Change minimal_symbol_reader::record_full to take a bool
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
618f726f 3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
0b722aec 34#include "record.h"
cfc14b3a 35
6896c0c7 36#include "complaints.h"
cfc14b3a 37#include "dwarf2-frame.h"
9f6f94ff
TT
38#include "ax.h"
39#include "dwarf2loc.h"
111c6489 40#include "dwarf2-frame-tailcall.h"
cfc14b3a 41
ae0d2f24
UW
42struct comp_unit;
43
cfc14b3a
MK
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
ae0d2f24
UW
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
cfc14b3a
MK
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
f664829e
DE
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
cfc14b3a 70
303b6f5d
DJ
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
cfc14b3a 74 /* Encoding of addresses. */
852483bc 75 gdb_byte encoding;
cfc14b3a 76
ae0d2f24
UW
77 /* Target address size in bytes. */
78 int addr_size;
79
0963b4bd 80 /* Target pointer size in bytes. */
8da614df
CV
81 int ptr_size;
82
7131cb6e
RH
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
56c987f6
AO
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
303b6f5d
DJ
89 /* The version recorded in the CIE. */
90 unsigned char version;
2dc7f7b3
TT
91
92 /* The segment size. */
93 unsigned char segment_size;
b01c8410 94};
303b6f5d 95
b01c8410
PP
96struct dwarf2_cie_table
97{
98 int num_entries;
99 struct dwarf2_cie **entries;
cfc14b3a
MK
100};
101
102/* Frame Description Entry (FDE). */
103
104struct dwarf2_fde
105{
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
f664829e
DE
116 const gdb_byte *instructions;
117 const gdb_byte *end;
cfc14b3a 118
4bf8967c
AS
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
b01c8410 122};
4bf8967c 123
b01c8410
PP
124struct dwarf2_fde_table
125{
126 int num_entries;
127 struct dwarf2_fde **entries;
cfc14b3a
MK
128};
129
ae0d2f24
UW
130/* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133struct comp_unit
134{
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
ae0d2f24 140 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 141 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
142
143 /* Length of the loaded .debug_frame section. */
c098b58b 144 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154};
155
ac56253d
TT
156static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
4fc771b8
DJ
158
159static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
ae0d2f24
UW
161
162static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 163 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
cfc14b3a
MK
166\f
167
52059ffd
TT
168enum cfa_how_kind
169{
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
173};
174
175struct dwarf2_frame_state_reg_info
176{
177 struct dwarf2_frame_state_reg *reg;
178 int num_regs;
179
180 LONGEST cfa_offset;
181 ULONGEST cfa_reg;
182 enum cfa_how_kind cfa_how;
183 const gdb_byte *cfa_exp;
184
185 /* Used to implement DW_CFA_remember_state. */
186 struct dwarf2_frame_state_reg_info *prev;
187};
188
cfc14b3a
MK
189/* Structure describing a frame state. */
190
191struct dwarf2_frame_state
192{
193 /* Each register save state can be described in terms of a CFA slot,
194 another register, or a location expression. */
52059ffd 195 struct dwarf2_frame_state_reg_info regs;
cfc14b3a 196
cfc14b3a
MK
197 /* The PC described by the current frame state. */
198 CORE_ADDR pc;
199
200 /* Initial register set from the CIE.
201 Used to implement DW_CFA_restore. */
202 struct dwarf2_frame_state_reg_info initial;
203
204 /* The information we care about from the CIE. */
205 LONGEST data_align;
206 ULONGEST code_align;
207 ULONGEST retaddr_column;
303b6f5d
DJ
208
209 /* Flags for known producer quirks. */
210
211 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
212 and DW_CFA_def_cfa_offset takes a factored offset. */
213 int armcc_cfa_offsets_sf;
214
215 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
216 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
217 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
218};
219
220/* Store the length the expression for the CFA in the `cfa_reg' field,
221 which is unused in that case. */
222#define cfa_exp_len cfa_reg
223
f57d151a 224/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
225 columns. If necessary, enlarge the register set. */
226
227static void
228dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
229 int num_regs)
230{
231 size_t size = sizeof (struct dwarf2_frame_state_reg);
232
233 if (num_regs <= rs->num_regs)
234 return;
235
236 rs->reg = (struct dwarf2_frame_state_reg *)
237 xrealloc (rs->reg, num_regs * size);
238
239 /* Initialize newly allocated registers. */
2473a4a9 240 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
241 rs->num_regs = num_regs;
242}
243
244/* Copy the register columns in register set RS into newly allocated
245 memory and return a pointer to this newly created copy. */
246
247static struct dwarf2_frame_state_reg *
248dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
249{
d10891d4 250 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
251 struct dwarf2_frame_state_reg *reg;
252
253 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
254 memcpy (reg, rs->reg, size);
255
256 return reg;
257}
258
259/* Release the memory allocated to register set RS. */
260
261static void
262dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
263{
264 if (rs)
265 {
266 dwarf2_frame_state_free_regs (rs->prev);
267
268 xfree (rs->reg);
269 xfree (rs);
270 }
271}
272
273/* Release the memory allocated to the frame state FS. */
274
275static void
276dwarf2_frame_state_free (void *p)
277{
9a3c8263 278 struct dwarf2_frame_state *fs = (struct dwarf2_frame_state *) p;
cfc14b3a
MK
279
280 dwarf2_frame_state_free_regs (fs->initial.prev);
281 dwarf2_frame_state_free_regs (fs->regs.prev);
282 xfree (fs->initial.reg);
283 xfree (fs->regs.reg);
284 xfree (fs);
285}
286\f
287
288/* Helper functions for execute_stack_op. */
289
290static CORE_ADDR
192ca6d8 291read_addr_from_reg (struct frame_info *this_frame, int reg)
cfc14b3a 292{
4a4e5149 293 struct gdbarch *gdbarch = get_frame_arch (this_frame);
0fde2c53 294 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
f2da6b3a 295
2ed3c037 296 return address_from_register (regnum, this_frame);
cfc14b3a
MK
297}
298
a6a5a945
LM
299/* Execute the required actions for both the DW_CFA_restore and
300DW_CFA_restore_extended instructions. */
301static void
302dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
303 struct dwarf2_frame_state *fs, int eh_frame_p)
304{
305 ULONGEST reg;
306
307 gdb_assert (fs->initial.reg);
308 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
309 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
310
311 /* Check if this register was explicitly initialized in the
312 CIE initial instructions. If not, default the rule to
313 UNSPECIFIED. */
314 if (reg < fs->initial.num_regs)
315 fs->regs.reg[reg] = fs->initial.reg[reg];
316 else
317 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
318
319 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
0fde2c53
DE
320 {
321 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
322
323 complaint (&symfile_complaints, _("\
a6a5a945 324incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 325register %s (#%d) at %s"),
0fde2c53
DE
326 gdbarch_register_name (gdbarch, regnum), regnum,
327 paddress (gdbarch, fs->pc));
328 }
a6a5a945
LM
329}
330
192ca6d8 331class dwarf_expr_executor : public dwarf_expr_context
9e8b7a03 332{
192ca6d8
TT
333 public:
334
335 struct frame_info *this_frame;
336
337 CORE_ADDR read_addr_from_reg (int reg) OVERRIDE
338 {
339 return ::read_addr_from_reg (this_frame, reg);
340 }
341
342 struct value *get_reg_value (struct type *type, int reg) OVERRIDE
343 {
344 struct gdbarch *gdbarch = get_frame_arch (this_frame);
345 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
346
347 return value_from_register (type, regnum, this_frame);
348 }
349
350 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
351 {
352 read_memory (addr, buf, len);
353 }
9e8b7a03
JK
354};
355
cfc14b3a 356static CORE_ADDR
0d45f56e 357execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
358 CORE_ADDR offset, struct frame_info *this_frame,
359 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a 360{
cfc14b3a 361 CORE_ADDR result;
4a227398 362 struct cleanup *old_chain;
cfc14b3a 363
192ca6d8 364 dwarf_expr_executor ctx;
718b9626 365 old_chain = make_cleanup_value_free_to_mark (value_mark ());
4a227398 366
192ca6d8 367 ctx.this_frame = this_frame;
718b9626
TT
368 ctx.gdbarch = get_frame_arch (this_frame);
369 ctx.addr_size = addr_size;
370 ctx.ref_addr_size = -1;
371 ctx.offset = offset;
cfc14b3a 372
595d2e30
TT
373 ctx.push_address (initial, initial_in_stack_memory);
374 ctx.eval (exp, len);
cfc14b3a 375
718b9626 376 if (ctx.location == DWARF_VALUE_MEMORY)
595d2e30 377 result = ctx.fetch_address (0);
718b9626 378 else if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 379 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
f2c7657e 380 else
cec03d70
TT
381 {
382 /* This is actually invalid DWARF, but if we ever do run across
383 it somehow, we might as well support it. So, instead, report
384 it as unimplemented. */
3e43a32a
MS
385 error (_("\
386Not implemented: computing unwound register using explicit value operator"));
cec03d70 387 }
cfc14b3a 388
4a227398 389 do_cleanups (old_chain);
cfc14b3a
MK
390
391 return result;
392}
393\f
394
111c6489
JK
395/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
396 PC. Modify FS state accordingly. Return current INSN_PTR where the
397 execution has stopped, one can resume it on the next call. */
398
399static const gdb_byte *
0d45f56e 400execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
401 const gdb_byte *insn_end, struct gdbarch *gdbarch,
402 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 403{
ae0d2f24 404 int eh_frame_p = fde->eh_frame_p;
507a579c 405 unsigned int bytes_read;
e17a4113 406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
407
408 while (insn_ptr < insn_end && fs->pc <= pc)
409 {
852483bc 410 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
411 uint64_t utmp, reg;
412 int64_t offset;
cfc14b3a
MK
413
414 if ((insn & 0xc0) == DW_CFA_advance_loc)
415 fs->pc += (insn & 0x3f) * fs->code_align;
416 else if ((insn & 0xc0) == DW_CFA_offset)
417 {
418 reg = insn & 0x3f;
4fc771b8 419 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 420 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
421 offset = utmp * fs->data_align;
422 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 423 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
424 fs->regs.reg[reg].loc.offset = offset;
425 }
426 else if ((insn & 0xc0) == DW_CFA_restore)
427 {
cfc14b3a 428 reg = insn & 0x3f;
a6a5a945 429 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
430 }
431 else
432 {
433 switch (insn)
434 {
435 case DW_CFA_set_loc:
