Add docs and arch tests to BMI.
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
CommitLineData
4c2df51b 1/* DWARF 2 location expression support for GDB.
feb13ab0 2
7b6bb8da 3 Copyright (C) 2003, 2005, 2007, 2008, 2009, 2010, 2011
4c38e0a4 4 Free Software Foundation, Inc.
feb13ab0 5
4c2df51b
DJ
6 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7
JB
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
4c2df51b 14
a9762ec7
JB
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
4c2df51b
DJ
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
22
23#include "defs.h"
24#include "ui-out.h"
25#include "value.h"
26#include "frame.h"
27#include "gdbcore.h"
28#include "target.h"
29#include "inferior.h"
a55cc764
DJ
30#include "ax.h"
31#include "ax-gdb.h"
e4adbba9 32#include "regcache.h"
c3228f12 33#include "objfiles.h"
93ad78a7 34#include "exceptions.h"
edb3359d 35#include "block.h"
4c2df51b 36
fa8f86ff 37#include "dwarf2.h"
4c2df51b
DJ
38#include "dwarf2expr.h"
39#include "dwarf2loc.h"
e7802207 40#include "dwarf2-frame.h"
4c2df51b
DJ
41
42#include "gdb_string.h"
eff4f95e 43#include "gdb_assert.h"
4c2df51b 44
9eae7c52
TT
45extern int dwarf2_always_disassemble;
46
0936ad1d
SS
47static void
48dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
0d45f56e 49 const gdb_byte **start, size_t *length);
0936ad1d 50
8cf6f0b1
TT
51static struct value *
52dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
53 const gdb_byte *data, unsigned short size,
54 struct dwarf2_per_cu_data *per_cu,
55 LONGEST byte_offset);
56
57/* A function for dealing with location lists. Given a
0d53c4c4
DJ
58 symbol baton (BATON) and a pc value (PC), find the appropriate
59 location expression, set *LOCEXPR_LENGTH, and return a pointer
60 to the beginning of the expression. Returns NULL on failure.
61
62 For now, only return the first matching location expression; there
63 can be more than one in the list. */
64
8cf6f0b1
TT
65const gdb_byte *
66dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
67 size_t *locexpr_length, CORE_ADDR pc)
0d53c4c4 68{
0d53c4c4 69 CORE_ADDR low, high;
947bb88f 70 const gdb_byte *loc_ptr, *buf_end;
852483bc 71 int length;
ae0d2f24 72 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
f7fd4728 73 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e17a4113 74 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ae0d2f24 75 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
d4a087c7 76 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
0d53c4c4 77 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
8edfa926 78 /* Adjust base_address for relocatable objects. */
9aa1f1e3 79 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
8edfa926 80 CORE_ADDR base_address = baton->base_address + base_offset;
0d53c4c4
DJ
81
82 loc_ptr = baton->data;
83 buf_end = baton->data + baton->size;
84
85 while (1)
86 {
b5758fe4 87 if (buf_end - loc_ptr < 2 * addr_size)
3e43a32a
MS
88 error (_("dwarf2_find_location_expression: "
89 "Corrupted DWARF expression."));
0d53c4c4 90
d4a087c7
UW
91 if (signed_addr_p)
92 low = extract_signed_integer (loc_ptr, addr_size, byte_order);
93 else
94 low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
95 loc_ptr += addr_size;
96
97 if (signed_addr_p)
98 high = extract_signed_integer (loc_ptr, addr_size, byte_order);
99 else
100 high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
b5758fe4 101 loc_ptr += addr_size;
0d53c4c4
DJ
102
103 /* A base-address-selection entry. */
d4a087c7 104 if ((low & base_mask) == base_mask)
0d53c4c4 105 {
d4a087c7 106 base_address = high + base_offset;
0d53c4c4
DJ
107 continue;
108 }
109
b5758fe4
UW
110 /* An end-of-list entry. */
111 if (low == 0 && high == 0)
112 return NULL;
113
0d53c4c4
DJ
114 /* Otherwise, a location expression entry. */
115 low += base_address;
116 high += base_address;
117
e17a4113 118 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
0d53c4c4
DJ
119 loc_ptr += 2;
120
121 if (pc >= low && pc < high)
122 {
123 *locexpr_length = length;
124 return loc_ptr;
125 }
126
127 loc_ptr += length;
128 }
129}
130
4c2df51b
DJ
131/* This is the baton used when performing dwarf2 expression
132 evaluation. */
133struct dwarf_expr_baton
134{
135 struct frame_info *frame;
17ea53c3 136 struct dwarf2_per_cu_data *per_cu;
4c2df51b
DJ
137};
138
139/* Helper functions for dwarf2_evaluate_loc_desc. */
140
4bc9efe1 141/* Using the frame specified in BATON, return the value of register
0b2b0195 142 REGNUM, treated as a pointer. */
4c2df51b 143static CORE_ADDR
61fbb938 144dwarf_expr_read_reg (void *baton, int dwarf_regnum)
4c2df51b 145{
4c2df51b 146 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
5e2b427d 147 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
e5192dd8 148 CORE_ADDR result;
0b2b0195 149 int regnum;
e4adbba9 150
5e2b427d
UW
151 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
152 result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr,
0b2b0195 153 regnum, debaton->frame);
4c2df51b
DJ
154 return result;
155}
156
157/* Read memory at ADDR (length LEN) into BUF. */
158
159static void
852483bc 160dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
4c2df51b
DJ
161{
162 read_memory (addr, buf, len);
163}
164
165/* Using the frame specified in BATON, find the location expression
166 describing the frame base. Return a pointer to it in START and
167 its length in LENGTH. */
168static void
0d45f56e 169dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
4c2df51b 170{
da62e633
AC
171 /* FIXME: cagney/2003-03-26: This code should be using
172 get_frame_base_address(), and then implement a dwarf2 specific
173 this_base method. */
4c2df51b 174 struct symbol *framefunc;
4c2df51b 175 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
0d53c4c4 176
edb3359d
DJ
177 /* Use block_linkage_function, which returns a real (not inlined)
178 function, instead of get_frame_function, which may return an
179 inlined function. */
180 framefunc = block_linkage_function (get_frame_block (debaton->frame, NULL));
0d53c4c4 181
eff4f95e
JG
182 /* If we found a frame-relative symbol then it was certainly within
183 some function associated with a frame. If we can't find the frame,
184 something has gone wrong. */
185 gdb_assert (framefunc != NULL);
186
0936ad1d
SS
187 dwarf_expr_frame_base_1 (framefunc,
188 get_frame_address_in_block (debaton->frame),
189 start, length);
190}
191
192static void
193dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
0d45f56e 194 const gdb_byte **start, size_t *length)
0936ad1d 195{
edb3359d
DJ
196 if (SYMBOL_LOCATION_BATON (framefunc) == NULL)
197 *start = NULL;
198 else if (SYMBOL_COMPUTED_OPS (framefunc) == &dwarf2_loclist_funcs)
0d53c4c4
DJ
199 {
200 struct dwarf2_loclist_baton *symbaton;
22c6caba 201
0d53c4c4 202 symbaton = SYMBOL_LOCATION_BATON (framefunc);
8cf6f0b1 203 *start = dwarf2_find_location_expression (symbaton, length, pc);
0d53c4c4
DJ
204 }
205 else
206 {
207 struct dwarf2_locexpr_baton *symbaton;
9a619af0 208
0d53c4c4 209 symbaton = SYMBOL_LOCATION_BATON (framefunc);
ebd3bcc1
JK
210 if (symbaton != NULL)
211 {
212 *length = symbaton->size;
213 *start = symbaton->data;
214 }
215 else
216 *start = NULL;
0d53c4c4
DJ
217 }
218
219 if (*start == NULL)
8a3fe4f8 220 error (_("Could not find the frame base for \"%s\"."),
0d53c4c4 221 SYMBOL_NATURAL_NAME (framefunc));
4c2df51b
DJ
222}
223
e7802207
TT
224/* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
225 the frame in BATON. */
226
227static CORE_ADDR
228dwarf_expr_frame_cfa (void *baton)
229{
230 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
9a619af0 231
e7802207
TT
232 return dwarf2_frame_cfa (debaton->frame);
233}
234
8cf6f0b1
TT
235/* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
236 the frame in BATON. */
237
238static CORE_ADDR
239dwarf_expr_frame_pc (void *baton)
240{
241 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
242
243 return get_frame_address_in_block (debaton->frame);
244}
245
4c2df51b
DJ
246/* Using the objfile specified in BATON, find the address for the
247 current thread's thread-local storage with offset OFFSET. */
248static CORE_ADDR
249dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
250{
251 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
17ea53c3 252 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
4c2df51b 253
17ea53c3 254 return target_translate_tls_address (objfile, offset);
4c2df51b
DJ
255}
256
3e43a32a
MS
257/* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
258 current CU (as is PER_CU). State of the CTX is not affected by the
259 call and return. */
5c631832
JK
260
261static void
262per_cu_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset,
8cf6f0b1
TT
263 struct dwarf2_per_cu_data *per_cu,
264 CORE_ADDR (*get_frame_pc) (void *baton),
265 void *baton)
5c631832
JK
266{
267 struct dwarf2_locexpr_baton block;
268
8cf6f0b1
TT
269 block = dwarf2_fetch_die_location_block (die_offset, per_cu,
270 get_frame_pc, baton);
5c631832
JK
271
272 /* DW_OP_call_ref is currently not supported. */
273 gdb_assert (block.per_cu == per_cu);
274
275 dwarf_expr_eval (ctx, block.data, block.size);
276}
277
278/* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
279
280static void
281dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
282{
283 struct dwarf_expr_baton *debaton = ctx->baton;
284
8cf6f0b1
TT
285 return per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
286 ctx->get_frame_pc, ctx->baton);
5c631832
JK
287}
288
052b9502
NF
289struct piece_closure
290{
88bfdde4
TT
291 /* Reference count. */
292 int refc;
293
8cf6f0b1
TT
294 /* The CU from which this closure's expression came. */
295 struct dwarf2_per_cu_data *per_cu;
296
052b9502
NF
297 /* The number of pieces used to describe this variable. */
298 int n_pieces;
299
6063c216
UW
300 /* The target address size, used only for DWARF_VALUE_STACK. */
301 int addr_size;
cec03d70 302
052b9502
NF
303 /* The pieces themselves. */
304 struct dwarf_expr_piece *pieces;
305};
306
307/* Allocate a closure for a value formed from separately-described
308 PIECES. */
309
310static struct piece_closure *
8cf6f0b1
TT
311allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
312 int n_pieces, struct dwarf_expr_piece *pieces,
6063c216 313 int addr_size)
052b9502
NF
314{
315 struct piece_closure *c = XZALLOC (struct piece_closure);
316
88bfdde4 317 c->refc = 1;
8cf6f0b1 318 c->per_cu = per_cu;
052b9502 319 c->n_pieces = n_pieces;
6063c216 320 c->addr_size = addr_size;
052b9502
NF
321 c->pieces = XCALLOC (n_pieces, struct dwarf_expr_piece);
322
323 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
324
325 return c;
326}
327
d3b1e874
TT
328/* The lowest-level function to extract bits from a byte buffer.
329 SOURCE is the buffer. It is updated if we read to the end of a
330 byte.
331 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
332 updated to reflect the number of bits actually read.
333 NBITS is the number of bits we want to read. It is updated to
334 reflect the number of bits actually read. This function may read
335 fewer bits.
336 BITS_BIG_ENDIAN is taken directly from gdbarch.
337 This function returns the extracted bits. */
338
339static unsigned int
340extract_bits_primitive (const gdb_byte **source,
341 unsigned int *source_offset_bits,
342 int *nbits, int bits_big_endian)
343{
344 unsigned int avail, mask, datum;
345
346 gdb_assert (*source_offset_bits < 8);
347
348 avail = 8 - *source_offset_bits;
349 if (avail > *nbits)
350 avail = *nbits;
351
352 mask = (1 << avail) - 1;
353 datum = **source;
354 if (bits_big_endian)
355 datum >>= 8 - (*source_offset_bits + *nbits);
356 else
357 datum >>= *source_offset_bits;
358 datum &= mask;
359
360 *nbits -= avail;
361 *source_offset_bits += avail;
362 if (*source_offset_bits >= 8)
363 {
364 *source_offset_bits -= 8;
365 ++*source;
366 }
367
368 return datum;
369}
370
371/* Extract some bits from a source buffer and move forward in the
372 buffer.
