2004-11-05 Tomer Levi <Tomer.Levi@nsc.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
05cbe71a 3 Copyright 2003, 2004 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24#include "defs.h"
25#include "dwarf2expr.h"
26#include "elf/dwarf2.h"
27#include "frame.h"
28#include "frame-base.h"
29#include "frame-unwind.h"
30#include "gdbcore.h"
31#include "gdbtypes.h"
32#include "symtab.h"
33#include "objfiles.h"
34#include "regcache.h"
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
6896c0c7 39#include "complaints.h"
cfc14b3a
MK
40#include "dwarf2-frame.h"
41
42/* Call Frame Information (CFI). */
43
44/* Common Information Entry (CIE). */
45
46struct dwarf2_cie
47{
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
50 ULONGEST cie_pointer;
51
52 /* Constant that is factored out of all advance location
53 instructions. */
54 ULONGEST code_alignment_factor;
55
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor;
58
59 /* Return address column. */
60 ULONGEST return_address_register;
61
62 /* Instruction sequence to initialize a register set. */
63 unsigned char *initial_instructions;
64 unsigned char *end;
65
66 /* Encoding of addresses. */
67 unsigned char encoding;
68
7131cb6e
RH
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation;
71
cfc14b3a
MK
72 struct dwarf2_cie *next;
73};
74
75/* Frame Description Entry (FDE). */
76
77struct dwarf2_fde
78{
79 /* CIE for this FDE. */
80 struct dwarf2_cie *cie;
81
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location;
84
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range;
87
88 /* Instruction sequence. */
89 unsigned char *instructions;
90 unsigned char *end;
91
92 struct dwarf2_fde *next;
93};
94
95static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96\f
97
98/* Structure describing a frame state. */
99
100struct dwarf2_frame_state
101{
102 /* Each register save state can be described in terms of a CFA slot,
103 another register, or a location expression. */
104 struct dwarf2_frame_state_reg_info
105 {
05cbe71a 106 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
107 int num_regs;
108
109 /* Used to implement DW_CFA_remember_state. */
110 struct dwarf2_frame_state_reg_info *prev;
111 } regs;
112
113 LONGEST cfa_offset;
114 ULONGEST cfa_reg;
115 unsigned char *cfa_exp;
116 enum {
117 CFA_UNSET,
118 CFA_REG_OFFSET,
119 CFA_EXP
120 } cfa_how;
121
122 /* The PC described by the current frame state. */
123 CORE_ADDR pc;
124
125 /* Initial register set from the CIE.
126 Used to implement DW_CFA_restore. */
127 struct dwarf2_frame_state_reg_info initial;
128
129 /* The information we care about from the CIE. */
130 LONGEST data_align;
131 ULONGEST code_align;
132 ULONGEST retaddr_column;
133};
134
135/* Store the length the expression for the CFA in the `cfa_reg' field,
136 which is unused in that case. */
137#define cfa_exp_len cfa_reg
138
139/* Assert that the register set RS is large enough to store NUM_REGS
140 columns. If necessary, enlarge the register set. */
141
142static void
143dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144 int num_regs)
145{
146 size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148 if (num_regs <= rs->num_regs)
149 return;
150
151 rs->reg = (struct dwarf2_frame_state_reg *)
152 xrealloc (rs->reg, num_regs * size);
153
154 /* Initialize newly allocated registers. */
2473a4a9 155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
156 rs->num_regs = num_regs;
157}
158
159/* Copy the register columns in register set RS into newly allocated
160 memory and return a pointer to this newly created copy. */
161
162static struct dwarf2_frame_state_reg *
163dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164{
165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg_info);
166 struct dwarf2_frame_state_reg *reg;
167
168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169 memcpy (reg, rs->reg, size);
170
171 return reg;
172}
173
174/* Release the memory allocated to register set RS. */
175
176static void
177dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178{
179 if (rs)
180 {
181 dwarf2_frame_state_free_regs (rs->prev);
182
183 xfree (rs->reg);
184 xfree (rs);
185 }
186}
187
188/* Release the memory allocated to the frame state FS. */
189
190static void
191dwarf2_frame_state_free (void *p)
192{
193 struct dwarf2_frame_state *fs = p;
194
195 dwarf2_frame_state_free_regs (fs->initial.prev);
196 dwarf2_frame_state_free_regs (fs->regs.prev);
197 xfree (fs->initial.reg);
198 xfree (fs->regs.reg);
199 xfree (fs);
200}
201\f
202
203/* Helper functions for execute_stack_op. */
204
205static CORE_ADDR
206read_reg (void *baton, int reg)
207{
208 struct frame_info *next_frame = (struct frame_info *) baton;
05cbe71a 209 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a
MK
210 int regnum;
211 char *buf;
212
213 regnum = DWARF2_REG_TO_REGNUM (reg);
214
05cbe71a 215 buf = (char *) alloca (register_size (gdbarch, regnum));
cfc14b3a
MK
216 frame_unwind_register (next_frame, regnum, buf);
217 return extract_typed_address (buf, builtin_type_void_data_ptr);
218}
219
220static void
221read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
222{
223 read_memory (addr, buf, len);
224}
225
226static void
227no_get_frame_base (void *baton, unsigned char **start, size_t *length)
228{
229 internal_error (__FILE__, __LINE__,
230 "Support for DW_OP_fbreg is unimplemented");
231}
232
233static CORE_ADDR
234no_get_tls_address (void *baton, CORE_ADDR offset)
235{
236 internal_error (__FILE__, __LINE__,
237 "Support for DW_OP_GNU_push_tls_address is unimplemented");
238}
239
240static CORE_ADDR
241execute_stack_op (unsigned char *exp, ULONGEST len,
242 struct frame_info *next_frame, CORE_ADDR initial)
243{
244 struct dwarf_expr_context *ctx;
245 CORE_ADDR result;
246
247 ctx = new_dwarf_expr_context ();
248 ctx->baton = next_frame;
249 ctx->read_reg = read_reg;
250 ctx->read_mem = read_mem;
251 ctx->get_frame_base = no_get_frame_base;
252 ctx->get_tls_address = no_get_tls_address;
253
254 dwarf_expr_push (ctx, initial);
255 dwarf_expr_eval (ctx, exp, len);
256 result = dwarf_expr_fetch (ctx, 0);
257
258 if (ctx->in_reg)
259 result = read_reg (next_frame, result);
