Rename "read_reg" into "read_addr_from_reg" in struct dwarf_expr_context_funcs
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
28e7fd62 3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
cfc14b3a
MK
34
35#include "gdb_assert.h"
36#include "gdb_string.h"
37
6896c0c7 38#include "complaints.h"
cfc14b3a 39#include "dwarf2-frame.h"
9f6f94ff
TT
40#include "ax.h"
41#include "dwarf2loc.h"
8fbca658 42#include "exceptions.h"
111c6489 43#include "dwarf2-frame-tailcall.h"
cfc14b3a 44
ae0d2f24
UW
45struct comp_unit;
46
cfc14b3a
MK
47/* Call Frame Information (CFI). */
48
49/* Common Information Entry (CIE). */
50
51struct dwarf2_cie
52{
ae0d2f24
UW
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
cfc14b3a
MK
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
f664829e
DE
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
cfc14b3a 73
303b6f5d
DJ
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
cfc14b3a 77 /* Encoding of addresses. */
852483bc 78 gdb_byte encoding;
cfc14b3a 79
ae0d2f24
UW
80 /* Target address size in bytes. */
81 int addr_size;
82
0963b4bd 83 /* Target pointer size in bytes. */
8da614df
CV
84 int ptr_size;
85
7131cb6e
RH
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
56c987f6
AO
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
303b6f5d
DJ
92 /* The version recorded in the CIE. */
93 unsigned char version;
2dc7f7b3
TT
94
95 /* The segment size. */
96 unsigned char segment_size;
b01c8410 97};
303b6f5d 98
b01c8410
PP
99struct dwarf2_cie_table
100{
101 int num_entries;
102 struct dwarf2_cie **entries;
cfc14b3a
MK
103};
104
105/* Frame Description Entry (FDE). */
106
107struct dwarf2_fde
108{
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
f664829e
DE
119 const gdb_byte *instructions;
120 const gdb_byte *end;
cfc14b3a 121
4bf8967c
AS
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
b01c8410 125};
4bf8967c 126
b01c8410
PP
127struct dwarf2_fde_table
128{
129 int num_entries;
130 struct dwarf2_fde **entries;
cfc14b3a
MK
131};
132
ae0d2f24
UW
133/* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136struct comp_unit
137{
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
ae0d2f24 143 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 144 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
145
146 /* Length of the loaded .debug_frame section. */
c098b58b 147 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157};
158
ac56253d
TT
159static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
4fc771b8
DJ
161
162static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
ae0d2f24
UW
164
165static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 166 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
cfc14b3a
MK
169\f
170
171/* Structure describing a frame state. */
172
173struct dwarf2_frame_state
174{
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
05cbe71a 179 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
180 int num_regs;
181
2fd481e1
PP
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
0d45f56e 189 const gdb_byte *cfa_exp;
2fd481e1 190
cfc14b3a
MK
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
cfc14b3a
MK
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
303b6f5d
DJ
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
216};
217
218/* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220#define cfa_exp_len cfa_reg
221
f57d151a 222/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
223 columns. If necessary, enlarge the register set. */
224
225static void
226dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228{
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
2473a4a9 238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
239 rs->num_regs = num_regs;
240}
241
242/* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245static struct dwarf2_frame_state_reg *
246dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247{
d10891d4 248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255}
256
257/* Release the memory allocated to register set RS. */
258
259static void
260dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261{
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269}
270
271/* Release the memory allocated to the frame state FS. */
272
273static void
274dwarf2_frame_state_free (void *p)
275{
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283}
284\f
285
286/* Helper functions for execute_stack_op. */
287
288static CORE_ADDR
b1370418 289read_addr_from_reg (void *baton, int reg)
cfc14b3a 290{
4a4e5149
DJ
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 293 int regnum;
852483bc 294 gdb_byte *buf;
cfc14b3a 295
ad010def 296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 297
852483bc 298 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 299 get_frame_register (this_frame, regnum, buf);
f2da6b3a
DJ
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
b1370418
JB
304 registers. Maybe read_addr_from_reg and the associated interfaces
305 should deal with "struct value" instead of CORE_ADDR. */
f2da6b3a 306 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
307}
308
0acf8b65
JB
309/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
310
311static struct value *
312get_reg_value (void *baton, struct type *type, int reg)
313{
314 struct frame_info *this_frame = (struct frame_info *) baton;
315 struct gdbarch *gdbarch = get_frame_arch (this_frame);
316 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
317
318 return value_from_register (type, regnum, this_frame);
319}
320
cfc14b3a 321static void
852483bc 322read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
323{
324 read_memory (addr, buf, len);
325}
326
a6a5a945
LM
327/* Execute the required actions for both the DW_CFA_restore and
328DW_CFA_restore_extended instructions. */
329static void
330dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
331 struct dwarf2_frame_state *fs, int eh_frame_p)
332{
333 ULONGEST reg;
334
335 gdb_assert (fs->initial.reg);
336 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
337 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
338
339 /* Check if this register was explicitly initialized in the
340 CIE initial instructions. If not, default the rule to
341 UNSPECIFIED. */
342 if (reg < fs->initial.num_regs)
343 fs->regs.reg[reg] = fs->initial.reg[reg];
344 else
345 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
346
347 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
348 complaint (&symfile_complaints, _("\
349incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 350register %s (#%d) at %s"),
a6a5a945
LM
351 gdbarch_register_name
352 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
353 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 354 paddress (gdbarch, fs->pc));
a6a5a945
LM
355}
356
9e8b7a03
JK
357/* Virtual method table for execute_stack_op below. */
358
359static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
360{
b1370418 361 read_addr_from_reg,
0acf8b65 362 get_reg_value,
9e8b7a03 363 read_mem,
523f3620
JK
364 ctx_no_get_frame_base,
365 ctx_no_get_frame_cfa,
366 ctx_no_get_frame_pc,
367 ctx_no_get_tls_address,
368 ctx_no_dwarf_call,
8e3b41a9 369 ctx_no_get_base_type,
3019eac3
DE
370 ctx_no_push_dwarf_reg_entry_value,
371 ctx_no_get_addr_index
9e8b7a03
JK
372};
373
cfc14b3a 374static CORE_ADDR
0d45f56e 375execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
376 CORE_ADDR offset, struct frame_info *this_frame,
377 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
378{
379 struct dwarf_expr_context *ctx;
380 CORE_ADDR result;
4a227398 381 struct cleanup *old_chain;
cfc14b3a
MK
382
383 ctx = new_dwarf_expr_context ();
4a227398 384 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 385 make_cleanup_value_free_to_mark (value_mark ());
4a227398 386
f7fd4728 387 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 388 ctx->addr_size = addr_size;
181cebd4 389 ctx->ref_addr_size = -1;
ac56253d 390 ctx->offset = offset;
4a4e5149 391 ctx->baton = this_frame;
9e8b7a03 392 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 393
8a9b8146 394 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 395 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 396
f2c7657e
UW
397 if (ctx->location == DWARF_VALUE_MEMORY)
398 result = dwarf_expr_fetch_address (ctx, 0);
399 else if (ctx->location == DWARF_VALUE_REGISTER)
b1370418
JB
400 result = read_addr_from_reg (this_frame,
401 value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 402 else
cec03d70
TT
403 {
404 /* This is actually invalid DWARF, but if we ever do run across
405 it somehow, we might as well support it. So, instead, report
406 it as unimplemented. */
3e43a32a
MS
407 error (_("\
408Not implemented: computing unwound register using explicit value operator"));
cec03d70 409 }
cfc14b3a 410
4a227398 411 do_cleanups (old_chain);
cfc14b3a
MK
412
413 return result;
414}
415\f
416
111c6489
JK
417/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
418 PC. Modify FS state accordingly. Return current INSN_PTR where the
419 execution has stopped, one can resume it on the next call. */
420
421static const gdb_byte *
0d45f56e 422execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
423 const gdb_byte *insn_end, struct gdbarch *gdbarch,
424 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 425{
ae0d2f24 426 int eh_frame_p = fde->eh_frame_p;
507a579c 427 unsigned int bytes_read;
e17a4113 428 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
429
430 while (insn_ptr < insn_end && fs->pc <= pc)
431 {
852483bc 432 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
433 uint64_t utmp, reg;
434 int64_t offset;
cfc14b3a
MK
435
436 if ((insn & 0xc0) == DW_CFA_advance_loc)
437 fs->pc += (insn & 0x3f) * fs->code_align;
438 else if ((insn & 0xc0) == DW_CFA_offset)
439 {
440 reg = insn & 0x3f;
4fc771b8 441 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 442 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
443 offset = utmp * fs->data_align;
444 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 445 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
446 fs->regs.reg[reg].loc.offset = offset;
447 }
448 else if ((insn & 0xc0) == DW_CFA_restore)
449 {
cfc14b3a 450 reg = insn & 0x3f;
a6a5a945 451 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
452 }
453 else
454 {
455 switch (insn)
456 {
457 case DW_CFA_set_loc:
ae0d2f24 458 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 459 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
460 &bytes_read, fde->initial_location);
461 /* Apply the objfile offset for relocatable objects. */
462 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
