byte.
1569
1570 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1571 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1572 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1573 address should be interpreted (absolute, relative to the current
1574 position in the FDE, ...). Bit 7, indicates that the address
1575 should be dereferenced. */
1576
852483bc 1577static gdb_byte
cfc14b3a
MK
1578encoding_for_size (unsigned int size)
1579{
1580 switch (size)
1581 {
1582 case 2:
1583 return DW_EH_PE_udata2;
1584 case 4:
1585 return DW_EH_PE_udata4;
1586 case 8:
1587 return DW_EH_PE_udata8;
1588 default:
e2e0b3e5 1589 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1590 }
1591}
1592
cfc14b3a 1593static CORE_ADDR
852483bc 1594read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1595 int ptr_len, const gdb_byte *buf,
1596 unsigned int *bytes_read_ptr,
ae0d2f24 1597 CORE_ADDR func_base)
cfc14b3a 1598{
68f6cf99 1599 ptrdiff_t offset;
cfc14b3a
MK
1600 CORE_ADDR base;
1601
1602 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1603 FDE's. */
1604 if (encoding & DW_EH_PE_indirect)
1605 internal_error (__FILE__, __LINE__,
e2e0b3e5 1606 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1607
68f6cf99
MK
1608 *bytes_read_ptr = 0;
1609
cfc14b3a
MK
1610 switch (encoding & 0x70)
1611 {
1612 case DW_EH_PE_absptr:
1613 base = 0;
1614 break;
1615 case DW_EH_PE_pcrel:
f2fec864 1616 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1617 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1618 break;
0912c7f2
MK
1619 case DW_EH_PE_datarel:
1620 base = unit->dbase;
1621 break;
0fd85043
CV
1622 case DW_EH_PE_textrel:
1623 base = unit->tbase;
1624 break;
03ac2a74 1625 case DW_EH_PE_funcrel:
ae0d2f24 1626 base = func_base;
03ac2a74 1627 break;
68f6cf99
MK
1628 case DW_EH_PE_aligned:
1629 base = 0;
852483bc 1630 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1631 if ((offset % ptr_len) != 0)
1632 {
1633 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1634 buf += *bytes_read_ptr;
1635 }
1636 break;
cfc14b3a 1637 default:
3e43a32a
MS
1638 internal_error (__FILE__, __LINE__,
1639 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1640 }
1641
b04de778 1642 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1643 {
1644 encoding |= encoding_for_size (ptr_len);
1645 if (bfd_get_sign_extend_vma (unit->abfd))
1646 encoding |= DW_EH_PE_signed;
1647 }
cfc14b3a
MK
1648
1649 switch (encoding & 0x0f)
1650 {
a81b10ae
MK
1651 case DW_EH_PE_uleb128:
1652 {
9fccedf7 1653 uint64_t value;
0d45f56e 1654 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1655
f664829e 1656 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1657 return base + value;
1658 }
cfc14b3a 1659 case DW_EH_PE_udata2:
68f6cf99 1660 *bytes_read_ptr += 2;
cfc14b3a
MK
1661 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1662 case DW_EH_PE_udata4:
68f6cf99 1663 *bytes_read_ptr += 4;
cfc14b3a
MK
1664 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1665 case DW_EH_PE_udata8:
68f6cf99 1666 *bytes_read_ptr += 8;
cfc14b3a 1667 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1668 case DW_EH_PE_sleb128:
1669 {
9fccedf7 1670 int64_t value;
0d45f56e 1671 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1672
f664829e 1673 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1674 return base + value;
1675 }
cfc14b3a 1676 case DW_EH_PE_sdata2:
68f6cf99 1677 *bytes_read_ptr += 2;
cfc14b3a
MK
1678 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1679 case DW_EH_PE_sdata4:
68f6cf99 1680 *bytes_read_ptr += 4;
cfc14b3a
MK
1681 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1682 case DW_EH_PE_sdata8:
68f6cf99 1683 *bytes_read_ptr += 8;
cfc14b3a
MK
1684 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1685 default:
3e43a32a
MS
1686 internal_error (__FILE__, __LINE__,
1687 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1688 }
1689}
1690\f
1691
b01c8410
PP
1692static int
1693bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1694{
b01c8410
PP
1695 ULONGEST cie_pointer = *(ULONGEST *) key;
1696 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1697
b01c8410
PP
1698 if (cie_pointer == cie->cie_pointer)
