gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
0b302171 3 Copyright (C) 2003-2005, 2007-2012 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
cfc14b3a
MK
34
35#include "gdb_assert.h"
36#include "gdb_string.h"
37
6896c0c7 38#include "complaints.h"
cfc14b3a 39#include "dwarf2-frame.h"
9f6f94ff
TT
40#include "ax.h"
41#include "dwarf2loc.h"
8fbca658 42#include "exceptions.h"
111c6489 43#include "dwarf2-frame-tailcall.h"
cfc14b3a 44
ae0d2f24
UW
45struct comp_unit;
46
cfc14b3a
MK
47/* Call Frame Information (CFI). */
48
49/* Common Information Entry (CIE). */
50
51struct dwarf2_cie
52{
ae0d2f24
UW
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
cfc14b3a
MK
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
852483bc
MK
71 gdb_byte *initial_instructions;
72 gdb_byte *end;
cfc14b3a 73
303b6f5d
DJ
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
cfc14b3a 77 /* Encoding of addresses. */
852483bc 78 gdb_byte encoding;
cfc14b3a 79
ae0d2f24
UW
80 /* Target address size in bytes. */
81 int addr_size;
82
0963b4bd 83 /* Target pointer size in bytes. */
8da614df
CV
84 int ptr_size;
85
7131cb6e
RH
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
56c987f6
AO
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
303b6f5d
DJ
92 /* The version recorded in the CIE. */
93 unsigned char version;
2dc7f7b3
TT
94
95 /* The segment size. */
96 unsigned char segment_size;
b01c8410 97};
303b6f5d 98
b01c8410
PP
99struct dwarf2_cie_table
100{
101 int num_entries;
102 struct dwarf2_cie **entries;
cfc14b3a
MK
103};
104
105/* Frame Description Entry (FDE). */
106
107struct dwarf2_fde
108{
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
852483bc
MK
119 gdb_byte *instructions;
120 gdb_byte *end;
cfc14b3a 121
4bf8967c
AS
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
b01c8410 125};
4bf8967c 126
b01c8410
PP
127struct dwarf2_fde_table
128{
129 int num_entries;
130 struct dwarf2_fde **entries;
cfc14b3a
MK
131};
132
ae0d2f24
UW
133/* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136struct comp_unit
137{
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
ae0d2f24
UW
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
c098b58b 147 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157};
158
ac56253d
TT
159static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
4fc771b8
DJ
161
162static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
ae0d2f24
UW
164
165static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 166 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
cfc14b3a
MK
169\f
170
171/* Structure describing a frame state. */
172
173struct dwarf2_frame_state
174{
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
05cbe71a 179 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
180 int num_regs;
181
2fd481e1
PP
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
0d45f56e 189 const gdb_byte *cfa_exp;
2fd481e1 190
cfc14b3a
MK
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
cfc14b3a
MK
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
303b6f5d
DJ
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
216};
217
218/* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220#define cfa_exp_len cfa_reg
221
f57d151a 222/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
223 columns. If necessary, enlarge the register set. */
224
225static void
226dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228{
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
2473a4a9 238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
239 rs->num_regs = num_regs;
240}
241
242/* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245static struct dwarf2_frame_state_reg *
246dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247{
d10891d4 248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255}
256
257/* Release the memory allocated to register set RS. */
258
259static void
260dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261{
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269}
270
271/* Release the memory allocated to the frame state FS. */
272
273static void
274dwarf2_frame_state_free (void *p)
275{
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283}
284\f
285
286/* Helper functions for execute_stack_op. */
287
288static CORE_ADDR
289read_reg (void *baton, int reg)
290{
4a4e5149
DJ
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 293 int regnum;
852483bc 294 gdb_byte *buf;
cfc14b3a 295
ad010def 296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 297
852483bc 298 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 299 get_frame_register (this_frame, regnum, buf);
f2da6b3a
DJ
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
307}
308
309static void
852483bc 310read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
311{
312 read_memory (addr, buf, len);
313}
314
a6a5a945
LM
315/* Execute the required actions for both the DW_CFA_restore and
316DW_CFA_restore_extended instructions. */
317static void
318dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
319 struct dwarf2_frame_state *fs, int eh_frame_p)
320{
321 ULONGEST reg;
322
323 gdb_assert (fs->initial.reg);
324 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
325 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
326
327 /* Check if this register was explicitly initialized in the
328 CIE initial instructions. If not, default the rule to
329 UNSPECIFIED. */
330 if (reg < fs->initial.num_regs)
331 fs->regs.reg[reg] = fs->initial.reg[reg];
332 else
333 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
334
335 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
336 complaint (&symfile_complaints, _("\
337incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 338register %s (#%d) at %s"),
a6a5a945
LM
339 gdbarch_register_name
340 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
341 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 342 paddress (gdbarch, fs->pc));
a6a5a945
LM
343}
344
9e8b7a03
JK
345/* Virtual method table for execute_stack_op below. */
346
347static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
348{
349 read_reg,
350 read_mem,
523f3620
JK
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
353 ctx_no_get_frame_pc,
354 ctx_no_get_tls_address,
355 ctx_no_dwarf_call,
8e3b41a9 356 ctx_no_get_base_type,
3019eac3
DE
357 ctx_no_push_dwarf_reg_entry_value,
358 ctx_no_get_addr_index
9e8b7a03
JK
359};
360
cfc14b3a 361static CORE_ADDR
0d45f56e 362execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
363 CORE_ADDR offset, struct frame_info *this_frame,
364 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
365{
366 struct dwarf_expr_context *ctx;
367 CORE_ADDR result;
4a227398 368 struct cleanup *old_chain;
cfc14b3a
MK
369
370 ctx = new_dwarf_expr_context ();
4a227398 371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 372 make_cleanup_value_free_to_mark (value_mark ());
4a227398 373
f7fd4728 374 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 375 ctx->addr_size = addr_size;
181cebd4 376 ctx->ref_addr_size = -1;
ac56253d 377 ctx->offset = offset;
4a4e5149 378 ctx->baton = this_frame;
9e8b7a03 379 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 380
8a9b8146 381 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 382 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 383
f2c7657e
UW
384 if (ctx->location == DWARF_VALUE_MEMORY)
385 result = dwarf_expr_fetch_address (ctx, 0);
386 else if (ctx->location == DWARF_VALUE_REGISTER)
8a9b8146 387 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 388 else
cec03d70
TT
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
3e43a32a
MS
393 error (_("\
394Not implemented: computing unwound register using explicit value operator"));
cec03d70 395 }
cfc14b3a 396
4a227398 397 do_cleanups (old_chain);
cfc14b3a
MK
398
399 return result;
400}
401\f
402
111c6489
JK
403/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407static const gdb_byte *
0d45f56e 408execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 411{
ae0d2f24 412 int eh_frame_p = fde->eh_frame_p;
cfc14b3a 413 int bytes_read;
e17a4113 414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
852483bc 418 gdb_byte insn = *insn_ptr++;
cfc14b3a
MK
419 ULONGEST utmp, reg;
420 LONGEST offset;
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
4fc771b8 427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
428 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
cfc14b3a 436 reg = insn & 0x3f;
a6a5a945 437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
ae0d2f24 444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 445 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
e17a4113 454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
e17a4113 459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
e17a4113 464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
470 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
472 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
cfc14b3a 480 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
482 break;
483
484 case DW_CFA_undefined:
485 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
489 break;
490
491 case DW_CFA_same_value:
492 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
496 break;
497
498 case DW_CFA_register:
499 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 501 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
512 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
50ea7769
MK
523 if (old_rs == NULL)
524 {
e2e0b3e5 525 complaint (&symfile_complaints, _("\
5af949e3
UW
526bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
50ea7769
MK
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
cfc14b3a
MK
535 }
536 break;
537
538 case DW_CFA_def_cfa:
2fd481e1 539 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
cfc14b3a 540 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
541
542 if (fs->armcc_cfa_offsets_sf)
543 utmp *= fs->data_align;
544
2fd481e1
PP
545 fs->regs.cfa_offset = utmp;
546 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
547 break;
548
549 case DW_CFA_def_cfa_register:
2fd481e1
PP
550 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
551 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
552 fs->regs.cfa_reg,
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
555 break;
556
557 case DW_CFA_def_cfa_offset:
852483bc 558 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
2fd481e1 563 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
564 /* cfa_how deliberately not set. */
565 break;
566
a8504492
MK
567 case DW_CFA_nop:
568 break;
569
cfc14b3a 570 case DW_CFA_def_cfa_expression:
2fd481e1
PP
571 insn_ptr = read_uleb128 (insn_ptr, insn_end,
572 &fs->regs.cfa_exp_len);
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
576 break;
577
578 case DW_CFA_expression:
579 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a
MK
581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
582 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
586 insn_ptr += utmp;
587 break;
588
a8504492
MK
589 case DW_CFA_offset_extended_sf:
590 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
a8504492 592 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 593 offset *= fs->data_align;
a8504492 594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
46ea248b
AO
599 case DW_CFA_val_offset:
600 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
602 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
609 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
618 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
a8504492 627 case DW_CFA_def_cfa_sf:
2fd481e1
PP
628 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
630 fs->regs.cfa_reg,
631 eh_frame_p);
a8504492 632 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
633 fs->regs.cfa_offset = offset * fs->data_align;
634 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
635 break;
636
637 case DW_CFA_def_cfa_offset_sf:
638 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 639 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 640 /* cfa_how deliberately not set. */
cfc14b3a
MK
641 break;
642
a77f4086
MK
643 case DW_CFA_GNU_window_save:
644 /* This is SPARC-specific code, and contains hard-coded
645 constants for the register numbering scheme used by
646 GCC. Rather than having a architecture-specific
647 operation that's only ever used by a single
648 architecture, we provide the implementation here.