463 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
464 insn_ptr += bytes_read;
465 break;
466
467 case DW_CFA_advance_loc1:
e17a4113 468 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
469 fs->pc += utmp * fs->code_align;
470 insn_ptr++;
471 break;
472 case DW_CFA_advance_loc2:
e17a4113 473 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
474 fs->pc += utmp * fs->code_align;
475 insn_ptr += 2;
476 break;
477 case DW_CFA_advance_loc4:
e17a4113 478 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
479 fs->pc += utmp * fs->code_align;
480 insn_ptr += 4;
481 break;
482
483 case DW_CFA_offset_extended:
f664829e 484 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 485 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 486 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
487 offset = utmp * fs->data_align;
488 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 489 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
490 fs->regs.reg[reg].loc.offset = offset;
491 break;
492
493 case DW_CFA_restore_extended:
f664829e 494 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 495 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
496 break;
497
498 case DW_CFA_undefined:
f664829e 499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 501 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 502 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
503 break;
504
505 case DW_CFA_same_value:
f664829e 506 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 507 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 508 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 509 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
510 break;
511
512 case DW_CFA_register:
f664829e 513 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 514 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 515 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 516 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 517 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 518 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
519 fs->regs.reg[reg].loc.reg = utmp;
520 break;
521
522 case DW_CFA_remember_state:
523 {
524 struct dwarf2_frame_state_reg_info *new_rs;
525
526 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
527 *new_rs = fs->regs;
528 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
529 fs->regs.prev = new_rs;
530 }
531 break;
532
533 case DW_CFA_restore_state:
534 {
535 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
536
50ea7769
MK
537 if (old_rs == NULL)
538 {
e2e0b3e5 539 complaint (&symfile_complaints, _("\
5af949e3
UW
540bad CFI data; mismatched DW_CFA_restore_state at %s"),
541 paddress (gdbarch, fs->pc));
50ea7769
MK
542 }
543 else
544 {
545 xfree (fs->regs.reg);
546 fs->regs = *old_rs;
547 xfree (old_rs);
548 }
cfc14b3a
MK
549 }
550 break;
551
552 case DW_CFA_def_cfa:
f664829e
DE
553 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
554 fs->regs.cfa_reg = reg;
555 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
556
557 if (fs->armcc_cfa_offsets_sf)
558 utmp *= fs->data_align;
559
2fd481e1
PP
560 fs->regs.cfa_offset = utmp;
561 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
562 break;
563
564 case DW_CFA_def_cfa_register:
f664829e
DE
565 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
566 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
567 eh_frame_p);
568 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
569 break;
570
571 case DW_CFA_def_cfa_offset:
f664829e 572 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
573
574 if (fs->armcc_cfa_offsets_sf)
575 utmp *= fs->data_align;
576
2fd481e1 577 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
578 /* cfa_how deliberately not set. */
579 break;
580
a8504492
MK
581 case DW_CFA_nop:
582 break;
583
cfc14b3a 584 case DW_CFA_def_cfa_expression:
f664829e
DE
585 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
586 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
587 fs->regs.cfa_exp = insn_ptr;
588 fs->regs.cfa_how = CFA_EXP;
589 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
590 break;
591
592 case DW_CFA_expression:
f664829e 593 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 594 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 595 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 596 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
597 fs->regs.reg[reg].loc.exp = insn_ptr;
598 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 599 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
600 insn_ptr += utmp;
601 break;
602
a8504492 603 case DW_CFA_offset_extended_sf:
f664829e 604 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 605 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 606 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 607 offset *= fs->data_align;
a8504492 608 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 609 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
610 fs->regs.reg[reg].loc.offset = offset;
611 break;
612
46ea248b 613 case DW_CFA_val_offset:
f664829e 614 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 615 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 616 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
617 offset = utmp * fs->data_align;
618 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
619 fs->regs.reg[reg].loc.offset = offset;
620 break;
621
622 case DW_CFA_val_offset_sf:
f664829e 623 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 624 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 625 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
626 offset *= fs->data_align;
627 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
628 fs->regs.reg[reg].loc.offset = offset;
629 break;
630
631 case DW_CFA_val_expression:
f664829e 632 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 633 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 634 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
635 fs->regs.reg[reg].loc.exp = insn_ptr;
636 fs->regs.reg[reg].exp_len = utmp;
637 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
638 insn_ptr += utmp;
639 break;
640
a8504492 641 case DW_CFA_def_cfa_sf:
f664829e
DE
642 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
643 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 644 eh_frame_p);
f664829e 645 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
646 fs->regs.cfa_offset = offset * fs->data_align;
647 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
648 break;
649
650 case DW_CFA_def_cfa_offset_sf:
f664829e 651 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 652 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 653 /* cfa_how deliberately not set. */
cfc14b3a
MK
654 break;
655
a77f4086
MK
656 case DW_CFA_GNU_window_save:
657 /* This is SPARC-specific code, and contains hard-coded
658 constants for the register numbering scheme used by
659 GCC. Rather than having a architecture-specific
660 operation that's only ever used by a single
661 architecture, we provide the implementation here.
662 Incidentally that's what GCC does too in its
663 unwinder. */
664 {
4a4e5149 665 int size = register_size (gdbarch, 0);
9a619af0 666
a77f4086
MK
667 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
668 for (reg = 8; reg < 16; reg++)
669 {
670 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
671 fs->regs.reg[reg].loc.reg = reg + 16;
672 }
673 for (reg = 16; reg < 32; reg++)
674 {
675 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
676 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
677 }
678 }
679 break;
680
cfc14b3a
MK
681 case DW_CFA_GNU_args_size:
682 /* Ignored. */
f664829e 683 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
684 break;
685
58894217 686 case DW_CFA_GNU_negative_offset_extended:
f664829e 687 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 688 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
689 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
690 offset = utmp * fs->data_align;
58894217
JK
691 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
692 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
693 fs->regs.reg[reg].loc.offset = -offset;
694 break;
695
cfc14b3a 696 default:
3e43a32a
MS
697 internal_error (__FILE__, __LINE__,
698 _("Unknown CFI encountered."));
cfc14b3a
MK
699 }
700 }
701 }
702
111c6489
JK
703 if (fs->initial.reg == NULL)
704 {
705 /* Don't allow remember/restore between CIE and FDE programs. */
706 dwarf2_frame_state_free_regs (fs->regs.prev);
707 fs->regs.prev = NULL;
708 }
709
710 return insn_ptr;
cfc14b3a 711}
8f22cb90 712\f
cfc14b3a 713
8f22cb90 714/* Architecture-specific operations. */
cfc14b3a 715
8f22cb90
MK
716/* Per-architecture data key. */
717static struct gdbarch_data *dwarf2_frame_data;
718
719struct dwarf2_frame_ops
720{
721 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
722 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
723 struct frame_info *);
3ed09a32 724
4a4e5149 725 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 726 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 727
4fc771b8
DJ
728 /* Convert .eh_frame register number to DWARF register number, or
729 adjust .debug_frame register number. */
730 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
731};
732
8f22cb90
MK
733/* Default architecture-specific register state initialization
734 function. */
735
736static void
737dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 738 struct dwarf2_frame_state_reg *reg,
4a4e5149 739 struct frame_info *this_frame)
8f22cb90
MK
740{
741 /* If we have a register that acts as a program counter, mark it as
742 a destination for the return address. If we have a register that
743 serves as the stack pointer, arrange for it to be filled with the
744 call frame address (CFA). The other registers are marked as
745 unspecified.
746
747 We copy the return address to the program counter, since many
748 parts in GDB assume that it is possible to get the return address
749 by unwinding the program counter register. However, on ISA's
750 with a dedicated return address register, the CFI usually only
751 contains information to unwind that return address register.
752
753 The reason we're treating the stack pointer special here is
754 because in many cases GCC doesn't emit CFI for the stack pointer
755 and implicitly assumes that it is equal to the CFA. This makes
756 some sense since the DWARF specification (version 3, draft 8,
757 p. 102) says that:
758
759 "Typically, the CFA is defined to be the value of the stack
760 pointer at the call site in the previous frame (which may be
761 different from its value on entry to the current frame)."