373
374 SOURCE is the source buffer. It is updated as bytes are read.
375 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
376 bits are read.
377 NBITS is the number of bits to read.
378 BITS_BIG_ENDIAN is taken directly from gdbarch.
379
380 This function returns the bits that were read. */
381
382static unsigned int
383extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
384 int nbits, int bits_big_endian)
385{
386 unsigned int datum;
387
388 gdb_assert (nbits > 0 && nbits <= 8);
389
390 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
391 bits_big_endian);
392 if (nbits > 0)
393 {
394 unsigned int more;
395
396 more = extract_bits_primitive (source, source_offset_bits, &nbits,
397 bits_big_endian);
398 if (bits_big_endian)
399 datum <<= nbits;
400 else
401 more <<= nbits;
402 datum |= more;
403 }
404
405 return datum;
406}
407
408/* Write some bits into a buffer and move forward in the buffer.
409
410 DATUM is the bits to write. The low-order bits of DATUM are used.
411 DEST is the destination buffer. It is updated as bytes are
412 written.
413 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
414 done.
415 NBITS is the number of valid bits in DATUM.
416 BITS_BIG_ENDIAN is taken directly from gdbarch. */
417
418static void
419insert_bits (unsigned int datum,
420 gdb_byte *dest, unsigned int dest_offset_bits,
421 int nbits, int bits_big_endian)
422{
423 unsigned int mask;
424
425 gdb_assert (dest_offset_bits >= 0 && dest_offset_bits + nbits <= 8);
426
427 mask = (1 << nbits) - 1;
428 if (bits_big_endian)
429 {
430 datum <<= 8 - (dest_offset_bits + nbits);
431 mask <<= 8 - (dest_offset_bits + nbits);
432 }
433 else
434 {
435 datum <<= dest_offset_bits;
436 mask <<= dest_offset_bits;
437 }
438
439 gdb_assert ((datum & ~mask) == 0);
440
441 *dest = (*dest & ~mask) | datum;
442}
443
444/* Copy bits from a source to a destination.
445
446 DEST is where the bits should be written.
447 DEST_OFFSET_BITS is the bit offset into DEST.
448 SOURCE is the source of bits.
449 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
450 BIT_COUNT is the number of bits to copy.
451 BITS_BIG_ENDIAN is taken directly from gdbarch. */
452
453static void
454copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
455 const gdb_byte *source, unsigned int source_offset_bits,
456 unsigned int bit_count,
457 int bits_big_endian)
458{
459 unsigned int dest_avail;
460 int datum;
461
462 /* Reduce everything to byte-size pieces. */
463 dest += dest_offset_bits / 8;
464 dest_offset_bits %= 8;
465 source += source_offset_bits / 8;
466 source_offset_bits %= 8;
467
468 dest_avail = 8 - dest_offset_bits % 8;
469
470 /* See if we can fill the first destination byte. */
471 if (dest_avail < bit_count)
472 {
473 datum = extract_bits (&source, &source_offset_bits, dest_avail,
474 bits_big_endian);
475 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
476 ++dest;
477 dest_offset_bits = 0;
478 bit_count -= dest_avail;
479 }
480
481 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
482 than 8 bits remaining. */
483 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
484 for (; bit_count >= 8; bit_count -= 8)
485 {
486 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
487 *dest++ = (gdb_byte) datum;
488 }
489
490 /* Finally, we may have a few leftover bits. */
491 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
492 if (bit_count > 0)
493 {
494 datum = extract_bits (&source, &source_offset_bits, bit_count,
495 bits_big_endian);
496 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
497 }
498}
499
052b9502
NF
500static void
501read_pieced_value (struct value *v)
502{
503 int i;
504 long offset = 0;
d3b1e874 505 ULONGEST bits_to_skip;
052b9502 506 gdb_byte *contents;
3e43a32a
MS
507 struct piece_closure *c
508 = (struct piece_closure *) value_computed_closure (v);
052b9502 509 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
afd74c5f 510 size_t type_len;
d3b1e874
TT
511 size_t buffer_size = 0;
512 char *buffer = NULL;
513 struct cleanup *cleanup;
514 int bits_big_endian
515 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
afd74c5f
TT
516
517 if (value_type (v) != value_enclosing_type (v))
518 internal_error (__FILE__, __LINE__,
519 _("Should not be able to create a lazy value with "
520 "an enclosing type"));
052b9502 521
d3b1e874
TT
522 cleanup = make_cleanup (free_current_contents, &buffer);
523
052b9502 524 contents = value_contents_raw (v);
d3b1e874 525 bits_to_skip = 8 * value_offset (v);
0e03807e
TT
526 if (value_bitsize (v))
527 {
528 bits_to_skip += value_bitpos (v);
529 type_len = value_bitsize (v);
530 }
531 else
532 type_len = 8 * TYPE_LENGTH (value_type (v));
d3b1e874 533
afd74c5f 534 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
535 {
536 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
537 size_t this_size, this_size_bits;
538 long dest_offset_bits, source_offset_bits, source_offset;
0d45f56e 539 const gdb_byte *intermediate_buffer;
d3b1e874
TT
540
541 /* Compute size, source, and destination offsets for copying, in
542 bits. */
543 this_size_bits = p->size;
544 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 545 {
d3b1e874 546 bits_to_skip -= this_size_bits;
afd74c5f
TT
547 continue;
548 }
d3b1e874
TT
549 if (this_size_bits > type_len - offset)
550 this_size_bits = type_len - offset;
551 if (bits_to_skip > 0)
afd74c5f 552 {
d3b1e874
TT
553 dest_offset_bits = 0;
554 source_offset_bits = bits_to_skip;
555 this_size_bits -= bits_to_skip;
556 bits_to_skip = 0;
afd74c5f
TT
557 }
558 else
559 {
d3b1e874
TT
560 dest_offset_bits = offset;
561 source_offset_bits = 0;
afd74c5f 562 }
9a619af0 563
d3b1e874
TT
564 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
565 source_offset = source_offset_bits / 8;
566 if (buffer_size < this_size)
567 {
568 buffer_size = this_size;
569 buffer = xrealloc (buffer, buffer_size);
570 }
571 intermediate_buffer = buffer;
572
573 /* Copy from the source to DEST_BUFFER. */
cec03d70 574 switch (p->location)
052b9502 575 {
cec03d70
TT
576 case DWARF_VALUE_REGISTER:
577 {
578 struct gdbarch *arch = get_frame_arch (frame);
f2c7657e 579 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.value);
afd74c5f 580 int reg_offset = source_offset;
dcbf108f
UW
581
582 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
afd74c5f 583 && this_size < register_size (arch, gdb_regnum))
d3b1e874
TT
584 {
585 /* Big-endian, and we want less than full size. */
586 reg_offset = register_size (arch, gdb_regnum) - this_size;
587 /* We want the lower-order THIS_SIZE_BITS of the bytes
588 we extract from the register. */
589 source_offset_bits += 8 * this_size - this_size_bits;
590 }
dcbf108f 591
63b4f126
MGD
592 if (gdb_regnum != -1)
593 {
594 get_frame_register_bytes (frame, gdb_regnum, reg_offset,
d3b1e874 595 this_size, buffer);
63b4f126
MGD
596 }
597 else
598 {
599 error (_("Unable to access DWARF register number %s"),
f2c7657e 600 paddress (arch, p->v.value));
63b4f126 601 }
cec03d70
TT
602 }
603 break;
604
605 case DWARF_VALUE_MEMORY:
f2c7657e
UW
606 if (p->v.mem.in_stack_memory)
607 read_stack (p->v.mem.addr + source_offset, buffer, this_size);
44353522 608 else
f2c7657e 609 read_memory (p->v.mem.addr + source_offset, buffer, this_size);
cec03d70
TT
610 break;
611
612 case DWARF_VALUE_STACK:
613 {
6063c216 614 struct gdbarch *gdbarch = get_type_arch (value_type (v));
afd74c5f 615 size_t n = this_size;
9a619af0 616
afd74c5f
TT
617 if (n > c->addr_size - source_offset)
618 n = (c->addr_size >= source_offset
619 ? c->addr_size - source_offset
620 : 0);
621 if (n == 0)
622 {
623 /* Nothing. */
624 }
625 else if (source_offset == 0)
d3b1e874 626 store_unsigned_integer (buffer, n,
afd74c5f 627 gdbarch_byte_order (gdbarch),
f2c7657e 628 p->v.value);
afd74c5f
TT
629 else
630 {
631 gdb_byte bytes[sizeof (ULONGEST)];
632
633 store_unsigned_integer (bytes, n + source_offset,
634 gdbarch_byte_order (gdbarch),
f2c7657e 635 p->v.value);
d3b1e874 636 memcpy (buffer, bytes + source_offset, n);
afd74c5f 637 }
cec03d70
TT
638 }
639 break;
640
641 case DWARF_VALUE_LITERAL:
642 {
afd74c5f
TT
643 size_t n = this_size;
644
645 if (n > p->v.literal.length - source_offset)
646 n = (p->v.literal.length >= source_offset
647 ? p->v.literal.length - source_offset
648 : 0);
649 if (n != 0)
d3b1e874 650 intermediate_buffer = p->v.literal.data + source_offset;
cec03d70
TT
651 }
652 break;
653
8cf6f0b1
TT
654 /* These bits show up as zeros -- but do not cause the value
655 to be considered optimized-out. */
656 case DWARF_VALUE_IMPLICIT_POINTER:
657 break;
658
cb826367 659 case DWARF_VALUE_OPTIMIZED_OUT:
0e03807e 660 set_value_optimized_out (v, 1);
cb826367
TT
661 break;
662
cec03d70
TT
663 default:
664 internal_error (__FILE__, __LINE__, _("invalid location type"));
052b9502 665 }
d3b1e874 666
8cf6f0b1
TT
667 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
668 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
d3b1e874
TT
669 copy_bitwise (contents, dest_offset_bits,
670 intermediate_buffer, source_offset_bits % 8,
671 this_size_bits, bits_big_endian);
672
673 offset += this_size_bits;
052b9502 674 }
d3b1e874
TT
675
676 do_cleanups (cleanup);
052b9502
NF
677}
678
679static void
680write_pieced_value (struct value *to, struct value *from)
681{
682 int i;
683 long offset = 0;
d3b1e874 684 ULONGEST bits_to_skip;
afd74c5f 685 const gdb_byte *contents;
3e43a32a
MS
686 struct piece_closure *c
687 = (struct piece_closure *) value_computed_closure (to);
052b9502 688 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
afd74c5f 689 size_t type_len;
d3b1e874
TT
690 size_t buffer_size = 0;
691 char *buffer = NULL;
692 struct cleanup *cleanup;
693 int bits_big_endian
694 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
052b9502
NF
695
696 if (frame == NULL)
697 {
698 set_value_optimized_out (to, 1);
699 return;
700 }
701
d3b1e874
TT
702 cleanup = make_cleanup (free_current_contents, &buffer);
703
afd74c5f 704 contents = value_contents (from);
d3b1e874 705 bits_to_skip = 8 * value_offset (to);
0e03807e
TT
706 if (value_bitsize (to))
707 {
708 bits_to_skip += value_bitpos (to);
709 type_len = value_bitsize (to);
710 }
711 else
712 type_len = 8 * TYPE_LENGTH (value_type (to));
713
afd74c5f 714 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
715 {
716 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
717 size_t this_size_bits, this_size;
718 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
719 int need_bitwise;
720 const gdb_byte *source_buffer;
afd74c5f 721
d3b1e874
TT
722 this_size_bits = p->size;
723 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 724 {
d3b1e874 725 bits_to_skip -= this_size_bits;
afd74c5f
TT
726 continue;
727 }
d3b1e874
TT
728 if (this_size_bits > type_len - offset)
729 this_size_bits = type_len - offset;
730 if (bits_to_skip > 0)
afd74c5f 731 {
d3b1e874
TT
732 dest_offset_bits = bits_to_skip;
733 source_offset_bits = 0;
734 this_size_bits -= bits_to_skip;
735 bits_to_skip = 0;
afd74c5f
TT
736 }
737 else
738 {
d3b1e874
TT
739 dest_offset_bits = 0;
740 source_offset_bits = offset;
741 }
742
743 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
744 source_offset = source_offset_bits / 8;
745 dest_offset = dest_offset_bits / 8;
746 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
747 {
748 source_buffer = contents + source_offset;
749 need_bitwise = 0;
750 }
751 else
752 {
753 if (buffer_size < this_size)
754 {
755 buffer_size = this_size;
756 buffer = xrealloc (buffer, buffer_size);
757 }
758 source_buffer = buffer;
759 need_bitwise = 1;
afd74c5f 760 }
9a619af0 761
cec03d70 762 switch (p->location)
052b9502 763 {
cec03d70
TT
764 case DWARF_VALUE_REGISTER:
765 {
766 struct gdbarch *arch = get_frame_arch (frame);
f2c7657e 767 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.value);
afd74c5f 768 int reg_offset = dest_offset;
dcbf108f
UW
769
770 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
afd74c5f 771 && this_size <= register_size (arch, gdb_regnum))
dcbf108f 772 /* Big-endian, and we want less than full size. */
afd74c5f 773 reg_offset = register_size (arch, gdb_regnum) - this_size;
dcbf108f 774
63b4f126
MGD
775 if (gdb_regnum != -1)
776 {
d3b1e874
TT
777 if (need_bitwise)
778 {
779 get_frame_register_bytes (frame, gdb_regnum, reg_offset,
780 this_size, buffer);
781 copy_bitwise (buffer, dest_offset_bits,
782 contents, source_offset_bits,
783 this_size_bits,
784 bits_big_endian);
785 }
786
63b4f126 787 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
d3b1e874 788 this_size, source_buffer);
63b4f126
MGD
789 }
790 else
791 {
792 error (_("Unable to write to DWARF register number %s"),
f2c7657e 793 paddress (arch, p->v.value));
63b4f126 794 }
cec03d70
TT
795 }
796 break;
797 case DWARF_VALUE_MEMORY:
d3b1e874
TT
798 if (need_bitwise)
799 {
800 /* Only the first and last bytes can possibly have any
801 bits reused. */
f2c7657e
UW
802 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
803 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
d3b1e874
TT
804 buffer + this_size - 1, 1);
805 copy_bitwise (buffer, dest_offset_bits,
806 contents, source_offset_bits,
807 this_size_bits,
808 bits_big_endian);
809 }
810
f2c7657e 811 write_memory (p->v.mem.addr + dest_offset,
d3b1e874 812 source_buffer, this_size);
cec03d70
TT
813 break;
814 default:
815 set_value_optimized_out (to, 1);
0e03807e 816 break;
052b9502 817 }
d3b1e874 818 offset += this_size_bits;
052b9502 819 }
d3b1e874 820
d3b1e874 821 do_cleanups (cleanup);
052b9502
NF
822}
823
8cf6f0b1
TT
824/* A helper function that checks bit validity in a pieced value.
