2009-08-06 Paul Pluzhnikov <ppluzhnikov@google.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
0fb0cc75
JB
3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
cfc14b3a
MK
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
22
23#include "defs.h"
24#include "dwarf2expr.h"
fa8f86ff 25#include "dwarf2.h"
cfc14b3a
MK
26#include "frame.h"
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
31#include "symtab.h"
32#include "objfiles.h"
33#include "regcache.h"
f2da6b3a 34#include "value.h"
cfc14b3a
MK
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
6896c0c7 39#include "complaints.h"
cfc14b3a
MK
40#include "dwarf2-frame.h"
41
ae0d2f24
UW
42struct comp_unit;
43
cfc14b3a
MK
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
ae0d2f24
UW
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
cfc14b3a
MK
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
852483bc
MK
68 gdb_byte *initial_instructions;
69 gdb_byte *end;
cfc14b3a 70
303b6f5d
DJ
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
cfc14b3a 74 /* Encoding of addresses. */
852483bc 75 gdb_byte encoding;
cfc14b3a 76
ae0d2f24
UW
77 /* Target address size in bytes. */
78 int addr_size;
79
7131cb6e
RH
80 /* True if a 'z' augmentation existed. */
81 unsigned char saw_z_augmentation;
82
56c987f6
AO
83 /* True if an 'S' augmentation existed. */
84 unsigned char signal_frame;
85
303b6f5d
DJ
86 /* The version recorded in the CIE. */
87 unsigned char version;
b01c8410 88};
303b6f5d 89
b01c8410
PP
90struct dwarf2_cie_table
91{
92 int num_entries;
93 struct dwarf2_cie **entries;
cfc14b3a
MK
94};
95
96/* Frame Description Entry (FDE). */
97
98struct dwarf2_fde
99{
100 /* CIE for this FDE. */
101 struct dwarf2_cie *cie;
102
103 /* First location associated with this FDE. */
104 CORE_ADDR initial_location;
105
106 /* Number of bytes of program instructions described by this FDE. */
107 CORE_ADDR address_range;
108
109 /* Instruction sequence. */
852483bc
MK
110 gdb_byte *instructions;
111 gdb_byte *end;
cfc14b3a 112
4bf8967c
AS
113 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
114 section. */
115 unsigned char eh_frame_p;
b01c8410 116};
4bf8967c 117
b01c8410
PP
118struct dwarf2_fde_table
119{
120 int num_entries;
121 struct dwarf2_fde **entries;
cfc14b3a
MK
122};
123
ae0d2f24
UW
124/* A minimal decoding of DWARF2 compilation units. We only decode
125 what's needed to get to the call frame information. */
126
127struct comp_unit
128{
129 /* Keep the bfd convenient. */
130 bfd *abfd;
131
132 struct objfile *objfile;
133
ae0d2f24
UW
134 /* Pointer to the .debug_frame section loaded into memory. */
135 gdb_byte *dwarf_frame_buffer;
136
137 /* Length of the loaded .debug_frame section. */
c098b58b 138 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
139
140 /* Pointer to the .debug_frame section. */
141 asection *dwarf_frame_section;
142
143 /* Base for DW_EH_PE_datarel encodings. */
144 bfd_vma dbase;
145
146 /* Base for DW_EH_PE_textrel encodings. */
147 bfd_vma tbase;
148};
149
cfc14b3a 150static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
4fc771b8
DJ
151
152static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
153 int eh_frame_p);
ae0d2f24
UW
154
155static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
156 int ptr_len, gdb_byte *buf,
157 unsigned int *bytes_read_ptr,
158 CORE_ADDR func_base);
cfc14b3a
MK
159\f
160
161/* Structure describing a frame state. */
162
163struct dwarf2_frame_state
164{
165 /* Each register save state can be described in terms of a CFA slot,
166 another register, or a location expression. */
167 struct dwarf2_frame_state_reg_info
168 {
05cbe71a 169 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
170 int num_regs;
171
2fd481e1
PP
172 LONGEST cfa_offset;
173 ULONGEST cfa_reg;
174 enum {
175 CFA_UNSET,
176 CFA_REG_OFFSET,
177 CFA_EXP
178 } cfa_how;
179 gdb_byte *cfa_exp;
180
cfc14b3a
MK
181 /* Used to implement DW_CFA_remember_state. */
182 struct dwarf2_frame_state_reg_info *prev;
183 } regs;
184
cfc14b3a
MK
185 /* The PC described by the current frame state. */
186 CORE_ADDR pc;
187
188 /* Initial register set from the CIE.
189 Used to implement DW_CFA_restore. */
190 struct dwarf2_frame_state_reg_info initial;
191
192 /* The information we care about from the CIE. */
193 LONGEST data_align;
194 ULONGEST code_align;
195 ULONGEST retaddr_column;
303b6f5d
DJ
196
197 /* Flags for known producer quirks. */
198
199 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
200 and DW_CFA_def_cfa_offset takes a factored offset. */
201 int armcc_cfa_offsets_sf;
202
203 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
204 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
205 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
206};
207
208/* Store the length the expression for the CFA in the `cfa_reg' field,
209 which is unused in that case. */
210#define cfa_exp_len cfa_reg
211
f57d151a 212/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
213 columns. If necessary, enlarge the register set. */
214
215static void
216dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
217 int num_regs)
218{
219 size_t size = sizeof (struct dwarf2_frame_state_reg);
220
221 if (num_regs <= rs->num_regs)
222 return;
223
224 rs->reg = (struct dwarf2_frame_state_reg *)
225 xrealloc (rs->reg, num_regs * size);
226
227 /* Initialize newly allocated registers. */
2473a4a9 228 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
229 rs->num_regs = num_regs;
230}
231
232/* Copy the register columns in register set RS into newly allocated
233 memory and return a pointer to this newly created copy. */
234
235static struct dwarf2_frame_state_reg *
236dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
237{
d10891d4 238 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
239 struct dwarf2_frame_state_reg *reg;
240
241 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
242 memcpy (reg, rs->reg, size);
243
244 return reg;
245}
246
247/* Release the memory allocated to register set RS. */
248
249static void
250dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
251{
252 if (rs)
253 {
254 dwarf2_frame_state_free_regs (rs->prev);
255
256 xfree (rs->reg);
257 xfree (rs);
258 }
259}
260
261/* Release the memory allocated to the frame state FS. */
262
263static void
264dwarf2_frame_state_free (void *p)
265{
266 struct dwarf2_frame_state *fs = p;
267
268 dwarf2_frame_state_free_regs (fs->initial.prev);
269 dwarf2_frame_state_free_regs (fs->regs.prev);
270 xfree (fs->initial.reg);
271 xfree (fs->regs.reg);
272 xfree (fs);
273}
274\f
275
276/* Helper functions for execute_stack_op. */
277
278static CORE_ADDR
279read_reg (void *baton, int reg)
280{
4a4e5149
DJ
281 struct frame_info *this_frame = (struct frame_info *) baton;
282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 283 int regnum;
852483bc 284 gdb_byte *buf;
cfc14b3a 285
ad010def 286 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 287
852483bc 288 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 289 get_frame_register (this_frame, regnum, buf);
f2da6b3a
DJ
290
291 /* Convert the register to an integer. This returns a LONGEST
292 rather than a CORE_ADDR, but unpack_pointer does the same thing
293 under the covers, and this makes more sense for non-pointer
294 registers. Maybe read_reg and the associated interfaces should
295 deal with "struct value" instead of CORE_ADDR. */
296 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
297}
298
299static void
852483bc 300read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
301{
302 read_memory (addr, buf, len);
303}
304
305static void
852483bc 306no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
cfc14b3a
MK
307{
308 internal_error (__FILE__, __LINE__,
e2e0b3e5 309 _("Support for DW_OP_fbreg is unimplemented"));
cfc14b3a
MK
310}
311
312static CORE_ADDR
313no_get_tls_address (void *baton, CORE_ADDR offset)
314{
315 internal_error (__FILE__, __LINE__,
e2e0b3e5 316 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
cfc14b3a
MK
317}
318
a6a5a945
LM
319/* Execute the required actions for both the DW_CFA_restore and
320DW_CFA_restore_extended instructions. */
321static void
322dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
323 struct dwarf2_frame_state *fs, int eh_frame_p)
324{
325 ULONGEST reg;
326
327 gdb_assert (fs->initial.reg);
328 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
329 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
330
331 /* Check if this register was explicitly initialized in the
332 CIE initial instructions. If not, default the rule to
333 UNSPECIFIED. */
334 if (reg < fs->initial.num_regs)
335 fs->regs.reg[reg] = fs->initial.reg[reg];
336 else
337 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
338
339 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
340 complaint (&symfile_complaints, _("\
341incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 342register %s (#%d) at %s"),
a6a5a945
LM
343 gdbarch_register_name
344 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
345 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 346 paddress (gdbarch, fs->pc));
a6a5a945
LM
347}
348
cfc14b3a 349static CORE_ADDR
ae0d2f24 350execute_stack_op (gdb_byte *exp, ULONGEST len, int addr_size,
4a4e5149 351 struct frame_info *this_frame, CORE_ADDR initial)
cfc14b3a
MK
352{
