merge from gcc
[deliverable/binutils-gdb.git] / gdb / dwarf2expr.c
CommitLineData
852483bc
MK
1/* DWARF 2 Expression Evaluator.
2
4c38e0a4 3 Copyright (C) 2001, 2002, 2003, 2005, 2007, 2008, 2009, 2010
9b254dd1 4 Free Software Foundation, Inc.
852483bc 5
4c2df51b
DJ
6 Contributed by Daniel Berlin (dan@dberlin.org)
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
4c2df51b
DJ
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
22
23#include "defs.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
fa8f86ff 28#include "dwarf2.h"
4c2df51b 29#include "dwarf2expr.h"
1e3a102a 30#include "gdb_assert.h"
4c2df51b
DJ
31
32/* Local prototypes. */
33
34static void execute_stack_op (struct dwarf_expr_context *,
0d45f56e 35 const gdb_byte *, const gdb_byte *);
4c2df51b
DJ
36
37/* Create a new context for the expression evaluator. */
38
39struct dwarf_expr_context *
e4adbba9 40new_dwarf_expr_context (void)
4c2df51b
DJ
41{
42 struct dwarf_expr_context *retval;
9a619af0 43
4c2df51b 44 retval = xcalloc (1, sizeof (struct dwarf_expr_context));
18ec9831
KB
45 retval->stack_len = 0;
46 retval->stack_allocated = 10;
b966cb8a
TT
47 retval->stack = xmalloc (retval->stack_allocated
48 * sizeof (struct dwarf_stack_value));
87808bd6
JB
49 retval->num_pieces = 0;
50 retval->pieces = 0;
1e3a102a 51 retval->max_recursion_depth = 0x100;
4c2df51b
DJ
52 return retval;
53}
54
55/* Release the memory allocated to CTX. */
56
57void
58free_dwarf_expr_context (struct dwarf_expr_context *ctx)
59{
60 xfree (ctx->stack);
87808bd6 61 xfree (ctx->pieces);
4c2df51b
DJ
62 xfree (ctx);
63}
64
4a227398
TT
65/* Helper for make_cleanup_free_dwarf_expr_context. */
66
67static void
68free_dwarf_expr_context_cleanup (void *arg)
69{
70 free_dwarf_expr_context (arg);
71}
72
73/* Return a cleanup that calls free_dwarf_expr_context. */
74
75struct cleanup *
76make_cleanup_free_dwarf_expr_context (struct dwarf_expr_context *ctx)
77{
78 return make_cleanup (free_dwarf_expr_context_cleanup, ctx);
79}
80
4c2df51b
DJ
81/* Expand the memory allocated to CTX's stack to contain at least
82 NEED more elements than are currently used. */
83
84static void
85dwarf_expr_grow_stack (struct dwarf_expr_context *ctx, size_t need)
86{
87 if (ctx->stack_len + need > ctx->stack_allocated)
88 {
18ec9831 89 size_t newlen = ctx->stack_len + need + 10;
9a619af0 90
4c2df51b 91 ctx->stack = xrealloc (ctx->stack,
44353522 92 newlen * sizeof (struct dwarf_stack_value));
18ec9831 93 ctx->stack_allocated = newlen;
4c2df51b
DJ
94 }
95}
96
97/* Push VALUE onto CTX's stack. */
98
99void
f2c7657e 100dwarf_expr_push (struct dwarf_expr_context *ctx, ULONGEST value,
44353522 101 int in_stack_memory)
4c2df51b 102{
44353522
DE
103 struct dwarf_stack_value *v;
104
f2c7657e
UW
105 /* We keep all stack elements within the range defined by the
106 DWARF address size. */
107 if (ctx->addr_size < sizeof (ULONGEST))
108 value &= ((ULONGEST) 1 << (ctx->addr_size * HOST_CHAR_BIT)) - 1;
109
4c2df51b 110 dwarf_expr_grow_stack (ctx, 1);
44353522
DE
111 v = &ctx->stack[ctx->stack_len++];
112 v->value = value;
113 v->in_stack_memory = in_stack_memory;
4c2df51b
DJ
114}
115
116/* Pop the top item off of CTX's stack. */
117
118void
119dwarf_expr_pop (struct dwarf_expr_context *ctx)
120{
121 if (ctx->stack_len <= 0)
8a3fe4f8 122 error (_("dwarf expression stack underflow"));
4c2df51b
DJ
123 ctx->stack_len--;
124}
125
126/* Retrieve the N'th item on CTX's stack. */
127
f2c7657e 128ULONGEST
4c2df51b
DJ
129dwarf_expr_fetch (struct dwarf_expr_context *ctx, int n)
130{
ef0fdf07 131 if (ctx->stack_len <= n)
8a3fe4f8 132 error (_("Asked for position %d of stack, stack only has %d elements on it."),
