* leb128.h: #include stdint.h, inttypes.h.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
0b302171 3 Copyright (C) 2003-2005, 2007-2012 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
cfc14b3a
MK
34
35#include "gdb_assert.h"
36#include "gdb_string.h"
37
6896c0c7 38#include "complaints.h"
cfc14b3a 39#include "dwarf2-frame.h"
9f6f94ff
TT
40#include "ax.h"
41#include "dwarf2loc.h"
8fbca658 42#include "exceptions.h"
111c6489 43#include "dwarf2-frame-tailcall.h"
cfc14b3a 44
ae0d2f24
UW
45struct comp_unit;
46
cfc14b3a
MK
47/* Call Frame Information (CFI). */
48
49/* Common Information Entry (CIE). */
50
51struct dwarf2_cie
52{
ae0d2f24
UW
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
cfc14b3a
MK
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
f664829e
DE
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
cfc14b3a 73
303b6f5d
DJ
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
cfc14b3a 77 /* Encoding of addresses. */
852483bc 78 gdb_byte encoding;
cfc14b3a 79
ae0d2f24
UW
80 /* Target address size in bytes. */
81 int addr_size;
82
0963b4bd 83 /* Target pointer size in bytes. */
8da614df
CV
84 int ptr_size;
85
7131cb6e
RH
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
56c987f6
AO
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
303b6f5d
DJ
92 /* The version recorded in the CIE. */
93 unsigned char version;
2dc7f7b3
TT
94
95 /* The segment size. */
96 unsigned char segment_size;
b01c8410 97};
303b6f5d 98
b01c8410
PP
99struct dwarf2_cie_table
100{
101 int num_entries;
102 struct dwarf2_cie **entries;
cfc14b3a
MK
103};
104
105/* Frame Description Entry (FDE). */
106
107struct dwarf2_fde
108{
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
f664829e
DE
119 const gdb_byte *instructions;
120 const gdb_byte *end;
cfc14b3a 121
4bf8967c
AS
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
b01c8410 125};
4bf8967c 126
b01c8410
PP
127struct dwarf2_fde_table
128{
129 int num_entries;
130 struct dwarf2_fde **entries;
cfc14b3a
MK
131};
132
ae0d2f24
UW
133/* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136struct comp_unit
137{
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
ae0d2f24
UW
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
c098b58b 147 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157};
158
ac56253d
TT
159static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
4fc771b8
DJ
161
162static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
ae0d2f24
UW
164
165static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 166 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
cfc14b3a
MK
169\f
170
171/* Structure describing a frame state. */
172
173struct dwarf2_frame_state
174{
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
05cbe71a 179 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
180 int num_regs;
181
2fd481e1
PP
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
0d45f56e 189 const gdb_byte *cfa_exp;
2fd481e1 190
cfc14b3a
MK
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
cfc14b3a
MK
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
303b6f5d
DJ
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
216};
217
218/* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220#define cfa_exp_len cfa_reg
221
f57d151a 222/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
223 columns. If necessary, enlarge the register set. */
224
225static void
226dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228{
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
2473a4a9 238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
239 rs->num_regs = num_regs;
240}
241
242/* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245static struct dwarf2_frame_state_reg *
246dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247{
d10891d4 248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255}
256
257/* Release the memory allocated to register set RS. */
258
259static void
260dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261{
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269}
270
271/* Release the memory allocated to the frame state FS. */
272
273static void
274dwarf2_frame_state_free (void *p)
275{
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283}
284\f
285
286/* Helper functions for execute_stack_op. */
287
288static CORE_ADDR
289read_reg (void *baton, int reg)
290{
4a4e5149
DJ
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 293 int regnum;
852483bc 294 gdb_byte *buf;
cfc14b3a 295
ad010def 296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 297
852483bc 298 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 299 get_frame_register (this_frame, regnum, buf);
f2da6b3a
DJ
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
307}
308
309static void
852483bc 310read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
311{
312 read_memory (addr, buf, len);
313}
314
a6a5a945
LM
315/* Execute the required actions for both the DW_CFA_restore and
316DW_CFA_restore_extended instructions. */
317static void
318dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
319 struct dwarf2_frame_state *fs, int eh_frame_p)
320{
321 ULONGEST reg;
322
323 gdb_assert (fs->initial.reg);
324 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
325 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
326
327 /* Check if this register was explicitly initialized in the
328 CIE initial instructions. If not, default the rule to
329 UNSPECIFIED. */
330 if (reg < fs->initial.num_regs)
331 fs->regs.reg[reg] = fs->initial.reg[reg];
332 else
333 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
334
335 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
336 complaint (&symfile_complaints, _("\
337incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 338register %s (#%d) at %s"),
a6a5a945
LM
339 gdbarch_register_name
340 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
341 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 342 paddress (gdbarch, fs->pc));
a6a5a945
LM
343}
344
9e8b7a03
JK
345/* Virtual method table for execute_stack_op below. */
346
347static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
348{
349 read_reg,
350 read_mem,
523f3620
JK
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
353 ctx_no_get_frame_pc,
354 ctx_no_get_tls_address,
355 ctx_no_dwarf_call,
8e3b41a9 356 ctx_no_get_base_type,
3019eac3
DE
357 ctx_no_push_dwarf_reg_entry_value,
358 ctx_no_get_addr_index
9e8b7a03
JK
359};
360
cfc14b3a 361static CORE_ADDR
0d45f56e 362execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
363 CORE_ADDR offset, struct frame_info *this_frame,
364 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
365{
366 struct dwarf_expr_context *ctx;
367 CORE_ADDR result;
4a227398 368 struct cleanup *old_chain;
cfc14b3a
MK
369
370 ctx = new_dwarf_expr_context ();
4a227398 371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 372 make_cleanup_value_free_to_mark (value_mark ());
4a227398 373
f7fd4728 374 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 375 ctx->addr_size = addr_size;
181cebd4 376 ctx->ref_addr_size = -1;
ac56253d 377 ctx->offset = offset;
4a4e5149 378 ctx->baton = this_frame;
9e8b7a03 379 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 380
8a9b8146 381 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 382 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 383
f2c7657e
UW
384 if (ctx->location == DWARF_VALUE_MEMORY)
385 result = dwarf_expr_fetch_address (ctx, 0);
386 else if (ctx->location == DWARF_VALUE_REGISTER)
8a9b8146 387 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 388 else
cec03d70
TT
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
3e43a32a
MS
393 error (_("\
394Not implemented: computing unwound register using explicit value operator"));
cec03d70 395 }
cfc14b3a 396
4a227398 397 do_cleanups (old_chain);
cfc14b3a
MK
398
399 return result;
400}
401\f
402
111c6489
JK
403/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407static const gdb_byte *
0d45f56e 408execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 411{
ae0d2f24 412 int eh_frame_p = fde->eh_frame_p;
cfc14b3a 413 int bytes_read;
e17a4113 414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
852483bc 418 gdb_byte insn = *insn_ptr++;
f664829e
DE
419 unsigned long long utmp, reg;
420 long long offset;
cfc14b3a
MK
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
4fc771b8 427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
cfc14b3a 436 reg = insn & 0x3f;
a6a5a945 437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
ae0d2f24 444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 445 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
e17a4113 454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
e17a4113 459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
e17a4113 464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
f664829e 470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
f664829e 480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
482 break;
483
484 case DW_CFA_undefined:
f664829e 485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
489 break;
490
491 case DW_CFA_same_value:
f664829e 492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
496 break;
497
498 case DW_CFA_register:
f664829e 499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
512 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
50ea7769
MK
523 if (old_rs == NULL)
524 {
e2e0b3e5 525 complaint (&symfile_complaints, _("\
5af949e3
UW
526bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
50ea7769
MK
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
cfc14b3a
MK
535 }
536 break;
537
538 case DW_CFA_def_cfa:
f664829e
DE
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
540 fs->regs.cfa_reg = reg;
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
542
543 if (fs->armcc_cfa_offsets_sf)
544 utmp *= fs->data_align;
545
2fd481e1
PP
546 fs->regs.cfa_offset = utmp;
547 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
548 break;
549
550 case DW_CFA_def_cfa_register:
f664829e
DE
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
555 break;
556
557 case DW_CFA_def_cfa_offset:
f664829e 558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
2fd481e1 563 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
564 /* cfa_how deliberately not set. */
565 break;
566
a8504492
MK
567 case DW_CFA_nop:
568 break;
569
cfc14b3a 570 case DW_CFA_def_cfa_expression:
f664829e
DE
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
576 break;
577
578 case DW_CFA_expression:
f664829e 579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
586 insn_ptr += utmp;
587 break;
588
a8504492 589 case DW_CFA_offset_extended_sf:
f664829e 590 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 592 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 593 offset *= fs->data_align;
a8504492 594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
46ea248b 599 case DW_CFA_val_offset:
f664829e 600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 602 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
f664829e 609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 611 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
f664829e 618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
a8504492 627 case DW_CFA_def_cfa_sf:
f664829e
DE
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 630 eh_frame_p);
f664829e 631 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
632 fs->regs.cfa_offset = offset * fs->data_align;
633 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
634 break;
635
636 case DW_CFA_def_cfa_offset_sf:
f664829e 637 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 638 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 639 /* cfa_how deliberately not set. */
cfc14b3a
MK
640 break;
641
a77f4086
MK
642 case DW_CFA_GNU_window_save:
643 /* This is SPARC-specific code, and contains hard-coded
644 constants for the register numbering scheme used by
645 GCC. Rather than having a architecture-specific
646 operation that's only ever used by a single
647 architecture, we provide the implementation here.