649 Incidentally that's what GCC does too in its
650 unwinder. */
651 {
4a4e5149 652 int size = register_size (gdbarch, 0);
9a619af0 653
a77f4086
MK
654 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
655 for (reg = 8; reg < 16; reg++)
656 {
657 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
658 fs->regs.reg[reg].loc.reg = reg + 16;
659 }
660 for (reg = 16; reg < 32; reg++)
661 {
662 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
663 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
664 }
665 }
666 break;
667
cfc14b3a
MK
668 case DW_CFA_GNU_args_size:
669 /* Ignored. */
670 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
671 break;
672
58894217
JK
673 case DW_CFA_GNU_negative_offset_extended:
674 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 675 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
58894217
JK
676 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
677 offset *= fs->data_align;
678 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
679 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
680 fs->regs.reg[reg].loc.offset = -offset;
681 break;
682
cfc14b3a 683 default:
3e43a32a
MS
684 internal_error (__FILE__, __LINE__,
685 _("Unknown CFI encountered."));
cfc14b3a
MK
686 }
687 }
688 }
689
111c6489
JK
690 if (fs->initial.reg == NULL)
691 {
692 /* Don't allow remember/restore between CIE and FDE programs. */
693 dwarf2_frame_state_free_regs (fs->regs.prev);
694 fs->regs.prev = NULL;
695 }
696
697 return insn_ptr;
cfc14b3a 698}
8f22cb90 699\f
cfc14b3a 700
8f22cb90 701/* Architecture-specific operations. */
cfc14b3a 702
8f22cb90
MK
703/* Per-architecture data key. */
704static struct gdbarch_data *dwarf2_frame_data;
705
706struct dwarf2_frame_ops
707{
708 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
709 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
710 struct frame_info *);
3ed09a32 711
4a4e5149 712 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 713 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 714
4fc771b8
DJ
715 /* Convert .eh_frame register number to DWARF register number, or
716 adjust .debug_frame register number. */
717 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
718};
719
8f22cb90
MK
720/* Default architecture-specific register state initialization
721 function. */
722
723static void
724dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 725 struct dwarf2_frame_state_reg *reg,
4a4e5149 726 struct frame_info *this_frame)
8f22cb90
MK
727{
728 /* If we have a register that acts as a program counter, mark it as
729 a destination for the return address. If we have a register that
730 serves as the stack pointer, arrange for it to be filled with the
731 call frame address (CFA). The other registers are marked as
732 unspecified.
733
734 We copy the return address to the program counter, since many
735 parts in GDB assume that it is possible to get the return address
736 by unwinding the program counter register. However, on ISA's
737 with a dedicated return address register, the CFI usually only
738 contains information to unwind that return address register.
739
740 The reason we're treating the stack pointer special here is
741 because in many cases GCC doesn't emit CFI for the stack pointer
742 and implicitly assumes that it is equal to the CFA. This makes
743 some sense since the DWARF specification (version 3, draft 8,
744 p. 102) says that:
745
746 "Typically, the CFA is defined to be the value of the stack
747 pointer at the call site in the previous frame (which may be
748 different from its value on entry to the current frame)."
749
750 However, this isn't true for all platforms supported by GCC
751 (e.g. IBM S/390 and zSeries). Those architectures should provide
752 their own architecture-specific initialization function. */
05cbe71a 753
ad010def 754 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 755 reg->how = DWARF2_FRAME_REG_RA;
ad010def 756 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
757 reg->how = DWARF2_FRAME_REG_CFA;
758}
05cbe71a 759
8f22cb90 760/* Return a default for the architecture-specific operations. */
05cbe71a 761
8f22cb90 762static void *
030f20e1 763dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
764{
765 struct dwarf2_frame_ops *ops;
766
030f20e1 767 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
768 ops->init_reg = dwarf2_frame_default_init_reg;
769 return ops;
770}
05cbe71a 771
8f22cb90
MK
772/* Set the architecture-specific register state initialization
773 function for GDBARCH to INIT_REG. */
774
775void
776dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
777 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
778 struct dwarf2_frame_state_reg *,
779 struct frame_info *))
8f22cb90 780{
030f20e1 781 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 782
8f22cb90
MK
783 ops->init_reg = init_reg;
784}
785
786/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
787
788static void
789dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 790 struct dwarf2_frame_state_reg *reg,
4a4e5149 791 struct frame_info *this_frame)
05cbe71a 792{
030f20e1 793 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 794
4a4e5149 795 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 796}
3ed09a32
DJ
797
798/* Set the architecture-specific signal trampoline recognition
799 function for GDBARCH to SIGNAL_FRAME_P. */
800
801void
802dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
803 int (*signal_frame_p) (struct gdbarch *,
804 struct frame_info *))
805{
806 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
807
808 ops->signal_frame_p = signal_frame_p;
809}
810
811/* Query the architecture-specific signal frame recognizer for
4a4e5149 812 THIS_FRAME. */
3ed09a32
DJ
813
814static int
815dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 816 struct frame_info *this_frame)
3ed09a32
DJ
817{
818 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
819
820 if (ops->signal_frame_p == NULL)
821 return 0;
4a4e5149 822 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 823}
4bf8967c 824
4fc771b8
DJ
825/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
826 register numbers. */
4bf8967c
AS
827
828void
4fc771b8
DJ
829dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
830 int (*adjust_regnum) (struct gdbarch *,
831 int, int))
4bf8967c
AS
832{
833 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
834
4fc771b8 835 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
836}
837
4fc771b8
DJ
838/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
839 register. */
4bf8967c 840
4fc771b8 841static int
3e43a32a
MS
842dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
843 int regnum, int eh_frame_p)
4bf8967c
AS
844{
845 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
846
4fc771b8 847 if (ops->adjust_regnum == NULL)
4bf8967c 848 return regnum;
4fc771b8 849 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 850}
303b6f5d
DJ
851
852static void
853dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
854 struct dwarf2_fde *fde)
855{
303b6f5d
DJ
856 struct symtab *s;
857
858 s = find_pc_symtab (fs->pc);
a6c727b2 859 if (s == NULL)
303b6f5d
DJ
860 return;
861
a6c727b2
DJ
862 if (producer_is_realview (s->producer))
863 {
864 if (fde->cie->version == 1)
865 fs->armcc_cfa_offsets_sf = 1;
866
867 if (fde->cie->version == 1)
868 fs->armcc_cfa_offsets_reversed = 1;
869
870 /* The reversed offset problem is present in some compilers
871 using DWARF3, but it was eventually fixed. Check the ARM
872 defined augmentations, which are in the format "armcc" followed
873 by a list of one-character options. The "+" option means
874 this problem is fixed (no quirk needed). If the armcc
875 augmentation is missing, the quirk is needed. */
876 if (fde->cie->version == 3
877 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
878 || strchr (fde->cie->augmentation + 5, '+') == NULL))
879 fs->armcc_cfa_offsets_reversed = 1;
880
881 return;
882 }
303b6f5d 883}
8f22cb90
MK
884\f
885
9f6f94ff
TT
886void
887dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
888 struct gdbarch *gdbarch,
889 CORE_ADDR pc,
890 struct dwarf2_per_cu_data *data)
891{
892 const int num_regs = gdbarch_num_regs (gdbarch)
893 + gdbarch_num_pseudo_regs (gdbarch);
894 struct dwarf2_fde *fde;
895 CORE_ADDR text_offset, cfa;
896 struct dwarf2_frame_state fs;
897 int addr_size;
898
899 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
900
901 fs.pc = pc;
902
903 /* Find the correct FDE. */
904 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
905 if (fde == NULL)
906 error (_("Could not compute CFA; needed to translate this expression"));
907
908 /* Extract any interesting information from the CIE. */
909 fs.data_align = fde->cie->data_alignment_factor;
910 fs.code_align = fde->cie->code_alignment_factor;
911 fs.retaddr_column = fde->cie->return_address_register;
912 addr_size = fde->cie->addr_size;
913
914 /* Check for "quirks" - known bugs in producers. */
915 dwarf2_frame_find_quirks (&fs, fde);
916
917 /* First decode all the insns in the CIE. */
918 execute_cfa_program (fde, fde->cie->initial_instructions,
919 fde->cie->end, gdbarch, pc, &fs);
920
921 /* Save the initialized register set. */
922 fs.initial = fs.regs;
923 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
924
925 /* Then decode the insns in the FDE up to our target PC. */
926 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
927
928 /* Calculate the CFA. */
