Opcodes: (BRCLR / BRSET) Disassemble reserved codes instead of aborting.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
e2882c85 3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
0b722aec 34#include "record.h"
cfc14b3a 35
6896c0c7 36#include "complaints.h"
cfc14b3a 37#include "dwarf2-frame.h"
3c3bb058 38#include "dwarf2read.h"
9f6f94ff
TT
39#include "ax.h"
40#include "dwarf2loc.h"
111c6489 41#include "dwarf2-frame-tailcall.h"
1c90d9f0
YQ
42#if GDB_SELF_TEST
43#include "selftest.h"
44#include "selftest-arch.h"
45#endif
cfc14b3a 46
ae0d2f24
UW
47struct comp_unit;
48
cfc14b3a
MK
49/* Call Frame Information (CFI). */
50
51/* Common Information Entry (CIE). */
52
53struct dwarf2_cie
54{
ae0d2f24
UW
55 /* Computation Unit for this CIE. */
56 struct comp_unit *unit;
57
cfc14b3a
MK
58 /* Offset into the .debug_frame section where this CIE was found.
59 Used to identify this CIE. */
60 ULONGEST cie_pointer;
61
62 /* Constant that is factored out of all advance location
63 instructions. */
64 ULONGEST code_alignment_factor;
65
66 /* Constants that is factored out of all offset instructions. */
67 LONGEST data_alignment_factor;
68
69 /* Return address column. */
70 ULONGEST return_address_register;
71
72 /* Instruction sequence to initialize a register set. */
f664829e
DE
73 const gdb_byte *initial_instructions;
74 const gdb_byte *end;
cfc14b3a 75
303b6f5d
DJ
76 /* Saved augmentation, in case it's needed later. */
77 char *augmentation;
78
cfc14b3a 79 /* Encoding of addresses. */
852483bc 80 gdb_byte encoding;
cfc14b3a 81
ae0d2f24
UW
82 /* Target address size in bytes. */
83 int addr_size;
84
0963b4bd 85 /* Target pointer size in bytes. */
8da614df
CV
86 int ptr_size;
87
7131cb6e
RH
88 /* True if a 'z' augmentation existed. */
89 unsigned char saw_z_augmentation;
90
56c987f6
AO
91 /* True if an 'S' augmentation existed. */
92 unsigned char signal_frame;
93
303b6f5d
DJ
94 /* The version recorded in the CIE. */
95 unsigned char version;
2dc7f7b3
TT
96
97 /* The segment size. */
98 unsigned char segment_size;
b01c8410 99};
303b6f5d 100
b01c8410
PP
101struct dwarf2_cie_table
102{
103 int num_entries;
104 struct dwarf2_cie **entries;
cfc14b3a
MK
105};
106
107/* Frame Description Entry (FDE). */
108
109struct dwarf2_fde
110{
111 /* CIE for this FDE. */
112 struct dwarf2_cie *cie;
113
114 /* First location associated with this FDE. */
115 CORE_ADDR initial_location;
116
117 /* Number of bytes of program instructions described by this FDE. */
118 CORE_ADDR address_range;
119
120 /* Instruction sequence. */
f664829e
DE
121 const gdb_byte *instructions;
122 const gdb_byte *end;
cfc14b3a 123
4bf8967c
AS
124 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
125 section. */
126 unsigned char eh_frame_p;
b01c8410 127};
4bf8967c 128
b01c8410
PP
129struct dwarf2_fde_table
130{
131 int num_entries;
132 struct dwarf2_fde **entries;
cfc14b3a
MK
133};
134
ae0d2f24
UW
135/* A minimal decoding of DWARF2 compilation units. We only decode
136 what's needed to get to the call frame information. */
137
138struct comp_unit
139{
140 /* Keep the bfd convenient. */
141 bfd *abfd;
142
143 struct objfile *objfile;
144
ae0d2f24 145 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 146 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
147
148 /* Length of the loaded .debug_frame section. */
c098b58b 149 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
150
151 /* Pointer to the .debug_frame section. */
152 asection *dwarf_frame_section;
153
154 /* Base for DW_EH_PE_datarel encodings. */
155 bfd_vma dbase;
156
157 /* Base for DW_EH_PE_textrel encodings. */
158 bfd_vma tbase;
159};
160
ac56253d
TT
161static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
162 CORE_ADDR *out_offset);
4fc771b8
DJ
163
164static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
165 int eh_frame_p);
ae0d2f24
UW
166
167static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 168 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
169 unsigned int *bytes_read_ptr,
170 CORE_ADDR func_base);
cfc14b3a
MK
171\f
172
3c3bb058
AB
173/* See dwarf2-frame.h. */
174int dwarf2_frame_unwinders_enabled_p = 1;
175
cfc14b3a
MK
176/* Store the length the expression for the CFA in the `cfa_reg' field,
177 which is unused in that case. */
178#define cfa_exp_len cfa_reg
179
afe37d6b
YQ
180dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
181 : pc (pc_), data_align (cie->data_alignment_factor),
182 code_align (cie->code_alignment_factor),
183 retaddr_column (cie->return_address_register)
cfc14b3a 184{
afe37d6b 185}
cfc14b3a
MK
186\f
187
188/* Helper functions for execute_stack_op. */
189
190static CORE_ADDR
192ca6d8 191read_addr_from_reg (struct frame_info *this_frame, int reg)
cfc14b3a 192{
4a4e5149 193 struct gdbarch *gdbarch = get_frame_arch (this_frame);
0fde2c53 194 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
f2da6b3a 195
2ed3c037 196 return address_from_register (regnum, this_frame);
cfc14b3a
MK
197}
198
a6a5a945
LM
199/* Execute the required actions for both the DW_CFA_restore and
200DW_CFA_restore_extended instructions. */
201static void
202dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
203 struct dwarf2_frame_state *fs, int eh_frame_p)
204{
205 ULONGEST reg;
206
207 gdb_assert (fs->initial.reg);
208 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
1c90d9f0 209 fs->regs.alloc_regs (reg + 1);
a6a5a945
LM
210
211 /* Check if this register was explicitly initialized in the
212 CIE initial instructions. If not, default the rule to
213 UNSPECIFIED. */
214 if (reg < fs->initial.num_regs)
215 fs->regs.reg[reg] = fs->initial.reg[reg];
216 else
217 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
218
219 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
0fde2c53
DE
220 {
221 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
222
b98664d3 223 complaint (_("\
a6a5a945 224incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 225register %s (#%d) at %s"),
0fde2c53
DE
226 gdbarch_register_name (gdbarch, regnum), regnum,
227 paddress (gdbarch, fs->pc));
228 }
a6a5a945
LM
229}
230
192ca6d8 231class dwarf_expr_executor : public dwarf_expr_context
9e8b7a03 232{
192ca6d8
TT
233 public:
234
235 struct frame_info *this_frame;
236
632e107b 237 CORE_ADDR read_addr_from_reg (int reg) override
192ca6d8
TT
238 {
239 return ::read_addr_from_reg (this_frame, reg);
240 }
241
632e107b 242 struct value *get_reg_value (struct type *type, int reg) override
192ca6d8
TT
243 {
244 struct gdbarch *gdbarch = get_frame_arch (this_frame);
245 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
246
247 return value_from_register (type, regnum, this_frame);
248 }
249
632e107b 250 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
251 {
252 read_memory (addr, buf, len);
253 }
befbff86 254
632e107b 255 void get_frame_base (const gdb_byte **start, size_t *length) override
befbff86
TT
256 {
257 invalid ("DW_OP_fbreg");
258 }
259
260 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
261 union call_site_parameter_u kind_u,
632e107b 262 int deref_size) override
befbff86 263 {
216f72a1 264 invalid ("DW_OP_entry_value");
befbff86
TT
265 }
266
632e107b 267 CORE_ADDR get_object_address () override
befbff86
TT
268 {
269 invalid ("DW_OP_push_object_address");
270 }
271
632e107b 272 CORE_ADDR get_frame_cfa () override
befbff86
TT
273 {
274 invalid ("DW_OP_call_frame_cfa");
275 }
276
632e107b 277 CORE_ADDR get_tls_address (CORE_ADDR offset) override
befbff86
TT
278 {
279 invalid ("DW_OP_form_tls_address");
280 }
281
632e107b 282 void dwarf_call (cu_offset die_offset) override
befbff86
TT
283 {
284 invalid ("DW_OP_call*");
285 }
286
632e107b 287 CORE_ADDR get_addr_index (unsigned int index) override
befbff86
TT
288 {
289 invalid ("DW_OP_GNU_addr_index");
290 }
291
292 private:
293
294 void invalid (const char *op) ATTRIBUTE_NORETURN
295 {
296 error (_("%s is invalid in this context"), op);
297 }
9e8b7a03
JK
298};
299
cfc14b3a 300static CORE_ADDR
0d45f56e 301execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
302 CORE_ADDR offset, struct frame_info *this_frame,
303 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a 304{
cfc14b3a
MK
305 CORE_ADDR result;
306
192ca6d8 307 dwarf_expr_executor ctx;
eb115069 308 scoped_value_mark free_values;
4a227398 309
192ca6d8 310 ctx.this_frame = this_frame;
718b9626
TT
311 ctx.gdbarch = get_frame_arch (this_frame);
312 ctx.addr_size = addr_size;
313 ctx.ref_addr_size = -1;
314 ctx.offset = offset;
cfc14b3a 315
595d2e30
TT
316 ctx.push_address (initial, initial_in_stack_memory);
317 ctx.eval (exp, len);
cfc14b3a 318
718b9626 319 if (ctx.location == DWARF_VALUE_MEMORY)
595d2e30 320 result = ctx.fetch_address (0);
718b9626 321 else if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 322 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
f2c7657e 323 else
cec03d70
TT
324 {
325 /* This is actually invalid DWARF, but if we ever do run across
326 it somehow, we might as well support it. So, instead, report
327 it as unimplemented. */
3e43a32a
MS
328 error (_("\
329Not implemented: computing unwound register using explicit value operator"));
cec03d70 330 }
cfc14b3a 331
cfc14b3a
MK
332 return result;
333}
334\f
335
111c6489
JK
336/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
337 PC. Modify FS state accordingly. Return current INSN_PTR where the
338 execution has stopped, one can resume it on the next call. */
339
340static const gdb_byte *
0d45f56e 341execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
342 const gdb_byte *insn_end, struct gdbarch *gdbarch,
343 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 344{
ae0d2f24 345 int eh_frame_p = fde->eh_frame_p;
507a579c 346 unsigned int bytes_read;
e17a4113 347 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
348
349 while (insn_ptr < insn_end && fs->pc <= pc)
350 {
852483bc 351 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
352 uint64_t utmp, reg;
353 int64_t offset;
cfc14b3a
MK
354
355 if ((insn & 0xc0) == DW_CFA_advance_loc)
356 fs->pc += (insn & 0x3f) * fs->code_align;
357 else if ((insn & 0xc0) == DW_CFA_offset)
358 {
359 reg = insn & 0x3f;
4fc771b8 360 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 361 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a 362 offset = utmp * fs->data_align;
1c90d9f0 363 fs->regs.alloc_regs (reg + 1);
05cbe71a 364 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
365 fs->regs.reg[reg].loc.offset = offset;
366 }
367 else if ((insn & 0xc0) == DW_CFA_restore)
368 {
cfc14b3a 369 reg = insn & 0x3f;
a6a5a945 370 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
371 }
372 else
373 {
374 switch (insn)
375 {
376 case DW_CFA_set_loc:
ae0d2f24 377 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 378 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
379 &bytes_read, fde->initial_location);
380 /* Apply the objfile offset for relocatable objects. */
381 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