ae0d2f24 436 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 437 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
438 &bytes_read, fde->initial_location);
439 /* Apply the objfile offset for relocatable objects. */
440 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
441 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
442 insn_ptr += bytes_read;
443 break;
444
445 case DW_CFA_advance_loc1:
e17a4113 446 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
447 fs->pc += utmp * fs->code_align;
448 insn_ptr++;
449 break;
450 case DW_CFA_advance_loc2:
e17a4113 451 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
452 fs->pc += utmp * fs->code_align;
453 insn_ptr += 2;
454 break;
455 case DW_CFA_advance_loc4:
e17a4113 456 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
457 fs->pc += utmp * fs->code_align;
458 insn_ptr += 4;
459 break;
460
461 case DW_CFA_offset_extended:
f664829e 462 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 463 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 464 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
465 offset = utmp * fs->data_align;
466 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 467 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
468 fs->regs.reg[reg].loc.offset = offset;
469 break;
470
471 case DW_CFA_restore_extended:
f664829e 472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 473 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
474 break;
475
476 case DW_CFA_undefined:
f664829e 477 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 478 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 479 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 480 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
481 break;
482
483 case DW_CFA_same_value:
f664829e 484 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 485 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 486 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 487 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
488 break;
489
490 case DW_CFA_register:
f664829e 491 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 492 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 493 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 494 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 495 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 496 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
497 fs->regs.reg[reg].loc.reg = utmp;
498 break;
499
500 case DW_CFA_remember_state:
501 {
502 struct dwarf2_frame_state_reg_info *new_rs;
503
70ba0933 504 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
cfc14b3a
MK
505 *new_rs = fs->regs;
506 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
507 fs->regs.prev = new_rs;
508 }
509 break;
510
511 case DW_CFA_restore_state:
512 {
513 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
514
50ea7769
MK
515 if (old_rs == NULL)
516 {
e2e0b3e5 517 complaint (&symfile_complaints, _("\
5af949e3
UW
518bad CFI data; mismatched DW_CFA_restore_state at %s"),
519 paddress (gdbarch, fs->pc));
50ea7769
MK
520 }
521 else
522 {
523 xfree (fs->regs.reg);
524 fs->regs = *old_rs;
525 xfree (old_rs);
526 }
cfc14b3a
MK
527 }
528 break;
529
530 case DW_CFA_def_cfa:
f664829e
DE
531 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
532 fs->regs.cfa_reg = reg;
533 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
534
535 if (fs->armcc_cfa_offsets_sf)
536 utmp *= fs->data_align;
537
2fd481e1
PP
538 fs->regs.cfa_offset = utmp;
539 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
540 break;
541
542 case DW_CFA_def_cfa_register:
f664829e
DE
543 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
544 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
545 eh_frame_p);
546 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
547 break;
548
549 case DW_CFA_def_cfa_offset:
f664829e 550 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
551
552 if (fs->armcc_cfa_offsets_sf)
553 utmp *= fs->data_align;
554
2fd481e1 555 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
556 /* cfa_how deliberately not set. */
557 break;
558
a8504492
MK
559 case DW_CFA_nop:
560 break;
561
cfc14b3a 562 case DW_CFA_def_cfa_expression:
f664829e
DE
563 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
564 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
565 fs->regs.cfa_exp = insn_ptr;
566 fs->regs.cfa_how = CFA_EXP;
567 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
568 break;
569
570 case DW_CFA_expression:
f664829e 571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 572 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 573 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 574 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
575 fs->regs.reg[reg].loc.exp = insn_ptr;
576 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 577 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
578 insn_ptr += utmp;
579 break;
580
a8504492 581 case DW_CFA_offset_extended_sf:
f664829e 582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 583 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 584 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 585 offset *= fs->data_align;
a8504492 586 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 587 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
588 fs->regs.reg[reg].loc.offset = offset;
589 break;
590
46ea248b 591 case DW_CFA_val_offset:
f664829e 592 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 593 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 594 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
595 offset = utmp * fs->data_align;
596 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
597 fs->regs.reg[reg].loc.offset = offset;
598 break;
599
600 case DW_CFA_val_offset_sf:
f664829e 601 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 602 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 603 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
604 offset *= fs->data_align;
605 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
606 fs->regs.reg[reg].loc.offset = offset;
607 break;
608
609 case DW_CFA_val_expression:
f664829e 610 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 611 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 612 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
613 fs->regs.reg[reg].loc.exp = insn_ptr;
614 fs->regs.reg[reg].exp_len = utmp;
615 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
616 insn_ptr += utmp;
617 break;
618
a8504492 619 case DW_CFA_def_cfa_sf:
f664829e
DE
620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
621 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 622 eh_frame_p);
f664829e 623 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
624 fs->regs.cfa_offset = offset * fs->data_align;
625 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
626 break;
627
628 case DW_CFA_def_cfa_offset_sf:
f664829e 629 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 630 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 631 /* cfa_how deliberately not set. */
cfc14b3a
MK
632 break;
633
a77f4086
MK
634 case DW_CFA_GNU_window_save:
635 /* This is SPARC-specific code, and contains hard-coded
636 constants for the register numbering scheme used by
637 GCC. Rather than having a architecture-specific
638 operation that's only ever used by a single
639 architecture, we provide the implementation here.
640 Incidentally that's what GCC does too in its
641 unwinder. */
642 {
4a4e5149 643 int size = register_size (gdbarch, 0);
9a619af0 644
a77f4086
MK
645 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
646 for (reg = 8; reg < 16; reg++)
647 {
648 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
649 fs->regs.reg[reg].loc.reg = reg + 16;
650 }
651 for (reg = 16; reg < 32; reg++)
652 {
653 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
654 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
655 }
656 }
657 break;
658
cfc14b3a
MK
659 case DW_CFA_GNU_args_size:
660 /* Ignored. */
f664829e 661 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
662 break;
663
58894217 664 case DW_CFA_GNU_negative_offset_extended:
f664829e 665 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 666 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
667 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
668 offset = utmp * fs->data_align;
58894217
JK
669 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
670 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
671 fs->regs.reg[reg].loc.offset = -offset;
672 break;
673
cfc14b3a 674 default:
3e43a32a
MS
675 internal_error (__FILE__, __LINE__,
676 _("Unknown CFI encountered."));
cfc14b3a
MK
677 }
678 }
679 }
680
111c6489
JK
681 if (fs->initial.reg == NULL)
682 {
683 /* Don't allow remember/restore between CIE and FDE programs. */
684 dwarf2_frame_state_free_regs (fs->regs.prev);
685 fs->regs.prev = NULL;
686 }
687
688 return insn_ptr;
cfc14b3a 689}
8f22cb90 690\f
cfc14b3a 691
8f22cb90 692/* Architecture-specific operations. */
cfc14b3a 693
8f22cb90
MK
694/* Per-architecture data key. */
695static struct gdbarch_data *dwarf2_frame_data;
696
697struct dwarf2_frame_ops
698{
699 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
700 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
701 struct frame_info *);
3ed09a32 702
4a4e5149 703 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 704 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 705
4fc771b8
DJ
706 /* Convert .eh_frame register number to DWARF register number, or
707 adjust .debug_frame register number. */
708 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
709};
710
8f22cb90
MK
711/* Default architecture-specific register state initialization
712 function. */
713
714static void
715dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 716 struct dwarf2_frame_state_reg *reg,
4a4e5149 717 struct frame_info *this_frame)
8f22cb90
MK
718{
719 /* If we have a register that acts as a program counter, mark it as
720 a destination for the return address. If we have a register that
721 serves as the stack pointer, arrange for it to be filled with the
722 call frame address (CFA). The other registers are marked as
723 unspecified.
724
725 We copy the return address to the program counter, since many
726 parts in GDB assume that it is possible to get the return address
727 by unwinding the program counter register. However, on ISA's
728 with a dedicated return address register, the CFI usually only
729 contains information to unwind that return address register.
730
731 The reason we're treating the stack pointer special here is
732 because in many cases GCC doesn't emit CFI for the stack pointer
733 and implicitly assumes that it is equal to the CFA. This makes
734 some sense since the DWARF specification (version 3, draft 8,
735 p. 102) says that:
736
737 "Typically, the CFA is defined to be the value of the stack
738 pointer at the call site in the previous frame (which may be
739 different from its value on entry to the current frame)."