929 switch (fs.regs.cfa_how)
930 {
931 case CFA_REG_OFFSET:
932 {
933 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
934
935 if (regnum == -1)
936 error (_("Unable to access DWARF register number %d"),
937 (int) fs.regs.cfa_reg); /* FIXME */
938 ax_reg (expr, regnum);
939
940 if (fs.regs.cfa_offset != 0)
941 {
942 if (fs.armcc_cfa_offsets_reversed)
943 ax_const_l (expr, -fs.regs.cfa_offset);
944 else
945 ax_const_l (expr, fs.regs.cfa_offset);
946 ax_simple (expr, aop_add);
947 }
948 }
949 break;
950
951 case CFA_EXP:
952 ax_const_l (expr, text_offset);
953 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
954 fs.regs.cfa_exp,
955 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
956 data);
957 break;
958
959 default:
960 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
961 }
962}
963
964\f
8f22cb90
MK
965struct dwarf2_frame_cache
966{
967 /* DWARF Call Frame Address. */
968 CORE_ADDR cfa;
969
8fbca658
PA
970 /* Set if the return address column was marked as unavailable
971 (required non-collected memory or registers to compute). */
972 int unavailable_retaddr;
973
0228dfb9
DJ
974 /* Set if the return address column was marked as undefined. */
975 int undefined_retaddr;
976
8f22cb90
MK
977 /* Saved registers, indexed by GDB register number, not by DWARF
978 register number. */
979 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
980
981 /* Return address register. */
982 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
983
984 /* Target address size in bytes. */
985 int addr_size;
ac56253d
TT
986
987 /* The .text offset. */
988 CORE_ADDR text_offset;
111c6489
JK
989
990 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
991 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
992 involved. Non-bottom frames of a virtual tail call frames chain use
993 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
994 them. */
995 void *tailcall_cache;
8f22cb90 996};
05cbe71a 997
b9362cc7 998static struct dwarf2_frame_cache *
4a4e5149 999dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1000{
1001 struct cleanup *old_chain;
4a4e5149 1002 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1003 const int num_regs = gdbarch_num_regs (gdbarch)
1004 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1005 struct dwarf2_frame_cache *cache;
1006 struct dwarf2_frame_state *fs;
1007 struct dwarf2_fde *fde;
8fbca658 1008 volatile struct gdb_exception ex;
111c6489
JK
1009 CORE_ADDR entry_pc;
1010 LONGEST entry_cfa_sp_offset;
1011 int entry_cfa_sp_offset_p = 0;
1012 const gdb_byte *instr;
cfc14b3a
MK
1013
1014 if (*this_cache)
1015 return *this_cache;
1016
1017 /* Allocate a new cache. */
1018 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1019 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1020 *this_cache = cache;
cfc14b3a
MK
1021
1022 /* Allocate and initialize the frame state. */
8fbca658 1023 fs = XZALLOC (struct dwarf2_frame_state);
cfc14b3a
MK
1024 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1025
1026 /* Unwind the PC.
1027
4a4e5149 1028 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1029 to abort), the compiler might optimize away the instruction at
4a4e5149 1030 its return address. As a result the return address will
cfc14b3a 1031 point at some random instruction, and the CFI for that
e4e9607c 1032 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1033 this problem by substracting 1 from the return address to get an
1034 address in the middle of a presumed call instruction (or the
1035 instruction in the associated delay slot). This should only be
1036 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1037 handlers, sentinel frames, dummy frames). The function
ad1193e7 1038 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1039 reliable the method is though; there is the potential for the
1040 register state pre-call being different to that on return. */
4a4e5149 1041 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1042
1043 /* Find the correct FDE. */
ac56253d 1044 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1045 gdb_assert (fde != NULL);
1046
1047 /* Extract any interesting information from the CIE. */
1048 fs->data_align = fde->cie->data_alignment_factor;
1049 fs->code_align = fde->cie->code_alignment_factor;
1050 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1051 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1052
303b6f5d
DJ
1053 /* Check for "quirks" - known bugs in producers. */
1054 dwarf2_frame_find_quirks (fs, fde);
1055
cfc14b3a 1056 /* First decode all the insns in the CIE. */
ae0d2f24 1057 execute_cfa_program (fde, fde->cie->initial_instructions,
9f6f94ff 1058 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs);
cfc14b3a
MK
1059
1060 /* Save the initialized register set. */
1061 fs->initial = fs->regs;
1062 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1063
111c6489
JK
1064 if (get_frame_func_if_available (this_frame, &entry_pc))
1065 {
1066 /* Decode the insns in the FDE up to the entry PC. */
1067 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1068 entry_pc, fs);
1069
1070 if (fs->regs.cfa_how == CFA_REG_OFFSET
1071 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1072 == gdbarch_sp_regnum (gdbarch)))
1073 {
1074 entry_cfa_sp_offset = fs->regs.cfa_offset;
1075 entry_cfa_sp_offset_p = 1;
1076 }
1077 }
1078 else
1079 instr = fde->instructions;
1080
cfc14b3a 1081 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1082 execute_cfa_program (fde, instr, fde->end, gdbarch,
9f6f94ff 1083 get_frame_pc (this_frame), fs);
cfc14b3a 1084
8fbca658 1085 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1086 {
8fbca658
PA
1087 /* Calculate the CFA. */
1088 switch (fs->regs.cfa_how)
1089 {
1090 case CFA_REG_OFFSET:
1091 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1092 if (fs->armcc_cfa_offsets_reversed)
1093 cache->cfa -= fs->regs.cfa_offset;
1094 else
1095 cache->cfa += fs->regs.cfa_offset;
1096 break;
1097
1098 case CFA_EXP:
1099 cache->cfa =
1100 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1101 cache->addr_size, cache->text_offset,
1102 this_frame, 0, 0);
1103 break;
1104
1105 default:
1106 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1107 }
1108 }
1109 if (ex.reason < 0)
1110 {
1111 if (ex.error == NOT_AVAILABLE_ERROR)
1112 {
1113 cache->unavailable_retaddr = 1;
1114 return cache;
1115 }
cfc14b3a 1116
8fbca658 1117 throw_exception (ex);
cfc14b3a
MK
1118 }
1119
05cbe71a 1120 /* Initialize the register state. */
3e2c4033
AC
1121 {
1122 int regnum;
e4e9607c 1123
3e2c4033 1124 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1125 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1126 }
1127
1128 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1129 location information in the cache. Note that we don't skip the
1130 return address column; it's perfectly all right for it to
1131 correspond to a real register. If it doesn't correspond to a
1132 real register, or if we shouldn't treat it as such,
055d23b8 1133 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1134 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1135 {
1136 int column; /* CFI speak for "register number". */
e4e9607c 1137
3e2c4033
AC
1138 for (column = 0; column < fs->regs.num_regs; column++)
1139 {
3e2c4033 1140 /* Use the GDB register number as the destination index. */
ad010def 1141 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1142
1143 /* If there's no corresponding GDB register, ignore it. */
1144 if (regnum < 0 || regnum >= num_regs)
1145 continue;
1146
1147 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1148 of all debug info registers. If it doesn't, complain (but
1149 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1150 unspecified register implies "same value" when CFI (draft
1151 7) specifies nothing at all. Such a register could equally
1152 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1153 isn't sufficient; it only checks that all registers in the
1154 range [0 .. max column] are specified, and won't detect
3e2c4033 1155 problems when a debug info register falls outside of the
e4e9607c 1156 table. We need a way of iterating through all the valid
3e2c4033 1157 DWARF2 register numbers. */
05cbe71a 1158 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1159 {
1160 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1161 complaint (&symfile_complaints, _("\
5af949e3 1162incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1163 gdbarch_register_name (gdbarch, regnum),
5af949e3 1164 paddress (gdbarch, fs->pc));
f059bf6f 1165 }
35889917
MK
1166 else
1167 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1168 }
1169 }
cfc14b3a 1170
8d5a9abc
MK
1171 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1172 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1173 {
1174 int regnum;
1175
1176 for (regnum = 0; regnum < num_regs; regnum++)
1177 {
8d5a9abc
MK
1178 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1179 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1180 {
05cbe71a
MK
1181 struct dwarf2_frame_state_reg *retaddr_reg =
1182 &fs->regs.reg[fs->retaddr_column];
1183
d4f10bf2
MK
1184 /* It seems rather bizarre to specify an "empty" column as
1185 the return adress column. However, this is exactly
1186 what GCC does on some targets. It turns out that GCC
1187 assumes that the return address can be found in the
1188 register corresponding to the return address column.
