Remove die_reader_specs::comp_dir
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
CommitLineData
4c2df51b 1/* DWARF 2 location expression support for GDB.
feb13ab0 2
b811d2c2 3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
feb13ab0 4
4c2df51b
DJ
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7
JB
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
4c2df51b 13
a9762ec7
JB
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
4c2df51b
DJ
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
21
22#include "defs.h"
4de283e4
TT
23#include "ui-out.h"
24#include "value.h"
25#include "frame.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "inferior.h"
d55e5aa6 29#include "ax.h"
4de283e4
TT
30#include "ax-gdb.h"
31#include "regcache.h"
32#include "objfiles.h"
edb3359d 33#include "block.h"
4de283e4 34#include "gdbcmd.h"
0fde2c53 35#include "complaints.h"
fa8f86ff 36#include "dwarf2.h"
4c2df51b
DJ
37#include "dwarf2expr.h"
38#include "dwarf2loc.h"
587ee17b 39#include "dwarf2read.h"
4de283e4 40#include "dwarf2-frame.h"
f4382c45 41#include "dwarf2/leb.h"
4de283e4 42#include "compile/compile.h"
268a13a5 43#include "gdbsupport/selftest.h"
4de283e4
TT
44#include <algorithm>
45#include <vector>
46#include <unordered_set>
268a13a5
TT
47#include "gdbsupport/underlying.h"
48#include "gdbsupport/byte-vector.h"
4c2df51b 49
1632a688
JK
50static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
52 const gdb_byte *data,
56eb65bd
SP
53 size_t size,
54 struct dwarf2_per_cu_data *per_cu,
7942e96e
AA
55 struct type *subobj_type,
56 LONGEST subobj_byte_offset);
8cf6f0b1 57
192ca6d8
TT
58static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
59 (struct frame_info *frame,
60 enum call_site_parameter_kind kind,
61 union call_site_parameter_u kind_u,
62 struct dwarf2_per_cu_data **per_cu_return);
63
a6b786da
KB
64static struct value *indirect_synthetic_pointer
65 (sect_offset die, LONGEST byte_offset,
66 struct dwarf2_per_cu_data *per_cu,
67 struct frame_info *frame,
e4a62c65 68 struct type *type, bool resolve_abstract_p = false);
a6b786da 69
f664829e
DE
70/* Until these have formal names, we define these here.
71 ref: http://gcc.gnu.org/wiki/DebugFission
72 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
73 and is then followed by data specific to that entry. */
74
75enum debug_loc_kind
76{
77 /* Indicates the end of the list of entries. */
78 DEBUG_LOC_END_OF_LIST = 0,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the base address for all following entries. */
82 DEBUG_LOC_BASE_ADDRESS = 1,
83
84 /* This is followed by two unsigned LEB128 numbers that are indices into
85 .debug_addr and specify the beginning and ending addresses, and then
86 a normal location expression as in .debug_loc. */
3771a44c
DE
87 DEBUG_LOC_START_END = 2,
88
89 /* This is followed by an unsigned LEB128 number that is an index into
90 .debug_addr and specifies the beginning address, and a 4 byte unsigned
91 number that specifies the length, and then a normal location expression
92 as in .debug_loc. */
93 DEBUG_LOC_START_LENGTH = 3,
f664829e
DE
94
95 /* An internal value indicating there is insufficient data. */
96 DEBUG_LOC_BUFFER_OVERFLOW = -1,
97
98 /* An internal value indicating an invalid kind of entry was found. */
99 DEBUG_LOC_INVALID_ENTRY = -2
100};
101
b6807d98
TT
102/* Helper function which throws an error if a synthetic pointer is
103 invalid. */
104
105static void
106invalid_synthetic_pointer (void)
107{
108 error (_("access outside bounds of object "
109 "referenced via synthetic pointer"));
110}
111
f664829e
DE
112/* Decode the addresses in a non-dwo .debug_loc entry.
113 A pointer to the next byte to examine is returned in *NEW_PTR.
114 The encoded low,high addresses are return in *LOW,*HIGH.
115 The result indicates the kind of entry found. */
116
117static enum debug_loc_kind
118decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
119 const gdb_byte **new_ptr,
120 CORE_ADDR *low, CORE_ADDR *high,
121 enum bfd_endian byte_order,
122 unsigned int addr_size,
123 int signed_addr_p)
124{
125 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
126
127 if (buf_end - loc_ptr < 2 * addr_size)
128 return DEBUG_LOC_BUFFER_OVERFLOW;
129
130 if (signed_addr_p)
131 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
132 else
133 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
134 loc_ptr += addr_size;
135
136 if (signed_addr_p)
137 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
138 else
139 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
140 loc_ptr += addr_size;
141
142 *new_ptr = loc_ptr;
143
144 /* A base-address-selection entry. */
145 if ((*low & base_mask) == base_mask)
146 return DEBUG_LOC_BASE_ADDRESS;
147
148 /* An end-of-list entry. */
149 if (*low == 0 && *high == 0)
150 return DEBUG_LOC_END_OF_LIST;
151
3771a44c 152 return DEBUG_LOC_START_END;
f664829e
DE
153}
154
43988095
JK
155/* Decode the addresses in .debug_loclists entry.
156 A pointer to the next byte to examine is returned in *NEW_PTR.
157 The encoded low,high addresses are return in *LOW,*HIGH.
158 The result indicates the kind of entry found. */
159
160static enum debug_loc_kind
161decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
162 const gdb_byte *loc_ptr,
163 const gdb_byte *buf_end,
164 const gdb_byte **new_ptr,
165 CORE_ADDR *low, CORE_ADDR *high,
166 enum bfd_endian byte_order,
167 unsigned int addr_size,
168 int signed_addr_p)
169{
170 uint64_t u64;
171
172 if (loc_ptr == buf_end)
173 return DEBUG_LOC_BUFFER_OVERFLOW;
174
175 switch (*loc_ptr++)
176 {
3112ed97
NA
177 case DW_LLE_base_addressx:
178 *low = 0;
179 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
180 if (loc_ptr == NULL)
181 return DEBUG_LOC_BUFFER_OVERFLOW;
182 *high = dwarf2_read_addr_index (per_cu, u64);
183 *new_ptr = loc_ptr;
184 return DEBUG_LOC_BASE_ADDRESS;
185 case DW_LLE_startx_length:
186 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
187 if (loc_ptr == NULL)
188 return DEBUG_LOC_BUFFER_OVERFLOW;
189 *low = dwarf2_read_addr_index (per_cu, u64);
190 *high = *low;
191 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
192 if (loc_ptr == NULL)
193 return DEBUG_LOC_BUFFER_OVERFLOW;
194 *high += u64;
195 *new_ptr = loc_ptr;
196 return DEBUG_LOC_START_LENGTH;
197 case DW_LLE_start_length:
198 if (buf_end - loc_ptr < addr_size)
199 return DEBUG_LOC_BUFFER_OVERFLOW;
200 if (signed_addr_p)
201 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
202 else
203 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
204 loc_ptr += addr_size;
205 *high = *low;
206 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
207 if (loc_ptr == NULL)
208 return DEBUG_LOC_BUFFER_OVERFLOW;
209 *high += u64;
210 *new_ptr = loc_ptr;
211 return DEBUG_LOC_START_LENGTH;
43988095
JK
212 case DW_LLE_end_of_list:
213 *new_ptr = loc_ptr;
214 return DEBUG_LOC_END_OF_LIST;
215 case DW_LLE_base_address:
216 if (loc_ptr + addr_size > buf_end)
217 return DEBUG_LOC_BUFFER_OVERFLOW;
218 if (signed_addr_p)
219 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
220 else
221 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
222 loc_ptr += addr_size;
223 *new_ptr = loc_ptr;
224 return DEBUG_LOC_BASE_ADDRESS;
225 case DW_LLE_offset_pair:
226 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
227 if (loc_ptr == NULL)
228 return DEBUG_LOC_BUFFER_OVERFLOW;
229 *low = u64;
230 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
231 if (loc_ptr == NULL)
232 return DEBUG_LOC_BUFFER_OVERFLOW;
233 *high = u64;
234 *new_ptr = loc_ptr;
235 return DEBUG_LOC_START_END;
3112ed97
NA
236 /* Following cases are not supported yet. */
237 case DW_LLE_startx_endx:
238 case DW_LLE_start_end:
239 case DW_LLE_default_location:
43988095
JK
240 default:
241 return DEBUG_LOC_INVALID_ENTRY;
242 }
243}
244
f664829e
DE
245/* Decode the addresses in .debug_loc.dwo entry.
246 A pointer to the next byte to examine is returned in *NEW_PTR.
247 The encoded low,high addresses are return in *LOW,*HIGH.
248 The result indicates the kind of entry found. */
249
250static enum debug_loc_kind
251decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
252 const gdb_byte *loc_ptr,
253 const gdb_byte *buf_end,
254 const gdb_byte **new_ptr,
3771a44c
DE
255 CORE_ADDR *low, CORE_ADDR *high,
256 enum bfd_endian byte_order)
f664829e 257{
9fccedf7 258 uint64_t low_index, high_index;
f664829e
DE
259
260 if (loc_ptr == buf_end)
261 return DEBUG_LOC_BUFFER_OVERFLOW;
262
263 switch (*loc_ptr++)
264 {
43988095 265 case DW_LLE_GNU_end_of_list_entry:
f664829e
DE
266 *new_ptr = loc_ptr;
267 return DEBUG_LOC_END_OF_LIST;
43988095 268 case DW_LLE_GNU_base_address_selection_entry:
f664829e
DE
269 *low = 0;
270 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
271 if (loc_ptr == NULL)
272 return DEBUG_LOC_BUFFER_OVERFLOW;
273 *high = dwarf2_read_addr_index (per_cu, high_index);
274 *new_ptr = loc_ptr;
275 return DEBUG_LOC_BASE_ADDRESS;
43988095 276 case DW_LLE_GNU_start_end_entry:
f664829e
DE
277 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
278 if (loc_ptr == NULL)
279 return DEBUG_LOC_BUFFER_OVERFLOW;
280 *low = dwarf2_read_addr_index (per_cu, low_index);
281 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
282 if (loc_ptr == NULL)
283 return DEBUG_LOC_BUFFER_OVERFLOW;
284 *high = dwarf2_read_addr_index (per_cu, high_index);
285 *new_ptr = loc_ptr;
3771a44c 286 return DEBUG_LOC_START_END;
43988095 287 case DW_LLE_GNU_start_length_entry:
3771a44c
DE
288 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
289 if (loc_ptr == NULL)
290 return DEBUG_LOC_BUFFER_OVERFLOW;
291 *low = dwarf2_read_addr_index (per_cu, low_index);
292 if (loc_ptr + 4 > buf_end)
293 return DEBUG_LOC_BUFFER_OVERFLOW;
294 *high = *low;
295 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
296 *new_ptr = loc_ptr + 4;
297 return DEBUG_LOC_START_LENGTH;
f664829e
DE
298 default:
299 return DEBUG_LOC_INVALID_ENTRY;
300 }
301}
302
8cf6f0b1 303/* A function for dealing with location lists. Given a
0d53c4c4
DJ
304 symbol baton (BATON) and a pc value (PC), find the appropriate
305 location expression, set *LOCEXPR_LENGTH, and return a pointer
306 to the beginning of the expression. Returns NULL on failure.
307
308 For now, only return the first matching location expression; there
309 can be more than one in the list. */
310
8cf6f0b1
TT
311const gdb_byte *
312dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
313 size_t *locexpr_length, CORE_ADDR pc)
0d53c4c4 314{
ae0d2f24 315 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
f7fd4728 316 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e17a4113 317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ae0d2f24 318 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
d4a087c7 319 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
8edfa926 320 /* Adjust base_address for relocatable objects. */
9aa1f1e3 321 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
8edfa926 322 CORE_ADDR base_address = baton->base_address + base_offset;
f664829e 323 const gdb_byte *loc_ptr, *buf_end;
0d53c4c4
DJ
324
325 loc_ptr = baton->data;
326 buf_end = baton->data + baton->size;
327
328 while (1)
329 {
f664829e
DE
330 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
331 int length;
332 enum debug_loc_kind kind;
333 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
334
335 if (baton->from_dwo)
336 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
337 loc_ptr, buf_end, &new_ptr,
3771a44c 338 &low, &high, byte_order);
43988095 339 else if (dwarf2_version (baton->per_cu) < 5)
f664829e
DE
340 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
341 &low, &high,
342 byte_order, addr_size,
343 signed_addr_p);
43988095
JK
344 else
345 kind = decode_debug_loclists_addresses (baton->per_cu,
346 loc_ptr, buf_end, &new_ptr,
347 &low, &high, byte_order,
348 addr_size, signed_addr_p);
349
f664829e
DE
350 loc_ptr = new_ptr;
351 switch (kind)
1d6edc3c 352 {
f664829e 353 case DEBUG_LOC_END_OF_LIST:
1d6edc3c
JK
354 *locexpr_length = 0;
355 return NULL;
f664829e
DE
356 case DEBUG_LOC_BASE_ADDRESS:
357 base_address = high + base_offset;
358 continue;
3771a44c
DE
359 case DEBUG_LOC_START_END:
360 case DEBUG_LOC_START_LENGTH:
f664829e
DE
361 break;
362 case DEBUG_LOC_BUFFER_OVERFLOW:
363 case DEBUG_LOC_INVALID_ENTRY:
364 error (_("dwarf2_find_location_expression: "
365 "Corrupted DWARF expression."));
366 default:
367 gdb_assert_not_reached ("bad debug_loc_kind");
1d6edc3c 368 }
b5758fe4 369
bed911e5 370 /* Otherwise, a location expression entry.
8ddd5a6c
DE
371 If the entry is from a DWO, don't add base address: the entry is from
372 .debug_addr which already has the DWARF "base address". We still add
373 base_offset in case we're debugging a PIE executable. */
374 if (baton->from_dwo)
375 {
376 low += base_offset;
377 high += base_offset;
378 }
379 else
bed911e5
DE
380 {
381 low += base_address;
382 high += base_address;
383 }
0d53c4c4 384
43988095
JK
385 if (dwarf2_version (baton->per_cu) < 5)
386 {
387 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
388 loc_ptr += 2;
389 }
390 else
391 {
392 unsigned int bytes_read;
393
394 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
395 loc_ptr += bytes_read;
396 }
0d53c4c4 397
e18b2753
JK
398 if (low == high && pc == low)
399 {
400 /* This is entry PC record present only at entry point
401 of a function. Verify it is really the function entry point. */
402
3977b71f 403 const struct block *pc_block = block_for_pc (pc);
e18b2753
JK
404 struct symbol *pc_func = NULL;
405
406 if (pc_block)
407 pc_func = block_linkage_function (pc_block);
408
2b1ffcfd 409 if (pc_func && pc == BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (pc_func)))
e18b2753
JK
410 {
411 *locexpr_length = length;
412 return loc_ptr;
413 }
414 }
415
0d53c4c4
DJ
416 if (pc >= low && pc < high)
417 {
418 *locexpr_length = length;
419 return loc_ptr;
420 }
421
422 loc_ptr += length;
423 }
424}
425
4c2df51b
DJ
426/* This is the baton used when performing dwarf2 expression
427 evaluation. */
428struct dwarf_expr_baton
429{
430 struct frame_info *frame;
17ea53c3 431 struct dwarf2_per_cu_data *per_cu;
08412b07 432 CORE_ADDR obj_address;
4c2df51b
DJ
433};
434
f1e6e072
TT
435/* Implement find_frame_base_location method for LOC_BLOCK functions using
436 DWARF expression for its DW_AT_frame_base. */
437
438static void
439locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
440 const gdb_byte **start, size_t *length)
441{
9a3c8263
SM
442 struct dwarf2_locexpr_baton *symbaton
443 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
444
445 *length = symbaton->size;
446 *start = symbaton->data;
447}
448
7d1c9c9b
JB
449/* Implement the struct symbol_block_ops::get_frame_base method for
450 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
63e43d3a
PMR
451
452static CORE_ADDR
7d1c9c9b 453locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
63e43d3a
PMR
454{
455 struct gdbarch *gdbarch;
456 struct type *type;
457 struct dwarf2_locexpr_baton *dlbaton;
458 const gdb_byte *start;
459 size_t length;
460 struct value *result;
461
462 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
463 Thus, it's supposed to provide the find_frame_base_location method as
464 well. */
465 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
466
467 gdbarch = get_frame_arch (frame);
468 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 469 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
63e43d3a
PMR
470
471 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
472 (framefunc, get_frame_pc (frame), &start, &length);
473 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
474 dlbaton->per_cu);
475
476 /* The DW_AT_frame_base attribute contains a location description which
477 computes the base address itself. However, the call to
478 dwarf2_evaluate_loc_desc returns a value representing a variable at
479 that address. The frame base address is thus this variable's
480 address. */
481 return value_address (result);
482}
483
f1e6e072
TT
484/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
485 function uses DWARF expression for its DW_AT_frame_base. */
486
487const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
488{
63e43d3a 489 locexpr_find_frame_base_location,
7d1c9c9b 490 locexpr_get_frame_base
f1e6e072
TT
491};
492
493/* Implement find_frame_base_location method for LOC_BLOCK functions using
494 DWARF location list for its DW_AT_frame_base. */
495
496static void
497loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
498 const gdb_byte **start, size_t *length)
499{
9a3c8263
SM
500 struct dwarf2_loclist_baton *symbaton
501 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
502
503 *start = dwarf2_find_location_expression (symbaton, length, pc);
504}
505
7d1c9c9b
JB
506/* Implement the struct symbol_block_ops::get_frame_base method for
507 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
508
509static CORE_ADDR
510loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
511{
512 struct gdbarch *gdbarch;
513 struct type *type;
514 struct dwarf2_loclist_baton *dlbaton;
515 const gdb_byte *start;
516 size_t length;
517 struct value *result;
518
519 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
520 Thus, it's supposed to provide the find_frame_base_location method as
521 well. */
522 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
523
524 gdbarch = get_frame_arch (frame);
525 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 526 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
7d1c9c9b
JB
527
528 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
529 (framefunc, get_frame_pc (frame), &start, &length);
530 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
531 dlbaton->per_cu);
532
533 /* The DW_AT_frame_base attribute contains a location description which
534 computes the base address itself. However, the call to
535 dwarf2_evaluate_loc_desc returns a value representing a variable at
536 that address. The frame base address is thus this variable's
537 address. */
538 return value_address (result);
539}
540
f1e6e072
TT
541/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
542 function uses DWARF location list for its DW_AT_frame_base. */
543
544const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
545{
63e43d3a 546 loclist_find_frame_base_location,
7d1c9c9b 547 loclist_get_frame_base
f1e6e072
TT
548};
549
af945b75
TT
550/* See dwarf2loc.h. */
551
552void
553func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
554 const gdb_byte **start, size_t *length)
0936ad1d 555{
f1e6e072 556 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
0d53c4c4 557 {
f1e6e072 558 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
22c6caba 559
f1e6e072 560 ops_block->find_frame_base_location (framefunc, pc, start, length);
0d53c4c4
DJ
561 }
562 else
f1e6e072 563 *length = 0;
0d53c4c4 564
1d6edc3c 565 if (*length == 0)
8a3fe4f8 566 error (_("Could not find the frame base for \"%s\"."),
987012b8 567 framefunc->natural_name ());
4c2df51b
DJ
568}
569
4c2df51b 570static CORE_ADDR
192ca6d8 571get_frame_pc_for_per_cu_dwarf_call (void *baton)
4c2df51b 572{
192ca6d8 573 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
4c2df51b 574
192ca6d8 575 return ctx->get_frame_pc ();
4c2df51b
DJ
576}
577
5c631832 578static void
b64f50a1 579per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
192ca6d8 580 struct dwarf2_per_cu_data *per_cu)
5c631832
JK
581{
582 struct dwarf2_locexpr_baton block;
583
192ca6d8
TT
584 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
585 get_frame_pc_for_per_cu_dwarf_call,
586 ctx);
5c631832
JK
587
588 /* DW_OP_call_ref is currently not supported. */
589 gdb_assert (block.per_cu == per_cu);
590
595d2e30 591 ctx->eval (block.data, block.size);
5c631832
JK
592}
593
a6b786da
KB
594/* Given context CTX, section offset SECT_OFF, and compilation unit
595 data PER_CU, execute the "variable value" operation on the DIE
596 found at SECT_OFF. */
597
598static struct value *
599sect_variable_value (struct dwarf_expr_context *ctx, sect_offset sect_off,
600 struct dwarf2_per_cu_data *per_cu)
601{
602 struct type *die_type = dwarf2_fetch_die_type_sect_off (sect_off, per_cu);
603
604 if (die_type == NULL)
605 error (_("Bad DW_OP_GNU_variable_value DIE."));
606
607 /* Note: Things still work when the following test is removed. This
608 test and error is here to conform to the proposed specification. */
609 if (TYPE_CODE (die_type) != TYPE_CODE_INT
610 && TYPE_CODE (die_type) != TYPE_CODE_PTR)
611 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
612
613 struct type *type = lookup_pointer_type (die_type);
614 struct frame_info *frame = get_selected_frame (_("No frame selected."));
e4a62c65 615 return indirect_synthetic_pointer (sect_off, 0, per_cu, frame, type, true);
a6b786da
KB
616}
617
192ca6d8 618class dwarf_evaluate_loc_desc : public dwarf_expr_context
5c631832 619{
192ca6d8 620 public:
5c631832 621
192ca6d8
TT
622 struct frame_info *frame;
623 struct dwarf2_per_cu_data *per_cu;
624 CORE_ADDR obj_address;
5c631832 625
192ca6d8
TT
626 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
627 the frame in BATON. */
8a9b8146 628
632e107b 629 CORE_ADDR get_frame_cfa () override
192ca6d8
TT
630 {
631 return dwarf2_frame_cfa (frame);
632 }
8a9b8146 633
192ca6d8
TT
634 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
635 the frame in BATON. */
636
632e107b 637 CORE_ADDR get_frame_pc () override
192ca6d8
TT
638 {
639 return get_frame_address_in_block (frame);
640 }
641
642 /* Using the objfile specified in BATON, find the address for the
643 current thread's thread-local storage with offset OFFSET. */
632e107b 644 CORE_ADDR get_tls_address (CORE_ADDR offset) override
192ca6d8
TT
645 {
646 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
647
648 return target_translate_tls_address (objfile, offset);
649 }
650
651 /* Helper interface of per_cu_dwarf_call for
652 dwarf2_evaluate_loc_desc. */
653
632e107b 654 void dwarf_call (cu_offset die_offset) override
192ca6d8
TT
655 {
656 per_cu_dwarf_call (this, die_offset, per_cu);
657 }
658
a6b786da
KB
659 /* Helper interface of sect_variable_value for
660 dwarf2_evaluate_loc_desc. */
661
662 struct value *dwarf_variable_value (sect_offset sect_off) override
663 {
664 return sect_variable_value (this, sect_off, per_cu);
665 }
666
632e107b 667 struct type *get_base_type (cu_offset die_offset, int size) override
192ca6d8 668 {
7d5697f9
TT
669 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
670 if (result == NULL)
216f72a1 671 error (_("Could not find type for DW_OP_const_type"));
7d5697f9 672 if (size != 0 && TYPE_LENGTH (result) != size)
216f72a1 673 error (_("DW_OP_const_type has different sizes for type and data"));
7d5697f9 674 return result;
192ca6d8
TT
675 }
676
677 /* Callback function for dwarf2_evaluate_loc_desc.