740
741 However, this isn't true for all platforms supported by GCC
742 (e.g. IBM S/390 and zSeries). Those architectures should provide
743 their own architecture-specific initialization function. */
05cbe71a 744
ad010def 745 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 746 reg->how = DWARF2_FRAME_REG_RA;
ad010def 747 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
748 reg->how = DWARF2_FRAME_REG_CFA;
749}
05cbe71a 750
8f22cb90 751/* Return a default for the architecture-specific operations. */
05cbe71a 752
8f22cb90 753static void *
030f20e1 754dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
755{
756 struct dwarf2_frame_ops *ops;
757
030f20e1 758 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
759 ops->init_reg = dwarf2_frame_default_init_reg;
760 return ops;
761}
05cbe71a 762
8f22cb90
MK
763/* Set the architecture-specific register state initialization
764 function for GDBARCH to INIT_REG. */
765
766void
767dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
768 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
769 struct dwarf2_frame_state_reg *,
770 struct frame_info *))
8f22cb90 771{
9a3c8263
SM
772 struct dwarf2_frame_ops *ops
773 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 774
8f22cb90
MK
775 ops->init_reg = init_reg;
776}
777
778/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
779
780static void
781dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 782 struct dwarf2_frame_state_reg *reg,
4a4e5149 783 struct frame_info *this_frame)
05cbe71a 784{
9a3c8263
SM
785 struct dwarf2_frame_ops *ops
786 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 787
4a4e5149 788 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 789}
3ed09a32
DJ
790
791/* Set the architecture-specific signal trampoline recognition
792 function for GDBARCH to SIGNAL_FRAME_P. */
793
794void
795dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
796 int (*signal_frame_p) (struct gdbarch *,
797 struct frame_info *))
798{
9a3c8263
SM
799 struct dwarf2_frame_ops *ops
800 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
801
802 ops->signal_frame_p = signal_frame_p;
803}
804
805/* Query the architecture-specific signal frame recognizer for
4a4e5149 806 THIS_FRAME. */
3ed09a32
DJ
807
808static int
809dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 810 struct frame_info *this_frame)
3ed09a32 811{
9a3c8263
SM
812 struct dwarf2_frame_ops *ops
813 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
814
815 if (ops->signal_frame_p == NULL)
816 return 0;
4a4e5149 817 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 818}
4bf8967c 819
4fc771b8
DJ
820/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
821 register numbers. */
4bf8967c
AS
822
823void
4fc771b8
DJ
824dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
825 int (*adjust_regnum) (struct gdbarch *,
826 int, int))
4bf8967c 827{
9a3c8263
SM
828 struct dwarf2_frame_ops *ops
829 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 830
4fc771b8 831 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
832}
833
4fc771b8
DJ
834/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
835 register. */
4bf8967c 836
4fc771b8 837static int
3e43a32a
MS
838dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
839 int regnum, int eh_frame_p)
4bf8967c 840{
9a3c8263
SM
841 struct dwarf2_frame_ops *ops
842 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 843
4fc771b8 844 if (ops->adjust_regnum == NULL)
4bf8967c 845 return regnum;
4fc771b8 846 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 847}
303b6f5d
DJ
848
849static void
850dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
851 struct dwarf2_fde *fde)
852{
43f3e411 853 struct compunit_symtab *cust;
303b6f5d 854
43f3e411
DE
855 cust = find_pc_compunit_symtab (fs->pc);
856 if (cust == NULL)
303b6f5d
DJ
857 return;
858
43f3e411 859 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
a6c727b2
DJ
860 {
861 if (fde->cie->version == 1)
862 fs->armcc_cfa_offsets_sf = 1;
863
864 if (fde->cie->version == 1)
865 fs->armcc_cfa_offsets_reversed = 1;
866
867 /* The reversed offset problem is present in some compilers
868 using DWARF3, but it was eventually fixed. Check the ARM
869 defined augmentations, which are in the format "armcc" followed
870 by a list of one-character options. The "+" option means
871 this problem is fixed (no quirk needed). If the armcc
872 augmentation is missing, the quirk is needed. */
873 if (fde->cie->version == 3
61012eef 874 && (!startswith (fde->cie->augmentation, "armcc")
a6c727b2
DJ
875 || strchr (fde->cie->augmentation + 5, '+') == NULL))
876 fs->armcc_cfa_offsets_reversed = 1;
877
878 return;
879 }
303b6f5d 880}
8f22cb90
MK
881\f
882
a8fd5589
TT
883/* See dwarf2-frame.h. */
884
885int
886dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
887 struct dwarf2_per_cu_data *data,
888 int *regnum_out, LONGEST *offset_out,
889 CORE_ADDR *text_offset_out,
890 const gdb_byte **cfa_start_out,
891 const gdb_byte **cfa_end_out)
9f6f94ff 892{
9f6f94ff 893 struct dwarf2_fde *fde;
22e048c9 894 CORE_ADDR text_offset;
9f6f94ff 895 struct dwarf2_frame_state fs;
9f6f94ff
TT
896
897 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
898
899 fs.pc = pc;
900
901 /* Find the correct FDE. */
902 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
903 if (fde == NULL)
904 error (_("Could not compute CFA; needed to translate this expression"));
905
906 /* Extract any interesting information from the CIE. */
907 fs.data_align = fde->cie->data_alignment_factor;
908 fs.code_align = fde->cie->code_alignment_factor;
909 fs.retaddr_column = fde->cie->return_address_register;
9f6f94ff
TT
910
911 /* Check for "quirks" - known bugs in producers. */
912 dwarf2_frame_find_quirks (&fs, fde);
913
914 /* First decode all the insns in the CIE. */
915 execute_cfa_program (fde, fde->cie->initial_instructions,
916 fde->cie->end, gdbarch, pc, &fs);
917
918 /* Save the initialized register set. */
919 fs.initial = fs.regs;
920 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
921
922 /* Then decode the insns in the FDE up to our target PC. */
923 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
924
925 /* Calculate the CFA. */
926 switch (fs.regs.cfa_how)
927 {
928 case CFA_REG_OFFSET:
929 {
0fde2c53 930 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
a8fd5589
TT
931
932 *regnum_out = regnum;
933 if (fs.armcc_cfa_offsets_reversed)
934 *offset_out = -fs.regs.cfa_offset;
935 else
936 *offset_out = fs.regs.cfa_offset;
937 return 1;
9f6f94ff 938 }
9f6f94ff
TT
939
940 case CFA_EXP:
a8fd5589
TT
941 *text_offset_out = text_offset;
942 *cfa_start_out = fs.regs.cfa_exp;
943 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
944 return 0;
9f6f94ff
TT
945
946 default:
947 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
948 }
949}
950
951\f
8f22cb90
MK
952struct dwarf2_frame_cache
953{
954 /* DWARF Call Frame Address. */
955 CORE_ADDR cfa;
956
8fbca658
PA
957 /* Set if the return address column was marked as unavailable
958 (required non-collected memory or registers to compute). */
959 int unavailable_retaddr;
960
0228dfb9
DJ
961 /* Set if the return address column was marked as undefined. */
962 int undefined_retaddr;
963
8f22cb90
MK
964 /* Saved registers, indexed by GDB register number, not by DWARF
965 register number. */
966 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
967
968 /* Return address register. */
969 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
970
971 /* Target address size in bytes. */
972 int addr_size;
ac56253d
TT
973
974 /* The .text offset. */
975 CORE_ADDR text_offset;
111c6489 976
1ec56e88
PA
977 /* True if we already checked whether this frame is the bottom frame
978 of a virtual tail call frame chain. */
979 int checked_tailcall_bottom;
980
111c6489
JK
981 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
982 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
983 involved. Non-bottom frames of a virtual tail call frames chain use
984 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
985 them. */
986 void *tailcall_cache;
1ec56e88
PA
987
988 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
989 base to get the SP, to simulate the return address pushed on the
990 stack. */
991 LONGEST entry_cfa_sp_offset;
992 int entry_cfa_sp_offset_p;
8f22cb90 993};
05cbe71a 994
78ac5f83
TT
995/* A cleanup that sets a pointer to NULL. */
996
997static void
998clear_pointer_cleanup (void *arg)
999{
9a3c8263 1000 void **ptr = (void **) arg;
78ac5f83
TT
1001
1002 *ptr = NULL;
1003}
1004
b9362cc7 1005static struct dwarf2_frame_cache *
4a4e5149 1006dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1007{
78ac5f83 1008 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1009 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1010 const int num_regs = gdbarch_num_regs (gdbarch)
1011 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1012 struct dwarf2_frame_cache *cache;
1013 struct dwarf2_frame_state *fs;
1014 struct dwarf2_fde *fde;
111c6489 1015 CORE_ADDR entry_pc;
111c6489 1016 const gdb_byte *instr;
cfc14b3a
MK
1017
1018 if (*this_cache)
9a3c8263 1019 return (struct dwarf2_frame_cache *) *this_cache;
cfc14b3a
MK
1020
1021 /* Allocate a new cache. */
1022 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1023 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1024 *this_cache = cache;
78ac5f83 1025 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1026
1027 /* Allocate and initialize the frame state. */
41bf6aca 1028 fs = XCNEW (struct dwarf2_frame_state);
cfc14b3a
MK
1029 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1030
1031 /* Unwind the PC.
