gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
7b6bb8da 3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
0fb0cc75 4 Free Software Foundation, Inc.
cfc14b3a
MK
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
22
23#include "defs.h"
24#include "dwarf2expr.h"
fa8f86ff 25#include "dwarf2.h"
cfc14b3a
MK
26#include "frame.h"
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
31#include "symtab.h"
32#include "objfiles.h"
33#include "regcache.h"
f2da6b3a 34#include "value.h"
cfc14b3a
MK
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
6896c0c7 39#include "complaints.h"
cfc14b3a 40#include "dwarf2-frame.h"
9f6f94ff
TT
41#include "ax.h"
42#include "dwarf2loc.h"
8fbca658 43#include "exceptions.h"
cfc14b3a 44
ae0d2f24
UW
45struct comp_unit;
46
cfc14b3a
MK
47/* Call Frame Information (CFI). */
48
49/* Common Information Entry (CIE). */
50
51struct dwarf2_cie
52{
ae0d2f24
UW
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
cfc14b3a
MK
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
852483bc
MK
71 gdb_byte *initial_instructions;
72 gdb_byte *end;
cfc14b3a 73
303b6f5d
DJ
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
cfc14b3a 77 /* Encoding of addresses. */
852483bc 78 gdb_byte encoding;
cfc14b3a 79
ae0d2f24
UW
80 /* Target address size in bytes. */
81 int addr_size;
82
0963b4bd 83 /* Target pointer size in bytes. */
8da614df
CV
84 int ptr_size;
85
7131cb6e
RH
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
56c987f6
AO
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
303b6f5d
DJ
92 /* The version recorded in the CIE. */
93 unsigned char version;
2dc7f7b3
TT
94
95 /* The segment size. */
96 unsigned char segment_size;
b01c8410 97};
303b6f5d 98
b01c8410
PP
99struct dwarf2_cie_table
100{
101 int num_entries;
102 struct dwarf2_cie **entries;
cfc14b3a
MK
103};
104
105/* Frame Description Entry (FDE). */
106
107struct dwarf2_fde
108{
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
852483bc
MK
119 gdb_byte *instructions;
120 gdb_byte *end;
cfc14b3a 121
4bf8967c
AS
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
b01c8410 125};
4bf8967c 126
b01c8410
PP
127struct dwarf2_fde_table
128{
129 int num_entries;
130 struct dwarf2_fde **entries;
cfc14b3a
MK
131};
132
ae0d2f24
UW
133/* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136struct comp_unit
137{
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
ae0d2f24
UW
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
c098b58b 147 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157};
158
ac56253d
TT
159static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
4fc771b8
DJ
161
162static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
ae0d2f24
UW
164
165static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 166 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
cfc14b3a
MK
169\f
170
171/* Structure describing a frame state. */
172
173struct dwarf2_frame_state
174{
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
05cbe71a 179 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
180 int num_regs;
181
2fd481e1
PP
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
0d45f56e 189 const gdb_byte *cfa_exp;
2fd481e1 190
cfc14b3a
MK
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
cfc14b3a
MK
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
303b6f5d
DJ
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
216};
217
218/* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220#define cfa_exp_len cfa_reg
221
f57d151a 222/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
223 columns. If necessary, enlarge the register set. */
224
225static void
226dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228{
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
2473a4a9 238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
239 rs->num_regs = num_regs;
240}
241
242/* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245static struct dwarf2_frame_state_reg *
246dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247{
d10891d4 248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255}
256
257/* Release the memory allocated to register set RS. */
258
259static void
260dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261{
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269}
270
271/* Release the memory allocated to the frame state FS. */
272
273static void
274dwarf2_frame_state_free (void *p)
275{
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283}
284\f
285
286/* Helper functions for execute_stack_op. */
287
288static CORE_ADDR
289read_reg (void *baton, int reg)
290{
4a4e5149
DJ
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 293 int regnum;
852483bc 294 gdb_byte *buf;
cfc14b3a 295
ad010def 296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 297
852483bc 298 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 299 get_frame_register (this_frame, regnum, buf);
f2da6b3a
DJ
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
307}
308
309static void
852483bc 310read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
311{
312 read_memory (addr, buf, len);
313}
314
a6a5a945
LM
315/* Execute the required actions for both the DW_CFA_restore and
316DW_CFA_restore_extended instructions. */
317static void
318dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
319 struct dwarf2_frame_state *fs, int eh_frame_p)
320{
321 ULONGEST reg;
322
323 gdb_assert (fs->initial.reg);
324 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
325 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
326
327 /* Check if this register was explicitly initialized in the
328 CIE initial instructions. If not, default the rule to
329 UNSPECIFIED. */
330 if (reg < fs->initial.num_regs)
331 fs->regs.reg[reg] = fs->initial.reg[reg];
332 else
333 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
334
335 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
336 complaint (&symfile_complaints, _("\
337incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 338register %s (#%d) at %s"),
a6a5a945
LM
339 gdbarch_register_name
340 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
341 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 342 paddress (gdbarch, fs->pc));
a6a5a945
LM
343}
344
9e8b7a03
JK
345/* Virtual method table for execute_stack_op below. */
346
347static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
348{
349 read_reg,
350 read_mem,
523f3620
JK
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
353 ctx_no_get_frame_pc,
354 ctx_no_get_tls_address,
355 ctx_no_dwarf_call,
8e3b41a9
JK
356 ctx_no_get_base_type,
357 ctx_no_push_dwarf_reg_entry_value
9e8b7a03
JK
358};
359
cfc14b3a 360static CORE_ADDR
0d45f56e 361execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
362 CORE_ADDR offset, struct frame_info *this_frame,
363 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
364{
365 struct dwarf_expr_context *ctx;
366 CORE_ADDR result;
4a227398 367 struct cleanup *old_chain;
cfc14b3a
MK
368
369 ctx = new_dwarf_expr_context ();
4a227398 370 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 371 make_cleanup_value_free_to_mark (value_mark ());
4a227398 372
f7fd4728 373 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 374 ctx->addr_size = addr_size;
181cebd4 375 ctx->ref_addr_size = -1;
ac56253d 376 ctx->offset = offset;
4a4e5149 377 ctx->baton = this_frame;
9e8b7a03 378 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 379
8a9b8146 380 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 381 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 382
f2c7657e
UW
383 if (ctx->location == DWARF_VALUE_MEMORY)
384 result = dwarf_expr_fetch_address (ctx, 0);
385 else if (ctx->location == DWARF_VALUE_REGISTER)
8a9b8146 386 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 387 else
cec03d70
TT
388 {
389 /* This is actually invalid DWARF, but if we ever do run across
390 it somehow, we might as well support it. So, instead, report
391 it as unimplemented. */
3e43a32a
MS
392 error (_("\
393Not implemented: computing unwound register using explicit value operator"));
cec03d70 394 }
cfc14b3a 395
4a227398 396 do_cleanups (old_chain);
cfc14b3a
MK
397
398 return result;
399}
400\f
401
402static void
0d45f56e 403execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
404 const gdb_byte *insn_end, struct gdbarch *gdbarch,
405 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 406{
ae0d2f24 407 int eh_frame_p = fde->eh_frame_p;
cfc14b3a 408 int bytes_read;
e17a4113 409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
410
411 while (insn_ptr < insn_end && fs->pc <= pc)
412 {
852483bc 413 gdb_byte insn = *insn_ptr++;
cfc14b3a
MK
414 ULONGEST utmp, reg;
415 LONGEST offset;
416
417 if ((insn & 0xc0) == DW_CFA_advance_loc)
418 fs->pc += (insn & 0x3f) * fs->code_align;
419 else if ((insn & 0xc0) == DW_CFA_offset)
420 {
421 reg = insn & 0x3f;
4fc771b8 422 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
423 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
424 offset = utmp * fs->data_align;
425 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 426 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
427 fs->regs.reg[reg].loc.offset = offset;
428 }
429 else if ((insn & 0xc0) == DW_CFA_restore)
430 {
cfc14b3a 431 reg = insn & 0x3f;
a6a5a945 432 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
433 }
434 else
435 {
436 switch (insn)
437 {
438 case DW_CFA_set_loc:
ae0d2f24 439 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 440 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
441 &bytes_read, fde->initial_location);
442 /* Apply the objfile offset for relocatable objects. */
443 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
444 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
445 insn_ptr += bytes_read;
446 break;
447
448 case DW_CFA_advance_loc1:
e17a4113 449 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
450 fs->pc += utmp * fs->code_align;
451 insn_ptr++;
452 break;
453 case DW_CFA_advance_loc2:
e17a4113 454 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
455 fs->pc += utmp * fs->code_align;