260
261 free_dwarf_expr_context (ctx);
262
263 return result;
264}
265\f
266
267static void
268execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
269 struct frame_info *next_frame,
270 struct dwarf2_frame_state *fs)
271{
272 CORE_ADDR pc = frame_pc_unwind (next_frame);
273 int bytes_read;
274
275 while (insn_ptr < insn_end && fs->pc <= pc)
276 {
277 unsigned char insn = *insn_ptr++;
278 ULONGEST utmp, reg;
279 LONGEST offset;
280
281 if ((insn & 0xc0) == DW_CFA_advance_loc)
282 fs->pc += (insn & 0x3f) * fs->code_align;
283 else if ((insn & 0xc0) == DW_CFA_offset)
284 {
285 reg = insn & 0x3f;
286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287 offset = utmp * fs->data_align;
288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
290 fs->regs.reg[reg].loc.offset = offset;
291 }
292 else if ((insn & 0xc0) == DW_CFA_restore)
293 {
294 gdb_assert (fs->initial.reg);
295 reg = insn & 0x3f;
296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297 fs->regs.reg[reg] = fs->initial.reg[reg];
298 }
299 else
300 {
301 switch (insn)
302 {
303 case DW_CFA_set_loc:
304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305 insn_ptr += bytes_read;
306 break;
307
308 case DW_CFA_advance_loc1:
309 utmp = extract_unsigned_integer (insn_ptr, 1);
310 fs->pc += utmp * fs->code_align;
311 insn_ptr++;
312 break;
313 case DW_CFA_advance_loc2:
314 utmp = extract_unsigned_integer (insn_ptr, 2);
315 fs->pc += utmp * fs->code_align;
316 insn_ptr += 2;
317 break;
318 case DW_CFA_advance_loc4:
319 utmp = extract_unsigned_integer (insn_ptr, 4);
320 fs->pc += utmp * fs->code_align;
321 insn_ptr += 4;
322 break;
323
324 case DW_CFA_offset_extended:
325 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327 offset = utmp * fs->data_align;
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
330 fs->regs.reg[reg].loc.offset = offset;
331 break;
332
333 case DW_CFA_restore_extended:
334 gdb_assert (fs->initial.reg);
335 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337 fs->regs.reg[reg] = fs->initial.reg[reg];
338 break;
339
340 case DW_CFA_undefined:
341 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
344 break;
345
346 case DW_CFA_same_value:
347 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
350 break;
351
352 case DW_CFA_register:
353 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
357 fs->regs.reg[reg].loc.reg = utmp;
358 break;
359
360 case DW_CFA_remember_state:
361 {
362 struct dwarf2_frame_state_reg_info *new_rs;
363
364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365 *new_rs = fs->regs;
366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367 fs->regs.prev = new_rs;
368 }
369 break;
370
371 case DW_CFA_restore_state:
372 {
373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
50ea7769
MK
375 if (old_rs == NULL)
376 {
377 complaint (&symfile_complaints, "\
378bad CFI data; mismatched DW_CFA_restore_state at 0x%s", paddr (fs->pc));
379 }
380 else
381 {
382 xfree (fs->regs.reg);
383 fs->regs = *old_rs;
384 xfree (old_rs);
385 }
cfc14b3a
MK
386 }
387 break;
388
389 case DW_CFA_def_cfa:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
392 fs->cfa_offset = utmp;
393 fs->cfa_how = CFA_REG_OFFSET;
394 break;
395
396 case DW_CFA_def_cfa_register:
397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
398 fs->cfa_how = CFA_REG_OFFSET;
399 break;
400
401 case DW_CFA_def_cfa_offset:
402 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
403 /* cfa_how deliberately not set. */
404 break;
405
a8504492
MK
406 case DW_CFA_nop:
407 break;
408
cfc14b3a
MK
409 case DW_CFA_def_cfa_expression:
410 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
411 fs->cfa_exp = insn_ptr;
412 fs->cfa_how = CFA_EXP;
413 insn_ptr += fs->cfa_exp_len;
414 break;
415
416 case DW_CFA_expression:
417 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
418 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
419 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
420 fs->regs.reg[reg].loc.exp = insn_ptr;
421 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 422 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
423 insn_ptr += utmp;
424 break;
425
a8504492
MK
426 case DW_CFA_offset_extended_sf:
427 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
428 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 429 offset *= fs->data_align;
a8504492 430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
432 fs->regs.reg[reg].loc.offset = offset;
433 break;
434
435 case DW_CFA_def_cfa_sf:
436 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
437 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
438 fs->cfa_offset = offset * fs->data_align;
439 fs->cfa_how = CFA_REG_OFFSET;
440 break;
441
442 case DW_CFA_def_cfa_offset_sf:
443 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
444 fs->cfa_offset = offset * fs->data_align;
445 /* cfa_how deliberately not set. */
cfc14b3a
MK
446 break;
447
448 case DW_CFA_GNU_args_size:
449 /* Ignored. */
450 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
451 break;
452
453 default:
454 internal_error (__FILE__, __LINE__, "Unknown CFI encountered.");
455 }
456 }
457 }
458
459 /* Don't allow remember/restore between CIE and FDE programs. */
460 dwarf2_frame_state_free_regs (fs->regs.prev);
461 fs->regs.prev = NULL;
462}
8f22cb90 463\f
cfc14b3a 464
8f22cb90 465/* Architecture-specific operations. */
cfc14b3a 466
8f22cb90
MK
467/* Per-architecture data key. */
468static struct gdbarch_data *dwarf2_frame_data;
469
470struct dwarf2_frame_ops
471{
472 /* Pre-initialize the register state REG for register REGNUM. */
473 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
cfc14b3a
MK
474};
475
8f22cb90
MK
476/* Default architecture-specific register state initialization
477 function. */
478
479static void
480dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
481 struct dwarf2_frame_state_reg *reg)
482{
483 /* If we have a register that acts as a program counter, mark it as
484 a destination for the return address. If we have a register that
485 serves as the stack pointer, arrange for it to be filled with the
486 call frame address (CFA). The other registers are marked as
487 unspecified.