382 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
383 insn_ptr += bytes_read;
384 break;
385
386 case DW_CFA_advance_loc1:
e17a4113 387 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
388 fs->pc += utmp * fs->code_align;
389 insn_ptr++;
390 break;
391 case DW_CFA_advance_loc2:
e17a4113 392 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
393 fs->pc += utmp * fs->code_align;
394 insn_ptr += 2;
395 break;
396 case DW_CFA_advance_loc4:
e17a4113 397 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
398 fs->pc += utmp * fs->code_align;
399 insn_ptr += 4;
400 break;
401
402 case DW_CFA_offset_extended:
f664829e 403 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 404 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 405 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a 406 offset = utmp * fs->data_align;
1c90d9f0 407 fs->regs.alloc_regs (reg + 1);
05cbe71a 408 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
409 fs->regs.reg[reg].loc.offset = offset;
410 break;
411
412 case DW_CFA_restore_extended:
f664829e 413 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 414 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
415 break;
416
417 case DW_CFA_undefined:
f664829e 418 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 419 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 420 fs->regs.alloc_regs (reg + 1);
05cbe71a 421 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
422 break;
423
424 case DW_CFA_same_value:
f664829e 425 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 426 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 427 fs->regs.alloc_regs (reg + 1);
05cbe71a 428 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
429 break;
430
431 case DW_CFA_register:
f664829e 432 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 433 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 434 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 435 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
1c90d9f0 436 fs->regs.alloc_regs (reg + 1);
05cbe71a 437 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
438 fs->regs.reg[reg].loc.reg = utmp;
439 break;
440
441 case DW_CFA_remember_state:
442 {
443 struct dwarf2_frame_state_reg_info *new_rs;
444
1c90d9f0 445 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
cfc14b3a
MK
446 fs->regs.prev = new_rs;
447 }
448 break;
449
450 case DW_CFA_restore_state:
451 {
452 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
453
50ea7769
MK
454 if (old_rs == NULL)
455 {
b98664d3 456 complaint (_("\
5af949e3
UW
457bad CFI data; mismatched DW_CFA_restore_state at %s"),
458 paddress (gdbarch, fs->pc));
50ea7769
MK
459 }
460 else
1c90d9f0 461 fs->regs = std::move (*old_rs);
cfc14b3a
MK
462 }
463 break;
464
465 case DW_CFA_def_cfa:
f664829e
DE
466 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
467 fs->regs.cfa_reg = reg;
468 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
469
470 if (fs->armcc_cfa_offsets_sf)
471 utmp *= fs->data_align;
472
2fd481e1
PP
473 fs->regs.cfa_offset = utmp;
474 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
475 break;
476
477 case DW_CFA_def_cfa_register:
f664829e
DE
478 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
479 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
480 eh_frame_p);
481 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
482 break;
483
484 case DW_CFA_def_cfa_offset:
f664829e 485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
486
487 if (fs->armcc_cfa_offsets_sf)
488 utmp *= fs->data_align;
489
2fd481e1 490 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
491 /* cfa_how deliberately not set. */
492 break;
493
a8504492
MK
494 case DW_CFA_nop:
495 break;
496
cfc14b3a 497 case DW_CFA_def_cfa_expression:
f664829e
DE
498 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
499 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
500 fs->regs.cfa_exp = insn_ptr;
501 fs->regs.cfa_how = CFA_EXP;
502 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
503 break;
504
505 case DW_CFA_expression:
f664829e 506 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 507 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 508 fs->regs.alloc_regs (reg + 1);
f664829e 509 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
b348037f
YQ
510 fs->regs.reg[reg].loc.exp.start = insn_ptr;
511 fs->regs.reg[reg].loc.exp.len = utmp;
05cbe71a 512 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
513 insn_ptr += utmp;
514 break;
515
a8504492 516 case DW_CFA_offset_extended_sf:
f664829e 517 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 518 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 519 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 520 offset *= fs->data_align;
1c90d9f0 521 fs->regs.alloc_regs (reg + 1);
05cbe71a 522 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
523 fs->regs.reg[reg].loc.offset = offset;
524 break;
525
46ea248b 526 case DW_CFA_val_offset:
f664829e 527 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 528 fs->regs.alloc_regs (reg + 1);
f664829e 529 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
530 offset = utmp * fs->data_align;
531 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
532 fs->regs.reg[reg].loc.offset = offset;
533 break;
534
535 case DW_CFA_val_offset_sf:
f664829e 536 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 537 fs->regs.alloc_regs (reg + 1);
f664829e 538 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
539 offset *= fs->data_align;
540 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
541 fs->regs.reg[reg].loc.offset = offset;
542 break;
543
544 case DW_CFA_val_expression:
f664829e 545 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 546 fs->regs.alloc_regs (reg + 1);
f664829e 547 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
b348037f
YQ
548 fs->regs.reg[reg].loc.exp.start = insn_ptr;
549 fs->regs.reg[reg].loc.exp.len = utmp;
46ea248b
AO
550 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
551 insn_ptr += utmp;
552 break;
553
a8504492 554 case DW_CFA_def_cfa_sf:
f664829e
DE
555 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
556 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 557 eh_frame_p);
f664829e 558 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
559 fs->regs.cfa_offset = offset * fs->data_align;
560 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
561 break;
562
563 case DW_CFA_def_cfa_offset_sf:
f664829e 564 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 565 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 566 /* cfa_how deliberately not set. */
cfc14b3a
MK
567 break;
568
569 case DW_CFA_GNU_args_size:
570 /* Ignored. */
f664829e 571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
572 break;
573
58894217 574 case DW_CFA_GNU_negative_offset_extended:
f664829e 575 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 576 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
577 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
578 offset = utmp * fs->data_align;
1c90d9f0 579 fs->regs.alloc_regs (reg + 1);
58894217
JK
580 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
581 fs->regs.reg[reg].loc.offset = -offset;
582 break;
583
cfc14b3a 584 default:
b41c5a85
JW
585 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
586 {
587 /* Handle vendor-specific CFI for different architectures. */
588 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
589 error (_("Call Frame Instruction op %d in vendor extension "
590 "space is not handled on this architecture."),
591 insn);
592 }
593 else
594 internal_error (__FILE__, __LINE__,
595 _("Unknown CFI encountered."));
cfc14b3a
MK
596 }
597 }
598 }
599
111c6489
JK
600 if (fs->initial.reg == NULL)
601 {
602 /* Don't allow remember/restore between CIE and FDE programs. */
1c90d9f0 603 delete fs->regs.prev;
111c6489
JK
604 fs->regs.prev = NULL;
605 }
606
607 return insn_ptr;
cfc14b3a 608}
1c90d9f0
YQ
609
610#if GDB_SELF_TEST
611
612namespace selftests {
613
614/* Unit test to function execute_cfa_program. */
615
616static void
617execute_cfa_program_test (struct gdbarch *gdbarch)
618{
619 struct dwarf2_fde fde;
620 struct dwarf2_cie cie;
621
622 memset (&fde, 0, sizeof fde);
623 memset (&cie, 0, sizeof cie);
624
625 cie.data_alignment_factor = -4;
626 cie.code_alignment_factor = 2;
627 fde.cie = &cie;
628
629 dwarf2_frame_state fs (0, fde.cie);
630
631 gdb_byte insns[] =
632 {
633 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
634 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
635 DW_CFA_remember_state,
636 DW_CFA_restore_state,
637 };
638
639 const gdb_byte *insn_end = insns + sizeof (insns);
640 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
641 0, &fs);
642
643 SELF_CHECK (out == insn_end);
644 SELF_CHECK (fs.pc == 0);
645
646 /* The instructions above only use r1 and r2, but the register numbers
647 used are adjusted by dwarf2_frame_adjust_regnum. */
648 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
649 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
650
651 SELF_CHECK (fs.regs.num_regs == (std::max (r1, r2) + 1));
652
653 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
654 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
655
656 for (auto i = 0; i < fs.regs.num_regs; i++)
657 if (i != r2)
658 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
659
660 SELF_CHECK (fs.regs.cfa_reg == 1);
661 SELF_CHECK (fs.regs.cfa_offset == 4);
662 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
663 SELF_CHECK (fs.regs.cfa_exp == NULL);
664 SELF_CHECK (fs.regs.prev == NULL);
665}
666
667} // namespace selftests
668#endif /* GDB_SELF_TEST */
669
8f22cb90 670\f
cfc14b3a 671
8f22cb90 672/* Architecture-specific operations. */
cfc14b3a 673
8f22cb90
MK
674/* Per-architecture data key. */
675static struct gdbarch_data *dwarf2_frame_data;
676
677struct dwarf2_frame_ops
678{
679 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
680 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
681 struct frame_info *);
3ed09a32 682
4a4e5149 683 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 684 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 685
4fc771b8
DJ
686 /* Convert .eh_frame register number to DWARF register number, or
687 adjust .debug_frame register number. */
688 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
689};
690
8f22cb90
MK
691/* Default architecture-specific register state initialization
692 function. */
693
694static void
695dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 696 struct dwarf2_frame_state_reg *reg,
4a4e5149 697 struct frame_info *this_frame)
8f22cb90
MK
698{
699 /* If we have a register that acts as a program counter, mark it as
700 a destination for the return address. If we have a register that
701 serves as the stack pointer, arrange for it to be filled with the
702 call frame address (CFA). The other registers are marked as
703 unspecified.