456 insn_ptr += 2;
457 break;
458 case DW_CFA_advance_loc4:
e17a4113 459 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 4;
462 break;
463
464 case DW_CFA_offset_extended:
465 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 466 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
467 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
468 offset = utmp * fs->data_align;
469 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 470 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
471 fs->regs.reg[reg].loc.offset = offset;
472 break;
473
474 case DW_CFA_restore_extended:
cfc14b3a 475 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 476 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
477 break;
478
479 case DW_CFA_undefined:
480 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 481 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 482 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 483 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
484 break;
485
486 case DW_CFA_same_value:
487 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 488 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 489 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 490 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
491 break;
492
493 case DW_CFA_register:
494 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 495 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 496 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 497 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 498 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 499 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
500 fs->regs.reg[reg].loc.reg = utmp;
501 break;
502
503 case DW_CFA_remember_state:
504 {
505 struct dwarf2_frame_state_reg_info *new_rs;
506
507 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
508 *new_rs = fs->regs;
509 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
510 fs->regs.prev = new_rs;
511 }
512 break;
513
514 case DW_CFA_restore_state:
515 {
516 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
517
50ea7769
MK
518 if (old_rs == NULL)
519 {
e2e0b3e5 520 complaint (&symfile_complaints, _("\
5af949e3
UW
521bad CFI data; mismatched DW_CFA_restore_state at %s"),
522 paddress (gdbarch, fs->pc));
50ea7769
MK
523 }
524 else
525 {
526 xfree (fs->regs.reg);
527 fs->regs = *old_rs;
528 xfree (old_rs);
529 }
cfc14b3a
MK
530 }
531 break;
532
533 case DW_CFA_def_cfa:
2fd481e1 534 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
cfc14b3a 535 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
536
537 if (fs->armcc_cfa_offsets_sf)
538 utmp *= fs->data_align;
539
2fd481e1
PP
540 fs->regs.cfa_offset = utmp;
541 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
542 break;
543
544 case DW_CFA_def_cfa_register:
2fd481e1
PP
545 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
546 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
547 fs->regs.cfa_reg,
548 eh_frame_p);
549 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
550 break;
551
552 case DW_CFA_def_cfa_offset:
852483bc 553 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
554
555 if (fs->armcc_cfa_offsets_sf)
556 utmp *= fs->data_align;
557
2fd481e1 558 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
559 /* cfa_how deliberately not set. */
560 break;
561
a8504492
MK
562 case DW_CFA_nop:
563 break;
564
cfc14b3a 565 case DW_CFA_def_cfa_expression:
2fd481e1
PP
566 insn_ptr = read_uleb128 (insn_ptr, insn_end,
567 &fs->regs.cfa_exp_len);
568 fs->regs.cfa_exp = insn_ptr;
569 fs->regs.cfa_how = CFA_EXP;
570 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
571 break;
572
573 case DW_CFA_expression:
574 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 575 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
576 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
577 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
578 fs->regs.reg[reg].loc.exp = insn_ptr;
579 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 580 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
581 insn_ptr += utmp;
582 break;
583
a8504492
MK
584 case DW_CFA_offset_extended_sf:
585 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 586 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
a8504492 587 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 588 offset *= fs->data_align;
a8504492 589 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 590 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
591 fs->regs.reg[reg].loc.offset = offset;
592 break;
593
46ea248b
AO
594 case DW_CFA_val_offset:
595 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
596 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
597 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
598 offset = utmp * fs->data_align;
599 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
600 fs->regs.reg[reg].loc.offset = offset;
601 break;
602
603 case DW_CFA_val_offset_sf:
604 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
605 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
606 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
607 offset *= fs->data_align;
608 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
609 fs->regs.reg[reg].loc.offset = offset;
610 break;
611
612 case DW_CFA_val_expression:
613 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
614 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
615 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
616 fs->regs.reg[reg].loc.exp = insn_ptr;
617 fs->regs.reg[reg].exp_len = utmp;
618 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
619 insn_ptr += utmp;
620 break;
621
a8504492 622 case DW_CFA_def_cfa_sf:
2fd481e1
PP
623 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
624 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
625 fs->regs.cfa_reg,
626 eh_frame_p);
a8504492 627 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
628 fs->regs.cfa_offset = offset * fs->data_align;
629 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
630 break;
631
632 case DW_CFA_def_cfa_offset_sf:
633 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 634 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 635 /* cfa_how deliberately not set. */
cfc14b3a
MK
636 break;
637
a77f4086
MK
638 case DW_CFA_GNU_window_save:
639 /* This is SPARC-specific code, and contains hard-coded
640 constants for the register numbering scheme used by
641 GCC. Rather than having a architecture-specific
642 operation that's only ever used by a single
643 architecture, we provide the implementation here.
644 Incidentally that's what GCC does too in its
645 unwinder. */
646 {
4a4e5149 647 int size = register_size (gdbarch, 0);
9a619af0 648
a77f4086
MK
649 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
650 for (reg = 8; reg < 16; reg++)
651 {
652 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
653 fs->regs.reg[reg].loc.reg = reg + 16;
654 }
655 for (reg = 16; reg < 32; reg++)
656 {
657 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
658 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
659 }
660 }
661 break;
662
cfc14b3a
MK
663 case DW_CFA_GNU_args_size:
664 /* Ignored. */
665 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
666 break;
667
58894217
JK
668 case DW_CFA_GNU_negative_offset_extended:
669 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 670 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
58894217
JK
671 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
672 offset *= fs->data_align;
673 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
674 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
675 fs->regs.reg[reg].loc.offset = -offset;
676 break;
677
cfc14b3a 678 default:
3e43a32a
MS
679 internal_error (__FILE__, __LINE__,
680 _("Unknown CFI encountered."));
cfc14b3a
MK
681 }
682 }
683 }
684
685 /* Don't allow remember/restore between CIE and FDE programs. */
686 dwarf2_frame_state_free_regs (fs->regs.prev);
687 fs->regs.prev = NULL;
688}
8f22cb90 689\f
cfc14b3a 690
8f22cb90 691/* Architecture-specific operations. */
cfc14b3a 692
8f22cb90
MK
693/* Per-architecture data key. */
694static struct gdbarch_data *dwarf2_frame_data;
695
696struct dwarf2_frame_ops
697{
698 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
699 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
700 struct frame_info *);
3ed09a32 701
4a4e5149 702 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 703 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 704
4fc771b8
DJ
705 /* Convert .eh_frame register number to DWARF register number, or
706 adjust .debug_frame register number. */
707 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
708};
709
8f22cb90
MK
710/* Default architecture-specific register state initialization
711 function. */
712
713static void
714dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 715 struct dwarf2_frame_state_reg *reg,
4a4e5149 716 struct frame_info *this_frame)
8f22cb90
MK
717{
718 /* If we have a register that acts as a program counter, mark it as
719 a destination for the return address. If we have a register that
720 serves as the stack pointer, arrange for it to be filled with the
721 call frame address (CFA). The other registers are marked as
722 unspecified.
723
724 We copy the return address to the program counter, since many
725 parts in GDB assume that it is possible to get the return address
726 by unwinding the program counter register. However, on ISA's
727 with a dedicated return address register, the CFI usually only
728 contains information to unwind that return address register.
729
730 The reason we're treating the stack pointer special here is
731 because in many cases GCC doesn't emit CFI for the stack pointer
732 and implicitly assumes that it is equal to the CFA. This makes
733 some sense since the DWARF specification (version 3, draft 8,
734 p. 102) says that:
735
736 "Typically, the CFA is defined to be the value of the stack
737 pointer at the call site in the previous frame (which may be
738 different from its value on entry to the current frame)."