488
489 We copy the return address to the program counter, since many
490 parts in GDB assume that it is possible to get the return address
491 by unwinding the program counter register. However, on ISA's
492 with a dedicated return address register, the CFI usually only
493 contains information to unwind that return address register.
494
495 The reason we're treating the stack pointer special here is
496 because in many cases GCC doesn't emit CFI for the stack pointer
497 and implicitly assumes that it is equal to the CFA. This makes
498 some sense since the DWARF specification (version 3, draft 8,
499 p. 102) says that:
500
501 "Typically, the CFA is defined to be the value of the stack
502 pointer at the call site in the previous frame (which may be
503 different from its value on entry to the current frame)."
504
505 However, this isn't true for all platforms supported by GCC
506 (e.g. IBM S/390 and zSeries). Those architectures should provide
507 their own architecture-specific initialization function. */
05cbe71a 508
8f22cb90
MK
509 if (regnum == PC_REGNUM)
510 reg->how = DWARF2_FRAME_REG_RA;
511 else if (regnum == SP_REGNUM)
512 reg->how = DWARF2_FRAME_REG_CFA;
513}
05cbe71a 514
8f22cb90 515/* Return a default for the architecture-specific operations. */
05cbe71a 516
8f22cb90 517static void *
030f20e1 518dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
519{
520 struct dwarf2_frame_ops *ops;
521
030f20e1 522 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
523 ops->init_reg = dwarf2_frame_default_init_reg;
524 return ops;
525}
05cbe71a 526
8f22cb90
MK
527/* Set the architecture-specific register state initialization
528 function for GDBARCH to INIT_REG. */
529
530void
531dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
532 void (*init_reg) (struct gdbarch *, int,
533 struct dwarf2_frame_state_reg *))
534{
030f20e1 535 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 536
8f22cb90
MK
537 ops->init_reg = init_reg;
538}
539
540/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
541
542static void
543dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
544 struct dwarf2_frame_state_reg *reg)
545{
030f20e1 546 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 547
8f22cb90 548 ops->init_reg (gdbarch, regnum, reg);
05cbe71a 549}
8f22cb90
MK
550\f
551
552struct dwarf2_frame_cache
553{
554 /* DWARF Call Frame Address. */
555 CORE_ADDR cfa;
556
557 /* Saved registers, indexed by GDB register number, not by DWARF
558 register number. */
559 struct dwarf2_frame_state_reg *reg;
560};
05cbe71a 561
b9362cc7 562static struct dwarf2_frame_cache *
cfc14b3a
MK
563dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
564{
565 struct cleanup *old_chain;
05cbe71a 566 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3e2c4033 567 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
cfc14b3a
MK
568 struct dwarf2_frame_cache *cache;
569 struct dwarf2_frame_state *fs;
570 struct dwarf2_fde *fde;
cfc14b3a
MK
571
572 if (*this_cache)
573 return *this_cache;
574
575 /* Allocate a new cache. */
576 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
577 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
578
579 /* Allocate and initialize the frame state. */
580 fs = XMALLOC (struct dwarf2_frame_state);
581 memset (fs, 0, sizeof (struct dwarf2_frame_state));
582 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
583
584 /* Unwind the PC.
585
586 Note that if NEXT_FRAME is never supposed to return (i.e. a call
587 to abort), the compiler might optimize away the instruction at
588 NEXT_FRAME's return address. As a result the return address will
589 point at some random instruction, and the CFI for that
e4e9607c 590 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
591 this problem by substracting 1 from the return address to get an
592 address in the middle of a presumed call instruction (or the
593 instruction in the associated delay slot). This should only be
594 done for "normal" frames and not for resume-type frames (signal
e4e9607c
MK
595 handlers, sentinel frames, dummy frames). The function
596 frame_unwind_address_in_block does just this. It's not clear how
597 reliable the method is though; there is the potential for the
598 register state pre-call being different to that on return. */
1ce5d6dd 599 fs->pc = frame_unwind_address_in_block (next_frame);
cfc14b3a
MK
600
601 /* Find the correct FDE. */
602 fde = dwarf2_frame_find_fde (&fs->pc);
603 gdb_assert (fde != NULL);
604
605 /* Extract any interesting information from the CIE. */
606 fs->data_align = fde->cie->data_alignment_factor;
607 fs->code_align = fde->cie->code_alignment_factor;
608 fs->retaddr_column = fde->cie->return_address_register;
609
610 /* First decode all the insns in the CIE. */
611 execute_cfa_program (fde->cie->initial_instructions,
612 fde->cie->end, next_frame, fs);
613
614 /* Save the initialized register set. */
615 fs->initial = fs->regs;
616 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
617
618 /* Then decode the insns in the FDE up to our target PC. */
619 execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
620
621 /* Caclulate the CFA. */
622 switch (fs->cfa_how)
623 {
624 case CFA_REG_OFFSET:
625 cache->cfa = read_reg (next_frame, fs->cfa_reg);
626 cache->cfa += fs->cfa_offset;
627 break;
628
629 case CFA_EXP:
630 cache->cfa =
631 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
632 break;
633
634 default:
635 internal_error (__FILE__, __LINE__, "Unknown CFA rule.");
636 }
637
05cbe71a 638 /* Initialize the register state. */
3e2c4033
AC
639 {
640 int regnum;
e4e9607c 641
3e2c4033 642 for (regnum = 0; regnum < num_regs; regnum++)
05cbe71a 643 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
3e2c4033
AC
644 }
645
646 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
647 location information in the cache. Note that we don't skip the
648 return address column; it's perfectly all right for it to
649 correspond to a real register. If it doesn't correspond to a
650 real register, or if we shouldn't treat it as such,
651 DWARF2_REG_TO_REGNUM should be defined to return a number outside
652 the range [0, NUM_REGS). */
3e2c4033
AC
653 {
654 int column; /* CFI speak for "register number". */
e4e9607c 655
3e2c4033
AC
656 for (column = 0; column < fs->regs.num_regs; column++)
657 {
3e2c4033 658 /* Use the GDB register number as the destination index. */
79c4cb80 659 int regnum = DWARF2_REG_TO_REGNUM (column);
3e2c4033
AC
660
661 /* If there's no corresponding GDB register, ignore it. */
662 if (regnum < 0 || regnum >= num_regs)
663 continue;
664
665 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
666 of all debug info registers. If it doesn't, complain (but
667 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
668 unspecified register implies "same value" when CFI (draft
669 7) specifies nothing at all. Such a register could equally
670 be interpreted as "undefined". Also note that this check
e4e9607c
MK
671 isn't sufficient; it only checks that all registers in the
672 range [0 .. max column] are specified, and won't detect
3e2c4033 673 problems when a debug info register falls outside of the
e4e9607c 674 table. We need a way of iterating through all the valid
3e2c4033 675 DWARF2 register numbers. */
05cbe71a 676 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
3e2c4033
AC
677 complaint (&symfile_complaints,
678 "Incomplete CFI data; unspecified registers at 0x%s",
679 paddr (fs->pc));
35889917
MK
680 else
681 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
682 }
683 }
cfc14b3a 684
05cbe71a 685 /* Eliminate any DWARF2_FRAME_REG_RA rules. */
35889917
MK
686 {
687 int regnum;
688
689 for (regnum = 0; regnum < num_regs; regnum++)
690 {
05cbe71a 691 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
35889917 692 {
05cbe71a
MK
693 struct dwarf2_frame_state_reg *retaddr_reg =
694 &fs->regs.reg[fs->retaddr_column];
695
d4f10bf2
MK
696 /* It seems rather bizarre to specify an "empty" column as
697 the return adress column. However, this is exactly
698 what GCC does on some targets. It turns out that GCC
699 assumes that the return address can be found in the
700 register corresponding to the return address column.