704
705 We copy the return address to the program counter, since many
706 parts in GDB assume that it is possible to get the return address
707 by unwinding the program counter register. However, on ISA's
708 with a dedicated return address register, the CFI usually only
709 contains information to unwind that return address register.
710
711 The reason we're treating the stack pointer special here is
712 because in many cases GCC doesn't emit CFI for the stack pointer
713 and implicitly assumes that it is equal to the CFA. This makes
714 some sense since the DWARF specification (version 3, draft 8,
715 p. 102) says that:
716
717 "Typically, the CFA is defined to be the value of the stack
718 pointer at the call site in the previous frame (which may be
719 different from its value on entry to the current frame)."
720
721 However, this isn't true for all platforms supported by GCC
722 (e.g. IBM S/390 and zSeries). Those architectures should provide
723 their own architecture-specific initialization function. */
05cbe71a 724
ad010def 725 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 726 reg->how = DWARF2_FRAME_REG_RA;
ad010def 727 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
728 reg->how = DWARF2_FRAME_REG_CFA;
729}
05cbe71a 730
8f22cb90 731/* Return a default for the architecture-specific operations. */
05cbe71a 732
8f22cb90 733static void *
030f20e1 734dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
735{
736 struct dwarf2_frame_ops *ops;
737
030f20e1 738 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
739 ops->init_reg = dwarf2_frame_default_init_reg;
740 return ops;
741}
05cbe71a 742
8f22cb90
MK
743/* Set the architecture-specific register state initialization
744 function for GDBARCH to INIT_REG. */
745
746void
747dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
748 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
749 struct dwarf2_frame_state_reg *,
750 struct frame_info *))
8f22cb90 751{
9a3c8263
SM
752 struct dwarf2_frame_ops *ops
753 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 754
8f22cb90
MK
755 ops->init_reg = init_reg;
756}
757
758/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
759
760static void
761dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 762 struct dwarf2_frame_state_reg *reg,
4a4e5149 763 struct frame_info *this_frame)
05cbe71a 764{
9a3c8263
SM
765 struct dwarf2_frame_ops *ops
766 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 767
4a4e5149 768 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 769}
3ed09a32
DJ
770
771/* Set the architecture-specific signal trampoline recognition
772 function for GDBARCH to SIGNAL_FRAME_P. */
773
774void
775dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
776 int (*signal_frame_p) (struct gdbarch *,
777 struct frame_info *))
778{
9a3c8263
SM
779 struct dwarf2_frame_ops *ops
780 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
781
782 ops->signal_frame_p = signal_frame_p;
783}
784
785/* Query the architecture-specific signal frame recognizer for
4a4e5149 786 THIS_FRAME. */
3ed09a32
DJ
787
788static int
789dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 790 struct frame_info *this_frame)
3ed09a32 791{
9a3c8263
SM
792 struct dwarf2_frame_ops *ops
793 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
794
795 if (ops->signal_frame_p == NULL)
796 return 0;
4a4e5149 797 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 798}
4bf8967c 799
4fc771b8
DJ
800/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
801 register numbers. */
4bf8967c
AS
802
803void
4fc771b8
DJ
804dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
805 int (*adjust_regnum) (struct gdbarch *,
806 int, int))
4bf8967c 807{
9a3c8263
SM
808 struct dwarf2_frame_ops *ops
809 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 810
4fc771b8 811 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
812}
813
4fc771b8
DJ
814/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
815 register. */
4bf8967c 816
4fc771b8 817static int
3e43a32a
MS
818dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
819 int regnum, int eh_frame_p)
4bf8967c 820{
9a3c8263
SM
821 struct dwarf2_frame_ops *ops
822 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 823
4fc771b8 824 if (ops->adjust_regnum == NULL)
4bf8967c 825 return regnum;
4fc771b8 826 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 827}
303b6f5d
DJ
828
829static void
830dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
831 struct dwarf2_fde *fde)
832{
43f3e411 833 struct compunit_symtab *cust;
303b6f5d 834
43f3e411
DE
835 cust = find_pc_compunit_symtab (fs->pc);
836 if (cust == NULL)
303b6f5d
DJ
837 return;
838
43f3e411 839 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
a6c727b2
DJ
840 {
841 if (fde->cie->version == 1)
842 fs->armcc_cfa_offsets_sf = 1;
843
844 if (fde->cie->version == 1)
845 fs->armcc_cfa_offsets_reversed = 1;
846
847 /* The reversed offset problem is present in some compilers
848 using DWARF3, but it was eventually fixed. Check the ARM
849 defined augmentations, which are in the format "armcc" followed
850 by a list of one-character options. The "+" option means
851 this problem is fixed (no quirk needed). If the armcc
852 augmentation is missing, the quirk is needed. */
853 if (fde->cie->version == 3
61012eef 854 && (!startswith (fde->cie->augmentation, "armcc")
a6c727b2
DJ
855 || strchr (fde->cie->augmentation + 5, '+') == NULL))
856 fs->armcc_cfa_offsets_reversed = 1;
857
858 return;
859 }
303b6f5d 860}
8f22cb90
MK
861\f
862
a8fd5589
TT
863/* See dwarf2-frame.h. */
864
865int
866dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
867 struct dwarf2_per_cu_data *data,
868 int *regnum_out, LONGEST *offset_out,
869 CORE_ADDR *text_offset_out,
870 const gdb_byte **cfa_start_out,
871 const gdb_byte **cfa_end_out)
9f6f94ff 872{
9f6f94ff 873 struct dwarf2_fde *fde;
22e048c9 874 CORE_ADDR text_offset;
afe37d6b 875 CORE_ADDR pc1 = pc;
9f6f94ff
TT
876
877 /* Find the correct FDE. */
afe37d6b 878 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
9f6f94ff
TT
879 if (fde == NULL)
880 error (_("Could not compute CFA; needed to translate this expression"));
881
afe37d6b 882 dwarf2_frame_state fs (pc1, fde->cie);
9f6f94ff
TT
883
884 /* Check for "quirks" - known bugs in producers. */
885 dwarf2_frame_find_quirks (&fs, fde);
886
887 /* First decode all the insns in the CIE. */
888 execute_cfa_program (fde, fde->cie->initial_instructions,
889 fde->cie->end, gdbarch, pc, &fs);
890
891 /* Save the initialized register set. */
892 fs.initial = fs.regs;
9f6f94ff
TT
893
894 /* Then decode the insns in the FDE up to our target PC. */
895 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
896
897 /* Calculate the CFA. */
898 switch (fs.regs.cfa_how)
899 {
900 case CFA_REG_OFFSET:
901 {
0fde2c53 902 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
a8fd5589
TT
903
904 *regnum_out = regnum;
905 if (fs.armcc_cfa_offsets_reversed)
906 *offset_out = -fs.regs.cfa_offset;
907 else
908 *offset_out = fs.regs.cfa_offset;
909 return 1;
9f6f94ff 910 }
9f6f94ff
TT
911
912 case CFA_EXP:
a8fd5589
TT
913 *text_offset_out = text_offset;
914 *cfa_start_out = fs.regs.cfa_exp;
915 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
916 return 0;
9f6f94ff
TT
917
918 default:
919 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
920 }
921}
922
923\f
8f22cb90
MK
924struct dwarf2_frame_cache
925{
926 /* DWARF Call Frame Address. */
927 CORE_ADDR cfa;
928
8fbca658
PA
929 /* Set if the return address column was marked as unavailable
930 (required non-collected memory or registers to compute). */
931 int unavailable_retaddr;
932
0228dfb9
DJ
933 /* Set if the return address column was marked as undefined. */
934 int undefined_retaddr;
935
8f22cb90
MK
936 /* Saved registers, indexed by GDB register number, not by DWARF
937 register number. */
938 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
939
940 /* Return address register. */
941 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
942
943 /* Target address size in bytes. */
944 int addr_size;
ac56253d
TT
945
946 /* The .text offset. */
947 CORE_ADDR text_offset;
111c6489 948
1ec56e88
PA
949 /* True if we already checked whether this frame is the bottom frame
950 of a virtual tail call frame chain. */
951 int checked_tailcall_bottom;
952
111c6489
JK
953 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
954 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
955 involved. Non-bottom frames of a virtual tail call frames chain use
956 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
957 them. */
958 void *tailcall_cache;
1ec56e88
PA
959
960 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
961 base to get the SP, to simulate the return address pushed on the
962 stack. */
963 LONGEST entry_cfa_sp_offset;
964 int entry_cfa_sp_offset_p;
8f22cb90 965};
05cbe71a 966
b9362cc7 967static struct dwarf2_frame_cache *
4a4e5149 968dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 969{
4a4e5149 970 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
971 const int num_regs = gdbarch_num_regs (gdbarch)
972 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a 973 struct dwarf2_frame_cache *cache;
cfc14b3a 974 struct dwarf2_fde *fde;
111c6489 975 CORE_ADDR entry_pc;
111c6489 976 const gdb_byte *instr;
cfc14b3a
MK
977
978 if (*this_cache)
9a3c8263 979 return (struct dwarf2_frame_cache *) *this_cache;
cfc14b3a
MK
980
981 /* Allocate a new cache. */
982 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
983 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 984 *this_cache = cache;
cfc14b3a 985
cfc14b3a
MK
986 /* Unwind the PC.