4c2df51b 133 n, ctx->stack_len);
44353522
DE
134 return ctx->stack[ctx->stack_len - (1 + n)].value;
135
136}
137
f2c7657e
UW
138/* Retrieve the N'th item on CTX's stack, converted to an address. */
139
140CORE_ADDR
141dwarf_expr_fetch_address (struct dwarf_expr_context *ctx, int n)
142{
143 ULONGEST result = dwarf_expr_fetch (ctx, n);
144
145 /* For most architectures, calling extract_unsigned_integer() alone
146 is sufficient for extracting an address. However, some
147 architectures (e.g. MIPS) use signed addresses and using
148 extract_unsigned_integer() will not produce a correct
149 result. Make sure we invoke gdbarch_integer_to_address()
150 for those architectures which require it. */
151 if (gdbarch_integer_to_address_p (ctx->gdbarch))
152 {
153 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
154 gdb_byte *buf = alloca (ctx->addr_size);
155 struct type *int_type;
156
157 switch (ctx->addr_size)
158 {
159 case 2:
160 int_type = builtin_type (ctx->gdbarch)->builtin_uint16;
161 break;
162 case 4:
163 int_type = builtin_type (ctx->gdbarch)->builtin_uint32;
164 break;
165 case 8:
166 int_type = builtin_type (ctx->gdbarch)->builtin_uint64;
167 break;
168 default:
169 internal_error (__FILE__, __LINE__,
170 _("Unsupported address size.\n"));
171 }
172
173 store_unsigned_integer (buf, ctx->addr_size, byte_order, result);
174 return gdbarch_integer_to_address (ctx->gdbarch, int_type, buf);
175 }
176
177 return (CORE_ADDR) result;
178}
179
44353522
DE
180/* Retrieve the in_stack_memory flag of the N'th item on CTX's stack. */
181
182int
183dwarf_expr_fetch_in_stack_memory (struct dwarf_expr_context *ctx, int n)
184{
185 if (ctx->stack_len <= n)
186 error (_("Asked for position %d of stack, stack only has %d elements on it."),
187 n, ctx->stack_len);
188 return ctx->stack[ctx->stack_len - (1 + n)].in_stack_memory;
4c2df51b
DJ
189
190}
191
cb826367
TT
192/* Return true if the expression stack is empty. */
193
194static int
195dwarf_expr_stack_empty_p (struct dwarf_expr_context *ctx)
196{
197 return ctx->stack_len == 0;
198}
199
87808bd6
JB
200/* Add a new piece to CTX's piece list. */
201static void
d3b1e874 202add_piece (struct dwarf_expr_context *ctx, ULONGEST size, ULONGEST offset)
87808bd6
JB
203{
204 struct dwarf_expr_piece *p;
205
206 ctx->num_pieces++;
207
d3b1e874
TT
208 ctx->pieces = xrealloc (ctx->pieces,
209 (ctx->num_pieces
210 * sizeof (struct dwarf_expr_piece)));
87808bd6
JB
211
212 p = &ctx->pieces[ctx->num_pieces - 1];
cec03d70 213 p->location = ctx->location;
87808bd6 214 p->size = size;
d3b1e874
TT
215 p->offset = offset;
216
cec03d70
TT
217 if (p->location == DWARF_VALUE_LITERAL)
218 {
219 p->v.literal.data = ctx->data;
220 p->v.literal.length = ctx->len;
221 }
cb826367
TT
222 else if (dwarf_expr_stack_empty_p (ctx))
223 {
224 p->location = DWARF_VALUE_OPTIMIZED_OUT;
225 /* Also reset the context's location, for our callers. This is
226 a somewhat strange approach, but this lets us avoid setting
227 the location to DWARF_VALUE_MEMORY in all the individual
228 cases in the evaluator. */
229 ctx->location = DWARF_VALUE_OPTIMIZED_OUT;
230 }
f2c7657e
UW
231 else if (p->location == DWARF_VALUE_MEMORY)
232 {
233 p->v.mem.addr = dwarf_expr_fetch_address (ctx, 0);
234 p->v.mem.in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
235 }
cec03d70 236 else
44353522 237 {
f2c7657e 238 p->v.value = dwarf_expr_fetch (ctx, 0);
44353522 239 }
87808bd6
JB
240}
241
4c2df51b
DJ
242/* Evaluate the expression at ADDR (LEN bytes long) using the context
243 CTX. */
244
245void
0d45f56e
TT
246dwarf_expr_eval (struct dwarf_expr_context *ctx, const gdb_byte *addr,