701 Incidentally, that's how should treat a return address
702 column specifying "same value" too. */
703 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
704 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
705 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
706 cache->reg[regnum] = *retaddr_reg;
35889917
MK
707 else
708 {
35889917 709 cache->reg[regnum].loc.reg = fs->retaddr_column;
05cbe71a 710 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
35889917
MK
711 }
712 }
713 }
714 }
cfc14b3a
MK
715
716 do_cleanups (old_chain);
717
718 *this_cache = cache;
719 return cache;
720}
721
722static void
723dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
724 struct frame_id *this_id)
725{
726 struct dwarf2_frame_cache *cache =
727 dwarf2_frame_cache (next_frame, this_cache);
728
729 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
730}
731
732static void
733dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
734 int regnum, int *optimizedp,
735 enum lval_type *lvalp, CORE_ADDR *addrp,
736 int *realnump, void *valuep)
737{
05cbe71a 738 struct gdbarch *gdbarch = get_frame_arch (next_frame);
cfc14b3a
MK
739 struct dwarf2_frame_cache *cache =
740 dwarf2_frame_cache (next_frame, this_cache);
741
742 switch (cache->reg[regnum].how)
743 {
05cbe71a 744 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 745 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 746 mark it as optimized away; the value isn't available. */
cfc14b3a
MK
747 *optimizedp = 1;
748 *lvalp = not_lval;
749 *addrp = 0;
750 *realnump = -1;
35889917 751 if (valuep)
cfc14b3a
MK
752 {
753 /* In some cases, for example %eflags on the i386, we have
754 to provide a sane value, even though this register wasn't
755 saved. Assume we can get it from NEXT_FRAME. */
756 frame_unwind_register (next_frame, regnum, valuep);
757 }
758 break;
759
05cbe71a 760 case DWARF2_FRAME_REG_SAVED_OFFSET:
cfc14b3a
MK
761 *optimizedp = 0;
762 *lvalp = lval_memory;
763 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
764 *realnump = -1;
765 if (valuep)
766 {
767 /* Read the value in from memory. */
05cbe71a 768 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
cfc14b3a
MK
769 }
770 break;
771
05cbe71a 772 case DWARF2_FRAME_REG_SAVED_REG:
00b25ff3
AC
773 *optimizedp = 0;
774 *lvalp = lval_register;
775 *addrp = 0;
776 *realnump = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
777 if (valuep)
778 frame_unwind_register (next_frame, (*realnump), valuep);
cfc14b3a
MK
779 break;
780
05cbe71a 781 case DWARF2_FRAME_REG_SAVED_EXP:
cfc14b3a
MK
782 *optimizedp = 0;
783 *lvalp = lval_memory;
784 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
785 cache->reg[regnum].exp_len,
786 next_frame, cache->cfa);
787 *realnump = -1;
788 if (valuep)
789 {
790 /* Read the value in from memory. */
05cbe71a 791 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
cfc14b3a
MK
792 }
793 break;
794
05cbe71a 795 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
796 /* GCC, in its infinite wisdom decided to not provide unwind
797 information for registers that are "same value". Since
798 DWARF2 (3 draft 7) doesn't define such behavior, said
799 registers are actually undefined (which is different to CFI
800 "undefined"). Code above issues a complaint about this.
801 Here just fudge the books, assume GCC, and that the value is
802 more inner on the stack. */
00b25ff3
AC
803 *optimizedp = 0;
804 *lvalp = lval_register;
805 *addrp = 0;
806 *realnump = regnum;
807 if (valuep)
808 frame_unwind_register (next_frame, (*realnump), valuep);
3e2c4033
AC
809 break;
810
05cbe71a 811 case DWARF2_FRAME_REG_SAME_VALUE:
00b25ff3
AC
812 *optimizedp = 0;
813 *lvalp = lval_register;
814 *addrp = 0;
815 *realnump = regnum;
816 if (valuep)
817 frame_unwind_register (next_frame, (*realnump), valuep);
cfc14b3a
MK
818 break;
819
05cbe71a 820 case DWARF2_FRAME_REG_CFA:
35889917
MK
821 *optimizedp = 0;
822 *lvalp = not_lval;
823 *addrp = 0;
824 *realnump = -1;
825 if (valuep)
826 {
827 /* Store the value. */
828 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
829 }
830 break;
831
cfc14b3a
MK
832 default:
833 internal_error (__FILE__, __LINE__, "Unknown register rule.");
834 }
835}
836
837static const struct frame_unwind dwarf2_frame_unwind =
838{
839 NORMAL_FRAME,
840 dwarf2_frame_this_id,
841 dwarf2_frame_prev_register
842};
843
844const struct frame_unwind *
336d1bba 845dwarf2_frame_sniffer (struct frame_info *next_frame)
cfc14b3a 846{
1ce5d6dd
AC
847 /* Grab an address that is guarenteed to reside somewhere within the
848 function. frame_pc_unwind(), for a no-return next function, can
849 end up returning something past the end of this function's body. */
850 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
851 if (dwarf2_frame_find_fde (&block_addr))
cfc14b3a
MK
852 return &dwarf2_frame_unwind;
853
854 return NULL;
855}
856\f
857
858/* There is no explicitly defined relationship between the CFA and the
859 location of frame's local variables and arguments/parameters.