1699 return 0;
cfc14b3a 1700
b01c8410
PP
1701 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1702}
1703
1704/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1705static struct dwarf2_cie *
1706find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1707{
1708 struct dwarf2_cie **p_cie;
cfc14b3a 1709
65a97ab3
PP
1710 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1711 bsearch be non-NULL. */
1712 if (cie_table->entries == NULL)
1713 {
1714 gdb_assert (cie_table->num_entries == 0);
1715 return NULL;
1716 }
1717
b01c8410
PP
1718 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1719 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1720 if (p_cie != NULL)
1721 return *p_cie;
cfc14b3a
MK
1722 return NULL;
1723}
1724
b01c8410 1725/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1726static void
b01c8410 1727add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1728{
b01c8410
PP
1729 const int n = cie_table->num_entries;
1730
1731 gdb_assert (n < 1
1732 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1733
1734 cie_table->entries =
1735 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1736 cie_table->entries[n] = cie;
1737 cie_table->num_entries = n + 1;
1738}
1739
1740static int
1741bsearch_fde_cmp (const void *key, const void *element)
1742{
1743 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1744 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1745
b01c8410
PP
1746 if (seek_pc < fde->initial_location)
1747 return -1;
1748 if (seek_pc < fde->initial_location + fde->address_range)
1749 return 0;
1750 return 1;
cfc14b3a
MK
1751}
1752
1753/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1754 inital location associated with it into *PC. */
1755
1756static struct dwarf2_fde *
ac56253d 1757dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1758{
1759 struct objfile *objfile;
1760
1761 ALL_OBJFILES (objfile)
1762 {
b01c8410
PP
1763 struct dwarf2_fde_table *fde_table;
1764 struct dwarf2_fde **p_fde;
cfc14b3a 1765 CORE_ADDR offset;
b01c8410 1766 CORE_ADDR seek_pc;
cfc14b3a 1767
b01c8410
PP
1768 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1769 if (fde_table == NULL)
be391dca
TT
1770 {
1771 dwarf2_build_frame_info (objfile);
1772 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1773 }
1774 gdb_assert (fde_table != NULL);
1775
1776 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1777 continue;
1778
1779 gdb_assert (objfile->section_offsets);
1780 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1781
b01c8410
PP
1782 gdb_assert (fde_table->num_entries > 0);
1783 if (*pc < offset + fde_table->entries[0]->initial_location)
1784 continue;
1785
1786 seek_pc = *pc - offset;
1787 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1788 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1789 if (p_fde != NULL)
1790 {
1791 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1792 if (out_offset)
1793 *out_offset = offset;
b01c8410
PP
1794 return *p_fde;
1795 }
cfc14b3a 1796 }
cfc14b3a
MK
1797 return NULL;
1798}
1799
b01c8410 1800/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1801static void
b01c8410 1802add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1803{
b01c8410
PP
1804 if (fde->address_range == 0)
1805 /* Discard useless FDEs. */
1806 return;
1807
1808 fde_table->num_entries += 1;
1809 fde_table->entries =
1810 xrealloc (fde_table->entries,
1811 fde_table->num_entries * sizeof (fde_table->entries[0]));
1812 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1813}
1814
cfc14b3a 1815#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1816
8bd90839
FM
1817/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1818 or any of them. */
1819
1820enum eh_frame_type
1821{
1822 EH_CIE_TYPE_ID = 1 << 0,
1823 EH_FDE_TYPE_ID = 1 << 1,
1824 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1825};
1826
f664829e
DE
1827static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1828 const gdb_byte *start,
1829 int eh_frame_p,
1830 struct dwarf2_cie_table *cie_table,
1831 struct dwarf2_fde_table *fde_table,
1832 enum eh_frame_type entry_type);
8bd90839
FM
1833
1834/* Decode the next CIE or FDE, entry_type specifies the expected type.