762
763 However, this isn't true for all platforms supported by GCC
764 (e.g. IBM S/390 and zSeries). Those architectures should provide
765 their own architecture-specific initialization function. */
05cbe71a 766
ad010def 767 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 768 reg->how = DWARF2_FRAME_REG_RA;
ad010def 769 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
770 reg->how = DWARF2_FRAME_REG_CFA;
771}
05cbe71a 772
8f22cb90 773/* Return a default for the architecture-specific operations. */
05cbe71a 774
8f22cb90 775static void *
030f20e1 776dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
777{
778 struct dwarf2_frame_ops *ops;
779
030f20e1 780 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
781 ops->init_reg = dwarf2_frame_default_init_reg;
782 return ops;
783}
05cbe71a 784
8f22cb90
MK
785/* Set the architecture-specific register state initialization
786 function for GDBARCH to INIT_REG. */
787
788void
789dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
790 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
791 struct dwarf2_frame_state_reg *,
792 struct frame_info *))
8f22cb90 793{
030f20e1 794 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 795
8f22cb90
MK
796 ops->init_reg = init_reg;
797}
798
799/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
800
801static void
802dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 803 struct dwarf2_frame_state_reg *reg,
4a4e5149 804 struct frame_info *this_frame)
05cbe71a 805{
030f20e1 806 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 807
4a4e5149 808 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 809}
3ed09a32
DJ
810
811/* Set the architecture-specific signal trampoline recognition
812 function for GDBARCH to SIGNAL_FRAME_P. */
813
814void
815dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
816 int (*signal_frame_p) (struct gdbarch *,
817 struct frame_info *))
818{
819 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
820
821 ops->signal_frame_p = signal_frame_p;
822}
823
824/* Query the architecture-specific signal frame recognizer for
4a4e5149 825 THIS_FRAME. */
3ed09a32
DJ
826
827static int
828dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 829 struct frame_info *this_frame)
3ed09a32
DJ
830{
831 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
832
833 if (ops->signal_frame_p == NULL)
834 return 0;
4a4e5149 835 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 836}
4bf8967c 837
4fc771b8
DJ
838/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
839 register numbers. */
4bf8967c
AS
840
841void
4fc771b8
DJ
842dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
843 int (*adjust_regnum) (struct gdbarch *,
844 int, int))
4bf8967c
AS
845{
846 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
847
4fc771b8 848 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
849}
850
4fc771b8
DJ
851/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
852 register. */
4bf8967c 853
4fc771b8 854static int
3e43a32a
MS
855dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
856 int regnum, int eh_frame_p)
4bf8967c
AS
857{
858 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
859
4fc771b8 860 if (ops->adjust_regnum == NULL)
4bf8967c 861 return regnum;
4fc771b8 862 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 863}
303b6f5d
DJ
864
865static void
866dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
867 struct dwarf2_fde *fde)
868{
303b6f5d
DJ
869 struct symtab *s;
870
871 s = find_pc_symtab (fs->pc);
a6c727b2 872 if (s == NULL)
303b6f5d
DJ
873 return;
874
a6c727b2
DJ
875 if (producer_is_realview (s->producer))
876 {
877 if (fde->cie->version == 1)
878 fs->armcc_cfa_offsets_sf = 1;
879
880 if (fde->cie->version == 1)
881 fs->armcc_cfa_offsets_reversed = 1;
882
883 /* The reversed offset problem is present in some compilers
884 using DWARF3, but it was eventually fixed. Check the ARM
885 defined augmentations, which are in the format "armcc" followed
886 by a list of one-character options. The "+" option means
887 this problem is fixed (no quirk needed). If the armcc
888 augmentation is missing, the quirk is needed. */
889 if (fde->cie->version == 3
890 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
891 || strchr (fde->cie->augmentation + 5, '+') == NULL))
892 fs->armcc_cfa_offsets_reversed = 1;
893
894 return;
895 }
303b6f5d 896}
8f22cb90
MK
897\f
898
9f6f94ff
TT
899void
900dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
901 struct gdbarch *gdbarch,
902 CORE_ADDR pc,
903 struct dwarf2_per_cu_data *data)
904{
9f6f94ff 905 struct dwarf2_fde *fde;
22e048c9 906 CORE_ADDR text_offset;
9f6f94ff
TT
907 struct dwarf2_frame_state fs;
908 int addr_size;
909
910 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
911
912 fs.pc = pc;
913
914 /* Find the correct FDE. */
915 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
916 if (fde == NULL)
917 error (_("Could not compute CFA; needed to translate this expression"));
918
919 /* Extract any interesting information from the CIE. */
920 fs.data_align = fde->cie->data_alignment_factor;
921 fs.code_align = fde->cie->code_alignment_factor;
922 fs.retaddr_column = fde->cie->return_address_register;
923 addr_size = fde->cie->addr_size;
924
925 /* Check for "quirks" - known bugs in producers. */
926 dwarf2_frame_find_quirks (&fs, fde);
927
928 /* First decode all the insns in the CIE. */
929 execute_cfa_program (fde, fde->cie->initial_instructions,
930 fde->cie->end, gdbarch, pc, &fs);
931
932 /* Save the initialized register set. */
933 fs.initial = fs.regs;
934 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
935
936 /* Then decode the insns in the FDE up to our target PC. */
937 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
938
939 /* Calculate the CFA. */
940 switch (fs.regs.cfa_how)
941 {
942 case CFA_REG_OFFSET:
943 {
944 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
945
946 if (regnum == -1)
947 error (_("Unable to access DWARF register number %d"),
948 (int) fs.regs.cfa_reg); /* FIXME */
949 ax_reg (expr, regnum);
950
951 if (fs.regs.cfa_offset != 0)
952 {
953 if (fs.armcc_cfa_offsets_reversed)
954 ax_const_l (expr, -fs.regs.cfa_offset);
955 else
956 ax_const_l (expr, fs.regs.cfa_offset);
957 ax_simple (expr, aop_add);
958 }
959 }
960 break;
961
962 case CFA_EXP:
963 ax_const_l (expr, text_offset);
964 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
965 fs.regs.cfa_exp,
966 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
967 data);
968 break;
969
970 default:
971 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
972 }
973}
974
975\f
8f22cb90
MK
976struct dwarf2_frame_cache
977{
978 /* DWARF Call Frame Address. */
979 CORE_ADDR cfa;
980
8fbca658
PA
981 /* Set if the return address column was marked as unavailable
982 (required non-collected memory or registers to compute). */
983 int unavailable_retaddr;
984
0228dfb9
DJ
985 /* Set if the return address column was marked as undefined. */
986 int undefined_retaddr;
987
8f22cb90
MK
988 /* Saved registers, indexed by GDB register number, not by DWARF
989 register number. */
990 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
991
992 /* Return address register. */
993 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
994
995 /* Target address size in bytes. */
996 int addr_size;
ac56253d
TT
997
998 /* The .text offset. */
999 CORE_ADDR text_offset;
111c6489
JK
1000
1001 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
1002 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1003 involved. Non-bottom frames of a virtual tail call frames chain use
1004 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1005 them. */
1006 void *tailcall_cache;
8f22cb90 1007};
05cbe71a 1008
78ac5f83
TT
1009/* A cleanup that sets a pointer to NULL. */
1010
1011static void
1012clear_pointer_cleanup (void *arg)
1013{
1014 void **ptr = arg;
1015
1016 *ptr = NULL;
1017}
1018
b9362cc7 1019static struct dwarf2_frame_cache *
4a4e5149 1020dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1021{
78ac5f83 1022 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1023 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1024 const int num_regs = gdbarch_num_regs (gdbarch)
1025 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1026 struct dwarf2_frame_cache *cache;
1027 struct dwarf2_frame_state *fs;
1028 struct dwarf2_fde *fde;
8fbca658 1029 volatile struct gdb_exception ex;
111c6489
JK
1030 CORE_ADDR entry_pc;
1031 LONGEST entry_cfa_sp_offset;
1032 int entry_cfa_sp_offset_p = 0;
1033 const gdb_byte *instr;
cfc14b3a
MK
1034
1035 if (*this_cache)
1036 return *this_cache;
1037
1038 /* Allocate a new cache. */
1039 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1040 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1041 *this_cache = cache;
78ac5f83 1042 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1043
1044 /* Allocate and initialize the frame state. */
8fbca658 1045 fs = XZALLOC (struct dwarf2_frame_state);
cfc14b3a
MK
1046 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1047
1048 /* Unwind the PC.