1032
4a4e5149 1033 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1034 to abort), the compiler might optimize away the instruction at
4a4e5149 1035 its return address. As a result the return address will
cfc14b3a 1036 point at some random instruction, and the CFI for that
e4e9607c 1037 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1038 this problem by substracting 1 from the return address to get an
1039 address in the middle of a presumed call instruction (or the
1040 instruction in the associated delay slot). This should only be
1041 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1042 handlers, sentinel frames, dummy frames). The function
ad1193e7 1043 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1044 reliable the method is though; there is the potential for the
1045 register state pre-call being different to that on return. */
4a4e5149 1046 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1047
1048 /* Find the correct FDE. */
ac56253d 1049 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1050 gdb_assert (fde != NULL);
1051
1052 /* Extract any interesting information from the CIE. */
1053 fs->data_align = fde->cie->data_alignment_factor;
1054 fs->code_align = fde->cie->code_alignment_factor;
1055 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1056 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1057
303b6f5d
DJ
1058 /* Check for "quirks" - known bugs in producers. */
1059 dwarf2_frame_find_quirks (fs, fde);
1060
cfc14b3a 1061 /* First decode all the insns in the CIE. */
ae0d2f24 1062 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1063 fde->cie->end, gdbarch,
1064 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1065
1066 /* Save the initialized register set. */
1067 fs->initial = fs->regs;
1068 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1069
111c6489
JK
1070 if (get_frame_func_if_available (this_frame, &entry_pc))
1071 {
1072 /* Decode the insns in the FDE up to the entry PC. */
1073 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1074 entry_pc, fs);
1075
1076 if (fs->regs.cfa_how == CFA_REG_OFFSET
0fde2c53 1077 && (dwarf_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
111c6489
JK
1078 == gdbarch_sp_regnum (gdbarch)))
1079 {
1ec56e88
PA
1080 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1081 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1082 }
1083 }
1084 else
1085 instr = fde->instructions;
1086
cfc14b3a 1087 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1088 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1089 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1090
492d29ea 1091 TRY
cfc14b3a 1092 {
8fbca658
PA
1093 /* Calculate the CFA. */
1094 switch (fs->regs.cfa_how)
1095 {
1096 case CFA_REG_OFFSET:
b1370418 1097 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1098 if (fs->armcc_cfa_offsets_reversed)
1099 cache->cfa -= fs->regs.cfa_offset;
1100 else
1101 cache->cfa += fs->regs.cfa_offset;
1102 break;
1103
1104 case CFA_EXP:
1105 cache->cfa =
1106 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1107 cache->addr_size, cache->text_offset,
1108 this_frame, 0, 0);
1109 break;
1110
1111 default:
1112 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1113 }
1114 }
492d29ea 1115 CATCH (ex, RETURN_MASK_ERROR)
8fbca658
PA
1116 {
1117 if (ex.error == NOT_AVAILABLE_ERROR)
1118 {
1119 cache->unavailable_retaddr = 1;
5a1cf4d6 1120 do_cleanups (old_chain);
78ac5f83 1121 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1122 return cache;
1123 }
cfc14b3a 1124
8fbca658 1125 throw_exception (ex);
cfc14b3a 1126 }
492d29ea 1127 END_CATCH
cfc14b3a 1128
05cbe71a 1129 /* Initialize the register state. */
3e2c4033
AC
1130 {
1131 int regnum;
e4e9607c 1132
3e2c4033 1133 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1134 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1135 }
1136
1137 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1138 location information in the cache. Note that we don't skip the
1139 return address column; it's perfectly all right for it to
0fde2c53 1140 correspond to a real register. */
3e2c4033
AC
1141 {
1142 int column; /* CFI speak for "register number". */
e4e9607c 1143
3e2c4033
AC
1144 for (column = 0; column < fs->regs.num_regs; column++)
1145 {
3e2c4033 1146 /* Use the GDB register number as the destination index. */
0fde2c53 1147 int regnum = dwarf_reg_to_regnum (gdbarch, column);
3e2c4033 1148
0fde2c53 1149 /* Protect against a target returning a bad register. */
3e2c4033
AC
1150 if (regnum < 0 || regnum >= num_regs)
1151 continue;
1152
1153 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1154 of all debug info registers. If it doesn't, complain (but
1155 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1156 unspecified register implies "same value" when CFI (draft
1157 7) specifies nothing at all. Such a register could equally
1158 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1159 isn't sufficient; it only checks that all registers in the
1160 range [0 .. max column] are specified, and won't detect
3e2c4033 1161 problems when a debug info register falls outside of the
e4e9607c 1162 table. We need a way of iterating through all the valid
3e2c4033 1163 DWARF2 register numbers. */
05cbe71a 1164 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1165 {
1166 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1167 complaint (&symfile_complaints, _("\
5af949e3 1168incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1169 gdbarch_register_name (gdbarch, regnum),
5af949e3 1170 paddress (gdbarch, fs->pc));
f059bf6f 1171 }
35889917
MK
1172 else
1173 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1174 }
1175 }
cfc14b3a 1176
8d5a9abc
MK
1177 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1178 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1179 {
1180 int regnum;
1181
1182 for (regnum = 0; regnum < num_regs; regnum++)
1183 {
8d5a9abc
MK
1184 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1185 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1186 {
05cbe71a
MK
1187 struct dwarf2_frame_state_reg *retaddr_reg =
1188 &fs->regs.reg[fs->retaddr_column];
1189
d4f10bf2
MK
1190 /* It seems rather bizarre to specify an "empty" column as
1191 the return adress column. However, this is exactly
1192 what GCC does on some targets. It turns out that GCC
1193 assumes that the return address can be found in the
1194 register corresponding to the return address column.
8d5a9abc
MK
1195 Incidentally, that's how we should treat a return
1196 address column specifying "same value" too. */
d4f10bf2 1197 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1198 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1199 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1200 {
1201 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1202 cache->reg[regnum] = *retaddr_reg;
1203 else
1204 cache->retaddr_reg = *retaddr_reg;
1205 }
35889917
MK
1206 else
1207 {
8d5a9abc
MK
1208 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1209 {
1210 cache->reg[regnum].loc.reg = fs->retaddr_column;
1211 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1212 }
1213 else
1214 {
1215 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1216 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1217 }
35889917
MK
1218 }
1219 }
1220 }
1221 }
cfc14b3a 1222
0228dfb9
DJ
1223 if (fs->retaddr_column < fs->regs.num_regs
1224 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1225 cache->undefined_retaddr = 1;
1226
cfc14b3a 1227 do_cleanups (old_chain);
78ac5f83 1228 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1229 return cache;
1230}
1231
8fbca658
PA
1232static enum unwind_stop_reason
1233dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1234 void **this_cache)
1235{
1236 struct dwarf2_frame_cache *cache
1237 = dwarf2_frame_cache (this_frame, this_cache);
1238
1239 if (cache->unavailable_retaddr)
1240 return UNWIND_UNAVAILABLE;
1241
1242 if (cache->undefined_retaddr)
1243 return UNWIND_OUTERMOST;
1244
1245 return UNWIND_NO_REASON;
1246}
1247
cfc14b3a 1248static void
4a4e5149 1249dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1250 struct frame_id *this_id)
1251{
1252 struct dwarf2_frame_cache *cache =
4a4e5149 1253 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1254
8fbca658 1255 if (cache->unavailable_retaddr)
5ce0145d
PA
1256 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1257 else if (cache->undefined_retaddr)
8fbca658 1258 return;
5ce0145d
PA
1259 else
1260 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1261}
1262
4a4e5149
DJ
1263static struct value *
1264dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1265 int regnum)
93d42b30 1266{
4a4e5149 1267 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1268 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1269 dwarf2_frame_cache (this_frame, this_cache);
1270 CORE_ADDR addr;
1271 int realnum;
cfc14b3a 1272
1ec56e88
PA
1273 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1274 call frame chain. */
1275 if (!cache->checked_tailcall_bottom)
1276 {
1277 cache->checked_tailcall_bottom = 1;
1278 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1279 (cache->entry_cfa_sp_offset_p
1280 ? &cache->entry_cfa_sp_offset : NULL));
1281 }
1282
111c6489
JK
1283 /* Non-bottom frames of a virtual tail call frames chain use
1284 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1285 them. If dwarf2_tailcall_prev_register_first does not have specific value
1286 unwind the register, tail call frames are assumed to have the register set
1287 of the top caller. */
1288 if (cache->tailcall_cache)
1289 {
1290 struct value *val;
1291
1292 val = dwarf2_tailcall_prev_register_first (this_frame,
1293 &cache->tailcall_cache,
1294 regnum);
1295 if (val)
1296 return val;
1297 }
1298
cfc14b3a
MK
1299 switch (cache->reg[regnum].how)
1300 {
05cbe71a 1301 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1302 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1303 mark it as optimized away; the value isn't available. */
4a4e5149 1304 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1305
05cbe71a 1306 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1307 addr = cache->cfa + cache->reg[regnum].loc.offset;
1308 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1309
05cbe71a 1310 case DWARF2_FRAME_REG_SAVED_REG:
0fde2c53
DE
1311 realnum = dwarf_reg_to_regnum_or_error
1312 (gdbarch, cache->reg[regnum].loc.reg);
4a4e5149 1313 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1314
05cbe71a 1315 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1316 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1317 cache->reg[regnum].exp_len,
ac56253d
TT
1318 cache->addr_size, cache->text_offset,
1319 this_frame, cache->cfa, 1);
4a4e5149 1320 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1321
46ea248b 1322 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1323 addr = cache->cfa + cache->reg[regnum].loc.offset;
1324 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1325
1326 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1327 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1328 cache->reg[regnum].exp_len,
ac56253d
TT
1329 cache->addr_size, cache->text_offset,
1330 this_frame, cache->cfa, 1);
4a4e5149 1331 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1332
05cbe71a 1333 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1334 /* GCC, in its infinite wisdom decided to not provide unwind
1335 information for registers that are "same value". Since
1336 DWARF2 (3 draft 7) doesn't define such behavior, said
1337 registers are actually undefined (which is different to CFI
1338 "undefined"). Code above issues a complaint about this.