648 Incidentally that's what GCC does too in its
649 unwinder. */
650 {
4a4e5149 651 int size = register_size (gdbarch, 0);
9a619af0 652
a77f4086
MK
653 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
654 for (reg = 8; reg < 16; reg++)
655 {
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
657 fs->regs.reg[reg].loc.reg = reg + 16;
658 }
659 for (reg = 16; reg < 32; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
662 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
663 }
664 }
665 break;
666
cfc14b3a
MK
667 case DW_CFA_GNU_args_size:
668 /* Ignored. */
f664829e 669 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
670 break;
671
58894217 672 case DW_CFA_GNU_negative_offset_extended:
f664829e 673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 674 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 675 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &offset);
58894217
JK
676 offset *= fs->data_align;
677 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
678 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
679 fs->regs.reg[reg].loc.offset = -offset;
680 break;
681
cfc14b3a 682 default:
3e43a32a
MS
683 internal_error (__FILE__, __LINE__,
684 _("Unknown CFI encountered."));
cfc14b3a
MK
685 }
686 }
687 }
688
111c6489
JK
689 if (fs->initial.reg == NULL)
690 {
691 /* Don't allow remember/restore between CIE and FDE programs. */
692 dwarf2_frame_state_free_regs (fs->regs.prev);
693 fs->regs.prev = NULL;
694 }
695
696 return insn_ptr;
cfc14b3a 697}
8f22cb90 698\f
cfc14b3a 699
8f22cb90 700/* Architecture-specific operations. */
cfc14b3a 701
8f22cb90
MK
702/* Per-architecture data key. */
703static struct gdbarch_data *dwarf2_frame_data;
704
705struct dwarf2_frame_ops
706{
707 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
708 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
709 struct frame_info *);
3ed09a32 710
4a4e5149 711 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 712 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 713
4fc771b8
DJ
714 /* Convert .eh_frame register number to DWARF register number, or
715 adjust .debug_frame register number. */
716 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
717};
718
8f22cb90
MK
719/* Default architecture-specific register state initialization
720 function. */
721
722static void
723dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 724 struct dwarf2_frame_state_reg *reg,
4a4e5149 725 struct frame_info *this_frame)
8f22cb90
MK
726{
727 /* If we have a register that acts as a program counter, mark it as
728 a destination for the return address. If we have a register that
729 serves as the stack pointer, arrange for it to be filled with the
730 call frame address (CFA). The other registers are marked as
731 unspecified.
732
733 We copy the return address to the program counter, since many
734 parts in GDB assume that it is possible to get the return address
735 by unwinding the program counter register. However, on ISA's
736 with a dedicated return address register, the CFI usually only
737 contains information to unwind that return address register.
738
739 The reason we're treating the stack pointer special here is
740 because in many cases GCC doesn't emit CFI for the stack pointer
741 and implicitly assumes that it is equal to the CFA. This makes
742 some sense since the DWARF specification (version 3, draft 8,
743 p. 102) says that:
744
745 "Typically, the CFA is defined to be the value of the stack
746 pointer at the call site in the previous frame (which may be
747 different from its value on entry to the current frame)."
748
749 However, this isn't true for all platforms supported by GCC
750 (e.g. IBM S/390 and zSeries). Those architectures should provide
751 their own architecture-specific initialization function. */
05cbe71a 752
ad010def 753 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 754 reg->how = DWARF2_FRAME_REG_RA;
ad010def 755 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
756 reg->how = DWARF2_FRAME_REG_CFA;
757}
05cbe71a 758
8f22cb90 759/* Return a default for the architecture-specific operations. */
05cbe71a 760
8f22cb90 761static void *
030f20e1 762dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
763{
764 struct dwarf2_frame_ops *ops;
765
030f20e1 766 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
767 ops->init_reg = dwarf2_frame_default_init_reg;
768 return ops;
769}
05cbe71a 770
8f22cb90
MK
771/* Set the architecture-specific register state initialization
772 function for GDBARCH to INIT_REG. */
773
774void
775dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
776 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
777 struct dwarf2_frame_state_reg *,
778 struct frame_info *))
8f22cb90 779{
030f20e1 780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 781
8f22cb90
MK
782 ops->init_reg = init_reg;
783}
784
785/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
786
787static void
788dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 789 struct dwarf2_frame_state_reg *reg,
4a4e5149 790 struct frame_info *this_frame)
05cbe71a 791{
030f20e1 792 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 793
4a4e5149 794 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 795}
3ed09a32
DJ
796
797/* Set the architecture-specific signal trampoline recognition
798 function for GDBARCH to SIGNAL_FRAME_P. */
799
800void
801dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
802 int (*signal_frame_p) (struct gdbarch *,
803 struct frame_info *))
804{
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 ops->signal_frame_p = signal_frame_p;
808}
809
810/* Query the architecture-specific signal frame recognizer for
4a4e5149 811 THIS_FRAME. */
3ed09a32
DJ
812
813static int
814dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 815 struct frame_info *this_frame)
3ed09a32
DJ
816{
817 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
818
819 if (ops->signal_frame_p == NULL)
820 return 0;
4a4e5149 821 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 822}
4bf8967c 823
4fc771b8
DJ
824/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
825 register numbers. */
4bf8967c
AS
826
827void
4fc771b8
DJ
828dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
829 int (*adjust_regnum) (struct gdbarch *,
830 int, int))
4bf8967c
AS
831{
832 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
833
4fc771b8 834 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
835}
836
4fc771b8
DJ
837/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
838 register. */
4bf8967c 839
4fc771b8 840static int
3e43a32a
MS
841dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
842 int regnum, int eh_frame_p)
4bf8967c
AS
843{
844 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
845
4fc771b8 846 if (ops->adjust_regnum == NULL)
4bf8967c 847 return regnum;
4fc771b8 848 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 849}
303b6f5d
DJ
850
851static void
852dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
853 struct dwarf2_fde *fde)
854{
303b6f5d
DJ
855 struct symtab *s;
856
857 s = find_pc_symtab (fs->pc);
a6c727b2 858 if (s == NULL)
303b6f5d
DJ
859 return;
860
a6c727b2
DJ
861 if (producer_is_realview (s->producer))
862 {
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_sf = 1;
865
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_reversed = 1;
868
869 /* The reversed offset problem is present in some compilers
870 using DWARF3, but it was eventually fixed. Check the ARM
871 defined augmentations, which are in the format "armcc" followed
872 by a list of one-character options. The "+" option means
873 this problem is fixed (no quirk needed). If the armcc
874 augmentation is missing, the quirk is needed. */
875 if (fde->cie->version == 3
876 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
877 || strchr (fde->cie->augmentation + 5, '+') == NULL))
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 return;
881 }
303b6f5d 882}
8f22cb90
MK
883\f
884
9f6f94ff
TT
885void
886dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
887 struct gdbarch *gdbarch,
888 CORE_ADDR pc,
889 struct dwarf2_per_cu_data *data)
890{
891 const int num_regs = gdbarch_num_regs (gdbarch)
892 + gdbarch_num_pseudo_regs (gdbarch);
893 struct dwarf2_fde *fde;
22e048c9 894 CORE_ADDR text_offset;
9f6f94ff
TT
895 struct dwarf2_frame_state fs;
896 int addr_size;
897
898 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
899
900 fs.pc = pc;
901
902 /* Find the correct FDE. */
903 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
904 if (fde == NULL)
905 error (_("Could not compute CFA; needed to translate this expression"));
906
907 /* Extract any interesting information from the CIE. */
908 fs.data_align = fde->cie->data_alignment_factor;
909 fs.code_align = fde->cie->code_alignment_factor;
910 fs.retaddr_column = fde->cie->return_address_register;
911 addr_size = fde->cie->addr_size;
912
913 /* Check for "quirks" - known bugs in producers. */
914 dwarf2_frame_find_quirks (&fs, fde);
915
916 /* First decode all the insns in the CIE. */
917 execute_cfa_program (fde, fde->cie->initial_instructions,
918 fde->cie->end, gdbarch, pc, &fs);
919
920 /* Save the initialized register set. */
921 fs.initial = fs.regs;
922 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
923
924 /* Then decode the insns in the FDE up to our target PC. */
925 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
926
927 /* Calculate the CFA. */