1835 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1836
f664829e
DE
1837static const gdb_byte *
1838decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1839 int eh_frame_p,
b01c8410 1840 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1841 struct dwarf2_fde_table *fde_table,
1842 enum eh_frame_type entry_type)
cfc14b3a 1843{
5e2b427d 1844 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1845 const gdb_byte *buf, *end;
cfc14b3a
MK
1846 LONGEST length;
1847 unsigned int bytes_read;
6896c0c7
RH
1848 int dwarf64_p;
1849 ULONGEST cie_id;
cfc14b3a 1850 ULONGEST cie_pointer;
9fccedf7
DE
1851 int64_t sleb128;
1852 uint64_t uleb128;
cfc14b3a 1853
6896c0c7 1854 buf = start;
cfc14b3a
MK
1855 length = read_initial_length (unit->abfd, buf, &bytes_read);
1856 buf += bytes_read;
1857 end = buf + length;
1858
0963b4bd 1859 /* Are we still within the section? */
6896c0c7
RH
1860 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1861 return NULL;
1862
cfc14b3a
MK
1863 if (length == 0)
1864 return end;
1865
6896c0c7
RH
1866 /* Distinguish between 32 and 64-bit encoded frame info. */
1867 dwarf64_p = (bytes_read == 12);
cfc14b3a 1868
6896c0c7 1869 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1870 if (eh_frame_p)
1871 cie_id = 0;
1872 else if (dwarf64_p)
1873 cie_id = DW64_CIE_ID;
6896c0c7
RH
1874 else
1875 cie_id = DW_CIE_ID;
cfc14b3a
MK
1876
1877 if (dwarf64_p)
1878 {
1879 cie_pointer = read_8_bytes (unit->abfd, buf);
1880 buf += 8;
1881 }
1882 else
1883 {
1884 cie_pointer = read_4_bytes (unit->abfd, buf);
1885 buf += 4;
1886 }
1887
1888 if (cie_pointer == cie_id)
1889 {
1890 /* This is a CIE. */
1891 struct dwarf2_cie *cie;
1892 char *augmentation;
28ba0b33 1893 unsigned int cie_version;
cfc14b3a 1894
8bd90839
FM
1895 /* Check that a CIE was expected. */
1896 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1897 error (_("Found a CIE when not expecting it."));
1898
cfc14b3a
MK
1899 /* Record the offset into the .debug_frame section of this CIE. */
1900 cie_pointer = start - unit->dwarf_frame_buffer;
1901
1902 /* Check whether we've already read it. */
b01c8410 1903 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1904 return end;
1905
1906 cie = (struct dwarf2_cie *)
8b92e4d5 1907 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1908 sizeof (struct dwarf2_cie));
1909 cie->initial_instructions = NULL;
1910 cie->cie_pointer = cie_pointer;
1911
1912 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1913 depends on the target address size. */
1914 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1915
56c987f6
AO
1916 /* We'll determine the final value later, but we need to
1917 initialize it conservatively. */
1918 cie->signal_frame = 0;
1919
cfc14b3a 1920 /* Check version number. */
28ba0b33 1921 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1922 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1923 return NULL;
303b6f5d 1924 cie->version = cie_version;
cfc14b3a
MK
1925 buf += 1;
1926
1927 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1928 cie->augmentation = augmentation = (char *) buf;
852483bc 1929 buf += (strlen (augmentation) + 1);
cfc14b3a 1930
303b6f5d
DJ
1931 /* Ignore armcc augmentations. We only use them for quirks,
1932 and that doesn't happen until later. */
1933 if (strncmp (augmentation, "armcc", 5) == 0)
1934 augmentation += strlen (augmentation);
1935
cfc14b3a
MK
1936 /* The GCC 2.x "eh" augmentation has a pointer immediately
1937 following the augmentation string, so it must be handled
1938 first. */
1939 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1940 {
1941 /* Skip. */
5e2b427d 1942 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1943 augmentation += 2;
1944 }
1945
2dc7f7b3
TT
1946 if (cie->version >= 4)
1947 {
1948 /* FIXME: check that this is the same as from the CU header. */
1949 cie->addr_size = read_1_byte (unit->abfd, buf);
1950 ++buf;
1951 cie->segment_size = read_1_byte (unit->abfd, buf);
1952 ++buf;
1953 }
1954 else
1955 {
8da614df 1956 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1957 cie->segment_size = 0;
1958 }
8da614df
CV
1959 /* Address values in .eh_frame sections are defined to have the
1960 target's pointer size. Watchout: This breaks frame info for
1961 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1962 section exists as well. */
8da614df
CV
1963 if (eh_frame_p)
1964 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1965 else
1966 cie->ptr_size = cie->addr_size;
2dc7f7b3 1967
f664829e
DE
1968 buf = gdb_read_uleb128 (buf, end, &uleb128);
1969 if (buf == NULL)
