Add casts for legitimate integer to enum conversions
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
CommitLineData
4c2df51b 1/* DWARF 2 location expression support for GDB.
feb13ab0 2
32d0add0 3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
feb13ab0 4
4c2df51b
DJ
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7
JB
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
4c2df51b 13
a9762ec7
JB
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
4c2df51b
DJ
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
21
22#include "defs.h"
23#include "ui-out.h"
24#include "value.h"
25#include "frame.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "inferior.h"
a55cc764
DJ
29#include "ax.h"
30#include "ax-gdb.h"
e4adbba9 31#include "regcache.h"
c3228f12 32#include "objfiles.h"
edb3359d 33#include "block.h"
8e3b41a9 34#include "gdbcmd.h"
4c2df51b 35
fa8f86ff 36#include "dwarf2.h"
4c2df51b
DJ
37#include "dwarf2expr.h"
38#include "dwarf2loc.h"
e7802207 39#include "dwarf2-frame.h"
bb2ec1b3 40#include "compile/compile.h"
4c2df51b 41
b4f54984 42extern int dwarf_always_disassemble;
9eae7c52 43
e36122e9 44extern const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
8e3b41a9 45
1632a688
JK
46static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
47 struct frame_info *frame,
48 const gdb_byte *data,
56eb65bd
SP
49 size_t size,
50 struct dwarf2_per_cu_data *per_cu,
1632a688 51 LONGEST byte_offset);
8cf6f0b1 52
f664829e
DE
53/* Until these have formal names, we define these here.
54 ref: http://gcc.gnu.org/wiki/DebugFission
55 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
56 and is then followed by data specific to that entry. */
57
58enum debug_loc_kind
59{
60 /* Indicates the end of the list of entries. */
61 DEBUG_LOC_END_OF_LIST = 0,
62
63 /* This is followed by an unsigned LEB128 number that is an index into
64 .debug_addr and specifies the base address for all following entries. */
65 DEBUG_LOC_BASE_ADDRESS = 1,
66
67 /* This is followed by two unsigned LEB128 numbers that are indices into
68 .debug_addr and specify the beginning and ending addresses, and then
69 a normal location expression as in .debug_loc. */
3771a44c
DE
70 DEBUG_LOC_START_END = 2,
71
72 /* This is followed by an unsigned LEB128 number that is an index into
73 .debug_addr and specifies the beginning address, and a 4 byte unsigned
74 number that specifies the length, and then a normal location expression
75 as in .debug_loc. */
76 DEBUG_LOC_START_LENGTH = 3,
f664829e
DE
77
78 /* An internal value indicating there is insufficient data. */
79 DEBUG_LOC_BUFFER_OVERFLOW = -1,
80
81 /* An internal value indicating an invalid kind of entry was found. */
82 DEBUG_LOC_INVALID_ENTRY = -2
83};
84
b6807d98
TT
85/* Helper function which throws an error if a synthetic pointer is
86 invalid. */
87
88static void
89invalid_synthetic_pointer (void)
90{
91 error (_("access outside bounds of object "
92 "referenced via synthetic pointer"));
93}
94
f664829e
DE
95/* Decode the addresses in a non-dwo .debug_loc entry.
96 A pointer to the next byte to examine is returned in *NEW_PTR.
97 The encoded low,high addresses are return in *LOW,*HIGH.
98 The result indicates the kind of entry found. */
99
100static enum debug_loc_kind
101decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
102 const gdb_byte **new_ptr,
103 CORE_ADDR *low, CORE_ADDR *high,
104 enum bfd_endian byte_order,
105 unsigned int addr_size,
106 int signed_addr_p)
107{
108 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
109
110 if (buf_end - loc_ptr < 2 * addr_size)
111 return DEBUG_LOC_BUFFER_OVERFLOW;
112
113 if (signed_addr_p)
114 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
115 else
116 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
117 loc_ptr += addr_size;
118
119 if (signed_addr_p)
120 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 *new_ptr = loc_ptr;
126
127 /* A base-address-selection entry. */
128 if ((*low & base_mask) == base_mask)
129 return DEBUG_LOC_BASE_ADDRESS;
130
131 /* An end-of-list entry. */
132 if (*low == 0 && *high == 0)
133 return DEBUG_LOC_END_OF_LIST;
134
3771a44c 135 return DEBUG_LOC_START_END;
f664829e
DE
136}
137
138/* Decode the addresses in .debug_loc.dwo entry.