928 switch (fs.regs.cfa_how)
929 {
930 case CFA_REG_OFFSET:
931 {
932 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
933
934 if (regnum == -1)
935 error (_("Unable to access DWARF register number %d"),
936 (int) fs.regs.cfa_reg); /* FIXME */
937 ax_reg (expr, regnum);
938
939 if (fs.regs.cfa_offset != 0)
940 {
941 if (fs.armcc_cfa_offsets_reversed)
942 ax_const_l (expr, -fs.regs.cfa_offset);
943 else
944 ax_const_l (expr, fs.regs.cfa_offset);
945 ax_simple (expr, aop_add);
946 }
947 }
948 break;
949
950 case CFA_EXP:
951 ax_const_l (expr, text_offset);
952 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
953 fs.regs.cfa_exp,
954 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
955 data);
956 break;
957
958 default:
959 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
960 }
961}
962
963\f
8f22cb90
MK
964struct dwarf2_frame_cache
965{
966 /* DWARF Call Frame Address. */
967 CORE_ADDR cfa;
968
8fbca658
PA
969 /* Set if the return address column was marked as unavailable
970 (required non-collected memory or registers to compute). */
971 int unavailable_retaddr;
972
0228dfb9
DJ
973 /* Set if the return address column was marked as undefined. */
974 int undefined_retaddr;
975
8f22cb90
MK
976 /* Saved registers, indexed by GDB register number, not by DWARF
977 register number. */
978 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
979
980 /* Return address register. */
981 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
982
983 /* Target address size in bytes. */
984 int addr_size;
ac56253d
TT
985
986 /* The .text offset. */
987 CORE_ADDR text_offset;
111c6489
JK
988
989 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
990 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
991 involved. Non-bottom frames of a virtual tail call frames chain use
992 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
993 them. */
994 void *tailcall_cache;
8f22cb90 995};
05cbe71a 996
b9362cc7 997static struct dwarf2_frame_cache *
4a4e5149 998dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
999{
1000 struct cleanup *old_chain;
4a4e5149 1001 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1002 const int num_regs = gdbarch_num_regs (gdbarch)
1003 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1004 struct dwarf2_frame_cache *cache;
1005 struct dwarf2_frame_state *fs;
1006 struct dwarf2_fde *fde;
8fbca658 1007 volatile struct gdb_exception ex;
111c6489
JK
1008 CORE_ADDR entry_pc;
1009 LONGEST entry_cfa_sp_offset;
1010 int entry_cfa_sp_offset_p = 0;
1011 const gdb_byte *instr;
cfc14b3a
MK
1012
1013 if (*this_cache)
1014 return *this_cache;
1015
1016 /* Allocate a new cache. */
1017 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1018 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1019 *this_cache = cache;
cfc14b3a
MK
1020
1021 /* Allocate and initialize the frame state. */
8fbca658 1022 fs = XZALLOC (struct dwarf2_frame_state);
cfc14b3a
MK
1023 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1024
1025 /* Unwind the PC.
1026
4a4e5149 1027 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1028 to abort), the compiler might optimize away the instruction at
4a4e5149 1029 its return address. As a result the return address will
cfc14b3a 1030 point at some random instruction, and the CFI for that
e4e9607c 1031 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1032 this problem by substracting 1 from the return address to get an
1033 address in the middle of a presumed call instruction (or the
1034 instruction in the associated delay slot). This should only be
1035 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1036 handlers, sentinel frames, dummy frames). The function
ad1193e7 1037 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1038 reliable the method is though; there is the potential for the
1039 register state pre-call being different to that on return. */
4a4e5149 1040 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1041
1042 /* Find the correct FDE. */
ac56253d 1043 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1044 gdb_assert (fde != NULL);
1045
1046 /* Extract any interesting information from the CIE. */
1047 fs->data_align = fde->cie->data_alignment_factor;
1048 fs->code_align = fde->cie->code_alignment_factor;
1049 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1050 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1051
303b6f5d
DJ
1052 /* Check for "quirks" - known bugs in producers. */
1053 dwarf2_frame_find_quirks (fs, fde);
1054
cfc14b3a 1055 /* First decode all the insns in the CIE. */
ae0d2f24 1056 execute_cfa_program (fde, fde->cie->initial_instructions,
9f6f94ff 1057 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs);
cfc14b3a
MK
1058
1059 /* Save the initialized register set. */
1060 fs->initial = fs->regs;
1061 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1062
111c6489
JK
1063 if (get_frame_func_if_available (this_frame, &entry_pc))
1064 {
1065 /* Decode the insns in the FDE up to the entry PC. */
1066 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1067 entry_pc, fs);
1068
1069 if (fs->regs.cfa_how == CFA_REG_OFFSET
1070 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1071 == gdbarch_sp_regnum (gdbarch)))
1072 {
1073 entry_cfa_sp_offset = fs->regs.cfa_offset;
1074 entry_cfa_sp_offset_p = 1;
1075 }
1076 }
1077 else
1078 instr = fde->instructions;
1079
cfc14b3a 1080 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1081 execute_cfa_program (fde, instr, fde->end, gdbarch,
9f6f94ff 1082 get_frame_pc (this_frame), fs);
cfc14b3a 1083
8fbca658 1084 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1085 {
8fbca658
PA
1086 /* Calculate the CFA. */
1087 switch (fs->regs.cfa_how)
1088 {
1089 case CFA_REG_OFFSET:
1090 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1091 if (fs->armcc_cfa_offsets_reversed)
1092 cache->cfa -= fs->regs.cfa_offset;
1093 else
1094 cache->cfa += fs->regs.cfa_offset;
1095 break;
1096
1097 case CFA_EXP:
1098 cache->cfa =
1099 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1100 cache->addr_size, cache->text_offset,
1101 this_frame, 0, 0);
1102 break;
1103
1104 default:
1105 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1106 }
1107 }
1108 if (ex.reason < 0)
1109 {
1110 if (ex.error == NOT_AVAILABLE_ERROR)
1111 {
1112 cache->unavailable_retaddr = 1;
1113 return cache;
1114 }
cfc14b3a 1115
8fbca658 1116 throw_exception (ex);
cfc14b3a
MK
1117 }
1118
05cbe71a 1119 /* Initialize the register state. */
3e2c4033
AC
1120 {
1121 int regnum;
e4e9607c 1122
3e2c4033 1123 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1124 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1125 }
1126
1127 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1128 location information in the cache. Note that we don't skip the
1129 return address column; it's perfectly all right for it to
1130 correspond to a real register. If it doesn't correspond to a
1131 real register, or if we shouldn't treat it as such,
055d23b8 1132 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1133 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1134 {
1135 int column; /* CFI speak for "register number". */
e4e9607c 1136
3e2c4033
AC
1137 for (column = 0; column < fs->regs.num_regs; column++)
1138 {
3e2c4033 1139 /* Use the GDB register number as the destination index. */
ad010def 1140 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1141
1142 /* If there's no corresponding GDB register, ignore it. */
1143 if (regnum < 0 || regnum >= num_regs)
1144 continue;
1145
1146 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1147 of all debug info registers. If it doesn't, complain (but
1148 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1149 unspecified register implies "same value" when CFI (draft
1150 7) specifies nothing at all. Such a register could equally
1151 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1152 isn't sufficient; it only checks that all registers in the
1153 range [0 .. max column] are specified, and won't detect
3e2c4033 1154 problems when a debug info register falls outside of the
e4e9607c 1155 table. We need a way of iterating through all the valid
3e2c4033 1156 DWARF2 register numbers. */
05cbe71a 1157 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1158 {
1159 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1160 complaint (&symfile_complaints, _("\
5af949e3 1161incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1162 gdbarch_register_name (gdbarch, regnum),
5af949e3 1163 paddress (gdbarch, fs->pc));
f059bf6f 1164 }
35889917
MK
1165 else
1166 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1167 }
1168 }
cfc14b3a 1169
8d5a9abc
MK
1170 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1171 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1172 {
1173 int regnum;
1174
1175 for (regnum = 0; regnum < num_regs; regnum++)
1176 {
8d5a9abc
MK
1177 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1178 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1179 {
05cbe71a
MK
1180 struct dwarf2_frame_state_reg *retaddr_reg =
1181 &fs->regs.reg[fs->retaddr_column];
1182
d4f10bf2
MK
1183 /* It seems rather bizarre to specify an "empty" column as
1184 the return adress column. However, this is exactly
1185 what GCC does on some targets. It turns out that GCC
1186 assumes that the return address can be found in the
1187 register corresponding to the return address column.