247 size_t len)
4c2df51b 248{
1e3a102a
JK
249 int old_recursion_depth = ctx->recursion_depth;
250
4c2df51b 251 execute_stack_op (ctx, addr, addr + len);
1e3a102a
JK
252
253 /* CTX RECURSION_DEPTH becomes invalid if an exception was thrown here. */
254
255 gdb_assert (ctx->recursion_depth == old_recursion_depth);
4c2df51b
DJ
256}
257
258/* Decode the unsigned LEB128 constant at BUF into the variable pointed to
259 by R, and return the new value of BUF. Verify that it doesn't extend
260 past BUF_END. */
261
0d45f56e
TT
262const gdb_byte *
263read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end, ULONGEST * r)
4c2df51b
DJ
264{
265 unsigned shift = 0;
266 ULONGEST result = 0;
852483bc 267 gdb_byte byte;
4c2df51b
DJ
268
269 while (1)
270 {
271 if (buf >= buf_end)
8a3fe4f8 272 error (_("read_uleb128: Corrupted DWARF expression."));
4c2df51b
DJ
273
274 byte = *buf++;
275 result |= (byte & 0x7f) << shift;
276 if ((byte & 0x80) == 0)
277 break;
278 shift += 7;
279 }
280 *r = result;
281 return buf;
282}
283
284/* Decode the signed LEB128 constant at BUF into the variable pointed to
285 by R, and return the new value of BUF. Verify that it doesn't extend
286 past BUF_END. */
287
0d45f56e
TT
288const gdb_byte *
289read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end, LONGEST * r)
4c2df51b
DJ
290{
291 unsigned shift = 0;
292 LONGEST result = 0;
852483bc 293 gdb_byte byte;
4c2df51b
DJ
294
295 while (1)
296 {
297 if (buf >= buf_end)
8a3fe4f8 298 error (_("read_sleb128: Corrupted DWARF expression."));
4c2df51b
DJ
299
300 byte = *buf++;
301 result |= (byte & 0x7f) << shift;
302 shift += 7;
303 if ((byte & 0x80) == 0)
304 break;
305 }
306 if (shift < (sizeof (*r) * 8) && (byte & 0x40) != 0)
307 result |= -(1 << shift);
308
309 *r = result;
310 return buf;
311}
4c2df51b 312\f
cec03d70
TT
313
314/* Check that the current operator is either at the end of an
315 expression, or that it is followed by a composition operator. */
316
3cf03773
TT
317void
318dwarf_expr_require_composition (const gdb_byte *op_ptr, const gdb_byte *op_end,
319 const char *op_name)
cec03d70
TT
320{
321 /* It seems like DW_OP_GNU_uninit should be handled here. However,
322 it doesn't seem to make sense for DW_OP_*_value, and it was not
323 checked at the other place that this function is called. */
324 if (op_ptr != op_end && *op_ptr != DW_OP_piece && *op_ptr != DW_OP_bit_piece)
325 error (_("DWARF-2 expression error: `%s' operations must be "
326 "used either alone or in conjuction with DW_OP_piece "
327 "or DW_OP_bit_piece."),
328 op_name);
329}
330
4c2df51b
DJ
331/* The engine for the expression evaluator. Using the context in CTX,
332 evaluate the expression between OP_PTR and OP_END. */
333
334static void
852483bc 335execute_stack_op (struct dwarf_expr_context *ctx,
0d45f56e 336 const gdb_byte *op_ptr, const gdb_byte *op_end)
4c2df51b 337{
43dabe42 338#define sign_ext(x) ((LONGEST) (((x) ^ sign_bit) - sign_bit))
f2c7657e
UW
339 ULONGEST sign_bit = (ctx->addr_size >= sizeof (ULONGEST) ? 0
340 : ((ULONGEST) 1) << (ctx->addr_size * 8 - 1));
e17a4113 341 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
9a619af0 342
cec03d70 343 ctx->location = DWARF_VALUE_MEMORY;
42be36b3 344 ctx->initialized = 1; /* Default is initialized. */
18ec9831 345
1e3a102a
JK
346 if (ctx->recursion_depth > ctx->max_recursion_depth)
347 error (_("DWARF-2 expression error: Loop detected (%d)."),
348 ctx->recursion_depth);
349 ctx->recursion_depth++;
350
4c2df51b
DJ
351 while (op_ptr < op_end)
352 {
353 enum dwarf_location_atom op = *op_ptr++;
f2c7657e 354 ULONGEST result;
44353522
DE
355 /* Assume the value is not in stack memory.