987
4a4e5149 988 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 989 to abort), the compiler might optimize away the instruction at
4a4e5149 990 its return address. As a result the return address will
cfc14b3a 991 point at some random instruction, and the CFI for that
e4e9607c 992 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
993 this problem by substracting 1 from the return address to get an
994 address in the middle of a presumed call instruction (or the
995 instruction in the associated delay slot). This should only be
996 done for "normal" frames and not for resume-type frames (signal
e4e9607c 997 handlers, sentinel frames, dummy frames). The function
ad1193e7 998 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
999 reliable the method is though; there is the potential for the
1000 register state pre-call being different to that on return. */
afe37d6b 1001 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1002
1003 /* Find the correct FDE. */
afe37d6b 1004 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
cfc14b3a
MK
1005 gdb_assert (fde != NULL);
1006
afe37d6b
YQ
1007 /* Allocate and initialize the frame state. */
1008 struct dwarf2_frame_state fs (pc1, fde->cie);
1009
ae0d2f24 1010 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1011
303b6f5d 1012 /* Check for "quirks" - known bugs in producers. */
afe37d6b 1013 dwarf2_frame_find_quirks (&fs, fde);
303b6f5d 1014
cfc14b3a 1015 /* First decode all the insns in the CIE. */
ae0d2f24 1016 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1 1017 fde->cie->end, gdbarch,
afe37d6b 1018 get_frame_address_in_block (this_frame), &fs);
cfc14b3a
MK
1019
1020 /* Save the initialized register set. */
afe37d6b 1021 fs.initial = fs.regs;
cfc14b3a 1022
111c6489
JK
1023 if (get_frame_func_if_available (this_frame, &entry_pc))
1024 {
1025 /* Decode the insns in the FDE up to the entry PC. */
1026 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
afe37d6b 1027 entry_pc, &fs);
111c6489 1028
afe37d6b
YQ
1029 if (fs.regs.cfa_how == CFA_REG_OFFSET
1030 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
111c6489
JK
1031 == gdbarch_sp_regnum (gdbarch)))
1032 {
afe37d6b 1033 cache->entry_cfa_sp_offset = fs.regs.cfa_offset;
1ec56e88 1034 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1035 }
1036 }
1037 else
1038 instr = fde->instructions;
1039
cfc14b3a 1040 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1041 execute_cfa_program (fde, instr, fde->end, gdbarch,
afe37d6b 1042 get_frame_address_in_block (this_frame), &fs);
cfc14b3a 1043
492d29ea 1044 TRY
cfc14b3a 1045 {
8fbca658 1046 /* Calculate the CFA. */
afe37d6b 1047 switch (fs.regs.cfa_how)
8fbca658
PA
1048 {
1049 case CFA_REG_OFFSET:
afe37d6b
YQ
1050 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1051 if (fs.armcc_cfa_offsets_reversed)
1052 cache->cfa -= fs.regs.cfa_offset;
8fbca658 1053 else
afe37d6b 1054 cache->cfa += fs.regs.cfa_offset;
8fbca658
PA
1055 break;
1056
1057 case CFA_EXP:
1058 cache->cfa =
afe37d6b 1059 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
8fbca658
PA
1060 cache->addr_size, cache->text_offset,
1061 this_frame, 0, 0);
1062 break;
1063
1064 default:
1065 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1066 }
1067 }
492d29ea 1068 CATCH (ex, RETURN_MASK_ERROR)
8fbca658
PA
1069 {
1070 if (ex.error == NOT_AVAILABLE_ERROR)
1071 {
1072 cache->unavailable_retaddr = 1;
1073 return cache;
1074 }
cfc14b3a 1075
8fbca658 1076 throw_exception (ex);
cfc14b3a 1077 }
492d29ea 1078 END_CATCH
cfc14b3a 1079
05cbe71a 1080 /* Initialize the register state. */
3e2c4033
AC
1081 {
1082 int regnum;
e4e9607c 1083
3e2c4033 1084 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1085 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1086 }
1087
1088 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1089 location information in the cache. Note that we don't skip the
1090 return address column; it's perfectly all right for it to
0fde2c53 1091 correspond to a real register. */
3e2c4033
AC
1092 {
1093 int column; /* CFI speak for "register number". */
e4e9607c 1094
afe37d6b 1095 for (column = 0; column < fs.regs.num_regs; column++)
3e2c4033 1096 {
3e2c4033 1097 /* Use the GDB register number as the destination index. */
0fde2c53 1098 int regnum = dwarf_reg_to_regnum (gdbarch, column);
3e2c4033 1099
0fde2c53 1100 /* Protect against a target returning a bad register. */
3e2c4033
AC
1101 if (regnum < 0 || regnum >= num_regs)
1102 continue;
1103
1104 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1105 of all debug info registers. If it doesn't, complain (but
1106 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1107 unspecified register implies "same value" when CFI (draft
1108 7) specifies nothing at all. Such a register could equally
1109 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1110 isn't sufficient; it only checks that all registers in the
1111 range [0 .. max column] are specified, and won't detect
3e2c4033 1112 problems when a debug info register falls outside of the
e4e9607c 1113 table. We need a way of iterating through all the valid
3e2c4033 1114 DWARF2 register numbers. */
afe37d6b 1115 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1116 {
1117 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
b98664d3 1118 complaint (_("\
5af949e3 1119incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1120 gdbarch_register_name (gdbarch, regnum),
afe37d6b 1121 paddress (gdbarch, fs.pc));
f059bf6f 1122 }
35889917 1123 else
afe37d6b 1124 cache->reg[regnum] = fs.regs.reg[column];
3e2c4033
AC
1125 }
1126 }
cfc14b3a 1127
8d5a9abc
MK
1128 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1129 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1130 {
1131 int regnum;
1132
1133 for (regnum = 0; regnum < num_regs; regnum++)
1134 {
8d5a9abc
MK
1135 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1136 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1137 {
05cbe71a 1138 struct dwarf2_frame_state_reg *retaddr_reg =
afe37d6b 1139 &fs.regs.reg[fs.retaddr_column];
05cbe71a 1140
d4f10bf2
MK
1141 /* It seems rather bizarre to specify an "empty" column as
1142 the return adress column. However, this is exactly
1143 what GCC does on some targets. It turns out that GCC
1144 assumes that the return address can be found in the
1145 register corresponding to the return address column.
8d5a9abc
MK
1146 Incidentally, that's how we should treat a return
1147 address column specifying "same value" too. */
afe37d6b 1148 if (fs.retaddr_column < fs.regs.num_regs
05cbe71a
MK
1149 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1150 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1151 {
1152 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1153 cache->reg[regnum] = *retaddr_reg;
1154 else
1155 cache->retaddr_reg = *retaddr_reg;
1156 }
35889917
MK
1157 else
1158 {
8d5a9abc
MK
1159 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1160 {
afe37d6b 1161 cache->reg[regnum].loc.reg = fs.retaddr_column;
8d5a9abc
MK
1162 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1163 }
1164 else
1165 {
afe37d6b 1166 cache->retaddr_reg.loc.reg = fs.retaddr_column;
8d5a9abc
MK
1167 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1168 }
35889917
MK
1169 }
1170 }
1171 }
1172 }
cfc14b3a 1173
afe37d6b
YQ
1174 if (fs.retaddr_column < fs.regs.num_regs
1175 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
0228dfb9
DJ
1176 cache->undefined_retaddr = 1;
1177
cfc14b3a
MK
1178 return cache;
1179}
1180
8fbca658
PA
1181static enum unwind_stop_reason
1182dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1183 void **this_cache)
1184{
1185 struct dwarf2_frame_cache *cache
1186 = dwarf2_frame_cache (this_frame, this_cache);
1187
1188 if (cache->unavailable_retaddr)
1189 return UNWIND_UNAVAILABLE;
1190
1191 if (cache->undefined_retaddr)
1192 return UNWIND_OUTERMOST;
1193
1194 return UNWIND_NO_REASON;
1195}
1196
cfc14b3a 1197static void
4a4e5149 1198dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1199 struct frame_id *this_id)
1200{
1201 struct dwarf2_frame_cache *cache =
4a4e5149 1202 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1203
8fbca658 1204 if (cache->unavailable_retaddr)
5ce0145d
PA
1205 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1206 else if (cache->undefined_retaddr)
8fbca658 1207 return;
5ce0145d
PA
1208 else
1209 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1210}
1211
4a4e5149
DJ
1212static struct value *
1213dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1214 int regnum)
93d42b30 1215{
4a4e5149 1216 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1217 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1218 dwarf2_frame_cache (this_frame, this_cache);
1219 CORE_ADDR addr;
1220 int realnum;
cfc14b3a 1221
1ec56e88
PA
1222 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1223 call frame chain. */
1224 if (!cache->checked_tailcall_bottom)
1225 {
1226 cache->checked_tailcall_bottom = 1;
1227 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1228 (cache->entry_cfa_sp_offset_p
1229 ? &cache->entry_cfa_sp_offset : NULL));
1230 }
1231
111c6489
JK
1232 /* Non-bottom frames of a virtual tail call frames chain use
1233 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1234 them. If dwarf2_tailcall_prev_register_first does not have specific value
1235 unwind the register, tail call frames are assumed to have the register set
1236 of the top caller. */
1237 if (cache->tailcall_cache)
1238 {
1239 struct value *val;
1240
1241 val = dwarf2_tailcall_prev_register_first (this_frame,
1242 &cache->tailcall_cache,
1243 regnum);
1244 if (val)
1245 return val;
1246 }
1247
cfc14b3a
MK
1248 switch (cache->reg[regnum].how)
1249 {
05cbe71a 1250 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1251 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1252 mark it as optimized away; the value isn't available. */
4a4e5149 1253 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1254
05cbe71a 1255 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1256 addr = cache->cfa + cache->reg[regnum].loc.offset;
1257 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1258
05cbe71a 1259 case DWARF2_FRAME_REG_SAVED_REG:
0fde2c53
DE
1260 realnum = dwarf_reg_to_regnum_or_error
1261 (gdbarch, cache->reg[regnum].loc.reg);
4a4e5149 1262 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1263
05cbe71a 1264 case DWARF2_FRAME_REG_SAVED_EXP:
b348037f
YQ
1265 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1266 cache->reg[regnum].loc.exp.len,
ac56253d
TT
1267 cache->addr_size, cache->text_offset,
1268 this_frame, cache->cfa, 1);
4a4e5149 1269 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1270
46ea248b 1271 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1272 addr = cache->cfa + cache->reg[regnum].loc.offset;
1273 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1274
1275 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
b348037f
YQ
1276 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1277 cache->reg[regnum].loc.exp.len,
ac56253d
TT
1278 cache->addr_size, cache->text_offset,
1279 this_frame, cache->cfa, 1);
4a4e5149 1280 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1281
05cbe71a 1282 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1283 /* GCC, in its infinite wisdom decided to not provide unwind
1284 information for registers that are "same value". Since
1285 DWARF2 (3 draft 7) doesn't define such behavior, said
1286 registers are actually undefined (which is different to CFI
1287 "undefined"). Code above issues a complaint about this.