8d5a9abc
MK
1188 Incidentally, that's how we should treat a return
1189 address column specifying "same value" too. */
d4f10bf2 1190 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1191 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1192 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1193 {
1194 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1195 cache->reg[regnum] = *retaddr_reg;
1196 else
1197 cache->retaddr_reg = *retaddr_reg;
1198 }
35889917
MK
1199 else
1200 {
8d5a9abc
MK
1201 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1202 {
1203 cache->reg[regnum].loc.reg = fs->retaddr_column;
1204 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1205 }
1206 else
1207 {
1208 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1209 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1210 }
35889917
MK
1211 }
1212 }
1213 }
1214 }
cfc14b3a 1215
0228dfb9
DJ
1216 if (fs->retaddr_column < fs->regs.num_regs
1217 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1218 cache->undefined_retaddr = 1;
1219
cfc14b3a
MK
1220 do_cleanups (old_chain);
1221
111c6489
JK
1222 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1223 starting at THIS_FRAME. */
1224 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1225 (entry_cfa_sp_offset_p
1226 ? &entry_cfa_sp_offset : NULL));
1227
cfc14b3a
MK
1228 return cache;
1229}
1230
8fbca658
PA
1231static enum unwind_stop_reason
1232dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1233 void **this_cache)
1234{
1235 struct dwarf2_frame_cache *cache
1236 = dwarf2_frame_cache (this_frame, this_cache);
1237
1238 if (cache->unavailable_retaddr)
1239 return UNWIND_UNAVAILABLE;
1240
1241 if (cache->undefined_retaddr)
1242 return UNWIND_OUTERMOST;
1243
1244 return UNWIND_NO_REASON;
1245}
1246
cfc14b3a 1247static void
4a4e5149 1248dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1249 struct frame_id *this_id)
1250{
1251 struct dwarf2_frame_cache *cache =
4a4e5149 1252 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1253
8fbca658
PA
1254 if (cache->unavailable_retaddr)
1255 return;
1256
0228dfb9
DJ
1257 if (cache->undefined_retaddr)
1258 return;
1259
4a4e5149 1260 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1261}
1262
4a4e5149
DJ
1263static struct value *
1264dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1265 int regnum)
93d42b30 1266{
4a4e5149 1267 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1268 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1269 dwarf2_frame_cache (this_frame, this_cache);
1270 CORE_ADDR addr;
1271 int realnum;
cfc14b3a 1272
111c6489
JK
1273 /* Non-bottom frames of a virtual tail call frames chain use
1274 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1275 them. If dwarf2_tailcall_prev_register_first does not have specific value
1276 unwind the register, tail call frames are assumed to have the register set
1277 of the top caller. */
1278 if (cache->tailcall_cache)
1279 {
1280 struct value *val;
1281
1282 val = dwarf2_tailcall_prev_register_first (this_frame,
1283 &cache->tailcall_cache,
1284 regnum);
1285 if (val)
1286 return val;
1287 }
1288
cfc14b3a
MK
1289 switch (cache->reg[regnum].how)
1290 {
05cbe71a 1291 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1292 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1293 mark it as optimized away; the value isn't available. */
4a4e5149 1294 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1295
05cbe71a 1296 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1297 addr = cache->cfa + cache->reg[regnum].loc.offset;
1298 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1299
05cbe71a 1300 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1301 realnum
1302 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1303 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1304
05cbe71a 1305 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1306 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1307 cache->reg[regnum].exp_len,
ac56253d
TT
1308 cache->addr_size, cache->text_offset,
1309 this_frame, cache->cfa, 1);
4a4e5149 1310 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1311
46ea248b 1312 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1313 addr = cache->cfa + cache->reg[regnum].loc.offset;
1314 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1315
1316 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1317 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1318 cache->reg[regnum].exp_len,
ac56253d
TT
1319 cache->addr_size, cache->text_offset,
1320 this_frame, cache->cfa, 1);
4a4e5149 1321 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1322
05cbe71a 1323 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1324 /* GCC, in its infinite wisdom decided to not provide unwind
1325 information for registers that are "same value". Since
1326 DWARF2 (3 draft 7) doesn't define such behavior, said
1327 registers are actually undefined (which is different to CFI
1328 "undefined"). Code above issues a complaint about this.
1329 Here just fudge the books, assume GCC, and that the value is
1330 more inner on the stack. */
4a4e5149 1331 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1332
05cbe71a 1333 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1334 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1335
05cbe71a 1336 case DWARF2_FRAME_REG_CFA:
4a4e5149 1337 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1338
ea7963f0 1339 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1340 addr = cache->cfa + cache->reg[regnum].loc.offset;
1341 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1342
8d5a9abc 1343 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1344 addr = cache->reg[regnum].loc.offset;
1345 regnum = gdbarch_dwarf2_reg_to_regnum
1346 (gdbarch, cache->retaddr_reg.loc.reg);
1347 addr += get_frame_register_unsigned (this_frame, regnum);
1348 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1349
b39cc962
DJ
1350 case DWARF2_FRAME_REG_FN:
1351 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1352
cfc14b3a 1353 default:
e2e0b3e5 1354 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1355 }
1356}
1357
111c6489
JK
1358/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1359 call frames chain. */
1360
1361static void
1362dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1363{
1364 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1365
1366 if (cache->tailcall_cache)
1367 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1368}
1369
4a4e5149
DJ
1370static int
1371dwarf2_frame_sniffer (const struct frame_unwind *self,
1372 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1373{
1ce5d6dd 1374 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1375 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1376 end up returning something past the end of this function's body.
1377 If the frame we're sniffing for is a signal frame whose start
1378 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1379 extend one byte before its start address or we could potentially
1380 select the FDE of the previous function. */
1381 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1382 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1383
56c987f6 1384 if (!fde)
4a4e5149 1385 return 0;
3ed09a32
DJ
1386
1387 /* On some targets, signal trampolines may have unwind information.
1388 We need to recognize them so that we set the frame type
1389 correctly. */
1390
56c987f6 1391 if (fde->cie->signal_frame
4a4e5149
DJ
1392 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1393 this_frame))
1394 return self->type == SIGTRAMP_FRAME;
1395
111c6489
JK
1396 if (self->type != NORMAL_FRAME)
1397 return 0;
1398
1399 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1400 dwarf2_tailcall_sniffer_first. */
1401 dwarf2_frame_cache (this_frame, this_cache);
1402
1403 return 1;
4a4e5149
DJ
1404}
1405
1406static const struct frame_unwind dwarf2_frame_unwind =
1407{
1408 NORMAL_FRAME,
8fbca658 1409 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1410 dwarf2_frame_this_id,
1411 dwarf2_frame_prev_register,
1412 NULL,
111c6489
JK
1413 dwarf2_frame_sniffer,
1414 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1415};
1416
1417static const struct frame_unwind dwarf2_signal_frame_unwind =
1418{
1419 SIGTRAMP_FRAME,
8fbca658 1420 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1421 dwarf2_frame_this_id,
1422 dwarf2_frame_prev_register,
1423 NULL,
111c6489
JK
1424 dwarf2_frame_sniffer,
1425
1426 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1427 NULL
4a4e5149 1428};
cfc14b3a 1429
4a4e5149
DJ
1430/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1431
1432void
1433dwarf2_append_unwinders (struct gdbarch *gdbarch)
1434{
111c6489
JK
1435 /* TAILCALL_FRAME must be first to find the record by
1436 dwarf2_tailcall_sniffer_first. */
1437 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1438
4a4e5149
DJ
1439 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1440 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1441}
1442\f
1443
1444/* There is no explicitly defined relationship between the CFA and the
1445 location of frame's local variables and arguments/parameters.