336d760d 678 Fetch the address indexed by DW_OP_addrx or DW_OP_GNU_addr_index. */
192ca6d8 679
632e107b 680 CORE_ADDR get_addr_index (unsigned int index) override
192ca6d8
TT
681 {
682 return dwarf2_read_addr_index (per_cu, index);
683 }
684
685 /* Callback function for get_object_address. Return the address of the VLA
686 object. */
687
632e107b 688 CORE_ADDR get_object_address () override
192ca6d8
TT
689 {
690 if (obj_address == 0)
691 error (_("Location address is not set."));
692 return obj_address;
693 }
694
695 /* Execute DWARF block of call_site_parameter which matches KIND and
696 KIND_U. Choose DEREF_SIZE value of that parameter. Search
697 caller of this objects's frame.
698
699 The caller can be from a different CU - per_cu_dwarf_call
700 implementation can be more simple as it does not support cross-CU
701 DWARF executions. */
702
703 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
704 union call_site_parameter_u kind_u,
632e107b 705 int deref_size) override
192ca6d8
TT
706 {
707 struct frame_info *caller_frame;
708 struct dwarf2_per_cu_data *caller_per_cu;
192ca6d8
TT
709 struct call_site_parameter *parameter;
710 const gdb_byte *data_src;
711 size_t size;
712
713 caller_frame = get_prev_frame (frame);
714
715 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
716 &caller_per_cu);
717 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
718 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
719
720 /* DEREF_SIZE size is not verified here. */
721 if (data_src == NULL)
722 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 723 _("Cannot resolve DW_AT_call_data_value"));
192ca6d8 724
7d5697f9
TT
725 scoped_restore save_frame = make_scoped_restore (&this->frame,
726 caller_frame);
727 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
728 caller_per_cu);
729 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
730 (CORE_ADDR) 0);
192ca6d8
TT
731
732 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
733 this->gdbarch
7d5697f9 734 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
192ca6d8 735 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
7d5697f9 736 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
192ca6d8 737 scoped_restore save_offset = make_scoped_restore (&this->offset);
7d5697f9 738 this->offset = dwarf2_per_cu_text_offset (per_cu);
192ca6d8
TT
739
740 this->eval (data_src, size);
741 }
742
743 /* Using the frame specified in BATON, find the location expression
744 describing the frame base. Return a pointer to it in START and
745 its length in LENGTH. */
632e107b 746 void get_frame_base (const gdb_byte **start, size_t * length) override
192ca6d8
TT
747 {
748 /* FIXME: cagney/2003-03-26: This code should be using
749 get_frame_base_address(), and then implement a dwarf2 specific
750 this_base method. */
751 struct symbol *framefunc;
752 const struct block *bl = get_frame_block (frame, NULL);
753
754 if (bl == NULL)
755 error (_("frame address is not available."));
756
757 /* Use block_linkage_function, which returns a real (not inlined)
758 function, instead of get_frame_function, which may return an
759 inlined function. */
760 framefunc = block_linkage_function (bl);
761
762 /* If we found a frame-relative symbol then it was certainly within
763 some function associated with a frame. If we can't find the frame,
764 something has gone wrong. */
765 gdb_assert (framefunc != NULL);
766
767 func_get_frame_base_dwarf_block (framefunc,
768 get_frame_address_in_block (frame),
769 start, length);
770 }
771
772 /* Read memory at ADDR (length LEN) into BUF. */
773
632e107b 774 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
775 {
776 read_memory (addr, buf, len);
777 }
778
779 /* Using the frame specified in BATON, return the value of register
780 REGNUM, treated as a pointer. */
632e107b 781 CORE_ADDR read_addr_from_reg (int dwarf_regnum) override
192ca6d8
TT
782 {
783 struct gdbarch *gdbarch = get_frame_arch (frame);
784 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
785
786 return address_from_register (regnum, frame);
787 }
788
789 /* Implement "get_reg_value" callback. */
790
632e107b 791 struct value *get_reg_value (struct type *type, int dwarf_regnum) override
192ca6d8
TT
792 {
793 struct gdbarch *gdbarch = get_frame_arch (frame);
794 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
795
796 return value_from_register (type, regnum, frame);
797 }
798};
8a9b8146 799
8e3b41a9
JK
800/* See dwarf2loc.h. */
801
ccce17b0 802unsigned int entry_values_debug = 0;
8e3b41a9
JK
803
804/* Helper to set entry_values_debug. */
805
806static void
807show_entry_values_debug (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809{
810 fprintf_filtered (file,
811 _("Entry values and tail call frames debugging is %s.\n"),
812 value);
813}
814
216f72a1 815/* Find DW_TAG_call_site's DW_AT_call_target address.
8e3b41a9
JK
816 CALLER_FRAME (for registers) can be NULL if it is not known. This function
817 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
818
819static CORE_ADDR
820call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
821 struct call_site *call_site,
822 struct frame_info *caller_frame)
823{
824 switch (FIELD_LOC_KIND (call_site->target))
825 {
826 case FIELD_LOC_KIND_DWARF_BLOCK:
827 {
828 struct dwarf2_locexpr_baton *dwarf_block;
829 struct value *val;
830 struct type *caller_core_addr_type;
831 struct gdbarch *caller_arch;
832
833 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
834 if (dwarf_block == NULL)
835 {
7cbd4a93 836 struct bound_minimal_symbol msym;
8e3b41a9
JK
837
838 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
839 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 840 _("DW_AT_call_target is not specified at %s in %s"),
8e3b41a9 841 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 842 (msym.minsym == NULL ? "???"
c9d95fa3 843 : msym.minsym->print_name ()));
8e3b41a9
JK
844
845 }
846 if (caller_frame == NULL)
847 {
7cbd4a93 848 struct bound_minimal_symbol msym;
8e3b41a9
JK
849
850 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
851 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 852 _("DW_AT_call_target DWARF block resolving "
8e3b41a9
JK
853 "requires known frame which is currently not "
854 "available at %s in %s"),
855 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 856 (msym.minsym == NULL ? "???"
c9d95fa3 857 : msym.minsym->print_name ()));
8e3b41a9
JK
858
859 }
860 caller_arch = get_frame_arch (caller_frame);
861 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
862 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
863 dwarf_block->data, dwarf_block->size,
864 dwarf_block->per_cu);
216f72a1 865 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
8e3b41a9
JK
866 if (VALUE_LVAL (val) == lval_memory)
867 return value_address (val);
868 else
869 return value_as_address (val);
870 }
871
872 case FIELD_LOC_KIND_PHYSNAME:
873 {
874 const char *physname;
3b7344d5 875 struct bound_minimal_symbol msym;
8e3b41a9
JK
876
877 physname = FIELD_STATIC_PHYSNAME (call_site->target);
9112db09
JK
878
879 /* Handle both the mangled and demangled PHYSNAME. */
880 msym = lookup_minimal_symbol (physname, NULL, NULL);
3b7344d5 881 if (msym.minsym == NULL)
8e3b41a9 882 {
3b7344d5 883 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
8e3b41a9
JK
884 throw_error (NO_ENTRY_VALUE_ERROR,
885 _("Cannot find function \"%s\" for a call site target "
886 "at %s in %s"),
887 physname, paddress (call_site_gdbarch, call_site->pc),
3b7344d5 888 (msym.minsym == NULL ? "???"
c9d95fa3 889 : msym.minsym->print_name ()));
8e3b41a9
JK
890
891 }
77e371c0 892 return BMSYMBOL_VALUE_ADDRESS (msym);
8e3b41a9
JK
893 }
894
895 case FIELD_LOC_KIND_PHYSADDR:
896 return FIELD_STATIC_PHYSADDR (call_site->target);
897
898 default:
899 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
900 }
901}
902
111c6489
JK
903/* Convert function entry point exact address ADDR to the function which is
904 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
905 NO_ENTRY_VALUE_ERROR otherwise. */
906
907static struct symbol *
908func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
909{
910 struct symbol *sym = find_pc_function (addr);
911 struct type *type;
912
2b1ffcfd 913 if (sym == NULL || BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) != addr)
111c6489 914 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 915 _("DW_TAG_call_site resolving failed to find function "
111c6489
JK
916 "name for address %s"),
917 paddress (gdbarch, addr));
918
919 type = SYMBOL_TYPE (sym);
920 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
921 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
922
923 return sym;
924}
925
2d6c5dc2
JK
926/* Verify function with entry point exact address ADDR can never call itself
927 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
928 can call itself via tail calls.
929
930 If a funtion can tail call itself its entry value based parameters are
931 unreliable. There is no verification whether the value of some/all
932 parameters is unchanged through the self tail call, we expect if there is
933 a self tail call all the parameters can be modified. */
934
935static void
936func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
937{
2d6c5dc2
JK
938 CORE_ADDR addr;
939
2d6c5dc2
JK
940 /* The verification is completely unordered. Track here function addresses
941 which still need to be iterated. */
fc4007c9 942 std::vector<CORE_ADDR> todo;
2d6c5dc2 943
fc4007c9
TT
944 /* Track here CORE_ADDRs which were already visited. */
945 std::unordered_set<CORE_ADDR> addr_hash;
2d6c5dc2 946
fc4007c9
TT
947 todo.push_back (verify_addr);
948 while (!todo.empty ())
2d6c5dc2
JK
949 {
950 struct symbol *func_sym;
951 struct call_site *call_site;
952
fc4007c9
TT
953 addr = todo.back ();
954 todo.pop_back ();
2d6c5dc2
JK
955
956 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
957
958 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
959 call_site; call_site = call_site->tail_call_next)
960 {
961 CORE_ADDR target_addr;
2d6c5dc2
JK
962
963 /* CALLER_FRAME with registers is not available for tail-call jumped
964 frames. */
965 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
966
967 if (target_addr == verify_addr)
968 {
7cbd4a93 969 struct bound_minimal_symbol msym;
2d6c5dc2
JK
970
971 msym = lookup_minimal_symbol_by_pc (verify_addr);
972 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 973 _("DW_OP_entry_value resolving has found "
2d6c5dc2
JK
974 "function \"%s\" at %s can call itself via tail "
975 "calls"),
7cbd4a93 976 (msym.minsym == NULL ? "???"
c9d95fa3 977 : msym.minsym->print_name ()),
2d6c5dc2
JK
978 paddress (gdbarch, verify_addr));
979 }
980
fc4007c9
TT
981 if (addr_hash.insert (target_addr).second)
982 todo.push_back (target_addr);
2d6c5dc2
JK
983 }
984 }
2d6c5dc2
JK
985}
986
111c6489
JK
987/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
988 ENTRY_VALUES_DEBUG. */
989
990static void
991tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
992{
993 CORE_ADDR addr = call_site->pc;
7cbd4a93 994 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
111c6489
JK
995
996 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
7cbd4a93 997 (msym.minsym == NULL ? "???"
c9d95fa3 998 : msym.minsym->print_name ()));
111c6489
JK
999
1000}
1001
111c6489
JK
1002/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
1003 only top callers and bottom callees which are present in both. GDBARCH is
1004 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
1005 no remaining possibilities to provide unambiguous non-trivial result.
1006 RESULTP should point to NULL on the first (initialization) call. Caller is
1007 responsible for xfree of any RESULTP data. */
1008
1009static void
fc4007c9
TT
1010chain_candidate (struct gdbarch *gdbarch,
1011 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
1012 std::vector<struct call_site *> *chain)
111c6489 1013{
fc4007c9 1014 long length = chain->size ();
111c6489
JK
1015 int callers, callees, idx;
1016
fc4007c9 1017 if (*resultp == NULL)
111c6489
JK
1018 {
1019 /* Create the initial chain containing all the passed PCs. */
1020
fc4007c9
TT
1021 struct call_site_chain *result
1022 = ((struct call_site_chain *)
1023 xmalloc (sizeof (*result)
1024 + sizeof (*result->call_site) * (length - 1)));
111c6489
JK
1025 result->length = length;
1026 result->callers = result->callees = length;
fc4007c9
TT
1027 if (!chain->empty ())
1028 memcpy (result->call_site, chain->data (),
19a1b230 1029 sizeof (*result->call_site) * length);
fc4007c9 1030 resultp->reset (result);
111c6489
JK
1031
1032 if (entry_values_debug)
1033 {
1034 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
1035 for (idx = 0; idx < length; idx++)
1036 tailcall_dump (gdbarch, result->call_site[idx]);
1037 fputc_unfiltered ('\n', gdb_stdlog);
1038 }
1039
1040 return;
1041 }
1042
1043 if (entry_values_debug)
1044 {
1045 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
1046 for (idx = 0; idx < length; idx++)
fc4007c9 1047 tailcall_dump (gdbarch, chain->at (idx));
111c6489
JK
1048 fputc_unfiltered ('\n', gdb_stdlog);
1049 }
1050
1051 /* Intersect callers. */
1052
fc4007c9 1053 callers = std::min ((long) (*resultp)->callers, length);
111c6489 1054 for (idx = 0; idx < callers; idx++)
fc4007c9 1055 if ((*resultp)->call_site[idx] != chain->at (idx))
111c6489 1056 {
fc4007c9 1057 (*resultp)->callers = idx;
111c6489
JK
1058 break;
1059 }
1060
1061 /* Intersect callees. */
1062
fc4007c9 1063 callees = std::min ((long) (*resultp)->callees, length);
111c6489 1064 for (idx = 0; idx < callees; idx++)
fc4007c9
TT
1065 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
1066 != chain->at (length - 1 - idx))
111c6489 1067 {
fc4007c9 1068 (*resultp)->callees = idx;
111c6489
JK
1069 break;
1070 }
1071
1072 if (entry_values_debug)
1073 {
1074 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
fc4007c9
TT
1075 for (idx = 0; idx < (*resultp)->callers; idx++)
1076 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
111c6489 1077 fputs_unfiltered (" |", gdb_stdlog);
fc4007c9
TT
1078 for (idx = 0; idx < (*resultp)->callees; idx++)
1079 tailcall_dump (gdbarch,
1080 (*resultp)->call_site[(*resultp)->length
1081 - (*resultp)->callees + idx]);
111c6489
JK
1082 fputc_unfiltered ('\n', gdb_stdlog);
1083 }
1084
fc4007c9 1085 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
111c6489
JK
1086 {
1087 /* There are no common callers or callees. It could be also a direct
1088 call (which has length 0) with ambiguous possibility of an indirect
1089 call - CALLERS == CALLEES == 0 is valid during the first allocation
1090 but any subsequence processing of such entry means ambiguity. */
fc4007c9 1091 resultp->reset (NULL);
111c6489
JK
1092 return;
1093 }
1094
1095 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1096 PC again. In such case there must be two different code paths to reach
e0619de6 1097 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
fc4007c9 1098 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
111c6489
JK
1099}
1100
1101/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1102 assumed frames between them use GDBARCH. Use depth first search so we can
1103 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1104 would have needless GDB stack overhead. Caller is responsible for xfree of
1105 the returned result. Any unreliability results in thrown
1106 NO_ENTRY_VALUE_ERROR. */
1107
1108static struct call_site_chain *
1109call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1110 CORE_ADDR callee_pc)
1111{
c4be5165 1112 CORE_ADDR save_callee_pc = callee_pc;
fc4007c9 1113 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
111c6489
JK
1114 struct call_site *call_site;
1115
111c6489
JK
1116 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1117 call_site nor any possible call_site at CALLEE_PC's function is there.