1970 return NULL;
1971 cie->code_alignment_factor = uleb128;
cfc14b3a 1972
f664829e
DE
1973 buf = gdb_read_sleb128 (buf, end, &sleb128);
1974 if (buf == NULL)
1975 return NULL;
1976 cie->data_alignment_factor = sleb128;
cfc14b3a 1977
28ba0b33
PB
1978 if (cie_version == 1)
1979 {
1980 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1981 ++buf;
28ba0b33
PB
1982 }
1983 else
f664829e
DE
1984 {
1985 buf = gdb_read_uleb128 (buf, end, &uleb128);
1986 if (buf == NULL)
1987 return NULL;
1988 cie->return_address_register = uleb128;
1989 }
1990
4fc771b8 1991 cie->return_address_register
5e2b427d 1992 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1993 cie->return_address_register,
1994 eh_frame_p);
4bf8967c 1995
7131cb6e
RH
1996 cie->saw_z_augmentation = (*augmentation == 'z');
1997 if (cie->saw_z_augmentation)
cfc14b3a 1998 {
9fccedf7 1999 uint64_t length;
cfc14b3a 2000
f664829e
DE
2001 buf = gdb_read_uleb128 (buf, end, &length);
2002 if (buf == NULL)
6896c0c7 2003 return NULL;
cfc14b3a
MK
2004 cie->initial_instructions = buf + length;
2005 augmentation++;
2006 }
2007
2008 while (*augmentation)
2009 {
2010 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2011 if (*augmentation == 'L')
2012 {
2013 /* Skip. */
2014 buf++;
2015 augmentation++;
2016 }
2017
2018 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2019 else if (*augmentation == 'R')
2020 {
2021 cie->encoding = *buf++;
2022 augmentation++;
2023 }
2024
2025 /* "P" indicates a personality routine in the CIE augmentation. */
2026 else if (*augmentation == 'P')
2027 {
1234d960 2028 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2029 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2030 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2031 buf, &bytes_read, 0);
f724bf08 2032 buf += bytes_read;
cfc14b3a
MK
2033 augmentation++;
2034 }
2035
56c987f6
AO
2036 /* "S" indicates a signal frame, such that the return
2037 address must not be decremented to locate the call frame
2038 info for the previous frame; it might even be the first
2039 instruction of a function, so decrementing it would take
2040 us to a different function. */
2041 else if (*augmentation == 'S')
2042 {
2043 cie->signal_frame = 1;
2044 augmentation++;
2045 }
2046
3e9a2e52
DJ
2047 /* Otherwise we have an unknown augmentation. Assume that either
2048 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2049 else
2050 {
3e9a2e52
DJ
2051 if (cie->initial_instructions)
2052 buf = cie->initial_instructions;
cfc14b3a
MK
2053 break;
2054 }
2055 }
2056
2057 cie->initial_instructions = buf;
2058 cie->end = end;
b01c8410 2059 cie->unit = unit;
cfc14b3a 2060
b01c8410 2061 add_cie (cie_table, cie);
cfc14b3a
MK
2062 }
2063 else
2064 {
2065 /* This is a FDE. */
2066 struct dwarf2_fde *fde;
3e29f34a 2067 CORE_ADDR addr;
cfc14b3a 2068
8bd90839
FM
2069 /* Check that an FDE was expected. */
2070 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2071 error (_("Found an FDE when not expecting it."));
2072
6896c0c7
RH
2073 /* In an .eh_frame section, the CIE pointer is the delta between the
2074 address within the FDE where the CIE pointer is stored and the
2075 address of the CIE. Convert it to an offset into the .eh_frame
2076 section. */
cfc14b3a
MK
2077 if (eh_frame_p)
2078 {
cfc14b3a
MK
2079 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2080 cie_pointer -= (dwarf64_p ? 8 : 4);
2081 }
2082
6896c0c7
RH
2083 /* In either case, validate the result is still within the section. */
2084 if (cie_pointer >= unit->dwarf_frame_size)
2085 return NULL;
2086
cfc14b3a 2087 fde = (struct dwarf2_fde *)
8b92e4d5 2088 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2089 sizeof (struct dwarf2_fde));
b01c8410 2090 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2091 if (fde->cie == NULL)
2092 {
2093 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2094 eh_frame_p, cie_table, fde_table,
2095 EH_CIE_TYPE_ID);
b01c8410 2096 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2097 }
2098
2099 gdb_assert (fde->cie != NULL);
2100
3e29f34a
MR
2101 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2102 buf, &bytes_read, 0);
2103 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
cfc14b3a
MK
2104 buf += bytes_read;
2105
2106 fde->address_range =
ae0d2f24 2107 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2108 fde->cie->ptr_size, buf, &bytes_read, 0);
3e29f34a
MR
2109 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2110 fde->address_range = addr - fde->initial_location;
cfc14b3a
MK
2111 buf += bytes_read;
2112
7131cb6e
RH