1288 Here just fudge the books, assume GCC, and that the value is
1289 more inner on the stack. */
4a4e5149 1290 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1291
05cbe71a 1292 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1293 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1294
05cbe71a 1295 case DWARF2_FRAME_REG_CFA:
4a4e5149 1296 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1297
ea7963f0 1298 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1299 addr = cache->cfa + cache->reg[regnum].loc.offset;
1300 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1301
8d5a9abc 1302 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149 1303 addr = cache->reg[regnum].loc.offset;
0fde2c53 1304 regnum = dwarf_reg_to_regnum_or_error
4a4e5149
DJ
1305 (gdbarch, cache->retaddr_reg.loc.reg);
1306 addr += get_frame_register_unsigned (this_frame, regnum);
1307 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1308
b39cc962
DJ
1309 case DWARF2_FRAME_REG_FN:
1310 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1311
cfc14b3a 1312 default:
e2e0b3e5 1313 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1314 }
1315}
1316
111c6489
JK
1317/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1318 call frames chain. */
1319
1320static void
1321dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1322{
1323 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1324
1325 if (cache->tailcall_cache)
1326 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1327}
1328
4a4e5149
DJ
1329static int
1330dwarf2_frame_sniffer (const struct frame_unwind *self,
1331 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1332{
3c3bb058
AB
1333 if (!dwarf2_frame_unwinders_enabled_p)
1334 return 0;
1335
1ce5d6dd 1336 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1337 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1338 end up returning something past the end of this function's body.
1339 If the frame we're sniffing for is a signal frame whose start
1340 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1341 extend one byte before its start address or we could potentially
1342 select the FDE of the previous function. */
1343 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1344 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1345
56c987f6 1346 if (!fde)
4a4e5149 1347 return 0;
3ed09a32
DJ
1348
1349 /* On some targets, signal trampolines may have unwind information.
1350 We need to recognize them so that we set the frame type
1351 correctly. */
1352
56c987f6 1353 if (fde->cie->signal_frame
4a4e5149
DJ
1354 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1355 this_frame))
1356 return self->type == SIGTRAMP_FRAME;
1357
111c6489
JK
1358 if (self->type != NORMAL_FRAME)
1359 return 0;
1360
111c6489 1361 return 1;
4a4e5149
DJ
1362}
1363
1364static const struct frame_unwind dwarf2_frame_unwind =
1365{
1366 NORMAL_FRAME,
8fbca658 1367 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1368 dwarf2_frame_this_id,
1369 dwarf2_frame_prev_register,
1370 NULL,
111c6489
JK
1371 dwarf2_frame_sniffer,
1372 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1373};
1374
1375static const struct frame_unwind dwarf2_signal_frame_unwind =
1376{
1377 SIGTRAMP_FRAME,
8fbca658 1378 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1379 dwarf2_frame_this_id,
1380 dwarf2_frame_prev_register,
1381 NULL,
111c6489
JK
1382 dwarf2_frame_sniffer,
1383
1384 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1385 NULL
4a4e5149 1386};
cfc14b3a 1387
4a4e5149
DJ
1388/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1389
1390void
1391dwarf2_append_unwinders (struct gdbarch *gdbarch)
1392{
111c6489
JK
1393 /* TAILCALL_FRAME must be first to find the record by
1394 dwarf2_tailcall_sniffer_first. */
1395 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1396
4a4e5149
DJ
1397 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1398 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1399}
1400\f
1401
1402/* There is no explicitly defined relationship between the CFA and the
1403 location of frame's local variables and arguments/parameters.
1404 Therefore, frame base methods on this page should probably only be
1405 used as a last resort, just to avoid printing total garbage as a
1406 response to the "info frame" command. */
1407
1408static CORE_ADDR
4a4e5149 1409dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1410{
1411 struct dwarf2_frame_cache *cache =
4a4e5149 1412 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1413
1414 return cache->cfa;
1415}
1416
1417static const struct frame_base dwarf2_frame_base =
1418{
1419 &dwarf2_frame_unwind,
1420 dwarf2_frame_base_address,
1421 dwarf2_frame_base_address,
1422 dwarf2_frame_base_address
1423};
1424
1425const struct frame_base *
4a4e5149 1426dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1427{
4a4e5149 1428 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1429
ac56253d 1430 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1431 return &dwarf2_frame_base;
1432
1433 return NULL;
1434}
e7802207
TT
1435
1436/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1437 the DWARF unwinder. This is used to implement
1438 DW_OP_call_frame_cfa. */
1439
1440CORE_ADDR
1441dwarf2_frame_cfa (struct frame_info *this_frame)
1442{
0b722aec
MM
1443 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1444 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1445 throw_error (NOT_AVAILABLE_ERROR,
1446 _("cfa not available for record btrace target"));
1447
e7802207
TT
1448 while (get_frame_type (this_frame) == INLINE_FRAME)
1449 this_frame = get_prev_frame (this_frame);
32261e52
MM
1450 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1451 throw_error (NOT_AVAILABLE_ERROR,
1452 _("can't compute CFA for this frame: "
1453 "required registers or memory are unavailable"));
14aba1ac
JB
1454
1455 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1456 throw_error (NOT_AVAILABLE_ERROR,
1457 _("can't compute CFA for this frame: "
1458 "frame base not available"));
1459
e7802207
TT
1460 return get_frame_base (this_frame);
1461}
cfc14b3a 1462\f
8f22cb90 1463const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1464
cfc14b3a 1465static unsigned int
f664829e 1466read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1467{
852483bc 1468 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1469}
1470
1471static unsigned int
f664829e 1472read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1473{
852483bc 1474 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1475}
1476
1477static ULONGEST
f664829e 1478read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1479{
852483bc 1480 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1481}
1482
1483static ULONGEST
f664829e
DE
1484read_initial_length (bfd *abfd, const gdb_byte *buf,
1485 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1486{
1487 LONGEST result;
1488
852483bc 1489 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1490 if (result == 0xffffffff)
1491 {
852483bc 1492 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1493 *bytes_read_ptr = 12;
1494 }
1495 else
1496 *bytes_read_ptr = 4;
1497
1498 return result;
1499}
1500\f
1501
1502/* Pointer encoding helper functions. */
1503
1504/* GCC supports exception handling based on DWARF2 CFI. However, for
1505 technical reasons, it encodes addresses in its FDE's in a different
1506 way. Several "pointer encodings" are supported. The encoding
1507 that's used for a particular FDE is determined by the 'R'
1508 augmentation in the associated CIE. The argument of this
1509 augmentation is a single byte.