1446 Therefore, frame base methods on this page should probably only be
1447 used as a last resort, just to avoid printing total garbage as a
1448 response to the "info frame" command. */
1449
1450static CORE_ADDR
4a4e5149 1451dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1452{
1453 struct dwarf2_frame_cache *cache =
4a4e5149 1454 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1455
1456 return cache->cfa;
1457}
1458
1459static const struct frame_base dwarf2_frame_base =
1460{
1461 &dwarf2_frame_unwind,
1462 dwarf2_frame_base_address,
1463 dwarf2_frame_base_address,
1464 dwarf2_frame_base_address
1465};
1466
1467const struct frame_base *
4a4e5149 1468dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1469{
4a4e5149 1470 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1471
ac56253d 1472 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1473 return &dwarf2_frame_base;
1474
1475 return NULL;
1476}
e7802207
TT
1477
1478/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1479 the DWARF unwinder. This is used to implement
1480 DW_OP_call_frame_cfa. */
1481
1482CORE_ADDR
1483dwarf2_frame_cfa (struct frame_info *this_frame)
1484{
1485 while (get_frame_type (this_frame) == INLINE_FRAME)
1486 this_frame = get_prev_frame (this_frame);
1487 /* This restriction could be lifted if other unwinders are known to
1488 compute the frame base in a way compatible with the DWARF
1489 unwinder. */
111c6489
JK
1490 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1491 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
e7802207 1492 error (_("can't compute CFA for this frame"));
c0bf857d
PA
1493 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1494 throw_error (NOT_AVAILABLE_ERROR,
1495 _("can't compute CFA for this frame: "
1496 "required registers or memory are unavailable"));
e7802207
TT
1497 return get_frame_base (this_frame);
1498}
cfc14b3a 1499\f
8f22cb90 1500const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1501
cfc14b3a 1502static unsigned int
f664829e 1503read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1504{
852483bc 1505 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1506}
1507
1508static unsigned int
f664829e 1509read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1510{
852483bc 1511 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1512}
1513
1514static ULONGEST
f664829e 1515read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1516{
852483bc 1517 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1518}
1519
1520static ULONGEST
f664829e
DE
1521read_initial_length (bfd *abfd, const gdb_byte *buf,
1522 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1523{
1524 LONGEST result;
1525
852483bc 1526 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1527 if (result == 0xffffffff)
1528 {
852483bc 1529 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1530 *bytes_read_ptr = 12;
1531 }
1532 else
1533 *bytes_read_ptr = 4;
1534
1535 return result;
1536}
1537\f
1538
1539/* Pointer encoding helper functions. */
1540
1541/* GCC supports exception handling based on DWARF2 CFI. However, for
1542 technical reasons, it encodes addresses in its FDE's in a different
1543 way. Several "pointer encodings" are supported. The encoding
1544 that's used for a particular FDE is determined by the 'R'
1545 augmentation in the associated CIE. The argument of this
1546 augmentation is a single byte.
1547
1548 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1549 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1550 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1551 address should be interpreted (absolute, relative to the current
1552 position in the FDE, ...). Bit 7, indicates that the address
1553 should be dereferenced. */
1554
852483bc 1555static gdb_byte
cfc14b3a
MK
1556encoding_for_size (unsigned int size)
1557{
1558 switch (size)
1559 {
1560 case 2:
1561 return DW_EH_PE_udata2;
1562 case 4:
1563 return DW_EH_PE_udata4;
1564 case 8:
1565 return DW_EH_PE_udata8;
1566 default:
e2e0b3e5 1567 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1568 }
1569}
1570
cfc14b3a 1571static CORE_ADDR
852483bc 1572read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1573 int ptr_len, const gdb_byte *buf,
1574 unsigned int *bytes_read_ptr,
ae0d2f24 1575 CORE_ADDR func_base)
cfc14b3a 1576{
68f6cf99 1577 ptrdiff_t offset;
cfc14b3a
MK
1578 CORE_ADDR base;
1579
1580 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1581 FDE's. */
1582 if (encoding & DW_EH_PE_indirect)
1583 internal_error (__FILE__, __LINE__,
e2e0b3e5 1584 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1585
68f6cf99
MK
1586 *bytes_read_ptr = 0;
1587
cfc14b3a
MK
1588 switch (encoding & 0x70)
1589 {
1590 case DW_EH_PE_absptr:
1591 base = 0;
1592 break;
1593 case DW_EH_PE_pcrel:
f2fec864 1594 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1595 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1596 break;
0912c7f2
MK
1597 case DW_EH_PE_datarel:
1598 base = unit->dbase;
1599 break;
0fd85043
CV
1600 case DW_EH_PE_textrel:
1601 base = unit->tbase;
1602 break;
03ac2a74 1603 case DW_EH_PE_funcrel:
ae0d2f24 1604 base = func_base;
03ac2a74 1605 break;
68f6cf99
MK
1606 case DW_EH_PE_aligned:
1607 base = 0;
852483bc 1608 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1609 if ((offset % ptr_len) != 0)
1610 {
1611 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1612 buf += *bytes_read_ptr;
1613 }
1614 break;
cfc14b3a 1615 default:
3e43a32a
MS
1616 internal_error (__FILE__, __LINE__,
1617 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1618 }
1619
b04de778 1620 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1621 {
1622 encoding |= encoding_for_size (ptr_len);
1623 if (bfd_get_sign_extend_vma (unit->abfd))
1624 encoding |= DW_EH_PE_signed;
1625 }
cfc14b3a
MK
1626
1627 switch (encoding & 0x0f)
1628 {
a81b10ae
MK
1629 case DW_EH_PE_uleb128:
1630 {
f664829e 1631 unsigned long long value;
0d45f56e 1632 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1633
f664829e 1634 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1635 return base + value;
1636 }
cfc14b3a 1637 case DW_EH_PE_udata2:
68f6cf99 1638 *bytes_read_ptr += 2;
cfc14b3a
MK
1639 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1640 case DW_EH_PE_udata4:
68f6cf99 1641 *bytes_read_ptr += 4;
cfc14b3a
MK
1642 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1643 case DW_EH_PE_udata8:
68f6cf99 1644 *bytes_read_ptr += 8;
cfc14b3a 1645 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1646 case DW_EH_PE_sleb128:
1647 {
f664829e 1648 long long value;
0d45f56e 1649 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1650
f664829e 1651 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1652 return base + value;
1653 }
cfc14b3a 1654 case DW_EH_PE_sdata2:
68f6cf99 1655 *bytes_read_ptr += 2;
cfc14b3a
MK
1656 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1657 case DW_EH_PE_sdata4:
68f6cf99 1658 *bytes_read_ptr += 4;
cfc14b3a
MK
1659 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1660 case DW_EH_PE_sdata8:
68f6cf99 1661 *bytes_read_ptr += 8;
cfc14b3a
MK
1662 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1663 default:
3e43a32a
MS
1664 internal_error (__FILE__, __LINE__,
1665 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1666 }
1667}
1668\f
1669
b01c8410
PP
1670static int
1671bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1672{
b01c8410
PP
1673 ULONGEST cie_pointer = *(ULONGEST *) key;
1674 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1675
b01c8410
PP
1676 if (cie_pointer == cie->cie_pointer)
1677 return 0;
cfc14b3a 1678
b01c8410
PP
1679 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1680}
1681
1682/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1683static struct dwarf2_cie *
1684find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1685{
1686 struct dwarf2_cie **p_cie;
cfc14b3a 1687
65a97ab3
PP
1688 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1689 bsearch be non-NULL. */
1690 if (cie_table->entries == NULL)
1691 {
1692 gdb_assert (cie_table->num_entries == 0);
1693 return NULL;
1694 }
1695
b01c8410
PP
1696 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1697 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1698 if (p_cie != NULL)
1699 return *p_cie;
cfc14b3a
MK
1700 return NULL;
1701}
1702
b01c8410 1703/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1704static void