1118 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1119 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
fc4007c9 1120 std::vector<struct call_site *> chain;
111c6489
JK
1121
1122 /* We are not interested in the specific PC inside the callee function. */
1123 callee_pc = get_pc_function_start (callee_pc);
1124 if (callee_pc == 0)
1125 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
c4be5165 1126 paddress (gdbarch, save_callee_pc));
111c6489 1127
fc4007c9
TT
1128 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1129 std::unordered_set<CORE_ADDR> addr_hash;
111c6489
JK
1130
1131 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1132 at the target's function. All the possible tail call sites in the
1133 target's function will get iterated as already pushed into CHAIN via their
1134 TAIL_CALL_NEXT. */
1135 call_site = call_site_for_pc (gdbarch, caller_pc);
1136
1137 while (call_site)
1138 {
1139 CORE_ADDR target_func_addr;
1140 struct call_site *target_call_site;
1141
1142 /* CALLER_FRAME with registers is not available for tail-call jumped
1143 frames. */
1144 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1145
1146 if (target_func_addr == callee_pc)
1147 {
fc4007c9 1148 chain_candidate (gdbarch, &retval, &chain);
111c6489
JK
1149 if (retval == NULL)
1150 break;
1151
1152 /* There is no way to reach CALLEE_PC again as we would prevent
1153 entering it twice as being already marked in ADDR_HASH. */
1154 target_call_site = NULL;
1155 }
1156 else
1157 {
1158 struct symbol *target_func;
1159
1160 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1161 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1162 }
1163
1164 do
1165 {
1166 /* Attempt to visit TARGET_CALL_SITE. */
1167
1168 if (target_call_site)
1169 {
fc4007c9 1170 if (addr_hash.insert (target_call_site->pc).second)
111c6489
JK
1171 {
1172 /* Successfully entered TARGET_CALL_SITE. */
1173
fc4007c9 1174 chain.push_back (target_call_site);
111c6489
JK
1175 break;
1176 }
1177 }
1178
1179 /* Backtrack (without revisiting the originating call_site). Try the
1180 callers's sibling; if there isn't any try the callers's callers's
1181 sibling etc. */
1182
1183 target_call_site = NULL;
fc4007c9 1184 while (!chain.empty ())
111c6489 1185 {
fc4007c9
TT
1186 call_site = chain.back ();
1187 chain.pop_back ();
111c6489 1188
fc4007c9
TT
1189 size_t removed = addr_hash.erase (call_site->pc);
1190 gdb_assert (removed == 1);
111c6489
JK
1191
1192 target_call_site = call_site->tail_call_next;
1193 if (target_call_site)
1194 break;
1195 }
1196 }
1197 while (target_call_site);
1198
fc4007c9 1199 if (chain.empty ())
111c6489
JK
1200 call_site = NULL;
1201 else
fc4007c9 1202 call_site = chain.back ();
111c6489
JK
1203 }
1204
1205 if (retval == NULL)
1206 {
7cbd4a93 1207 struct bound_minimal_symbol msym_caller, msym_callee;
111c6489
JK
1208
1209 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1210 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1211 throw_error (NO_ENTRY_VALUE_ERROR,
1212 _("There are no unambiguously determinable intermediate "
1213 "callers or callees between caller function \"%s\" at %s "
1214 "and callee function \"%s\" at %s"),
7cbd4a93 1215 (msym_caller.minsym == NULL
c9d95fa3 1216 ? "???" : msym_caller.minsym->print_name ()),
111c6489 1217 paddress (gdbarch, caller_pc),
7cbd4a93 1218 (msym_callee.minsym == NULL
c9d95fa3 1219 ? "???" : msym_callee.minsym->print_name ()),
111c6489
JK
1220 paddress (gdbarch, callee_pc));
1221 }
1222
fc4007c9 1223 return retval.release ();
111c6489
JK
1224}
1225
1226/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1227 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1228 constructed return NULL. Caller is responsible for xfree of the returned
1229 result. */
1230
1231struct call_site_chain *
1232call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1233 CORE_ADDR callee_pc)
1234{
111c6489
JK
1235 struct call_site_chain *retval = NULL;
1236
a70b8144 1237 try
111c6489
JK
1238 {
1239 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1240 }
230d2906 1241 catch (const gdb_exception_error &e)
111c6489
JK
1242 {
1243 if (e.error == NO_ENTRY_VALUE_ERROR)
1244 {
1245 if (entry_values_debug)
1246 exception_print (gdb_stdout, e);
1247
1248 return NULL;
1249 }
1250 else
eedc3f4f 1251 throw;
111c6489 1252 }
492d29ea 1253
111c6489
JK
1254 return retval;
1255}
1256
24c5c679
JK
1257/* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1258
1259static int
1260call_site_parameter_matches (struct call_site_parameter *parameter,
1261 enum call_site_parameter_kind kind,
1262 union call_site_parameter_u kind_u)
1263{
1264 if (kind == parameter->kind)
1265 switch (kind)
1266 {
1267 case CALL_SITE_PARAMETER_DWARF_REG:
1268 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1269 case CALL_SITE_PARAMETER_FB_OFFSET:
1270 return kind_u.fb_offset == parameter->u.fb_offset;
1788b2d3 1271 case CALL_SITE_PARAMETER_PARAM_OFFSET:
9c541725 1272 return kind_u.param_cu_off == parameter->u.param_cu_off;
24c5c679
JK
1273 }
1274 return 0;
1275}
1276
1277/* Fetch call_site_parameter from caller matching KIND and KIND_U.
1278 FRAME is for callee.
8e3b41a9
JK
1279
1280 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1281 otherwise. */
1282
1283static struct call_site_parameter *
24c5c679
JK
1284dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1285 enum call_site_parameter_kind kind,
1286 union call_site_parameter_u kind_u,
8e3b41a9
JK
1287 struct dwarf2_per_cu_data **per_cu_return)
1288{
9e3a7d65
JK
1289 CORE_ADDR func_addr, caller_pc;
1290 struct gdbarch *gdbarch;
1291 struct frame_info *caller_frame;
8e3b41a9
JK
1292 struct call_site *call_site;
1293 int iparams;
509f0fd9
JK
1294 /* Initialize it just to avoid a GCC false warning. */
1295 struct call_site_parameter *parameter = NULL;
8e3b41a9
JK
1296 CORE_ADDR target_addr;
1297
9e3a7d65
JK
1298 while (get_frame_type (frame) == INLINE_FRAME)
1299 {
1300 frame = get_prev_frame (frame);
1301 gdb_assert (frame != NULL);
1302 }
1303
1304 func_addr = get_frame_func (frame);
1305 gdbarch = get_frame_arch (frame);
1306 caller_frame = get_prev_frame (frame);
8e3b41a9
JK
1307 if (gdbarch != frame_unwind_arch (frame))
1308 {
7cbd4a93
TT
1309 struct bound_minimal_symbol msym
1310 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1311 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1312
1313 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1314 _("DW_OP_entry_value resolving callee gdbarch %s "
8e3b41a9
JK
1315 "(of %s (%s)) does not match caller gdbarch %s"),
1316 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1317 paddress (gdbarch, func_addr),
7cbd4a93 1318 (msym.minsym == NULL ? "???"
c9d95fa3 1319 : msym.minsym->print_name ()),
8e3b41a9
JK
1320 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1321 }
1322
1323 if (caller_frame == NULL)
1324 {
7cbd4a93
TT
1325 struct bound_minimal_symbol msym
1326 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9 1327
216f72a1 1328 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
8e3b41a9
JK
1329 "requires caller of %s (%s)"),
1330 paddress (gdbarch, func_addr),
7cbd4a93 1331 (msym.minsym == NULL ? "???"
c9d95fa3 1332 : msym.minsym->print_name ()));
8e3b41a9
JK
1333 }
1334 caller_pc = get_frame_pc (caller_frame);
1335 call_site = call_site_for_pc (gdbarch, caller_pc);
1336
1337 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1338 if (target_addr != func_addr)
1339 {
1340 struct minimal_symbol *target_msym, *func_msym;
1341
7cbd4a93
TT
1342 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1343 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
8e3b41a9 1344 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1345 _("DW_OP_entry_value resolving expects callee %s at %s "
8e3b41a9
JK
1346 "but the called frame is for %s at %s"),
1347 (target_msym == NULL ? "???"
c9d95fa3 1348 : target_msym->print_name ()),
8e3b41a9 1349 paddress (gdbarch, target_addr),
c9d95fa3 1350 func_msym == NULL ? "???" : func_msym->print_name (),
8e3b41a9
JK
1351 paddress (gdbarch, func_addr));
1352 }
1353
2d6c5dc2
JK
1354 /* No entry value based parameters would be reliable if this function can
1355 call itself via tail calls. */
1356 func_verify_no_selftailcall (gdbarch, func_addr);
1357
8e3b41a9
JK
1358 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1359 {
1360 parameter = &call_site->parameter[iparams];
24c5c679 1361 if (call_site_parameter_matches (parameter, kind, kind_u))
8e3b41a9
JK
1362 break;
1363 }
1364 if (iparams == call_site->parameter_count)
1365 {
7cbd4a93
TT
1366 struct minimal_symbol *msym
1367 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
8e3b41a9 1368
216f72a1 1369 /* DW_TAG_call_site_parameter will be missing just if GCC could not
8e3b41a9
JK
1370 determine its value. */
1371 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
216f72a1 1372 "at DW_TAG_call_site %s at %s"),
8e3b41a9 1373 paddress (gdbarch, caller_pc),
c9d95fa3 1374 msym == NULL ? "???" : msym->print_name ());
8e3b41a9
JK
1375 }
1376
1377 *per_cu_return = call_site->per_cu;
1378 return parameter;
1379}
1380
a471c594 1381/* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
216f72a1
JK
1382 the normal DW_AT_call_value block. Otherwise return the
1383 DW_AT_call_data_value (dereferenced) block.
e18b2753
JK
1384
1385 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1386 struct value.
1387
1388 Function always returns non-NULL, non-optimized out value. It throws
1389 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1390
1391static struct value *
1392dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
a471c594 1393 CORE_ADDR deref_size, struct type *type,
e18b2753
JK
1394 struct frame_info *caller_frame,
1395 struct dwarf2_per_cu_data *per_cu)
1396{
a471c594 1397 const gdb_byte *data_src;
e18b2753 1398 gdb_byte *data;
a471c594
JK
1399 size_t size;
1400
1401 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1402 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1403
1404 /* DEREF_SIZE size is not verified here. */
1405 if (data_src == NULL)
1406 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1407 _("Cannot resolve DW_AT_call_data_value"));
e18b2753 1408
216f72a1 1409 /* DW_AT_call_value is a DWARF expression, not a DWARF
e18b2753
JK
1410 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1411 DWARF block. */
224c3ddb 1412 data = (gdb_byte *) alloca (size + 1);
a471c594
JK
1413 memcpy (data, data_src, size);
1414 data[size] = DW_OP_stack_value;
e18b2753 1415
a471c594 1416 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
e18b2753
JK
1417}
1418
a471c594
JK
1419/* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1420 the indirect method on it, that is use its stored target value, the sole
1421 purpose of entry_data_value_funcs.. */
1422
1423static struct value *
1424entry_data_value_coerce_ref (const struct value *value)
1425{
1426 struct type *checked_type = check_typedef (value_type (value));
1427 struct value *target_val;
1428
aa006118 1429 if (!TYPE_IS_REFERENCE (checked_type))
a471c594
JK
1430 return NULL;
1431
9a3c8263 1432 target_val = (struct value *) value_computed_closure (value);
a471c594
JK
1433 value_incref (target_val);
1434 return target_val;
1435}
1436
1437/* Implement copy_closure. */
1438
1439static void *
1440entry_data_value_copy_closure (const struct value *v)
1441{
9a3c8263 1442 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594
JK
1443
1444 value_incref (target_val);
1445 return target_val;
1446}
1447
1448/* Implement free_closure. */
1449
1450static void
1451entry_data_value_free_closure (struct value *v)
1452{
9a3c8263 1453 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594 1454
22bc8444 1455 value_decref (target_val);
a471c594
JK
1456}
1457
1458/* Vector for methods for an entry value reference where the referenced value
1459 is stored in the caller. On the first dereference use
216f72a1 1460 DW_AT_call_data_value in the caller. */
a471c594
JK
1461
1462static const struct lval_funcs entry_data_value_funcs =
1463{
1464 NULL, /* read */
1465 NULL, /* write */
a471c594
JK
1466 NULL, /* indirect */
1467 entry_data_value_coerce_ref,
1468 NULL, /* check_synthetic_pointer */
1469 entry_data_value_copy_closure,
1470 entry_data_value_free_closure
1471};
1472
24c5c679
JK
1473/* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1474 are used to match DW_AT_location at the caller's
216f72a1 1475 DW_TAG_call_site_parameter.
e18b2753
JK
1476
1477 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1478 cannot resolve the parameter for any reason. */
1479
1480static struct value *
1481value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
24c5c679
JK
1482 enum call_site_parameter_kind kind,
1483 union call_site_parameter_u kind_u)
e18b2753 1484{
a471c594
JK
1485 struct type *checked_type = check_typedef (type);
1486 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
e18b2753 1487 struct frame_info *caller_frame = get_prev_frame (frame);
a471c594 1488 struct value *outer_val, *target_val, *val;
e18b2753
JK
1489 struct call_site_parameter *parameter;
1490 struct dwarf2_per_cu_data *caller_per_cu;
1491
24c5c679 1492 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
e18b2753
JK
1493 &caller_per_cu);
1494
a471c594
JK
1495 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1496 type, caller_frame,
1497 caller_per_cu);
1498
216f72a1 1499 /* Check if DW_AT_call_data_value cannot be used. If it should be
a471c594
JK
1500 used and it is not available do not fall back to OUTER_VAL - dereferencing
1501 TYPE_CODE_REF with non-entry data value would give current value - not the
1502 entry value. */
1503
aa006118 1504 if (!TYPE_IS_REFERENCE (checked_type)
a471c594
JK
1505 || TYPE_TARGET_TYPE (checked_type) == NULL)
1506 return outer_val;
1507
1508 target_val = dwarf_entry_parameter_to_value (parameter,
1509 TYPE_LENGTH (target_type),
1510 target_type, caller_frame,
1511 caller_per_cu);
1512
a471c594 1513 val = allocate_computed_value (type, &entry_data_value_funcs,
895dafa6 1514 release_value (target_val).release ());
a471c594
JK
1515
1516 /* Copy the referencing pointer to the new computed value. */
1517 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1518 TYPE_LENGTH (checked_type));
1519 set_value_lazy (val, 0);
1520
1521 return val;
e18b2753
JK
1522}
1523
1524/* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1525 SIZE are DWARF block used to match DW_AT_location at the caller's
216f72a1 1526 DW_TAG_call_site_parameter.
e18b2753
JK
1527
1528 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1529 cannot resolve the parameter for any reason. */
1530
1531static struct value *
1532value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1533 const gdb_byte *block, size_t block_len)
1534{
24c5c679 1535 union call_site_parameter_u kind_u;
e18b2753 1536
24c5c679
JK
1537 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1538 if (kind_u.dwarf_reg != -1)
1539 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1540 kind_u);
e18b2753 1541
24c5c679
JK
1542 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1543 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1544 kind_u);
e18b2753
JK
1545
1546 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1547 suppressed during normal operation. The expression can be arbitrary if
1548 there is no caller-callee entry value binding expected. */
1549 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1550 _("DWARF-2 expression error: DW_OP_entry_value is supported "
e18b2753
JK
1551 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1552}
1553
052b9502
NF
1554struct piece_closure
1555{
88bfdde4 1556 /* Reference count. */
1e467161 1557 int refc = 0;
88bfdde4 1558
8cf6f0b1 1559 /* The CU from which this closure's expression came. */
1e467161 1560 struct dwarf2_per_cu_data *per_cu = NULL;
052b9502 1561
1e467161
SM
1562 /* The pieces describing this variable. */
1563 std::vector<dwarf_expr_piece> pieces;
ee40d8d4
YQ
1564
1565 /* Frame ID of frame to which a register value is relative, used
1566 only by DWARF_VALUE_REGISTER. */
1567 struct frame_id frame_id;
052b9502
NF
1568};
1569
1570/* Allocate a closure for a value formed from separately-described
1571 PIECES. */
1572
1573static struct piece_closure *
8cf6f0b1 1574allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1e467161 1575 std::vector<dwarf_expr_piece> &&pieces,
ddd7882a 1576 struct frame_info *frame)
052b9502 1577{
1e467161 1578 struct piece_closure *c = new piece_closure;
052b9502 1579
88bfdde4 1580 c->refc = 1;
8cf6f0b1 1581 c->per_cu = per_cu;
1e467161 1582 c->pieces = std::move (pieces);
ee40d8d4
YQ
1583 if (frame == NULL)
1584 c->frame_id = null_frame_id;
1585 else
1586 c->frame_id = get_frame_id (frame);
052b9502 1587
1e467161
SM
1588 for (dwarf_expr_piece &piece : c->pieces)
1589 if (piece.location == DWARF_VALUE_STACK)
1590 value_incref (piece.v.value);
052b9502
NF
1591
1592 return c;
1593}
1594
03c8af18
AA
1595/* Return the number of bytes overlapping a contiguous chunk of N_BITS
1596 bits whose first bit is located at bit offset START. */
1597
1598static size_t
1599bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1600{
1601 return (start % 8 + n_bits + 7) / 8;
1602}
1603
55acdf22
AA
1604/* Read or write a pieced value V. If FROM != NULL, operate in "write
1605 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1606 operate in "read mode": fetch the contents of the (lazy) value V by
1607 composing it from its pieces. */
1608
052b9502 1609static void
55acdf22 1610rw_pieced_value (struct value *v, struct value *from)
052b9502
NF
1611{
1612 int i;
359b19bb 1613 LONGEST offset = 0, max_offset;
d3b1e874 1614 ULONGEST bits_to_skip;
55acdf22
AA
1615 gdb_byte *v_contents;
1616 const gdb_byte *from_contents;
3e43a32a
MS
1617 struct piece_closure *c
1618 = (struct piece_closure *) value_computed_closure (v);
d5722aa2 1619 gdb::byte_vector buffer;
d5a22e77 1620 bool bits_big_endian = type_byte_order (value_type (v)) == BFD_ENDIAN_BIG;
afd74c5f 1621
55acdf22
AA
1622 if (from != NULL)
1623 {
1624 from_contents = value_contents (from);
1625 v_contents = NULL;
1626 }
1627 else
1628 {
1629 if (value_type (v) != value_enclosing_type (v))
1630 internal_error (__FILE__, __LINE__,
1631 _("Should not be able to create a lazy value with "
1632 "an enclosing type"));
1633 v_contents = value_contents_raw (v);
1634 from_contents = NULL;
1635 }
052b9502 1636
d3b1e874 1637 bits_to_skip = 8 * value_offset (v);
0e03807e
TT
1638 if (value_bitsize (v))
1639 {
af547a96
AA
1640 bits_to_skip += (8 * value_offset (value_parent (v))
1641 + value_bitpos (v));
55acdf22 1642 if (from != NULL
34877895 1643 && (type_byte_order (value_type (from))
55acdf22
AA
1644 == BFD_ENDIAN_BIG))
1645 {
1646 /* Use the least significant bits of FROM. */
1647 max_offset = 8 * TYPE_LENGTH (value_type (from));
1648 offset = max_offset - value_bitsize (v);
1649 }
1650 else
1651 max_offset = value_bitsize (v);
0e03807e
TT
1652 }
1653 else
359b19bb 1654 max_offset = 8 * TYPE_LENGTH (value_type (v));
d3b1e874 1655
f236533e 1656 /* Advance to the first non-skipped piece. */
1e467161 1657 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
f236533e
AA
1658 bits_to_skip -= c->pieces[i].size;
1659
1e467161 1660 for (; i < c->pieces.size () && offset < max_offset; i++)
052b9502
NF
1661 {
1662 struct dwarf_expr_piece *p = &c->pieces[i];
55acdf22 1663 size_t this_size_bits, this_size;
359b19bb 1664
f236533e 1665 this_size_bits = p->size - bits_to_skip;
359b19bb
AA
1666 if (this_size_bits > max_offset - offset)
1667 this_size_bits = max_offset - offset;
9a619af0 1668
cec03d70 1669 switch (p->location)
052b9502 1670 {
cec03d70
TT
1671 case DWARF_VALUE_REGISTER:
1672 {
ee40d8d4 1673 struct frame_info *frame = frame_find_by_id (c->frame_id);
cec03d70 1674 struct gdbarch *arch = get_frame_arch (frame);
0fde2c53 1675 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
03c8af18 1676 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
0fde2c53 1677 int optim, unavail;
dcbf108f 1678
0fde2c53 1679 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
65d84b76 1680 && p->offset + p->size < reg_bits)
63b4f126 1681 {
0fde2c53 1682 /* Big-endian, and we want less than full size. */
f236533e 1683 bits_to_skip += reg_bits - (p->offset + p->size);
63b4f126 1684 }
65d84b76 1685 else
f236533e 1686 bits_to_skip += p->offset;
65d84b76 1687
f236533e 1688 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
d5722aa2 1689 buffer.resize (this_size);
0fde2c53 1690
55acdf22 1691 if (from == NULL)
63b4f126 1692 {
55acdf22
AA
1693 /* Read mode. */
1694 if (!get_frame_register_bytes (frame, gdb_regnum,
1695 bits_to_skip / 8,
1696 this_size, buffer.data (),
1697 &optim, &unavail))
1698 {
1699 if (optim)
1700 mark_value_bits_optimized_out (v, offset,
1701 this_size_bits);
1702 if (unavail)
1703 mark_value_bits_unavailable (v, offset,
1704 this_size_bits);
1705 break;
1706 }
1707
1708 copy_bitwise (v_contents, offset,
1709 buffer.data (), bits_to_skip % 8,
1710 this_size_bits, bits_big_endian);
1711 }
1712 else
1713 {
1714 /* Write mode. */
1715 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1716 {
1717 /* Data is copied non-byte-aligned into the register.