1339 Here just fudge the books, assume GCC, and that the value is
1340 more inner on the stack. */
4a4e5149 1341 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1342
05cbe71a 1343 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1344 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1345
05cbe71a 1346 case DWARF2_FRAME_REG_CFA:
4a4e5149 1347 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1348
ea7963f0 1349 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1350 addr = cache->cfa + cache->reg[regnum].loc.offset;
1351 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1352
8d5a9abc 1353 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149 1354 addr = cache->reg[regnum].loc.offset;
0fde2c53 1355 regnum = dwarf_reg_to_regnum_or_error
4a4e5149
DJ
1356 (gdbarch, cache->retaddr_reg.loc.reg);
1357 addr += get_frame_register_unsigned (this_frame, regnum);
1358 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1359
b39cc962
DJ
1360 case DWARF2_FRAME_REG_FN:
1361 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1362
cfc14b3a 1363 default:
e2e0b3e5 1364 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1365 }
1366}
1367
111c6489
JK
1368/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1369 call frames chain. */
1370
1371static void
1372dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1373{
1374 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1375
1376 if (cache->tailcall_cache)
1377 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1378}
1379
4a4e5149
DJ
1380static int
1381dwarf2_frame_sniffer (const struct frame_unwind *self,
1382 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1383{
1ce5d6dd 1384 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1385 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1386 end up returning something past the end of this function's body.
1387 If the frame we're sniffing for is a signal frame whose start
1388 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1389 extend one byte before its start address or we could potentially
1390 select the FDE of the previous function. */
1391 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1392 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1393
56c987f6 1394 if (!fde)
4a4e5149 1395 return 0;
3ed09a32
DJ
1396
1397 /* On some targets, signal trampolines may have unwind information.
1398 We need to recognize them so that we set the frame type
1399 correctly. */
1400
56c987f6 1401 if (fde->cie->signal_frame
4a4e5149
DJ
1402 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1403 this_frame))
1404 return self->type == SIGTRAMP_FRAME;
1405
111c6489
JK
1406 if (self->type != NORMAL_FRAME)
1407 return 0;
1408
111c6489 1409 return 1;
4a4e5149
DJ
1410}
1411
1412static const struct frame_unwind dwarf2_frame_unwind =
1413{
1414 NORMAL_FRAME,
8fbca658 1415 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1416 dwarf2_frame_this_id,
1417 dwarf2_frame_prev_register,
1418 NULL,
111c6489
JK
1419 dwarf2_frame_sniffer,
1420 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1421};
1422
1423static const struct frame_unwind dwarf2_signal_frame_unwind =
1424{
1425 SIGTRAMP_FRAME,
8fbca658 1426 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1427 dwarf2_frame_this_id,
1428 dwarf2_frame_prev_register,
1429 NULL,
111c6489
JK
1430 dwarf2_frame_sniffer,
1431
1432 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1433 NULL
4a4e5149 1434};
cfc14b3a 1435
4a4e5149
DJ
1436/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1437
1438void
1439dwarf2_append_unwinders (struct gdbarch *gdbarch)
1440{
111c6489
JK
1441 /* TAILCALL_FRAME must be first to find the record by
1442 dwarf2_tailcall_sniffer_first. */
1443 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1444
4a4e5149
DJ
1445 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1446 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1447}
1448\f
1449
1450/* There is no explicitly defined relationship between the CFA and the
1451 location of frame's local variables and arguments/parameters.
1452 Therefore, frame base methods on this page should probably only be
1453 used as a last resort, just to avoid printing total garbage as a
1454 response to the "info frame" command. */
1455
1456static CORE_ADDR
4a4e5149 1457dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1458{
1459 struct dwarf2_frame_cache *cache =
4a4e5149 1460 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1461
1462 return cache->cfa;
1463}
1464
1465static const struct frame_base dwarf2_frame_base =
1466{
1467 &dwarf2_frame_unwind,
1468 dwarf2_frame_base_address,
1469 dwarf2_frame_base_address,
1470 dwarf2_frame_base_address
1471};
1472
1473const struct frame_base *
4a4e5149 1474dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1475{
4a4e5149 1476 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1477
ac56253d 1478 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1479 return &dwarf2_frame_base;
1480
1481 return NULL;
1482}
e7802207
TT
1483
1484/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1485 the DWARF unwinder. This is used to implement
1486 DW_OP_call_frame_cfa. */
1487
1488CORE_ADDR
1489dwarf2_frame_cfa (struct frame_info *this_frame)
1490{
0b722aec
MM
1491 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1492 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1493 throw_error (NOT_AVAILABLE_ERROR,
1494 _("cfa not available for record btrace target"));
1495
e7802207
TT
1496 while (get_frame_type (this_frame) == INLINE_FRAME)
1497 this_frame = get_prev_frame (this_frame);
32261e52
MM
1498 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1499 throw_error (NOT_AVAILABLE_ERROR,
1500 _("can't compute CFA for this frame: "
1501 "required registers or memory are unavailable"));
14aba1ac
JB
1502
1503 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1504 throw_error (NOT_AVAILABLE_ERROR,
1505 _("can't compute CFA for this frame: "
1506 "frame base not available"));
1507
e7802207
TT
1508 return get_frame_base (this_frame);
1509}
cfc14b3a 1510\f
8f22cb90 1511const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1512
cfc14b3a 1513static unsigned int
f664829e 1514read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1515{
852483bc 1516 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1517}
1518
1519static unsigned int
f664829e 1520read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1521{
852483bc 1522 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1523}
1524
1525static ULONGEST
f664829e 1526read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1527{
852483bc 1528 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1529}
1530
1531static ULONGEST
f664829e
DE
1532read_initial_length (bfd *abfd, const gdb_byte *buf,
1533 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1534{
1535 LONGEST result;
1536
852483bc 1537 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1538 if (result == 0xffffffff)
1539 {
852483bc 1540 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1541 *bytes_read_ptr = 12;
1542 }
1543 else
1544 *bytes_read_ptr = 4;
1545
1546 return result;
1547}
1548\f
1549
1550/* Pointer encoding helper functions. */
1551
1552/* GCC supports exception handling based on DWARF2 CFI. However, for
1553 technical reasons, it encodes addresses in its FDE's in a different
1554 way. Several "pointer encodings" are supported. The encoding
1555 that's used for a particular FDE is determined by the 'R'
1556 augmentation in the associated CIE. The argument of this
1557 augmentation is a single byte.