353 struct dwarf_expr_context *ctx;
354 CORE_ADDR result;
355
356 ctx = new_dwarf_expr_context ();
f7fd4728 357 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 358 ctx->addr_size = addr_size;
4a4e5149 359 ctx->baton = this_frame;
cfc14b3a
MK
360 ctx->read_reg = read_reg;
361 ctx->read_mem = read_mem;
362 ctx->get_frame_base = no_get_frame_base;
363 ctx->get_tls_address = no_get_tls_address;
364
365 dwarf_expr_push (ctx, initial);
366 dwarf_expr_eval (ctx, exp, len);
367 result = dwarf_expr_fetch (ctx, 0);
368
369 if (ctx->in_reg)
4a4e5149 370 result = read_reg (this_frame, result);
cfc14b3a
MK
371
372 free_dwarf_expr_context (ctx);
373
374 return result;
375}
376\f
377
378static void
ae0d2f24 379execute_cfa_program (struct dwarf2_fde *fde, gdb_byte *insn_ptr,
4a4e5149 380 gdb_byte *insn_end, struct frame_info *this_frame,
ae0d2f24 381 struct dwarf2_frame_state *fs)
cfc14b3a 382{
ae0d2f24 383 int eh_frame_p = fde->eh_frame_p;
4a4e5149 384 CORE_ADDR pc = get_frame_pc (this_frame);
cfc14b3a 385 int bytes_read;
4a4e5149 386 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 387 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
388
389 while (insn_ptr < insn_end && fs->pc <= pc)
390 {
852483bc 391 gdb_byte insn = *insn_ptr++;
cfc14b3a
MK
392 ULONGEST utmp, reg;
393 LONGEST offset;
394
395 if ((insn & 0xc0) == DW_CFA_advance_loc)
396 fs->pc += (insn & 0x3f) * fs->code_align;
397 else if ((insn & 0xc0) == DW_CFA_offset)
398 {
399 reg = insn & 0x3f;
4fc771b8 400 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
401 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
402 offset = utmp * fs->data_align;
403 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 404 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
405 fs->regs.reg[reg].loc.offset = offset;
406 }
407 else if ((insn & 0xc0) == DW_CFA_restore)
408 {
cfc14b3a 409 reg = insn & 0x3f;
a6a5a945 410 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
411 }
412 else
413 {
414 switch (insn)
415 {
416 case DW_CFA_set_loc:
ae0d2f24
UW
417 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
418 fde->cie->addr_size, insn_ptr,
419 &bytes_read, fde->initial_location);
420 /* Apply the objfile offset for relocatable objects. */
421 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
422 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
423 insn_ptr += bytes_read;
424 break;
425
426 case DW_CFA_advance_loc1:
e17a4113 427 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
428 fs->pc += utmp * fs->code_align;
429 insn_ptr++;
430 break;
431 case DW_CFA_advance_loc2:
e17a4113 432 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
433 fs->pc += utmp * fs->code_align;
434 insn_ptr += 2;
435 break;
436 case DW_CFA_advance_loc4:
e17a4113 437 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
438 fs->pc += utmp * fs->code_align;
439 insn_ptr += 4;
440 break;
441
442 case DW_CFA_offset_extended:
443 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 444 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
445 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
446 offset = utmp * fs->data_align;
447 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 448 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
449 fs->regs.reg[reg].loc.offset = offset;
450 break;
451
452 case DW_CFA_restore_extended:
cfc14b3a 453 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 454 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
455 break;
456
457 case DW_CFA_undefined:
458 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 459 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 460 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 461 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
462 break;
463
464 case DW_CFA_same_value:
465 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 466 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 467 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 468 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
469 break;
470
471 case DW_CFA_register:
472 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 473 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 474 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 475 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 476 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 477 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
478 fs->regs.reg[reg].loc.reg = utmp;
479 break;
480
481 case DW_CFA_remember_state:
482 {
483 struct dwarf2_frame_state_reg_info *new_rs;
484
485 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
486 *new_rs = fs->regs;
487 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
488 fs->regs.prev = new_rs;
489 }
490 break;
491
492 case DW_CFA_restore_state:
493 {
494 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
495
50ea7769
MK
496 if (old_rs == NULL)
497 {
e2e0b3e5 498 complaint (&symfile_complaints, _("\
5af949e3
UW
499bad CFI data; mismatched DW_CFA_restore_state at %s"),
500 paddress (gdbarch, fs->pc));
50ea7769
MK
501 }
502 else
503 {
504 xfree (fs->regs.reg);
505 fs->regs = *old_rs;
506 xfree (old_rs);
507 }
cfc14b3a
MK
508 }
509 break;
510
511 case DW_CFA_def_cfa:
2fd481e1 512 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
cfc14b3a 513 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
514
515 if (fs->armcc_cfa_offsets_sf)
516 utmp *= fs->data_align;
517
2fd481e1
PP
518 fs->regs.cfa_offset = utmp;
519 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
520 break;
521
522 case DW_CFA_def_cfa_register:
2fd481e1
PP
523 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
524 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
525 fs->regs.cfa_reg,
526 eh_frame_p);
527 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
528 break;
529
530 case DW_CFA_def_cfa_offset:
852483bc 531 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
532
533 if (fs->armcc_cfa_offsets_sf)
534 utmp *= fs->data_align;
535
2fd481e1 536 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
537 /* cfa_how deliberately not set. */
538 break;
539
a8504492
MK
540 case DW_CFA_nop:
541 break;
542
cfc14b3a 543 case DW_CFA_def_cfa_expression:
2fd481e1
PP
544 insn_ptr = read_uleb128 (insn_ptr, insn_end,
545 &fs->regs.cfa_exp_len);
546 fs->regs.cfa_exp = insn_ptr;
547 fs->regs.cfa_how = CFA_EXP;
548 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
549 break;
550
551 case DW_CFA_expression:
552 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 553 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
554 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
555 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
556 fs->regs.reg[reg].loc.exp = insn_ptr;
557 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 558 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
559 insn_ptr += utmp;
560 break;
561
a8504492
MK
562 case DW_CFA_offset_extended_sf:
563 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 564 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
a8504492 565 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 566 offset *= fs->data_align;
a8504492 567 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 568 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
569 fs->regs.reg[reg].loc.offset = offset;
570 break;
571
46ea248b
AO
572 case DW_CFA_val_offset:
573 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
574 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
575 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
576 offset = utmp * fs->data_align;
577 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
578 fs->regs.reg[reg].loc.offset = offset;
579 break;
580
581 case DW_CFA_val_offset_sf:
582 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
583 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
584 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
585 offset *= fs->data_align;
586 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
587 fs->regs.reg[reg].loc.offset = offset;
588 break;
589
590 case DW_CFA_val_expression:
591 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
592 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
593 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
594 fs->regs.reg[reg].loc.exp = insn_ptr;
595 fs->regs.reg[reg].exp_len = utmp;
596 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
597 insn_ptr += utmp;
598 break;
599
a8504492 600 case DW_CFA_def_cfa_sf:
2fd481e1
PP
601 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
602 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
603 fs->regs.cfa_reg,
604 eh_frame_p);
a8504492 605 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
606 fs->regs.cfa_offset = offset * fs->data_align;
607 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
608 break;
609
610 case DW_CFA_def_cfa_offset_sf:
611 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 612 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 613 /* cfa_how deliberately not set. */
cfc14b3a
MK
614 break;
615
a77f4086
MK
616 case DW_CFA_GNU_window_save:
617 /* This is SPARC-specific code, and contains hard-coded
618 constants for the register numbering scheme used by
619 GCC. Rather than having a architecture-specific
620 operation that's only ever used by a single
621 architecture, we provide the implementation here.