8d5a9abc
MK
1189 Incidentally, that's how we should treat a return
1190 address column specifying "same value" too. */
d4f10bf2 1191 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1192 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1193 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1194 {
1195 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1196 cache->reg[regnum] = *retaddr_reg;
1197 else
1198 cache->retaddr_reg = *retaddr_reg;
1199 }
35889917
MK
1200 else
1201 {
8d5a9abc
MK
1202 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1203 {
1204 cache->reg[regnum].loc.reg = fs->retaddr_column;
1205 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1206 }
1207 else
1208 {
1209 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1210 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1211 }
35889917
MK
1212 }
1213 }
1214 }
1215 }
cfc14b3a 1216
0228dfb9
DJ
1217 if (fs->retaddr_column < fs->regs.num_regs
1218 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1219 cache->undefined_retaddr = 1;
1220
cfc14b3a
MK
1221 do_cleanups (old_chain);
1222
111c6489
JK
1223 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1224 starting at THIS_FRAME. */
1225 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1226 (entry_cfa_sp_offset_p
1227 ? &entry_cfa_sp_offset : NULL));
1228
cfc14b3a
MK
1229 return cache;
1230}
1231
8fbca658
PA
1232static enum unwind_stop_reason
1233dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1234 void **this_cache)
1235{
1236 struct dwarf2_frame_cache *cache
1237 = dwarf2_frame_cache (this_frame, this_cache);
1238
1239 if (cache->unavailable_retaddr)
1240 return UNWIND_UNAVAILABLE;
1241
1242 if (cache->undefined_retaddr)
1243 return UNWIND_OUTERMOST;
1244
1245 return UNWIND_NO_REASON;
1246}
1247
cfc14b3a 1248static void
4a4e5149 1249dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1250 struct frame_id *this_id)
1251{
1252 struct dwarf2_frame_cache *cache =
4a4e5149 1253 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1254
8fbca658
PA
1255 if (cache->unavailable_retaddr)
1256 return;
1257
0228dfb9
DJ
1258 if (cache->undefined_retaddr)
1259 return;
1260
4a4e5149 1261 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1262}
1263
4a4e5149
DJ
1264static struct value *
1265dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1266 int regnum)
93d42b30 1267{
4a4e5149 1268 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1269 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1270 dwarf2_frame_cache (this_frame, this_cache);
1271 CORE_ADDR addr;
1272 int realnum;
cfc14b3a 1273
111c6489
JK
1274 /* Non-bottom frames of a virtual tail call frames chain use
1275 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1276 them. If dwarf2_tailcall_prev_register_first does not have specific value
1277 unwind the register, tail call frames are assumed to have the register set
1278 of the top caller. */
1279 if (cache->tailcall_cache)
1280 {
1281 struct value *val;
1282
1283 val = dwarf2_tailcall_prev_register_first (this_frame,
1284 &cache->tailcall_cache,
1285 regnum);
1286 if (val)
1287 return val;
1288 }
1289
cfc14b3a
MK
1290 switch (cache->reg[regnum].how)
1291 {
05cbe71a 1292 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1293 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1294 mark it as optimized away; the value isn't available. */
4a4e5149 1295 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1296
05cbe71a 1297 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1298 addr = cache->cfa + cache->reg[regnum].loc.offset;
1299 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1300
05cbe71a 1301 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1302 realnum
1303 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1304 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1305
05cbe71a 1306 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1307 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1308 cache->reg[regnum].exp_len,
ac56253d
TT
1309 cache->addr_size, cache->text_offset,
1310 this_frame, cache->cfa, 1);
4a4e5149 1311 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1312
46ea248b 1313 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1314 addr = cache->cfa + cache->reg[regnum].loc.offset;
1315 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1316
1317 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1318 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1319 cache->reg[regnum].exp_len,
ac56253d
TT
1320 cache->addr_size, cache->text_offset,
1321 this_frame, cache->cfa, 1);
4a4e5149 1322 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1323
05cbe71a 1324 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1325 /* GCC, in its infinite wisdom decided to not provide unwind
1326 information for registers that are "same value". Since
1327 DWARF2 (3 draft 7) doesn't define such behavior, said
1328 registers are actually undefined (which is different to CFI
1329 "undefined"). Code above issues a complaint about this.
1330 Here just fudge the books, assume GCC, and that the value is
1331 more inner on the stack. */
4a4e5149 1332 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1333
05cbe71a 1334 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1335 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1336
05cbe71a 1337 case DWARF2_FRAME_REG_CFA:
4a4e5149 1338 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1339
ea7963f0 1340 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1341 addr = cache->cfa + cache->reg[regnum].loc.offset;
1342 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1343
8d5a9abc 1344 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1345 addr = cache->reg[regnum].loc.offset;
1346 regnum = gdbarch_dwarf2_reg_to_regnum
1347 (gdbarch, cache->retaddr_reg.loc.reg);
1348 addr += get_frame_register_unsigned (this_frame, regnum);
1349 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1350
b39cc962
DJ
1351 case DWARF2_FRAME_REG_FN:
1352 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1353
cfc14b3a 1354 default:
e2e0b3e5 1355 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1356 }
1357}
1358
111c6489
JK
1359/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1360 call frames chain. */
1361
1362static void
1363dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1364{
1365 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1366
1367 if (cache->tailcall_cache)
1368 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1369}
1370
4a4e5149
DJ
1371static int
1372dwarf2_frame_sniffer (const struct frame_unwind *self,
1373 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1374{
1ce5d6dd 1375 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1376 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1377 end up returning something past the end of this function's body.
1378 If the frame we're sniffing for is a signal frame whose start
1379 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1380 extend one byte before its start address or we could potentially
1381 select the FDE of the previous function. */
1382 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1383 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1384
56c987f6 1385 if (!fde)
4a4e5149 1386 return 0;
3ed09a32
DJ
1387
1388 /* On some targets, signal trampolines may have unwind information.
1389 We need to recognize them so that we set the frame type
1390 correctly. */
1391
56c987f6 1392 if (fde->cie->signal_frame
4a4e5149
DJ
1393 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1394 this_frame))
1395 return self->type == SIGTRAMP_FRAME;
1396
111c6489
JK
1397 if (self->type != NORMAL_FRAME)
1398 return 0;
1399
1400 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1401 dwarf2_tailcall_sniffer_first. */
1402 dwarf2_frame_cache (this_frame, this_cache);
1403
1404 return 1;
4a4e5149
DJ
1405}
1406
1407static const struct frame_unwind dwarf2_frame_unwind =
1408{
1409 NORMAL_FRAME,
8fbca658 1410 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1411 dwarf2_frame_this_id,
1412 dwarf2_frame_prev_register,
1413 NULL,
111c6489
JK
1414 dwarf2_frame_sniffer,
1415 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1416};
1417
1418static const struct frame_unwind dwarf2_signal_frame_unwind =
1419{
1420 SIGTRAMP_FRAME,
8fbca658 1421 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1422 dwarf2_frame_this_id,
1423 dwarf2_frame_prev_register,
1424 NULL,
111c6489
JK
1425 dwarf2_frame_sniffer,
1426
1427 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1428 NULL
4a4e5149 1429};
cfc14b3a 1430
4a4e5149
DJ
1431/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1432
1433void
1434dwarf2_append_unwinders (struct gdbarch *gdbarch)
1435{
111c6489
JK
1436 /* TAILCALL_FRAME must be first to find the record by
1437 dwarf2_tailcall_sniffer_first. */
1438 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1439
4a4e5149
DJ
1440 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1441 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1442}
1443\f
1444
1445/* There is no explicitly defined relationship between the CFA and the
1446 location of frame's local variables and arguments/parameters.