356 Code that knows otherwise sets this to 1.
357 Some arithmetic on stack addresses can probably be assumed to still
358 be a stack address, but we skip this complication for now.
359 This is just an optimization, so it's always ok to punt
360 and leave this as 0. */
361 int in_stack_memory = 0;
4c2df51b
DJ
362 ULONGEST uoffset, reg;
363 LONGEST offset;
4c2df51b 364
4c2df51b
DJ
365 switch (op)
366 {
367 case DW_OP_lit0:
368 case DW_OP_lit1:
369 case DW_OP_lit2:
370 case DW_OP_lit3:
371 case DW_OP_lit4:
372 case DW_OP_lit5:
373 case DW_OP_lit6:
374 case DW_OP_lit7:
375 case DW_OP_lit8:
376 case DW_OP_lit9:
377 case DW_OP_lit10:
378 case DW_OP_lit11:
379 case DW_OP_lit12:
380 case DW_OP_lit13:
381 case DW_OP_lit14:
382 case DW_OP_lit15:
383 case DW_OP_lit16:
384 case DW_OP_lit17:
385 case DW_OP_lit18:
386 case DW_OP_lit19:
387 case DW_OP_lit20:
388 case DW_OP_lit21:
389 case DW_OP_lit22:
390 case DW_OP_lit23:
391 case DW_OP_lit24:
392 case DW_OP_lit25:
393 case DW_OP_lit26:
394 case DW_OP_lit27:
395 case DW_OP_lit28:
396 case DW_OP_lit29:
397 case DW_OP_lit30:
398 case DW_OP_lit31:
399 result = op - DW_OP_lit0;
400 break;
401
402 case DW_OP_addr:
f2c7657e
UW
403 result = extract_unsigned_integer (op_ptr,
404 ctx->addr_size, byte_order);
ae0d2f24 405 op_ptr += ctx->addr_size;
ac56253d
TT
406 /* Some versions of GCC emit DW_OP_addr before
407 DW_OP_GNU_push_tls_address. In this case the value is an
408 index, not an address. We don't support things like
409 branching between the address and the TLS op. */
410 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
411 result += ctx->offset;
4c2df51b
DJ
412 break;
413
414 case DW_OP_const1u:
e17a4113 415 result = extract_unsigned_integer (op_ptr, 1, byte_order);
4c2df51b
DJ
416 op_ptr += 1;
417 break;
418 case DW_OP_const1s:
e17a4113 419 result = extract_signed_integer (op_ptr, 1, byte_order);
4c2df51b
DJ
420 op_ptr += 1;
421 break;
422 case DW_OP_const2u:
e17a4113 423 result = extract_unsigned_integer (op_ptr, 2, byte_order);
4c2df51b
DJ
424 op_ptr += 2;
425 break;
426 case DW_OP_const2s:
e17a4113 427 result = extract_signed_integer (op_ptr, 2, byte_order);
4c2df51b
DJ
428 op_ptr += 2;
429 break;
430 case DW_OP_const4u:
e17a4113 431 result = extract_unsigned_integer (op_ptr, 4, byte_order);
4c2df51b
DJ
432 op_ptr += 4;
433 break;
434 case DW_OP_const4s:
e17a4113 435 result = extract_signed_integer (op_ptr, 4, byte_order);
4c2df51b
DJ
436 op_ptr += 4;
437 break;
438 case DW_OP_const8u:
e17a4113 439 result = extract_unsigned_integer (op_ptr, 8, byte_order);
4c2df51b
DJ
440 op_ptr += 8;
441 break;
442 case DW_OP_const8s:
e17a4113 443 result = extract_signed_integer (op_ptr, 8, byte_order);
4c2df51b
DJ
444 op_ptr += 8;
445 break;
446 case DW_OP_constu:
447 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
448 result = uoffset;
449 break;
450 case DW_OP_consts:
451 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
452 result = offset;
453 break;
454
455 /* The DW_OP_reg operations are required to occur alone in
456 location expressions. */
457 case DW_OP_reg0:
458 case DW_OP_reg1:
459 case DW_OP_reg2:
460 case DW_OP_reg3:
461 case DW_OP_reg4:
462 case DW_OP_reg5:
463 case DW_OP_reg6:
464 case DW_OP_reg7:
465 case DW_OP_reg8:
466 case DW_OP_reg9:
467 case DW_OP_reg10:
468 case DW_OP_reg11:
469 case DW_OP_reg12:
470 case DW_OP_reg13:
471 case DW_OP_reg14:
472 case DW_OP_reg15:
473 case DW_OP_reg16:
474 case DW_OP_reg17:
475 case DW_OP_reg18:
476 case DW_OP_reg19:
477 case DW_OP_reg20:
478 case DW_OP_reg21:
479 case DW_OP_reg22:
480 case DW_OP_reg23:
481 case DW_OP_reg24:
482 case DW_OP_reg25:
483 case DW_OP_reg26:
484 case DW_OP_reg27:
485 case DW_OP_reg28:
486 case DW_OP_reg29:
487 case DW_OP_reg30:
488 case DW_OP_reg31:
42be36b3
CT
489 if (op_ptr != op_end
490 && *op_ptr != DW_OP_piece
d3b1e874 491 && *op_ptr != DW_OP_bit_piece
42be36b3 492 && *op_ptr != DW_OP_GNU_uninit)
8a3fe4f8 493 error (_("DWARF-2 expression error: DW_OP_reg operations must be "
d3b1e874
TT
494 "used either alone or in conjuction with DW_OP_piece "
495 "or DW_OP_bit_piece."));
4c2df51b 496
61fbb938 497 result = op - DW_OP_reg0;
cec03d70 498 ctx->location = DWARF_VALUE_REGISTER;
4c2df51b
DJ
499 break;
500
501 case DW_OP_regx:
502 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
3cf03773 503 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
4c2df51b 504
61fbb938 505 result = reg;
cec03d70 506 ctx->location = DWARF_VALUE_REGISTER;
4c2df51b
DJ
507 break;
508
cec03d70
TT
509 case DW_OP_implicit_value:
510 {
511 ULONGEST len;
9a619af0 512
cec03d70
TT
513 op_ptr = read_uleb128 (op_ptr, op_end, &len);
514 if (op_ptr + len > op_end)
515 error (_("DW_OP_implicit_value: too few bytes available."));
516 ctx->len = len;
517 ctx->data = op_ptr;
518 ctx->location = DWARF_VALUE_LITERAL;
519 op_ptr += len;
3cf03773
TT
520 dwarf_expr_require_composition (op_ptr, op_end,
521 "DW_OP_implicit_value");
cec03d70
TT
522 }
523 goto no_push;
524
525 case DW_OP_stack_value:
526 ctx->location = DWARF_VALUE_STACK;
3cf03773 527 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
cec03d70
TT
528 goto no_push;
529
4c2df51b
DJ
530 case DW_OP_breg0:
531 case DW_OP_breg1:
532 case DW_OP_breg2:
533 case DW_OP_breg3:
534 case DW_OP_breg4:
535 case DW_OP_breg5:
536 case DW_OP_breg6:
537 case DW_OP_breg7:
538 case DW_OP_breg8:
539 case DW_OP_breg9:
540 case DW_OP_breg10:
541 case DW_OP_breg11:
542 case DW_OP_breg12:
543 case DW_OP_breg13:
544 case DW_OP_breg14:
545 case DW_OP_breg15:
546 case DW_OP_breg16:
547 case DW_OP_breg17:
548 case DW_OP_breg18:
549 case DW_OP_breg19:
550 case DW_OP_breg20:
551 case DW_OP_breg21:
552 case DW_OP_breg22:
553 case DW_OP_breg23:
554 case DW_OP_breg24:
555 case DW_OP_breg25:
556 case DW_OP_breg26:
557 case DW_OP_breg27:
558 case DW_OP_breg28:
559 case DW_OP_breg29:
560 case DW_OP_breg30:
561 case DW_OP_breg31:
562 {
563 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
61fbb938 564 result = (ctx->read_reg) (ctx->baton, op - DW_OP_breg0);
4c2df51b
DJ
565 result += offset;
566 }
567 break;
568 case DW_OP_bregx:
569 {
570 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
571 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
61fbb938 572 result = (ctx->read_reg) (ctx->baton, reg);
4c2df51b
DJ
573 result += offset;
574 }
575 break;
576 case DW_OP_fbreg:
577 {