622 Incidentally that's what GCC does too in its
623 unwinder. */
624 {
4a4e5149 625 int size = register_size (gdbarch, 0);
a77f4086
MK
626 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
627 for (reg = 8; reg < 16; reg++)
628 {
629 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
630 fs->regs.reg[reg].loc.reg = reg + 16;
631 }
632 for (reg = 16; reg < 32; reg++)
633 {
634 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
635 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
636 }
637 }
638 break;
639
cfc14b3a
MK
640 case DW_CFA_GNU_args_size:
641 /* Ignored. */
642 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
643 break;
644
58894217
JK
645 case DW_CFA_GNU_negative_offset_extended:
646 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 647 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
58894217
JK
648 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
649 offset *= fs->data_align;
650 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
651 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
652 fs->regs.reg[reg].loc.offset = -offset;
653 break;
654
cfc14b3a 655 default:
e2e0b3e5 656 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
cfc14b3a
MK
657 }
658 }
659 }
660
661 /* Don't allow remember/restore between CIE and FDE programs. */
662 dwarf2_frame_state_free_regs (fs->regs.prev);
663 fs->regs.prev = NULL;
664}
8f22cb90 665\f
cfc14b3a 666
8f22cb90 667/* Architecture-specific operations. */
cfc14b3a 668
8f22cb90
MK
669/* Per-architecture data key. */
670static struct gdbarch_data *dwarf2_frame_data;
671
672struct dwarf2_frame_ops
673{
674 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
675 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
676 struct frame_info *);
3ed09a32 677
4a4e5149 678 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 679 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 680
4fc771b8
DJ
681 /* Convert .eh_frame register number to DWARF register number, or
682 adjust .debug_frame register number. */
683 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
684};
685
8f22cb90
MK
686/* Default architecture-specific register state initialization
687 function. */
688
689static void
690dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 691 struct dwarf2_frame_state_reg *reg,
4a4e5149 692 struct frame_info *this_frame)
8f22cb90
MK
693{
694 /* If we have a register that acts as a program counter, mark it as
695 a destination for the return address. If we have a register that
696 serves as the stack pointer, arrange for it to be filled with the
697 call frame address (CFA). The other registers are marked as
698 unspecified.
699
700 We copy the return address to the program counter, since many
701 parts in GDB assume that it is possible to get the return address
702 by unwinding the program counter register. However, on ISA's
703 with a dedicated return address register, the CFI usually only
704 contains information to unwind that return address register.
705
706 The reason we're treating the stack pointer special here is
707 because in many cases GCC doesn't emit CFI for the stack pointer
708 and implicitly assumes that it is equal to the CFA. This makes
709 some sense since the DWARF specification (version 3, draft 8,
710 p. 102) says that:
711
712 "Typically, the CFA is defined to be the value of the stack
713 pointer at the call site in the previous frame (which may be
714 different from its value on entry to the current frame)."
715
716 However, this isn't true for all platforms supported by GCC
717 (e.g. IBM S/390 and zSeries). Those architectures should provide
718 their own architecture-specific initialization function. */
05cbe71a 719
ad010def 720 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 721 reg->how = DWARF2_FRAME_REG_RA;
ad010def 722 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
723 reg->how = DWARF2_FRAME_REG_CFA;
724}
05cbe71a 725
8f22cb90 726/* Return a default for the architecture-specific operations. */
05cbe71a 727
8f22cb90 728static void *
030f20e1 729dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
730{
731 struct dwarf2_frame_ops *ops;
732
030f20e1 733 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
734 ops->init_reg = dwarf2_frame_default_init_reg;
735 return ops;
736}
05cbe71a 737
8f22cb90
MK
738/* Set the architecture-specific register state initialization
739 function for GDBARCH to INIT_REG. */
740
741void
742dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
743 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
744 struct dwarf2_frame_state_reg *,
745 struct frame_info *))
8f22cb90 746{
030f20e1 747 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 748
8f22cb90
MK
749 ops->init_reg = init_reg;
750}
751
752/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
753
754static void
755dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 756 struct dwarf2_frame_state_reg *reg,
4a4e5149 757 struct frame_info *this_frame)
05cbe71a 758{
030f20e1 759 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 760
4a4e5149 761 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 762}
3ed09a32
DJ
763
764/* Set the architecture-specific signal trampoline recognition
765 function for GDBARCH to SIGNAL_FRAME_P. */
766
767void
768dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
769 int (*signal_frame_p) (struct gdbarch *,
770 struct frame_info *))
771{
772 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
773
774 ops->signal_frame_p = signal_frame_p;
775}
776
777/* Query the architecture-specific signal frame recognizer for
4a4e5149 778 THIS_FRAME. */
3ed09a32
DJ
779
780static int
781dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 782 struct frame_info *this_frame)
3ed09a32
DJ
783{
784 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
785
786 if (ops->signal_frame_p == NULL)
787 return 0;
4a4e5149 788 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 789}
4bf8967c 790
4fc771b8
DJ
791/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
792 register numbers. */
4bf8967c
AS
793
794void
4fc771b8
DJ
795dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
796 int (*adjust_regnum) (struct gdbarch *,
797 int, int))
4bf8967c
AS
798{
799 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
800
4fc771b8 801 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
802}
803
4fc771b8
DJ
804/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
805 register. */
4bf8967c 806
4fc771b8
DJ
807static int
808dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
4bf8967c
AS
809{
810 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
811
4fc771b8 812 if (ops->adjust_regnum == NULL)
4bf8967c 813 return regnum;
4fc771b8 814 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 815}
303b6f5d
DJ
816
817static void
818dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
819 struct dwarf2_fde *fde)
820{
821 static const char *arm_idents[] = {
822 "ARM C Compiler, ADS",
823 "Thumb C Compiler, ADS",
824 "ARM C++ Compiler, ADS",
825 "Thumb C++ Compiler, ADS",
826 "ARM/Thumb C/C++ Compiler, RVCT"
827 };
828 int i;
829
830 struct symtab *s;
831
832 s = find_pc_symtab (fs->pc);
833 if (s == NULL || s->producer == NULL)
834 return;
835
836 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
837 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
838 {
839 if (fde->cie->version == 1)
840 fs->armcc_cfa_offsets_sf = 1;
841
842 if (fde->cie->version == 1)
843 fs->armcc_cfa_offsets_reversed = 1;
844
845 /* The reversed offset problem is present in some compilers
846 using DWARF3, but it was eventually fixed. Check the ARM
847 defined augmentations, which are in the format "armcc" followed
848 by a list of one-character options. The "+" option means
849 this problem is fixed (no quirk needed). If the armcc
850 augmentation is missing, the quirk is needed. */
851 if (fde->cie->version == 3
852 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
853 || strchr (fde->cie->augmentation + 5, '+') == NULL))
854 fs->armcc_cfa_offsets_reversed = 1;
855
856 return;
857 }
858}
8f22cb90
MK
859\f
860
861struct dwarf2_frame_cache
862{
863 /* DWARF Call Frame Address. */
864 CORE_ADDR cfa;
865
0228dfb9
DJ
866 /* Set if the return address column was marked as undefined. */
867 int undefined_retaddr;
868
8f22cb90
MK
869 /* Saved registers, indexed by GDB register number, not by DWARF
870 register number. */
871 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
872
873 /* Return address register. */
874 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
875
876 /* Target address size in bytes. */
877 int addr_size;
8f22cb90 878};
05cbe71a 879
b9362cc7 880static struct dwarf2_frame_cache *
4a4e5149 881dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
882{
883 struct cleanup *old_chain;
4a4e5149 884 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
885 const int num_regs = gdbarch_num_regs (gdbarch)
886 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
887 struct dwarf2_frame_cache *cache;
888 struct dwarf2_frame_state *fs;
889 struct dwarf2_fde *fde;
cfc14b3a
MK
890
891 if (*this_cache)
892 return *this_cache;
893
894 /* Allocate a new cache. */
895 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
896 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
897
898 /* Allocate and initialize the frame state. */
899 fs = XMALLOC (struct dwarf2_frame_state);
900 memset (fs, 0, sizeof (struct dwarf2_frame_state));
901 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
902
903 /* Unwind the PC.