1447 Therefore, frame base methods on this page should probably only be
1448 used as a last resort, just to avoid printing total garbage as a
1449 response to the "info frame" command. */
1450
1451static CORE_ADDR
4a4e5149 1452dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1453{
1454 struct dwarf2_frame_cache *cache =
4a4e5149 1455 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1456
1457 return cache->cfa;
1458}
1459
1460static const struct frame_base dwarf2_frame_base =
1461{
1462 &dwarf2_frame_unwind,
1463 dwarf2_frame_base_address,
1464 dwarf2_frame_base_address,
1465 dwarf2_frame_base_address
1466};
1467
1468const struct frame_base *
4a4e5149 1469dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1470{
4a4e5149 1471 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1472
ac56253d 1473 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1474 return &dwarf2_frame_base;
1475
1476 return NULL;
1477}
e7802207
TT
1478
1479/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1480 the DWARF unwinder. This is used to implement
1481 DW_OP_call_frame_cfa. */
1482
1483CORE_ADDR
1484dwarf2_frame_cfa (struct frame_info *this_frame)
1485{
1486 while (get_frame_type (this_frame) == INLINE_FRAME)
1487 this_frame = get_prev_frame (this_frame);
1488 /* This restriction could be lifted if other unwinders are known to
1489 compute the frame base in a way compatible with the DWARF
1490 unwinder. */
111c6489
JK
1491 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1492 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
e7802207 1493 error (_("can't compute CFA for this frame"));
c0bf857d
PA
1494 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1495 throw_error (NOT_AVAILABLE_ERROR,
1496 _("can't compute CFA for this frame: "
1497 "required registers or memory are unavailable"));
e7802207
TT
1498 return get_frame_base (this_frame);
1499}
cfc14b3a 1500\f
8f22cb90 1501const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1502
cfc14b3a 1503static unsigned int
852483bc 1504read_1_byte (bfd *abfd, gdb_byte *buf)
cfc14b3a 1505{
852483bc 1506 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1507}
1508
1509static unsigned int
852483bc 1510read_4_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1511{
852483bc 1512 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1513}
1514
1515static ULONGEST
852483bc 1516read_8_bytes (bfd *abfd, gdb_byte *buf)
cfc14b3a 1517{
852483bc 1518 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1519}
1520
1521static ULONGEST
852483bc 1522read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1523{
1524 ULONGEST result;
1525 unsigned int num_read;
1526 int shift;
852483bc 1527 gdb_byte byte;
cfc14b3a
MK
1528
1529 result = 0;
1530 shift = 0;
1531 num_read = 0;
1532
1533 do
1534 {
1535 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1536 buf++;
1537 num_read++;
1538 result |= ((byte & 0x7f) << shift);
1539 shift += 7;
1540 }
1541 while (byte & 0x80);
1542
1543 *bytes_read_ptr = num_read;
1544
1545 return result;
1546}
1547
1548static LONGEST
852483bc 1549read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1550{
1551 LONGEST result;
1552 int shift;
1553 unsigned int num_read;
852483bc 1554 gdb_byte byte;
cfc14b3a
MK
1555
1556 result = 0;
1557 shift = 0;
1558 num_read = 0;
1559
1560 do
1561 {
1562 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1563 buf++;
1564 num_read++;
1565 result |= ((byte & 0x7f) << shift);
1566 shift += 7;
1567 }
1568 while (byte & 0x80);
1569
77e0b926
DJ
1570 if (shift < 8 * sizeof (result) && (byte & 0x40))
1571 result |= -(((LONGEST)1) << shift);
cfc14b3a
MK
1572
1573 *bytes_read_ptr = num_read;
1574
1575 return result;
1576}
1577
1578static ULONGEST
852483bc 1579read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
cfc14b3a
MK
1580{
1581 LONGEST result;
1582
852483bc 1583 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1584 if (result == 0xffffffff)
1585 {
852483bc 1586 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1587 *bytes_read_ptr = 12;
1588 }
1589 else
1590 *bytes_read_ptr = 4;
1591
1592 return result;
1593}
1594\f
1595
1596/* Pointer encoding helper functions. */
1597
1598/* GCC supports exception handling based on DWARF2 CFI. However, for
1599 technical reasons, it encodes addresses in its FDE's in a different
1600 way. Several "pointer encodings" are supported. The encoding
1601 that's used for a particular FDE is determined by the 'R'
1602 augmentation in the associated CIE. The argument of this
1603 augmentation is a single byte.
1604
1605 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1606 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1607 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1608 address should be interpreted (absolute, relative to the current
1609 position in the FDE, ...). Bit 7, indicates that the address
1610 should be dereferenced. */
1611
852483bc 1612static gdb_byte
cfc14b3a
MK
1613encoding_for_size (unsigned int size)
1614{
1615 switch (size)
1616 {
1617 case 2:
1618 return DW_EH_PE_udata2;
1619 case 4:
1620 return DW_EH_PE_udata4;
1621 case 8:
1622 return DW_EH_PE_udata8;
1623 default:
e2e0b3e5 1624 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1625 }
1626}
1627
cfc14b3a 1628static CORE_ADDR
852483bc 1629read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1630 int ptr_len, const gdb_byte *buf,
1631 unsigned int *bytes_read_ptr,
ae0d2f24 1632 CORE_ADDR func_base)
cfc14b3a 1633{
68f6cf99 1634 ptrdiff_t offset;
cfc14b3a
MK
1635 CORE_ADDR base;
1636
1637 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1638 FDE's. */
1639 if (encoding & DW_EH_PE_indirect)
1640 internal_error (__FILE__, __LINE__,
e2e0b3e5 1641 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1642
68f6cf99
MK
1643 *bytes_read_ptr = 0;
1644
cfc14b3a
MK
1645 switch (encoding & 0x70)
1646 {
1647 case DW_EH_PE_absptr:
1648 base = 0;
1649 break;
1650 case DW_EH_PE_pcrel:
f2fec864 1651 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1652 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1653 break;
0912c7f2
MK
1654 case DW_EH_PE_datarel:
1655 base = unit->dbase;
1656 break;
0fd85043
CV
1657 case DW_EH_PE_textrel:
1658 base = unit->tbase;
1659 break;
03ac2a74 1660 case DW_EH_PE_funcrel:
ae0d2f24 1661 base = func_base;
03ac2a74 1662 break;
68f6cf99
MK
1663 case DW_EH_PE_aligned:
1664 base = 0;
852483bc 1665 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1666 if ((offset % ptr_len) != 0)
1667 {
1668 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1669 buf += *bytes_read_ptr;
1670 }
1671 break;
cfc14b3a 1672 default:
3e43a32a
MS
1673 internal_error (__FILE__, __LINE__,
1674 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1675 }
1676
b04de778 1677 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1678 {
1679 encoding |= encoding_for_size (ptr_len);
1680 if (bfd_get_sign_extend_vma (unit->abfd))
1681 encoding |= DW_EH_PE_signed;
1682 }
cfc14b3a
MK
1683
1684 switch (encoding & 0x0f)
1685 {
a81b10ae
MK
1686 case DW_EH_PE_uleb128:
1687 {
1688 ULONGEST value;
0d45f56e 1689 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1690
a7289609 1691 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1692 return base + value;
1693 }
cfc14b3a 1694 case DW_EH_PE_udata2:
68f6cf99 1695 *bytes_read_ptr += 2;
cfc14b3a
MK
1696 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1697 case DW_EH_PE_udata4:
68f6cf99 1698 *bytes_read_ptr += 4;
cfc14b3a
MK
1699 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1700 case DW_EH_PE_udata8:
68f6cf99 1701 *bytes_read_ptr += 8;
cfc14b3a 1702 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1703 case DW_EH_PE_sleb128:
1704 {
1705 LONGEST value;
0d45f56e 1706 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1707
a7289609 1708 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1709 return base + value;
1710 }
cfc14b3a 1711 case DW_EH_PE_sdata2:
68f6cf99 1712 *bytes_read_ptr += 2;
cfc14b3a
MK
1713 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1714 case DW_EH_PE_sdata4:
68f6cf99 1715 *bytes_read_ptr += 4;
cfc14b3a
MK
1716 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1717 case DW_EH_PE_sdata8:
68f6cf99 1718 *bytes_read_ptr += 8;
cfc14b3a
MK
1719 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1720 default:
3e43a32a
MS
1721 internal_error (__FILE__, __LINE__,
1722 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1723 }
1724}
1725\f
1726
b01c8410
PP
1727static int
1728bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1729{
b01c8410
PP
1730 ULONGEST cie_pointer = *(ULONGEST *) key;
1731 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1732
b01c8410
PP
1733 if (cie_pointer == cie->cie_pointer)
1734 return 0;
cfc14b3a 1735
b01c8410