1049
4a4e5149 1050 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1051 to abort), the compiler might optimize away the instruction at
4a4e5149 1052 its return address. As a result the return address will
cfc14b3a 1053 point at some random instruction, and the CFI for that
e4e9607c 1054 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1055 this problem by substracting 1 from the return address to get an
1056 address in the middle of a presumed call instruction (or the
1057 instruction in the associated delay slot). This should only be
1058 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1059 handlers, sentinel frames, dummy frames). The function
ad1193e7 1060 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1061 reliable the method is though; there is the potential for the
1062 register state pre-call being different to that on return. */
4a4e5149 1063 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1064
1065 /* Find the correct FDE. */
ac56253d 1066 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1067 gdb_assert (fde != NULL);
1068
1069 /* Extract any interesting information from the CIE. */
1070 fs->data_align = fde->cie->data_alignment_factor;
1071 fs->code_align = fde->cie->code_alignment_factor;
1072 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1073 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1074
303b6f5d
DJ
1075 /* Check for "quirks" - known bugs in producers. */
1076 dwarf2_frame_find_quirks (fs, fde);
1077
cfc14b3a 1078 /* First decode all the insns in the CIE. */
ae0d2f24 1079 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1080 fde->cie->end, gdbarch,
1081 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1082
1083 /* Save the initialized register set. */
1084 fs->initial = fs->regs;
1085 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1086
111c6489
JK
1087 if (get_frame_func_if_available (this_frame, &entry_pc))
1088 {
1089 /* Decode the insns in the FDE up to the entry PC. */
1090 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1091 entry_pc, fs);
1092
1093 if (fs->regs.cfa_how == CFA_REG_OFFSET
1094 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1095 == gdbarch_sp_regnum (gdbarch)))
1096 {
1097 entry_cfa_sp_offset = fs->regs.cfa_offset;
1098 entry_cfa_sp_offset_p = 1;
1099 }
1100 }
1101 else
1102 instr = fde->instructions;
1103
cfc14b3a 1104 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1105 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1106 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1107
8fbca658 1108 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1109 {
8fbca658
PA
1110 /* Calculate the CFA. */
1111 switch (fs->regs.cfa_how)
1112 {
1113 case CFA_REG_OFFSET:
b1370418 1114 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1115 if (fs->armcc_cfa_offsets_reversed)
1116 cache->cfa -= fs->regs.cfa_offset;
1117 else
1118 cache->cfa += fs->regs.cfa_offset;
1119 break;
1120
1121 case CFA_EXP:
1122 cache->cfa =
1123 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1124 cache->addr_size, cache->text_offset,
1125 this_frame, 0, 0);
1126 break;
1127
1128 default:
1129 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1130 }
1131 }
1132 if (ex.reason < 0)
1133 {
1134 if (ex.error == NOT_AVAILABLE_ERROR)
1135 {
1136 cache->unavailable_retaddr = 1;
5a1cf4d6 1137 do_cleanups (old_chain);
78ac5f83 1138 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1139 return cache;
1140 }
cfc14b3a 1141
8fbca658 1142 throw_exception (ex);
cfc14b3a
MK
1143 }
1144
05cbe71a 1145 /* Initialize the register state. */
3e2c4033
AC
1146 {
1147 int regnum;
e4e9607c 1148
3e2c4033 1149 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1150 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1151 }
1152
1153 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1154 location information in the cache. Note that we don't skip the
1155 return address column; it's perfectly all right for it to
1156 correspond to a real register. If it doesn't correspond to a
1157 real register, or if we shouldn't treat it as such,
055d23b8 1158 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1159 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1160 {
1161 int column; /* CFI speak for "register number". */
e4e9607c 1162
3e2c4033
AC
1163 for (column = 0; column < fs->regs.num_regs; column++)
1164 {
3e2c4033 1165 /* Use the GDB register number as the destination index. */
ad010def 1166 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1167
1168 /* If there's no corresponding GDB register, ignore it. */
1169 if (regnum < 0 || regnum >= num_regs)
1170 continue;
1171
1172 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1173 of all debug info registers. If it doesn't, complain (but
1174 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1175 unspecified register implies "same value" when CFI (draft
1176 7) specifies nothing at all. Such a register could equally
1177 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1178 isn't sufficient; it only checks that all registers in the
1179 range [0 .. max column] are specified, and won't detect
3e2c4033 1180 problems when a debug info register falls outside of the
e4e9607c 1181 table. We need a way of iterating through all the valid
3e2c4033 1182 DWARF2 register numbers. */
05cbe71a 1183 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1184 {
1185 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1186 complaint (&symfile_complaints, _("\
5af949e3 1187incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1188 gdbarch_register_name (gdbarch, regnum),
5af949e3 1189 paddress (gdbarch, fs->pc));
f059bf6f 1190 }
35889917
MK
1191 else
1192 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1193 }
1194 }
cfc14b3a 1195
8d5a9abc
MK
1196 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1197 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1198 {
1199 int regnum;
1200
1201 for (regnum = 0; regnum < num_regs; regnum++)
1202 {
8d5a9abc
MK
1203 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1204 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1205 {
05cbe71a
MK
1206 struct dwarf2_frame_state_reg *retaddr_reg =
1207 &fs->regs.reg[fs->retaddr_column];
1208
d4f10bf2
MK
1209 /* It seems rather bizarre to specify an "empty" column as
1210 the return adress column. However, this is exactly
1211 what GCC does on some targets. It turns out that GCC
1212 assumes that the return address can be found in the
1213 register corresponding to the return address column.
8d5a9abc
MK
1214 Incidentally, that's how we should treat a return
1215 address column specifying "same value" too. */
d4f10bf2 1216 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1217 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1218 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1219 {
1220 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1221 cache->reg[regnum] = *retaddr_reg;
1222 else
1223 cache->retaddr_reg = *retaddr_reg;
1224 }
35889917
MK
1225 else
1226 {
8d5a9abc
MK
1227 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1228 {
1229 cache->reg[regnum].loc.reg = fs->retaddr_column;
1230 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1231 }
1232 else
1233 {
1234 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1235 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1236 }
35889917
MK
1237 }
1238 }
1239 }
1240 }
cfc14b3a 1241
0228dfb9
DJ
1242 if (fs->retaddr_column < fs->regs.num_regs
1243 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1244 cache->undefined_retaddr = 1;
1245
cfc14b3a
MK
1246 do_cleanups (old_chain);
1247
111c6489
JK
1248 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1249 starting at THIS_FRAME. */
1250 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1251 (entry_cfa_sp_offset_p
1252 ? &entry_cfa_sp_offset : NULL));
1253
78ac5f83 1254 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1255 return cache;
1256}
1257
8fbca658
PA
1258static enum unwind_stop_reason
1259dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1260 void **this_cache)
1261{
1262 struct dwarf2_frame_cache *cache
1263 = dwarf2_frame_cache (this_frame, this_cache);
1264
1265 if (cache->unavailable_retaddr)
1266 return UNWIND_UNAVAILABLE;
1267
1268 if (cache->undefined_retaddr)
1269 return UNWIND_OUTERMOST;
1270
1271 return UNWIND_NO_REASON;
1272}
1273
cfc14b3a 1274static void
4a4e5149 1275dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1276 struct frame_id *this_id)
1277{
1278 struct dwarf2_frame_cache *cache =
4a4e5149 1279 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1280
8fbca658
PA
1281 if (cache->unavailable_retaddr)
1282 return;
1283
0228dfb9
DJ
1284 if (cache->undefined_retaddr)
1285 return;
1286
4a4e5149 1287 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1288}
1289
4a4e5149
DJ
1290static struct value *
1291dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1292 int regnum)
93d42b30 1293{
4a4e5149 1294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1295 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1296 dwarf2_frame_cache (this_frame, this_cache);
1297 CORE_ADDR addr;
1298 int realnum;
cfc14b3a 1299
111c6489
JK
1300 /* Non-bottom frames of a virtual tail call frames chain use
1301 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1302 them. If dwarf2_tailcall_prev_register_first does not have specific value
1303 unwind the register, tail call frames are assumed to have the register set
1304 of the top caller. */
1305 if (cache->tailcall_cache)
1306 {
1307 struct value *val;
1308
1309 val = dwarf2_tailcall_prev_register_first (this_frame,
1310 &cache->tailcall_cache,
1311 regnum);
1312 if (val)
1313 return val;
1314 }
1315
cfc14b3a
MK
1316 switch (cache->reg[regnum].how)
1317 {
05cbe71a 1318 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1319 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1320 mark it as optimized away; the value isn't available. */
4a4e5149 1321 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1322
05cbe71a 1323 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1324 addr = cache->cfa + cache->reg[regnum].loc.offset;
1325 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1326
05cbe71a 1327 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1328 realnum
1329 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1330 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1331
05cbe71a 1332 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1333 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1334 cache->reg[regnum].exp_len,
ac56253d
TT
1335 cache->addr_size, cache->text_offset,
1336 this_frame, cache->cfa, 1);
4a4e5149 1337 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1338
46ea248b 1339 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1340 addr = cache->cfa + cache->reg[regnum].loc.offset;
1341 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1342
1343 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1344 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1345 cache->reg[regnum].exp_len,
ac56253d
TT
1346 cache->addr_size, cache->text_offset,
1347 this_frame, cache->cfa, 1);
4a4e5149 1348 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1349
05cbe71a 1350 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1351 /* GCC, in its infinite wisdom decided to not provide unwind
1352 information for registers that are "same value". Since
1353 DWARF2 (3 draft 7) doesn't define such behavior, said
1354 registers are actually undefined (which is different to CFI
1355 "undefined"). Code above issues a complaint about this.