904
4a4e5149 905 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 906 to abort), the compiler might optimize away the instruction at
4a4e5149 907 its return address. As a result the return address will
cfc14b3a 908 point at some random instruction, and the CFI for that
e4e9607c 909 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
910 this problem by substracting 1 from the return address to get an
911 address in the middle of a presumed call instruction (or the
912 instruction in the associated delay slot). This should only be
913 done for "normal" frames and not for resume-type frames (signal
e4e9607c 914 handlers, sentinel frames, dummy frames). The function
ad1193e7 915 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
916 reliable the method is though; there is the potential for the
917 register state pre-call being different to that on return. */
4a4e5149 918 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
919
920 /* Find the correct FDE. */
921 fde = dwarf2_frame_find_fde (&fs->pc);
922 gdb_assert (fde != NULL);
923
924 /* Extract any interesting information from the CIE. */
925 fs->data_align = fde->cie->data_alignment_factor;
926 fs->code_align = fde->cie->code_alignment_factor;
927 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 928 cache->addr_size = fde->cie->addr_size;
cfc14b3a 929
303b6f5d
DJ
930 /* Check for "quirks" - known bugs in producers. */
931 dwarf2_frame_find_quirks (fs, fde);
932
cfc14b3a 933 /* First decode all the insns in the CIE. */
ae0d2f24 934 execute_cfa_program (fde, fde->cie->initial_instructions,
4a4e5149 935 fde->cie->end, this_frame, fs);
cfc14b3a
MK
936
937 /* Save the initialized register set. */
938 fs->initial = fs->regs;
939 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
940
941 /* Then decode the insns in the FDE up to our target PC. */
4a4e5149 942 execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs);
cfc14b3a 943
938f5214 944 /* Calculate the CFA. */
2fd481e1 945 switch (fs->regs.cfa_how)
cfc14b3a
MK
946 {
947 case CFA_REG_OFFSET:
2fd481e1 948 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
303b6f5d 949 if (fs->armcc_cfa_offsets_reversed)
2fd481e1 950 cache->cfa -= fs->regs.cfa_offset;
303b6f5d 951 else
2fd481e1 952 cache->cfa += fs->regs.cfa_offset;
cfc14b3a
MK
953 break;
954
955 case CFA_EXP:
956 cache->cfa =
2fd481e1 957 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
4a4e5149 958 cache->addr_size, this_frame, 0);
cfc14b3a
MK
959 break;
960
961 default:
e2e0b3e5 962 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
cfc14b3a
MK
963 }
964
05cbe71a 965 /* Initialize the register state. */
3e2c4033
AC
966 {
967 int regnum;
e4e9607c 968
3e2c4033 969 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 970 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
971 }
972
973 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
974 location information in the cache. Note that we don't skip the
975 return address column; it's perfectly all right for it to
976 correspond to a real register. If it doesn't correspond to a
977 real register, or if we shouldn't treat it as such,
055d23b8 978 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 979 the range [0, gdbarch_num_regs). */
3e2c4033
AC
980 {
981 int column; /* CFI speak for "register number". */
e4e9607c 982
3e2c4033
AC
983 for (column = 0; column < fs->regs.num_regs; column++)
984 {
3e2c4033 985 /* Use the GDB register number as the destination index. */
ad010def 986 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
987
988 /* If there's no corresponding GDB register, ignore it. */
989 if (regnum < 0 || regnum >= num_regs)
990 continue;
991
992 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
993 of all debug info registers. If it doesn't, complain (but
994 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
995 unspecified register implies "same value" when CFI (draft
996 7) specifies nothing at all. Such a register could equally
997 be interpreted as "undefined". Also note that this check
e4e9607c
MK
998 isn't sufficient; it only checks that all registers in the
999 range [0 .. max column] are specified, and won't detect
3e2c4033 1000 problems when a debug info register falls outside of the
e4e9607c 1001 table. We need a way of iterating through all the valid
3e2c4033 1002 DWARF2 register numbers. */
05cbe71a 1003 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1004 {
1005 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1006 complaint (&symfile_complaints, _("\
5af949e3 1007incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1008 gdbarch_register_name (gdbarch, regnum),
5af949e3 1009 paddress (gdbarch, fs->pc));
f059bf6f 1010 }
35889917
MK
1011 else
1012 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1013 }
1014 }
cfc14b3a 1015
8d5a9abc
MK
1016 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1017 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1018 {
1019 int regnum;
1020
1021 for (regnum = 0; regnum < num_regs; regnum++)
1022 {
8d5a9abc
MK
1023 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1024 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1025 {
05cbe71a
MK
1026 struct dwarf2_frame_state_reg *retaddr_reg =
1027 &fs->regs.reg[fs->retaddr_column];
1028
d4f10bf2
MK
1029 /* It seems rather bizarre to specify an "empty" column as
1030 the return adress column. However, this is exactly
1031 what GCC does on some targets. It turns out that GCC
1032 assumes that the return address can be found in the
1033 register corresponding to the return address column.
8d5a9abc
MK
1034 Incidentally, that's how we should treat a return
1035 address column specifying "same value" too. */
d4f10bf2 1036 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1037 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1038 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1039 {
1040 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1041 cache->reg[regnum] = *retaddr_reg;
1042 else
1043 cache->retaddr_reg = *retaddr_reg;
1044 }
35889917
MK
1045 else
1046 {
8d5a9abc
MK
1047 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1048 {
1049 cache->reg[regnum].loc.reg = fs->retaddr_column;
1050 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1051 }
1052 else
1053 {
1054 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1055 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1056 }
35889917
MK
1057 }
1058 }
1059 }
1060 }
cfc14b3a 1061
0228dfb9
DJ
1062 if (fs->retaddr_column < fs->regs.num_regs
1063 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1064 cache->undefined_retaddr = 1;
1065
cfc14b3a
MK
1066 do_cleanups (old_chain);
1067
1068 *this_cache = cache;
1069 return cache;
1070}
1071
1072static void
4a4e5149 1073dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1074 struct frame_id *this_id)
1075{
1076 struct dwarf2_frame_cache *cache =
4a4e5149 1077 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1078
0228dfb9
DJ
1079 if (cache->undefined_retaddr)
1080 return;
1081
4a4e5149 1082 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1083}
1084
4a4e5149
DJ
1085static struct value *
1086dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1087 int regnum)
93d42b30 1088{
4a4e5149 1089 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1090 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1091 dwarf2_frame_cache (this_frame, this_cache);
1092 CORE_ADDR addr;
1093 int realnum;
cfc14b3a
MK
1094
1095 switch (cache->reg[regnum].how)
1096 {
05cbe71a 1097 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1098 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1099 mark it as optimized away; the value isn't available. */
4a4e5149 1100 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1101
05cbe71a 1102 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1103 addr = cache->cfa + cache->reg[regnum].loc.offset;
1104 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1105
05cbe71a 1106 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1107 realnum
1108 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1109 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1110
05cbe71a 1111 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1112 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1113 cache->reg[regnum].exp_len,
1114 cache->addr_size, this_frame, cache->cfa);
1115 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1116
46ea248b 1117 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1118 addr = cache->cfa + cache->reg[regnum].loc.offset;
1119 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1120
1121 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1122 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1123 cache->reg[regnum].exp_len,
1124 cache->addr_size, this_frame, cache->cfa);
1125 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1126
05cbe71a 1127 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1128 /* GCC, in its infinite wisdom decided to not provide unwind
1129 information for registers that are "same value". Since
1130 DWARF2 (3 draft 7) doesn't define such behavior, said
1131 registers are actually undefined (which is different to CFI
1132 "undefined"). Code above issues a complaint about this.