1718 Need some bits from original register value. */
1719 get_frame_register_bytes (frame, gdb_regnum,
1720 bits_to_skip / 8,
1721 this_size, buffer.data (),
1722 &optim, &unavail);
1723 if (optim)
1724 throw_error (OPTIMIZED_OUT_ERROR,
1725 _("Can't do read-modify-write to "
1726 "update bitfield; containing word "
1727 "has been optimized out"));
1728 if (unavail)
1729 throw_error (NOT_AVAILABLE_ERROR,
1730 _("Can't do read-modify-write to "
1731 "update bitfield; containing word "
1732 "is unavailable"));
1733 }
1734
1735 copy_bitwise (buffer.data (), bits_to_skip % 8,
1736 from_contents, offset,
1737 this_size_bits, bits_big_endian);
1738 put_frame_register_bytes (frame, gdb_regnum,
1739 bits_to_skip / 8,
1740 this_size, buffer.data ());
63b4f126 1741 }
cec03d70
TT
1742 }
1743 break;
1744
1745 case DWARF_VALUE_MEMORY:
55acdf22
AA
1746 {
1747 bits_to_skip += p->offset;
1748
1749 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1750
1751 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1752 && offset % 8 == 0)
1753 {
1754 /* Everything is byte-aligned; no buffer needed. */
1755 if (from != NULL)
1756 write_memory_with_notification (start_addr,
1757 (from_contents
1758 + offset / 8),
1759 this_size_bits / 8);
1760 else
1761 read_value_memory (v, offset,
1762 p->v.mem.in_stack_memory,
1763 p->v.mem.addr + bits_to_skip / 8,
1764 v_contents + offset / 8,
1765 this_size_bits / 8);
1766 break;
1767 }
1768
1769 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
d5722aa2 1770 buffer.resize (this_size);
55acdf22
AA
1771
1772 if (from == NULL)
1773 {
1774 /* Read mode. */
1775 read_value_memory (v, offset,
1776 p->v.mem.in_stack_memory,
1777 p->v.mem.addr + bits_to_skip / 8,
1778 buffer.data (), this_size);
1779 copy_bitwise (v_contents, offset,
1780 buffer.data (), bits_to_skip % 8,
1781 this_size_bits, bits_big_endian);
1782 }
1783 else
1784 {
1785 /* Write mode. */
1786 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1787 {
1788 if (this_size <= 8)
1789 {
1790 /* Perform a single read for small sizes. */
1791 read_memory (start_addr, buffer.data (),
1792 this_size);
1793 }
1794 else
1795 {
1796 /* Only the first and last bytes can possibly have
1797 any bits reused. */
1798 read_memory (start_addr, buffer.data (), 1);
1799 read_memory (start_addr + this_size - 1,
1800 &buffer[this_size - 1], 1);
1801 }
1802 }
1803
1804 copy_bitwise (buffer.data (), bits_to_skip % 8,
1805 from_contents, offset,
1806 this_size_bits, bits_big_endian);
1807 write_memory_with_notification (start_addr,
1808 buffer.data (),
1809 this_size);
1810 }
1811 }
cec03d70
TT
1812 break;
1813
1814 case DWARF_VALUE_STACK:
1815 {
55acdf22
AA
1816 if (from != NULL)
1817 {
1818 mark_value_bits_optimized_out (v, offset, this_size_bits);
1819 break;
1820 }
1821
e9352324
AA
1822 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1823 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1824 ULONGEST stack_value_size_bits
1825 = 8 * TYPE_LENGTH (value_type (p->v.value));
1826
1827 /* Use zeroes if piece reaches beyond stack value. */
65d84b76 1828 if (p->offset + p->size > stack_value_size_bits)
e9352324
AA
1829 break;
1830
1831 /* Piece is anchored at least significant bit end. */
1832 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
f236533e 1833 bits_to_skip += stack_value_size_bits - p->offset - p->size;
65d84b76 1834 else
f236533e 1835 bits_to_skip += p->offset;
e9352324 1836
55acdf22 1837 copy_bitwise (v_contents, offset,
e9352324 1838 value_contents_all (p->v.value),
f236533e 1839 bits_to_skip,
e9352324 1840 this_size_bits, bits_big_endian);
cec03d70
TT
1841 }
1842 break;
1843
1844 case DWARF_VALUE_LITERAL:
1845 {
55acdf22
AA
1846 if (from != NULL)
1847 {
1848 mark_value_bits_optimized_out (v, offset, this_size_bits);
1849 break;
1850 }
1851
242d31ab
AA
1852 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1853 size_t n = this_size_bits;
afd74c5f 1854
242d31ab 1855 /* Cut off at the end of the implicit value. */
f236533e
AA
1856 bits_to_skip += p->offset;
1857 if (bits_to_skip >= literal_size_bits)
242d31ab 1858 break;
f236533e
AA
1859 if (n > literal_size_bits - bits_to_skip)
1860 n = literal_size_bits - bits_to_skip;
e9352324 1861
55acdf22 1862 copy_bitwise (v_contents, offset,
f236533e 1863 p->v.literal.data, bits_to_skip,
242d31ab 1864 n, bits_big_endian);
cec03d70
TT
1865 }
1866 break;
1867
8cf6f0b1 1868 case DWARF_VALUE_IMPLICIT_POINTER:
55acdf22
AA
1869 if (from != NULL)
1870 {
1871 mark_value_bits_optimized_out (v, offset, this_size_bits);
1872 break;
1873 }
1874
1875 /* These bits show up as zeros -- but do not cause the value to
1876 be considered optimized-out. */
8cf6f0b1
TT
1877 break;
1878
cb826367 1879 case DWARF_VALUE_OPTIMIZED_OUT:
9a0dc9e3 1880 mark_value_bits_optimized_out (v, offset, this_size_bits);
cb826367
TT
1881 break;
1882
cec03d70
TT
1883 default:
1884 internal_error (__FILE__, __LINE__, _("invalid location type"));
052b9502 1885 }
d3b1e874 1886
d3b1e874 1887 offset += this_size_bits;
f236533e 1888 bits_to_skip = 0;
052b9502
NF
1889 }
1890}
1891
55acdf22 1892
052b9502 1893static void
55acdf22 1894read_pieced_value (struct value *v)
052b9502 1895{
55acdf22
AA
1896 rw_pieced_value (v, NULL);
1897}
242d31ab 1898
55acdf22
AA
1899static void
1900write_pieced_value (struct value *to, struct value *from)
1901{
1902 rw_pieced_value (to, from);
052b9502
NF
1903}
1904
9a0dc9e3
PA
1905/* An implementation of an lval_funcs method to see whether a value is
1906 a synthetic pointer. */
8cf6f0b1 1907
0e03807e 1908static int
6b850546 1909check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
9a0dc9e3 1910 int bit_length)
0e03807e
TT
1911{
1912 struct piece_closure *c
1913 = (struct piece_closure *) value_computed_closure (value);
1914 int i;
1915
1916 bit_offset += 8 * value_offset (value);
1917 if (value_bitsize (value))
1918 bit_offset += value_bitpos (value);
1919
1e467161 1920 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
0e03807e
TT
1921 {
1922 struct dwarf_expr_piece *p = &c->pieces[i];
1923 size_t this_size_bits = p->size;
1924
1925 if (bit_offset > 0)
1926 {
1927 if (bit_offset >= this_size_bits)
1928 {
1929 bit_offset -= this_size_bits;
1930 continue;
1931 }
1932
1933 bit_length -= this_size_bits - bit_offset;
1934 bit_offset = 0;
1935 }
1936 else
1937 bit_length -= this_size_bits;
1938
9a0dc9e3
PA
1939 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1940 return 0;
0e03807e
TT
1941 }
1942
9a0dc9e3 1943 return 1;
8cf6f0b1
TT
1944}
1945
1946/* A wrapper function for get_frame_address_in_block. */
1947
1948static CORE_ADDR
1949get_frame_address_in_block_wrapper (void *baton)
1950{
9a3c8263 1951 return get_frame_address_in_block ((struct frame_info *) baton);
8cf6f0b1
TT
1952}
1953
3326303b
MG
1954/* Fetch a DW_AT_const_value through a synthetic pointer. */
1955
1956static struct value *
1957fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1958 struct dwarf2_per_cu_data *per_cu,
1959 struct type *type)
1960{
1961 struct value *result = NULL;
3326303b
MG
1962 const gdb_byte *bytes;
1963 LONGEST len;
1964
8268c778 1965 auto_obstack temp_obstack;
3326303b
MG
1966 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
1967
1968 if (bytes != NULL)
1969 {
1970 if (byte_offset >= 0
1971 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
1972 {
1973 bytes += byte_offset;
1974 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
1975 }
1976 else
1977 invalid_synthetic_pointer ();
1978 }
1979 else
1980 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
1981
3326303b
MG
1982 return result;
1983}
1984
1985/* Fetch the value pointed to by a synthetic pointer. */
1986
1987static struct value *
1988indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1989 struct dwarf2_per_cu_data *per_cu,
e4a62c65
TV
1990 struct frame_info *frame, struct type *type,
1991 bool resolve_abstract_p)
3326303b
MG
1992{
1993 /* Fetch the location expression of the DIE we're pointing to. */
1994 struct dwarf2_locexpr_baton baton
1995 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
e4a62c65
TV
1996 get_frame_address_in_block_wrapper, frame,
1997 resolve_abstract_p);
3326303b 1998
7942e96e
AA
1999 /* Get type of pointed-to DIE. */
2000 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2001 if (orig_type == NULL)
2002 invalid_synthetic_pointer ();
2003
3326303b
MG
2004 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2005 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2006 or it may've been optimized out. */
2007 if (baton.data != NULL)
7942e96e
AA
2008 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2009 baton.size, baton.per_cu,
2010 TYPE_TARGET_TYPE (type),
3326303b
MG
2011 byte_offset);
2012 else
2013 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2014 type);
2015}
2016
8cf6f0b1
TT
2017/* An implementation of an lval_funcs method to indirect through a
2018 pointer. This handles the synthetic pointer case when needed. */
2019
2020static struct value *
2021indirect_pieced_value (struct value *value)
2022{
2023 struct piece_closure *c
2024 = (struct piece_closure *) value_computed_closure (value);
2025 struct type *type;
2026 struct frame_info *frame;
6b850546
DT
2027 int i, bit_length;
2028 LONGEST bit_offset;
8cf6f0b1 2029 struct dwarf_expr_piece *piece = NULL;
8cf6f0b1 2030 LONGEST byte_offset;
b597c318 2031 enum bfd_endian byte_order;
8cf6f0b1 2032
0e37a63c 2033 type = check_typedef (value_type (value));
8cf6f0b1
TT
2034 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2035 return NULL;
2036
2037 bit_length = 8 * TYPE_LENGTH (type);
2038 bit_offset = 8 * value_offset (value);
2039 if (value_bitsize (value))
2040 bit_offset += value_bitpos (value);
2041
1e467161 2042 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
8cf6f0b1
TT
2043 {
2044 struct dwarf_expr_piece *p = &c->pieces[i];
2045 size_t this_size_bits = p->size;
2046
2047 if (bit_offset > 0)
2048 {
2049 if (bit_offset >= this_size_bits)
2050 {
2051 bit_offset -= this_size_bits;
2052 continue;
2053 }
2054
2055 bit_length -= this_size_bits - bit_offset;
2056 bit_offset = 0;
2057 }
2058 else
2059 bit_length -= this_size_bits;
2060
2061 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2062 return NULL;
2063
2064 if (bit_length != 0)
216f72a1 2065 error (_("Invalid use of DW_OP_implicit_pointer"));
8cf6f0b1
TT
2066
2067 piece = p;
2068 break;
2069 }
2070
3326303b 2071 gdb_assert (piece != NULL);
8cf6f0b1 2072 frame = get_selected_frame (_("No frame selected."));
543305c9 2073
5bd1ef56
TT
2074 /* This is an offset requested by GDB, such as value subscripts.
2075 However, due to how synthetic pointers are implemented, this is
2076 always presented to us as a pointer type. This means we have to
b597c318
YQ
2077 sign-extend it manually as appropriate. Use raw
2078 extract_signed_integer directly rather than value_as_address and
2079 sign extend afterwards on architectures that would need it
2080 (mostly everywhere except MIPS, which has signed addresses) as
2081 the later would go through gdbarch_pointer_to_address and thus
2082 return a CORE_ADDR with high bits set on architectures that
2083 encode address spaces and other things in CORE_ADDR. */
2084 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2085 byte_offset = extract_signed_integer (value_contents (value),
2086 TYPE_LENGTH (type), byte_order);
5bd1ef56 2087 byte_offset += piece->v.ptr.offset;
8cf6f0b1 2088
9c541725
PA
2089 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2090 byte_offset, c->per_cu,
3326303b
MG
2091 frame, type);
2092}
8cf6f0b1 2093
3326303b
MG
2094/* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2095 references. */
b6807d98 2096
3326303b
MG
2097static struct value *
2098coerce_pieced_ref (const struct value *value)
2099{
2100 struct type *type = check_typedef (value_type (value));
b6807d98 2101
3326303b
MG
2102 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2103 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2104 {
2105 const struct piece_closure *closure
2106 = (struct piece_closure *) value_computed_closure (value);
2107 struct frame_info *frame
2108 = get_selected_frame (_("No frame selected."));
2109
2110 /* gdb represents synthetic pointers as pieced values with a single
2111 piece. */
2112 gdb_assert (closure != NULL);
1e467161 2113 gdb_assert (closure->pieces.size () == 1);
3326303b 2114
1e467161
SM
2115 return indirect_synthetic_pointer
2116 (closure->pieces[0].v.ptr.die_sect_off,
2117 closure->pieces[0].v.ptr.offset,
2118 closure->per_cu, frame, type);
3326303b
MG
2119 }
2120 else
2121 {
2122 /* Else: not a synthetic reference; do nothing. */
2123 return NULL;
2124 }
0e03807e
TT
2125}
2126
052b9502 2127static void *
0e03807e 2128copy_pieced_value_closure (const struct value *v)
052b9502 2129{
3e43a32a
MS
2130 struct piece_closure *c
2131 = (struct piece_closure *) value_computed_closure (v);
052b9502 2132
88bfdde4
TT
2133 ++c->refc;
2134 return c;
052b9502
NF
2135}
2136
2137static void
2138free_pieced_value_closure (struct value *v)
2139{
3e43a32a
MS
2140 struct piece_closure *c
2141 = (struct piece_closure *) value_computed_closure (v);
052b9502 2142
88bfdde4
TT
2143 --c->refc;
2144 if (c->refc == 0)
2145 {
1e467161
SM
2146 for (dwarf_expr_piece &p : c->pieces)
2147 if (p.location == DWARF_VALUE_STACK)
22bc8444 2148 value_decref (p.v.value);
8a9b8146 2149
1e467161 2150 delete c;
88bfdde4 2151 }
052b9502
NF
2152}
2153
2154/* Functions for accessing a variable described by DW_OP_piece. */
c8f2448a 2155static const struct lval_funcs pieced_value_funcs = {
052b9502
NF
2156 read_pieced_value,
2157 write_pieced_value,
8cf6f0b1 2158 indirect_pieced_value,
3326303b 2159 coerce_pieced_ref,
8cf6f0b1 2160 check_pieced_synthetic_pointer,
052b9502
NF
2161 copy_pieced_value_closure,
2162 free_pieced_value_closure
2163};
2164
4c2df51b 2165/* Evaluate a location description, starting at DATA and with length
8cf6f0b1 2166 SIZE, to find the current location of variable of TYPE in the
7942e96e
AA
2167 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2168 location of the subobject of type SUBOBJ_TYPE at byte offset
2169 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
a2d33775 2170
8cf6f0b1
TT
2171static struct value *
2172dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
56eb65bd 2173 const gdb_byte *data, size_t size,
8cf6f0b1 2174 struct dwarf2_per_cu_data *per_cu,
7942e96e
AA
2175 struct type *subobj_type,
2176 LONGEST subobj_byte_offset)
4c2df51b 2177{
4c2df51b 2178 struct value *retval;
ac56253d 2179 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2180
7942e96e
AA
2181 if (subobj_type == NULL)
2182 {
2183 subobj_type = type;
2184 subobj_byte_offset = 0;
2185 }
2186 else if (subobj_byte_offset < 0)
8cf6f0b1
TT
2187 invalid_synthetic_pointer ();
2188
0d53c4c4 2189 if (size == 0)
7942e96e 2190 return allocate_optimized_out_value (subobj_type);
0d53c4c4 2191
192ca6d8
TT
2192 dwarf_evaluate_loc_desc ctx;
2193 ctx.frame = frame;
2194 ctx.per_cu = per_cu;
2195 ctx.obj_address = 0;
4c2df51b 2196
0cf08227 2197 scoped_value_mark free_values;
4a227398 2198
718b9626
TT
2199 ctx.gdbarch = get_objfile_arch (objfile);
2200 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2201 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2202 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2203
a70b8144 2204 try
79e1a869 2205 {
595d2e30 2206 ctx.eval (data, size);
79e1a869 2207 }
230d2906 2208 catch (const gdb_exception_error &ex)
79e1a869
PA
2209 {
2210 if (ex.error == NOT_AVAILABLE_ERROR)
2211 {
0cf08227 2212 free_values.free_to_mark ();
7942e96e
AA
2213 retval = allocate_value (subobj_type);
2214 mark_value_bytes_unavailable (retval, 0,
2215 TYPE_LENGTH (subobj_type));
79e1a869
PA
2216 return retval;
2217 }
8e3b41a9
JK
2218 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2219 {
2220 if (entry_values_debug)
2221 exception_print (gdb_stdout, ex);
0cf08227 2222 free_values.free_to_mark ();
7942e96e 2223 return allocate_optimized_out_value (subobj_type);
8e3b41a9 2224 }
79e1a869 2225 else
eedc3f4f 2226 throw;
79e1a869
PA
2227 }
2228
1e467161 2229 if (ctx.pieces.size () > 0)
87808bd6 2230 {
052b9502 2231 struct piece_closure *c;
8cf6f0b1 2232 ULONGEST bit_size = 0;
052b9502 2233
1e467161
SM
2234 for (dwarf_expr_piece &piece : ctx.pieces)
2235 bit_size += piece.size;
03278692
TT
2236 /* Complain if the expression is larger than the size of the
2237 outer type. */
2238 if (bit_size > 8 * TYPE_LENGTH (type))
8cf6f0b1
TT
2239 invalid_synthetic_pointer ();
2240
1e467161 2241 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
72fc29ff
TT
2242 /* We must clean up the value chain after creating the piece
2243 closure but before allocating the result. */
0cf08227 2244 free_values.free_to_mark ();
7942e96e
AA
2245 retval = allocate_computed_value (subobj_type,
2246 &pieced_value_funcs, c);
2247 set_value_offset (retval, subobj_byte_offset);
87808bd6 2248 }
4c2df51b
DJ
2249 else
2250 {
718b9626 2251 switch (ctx.location)
cec03d70
TT
2252 {
2253 case DWARF_VALUE_REGISTER:
2254 {
2255 struct gdbarch *arch = get_frame_arch (frame);
7c33b57c 2256 int dwarf_regnum
595d2e30 2257 = longest_to_int (value_as_long (ctx.fetch (0)));
0fde2c53 2258 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
9a619af0 2259
7942e96e 2260 if (subobj_byte_offset != 0)
8cf6f0b1 2261 error (_("cannot use offset on synthetic pointer to register"));
0cf08227 2262 free_values.free_to_mark ();
7942e96e 2263 retval = value_from_register (subobj_type, gdb_regnum, frame);
0fde2c53
DE
2264 if (value_optimized_out (retval))
2265 {
2266 struct value *tmp;
2267
2268 /* This means the register has undefined value / was
2269 not saved. As we're computing the location of some
2270 variable etc. in the program, not a value for
2271 inspecting a register ($pc, $sp, etc.), return a
2272 generic optimized out value instead, so that we show
2273 <optimized out> instead of <not saved>. */
7942e96e
AA
2274 tmp = allocate_value (subobj_type);
2275 value_contents_copy (tmp, 0, retval, 0,
2276 TYPE_LENGTH (subobj_type));
0fde2c53
DE
2277 retval = tmp;
2278 }
cec03d70
TT
2279 }
2280 break;
2281
2282 case DWARF_VALUE_MEMORY:
2283 {
f56331b4 2284 struct type *ptr_type;
595d2e30 2285 CORE_ADDR address = ctx.fetch_address (0);
69009882 2286 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
cec03d70 2287
f56331b4
KB
2288 /* DW_OP_deref_size (and possibly other operations too) may
2289 create a pointer instead of an address. Ideally, the
2290 pointer to address conversion would be performed as part
2291 of those operations, but the type of the object to
2292 which the address refers is not known at the time of
2293 the operation. Therefore, we do the conversion here
2294 since the type is readily available. */
2295
7942e96e 2296 switch (TYPE_CODE (subobj_type))
f56331b4
KB
2297 {
2298 case TYPE_CODE_FUNC:
2299 case TYPE_CODE_METHOD:
718b9626 2300 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
f56331b4
KB
2301 break;
2302 default:
718b9626 2303 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
f56331b4
KB
2304 break;
2305 }
2306 address = value_as_address (value_from_pointer (ptr_type, address));
2307
0cf08227 2308 free_values.free_to_mark ();
7942e96e
AA
2309 retval = value_at_lazy (subobj_type,
2310 address + subobj_byte_offset);
44353522
DE
2311 if (in_stack_memory)
2312 set_value_stack (retval, 1);
cec03d70
TT
2313 }
2314 break;
2315
2316 case DWARF_VALUE_STACK:
2317 {
595d2e30 2318 struct value *value = ctx.fetch (0);
8a9b8146 2319 size_t n = TYPE_LENGTH (value_type (value));
7942e96e
AA
2320 size_t len = TYPE_LENGTH (subobj_type);
2321 size_t max = TYPE_LENGTH (type);
2322 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
cec03d70 2323
7942e96e 2324 if (subobj_byte_offset + len > max)
8cf6f0b1
TT
2325 invalid_synthetic_pointer ();
2326
72fc29ff
TT
2327 /* Preserve VALUE because we are going to free values back
2328 to the mark, but we still need the value contents
2329 below. */
bbfa6f00 2330 value_ref_ptr value_holder = value_ref_ptr::new_reference (value);
0cf08227 2331 free_values.free_to_mark ();
72fc29ff 2332
7942e96e 2333 retval = allocate_value (subobj_type);
b6cede78 2334
7942e96e
AA
2335 /* The given offset is relative to the actual object. */
2336 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2337 subobj_byte_offset += n - max;
2338
2339 memcpy (value_contents_raw (retval),
2340 value_contents_all (value) + subobj_byte_offset, len);
cec03d70
TT
2341 }
2342 break;
2343
2344 case DWARF_VALUE_LITERAL:
2345 {
2346 bfd_byte *contents;
7942e96e 2347 size_t n = TYPE_LENGTH (subobj_type);
cec03d70 2348
7942e96e 2349 if (subobj_byte_offset + n > ctx.len)
8cf6f0b1
TT
2350 invalid_synthetic_pointer ();
2351
0cf08227 2352 free_values.free_to_mark ();
7942e96e 2353 retval = allocate_value (subobj_type);
cec03d70 2354 contents = value_contents_raw (retval);
7942e96e 2355 memcpy (contents, ctx.data + subobj_byte_offset, n);
cec03d70
TT
2356 }
2357 break;
2358
dd90784c 2359 case DWARF_VALUE_OPTIMIZED_OUT:
0cf08227 2360 free_values.free_to_mark ();
7942e96e 2361 retval = allocate_optimized_out_value (subobj_type);
dd90784c
JK
2362 break;
2363
8cf6f0b1
TT
2364 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2365 operation by execute_stack_op. */
2366 case DWARF_VALUE_IMPLICIT_POINTER:
cb826367
TT
2367 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2368 it can only be encountered when making a piece. */
cec03d70
TT
2369 default:
2370 internal_error (__FILE__, __LINE__, _("invalid location type"));
2371 }
4c2df51b
DJ
2372 }
2373
718b9626 2374 set_value_initialized (retval, ctx.initialized);
42be36b3 2375
4c2df51b
DJ
2376 return retval;
2377}
8cf6f0b1
TT
2378
2379/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2380 passes 0 as the byte_offset. */
2381
2382struct value *
2383dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
56eb65bd 2384 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2385 struct dwarf2_per_cu_data *per_cu)
2386{
7942e96e
AA
2387 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2388 NULL, 0);
8cf6f0b1
TT
2389}
2390
80180f79 2391/* Evaluates a dwarf expression and stores the result in VAL, expecting
63e43d3a
PMR
2392 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2393 frame in which the expression is evaluated. ADDR is a context (location of
2394 a variable) and might be needed to evaluate the location expression.