1356 Here just fudge the books, assume GCC, and that the value is
1357 more inner on the stack. */
4a4e5149 1358 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1359
05cbe71a 1360 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1361 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1362
05cbe71a 1363 case DWARF2_FRAME_REG_CFA:
4a4e5149 1364 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1365
ea7963f0 1366 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1367 addr = cache->cfa + cache->reg[regnum].loc.offset;
1368 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1369
8d5a9abc 1370 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1371 addr = cache->reg[regnum].loc.offset;
1372 regnum = gdbarch_dwarf2_reg_to_regnum
1373 (gdbarch, cache->retaddr_reg.loc.reg);
1374 addr += get_frame_register_unsigned (this_frame, regnum);
1375 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1376
b39cc962
DJ
1377 case DWARF2_FRAME_REG_FN:
1378 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1379
cfc14b3a 1380 default:
e2e0b3e5 1381 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1382 }
1383}
1384
111c6489
JK
1385/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1386 call frames chain. */
1387
1388static void
1389dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1390{
1391 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1392
1393 if (cache->tailcall_cache)
1394 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1395}
1396
4a4e5149
DJ
1397static int
1398dwarf2_frame_sniffer (const struct frame_unwind *self,
1399 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1400{
1ce5d6dd 1401 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1402 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1403 end up returning something past the end of this function's body.
1404 If the frame we're sniffing for is a signal frame whose start
1405 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1406 extend one byte before its start address or we could potentially
1407 select the FDE of the previous function. */
1408 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1409 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1410
56c987f6 1411 if (!fde)
4a4e5149 1412 return 0;
3ed09a32
DJ
1413
1414 /* On some targets, signal trampolines may have unwind information.
1415 We need to recognize them so that we set the frame type
1416 correctly. */
1417
56c987f6 1418 if (fde->cie->signal_frame
4a4e5149
DJ
1419 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1420 this_frame))
1421 return self->type == SIGTRAMP_FRAME;
1422
111c6489
JK
1423 if (self->type != NORMAL_FRAME)
1424 return 0;
1425
1426 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1427 dwarf2_tailcall_sniffer_first. */
1428 dwarf2_frame_cache (this_frame, this_cache);
1429
1430 return 1;
4a4e5149
DJ
1431}
1432
1433static const struct frame_unwind dwarf2_frame_unwind =
1434{
1435 NORMAL_FRAME,
8fbca658 1436 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1437 dwarf2_frame_this_id,
1438 dwarf2_frame_prev_register,
1439 NULL,
111c6489
JK
1440 dwarf2_frame_sniffer,
1441 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1442};
1443
1444static const struct frame_unwind dwarf2_signal_frame_unwind =
1445{
1446 SIGTRAMP_FRAME,
8fbca658 1447 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1448 dwarf2_frame_this_id,
1449 dwarf2_frame_prev_register,
1450 NULL,
111c6489
JK
1451 dwarf2_frame_sniffer,
1452
1453 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1454 NULL
4a4e5149 1455};
cfc14b3a 1456
4a4e5149
DJ
1457/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1458
1459void
1460dwarf2_append_unwinders (struct gdbarch *gdbarch)
1461{
111c6489
JK
1462 /* TAILCALL_FRAME must be first to find the record by
1463 dwarf2_tailcall_sniffer_first. */
1464 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1465
4a4e5149
DJ
1466 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1467 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1468}
1469\f
1470
1471/* There is no explicitly defined relationship between the CFA and the
1472 location of frame's local variables and arguments/parameters.
1473 Therefore, frame base methods on this page should probably only be
1474 used as a last resort, just to avoid printing total garbage as a
1475 response to the "info frame" command. */
1476
1477static CORE_ADDR
4a4e5149 1478dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1479{
1480 struct dwarf2_frame_cache *cache =
4a4e5149 1481 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1482
1483 return cache->cfa;
1484}
1485
1486static const struct frame_base dwarf2_frame_base =
1487{
1488 &dwarf2_frame_unwind,
1489 dwarf2_frame_base_address,
1490 dwarf2_frame_base_address,
1491 dwarf2_frame_base_address
1492};
1493
1494const struct frame_base *
4a4e5149 1495dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1496{
4a4e5149 1497 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1498
ac56253d 1499 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1500 return &dwarf2_frame_base;
1501
1502 return NULL;
1503}
e7802207
TT
1504
1505/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1506 the DWARF unwinder. This is used to implement
1507 DW_OP_call_frame_cfa. */
1508
1509CORE_ADDR
1510dwarf2_frame_cfa (struct frame_info *this_frame)
1511{
1512 while (get_frame_type (this_frame) == INLINE_FRAME)
1513 this_frame = get_prev_frame (this_frame);
1514 /* This restriction could be lifted if other unwinders are known to
1515 compute the frame base in a way compatible with the DWARF
1516 unwinder. */
111c6489
JK
1517 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1518 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
e7802207 1519 error (_("can't compute CFA for this frame"));
c0bf857d
PA
1520 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1521 throw_error (NOT_AVAILABLE_ERROR,
1522 _("can't compute CFA for this frame: "
1523 "required registers or memory are unavailable"));
e7802207
TT
1524 return get_frame_base (this_frame);
1525}
cfc14b3a 1526\f
8f22cb90 1527const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1528
cfc14b3a 1529static unsigned int
f664829e 1530read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1531{
852483bc 1532 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1533}
1534
1535static unsigned int
f664829e 1536read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1537{
852483bc 1538 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1539}
1540
1541static ULONGEST
f664829e 1542read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1543{
852483bc 1544 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1545}
1546
1547static ULONGEST
f664829e
DE
1548read_initial_length (bfd *abfd, const gdb_byte *buf,
1549 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1550{
1551 LONGEST result;
1552
852483bc 1553 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1554 if (result == 0xffffffff)
1555 {
852483bc 1556 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1557 *bytes_read_ptr = 12;
1558 }
1559 else
1560 *bytes_read_ptr = 4;
1561
1562 return result;
1563}
1564\f
1565
1566/* Pointer encoding helper functions. */
1567
1568/* GCC supports exception handling based on DWARF2 CFI. However, for
1569 technical reasons, it encodes addresses in its FDE's in a different
1570 way. Several "pointer encodings" are supported. The encoding
1571 that's used for a particular FDE is determined by the 'R'
1572 augmentation in the associated CIE. The argument of this
1573 augmentation is a single byte.
1574
1575 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1576 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1577 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1578 address should be interpreted (absolute, relative to the current
1579 position in the FDE, ...). Bit 7, indicates that the address
1580 should be dereferenced. */
1581
852483bc 1582static gdb_byte
cfc14b3a
MK
1583encoding_for_size (unsigned int size)
1584{
1585 switch (size)
1586 {
1587 case 2:
1588 return DW_EH_PE_udata2;
1589 case 4:
1590 return DW_EH_PE_udata4;
1591 case 8:
1592 return DW_EH_PE_udata8;
1593 default:
e2e0b3e5 1594 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1595 }
1596}
1597
cfc14b3a 1598static CORE_ADDR
852483bc 1599read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1600 int ptr_len, const gdb_byte *buf,
1601 unsigned int *bytes_read_ptr,
ae0d2f24 1602 CORE_ADDR func_base)
cfc14b3a 1603{
68f6cf99 1604 ptrdiff_t offset;
cfc14b3a
MK
1605 CORE_ADDR base;
1606
1607 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1608 FDE's. */
1609 if (encoding & DW_EH_PE_indirect)
1610 internal_error (__FILE__, __LINE__,
e2e0b3e5 1611 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1612
68f6cf99
MK
1613 *bytes_read_ptr = 0;
1614
cfc14b3a
MK
1615 switch (encoding & 0x70)
1616 {
1617 case DW_EH_PE_absptr:
1618 base = 0;
1619 break;
1620 case DW_EH_PE_pcrel:
f2fec864 1621 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1622 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1623 break;
0912c7f2
MK
1624 case DW_EH_PE_datarel:
1625 base = unit->dbase;
1626 break;
0fd85043
CV
1627 case DW_EH_PE_textrel:
1628 base = unit->tbase;
1629 break;
03ac2a74 1630 case DW_EH_PE_funcrel:
ae0d2f24 1631 base = func_base;
03ac2a74 1632 break;
68f6cf99
MK
1633 case DW_EH_PE_aligned:
1634 base = 0;
852483bc 1635 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1636 if ((offset % ptr_len) != 0)
1637 {
1638 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1639 buf += *bytes_read_ptr;
1640 }
1641 break;
cfc14b3a 1642 default:
3e43a32a
MS
1643 internal_error (__FILE__, __LINE__,
1644 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1645 }
1646
b04de778 1647 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1648 {