2113 /* A 'z' augmentation in the CIE implies the presence of an
2114 augmentation field in the FDE as well. The only thing known
2115 to be in here at present is the LSDA entry for EH. So we
2116 can skip the whole thing. */
2117 if (fde->cie->saw_z_augmentation)
2118 {
9fccedf7 2119 uint64_t length;
7131cb6e 2120
f664829e
DE
2121 buf = gdb_read_uleb128 (buf, end, &length);
2122 if (buf == NULL)
2123 return NULL;
2124 buf += length;
6896c0c7
RH
2125 if (buf > end)
2126 return NULL;
7131cb6e
RH
2127 }
2128
cfc14b3a
MK
2129 fde->instructions = buf;
2130 fde->end = end;
2131
4bf8967c
AS
2132 fde->eh_frame_p = eh_frame_p;
2133
b01c8410 2134 add_fde (fde_table, fde);
cfc14b3a
MK
2135 }
2136
2137 return end;
2138}
6896c0c7 2139
8bd90839
FM
2140/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2141 expect an FDE or a CIE. */
2142
f664829e
DE
2143static const gdb_byte *
2144decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2145 int eh_frame_p,
b01c8410 2146 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2147 struct dwarf2_fde_table *fde_table,
2148 enum eh_frame_type entry_type)
6896c0c7
RH
2149{
2150 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2151 const gdb_byte *ret;
6896c0c7
RH
2152 ptrdiff_t start_offset;
2153
2154 while (1)
2155 {
b01c8410 2156 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2157 cie_table, fde_table, entry_type);
6896c0c7
RH
2158 if (ret != NULL)
2159 break;
2160
2161 /* We have corrupt input data of some form. */
2162
2163 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2164 and mismatches wrt padding and alignment of debug sections. */
2165 /* Note that there is no requirement in the standard for any
2166 alignment at all in the frame unwind sections. Testing for
2167 alignment before trying to interpret data would be incorrect.
2168
2169 However, GCC traditionally arranged for frame sections to be
2170 sized such that the FDE length and CIE fields happen to be
2171 aligned (in theory, for performance). This, unfortunately,
2172 was done with .align directives, which had the side effect of
2173 forcing the section to be aligned by the linker.
2174
2175 This becomes a problem when you have some other producer that
2176 creates frame sections that are not as strictly aligned. That
2177 produces a hole in the frame info that gets filled by the
2178 linker with zeros.
2179
2180 The GCC behaviour is arguably a bug, but it's effectively now
2181 part of the ABI, so we're now stuck with it, at least at the
2182 object file level. A smart linker may decide, in the process
2183 of compressing duplicate CIE information, that it can rewrite
2184 the entire output section without this extra padding. */
2185
2186 start_offset = start - unit->dwarf_frame_buffer;
2187 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2188 {
2189 start += 4 - (start_offset & 3);
2190 workaround = ALIGN4;
2191 continue;
2192 }
2193 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2194 {
2195 start += 8 - (start_offset & 7);
2196 workaround = ALIGN8;
2197 continue;
2198 }
2199
2200 /* Nothing left to try. Arrange to return as if we've consumed
2201 the entire input section. Hopefully we'll get valid info from
2202 the other of .debug_frame/.eh_frame. */
2203 workaround = FAIL;
2204 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2205 break;
2206 }
2207
2208 switch (workaround)
2209 {
2210 case NONE:
2211 break;
2212
2213 case ALIGN4:
3e43a32a
MS
2214 complaint (&symfile_complaints, _("\
2215Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2216 unit->dwarf_frame_section->owner->filename,
2217 unit->dwarf_frame_section->name);
2218 break;
2219
2220 case ALIGN8:
3e43a32a
MS
2221 complaint (&symfile_complaints, _("\
2222Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2223 unit->dwarf_frame_section->owner->filename,
2224 unit->dwarf_frame_section->name);
2225 break;
2226
2227 default:
2228 complaint (&symfile_complaints,
e2e0b3e5 2229 _("Corrupt data in %s:%s"),
6896c0c7
RH
2230 unit->dwarf_frame_section->owner->filename,
2231 unit->dwarf_frame_section->name);
2232 break;
2233 }
2234
2235 return ret;
2236}
cfc14b3a 2237\f
b01c8410
PP
2238static int
2239qsort_fde_cmp (const void *a, const void *b)
2240{
2241 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2242 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2243
b01c8410 2244 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2245 {
2246 if (aa->address_range != bb->address_range
2247 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2248 /* Linker bug, e.g. gold/10400.