1510
1511 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1512 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1513 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1514 address should be interpreted (absolute, relative to the current
1515 position in the FDE, ...). Bit 7, indicates that the address
1516 should be dereferenced. */
1517
852483bc 1518static gdb_byte
cfc14b3a
MK
1519encoding_for_size (unsigned int size)
1520{
1521 switch (size)
1522 {
1523 case 2:
1524 return DW_EH_PE_udata2;
1525 case 4:
1526 return DW_EH_PE_udata4;
1527 case 8:
1528 return DW_EH_PE_udata8;
1529 default:
e2e0b3e5 1530 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1531 }
1532}
1533
cfc14b3a 1534static CORE_ADDR
852483bc 1535read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1536 int ptr_len, const gdb_byte *buf,
1537 unsigned int *bytes_read_ptr,
ae0d2f24 1538 CORE_ADDR func_base)
cfc14b3a 1539{
68f6cf99 1540 ptrdiff_t offset;
cfc14b3a
MK
1541 CORE_ADDR base;
1542
1543 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1544 FDE's. */
1545 if (encoding & DW_EH_PE_indirect)
1546 internal_error (__FILE__, __LINE__,
e2e0b3e5 1547 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1548
68f6cf99
MK
1549 *bytes_read_ptr = 0;
1550
cfc14b3a
MK
1551 switch (encoding & 0x70)
1552 {
1553 case DW_EH_PE_absptr:
1554 base = 0;
1555 break;
1556 case DW_EH_PE_pcrel:
f2fec864 1557 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1558 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1559 break;
0912c7f2
MK
1560 case DW_EH_PE_datarel:
1561 base = unit->dbase;
1562 break;
0fd85043
CV
1563 case DW_EH_PE_textrel:
1564 base = unit->tbase;
1565 break;
03ac2a74 1566 case DW_EH_PE_funcrel:
ae0d2f24 1567 base = func_base;
03ac2a74 1568 break;
68f6cf99
MK
1569 case DW_EH_PE_aligned:
1570 base = 0;
852483bc 1571 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1572 if ((offset % ptr_len) != 0)
1573 {
1574 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1575 buf += *bytes_read_ptr;
1576 }
1577 break;
cfc14b3a 1578 default:
3e43a32a
MS
1579 internal_error (__FILE__, __LINE__,
1580 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1581 }
1582
b04de778 1583 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1584 {
1585 encoding |= encoding_for_size (ptr_len);
1586 if (bfd_get_sign_extend_vma (unit->abfd))
1587 encoding |= DW_EH_PE_signed;
1588 }
cfc14b3a
MK
1589
1590 switch (encoding & 0x0f)
1591 {
a81b10ae
MK
1592 case DW_EH_PE_uleb128:
1593 {
9fccedf7 1594 uint64_t value;
0d45f56e 1595 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1596
f664829e 1597 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1598 return base + value;
1599 }
cfc14b3a 1600 case DW_EH_PE_udata2:
68f6cf99 1601 *bytes_read_ptr += 2;
cfc14b3a
MK
1602 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1603 case DW_EH_PE_udata4:
68f6cf99 1604 *bytes_read_ptr += 4;
cfc14b3a
MK
1605 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1606 case DW_EH_PE_udata8:
68f6cf99 1607 *bytes_read_ptr += 8;
cfc14b3a 1608 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1609 case DW_EH_PE_sleb128:
1610 {
9fccedf7 1611 int64_t value;
0d45f56e 1612 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1613
f664829e 1614 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1615 return base + value;
1616 }
cfc14b3a 1617 case DW_EH_PE_sdata2:
68f6cf99 1618 *bytes_read_ptr += 2;
cfc14b3a
MK
1619 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1620 case DW_EH_PE_sdata4:
68f6cf99 1621 *bytes_read_ptr += 4;
cfc14b3a
MK
1622 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1623 case DW_EH_PE_sdata8:
68f6cf99 1624 *bytes_read_ptr += 8;
cfc14b3a
MK
1625 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1626 default:
3e43a32a
MS
1627 internal_error (__FILE__, __LINE__,
1628 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1629 }
1630}
1631\f
1632
b01c8410
PP
1633static int
1634bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1635{
b01c8410
PP
1636 ULONGEST cie_pointer = *(ULONGEST *) key;
1637 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1638
b01c8410
PP
1639 if (cie_pointer == cie->cie_pointer)
1640 return 0;
cfc14b3a 1641
b01c8410
PP
1642 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1643}
1644
1645/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1646static struct dwarf2_cie *
1647find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1648{
1649 struct dwarf2_cie **p_cie;
cfc14b3a 1650
65a97ab3
PP
1651 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1652 bsearch be non-NULL. */
1653 if (cie_table->entries == NULL)
1654 {
1655 gdb_assert (cie_table->num_entries == 0);
1656 return NULL;
1657 }
1658
9a3c8263
SM
1659 p_cie = ((struct dwarf2_cie **)
1660 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1661 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
b01c8410
PP
1662 if (p_cie != NULL)
1663 return *p_cie;
cfc14b3a
MK
1664 return NULL;
1665}
1666
b01c8410 1667/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1668static void
b01c8410 1669add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1670{
b01c8410
PP
1671 const int n = cie_table->num_entries;
1672
1673 gdb_assert (n < 1
1674 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1675
224c3ddb
SM
1676 cie_table->entries
1677 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
b01c8410
PP
1678 cie_table->entries[n] = cie;
1679 cie_table->num_entries = n + 1;
1680}
1681
1682static int
1683bsearch_fde_cmp (const void *key, const void *element)
1684{
1685 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1686 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1687
b01c8410
PP
1688 if (seek_pc < fde->initial_location)
1689 return -1;
1690 if (seek_pc < fde->initial_location + fde->address_range)
1691 return 0;
1692 return 1;
cfc14b3a
MK
1693}
1694
1695/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1696 inital location associated with it into *PC. */
1697
1698static struct dwarf2_fde *
ac56253d 1699dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1700{
1701 struct objfile *objfile;
1702
1703 ALL_OBJFILES (objfile)
1704 {
b01c8410
PP
1705 struct dwarf2_fde_table *fde_table;
1706 struct dwarf2_fde **p_fde;
cfc14b3a 1707 CORE_ADDR offset;
b01c8410 1708 CORE_ADDR seek_pc;
cfc14b3a 1709
9a3c8263
SM
1710 fde_table = ((struct dwarf2_fde_table *)
1711 objfile_data (objfile, dwarf2_frame_objfile_data));
b01c8410 1712 if (fde_table == NULL)
be391dca
TT
1713 {
1714 dwarf2_build_frame_info (objfile);
9a3c8263
SM
1715 fde_table = ((struct dwarf2_fde_table *)
1716 objfile_data (objfile, dwarf2_frame_objfile_data));
be391dca
TT
1717 }
1718 gdb_assert (fde_table != NULL);
1719
1720 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1721 continue;
1722
1723 gdb_assert (objfile->section_offsets);
1724 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1725
b01c8410
PP
1726 gdb_assert (fde_table->num_entries > 0);
1727 if (*pc < offset + fde_table->entries[0]->initial_location)
1728 continue;
1729
1730 seek_pc = *pc - offset;
9a3c8263
SM
1731 p_fde = ((struct dwarf2_fde **)
1732 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1733 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
b01c8410
PP
1734 if (p_fde != NULL)
1735 {
1736 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1737 if (out_offset)
1738 *out_offset = offset;
b01c8410
PP
1739 return *p_fde;
1740 }
cfc14b3a 1741 }
cfc14b3a
MK
1742 return NULL;
1743}
1744
b01c8410 1745/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1746static void
b01c8410 1747add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1748{
b01c8410
PP
1749 if (fde->address_range == 0)
1750 /* Discard useless FDEs. */
1751 return;
1752
1753 fde_table->num_entries += 1;
224c3ddb
SM
1754 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1755 fde_table->num_entries);
b01c8410 1756 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1757}
1758
cfc14b3a 1759#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1760
8bd90839
FM
1761/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1762 or any of them. */
1763
1764enum eh_frame_type
1765{
1766 EH_CIE_TYPE_ID = 1 << 0,
1767 EH_FDE_TYPE_ID = 1 << 1,
1768 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1769};
1770
f664829e
DE
1771static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1772 const gdb_byte *start,
1773 int eh_frame_p,
1774 struct dwarf2_cie_table *cie_table,
1775 struct dwarf2_fde_table *fde_table,
1776 enum eh_frame_type entry_type);
8bd90839
FM
1777
1778/* Decode the next CIE or FDE, entry_type specifies the expected type.
1779 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1780
f664829e
DE
1781static const gdb_byte *
1782decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1783 int eh_frame_p,
b01c8410 1784 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1785 struct dwarf2_fde_table *fde_table,
1786 enum eh_frame_type entry_type)
cfc14b3a 1787{
5e2b427d 1788 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1789 const gdb_byte *buf, *end;
cfc14b3a
MK
1790 LONGEST length;
1791 unsigned int bytes_read;
6896c0c7
RH
1792 int dwarf64_p;
1793 ULONGEST cie_id;
cfc14b3a 1794 ULONGEST cie_pointer;
9fccedf7
DE
1795 int64_t sleb128;
1796 uint64_t uleb128;
cfc14b3a 1797
6896c0c7 1798 buf = start;
cfc14b3a
MK
1799 length = read_initial_length (unit->abfd, buf, &bytes_read);
1800 buf += bytes_read;
1801 end = buf + length;
1802
0963b4bd 1803 /* Are we still within the section? */
6896c0c7
RH
1804 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1805 return NULL;
1806
cfc14b3a
MK
1807 if (length == 0)
1808 return end;
1809
6896c0c7
RH
1810 /* Distinguish between 32 and 64-bit encoded frame info. */
1811 dwarf64_p = (bytes_read == 12);
cfc14b3a 1812
6896c0c7 1813 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1814 if (eh_frame_p)
1815 cie_id = 0;
1816 else if (dwarf64_p)
1817 cie_id = DW64_CIE_ID;
6896c0c7
RH
1818 else
1819 cie_id = DW_CIE_ID;
cfc14b3a
MK
1820
1821 if (dwarf64_p)
1822 {
1823 cie_pointer = read_8_bytes (unit->abfd, buf);
1824 buf += 8;
1825 }
1826 else
1827 {
1828 cie_pointer = read_4_bytes (unit->abfd, buf);
1829 buf += 4;
1830 }
1831
1832 if (cie_pointer == cie_id)
1833 {
1834 /* This is a CIE. */
1835 struct dwarf2_cie *cie;
1836 char *augmentation;
28ba0b33 1837 unsigned int cie_version;
cfc14b3a 1838
8bd90839
FM
1839 /* Check that a CIE was expected. */
1840 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1841 error (_("Found a CIE when not expecting it."));
1842
cfc14b3a
MK
1843 /* Record the offset into the .debug_frame section of this CIE. */
1844 cie_pointer = start - unit->dwarf_frame_buffer;
1845
1846 /* Check whether we've already read it. */
b01c8410 1847 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1848 return end;
1849
8d749320 1850 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
cfc14b3a
MK
1851 cie->initial_instructions = NULL;
1852 cie->cie_pointer = cie_pointer;
1853
1854 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1855 depends on the target address size. */