1649 encoding |= encoding_for_size (ptr_len);
1650 if (bfd_get_sign_extend_vma (unit->abfd))
1651 encoding |= DW_EH_PE_signed;
1652 }
cfc14b3a
MK
1653
1654 switch (encoding & 0x0f)
1655 {
a81b10ae
MK
1656 case DW_EH_PE_uleb128:
1657 {
9fccedf7 1658 uint64_t value;
0d45f56e 1659 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1660
f664829e 1661 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1662 return base + value;
1663 }
cfc14b3a 1664 case DW_EH_PE_udata2:
68f6cf99 1665 *bytes_read_ptr += 2;
cfc14b3a
MK
1666 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1667 case DW_EH_PE_udata4:
68f6cf99 1668 *bytes_read_ptr += 4;
cfc14b3a
MK
1669 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1670 case DW_EH_PE_udata8:
68f6cf99 1671 *bytes_read_ptr += 8;
cfc14b3a 1672 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1673 case DW_EH_PE_sleb128:
1674 {
9fccedf7 1675 int64_t value;
0d45f56e 1676 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1677
f664829e 1678 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1679 return base + value;
1680 }
cfc14b3a 1681 case DW_EH_PE_sdata2:
68f6cf99 1682 *bytes_read_ptr += 2;
cfc14b3a
MK
1683 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1684 case DW_EH_PE_sdata4:
68f6cf99 1685 *bytes_read_ptr += 4;
cfc14b3a
MK
1686 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1687 case DW_EH_PE_sdata8:
68f6cf99 1688 *bytes_read_ptr += 8;
cfc14b3a
MK
1689 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1690 default:
3e43a32a
MS
1691 internal_error (__FILE__, __LINE__,
1692 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1693 }
1694}
1695\f
1696
b01c8410
PP
1697static int
1698bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1699{
b01c8410
PP
1700 ULONGEST cie_pointer = *(ULONGEST *) key;
1701 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1702
b01c8410
PP
1703 if (cie_pointer == cie->cie_pointer)
1704 return 0;
cfc14b3a 1705
b01c8410
PP
1706 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1707}
1708
1709/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1710static struct dwarf2_cie *
1711find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1712{
1713 struct dwarf2_cie **p_cie;
cfc14b3a 1714
65a97ab3
PP
1715 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1716 bsearch be non-NULL. */
1717 if (cie_table->entries == NULL)
1718 {
1719 gdb_assert (cie_table->num_entries == 0);
1720 return NULL;
1721 }
1722
b01c8410
PP
1723 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1724 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1725 if (p_cie != NULL)
1726 return *p_cie;
cfc14b3a
MK
1727 return NULL;
1728}
1729
b01c8410 1730/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1731static void
b01c8410 1732add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1733{
b01c8410
PP
1734 const int n = cie_table->num_entries;
1735
1736 gdb_assert (n < 1
1737 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1738
1739 cie_table->entries =
1740 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1741 cie_table->entries[n] = cie;
1742 cie_table->num_entries = n + 1;
1743}
1744
1745static int
1746bsearch_fde_cmp (const void *key, const void *element)
1747{
1748 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1749 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1750
b01c8410
PP
1751 if (seek_pc < fde->initial_location)
1752 return -1;
1753 if (seek_pc < fde->initial_location + fde->address_range)
1754 return 0;
1755 return 1;
cfc14b3a
MK
1756}
1757
1758/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1759 inital location associated with it into *PC. */
1760
1761static struct dwarf2_fde *
ac56253d 1762dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1763{
1764 struct objfile *objfile;
1765
1766 ALL_OBJFILES (objfile)
1767 {
b01c8410
PP
1768 struct dwarf2_fde_table *fde_table;
1769 struct dwarf2_fde **p_fde;
cfc14b3a 1770 CORE_ADDR offset;
b01c8410 1771 CORE_ADDR seek_pc;
cfc14b3a 1772
b01c8410
PP
1773 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1774 if (fde_table == NULL)
be391dca
TT
1775 {
1776 dwarf2_build_frame_info (objfile);
1777 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1778 }
1779 gdb_assert (fde_table != NULL);
1780
1781 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1782 continue;
1783
1784 gdb_assert (objfile->section_offsets);
1785 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1786
b01c8410
PP
1787 gdb_assert (fde_table->num_entries > 0);
1788 if (*pc < offset + fde_table->entries[0]->initial_location)
1789 continue;
1790
1791 seek_pc = *pc - offset;
1792 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1793 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1794 if (p_fde != NULL)
1795 {
1796 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1797 if (out_offset)
1798 *out_offset = offset;
b01c8410
PP
1799 return *p_fde;
1800 }
cfc14b3a 1801 }
cfc14b3a
MK
1802 return NULL;
1803}
1804
b01c8410 1805/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1806static void
b01c8410 1807add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1808{
b01c8410
PP
1809 if (fde->address_range == 0)
1810 /* Discard useless FDEs. */
1811 return;
1812
1813 fde_table->num_entries += 1;
1814 fde_table->entries =
1815 xrealloc (fde_table->entries,
1816 fde_table->num_entries * sizeof (fde_table->entries[0]));
1817 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1818}
1819
cfc14b3a 1820#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1821
8bd90839
FM
1822/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1823 or any of them. */
1824
1825enum eh_frame_type
1826{
1827 EH_CIE_TYPE_ID = 1 << 0,
1828 EH_FDE_TYPE_ID = 1 << 1,
1829 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1830};
1831
f664829e
DE
1832static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1833 const gdb_byte *start,
1834 int eh_frame_p,
1835 struct dwarf2_cie_table *cie_table,
1836 struct dwarf2_fde_table *fde_table,
1837 enum eh_frame_type entry_type);
8bd90839
FM
1838
1839/* Decode the next CIE or FDE, entry_type specifies the expected type.
1840 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1841
f664829e
DE
1842static const gdb_byte *
1843decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1844 int eh_frame_p,
b01c8410 1845 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1846 struct dwarf2_fde_table *fde_table,
1847 enum eh_frame_type entry_type)
cfc14b3a 1848{
5e2b427d 1849 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1850 const gdb_byte *buf, *end;
cfc14b3a
MK
1851 LONGEST length;
1852 unsigned int bytes_read;
6896c0c7
RH
1853 int dwarf64_p;
1854 ULONGEST cie_id;
cfc14b3a 1855 ULONGEST cie_pointer;
9fccedf7
DE
1856 int64_t sleb128;
1857 uint64_t uleb128;
cfc14b3a 1858
6896c0c7 1859 buf = start;
cfc14b3a
MK
1860 length = read_initial_length (unit->abfd, buf, &bytes_read);
1861 buf += bytes_read;
1862 end = buf + length;
1863
0963b4bd 1864 /* Are we still within the section? */
6896c0c7
RH
1865 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1866 return NULL;
1867
cfc14b3a
MK
1868 if (length == 0)
1869 return end;
1870
6896c0c7
RH
1871 /* Distinguish between 32 and 64-bit encoded frame info. */
1872 dwarf64_p = (bytes_read == 12);
cfc14b3a 1873
6896c0c7 1874 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1875 if (eh_frame_p)
1876 cie_id = 0;
1877 else if (dwarf64_p)
1878 cie_id = DW64_CIE_ID;
6896c0c7
RH
1879 else
1880 cie_id = DW_CIE_ID;
cfc14b3a
MK
1881
1882 if (dwarf64_p)
1883 {
1884 cie_pointer = read_8_bytes (unit->abfd, buf);
1885 buf += 8;
1886 }
1887 else
1888 {
1889 cie_pointer = read_4_bytes (unit->abfd, buf);
1890 buf += 4;
1891 }
1892
1893 if (cie_pointer == cie_id)
1894 {
1895 /* This is a CIE. */
1896 struct dwarf2_cie *cie;
1897 char *augmentation;
28ba0b33 1898 unsigned int cie_version;
cfc14b3a 1899
8bd90839
FM
1900 /* Check that a CIE was expected. */
1901 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1902 error (_("Found a CIE when not expecting it."));
1903
cfc14b3a
MK
1904 /* Record the offset into the .debug_frame section of this CIE. */
1905 cie_pointer = start - unit->dwarf_frame_buffer;
1906
1907 /* Check whether we've already read it. */
b01c8410 1908 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1909 return end;
1910
1911 cie = (struct dwarf2_cie *)
8b92e4d5 1912 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1913 sizeof (struct dwarf2_cie));
1914 cie->initial_instructions = NULL;
1915 cie->cie_pointer = cie_pointer;
1916
1917 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1918 depends on the target address size. */
1919 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1920
56c987f6
AO
1921 /* We'll determine the final value later, but we need to
1922 initialize it conservatively. */
1923 cie->signal_frame = 0;
1924
cfc14b3a 1925 /* Check version number. */
28ba0b33 1926 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1927 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1928 return NULL;
303b6f5d 1929 cie->version = cie_version;
cfc14b3a
MK
1930 buf += 1;
1931
1932 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1933 cie->augmentation = augmentation = (char *) buf;
852483bc 1934 buf += (strlen (augmentation) + 1);
cfc14b3a 1935
303b6f5d
DJ
1936 /* Ignore armcc augmentations. We only use them for quirks,
1937 and that doesn't happen until later. */
1938 if (strncmp (augmentation, "armcc", 5) == 0)
1939 augmentation += strlen (augmentation);
1940
cfc14b3a
MK
1941 /* The GCC 2.x "eh" augmentation has a pointer immediately
1942 following the augmentation string, so it must be handled
1943 first. */
1944 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1945 {
1946 /* Skip. */
5e2b427d 1947 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1948 augmentation += 2;