139 A pointer to the next byte to examine is returned in *NEW_PTR.
140 The encoded low,high addresses are return in *LOW,*HIGH.
141 The result indicates the kind of entry found. */
142
143static enum debug_loc_kind
144decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
145 const gdb_byte *loc_ptr,
146 const gdb_byte *buf_end,
147 const gdb_byte **new_ptr,
3771a44c
DE
148 CORE_ADDR *low, CORE_ADDR *high,
149 enum bfd_endian byte_order)
f664829e 150{
9fccedf7 151 uint64_t low_index, high_index;
f664829e
DE
152
153 if (loc_ptr == buf_end)
154 return DEBUG_LOC_BUFFER_OVERFLOW;
155
156 switch (*loc_ptr++)
157 {
158 case DEBUG_LOC_END_OF_LIST:
159 *new_ptr = loc_ptr;
160 return DEBUG_LOC_END_OF_LIST;
161 case DEBUG_LOC_BASE_ADDRESS:
162 *low = 0;
163 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
164 if (loc_ptr == NULL)
165 return DEBUG_LOC_BUFFER_OVERFLOW;
166 *high = dwarf2_read_addr_index (per_cu, high_index);
167 *new_ptr = loc_ptr;
168 return DEBUG_LOC_BASE_ADDRESS;
3771a44c 169 case DEBUG_LOC_START_END:
f664829e
DE
170 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
171 if (loc_ptr == NULL)
172 return DEBUG_LOC_BUFFER_OVERFLOW;
173 *low = dwarf2_read_addr_index (per_cu, low_index);
174 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
175 if (loc_ptr == NULL)
176 return DEBUG_LOC_BUFFER_OVERFLOW;
177 *high = dwarf2_read_addr_index (per_cu, high_index);
178 *new_ptr = loc_ptr;
3771a44c
DE
179 return DEBUG_LOC_START_END;
180 case DEBUG_LOC_START_LENGTH:
181 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
182 if (loc_ptr == NULL)
183 return DEBUG_LOC_BUFFER_OVERFLOW;
184 *low = dwarf2_read_addr_index (per_cu, low_index);
185 if (loc_ptr + 4 > buf_end)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *high = *low;
188 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
189 *new_ptr = loc_ptr + 4;
190 return DEBUG_LOC_START_LENGTH;
f664829e
DE
191 default:
192 return DEBUG_LOC_INVALID_ENTRY;
193 }
194}
195
8cf6f0b1 196/* A function for dealing with location lists. Given a
0d53c4c4
DJ
197 symbol baton (BATON) and a pc value (PC), find the appropriate
198 location expression, set *LOCEXPR_LENGTH, and return a pointer
199 to the beginning of the expression. Returns NULL on failure.