739
740 However, this isn't true for all platforms supported by GCC
741 (e.g. IBM S/390 and zSeries). Those architectures should provide
742 their own architecture-specific initialization function. */
05cbe71a 743
ad010def 744 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 745 reg->how = DWARF2_FRAME_REG_RA;
ad010def 746 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
747 reg->how = DWARF2_FRAME_REG_CFA;
748}
05cbe71a 749
8f22cb90 750/* Return a default for the architecture-specific operations. */
05cbe71a 751
8f22cb90 752static void *
030f20e1 753dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
754{
755 struct dwarf2_frame_ops *ops;
756
030f20e1 757 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
758 ops->init_reg = dwarf2_frame_default_init_reg;
759 return ops;
760}
05cbe71a 761
8f22cb90
MK
762/* Set the architecture-specific register state initialization
763 function for GDBARCH to INIT_REG. */
764
765void
766dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
767 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
768 struct dwarf2_frame_state_reg *,
769 struct frame_info *))
8f22cb90 770{
030f20e1 771 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 772
8f22cb90
MK
773 ops->init_reg = init_reg;
774}
775
776/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
777
778static void
779dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 780 struct dwarf2_frame_state_reg *reg,
4a4e5149 781 struct frame_info *this_frame)
05cbe71a 782{
030f20e1 783 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 784
4a4e5149 785 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 786}
3ed09a32
DJ
787
788/* Set the architecture-specific signal trampoline recognition
789 function for GDBARCH to SIGNAL_FRAME_P. */
790
791void
792dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
793 int (*signal_frame_p) (struct gdbarch *,
794 struct frame_info *))
795{
796 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
797
798 ops->signal_frame_p = signal_frame_p;
799}
800
801/* Query the architecture-specific signal frame recognizer for
4a4e5149 802 THIS_FRAME. */
3ed09a32
DJ
803
804static int
805dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 806 struct frame_info *this_frame)
3ed09a32
DJ
807{
808 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
809
810 if (ops->signal_frame_p == NULL)
811 return 0;
4a4e5149 812 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 813}
4bf8967c 814
4fc771b8
DJ
815/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
816 register numbers. */
4bf8967c
AS
817
818void
4fc771b8
DJ
819dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
820 int (*adjust_regnum) (struct gdbarch *,
821 int, int))
4bf8967c
AS
822{
823 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
824
4fc771b8 825 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
826}
827
4fc771b8
DJ
828/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
829 register. */
4bf8967c 830
4fc771b8 831static int
3e43a32a
MS
832dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
833 int regnum, int eh_frame_p)
4bf8967c
AS
834{
835 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
836
4fc771b8 837 if (ops->adjust_regnum == NULL)
4bf8967c 838 return regnum;
4fc771b8 839 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 840}
303b6f5d
DJ
841
842static void
843dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
844 struct dwarf2_fde *fde)
845{
303b6f5d
DJ
846 struct symtab *s;
847
848 s = find_pc_symtab (fs->pc);
a6c727b2 849 if (s == NULL)
303b6f5d
DJ
850 return;
851
a6c727b2
DJ
852 if (producer_is_realview (s->producer))
853 {
854 if (fde->cie->version == 1)
855 fs->armcc_cfa_offsets_sf = 1;
856
857 if (fde->cie->version == 1)
858 fs->armcc_cfa_offsets_reversed = 1;
859
860 /* The reversed offset problem is present in some compilers
861 using DWARF3, but it was eventually fixed. Check the ARM
862 defined augmentations, which are in the format "armcc" followed
863 by a list of one-character options. The "+" option means
864 this problem is fixed (no quirk needed). If the armcc
865 augmentation is missing, the quirk is needed. */
866 if (fde->cie->version == 3
867 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
868 || strchr (fde->cie->augmentation + 5, '+') == NULL))
869 fs->armcc_cfa_offsets_reversed = 1;
870
871 return;
872 }
303b6f5d 873}
8f22cb90
MK
874\f
875
9f6f94ff
TT
876void
877dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
878 struct gdbarch *gdbarch,
879 CORE_ADDR pc,
880 struct dwarf2_per_cu_data *data)
881{
882 const int num_regs = gdbarch_num_regs (gdbarch)
883 + gdbarch_num_pseudo_regs (gdbarch);
884 struct dwarf2_fde *fde;
885 CORE_ADDR text_offset, cfa;
886 struct dwarf2_frame_state fs;
887 int addr_size;
888
889 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
890
891 fs.pc = pc;
892
893 /* Find the correct FDE. */
894 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
895 if (fde == NULL)
896 error (_("Could not compute CFA; needed to translate this expression"));
897
898 /* Extract any interesting information from the CIE. */
899 fs.data_align = fde->cie->data_alignment_factor;
900 fs.code_align = fde->cie->code_alignment_factor;
901 fs.retaddr_column = fde->cie->return_address_register;
902 addr_size = fde->cie->addr_size;
903
904 /* Check for "quirks" - known bugs in producers. */
905 dwarf2_frame_find_quirks (&fs, fde);
906
907 /* First decode all the insns in the CIE. */
908 execute_cfa_program (fde, fde->cie->initial_instructions,
909 fde->cie->end, gdbarch, pc, &fs);
910
911 /* Save the initialized register set. */
912 fs.initial = fs.regs;
913 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
914
915 /* Then decode the insns in the FDE up to our target PC. */
916 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
917
918 /* Calculate the CFA. */
919 switch (fs.regs.cfa_how)
920 {
921 case CFA_REG_OFFSET:
922 {
923 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
924
925 if (regnum == -1)
926 error (_("Unable to access DWARF register number %d"),
927 (int) fs.regs.cfa_reg); /* FIXME */
928 ax_reg (expr, regnum);
929
930 if (fs.regs.cfa_offset != 0)
931 {
932 if (fs.armcc_cfa_offsets_reversed)
933 ax_const_l (expr, -fs.regs.cfa_offset);
934 else
935 ax_const_l (expr, fs.regs.cfa_offset);
936 ax_simple (expr, aop_add);
937 }
938 }
939 break;
940
941 case CFA_EXP:
942 ax_const_l (expr, text_offset);
943 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
944 fs.regs.cfa_exp,
945 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
946 data);
947 break;
948
949 default:
950 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
951 }
952}
953
954\f
8f22cb90
MK
955struct dwarf2_frame_cache
956{
957 /* DWARF Call Frame Address. */
958 CORE_ADDR cfa;
959
8fbca658
PA
960 /* Set if the return address column was marked as unavailable
961 (required non-collected memory or registers to compute). */
962 int unavailable_retaddr;
963
0228dfb9
DJ
964 /* Set if the return address column was marked as undefined. */
965 int undefined_retaddr;
966
8f22cb90
MK
967 /* Saved registers, indexed by GDB register number, not by DWARF
968 register number. */
969 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
970
971 /* Return address register. */
972 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
973
974 /* Target address size in bytes. */
975 int addr_size;
ac56253d
TT
976
977 /* The .text offset. */
978 CORE_ADDR text_offset;
8f22cb90 979};
05cbe71a 980
b9362cc7 981static struct dwarf2_frame_cache *
4a4e5149 982dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
983{
984 struct cleanup *old_chain;
4a4e5149 985 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
986 const int num_regs = gdbarch_num_regs (gdbarch)
987 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
988 struct dwarf2_frame_cache *cache;
989 struct dwarf2_frame_state *fs;
990 struct dwarf2_fde *fde;
8fbca658 991 volatile struct gdb_exception ex;
cfc14b3a
MK
992
993 if (*this_cache)
994 return *this_cache;
995
996 /* Allocate a new cache. */
997 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
998 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 999 *this_cache = cache;
cfc14b3a
MK
1000
1001 /* Allocate and initialize the frame state. */
8fbca658 1002 fs = XZALLOC (struct dwarf2_frame_state);
cfc14b3a
MK
1003 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1004
1005 /* Unwind the PC.