0d45f56e 578 const gdb_byte *datastart;
4c2df51b
DJ
579 size_t datalen;
580 unsigned int before_stack_len;
581
582 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
583 /* Rather than create a whole new context, we simply
584 record the stack length before execution, then reset it
585 afterwards, effectively erasing whatever the recursive
586 call put there. */
587 before_stack_len = ctx->stack_len;
da62e633
AC
588 /* FIXME: cagney/2003-03-26: This code should be using
589 get_frame_base_address(), and then implement a dwarf2
590 specific this_base method. */
4c2df51b
DJ
591 (ctx->get_frame_base) (ctx->baton, &datastart, &datalen);
592 dwarf_expr_eval (ctx, datastart, datalen);
f2c7657e
UW
593 if (ctx->location == DWARF_VALUE_MEMORY)
594 result = dwarf_expr_fetch_address (ctx, 0);
595 else if (ctx->location == DWARF_VALUE_REGISTER)
596 result = (ctx->read_reg) (ctx->baton, dwarf_expr_fetch (ctx, 0));
597 else
cec03d70 598 error (_("Not implemented: computing frame base using explicit value operator"));
4c2df51b 599 result = result + offset;
44353522 600 in_stack_memory = 1;
4c2df51b 601 ctx->stack_len = before_stack_len;
cec03d70 602 ctx->location = DWARF_VALUE_MEMORY;
4c2df51b
DJ
603 }
604 break;
44353522 605
4c2df51b
DJ
606 case DW_OP_dup:
607 result = dwarf_expr_fetch (ctx, 0);
44353522 608 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
4c2df51b
DJ
609 break;
610
611 case DW_OP_drop:
612 dwarf_expr_pop (ctx);
613 goto no_push;
614
615 case DW_OP_pick:
616 offset = *op_ptr++;
617 result = dwarf_expr_fetch (ctx, offset);
44353522 618 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, offset);
4c2df51b 619 break;
9f3fe11c
TG
620
621 case DW_OP_swap:
622 {
44353522 623 struct dwarf_stack_value t1, t2;
9f3fe11c
TG
624
625 if (ctx->stack_len < 2)
626 error (_("Not enough elements for DW_OP_swap. Need 2, have %d."),
627 ctx->stack_len);
628 t1 = ctx->stack[ctx->stack_len - 1];
629 t2 = ctx->stack[ctx->stack_len - 2];
630 ctx->stack[ctx->stack_len - 1] = t2;
631 ctx->stack[ctx->stack_len - 2] = t1;
632 goto no_push;
633 }
4c2df51b
DJ
634
635 case DW_OP_over:
636 result = dwarf_expr_fetch (ctx, 1);
44353522 637 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 1);
4c2df51b
DJ
638 break;
639
640 case DW_OP_rot:
641 {
44353522 642 struct dwarf_stack_value t1, t2, t3;
4c2df51b
DJ
643
644 if (ctx->stack_len < 3)
8a3fe4f8 645 error (_("Not enough elements for DW_OP_rot. Need 3, have %d."),
4c2df51b
DJ
646 ctx->stack_len);
647 t1 = ctx->stack[ctx->stack_len - 1];
648 t2 = ctx->stack[ctx->stack_len - 2];
649 t3 = ctx->stack[ctx->stack_len - 3];
650 ctx->stack[ctx->stack_len - 1] = t2;
651 ctx->stack[ctx->stack_len - 2] = t3;
652 ctx->stack[ctx->stack_len - 3] = t1;
653 goto no_push;
654 }
655
656 case DW_OP_deref:
657 case DW_OP_deref_size:
f2c7657e
UW
658 {
659 int addr_size = (op == DW_OP_deref ? ctx->addr_size : *op_ptr++);
660 gdb_byte *buf = alloca (addr_size);
661 CORE_ADDR addr = dwarf_expr_fetch_address (ctx, 0);
662 dwarf_expr_pop (ctx);
663
664 (ctx->read_mem) (ctx->baton, buf, addr, addr_size);
665 result = extract_unsigned_integer (buf, addr_size, byte_order);
666 break;
667 }