200
201 For now, only return the first matching location expression; there
202 can be more than one in the list. */
203
8cf6f0b1
TT
204const gdb_byte *
205dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
206 size_t *locexpr_length, CORE_ADDR pc)
0d53c4c4 207{
ae0d2f24 208 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
f7fd4728 209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e17a4113 210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ae0d2f24 211 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
d4a087c7 212 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
8edfa926 213 /* Adjust base_address for relocatable objects. */
9aa1f1e3 214 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
8edfa926 215 CORE_ADDR base_address = baton->base_address + base_offset;
f664829e 216 const gdb_byte *loc_ptr, *buf_end;
0d53c4c4
DJ
217
218 loc_ptr = baton->data;
219 buf_end = baton->data + baton->size;
220
221 while (1)
222 {
f664829e
DE
223 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
224 int length;
225 enum debug_loc_kind kind;
226 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
227
228 if (baton->from_dwo)
229 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
230 loc_ptr, buf_end, &new_ptr,
3771a44c 231 &low, &high, byte_order);
d4a087c7 232 else
f664829e
DE
233 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
234 &low, &high,
235 byte_order, addr_size,
236 signed_addr_p);
237 loc_ptr = new_ptr;
238 switch (kind)
1d6edc3c 239 {
f664829e 240 case DEBUG_LOC_END_OF_LIST:
1d6edc3c
JK
241 *locexpr_length = 0;
242 return NULL;
f664829e
DE
243 case DEBUG_LOC_BASE_ADDRESS:
244 base_address = high + base_offset;
245 continue;
3771a44c
DE
246 case DEBUG_LOC_START_END:
247 case DEBUG_LOC_START_LENGTH:
f664829e
DE
248 break;
249 case DEBUG_LOC_BUFFER_OVERFLOW:
250 case DEBUG_LOC_INVALID_ENTRY:
251 error (_("dwarf2_find_location_expression: "
252 "Corrupted DWARF expression."));
253 default:
254 gdb_assert_not_reached ("bad debug_loc_kind");
1d6edc3c 255 }
b5758fe4 256
bed911e5
DE
257 /* Otherwise, a location expression entry.
258 If the entry is from a DWO, don't add base address: the entry is
259 from .debug_addr which has absolute addresses. */
260 if (! baton->from_dwo)
261 {
262 low += base_address;
263 high += base_address;
264 }
0d53c4c4 265
e17a4113 266 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
0d53c4c4
DJ
267 loc_ptr += 2;
268
e18b2753
JK
269 if (low == high && pc == low)
270 {
271 /* This is entry PC record present only at entry point
272 of a function. Verify it is really the function entry point. */
273
3977b71f 274 const struct block *pc_block = block_for_pc (pc);
e18b2753
JK
275 struct symbol *pc_func = NULL;
276
277 if (pc_block)
278 pc_func = block_linkage_function (pc_block);
279
280 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
281 {
282 *locexpr_length = length;
283 return loc_ptr;
284 }
285 }
286
0d53c4c4
DJ
287 if (pc >= low && pc < high)
288 {
289 *locexpr_length = length;
290 return loc_ptr;
291 }
292
293 loc_ptr += length;
294 }
295}
296
4c2df51b
DJ
297/* This is the baton used when performing dwarf2 expression
298 evaluation. */
299struct dwarf_expr_baton
300{
301 struct frame_info *frame;
17ea53c3 302 struct dwarf2_per_cu_data *per_cu;
08412b07 303 CORE_ADDR obj_address;
4c2df51b
DJ
304};
305
306/* Helper functions for dwarf2_evaluate_loc_desc. */
307
4bc9efe1 308/* Using the frame specified in BATON, return the value of register
0b2b0195 309 REGNUM, treated as a pointer. */
4c2df51b 310static CORE_ADDR
b1370418 311dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
4c2df51b 312{
4c2df51b 313 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
5e2b427d 314 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
2ed3c037 315 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
e4adbba9 316
2ed3c037 317 return address_from_register (regnum, debaton->frame);
4c2df51b
DJ
318}
319
0acf8b65
JB
320/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
321
322static struct value *
323dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
324{
325 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
326 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
327 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
328
329 return value_from_register (type, regnum, debaton->frame);
330}
331
4c2df51b
DJ
332/* Read memory at ADDR (length LEN) into BUF. */
333
334static void