1558
1559 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1560 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1561 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1562 address should be interpreted (absolute, relative to the current
1563 position in the FDE, ...). Bit 7, indicates that the address
1564 should be dereferenced. */
1565
852483bc 1566static gdb_byte
cfc14b3a
MK
1567encoding_for_size (unsigned int size)
1568{
1569 switch (size)
1570 {
1571 case 2:
1572 return DW_EH_PE_udata2;
1573 case 4:
1574 return DW_EH_PE_udata4;
1575 case 8:
1576 return DW_EH_PE_udata8;
1577 default:
e2e0b3e5 1578 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1579 }
1580}
1581
cfc14b3a 1582static CORE_ADDR
852483bc 1583read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1584 int ptr_len, const gdb_byte *buf,
1585 unsigned int *bytes_read_ptr,
ae0d2f24 1586 CORE_ADDR func_base)
cfc14b3a 1587{
68f6cf99 1588 ptrdiff_t offset;
cfc14b3a
MK
1589 CORE_ADDR base;
1590
1591 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1592 FDE's. */
1593 if (encoding & DW_EH_PE_indirect)
1594 internal_error (__FILE__, __LINE__,
e2e0b3e5 1595 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1596
68f6cf99
MK
1597 *bytes_read_ptr = 0;
1598
cfc14b3a
MK
1599 switch (encoding & 0x70)
1600 {
1601 case DW_EH_PE_absptr:
1602 base = 0;
1603 break;
1604 case DW_EH_PE_pcrel:
f2fec864 1605 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1606 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1607 break;
0912c7f2
MK
1608 case DW_EH_PE_datarel:
1609 base = unit->dbase;
1610 break;
0fd85043
CV
1611 case DW_EH_PE_textrel:
1612 base = unit->tbase;
1613 break;
03ac2a74 1614 case DW_EH_PE_funcrel:
ae0d2f24 1615 base = func_base;
03ac2a74 1616 break;
68f6cf99
MK
1617 case DW_EH_PE_aligned:
1618 base = 0;
852483bc 1619 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1620 if ((offset % ptr_len) != 0)
1621 {
1622 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1623 buf += *bytes_read_ptr;
1624 }
1625 break;
cfc14b3a 1626 default:
3e43a32a
MS
1627 internal_error (__FILE__, __LINE__,
1628 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1629 }
1630
b04de778 1631 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1632 {
1633 encoding |= encoding_for_size (ptr_len);
1634 if (bfd_get_sign_extend_vma (unit->abfd))
1635 encoding |= DW_EH_PE_signed;
1636 }
cfc14b3a
MK
1637
1638 switch (encoding & 0x0f)
1639 {
a81b10ae
MK
1640 case DW_EH_PE_uleb128:
1641 {
9fccedf7 1642 uint64_t value;
0d45f56e 1643 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1644
f664829e 1645 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1646 return base + value;
1647 }
cfc14b3a 1648 case DW_EH_PE_udata2:
68f6cf99 1649 *bytes_read_ptr += 2;
cfc14b3a
MK
1650 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1651 case DW_EH_PE_udata4:
68f6cf99 1652 *bytes_read_ptr += 4;
cfc14b3a
MK
1653 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1654 case DW_EH_PE_udata8:
68f6cf99 1655 *bytes_read_ptr += 8;
cfc14b3a 1656 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1657 case DW_EH_PE_sleb128:
1658 {
9fccedf7 1659 int64_t value;
0d45f56e 1660 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1661
f664829e 1662 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1663 return base + value;
1664 }
cfc14b3a 1665 case DW_EH_PE_sdata2:
68f6cf99 1666 *bytes_read_ptr += 2;
cfc14b3a
MK
1667 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1668 case DW_EH_PE_sdata4:
68f6cf99 1669 *bytes_read_ptr += 4;
cfc14b3a
MK
1670 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1671 case DW_EH_PE_sdata8:
68f6cf99 1672 *bytes_read_ptr += 8;
cfc14b3a
MK
1673 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1674 default:
3e43a32a
MS
1675 internal_error (__FILE__, __LINE__,
1676 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1677 }
1678}
1679\f
1680
b01c8410
PP
1681static int
1682bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1683{
b01c8410
PP
1684 ULONGEST cie_pointer = *(ULONGEST *) key;
1685 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1686
b01c8410
PP
1687 if (cie_pointer == cie->cie_pointer)
1688 return 0;
cfc14b3a 1689
b01c8410
PP
1690 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1691}
1692
1693/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1694static struct dwarf2_cie *
1695find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1696{
1697 struct dwarf2_cie **p_cie;
cfc14b3a 1698
65a97ab3
PP
1699 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1700 bsearch be non-NULL. */
1701 if (cie_table->entries == NULL)
1702 {
1703 gdb_assert (cie_table->num_entries == 0);
1704 return NULL;
1705 }
1706
9a3c8263
SM
1707 p_cie = ((struct dwarf2_cie **)
1708 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1709 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
b01c8410
PP
1710 if (p_cie != NULL)
1711 return *p_cie;
cfc14b3a
MK
1712 return NULL;
1713}
1714
b01c8410 1715/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1716static void
b01c8410 1717add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1718{
b01c8410
PP
1719 const int n = cie_table->num_entries;
1720
1721 gdb_assert (n < 1
1722 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1723
224c3ddb
SM
1724 cie_table->entries
1725 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
b01c8410
PP
1726 cie_table->entries[n] = cie;
1727 cie_table->num_entries = n + 1;
1728}
1729
1730static int
1731bsearch_fde_cmp (const void *key, const void *element)
1732{
1733 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1734 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1735
b01c8410
PP
1736 if (seek_pc < fde->initial_location)
1737 return -1;
1738 if (seek_pc < fde->initial_location + fde->address_range)
1739 return 0;
1740 return 1;
cfc14b3a
MK
1741}
1742
1743/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1744 inital location associated with it into *PC. */
1745
1746static struct dwarf2_fde *
ac56253d 1747dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1748{
1749 struct objfile *objfile;
1750
1751 ALL_OBJFILES (objfile)
1752 {
b01c8410
PP
1753 struct dwarf2_fde_table *fde_table;
1754 struct dwarf2_fde **p_fde;
cfc14b3a 1755 CORE_ADDR offset;
b01c8410 1756 CORE_ADDR seek_pc;
cfc14b3a 1757
9a3c8263
SM
1758 fde_table = ((struct dwarf2_fde_table *)
1759 objfile_data (objfile, dwarf2_frame_objfile_data));
b01c8410 1760 if (fde_table == NULL)
be391dca
TT
1761 {
1762 dwarf2_build_frame_info (objfile);
9a3c8263
SM
1763 fde_table = ((struct dwarf2_fde_table *)
1764 objfile_data (objfile, dwarf2_frame_objfile_data));
be391dca
TT
1765 }
1766 gdb_assert (fde_table != NULL);
1767
1768 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1769 continue;
1770
1771 gdb_assert (objfile->section_offsets);
1772 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1773
b01c8410
PP
1774 gdb_assert (fde_table->num_entries > 0);
1775 if (*pc < offset + fde_table->entries[0]->initial_location)
1776 continue;
1777
1778 seek_pc = *pc - offset;
9a3c8263
SM
1779 p_fde = ((struct dwarf2_fde **)
1780 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1781 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
b01c8410
PP
1782 if (p_fde != NULL)
1783 {
1784 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1785 if (out_offset)
1786 *out_offset = offset;
b01c8410
PP
1787 return *p_fde;
1788 }
cfc14b3a 1789 }
cfc14b3a
MK
1790 return NULL;
1791}
1792
b01c8410 1793/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1794static void
b01c8410 1795add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1796{
b01c8410
PP
1797 if (fde->address_range == 0)
1798 /* Discard useless FDEs. */
1799 return;
1800
1801 fde_table->num_entries += 1;
224c3ddb
SM
1802 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1803 fde_table->num_entries);
b01c8410 1804 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1805}
1806
cfc14b3a 1807#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1808
8bd90839
FM
1809/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1810 or any of them. */
1811
1812enum eh_frame_type
1813{
1814 EH_CIE_TYPE_ID = 1 << 0,
1815 EH_FDE_TYPE_ID = 1 << 1,
1816 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1817};
1818
f664829e
DE
1819static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1820 const gdb_byte *start,
1821 int eh_frame_p,
1822 struct dwarf2_cie_table *cie_table,
1823 struct dwarf2_fde_table *fde_table,
1824 enum eh_frame_type entry_type);
8bd90839
FM
1825
1826/* Decode the next CIE or FDE, entry_type specifies the expected type.
1827 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1828
f664829e
DE
1829static const gdb_byte *
1830decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1831 int eh_frame_p,
b01c8410 1832 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1833 struct dwarf2_fde_table *fde_table,
1834 enum eh_frame_type entry_type)
cfc14b3a 1835{
5e2b427d 1836 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1837 const gdb_byte *buf, *end;
cfc14b3a
MK
1838 LONGEST length;
1839 unsigned int bytes_read;
6896c0c7
RH
1840 int dwarf64_p;
1841 ULONGEST cie_id;
cfc14b3a 1842 ULONGEST cie_pointer;
9fccedf7
DE
1843 int64_t sleb128;
1844 uint64_t uleb128;
cfc14b3a 1845
6896c0c7 1846 buf = start;
cfc14b3a
MK
1847 length = read_initial_length (unit->abfd, buf, &bytes_read);
1848 buf += bytes_read;
1849 end = buf + length;
1850
0963b4bd 1851 /* Are we still within the section? */
6896c0c7
RH
1852 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1853 return NULL;
1854
cfc14b3a
MK
1855 if (length == 0)
1856 return end;
1857
6896c0c7
RH
1858 /* Distinguish between 32 and 64-bit encoded frame info. */
1859 dwarf64_p = (bytes_read == 12);
cfc14b3a 1860
6896c0c7 1861 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1862 if (eh_frame_p)
1863 cie_id = 0;
1864 else if (dwarf64_p)
1865 cie_id = DW64_CIE_ID;
6896c0c7
RH
1866 else
1867 cie_id = DW_CIE_ID;
cfc14b3a
MK
1868
1869 if (dwarf64_p)