1006
4a4e5149 1007 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1008 to abort), the compiler might optimize away the instruction at
4a4e5149 1009 its return address. As a result the return address will
cfc14b3a 1010 point at some random instruction, and the CFI for that
e4e9607c 1011 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1012 this problem by substracting 1 from the return address to get an
1013 address in the middle of a presumed call instruction (or the
1014 instruction in the associated delay slot). This should only be
1015 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1016 handlers, sentinel frames, dummy frames). The function
ad1193e7 1017 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1018 reliable the method is though; there is the potential for the
1019 register state pre-call being different to that on return. */
4a4e5149 1020 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1021
1022 /* Find the correct FDE. */
ac56253d 1023 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1024 gdb_assert (fde != NULL);
1025
1026 /* Extract any interesting information from the CIE. */
1027 fs->data_align = fde->cie->data_alignment_factor;
1028 fs->code_align = fde->cie->code_alignment_factor;
1029 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1030 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1031
303b6f5d
DJ
1032 /* Check for "quirks" - known bugs in producers. */
1033 dwarf2_frame_find_quirks (fs, fde);
1034
cfc14b3a 1035 /* First decode all the insns in the CIE. */
ae0d2f24 1036 execute_cfa_program (fde, fde->cie->initial_instructions,
9f6f94ff 1037 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs);
cfc14b3a
MK
1038
1039 /* Save the initialized register set. */
1040 fs->initial = fs->regs;
1041 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1042
1043 /* Then decode the insns in the FDE up to our target PC. */
9f6f94ff
TT
1044 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1045 get_frame_pc (this_frame), fs);
cfc14b3a 1046
8fbca658 1047 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1048 {
8fbca658
PA
1049 /* Calculate the CFA. */
1050 switch (fs->regs.cfa_how)
1051 {
1052 case CFA_REG_OFFSET:
1053 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1054 if (fs->armcc_cfa_offsets_reversed)
1055 cache->cfa -= fs->regs.cfa_offset;
1056 else
1057 cache->cfa += fs->regs.cfa_offset;
1058 break;
1059
1060 case CFA_EXP:
1061 cache->cfa =
1062 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1063 cache->addr_size, cache->text_offset,
1064 this_frame, 0, 0);
1065 break;
1066
1067 default:
1068 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1069 }
1070 }
1071 if (ex.reason < 0)
1072 {
1073 if (ex.error == NOT_AVAILABLE_ERROR)
1074 {
1075 cache->unavailable_retaddr = 1;
1076 return cache;
1077 }
cfc14b3a 1078
8fbca658 1079 throw_exception (ex);
cfc14b3a
MK
1080 }
1081
05cbe71a 1082 /* Initialize the register state. */
3e2c4033
AC
1083 {
1084 int regnum;
e4e9607c 1085
3e2c4033 1086 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1087 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1088 }
1089
1090 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1091 location information in the cache. Note that we don't skip the
1092 return address column; it's perfectly all right for it to
1093 correspond to a real register. If it doesn't correspond to a
1094 real register, or if we shouldn't treat it as such,
055d23b8 1095 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1096 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1097 {
1098 int column; /* CFI speak for "register number". */
e4e9607c 1099
3e2c4033
AC
1100 for (column = 0; column < fs->regs.num_regs; column++)
1101 {
3e2c4033 1102 /* Use the GDB register number as the destination index. */
ad010def 1103 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1104
1105 /* If there's no corresponding GDB register, ignore it. */
1106 if (regnum < 0 || regnum >= num_regs)
1107 continue;
1108
1109 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1110 of all debug info registers. If it doesn't, complain (but
1111 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1112 unspecified register implies "same value" when CFI (draft
1113 7) specifies nothing at all. Such a register could equally
1114 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1115 isn't sufficient; it only checks that all registers in the
1116 range [0 .. max column] are specified, and won't detect
3e2c4033 1117 problems when a debug info register falls outside of the
e4e9607c 1118 table. We need a way of iterating through all the valid
3e2c4033 1119 DWARF2 register numbers. */
05cbe71a 1120 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1121 {
1122 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1123 complaint (&symfile_complaints, _("\
5af949e3 1124incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1125 gdbarch_register_name (gdbarch, regnum),
5af949e3 1126 paddress (gdbarch, fs->pc));
f059bf6f 1127 }
35889917
MK
1128 else
1129 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1130 }
1131 }
cfc14b3a 1132
8d5a9abc
MK
1133 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1134 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1135 {
1136 int regnum;
1137
1138 for (regnum = 0; regnum < num_regs; regnum++)
1139 {
8d5a9abc
MK
1140 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1141 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1142 {
05cbe71a
MK
1143 struct dwarf2_frame_state_reg *retaddr_reg =
1144 &fs->regs.reg[fs->retaddr_column];
1145
d4f10bf2
MK
1146 /* It seems rather bizarre to specify an "empty" column as
1147 the return adress column. However, this is exactly
1148 what GCC does on some targets. It turns out that GCC
1149 assumes that the return address can be found in the
1150 register corresponding to the return address column.
8d5a9abc
MK
1151 Incidentally, that's how we should treat a return
1152 address column specifying "same value" too. */
d4f10bf2 1153 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1154 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1155 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1156 {
1157 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1158 cache->reg[regnum] = *retaddr_reg;
1159 else
1160 cache->retaddr_reg = *retaddr_reg;
1161 }
35889917
MK
1162 else
1163 {
8d5a9abc
MK
1164 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1165 {
1166 cache->reg[regnum].loc.reg = fs->retaddr_column;
1167 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1168 }
1169 else
1170 {
1171 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1172 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1173 }
35889917
MK
1174 }
1175 }
1176 }
1177 }
cfc14b3a 1178
0228dfb9
DJ
1179 if (fs->retaddr_column < fs->regs.num_regs
1180 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1181 cache->undefined_retaddr = 1;
1182
cfc14b3a
MK
1183 do_cleanups (old_chain);
1184
cfc14b3a
MK
1185 return cache;
1186}
1187
8fbca658
PA
1188static enum unwind_stop_reason
1189dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1190 void **this_cache)
1191{
1192 struct dwarf2_frame_cache *cache
1193 = dwarf2_frame_cache (this_frame, this_cache);
1194
1195 if (cache->unavailable_retaddr)
1196 return UNWIND_UNAVAILABLE;
1197
1198 if (cache->undefined_retaddr)
1199 return UNWIND_OUTERMOST;
1200
1201 return UNWIND_NO_REASON;
1202}
1203
cfc14b3a 1204static void
4a4e5149 1205dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1206 struct frame_id *this_id)
1207{
1208 struct dwarf2_frame_cache *cache =
4a4e5149 1209 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1210
8fbca658
PA
1211 if (cache->unavailable_retaddr)
1212 return;
1213
0228dfb9
DJ
1214 if (cache->undefined_retaddr)
1215 return;
1216
4a4e5149 1217 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1218}
1219
4a4e5149
DJ
1220static struct value *
1221dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1222 int regnum)
93d42b30 1223{
4a4e5149 1224 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1225 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1226 dwarf2_frame_cache (this_frame, this_cache);
1227 CORE_ADDR addr;
1228 int realnum;
cfc14b3a
MK
1229
1230 switch (cache->reg[regnum].how)
1231 {
05cbe71a 1232 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1233 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1234 mark it as optimized away; the value isn't available. */
4a4e5149 1235 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1236
05cbe71a 1237 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1238 addr = cache->cfa + cache->reg[regnum].loc.offset;
1239 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1240
05cbe71a 1241 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1242 realnum
1243 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1244 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1245
05cbe71a 1246 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1247 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1248 cache->reg[regnum].exp_len,
ac56253d
TT
1249 cache->addr_size, cache->text_offset,
1250 this_frame, cache->cfa, 1);
4a4e5149 1251 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1252
46ea248b 1253 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1254 addr = cache->cfa + cache->reg[regnum].loc.offset;
1255 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1256
1257 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1258 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1259 cache->reg[regnum].exp_len,
ac56253d
TT
1260 cache->addr_size, cache->text_offset,
1261 this_frame, cache->cfa, 1);
4a4e5149 1262 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1263
05cbe71a 1264 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1265 /* GCC, in its infinite wisdom decided to not provide unwind
1266 information for registers that are "same value". Since
1267 DWARF2 (3 draft 7) doesn't define such behavior, said
1268 registers are actually undefined (which is different to CFI
1269 "undefined"). Code above issues a complaint about this.
1270 Here just fudge the books, assume GCC, and that the value is
1271 more inner on the stack. */
4a4e5149 1272 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1273
05cbe71a 1274 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1275 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1276
05cbe71a 1277 case DWARF2_FRAME_REG_CFA:
4a4e5149 1278 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1279
ea7963f0 1280 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1281 addr = cache->cfa + cache->reg[regnum].loc.offset;
1282 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1283
8d5a9abc 1284 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1285 addr = cache->reg[regnum].loc.offset;
1286 regnum = gdbarch_dwarf2_reg_to_regnum
1287 (gdbarch, cache->retaddr_reg.loc.reg);
1288 addr += get_frame_register_unsigned (this_frame, regnum);
1289 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1290
b39cc962
DJ
1291 case DWARF2_FRAME_REG_FN:
1292 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1293
cfc14b3a 1294 default:
e2e0b3e5 1295 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1296 }
1297}
1298
4a4e5149
DJ
1299static int
1300dwarf2_frame_sniffer (const struct frame_unwind *self,
1301 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1302{
1ce5d6dd 1303 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1304 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1305 end up returning something past the end of this function's body.
1306 If the frame we're sniffing for is a signal frame whose start
1307 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1308 extend one byte before its start address or we could potentially
1309 select the FDE of the previous function. */
1310 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1311 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1312
56c987f6 1313 if (!fde)
4a4e5149 1314 return 0;
3ed09a32
DJ
1315
1316 /* On some targets, signal trampolines may have unwind information.