80180f79
SA
2395 Returns 1 on success, 0 otherwise. */
2396
2397static int
2398dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
63e43d3a 2399 struct frame_info *frame,
08412b07 2400 CORE_ADDR addr,
1cfdf534 2401 CORE_ADDR *valp)
80180f79 2402{
80180f79 2403 struct objfile *objfile;
80180f79
SA
2404
2405 if (dlbaton == NULL || dlbaton->size == 0)
2406 return 0;
2407
192ca6d8 2408 dwarf_evaluate_loc_desc ctx;
80180f79 2409
192ca6d8
TT
2410 ctx.frame = frame;
2411 ctx.per_cu = dlbaton->per_cu;
2412 ctx.obj_address = addr;
80180f79
SA
2413
2414 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2415
718b9626
TT
2416 ctx.gdbarch = get_objfile_arch (objfile);
2417 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2418 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2419 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
80180f79 2420
a70b8144 2421 try
16f808ec
TV
2422 {
2423 ctx.eval (dlbaton->data, dlbaton->size);
2424 }
230d2906 2425 catch (const gdb_exception_error &ex)
16f808ec
TV
2426 {
2427 if (ex.error == NOT_AVAILABLE_ERROR)
2428 {
2429 return 0;
2430 }
2431 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2432 {
2433 if (entry_values_debug)
2434 exception_print (gdb_stdout, ex);
2435 return 0;
2436 }
2437 else
eedc3f4f 2438 throw;
16f808ec 2439 }
80180f79 2440
718b9626 2441 switch (ctx.location)
80180f79
SA
2442 {
2443 case DWARF_VALUE_REGISTER:
2444 case DWARF_VALUE_MEMORY:
2445 case DWARF_VALUE_STACK:
595d2e30 2446 *valp = ctx.fetch_address (0);
718b9626 2447 if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 2448 *valp = ctx.read_addr_from_reg (*valp);
80180f79
SA
2449 return 1;
2450 case DWARF_VALUE_LITERAL:
718b9626
TT
2451 *valp = extract_signed_integer (ctx.data, ctx.len,
2452 gdbarch_byte_order (ctx.gdbarch));
80180f79
SA
2453 return 1;
2454 /* Unsupported dwarf values. */
2455 case DWARF_VALUE_OPTIMIZED_OUT:
2456 case DWARF_VALUE_IMPLICIT_POINTER:
2457 break;
2458 }
2459
80180f79
SA
2460 return 0;
2461}
2462
2463/* See dwarf2loc.h. */
2464
603490bf 2465bool
08412b07 2466dwarf2_evaluate_property (const struct dynamic_prop *prop,
63e43d3a 2467 struct frame_info *frame,
df25ebbd
JB
2468 struct property_addr_info *addr_stack,
2469 CORE_ADDR *value)
80180f79
SA
2470{
2471 if (prop == NULL)
603490bf 2472 return false;
80180f79 2473
63e43d3a
PMR
2474 if (frame == NULL && has_stack_frames ())
2475 frame = get_selected_frame (NULL);
2476
80180f79
SA
2477 switch (prop->kind)
2478 {
2479 case PROP_LOCEXPR:
2480 {
9a3c8263
SM
2481 const struct dwarf2_property_baton *baton
2482 = (const struct dwarf2_property_baton *) prop->data.baton;
9a49df9d 2483 gdb_assert (baton->property_type != NULL);
80180f79 2484
63e43d3a
PMR
2485 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2486 addr_stack ? addr_stack->addr : 0,
df25ebbd 2487 value))
80180f79 2488 {
9a49df9d 2489 if (baton->locexpr.is_reference)
80180f79 2490 {
9a49df9d 2491 struct value *val = value_at (baton->property_type, *value);
80180f79
SA
2492 *value = value_as_address (val);
2493 }
0d4e84ed
AB
2494 else
2495 {
2496 gdb_assert (baton->property_type != NULL);
2497
2498 struct type *type = check_typedef (baton->property_type);
2499 if (TYPE_LENGTH (type) < sizeof (CORE_ADDR)
2500 && !TYPE_UNSIGNED (type))
2501 {
2502 /* If we have a valid return candidate and it's value
2503 is signed, we have to sign-extend the value because
2504 CORE_ADDR on 64bit machine has 8 bytes but address
2505 size of an 32bit application is bytes. */
2506 const int addr_size
2507 = (dwarf2_per_cu_addr_size (baton->locexpr.per_cu)
2508 * TARGET_CHAR_BIT);
2509 const CORE_ADDR neg_mask
2510 = (~((CORE_ADDR) 0) << (addr_size - 1));
2511
2512 /* Check if signed bit is set and sign-extend values. */
2513 if (*value & neg_mask)
2514 *value |= neg_mask;
2515 }
2516 }
603490bf 2517 return true;
80180f79
SA
2518 }
2519 }
2520 break;
2521
2522 case PROP_LOCLIST:
2523 {
9a3c8263
SM
2524 struct dwarf2_property_baton *baton
2525 = (struct dwarf2_property_baton *) prop->data.baton;
80180f79
SA
2526 CORE_ADDR pc = get_frame_address_in_block (frame);
2527 const gdb_byte *data;
2528 struct value *val;
2529 size_t size;
2530
2531 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2532 if (data != NULL)
2533 {
9a49df9d 2534 val = dwarf2_evaluate_loc_desc (baton->property_type, frame, data,
80180f79
SA
2535 size, baton->loclist.per_cu);
2536 if (!value_optimized_out (val))
2537 {
2538 *value = value_as_address (val);
603490bf 2539 return true;
80180f79
SA
2540 }
2541 }
2542 }
2543 break;
2544
2545 case PROP_CONST:
2546 *value = prop->data.const_val;
603490bf 2547 return true;
df25ebbd
JB
2548
2549 case PROP_ADDR_OFFSET:
2550 {
9a3c8263
SM
2551 struct dwarf2_property_baton *baton
2552 = (struct dwarf2_property_baton *) prop->data.baton;
df25ebbd
JB
2553 struct property_addr_info *pinfo;
2554 struct value *val;
2555
2556 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
988915ee
TT
2557 {
2558 /* This approach lets us avoid checking the qualifiers. */
2559 if (TYPE_MAIN_TYPE (pinfo->type)
9a49df9d 2560 == TYPE_MAIN_TYPE (baton->property_type))
988915ee
TT
2561 break;
2562 }
df25ebbd 2563 if (pinfo == NULL)
2c811c0f 2564 error (_("cannot find reference address for offset property"));
c3345124
JB
2565 if (pinfo->valaddr != NULL)
2566 val = value_from_contents
2567 (baton->offset_info.type,
2568 pinfo->valaddr + baton->offset_info.offset);
2569 else
2570 val = value_at (baton->offset_info.type,
2571 pinfo->addr + baton->offset_info.offset);
df25ebbd 2572 *value = value_as_address (val);
603490bf 2573 return true;
df25ebbd 2574 }
80180f79
SA
2575 }
2576
603490bf 2577 return false;
80180f79
SA
2578}
2579
bb2ec1b3
TT
2580/* See dwarf2loc.h. */
2581
2582void
d82b3862 2583dwarf2_compile_property_to_c (string_file *stream,
bb2ec1b3
TT
2584 const char *result_name,
2585 struct gdbarch *gdbarch,
2586 unsigned char *registers_used,
2587 const struct dynamic_prop *prop,
2588 CORE_ADDR pc,
2589 struct symbol *sym)
2590{
9a3c8263
SM
2591 struct dwarf2_property_baton *baton
2592 = (struct dwarf2_property_baton *) prop->data.baton;
bb2ec1b3
TT
2593 const gdb_byte *data;
2594 size_t size;
2595 struct dwarf2_per_cu_data *per_cu;
2596
2597 if (prop->kind == PROP_LOCEXPR)
2598 {
2599 data = baton->locexpr.data;
2600 size = baton->locexpr.size;
2601 per_cu = baton->locexpr.per_cu;
2602 }
2603 else
2604 {
2605 gdb_assert (prop->kind == PROP_LOCLIST);
2606
2607 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2608 per_cu = baton->loclist.per_cu;
2609 }
2610
2611 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2612 gdbarch, registers_used,
2613 dwarf2_per_cu_addr_size (per_cu),
2614 data, data + size, per_cu);
2615}
2616
4c2df51b 2617\f
0b31a4bc 2618/* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
4c2df51b 2619
192ca6d8 2620class symbol_needs_eval_context : public dwarf_expr_context
4c2df51b 2621{
192ca6d8
TT
2622 public:
2623
0b31a4bc 2624 enum symbol_needs_kind needs;
17ea53c3 2625 struct dwarf2_per_cu_data *per_cu;
4c2df51b 2626
192ca6d8 2627 /* Reads from registers do require a frame. */
632e107b 2628 CORE_ADDR read_addr_from_reg (int regnum) override
192ca6d8
TT
2629 {
2630 needs = SYMBOL_NEEDS_FRAME;
2631 return 1;
2632 }
2633
2634 /* "get_reg_value" callback: Reads from registers do require a
2635 frame. */
2636
632e107b 2637 struct value *get_reg_value (struct type *type, int regnum) override
192ca6d8
TT
2638 {
2639 needs = SYMBOL_NEEDS_FRAME;
2640 return value_zero (type, not_lval);
2641 }
2642
2643 /* Reads from memory do not require a frame. */
632e107b 2644 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
2645 {
2646 memset (buf, 0, len);
2647 }
2648
2649 /* Frame-relative accesses do require a frame. */
632e107b 2650 void get_frame_base (const gdb_byte **start, size_t *length) override
192ca6d8
TT
2651 {
2652 static gdb_byte lit0 = DW_OP_lit0;
2653
2654 *start = &lit0;
2655 *length = 1;
2656
2657 needs = SYMBOL_NEEDS_FRAME;
2658 }
2659
2660 /* CFA accesses require a frame. */
632e107b 2661 CORE_ADDR get_frame_cfa () override
192ca6d8
TT
2662 {
2663 needs = SYMBOL_NEEDS_FRAME;
2664 return 1;
2665 }
2666
632e107b 2667 CORE_ADDR get_frame_pc () override
7d5697f9
TT
2668 {
2669 needs = SYMBOL_NEEDS_FRAME;
2670 return 1;
2671 }
2672
192ca6d8 2673 /* Thread-local accesses require registers, but not a frame. */
632e107b 2674 CORE_ADDR get_tls_address (CORE_ADDR offset) override
192ca6d8
TT
2675 {
2676 if (needs <= SYMBOL_NEEDS_REGISTERS)
2677 needs = SYMBOL_NEEDS_REGISTERS;
2678 return 1;
2679 }
2680
2681 /* Helper interface of per_cu_dwarf_call for
2682 dwarf2_loc_desc_get_symbol_read_needs. */
2683
632e107b 2684 void dwarf_call (cu_offset die_offset) override
192ca6d8
TT
2685 {
2686 per_cu_dwarf_call (this, die_offset, per_cu);
2687 }
2688
a6b786da
KB
2689 /* Helper interface of sect_variable_value for
2690 dwarf2_loc_desc_get_symbol_read_needs. */
2691
2692 struct value *dwarf_variable_value (sect_offset sect_off) override
2693 {
2694 return sect_variable_value (this, sect_off, per_cu);
2695 }
2696
216f72a1 2697 /* DW_OP_entry_value accesses require a caller, therefore a
192ca6d8
TT
2698 frame. */
2699
2700 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2701 union call_site_parameter_u kind_u,
632e107b 2702 int deref_size) override
192ca6d8
TT
2703 {
2704 needs = SYMBOL_NEEDS_FRAME;
3019eac3 2705
192ca6d8
TT
2706 /* The expression may require some stub values on DWARF stack. */
2707 push_address (0, 0);
2708 }
3019eac3 2709
336d760d 2710 /* DW_OP_addrx and DW_OP_GNU_addr_index doesn't require a frame. */
08412b07 2711
632e107b 2712 CORE_ADDR get_addr_index (unsigned int index) override
192ca6d8
TT
2713 {
2714 /* Nothing to do. */
2715 return 1;
2716 }
08412b07 2717
192ca6d8 2718 /* DW_OP_push_object_address has a frame already passed through. */
9e8b7a03 2719
632e107b 2720 CORE_ADDR get_object_address () override
192ca6d8
TT
2721 {
2722 /* Nothing to do. */
2723 return 1;
2724 }
9e8b7a03
JK
2725};
2726
0b31a4bc
TT
2727/* Compute the correct symbol_needs_kind value for the location
2728 expression at DATA (length SIZE). */
4c2df51b 2729
0b31a4bc
TT
2730static enum symbol_needs_kind
2731dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2732 struct dwarf2_per_cu_data *per_cu)
4c2df51b 2733{
f630a401 2734 int in_reg;
ac56253d 2735 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2736
eb115069
TT
2737 scoped_value_mark free_values;
2738
192ca6d8
TT
2739 symbol_needs_eval_context ctx;
2740
2741 ctx.needs = SYMBOL_NEEDS_NONE;
2742 ctx.per_cu = per_cu;
718b9626
TT
2743 ctx.gdbarch = get_objfile_arch (objfile);
2744 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2745 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2746 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2747
595d2e30 2748 ctx.eval (data, size);
4c2df51b 2749
718b9626 2750 in_reg = ctx.location == DWARF_VALUE_REGISTER;
f630a401 2751
1e467161
SM
2752 /* If the location has several pieces, and any of them are in
2753 registers, then we will need a frame to fetch them from. */
2754 for (dwarf_expr_piece &p : ctx.pieces)
2755 if (p.location == DWARF_VALUE_REGISTER)
2756 in_reg = 1;
87808bd6 2757
0b31a4bc 2758 if (in_reg)
192ca6d8
TT
2759 ctx.needs = SYMBOL_NEEDS_FRAME;
2760 return ctx.needs;
4c2df51b
DJ
2761}
2762
3cf03773
TT
2763/* A helper function that throws an unimplemented error mentioning a
2764 given DWARF operator. */
2765
621846f4 2766static void ATTRIBUTE_NORETURN
3cf03773 2767unimplemented (unsigned int op)
0d53c4c4 2768{
f39c6ffd 2769 const char *name = get_DW_OP_name (op);
b1bfef65
TT
2770
2771 if (name)
2772 error (_("DWARF operator %s cannot be translated to an agent expression"),
2773 name);
2774 else
1ba1b353
TT
2775 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2776 "to an agent expression"),
b1bfef65 2777 op);
3cf03773 2778}
08922a10 2779
0fde2c53
DE
2780/* See dwarf2loc.h.
2781
2782 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2783 can issue a complaint, which is better than having every target's
2784 implementation of dwarf2_reg_to_regnum do it. */
08922a10 2785
d064d1be 2786int
0fde2c53 2787dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
3cf03773
TT
2788{
2789 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
0fde2c53 2790
3cf03773 2791 if (reg == -1)
0fde2c53 2792 {
b98664d3 2793 complaint (_("bad DWARF register number %d"), dwarf_reg);
0fde2c53
DE
2794 }
2795 return reg;
2796}
2797
2798/* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2799 Throw an error because DWARF_REG is bad. */
2800
2801static void
2802throw_bad_regnum_error (ULONGEST dwarf_reg)
2803{
2804 /* Still want to print -1 as "-1".
2805 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2806 but that's overkill for now. */
2807 if ((int) dwarf_reg == dwarf_reg)
2808 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2809 error (_("Unable to access DWARF register number %s"),
2810 pulongest (dwarf_reg));
2811}
2812
2813/* See dwarf2loc.h. */
2814
2815int
2816dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2817{
2818 int reg;
2819
2820 if (dwarf_reg > INT_MAX)
2821 throw_bad_regnum_error (dwarf_reg);
2822 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2823 bad, but that's ok. */
2824 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2825 if (reg == -1)
2826 throw_bad_regnum_error (dwarf_reg);
3cf03773
TT
2827 return reg;
2828}
08922a10 2829
3cf03773
TT
2830/* A helper function that emits an access to memory. ARCH is the
2831 target architecture. EXPR is the expression which we are building.
2832 NBITS is the number of bits we want to read. This emits the
2833 opcodes needed to read the memory and then extract the desired
2834 bits. */
08922a10 2835
3cf03773
TT
2836static void
2837access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
08922a10 2838{
3cf03773
TT
2839 ULONGEST nbytes = (nbits + 7) / 8;
2840
9df7235c 2841 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3cf03773 2842
92bc6a20 2843 if (expr->tracing)
3cf03773
TT
2844 ax_trace_quick (expr, nbytes);
2845
2846 if (nbits <= 8)
2847 ax_simple (expr, aop_ref8);
2848 else if (nbits <= 16)
2849 ax_simple (expr, aop_ref16);
2850 else if (nbits <= 32)
2851 ax_simple (expr, aop_ref32);
2852 else
2853 ax_simple (expr, aop_ref64);
2854
2855 /* If we read exactly the number of bytes we wanted, we're done. */
2856 if (8 * nbytes == nbits)
2857 return;
2858
d5a22e77 2859 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
0d53c4c4 2860 {
3cf03773
TT
2861 /* On a bits-big-endian machine, we want the high-order
2862 NBITS. */
2863 ax_const_l (expr, 8 * nbytes - nbits);
2864 ax_simple (expr, aop_rsh_unsigned);
0d53c4c4 2865 }
3cf03773 2866 else
0d53c4c4 2867 {
3cf03773
TT
2868 /* On a bits-little-endian box, we want the low-order NBITS. */
2869 ax_zero_ext (expr, nbits);
0d53c4c4 2870 }
3cf03773 2871}
0936ad1d 2872
8cf6f0b1
TT
2873/* A helper function to return the frame's PC. */
2874
2875static CORE_ADDR
2876get_ax_pc (void *baton)
2877{
9a3c8263 2878 struct agent_expr *expr = (struct agent_expr *) baton;
8cf6f0b1
TT
2879
2880 return expr->scope;
2881}
2882
3cf03773
TT
2883/* Compile a DWARF location expression to an agent expression.