860 Therefore, frame base methods on this page should probably only be
861 used as a last resort, just to avoid printing total garbage as a
862 response to the "info frame" command. */
863
864static CORE_ADDR
865dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
866{
867 struct dwarf2_frame_cache *cache =
868 dwarf2_frame_cache (next_frame, this_cache);
869
870 return cache->cfa;
871}
872
873static const struct frame_base dwarf2_frame_base =
874{
875 &dwarf2_frame_unwind,
876 dwarf2_frame_base_address,
877 dwarf2_frame_base_address,
878 dwarf2_frame_base_address
879};
880
881const struct frame_base *
336d1bba 882dwarf2_frame_base_sniffer (struct frame_info *next_frame)
cfc14b3a 883{
336d1bba 884 CORE_ADDR pc = frame_pc_unwind (next_frame);
cfc14b3a
MK
885 if (dwarf2_frame_find_fde (&pc))
886 return &dwarf2_frame_base;
887
888 return NULL;
889}
890\f
891/* A minimal decoding of DWARF2 compilation units. We only decode
892 what's needed to get to the call frame information. */
893
894struct comp_unit
895{
896 /* Keep the bfd convenient. */
897 bfd *abfd;
898
899 struct objfile *objfile;
900
901 /* Linked list of CIEs for this object. */
902 struct dwarf2_cie *cie;
903
cfc14b3a
MK
904 /* Pointer to the .debug_frame section loaded into memory. */
905 char *dwarf_frame_buffer;
906
907 /* Length of the loaded .debug_frame section. */
908 unsigned long dwarf_frame_size;
909
910 /* Pointer to the .debug_frame section. */
911 asection *dwarf_frame_section;
0912c7f2
MK
912
913 /* Base for DW_EH_PE_datarel encodings. */
914 bfd_vma dbase;
0fd85043
CV
915
916 /* Base for DW_EH_PE_textrel encodings. */
917 bfd_vma tbase;
cfc14b3a
MK
918};
919
8f22cb90 920const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 921
cfc14b3a
MK
922static unsigned int
923read_1_byte (bfd *bfd, char *buf)
924{
925 return bfd_get_8 (abfd, (bfd_byte *) buf);
926}
927
928static unsigned int
929read_4_bytes (bfd *abfd, char *buf)
930{
931 return bfd_get_32 (abfd, (bfd_byte *) buf);
932}
933
934static ULONGEST
935read_8_bytes (bfd *abfd, char *buf)
936{
937 return bfd_get_64 (abfd, (bfd_byte *) buf);
938}
939
940static ULONGEST
941read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
942{
943 ULONGEST result;
944 unsigned int num_read;
945 int shift;
946 unsigned char byte;
947
948 result = 0;
949 shift = 0;
950 num_read = 0;
951
952 do
953 {
954 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
955 buf++;
956 num_read++;
957 result |= ((byte & 0x7f) << shift);
958 shift += 7;
959 }
960 while (byte & 0x80);
961
962 *bytes_read_ptr = num_read;
963
964 return result;
965}
966
967static LONGEST
968read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
969{
970 LONGEST result;
971 int shift;
972 unsigned int num_read;
973 unsigned char byte;
974
975 result = 0;
976 shift = 0;
977 num_read = 0;
978
979 do
980 {
981 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
982 buf++;
983 num_read++;
984 result |= ((byte & 0x7f) << shift);
985 shift += 7;
986 }
987 while (byte & 0x80);
988
989 if ((shift < 32) && (byte & 0x40))
990 result |= -(1 << shift);
991
992 *bytes_read_ptr = num_read;
993
994 return result;
995}
996
997static ULONGEST
998read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
999{
1000 LONGEST result;
1001
1002 result = bfd_get_32 (abfd, (bfd_byte *) buf);
1003 if (result == 0xffffffff)
1004 {
1005 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
1006 *bytes_read_ptr = 12;
1007 }
1008 else
1009 *bytes_read_ptr = 4;
1010
1011 return result;
1012}
1013\f
1014
1015/* Pointer encoding helper functions. */
1016
1017/* GCC supports exception handling based on DWARF2 CFI. However, for
1018 technical reasons, it encodes addresses in its FDE's in a different
1019 way. Several "pointer encodings" are supported. The encoding
1020 that's used for a particular FDE is determined by the 'R'
1021 augmentation in the associated CIE. The argument of this
1022 augmentation is a single byte.