1317 We need to recognize them so that we set the frame type
1318 correctly. */
1319
56c987f6 1320 if (fde->cie->signal_frame
4a4e5149
DJ
1321 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1322 this_frame))
1323 return self->type == SIGTRAMP_FRAME;
1324
1325 return self->type != SIGTRAMP_FRAME;
1326}
1327
1328static const struct frame_unwind dwarf2_frame_unwind =
1329{
1330 NORMAL_FRAME,
8fbca658 1331 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1332 dwarf2_frame_this_id,
1333 dwarf2_frame_prev_register,
1334 NULL,
1335 dwarf2_frame_sniffer
1336};
1337
1338static const struct frame_unwind dwarf2_signal_frame_unwind =
1339{
1340 SIGTRAMP_FRAME,
8fbca658 1341 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1342 dwarf2_frame_this_id,
1343 dwarf2_frame_prev_register,
1344 NULL,
1345 dwarf2_frame_sniffer
1346};
cfc14b3a 1347
4a4e5149
DJ
1348/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1349
1350void
1351dwarf2_append_unwinders (struct gdbarch *gdbarch)
1352{
1353 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1354 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1355}
1356\f
1357
1358/* There is no explicitly defined relationship between the CFA and the
1359 location of frame's local variables and arguments/parameters.
1360 Therefore, frame base methods on this page should probably only be
1361 used as a last resort, just to avoid printing total garbage as a
1362 response to the "info frame" command. */
1363
1364static CORE_ADDR
4a4e5149 1365dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1366{
1367 struct dwarf2_frame_cache *cache =
4a4e5149 1368 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1369
1370 return cache->cfa;
1371}
1372
1373static const struct frame_base dwarf2_frame_base =
1374{
1375 &dwarf2_frame_unwind,
1376 dwarf2_frame_base_address,
1377 dwarf2_frame_base_address,
1378 dwarf2_frame_base_address
1379};
1380
1381const struct frame_base *
4a4e5149 1382dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1383{
4a4e5149 1384 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1385
ac56253d 1386 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1387 return &dwarf2_frame_base;
1388
1389 return NULL;
1390}
e7802207
TT
1391
1392/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1393 the DWARF unwinder. This is used to implement
1394 DW_OP_call_frame_cfa. */
1395
1396CORE_ADDR
1397dwarf2_frame_cfa (struct frame_info *this_frame)
1398{
1399 while (get_frame_type (this_frame) == INLINE_FRAME)
1400 this_frame = get_prev_frame (this_frame);
1401 /* This restriction could be lifted if other unwinders are known to
1402 compute the frame base in a way compatible with the DWARF
1403 unwinder. */
1404 if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind))
1405 error (_("can't compute CFA for this frame"));
1406 return get_frame_base (this_frame);
1407}
cfc14b3a 1408\f
8f22cb90 1409const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1410
cfc14b3a 1411static unsigned int
852483bc 1412read_1_byte (bfd *abfd, gdb_byte *buf)
cfc14b3a 1413{
852483bc 1414 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1415}
1416
1417static unsigned int
852483bc 1418read_4_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1419{
852483bc 1420 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1421}
1422
1423static ULONGEST
852483bc 1424read_8_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1425{
852483bc 1426 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1427}
1428
1429static ULONGEST
852483bc 1430read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1431{
1432 ULONGEST result;
1433 unsigned int num_read;
1434 int shift;
852483bc 1435 gdb_byte byte;
cfc14b3a
MK
1436
1437 result = 0;
1438 shift = 0;
1439 num_read = 0;
1440
1441 do
1442 {
1443 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1444 buf++;
1445 num_read++;
1446 result |= ((byte & 0x7f) << shift);
1447 shift += 7;
1448 }
1449 while (byte & 0x80);
1450
1451 *bytes_read_ptr = num_read;
1452
1453 return result;
1454}
1455
1456static LONGEST
852483bc 1457read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1458{
1459 LONGEST result;
1460 int shift;
1461 unsigned int num_read;
852483bc 1462 gdb_byte byte;
cfc14b3a
MK
1463
1464 result = 0;
1465 shift = 0;
1466 num_read = 0;
1467
1468 do
1469 {
1470 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1471 buf++;
1472 num_read++;
1473 result |= ((byte & 0x7f) << shift);
1474 shift += 7;
1475 }
1476 while (byte & 0x80);
1477
77e0b926
DJ
1478 if (shift < 8 * sizeof (result) && (byte & 0x40))
1479 result |= -(((LONGEST)1) << shift);
cfc14b3a
MK
1480
1481 *bytes_read_ptr = num_read;
1482
1483 return result;
1484}
1485
1486static ULONGEST
852483bc 1487read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1488{
1489 LONGEST result;
1490
852483bc 1491 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1492 if (result == 0xffffffff)
1493 {
852483bc 1494 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1495 *bytes_read_ptr = 12;
1496 }
1497 else
1498 *bytes_read_ptr = 4;
1499
1500 return result;
1501}
1502\f
1503
1504/* Pointer encoding helper functions. */
1505
1506/* GCC supports exception handling based on DWARF2 CFI. However, for
1507 technical reasons, it encodes addresses in its FDE's in a different
1508 way. Several "pointer encodings" are supported. The encoding
1509 that's used for a particular FDE is determined by the 'R'
1510 augmentation in the associated CIE. The argument of this
1511 augmentation is a single byte.
1512
1513 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1514 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1515 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1516 address should be interpreted (absolute, relative to the current
1517 position in the FDE, ...). Bit 7, indicates that the address
1518 should be dereferenced. */
1519
852483bc 1520static gdb_byte
cfc14b3a
MK
1521encoding_for_size (unsigned int size)
1522{
1523 switch (size)
1524 {
1525 case 2:
1526 return DW_EH_PE_udata2;
1527 case 4:
1528 return DW_EH_PE_udata4;
1529 case 8:
1530 return DW_EH_PE_udata8;
1531 default:
e2e0b3e5 1532 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1533 }
1534}
1535
cfc14b3a 1536static CORE_ADDR
852483bc 1537read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1538 int ptr_len, const gdb_byte *buf,
1539 unsigned int *bytes_read_ptr,
ae0d2f24 1540 CORE_ADDR func_base)
cfc14b3a 1541{
68f6cf99 1542 ptrdiff_t offset;
cfc14b3a
MK
1543 CORE_ADDR base;
1544
1545 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1546 FDE's. */
1547 if (encoding & DW_EH_PE_indirect)
1548 internal_error (__FILE__, __LINE__,
e2e0b3e5 1549 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1550
68f6cf99
MK
1551 *bytes_read_ptr = 0;
1552
cfc14b3a
MK
1553 switch (encoding & 0x70)
1554 {
1555 case DW_EH_PE_absptr:
1556 base = 0;
1557 break;
1558 case DW_EH_PE_pcrel:
f2fec864 1559 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1560 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1561 break;
0912c7f2
MK
1562 case DW_EH_PE_datarel:
1563 base = unit->dbase;
1564 break;
0fd85043
CV
1565 case DW_EH_PE_textrel:
1566 base = unit->tbase;
1567 break;
03ac2a74 1568 case DW_EH_PE_funcrel:
ae0d2f24 1569 base = func_base;
03ac2a74 1570 break;
68f6cf99
MK
1571 case DW_EH_PE_aligned:
1572 base = 0;
852483bc 1573 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1574 if ((offset % ptr_len) != 0)
1575 {
1576 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1577 buf += *bytes_read_ptr;
1578 }
1579 break;
cfc14b3a 1580 default:
3e43a32a
MS
1581 internal_error (__FILE__, __LINE__,
1582 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1583 }
1584
b04de778 1585 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1586 {
1587 encoding |= encoding_for_size (ptr_len);
1588 if (bfd_get_sign_extend_vma (unit->abfd))
1589 encoding |= DW_EH_PE_signed;
1590 }
cfc14b3a
MK
1591
1592 switch (encoding & 0x0f)
1593 {
a81b10ae
MK
1594 case DW_EH_PE_uleb128:
1595 {
1596 ULONGEST value;
0d45f56e 1597 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1598
a7289609 1599 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1600 return base + value;
1601 }
cfc14b3a 1602 case DW_EH_PE_udata2:
68f6cf99 1603 *bytes_read_ptr += 2;
cfc14b3a
MK
1604 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1605 case DW_EH_PE_udata4:
68f6cf99 1606 *bytes_read_ptr += 4;
cfc14b3a
MK
1607 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1608 case DW_EH_PE_udata8:
68f6cf99 1609 *bytes_read_ptr += 8;
cfc14b3a 1610 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1611 case DW_EH_PE_sleb128:
1612 {
1613 LONGEST value;
0d45f56e 1614 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1615
a7289609 1616 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1617 return base + value;
1618 }
cfc14b3a 1619 case DW_EH_PE_sdata2:
68f6cf99 1620 *bytes_read_ptr += 2;
cfc14b3a
MK
1621 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1622 case DW_EH_PE_sdata4:
68f6cf99 1623 *bytes_read_ptr += 4;