PP
1736 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1737}
1738
1739/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1740static struct dwarf2_cie *
1741find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1742{
1743 struct dwarf2_cie **p_cie;
cfc14b3a 1744
65a97ab3
PP
1745 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1746 bsearch be non-NULL. */
1747 if (cie_table->entries == NULL)
1748 {
1749 gdb_assert (cie_table->num_entries == 0);
1750 return NULL;
1751 }
1752
b01c8410
PP
1753 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1754 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1755 if (p_cie != NULL)
1756 return *p_cie;
cfc14b3a
MK
1757 return NULL;
1758}
1759
b01c8410 1760/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1761static void
b01c8410 1762add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1763{
b01c8410
PP
1764 const int n = cie_table->num_entries;
1765
1766 gdb_assert (n < 1
1767 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1768
1769 cie_table->entries =
1770 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1771 cie_table->entries[n] = cie;
1772 cie_table->num_entries = n + 1;
1773}
1774
1775static int
1776bsearch_fde_cmp (const void *key, const void *element)
1777{
1778 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1779 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1780
b01c8410
PP
1781 if (seek_pc < fde->initial_location)
1782 return -1;
1783 if (seek_pc < fde->initial_location + fde->address_range)
1784 return 0;
1785 return 1;
cfc14b3a
MK
1786}
1787
1788/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1789 inital location associated with it into *PC. */
1790
1791static struct dwarf2_fde *
ac56253d 1792dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1793{
1794 struct objfile *objfile;
1795
1796 ALL_OBJFILES (objfile)
1797 {
b01c8410
PP
1798 struct dwarf2_fde_table *fde_table;
1799 struct dwarf2_fde **p_fde;
cfc14b3a 1800 CORE_ADDR offset;
b01c8410 1801 CORE_ADDR seek_pc;
cfc14b3a 1802
b01c8410
PP
1803 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1804 if (fde_table == NULL)
be391dca
TT
1805 {
1806 dwarf2_build_frame_info (objfile);
1807 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1808 }
1809 gdb_assert (fde_table != NULL);
1810
1811 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1812 continue;
1813
1814 gdb_assert (objfile->section_offsets);
1815 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1816
b01c8410
PP
1817 gdb_assert (fde_table->num_entries > 0);
1818 if (*pc < offset + fde_table->entries[0]->initial_location)
1819 continue;
1820
1821 seek_pc = *pc - offset;
1822 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1823 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1824 if (p_fde != NULL)
1825 {
1826 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1827 if (out_offset)
1828 *out_offset = offset;
b01c8410
PP
1829 return *p_fde;
1830 }
cfc14b3a 1831 }
cfc14b3a
MK
1832 return NULL;
1833}
1834
b01c8410 1835/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1836static void
b01c8410 1837add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1838{
b01c8410
PP
1839 if (fde->address_range == 0)
1840 /* Discard useless FDEs. */
1841 return;
1842
1843 fde_table->num_entries += 1;
1844 fde_table->entries =
1845 xrealloc (fde_table->entries,
1846 fde_table->num_entries * sizeof (fde_table->entries[0]));
1847 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1848}
1849
1850#ifdef CC_HAS_LONG_LONG
1851#define DW64_CIE_ID 0xffffffffffffffffULL
1852#else
1853#define DW64_CIE_ID ~0
1854#endif
1855
8bd90839
FM
1856/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1857 or any of them. */
1858
1859enum eh_frame_type
1860{
1861 EH_CIE_TYPE_ID = 1 << 0,
1862 EH_FDE_TYPE_ID = 1 << 1,
1863 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1864};
1865
852483bc 1866static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
b01c8410
PP
1867 int eh_frame_p,
1868 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1869 struct dwarf2_fde_table *fde_table,
1870 enum eh_frame_type entry_type);
1871
1872/* Decode the next CIE or FDE, entry_type specifies the expected type.
1873 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1874
852483bc 1875static gdb_byte *
b01c8410
PP
1876decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1877 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1878 struct dwarf2_fde_table *fde_table,
1879 enum eh_frame_type entry_type)
cfc14b3a 1880{
5e2b427d 1881 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
852483bc 1882 gdb_byte *buf, *end;
cfc14b3a
MK
1883 LONGEST length;
1884 unsigned int bytes_read;
6896c0c7
RH
1885 int dwarf64_p;
1886 ULONGEST cie_id;
cfc14b3a 1887 ULONGEST cie_pointer;
cfc14b3a 1888
6896c0c7 1889 buf = start;
cfc14b3a
MK
1890 length = read_initial_length (unit->abfd, buf, &bytes_read);
1891 buf += bytes_read;
1892 end = buf + length;
1893
0963b4bd 1894 /* Are we still within the section? */
6896c0c7
RH
1895 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1896 return NULL;
1897
cfc14b3a
MK
1898 if (length == 0)
1899 return end;
1900
6896c0c7
RH
1901 /* Distinguish between 32 and 64-bit encoded frame info. */
1902 dwarf64_p = (bytes_read == 12);
cfc14b3a 1903
6896c0c7 1904 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1905 if (eh_frame_p)
1906 cie_id = 0;
1907 else if (dwarf64_p)
1908 cie_id = DW64_CIE_ID;
6896c0c7
RH
1909 else
1910 cie_id = DW_CIE_ID;
cfc14b3a
MK
1911
1912 if (dwarf64_p)
1913 {
1914 cie_pointer = read_8_bytes (unit->abfd, buf);
1915 buf += 8;
1916 }
1917 else
1918 {
1919 cie_pointer = read_4_bytes (unit->abfd, buf);
1920 buf += 4;
1921 }
1922
1923 if (cie_pointer == cie_id)
1924 {
1925 /* This is a CIE. */
1926 struct dwarf2_cie *cie;
1927 char *augmentation;
28ba0b33 1928 unsigned int cie_version;
cfc14b3a 1929
8bd90839
FM
1930 /* Check that a CIE was expected. */
1931 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1932 error (_("Found a CIE when not expecting it."));
1933
cfc14b3a
MK
1934 /* Record the offset into the .debug_frame section of this CIE. */
1935 cie_pointer = start - unit->dwarf_frame_buffer;
1936
1937 /* Check whether we've already read it. */
b01c8410 1938 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1939 return end;
1940
1941 cie = (struct dwarf2_cie *)
8b92e4d5 1942 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1943 sizeof (struct dwarf2_cie));
1944 cie->initial_instructions = NULL;
1945 cie->cie_pointer = cie_pointer;
1946
1947 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1948 depends on the target address size. */
1949 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1950
56c987f6
AO
1951 /* We'll determine the final value later, but we need to
1952 initialize it conservatively. */
1953 cie->signal_frame = 0;
1954
cfc14b3a 1955 /* Check version number. */
28ba0b33 1956 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1957 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1958 return NULL;
303b6f5d 1959 cie->version = cie_version;
cfc14b3a
MK
1960 buf += 1;
1961
1962 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1963 cie->augmentation = augmentation = (char *) buf;
852483bc 1964 buf += (strlen (augmentation) + 1);
cfc14b3a 1965
303b6f5d
DJ
1966 /* Ignore armcc augmentations. We only use them for quirks,
1967 and that doesn't happen until later. */
1968 if (strncmp (augmentation, "armcc", 5) == 0)
1969 augmentation += strlen (augmentation);
1970
cfc14b3a
MK
1971 /* The GCC 2.x "eh" augmentation has a pointer immediately
1972 following the augmentation string, so it must be handled
1973 first. */
1974 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1975 {
1976 /* Skip. */
5e2b427d 1977 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1978 augmentation += 2;
1979 }
1980
2dc7f7b3
TT
1981 if (cie->version >= 4)
1982 {
1983 /* FIXME: check that this is the same as from the CU header. */
1984 cie->addr_size = read_1_byte (unit->abfd, buf);
1985 ++buf;
1986 cie->segment_size = read_1_byte (unit->abfd, buf);
1987 ++buf;
1988 }
1989 else
1990 {
8da614df 1991 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1992 cie->segment_size = 0;
1993 }
8da614df
CV
1994 /* Address values in .eh_frame sections are defined to have the
1995 target's pointer size. Watchout: This breaks frame info for
1996 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1997 section exists as well. */
8da614df
CV
1998 if (eh_frame_p)
1999 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
2000 else
2001 cie->ptr_size = cie->addr_size;
2dc7f7b3 2002
cfc14b3a
MK
2003 cie->code_alignment_factor =
2004 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2005 buf += bytes_read;