1023
1024 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1025 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1026 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1027 address should be interpreted (absolute, relative to the current
1028 position in the FDE, ...). Bit 7, indicates that the address
1029 should be dereferenced. */
1030
1031static unsigned char
1032encoding_for_size (unsigned int size)
1033{
1034 switch (size)
1035 {
1036 case 2:
1037 return DW_EH_PE_udata2;
1038 case 4:
1039 return DW_EH_PE_udata4;
1040 case 8:
1041 return DW_EH_PE_udata8;
1042 default:
1043 internal_error (__FILE__, __LINE__, "Unsupported address size");
1044 }
1045}
1046
1047static unsigned int
1048size_of_encoded_value (unsigned char encoding)
1049{
1050 if (encoding == DW_EH_PE_omit)
1051 return 0;
1052
1053 switch (encoding & 0x07)
1054 {
1055 case DW_EH_PE_absptr:
1056 return TYPE_LENGTH (builtin_type_void_data_ptr);
1057 case DW_EH_PE_udata2:
1058 return 2;
1059 case DW_EH_PE_udata4:
1060 return 4;
1061 case DW_EH_PE_udata8:
1062 return 8;
1063 default:
1064 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1065 }
1066}
1067
1068static CORE_ADDR
1069read_encoded_value (struct comp_unit *unit, unsigned char encoding,
a81b10ae 1070 unsigned char *buf, unsigned int *bytes_read_ptr)
cfc14b3a 1071{
68f6cf99
MK
1072 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1073 ptrdiff_t offset;
cfc14b3a
MK
1074 CORE_ADDR base;
1075
1076 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1077 FDE's. */
1078 if (encoding & DW_EH_PE_indirect)
1079 internal_error (__FILE__, __LINE__,
1080 "Unsupported encoding: DW_EH_PE_indirect");
1081
68f6cf99
MK
1082 *bytes_read_ptr = 0;
1083
cfc14b3a
MK
1084 switch (encoding & 0x70)
1085 {
1086 case DW_EH_PE_absptr:
1087 base = 0;
1088 break;
1089 case DW_EH_PE_pcrel:
1090 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
a81b10ae 1091 base += ((char *) buf - unit->dwarf_frame_buffer);
cfc14b3a 1092 break;
0912c7f2
MK
1093 case DW_EH_PE_datarel:
1094 base = unit->dbase;
1095 break;
0fd85043
CV
1096 case DW_EH_PE_textrel:
1097 base = unit->tbase;
1098 break;
03ac2a74
MK
1099 case DW_EH_PE_funcrel:
1100 /* FIXME: kettenis/20040501: For now just pretend
1101 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1102 reading the initial location of an FDE it should be treated
1103 as such, and currently that's the only place where this code
1104 is used. */
1105 base = 0;
1106 break;
68f6cf99
MK
1107 case DW_EH_PE_aligned:
1108 base = 0;
a81b10ae 1109 offset = (char *) buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1110 if ((offset % ptr_len) != 0)
1111 {
1112 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1113 buf += *bytes_read_ptr;
1114 }
1115 break;
cfc14b3a
MK
1116 default:
1117 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1118 }
1119
b04de778 1120 if ((encoding & 0x07) == 0x00)
68f6cf99 1121 encoding |= encoding_for_size (ptr_len);
cfc14b3a
MK
1122
1123 switch (encoding & 0x0f)
1124 {
a81b10ae
MK
1125 case DW_EH_PE_uleb128:
1126 {
1127 ULONGEST value;
1128 unsigned char *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1129 *bytes_read_ptr = read_uleb128 (buf, end_buf, &value) - buf;
1130 return base + value;
1131 }
cfc14b3a 1132 case DW_EH_PE_udata2:
68f6cf99 1133 *bytes_read_ptr += 2;
cfc14b3a
MK
1134 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1135 case DW_EH_PE_udata4:
68f6cf99 1136 *bytes_read_ptr += 4;
cfc14b3a
MK
1137 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1138 case DW_EH_PE_udata8:
68f6cf99 1139 *bytes_read_ptr += 8;
cfc14b3a 1140 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1141 case DW_EH_PE_sleb128:
1142 {
1143 LONGEST value;
1144 char *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1145 *bytes_read_ptr = read_sleb128 (buf, end_buf, &value) - buf;
1146 return base + value;
1147 }
cfc14b3a 1148 case DW_EH_PE_sdata2:
68f6cf99 1149 *bytes_read_ptr += 2;
cfc14b3a
MK
1150 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1151 case DW_EH_PE_sdata4:
68f6cf99 1152 *bytes_read_ptr += 4;
cfc14b3a
MK
1153 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1154 case DW_EH_PE_sdata8:
68f6cf99 1155 *bytes_read_ptr += 8;
cfc14b3a
MK
1156 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1157 default:
1158 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1159 }
1160}
1161\f
1162
1163/* GCC uses a single CIE for all FDEs in a .debug_frame section.
1164 That's why we use a simple linked list here. */
1165
1166static struct dwarf2_cie *
1167find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1168{
1169 struct dwarf2_cie *cie = unit->cie;
1170
1171 while (cie)
1172 {
1173 if (cie->cie_pointer == cie_pointer)
1174 return cie;
1175
1176 cie = cie->next;
1177 }
1178
1179 return NULL;
1180}
1181
1182static void
1183add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1184{
1185 cie->next = unit->cie;
1186 unit->cie = cie;
1187}
1188
1189/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1190 inital location associated with it into *PC. */
1191
1192static struct dwarf2_fde *
1193dwarf2_frame_find_fde (CORE_ADDR *pc)
1194{
1195 struct objfile *objfile;
1196
1197 ALL_OBJFILES (objfile)
1198 {
1199 struct dwarf2_fde *fde;
1200 CORE_ADDR offset;
1201
8f22cb90 1202 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
4ae9ee8e
DJ
1203 if (fde == NULL)
1204 continue;
1205
1206 gdb_assert (objfile->section_offsets);
1207 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1208
cfc14b3a
MK
1209 while (fde)
1210 {
1211 if (*pc >= fde->initial_location + offset
1212 && *pc < fde->initial_location + offset + fde->address_range)
1213 {
1214 *pc = fde->initial_location + offset;
1215 return fde;
1216 }
1217
1218 fde = fde->next;
1219 }
1220 }
1221
1222 return NULL;
1223}
1224
1225static void
1226add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1227{
8f22cb90
MK
1228 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1229 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
cfc14b3a
MK
1230}
1231
1232#ifdef CC_HAS_LONG_LONG
1233#define DW64_CIE_ID 0xffffffffffffffffULL
1234#else
1235#define DW64_CIE_ID ~0
1236#endif
1237
6896c0c7
RH
1238static char *decode_frame_entry (struct comp_unit *unit, char *start,
1239 int eh_frame_p);
cfc14b3a 1240
6896c0c7
RH
1241/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1242 the next byte to be processed. */
cfc14b3a 1243static char *
6896c0c7 1244decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
cfc14b3a 1245{
6896c0c7 1246 char *buf;
cfc14b3a
MK
1247 LONGEST length;
1248 unsigned int bytes_read;
6896c0c7
RH
1249 int dwarf64_p;
1250 ULONGEST cie_id;
cfc14b3a 1251 ULONGEST cie_pointer;
cfc14b3a
MK
1252 char *end;
1253
6896c0c7 1254 buf = start;
cfc14b3a
MK