1133 Here just fudge the books, assume GCC, and that the value is
1134 more inner on the stack. */
4a4e5149 1135 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1136
05cbe71a 1137 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1138 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1139
05cbe71a 1140 case DWARF2_FRAME_REG_CFA:
4a4e5149 1141 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1142
ea7963f0 1143 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1144 addr = cache->cfa + cache->reg[regnum].loc.offset;
1145 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1146
8d5a9abc 1147 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1148 addr = cache->reg[regnum].loc.offset;
1149 regnum = gdbarch_dwarf2_reg_to_regnum
1150 (gdbarch, cache->retaddr_reg.loc.reg);
1151 addr += get_frame_register_unsigned (this_frame, regnum);
1152 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1153
b39cc962
DJ
1154 case DWARF2_FRAME_REG_FN:
1155 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1156
cfc14b3a 1157 default:
e2e0b3e5 1158 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1159 }
1160}
1161
4a4e5149
DJ
1162static int
1163dwarf2_frame_sniffer (const struct frame_unwind *self,
1164 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1165{
1ce5d6dd 1166 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1167 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1168 end up returning something past the end of this function's body.
1169 If the frame we're sniffing for is a signal frame whose start
1170 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1171 extend one byte before its start address or we could potentially
1172 select the FDE of the previous function. */
1173 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
56c987f6
AO
1174 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1175 if (!fde)
4a4e5149 1176 return 0;
3ed09a32
DJ
1177
1178 /* On some targets, signal trampolines may have unwind information.
1179 We need to recognize them so that we set the frame type
1180 correctly. */
1181
56c987f6 1182 if (fde->cie->signal_frame
4a4e5149
DJ
1183 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1184 this_frame))
1185 return self->type == SIGTRAMP_FRAME;
1186
1187 return self->type != SIGTRAMP_FRAME;
1188}
1189
1190static const struct frame_unwind dwarf2_frame_unwind =
1191{
1192 NORMAL_FRAME,
1193 dwarf2_frame_this_id,
1194 dwarf2_frame_prev_register,
1195 NULL,
1196 dwarf2_frame_sniffer
1197};
1198
1199static const struct frame_unwind dwarf2_signal_frame_unwind =
1200{
1201 SIGTRAMP_FRAME,
1202 dwarf2_frame_this_id,
1203 dwarf2_frame_prev_register,
1204 NULL,
1205 dwarf2_frame_sniffer
1206};
cfc14b3a 1207
4a4e5149
DJ
1208/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1209
1210void
1211dwarf2_append_unwinders (struct gdbarch *gdbarch)
1212{
1213 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1214 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1215}
1216\f
1217
1218/* There is no explicitly defined relationship between the CFA and the
1219 location of frame's local variables and arguments/parameters.
1220 Therefore, frame base methods on this page should probably only be
1221 used as a last resort, just to avoid printing total garbage as a
1222 response to the "info frame" command. */
1223
1224static CORE_ADDR
4a4e5149 1225dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1226{
1227 struct dwarf2_frame_cache *cache =
4a4e5149 1228 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1229
1230 return cache->cfa;
1231}
1232
1233static const struct frame_base dwarf2_frame_base =
1234{
1235 &dwarf2_frame_unwind,
1236 dwarf2_frame_base_address,
1237 dwarf2_frame_base_address,
1238 dwarf2_frame_base_address
1239};
1240
1241const struct frame_base *
4a4e5149 1242dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1243{
4a4e5149 1244 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
93d42b30 1245 if (dwarf2_frame_find_fde (&block_addr))
cfc14b3a
MK
1246 return &dwarf2_frame_base;
1247
1248 return NULL;
1249}
1250\f
8f22cb90 1251const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1252
cfc14b3a 1253static unsigned int
852483bc 1254read_1_byte (bfd *abfd, gdb_byte *buf)
cfc14b3a 1255{
852483bc 1256 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1257}
1258
1259static unsigned int
852483bc 1260read_4_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1261{
852483bc 1262 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1263}
1264
1265static ULONGEST
852483bc 1266read_8_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1267{
852483bc 1268 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1269}
1270
1271static ULONGEST
852483bc 1272read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1273{
1274 ULONGEST result;
1275 unsigned int num_read;
1276 int shift;
852483bc 1277 gdb_byte byte;
cfc14b3a
MK
1278
1279 result = 0;
1280 shift = 0;
1281 num_read = 0;
1282
1283 do
1284 {
1285 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1286 buf++;
1287 num_read++;
1288 result |= ((byte & 0x7f) << shift);
1289 shift += 7;
1290 }
1291 while (byte & 0x80);
1292
1293 *bytes_read_ptr = num_read;
1294
1295 return result;
1296}
1297
1298static LONGEST
852483bc 1299read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1300{
1301 LONGEST result;
1302 int shift;
1303 unsigned int num_read;
852483bc 1304 gdb_byte byte;
cfc14b3a
MK
1305
1306 result = 0;
1307 shift = 0;
1308 num_read = 0;
1309
1310 do
1311 {
1312 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1313 buf++;
1314 num_read++;
1315 result |= ((byte & 0x7f) << shift);
1316 shift += 7;
1317 }
1318 while (byte & 0x80);
1319
77e0b926
DJ
1320 if (shift < 8 * sizeof (result) && (byte & 0x40))
1321 result |= -(((LONGEST)1) << shift);
cfc14b3a
MK
1322
1323 *bytes_read_ptr = num_read;
1324
1325 return result;
1326}
1327
1328static ULONGEST
852483bc 1329read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1330{
1331 LONGEST result;
1332
852483bc 1333 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1334 if (result == 0xffffffff)
1335 {
852483bc 1336 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1337 *bytes_read_ptr = 12;
1338 }
1339 else
1340 *bytes_read_ptr = 4;
1341
1342 return result;
1343}
1344\f
1345
1346/* Pointer encoding helper functions. */
1347
1348/* GCC supports exception handling based on DWARF2 CFI. However, for
1349 technical reasons, it encodes addresses in its FDE's in a different
1350 way. Several "pointer encodings" are supported. The encoding
1351 that's used for a particular FDE is determined by the 'R'
1352 augmentation in the associated CIE. The argument of this
1353 augmentation is a single byte.