2006
2007 cie->data_alignment_factor =
2008 read_signed_leb128 (unit->abfd, buf, &bytes_read);
2009 buf += bytes_read;
2010
28ba0b33
PB
2011 if (cie_version == 1)
2012 {
2013 cie->return_address_register = read_1_byte (unit->abfd, buf);
2014 bytes_read = 1;
2015 }
2016 else
2017 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
2018 &bytes_read);
4fc771b8 2019 cie->return_address_register
5e2b427d 2020 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
2021 cie->return_address_register,
2022 eh_frame_p);
4bf8967c 2023
28ba0b33 2024 buf += bytes_read;
cfc14b3a 2025
7131cb6e
RH
2026 cie->saw_z_augmentation = (*augmentation == 'z');
2027 if (cie->saw_z_augmentation)
cfc14b3a
MK
2028 {
2029 ULONGEST length;
2030
2031 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2032 buf += bytes_read;
6896c0c7
RH
2033 if (buf > end)
2034 return NULL;
cfc14b3a
MK
2035 cie->initial_instructions = buf + length;
2036 augmentation++;
2037 }
2038
2039 while (*augmentation)
2040 {
2041 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2042 if (*augmentation == 'L')
2043 {
2044 /* Skip. */
2045 buf++;
2046 augmentation++;
2047 }
2048
2049 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2050 else if (*augmentation == 'R')
2051 {
2052 cie->encoding = *buf++;
2053 augmentation++;
2054 }
2055
2056 /* "P" indicates a personality routine in the CIE augmentation. */
2057 else if (*augmentation == 'P')
2058 {
1234d960 2059 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2060 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2061 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2062 buf, &bytes_read, 0);
f724bf08 2063 buf += bytes_read;
cfc14b3a
MK
2064 augmentation++;
2065 }
2066
56c987f6
AO
2067 /* "S" indicates a signal frame, such that the return
2068 address must not be decremented to locate the call frame
2069 info for the previous frame; it might even be the first
2070 instruction of a function, so decrementing it would take
2071 us to a different function. */
2072 else if (*augmentation == 'S')
2073 {
2074 cie->signal_frame = 1;
2075 augmentation++;
2076 }
2077
3e9a2e52
DJ
2078 /* Otherwise we have an unknown augmentation. Assume that either
2079 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2080 else
2081 {
3e9a2e52
DJ
2082 if (cie->initial_instructions)
2083 buf = cie->initial_instructions;
cfc14b3a
MK
2084 break;
2085 }
2086 }
2087
2088 cie->initial_instructions = buf;
2089 cie->end = end;
b01c8410 2090 cie->unit = unit;
cfc14b3a 2091
b01c8410 2092 add_cie (cie_table, cie);
cfc14b3a
MK
2093 }
2094 else
2095 {
2096 /* This is a FDE. */
2097 struct dwarf2_fde *fde;
2098
8bd90839
FM
2099 /* Check that an FDE was expected. */
2100 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2101 error (_("Found an FDE when not expecting it."));
2102
6896c0c7
RH
2103 /* In an .eh_frame section, the CIE pointer is the delta between the
2104 address within the FDE where the CIE pointer is stored and the
2105 address of the CIE. Convert it to an offset into the .eh_frame
2106 section. */
cfc14b3a
MK
2107 if (eh_frame_p)
2108 {
cfc14b3a
MK
2109 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2110 cie_pointer -= (dwarf64_p ? 8 : 4);
2111 }
2112
6896c0c7
RH
2113 /* In either case, validate the result is still within the section. */
2114 if (cie_pointer >= unit->dwarf_frame_size)
2115 return NULL;
2116
cfc14b3a 2117 fde = (struct dwarf2_fde *)
8b92e4d5 2118 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2119 sizeof (struct dwarf2_fde));
b01c8410 2120 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2121 if (fde->cie == NULL)
2122 {
2123 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2124 eh_frame_p, cie_table, fde_table,
2125 EH_CIE_TYPE_ID);
b01c8410 2126 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2127 }
2128
2129 gdb_assert (fde->cie != NULL);
2130
2131 fde->initial_location =
8da614df 2132 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
ae0d2f24 2133 buf, &bytes_read, 0);
cfc14b3a
MK
2134 buf += bytes_read;
2135
2136 fde->address_range =
ae0d2f24 2137 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2138 fde->cie->ptr_size, buf, &bytes_read, 0);
cfc14b3a
MK
2139 buf += bytes_read;
2140
7131cb6e
RH
2141 /* A 'z' augmentation in the CIE implies the presence of an
2142 augmentation field in the FDE as well. The only thing known
2143 to be in here at present is the LSDA entry for EH. So we
2144 can skip the whole thing. */
2145 if (fde->cie->saw_z_augmentation)
2146 {
2147 ULONGEST length;
2148
2149 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2150 buf += bytes_read + length;
6896c0c7
RH
2151 if (buf > end)
2152 return NULL;
7131cb6e
RH
2153 }
2154
cfc14b3a
MK
2155 fde->instructions = buf;
2156 fde->end = end;
2157
4bf8967c
AS
2158 fde->eh_frame_p = eh_frame_p;
2159
b01c8410 2160 add_fde (fde_table, fde);
cfc14b3a
MK
2161 }
2162
2163 return end;
2164}
6896c0c7 2165
8bd90839
FM
2166/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2167 expect an FDE or a CIE. */
2168
852483bc 2169static gdb_byte *
b01c8410
PP
2170decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
2171 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2172 struct dwarf2_fde_table *fde_table,
2173 enum eh_frame_type entry_type)
6896c0c7
RH
2174{
2175 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
852483bc 2176 gdb_byte *ret;
6896c0c7
RH
2177 ptrdiff_t start_offset;
2178
2179 while (1)
2180 {
b01c8410 2181 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2182 cie_table, fde_table, entry_type);
6896c0c7
RH
2183 if (ret != NULL)
2184 break;
2185
2186 /* We have corrupt input data of some form. */
2187
2188 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2189 and mismatches wrt padding and alignment of debug sections. */
2190 /* Note that there is no requirement in the standard for any
2191 alignment at all in the frame unwind sections. Testing for
2192 alignment before trying to interpret data would be incorrect.
2193
2194 However, GCC traditionally arranged for frame sections to be
2195 sized such that the FDE length and CIE fields happen to be
2196 aligned (in theory, for performance). This, unfortunately,
2197 was done with .align directives, which had the side effect of
2198 forcing the section to be aligned by the linker.
2199
2200 This becomes a problem when you have some other producer that
2201 creates frame sections that are not as strictly aligned. That
2202 produces a hole in the frame info that gets filled by the
2203 linker with zeros.
2204
2205 The GCC behaviour is arguably a bug, but it's effectively now
2206 part of the ABI, so we're now stuck with it, at least at the
2207 object file level. A smart linker may decide, in the process
2208 of compressing duplicate CIE information, that it can rewrite
2209 the entire output section without this extra padding. */
2210
2211 start_offset = start - unit->dwarf_frame_buffer;
2212 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2213 {
2214 start += 4 - (start_offset & 3);
2215 workaround = ALIGN4;
2216 continue;
2217 }
2218 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2219 {
2220 start += 8 - (start_offset & 7);
2221 workaround = ALIGN8;
2222 continue;
2223 }
2224
2225 /* Nothing left to try. Arrange to return as if we've consumed
2226 the entire input section. Hopefully we'll get valid info from
2227 the other of .debug_frame/.eh_frame. */
2228 workaround = FAIL;
2229 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2230 break;
2231 }
2232
2233 switch (workaround)
2234 {
2235 case NONE:
2236 break;
2237
2238 case ALIGN4:
3e43a32a
MS
2239 complaint (&symfile_complaints, _("\
2240Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2241 unit->dwarf_frame_section->owner->filename,
2242 unit->dwarf_frame_section->name);
2243 break;
2244
2245 case ALIGN8:
3e43a32a
MS
2246 complaint (&symfile_complaints, _("\
2247Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2248 unit->dwarf_frame_section->owner->filename,
2249 unit->dwarf_frame_section->name);
2250 break;
2251
2252 default:
2253 complaint (&symfile_complaints,
e2e0b3e5 2254 _("Corrupt data in %s:%s"),
6896c0c7
RH
2255 unit->dwarf_frame_section->owner->filename,
2256 unit->dwarf_frame_section->name);
2257 break;
2258 }
2259
2260 return ret;
2261}
cfc14b3a 2262\f
b01c8410
PP
2263static int
2264qsort_fde_cmp (const void *a, const void *b)
2265{
2266 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2267 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2268
b01c8410 2269 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2270 {
2271 if (aa->address_range != bb->address_range
2272 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2273 /* Linker bug, e.g. gold/10400.