825 CHECK_FOR indicates the kind of validity checking.
826 DWARF_VALUE_MEMORY means to check whether any bit is valid.
827 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
828 optimized out.
829 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
830 implicit pointer. */
831
0e03807e
TT
832static int
833check_pieced_value_bits (const struct value *value, int bit_offset,
8cf6f0b1
TT
834 int bit_length,
835 enum dwarf_value_location check_for)
0e03807e
TT
836{
837 struct piece_closure *c
838 = (struct piece_closure *) value_computed_closure (value);
839 int i;
8cf6f0b1
TT
840 int validity = (check_for == DWARF_VALUE_MEMORY
841 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
0e03807e
TT
842
843 bit_offset += 8 * value_offset (value);
844 if (value_bitsize (value))
845 bit_offset += value_bitpos (value);
846
847 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
848 {
849 struct dwarf_expr_piece *p = &c->pieces[i];
850 size_t this_size_bits = p->size;
851
852 if (bit_offset > 0)
853 {
854 if (bit_offset >= this_size_bits)
855 {
856 bit_offset -= this_size_bits;
857 continue;
858 }
859
860 bit_length -= this_size_bits - bit_offset;
861 bit_offset = 0;
862 }
863 else
864 bit_length -= this_size_bits;
865
8cf6f0b1
TT
866 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
867 {
868 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
869 return 0;
870 }
871 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
872 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
0e03807e
TT
873 {
874 if (validity)
875 return 0;
876 }
877 else
878 {
879 if (!validity)
880 return 1;
881 }
882 }
883
884 return validity;
885}
886
887static int
888check_pieced_value_validity (const struct value *value, int bit_offset,
889 int bit_length)
890{
8cf6f0b1
TT
891 return check_pieced_value_bits (value, bit_offset, bit_length,
892 DWARF_VALUE_MEMORY);
0e03807e
TT
893}
894
895static int
896check_pieced_value_invalid (const struct value *value)
897{
898 return check_pieced_value_bits (value, 0,
8cf6f0b1
TT
899 8 * TYPE_LENGTH (value_type (value)),
900 DWARF_VALUE_OPTIMIZED_OUT);
901}
902
903/* An implementation of an lval_funcs method to see whether a value is
904 a synthetic pointer. */
905
906static int
907check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
908 int bit_length)
909{
910 return check_pieced_value_bits (value, bit_offset, bit_length,
911 DWARF_VALUE_IMPLICIT_POINTER);
912}
913
914/* A wrapper function for get_frame_address_in_block. */
915
916static CORE_ADDR
917get_frame_address_in_block_wrapper (void *baton)
918{
919 return get_frame_address_in_block (baton);
920}
921
922/* An implementation of an lval_funcs method to indirect through a
923 pointer. This handles the synthetic pointer case when needed. */
924
925static struct value *
926indirect_pieced_value (struct value *value)
927{
928 struct piece_closure *c
929 = (struct piece_closure *) value_computed_closure (value);
930 struct type *type;
931 struct frame_info *frame;
932 struct dwarf2_locexpr_baton baton;
933 int i, bit_offset, bit_length;
934 struct dwarf_expr_piece *piece = NULL;
935 struct value *result;
936 LONGEST byte_offset;
937
938 type = value_type (value);
939 if (TYPE_CODE (type) != TYPE_CODE_PTR)
940 return NULL;
941
942 bit_length = 8 * TYPE_LENGTH (type);
943 bit_offset = 8 * value_offset (value);
944 if (value_bitsize (value))
945 bit_offset += value_bitpos (value);
946
947 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
948 {
949 struct dwarf_expr_piece *p = &c->pieces[i];
950 size_t this_size_bits = p->size;
951
952 if (bit_offset > 0)
953 {
954 if (bit_offset >= this_size_bits)
955 {
956 bit_offset -= this_size_bits;
957 continue;
958 }
959
960 bit_length -= this_size_bits - bit_offset;
961 bit_offset = 0;
962 }
963 else
964 bit_length -= this_size_bits;
965
966 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
967 return NULL;
968
969 if (bit_length != 0)
970 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
971
972 piece = p;
973 break;
974 }
975
976 frame = get_selected_frame (_("No frame selected."));
977 byte_offset = value_as_address (value);
978
979 baton = dwarf2_fetch_die_location_block (piece->v.ptr.die, c->per_cu,
980 get_frame_address_in_block_wrapper,
981 frame);
982
983 result = dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
984 baton.data, baton.size, baton.per_cu,
985 byte_offset);
986
987 return result;
0e03807e
TT
988}
989
052b9502 990static void *
0e03807e 991copy_pieced_value_closure (const struct value *v)
052b9502 992{
3e43a32a
MS
993 struct piece_closure *c
994 = (struct piece_closure *) value_computed_closure (v);
052b9502 995
88bfdde4
TT
996 ++c->refc;
997 return c;
052b9502
NF
998}
999
1000static void
1001free_pieced_value_closure (struct value *v)
1002{
3e43a32a
MS
1003 struct piece_closure *c
1004 = (struct piece_closure *) value_computed_closure (v);
052b9502 1005
88bfdde4
TT
1006 --c->refc;
1007 if (c->refc == 0)
1008 {
1009 xfree (c->pieces);
1010 xfree (c);
1011 }
052b9502
NF
1012}
1013
1014/* Functions for accessing a variable described by DW_OP_piece. */
1015static struct lval_funcs pieced_value_funcs = {
1016 read_pieced_value,
1017 write_pieced_value,
0e03807e
TT
1018 check_pieced_value_validity,
1019 check_pieced_value_invalid,
8cf6f0b1
TT
1020 indirect_pieced_value,
1021 check_pieced_synthetic_pointer,
052b9502
NF
1022 copy_pieced_value_closure,
1023 free_pieced_value_closure
1024};
1025
8cf6f0b1
TT
1026/* Helper function which throws an error if a synthetic pointer is
1027 invalid. */
1028
1029static void
1030invalid_synthetic_pointer (void)
1031{
3e43a32a
MS
1032 error (_("access outside bounds of object "
1033 "referenced via synthetic pointer"));
8cf6f0b1
TT
1034}
1035
4c2df51b 1036/* Evaluate a location description, starting at DATA and with length
8cf6f0b1
TT
1037 SIZE, to find the current location of variable of TYPE in the
1038 context of FRAME. BYTE_OFFSET is applied after the contents are
1039 computed. */
a2d33775 1040
8cf6f0b1
TT
1041static struct value *
1042dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
1043 const gdb_byte *data, unsigned short size,
1044 struct dwarf2_per_cu_data *per_cu,
1045 LONGEST byte_offset)
4c2df51b 1046{
4c2df51b
DJ
1047 struct value *retval;
1048 struct dwarf_expr_baton baton;
1049 struct dwarf_expr_context *ctx;
4a227398 1050 struct cleanup *old_chain;
ac56253d 1051 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 1052
8cf6f0b1
TT
1053 if (byte_offset < 0)
1054 invalid_synthetic_pointer ();
1055
0d53c4c4
DJ
1056 if (size == 0)
1057 {
a2d33775 1058 retval = allocate_value (type);
0d53c4c4 1059 VALUE_LVAL (retval) = not_lval;
feb13ab0 1060 set_value_optimized_out (retval, 1);
10fb19b6 1061 return retval;
0d53c4c4
DJ
1062 }
1063
4c2df51b 1064 baton.frame = frame;
17ea53c3 1065 baton.per_cu = per_cu;
4c2df51b
DJ
1066
1067 ctx = new_dwarf_expr_context ();
4a227398
TT
1068 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
1069
ac56253d 1070 ctx->gdbarch = get_objfile_arch (objfile);
ae0d2f24 1071 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
9aa1f1e3 1072 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b
DJ
1073 ctx->baton = &baton;
1074 ctx->read_reg = dwarf_expr_read_reg;
1075 ctx->read_mem = dwarf_expr_read_mem;
1076 ctx->get_frame_base = dwarf_expr_frame_base;
e7802207 1077 ctx->get_frame_cfa = dwarf_expr_frame_cfa;
8cf6f0b1 1078 ctx->get_frame_pc = dwarf_expr_frame_pc;
4c2df51b 1079 ctx->get_tls_address = dwarf_expr_tls_address;
5c631832 1080 ctx->dwarf_call = dwarf_expr_dwarf_call;
4c2df51b
DJ
1081
1082 dwarf_expr_eval (ctx, data, size);
87808bd6
JB
1083 if (ctx->num_pieces > 0)
1084 {
052b9502
NF
1085 struct piece_closure *c;
1086 struct frame_id frame_id = get_frame_id (frame);
8cf6f0b1
TT
1087 ULONGEST bit_size = 0;
1088 int i;
052b9502 1089
8cf6f0b1
TT
1090 for (i = 0; i < ctx->num_pieces; ++i)
1091 bit_size += ctx->pieces[i].size;
1092 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
1093 invalid_synthetic_pointer ();
1094
1095 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
6063c216 1096 ctx->addr_size);
a2d33775 1097 retval = allocate_computed_value (type, &pieced_value_funcs, c);
052b9502 1098 VALUE_FRAME_ID (retval) = frame_id;
8cf6f0b1 1099 set_value_offset (retval, byte_offset);
87808bd6 1100 }
4c2df51b
DJ
1101 else
1102 {
cec03d70
TT
1103 switch (ctx->location)
1104 {
1105 case DWARF_VALUE_REGISTER:
1106 {
1107 struct gdbarch *arch = get_frame_arch (frame);
f2c7657e 1108 ULONGEST dwarf_regnum = dwarf_expr_fetch (ctx, 0);
cec03d70 1109 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
9a619af0 1110
8cf6f0b1
TT
1111 if (byte_offset != 0)
1112 error (_("cannot use offset on synthetic pointer to register"));
63b4f126 1113 if (gdb_regnum != -1)
a2d33775 1114 retval = value_from_register (type, gdb_regnum, frame);
63b4f126 1115 else
a2d33775
JK
1116 error (_("Unable to access DWARF register number %s"),
1117 paddress (arch, dwarf_regnum));
cec03d70
TT
1118 }
1119 break;
1120
1121 case DWARF_VALUE_MEMORY:
1122 {
f2c7657e 1123 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