2249 Work around it by keeping stable sort order. */
2250 return (a < b) ? -1 : 1;
2251 else
2252 /* Put eh_frame entries after debug_frame ones. */
2253 return aa->eh_frame_p - bb->eh_frame_p;
2254 }
b01c8410
PP
2255
2256 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2257}
2258
cfc14b3a
MK
2259void
2260dwarf2_build_frame_info (struct objfile *objfile)
2261{
ae0d2f24 2262 struct comp_unit *unit;
f664829e 2263 const gdb_byte *frame_ptr;
b01c8410
PP
2264 struct dwarf2_cie_table cie_table;
2265 struct dwarf2_fde_table fde_table;
be391dca 2266 struct dwarf2_fde_table *fde_table2;
8bd90839 2267 volatile struct gdb_exception e;
b01c8410
PP
2268
2269 cie_table.num_entries = 0;
2270 cie_table.entries = NULL;
2271
2272 fde_table.num_entries = 0;
2273 fde_table.entries = NULL;
cfc14b3a
MK
2274
2275 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2276 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2277 sizeof (struct comp_unit));
2278 unit->abfd = objfile->obfd;
2279 unit->objfile = objfile;
2280 unit->dbase = 0;
2281 unit->tbase = 0;
cfc14b3a 2282
d40102a1 2283 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2284 {
d40102a1
JB
2285 /* Do not read .eh_frame from separate file as they must be also
2286 present in the main file. */
2287 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2288 &unit->dwarf_frame_section,
2289 &unit->dwarf_frame_buffer,
2290 &unit->dwarf_frame_size);
2291 if (unit->dwarf_frame_size)
b01c8410 2292 {
d40102a1
JB
2293 asection *got, *txt;
2294
2295 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2296 that is used for the i386/amd64 target, which currently is
2297 the only target in GCC that supports/uses the
2298 DW_EH_PE_datarel encoding. */
2299 got = bfd_get_section_by_name (unit->abfd, ".got");
2300 if (got)
2301 unit->dbase = got->vma;
2302
2303 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2304 so far. */
2305 txt = bfd_get_section_by_name (unit->abfd, ".text");
2306 if (txt)
2307 unit->tbase = txt->vma;
2308
8bd90839
FM
2309 TRY_CATCH (e, RETURN_MASK_ERROR)
2310 {
2311 frame_ptr = unit->dwarf_frame_buffer;
2312 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2313 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2314 &cie_table, &fde_table,
2315 EH_CIE_OR_FDE_TYPE_ID);
2316 }
2317
2318 if (e.reason < 0)
2319 {
2320 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2321 objfile_name (objfile), e.message);
8bd90839
FM
2322
2323 if (fde_table.num_entries != 0)
2324 {
2325 xfree (fde_table.entries);
2326 fde_table.entries = NULL;
2327 fde_table.num_entries = 0;
2328 }
2329 /* The cie_table is discarded by the next if. */
2330 }
d40102a1
JB
2331
2332 if (cie_table.num_entries != 0)
2333 {
2334 /* Reinit cie_table: debug_frame has different CIEs. */
2335 xfree (cie_table.entries);
2336 cie_table.num_entries = 0;
2337 cie_table.entries = NULL;
2338 }
b01c8410 2339 }
cfc14b3a
MK
2340 }
2341
3017a003 2342 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2343 &unit->dwarf_frame_section,
2344 &unit->dwarf_frame_buffer,
2345 &unit->dwarf_frame_size);
2346 if (unit->dwarf_frame_size)
cfc14b3a 2347 {
8bd90839
FM
2348 int num_old_fde_entries = fde_table.num_entries;
2349
2350 TRY_CATCH (e, RETURN_MASK_ERROR)
2351 {
2352 frame_ptr = unit->dwarf_frame_buffer;
2353 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2354 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2355 &cie_table, &fde_table,
2356 EH_CIE_OR_FDE_TYPE_ID);
2357 }
2358 if (e.reason < 0)
2359 {
2360 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2361 objfile_name (objfile), e.message);
8bd90839
FM
2362
2363 if (fde_table.num_entries != 0)