b01c8410 1705add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1706{
b01c8410
PP
1707 const int n = cie_table->num_entries;
1708
1709 gdb_assert (n < 1
1710 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1711
1712 cie_table->entries =
1713 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1714 cie_table->entries[n] = cie;
1715 cie_table->num_entries = n + 1;
1716}
1717
1718static int
1719bsearch_fde_cmp (const void *key, const void *element)
1720{
1721 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1722 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1723
b01c8410
PP
1724 if (seek_pc < fde->initial_location)
1725 return -1;
1726 if (seek_pc < fde->initial_location + fde->address_range)
1727 return 0;
1728 return 1;
cfc14b3a
MK
1729}
1730
1731/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1732 inital location associated with it into *PC. */
1733
1734static struct dwarf2_fde *
ac56253d 1735dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1736{
1737 struct objfile *objfile;
1738
1739 ALL_OBJFILES (objfile)
1740 {
b01c8410
PP
1741 struct dwarf2_fde_table *fde_table;
1742 struct dwarf2_fde **p_fde;
cfc14b3a 1743 CORE_ADDR offset;
b01c8410 1744 CORE_ADDR seek_pc;
cfc14b3a 1745
b01c8410
PP
1746 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1747 if (fde_table == NULL)
be391dca
TT
1748 {
1749 dwarf2_build_frame_info (objfile);
1750 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1751 }
1752 gdb_assert (fde_table != NULL);
1753
1754 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1755 continue;
1756
1757 gdb_assert (objfile->section_offsets);
1758 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1759
b01c8410
PP
1760 gdb_assert (fde_table->num_entries > 0);
1761 if (*pc < offset + fde_table->entries[0]->initial_location)
1762 continue;
1763
1764 seek_pc = *pc - offset;
1765 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1766 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1767 if (p_fde != NULL)
1768 {
1769 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1770 if (out_offset)
1771 *out_offset = offset;
b01c8410
PP
1772 return *p_fde;
1773 }
cfc14b3a 1774 }
cfc14b3a
MK
1775 return NULL;
1776}
1777
b01c8410 1778/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1779static void
b01c8410 1780add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1781{
b01c8410
PP
1782 if (fde->address_range == 0)
1783 /* Discard useless FDEs. */
1784 return;
1785
1786 fde_table->num_entries += 1;
1787 fde_table->entries =
1788 xrealloc (fde_table->entries,
1789 fde_table->num_entries * sizeof (fde_table->entries[0]));
1790 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1791}
1792
1793#ifdef CC_HAS_LONG_LONG
1794#define DW64_CIE_ID 0xffffffffffffffffULL
1795#else
1796#define DW64_CIE_ID ~0
1797#endif
1798
8bd90839
FM
1799/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1800 or any of them. */
1801
1802enum eh_frame_type
1803{
1804 EH_CIE_TYPE_ID = 1 << 0,
1805 EH_FDE_TYPE_ID = 1 << 1,
1806 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1807};
1808
f664829e
DE
1809static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1810 const gdb_byte *start,
1811 int eh_frame_p,
1812 struct dwarf2_cie_table *cie_table,
1813 struct dwarf2_fde_table *fde_table,
1814 enum eh_frame_type entry_type);
8bd90839
FM
1815
1816/* Decode the next CIE or FDE, entry_type specifies the expected type.
1817 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1818
f664829e
DE
1819static const gdb_byte *
1820decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1821 int eh_frame_p,
b01c8410 1822 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1823 struct dwarf2_fde_table *fde_table,
1824 enum eh_frame_type entry_type)
cfc14b3a 1825{
5e2b427d 1826 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1827 const gdb_byte *buf, *end;
cfc14b3a
MK
1828 LONGEST length;
1829 unsigned int bytes_read;
6896c0c7
RH
1830 int dwarf64_p;
1831 ULONGEST cie_id;
cfc14b3a 1832 ULONGEST cie_pointer;
f664829e
DE
1833 long long sleb128;
1834 unsigned long long uleb128;
cfc14b3a 1835
6896c0c7 1836 buf = start;
cfc14b3a
MK
1837 length = read_initial_length (unit->abfd, buf, &bytes_read);
1838 buf += bytes_read;
1839 end = buf + length;
1840
0963b4bd 1841 /* Are we still within the section? */
6896c0c7
RH
1842 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1843 return NULL;
1844
cfc14b3a
MK
1845 if (length == 0)
1846 return end;
1847
6896c0c7
RH
1848 /* Distinguish between 32 and 64-bit encoded frame info. */
1849 dwarf64_p = (bytes_read == 12);
cfc14b3a 1850
6896c0c7 1851 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1852 if (eh_frame_p)
1853 cie_id = 0;
1854 else if (dwarf64_p)
1855 cie_id = DW64_CIE_ID;
6896c0c7
RH
1856 else
1857 cie_id = DW_CIE_ID;
cfc14b3a
MK
1858
1859 if (dwarf64_p)
1860 {
1861 cie_pointer = read_8_bytes (unit->abfd, buf);
1862 buf += 8;
1863 }
1864 else
1865 {
1866 cie_pointer = read_4_bytes (unit->abfd, buf);
1867 buf += 4;
1868 }
1869
1870 if (cie_pointer == cie_id)
1871 {
1872 /* This is a CIE. */
1873 struct dwarf2_cie *cie;
1874 char *augmentation;
28ba0b33 1875 unsigned int cie_version;
cfc14b3a 1876
8bd90839
FM
1877 /* Check that a CIE was expected. */
1878 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1879 error (_("Found a CIE when not expecting it."));
1880
cfc14b3a
MK
1881 /* Record the offset into the .debug_frame section of this CIE. */
1882 cie_pointer = start - unit->dwarf_frame_buffer;
1883
1884 /* Check whether we've already read it. */
b01c8410 1885 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1886 return end;
1887
1888 cie = (struct dwarf2_cie *)
8b92e4d5 1889 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1890 sizeof (struct dwarf2_cie));
1891 cie->initial_instructions = NULL;
1892 cie->cie_pointer = cie_pointer;
1893
1894 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1895 depends on the target address size. */
1896 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1897
56c987f6
AO
1898 /* We'll determine the final value later, but we need to
1899 initialize it conservatively. */
1900 cie->signal_frame = 0;
1901
cfc14b3a 1902 /* Check version number. */
28ba0b33 1903 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1904 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1905 return NULL;
303b6f5d 1906 cie->version = cie_version;
cfc14b3a
MK
1907 buf += 1;
1908
1909 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1910 cie->augmentation = augmentation = (char *) buf;
852483bc 1911 buf += (strlen (augmentation) + 1);
cfc14b3a 1912
303b6f5d
DJ
1913 /* Ignore armcc augmentations. We only use them for quirks,
1914 and that doesn't happen until later. */
1915 if (strncmp (augmentation, "armcc", 5) == 0)
1916 augmentation += strlen (augmentation);
1917
cfc14b3a
MK
1918 /* The GCC 2.x "eh" augmentation has a pointer immediately
1919 following the augmentation string, so it must be handled
1920 first. */
1921 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1922 {
1923 /* Skip. */
5e2b427d 1924 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1925 augmentation += 2;
1926 }
1927
2dc7f7b3
TT
1928 if (cie->version >= 4)
1929 {
1930 /* FIXME: check that this is the same as from the CU header. */
1931 cie->addr_size = read_1_byte (unit->abfd, buf);
1932 ++buf;
1933 cie->segment_size = read_1_byte (unit->abfd, buf);
1934 ++buf;
1935 }
1936 else
1937 {
8da614df 1938 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1939 cie->segment_size = 0;
1940 }
8da614df
CV
1941 /* Address values in .eh_frame sections are defined to have the
1942 target's pointer size. Watchout: This breaks frame info for
1943 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1944 section exists as well. */
8da614df
CV
1945 if (eh_frame_p)
1946 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1947 else
1948 cie->ptr_size = cie->addr_size;
2dc7f7b3 1949
f664829e
DE
1950 buf = gdb_read_uleb128 (buf, end, &uleb128);
1951 if (buf == NULL)
1952 return NULL;
1953 cie->code_alignment_factor = uleb128;
cfc14b3a 1954
f664829e
DE
1955 buf = gdb_read_sleb128 (buf, end, &sleb128);
1956 if (buf == NULL)
1957 return NULL;
1958 cie->data_alignment_factor = sleb128;
cfc14b3a 1959
28ba0b33
PB
1960 if (cie_version == 1)
1961 {
1962 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1963 ++buf;
28ba0b33
PB
1964 }
1965 else
f664829e
DE
1966 {
1967 buf = gdb_read_uleb128 (buf, end, &uleb128);
1968 if (buf == NULL)
1969 return NULL;