668
4c2df51b
DJ
669 case DW_OP_abs:
670 case DW_OP_neg:
671 case DW_OP_not:
672 case DW_OP_plus_uconst:
673 /* Unary operations. */
674 result = dwarf_expr_fetch (ctx, 0);
675 dwarf_expr_pop (ctx);
676
677 switch (op)
678 {
4c2df51b 679 case DW_OP_abs:
f2c7657e 680 if (sign_ext (result) < 0)
4c2df51b
DJ
681 result = -result;
682 break;
683 case DW_OP_neg:
684 result = -result;
685 break;
686 case DW_OP_not:
687 result = ~result;
688 break;
689 case DW_OP_plus_uconst:
690 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
691 result += reg;
692 break;
693 }
694 break;
695
696 case DW_OP_and:
697 case DW_OP_div:
698 case DW_OP_minus:
699 case DW_OP_mod:
700 case DW_OP_mul:
701 case DW_OP_or:
702 case DW_OP_plus:
703 case DW_OP_shl:
704 case DW_OP_shr:
705 case DW_OP_shra:
706 case DW_OP_xor:
707 case DW_OP_le:
708 case DW_OP_ge:
709 case DW_OP_eq:
710 case DW_OP_lt:
711 case DW_OP_gt:
712 case DW_OP_ne:
713 {
f2c7657e
UW
714 /* Binary operations. */
715 ULONGEST first, second;
4c2df51b
DJ
716
717 second = dwarf_expr_fetch (ctx, 0);
718 dwarf_expr_pop (ctx);
719
b263358a 720 first = dwarf_expr_fetch (ctx, 0);
4c2df51b
DJ
721 dwarf_expr_pop (ctx);
722
4c2df51b
DJ
723 switch (op)
724 {
725 case DW_OP_and:
f2c7657e 726 result = first & second;
4c2df51b
DJ
727 break;
728 case DW_OP_div:
f2c7657e
UW
729 if (!second)
730 error (_("Division by zero"));
731 result = sign_ext (first) / sign_ext (second);
99c87dab 732 break;
4c2df51b 733 case DW_OP_minus:
f2c7657e 734 result = first - second;
4c2df51b
DJ
735 break;
736 case DW_OP_mod:
f2c7657e
UW
737 if (!second)
738 error (_("Division by zero"));
739 result = first % second;
4c2df51b
DJ
740 break;
741 case DW_OP_mul:
f2c7657e 742 result = first * second;
4c2df51b
DJ
743 break;
744 case DW_OP_or:
f2c7657e 745 result = first | second;
4c2df51b
DJ
746 break;
747 case DW_OP_plus:
f2c7657e 748 result = first + second;
4c2df51b
DJ
749 break;
750 case DW_OP_shl:
f2c7657e 751 result = first << second;
4c2df51b
DJ
752 break;
753 case DW_OP_shr:
f2c7657e 754 result = first >> second;
99c87dab 755 break;
4c2df51b 756 case DW_OP_shra:
f2c7657e 757 result = sign_ext (first) >> second;
4c2df51b
DJ
758 break;
759 case DW_OP_xor:
f2c7657e 760 result = first ^ second;
4c2df51b
DJ
761 break;
762 case DW_OP_le:
f2c7657e 763 result = sign_ext (first) <= sign_ext (second);
4c2df51b
DJ
764 break;
765 case DW_OP_ge:
f2c7657e 766 result = sign_ext (first) >= sign_ext (second);
4c2df51b
DJ
767 break;
768 case DW_OP_eq:
f2c7657e 769 result = sign_ext (first) == sign_ext (second);
4c2df51b
DJ
770 break;
771 case DW_OP_lt:
f2c7657e 772 result = sign_ext (first) < sign_ext (second);
4c2df51b
DJ
773 break;
774 case DW_OP_gt:
f2c7657e 775 result = sign_ext (first) > sign_ext (second);
4c2df51b
DJ
776 break;
777 case DW_OP_ne:
f2c7657e 778 result = sign_ext (first) != sign_ext (second);
4c2df51b
DJ
779 break;
780 default:
781 internal_error (__FILE__, __LINE__,
e2e0b3e5 782 _("Can't be reached."));
4c2df51b 783 }
4c2df51b
DJ
784 }
785 break;
786
e7802207
TT
787 case DW_OP_call_frame_cfa:
788 result = (ctx->get_frame_cfa) (ctx->baton);
44353522 789 in_stack_memory = 1;
e7802207
TT
790 break;