2364 {
2365 fde_table.num_entries = num_old_fde_entries;
2366 if (num_old_fde_entries == 0)
2367 {
2368 xfree (fde_table.entries);
2369 fde_table.entries = NULL;
2370 }
2371 else
2372 {
2373 fde_table.entries = xrealloc (fde_table.entries,
2374 fde_table.num_entries *
2375 sizeof (fde_table.entries[0]));
2376 }
2377 }
2378 fde_table.num_entries = num_old_fde_entries;
2379 /* The cie_table is discarded by the next if. */
2380 }
b01c8410
PP
2381 }
2382
2383 /* Discard the cie_table, it is no longer needed. */
2384 if (cie_table.num_entries != 0)
2385 {
2386 xfree (cie_table.entries);
2387 cie_table.entries = NULL; /* Paranoia. */
2388 cie_table.num_entries = 0; /* Paranoia. */
2389 }
2390
be391dca
TT
2391 /* Copy fde_table to obstack: it is needed at runtime. */
2392 fde_table2 = (struct dwarf2_fde_table *)
2393 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2394
2395 if (fde_table.num_entries == 0)
2396 {
2397 fde_table2->entries = NULL;
2398 fde_table2->num_entries = 0;
2399 }
2400 else
b01c8410 2401 {
875cdfbb
PA
2402 struct dwarf2_fde *fde_prev = NULL;
2403 struct dwarf2_fde *first_non_zero_fde = NULL;
2404 int i;
b01c8410
PP
2405
2406 /* Prepare FDE table for lookups. */
2407 qsort (fde_table.entries, fde_table.num_entries,
2408 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2409
875cdfbb
PA
2410 /* Check for leftovers from --gc-sections. The GNU linker sets
2411 the relevant symbols to zero, but doesn't zero the FDE *end*
2412 ranges because there's no relocation there. It's (offset,
2413 length), not (start, end). On targets where address zero is
2414 just another valid address this can be a problem, since the
2415 FDEs appear to be non-empty in the output --- we could pick
2416 out the wrong FDE. To work around this, when overlaps are
2417 detected, we prefer FDEs that do not start at zero.
2418
2419 Start by finding the first FDE with non-zero start. Below
2420 we'll discard all FDEs that start at zero and overlap this
2421 one. */
2422 for (i = 0; i < fde_table.num_entries; i++)
2423 {
2424 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2425
875cdfbb
PA
2426 if (fde->initial_location != 0)
2427 {
2428 first_non_zero_fde = fde;
2429 break;
2430 }
2431 }
2432
2433 /* Since we'll be doing bsearch, squeeze out identical (except
2434 for eh_frame_p) fde entries so bsearch result is predictable.
2435 Also discard leftovers from --gc-sections. */
be391dca 2436 fde_table2->num_entries = 0;
875cdfbb
PA
2437 for (i = 0; i < fde_table.num_entries; i++)
2438 {
2439 struct dwarf2_fde *fde = fde_table.entries[i];
2440
2441 if (fde->initial_location == 0
2442 && first_non_zero_fde != NULL
2443 && (first_non_zero_fde->initial_location
2444 < fde->initial_location + fde->address_range))
2445 continue;
2446
2447 if (fde_prev != NULL
2448 && fde_prev->initial_location == fde->initial_location)
2449 continue;
2450
2451 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2452 sizeof (fde_table.entries[0]));
2453 ++fde_table2->num_entries;
2454 fde_prev = fde;
2455 }
b01c8410 2456 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2457
2458 /* Discard the original fde_table. */
2459 xfree (fde_table.entries);
cfc14b3a 2460 }
be391dca
TT
2461
2462 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2463}
0d0e1a63
MK
2464
2465/* Provide a prototype to silence -Wmissing-prototypes. */
2466void _initialize_dwarf2_frame (void);
2467
2468void
2469_initialize_dwarf2_frame (void)
2470{
030f20e1 2471 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2472 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2473}
This page took 1.216421 seconds and 4 git commands to generate.