1970 cie->return_address_register = uleb128;
1971 }
1972
4fc771b8 1973 cie->return_address_register
5e2b427d 1974 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1975 cie->return_address_register,
1976 eh_frame_p);
4bf8967c 1977
7131cb6e
RH
1978 cie->saw_z_augmentation = (*augmentation == 'z');
1979 if (cie->saw_z_augmentation)
cfc14b3a 1980 {
f664829e 1981 unsigned long long length;
cfc14b3a 1982
f664829e
DE
1983 buf = gdb_read_uleb128 (buf, end, &length);
1984 if (buf == NULL)
6896c0c7 1985 return NULL;
cfc14b3a
MK
1986 cie->initial_instructions = buf + length;
1987 augmentation++;
1988 }
1989
1990 while (*augmentation)
1991 {
1992 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1993 if (*augmentation == 'L')
1994 {
1995 /* Skip. */
1996 buf++;
1997 augmentation++;
1998 }
1999
2000 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2001 else if (*augmentation == 'R')
2002 {
2003 cie->encoding = *buf++;
2004 augmentation++;
2005 }
2006
2007 /* "P" indicates a personality routine in the CIE augmentation. */
2008 else if (*augmentation == 'P')
2009 {
1234d960 2010 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2011 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2012 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2013 buf, &bytes_read, 0);
f724bf08 2014 buf += bytes_read;
cfc14b3a
MK
2015 augmentation++;
2016 }
2017
56c987f6
AO
2018 /* "S" indicates a signal frame, such that the return
2019 address must not be decremented to locate the call frame
2020 info for the previous frame; it might even be the first
2021 instruction of a function, so decrementing it would take
2022 us to a different function. */
2023 else if (*augmentation == 'S')
2024 {
2025 cie->signal_frame = 1;
2026 augmentation++;
2027 }
2028
3e9a2e52
DJ
2029 /* Otherwise we have an unknown augmentation. Assume that either
2030 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2031 else
2032 {
3e9a2e52
DJ
2033 if (cie->initial_instructions)
2034 buf = cie->initial_instructions;
cfc14b3a
MK
2035 break;
2036 }
2037 }
2038
2039 cie->initial_instructions = buf;
2040 cie->end = end;
b01c8410 2041 cie->unit = unit;
cfc14b3a 2042
b01c8410 2043 add_cie (cie_table, cie);
cfc14b3a
MK
2044 }
2045 else
2046 {
2047 /* This is a FDE. */
2048 struct dwarf2_fde *fde;
2049
8bd90839
FM
2050 /* Check that an FDE was expected. */
2051 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2052 error (_("Found an FDE when not expecting it."));
2053
6896c0c7
RH
2054 /* In an .eh_frame section, the CIE pointer is the delta between the
2055 address within the FDE where the CIE pointer is stored and the
2056 address of the CIE. Convert it to an offset into the .eh_frame
2057 section. */
cfc14b3a
MK
2058 if (eh_frame_p)
2059 {
cfc14b3a
MK
2060 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2061 cie_pointer -= (dwarf64_p ? 8 : 4);
2062 }
2063
6896c0c7
RH
2064 /* In either case, validate the result is still within the section. */
2065 if (cie_pointer >= unit->dwarf_frame_size)
2066 return NULL;
2067
cfc14b3a 2068 fde = (struct dwarf2_fde *)
8b92e4d5 2069 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2070 sizeof (struct dwarf2_fde));
b01c8410 2071 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2072 if (fde->cie == NULL)
2073 {
2074 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2075 eh_frame_p, cie_table, fde_table,
2076 EH_CIE_TYPE_ID);
b01c8410 2077 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2078 }
2079
2080 gdb_assert (fde->cie != NULL);
2081
2082 fde->initial_location =
8da614df 2083 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
ae0d2f24 2084 buf, &bytes_read, 0);
cfc14b3a
MK
2085 buf += bytes_read;
2086
2087 fde->address_range =
ae0d2f24 2088 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2089 fde->cie->ptr_size, buf, &bytes_read, 0);
cfc14b3a
MK
2090 buf += bytes_read;
2091
7131cb6e
RH
2092 /* A 'z' augmentation in the CIE implies the presence of an
2093 augmentation field in the FDE as well. The only thing known
2094 to be in here at present is the LSDA entry for EH. So we
2095 can skip the whole thing. */
2096 if (fde->cie->saw_z_augmentation)
2097 {
f664829e 2098 unsigned long long length;
7131cb6e 2099
f664829e
DE
2100 buf = gdb_read_uleb128 (buf, end, &length);
2101 if (buf == NULL)
2102 return NULL;
2103 buf += length;
6896c0c7
RH
2104 if (buf > end)
2105 return NULL;
7131cb6e
RH
2106 }
2107
cfc14b3a
MK
2108 fde->instructions = buf;
2109 fde->end = end;
2110
4bf8967c
AS
2111 fde->eh_frame_p = eh_frame_p;
2112
b01c8410 2113 add_fde (fde_table, fde);
cfc14b3a
MK
2114 }
2115
2116 return end;
2117}
6896c0c7 2118
8bd90839
FM
2119/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2120 expect an FDE or a CIE. */
2121
f664829e
DE
2122static const gdb_byte *
2123decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2124 int eh_frame_p,
b01c8410 2125 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2126 struct dwarf2_fde_table *fde_table,
2127 enum eh_frame_type entry_type)
6896c0c7
RH
2128{
2129 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2130 const gdb_byte *ret;
6896c0c7
RH
2131 ptrdiff_t start_offset;
2132
2133 while (1)
2134 {
b01c8410 2135 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2136 cie_table, fde_table, entry_type);
6896c0c7
RH
2137 if (ret != NULL)
2138 break;
2139
2140 /* We have corrupt input data of some form. */
2141
2142 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2143 and mismatches wrt padding and alignment of debug sections. */
2144 /* Note that there is no requirement in the standard for any
2145 alignment at all in the frame unwind sections. Testing for
2146 alignment before trying to interpret data would be incorrect.
2147
2148 However, GCC traditionally arranged for frame sections to be
2149 sized such that the FDE length and CIE fields happen to be
2150 aligned (in theory, for performance). This, unfortunately,
2151 was done with .align directives, which had the side effect of
2152 forcing the section to be aligned by the linker.
2153
2154 This becomes a problem when you have some other producer that
2155 creates frame sections that are not as strictly aligned. That
2156 produces a hole in the frame info that gets filled by the
2157 linker with zeros.
2158
2159 The GCC behaviour is arguably a bug, but it's effectively now
2160 part of the ABI, so we're now stuck with it, at least at the
2161 object file level. A smart linker may decide, in the process
2162 of compressing duplicate CIE information, that it can rewrite
2163 the entire output section without this extra padding. */
2164
2165 start_offset = start - unit->dwarf_frame_buffer;
2166 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2167 {
2168 start += 4 - (start_offset & 3);
2169 workaround = ALIGN4;
2170 continue;
2171 }
2172 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2173 {
2174 start += 8 - (start_offset & 7);
2175 workaround = ALIGN8;
2176 continue;
2177 }
2178
2179 /* Nothing left to try. Arrange to return as if we've consumed
2180 the entire input section. Hopefully we'll get valid info from
2181 the other of .debug_frame/.eh_frame. */
2182 workaround = FAIL;
2183 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2184 break;
2185 }
2186
2187 switch (workaround)
2188 {
2189 case NONE:
2190 break;
2191
2192 case ALIGN4:
3e43a32a
MS
2193 complaint (&symfile_complaints, _("\
2194Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2195 unit->dwarf_frame_section->owner->filename,
2196 unit->dwarf_frame_section->name);
2197 break;
2198
2199 case ALIGN8:
3e43a32a
MS
2200 complaint (&symfile_complaints, _("\
2201Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2202 unit->dwarf_frame_section->owner->filename,
2203 unit->dwarf_frame_section->name);
2204 break;
2205
2206 default:
2207 complaint (&symfile_complaints,
e2e0b3e5 2208 _("Corrupt data in %s:%s"),
6896c0c7
RH
2209 unit->dwarf_frame_section->owner->filename,
2210 unit->dwarf_frame_section->name);
2211 break;
2212 }
2213
2214 return ret;
2215}
cfc14b3a 2216\f
b01c8410
PP
2217static int
2218qsort_fde_cmp (const void *a, const void *b)
2219{
2220 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2221 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2222
b01c8410 2223 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2224 {
2225 if (aa->address_range != bb->address_range
2226 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2227 /* Linker bug, e.g. gold/10400.