1354
1355 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1356 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1357 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1358 address should be interpreted (absolute, relative to the current
1359 position in the FDE, ...). Bit 7, indicates that the address
1360 should be dereferenced. */
1361
852483bc 1362static gdb_byte
cfc14b3a
MK
1363encoding_for_size (unsigned int size)
1364{
1365 switch (size)
1366 {
1367 case 2:
1368 return DW_EH_PE_udata2;
1369 case 4:
1370 return DW_EH_PE_udata4;
1371 case 8:
1372 return DW_EH_PE_udata8;
1373 default:
e2e0b3e5 1374 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1375 }
1376}
1377
cfc14b3a 1378static CORE_ADDR
852483bc 1379read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
ae0d2f24
UW
1380 int ptr_len, gdb_byte *buf, unsigned int *bytes_read_ptr,
1381 CORE_ADDR func_base)
cfc14b3a 1382{
68f6cf99 1383 ptrdiff_t offset;
cfc14b3a
MK
1384 CORE_ADDR base;
1385
1386 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1387 FDE's. */
1388 if (encoding & DW_EH_PE_indirect)
1389 internal_error (__FILE__, __LINE__,
e2e0b3e5 1390 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1391
68f6cf99
MK
1392 *bytes_read_ptr = 0;
1393
cfc14b3a
MK
1394 switch (encoding & 0x70)
1395 {
1396 case DW_EH_PE_absptr:
1397 base = 0;
1398 break;
1399 case DW_EH_PE_pcrel:
f2fec864 1400 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1401 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1402 break;
0912c7f2
MK
1403 case DW_EH_PE_datarel:
1404 base = unit->dbase;
1405 break;
0fd85043
CV
1406 case DW_EH_PE_textrel:
1407 base = unit->tbase;
1408 break;
03ac2a74 1409 case DW_EH_PE_funcrel:
ae0d2f24 1410 base = func_base;
03ac2a74 1411 break;
68f6cf99
MK
1412 case DW_EH_PE_aligned:
1413 base = 0;
852483bc 1414 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1415 if ((offset % ptr_len) != 0)
1416 {
1417 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1418 buf += *bytes_read_ptr;
1419 }
1420 break;
cfc14b3a 1421 default:
e2e0b3e5 1422 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1423 }
1424
b04de778 1425 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1426 {
1427 encoding |= encoding_for_size (ptr_len);
1428 if (bfd_get_sign_extend_vma (unit->abfd))
1429 encoding |= DW_EH_PE_signed;
1430 }
cfc14b3a
MK
1431
1432 switch (encoding & 0x0f)
1433 {
a81b10ae
MK
1434 case DW_EH_PE_uleb128:
1435 {
1436 ULONGEST value;
852483bc 1437 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1438 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1439 return base + value;
1440 }
cfc14b3a 1441 case DW_EH_PE_udata2:
68f6cf99 1442 *bytes_read_ptr += 2;
cfc14b3a
MK
1443 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1444 case DW_EH_PE_udata4:
68f6cf99 1445 *bytes_read_ptr += 4;
cfc14b3a
MK
1446 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1447 case DW_EH_PE_udata8:
68f6cf99 1448 *bytes_read_ptr += 8;
cfc14b3a 1449 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1450 case DW_EH_PE_sleb128:
1451 {
1452 LONGEST value;
852483bc 1453 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
a7289609 1454 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1455 return base + value;
1456 }
cfc14b3a 1457 case DW_EH_PE_sdata2:
68f6cf99 1458 *bytes_read_ptr += 2;
cfc14b3a
MK
1459 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1460 case DW_EH_PE_sdata4:
68f6cf99 1461 *bytes_read_ptr += 4;
cfc14b3a
MK
1462 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1463 case DW_EH_PE_sdata8:
68f6cf99 1464 *bytes_read_ptr += 8;
cfc14b3a
MK
1465 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1466 default:
e2e0b3e5 1467 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
cfc14b3a
MK
1468 }
1469}
1470\f
1471
b01c8410
PP
1472static int
1473bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1474{
b01c8410
PP
1475 ULONGEST cie_pointer = *(ULONGEST *) key;
1476 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1477
b01c8410
PP
1478 if (cie_pointer == cie->cie_pointer)
1479 return 0;
cfc14b3a 1480
b01c8410
PP
1481 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1482}
1483
1484/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1485static struct dwarf2_cie *
1486find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1487{
1488 struct dwarf2_cie **p_cie;
cfc14b3a 1489
b01c8410
PP
1490 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1491 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1492 if (p_cie != NULL)
1493 return *p_cie;
cfc14b3a
MK
1494 return NULL;
1495}
1496
b01c8410 1497/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1498static void
b01c8410 1499add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1500{
b01c8410
PP
1501 const int n = cie_table->num_entries;
1502
1503 gdb_assert (n < 1
1504 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1505
1506 cie_table->entries =
1507 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1508 cie_table->entries[n] = cie;
1509 cie_table->num_entries = n + 1;
1510}
1511
1512static int
1513bsearch_fde_cmp (const void *key, const void *element)
1514{
1515 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1516 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1517 if (seek_pc < fde->initial_location)
1518 return -1;
1519 if (seek_pc < fde->initial_location + fde->address_range)
1520 return 0;
1521 return 1;
cfc14b3a
MK
1522}
1523
1524/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1525 inital location associated with it into *PC. */
1526
1527static struct dwarf2_fde *
1528dwarf2_frame_find_fde (CORE_ADDR *pc)
1529{
1530 struct objfile *objfile;
1531
1532 ALL_OBJFILES (objfile)
1533 {
b01c8410
PP
1534 struct dwarf2_fde_table *fde_table;
1535 struct dwarf2_fde **p_fde;
cfc14b3a 1536 CORE_ADDR offset;
b01c8410 1537 CORE_ADDR seek_pc;
cfc14b3a 1538
b01c8410
PP
1539 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1540 if (fde_table == NULL)
4ae9ee8e
DJ
1541 continue;
1542
1543 gdb_assert (objfile->section_offsets);
1544 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1545
b01c8410
PP
1546 gdb_assert (fde_table->num_entries > 0);
1547 if (*pc < offset + fde_table->entries[0]->initial_location)
1548 continue;
1549
1550 seek_pc = *pc - offset;
1551 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1552 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1553 if (p_fde != NULL)
1554 {
1555 *pc = (*p_fde)->initial_location + offset;
1556 return *p_fde;
1557 }
cfc14b3a 1558 }
cfc14b3a
MK
1559 return NULL;
1560}
1561
b01c8410 1562/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1563static void
b01c8410 1564add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1565{
b01c8410
PP
1566 if (fde->address_range == 0)
1567 /* Discard useless FDEs. */
1568 return;
1569
1570 fde_table->num_entries += 1;
1571 fde_table->entries =
1572 xrealloc (fde_table->entries,
1573 fde_table->num_entries * sizeof (fde_table->entries[0]));
1574 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1575}
1576
1577#ifdef CC_HAS_LONG_LONG
1578#define DW64_CIE_ID 0xffffffffffffffffULL
1579#else
1580#define DW64_CIE_ID ~0
1581#endif
1582
852483bc 1583static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
b01c8410
PP
1584 int eh_frame_p,
1585 struct dwarf2_cie_table *cie_table,
1586 struct dwarf2_fde_table *fde_table);
cfc14b3a 1587
6896c0c7
RH
1588/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1589 the next byte to be processed. */
852483bc 1590static gdb_byte *
b01c8410
PP
1591decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1592 struct dwarf2_cie_table *cie_table,
1593 struct dwarf2_fde_table *fde_table)
cfc14b3a 1594{
5e2b427d 1595 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
852483bc 1596 gdb_byte *buf, *end;
cfc14b3a
MK
1597 LONGEST length;
1598 unsigned int bytes_read;
6896c0c7
RH
1599 int dwarf64_p;
1600 ULONGEST cie_id;
cfc14b3a 1601 ULONGEST cie_pointer;
cfc14b3a 1602
6896c0c7 1603 buf = start;
cfc14b3a
MK
1604 length = read_initial_length (unit->abfd, buf, &bytes_read);
1605 buf += bytes_read;
1606 end = buf + length;
1607
6896c0c7
RH
1608 /* Are we still within the section? */
1609 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1610 return NULL;
1611
cfc14b3a
MK
1612 if (length == 0)
1613 return end;
1614
6896c0c7
RH
1615 /* Distinguish between 32 and 64-bit encoded frame info. */
1616 dwarf64_p = (bytes_read == 12);
cfc14b3a 1617
6896c0c7 1618 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1619 if (eh_frame_p)
1620 cie_id = 0;