2884
2885 EXPR is the agent expression we are building.
2886 LOC is the agent value we modify.
2887 ARCH is the architecture.
2888 ADDR_SIZE is the size of addresses, in bytes.
2889 OP_PTR is the start of the location expression.
2890 OP_END is one past the last byte of the location expression.
2891
2892 This will throw an exception for various kinds of errors -- for
2893 example, if the expression cannot be compiled, or if the expression
2894 is invalid. */
0936ad1d 2895
9f6f94ff
TT
2896void
2897dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
40f4af28
SM
2898 unsigned int addr_size, const gdb_byte *op_ptr,
2899 const gdb_byte *op_end,
9f6f94ff 2900 struct dwarf2_per_cu_data *per_cu)
3cf03773 2901{
40f4af28 2902 gdbarch *arch = expr->gdbarch;
58414334 2903 std::vector<int> dw_labels, patches;
3cf03773
TT
2904 const gdb_byte * const base = op_ptr;
2905 const gdb_byte *previous_piece = op_ptr;
2906 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2907 ULONGEST bits_collected = 0;
2908 unsigned int addr_size_bits = 8 * addr_size;
d5a22e77 2909 bool bits_big_endian = byte_order == BFD_ENDIAN_BIG;
0936ad1d 2910
58414334 2911 std::vector<int> offsets (op_end - op_ptr, -1);
0936ad1d 2912
3cf03773
TT
2913 /* By default we are making an address. */
2914 loc->kind = axs_lvalue_memory;
0d45f56e 2915
3cf03773
TT
2916 while (op_ptr < op_end)
2917 {
aead7601 2918 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
9fccedf7
DE
2919 uint64_t uoffset, reg;
2920 int64_t offset;
3cf03773
TT
2921 int i;
2922
2923 offsets[op_ptr - base] = expr->len;
2924 ++op_ptr;
2925
2926 /* Our basic approach to code generation is to map DWARF
2927 operations directly to AX operations. However, there are
2928 some differences.
2929
2930 First, DWARF works on address-sized units, but AX always uses
2931 LONGEST. For most operations we simply ignore this
2932 difference; instead we generate sign extensions as needed
2933 before division and comparison operations. It would be nice
2934 to omit the sign extensions, but there is no way to determine
2935 the size of the target's LONGEST. (This code uses the size
2936 of the host LONGEST in some cases -- that is a bug but it is
2937 difficult to fix.)
2938
2939 Second, some DWARF operations cannot be translated to AX.
2940 For these we simply fail. See
2941 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2942 switch (op)
0936ad1d 2943 {
3cf03773
TT
2944 case DW_OP_lit0:
2945 case DW_OP_lit1:
2946 case DW_OP_lit2:
2947 case DW_OP_lit3:
2948 case DW_OP_lit4:
2949 case DW_OP_lit5:
2950 case DW_OP_lit6:
2951 case DW_OP_lit7:
2952 case DW_OP_lit8:
2953 case DW_OP_lit9:
2954 case DW_OP_lit10:
2955 case DW_OP_lit11:
2956 case DW_OP_lit12:
2957 case DW_OP_lit13:
2958 case DW_OP_lit14:
2959 case DW_OP_lit15:
2960 case DW_OP_lit16:
2961 case DW_OP_lit17:
2962 case DW_OP_lit18:
2963 case DW_OP_lit19:
2964 case DW_OP_lit20:
2965 case DW_OP_lit21:
2966 case DW_OP_lit22:
2967 case DW_OP_lit23:
2968 case DW_OP_lit24:
2969 case DW_OP_lit25:
2970 case DW_OP_lit26:
2971 case DW_OP_lit27:
2972 case DW_OP_lit28:
2973 case DW_OP_lit29:
2974 case DW_OP_lit30:
2975 case DW_OP_lit31:
2976 ax_const_l (expr, op - DW_OP_lit0);
2977 break;
0d53c4c4 2978
3cf03773 2979 case DW_OP_addr:
ac56253d 2980 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3cf03773 2981 op_ptr += addr_size;
ac56253d
TT
2982 /* Some versions of GCC emit DW_OP_addr before
2983 DW_OP_GNU_push_tls_address. In this case the value is an
2984 index, not an address. We don't support things like
2985 branching between the address and the TLS op. */
2986 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
9aa1f1e3 2987 uoffset += dwarf2_per_cu_text_offset (per_cu);
ac56253d 2988 ax_const_l (expr, uoffset);
3cf03773 2989 break;
4c2df51b 2990
3cf03773
TT
2991 case DW_OP_const1u:
2992 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2993 op_ptr += 1;
2994 break;
2995 case DW_OP_const1s:
2996 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2997 op_ptr += 1;
2998 break;
2999 case DW_OP_const2u:
3000 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3001 op_ptr += 2;
3002 break;
3003 case DW_OP_const2s:
3004 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3005 op_ptr += 2;
3006 break;
3007 case DW_OP_const4u:
3008 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3009 op_ptr += 4;
3010 break;
3011 case DW_OP_const4s:
3012 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3013 op_ptr += 4;
3014 break;
3015 case DW_OP_const8u:
3016 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3017 op_ptr += 8;
3018 break;
3019 case DW_OP_const8s:
3020 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3021 op_ptr += 8;
3022 break;
3023 case DW_OP_constu:
f664829e 3024 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3cf03773
TT
3025 ax_const_l (expr, uoffset);
3026 break;
3027 case DW_OP_consts:
f664829e 3028 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
3029 ax_const_l (expr, offset);
3030 break;
9c238357 3031
3cf03773
TT
3032 case DW_OP_reg0:
3033 case DW_OP_reg1:
3034 case DW_OP_reg2:
3035 case DW_OP_reg3:
3036 case DW_OP_reg4:
3037 case DW_OP_reg5:
3038 case DW_OP_reg6:
3039 case DW_OP_reg7:
3040 case DW_OP_reg8:
3041 case DW_OP_reg9:
3042 case DW_OP_reg10:
3043 case DW_OP_reg11:
3044 case DW_OP_reg12:
3045 case DW_OP_reg13:
3046 case DW_OP_reg14:
3047 case DW_OP_reg15:
3048 case DW_OP_reg16:
3049 case DW_OP_reg17:
3050 case DW_OP_reg18:
3051 case DW_OP_reg19:
3052 case DW_OP_reg20:
3053 case DW_OP_reg21:
3054 case DW_OP_reg22:
3055 case DW_OP_reg23:
3056 case DW_OP_reg24:
3057 case DW_OP_reg25:
3058 case DW_OP_reg26:
3059 case DW_OP_reg27:
3060 case DW_OP_reg28:
3061 case DW_OP_reg29:
3062 case DW_OP_reg30:
3063 case DW_OP_reg31:
3064 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3065 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3cf03773
TT
3066 loc->kind = axs_lvalue_register;
3067 break;
9c238357 3068
3cf03773 3069 case DW_OP_regx:
f664829e 3070 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773 3071 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3072 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3073 loc->kind = axs_lvalue_register;
3074 break;
08922a10 3075
3cf03773
TT
3076 case DW_OP_implicit_value:
3077 {
9fccedf7 3078 uint64_t len;
3cf03773 3079
f664829e 3080 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3cf03773
TT
3081 if (op_ptr + len > op_end)
3082 error (_("DW_OP_implicit_value: too few bytes available."));
3083 if (len > sizeof (ULONGEST))
3084 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3085 (int) len);
3086
3087 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3088 byte_order));
3089 op_ptr += len;
3090 dwarf_expr_require_composition (op_ptr, op_end,
3091 "DW_OP_implicit_value");
3092
3093 loc->kind = axs_rvalue;
3094 }
3095 break;
08922a10 3096
3cf03773
TT
3097 case DW_OP_stack_value:
3098 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3099 loc->kind = axs_rvalue;
3100 break;
08922a10 3101
3cf03773
TT
3102 case DW_OP_breg0:
3103 case DW_OP_breg1:
3104 case DW_OP_breg2:
3105 case DW_OP_breg3:
3106 case DW_OP_breg4:
3107 case DW_OP_breg5:
3108 case DW_OP_breg6:
3109 case DW_OP_breg7:
3110 case DW_OP_breg8:
3111 case DW_OP_breg9:
3112 case DW_OP_breg10:
3113 case DW_OP_breg11:
3114 case DW_OP_breg12:
3115 case DW_OP_breg13:
3116 case DW_OP_breg14:
3117 case DW_OP_breg15:
3118 case DW_OP_breg16:
3119 case DW_OP_breg17:
3120 case DW_OP_breg18:
3121 case DW_OP_breg19:
3122 case DW_OP_breg20:
3123 case DW_OP_breg21:
3124 case DW_OP_breg22:
3125 case DW_OP_breg23:
3126 case DW_OP_breg24:
3127 case DW_OP_breg25:
3128 case DW_OP_breg26:
3129 case DW_OP_breg27:
3130 case DW_OP_breg28:
3131 case DW_OP_breg29:
3132 case DW_OP_breg30:
3133 case DW_OP_breg31:
f664829e 3134 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3135 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3cf03773
TT
3136 ax_reg (expr, i);
3137 if (offset != 0)
3138 {
3139 ax_const_l (expr, offset);
3140 ax_simple (expr, aop_add);
3141 }
3142 break;
3143 case DW_OP_bregx:
3144 {
f664829e
DE
3145 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3146 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3147 i = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3148 ax_reg (expr, i);
3149 if (offset != 0)
3150 {
3151 ax_const_l (expr, offset);
3152 ax_simple (expr, aop_add);
3153 }
3154 }
3155 break;
3156 case DW_OP_fbreg:
3157 {
3158 const gdb_byte *datastart;
3159 size_t datalen;
3977b71f 3160 const struct block *b;
3cf03773 3161 struct symbol *framefunc;
08922a10 3162
3cf03773
TT
3163 b = block_for_pc (expr->scope);
3164
3165 if (!b)
3166 error (_("No block found for address"));
3167
3168 framefunc = block_linkage_function (b);
3169
3170 if (!framefunc)
3171 error (_("No function found for block"));
3172
af945b75
TT
3173 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3174 &datastart, &datalen);
3cf03773 3175
f664829e 3176 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
40f4af28 3177 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
9f6f94ff 3178 datastart + datalen, per_cu);
d84cf7eb
TT
3179 if (loc->kind == axs_lvalue_register)
3180 require_rvalue (expr, loc);
3cf03773
TT
3181
3182 if (offset != 0)
3183 {
3184 ax_const_l (expr, offset);
3185 ax_simple (expr, aop_add);
3186 }
3187
3188 loc->kind = axs_lvalue_memory;
3189 }
08922a10 3190 break;
08922a10 3191
3cf03773
TT
3192 case DW_OP_dup:
3193 ax_simple (expr, aop_dup);
3194 break;
08922a10 3195
3cf03773
TT
3196 case DW_OP_drop:
3197 ax_simple (expr, aop_pop);
3198 break;
08922a10 3199
3cf03773
TT
3200 case DW_OP_pick:
3201 offset = *op_ptr++;
c7f96d2b 3202 ax_pick (expr, offset);
3cf03773
TT
3203 break;
3204
3205 case DW_OP_swap:
3206 ax_simple (expr, aop_swap);
3207 break;
08922a10 3208
3cf03773 3209 case DW_OP_over:
c7f96d2b 3210 ax_pick (expr, 1);
3cf03773 3211 break;
08922a10 3212
3cf03773 3213 case DW_OP_rot:
c7f96d2b 3214 ax_simple (expr, aop_rot);
3cf03773 3215 break;
08922a10 3216
3cf03773
TT
3217 case DW_OP_deref:
3218 case DW_OP_deref_size:
3219 {
3220 int size;
08922a10 3221
3cf03773
TT
3222 if (op == DW_OP_deref_size)
3223 size = *op_ptr++;
3224 else
3225 size = addr_size;
3226
9df7235c 3227 if (size != 1 && size != 2 && size != 4 && size != 8)
f3cec7e6
HZ
3228 error (_("Unsupported size %d in %s"),
3229 size, get_DW_OP_name (op));
9df7235c 3230 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3cf03773
TT
3231 }
3232 break;
3233
3234 case DW_OP_abs:
3235 /* Sign extend the operand. */
3236 ax_ext (expr, addr_size_bits);
3237 ax_simple (expr, aop_dup);
3238 ax_const_l (expr, 0);
3239 ax_simple (expr, aop_less_signed);
3240 ax_simple (expr, aop_log_not);
3241 i = ax_goto (expr, aop_if_goto);
3242 /* We have to emit 0 - X. */
3243 ax_const_l (expr, 0);
3244 ax_simple (expr, aop_swap);
3245 ax_simple (expr, aop_sub);
3246 ax_label (expr, i, expr->len);
3247 break;
3248
3249 case DW_OP_neg:
3250 /* No need to sign extend here. */
3251 ax_const_l (expr, 0);
3252 ax_simple (expr, aop_swap);
3253 ax_simple (expr, aop_sub);
3254 break;
3255
3256 case DW_OP_not:
3257 /* Sign extend the operand. */
3258 ax_ext (expr, addr_size_bits);
3259 ax_simple (expr, aop_bit_not);
3260 break;
3261
3262 case DW_OP_plus_uconst:
f664829e 3263 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773
TT
3264 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3265 but we micro-optimize anyhow. */
3266 if (reg != 0)
3267 {
3268 ax_const_l (expr, reg);
3269 ax_simple (expr, aop_add);
3270 }
3271 break;
3272
3273 case DW_OP_and:
3274 ax_simple (expr, aop_bit_and);
3275 break;
3276
3277 case DW_OP_div:
3278 /* Sign extend the operands. */
3279 ax_ext (expr, addr_size_bits);
3280 ax_simple (expr, aop_swap);
3281 ax_ext (expr, addr_size_bits);
3282 ax_simple (expr, aop_swap);
3283 ax_simple (expr, aop_div_signed);
08922a10
SS
3284 break;
3285
3cf03773
TT
3286 case DW_OP_minus:
3287 ax_simple (expr, aop_sub);
3288 break;
3289
3290 case DW_OP_mod:
3291 ax_simple (expr, aop_rem_unsigned);
3292 break;
3293
3294 case DW_OP_mul:
3295 ax_simple (expr, aop_mul);
3296 break;
3297
3298 case DW_OP_or:
3299 ax_simple (expr, aop_bit_or);
3300 break;
3301
3302 case DW_OP_plus:
3303 ax_simple (expr, aop_add);
3304 break;
3305
3306 case DW_OP_shl:
3307 ax_simple (expr, aop_lsh);
3308 break;
3309
3310 case DW_OP_shr:
3311 ax_simple (expr, aop_rsh_unsigned);
3312 break;
3313
3314 case DW_OP_shra:
3315 ax_simple (expr, aop_rsh_signed);
3316 break;
3317
3318 case DW_OP_xor:
3319 ax_simple (expr, aop_bit_xor);
3320 break;
3321
3322 case DW_OP_le:
3323 /* Sign extend the operands. */
3324 ax_ext (expr, addr_size_bits);
3325 ax_simple (expr, aop_swap);
3326 ax_ext (expr, addr_size_bits);
3327 /* Note no swap here: A <= B is !(B < A). */
3328 ax_simple (expr, aop_less_signed);
3329 ax_simple (expr, aop_log_not);
3330 break;
3331
3332 case DW_OP_ge:
3333 /* Sign extend the operands. */
3334 ax_ext (expr, addr_size_bits);
3335 ax_simple (expr, aop_swap);
3336 ax_ext (expr, addr_size_bits);
3337 ax_simple (expr, aop_swap);
3338 /* A >= B is !(A < B). */
3339 ax_simple (expr, aop_less_signed);
3340 ax_simple (expr, aop_log_not);
3341 break;
3342
3343 case DW_OP_eq:
3344 /* Sign extend the operands. */
3345 ax_ext (expr, addr_size_bits);
3346 ax_simple (expr, aop_swap);
3347 ax_ext (expr, addr_size_bits);
3348 /* No need for a second swap here. */
3349 ax_simple (expr, aop_equal);
3350 break;
3351
3352 case DW_OP_lt:
3353 /* Sign extend the operands. */
3354 ax_ext (expr, addr_size_bits);
3355 ax_simple (expr, aop_swap);
3356 ax_ext (expr, addr_size_bits);
3357 ax_simple (expr, aop_swap);
3358 ax_simple (expr, aop_less_signed);
3359 break;
3360
3361 case DW_OP_gt:
3362 /* Sign extend the operands. */
3363 ax_ext (expr, addr_size_bits);
3364 ax_simple (expr, aop_swap);
3365 ax_ext (expr, addr_size_bits);
3366 /* Note no swap here: A > B is B < A. */
3367 ax_simple (expr, aop_less_signed);
3368 break;
3369
3370 case DW_OP_ne:
3371 /* Sign extend the operands. */
3372 ax_ext (expr, addr_size_bits);
3373 ax_simple (expr, aop_swap);
3374 ax_ext (expr, addr_size_bits);
3375 /* No need for a swap here. */
3376 ax_simple (expr, aop_equal);
3377 ax_simple (expr, aop_log_not);
3378 break;
3379
3380 case DW_OP_call_frame_cfa:
a8fd5589
TT
3381 {
3382 int regnum;
3383 CORE_ADDR text_offset;
3384 LONGEST off;
3385 const gdb_byte *cfa_start, *cfa_end;
3386
3387 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3388 &regnum, &off,
3389 &text_offset, &cfa_start, &cfa_end))
3390 {
3391 /* Register. */
3392 ax_reg (expr, regnum);
3393 if (off != 0)
3394 {
3395 ax_const_l (expr, off);
3396 ax_simple (expr, aop_add);
3397 }
3398 }
3399 else
3400 {
3401 /* Another expression. */
3402 ax_const_l (expr, text_offset);
40f4af28
SM
3403 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
3404 cfa_end, per_cu);
a8fd5589
TT
3405 }
3406
3407 loc->kind = axs_lvalue_memory;
3408 }
3cf03773
TT
3409 break;
3410
3411 case DW_OP_GNU_push_tls_address:
4aa4e28b 3412 case DW_OP_form_tls_address:
3cf03773
TT
3413 unimplemented (op);
3414 break;
3415
08412b07
JB
3416 case DW_OP_push_object_address:
3417 unimplemented (op);
3418 break;
3419
3cf03773
TT
3420 case DW_OP_skip:
3421 offset = extract_signed_integer (op_ptr, 2, byte_order);
3422 op_ptr += 2;
3423 i = ax_goto (expr, aop_goto);
58414334
TT
3424 dw_labels.push_back (op_ptr + offset - base);
3425 patches.push_back (i);
3cf03773
TT
3426 break;
3427
3428 case DW_OP_bra:
3429 offset = extract_signed_integer (op_ptr, 2, byte_order);
3430 op_ptr += 2;
3431 /* Zero extend the operand. */
3432 ax_zero_ext (expr, addr_size_bits);
3433 i = ax_goto (expr, aop_if_goto);
58414334
TT
3434 dw_labels.push_back (op_ptr + offset - base);
3435 patches.push_back (i);
3cf03773
TT
3436 break;
3437
3438 case DW_OP_nop:
3439 break;
3440
3441 case DW_OP_piece:
3442 case DW_OP_bit_piece:
08922a10 3443 {
b926417a 3444 uint64_t size;
3cf03773
TT
3445
3446 if (op_ptr - 1 == previous_piece)
3447 error (_("Cannot translate empty pieces to agent expressions"));
3448 previous_piece = op_ptr - 1;
3449
f664829e 3450 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3cf03773
TT
3451 if (op == DW_OP_piece)
3452 {
3453 size *= 8;
b926417a 3454 uoffset = 0;
3cf03773
TT
3455 }
3456 else
b926417a 3457 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
08922a10 3458
3cf03773
TT
3459 if (bits_collected + size > 8 * sizeof (LONGEST))
3460 error (_("Expression pieces exceed word size"));
3461
3462 /* Access the bits. */
3463 switch (loc->kind)
3464 {
3465 case axs_lvalue_register:
3466 ax_reg (expr, loc->u.reg);
3467 break;
3468
3469 case axs_lvalue_memory:
3470 /* Offset the pointer, if needed. */
b926417a 3471 if (uoffset > 8)
3cf03773 3472 {
b926417a 3473 ax_const_l (expr, uoffset / 8);
3cf03773 3474 ax_simple (expr, aop_add);
b926417a 3475 uoffset %= 8;
3cf03773
TT
3476 }
3477 access_memory (arch, expr, size);
3478 break;
3479 }
3480
3481 /* For a bits-big-endian target, shift up what we already
3482 have. For a bits-little-endian target, shift up the
3483 new data. Note that there is a potential bug here if
3484 the DWARF expression leaves multiple values on the
3485 stack. */
3486 if (bits_collected > 0)
3487 {
3488 if (bits_big_endian)
3489 {
3490 ax_simple (expr, aop_swap);
3491 ax_const_l (expr, size);
3492 ax_simple (expr, aop_lsh);
3493 /* We don't need a second swap here, because
3494 aop_bit_or is symmetric. */
3495 }
3496 else
3497 {
3498 ax_const_l (expr, size);
3499 ax_simple (expr, aop_lsh);
3500 }
3501 ax_simple (expr, aop_bit_or);
3502 }
3503
3504 bits_collected += size;
3505 loc->kind = axs_rvalue;
08922a10
SS
3506 }
3507 break;
08922a10 3508
3cf03773
TT
3509 case DW_OP_GNU_uninit:
3510 unimplemented (op);
3511
3512 case DW_OP_call2:
3513 case DW_OP_call4:
3514 {
3515 struct dwarf2_locexpr_baton block;
3516 int size = (op == DW_OP_call2 ? 2 : 4);
3517
3518 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3519 op_ptr += size;
3520
b926417a
TT
3521 cu_offset cuoffset = (cu_offset) uoffset;
3522 block = dwarf2_fetch_die_loc_cu_off (cuoffset, per_cu,
8b9737bf 3523 get_ax_pc, expr);
3cf03773
TT
3524
3525 /* DW_OP_call_ref is currently not supported. */
3526 gdb_assert (block.per_cu == per_cu);
3527
40f4af28
SM
3528 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
3529 block.data + block.size, per_cu);
3cf03773
TT
3530 }
3531 break;
3532
3533 case DW_OP_call_ref:
3534 unimplemented (op);
3535
a6b786da
KB
3536 case DW_OP_GNU_variable_value:
3537 unimplemented (op);
3538
3cf03773 3539 default:
b1bfef65 3540 unimplemented (op);
08922a10 3541 }
08922a10 3542 }
3cf03773
TT
3543
3544 /* Patch all the branches we emitted. */
b926417a 3545 for (int i = 0; i < patches.size (); ++i)
3cf03773 3546 {
58414334 3547 int targ = offsets[dw_labels[i]];
3cf03773
TT
3548 if (targ == -1)
3549 internal_error (__FILE__, __LINE__, _("invalid label"));
58414334 3550 ax_label (expr, patches[i], targ);
3cf03773 3551 }
08922a10
SS
3552}
3553
4c2df51b
DJ
3554\f
3555/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3556 evaluator to calculate the location. */
3557static struct value *
3558locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3559{
9a3c8263
SM
3560 struct dwarf2_locexpr_baton *dlbaton
3561 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4c2df51b 3562 struct value *val;
9a619af0 3563
a2d33775
JK
3564 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3565 dlbaton->size, dlbaton->per_cu);
4c2df51b
DJ
3566
3567 return val;
3568}
3569
e18b2753
JK
3570/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3571 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3572 will be thrown. */
3573
3574static struct value *
3575locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3576{
9a3c8263
SM
3577 struct dwarf2_locexpr_baton *dlbaton
3578 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
3579
3580 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3581 dlbaton->size);
3582}
3583
0b31a4bc
TT
3584/* Implementation of get_symbol_read_needs from
3585 symbol_computed_ops. */
3586
3587static enum symbol_needs_kind
3588locexpr_get_symbol_read_needs (struct symbol *symbol)
4c2df51b 3589{
9a3c8263
SM
3590 struct dwarf2_locexpr_baton *dlbaton
3591 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
9a619af0 3592
0b31a4bc
TT
3593 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3594 dlbaton->per_cu);
4c2df51b
DJ
3595}
3596
9eae7c52
TT
3597/* Return true if DATA points to the end of a piece. END is one past
3598 the last byte in the expression. */
3599
3600static int
3601piece_end_p (const gdb_byte *data, const gdb_byte *end)
3602{
3603 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3604}
3605
5e44ecb3
TT
3606/* Helper for locexpr_describe_location_piece that finds the name of a
3607 DWARF register. */
3608
3609static const char *
3610locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3611{
3612 int regnum;
3613
0fde2c53
DE
3614 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3615 We'd rather print *something* here than throw an error. */
3616 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3617 /* gdbarch_register_name may just return "", return something more
3618 descriptive for bad register numbers. */
3619 if (regnum == -1)
3620 {
3621 /* The text is output as "$bad_register_number".