791
4c2df51b 792 case DW_OP_GNU_push_tls_address:
c3228f12
EZ
793 /* Variable is at a constant offset in the thread-local
794 storage block into the objfile for the current thread and
795 the dynamic linker module containing this expression. Here
796 we return returns the offset from that base. The top of the
797 stack has the offset from the beginning of the thread
798 control block at which the variable is located. Nothing
799 should follow this operator, so the top of stack would be
800 returned. */
4c2df51b
DJ
801 result = dwarf_expr_fetch (ctx, 0);
802 dwarf_expr_pop (ctx);
803 result = (ctx->get_tls_address) (ctx->baton, result);
804 break;
805
806 case DW_OP_skip:
e17a4113 807 offset = extract_signed_integer (op_ptr, 2, byte_order);
4c2df51b
DJ
808 op_ptr += 2;
809 op_ptr += offset;
810 goto no_push;
811
812 case DW_OP_bra:
e17a4113 813 offset = extract_signed_integer (op_ptr, 2, byte_order);
4c2df51b
DJ
814 op_ptr += 2;
815 if (dwarf_expr_fetch (ctx, 0) != 0)
816 op_ptr += offset;
817 dwarf_expr_pop (ctx);
818 goto no_push;
819
820 case DW_OP_nop:
821 goto no_push;
822
87808bd6
JB
823 case DW_OP_piece:
824 {
825 ULONGEST size;
87808bd6
JB
826
827 /* Record the piece. */
828 op_ptr = read_uleb128 (op_ptr, op_end, &size);
d3b1e874 829 add_piece (ctx, 8 * size, 0);
87808bd6 830
cec03d70
TT
831 /* Pop off the address/regnum, and reset the location
832 type. */
cb826367
TT
833 if (ctx->location != DWARF_VALUE_LITERAL
834 && ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
cec03d70
TT
835 dwarf_expr_pop (ctx);
836 ctx->location = DWARF_VALUE_MEMORY;
87808bd6
JB
837 }
838 goto no_push;
839
d3b1e874
TT
840 case DW_OP_bit_piece:
841 {
842 ULONGEST size, offset;
843
844 /* Record the piece. */
845 op_ptr = read_uleb128 (op_ptr, op_end, &size);
846 op_ptr = read_uleb128 (op_ptr, op_end, &offset);
847 add_piece (ctx, size, offset);
848
849 /* Pop off the address/regnum, and reset the location
850 type. */
851 if (ctx->location != DWARF_VALUE_LITERAL
852 && ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
853 dwarf_expr_pop (ctx);
854 ctx->location = DWARF_VALUE_MEMORY;
855 }
856 goto no_push;
857
42be36b3
CT
858 case DW_OP_GNU_uninit:
859 if (op_ptr != op_end)
9c482037 860 error (_("DWARF-2 expression error: DW_OP_GNU_uninit must always "
42be36b3
CT
861 "be the very last op."));
862
863 ctx->initialized = 0;
864 goto no_push;
865
5c631832
JK
866 case DW_OP_call2:
867 result = extract_unsigned_integer (op_ptr, 2, byte_order);
868 op_ptr += 2;
869 ctx->dwarf_call (ctx, result);
870 goto no_push;
871
872 case DW_OP_call4:
873 result = extract_unsigned_integer (op_ptr, 4, byte_order);
874 op_ptr += 4;
875 ctx->dwarf_call (ctx, result);
876 goto no_push;
877
4c2df51b 878 default:
8a3fe4f8 879 error (_("Unhandled dwarf expression opcode 0x%x"), op);
4c2df51b
DJ
880 }
881
882 /* Most things push a result value. */
44353522 883 dwarf_expr_push (ctx, result, in_stack_memory);
4c2df51b
DJ
884 no_push:;
885 }
1e3a102a
JK
886
887 ctx->recursion_depth--;
888 gdb_assert (ctx->recursion_depth >= 0);
43dabe42 889#undef sign_ext
4c2df51b 890}
This page took 0.573328 seconds and 4 git commands to generate.