cfc14b3a
MK
1624 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1625 case DW_EH_PE_sdata8:
68f6cf99 1626 *bytes_read_ptr += 8;
cfc14b3a
MK
1627 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1628 default:
3e43a32a
MS
1629 internal_error (__FILE__, __LINE__,
1630 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1631 }
1632}
1633\f
1634
b01c8410
PP
1635static int
1636bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1637{
b01c8410
PP
1638 ULONGEST cie_pointer = *(ULONGEST *) key;
1639 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1640
b01c8410
PP
1641 if (cie_pointer == cie->cie_pointer)
1642 return 0;
cfc14b3a 1643
b01c8410
PP
1644 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1645}
1646
1647/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1648static struct dwarf2_cie *
1649find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1650{
1651 struct dwarf2_cie **p_cie;
cfc14b3a 1652
65a97ab3
PP
1653 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1654 bsearch be non-NULL. */
1655 if (cie_table->entries == NULL)
1656 {
1657 gdb_assert (cie_table->num_entries == 0);
1658 return NULL;
1659 }
1660
b01c8410
PP
1661 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1662 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1663 if (p_cie != NULL)
1664 return *p_cie;
cfc14b3a
MK
1665 return NULL;
1666}
1667
b01c8410 1668/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1669static void
b01c8410 1670add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1671{
b01c8410
PP
1672 const int n = cie_table->num_entries;
1673
1674 gdb_assert (n < 1
1675 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1676
1677 cie_table->entries =
1678 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1679 cie_table->entries[n] = cie;
1680 cie_table->num_entries = n + 1;
1681}
1682
1683static int
1684bsearch_fde_cmp (const void *key, const void *element)
1685{
1686 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1687 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1688
b01c8410
PP
1689 if (seek_pc < fde->initial_location)
1690 return -1;
1691 if (seek_pc < fde->initial_location + fde->address_range)
1692 return 0;
1693 return 1;
cfc14b3a
MK
1694}
1695
1696/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1697 inital location associated with it into *PC. */
1698
1699static struct dwarf2_fde *
ac56253d 1700dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1701{
1702 struct objfile *objfile;
1703
1704 ALL_OBJFILES (objfile)
1705 {
b01c8410
PP
1706 struct dwarf2_fde_table *fde_table;
1707 struct dwarf2_fde **p_fde;
cfc14b3a 1708 CORE_ADDR offset;
b01c8410 1709 CORE_ADDR seek_pc;
cfc14b3a 1710
b01c8410
PP
1711 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1712 if (fde_table == NULL)
be391dca
TT
1713 {
1714 dwarf2_build_frame_info (objfile);
1715 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1716 }
1717 gdb_assert (fde_table != NULL);
1718
1719 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1720 continue;
1721
1722 gdb_assert (objfile->section_offsets);
1723 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1724
b01c8410
PP
1725 gdb_assert (fde_table->num_entries > 0);
1726 if (*pc < offset + fde_table->entries[0]->initial_location)
1727 continue;
1728
1729 seek_pc = *pc - offset;
1730 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1731 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1732 if (p_fde != NULL)
1733 {
1734 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1735 if (out_offset)
1736 *out_offset = offset;
b01c8410
PP
1737 return *p_fde;
1738 }
cfc14b3a 1739 }
cfc14b3a
MK
1740 return NULL;
1741}
1742
b01c8410 1743/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1744static void
b01c8410 1745add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1746{
b01c8410
PP
1747 if (fde->address_range == 0)
1748 /* Discard useless FDEs. */
1749 return;
1750
1751 fde_table->num_entries += 1;
1752 fde_table->entries =
1753 xrealloc (fde_table->entries,
1754 fde_table->num_entries * sizeof (fde_table->entries[0]));
1755 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1756}
1757
1758#ifdef CC_HAS_LONG_LONG
1759#define DW64_CIE_ID 0xffffffffffffffffULL
1760#else
1761#define DW64_CIE_ID ~0
1762#endif
1763
8bd90839
FM
1764/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1765 or any of them. */
1766
1767enum eh_frame_type
1768{
1769 EH_CIE_TYPE_ID = 1 << 0,
1770 EH_FDE_TYPE_ID = 1 << 1,
1771 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1772};
1773
852483bc 1774static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
b01c8410
PP
1775 int eh_frame_p,
1776 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1777 struct dwarf2_fde_table *fde_table,
1778 enum eh_frame_type entry_type);
1779
1780/* Decode the next CIE or FDE, entry_type specifies the expected type.
1781 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1782
852483bc 1783static gdb_byte *
b01c8410
PP
1784decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1785 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1786 struct dwarf2_fde_table *fde_table,
1787 enum eh_frame_type entry_type)
cfc14b3a 1788{
5e2b427d 1789 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
852483bc 1790 gdb_byte *buf, *end;
cfc14b3a
MK
1791 LONGEST length;
1792 unsigned int bytes_read;
6896c0c7
RH
1793 int dwarf64_p;
1794 ULONGEST cie_id;
cfc14b3a 1795 ULONGEST cie_pointer;
cfc14b3a 1796
6896c0c7 1797 buf = start;
cfc14b3a
MK
1798 length = read_initial_length (unit->abfd, buf, &bytes_read);
1799 buf += bytes_read;
1800 end = buf + length;
1801
0963b4bd 1802 /* Are we still within the section? */
6896c0c7
RH
1803 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1804 return NULL;
1805
cfc14b3a
MK
1806 if (length == 0)
1807 return end;
1808
6896c0c7
RH
1809 /* Distinguish between 32 and 64-bit encoded frame info. */
1810 dwarf64_p = (bytes_read == 12);
cfc14b3a 1811
6896c0c7 1812 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1813 if (eh_frame_p)
1814 cie_id = 0;
1815 else if (dwarf64_p)
1816 cie_id = DW64_CIE_ID;
6896c0c7
RH
1817 else
1818 cie_id = DW_CIE_ID;
cfc14b3a
MK
1819
1820 if (dwarf64_p)
1821 {
1822 cie_pointer = read_8_bytes (unit->abfd, buf);
1823 buf += 8;
1824 }
1825 else
1826 {
1827 cie_pointer = read_4_bytes (unit->abfd, buf);
1828 buf += 4;
1829 }
1830
1831 if (cie_pointer == cie_id)
1832 {
1833 /* This is a CIE. */
1834 struct dwarf2_cie *cie;
1835 char *augmentation;
28ba0b33 1836 unsigned int cie_version;
cfc14b3a 1837
8bd90839
FM
1838 /* Check that a CIE was expected. */
1839 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1840 error (_("Found a CIE when not expecting it."));
1841
cfc14b3a
MK
1842 /* Record the offset into the .debug_frame section of this CIE. */
1843 cie_pointer = start - unit->dwarf_frame_buffer;
1844
1845 /* Check whether we've already read it. */
b01c8410 1846 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1847 return end;
1848
1849 cie = (struct dwarf2_cie *)
8b92e4d5 1850 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1851 sizeof (struct dwarf2_cie));
1852 cie->initial_instructions = NULL;
1853 cie->cie_pointer = cie_pointer;
1854
1855 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1856 depends on the target address size. */
1857 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1858
56c987f6
AO
1859 /* We'll determine the final value later, but we need to
1860 initialize it conservatively. */
1861 cie->signal_frame = 0;
1862
cfc14b3a 1863 /* Check version number. */
28ba0b33 1864 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1865 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1866 return NULL;
303b6f5d 1867 cie->version = cie_version;
cfc14b3a
MK
1868 buf += 1;
1869
1870 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1871 cie->augmentation = augmentation = (char *) buf;
852483bc 1872 buf += (strlen (augmentation) + 1);
cfc14b3a 1873
303b6f5d
DJ
1874 /* Ignore armcc augmentations. We only use them for quirks,
1875 and that doesn't happen until later. */
1876 if (strncmp (augmentation, "armcc", 5) == 0)
1877 augmentation += strlen (augmentation);
1878
cfc14b3a
MK
1879 /* The GCC 2.x "eh" augmentation has a pointer immediately
1880 following the augmentation string, so it must be handled
1881 first. */
1882 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1883 {
1884 /* Skip. */
5e2b427d 1885 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1886 augmentation += 2;
1887 }
1888
2dc7f7b3
TT
1889 if (cie->version >= 4)
1890 {
1891 /* FIXME: check that this is the same as from the CU header. */
1892 cie->addr_size = read_1_byte (unit->abfd, buf);
1893 ++buf;
1894 cie->segment_size = read_1_byte (unit->abfd, buf);
1895 ++buf;
1896 }
1897 else
1898 {
8da614df 1899 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1900 cie->segment_size = 0;
1901 }
8da614df
CV
1902 /* Address values in .eh_frame sections are defined to have the
1903 target's pointer size. Watchout: This breaks frame info for