3622 That is why we use the underscores. */
3623 return _("bad_register_number");
3624 }
5e44ecb3
TT
3625 return gdbarch_register_name (gdbarch, regnum);
3626}
3627
9eae7c52
TT
3628/* Nicely describe a single piece of a location, returning an updated
3629 position in the bytecode sequence. This function cannot recognize
3630 all locations; if a location is not recognized, it simply returns
f664829e
DE
3631 DATA. If there is an error during reading, e.g. we run off the end
3632 of the buffer, an error is thrown. */
08922a10 3633
0d45f56e 3634static const gdb_byte *
08922a10
SS
3635locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3636 CORE_ADDR addr, struct objfile *objfile,
49f6c839 3637 struct dwarf2_per_cu_data *per_cu,
9eae7c52 3638 const gdb_byte *data, const gdb_byte *end,
0d45f56e 3639 unsigned int addr_size)
4c2df51b 3640{
08922a10 3641 struct gdbarch *gdbarch = get_objfile_arch (objfile);
49f6c839 3642 size_t leb128_size;
08922a10
SS
3643
3644 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3645 {
08922a10 3646 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3647 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
08922a10
SS
3648 data += 1;
3649 }
3650 else if (data[0] == DW_OP_regx)
3651 {
9fccedf7 3652 uint64_t reg;
4c2df51b 3653
f664829e 3654 data = safe_read_uleb128 (data + 1, end, &reg);
08922a10 3655 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3656 locexpr_regname (gdbarch, reg));
08922a10
SS
3657 }
3658 else if (data[0] == DW_OP_fbreg)
4c2df51b 3659 {
3977b71f 3660 const struct block *b;
08922a10
SS
3661 struct symbol *framefunc;
3662 int frame_reg = 0;
9fccedf7 3663 int64_t frame_offset;
7155d578 3664 const gdb_byte *base_data, *new_data, *save_data = data;
08922a10 3665 size_t base_size;
9fccedf7 3666 int64_t base_offset = 0;
08922a10 3667
f664829e 3668 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
9eae7c52
TT
3669 if (!piece_end_p (new_data, end))
3670 return data;
3671 data = new_data;
3672
08922a10
SS
3673 b = block_for_pc (addr);
3674
3675 if (!b)
3676 error (_("No block found for address for symbol \"%s\"."),
987012b8 3677 symbol->print_name ());
08922a10
SS
3678
3679 framefunc = block_linkage_function (b);
3680
3681 if (!framefunc)
3682 error (_("No function found for block for symbol \"%s\"."),
987012b8 3683 symbol->print_name ());
08922a10 3684
af945b75 3685 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
08922a10
SS
3686
3687 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3688 {
0d45f56e 3689 const gdb_byte *buf_end;
08922a10
SS
3690
3691 frame_reg = base_data[0] - DW_OP_breg0;
f664829e
DE
3692 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3693 &base_offset);
08922a10 3694 if (buf_end != base_data + base_size)
3e43a32a
MS
3695 error (_("Unexpected opcode after "
3696 "DW_OP_breg%u for symbol \"%s\"."),
987012b8 3697 frame_reg, symbol->print_name ());
08922a10
SS
3698 }
3699 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3700 {
3701 /* The frame base is just the register, with no offset. */
3702 frame_reg = base_data[0] - DW_OP_reg0;
3703 base_offset = 0;
3704 }
3705 else
3706 {
3707 /* We don't know what to do with the frame base expression,
3708 so we can't trace this variable; give up. */
7155d578 3709 return save_data;
08922a10
SS
3710 }
3711
3e43a32a
MS
3712 fprintf_filtered (stream,
3713 _("a variable at frame base reg $%s offset %s+%s"),
5e44ecb3 3714 locexpr_regname (gdbarch, frame_reg),
08922a10
SS
3715 plongest (base_offset), plongest (frame_offset));
3716 }
9eae7c52
TT
3717 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3718 && piece_end_p (data, end))
08922a10 3719 {
9fccedf7 3720 int64_t offset;
08922a10 3721
f664829e 3722 data = safe_read_sleb128 (data + 1, end, &offset);
08922a10 3723
4c2df51b 3724 fprintf_filtered (stream,
08922a10
SS
3725 _("a variable at offset %s from base reg $%s"),
3726 plongest (offset),
5e44ecb3 3727 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
4c2df51b
DJ
3728 }
3729
c3228f12
EZ
3730 /* The location expression for a TLS variable looks like this (on a
3731 64-bit LE machine):
3732
3733 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3734 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
09d8bd00 3735
c3228f12
EZ
3736 0x3 is the encoding for DW_OP_addr, which has an operand as long
3737 as the size of an address on the target machine (here is 8
09d8bd00
TT
3738 bytes). Note that more recent version of GCC emit DW_OP_const4u
3739 or DW_OP_const8u, depending on address size, rather than
0963b4bd
MS
3740 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3741 The operand represents the offset at which the variable is within
3742 the thread local storage. */
c3228f12 3743
9eae7c52 3744 else if (data + 1 + addr_size < end
09d8bd00
TT
3745 && (data[0] == DW_OP_addr
3746 || (addr_size == 4 && data[0] == DW_OP_const4u)
3747 || (addr_size == 8 && data[0] == DW_OP_const8u))
4aa4e28b
TT
3748 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3749 || data[1 + addr_size] == DW_OP_form_tls_address)
9eae7c52 3750 && piece_end_p (data + 2 + addr_size, end))
08922a10 3751 {
d4a087c7
UW
3752 ULONGEST offset;
3753 offset = extract_unsigned_integer (data + 1, addr_size,
3754 gdbarch_byte_order (gdbarch));
9a619af0 3755
08922a10 3756 fprintf_filtered (stream,
d4a087c7 3757 _("a thread-local variable at offset 0x%s "
08922a10 3758 "in the thread-local storage for `%s'"),
4262abfb 3759 phex_nz (offset, addr_size), objfile_name (objfile));
08922a10
SS
3760
3761 data += 1 + addr_size + 1;
3762 }
49f6c839
DE
3763
3764 /* With -gsplit-dwarf a TLS variable can also look like this:
3765 DW_AT_location : 3 byte block: fc 4 e0
3766 (DW_OP_GNU_const_index: 4;
3767 DW_OP_GNU_push_tls_address) */
3768 else if (data + 3 <= end
3769 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3770 && data[0] == DW_OP_GNU_const_index
3771 && leb128_size > 0
4aa4e28b
TT
3772 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3773 || data[1 + leb128_size] == DW_OP_form_tls_address)
49f6c839
DE
3774 && piece_end_p (data + 2 + leb128_size, end))
3775 {
a55c1f32 3776 uint64_t offset;
49f6c839
DE
3777
3778 data = safe_read_uleb128 (data + 1, end, &offset);
3779 offset = dwarf2_read_addr_index (per_cu, offset);
3780 fprintf_filtered (stream,
3781 _("a thread-local variable at offset 0x%s "
3782 "in the thread-local storage for `%s'"),
4262abfb 3783 phex_nz (offset, addr_size), objfile_name (objfile));
49f6c839
DE
3784 ++data;
3785 }
3786
9eae7c52
TT
3787 else if (data[0] >= DW_OP_lit0
3788 && data[0] <= DW_OP_lit31
3789 && data + 1 < end
3790 && data[1] == DW_OP_stack_value)
3791 {
3792 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3793 data += 2;
3794 }
3795
3796 return data;
3797}
3798
3799/* Disassemble an expression, stopping at the end of a piece or at the
3800 end of the expression. Returns a pointer to the next unread byte
3801 in the input expression. If ALL is nonzero, then this function
f664829e
DE
3802 will keep going until it reaches the end of the expression.
3803 If there is an error during reading, e.g. we run off the end
3804 of the buffer, an error is thrown. */
9eae7c52
TT
3805
3806static const gdb_byte *
3807disassemble_dwarf_expression (struct ui_file *stream,
3808 struct gdbarch *arch, unsigned int addr_size,
2bda9cc5 3809 int offset_size, const gdb_byte *start,
9eae7c52 3810 const gdb_byte *data, const gdb_byte *end,
2bda9cc5 3811 int indent, int all,
5e44ecb3 3812 struct dwarf2_per_cu_data *per_cu)
9eae7c52 3813{
9eae7c52
TT
3814 while (data < end
3815 && (all
3816 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3817 {
aead7601 3818 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
9fccedf7
DE
3819 uint64_t ul;
3820 int64_t l;
9eae7c52
TT
3821 const char *name;
3822
f39c6ffd 3823 name = get_DW_OP_name (op);
9eae7c52
TT
3824
3825 if (!name)
3826 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
06826322 3827 op, (long) (data - 1 - start));
2bda9cc5
JK
3828 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3829 (long) (data - 1 - start), name);
9eae7c52
TT
3830
3831 switch (op)
3832 {
3833 case DW_OP_addr:
d4a087c7
UW
3834 ul = extract_unsigned_integer (data, addr_size,
3835 gdbarch_byte_order (arch));
9eae7c52 3836 data += addr_size;
d4a087c7 3837 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
9eae7c52
TT
3838 break;
3839
3840 case DW_OP_const1u:
3841 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3842 data += 1;
3843 fprintf_filtered (stream, " %s", pulongest (ul));
3844 break;
3845 case DW_OP_const1s:
3846 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3847 data += 1;
3848 fprintf_filtered (stream, " %s", plongest (l));
3849 break;
3850 case DW_OP_const2u:
3851 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3852 data += 2;
3853 fprintf_filtered (stream, " %s", pulongest (ul));
3854 break;
3855 case DW_OP_const2s:
3856 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3857 data += 2;
3858 fprintf_filtered (stream, " %s", plongest (l));
3859 break;
3860 case DW_OP_const4u:
3861 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3862 data += 4;
3863 fprintf_filtered (stream, " %s", pulongest (ul));
3864 break;
3865 case DW_OP_const4s:
3866 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3867 data += 4;
3868 fprintf_filtered (stream, " %s", plongest (l));
3869 break;
3870 case DW_OP_const8u:
3871 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3872 data += 8;
3873 fprintf_filtered (stream, " %s", pulongest (ul));
3874 break;
3875 case DW_OP_const8s:
3876 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3877 data += 8;
3878 fprintf_filtered (stream, " %s", plongest (l));
3879 break;
3880 case DW_OP_constu:
f664829e 3881 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3882 fprintf_filtered (stream, " %s", pulongest (ul));
3883 break;
3884 case DW_OP_consts:
f664829e 3885 data = safe_read_sleb128 (data, end, &l);
9eae7c52
TT
3886 fprintf_filtered (stream, " %s", plongest (l));
3887 break;
3888
3889 case DW_OP_reg0:
3890 case DW_OP_reg1:
3891 case DW_OP_reg2:
3892 case DW_OP_reg3:
3893 case DW_OP_reg4:
3894 case DW_OP_reg5:
3895 case DW_OP_reg6:
3896 case DW_OP_reg7:
3897 case DW_OP_reg8:
3898 case DW_OP_reg9:
3899 case DW_OP_reg10:
3900 case DW_OP_reg11:
3901 case DW_OP_reg12:
3902 case DW_OP_reg13:
3903 case DW_OP_reg14:
3904 case DW_OP_reg15:
3905 case DW_OP_reg16:
3906 case DW_OP_reg17:
3907 case DW_OP_reg18:
3908 case DW_OP_reg19:
3909 case DW_OP_reg20:
3910 case DW_OP_reg21:
3911 case DW_OP_reg22:
3912 case DW_OP_reg23:
3913 case DW_OP_reg24:
3914 case DW_OP_reg25:
3915 case DW_OP_reg26:
3916 case DW_OP_reg27:
3917 case DW_OP_reg28:
3918 case DW_OP_reg29:
3919 case DW_OP_reg30:
3920 case DW_OP_reg31:
3921 fprintf_filtered (stream, " [$%s]",
5e44ecb3 3922 locexpr_regname (arch, op - DW_OP_reg0));
9eae7c52
TT
3923 break;
3924
3925 case DW_OP_regx:
f664829e 3926 data = safe_read_uleb128 (data, end, &ul);
9eae7c52 3927 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
5e44ecb3 3928 locexpr_regname (arch, (int) ul));
9eae7c52
TT
3929 break;
3930
3931 case DW_OP_implicit_value:
f664829e 3932 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3933 data += ul;
3934 fprintf_filtered (stream, " %s", pulongest (ul));
3935 break;
3936
3937 case DW_OP_breg0:
3938 case DW_OP_breg1:
3939 case DW_OP_breg2:
3940 case DW_OP_breg3:
3941 case DW_OP_breg4:
3942 case DW_OP_breg5:
3943 case DW_OP_breg6:
3944 case DW_OP_breg7:
3945 case DW_OP_breg8:
3946 case DW_OP_breg9:
3947 case DW_OP_breg10:
3948 case DW_OP_breg11:
3949 case DW_OP_breg12:
3950 case DW_OP_breg13:
3951 case DW_OP_breg14:
3952 case DW_OP_breg15:
3953 case DW_OP_breg16:
3954 case DW_OP_breg17:
3955 case DW_OP_breg18:
3956 case DW_OP_breg19:
3957 case DW_OP_breg20:
3958 case DW_OP_breg21:
3959 case DW_OP_breg22:
3960 case DW_OP_breg23:
3961 case DW_OP_breg24:
3962 case DW_OP_breg25:
3963 case DW_OP_breg26:
3964 case DW_OP_breg27:
3965 case DW_OP_breg28:
3966 case DW_OP_breg29:
3967 case DW_OP_breg30:
3968 case DW_OP_breg31:
f664829e 3969 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3970 fprintf_filtered (stream, " %s [$%s]", plongest (l),
5e44ecb3 3971 locexpr_regname (arch, op - DW_OP_breg0));
9eae7c52
TT
3972 break;
3973
3974 case DW_OP_bregx:
f664829e
DE
3975 data = safe_read_uleb128 (data, end, &ul);
3976 data = safe_read_sleb128 (data, end, &l);
0502ed8c
JK
3977 fprintf_filtered (stream, " register %s [$%s] offset %s",
3978 pulongest (ul),
5e44ecb3 3979 locexpr_regname (arch, (int) ul),
0502ed8c 3980 plongest (l));
9eae7c52
TT
3981 break;
3982
3983 case DW_OP_fbreg:
f664829e 3984 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3985 fprintf_filtered (stream, " %s", plongest (l));
9eae7c52
TT
3986 break;
3987
3988 case DW_OP_xderef_size:
3989 case DW_OP_deref_size:
3990 case DW_OP_pick:
3991 fprintf_filtered (stream, " %d", *data);
3992 ++data;
3993 break;
3994
3995 case DW_OP_plus_uconst:
f664829e 3996 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3997 fprintf_filtered (stream, " %s", pulongest (ul));
3998 break;
3999
4000 case DW_OP_skip:
4001 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4002 data += 2;
4003 fprintf_filtered (stream, " to %ld",
4004 (long) (data + l - start));
4005 break;
4006
4007 case DW_OP_bra:
4008 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4009 data += 2;
4010 fprintf_filtered (stream, " %ld",
4011 (long) (data + l - start));
4012 break;
4013
4014 case DW_OP_call2:
4015 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4016 data += 2;
4017 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4018 break;
4019
4020 case DW_OP_call4:
4021 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4022 data += 4;
4023 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4024 break;
4025
4026 case DW_OP_call_ref:
4027 ul = extract_unsigned_integer (data, offset_size,
4028 gdbarch_byte_order (arch));
4029 data += offset_size;
4030 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4031 break;
4032
4033 case DW_OP_piece:
f664829e 4034 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4035 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4036 break;
4037
4038 case DW_OP_bit_piece:
4039 {
9fccedf7 4040 uint64_t offset;
9eae7c52 4041
f664829e
DE
4042 data = safe_read_uleb128 (data, end, &ul);
4043 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4044 fprintf_filtered (stream, " size %s offset %s (bits)",
4045 pulongest (ul), pulongest (offset));
4046 }
4047 break;
8cf6f0b1 4048
216f72a1 4049 case DW_OP_implicit_pointer:
8cf6f0b1
TT
4050 case DW_OP_GNU_implicit_pointer:
4051 {
4052 ul = extract_unsigned_integer (data, offset_size,
4053 gdbarch_byte_order (arch));
4054 data += offset_size;
4055
f664829e 4056 data = safe_read_sleb128 (data, end, &l);
8cf6f0b1
TT
4057
4058 fprintf_filtered (stream, " DIE %s offset %s",
4059 phex_nz (ul, offset_size),
4060 plongest (l));
4061 }
4062 break;
5e44ecb3 4063
216f72a1 4064 case DW_OP_deref_type:
5e44ecb3
TT
4065 case DW_OP_GNU_deref_type:
4066 {
b926417a 4067 int deref_addr_size = *data++;
5e44ecb3
TT
4068 struct type *type;
4069
f664829e 4070 data = safe_read_uleb128 (data, end, &ul);
9c541725 4071 cu_offset offset = (cu_offset) ul;
5e44ecb3
TT
4072 type = dwarf2_get_die_type (offset, per_cu);
4073 fprintf_filtered (stream, "<");
4074 type_print (type, "", stream, -1);
9c541725
PA
4075 fprintf_filtered (stream, " [0x%s]> %d",
4076 phex_nz (to_underlying (offset), 0),
b926417a 4077 deref_addr_size);
5e44ecb3
TT
4078 }
4079 break;
4080
216f72a1 4081 case DW_OP_const_type:
5e44ecb3
TT
4082 case DW_OP_GNU_const_type:
4083 {
5e44ecb3
TT
4084 struct type *type;
4085
f664829e 4086 data = safe_read_uleb128 (data, end, &ul);
9c541725 4087 cu_offset type_die = (cu_offset) ul;
5e44ecb3
TT
4088 type = dwarf2_get_die_type (type_die, per_cu);
4089 fprintf_filtered (stream, "<");
4090 type_print (type, "", stream, -1);
9c541725
PA
4091 fprintf_filtered (stream, " [0x%s]>",
4092 phex_nz (to_underlying (type_die), 0));
5e44ecb3
TT
4093 }
4094 break;
4095
216f72a1 4096 case DW_OP_regval_type:
5e44ecb3
TT
4097 case DW_OP_GNU_regval_type:
4098 {
9fccedf7 4099 uint64_t reg;
5e44ecb3
TT
4100 struct type *type;
4101
f664829e
DE
4102 data = safe_read_uleb128 (data, end, &reg);
4103 data = safe_read_uleb128 (data, end, &ul);
9c541725 4104 cu_offset type_die = (cu_offset) ul;
5e44ecb3
TT
4105
4106 type = dwarf2_get_die_type (type_die, per_cu);
4107 fprintf_filtered (stream, "<");
4108 type_print (type, "", stream, -1);