1949 }
1950
2dc7f7b3
TT
1951 if (cie->version >= 4)
1952 {
1953 /* FIXME: check that this is the same as from the CU header. */
1954 cie->addr_size = read_1_byte (unit->abfd, buf);
1955 ++buf;
1956 cie->segment_size = read_1_byte (unit->abfd, buf);
1957 ++buf;
1958 }
1959 else
1960 {
8da614df 1961 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1962 cie->segment_size = 0;
1963 }
8da614df
CV
1964 /* Address values in .eh_frame sections are defined to have the
1965 target's pointer size. Watchout: This breaks frame info for
1966 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1967 section exists as well. */
8da614df
CV
1968 if (eh_frame_p)
1969 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1970 else
1971 cie->ptr_size = cie->addr_size;
2dc7f7b3 1972
f664829e
DE
1973 buf = gdb_read_uleb128 (buf, end, &uleb128);
1974 if (buf == NULL)
1975 return NULL;
1976 cie->code_alignment_factor = uleb128;
cfc14b3a 1977
f664829e
DE
1978 buf = gdb_read_sleb128 (buf, end, &sleb128);
1979 if (buf == NULL)
1980 return NULL;
1981 cie->data_alignment_factor = sleb128;
cfc14b3a 1982
28ba0b33
PB
1983 if (cie_version == 1)
1984 {
1985 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1986 ++buf;
28ba0b33
PB
1987 }
1988 else
f664829e
DE
1989 {
1990 buf = gdb_read_uleb128 (buf, end, &uleb128);
1991 if (buf == NULL)
1992 return NULL;
1993 cie->return_address_register = uleb128;
1994 }
1995
4fc771b8 1996 cie->return_address_register
5e2b427d 1997 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1998 cie->return_address_register,
1999 eh_frame_p);
4bf8967c 2000
7131cb6e
RH
2001 cie->saw_z_augmentation = (*augmentation == 'z');
2002 if (cie->saw_z_augmentation)
cfc14b3a 2003 {
9fccedf7 2004 uint64_t length;
cfc14b3a 2005
f664829e
DE
2006 buf = gdb_read_uleb128 (buf, end, &length);
2007 if (buf == NULL)
6896c0c7 2008 return NULL;
cfc14b3a
MK
2009 cie->initial_instructions = buf + length;
2010 augmentation++;
2011 }
2012
2013 while (*augmentation)
2014 {
2015 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2016 if (*augmentation == 'L')
2017 {
2018 /* Skip. */
2019 buf++;
2020 augmentation++;
2021 }
2022
2023 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2024 else if (*augmentation == 'R')
2025 {
2026 cie->encoding = *buf++;
2027 augmentation++;
2028 }
2029
2030 /* "P" indicates a personality routine in the CIE augmentation. */
2031 else if (*augmentation == 'P')
2032 {
1234d960 2033 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2034 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2035 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2036 buf, &bytes_read, 0);
f724bf08 2037 buf += bytes_read;
cfc14b3a
MK
2038 augmentation++;
2039 }
2040
56c987f6
AO
2041 /* "S" indicates a signal frame, such that the return
2042 address must not be decremented to locate the call frame
2043 info for the previous frame; it might even be the first
2044 instruction of a function, so decrementing it would take
2045 us to a different function. */
2046 else if (*augmentation == 'S')
2047 {
2048 cie->signal_frame = 1;
2049 augmentation++;
2050 }
2051
3e9a2e52
DJ
2052 /* Otherwise we have an unknown augmentation. Assume that either
2053 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2054 else
2055 {
3e9a2e52
DJ
2056 if (cie->initial_instructions)
2057 buf = cie->initial_instructions;
cfc14b3a
MK
2058 break;
2059 }
2060 }
2061
2062 cie->initial_instructions = buf;
2063 cie->end = end;
b01c8410 2064 cie->unit = unit;
cfc14b3a 2065
b01c8410 2066 add_cie (cie_table, cie);
cfc14b3a
MK
2067 }
2068 else
2069 {
2070 /* This is a FDE. */
2071 struct dwarf2_fde *fde;
2072
8bd90839
FM
2073 /* Check that an FDE was expected. */
2074 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2075 error (_("Found an FDE when not expecting it."));
2076
6896c0c7
RH
2077 /* In an .eh_frame section, the CIE pointer is the delta between the
2078 address within the FDE where the CIE pointer is stored and the
2079 address of the CIE. Convert it to an offset into the .eh_frame
2080 section. */
cfc14b3a
MK
2081 if (eh_frame_p)
2082 {
cfc14b3a
MK
2083 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2084 cie_pointer -= (dwarf64_p ? 8 : 4);
2085 }
2086
6896c0c7
RH
2087 /* In either case, validate the result is still within the section. */
2088 if (cie_pointer >= unit->dwarf_frame_size)
2089 return NULL;
2090
cfc14b3a 2091 fde = (struct dwarf2_fde *)
8b92e4d5 2092 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2093 sizeof (struct dwarf2_fde));
b01c8410 2094 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2095 if (fde->cie == NULL)
2096 {
2097 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2098 eh_frame_p, cie_table, fde_table,
2099 EH_CIE_TYPE_ID);
b01c8410 2100 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2101 }
2102
2103 gdb_assert (fde->cie != NULL);
2104
2105 fde->initial_location =
8da614df 2106 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
ae0d2f24 2107 buf, &bytes_read, 0);
cfc14b3a
MK
2108 buf += bytes_read;
2109
2110 fde->address_range =
ae0d2f24 2111 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2112 fde->cie->ptr_size, buf, &bytes_read, 0);
cfc14b3a
MK
2113 buf += bytes_read;
2114
7131cb6e
RH
2115 /* A 'z' augmentation in the CIE implies the presence of an
2116 augmentation field in the FDE as well. The only thing known
2117 to be in here at present is the LSDA entry for EH. So we
2118 can skip the whole thing. */
2119 if (fde->cie->saw_z_augmentation)
2120 {
9fccedf7 2121 uint64_t length;
7131cb6e 2122
f664829e
DE
2123 buf = gdb_read_uleb128 (buf, end, &length);
2124 if (buf == NULL)
2125 return NULL;
2126 buf += length;
6896c0c7
RH
2127 if (buf > end)
2128 return NULL;
7131cb6e
RH
2129 }
2130
cfc14b3a
MK
2131 fde->instructions = buf;
2132 fde->end = end;
2133
4bf8967c
AS
2134 fde->eh_frame_p = eh_frame_p;
2135
b01c8410 2136 add_fde (fde_table, fde);
cfc14b3a
MK
2137 }
2138
2139 return end;
2140}
6896c0c7 2141
8bd90839
FM
2142/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2143 expect an FDE or a CIE. */
2144
f664829e
DE
2145static const gdb_byte *
2146decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2147 int eh_frame_p,
b01c8410 2148 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2149 struct dwarf2_fde_table *fde_table,
2150 enum eh_frame_type entry_type)
6896c0c7
RH
2151{
2152 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2153 const gdb_byte *ret;
6896c0c7
RH
2154 ptrdiff_t start_offset;
2155
2156 while (1)
2157 {
b01c8410 2158 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2159 cie_table, fde_table, entry_type);
6896c0c7
RH
2160 if (ret != NULL)
2161 break;
2162
2163 /* We have corrupt input data of some form. */
2164
2165 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2166 and mismatches wrt padding and alignment of debug sections. */
2167 /* Note that there is no requirement in the standard for any
2168 alignment at all in the frame unwind sections. Testing for
2169 alignment before trying to interpret data would be incorrect.
2170
2171 However, GCC traditionally arranged for frame sections to be
2172 sized such that the FDE length and CIE fields happen to be
2173 aligned (in theory, for performance). This, unfortunately,
2174 was done with .align directives, which had the side effect of
2175 forcing the section to be aligned by the linker.
2176
2177 This becomes a problem when you have some other producer that
2178 creates frame sections that are not as strictly aligned. That
2179 produces a hole in the frame info that gets filled by the
2180 linker with zeros.
2181
2182 The GCC behaviour is arguably a bug, but it's effectively now
2183 part of the ABI, so we're now stuck with it, at least at the
2184 object file level. A smart linker may decide, in the process
2185 of compressing duplicate CIE information, that it can rewrite
2186 the entire output section without this extra padding. */
2187
2188 start_offset = start - unit->dwarf_frame_buffer;
2189 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2190 {
2191 start += 4 - (start_offset & 3);
2192 workaround = ALIGN4;
2193 continue;
2194 }
2195 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2196 {
2197 start += 8 - (start_offset & 7);
2198 workaround = ALIGN8;
2199 continue;
2200 }
2201
2202 /* Nothing left to try. Arrange to return as if we've consumed
2203 the entire input section. Hopefully we'll get valid info from
2204 the other of .debug_frame/.eh_frame. */
2205 workaround = FAIL;
2206 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2207 break;
2208 }
2209
2210 switch (workaround)
2211 {
2212 case NONE:
2213 break;
2214
2215 case ALIGN4:
3e43a32a
MS
2216 complaint (&symfile_complaints, _("\
2217Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2218 unit->dwarf_frame_section->owner->filename,
2219 unit->dwarf_frame_section->name);
2220 break;
2221
2222 case ALIGN8:
3e43a32a
MS
2223 complaint (&symfile_complaints, _("\
2224Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2225 unit->dwarf_frame_section->owner->filename,
2226 unit->dwarf_frame_section->name);
2227 break;
2228
2229 default:
2230 complaint (&symfile_complaints,
e2e0b3e5 2231 _("Corrupt data in %s:%s"),
6896c0c7
RH
2232 unit->dwarf_frame_section->owner->filename,
2233 unit->dwarf_frame_section->name);
2234 break;
2235 }
2236
2237 return ret;
2238}
cfc14b3a 2239\f
b01c8410
PP
2240static int
2241qsort_fde_cmp (const void *a, const void *b)
2242{
2243 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2244 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2245
b01c8410 2246 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2247 {
2248 if (aa->address_range != bb->address_range
2249 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2250 /* Linker bug, e.g. gold/10400.