1904 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1905 section exists as well. */
8da614df
CV
1906 if (eh_frame_p)
1907 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1908 else
1909 cie->ptr_size = cie->addr_size;
2dc7f7b3 1910
cfc14b3a
MK
1911 cie->code_alignment_factor =
1912 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1913 buf += bytes_read;
1914
1915 cie->data_alignment_factor =
1916 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1917 buf += bytes_read;
1918
28ba0b33
PB
1919 if (cie_version == 1)
1920 {
1921 cie->return_address_register = read_1_byte (unit->abfd, buf);
1922 bytes_read = 1;
1923 }
1924 else
1925 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1926 &bytes_read);
4fc771b8 1927 cie->return_address_register
5e2b427d 1928 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1929 cie->return_address_register,
1930 eh_frame_p);
4bf8967c 1931
28ba0b33 1932 buf += bytes_read;
cfc14b3a 1933
7131cb6e
RH
1934 cie->saw_z_augmentation = (*augmentation == 'z');
1935 if (cie->saw_z_augmentation)
cfc14b3a
MK
1936 {
1937 ULONGEST length;
1938
1939 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1940 buf += bytes_read;
6896c0c7
RH
1941 if (buf > end)
1942 return NULL;
cfc14b3a
MK
1943 cie->initial_instructions = buf + length;
1944 augmentation++;
1945 }
1946
1947 while (*augmentation)
1948 {
1949 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1950 if (*augmentation == 'L')
1951 {
1952 /* Skip. */
1953 buf++;
1954 augmentation++;
1955 }
1956
1957 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1958 else if (*augmentation == 'R')
1959 {
1960 cie->encoding = *buf++;
1961 augmentation++;
1962 }
1963
1964 /* "P" indicates a personality routine in the CIE augmentation. */
1965 else if (*augmentation == 'P')
1966 {
1234d960 1967 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1968 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 1969 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 1970 buf, &bytes_read, 0);
f724bf08 1971 buf += bytes_read;
cfc14b3a
MK
1972 augmentation++;
1973 }
1974
56c987f6
AO
1975 /* "S" indicates a signal frame, such that the return
1976 address must not be decremented to locate the call frame
1977 info for the previous frame; it might even be the first
1978 instruction of a function, so decrementing it would take
1979 us to a different function. */
1980 else if (*augmentation == 'S')
1981 {
1982 cie->signal_frame = 1;
1983 augmentation++;
1984 }
1985
3e9a2e52
DJ
1986 /* Otherwise we have an unknown augmentation. Assume that either
1987 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
1988 else
1989 {
3e9a2e52
DJ
1990 if (cie->initial_instructions)
1991 buf = cie->initial_instructions;
cfc14b3a
MK
1992 break;
1993 }
1994 }
1995
1996 cie->initial_instructions = buf;
1997 cie->end = end;
b01c8410 1998 cie->unit = unit;
cfc14b3a 1999
b01c8410 2000 add_cie (cie_table, cie);
cfc14b3a
MK
2001 }
2002 else
2003 {
2004 /* This is a FDE. */
2005 struct dwarf2_fde *fde;
2006
8bd90839
FM
2007 /* Check that an FDE was expected. */
2008 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2009 error (_("Found an FDE when not expecting it."));
2010
6896c0c7
RH
2011 /* In an .eh_frame section, the CIE pointer is the delta between the
2012 address within the FDE where the CIE pointer is stored and the
2013 address of the CIE. Convert it to an offset into the .eh_frame
2014 section. */
cfc14b3a
MK
2015 if (eh_frame_p)
2016 {
cfc14b3a
MK
2017 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2018 cie_pointer -= (dwarf64_p ? 8 : 4);
2019 }
2020
6896c0c7
RH
2021 /* In either case, validate the result is still within the section. */
2022 if (cie_pointer >= unit->dwarf_frame_size)
2023 return NULL;
2024
cfc14b3a 2025 fde = (struct dwarf2_fde *)
8b92e4d5 2026 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2027 sizeof (struct dwarf2_fde));
b01c8410 2028 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2029 if (fde->cie == NULL)
2030 {
2031 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2032 eh_frame_p, cie_table, fde_table,
2033 EH_CIE_TYPE_ID);
b01c8410 2034 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2035 }
2036
2037 gdb_assert (fde->cie != NULL);
2038
2039 fde->initial_location =
8da614df 2040 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
ae0d2f24 2041 buf, &bytes_read, 0);
cfc14b3a
MK
2042 buf += bytes_read;
2043
2044 fde->address_range =
ae0d2f24 2045 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2046 fde->cie->ptr_size, buf, &bytes_read, 0);
cfc14b3a
MK
2047 buf += bytes_read;
2048
7131cb6e
RH
2049 /* A 'z' augmentation in the CIE implies the presence of an
2050 augmentation field in the FDE as well. The only thing known
2051 to be in here at present is the LSDA entry for EH. So we
2052 can skip the whole thing. */
2053 if (fde->cie->saw_z_augmentation)
2054 {
2055 ULONGEST length;
2056
2057 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2058 buf += bytes_read + length;
6896c0c7
RH
2059 if (buf > end)
2060 return NULL;
7131cb6e
RH
2061 }
2062
cfc14b3a
MK
2063 fde->instructions = buf;
2064 fde->end = end;
2065
4bf8967c
AS
2066 fde->eh_frame_p = eh_frame_p;
2067
b01c8410 2068 add_fde (fde_table, fde);
cfc14b3a
MK
2069 }
2070
2071 return end;
2072}
6896c0c7 2073
8bd90839
FM
2074/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2075 expect an FDE or a CIE. */
2076
852483bc 2077static gdb_byte *
b01c8410
PP
2078decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
2079 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2080 struct dwarf2_fde_table *fde_table,
2081 enum eh_frame_type entry_type)
6896c0c7
RH
2082{
2083 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
852483bc 2084 gdb_byte *ret;
6896c0c7
RH
2085 ptrdiff_t start_offset;
2086
2087 while (1)
2088 {
b01c8410 2089 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2090 cie_table, fde_table, entry_type);
6896c0c7
RH
2091 if (ret != NULL)
2092 break;
2093
2094 /* We have corrupt input data of some form. */
2095
2096 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2097 and mismatches wrt padding and alignment of debug sections. */
2098 /* Note that there is no requirement in the standard for any
2099 alignment at all in the frame unwind sections. Testing for
2100 alignment before trying to interpret data would be incorrect.
2101
2102 However, GCC traditionally arranged for frame sections to be
2103 sized such that the FDE length and CIE fields happen to be
2104 aligned (in theory, for performance). This, unfortunately,
2105 was done with .align directives, which had the side effect of
2106 forcing the section to be aligned by the linker.
2107
2108 This becomes a problem when you have some other producer that
2109 creates frame sections that are not as strictly aligned. That
2110 produces a hole in the frame info that gets filled by the
2111 linker with zeros.
2112
2113 The GCC behaviour is arguably a bug, but it's effectively now
2114 part of the ABI, so we're now stuck with it, at least at the
2115 object file level. A smart linker may decide, in the process
2116 of compressing duplicate CIE information, that it can rewrite
2117 the entire output section without this extra padding. */
2118
2119 start_offset = start - unit->dwarf_frame_buffer;
2120 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2121 {
2122 start += 4 - (start_offset & 3);
2123 workaround = ALIGN4;
2124 continue;
2125 }
2126 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2127 {
2128 start += 8 - (start_offset & 7);
2129 workaround = ALIGN8;
2130 continue;
2131 }
2132
2133 /* Nothing left to try. Arrange to return as if we've consumed
2134 the entire input section. Hopefully we'll get valid info from
2135 the other of .debug_frame/.eh_frame. */
2136 workaround = FAIL;
2137 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2138 break;
2139 }
2140
2141 switch (workaround)
2142 {
2143 case NONE:
2144 break;
2145
2146 case ALIGN4:
3e43a32a
MS
2147 complaint (&symfile_complaints, _("\
2148Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2149 unit->dwarf_frame_section->owner->filename,
2150 unit->dwarf_frame_section->name);
2151 break;
2152
2153 case ALIGN8:
3e43a32a
MS
2154 complaint (&symfile_complaints, _("\
2155Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2156 unit->dwarf_frame_section->owner->filename,
2157 unit->dwarf_frame_section->name);
2158 break;
2159
2160 default:
2161 complaint (&symfile_complaints,
e2e0b3e5 2162 _("Corrupt data in %s:%s"),
6896c0c7
RH
2163 unit->dwarf_frame_section->owner->filename,
2164 unit->dwarf_frame_section->name);
2165 break;
2166 }
2167
2168 return ret;
2169}
cfc14b3a 2170\f
b01c8410
PP
2171static int
2172qsort_fde_cmp (const void *a, const void *b)
2173{
2174 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2175 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2176
b01c8410 2177 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2178 {
2179 if (aa->address_range != bb->address_range
2180 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2181 /* Linker bug, e.g. gold/10400.