1856 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1857
56c987f6
AO
1858 /* We'll determine the final value later, but we need to
1859 initialize it conservatively. */
1860 cie->signal_frame = 0;
1861
cfc14b3a 1862 /* Check version number. */
28ba0b33 1863 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1864 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1865 return NULL;
303b6f5d 1866 cie->version = cie_version;
cfc14b3a
MK
1867 buf += 1;
1868
1869 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1870 cie->augmentation = augmentation = (char *) buf;
852483bc 1871 buf += (strlen (augmentation) + 1);
cfc14b3a 1872
303b6f5d
DJ
1873 /* Ignore armcc augmentations. We only use them for quirks,
1874 and that doesn't happen until later. */
61012eef 1875 if (startswith (augmentation, "armcc"))
303b6f5d
DJ
1876 augmentation += strlen (augmentation);
1877
cfc14b3a
MK
1878 /* The GCC 2.x "eh" augmentation has a pointer immediately
1879 following the augmentation string, so it must be handled
1880 first. */
1881 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1882 {
1883 /* Skip. */
5e2b427d 1884 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1885 augmentation += 2;
1886 }
1887
2dc7f7b3
TT
1888 if (cie->version >= 4)
1889 {
1890 /* FIXME: check that this is the same as from the CU header. */
1891 cie->addr_size = read_1_byte (unit->abfd, buf);
1892 ++buf;
1893 cie->segment_size = read_1_byte (unit->abfd, buf);
1894 ++buf;
1895 }
1896 else
1897 {
8da614df 1898 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1899 cie->segment_size = 0;
1900 }
8da614df
CV
1901 /* Address values in .eh_frame sections are defined to have the
1902 target's pointer size. Watchout: This breaks frame info for
1903 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1904 section exists as well. */
8da614df
CV
1905 if (eh_frame_p)
1906 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1907 else
1908 cie->ptr_size = cie->addr_size;
2dc7f7b3 1909
f664829e
DE
1910 buf = gdb_read_uleb128 (buf, end, &uleb128);
1911 if (buf == NULL)
1912 return NULL;
1913 cie->code_alignment_factor = uleb128;
cfc14b3a 1914
f664829e
DE
1915 buf = gdb_read_sleb128 (buf, end, &sleb128);
1916 if (buf == NULL)
1917 return NULL;
1918 cie->data_alignment_factor = sleb128;
cfc14b3a 1919
28ba0b33
PB
1920 if (cie_version == 1)
1921 {
1922 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1923 ++buf;
28ba0b33
PB
1924 }
1925 else
f664829e
DE
1926 {
1927 buf = gdb_read_uleb128 (buf, end, &uleb128);
1928 if (buf == NULL)
1929 return NULL;
1930 cie->return_address_register = uleb128;
1931 }
1932
4fc771b8 1933 cie->return_address_register
5e2b427d 1934 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1935 cie->return_address_register,
1936 eh_frame_p);
4bf8967c 1937
7131cb6e
RH
1938 cie->saw_z_augmentation = (*augmentation == 'z');
1939 if (cie->saw_z_augmentation)
cfc14b3a 1940 {
9fccedf7 1941 uint64_t length;
cfc14b3a 1942
f664829e
DE
1943 buf = gdb_read_uleb128 (buf, end, &length);
1944 if (buf == NULL)
6896c0c7 1945 return NULL;
cfc14b3a
MK
1946 cie->initial_instructions = buf + length;
1947 augmentation++;
1948 }
1949
1950 while (*augmentation)
1951 {
1952 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1953 if (*augmentation == 'L')
1954 {
1955 /* Skip. */
1956 buf++;
1957 augmentation++;
1958 }
1959
1960 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1961 else if (*augmentation == 'R')
1962 {
1963 cie->encoding = *buf++;
1964 augmentation++;
1965 }
1966
1967 /* "P" indicates a personality routine in the CIE augmentation. */
1968 else if (*augmentation == 'P')
1969 {
1234d960 1970 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1971 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 1972 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 1973 buf, &bytes_read, 0);
f724bf08 1974 buf += bytes_read;
cfc14b3a
MK
1975 augmentation++;
1976 }
1977
56c987f6
AO
1978 /* "S" indicates a signal frame, such that the return
1979 address must not be decremented to locate the call frame
1980 info for the previous frame; it might even be the first
1981 instruction of a function, so decrementing it would take
1982 us to a different function. */
1983 else if (*augmentation == 'S')
1984 {
1985 cie->signal_frame = 1;
1986 augmentation++;
1987 }
1988
3e9a2e52
DJ
1989 /* Otherwise we have an unknown augmentation. Assume that either
1990 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
1991 else
1992 {
3e9a2e52
DJ
1993 if (cie->initial_instructions)
1994 buf = cie->initial_instructions;
cfc14b3a
MK
1995 break;
1996 }
1997 }
1998
1999 cie->initial_instructions = buf;
2000 cie->end = end;
b01c8410 2001 cie->unit = unit;
cfc14b3a 2002
b01c8410 2003 add_cie (cie_table, cie);
cfc14b3a
MK
2004 }
2005 else
2006 {
2007 /* This is a FDE. */
2008 struct dwarf2_fde *fde;
3e29f34a 2009 CORE_ADDR addr;
cfc14b3a 2010
8bd90839
FM
2011 /* Check that an FDE was expected. */
2012 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2013 error (_("Found an FDE when not expecting it."));
2014
6896c0c7
RH
2015 /* In an .eh_frame section, the CIE pointer is the delta between the
2016 address within the FDE where the CIE pointer is stored and the
2017 address of the CIE. Convert it to an offset into the .eh_frame
2018 section. */
cfc14b3a
MK
2019 if (eh_frame_p)
2020 {
cfc14b3a
MK
2021 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2022 cie_pointer -= (dwarf64_p ? 8 : 4);
2023 }
2024
6896c0c7
RH
2025 /* In either case, validate the result is still within the section. */
2026 if (cie_pointer >= unit->dwarf_frame_size)
2027 return NULL;
2028
8d749320 2029 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
b01c8410 2030 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2031 if (fde->cie == NULL)
2032 {
2033 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2034 eh_frame_p, cie_table, fde_table,
2035 EH_CIE_TYPE_ID);
b01c8410 2036 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2037 }
2038
2039 gdb_assert (fde->cie != NULL);
2040
3e29f34a
MR
2041 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2042 buf, &bytes_read, 0);
2043 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
cfc14b3a
MK
2044 buf += bytes_read;
2045
2046 fde->address_range =
ae0d2f24 2047 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2048 fde->cie->ptr_size, buf, &bytes_read, 0);
3e29f34a
MR
2049 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2050 fde->address_range = addr - fde->initial_location;
cfc14b3a
MK
2051 buf += bytes_read;
2052
7131cb6e
RH
2053 /* A 'z' augmentation in the CIE implies the presence of an
2054 augmentation field in the FDE as well. The only thing known
2055 to be in here at present is the LSDA entry for EH. So we
2056 can skip the whole thing. */
2057 if (fde->cie->saw_z_augmentation)
2058 {
9fccedf7 2059 uint64_t length;
7131cb6e 2060
f664829e
DE
2061 buf = gdb_read_uleb128 (buf, end, &length);
2062 if (buf == NULL)
2063 return NULL;
2064 buf += length;
6896c0c7
RH
2065 if (buf > end)
2066 return NULL;
7131cb6e
RH
2067 }
2068
cfc14b3a
MK
2069 fde->instructions = buf;
2070 fde->end = end;
2071
4bf8967c
AS
2072 fde->eh_frame_p = eh_frame_p;
2073
b01c8410 2074 add_fde (fde_table, fde);
cfc14b3a
MK
2075 }
2076
2077 return end;
2078}
6896c0c7 2079
8bd90839
FM
2080/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2081 expect an FDE or a CIE. */
2082
f664829e
DE
2083static const gdb_byte *
2084decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2085 int eh_frame_p,
b01c8410 2086 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2087 struct dwarf2_fde_table *fde_table,
2088 enum eh_frame_type entry_type)
6896c0c7
RH
2089{
2090 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2091 const gdb_byte *ret;
6896c0c7
RH
2092 ptrdiff_t start_offset;
2093
2094 while (1)
2095 {
b01c8410 2096 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2097 cie_table, fde_table, entry_type);
6896c0c7
RH
2098 if (ret != NULL)
2099 break;
2100
2101 /* We have corrupt input data of some form. */
2102
2103 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2104 and mismatches wrt padding and alignment of debug sections. */
2105 /* Note that there is no requirement in the standard for any
2106 alignment at all in the frame unwind sections. Testing for
2107 alignment before trying to interpret data would be incorrect.
2108
2109 However, GCC traditionally arranged for frame sections to be
2110 sized such that the FDE length and CIE fields happen to be
2111 aligned (in theory, for performance). This, unfortunately,
2112 was done with .align directives, which had the side effect of
2113 forcing the section to be aligned by the linker.
2114
2115 This becomes a problem when you have some other producer that
2116 creates frame sections that are not as strictly aligned. That
2117 produces a hole in the frame info that gets filled by the
2118 linker with zeros.
2119
2120 The GCC behaviour is arguably a bug, but it's effectively now
2121 part of the ABI, so we're now stuck with it, at least at the
2122 object file level. A smart linker may decide, in the process
2123 of compressing duplicate CIE information, that it can rewrite
2124 the entire output section without this extra padding. */
2125
2126 start_offset = start - unit->dwarf_frame_buffer;
2127 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2128 {
2129 start += 4 - (start_offset & 3);
2130 workaround = ALIGN4;
2131 continue;
2132 }
2133 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2134 {
2135 start += 8 - (start_offset & 7);
2136 workaround = ALIGN8;
2137 continue;
2138 }
2139
2140 /* Nothing left to try. Arrange to return as if we've consumed
2141 the entire input section. Hopefully we'll get valid info from
2142 the other of .debug_frame/.eh_frame. */
2143 workaround = FAIL;
2144 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2145 break;
2146 }
2147
2148 switch (workaround)
2149 {
2150 case NONE:
2151 break;
2152
2153 case ALIGN4:
b98664d3 2154 complaint (_("\
3e43a32a 2155Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2156 unit->dwarf_frame_section->owner->filename,
2157 unit->dwarf_frame_section->name);
2158 break;
2159
2160 case ALIGN8:
b98664d3 2161 complaint (_("\
3e43a32a 2162Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2163 unit->dwarf_frame_section->owner->filename,
2164 unit->dwarf_frame_section->name);
2165 break;
2166
2167 default:
b98664d3 2168 complaint (_("Corrupt data in %s:%s"),
6896c0c7
RH
2169 unit->dwarf_frame_section->owner->filename,
2170 unit->dwarf_frame_section->name);
2171 break;
2172 }
2173
2174 return ret;
2175}
cfc14b3a 2176\f
b01c8410
PP
2177static int
2178qsort_fde_cmp (const void *a, const void *b)
2179{
2180 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2181 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2182
b01c8410 2183 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2184 {
2185 if (aa->address_range != bb->address_range
2186 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2187 /* Linker bug, e.g. gold/10400.