44353522 1124 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
cec03d70 1125
a2d33775 1126 retval = allocate_value (type);
cec03d70
TT
1127 VALUE_LVAL (retval) = lval_memory;
1128 set_value_lazy (retval, 1);
44353522
DE
1129 if (in_stack_memory)
1130 set_value_stack (retval, 1);
8cf6f0b1 1131 set_value_address (retval, address + byte_offset);
cec03d70
TT
1132 }
1133 break;
1134
1135 case DWARF_VALUE_STACK:
1136 {
f2c7657e 1137 ULONGEST value = dwarf_expr_fetch (ctx, 0);
8cf6f0b1 1138 bfd_byte *contents, *tem;
cec03d70
TT
1139 size_t n = ctx->addr_size;
1140
8cf6f0b1
TT
1141 if (byte_offset + TYPE_LENGTH (type) > n)
1142 invalid_synthetic_pointer ();
1143
1144 tem = alloca (n);
1145 store_unsigned_integer (tem, n,
1146 gdbarch_byte_order (ctx->gdbarch),
1147 value);
1148
1149 tem += byte_offset;
1150 n -= byte_offset;
1151
a2d33775 1152 retval = allocate_value (type);
cec03d70 1153 contents = value_contents_raw (retval);
a2d33775
JK
1154 if (n > TYPE_LENGTH (type))
1155 n = TYPE_LENGTH (type);
8cf6f0b1 1156 memcpy (contents, tem, n);
cec03d70
TT
1157 }
1158 break;
1159
1160 case DWARF_VALUE_LITERAL:
1161 {
1162 bfd_byte *contents;
8cf6f0b1 1163 const bfd_byte *data;
cec03d70
TT
1164 size_t n = ctx->len;
1165
8cf6f0b1
TT
1166 if (byte_offset + TYPE_LENGTH (type) > n)
1167 invalid_synthetic_pointer ();
1168
a2d33775 1169 retval = allocate_value (type);
cec03d70 1170 contents = value_contents_raw (retval);
8cf6f0b1
TT
1171
1172 data = ctx->data + byte_offset;
1173 n -= byte_offset;
1174
a2d33775
JK
1175 if (n > TYPE_LENGTH (type))
1176 n = TYPE_LENGTH (type);
8cf6f0b1 1177 memcpy (contents, data, n);
cec03d70
TT
1178 }
1179 break;
1180
8cf6f0b1
TT
1181 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
1182 operation by execute_stack_op. */
1183 case DWARF_VALUE_IMPLICIT_POINTER:
cb826367
TT
1184 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
1185 it can only be encountered when making a piece. */
1186 case DWARF_VALUE_OPTIMIZED_OUT:
cec03d70
TT
1187 default:
1188 internal_error (__FILE__, __LINE__, _("invalid location type"));
1189 }
4c2df51b
DJ
1190 }
1191
42be36b3
CT
1192 set_value_initialized (retval, ctx->initialized);
1193
4a227398 1194 do_cleanups (old_chain);
4c2df51b
DJ
1195
1196 return retval;
1197}
8cf6f0b1
TT
1198
1199/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
1200 passes 0 as the byte_offset. */
1201
1202struct value *
1203dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
1204 const gdb_byte *data, unsigned short size,
1205 struct dwarf2_per_cu_data *per_cu)
1206{
1207 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
1208}
1209
4c2df51b
DJ
1210\f
1211/* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
1212
1213struct needs_frame_baton
1214{
1215 int needs_frame;
17ea53c3 1216 struct dwarf2_per_cu_data *per_cu;
4c2df51b
DJ
1217};
1218
1219/* Reads from registers do require a frame. */
1220static CORE_ADDR
61fbb938 1221needs_frame_read_reg (void *baton, int regnum)
4c2df51b
DJ
1222{
1223 struct needs_frame_baton *nf_baton = baton;
9a619af0 1224
4c2df51b
DJ
1225 nf_baton->needs_frame = 1;
1226 return 1;
1227}
1228
1229/* Reads from memory do not require a frame. */
1230static void
852483bc 1231needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
4c2df51b
DJ
1232{
1233 memset (buf, 0, len);
1234}
1235
1236/* Frame-relative accesses do require a frame. */
1237static void
0d45f56e 1238needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
4c2df51b 1239{
852483bc 1240 static gdb_byte lit0 = DW_OP_lit0;
4c2df51b
DJ
1241 struct needs_frame_baton *nf_baton = baton;
1242
1243 *start = &lit0;
1244 *length = 1;
1245
1246 nf_baton->needs_frame = 1;
1247}
1248
e7802207
TT
1249/* CFA accesses require a frame. */
1250
1251static CORE_ADDR
1252needs_frame_frame_cfa (void *baton)
1253{
1254 struct needs_frame_baton *nf_baton = baton;
9a619af0 1255
e7802207
TT
1256 nf_baton->needs_frame = 1;
1257 return 1;
1258}
1259
4c2df51b
DJ
1260/* Thread-local accesses do require a frame. */
1261static CORE_ADDR
1262needs_frame_tls_address (void *baton, CORE_ADDR offset)
1263{
1264 struct needs_frame_baton *nf_baton = baton;
9a619af0 1265
4c2df51b
DJ
1266 nf_baton->needs_frame = 1;
1267 return 1;
1268}
1269
5c631832
JK
1270/* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
1271
1272static void
1273needs_frame_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
1274{
1275 struct needs_frame_baton *nf_baton = ctx->baton;
1276
8cf6f0b1
TT
1277 return per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
1278 ctx->get_frame_pc, ctx->baton);
5c631832
JK
1279}
1280
4c2df51b
DJ
1281/* Return non-zero iff the location expression at DATA (length SIZE)
1282 requires a frame to evaluate. */
1283
1284static int
947bb88f 1285dwarf2_loc_desc_needs_frame (const gdb_byte *data, unsigned short size,
ae0d2f24 1286 struct dwarf2_per_cu_data *per_cu)
4c2df51b
DJ
1287{
1288 struct needs_frame_baton baton;
1289 struct dwarf_expr_context *ctx;
f630a401 1290 int in_reg;
4a227398 1291 struct cleanup *old_chain;
ac56253d 1292 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b
DJ
1293
1294 baton.needs_frame = 0;
17ea53c3 1295 baton.per_cu = per_cu;
4c2df51b
DJ
1296
1297 ctx = new_dwarf_expr_context ();
4a227398
TT
1298 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
1299
ac56253d 1300 ctx->gdbarch = get_objfile_arch (objfile);
ae0d2f24 1301 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
9aa1f1e3 1302 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b
DJ
1303 ctx->baton = &baton;
1304 ctx->read_reg = needs_frame_read_reg;
1305 ctx->read_mem = needs_frame_read_mem;
1306 ctx->get_frame_base = needs_frame_frame_base;
e7802207 1307 ctx->get_frame_cfa = needs_frame_frame_cfa;
8cf6f0b1 1308 ctx->get_frame_pc = needs_frame_frame_cfa;
4c2df51b 1309 ctx->get_tls_address = needs_frame_tls_address;
5c631832 1310 ctx->dwarf_call = needs_frame_dwarf_call;
4c2df51b
DJ
1311
1312 dwarf_expr_eval (ctx, data, size);
1313
cec03d70 1314 in_reg = ctx->location == DWARF_VALUE_REGISTER;
f630a401 1315
87808bd6
JB
1316 if (ctx->num_pieces > 0)
1317 {
1318 int i;
1319
1320 /* If the location has several pieces, and any of them are in
1321 registers, then we will need a frame to fetch them from. */
1322 for (i = 0; i < ctx->num_pieces; i++)
cec03d70 1323 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
87808bd6
JB
1324 in_reg = 1;
1325 }
1326
4a227398 1327 do_cleanups (old_chain);
4c2df51b 1328
f630a401 1329 return baton.needs_frame || in_reg;
4c2df51b
DJ
1330}
1331
3cf03773
TT
1332/* A helper function that throws an unimplemented error mentioning a
1333 given DWARF operator. */
1334
1335static void
1336unimplemented (unsigned int op)
0d53c4c4 1337{
3cf03773
TT
1338 error (_("DWARF operator %s cannot be translated to an agent expression"),
1339 dwarf_stack_op_name (op, 1));
1340}
08922a10 1341
3cf03773
TT
1342/* A helper function to convert a DWARF register to an arch register.
1343 ARCH is the architecture.
1344 DWARF_REG is the register.
1345 This will throw an exception if the DWARF register cannot be
1346 translated to an architecture register. */
08922a10 1347
3cf03773
TT
1348static int
1349translate_register (struct gdbarch *arch, int dwarf_reg)
1350{
1351 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
1352 if (reg == -1)
1353 error (_("Unable to access DWARF register number %d"), dwarf_reg);
1354 return reg;
1355}
08922a10 1356
3cf03773
TT
1357/* A helper function that emits an access to memory. ARCH is the
1358 target architecture. EXPR is the expression which we are building.
1359 NBITS is the number of bits we want to read. This emits the
1360 opcodes needed to read the memory and then extract the desired
1361 bits. */
08922a10 1362
3cf03773
TT
1363static void
1364access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
08922a10 1365{
3cf03773
TT
1366 ULONGEST nbytes = (nbits + 7) / 8;
1367
1368 gdb_assert (nbits > 0 && nbits <= sizeof (LONGEST));
1369
1370 if (trace_kludge)
1371 ax_trace_quick (expr, nbytes);
1372
1373 if (nbits <= 8)
1374 ax_simple (expr, aop_ref8);
1375 else if (nbits <= 16)
1376 ax_simple (expr, aop_ref16);
1377 else if (nbits <= 32)
1378 ax_simple (expr, aop_ref32);
1379 else
1380 ax_simple (expr, aop_ref64);
1381
1382 /* If we read exactly the number of bytes we wanted, we're done. */
1383 if (8 * nbytes == nbits)
1384 return;
1385
1386 if (gdbarch_bits_big_endian (arch))
0d53c4c4 1387 {
3cf03773
TT
1388 /* On a bits-big-endian machine, we want the high-order
1389 NBITS. */
1390 ax_const_l (expr, 8 * nbytes - nbits);
1391 ax_simple (expr, aop_rsh_unsigned);
0d53c4c4 1392 }
3cf03773 1393 else
0d53c4c4 1394 {
3cf03773
TT
1395 /* On a bits-little-endian box, we want the low-order NBITS. */
1396 ax_zero_ext (expr, nbits);
0d53c4c4 1397 }
3cf03773 1398}
0936ad1d 1399
8cf6f0b1
TT
1400/* A helper function to return the frame's PC. */
1401
1402static CORE_ADDR
1403get_ax_pc (void *baton)
1404{
1405 struct agent_expr *expr = baton;
1406
1407 return expr->scope;
1408}
1409
3cf03773
TT
1410/* Compile a DWARF location expression to an agent expression.