852483bc 335dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
4c2df51b
DJ
336{
337 read_memory (addr, buf, len);
338}
339
340/* Using the frame specified in BATON, find the location expression
341 describing the frame base. Return a pointer to it in START and
342 its length in LENGTH. */
343static void
0d45f56e 344dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
4c2df51b 345{
da62e633
AC
346 /* FIXME: cagney/2003-03-26: This code should be using
347 get_frame_base_address(), and then implement a dwarf2 specific
348 this_base method. */
4c2df51b 349 struct symbol *framefunc;
4c2df51b 350 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
3977b71f 351 const struct block *bl = get_frame_block (debaton->frame, NULL);
c90a0773
HZ
352
353 if (bl == NULL)
354 error (_("frame address is not available."));
0d53c4c4 355
edb3359d
DJ
356 /* Use block_linkage_function, which returns a real (not inlined)
357 function, instead of get_frame_function, which may return an
358 inlined function. */
c90a0773 359 framefunc = block_linkage_function (bl);
0d53c4c4 360
eff4f95e
JG
361 /* If we found a frame-relative symbol then it was certainly within
362 some function associated with a frame. If we can't find the frame,
363 something has gone wrong. */
364 gdb_assert (framefunc != NULL);
365
af945b75
TT
366 func_get_frame_base_dwarf_block (framefunc,
367 get_frame_address_in_block (debaton->frame),
368 start, length);
0936ad1d
SS
369}
370
f1e6e072
TT
371/* Implement find_frame_base_location method for LOC_BLOCK functions using
372 DWARF expression for its DW_AT_frame_base. */
373
374static void
375locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
376 const gdb_byte **start, size_t *length)
377{
378 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
379
380 *length = symbaton->size;
381 *start = symbaton->data;
382}
383
384/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
385 function uses DWARF expression for its DW_AT_frame_base. */
386
387const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
388{
389 locexpr_find_frame_base_location
390};
391
392/* Implement find_frame_base_location method for LOC_BLOCK functions using
393 DWARF location list for its DW_AT_frame_base. */
394
395static void
396loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
397 const gdb_byte **start, size_t *length)
398{
399 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
400
401 *start = dwarf2_find_location_expression (symbaton, length, pc);
402}
403
404/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
405 function uses DWARF location list for its DW_AT_frame_base. */
406
407const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
408{
409 loclist_find_frame_base_location
410};
411
af945b75
TT
412/* See dwarf2loc.h. */
413
414void
415func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
416 const gdb_byte **start, size_t *length)
0936ad1d 417{
f1e6e072 418 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
0d53c4c4 419 {
f1e6e072 420 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
22c6caba 421
f1e6e072 422 ops_block->find_frame_base_location (framefunc, pc, start, length);
0d53c4c4
DJ
423 }
424 else
f1e6e072 425 *length = 0;
0d53c4c4 426
1d6edc3c 427 if (*length == 0)
8a3fe4f8 428 error (_("Could not find the frame base for \"%s\"."),
0d53c4c4 429 SYMBOL_NATURAL_NAME (framefunc));
4c2df51b
DJ
430}
431
e7802207
TT
432/* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
433 the frame in BATON. */
434
435static CORE_ADDR
436dwarf_expr_frame_cfa (void *baton)
437{
438 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
9a619af0 439
e7802207
TT
440 return dwarf2_frame_cfa (debaton->frame);
441}
442
8cf6f0b1
TT
443/* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
444 the frame in BATON. */
445
446static CORE_ADDR
447dwarf_expr_frame_pc (void *baton)
448{
449 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
450
451 return get_frame_address_in_block (debaton->frame);
452}
453
4c2df51b
DJ
454/* Using the objfile specified in BATON, find the address for the
455 current thread's thread-local storage with offset OFFSET. */
456static CORE_ADDR
457dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
458{
459 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
17ea53c3 460 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
4c2df51b 461
17ea53c3 462 return target_translate_tls_address (objfile, offset);
4c2df51b
DJ
463}
464
3e43a32a
MS