1255 length = read_initial_length (unit->abfd, buf, &bytes_read);
1256 buf += bytes_read;
1257 end = buf + length;
1258
6896c0c7
RH
1259 /* Are we still within the section? */
1260 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1261 return NULL;
1262
cfc14b3a
MK
1263 if (length == 0)
1264 return end;
1265
6896c0c7
RH
1266 /* Distinguish between 32 and 64-bit encoded frame info. */
1267 dwarf64_p = (bytes_read == 12);
cfc14b3a 1268
6896c0c7 1269 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1270 if (eh_frame_p)
1271 cie_id = 0;
1272 else if (dwarf64_p)
1273 cie_id = DW64_CIE_ID;
6896c0c7
RH
1274 else
1275 cie_id = DW_CIE_ID;
cfc14b3a
MK
1276
1277 if (dwarf64_p)
1278 {
1279 cie_pointer = read_8_bytes (unit->abfd, buf);
1280 buf += 8;
1281 }
1282 else
1283 {
1284 cie_pointer = read_4_bytes (unit->abfd, buf);
1285 buf += 4;
1286 }
1287
1288 if (cie_pointer == cie_id)
1289 {
1290 /* This is a CIE. */
1291 struct dwarf2_cie *cie;
1292 char *augmentation;
28ba0b33 1293 unsigned int cie_version;
cfc14b3a
MK
1294
1295 /* Record the offset into the .debug_frame section of this CIE. */
1296 cie_pointer = start - unit->dwarf_frame_buffer;
1297
1298 /* Check whether we've already read it. */
1299 if (find_cie (unit, cie_pointer))
1300 return end;
1301
1302 cie = (struct dwarf2_cie *)
8b92e4d5 1303 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1304 sizeof (struct dwarf2_cie));
1305 cie->initial_instructions = NULL;
1306 cie->cie_pointer = cie_pointer;
1307
1308 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1309 depends on the target address size. */
1310 cie->encoding = DW_EH_PE_absptr;
cfc14b3a
MK
1311
1312 /* Check version number. */
28ba0b33
PB
1313 cie_version = read_1_byte (unit->abfd, buf);
1314 if (cie_version != 1 && cie_version != 3)
6896c0c7 1315 return NULL;
cfc14b3a
MK
1316 buf += 1;
1317
1318 /* Interpret the interesting bits of the augmentation. */
1319 augmentation = buf;
1320 buf = augmentation + strlen (augmentation) + 1;
1321
1322 /* The GCC 2.x "eh" augmentation has a pointer immediately
1323 following the augmentation string, so it must be handled
1324 first. */
1325 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1326 {
1327 /* Skip. */
1328 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1329 augmentation += 2;
1330 }
1331
1332 cie->code_alignment_factor =
1333 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1334 buf += bytes_read;
1335
1336 cie->data_alignment_factor =
1337 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1338 buf += bytes_read;
1339
28ba0b33
PB
1340 if (cie_version == 1)
1341 {
1342 cie->return_address_register = read_1_byte (unit->abfd, buf);
1343 bytes_read = 1;
1344 }
1345 else
1346 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1347 &bytes_read);
1348 buf += bytes_read;
cfc14b3a 1349
7131cb6e
RH
1350 cie->saw_z_augmentation = (*augmentation == 'z');
1351 if (cie->saw_z_augmentation)
cfc14b3a
MK
1352 {
1353 ULONGEST length;
1354
1355 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1356 buf += bytes_read;
6896c0c7
RH
1357 if (buf > end)
1358 return NULL;
cfc14b3a
MK
1359 cie->initial_instructions = buf + length;
1360 augmentation++;
1361 }
1362
1363 while (*augmentation)
1364 {
1365 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1366 if (*augmentation == 'L')
1367 {
1368 /* Skip. */
1369 buf++;
1370 augmentation++;
1371 }
1372
1373 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1374 else if (*augmentation == 'R')
1375 {
1376 cie->encoding = *buf++;
1377 augmentation++;
1378 }
1379
1380 /* "P" indicates a personality routine in the CIE augmentation. */
1381 else if (*augmentation == 'P')
1382 {
1383 /* Skip. */
1384 buf += size_of_encoded_value (*buf++);
1385 augmentation++;
1386 }
1387
1388 /* Otherwise we have an unknown augmentation.
1389 Bail out unless we saw a 'z' prefix. */
1390 else
1391 {
1392 if (cie->initial_instructions == NULL)
1393 return end;
1394
1395 /* Skip unknown augmentations. */
1396 buf = cie->initial_instructions;
1397 break;
1398 }
1399 }
1400
1401 cie->initial_instructions = buf;
1402 cie->end = end;
1403
1404 add_cie (unit, cie);
1405 }
1406 else
1407 {
1408 /* This is a FDE. */
1409 struct dwarf2_fde *fde;
1410
6896c0c7
RH
1411 /* In an .eh_frame section, the CIE pointer is the delta between the
1412 address within the FDE where the CIE pointer is stored and the
1413 address of the CIE. Convert it to an offset into the .eh_frame
1414 section. */
cfc14b3a
MK
1415 if (eh_frame_p)
1416 {
cfc14b3a
MK
1417 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1418 cie_pointer -= (dwarf64_p ? 8 : 4);
1419 }
1420
6896c0c7
RH
1421 /* In either case, validate the result is still within the section. */
1422 if (cie_pointer >= unit->dwarf_frame_size)
1423 return NULL;
1424
cfc14b3a 1425 fde = (struct dwarf2_fde *)
8b92e4d5 1426 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1427 sizeof (struct dwarf2_fde));
1428 fde->cie = find_cie (unit, cie_pointer);
1429 if (fde->cie == NULL)
1430 {
1431 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1432 eh_frame_p);
1433 fde->cie = find_cie (unit, cie_pointer);
1434 }
1435
1436 gdb_assert (fde->cie != NULL);
1437
1438 fde->initial_location =
1439 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1440 buf += bytes_read;
1441
1442 fde->address_range =
1443 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1444 buf += bytes_read;
1445
7131cb6e
RH
1446 /* A 'z' augmentation in the CIE implies the presence of an
1447 augmentation field in the FDE as well. The only thing known
1448 to be in here at present is the LSDA entry for EH. So we
1449 can skip the whole thing. */
1450 if (fde->cie->saw_z_augmentation)
1451 {
1452 ULONGEST length;
1453
1454 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1455 buf += bytes_read + length;
6896c0c7
RH
1456 if (buf > end)
1457 return NULL;
7131cb6e
RH
1458 }
1459
cfc14b3a
MK
1460 fde->instructions = buf;
1461 fde->end = end;
1462
1463 add_fde (unit, fde);
1464 }
1465
1466 return end;
1467}
6896c0c7
RH
1468
1469/* Read a CIE or FDE in BUF and decode it. */
1470static char *
1471decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1472{
1473 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1474 char *ret;
1475 const char *msg;
1476 ptrdiff_t start_offset;
1477
1478 while (1)
1479 {
1480 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1481 if (ret != NULL)
1482 break;
1483
1484 /* We have corrupt input data of some form. */
1485
1486 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1487 and mismatches wrt padding and alignment of debug sections. */
1488 /* Note that there is no requirement in the standard for any
1489 alignment at all in the frame unwind sections. Testing for
1490 alignment before trying to interpret data would be incorrect.