1411
1412 EXPR is the agent expression we are building.
1413 LOC is the agent value we modify.
1414 ARCH is the architecture.
1415 ADDR_SIZE is the size of addresses, in bytes.
1416 OP_PTR is the start of the location expression.
1417 OP_END is one past the last byte of the location expression.
1418
1419 This will throw an exception for various kinds of errors -- for
1420 example, if the expression cannot be compiled, or if the expression
1421 is invalid. */
0936ad1d 1422
3cf03773
TT
1423static void
1424compile_dwarf_to_ax (struct agent_expr *expr, struct axs_value *loc,
1425 struct gdbarch *arch, unsigned int addr_size,
1426 const gdb_byte *op_ptr, const gdb_byte *op_end,
1427 struct dwarf2_per_cu_data *per_cu)
1428{
1429 struct cleanup *cleanups;
1430 int i, *offsets;
1431 VEC(int) *dw_labels = NULL, *patches = NULL;
1432 const gdb_byte * const base = op_ptr;
1433 const gdb_byte *previous_piece = op_ptr;
1434 enum bfd_endian byte_order = gdbarch_byte_order (arch);
1435 ULONGEST bits_collected = 0;
1436 unsigned int addr_size_bits = 8 * addr_size;
1437 int bits_big_endian = gdbarch_bits_big_endian (arch);
0936ad1d 1438
3cf03773
TT
1439 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
1440 cleanups = make_cleanup (xfree, offsets);
0936ad1d 1441
3cf03773
TT
1442 for (i = 0; i < op_end - op_ptr; ++i)
1443 offsets[i] = -1;
0936ad1d 1444
3cf03773
TT
1445 make_cleanup (VEC_cleanup (int), &dw_labels);
1446 make_cleanup (VEC_cleanup (int), &patches);
0936ad1d 1447
3cf03773
TT
1448 /* By default we are making an address. */
1449 loc->kind = axs_lvalue_memory;
0d45f56e 1450
3cf03773
TT
1451 while (op_ptr < op_end)
1452 {
1453 enum dwarf_location_atom op = *op_ptr;
3cf03773
TT
1454 ULONGEST uoffset, reg;
1455 LONGEST offset;
1456 int i;
1457
1458 offsets[op_ptr - base] = expr->len;
1459 ++op_ptr;
1460
1461 /* Our basic approach to code generation is to map DWARF
1462 operations directly to AX operations. However, there are
1463 some differences.
1464
1465 First, DWARF works on address-sized units, but AX always uses
1466 LONGEST. For most operations we simply ignore this
1467 difference; instead we generate sign extensions as needed
1468 before division and comparison operations. It would be nice
1469 to omit the sign extensions, but there is no way to determine
1470 the size of the target's LONGEST. (This code uses the size
1471 of the host LONGEST in some cases -- that is a bug but it is
1472 difficult to fix.)
1473
1474 Second, some DWARF operations cannot be translated to AX.
1475 For these we simply fail. See
1476 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
1477 switch (op)
0936ad1d 1478 {
3cf03773
TT
1479 case DW_OP_lit0:
1480 case DW_OP_lit1:
1481 case DW_OP_lit2:
1482 case DW_OP_lit3:
1483 case DW_OP_lit4:
1484 case DW_OP_lit5:
1485 case DW_OP_lit6:
1486 case DW_OP_lit7:
1487 case DW_OP_lit8:
1488 case DW_OP_lit9:
1489 case DW_OP_lit10:
1490 case DW_OP_lit11:
1491 case DW_OP_lit12:
1492 case DW_OP_lit13:
1493 case DW_OP_lit14:
1494 case DW_OP_lit15:
1495 case DW_OP_lit16:
1496 case DW_OP_lit17:
1497 case DW_OP_lit18:
1498 case DW_OP_lit19:
1499 case DW_OP_lit20:
1500 case DW_OP_lit21:
1501 case DW_OP_lit22:
1502 case DW_OP_lit23:
1503 case DW_OP_lit24:
1504 case DW_OP_lit25:
1505 case DW_OP_lit26:
1506 case DW_OP_lit27:
1507 case DW_OP_lit28:
1508 case DW_OP_lit29:
1509 case DW_OP_lit30:
1510 case DW_OP_lit31:
1511 ax_const_l (expr, op - DW_OP_lit0);
1512 break;
0d53c4c4 1513
3cf03773 1514 case DW_OP_addr:
ac56253d 1515 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3cf03773 1516 op_ptr += addr_size;
ac56253d
TT
1517 /* Some versions of GCC emit DW_OP_addr before
1518 DW_OP_GNU_push_tls_address. In this case the value is an
1519 index, not an address. We don't support things like
1520 branching between the address and the TLS op. */
1521 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
9aa1f1e3 1522 uoffset += dwarf2_per_cu_text_offset (per_cu);
ac56253d 1523 ax_const_l (expr, uoffset);
3cf03773 1524 break;
4c2df51b 1525
3cf03773
TT
1526 case DW_OP_const1u:
1527 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
1528 op_ptr += 1;
1529 break;
1530 case DW_OP_const1s:
1531 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
1532 op_ptr += 1;
1533 break;
1534 case DW_OP_const2u:
1535 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
1536 op_ptr += 2;
1537 break;
1538 case DW_OP_const2s:
1539 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
1540 op_ptr += 2;
1541 break;
1542 case DW_OP_const4u:
1543 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
1544 op_ptr += 4;
1545 break;
1546 case DW_OP_const4s:
1547 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
1548 op_ptr += 4;
1549 break;
1550 case DW_OP_const8u:
1551 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
1552 op_ptr += 8;
1553 break;
1554 case DW_OP_const8s:
1555 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
1556 op_ptr += 8;
1557 break;
1558 case DW_OP_constu:
1559 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
1560 ax_const_l (expr, uoffset);
1561 break;
1562 case DW_OP_consts:
1563 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
1564 ax_const_l (expr, offset);
1565 break;
9c238357 1566
3cf03773
TT
1567 case DW_OP_reg0:
1568 case DW_OP_reg1:
1569 case DW_OP_reg2:
1570 case DW_OP_reg3:
1571 case DW_OP_reg4:
1572 case DW_OP_reg5:
1573 case DW_OP_reg6:
1574 case DW_OP_reg7:
1575 case DW_OP_reg8:
1576 case DW_OP_reg9:
1577 case DW_OP_reg10:
1578 case DW_OP_reg11:
1579 case DW_OP_reg12:
1580 case DW_OP_reg13:
1581 case DW_OP_reg14:
1582 case DW_OP_reg15:
1583 case DW_OP_reg16:
1584 case DW_OP_reg17:
1585 case DW_OP_reg18:
1586 case DW_OP_reg19:
1587 case DW_OP_reg20:
1588 case DW_OP_reg21:
1589 case DW_OP_reg22:
1590 case DW_OP_reg23:
1591 case DW_OP_reg24:
1592 case DW_OP_reg25:
1593 case DW_OP_reg26:
1594 case DW_OP_reg27:
1595 case DW_OP_reg28:
1596 case DW_OP_reg29:
1597 case DW_OP_reg30:
1598 case DW_OP_reg31:
1599 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
1600 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
1601 loc->kind = axs_lvalue_register;
1602 break;
9c238357 1603
3cf03773
TT
1604 case DW_OP_regx:
1605 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1606 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
1607 loc->u.reg = translate_register (arch, reg);
1608 loc->kind = axs_lvalue_register;
1609 break;
08922a10 1610
3cf03773
TT
1611 case DW_OP_implicit_value:
1612 {
1613 ULONGEST len;
1614
1615 op_ptr = read_uleb128 (op_ptr, op_end, &len);
1616 if (op_ptr + len > op_end)
1617 error (_("DW_OP_implicit_value: too few bytes available."));
1618 if (len > sizeof (ULONGEST))
1619 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
1620 (int) len);
1621
1622 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
1623 byte_order));
1624 op_ptr += len;
1625 dwarf_expr_require_composition (op_ptr, op_end,
1626 "DW_OP_implicit_value");
1627
1628 loc->kind = axs_rvalue;
1629 }
1630 break;
08922a10 1631
3cf03773
TT
1632 case DW_OP_stack_value:
1633 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
1634 loc->kind = axs_rvalue;
1635 break;
08922a10 1636
3cf03773
TT
1637 case DW_OP_breg0:
1638 case DW_OP_breg1:
1639 case DW_OP_breg2:
1640 case DW_OP_breg3:
1641 case DW_OP_breg4:
1642 case DW_OP_breg5:
1643 case DW_OP_breg6:
1644 case DW_OP_breg7:
1645 case DW_OP_breg8:
1646 case DW_OP_breg9:
1647 case DW_OP_breg10:
1648 case DW_OP_breg11:
1649 case DW_OP_breg12:
1650 case DW_OP_breg13:
1651 case DW_OP_breg14:
1652 case DW_OP_breg15:
1653 case DW_OP_breg16:
1654 case DW_OP_breg17:
1655 case DW_OP_breg18:
1656 case DW_OP_breg19:
1657 case DW_OP_breg20:
1658 case DW_OP_breg21:
1659 case DW_OP_breg22:
1660 case DW_OP_breg23:
1661 case DW_OP_breg24:
1662 case DW_OP_breg25:
1663 case DW_OP_breg26:
1664 case DW_OP_breg27:
1665 case DW_OP_breg28:
1666 case DW_OP_breg29:
1667 case DW_OP_breg30:
1668 case DW_OP_breg31:
1669 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
1670 i = translate_register (arch, op - DW_OP_breg0);
1671 ax_reg (expr, i);
1672 if (offset != 0)
1673 {
1674 ax_const_l (expr, offset);
1675 ax_simple (expr, aop_add);
1676 }
1677 break;
1678 case DW_OP_bregx:
1679 {
1680 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1681 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
1682 i = translate_register (arch, reg);
1683 ax_reg (expr, i);
1684 if (offset != 0)
1685 {
1686 ax_const_l (expr, offset);
1687 ax_simple (expr, aop_add);
1688 }
1689 }
1690 break;
1691 case DW_OP_fbreg:
1692 {
1693 const gdb_byte *datastart;
1694 size_t datalen;
1695 unsigned int before_stack_len;
1696 struct block *b;
1697 struct symbol *framefunc;
1698 LONGEST base_offset = 0;
08922a10 1699
3cf03773
TT
1700 b = block_for_pc (expr->scope);
1701
1702 if (!b)
1703 error (_("No block found for address"));
1704
1705 framefunc = block_linkage_function (b);
1706
1707 if (!framefunc)
1708 error (_("No function found for block"));
1709
1710 dwarf_expr_frame_base_1 (framefunc, expr->scope,
1711 &datastart, &datalen);
1712
1713 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
1714 compile_dwarf_to_ax (expr, loc, arch, addr_size, datastart,
1715 datastart + datalen, per_cu);
1716
1717 if (offset != 0)
1718 {
1719 ax_const_l (expr, offset);
1720 ax_simple (expr, aop_add);
1721 }
1722
1723 loc->kind = axs_lvalue_memory;
1724 }
08922a10 1725 break;
08922a10 1726
3cf03773
TT
1727 case DW_OP_dup:
1728 ax_simple (expr, aop_dup);
1729 break;
08922a10 1730
3cf03773
TT
1731 case DW_OP_drop:
1732 ax_simple (expr, aop_pop);
1733 break;
08922a10 1734
3cf03773
TT
1735 case DW_OP_pick:
1736 offset = *op_ptr++;
1737 unimplemented (op);
1738 break;
1739
1740 case DW_OP_swap:
1741 ax_simple (expr, aop_swap);
1742 break;
08922a10 1743
3cf03773
TT
1744 case DW_OP_over:
1745 /* We can't directly support DW_OP_over, but GCC emits it as
1746 part of a sequence to implement signed modulus. As a
1747 hack, we recognize this sequence. Note that if GCC ever
1748 generates a branch to the middle of this sequence, then
1749 we will die somehow. */
1750 if (op_end - op_ptr >= 4
1751 && op_ptr[0] == DW_OP_over
1752 && op_ptr[1] == DW_OP_div
1753 && op_ptr[2] == DW_OP_mul
1754 && op_ptr[3] == DW_OP_minus)
1755 {
1756 /* Sign extend the operands. */
1757 ax_ext (expr, addr_size_bits);
1758 ax_simple (expr, aop_swap);
1759 ax_ext (expr, addr_size_bits);
1760 ax_simple (expr, aop_swap);
1761 ax_simple (expr, aop_rem_signed);
1762 op_ptr += 4;
1763 }
1764 else
1765 unimplemented (op);
1766 break;
08922a10 1767
3cf03773
TT
1768 case DW_OP_rot:
1769 unimplemented (op);
1770 break;
08922a10 1771
3cf03773
TT
1772 case DW_OP_deref:
1773 case DW_OP_deref_size:
1774 {
1775 int size;
08922a10 1776