2251 Work around it by keeping stable sort order. */
2252 return (a < b) ? -1 : 1;
2253 else
2254 /* Put eh_frame entries after debug_frame ones. */
2255 return aa->eh_frame_p - bb->eh_frame_p;
2256 }
b01c8410
PP
2257
2258 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2259}
2260
cfc14b3a
MK
2261void
2262dwarf2_build_frame_info (struct objfile *objfile)
2263{
ae0d2f24 2264 struct comp_unit *unit;
f664829e 2265 const gdb_byte *frame_ptr;
b01c8410
PP
2266 struct dwarf2_cie_table cie_table;
2267 struct dwarf2_fde_table fde_table;
be391dca 2268 struct dwarf2_fde_table *fde_table2;
8bd90839 2269 volatile struct gdb_exception e;
b01c8410
PP
2270
2271 cie_table.num_entries = 0;
2272 cie_table.entries = NULL;
2273
2274 fde_table.num_entries = 0;
2275 fde_table.entries = NULL;
cfc14b3a
MK
2276
2277 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2278 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2279 sizeof (struct comp_unit));
2280 unit->abfd = objfile->obfd;
2281 unit->objfile = objfile;
2282 unit->dbase = 0;
2283 unit->tbase = 0;
cfc14b3a 2284
d40102a1 2285 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2286 {
d40102a1
JB
2287 /* Do not read .eh_frame from separate file as they must be also
2288 present in the main file. */
2289 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2290 &unit->dwarf_frame_section,
2291 &unit->dwarf_frame_buffer,
2292 &unit->dwarf_frame_size);
2293 if (unit->dwarf_frame_size)
b01c8410 2294 {
d40102a1
JB
2295 asection *got, *txt;
2296
2297 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2298 that is used for the i386/amd64 target, which currently is
2299 the only target in GCC that supports/uses the
2300 DW_EH_PE_datarel encoding. */
2301 got = bfd_get_section_by_name (unit->abfd, ".got");
2302 if (got)
2303 unit->dbase = got->vma;
2304
2305 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2306 so far. */
2307 txt = bfd_get_section_by_name (unit->abfd, ".text");
2308 if (txt)
2309 unit->tbase = txt->vma;
2310
8bd90839
FM
2311 TRY_CATCH (e, RETURN_MASK_ERROR)
2312 {
2313 frame_ptr = unit->dwarf_frame_buffer;
2314 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2315 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2316 &cie_table, &fde_table,
2317 EH_CIE_OR_FDE_TYPE_ID);
2318 }
2319
2320 if (e.reason < 0)
2321 {
2322 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2323 objfile_name (objfile), e.message);
8bd90839
FM
2324
2325 if (fde_table.num_entries != 0)
2326 {
2327 xfree (fde_table.entries);
2328 fde_table.entries = NULL;
2329 fde_table.num_entries = 0;
2330 }
2331 /* The cie_table is discarded by the next if. */
2332 }
d40102a1
JB
2333
2334 if (cie_table.num_entries != 0)
2335 {
2336 /* Reinit cie_table: debug_frame has different CIEs. */
2337 xfree (cie_table.entries);
2338 cie_table.num_entries = 0;
2339 cie_table.entries = NULL;
2340 }
b01c8410 2341 }
cfc14b3a
MK
2342 }
2343
3017a003 2344 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2345 &unit->dwarf_frame_section,
2346 &unit->dwarf_frame_buffer,
2347 &unit->dwarf_frame_size);
2348 if (unit->dwarf_frame_size)
cfc14b3a 2349 {
8bd90839
FM
2350 int num_old_fde_entries = fde_table.num_entries;
2351
2352 TRY_CATCH (e, RETURN_MASK_ERROR)
2353 {
2354 frame_ptr = unit->dwarf_frame_buffer;
2355 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2356 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2357 &cie_table, &fde_table,
2358 EH_CIE_OR_FDE_TYPE_ID);
2359 }
2360 if (e.reason < 0)
2361 {
2362 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2363 objfile_name (objfile), e.message);
8bd90839
FM
2364
2365 if (fde_table.num_entries != 0)
2366 {
2367 fde_table.num_entries = num_old_fde_entries;
2368 if (num_old_fde_entries == 0)
2369 {
2370 xfree (fde_table.entries);
2371 fde_table.entries = NULL;
2372 }
2373 else
2374 {
2375 fde_table.entries = xrealloc (fde_table.entries,
2376 fde_table.num_entries *
2377 sizeof (fde_table.entries[0]));
2378 }
2379 }
2380 fde_table.num_entries = num_old_fde_entries;
2381 /* The cie_table is discarded by the next if. */
2382 }
b01c8410
PP
2383 }
2384
2385 /* Discard the cie_table, it is no longer needed. */
2386 if (cie_table.num_entries != 0)
2387 {
2388 xfree (cie_table.entries);
2389 cie_table.entries = NULL; /* Paranoia. */
2390 cie_table.num_entries = 0; /* Paranoia. */
2391 }
2392
be391dca
TT
2393 /* Copy fde_table to obstack: it is needed at runtime. */
2394 fde_table2 = (struct dwarf2_fde_table *)
2395 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2396
2397 if (fde_table.num_entries == 0)
2398 {
2399 fde_table2->entries = NULL;
2400 fde_table2->num_entries = 0;
2401 }
2402 else
b01c8410 2403 {
875cdfbb
PA
2404 struct dwarf2_fde *fde_prev = NULL;
2405 struct dwarf2_fde *first_non_zero_fde = NULL;
2406 int i;
b01c8410
PP
2407
2408 /* Prepare FDE table for lookups. */
2409 qsort (fde_table.entries, fde_table.num_entries,
2410 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2411
875cdfbb
PA
2412 /* Check for leftovers from --gc-sections. The GNU linker sets
2413 the relevant symbols to zero, but doesn't zero the FDE *end*
2414 ranges because there's no relocation there. It's (offset,
2415 length), not (start, end). On targets where address zero is
2416 just another valid address this can be a problem, since the
2417 FDEs appear to be non-empty in the output --- we could pick
2418 out the wrong FDE. To work around this, when overlaps are
2419 detected, we prefer FDEs that do not start at zero.
2420
2421 Start by finding the first FDE with non-zero start. Below
2422 we'll discard all FDEs that start at zero and overlap this
2423 one. */
2424 for (i = 0; i < fde_table.num_entries; i++)
2425 {
2426 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2427
875cdfbb
PA
2428 if (fde->initial_location != 0)
2429 {
2430 first_non_zero_fde = fde;
2431 break;
2432 }
2433 }
2434
2435 /* Since we'll be doing bsearch, squeeze out identical (except
2436 for eh_frame_p) fde entries so bsearch result is predictable.
2437 Also discard leftovers from --gc-sections. */
be391dca 2438 fde_table2->num_entries = 0;
875cdfbb
PA
2439 for (i = 0; i < fde_table.num_entries; i++)
2440 {
2441 struct dwarf2_fde *fde = fde_table.entries[i];
2442
2443 if (fde->initial_location == 0
2444 && first_non_zero_fde != NULL
2445 && (first_non_zero_fde->initial_location
2446 < fde->initial_location + fde->address_range))
2447 continue;
2448
2449 if (fde_prev != NULL
2450 && fde_prev->initial_location == fde->initial_location)
2451 continue;
2452
2453 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2454 sizeof (fde_table.entries[0]));
2455 ++fde_table2->num_entries;
2456 fde_prev = fde;
2457 }
b01c8410 2458 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2459
2460 /* Discard the original fde_table. */
2461 xfree (fde_table.entries);
cfc14b3a 2462 }
be391dca
TT
2463
2464 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2465}
0d0e1a63
MK
2466
2467/* Provide a prototype to silence -Wmissing-prototypes. */
2468void _initialize_dwarf2_frame (void);
2469
2470void
2471_initialize_dwarf2_frame (void)
2472{
030f20e1 2473 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2474 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2475}
This page took 1.019559 seconds and 4 git commands to generate.