1621 else if (dwarf64_p)
1622 cie_id = DW64_CIE_ID;
6896c0c7
RH
1623 else
1624 cie_id = DW_CIE_ID;
cfc14b3a
MK
1625
1626 if (dwarf64_p)
1627 {
1628 cie_pointer = read_8_bytes (unit->abfd, buf);
1629 buf += 8;
1630 }
1631 else
1632 {
1633 cie_pointer = read_4_bytes (unit->abfd, buf);
1634 buf += 4;
1635 }
1636
1637 if (cie_pointer == cie_id)
1638 {
1639 /* This is a CIE. */
1640 struct dwarf2_cie *cie;
1641 char *augmentation;
28ba0b33 1642 unsigned int cie_version;
cfc14b3a
MK
1643
1644 /* Record the offset into the .debug_frame section of this CIE. */
1645 cie_pointer = start - unit->dwarf_frame_buffer;
1646
1647 /* Check whether we've already read it. */
b01c8410 1648 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1649 return end;
1650
1651 cie = (struct dwarf2_cie *)
8b92e4d5 1652 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1653 sizeof (struct dwarf2_cie));
1654 cie->initial_instructions = NULL;
1655 cie->cie_pointer = cie_pointer;
1656
1657 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1658 depends on the target address size. */
1659 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1660
ae0d2f24
UW
1661 /* The target address size. For .eh_frame FDEs this is considered
1662 equal to the size of a target pointer. For .dwarf_frame FDEs,
1663 this is supposed to be the target address size from the associated
1664 CU header. FIXME: We do not have a good way to determine the
1665 latter. Always use the target pointer size for now. */
5e2b427d 1666 cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
ae0d2f24 1667
56c987f6
AO
1668 /* We'll determine the final value later, but we need to
1669 initialize it conservatively. */
1670 cie->signal_frame = 0;
1671
cfc14b3a 1672 /* Check version number. */
28ba0b33
PB
1673 cie_version = read_1_byte (unit->abfd, buf);
1674 if (cie_version != 1 && cie_version != 3)
6896c0c7 1675 return NULL;
303b6f5d 1676 cie->version = cie_version;
cfc14b3a
MK
1677 buf += 1;
1678
1679 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1680 cie->augmentation = augmentation = (char *) buf;
852483bc 1681 buf += (strlen (augmentation) + 1);
cfc14b3a 1682
303b6f5d
DJ
1683 /* Ignore armcc augmentations. We only use them for quirks,
1684 and that doesn't happen until later. */
1685 if (strncmp (augmentation, "armcc", 5) == 0)
1686 augmentation += strlen (augmentation);
1687
cfc14b3a
MK
1688 /* The GCC 2.x "eh" augmentation has a pointer immediately
1689 following the augmentation string, so it must be handled
1690 first. */
1691 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1692 {
1693 /* Skip. */
5e2b427d 1694 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1695 augmentation += 2;
1696 }
1697
1698 cie->code_alignment_factor =
1699 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1700 buf += bytes_read;
1701
1702 cie->data_alignment_factor =
1703 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1704 buf += bytes_read;
1705
28ba0b33
PB
1706 if (cie_version == 1)
1707 {
1708 cie->return_address_register = read_1_byte (unit->abfd, buf);
1709 bytes_read = 1;
1710 }
1711 else
1712 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1713 &bytes_read);
4fc771b8 1714 cie->return_address_register
5e2b427d 1715 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1716 cie->return_address_register,
1717 eh_frame_p);
4bf8967c 1718
28ba0b33 1719 buf += bytes_read;
cfc14b3a 1720
7131cb6e
RH
1721 cie->saw_z_augmentation = (*augmentation == 'z');
1722 if (cie->saw_z_augmentation)
cfc14b3a
MK
1723 {
1724 ULONGEST length;
1725
1726 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1727 buf += bytes_read;
6896c0c7
RH
1728 if (buf > end)
1729 return NULL;
cfc14b3a
MK
1730 cie->initial_instructions = buf + length;
1731 augmentation++;
1732 }
1733
1734 while (*augmentation)
1735 {
1736 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1737 if (*augmentation == 'L')
1738 {
1739 /* Skip. */
1740 buf++;
1741 augmentation++;
1742 }
1743
1744 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1745 else if (*augmentation == 'R')
1746 {
1747 cie->encoding = *buf++;
1748 augmentation++;
1749 }
1750
1751 /* "P" indicates a personality routine in the CIE augmentation. */
1752 else if (*augmentation == 'P')
1753 {
1234d960 1754 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1755 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
ae0d2f24
UW
1756 read_encoded_value (unit, encoding, cie->addr_size,
1757 buf, &bytes_read, 0);
f724bf08 1758 buf += bytes_read;
cfc14b3a
MK
1759 augmentation++;
1760 }
1761
56c987f6
AO
1762 /* "S" indicates a signal frame, such that the return
1763 address must not be decremented to locate the call frame
1764 info for the previous frame; it might even be the first
1765 instruction of a function, so decrementing it would take
1766 us to a different function. */
1767 else if (*augmentation == 'S')
1768 {
1769 cie->signal_frame = 1;
1770 augmentation++;
1771 }
1772
3e9a2e52
DJ
1773 /* Otherwise we have an unknown augmentation. Assume that either
1774 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
1775 else
1776 {
3e9a2e52
DJ
1777 if (cie->initial_instructions)
1778 buf = cie->initial_instructions;
cfc14b3a
MK
1779 break;
1780 }
1781 }
1782
1783 cie->initial_instructions = buf;
1784 cie->end = end;
b01c8410 1785 cie->unit = unit;
cfc14b3a 1786
b01c8410 1787 add_cie (cie_table, cie);
cfc14b3a
MK
1788 }
1789 else
1790 {
1791 /* This is a FDE. */
1792 struct dwarf2_fde *fde;
1793
6896c0c7
RH
1794 /* In an .eh_frame section, the CIE pointer is the delta between the
1795 address within the FDE where the CIE pointer is stored and the
1796 address of the CIE. Convert it to an offset into the .eh_frame
1797 section. */
cfc14b3a
MK
1798 if (eh_frame_p)
1799 {
cfc14b3a
MK
1800 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1801 cie_pointer -= (dwarf64_p ? 8 : 4);
1802 }
1803
6896c0c7
RH
1804 /* In either case, validate the result is still within the section. */
1805 if (cie_pointer >= unit->dwarf_frame_size)
1806 return NULL;
1807
cfc14b3a 1808 fde = (struct dwarf2_fde *)
8b92e4d5 1809 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 1810 sizeof (struct dwarf2_fde));
b01c8410 1811 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
1812 if (fde->cie == NULL)
1813 {
1814 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
b01c8410
PP
1815 eh_frame_p, cie_table, fde_table);
1816 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
1817 }
1818
1819 gdb_assert (fde->cie != NULL);
1820
1821 fde->initial_location =
ae0d2f24
UW
1822 read_encoded_value (unit, fde->cie->encoding, fde->cie->addr_size,
1823 buf, &bytes_read, 0);
cfc14b3a
MK
1824 buf += bytes_read;
1825
1826 fde->address_range =
ae0d2f24
UW
1827 read_encoded_value (unit, fde->cie->encoding & 0x0f,
1828 fde->cie->addr_size, buf, &bytes_read, 0);
cfc14b3a
MK
1829 buf += bytes_read;
1830
7131cb6e
RH
1831 /* A 'z' augmentation in the CIE implies the presence of an
1832 augmentation field in the FDE as well. The only thing known
1833 to be in here at present is the LSDA entry for EH. So we
1834 can skip the whole thing. */
1835 if (fde->cie->saw_z_augmentation)
1836 {
1837 ULONGEST length;
1838
1839 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1840 buf += bytes_read + length;
6896c0c7
RH
1841 if (buf > end)
1842 return NULL;
7131cb6e
RH
1843 }
1844
cfc14b3a
MK
1845 fde->instructions = buf;
1846 fde->end = end;
1847
4bf8967c
AS
1848 fde->eh_frame_p = eh_frame_p;
1849
b01c8410 1850 add_fde (fde_table, fde);
cfc14b3a
MK
1851 }
1852
1853 return end;
1854}
6896c0c7
RH
1855
1856/* Read a CIE or FDE in BUF and decode it. */
852483bc 1857static gdb_byte *
b01c8410
PP
1858decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1859 struct dwarf2_cie_table *cie_table,
1860 struct dwarf2_fde_table *fde_table)
6896c0c7
RH
1861{
1862 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
852483bc 1863 gdb_byte *ret;
6896c0c7
RH
1864 const char *msg;
1865 ptrdiff_t start_offset;
1866
1867 while (1)
1868 {
b01c8410
PP
1869 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
1870 cie_table, fde_table);
6896c0c7
RH
1871 if (ret != NULL)
1872 break;
1873
1874 /* We have corrupt input data of some form. */
1875
1876 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1877 and mismatches wrt padding and alignment of debug sections. */
1878 /* Note that there is no requirement in the standard for any
1879 alignment at all in the frame unwind sections. Testing for
1880 alignment before trying to interpret data would be incorrect.