b64f50a1 4109 fprintf_filtered (stream, " [0x%s]> [$%s]",
9c541725 4110 phex_nz (to_underlying (type_die), 0),
5e44ecb3
TT
4111 locexpr_regname (arch, reg));
4112 }
4113 break;
4114
216f72a1 4115 case DW_OP_convert:
5e44ecb3 4116 case DW_OP_GNU_convert:
216f72a1 4117 case DW_OP_reinterpret:
5e44ecb3
TT
4118 case DW_OP_GNU_reinterpret:
4119 {
f664829e 4120 data = safe_read_uleb128 (data, end, &ul);
9c541725 4121 cu_offset type_die = (cu_offset) ul;
5e44ecb3 4122
9c541725 4123 if (to_underlying (type_die) == 0)
5e44ecb3
TT
4124 fprintf_filtered (stream, "<0>");
4125 else
4126 {
4127 struct type *type;
4128
4129 type = dwarf2_get_die_type (type_die, per_cu);
4130 fprintf_filtered (stream, "<");
4131 type_print (type, "", stream, -1);
9c541725
PA
4132 fprintf_filtered (stream, " [0x%s]>",
4133 phex_nz (to_underlying (type_die), 0));
5e44ecb3
TT
4134 }
4135 }
4136 break;
2bda9cc5 4137
216f72a1 4138 case DW_OP_entry_value:
2bda9cc5 4139 case DW_OP_GNU_entry_value:
f664829e 4140 data = safe_read_uleb128 (data, end, &ul);
2bda9cc5
JK
4141 fputc_filtered ('\n', stream);
4142 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4143 start, data, data + ul, indent + 2,
4144 all, per_cu);
4145 data += ul;
4146 continue;
49f6c839 4147
a24f71ab
JK
4148 case DW_OP_GNU_parameter_ref:
4149 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4150 data += 4;
4151 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4152 break;
4153
336d760d 4154 case DW_OP_addrx:
49f6c839
DE
4155 case DW_OP_GNU_addr_index:
4156 data = safe_read_uleb128 (data, end, &ul);
4157 ul = dwarf2_read_addr_index (per_cu, ul);
4158 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4159 break;
4160 case DW_OP_GNU_const_index:
4161 data = safe_read_uleb128 (data, end, &ul);
4162 ul = dwarf2_read_addr_index (per_cu, ul);
4163 fprintf_filtered (stream, " %s", pulongest (ul));
4164 break;
a6b786da
KB
4165
4166 case DW_OP_GNU_variable_value:
4167 ul = extract_unsigned_integer (data, offset_size,
4168 gdbarch_byte_order (arch));
4169 data += offset_size;
4170 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4171 break;
9eae7c52
TT
4172 }
4173
4174 fprintf_filtered (stream, "\n");
4175 }
c3228f12 4176
08922a10 4177 return data;
4c2df51b
DJ
4178}
4179
08922a10
SS
4180/* Describe a single location, which may in turn consist of multiple
4181 pieces. */
a55cc764 4182
08922a10
SS
4183static void
4184locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
0d45f56e 4185 struct ui_file *stream,
56eb65bd 4186 const gdb_byte *data, size_t size,
9eae7c52 4187 struct objfile *objfile, unsigned int addr_size,
5e44ecb3 4188 int offset_size, struct dwarf2_per_cu_data *per_cu)
08922a10 4189{
0d45f56e 4190 const gdb_byte *end = data + size;
9eae7c52 4191 int first_piece = 1, bad = 0;
08922a10 4192
08922a10
SS
4193 while (data < end)
4194 {
9eae7c52
TT
4195 const gdb_byte *here = data;
4196 int disassemble = 1;
4197
4198 if (first_piece)
4199 first_piece = 0;
4200 else
4201 fprintf_filtered (stream, _(", and "));
08922a10 4202
b4f54984 4203 if (!dwarf_always_disassemble)
9eae7c52 4204 {
3e43a32a 4205 data = locexpr_describe_location_piece (symbol, stream,
49f6c839 4206 addr, objfile, per_cu,
9eae7c52
TT
4207 data, end, addr_size);
4208 /* If we printed anything, or if we have an empty piece,
4209 then don't disassemble. */
4210 if (data != here
4211 || data[0] == DW_OP_piece
4212 || data[0] == DW_OP_bit_piece)
4213 disassemble = 0;
08922a10 4214 }
9eae7c52 4215 if (disassemble)
2bda9cc5
JK
4216 {
4217 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4218 data = disassemble_dwarf_expression (stream,
4219 get_objfile_arch (objfile),
4220 addr_size, offset_size, data,
4221 data, end, 0,
b4f54984 4222 dwarf_always_disassemble,
2bda9cc5
JK
4223 per_cu);
4224 }
9eae7c52
TT
4225
4226 if (data < end)
08922a10 4227 {
9eae7c52 4228 int empty = data == here;
08922a10 4229
9eae7c52
TT
4230 if (disassemble)
4231 fprintf_filtered (stream, " ");
4232 if (data[0] == DW_OP_piece)
4233 {
9fccedf7 4234 uint64_t bytes;
08922a10 4235
f664829e 4236 data = safe_read_uleb128 (data + 1, end, &bytes);
08922a10 4237
9eae7c52
TT
4238 if (empty)
4239 fprintf_filtered (stream, _("an empty %s-byte piece"),
4240 pulongest (bytes));
4241 else
4242 fprintf_filtered (stream, _(" [%s-byte piece]"),
4243 pulongest (bytes));
4244 }
4245 else if (data[0] == DW_OP_bit_piece)
4246 {
9fccedf7 4247 uint64_t bits, offset;
9eae7c52 4248
f664829e
DE
4249 data = safe_read_uleb128 (data + 1, end, &bits);
4250 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4251
4252 if (empty)
4253 fprintf_filtered (stream,
4254 _("an empty %s-bit piece"),
4255 pulongest (bits));
4256 else
4257 fprintf_filtered (stream,
4258 _(" [%s-bit piece, offset %s bits]"),
4259 pulongest (bits), pulongest (offset));
4260 }
4261 else
4262 {
4263 bad = 1;
4264 break;
4265 }
08922a10
SS
4266 }
4267 }
4268
4269 if (bad || data > end)
4270 error (_("Corrupted DWARF2 expression for \"%s\"."),
987012b8 4271 symbol->print_name ());
08922a10
SS
4272}
4273
4274/* Print a natural-language description of SYMBOL to STREAM. This
4275 version is for a symbol with a single location. */
a55cc764 4276
08922a10
SS
4277static void
4278locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4279 struct ui_file *stream)
4280{
9a3c8263
SM
4281 struct dwarf2_locexpr_baton *dlbaton
4282 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
08922a10
SS
4283 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4284 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4285 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
08922a10 4286
3e43a32a
MS
4287 locexpr_describe_location_1 (symbol, addr, stream,
4288 dlbaton->data, dlbaton->size,
5e44ecb3
TT
4289 objfile, addr_size, offset_size,
4290 dlbaton->per_cu);
08922a10
SS
4291}
4292
4293/* Describe the location of SYMBOL as an agent value in VALUE, generating
4294 any necessary bytecode in AX. */
a55cc764 4295
0d53c4c4 4296static void
40f4af28
SM
4297locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4298 struct axs_value *value)
a55cc764 4299{
9a3c8263
SM
4300 struct dwarf2_locexpr_baton *dlbaton
4301 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3cf03773 4302 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
a55cc764 4303
1d6edc3c 4304 if (dlbaton->size == 0)
cabe9ab6
PA
4305 value->optimized_out = 1;
4306 else
40f4af28
SM
4307 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4308 dlbaton->data + dlbaton->size, dlbaton->per_cu);
a55cc764
DJ
4309}
4310
bb2ec1b3
TT
4311/* symbol_computed_ops 'generate_c_location' method. */
4312
4313static void
d82b3862 4314locexpr_generate_c_location (struct symbol *sym, string_file *stream,
bb2ec1b3
TT
4315 struct gdbarch *gdbarch,
4316 unsigned char *registers_used,
4317 CORE_ADDR pc, const char *result_name)
4318{
9a3c8263
SM
4319 struct dwarf2_locexpr_baton *dlbaton
4320 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
bb2ec1b3
TT
4321 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4322
4323 if (dlbaton->size == 0)
987012b8 4324 error (_("symbol \"%s\" is optimized out"), sym->natural_name ());
bb2ec1b3
TT
4325
4326 compile_dwarf_expr_to_c (stream, result_name,
4327 sym, pc, gdbarch, registers_used, addr_size,
4328 dlbaton->data, dlbaton->data + dlbaton->size,
4329 dlbaton->per_cu);
4330}
4331
4c2df51b
DJ
4332/* The set of location functions used with the DWARF-2 expression
4333 evaluator. */
768a979c 4334const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4c2df51b 4335 locexpr_read_variable,
e18b2753 4336 locexpr_read_variable_at_entry,
0b31a4bc 4337 locexpr_get_symbol_read_needs,
4c2df51b 4338 locexpr_describe_location,
f1e6e072 4339 0, /* location_has_loclist */
bb2ec1b3
TT
4340 locexpr_tracepoint_var_ref,
4341 locexpr_generate_c_location
4c2df51b 4342};
0d53c4c4
DJ
4343
4344
4345/* Wrapper functions for location lists. These generally find
4346 the appropriate location expression and call something above. */
4347
4348/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4349 evaluator to calculate the location. */
4350static struct value *
4351loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4352{
9a3c8263
SM
4353 struct dwarf2_loclist_baton *dlbaton
4354 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
0d53c4c4 4355 struct value *val;
947bb88f 4356 const gdb_byte *data;
b6b08ebf 4357 size_t size;
8cf6f0b1 4358 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
0d53c4c4 4359
8cf6f0b1 4360 data = dwarf2_find_location_expression (dlbaton, &size, pc);
1d6edc3c
JK
4361 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4362 dlbaton->per_cu);
0d53c4c4
DJ
4363
4364 return val;
4365}
4366
e18b2753
JK
4367/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4368 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4369 will be thrown.
4370
4371 Function always returns non-NULL value, it may be marked optimized out if
4372 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4373 if it cannot resolve the parameter for any reason. */
4374
4375static struct value *
4376loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4377{
9a3c8263
SM
4378 struct dwarf2_loclist_baton *dlbaton
4379 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
4380 const gdb_byte *data;
4381 size_t size;
4382 CORE_ADDR pc;
4383
4384 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4385 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4386
4387 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4388 if (data == NULL)
4389 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4390
4391 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4392}
4393
0b31a4bc
TT
4394/* Implementation of get_symbol_read_needs from
4395 symbol_computed_ops. */
4396
4397static enum symbol_needs_kind
4398loclist_symbol_needs (struct symbol *symbol)
0d53c4c4
DJ
4399{
4400 /* If there's a location list, then assume we need to have a frame
4401 to choose the appropriate location expression. With tracking of
4402 global variables this is not necessarily true, but such tracking
4403 is disabled in GCC at the moment until we figure out how to
4404 represent it. */
4405
0b31a4bc 4406 return SYMBOL_NEEDS_FRAME;
0d53c4c4
DJ
4407}
4408
08922a10
SS
4409/* Print a natural-language description of SYMBOL to STREAM. This
4410 version applies when there is a list of different locations, each
4411 with a specified address range. */
4412
4413static void
4414loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4415 struct ui_file *stream)
0d53c4c4 4416{
9a3c8263
SM
4417 struct dwarf2_loclist_baton *dlbaton
4418 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4419 const gdb_byte *loc_ptr, *buf_end;
08922a10
SS
4420 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4421 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4422 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4423 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4424 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
d4a087c7 4425 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
08922a10 4426 /* Adjust base_address for relocatable objects. */
9aa1f1e3 4427 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
08922a10 4428 CORE_ADDR base_address = dlbaton->base_address + base_offset;
f664829e 4429 int done = 0;
08922a10
SS
4430
4431 loc_ptr = dlbaton->data;
4432 buf_end = dlbaton->data + dlbaton->size;
4433
9eae7c52 4434 fprintf_filtered (stream, _("multi-location:\n"));
08922a10
SS
4435
4436 /* Iterate through locations until we run out. */
f664829e 4437 while (!done)
08922a10 4438 {
f664829e
DE
4439 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4440 int length;
4441 enum debug_loc_kind kind;
4442 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4443
4444 if (dlbaton->from_dwo)
4445 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4446 loc_ptr, buf_end, &new_ptr,
3771a44c 4447 &low, &high, byte_order);
d4a087c7 4448 else
f664829e
DE
4449 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4450 &low, &high,
4451 byte_order, addr_size,
4452 signed_addr_p);
4453 loc_ptr = new_ptr;
4454 switch (kind)
08922a10 4455 {
f664829e
DE
4456 case DEBUG_LOC_END_OF_LIST:
4457 done = 1;
4458 continue;
4459 case DEBUG_LOC_BASE_ADDRESS:
d4a087c7 4460 base_address = high + base_offset;
9eae7c52 4461 fprintf_filtered (stream, _(" Base address %s"),
08922a10 4462 paddress (gdbarch, base_address));
08922a10 4463 continue;
3771a44c
DE
4464 case DEBUG_LOC_START_END:
4465 case DEBUG_LOC_START_LENGTH:
f664829e
DE
4466 break;
4467 case DEBUG_LOC_BUFFER_OVERFLOW:
4468 case DEBUG_LOC_INVALID_ENTRY:
4469 error (_("Corrupted DWARF expression for symbol \"%s\"."),
987012b8 4470 symbol->print_name ());
f664829e
DE
4471 default:
4472 gdb_assert_not_reached ("bad debug_loc_kind");
08922a10
SS
4473 }
4474
08922a10
SS
4475 /* Otherwise, a location expression entry. */
4476 low += base_address;
4477 high += base_address;
4478
3e29f34a
MR
4479 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4480 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4481
08922a10
SS
4482 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4483 loc_ptr += 2;
4484
08922a10
SS
4485 /* (It would improve readability to print only the minimum
4486 necessary digits of the second number of the range.) */
9eae7c52 4487 fprintf_filtered (stream, _(" Range %s-%s: "),
08922a10
SS
4488 paddress (gdbarch, low), paddress (gdbarch, high));
4489
4490 /* Now describe this particular location. */
4491 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
5e44ecb3
TT
4492 objfile, addr_size, offset_size,
4493 dlbaton->per_cu);
9eae7c52
TT
4494
4495 fprintf_filtered (stream, "\n");
08922a10
SS
4496
4497 loc_ptr += length;
4498 }
0d53c4c4
DJ
4499}
4500
4501/* Describe the location of SYMBOL as an agent value in VALUE, generating
4502 any necessary bytecode in AX. */
4503static void
40f4af28
SM
4504loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4505 struct axs_value *value)
0d53c4c4 4506{
9a3c8263
SM
4507 struct dwarf2_loclist_baton *dlbaton
4508 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4509 const gdb_byte *data;
b6b08ebf 4510 size_t size;
3cf03773 4511 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
0d53c4c4 4512
8cf6f0b1 4513 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
1d6edc3c 4514 if (size == 0)
cabe9ab6
PA
4515 value->optimized_out = 1;
4516 else
40f4af28 4517 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
9f6f94ff 4518 dlbaton->per_cu);
0d53c4c4
DJ
4519}
4520
bb2ec1b3
TT
4521/* symbol_computed_ops 'generate_c_location' method. */
4522
4523static void
d82b3862 4524loclist_generate_c_location (struct symbol *sym, string_file *stream,
bb2ec1b3
TT
4525 struct gdbarch *gdbarch,
4526 unsigned char *registers_used,
4527 CORE_ADDR pc, const char *result_name)
4528{
9a3c8263
SM
4529 struct dwarf2_loclist_baton *dlbaton
4530 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
bb2ec1b3
TT
4531 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4532 const gdb_byte *data;
4533 size_t size;
4534
4535 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4536 if (size == 0)
987012b8 4537 error (_("symbol \"%s\" is optimized out"), sym->natural_name ());
bb2ec1b3
TT
4538
4539 compile_dwarf_expr_to_c (stream, result_name,
4540 sym, pc, gdbarch, registers_used, addr_size,
4541 data, data + size,
4542 dlbaton->per_cu);
4543}
4544
0d53c4c4
DJ
4545/* The set of location functions used with the DWARF-2 expression
4546 evaluator and location lists. */
768a979c 4547const struct symbol_computed_ops dwarf2_loclist_funcs = {
0d53c4c4 4548 loclist_read_variable,
e18b2753 4549 loclist_read_variable_at_entry,
0b31a4bc 4550 loclist_symbol_needs,
0d53c4c4 4551 loclist_describe_location,
f1e6e072 4552 1, /* location_has_loclist */
bb2ec1b3
TT
4553 loclist_tracepoint_var_ref,
4554 loclist_generate_c_location
0d53c4c4 4555};
8e3b41a9 4556
6c265988 4557void _initialize_dwarf2loc ();
8e3b41a9 4558void
6c265988 4559_initialize_dwarf2loc ()
8e3b41a9 4560{
ccce17b0
YQ
4561 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4562 &entry_values_debug,
4563 _("Set entry values and tail call frames "
4564 "debugging."),
4565 _("Show entry values and tail call frames "
4566 "debugging."),
4567 _("When non-zero, the process of determining "
4568 "parameter values from function entry point "
4569 "and tail call frames will be printed."),
4570 NULL,
4571 show_entry_values_debug,
4572 &setdebuglist, &showdebuglist);
8e3b41a9 4573}
This page took 1.653803 seconds and 4 git commands to generate.