2182 Work around it by keeping stable sort order. */
2183 return (a < b) ? -1 : 1;
2184 else
2185 /* Put eh_frame entries after debug_frame ones. */
2186 return aa->eh_frame_p - bb->eh_frame_p;
2187 }
b01c8410
PP
2188
2189 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2190}
2191
cfc14b3a
MK
2192void
2193dwarf2_build_frame_info (struct objfile *objfile)
2194{
ae0d2f24 2195 struct comp_unit *unit;
852483bc 2196 gdb_byte *frame_ptr;
b01c8410
PP
2197 struct dwarf2_cie_table cie_table;
2198 struct dwarf2_fde_table fde_table;
be391dca 2199 struct dwarf2_fde_table *fde_table2;
8bd90839 2200 volatile struct gdb_exception e;
b01c8410
PP
2201
2202 cie_table.num_entries = 0;
2203 cie_table.entries = NULL;
2204
2205 fde_table.num_entries = 0;
2206 fde_table.entries = NULL;
cfc14b3a
MK
2207
2208 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2209 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2210 sizeof (struct comp_unit));
2211 unit->abfd = objfile->obfd;
2212 unit->objfile = objfile;
2213 unit->dbase = 0;
2214 unit->tbase = 0;
cfc14b3a 2215
d40102a1 2216 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2217 {
d40102a1
JB
2218 /* Do not read .eh_frame from separate file as they must be also
2219 present in the main file. */
2220 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2221 &unit->dwarf_frame_section,
2222 &unit->dwarf_frame_buffer,
2223 &unit->dwarf_frame_size);
2224 if (unit->dwarf_frame_size)
b01c8410 2225 {
d40102a1
JB
2226 asection *got, *txt;
2227
2228 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2229 that is used for the i386/amd64 target, which currently is
2230 the only target in GCC that supports/uses the
2231 DW_EH_PE_datarel encoding. */
2232 got = bfd_get_section_by_name (unit->abfd, ".got");
2233 if (got)
2234 unit->dbase = got->vma;
2235
2236 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2237 so far. */
2238 txt = bfd_get_section_by_name (unit->abfd, ".text");
2239 if (txt)
2240 unit->tbase = txt->vma;
2241
8bd90839
FM
2242 TRY_CATCH (e, RETURN_MASK_ERROR)
2243 {
2244 frame_ptr = unit->dwarf_frame_buffer;
2245 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2246 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2247 &cie_table, &fde_table,
2248 EH_CIE_OR_FDE_TYPE_ID);
2249 }
2250
2251 if (e.reason < 0)
2252 {
2253 warning (_("skipping .eh_frame info of %s: %s"),
2254 objfile->name, e.message);
2255
2256 if (fde_table.num_entries != 0)
2257 {
2258 xfree (fde_table.entries);
2259 fde_table.entries = NULL;
2260 fde_table.num_entries = 0;
2261 }
2262 /* The cie_table is discarded by the next if. */
2263 }
d40102a1
JB
2264
2265 if (cie_table.num_entries != 0)
2266 {
2267 /* Reinit cie_table: debug_frame has different CIEs. */
2268 xfree (cie_table.entries);
2269 cie_table.num_entries = 0;
2270 cie_table.entries = NULL;
2271 }
b01c8410 2272 }
cfc14b3a
MK
2273 }
2274
3017a003 2275 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2276 &unit->dwarf_frame_section,
2277 &unit->dwarf_frame_buffer,
2278 &unit->dwarf_frame_size);
2279 if (unit->dwarf_frame_size)
cfc14b3a 2280 {
8bd90839
FM
2281 int num_old_fde_entries = fde_table.num_entries;
2282
2283 TRY_CATCH (e, RETURN_MASK_ERROR)
2284 {
2285 frame_ptr = unit->dwarf_frame_buffer;
2286 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2287 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2288 &cie_table, &fde_table,
2289 EH_CIE_OR_FDE_TYPE_ID);
2290 }
2291 if (e.reason < 0)
2292 {
2293 warning (_("skipping .debug_frame info of %s: %s"),
2294 objfile->name, e.message);
2295
2296 if (fde_table.num_entries != 0)
2297 {
2298 fde_table.num_entries = num_old_fde_entries;
2299 if (num_old_fde_entries == 0)
2300 {
2301 xfree (fde_table.entries);
2302 fde_table.entries = NULL;
2303 }
2304 else
2305 {
2306 fde_table.entries = xrealloc (fde_table.entries,
2307 fde_table.num_entries *
2308 sizeof (fde_table.entries[0]));
2309 }
2310 }
2311 fde_table.num_entries = num_old_fde_entries;
2312 /* The cie_table is discarded by the next if. */
2313 }
b01c8410
PP
2314 }
2315
2316 /* Discard the cie_table, it is no longer needed. */
2317 if (cie_table.num_entries != 0)
2318 {
2319 xfree (cie_table.entries);
2320 cie_table.entries = NULL; /* Paranoia. */
2321 cie_table.num_entries = 0; /* Paranoia. */
2322 }
2323
be391dca
TT
2324 /* Copy fde_table to obstack: it is needed at runtime. */
2325 fde_table2 = (struct dwarf2_fde_table *)
2326 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2327
2328 if (fde_table.num_entries == 0)
2329 {
2330 fde_table2->entries = NULL;
2331 fde_table2->num_entries = 0;
2332 }
2333 else
b01c8410 2334 {
875cdfbb
PA
2335 struct dwarf2_fde *fde_prev = NULL;
2336 struct dwarf2_fde *first_non_zero_fde = NULL;
2337 int i;
b01c8410
PP
2338
2339 /* Prepare FDE table for lookups. */
2340 qsort (fde_table.entries, fde_table.num_entries,
2341 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2342
875cdfbb
PA
2343 /* Check for leftovers from --gc-sections. The GNU linker sets
2344 the relevant symbols to zero, but doesn't zero the FDE *end*
2345 ranges because there's no relocation there. It's (offset,
2346 length), not (start, end). On targets where address zero is
2347 just another valid address this can be a problem, since the
2348 FDEs appear to be non-empty in the output --- we could pick
2349 out the wrong FDE. To work around this, when overlaps are
2350 detected, we prefer FDEs that do not start at zero.
2351
2352 Start by finding the first FDE with non-zero start. Below
2353 we'll discard all FDEs that start at zero and overlap this
2354 one. */
2355 for (i = 0; i < fde_table.num_entries; i++)
2356 {
2357 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2358
875cdfbb
PA
2359 if (fde->initial_location != 0)
2360 {
2361 first_non_zero_fde = fde;
2362 break;
2363 }
2364 }
2365
2366 /* Since we'll be doing bsearch, squeeze out identical (except
2367 for eh_frame_p) fde entries so bsearch result is predictable.
2368 Also discard leftovers from --gc-sections. */
be391dca 2369 fde_table2->num_entries = 0;
875cdfbb
PA
2370 for (i = 0; i < fde_table.num_entries; i++)
2371 {
2372 struct dwarf2_fde *fde = fde_table.entries[i];
2373
2374 if (fde->initial_location == 0
2375 && first_non_zero_fde != NULL
2376 && (first_non_zero_fde->initial_location
2377 < fde->initial_location + fde->address_range))
2378 continue;
2379
2380 if (fde_prev != NULL
2381 && fde_prev->initial_location == fde->initial_location)
2382 continue;
2383
2384 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2385 sizeof (fde_table.entries[0]));
2386 ++fde_table2->num_entries;
2387 fde_prev = fde;
2388 }
b01c8410 2389 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2390
2391 /* Discard the original fde_table. */
2392 xfree (fde_table.entries);
cfc14b3a 2393 }
be391dca
TT
2394
2395 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2396}
0d0e1a63
MK
2397
2398/* Provide a prototype to silence -Wmissing-prototypes. */
2399void _initialize_dwarf2_frame (void);
2400
2401void
2402_initialize_dwarf2_frame (void)
2403{
030f20e1 2404 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2405 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2406}
This page took 0.825632 seconds and 4 git commands to generate.