1881
1882 However, GCC traditionally arranged for frame sections to be
1883 sized such that the FDE length and CIE fields happen to be
1884 aligned (in theory, for performance). This, unfortunately,
1885 was done with .align directives, which had the side effect of
1886 forcing the section to be aligned by the linker.
1887
1888 This becomes a problem when you have some other producer that
1889 creates frame sections that are not as strictly aligned. That
1890 produces a hole in the frame info that gets filled by the
1891 linker with zeros.
1892
1893 The GCC behaviour is arguably a bug, but it's effectively now
1894 part of the ABI, so we're now stuck with it, at least at the
1895 object file level. A smart linker may decide, in the process
1896 of compressing duplicate CIE information, that it can rewrite
1897 the entire output section without this extra padding. */
1898
1899 start_offset = start - unit->dwarf_frame_buffer;
1900 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1901 {
1902 start += 4 - (start_offset & 3);
1903 workaround = ALIGN4;
1904 continue;
1905 }
1906 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1907 {
1908 start += 8 - (start_offset & 7);
1909 workaround = ALIGN8;
1910 continue;
1911 }
1912
1913 /* Nothing left to try. Arrange to return as if we've consumed
1914 the entire input section. Hopefully we'll get valid info from
1915 the other of .debug_frame/.eh_frame. */
1916 workaround = FAIL;
1917 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1918 break;
1919 }
1920
1921 switch (workaround)
1922 {
1923 case NONE:
1924 break;
1925
1926 case ALIGN4:
1927 complaint (&symfile_complaints,
e2e0b3e5 1928 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
1929 unit->dwarf_frame_section->owner->filename,
1930 unit->dwarf_frame_section->name);
1931 break;
1932
1933 case ALIGN8:
1934 complaint (&symfile_complaints,
e2e0b3e5 1935 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
1936 unit->dwarf_frame_section->owner->filename,
1937 unit->dwarf_frame_section->name);
1938 break;
1939
1940 default:
1941 complaint (&symfile_complaints,
e2e0b3e5 1942 _("Corrupt data in %s:%s"),
6896c0c7
RH
1943 unit->dwarf_frame_section->owner->filename,
1944 unit->dwarf_frame_section->name);
1945 break;
1946 }
1947
1948 return ret;
1949}
cfc14b3a
MK
1950\f
1951
cfc14b3a 1952/* Imported from dwarf2read.c. */
dce234bc
PP
1953extern void dwarf2_get_section_info (struct objfile *, const char *, asection **,
1954 gdb_byte **, bfd_size_type *);
cfc14b3a 1955
b01c8410
PP
1956static int
1957qsort_fde_cmp (const void *a, const void *b)
1958{
1959 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
1960 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
1961 if (aa->initial_location == bb->initial_location)
1962 /* Put eh_frame entries after debug_frame ones. */
1963 return aa->eh_frame_p - bb->eh_frame_p;
1964
1965 return (aa->initial_location < bb->initial_location) ? -1 : 1;
1966}
1967
cfc14b3a
MK
1968void
1969dwarf2_build_frame_info (struct objfile *objfile)
1970{
ae0d2f24 1971 struct comp_unit *unit;
852483bc 1972 gdb_byte *frame_ptr;
b01c8410
PP
1973 struct dwarf2_cie_table cie_table;
1974 struct dwarf2_fde_table fde_table;
1975
1976 cie_table.num_entries = 0;
1977 cie_table.entries = NULL;
1978
1979 fde_table.num_entries = 0;
1980 fde_table.entries = NULL;
cfc14b3a
MK
1981
1982 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
1983 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
1984 sizeof (struct comp_unit));
1985 unit->abfd = objfile->obfd;
1986 unit->objfile = objfile;
1987 unit->dbase = 0;
1988 unit->tbase = 0;
cfc14b3a 1989
dce234bc
PP
1990 dwarf2_get_section_info (objfile, ".eh_frame",
1991 &unit->dwarf_frame_section,
1992 &unit->dwarf_frame_buffer,
1993 &unit->dwarf_frame_size);
1994 if (unit->dwarf_frame_size)
cfc14b3a 1995 {
0fd85043 1996 asection *got, *txt;
0912c7f2 1997
0912c7f2 1998 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
37b517aa
MK
1999 that is used for the i386/amd64 target, which currently is
2000 the only target in GCC that supports/uses the
2001 DW_EH_PE_datarel encoding. */
ae0d2f24 2002 got = bfd_get_section_by_name (unit->abfd, ".got");
0912c7f2 2003 if (got)
ae0d2f24 2004 unit->dbase = got->vma;
0912c7f2 2005
22c7ba1a
MK
2006 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2007 so far. */
ae0d2f24 2008 txt = bfd_get_section_by_name (unit->abfd, ".text");
0fd85043 2009 if (txt)
ae0d2f24 2010 unit->tbase = txt->vma;
0fd85043 2011
ae0d2f24
UW
2012 frame_ptr = unit->dwarf_frame_buffer;
2013 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
b01c8410
PP
2014 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2015 &cie_table, &fde_table);
2016
2017 if (cie_table.num_entries != 0)
2018 {
2019 /* Reinit cie_table: debug_frame has different CIEs. */
2020 xfree (cie_table.entries);
2021 cie_table.num_entries = 0;
2022 cie_table.entries = NULL;
2023 }
cfc14b3a
MK
2024 }
2025
dce234bc
PP
2026 dwarf2_get_section_info (objfile, ".debug_frame",
2027 &unit->dwarf_frame_section,
2028 &unit->dwarf_frame_buffer,
2029 &unit->dwarf_frame_size);
2030 if (unit->dwarf_frame_size)
cfc14b3a 2031 {
ae0d2f24
UW
2032 frame_ptr = unit->dwarf_frame_buffer;
2033 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
b01c8410
PP
2034 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2035 &cie_table, &fde_table);
2036 }
2037
2038 /* Discard the cie_table, it is no longer needed. */
2039 if (cie_table.num_entries != 0)
2040 {
2041 xfree (cie_table.entries);
2042 cie_table.entries = NULL; /* Paranoia. */
2043 cie_table.num_entries = 0; /* Paranoia. */
2044 }
2045
2046 if (fde_table.num_entries != 0)
2047 {
2048 struct dwarf2_fde_table *fde_table2;
2049 int i, j;
2050
2051 /* Prepare FDE table for lookups. */
2052 qsort (fde_table.entries, fde_table.num_entries,
2053 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2054
2055 /* Copy fde_table to obstack: it is needed at runtime. */
2056 fde_table2 = (struct dwarf2_fde_table *)
2057 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2058
2059 /* Since we'll be doing bsearch, squeeze out identical (except for
2060 eh_frame_p) fde entries so bsearch result is predictable. */
2061 for (i = 0, j = 0; j < fde_table.num_entries; ++i)
2062 {
2063 const int k = j;
2064
2065 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[j],
2066 sizeof (fde_table.entries[0]));
2067 while (++j < fde_table.num_entries
2068 && (fde_table.entries[k]->initial_location ==
2069 fde_table.entries[j]->initial_location))
2070 /* Skip. */;
2071 }
2072 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2073 fde_table2->num_entries = i;
2074 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2075
2076 /* Discard the original fde_table. */
2077 xfree (fde_table.entries);
cfc14b3a
MK
2078 }
2079}
0d0e1a63
MK
2080
2081/* Provide a prototype to silence -Wmissing-prototypes. */
2082void _initialize_dwarf2_frame (void);
2083
2084void
2085_initialize_dwarf2_frame (void)
2086{
030f20e1 2087 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2088 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2089}
This page took 0.562359 seconds and 4 git commands to generate.