2274 Work around it by keeping stable sort order. */
2275 return (a < b) ? -1 : 1;
2276 else
2277 /* Put eh_frame entries after debug_frame ones. */
2278 return aa->eh_frame_p - bb->eh_frame_p;
2279 }
b01c8410
PP
2280
2281 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2282}
2283
cfc14b3a
MK
2284void
2285dwarf2_build_frame_info (struct objfile *objfile)
2286{
ae0d2f24 2287 struct comp_unit *unit;
852483bc 2288 gdb_byte *frame_ptr;
b01c8410
PP
2289 struct dwarf2_cie_table cie_table;
2290 struct dwarf2_fde_table fde_table;
be391dca 2291 struct dwarf2_fde_table *fde_table2;
8bd90839 2292 volatile struct gdb_exception e;
b01c8410
PP
2293
2294 cie_table.num_entries = 0;
2295 cie_table.entries = NULL;
2296
2297 fde_table.num_entries = 0;
2298 fde_table.entries = NULL;
cfc14b3a
MK
2299
2300 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2301 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2302 sizeof (struct comp_unit));
2303 unit->abfd = objfile->obfd;
2304 unit->objfile = objfile;
2305 unit->dbase = 0;
2306 unit->tbase = 0;
cfc14b3a 2307
d40102a1 2308 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2309 {
d40102a1
JB
2310 /* Do not read .eh_frame from separate file as they must be also
2311 present in the main file. */
2312 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2313 &unit->dwarf_frame_section,
2314 &unit->dwarf_frame_buffer,
2315 &unit->dwarf_frame_size);
2316 if (unit->dwarf_frame_size)
b01c8410 2317 {
d40102a1
JB
2318 asection *got, *txt;
2319
2320 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2321 that is used for the i386/amd64 target, which currently is
2322 the only target in GCC that supports/uses the
2323 DW_EH_PE_datarel encoding. */
2324 got = bfd_get_section_by_name (unit->abfd, ".got");
2325 if (got)
2326 unit->dbase = got->vma;
2327
2328 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2329 so far. */
2330 txt = bfd_get_section_by_name (unit->abfd, ".text");
2331 if (txt)
2332 unit->tbase = txt->vma;
2333
8bd90839
FM
2334 TRY_CATCH (e, RETURN_MASK_ERROR)
2335 {
2336 frame_ptr = unit->dwarf_frame_buffer;
2337 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2338 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2339 &cie_table, &fde_table,
2340 EH_CIE_OR_FDE_TYPE_ID);
2341 }
2342
2343 if (e.reason < 0)
2344 {
2345 warning (_("skipping .eh_frame info of %s: %s"),
2346 objfile->name, e.message);
2347
2348 if (fde_table.num_entries != 0)
2349 {
2350 xfree (fde_table.entries);
2351 fde_table.entries = NULL;
2352 fde_table.num_entries = 0;
2353 }
2354 /* The cie_table is discarded by the next if. */
2355 }
d40102a1
JB
2356
2357 if (cie_table.num_entries != 0)
2358 {
2359 /* Reinit cie_table: debug_frame has different CIEs. */
2360 xfree (cie_table.entries);
2361 cie_table.num_entries = 0;
2362 cie_table.entries = NULL;
2363 }
b01c8410 2364 }
cfc14b3a
MK
2365 }
2366
3017a003 2367 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2368 &unit->dwarf_frame_section,
2369 &unit->dwarf_frame_buffer,
2370 &unit->dwarf_frame_size);
2371 if (unit->dwarf_frame_size)
cfc14b3a 2372 {
8bd90839
FM
2373 int num_old_fde_entries = fde_table.num_entries;
2374
2375 TRY_CATCH (e, RETURN_MASK_ERROR)
2376 {
2377 frame_ptr = unit->dwarf_frame_buffer;
2378 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2379 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2380 &cie_table, &fde_table,
2381 EH_CIE_OR_FDE_TYPE_ID);
2382 }
2383 if (e.reason < 0)
2384 {
2385 warning (_("skipping .debug_frame info of %s: %s"),
2386 objfile->name, e.message);
2387
2388 if (fde_table.num_entries != 0)
2389 {
2390 fde_table.num_entries = num_old_fde_entries;
2391 if (num_old_fde_entries == 0)
2392 {
2393 xfree (fde_table.entries);
2394 fde_table.entries = NULL;
2395 }
2396 else
2397 {
2398 fde_table.entries = xrealloc (fde_table.entries,
2399 fde_table.num_entries *
2400 sizeof (fde_table.entries[0]));
2401 }
2402 }
2403 fde_table.num_entries = num_old_fde_entries;
2404 /* The cie_table is discarded by the next if. */
2405 }
b01c8410
PP
2406 }
2407
2408 /* Discard the cie_table, it is no longer needed. */
2409 if (cie_table.num_entries != 0)
2410 {
2411 xfree (cie_table.entries);
2412 cie_table.entries = NULL; /* Paranoia. */
2413 cie_table.num_entries = 0; /* Paranoia. */
2414 }
2415
be391dca
TT
2416 /* Copy fde_table to obstack: it is needed at runtime. */
2417 fde_table2 = (struct dwarf2_fde_table *)
2418 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2419
2420 if (fde_table.num_entries == 0)
2421 {
2422 fde_table2->entries = NULL;
2423 fde_table2->num_entries = 0;
2424 }
2425 else
b01c8410 2426 {
875cdfbb
PA
2427 struct dwarf2_fde *fde_prev = NULL;
2428 struct dwarf2_fde *first_non_zero_fde = NULL;
2429 int i;
b01c8410
PP
2430
2431 /* Prepare FDE table for lookups. */
2432 qsort (fde_table.entries, fde_table.num_entries,
2433 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2434
875cdfbb
PA
2435 /* Check for leftovers from --gc-sections. The GNU linker sets
2436 the relevant symbols to zero, but doesn't zero the FDE *end*
2437 ranges because there's no relocation there. It's (offset,
2438 length), not (start, end). On targets where address zero is
2439 just another valid address this can be a problem, since the
2440 FDEs appear to be non-empty in the output --- we could pick
2441 out the wrong FDE. To work around this, when overlaps are
2442 detected, we prefer FDEs that do not start at zero.
2443
2444 Start by finding the first FDE with non-zero start. Below
2445 we'll discard all FDEs that start at zero and overlap this
2446 one. */
2447 for (i = 0; i < fde_table.num_entries; i++)
2448 {
2449 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2450
875cdfbb
PA
2451 if (fde->initial_location != 0)
2452 {
2453 first_non_zero_fde = fde;
2454 break;
2455 }
2456 }
2457
2458 /* Since we'll be doing bsearch, squeeze out identical (except
2459 for eh_frame_p) fde entries so bsearch result is predictable.
2460 Also discard leftovers from --gc-sections. */
be391dca 2461 fde_table2->num_entries = 0;
875cdfbb
PA
2462 for (i = 0; i < fde_table.num_entries; i++)
2463 {
2464 struct dwarf2_fde *fde = fde_table.entries[i];
2465
2466 if (fde->initial_location == 0
2467 && first_non_zero_fde != NULL
2468 && (first_non_zero_fde->initial_location
2469 < fde->initial_location + fde->address_range))
2470 continue;
2471
2472 if (fde_prev != NULL
2473 && fde_prev->initial_location == fde->initial_location)
2474 continue;
2475
2476 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2477 sizeof (fde_table.entries[0]));
2478 ++fde_table2->num_entries;
2479 fde_prev = fde;
2480 }
b01c8410 2481 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2482
2483 /* Discard the original fde_table. */
2484 xfree (fde_table.entries);
cfc14b3a 2485 }
be391dca
TT
2486
2487 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2488}
0d0e1a63
MK
2489
2490/* Provide a prototype to silence -Wmissing-prototypes. */
2491void _initialize_dwarf2_frame (void);
2492
2493void
2494_initialize_dwarf2_frame (void)
2495{
030f20e1 2496 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2497 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2498}
This page took 0.848606 seconds and 4 git commands to generate.