2188 Work around it by keeping stable sort order. */
2189 return (a < b) ? -1 : 1;
2190 else
2191 /* Put eh_frame entries after debug_frame ones. */
2192 return aa->eh_frame_p - bb->eh_frame_p;
2193 }
b01c8410
PP
2194
2195 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2196}
2197
cfc14b3a
MK
2198void
2199dwarf2_build_frame_info (struct objfile *objfile)
2200{
ae0d2f24 2201 struct comp_unit *unit;
f664829e 2202 const gdb_byte *frame_ptr;
b01c8410
PP
2203 struct dwarf2_cie_table cie_table;
2204 struct dwarf2_fde_table fde_table;
be391dca 2205 struct dwarf2_fde_table *fde_table2;
b01c8410
PP
2206
2207 cie_table.num_entries = 0;
2208 cie_table.entries = NULL;
2209
2210 fde_table.num_entries = 0;
2211 fde_table.entries = NULL;
cfc14b3a
MK
2212
2213 /* Build a minimal decoding of the DWARF2 compilation unit. */
e39db4db 2214 unit = XOBNEW (&objfile->objfile_obstack, comp_unit);
ae0d2f24
UW
2215 unit->abfd = objfile->obfd;
2216 unit->objfile = objfile;
2217 unit->dbase = 0;
2218 unit->tbase = 0;
cfc14b3a 2219
d40102a1 2220 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2221 {
d40102a1
JB
2222 /* Do not read .eh_frame from separate file as they must be also
2223 present in the main file. */
2224 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2225 &unit->dwarf_frame_section,
2226 &unit->dwarf_frame_buffer,
2227 &unit->dwarf_frame_size);
2228 if (unit->dwarf_frame_size)
b01c8410 2229 {
d40102a1
JB
2230 asection *got, *txt;
2231
2232 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2233 that is used for the i386/amd64 target, which currently is
2234 the only target in GCC that supports/uses the
2235 DW_EH_PE_datarel encoding. */
2236 got = bfd_get_section_by_name (unit->abfd, ".got");
2237 if (got)
2238 unit->dbase = got->vma;
2239
2240 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2241 so far. */
2242 txt = bfd_get_section_by_name (unit->abfd, ".text");
2243 if (txt)
2244 unit->tbase = txt->vma;
2245
492d29ea 2246 TRY
8bd90839
FM
2247 {
2248 frame_ptr = unit->dwarf_frame_buffer;
2249 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2250 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2251 &cie_table, &fde_table,
2252 EH_CIE_OR_FDE_TYPE_ID);
2253 }
2254
492d29ea 2255 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2256 {
2257 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2258 objfile_name (objfile), e.message);
8bd90839
FM
2259
2260 if (fde_table.num_entries != 0)
2261 {
2262 xfree (fde_table.entries);
2263 fde_table.entries = NULL;
2264 fde_table.num_entries = 0;
2265 }
2266 /* The cie_table is discarded by the next if. */
2267 }
492d29ea 2268 END_CATCH
d40102a1
JB
2269
2270 if (cie_table.num_entries != 0)
2271 {
2272 /* Reinit cie_table: debug_frame has different CIEs. */
2273 xfree (cie_table.entries);
2274 cie_table.num_entries = 0;
2275 cie_table.entries = NULL;
2276 }
b01c8410 2277 }
cfc14b3a
MK
2278 }
2279
3017a003 2280 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2281 &unit->dwarf_frame_section,
2282 &unit->dwarf_frame_buffer,
2283 &unit->dwarf_frame_size);
2284 if (unit->dwarf_frame_size)
cfc14b3a 2285 {
8bd90839
FM
2286 int num_old_fde_entries = fde_table.num_entries;
2287
492d29ea 2288 TRY
8bd90839
FM
2289 {
2290 frame_ptr = unit->dwarf_frame_buffer;
2291 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2292 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2293 &cie_table, &fde_table,
2294 EH_CIE_OR_FDE_TYPE_ID);
2295 }
492d29ea 2296 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2297 {
2298 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2299 objfile_name (objfile), e.message);
8bd90839
FM
2300
2301 if (fde_table.num_entries != 0)
2302 {
2303 fde_table.num_entries = num_old_fde_entries;
2304 if (num_old_fde_entries == 0)
2305 {
2306 xfree (fde_table.entries);
2307 fde_table.entries = NULL;
2308 }
2309 else
2310 {
224c3ddb
SM
2311 fde_table.entries
2312 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2313 fde_table.num_entries);
8bd90839
FM
2314 }
2315 }
2316 fde_table.num_entries = num_old_fde_entries;
2317 /* The cie_table is discarded by the next if. */
2318 }
492d29ea 2319 END_CATCH
b01c8410
PP
2320 }
2321
2322 /* Discard the cie_table, it is no longer needed. */
2323 if (cie_table.num_entries != 0)
2324 {
2325 xfree (cie_table.entries);
2326 cie_table.entries = NULL; /* Paranoia. */
2327 cie_table.num_entries = 0; /* Paranoia. */
2328 }
2329
be391dca 2330 /* Copy fde_table to obstack: it is needed at runtime. */
8d749320 2331 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
be391dca
TT
2332
2333 if (fde_table.num_entries == 0)
2334 {
2335 fde_table2->entries = NULL;
2336 fde_table2->num_entries = 0;
2337 }
2338 else
b01c8410 2339 {
875cdfbb
PA
2340 struct dwarf2_fde *fde_prev = NULL;
2341 struct dwarf2_fde *first_non_zero_fde = NULL;
2342 int i;
b01c8410
PP
2343
2344 /* Prepare FDE table for lookups. */
2345 qsort (fde_table.entries, fde_table.num_entries,
2346 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2347
875cdfbb
PA
2348 /* Check for leftovers from --gc-sections. The GNU linker sets
2349 the relevant symbols to zero, but doesn't zero the FDE *end*
2350 ranges because there's no relocation there. It's (offset,
2351 length), not (start, end). On targets where address zero is
2352 just another valid address this can be a problem, since the
2353 FDEs appear to be non-empty in the output --- we could pick
2354 out the wrong FDE. To work around this, when overlaps are
2355 detected, we prefer FDEs that do not start at zero.
2356
2357 Start by finding the first FDE with non-zero start. Below
2358 we'll discard all FDEs that start at zero and overlap this
2359 one. */
2360 for (i = 0; i < fde_table.num_entries; i++)
2361 {
2362 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2363
875cdfbb
PA
2364 if (fde->initial_location != 0)
2365 {
2366 first_non_zero_fde = fde;
2367 break;
2368 }
2369 }
2370
2371 /* Since we'll be doing bsearch, squeeze out identical (except
2372 for eh_frame_p) fde entries so bsearch result is predictable.
2373 Also discard leftovers from --gc-sections. */
be391dca 2374 fde_table2->num_entries = 0;
875cdfbb
PA
2375 for (i = 0; i < fde_table.num_entries; i++)
2376 {
2377 struct dwarf2_fde *fde = fde_table.entries[i];
2378
2379 if (fde->initial_location == 0
2380 && first_non_zero_fde != NULL
2381 && (first_non_zero_fde->initial_location
2382 < fde->initial_location + fde->address_range))
2383 continue;
2384
2385 if (fde_prev != NULL
2386 && fde_prev->initial_location == fde->initial_location)
2387 continue;
2388
2389 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2390 sizeof (fde_table.entries[0]));
2391 ++fde_table2->num_entries;
2392 fde_prev = fde;
2393 }
224c3ddb
SM
2394 fde_table2->entries
2395 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2396
2397 /* Discard the original fde_table. */
2398 xfree (fde_table.entries);
cfc14b3a 2399 }
be391dca
TT
2400
2401 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2402}
0d0e1a63 2403
3c3bb058
AB
2404/* Handle 'maintenance show dwarf unwinders'. */
2405
2406static void
2407show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty,
2408 struct cmd_list_element *c,
2409 const char *value)
2410{
2411 fprintf_filtered (file,
2412 _("The DWARF stack unwinders are currently %s.\n"),
2413 value);
2414}
2415
0d0e1a63
MK
2416void
2417_initialize_dwarf2_frame (void)
2418{
030f20e1 2419 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2420 dwarf2_frame_objfile_data = register_objfile_data ();
1c90d9f0 2421
3c3bb058
AB
2422 add_setshow_boolean_cmd ("unwinders", class_obscure,
2423 &dwarf2_frame_unwinders_enabled_p , _("\
2424Set whether the DWARF stack frame unwinders are used."), _("\
2425Show whether the DWARF stack frame unwinders are used."), _("\
2426When enabled the DWARF stack frame unwinders can be used for architectures\n\
2427that support the DWARF unwinders. Enabling the DWARF unwinders for an\n\
2428architecture that doesn't support them will have no effect."),
2429 NULL,
2430 show_dwarf_unwinders_enabled_p,
2431 &set_dwarf_cmdlist,
2432 &show_dwarf_cmdlist);
2433
1c90d9f0 2434#if GDB_SELF_TEST
1526853e
SM
2435 selftests::register_test_foreach_arch ("execute_cfa_program",
2436 selftests::execute_cfa_program_test);
1c90d9f0 2437#endif
0d0e1a63 2438}
This page took 1.413689 seconds and 4 git commands to generate.