1870 {
1871 cie_pointer = read_8_bytes (unit->abfd, buf);
1872 buf += 8;
1873 }
1874 else
1875 {
1876 cie_pointer = read_4_bytes (unit->abfd, buf);
1877 buf += 4;
1878 }
1879
1880 if (cie_pointer == cie_id)
1881 {
1882 /* This is a CIE. */
1883 struct dwarf2_cie *cie;
1884 char *augmentation;
28ba0b33 1885 unsigned int cie_version;
cfc14b3a 1886
8bd90839
FM
1887 /* Check that a CIE was expected. */
1888 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1889 error (_("Found a CIE when not expecting it."));
1890
cfc14b3a
MK
1891 /* Record the offset into the .debug_frame section of this CIE. */
1892 cie_pointer = start - unit->dwarf_frame_buffer;
1893
1894 /* Check whether we've already read it. */
b01c8410 1895 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1896 return end;
1897
8d749320 1898 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
cfc14b3a
MK
1899 cie->initial_instructions = NULL;
1900 cie->cie_pointer = cie_pointer;
1901
1902 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1903 depends on the target address size. */
1904 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1905
56c987f6
AO
1906 /* We'll determine the final value later, but we need to
1907 initialize it conservatively. */
1908 cie->signal_frame = 0;
1909
cfc14b3a 1910 /* Check version number. */
28ba0b33 1911 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1912 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1913 return NULL;
303b6f5d 1914 cie->version = cie_version;
cfc14b3a
MK
1915 buf += 1;
1916
1917 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1918 cie->augmentation = augmentation = (char *) buf;
852483bc 1919 buf += (strlen (augmentation) + 1);
cfc14b3a 1920
303b6f5d
DJ
1921 /* Ignore armcc augmentations. We only use them for quirks,
1922 and that doesn't happen until later. */
61012eef 1923 if (startswith (augmentation, "armcc"))
303b6f5d
DJ
1924 augmentation += strlen (augmentation);
1925
cfc14b3a
MK
1926 /* The GCC 2.x "eh" augmentation has a pointer immediately
1927 following the augmentation string, so it must be handled
1928 first. */
1929 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1930 {
1931 /* Skip. */
5e2b427d 1932 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1933 augmentation += 2;
1934 }
1935
2dc7f7b3
TT
1936 if (cie->version >= 4)
1937 {
1938 /* FIXME: check that this is the same as from the CU header. */
1939 cie->addr_size = read_1_byte (unit->abfd, buf);
1940 ++buf;
1941 cie->segment_size = read_1_byte (unit->abfd, buf);
1942 ++buf;
1943 }
1944 else
1945 {
8da614df 1946 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1947 cie->segment_size = 0;
1948 }
8da614df
CV
1949 /* Address values in .eh_frame sections are defined to have the
1950 target's pointer size. Watchout: This breaks frame info for
1951 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1952 section exists as well. */
8da614df
CV
1953 if (eh_frame_p)
1954 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1955 else
1956 cie->ptr_size = cie->addr_size;
2dc7f7b3 1957
f664829e
DE
1958 buf = gdb_read_uleb128 (buf, end, &uleb128);
1959 if (buf == NULL)
1960 return NULL;
1961 cie->code_alignment_factor = uleb128;
cfc14b3a 1962
f664829e
DE
1963 buf = gdb_read_sleb128 (buf, end, &sleb128);
1964 if (buf == NULL)
1965 return NULL;
1966 cie->data_alignment_factor = sleb128;
cfc14b3a 1967
28ba0b33
PB
1968 if (cie_version == 1)
1969 {
1970 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1971 ++buf;
28ba0b33
PB
1972 }
1973 else
f664829e
DE
1974 {
1975 buf = gdb_read_uleb128 (buf, end, &uleb128);
1976 if (buf == NULL)
1977 return NULL;
1978 cie->return_address_register = uleb128;
1979 }
1980
4fc771b8 1981 cie->return_address_register
5e2b427d 1982 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1983 cie->return_address_register,
1984 eh_frame_p);
4bf8967c 1985
7131cb6e
RH
1986 cie->saw_z_augmentation = (*augmentation == 'z');
1987 if (cie->saw_z_augmentation)
cfc14b3a 1988 {
9fccedf7 1989 uint64_t length;
cfc14b3a 1990
f664829e
DE
1991 buf = gdb_read_uleb128 (buf, end, &length);
1992 if (buf == NULL)
6896c0c7 1993 return NULL;
cfc14b3a
MK
1994 cie->initial_instructions = buf + length;
1995 augmentation++;
1996 }
1997
1998 while (*augmentation)
1999 {
2000 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2001 if (*augmentation == 'L')
2002 {
2003 /* Skip. */
2004 buf++;
2005 augmentation++;
2006 }
2007
2008 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2009 else if (*augmentation == 'R')
2010 {
2011 cie->encoding = *buf++;
2012 augmentation++;
2013 }
2014
2015 /* "P" indicates a personality routine in the CIE augmentation. */
2016 else if (*augmentation == 'P')
2017 {
1234d960 2018 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2019 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2020 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2021 buf, &bytes_read, 0);
f724bf08 2022 buf += bytes_read;
cfc14b3a
MK
2023 augmentation++;
2024 }
2025
56c987f6
AO
2026 /* "S" indicates a signal frame, such that the return
2027 address must not be decremented to locate the call frame
2028 info for the previous frame; it might even be the first
2029 instruction of a function, so decrementing it would take
2030 us to a different function. */
2031 else if (*augmentation == 'S')
2032 {
2033 cie->signal_frame = 1;
2034 augmentation++;
2035 }
2036
3e9a2e52
DJ
2037 /* Otherwise we have an unknown augmentation. Assume that either
2038 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2039 else
2040 {
3e9a2e52
DJ
2041 if (cie->initial_instructions)
2042 buf = cie->initial_instructions;
cfc14b3a
MK
2043 break;
2044 }
2045 }
2046
2047 cie->initial_instructions = buf;
2048 cie->end = end;
b01c8410 2049 cie->unit = unit;
cfc14b3a 2050
b01c8410 2051 add_cie (cie_table, cie);
cfc14b3a
MK
2052 }
2053 else
2054 {
2055 /* This is a FDE. */
2056 struct dwarf2_fde *fde;
3e29f34a 2057 CORE_ADDR addr;
cfc14b3a 2058
8bd90839
FM
2059 /* Check that an FDE was expected. */
2060 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2061 error (_("Found an FDE when not expecting it."));
2062
6896c0c7
RH
2063 /* In an .eh_frame section, the CIE pointer is the delta between the
2064 address within the FDE where the CIE pointer is stored and the
2065 address of the CIE. Convert it to an offset into the .eh_frame
2066 section. */
cfc14b3a
MK
2067 if (eh_frame_p)
2068 {
cfc14b3a
MK
2069 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2070 cie_pointer -= (dwarf64_p ? 8 : 4);
2071 }
2072
6896c0c7
RH
2073 /* In either case, validate the result is still within the section. */
2074 if (cie_pointer >= unit->dwarf_frame_size)
2075 return NULL;
2076
8d749320 2077 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
b01c8410 2078 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2079 if (fde->cie == NULL)
2080 {
2081 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2082 eh_frame_p, cie_table, fde_table,
2083 EH_CIE_TYPE_ID);
b01c8410 2084 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2085 }
2086
2087 gdb_assert (fde->cie != NULL);
2088
3e29f34a
MR
2089 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2090 buf, &bytes_read, 0);
2091 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
cfc14b3a
MK
2092 buf += bytes_read;
2093
2094 fde->address_range =
ae0d2f24 2095 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2096 fde->cie->ptr_size, buf, &bytes_read, 0);
3e29f34a
MR
2097 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2098 fde->address_range = addr - fde->initial_location;
cfc14b3a
MK
2099 buf += bytes_read;
2100
7131cb6e
RH
2101 /* A 'z' augmentation in the CIE implies the presence of an
2102 augmentation field in the FDE as well. The only thing known
2103 to be in here at present is the LSDA entry for EH. So we
2104 can skip the whole thing. */
2105 if (fde->cie->saw_z_augmentation)
2106 {
9fccedf7 2107 uint64_t length;
7131cb6e 2108
f664829e
DE
2109 buf = gdb_read_uleb128 (buf, end, &length);
2110 if (buf == NULL)
2111 return NULL;
2112 buf += length;
6896c0c7
RH
2113 if (buf > end)
2114 return NULL;
7131cb6e
RH
2115 }
2116
cfc14b3a
MK
2117 fde->instructions = buf;
2118 fde->end = end;
2119
4bf8967c
AS
2120 fde->eh_frame_p = eh_frame_p;
2121
b01c8410 2122 add_fde (fde_table, fde);
cfc14b3a
MK
2123 }
2124
2125 return end;
2126}
6896c0c7 2127
8bd90839
FM
2128/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2129 expect an FDE or a CIE. */
2130
f664829e
DE
2131static const gdb_byte *
2132decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2133 int eh_frame_p,
b01c8410 2134 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2135 struct dwarf2_fde_table *fde_table,
2136 enum eh_frame_type entry_type)
6896c0c7
RH
2137{
2138 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2139 const gdb_byte *ret;
6896c0c7
RH
2140 ptrdiff_t start_offset;
2141
2142 while (1)
2143 {
b01c8410 2144 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2145 cie_table, fde_table, entry_type);
6896c0c7
RH
2146 if (ret != NULL)
2147 break;
2148
2149 /* We have corrupt input data of some form. */
2150
2151 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2152 and mismatches wrt padding and alignment of debug sections. */
2153 /* Note that there is no requirement in the standard for any
2154 alignment at all in the frame unwind sections. Testing for
2155 alignment before trying to interpret data would be incorrect.
2156
2157 However, GCC traditionally arranged for frame sections to be
2158 sized such that the FDE length and CIE fields happen to be
2159 aligned (in theory, for performance). This, unfortunately,
2160 was done with .align directives, which had the side effect of
2161 forcing the section to be aligned by the linker.
2162
2163 This becomes a problem when you have some other producer that
2164 creates frame sections that are not as strictly aligned. That
2165 produces a hole in the frame info that gets filled by the
2166 linker with zeros.