465/* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
466 current CU (as is PER_CU). State of the CTX is not affected by the
467 call and return. */
5c631832
JK
468
469static void
b64f50a1 470per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
8cf6f0b1
TT
471 struct dwarf2_per_cu_data *per_cu,
472 CORE_ADDR (*get_frame_pc) (void *baton),
473 void *baton)
5c631832
JK
474{
475 struct dwarf2_locexpr_baton block;
476
8b9737bf 477 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
5c631832
JK
478
479 /* DW_OP_call_ref is currently not supported. */
480 gdb_assert (block.per_cu == per_cu);
481
482 dwarf_expr_eval (ctx, block.data, block.size);
483}
484
485/* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
486
487static void
b64f50a1 488dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
5c631832
JK
489{
490 struct dwarf_expr_baton *debaton = ctx->baton;
491
37b50a69 492 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
9e8b7a03 493 ctx->funcs->get_frame_pc, ctx->baton);
5c631832
JK
494}
495
8a9b8146
TT
496/* Callback function for dwarf2_evaluate_loc_desc. */
497
498static struct type *
b64f50a1
JK
499dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
500 cu_offset die_offset)
8a9b8146
TT
501{
502 struct dwarf_expr_baton *debaton = ctx->baton;
503
504 return dwarf2_get_die_type (die_offset, debaton->per_cu);
505}
506
8e3b41a9
JK
507/* See dwarf2loc.h. */
508
ccce17b0 509unsigned int entry_values_debug = 0;
8e3b41a9
JK
510
511/* Helper to set entry_values_debug. */
512
513static void
514show_entry_values_debug (struct ui_file *file, int from_tty,
515 struct cmd_list_element *c, const char *value)
516{
517 fprintf_filtered (file,
518 _("Entry values and tail call frames debugging is %s.\n"),
519 value);
520}
521
522/* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
523 CALLER_FRAME (for registers) can be NULL if it is not known. This function
524 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
525
526static CORE_ADDR
527call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
528 struct call_site *call_site,
529 struct frame_info *caller_frame)
530{
531 switch (FIELD_LOC_KIND (call_site->target))
532 {
533 case FIELD_LOC_KIND_DWARF_BLOCK:
534 {
535 struct dwarf2_locexpr_baton *dwarf_block;
536 struct value *val;
537 struct type *caller_core_addr_type;
538 struct gdbarch *caller_arch;
539
540 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
541 if (dwarf_block == NULL)
542 {
7cbd4a93 543 struct bound_minimal_symbol msym;
8e3b41a9
JK
544
545 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
546 throw_error (NO_ENTRY_VALUE_ERROR,
547 _("DW_AT_GNU_call_site_target is not specified "
548 "at %s in %s"),
549 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 550 (msym.minsym == NULL ? "???"
efd66ac6 551 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
552
553 }
554 if (caller_frame == NULL)
555 {
7cbd4a93 556 struct bound_minimal_symbol msym;
8e3b41a9
JK
557
558 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
559 throw_error (NO_ENTRY_VALUE_ERROR,
560 _("DW_AT_GNU_call_site_target DWARF block resolving "
561 "requires known frame which is currently not "
562 "available at %s in %s"),
563 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 564 (msym.minsym == NULL ? "???"
efd66ac6 565 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
566
567 }
568 caller_arch = get_frame_arch (caller_frame);
569 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
570 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
571 dwarf_block->data, dwarf_block->size,
572 dwarf_block->per_cu);
573 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
574 location. */
575 if (VALUE_LVAL (val) == lval_memory)
576 return value_address (val);
577 else
578 return value_as_address (val);
579 }
580
581 case FIELD_LOC_KIND_PHYSNAME:
582 {
583 const char *physname;
3b7344d5 584 struct bound_minimal_symbol msym;
8e3b41a9
JK
585
586 physname = FIELD_STATIC_PHYSNAME (call_site->target);
9112db09
JK
587
588 /* Handle both the mangled and demangled PHYSNAME. */
589 msym = lookup_minimal_symbol (physname, NULL, NULL);
3b7344d5 590 if (msym.minsym == NULL)
8e3b41a9 591 {
3b7344d5 592 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
8e3b41a9
JK
593 throw_error (NO_ENTRY_VALUE_ERROR,
594 _("Cannot find function \"%s\" for a call site target "
595 "at %s in %s"),
596 physname, paddress (call_site_gdbarch, call_site->pc),
3b7344d5
TT
597 (msym.minsym == NULL ? "???"