3cf03773
TT
1777 if (op == DW_OP_deref_size)
1778 size = *op_ptr++;
1779 else
1780 size = addr_size;
1781
1782 switch (size)
1783 {
1784 case 8:
1785 ax_simple (expr, aop_ref8);
1786 break;
1787 case 16:
1788 ax_simple (expr, aop_ref16);
1789 break;
1790 case 32:
1791 ax_simple (expr, aop_ref32);
1792 break;
1793 case 64:
1794 ax_simple (expr, aop_ref64);
1795 break;
1796 default:
1797 error (_("Unsupported size %d in %s"),
1798 size, dwarf_stack_op_name (op, 1));
1799 }
1800 }
1801 break;
1802
1803 case DW_OP_abs:
1804 /* Sign extend the operand. */
1805 ax_ext (expr, addr_size_bits);
1806 ax_simple (expr, aop_dup);
1807 ax_const_l (expr, 0);
1808 ax_simple (expr, aop_less_signed);
1809 ax_simple (expr, aop_log_not);
1810 i = ax_goto (expr, aop_if_goto);
1811 /* We have to emit 0 - X. */
1812 ax_const_l (expr, 0);
1813 ax_simple (expr, aop_swap);
1814 ax_simple (expr, aop_sub);
1815 ax_label (expr, i, expr->len);
1816 break;
1817
1818 case DW_OP_neg:
1819 /* No need to sign extend here. */
1820 ax_const_l (expr, 0);
1821 ax_simple (expr, aop_swap);
1822 ax_simple (expr, aop_sub);
1823 break;
1824
1825 case DW_OP_not:
1826 /* Sign extend the operand. */
1827 ax_ext (expr, addr_size_bits);
1828 ax_simple (expr, aop_bit_not);
1829 break;
1830
1831 case DW_OP_plus_uconst:
1832 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1833 /* It would be really weird to emit `DW_OP_plus_uconst 0',
1834 but we micro-optimize anyhow. */
1835 if (reg != 0)
1836 {
1837 ax_const_l (expr, reg);
1838 ax_simple (expr, aop_add);
1839 }
1840 break;
1841
1842 case DW_OP_and:
1843 ax_simple (expr, aop_bit_and);
1844 break;
1845
1846 case DW_OP_div:
1847 /* Sign extend the operands. */
1848 ax_ext (expr, addr_size_bits);
1849 ax_simple (expr, aop_swap);
1850 ax_ext (expr, addr_size_bits);
1851 ax_simple (expr, aop_swap);
1852 ax_simple (expr, aop_div_signed);
08922a10
SS
1853 break;
1854
3cf03773
TT
1855 case DW_OP_minus:
1856 ax_simple (expr, aop_sub);
1857 break;
1858
1859 case DW_OP_mod:
1860 ax_simple (expr, aop_rem_unsigned);
1861 break;
1862
1863 case DW_OP_mul:
1864 ax_simple (expr, aop_mul);
1865 break;
1866
1867 case DW_OP_or:
1868 ax_simple (expr, aop_bit_or);
1869 break;
1870
1871 case DW_OP_plus:
1872 ax_simple (expr, aop_add);
1873 break;
1874
1875 case DW_OP_shl:
1876 ax_simple (expr, aop_lsh);
1877 break;
1878
1879 case DW_OP_shr:
1880 ax_simple (expr, aop_rsh_unsigned);
1881 break;
1882
1883 case DW_OP_shra:
1884 ax_simple (expr, aop_rsh_signed);
1885 break;
1886
1887 case DW_OP_xor:
1888 ax_simple (expr, aop_bit_xor);
1889 break;
1890
1891 case DW_OP_le:
1892 /* Sign extend the operands. */
1893 ax_ext (expr, addr_size_bits);
1894 ax_simple (expr, aop_swap);
1895 ax_ext (expr, addr_size_bits);
1896 /* Note no swap here: A <= B is !(B < A). */
1897 ax_simple (expr, aop_less_signed);
1898 ax_simple (expr, aop_log_not);
1899 break;
1900
1901 case DW_OP_ge:
1902 /* Sign extend the operands. */
1903 ax_ext (expr, addr_size_bits);
1904 ax_simple (expr, aop_swap);
1905 ax_ext (expr, addr_size_bits);
1906 ax_simple (expr, aop_swap);
1907 /* A >= B is !(A < B). */
1908 ax_simple (expr, aop_less_signed);
1909 ax_simple (expr, aop_log_not);
1910 break;
1911
1912 case DW_OP_eq:
1913 /* Sign extend the operands. */
1914 ax_ext (expr, addr_size_bits);
1915 ax_simple (expr, aop_swap);
1916 ax_ext (expr, addr_size_bits);
1917 /* No need for a second swap here. */
1918 ax_simple (expr, aop_equal);
1919 break;
1920
1921 case DW_OP_lt:
1922 /* Sign extend the operands. */
1923 ax_ext (expr, addr_size_bits);
1924 ax_simple (expr, aop_swap);
1925 ax_ext (expr, addr_size_bits);
1926 ax_simple (expr, aop_swap);
1927 ax_simple (expr, aop_less_signed);
1928 break;
1929
1930 case DW_OP_gt:
1931 /* Sign extend the operands. */
1932 ax_ext (expr, addr_size_bits);
1933 ax_simple (expr, aop_swap);
1934 ax_ext (expr, addr_size_bits);
1935 /* Note no swap here: A > B is B < A. */
1936 ax_simple (expr, aop_less_signed);
1937 break;
1938
1939 case DW_OP_ne:
1940 /* Sign extend the operands. */
1941 ax_ext (expr, addr_size_bits);
1942 ax_simple (expr, aop_swap);
1943 ax_ext (expr, addr_size_bits);
1944 /* No need for a swap here. */
1945 ax_simple (expr, aop_equal);
1946 ax_simple (expr, aop_log_not);
1947 break;
1948
1949 case DW_OP_call_frame_cfa:
1950 unimplemented (op);
1951 break;
1952
1953 case DW_OP_GNU_push_tls_address:
1954 unimplemented (op);
1955 break;
1956
1957 case DW_OP_skip:
1958 offset = extract_signed_integer (op_ptr, 2, byte_order);
1959 op_ptr += 2;
1960 i = ax_goto (expr, aop_goto);
1961 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
1962 VEC_safe_push (int, patches, i);
1963 break;
1964
1965 case DW_OP_bra:
1966 offset = extract_signed_integer (op_ptr, 2, byte_order);
1967 op_ptr += 2;
1968 /* Zero extend the operand. */
1969 ax_zero_ext (expr, addr_size_bits);
1970 i = ax_goto (expr, aop_if_goto);
1971 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
1972 VEC_safe_push (int, patches, i);
1973 break;
1974
1975 case DW_OP_nop:
1976 break;
1977
1978 case DW_OP_piece:
1979 case DW_OP_bit_piece:
08922a10 1980 {
3cf03773
TT
1981 ULONGEST size, offset;
1982
1983 if (op_ptr - 1 == previous_piece)
1984 error (_("Cannot translate empty pieces to agent expressions"));
1985 previous_piece = op_ptr - 1;
1986
1987 op_ptr = read_uleb128 (op_ptr, op_end, &size);
1988 if (op == DW_OP_piece)
1989 {
1990 size *= 8;
1991 offset = 0;
1992 }
1993 else
1994 op_ptr = read_uleb128 (op_ptr, op_end, &offset);
08922a10 1995
3cf03773
TT
1996 if (bits_collected + size > 8 * sizeof (LONGEST))
1997 error (_("Expression pieces exceed word size"));
1998
1999 /* Access the bits. */
2000 switch (loc->kind)
2001 {
2002 case axs_lvalue_register:
2003 ax_reg (expr, loc->u.reg);
2004 break;
2005
2006 case axs_lvalue_memory:
2007 /* Offset the pointer, if needed. */
2008 if (offset > 8)
2009 {
2010 ax_const_l (expr, offset / 8);
2011 ax_simple (expr, aop_add);
2012 offset %= 8;
2013 }
2014 access_memory (arch, expr, size);
2015 break;
2016 }
2017
2018 /* For a bits-big-endian target, shift up what we already
2019 have. For a bits-little-endian target, shift up the
2020 new data. Note that there is a potential bug here if
2021 the DWARF expression leaves multiple values on the
2022 stack. */
2023 if (bits_collected > 0)
2024 {
2025 if (bits_big_endian)
2026 {
2027 ax_simple (expr, aop_swap);
2028 ax_const_l (expr, size);
2029 ax_simple (expr, aop_lsh);
2030 /* We don't need a second swap here, because
2031 aop_bit_or is symmetric. */
2032 }
2033 else
2034 {
2035 ax_const_l (expr, size);
2036 ax_simple (expr, aop_lsh);
2037 }
2038 ax_simple (expr, aop_bit_or);
2039 }
2040
2041 bits_collected += size;
2042 loc->kind = axs_rvalue;
08922a10
SS
2043 }
2044 break;
08922a10 2045
3cf03773
TT
2046 case DW_OP_GNU_uninit:
2047 unimplemented (op);
2048
2049 case DW_OP_call2:
2050 case DW_OP_call4:
2051 {
2052 struct dwarf2_locexpr_baton block;
2053 int size = (op == DW_OP_call2 ? 2 : 4);
2054
2055 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
2056 op_ptr += size;
2057
8cf6f0b1
TT
2058 block = dwarf2_fetch_die_location_block (uoffset, per_cu,
2059 get_ax_pc, expr);
3cf03773
TT
2060
2061 /* DW_OP_call_ref is currently not supported. */
2062 gdb_assert (block.per_cu == per_cu);
2063
2064 compile_dwarf_to_ax (expr, loc, arch, addr_size,
2065 block.data, block.data + block.size,
2066 per_cu);
2067 }
2068 break;
2069
2070 case DW_OP_call_ref:
2071 unimplemented (op);
2072
2073 default:
2074 error (_("Unhandled dwarf expression opcode 0x%x"), op);
08922a10 2075 }
08922a10 2076 }
3cf03773
TT
2077
2078 /* Patch all the branches we emitted. */
2079 for (i = 0; i < VEC_length (int, patches); ++i)
2080 {
2081 int targ = offsets[VEC_index (int, dw_labels, i)];
2082 if (targ == -1)
2083 internal_error (__FILE__, __LINE__, _("invalid label"));
2084 ax_label (expr, VEC_index (int, patches, i), targ);
2085 }
2086
2087 do_cleanups (cleanups);
08922a10
SS
2088}
2089
4c2df51b
DJ
2090\f
2091/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
2092 evaluator to calculate the location. */
2093static struct value *
2094locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
2095{
2096 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2097 struct value *val;
9a619af0 2098
a2d33775
JK
2099 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
2100 dlbaton->size, dlbaton->per_cu);
4c2df51b
DJ
2101
2102 return val;
2103}
2104
2105/* Return non-zero iff we need a frame to evaluate SYMBOL. */
2106static int
2107locexpr_read_needs_frame (struct symbol *symbol)
2108{
2109 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
9a619af0 2110
ae0d2f24
UW
2111 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
2112 dlbaton->per_cu);
4c2df51b
DJ
2113}
2114
9eae7c52
TT
2115/* Return true if DATA points to the end of a piece. END is one past
2116 the last byte in the expression. */
2117
2118static int
2119piece_end_p (const gdb_byte *data, const gdb_byte *end)
2120{
2121 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
2122}
2123
2124/* Nicely describe a single piece of a location, returning an updated
2125 position in the bytecode sequence. This function cannot recognize
2126 all locations; if a location is not recognized, it simply returns
2127 DATA. */
08922a10 2128
0d45f56e 2129static const gdb_byte *
08922a10
SS
2130locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
2131 CORE_ADDR addr, struct objfile *objfile,
9eae7c52 2132 const gdb_byte *data, const gdb_byte *end,
0d45f56e 2133 unsigned int addr_size)
4c2df51b 2134{
08922a10
SS
2135 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2136 int regno;
2137
2138 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
2139 {
2140 regno = gdbarch_dwarf2_reg_to_regnum (gdbarch, data[0] - DW_OP_reg0);
2141 fprintf_filtered (stream, _("a variable in $%s"),
2142 gdbarch_register_name (gdbarch, regno));
2143 data += 1;
2144 }
2145 else if (data[0] == DW_OP_regx)
2146 {
2147 ULONGEST reg;
4c2df51b 2148
9eae7c52 2149 data = read_uleb128 (data + 1, end, &reg);
08922a10
SS
2150 regno = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
2151 fprintf_filtered (stream, _("a variable in $%s"),
2152 gdbarch_register_name (gdbarch, regno));
2153 }
2154 else if (data[0] == DW_OP_fbreg)
4c2df51b 2155 {
08922a10
SS
2156 struct block *b;
2157 struct symbol *framefunc;
2158 int frame_reg = 0;
2159 LONGEST frame_offset;
7155d578 2160 const gdb_byte *base_data, *new_data, *save_data = data;
08922a10
SS
2161 size_t base_size;
2162 LONGEST base_offset = 0;
2163
9eae7c52
TT
2164 new_data = read_sleb128 (data + 1, end, &frame_offset);
2165 if (!piece_end_p (new_data, end))
2166 return data;
2167 data = new_data;
2168
08922a10
SS