2167
2168 The GCC behaviour is arguably a bug, but it's effectively now
2169 part of the ABI, so we're now stuck with it, at least at the
2170 object file level. A smart linker may decide, in the process
2171 of compressing duplicate CIE information, that it can rewrite
2172 the entire output section without this extra padding. */
2173
2174 start_offset = start - unit->dwarf_frame_buffer;
2175 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2176 {
2177 start += 4 - (start_offset & 3);
2178 workaround = ALIGN4;
2179 continue;
2180 }
2181 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2182 {
2183 start += 8 - (start_offset & 7);
2184 workaround = ALIGN8;
2185 continue;
2186 }
2187
2188 /* Nothing left to try. Arrange to return as if we've consumed
2189 the entire input section. Hopefully we'll get valid info from
2190 the other of .debug_frame/.eh_frame. */
2191 workaround = FAIL;
2192 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2193 break;
2194 }
2195
2196 switch (workaround)
2197 {
2198 case NONE:
2199 break;
2200
2201 case ALIGN4:
3e43a32a
MS
2202 complaint (&symfile_complaints, _("\
2203Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2204 unit->dwarf_frame_section->owner->filename,
2205 unit->dwarf_frame_section->name);
2206 break;
2207
2208 case ALIGN8:
3e43a32a
MS
2209 complaint (&symfile_complaints, _("\
2210Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2211 unit->dwarf_frame_section->owner->filename,
2212 unit->dwarf_frame_section->name);
2213 break;
2214
2215 default:
2216 complaint (&symfile_complaints,
e2e0b3e5 2217 _("Corrupt data in %s:%s"),
6896c0c7
RH
2218 unit->dwarf_frame_section->owner->filename,
2219 unit->dwarf_frame_section->name);
2220 break;
2221 }
2222
2223 return ret;
2224}
cfc14b3a 2225\f
b01c8410
PP
2226static int
2227qsort_fde_cmp (const void *a, const void *b)
2228{
2229 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2230 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2231
b01c8410 2232 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2233 {
2234 if (aa->address_range != bb->address_range
2235 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2236 /* Linker bug, e.g. gold/10400.
2237 Work around it by keeping stable sort order. */
2238 return (a < b) ? -1 : 1;
2239 else
2240 /* Put eh_frame entries after debug_frame ones. */
2241 return aa->eh_frame_p - bb->eh_frame_p;
2242 }
b01c8410
PP
2243
2244 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2245}
2246
cfc14b3a
MK
2247void
2248dwarf2_build_frame_info (struct objfile *objfile)
2249{
ae0d2f24 2250 struct comp_unit *unit;
f664829e 2251 const gdb_byte *frame_ptr;
b01c8410
PP
2252 struct dwarf2_cie_table cie_table;
2253 struct dwarf2_fde_table fde_table;
be391dca 2254 struct dwarf2_fde_table *fde_table2;
b01c8410
PP
2255
2256 cie_table.num_entries = 0;
2257 cie_table.entries = NULL;
2258
2259 fde_table.num_entries = 0;
2260 fde_table.entries = NULL;
cfc14b3a
MK
2261
2262 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2263 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2264 sizeof (struct comp_unit));
2265 unit->abfd = objfile->obfd;
2266 unit->objfile = objfile;
2267 unit->dbase = 0;
2268 unit->tbase = 0;
cfc14b3a 2269
d40102a1 2270 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2271 {
d40102a1
JB
2272 /* Do not read .eh_frame from separate file as they must be also
2273 present in the main file. */
2274 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2275 &unit->dwarf_frame_section,
2276 &unit->dwarf_frame_buffer,
2277 &unit->dwarf_frame_size);
2278 if (unit->dwarf_frame_size)
b01c8410 2279 {
d40102a1
JB
2280 asection *got, *txt;
2281
2282 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2283 that is used for the i386/amd64 target, which currently is
2284 the only target in GCC that supports/uses the
2285 DW_EH_PE_datarel encoding. */
2286 got = bfd_get_section_by_name (unit->abfd, ".got");
2287 if (got)
2288 unit->dbase = got->vma;
2289
2290 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2291 so far. */
2292 txt = bfd_get_section_by_name (unit->abfd, ".text");
2293 if (txt)
2294 unit->tbase = txt->vma;
2295
492d29ea 2296 TRY
8bd90839
FM
2297 {
2298 frame_ptr = unit->dwarf_frame_buffer;
2299 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2300 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2301 &cie_table, &fde_table,
2302 EH_CIE_OR_FDE_TYPE_ID);
2303 }
2304
492d29ea 2305 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2306 {
2307 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2308 objfile_name (objfile), e.message);
8bd90839
FM
2309
2310 if (fde_table.num_entries != 0)
2311 {
2312 xfree (fde_table.entries);
2313 fde_table.entries = NULL;
2314 fde_table.num_entries = 0;
2315 }
2316 /* The cie_table is discarded by the next if. */
2317 }
492d29ea 2318 END_CATCH
d40102a1
JB
2319
2320 if (cie_table.num_entries != 0)
2321 {
2322 /* Reinit cie_table: debug_frame has different CIEs. */
2323 xfree (cie_table.entries);
2324 cie_table.num_entries = 0;
2325 cie_table.entries = NULL;
2326 }
b01c8410 2327 }
cfc14b3a
MK
2328 }
2329
3017a003 2330 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2331 &unit->dwarf_frame_section,
2332 &unit->dwarf_frame_buffer,
2333 &unit->dwarf_frame_size);
2334 if (unit->dwarf_frame_size)
cfc14b3a 2335 {
8bd90839
FM
2336 int num_old_fde_entries = fde_table.num_entries;
2337
492d29ea 2338 TRY
8bd90839
FM
2339 {
2340 frame_ptr = unit->dwarf_frame_buffer;
2341 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2342 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2343 &cie_table, &fde_table,
2344 EH_CIE_OR_FDE_TYPE_ID);
2345 }
492d29ea 2346 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2347 {
2348 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2349 objfile_name (objfile), e.message);
8bd90839
FM
2350
2351 if (fde_table.num_entries != 0)
2352 {
2353 fde_table.num_entries = num_old_fde_entries;
2354 if (num_old_fde_entries == 0)
2355 {
2356 xfree (fde_table.entries);
2357 fde_table.entries = NULL;
2358 }
2359 else
2360 {
224c3ddb
SM
2361 fde_table.entries
2362 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2363 fde_table.num_entries);
8bd90839
FM
2364 }
2365 }
2366 fde_table.num_entries = num_old_fde_entries;
2367 /* The cie_table is discarded by the next if. */
2368 }
492d29ea 2369 END_CATCH
b01c8410
PP
2370 }
2371
2372 /* Discard the cie_table, it is no longer needed. */
2373 if (cie_table.num_entries != 0)
2374 {
2375 xfree (cie_table.entries);
2376 cie_table.entries = NULL; /* Paranoia. */
2377 cie_table.num_entries = 0; /* Paranoia. */
2378 }
2379
be391dca 2380 /* Copy fde_table to obstack: it is needed at runtime. */
8d749320 2381 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
be391dca
TT
2382
2383 if (fde_table.num_entries == 0)
2384 {
2385 fde_table2->entries = NULL;
2386 fde_table2->num_entries = 0;
2387 }
2388 else
b01c8410 2389 {
875cdfbb
PA
2390 struct dwarf2_fde *fde_prev = NULL;
2391 struct dwarf2_fde *first_non_zero_fde = NULL;
2392 int i;
b01c8410
PP
2393
2394 /* Prepare FDE table for lookups. */
2395 qsort (fde_table.entries, fde_table.num_entries,
2396 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2397
875cdfbb
PA
2398 /* Check for leftovers from --gc-sections. The GNU linker sets
2399 the relevant symbols to zero, but doesn't zero the FDE *end*
2400 ranges because there's no relocation there. It's (offset,
2401 length), not (start, end). On targets where address zero is
2402 just another valid address this can be a problem, since the
2403 FDEs appear to be non-empty in the output --- we could pick
2404 out the wrong FDE. To work around this, when overlaps are
2405 detected, we prefer FDEs that do not start at zero.
2406
2407 Start by finding the first FDE with non-zero start. Below
2408 we'll discard all FDEs that start at zero and overlap this
2409 one. */
2410 for (i = 0; i < fde_table.num_entries; i++)
2411 {
2412 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2413
875cdfbb
PA
2414 if (fde->initial_location != 0)
2415 {
2416 first_non_zero_fde = fde;
2417 break;
2418 }
2419 }
2420
2421 /* Since we'll be doing bsearch, squeeze out identical (except
2422 for eh_frame_p) fde entries so bsearch result is predictable.
2423 Also discard leftovers from --gc-sections. */
be391dca 2424 fde_table2->num_entries = 0;
875cdfbb
PA
2425 for (i = 0; i < fde_table.num_entries; i++)
2426 {
2427 struct dwarf2_fde *fde = fde_table.entries[i];
2428
2429 if (fde->initial_location == 0
2430 && first_non_zero_fde != NULL
2431 && (first_non_zero_fde->initial_location
2432 < fde->initial_location + fde->address_range))
2433 continue;
2434
2435 if (fde_prev != NULL
2436 && fde_prev->initial_location == fde->initial_location)
2437 continue;
2438
2439 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2440 sizeof (fde_table.entries[0]));
2441 ++fde_table2->num_entries;
2442 fde_prev = fde;
2443 }
224c3ddb
SM
2444 fde_table2->entries
2445 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2446
2447 /* Discard the original fde_table. */
2448 xfree (fde_table.entries);
cfc14b3a 2449 }
be391dca
TT
2450
2451 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2452}
0d0e1a63
MK
2453
2454/* Provide a prototype to silence -Wmissing-prototypes. */
2455void _initialize_dwarf2_frame (void);
2456
2457void
2458_initialize_dwarf2_frame (void)
2459{
030f20e1 2460 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2461 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2462}
This page took 1.239701 seconds and 4 git commands to generate.