598 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
599
600 }
77e371c0 601 return BMSYMBOL_VALUE_ADDRESS (msym);
8e3b41a9
JK
602 }
603
604 case FIELD_LOC_KIND_PHYSADDR:
605 return FIELD_STATIC_PHYSADDR (call_site->target);
606
607 default:
608 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
609 }
610}
611
111c6489
JK
612/* Convert function entry point exact address ADDR to the function which is
613 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
614 NO_ENTRY_VALUE_ERROR otherwise. */
615
616static struct symbol *
617func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
618{
619 struct symbol *sym = find_pc_function (addr);
620 struct type *type;
621
622 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
623 throw_error (NO_ENTRY_VALUE_ERROR,
624 _("DW_TAG_GNU_call_site resolving failed to find function "
625 "name for address %s"),
626 paddress (gdbarch, addr));
627
628 type = SYMBOL_TYPE (sym);
629 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
630 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
631
632 return sym;
633}
634
2d6c5dc2
JK
635/* Verify function with entry point exact address ADDR can never call itself
636 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
637 can call itself via tail calls.
638
639 If a funtion can tail call itself its entry value based parameters are
640 unreliable. There is no verification whether the value of some/all
641 parameters is unchanged through the self tail call, we expect if there is
642 a self tail call all the parameters can be modified. */
643
644static void
645func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
646{
647 struct obstack addr_obstack;
648 struct cleanup *old_chain;
649 CORE_ADDR addr;
650
651 /* Track here CORE_ADDRs which were already visited. */
652 htab_t addr_hash;
653
654 /* The verification is completely unordered. Track here function addresses
655 which still need to be iterated. */
656 VEC (CORE_ADDR) *todo = NULL;
657
658 obstack_init (&addr_obstack);
659 old_chain = make_cleanup_obstack_free (&addr_obstack);
660 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
661 &addr_obstack, hashtab_obstack_allocate,
662 NULL);
663 make_cleanup_htab_delete (addr_hash);
664
665 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
666
667 VEC_safe_push (CORE_ADDR, todo, verify_addr);
668 while (!VEC_empty (CORE_ADDR, todo))
669 {
670 struct symbol *func_sym;
671 struct call_site *call_site;
672
673 addr = VEC_pop (CORE_ADDR, todo);
674
675 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
676
677 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
678 call_site; call_site = call_site->tail_call_next)
679 {
680 CORE_ADDR target_addr;
681 void **slot;
682
683 /* CALLER_FRAME with registers is not available for tail-call jumped
684 frames. */
685 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
686
687 if (target_addr == verify_addr)
688 {
7cbd4a93 689 struct bound_minimal_symbol msym;
2d6c5dc2
JK
690
691 msym = lookup_minimal_symbol_by_pc (verify_addr);
692 throw_error (NO_ENTRY_VALUE_ERROR,
693 _("DW_OP_GNU_entry_value resolving has found "
694 "function \"%s\" at %s can call itself via tail "
695 "calls"),
7cbd4a93 696 (msym.minsym == NULL ? "???"
efd66ac6 697 : MSYMBOL_PRINT_NAME (msym.minsym)),
2d6c5dc2
JK
698 paddress (gdbarch, verify_addr));
699 }
700
701 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
702 if (*slot == NULL)
703 {
704 *slot = obstack_copy (&addr_obstack, &target_addr,
705 sizeof (target_addr));
706 VEC_safe_push (CORE_ADDR, todo, target_addr);
707 }
708 }
709 }
710
711 do_cleanups (old_chain);
712}
713
111c6489
JK
714/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
715 ENTRY_VALUES_DEBUG. */
716
717static void
718tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
719{
720 CORE_ADDR addr = call_site->pc;
7cbd4a93 721 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
111c6489
JK
722
723 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
7cbd4a93 724 (msym.minsym == NULL ? "???"