2169 b = block_for_pc (addr);
2170
2171 if (!b)
2172 error (_("No block found for address for symbol \"%s\"."),
2173 SYMBOL_PRINT_NAME (symbol));
2174
2175 framefunc = block_linkage_function (b);
2176
2177 if (!framefunc)
2178 error (_("No function found for block for symbol \"%s\"."),
2179 SYMBOL_PRINT_NAME (symbol));
2180
2181 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
2182
2183 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
2184 {
0d45f56e 2185 const gdb_byte *buf_end;
08922a10
SS
2186
2187 frame_reg = base_data[0] - DW_OP_breg0;
2188 buf_end = read_sleb128 (base_data + 1,
2189 base_data + base_size, &base_offset);
2190 if (buf_end != base_data + base_size)
3e43a32a
MS
2191 error (_("Unexpected opcode after "
2192 "DW_OP_breg%u for symbol \"%s\"."),
08922a10
SS
2193 frame_reg, SYMBOL_PRINT_NAME (symbol));
2194 }
2195 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
2196 {
2197 /* The frame base is just the register, with no offset. */
2198 frame_reg = base_data[0] - DW_OP_reg0;
2199 base_offset = 0;
2200 }
2201 else
2202 {
2203 /* We don't know what to do with the frame base expression,
2204 so we can't trace this variable; give up. */
7155d578 2205 return save_data;
08922a10
SS
2206 }
2207
2208 regno = gdbarch_dwarf2_reg_to_regnum (gdbarch, frame_reg);
2209
3e43a32a
MS
2210 fprintf_filtered (stream,
2211 _("a variable at frame base reg $%s offset %s+%s"),
08922a10
SS
2212 gdbarch_register_name (gdbarch, regno),
2213 plongest (base_offset), plongest (frame_offset));
2214 }
9eae7c52
TT
2215 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
2216 && piece_end_p (data, end))
08922a10
SS
2217 {
2218 LONGEST offset;
2219
2220 regno = gdbarch_dwarf2_reg_to_regnum (gdbarch, data[0] - DW_OP_breg0);
2221
9eae7c52 2222 data = read_sleb128 (data + 1, end, &offset);
08922a10 2223
4c2df51b 2224 fprintf_filtered (stream,
08922a10
SS
2225 _("a variable at offset %s from base reg $%s"),
2226 plongest (offset),
5e2b427d 2227 gdbarch_register_name (gdbarch, regno));
4c2df51b
DJ
2228 }
2229
c3228f12
EZ
2230 /* The location expression for a TLS variable looks like this (on a
2231 64-bit LE machine):
2232
2233 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
2234 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
09d8bd00 2235
c3228f12
EZ
2236 0x3 is the encoding for DW_OP_addr, which has an operand as long
2237 as the size of an address on the target machine (here is 8
09d8bd00
TT
2238 bytes). Note that more recent version of GCC emit DW_OP_const4u
2239 or DW_OP_const8u, depending on address size, rather than
2240 DW_OP_addr. 0xe0 is the encoding for
2241 DW_OP_GNU_push_tls_address. The operand represents the offset at
2242 which the variable is within the thread local storage. */
c3228f12 2243
9eae7c52 2244 else if (data + 1 + addr_size < end
09d8bd00
TT
2245 && (data[0] == DW_OP_addr
2246 || (addr_size == 4 && data[0] == DW_OP_const4u)
2247 || (addr_size == 8 && data[0] == DW_OP_const8u))
9eae7c52
TT
2248 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
2249 && piece_end_p (data + 2 + addr_size, end))
08922a10 2250 {
d4a087c7
UW
2251 ULONGEST offset;
2252 offset = extract_unsigned_integer (data + 1, addr_size,
2253 gdbarch_byte_order (gdbarch));
9a619af0 2254
08922a10 2255 fprintf_filtered (stream,
d4a087c7 2256 _("a thread-local variable at offset 0x%s "
08922a10 2257 "in the thread-local storage for `%s'"),
d4a087c7 2258 phex_nz (offset, addr_size), objfile->name);
08922a10
SS
2259
2260 data += 1 + addr_size + 1;
2261 }
9eae7c52
TT
2262 else if (data[0] >= DW_OP_lit0
2263 && data[0] <= DW_OP_lit31
2264 && data + 1 < end
2265 && data[1] == DW_OP_stack_value)
2266 {
2267 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
2268 data += 2;
2269 }
2270
2271 return data;
2272}
2273
2274/* Disassemble an expression, stopping at the end of a piece or at the
2275 end of the expression. Returns a pointer to the next unread byte
2276 in the input expression. If ALL is nonzero, then this function
2277 will keep going until it reaches the end of the expression. */
2278
2279static const gdb_byte *
2280disassemble_dwarf_expression (struct ui_file *stream,
2281 struct gdbarch *arch, unsigned int addr_size,
2282 int offset_size,
2283 const gdb_byte *data, const gdb_byte *end,
2284 int all)
2285{
2286 const gdb_byte *start = data;
2287
2288 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
2289
2290 while (data < end
2291 && (all
2292 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
2293 {
2294 enum dwarf_location_atom op = *data++;
9eae7c52
TT
2295 ULONGEST ul;
2296 LONGEST l;
2297 const char *name;
2298
2299 name = dwarf_stack_op_name (op, 0);
2300
2301 if (!name)
2302 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
2303 op, (long) (data - start));
2304 fprintf_filtered (stream, " % 4ld: %s", (long) (data - start), name);
2305
2306 switch (op)
2307 {
2308 case DW_OP_addr:
d4a087c7
UW
2309 ul = extract_unsigned_integer (data, addr_size,
2310 gdbarch_byte_order (arch));
9eae7c52 2311 data += addr_size;
d4a087c7 2312 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
9eae7c52
TT
2313 break;
2314
2315 case DW_OP_const1u:
2316 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
2317 data += 1;
2318 fprintf_filtered (stream, " %s", pulongest (ul));
2319 break;
2320 case DW_OP_const1s:
2321 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
2322 data += 1;
2323 fprintf_filtered (stream, " %s", plongest (l));
2324 break;
2325 case DW_OP_const2u:
2326 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
2327 data += 2;
2328 fprintf_filtered (stream, " %s", pulongest (ul));
2329 break;
2330 case DW_OP_const2s:
2331 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
2332 data += 2;
2333 fprintf_filtered (stream, " %s", plongest (l));
2334 break;
2335 case DW_OP_const4u:
2336 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
2337 data += 4;
2338 fprintf_filtered (stream, " %s", pulongest (ul));
2339 break;
2340 case DW_OP_const4s:
2341 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
2342 data += 4;
2343 fprintf_filtered (stream, " %s", plongest (l));
2344 break;
2345 case DW_OP_const8u:
2346 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
2347 data += 8;
2348 fprintf_filtered (stream, " %s", pulongest (ul));
2349 break;
2350 case DW_OP_const8s:
2351 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
2352 data += 8;
2353 fprintf_filtered (stream, " %s", plongest (l));
2354 break;
2355 case DW_OP_constu:
2356 data = read_uleb128 (data, end, &ul);
2357 fprintf_filtered (stream, " %s", pulongest (ul));
2358 break;
2359 case DW_OP_consts:
44b5680a 2360 data = read_sleb128 (data, end, &l);
9eae7c52
TT
2361 fprintf_filtered (stream, " %s", plongest (l));
2362 break;
2363
2364 case DW_OP_reg0:
2365 case DW_OP_reg1:
2366 case DW_OP_reg2:
2367 case DW_OP_reg3:
2368 case DW_OP_reg4:
2369 case DW_OP_reg5:
2370 case DW_OP_reg6:
2371 case DW_OP_reg7:
2372 case DW_OP_reg8:
2373 case DW_OP_reg9:
2374 case DW_OP_reg10:
2375 case DW_OP_reg11:
2376 case DW_OP_reg12:
2377 case DW_OP_reg13:
2378 case DW_OP_reg14:
2379 case DW_OP_reg15:
2380 case DW_OP_reg16:
2381 case DW_OP_reg17:
2382 case DW_OP_reg18:
2383 case DW_OP_reg19:
2384 case DW_OP_reg20:
2385 case DW_OP_reg21:
2386 case DW_OP_reg22:
2387 case DW_OP_reg23:
2388 case DW_OP_reg24:
2389 case DW_OP_reg25:
2390 case DW_OP_reg26:
2391 case DW_OP_reg27:
2392 case DW_OP_reg28:
2393 case DW_OP_reg29:
2394 case DW_OP_reg30:
2395 case DW_OP_reg31:
2396 fprintf_filtered (stream, " [$%s]",
2397 gdbarch_register_name (arch, op - DW_OP_reg0));
2398 break;
2399
2400 case DW_OP_regx:
2401 data = read_uleb128 (data, end, &ul);
2402 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
2403 gdbarch_register_name (arch, (int) ul));
2404 break;
2405
2406 case DW_OP_implicit_value:
2407 data = read_uleb128 (data, end, &ul);
2408 data += ul;
2409 fprintf_filtered (stream, " %s", pulongest (ul));
2410 break;
2411
2412 case DW_OP_breg0:
2413 case DW_OP_breg1:
2414 case DW_OP_breg2:
2415 case DW_OP_breg3:
2416 case DW_OP_breg4:
2417 case DW_OP_breg5:
2418 case DW_OP_breg6:
2419 case DW_OP_breg7:
2420 case DW_OP_breg8:
2421 case DW_OP_breg9:
2422 case DW_OP_breg10:
2423 case DW_OP_breg11:
2424 case DW_OP_breg12:
2425 case DW_OP_breg13:
2426 case DW_OP_breg14:
2427 case DW_OP_breg15:
2428 case DW_OP_breg16:
2429 case DW_OP_breg17:
2430 case DW_OP_breg18:
2431 case DW_OP_breg19:
2432 case DW_OP_breg20:
2433 case DW_OP_breg21:
2434 case DW_OP_breg22:
2435 case DW_OP_breg23:
2436 case DW_OP_breg24:
2437 case DW_OP_breg25:
2438 case DW_OP_breg26:
2439 case DW_OP_breg27:
2440 case DW_OP_breg28:
2441 case DW_OP_breg29:
2442 case DW_OP_breg30:
2443 case DW_OP_breg31:
2444 data = read_sleb128 (data, end, &ul);
2445 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
2446 gdbarch_register_name (arch, op - DW_OP_breg0));
2447 break;
2448
2449 case DW_OP_bregx:
2450 {
2451 ULONGEST offset;
2452
2453 data = read_uleb128 (data, end, &ul);
2454 data = read_sleb128 (data, end, &offset);
2455 fprintf_filtered (stream, " register %s [$%s] offset %s",
2456 pulongest (ul),
2457 gdbarch_register_name (arch, (int) ul),
2458 pulongest (offset));
2459 }
2460 break;
2461
2462 case DW_OP_fbreg:
2463 data = read_sleb128 (data, end, &ul);
2464 fprintf_filtered (stream, " %s", pulongest (ul));
2465 break;
2466
2467 case DW_OP_xderef_size:
2468 case DW_OP_deref_size:
2469 case DW_OP_pick:
2470 fprintf_filtered (stream, " %d", *data);
2471 ++data;
2472 break;
2473
2474 case DW_OP_plus_uconst:
2475 data = read_uleb128 (data, end, &ul);
2476 fprintf_filtered (stream, " %s", pulongest (ul));
2477 break;
2478
2479 case DW_OP_skip:
2480 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
2481 data += 2;
2482 fprintf_filtered (stream, " to %ld",
2483 (long) (data + l - start));
2484 break;
2485
2486 case DW_OP_bra:
2487 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
2488 data += 2;
2489 fprintf_filtered (stream, " %ld",
2490 (long) (data + l - start));
2491 break;
2492
2493 case DW_OP_call2:
2494 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
2495 data += 2;
2496 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
2497 break;
2498
2499 case DW_OP_call4:
2500 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
2501 data += 4;
2502 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
2503 break;
2504
2505 case DW_OP_call_ref:
2506 ul = extract_unsigned_integer (data, offset_size,
2507 gdbarch_byte_order (arch));
2508 data += offset_size;
2509 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
2510 break;
2511
2512 case DW_OP_piece:
2513 data = read_uleb128 (data, end, &ul);
2514 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
2515 break;
2516