2228 Work around it by keeping stable sort order. */
2229 return (a < b) ? -1 : 1;
2230 else
2231 /* Put eh_frame entries after debug_frame ones. */
2232 return aa->eh_frame_p - bb->eh_frame_p;
2233 }
b01c8410
PP
2234
2235 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2236}
2237
cfc14b3a
MK
2238void
2239dwarf2_build_frame_info (struct objfile *objfile)
2240{
ae0d2f24 2241 struct comp_unit *unit;
f664829e 2242 const gdb_byte *frame_ptr;
b01c8410
PP
2243 struct dwarf2_cie_table cie_table;
2244 struct dwarf2_fde_table fde_table;
be391dca 2245 struct dwarf2_fde_table *fde_table2;
8bd90839 2246 volatile struct gdb_exception e;
b01c8410
PP
2247
2248 cie_table.num_entries = 0;
2249 cie_table.entries = NULL;
2250
2251 fde_table.num_entries = 0;
2252 fde_table.entries = NULL;
cfc14b3a
MK
2253
2254 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2255 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2256 sizeof (struct comp_unit));
2257 unit->abfd = objfile->obfd;
2258 unit->objfile = objfile;
2259 unit->dbase = 0;
2260 unit->tbase = 0;
cfc14b3a 2261
d40102a1 2262 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2263 {
d40102a1
JB
2264 /* Do not read .eh_frame from separate file as they must be also
2265 present in the main file. */
2266 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2267 &unit->dwarf_frame_section,
2268 &unit->dwarf_frame_buffer,
2269 &unit->dwarf_frame_size);
2270 if (unit->dwarf_frame_size)
b01c8410 2271 {
d40102a1
JB
2272 asection *got, *txt;
2273
2274 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2275 that is used for the i386/amd64 target, which currently is
2276 the only target in GCC that supports/uses the
2277 DW_EH_PE_datarel encoding. */
2278 got = bfd_get_section_by_name (unit->abfd, ".got");
2279 if (got)
2280 unit->dbase = got->vma;
2281
2282 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2283 so far. */
2284 txt = bfd_get_section_by_name (unit->abfd, ".text");
2285 if (txt)
2286 unit->tbase = txt->vma;
2287
8bd90839
FM
2288 TRY_CATCH (e, RETURN_MASK_ERROR)
2289 {
2290 frame_ptr = unit->dwarf_frame_buffer;
2291 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2292 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2293 &cie_table, &fde_table,
2294 EH_CIE_OR_FDE_TYPE_ID);
2295 }
2296
2297 if (e.reason < 0)
2298 {
2299 warning (_("skipping .eh_frame info of %s: %s"),
2300 objfile->name, e.message);
2301
2302 if (fde_table.num_entries != 0)
2303 {
2304 xfree (fde_table.entries);
2305 fde_table.entries = NULL;
2306 fde_table.num_entries = 0;
2307 }
2308 /* The cie_table is discarded by the next if. */
2309 }
d40102a1
JB
2310
2311 if (cie_table.num_entries != 0)
2312 {
2313 /* Reinit cie_table: debug_frame has different CIEs. */
2314 xfree (cie_table.entries);
2315 cie_table.num_entries = 0;
2316 cie_table.entries = NULL;
2317 }
b01c8410 2318 }
cfc14b3a
MK
2319 }
2320
3017a003 2321 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2322 &unit->dwarf_frame_section,
2323 &unit->dwarf_frame_buffer,
2324 &unit->dwarf_frame_size);
2325 if (unit->dwarf_frame_size)
cfc14b3a 2326 {
8bd90839
FM
2327 int num_old_fde_entries = fde_table.num_entries;
2328
2329 TRY_CATCH (e, RETURN_MASK_ERROR)
2330 {
2331 frame_ptr = unit->dwarf_frame_buffer;
2332 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2333 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2334 &cie_table, &fde_table,
2335 EH_CIE_OR_FDE_TYPE_ID);
2336 }
2337 if (e.reason < 0)
2338 {
2339 warning (_("skipping .debug_frame info of %s: %s"),
2340 objfile->name, e.message);
2341
2342 if (fde_table.num_entries != 0)
2343 {
2344 fde_table.num_entries = num_old_fde_entries;
2345 if (num_old_fde_entries == 0)
2346 {
2347 xfree (fde_table.entries);
2348 fde_table.entries = NULL;
2349 }
2350 else
2351 {
2352 fde_table.entries = xrealloc (fde_table.entries,
2353 fde_table.num_entries *
2354 sizeof (fde_table.entries[0]));
2355 }
2356 }
2357 fde_table.num_entries = num_old_fde_entries;
2358 /* The cie_table is discarded by the next if. */
2359 }
b01c8410
PP
2360 }
2361
2362 /* Discard the cie_table, it is no longer needed. */
2363 if (cie_table.num_entries != 0)
2364 {
2365 xfree (cie_table.entries);
2366 cie_table.entries = NULL; /* Paranoia. */
2367 cie_table.num_entries = 0; /* Paranoia. */
2368 }
2369
be391dca
TT
2370 /* Copy fde_table to obstack: it is needed at runtime. */
2371 fde_table2 = (struct dwarf2_fde_table *)
2372 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2373
2374 if (fde_table.num_entries == 0)
2375 {
2376 fde_table2->entries = NULL;
2377 fde_table2->num_entries = 0;
2378 }
2379 else
b01c8410 2380 {
875cdfbb
PA
2381 struct dwarf2_fde *fde_prev = NULL;
2382 struct dwarf2_fde *first_non_zero_fde = NULL;
2383 int i;
b01c8410
PP
2384
2385 /* Prepare FDE table for lookups. */
2386 qsort (fde_table.entries, fde_table.num_entries,
2387 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2388
875cdfbb
PA
2389 /* Check for leftovers from --gc-sections. The GNU linker sets
2390 the relevant symbols to zero, but doesn't zero the FDE *end*
2391 ranges because there's no relocation there. It's (offset,
2392 length), not (start, end). On targets where address zero is
2393 just another valid address this can be a problem, since the
2394 FDEs appear to be non-empty in the output --- we could pick
2395 out the wrong FDE. To work around this, when overlaps are
2396 detected, we prefer FDEs that do not start at zero.
2397
2398 Start by finding the first FDE with non-zero start. Below
2399 we'll discard all FDEs that start at zero and overlap this
2400 one. */
2401 for (i = 0; i < fde_table.num_entries; i++)
2402 {
2403 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2404
875cdfbb
PA
2405 if (fde->initial_location != 0)
2406 {
2407 first_non_zero_fde = fde;
2408 break;
2409 }
2410 }
2411
2412 /* Since we'll be doing bsearch, squeeze out identical (except
2413 for eh_frame_p) fde entries so bsearch result is predictable.
2414 Also discard leftovers from --gc-sections. */
be391dca 2415 fde_table2->num_entries = 0;
875cdfbb
PA
2416 for (i = 0; i < fde_table.num_entries; i++)
2417 {
2418 struct dwarf2_fde *fde = fde_table.entries[i];
2419
2420 if (fde->initial_location == 0
2421 && first_non_zero_fde != NULL
2422 && (first_non_zero_fde->initial_location
2423 < fde->initial_location + fde->address_range))
2424 continue;
2425
2426 if (fde_prev != NULL
2427 && fde_prev->initial_location == fde->initial_location)
2428 continue;
2429
2430 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2431 sizeof (fde_table.entries[0]));
2432 ++fde_table2->num_entries;
2433 fde_prev = fde;
2434 }
b01c8410 2435 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2436
2437 /* Discard the original fde_table. */
2438 xfree (fde_table.entries);
cfc14b3a 2439 }
be391dca
TT
2440
2441 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2442}
0d0e1a63
MK
2443
2444/* Provide a prototype to silence -Wmissing-prototypes. */
2445void _initialize_dwarf2_frame (void);
2446
2447void
2448_initialize_dwarf2_frame (void)
2449{
030f20e1 2450 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2451 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2452}
This page took 1.016055 seconds and 4 git commands to generate.