1491
1492 However, GCC traditionally arranged for frame sections to be
1493 sized such that the FDE length and CIE fields happen to be
1494 aligned (in theory, for performance). This, unfortunately,
1495 was done with .align directives, which had the side effect of
1496 forcing the section to be aligned by the linker.
1497
1498 This becomes a problem when you have some other producer that
1499 creates frame sections that are not as strictly aligned. That
1500 produces a hole in the frame info that gets filled by the
1501 linker with zeros.
1502
1503 The GCC behaviour is arguably a bug, but it's effectively now
1504 part of the ABI, so we're now stuck with it, at least at the
1505 object file level. A smart linker may decide, in the process
1506 of compressing duplicate CIE information, that it can rewrite
1507 the entire output section without this extra padding. */
1508
1509 start_offset = start - unit->dwarf_frame_buffer;
1510 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1511 {
1512 start += 4 - (start_offset & 3);
1513 workaround = ALIGN4;
1514 continue;
1515 }
1516 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1517 {
1518 start += 8 - (start_offset & 7);
1519 workaround = ALIGN8;
1520 continue;
1521 }
1522
1523 /* Nothing left to try. Arrange to return as if we've consumed
1524 the entire input section. Hopefully we'll get valid info from
1525 the other of .debug_frame/.eh_frame. */
1526 workaround = FAIL;
1527 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1528 break;
1529 }
1530
1531 switch (workaround)
1532 {
1533 case NONE:
1534 break;
1535
1536 case ALIGN4:
1537 complaint (&symfile_complaints,
1538 "Corrupt data in %s:%s; align 4 workaround apparently succeeded",
1539 unit->dwarf_frame_section->owner->filename,
1540 unit->dwarf_frame_section->name);
1541 break;
1542
1543 case ALIGN8:
1544 complaint (&symfile_complaints,
1545 "Corrupt data in %s:%s; align 8 workaround apparently succeeded",
1546 unit->dwarf_frame_section->owner->filename,
1547 unit->dwarf_frame_section->name);
1548 break;
1549
1550 default:
1551 complaint (&symfile_complaints,
1552 "Corrupt data in %s:%s",
1553 unit->dwarf_frame_section->owner->filename,
1554 unit->dwarf_frame_section->name);
1555 break;
1556 }
1557
1558 return ret;
1559}
cfc14b3a
MK
1560\f
1561
1562/* FIXME: kettenis/20030504: This still needs to be integrated with
1563 dwarf2read.c in a better way. */
1564
1565/* Imported from dwarf2read.c. */
cfc14b3a 1566extern asection *dwarf_frame_section;
cfc14b3a
MK
1567extern asection *dwarf_eh_frame_section;
1568
1569/* Imported from dwarf2read.c. */
188dd5d6 1570extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
cfc14b3a
MK
1571
1572void
1573dwarf2_build_frame_info (struct objfile *objfile)
1574{
1575 struct comp_unit unit;
1576 char *frame_ptr;
1577
1578 /* Build a minimal decoding of the DWARF2 compilation unit. */
1579 unit.abfd = objfile->obfd;
1580 unit.objfile = objfile;
0912c7f2 1581 unit.dbase = 0;
0fd85043 1582 unit.tbase = 0;
cfc14b3a
MK
1583
1584 /* First add the information from the .eh_frame section. That way,
1585 the FDEs from that section are searched last. */
188dd5d6 1586 if (dwarf_eh_frame_section)
cfc14b3a 1587 {
0fd85043 1588 asection *got, *txt;
0912c7f2 1589
cfc14b3a
MK
1590 unit.cie = NULL;
1591 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a
MK
1592 dwarf_eh_frame_section);
1593
2c500098 1594 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
cfc14b3a
MK
1595 unit.dwarf_frame_section = dwarf_eh_frame_section;
1596
0912c7f2 1597 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
37b517aa
MK
1598 that is used for the i386/amd64 target, which currently is
1599 the only target in GCC that supports/uses the
1600 DW_EH_PE_datarel encoding. */
0912c7f2
MK
1601 got = bfd_get_section_by_name (unit.abfd, ".got");
1602 if (got)
1603 unit.dbase = got->vma;
1604
22c7ba1a
MK
1605 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1606 so far. */
0fd85043
CV
1607 txt = bfd_get_section_by_name (unit.abfd, ".text");
1608 if (txt)
1609 unit.tbase = txt->vma;
1610
cfc14b3a
MK
1611 frame_ptr = unit.dwarf_frame_buffer;
1612 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1613 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1614 }
1615
188dd5d6 1616 if (dwarf_frame_section)
cfc14b3a
MK
1617 {
1618 unit.cie = NULL;
1619 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
cfc14b3a 1620 dwarf_frame_section);
2c500098 1621 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
cfc14b3a
MK
1622 unit.dwarf_frame_section = dwarf_frame_section;
1623
1624 frame_ptr = unit.dwarf_frame_buffer;
1625 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1626 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1627 }
1628}
0d0e1a63
MK
1629
1630/* Provide a prototype to silence -Wmissing-prototypes. */
1631void _initialize_dwarf2_frame (void);
1632
1633void
1634_initialize_dwarf2_frame (void)
1635{
030f20e1 1636 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 1637 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 1638}
This page took 0.241462 seconds and 4 git commands to generate.