2517 case DW_OP_bit_piece:
2518 {
2519 ULONGEST offset;
2520
2521 data = read_uleb128 (data, end, &ul);
2522 data = read_uleb128 (data, end, &offset);
2523 fprintf_filtered (stream, " size %s offset %s (bits)",
2524 pulongest (ul), pulongest (offset));
2525 }
2526 break;
8cf6f0b1
TT
2527
2528 case DW_OP_GNU_implicit_pointer:
2529 {
2530 ul = extract_unsigned_integer (data, offset_size,
2531 gdbarch_byte_order (arch));
2532 data += offset_size;
2533
2534 data = read_sleb128 (data, end, &l);
2535
2536 fprintf_filtered (stream, " DIE %s offset %s",
2537 phex_nz (ul, offset_size),
2538 plongest (l));
2539 }
2540 break;
9eae7c52
TT
2541 }
2542
2543 fprintf_filtered (stream, "\n");
2544 }
c3228f12 2545
08922a10 2546 return data;
4c2df51b
DJ
2547}
2548
08922a10
SS
2549/* Describe a single location, which may in turn consist of multiple
2550 pieces. */
a55cc764 2551
08922a10
SS
2552static void
2553locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
0d45f56e
TT
2554 struct ui_file *stream,
2555 const gdb_byte *data, int size,
9eae7c52
TT
2556 struct objfile *objfile, unsigned int addr_size,
2557 int offset_size)
08922a10 2558{
0d45f56e 2559 const gdb_byte *end = data + size;
9eae7c52 2560 int first_piece = 1, bad = 0;
08922a10 2561
08922a10
SS
2562 while (data < end)
2563 {
9eae7c52
TT
2564 const gdb_byte *here = data;
2565 int disassemble = 1;
2566
2567 if (first_piece)
2568 first_piece = 0;
2569 else
2570 fprintf_filtered (stream, _(", and "));
08922a10 2571
9eae7c52
TT
2572 if (!dwarf2_always_disassemble)
2573 {
3e43a32a
MS
2574 data = locexpr_describe_location_piece (symbol, stream,
2575 addr, objfile,
9eae7c52
TT
2576 data, end, addr_size);
2577 /* If we printed anything, or if we have an empty piece,
2578 then don't disassemble. */
2579 if (data != here
2580 || data[0] == DW_OP_piece
2581 || data[0] == DW_OP_bit_piece)
2582 disassemble = 0;
08922a10 2583 }
9eae7c52 2584 if (disassemble)
3e43a32a
MS
2585 data = disassemble_dwarf_expression (stream,
2586 get_objfile_arch (objfile),
9eae7c52
TT
2587 addr_size, offset_size, data, end,
2588 dwarf2_always_disassemble);
2589
2590 if (data < end)
08922a10 2591 {
9eae7c52 2592 int empty = data == here;
08922a10 2593
9eae7c52
TT
2594 if (disassemble)
2595 fprintf_filtered (stream, " ");
2596 if (data[0] == DW_OP_piece)
2597 {
2598 ULONGEST bytes;
08922a10 2599
9eae7c52 2600 data = read_uleb128 (data + 1, end, &bytes);
08922a10 2601
9eae7c52
TT
2602 if (empty)
2603 fprintf_filtered (stream, _("an empty %s-byte piece"),
2604 pulongest (bytes));
2605 else
2606 fprintf_filtered (stream, _(" [%s-byte piece]"),
2607 pulongest (bytes));
2608 }
2609 else if (data[0] == DW_OP_bit_piece)
2610 {
2611 ULONGEST bits, offset;
2612
2613 data = read_uleb128 (data + 1, end, &bits);
2614 data = read_uleb128 (data, end, &offset);
2615
2616 if (empty)
2617 fprintf_filtered (stream,
2618 _("an empty %s-bit piece"),
2619 pulongest (bits));
2620 else
2621 fprintf_filtered (stream,
2622 _(" [%s-bit piece, offset %s bits]"),
2623 pulongest (bits), pulongest (offset));
2624 }
2625 else
2626 {
2627 bad = 1;
2628 break;
2629 }
08922a10
SS
2630 }
2631 }
2632
2633 if (bad || data > end)
2634 error (_("Corrupted DWARF2 expression for \"%s\"."),
2635 SYMBOL_PRINT_NAME (symbol));
2636}
2637
2638/* Print a natural-language description of SYMBOL to STREAM. This
2639 version is for a symbol with a single location. */
a55cc764 2640
08922a10
SS
2641static void
2642locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
2643 struct ui_file *stream)
2644{
2645 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2646 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2647 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 2648 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
08922a10 2649
3e43a32a
MS
2650 locexpr_describe_location_1 (symbol, addr, stream,
2651 dlbaton->data, dlbaton->size,
9eae7c52 2652 objfile, addr_size, offset_size);
08922a10
SS
2653}
2654
2655/* Describe the location of SYMBOL as an agent value in VALUE, generating
2656 any necessary bytecode in AX. */
a55cc764 2657
0d53c4c4 2658static void
505e835d
UW
2659locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
2660 struct agent_expr *ax, struct axs_value *value)
a55cc764
DJ
2661{
2662 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3cf03773 2663 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
a55cc764 2664
cabe9ab6
PA
2665 if (dlbaton->data == NULL || dlbaton->size == 0)
2666 value->optimized_out = 1;
2667 else
2668 compile_dwarf_to_ax (ax, value, gdbarch, addr_size,
2669 dlbaton->data, dlbaton->data + dlbaton->size,
2670 dlbaton->per_cu);
a55cc764
DJ
2671}
2672
4c2df51b
DJ
2673/* The set of location functions used with the DWARF-2 expression
2674 evaluator. */
768a979c 2675const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4c2df51b
DJ
2676 locexpr_read_variable,
2677 locexpr_read_needs_frame,
2678 locexpr_describe_location,
a55cc764 2679 locexpr_tracepoint_var_ref
4c2df51b 2680};
0d53c4c4
DJ
2681
2682
2683/* Wrapper functions for location lists. These generally find
2684 the appropriate location expression and call something above. */
2685
2686/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
2687 evaluator to calculate the location. */
2688static struct value *
2689loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
2690{
2691 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2692 struct value *val;
947bb88f 2693 const gdb_byte *data;
b6b08ebf 2694 size_t size;
8cf6f0b1 2695 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
0d53c4c4 2696
8cf6f0b1 2697 data = dwarf2_find_location_expression (dlbaton, &size, pc);
0d53c4c4 2698 if (data == NULL)
806048c6
DJ
2699 {
2700 val = allocate_value (SYMBOL_TYPE (symbol));
2701 VALUE_LVAL (val) = not_lval;
2702 set_value_optimized_out (val, 1);
2703 }
2704 else
a2d33775 2705 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
ae0d2f24 2706 dlbaton->per_cu);
0d53c4c4
DJ
2707
2708 return val;
2709}
2710
2711/* Return non-zero iff we need a frame to evaluate SYMBOL. */
2712static int
2713loclist_read_needs_frame (struct symbol *symbol)
2714{
2715 /* If there's a location list, then assume we need to have a frame
2716 to choose the appropriate location expression. With tracking of
2717 global variables this is not necessarily true, but such tracking
2718 is disabled in GCC at the moment until we figure out how to
2719 represent it. */
2720
2721 return 1;
2722}
2723
08922a10
SS
2724/* Print a natural-language description of SYMBOL to STREAM. This
2725 version applies when there is a list of different locations, each
2726 with a specified address range. */
2727
2728static void
2729loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
2730 struct ui_file *stream)
0d53c4c4 2731{
08922a10
SS
2732 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2733 CORE_ADDR low, high;
947bb88f 2734 const gdb_byte *loc_ptr, *buf_end;
08922a10
SS
2735 int length, first = 1;
2736 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2737 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2738 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2739 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 2740 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
d4a087c7 2741 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
08922a10
SS
2742 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
2743 /* Adjust base_address for relocatable objects. */
9aa1f1e3 2744 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
08922a10
SS
2745 CORE_ADDR base_address = dlbaton->base_address + base_offset;
2746
2747 loc_ptr = dlbaton->data;
2748 buf_end = dlbaton->data + dlbaton->size;
2749
9eae7c52 2750 fprintf_filtered (stream, _("multi-location:\n"));
08922a10
SS
2751
2752 /* Iterate through locations until we run out. */
2753 while (1)
2754 {
2755 if (buf_end - loc_ptr < 2 * addr_size)
2756 error (_("Corrupted DWARF expression for symbol \"%s\"."),
2757 SYMBOL_PRINT_NAME (symbol));
2758
d4a087c7
UW
2759 if (signed_addr_p)
2760 low = extract_signed_integer (loc_ptr, addr_size, byte_order);
2761 else
2762 low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
2763 loc_ptr += addr_size;
2764
2765 if (signed_addr_p)
2766 high = extract_signed_integer (loc_ptr, addr_size, byte_order);
2767 else
2768 high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
08922a10
SS
2769 loc_ptr += addr_size;
2770
2771 /* A base-address-selection entry. */
d4a087c7 2772 if ((low & base_mask) == base_mask)
08922a10 2773 {
d4a087c7 2774 base_address = high + base_offset;
9eae7c52 2775 fprintf_filtered (stream, _(" Base address %s"),
08922a10 2776 paddress (gdbarch, base_address));
08922a10
SS
2777 continue;
2778 }
2779
08922a10
SS
2780 /* An end-of-list entry. */
2781 if (low == 0 && high == 0)
9eae7c52 2782 break;
08922a10
SS
2783
2784 /* Otherwise, a location expression entry. */
2785 low += base_address;
2786 high += base_address;
2787
2788 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
2789 loc_ptr += 2;
2790
08922a10
SS
2791 /* (It would improve readability to print only the minimum
2792 necessary digits of the second number of the range.) */
9eae7c52 2793 fprintf_filtered (stream, _(" Range %s-%s: "),
08922a10
SS
2794 paddress (gdbarch, low), paddress (gdbarch, high));
2795
2796 /* Now describe this particular location. */
2797 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
9eae7c52
TT
2798 objfile, addr_size, offset_size);
2799
2800 fprintf_filtered (stream, "\n");
08922a10
SS
2801
2802 loc_ptr += length;
2803 }
0d53c4c4
DJ
2804}
2805
2806/* Describe the location of SYMBOL as an agent value in VALUE, generating
2807 any necessary bytecode in AX. */
2808static void
505e835d
UW
2809loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
2810 struct agent_expr *ax, struct axs_value *value)
0d53c4c4
DJ
2811{
2812 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
947bb88f 2813 const gdb_byte *data;
b6b08ebf 2814 size_t size;
3cf03773 2815 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
0d53c4c4 2816
8cf6f0b1 2817 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
cabe9ab6
PA
2818 if (data == NULL || size == 0)
2819 value->optimized_out = 1;
2820 else
2821 compile_dwarf_to_ax (ax, value, gdbarch, addr_size, data, data + size,
2822 dlbaton->per_cu);
0d53c4c4
DJ
2823}
2824
2825/* The set of location functions used with the DWARF-2 expression
2826 evaluator and location lists. */
768a979c 2827const struct symbol_computed_ops dwarf2_loclist_funcs = {
0d53c4c4
DJ
2828 loclist_read_variable,
2829 loclist_read_needs_frame,
2830 loclist_describe_location,
2831 loclist_tracepoint_var_ref
2832};
This page took 0.708993 seconds and 4 git commands to generate.