efd66ac6 725 : MSYMBOL_PRINT_NAME (msym.minsym)));
111c6489
JK
726
727}
728
729/* vec.h needs single word type name, typedef it. */
730typedef struct call_site *call_sitep;
731
732/* Define VEC (call_sitep) functions. */
733DEF_VEC_P (call_sitep);
734
735/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
736 only top callers and bottom callees which are present in both. GDBARCH is
737 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
738 no remaining possibilities to provide unambiguous non-trivial result.
739 RESULTP should point to NULL on the first (initialization) call. Caller is
740 responsible for xfree of any RESULTP data. */
741
742static void
743chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
744 VEC (call_sitep) *chain)
745{
746 struct call_site_chain *result = *resultp;
747 long length = VEC_length (call_sitep, chain);
748 int callers, callees, idx;
749
750 if (result == NULL)
751 {
752 /* Create the initial chain containing all the passed PCs. */
753
754 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
755 * (length - 1));
756 result->length = length;
757 result->callers = result->callees = length;
19a1b230
AA
758 if (!VEC_empty (call_sitep, chain))
759 memcpy (result->call_site, VEC_address (call_sitep, chain),
760 sizeof (*result->call_site) * length);
111c6489
JK
761 *resultp = result;
762
763 if (entry_values_debug)
764 {
765 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
766 for (idx = 0; idx < length; idx++)
767 tailcall_dump (gdbarch, result->call_site[idx]);
768 fputc_unfiltered ('\n', gdb_stdlog);
769 }
770
771 return;
772 }
773
774 if (entry_values_debug)
775 {
776 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
777 for (idx = 0; idx < length; idx++)
778 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
779 fputc_unfiltered ('\n', gdb_stdlog);
780 }
781
782 /* Intersect callers. */
783
784 callers = min (result->callers, length);
785 for (idx = 0; idx < callers; idx++)
786 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
787 {
788 result->callers = idx;
789 break;
790 }
791
792 /* Intersect callees. */
793
794 callees = min (result->callees, length);
795 for (idx = 0; idx < callees; idx++)
796 if (result->call_site[result->length - 1 - idx]
797 != VEC_index (call_sitep, chain, length - 1 - idx))
798 {
799 result->callees = idx;
800 break;
801 }
802
803 if (entry_values_debug)
804 {
805 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
806 for (idx = 0; idx < result->callers; idx++)
807 tailcall_dump (gdbarch, result->call_site[idx]);
808 fputs_unfiltered (" |", gdb_stdlog);
809 for (idx = 0; idx < result->callees; idx++)
810 tailcall_dump (gdbarch, result->call_site[result->length
811 - result->callees + idx]);
812 fputc_unfiltered ('\n', gdb_stdlog);
813 }
814
815 if (result->callers == 0 && result->callees == 0)
816 {
817 /* There are no common callers or callees. It could be also a direct
818 call (which has length 0) with ambiguous possibility of an indirect
819 call - CALLERS == CALLEES == 0 is valid during the first allocation
820 but any subsequence processing of such entry means ambiguity. */
821 xfree (result);
822 *resultp = NULL;
823 return;
824 }
825
826 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
827 PC again. In such case there must be two different code paths to reach
e0619de6
JK
828 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
829 gdb_assert (result->callers + result->callees <= result->length);
111c6489
JK
830}
831
832/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
833 assumed frames between them use GDBARCH. Use depth first search so we can
834 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
835 would have needless GDB stack overhead. Caller is responsible for xfree of
836 the returned result. Any unreliability results in thrown
837 NO_ENTRY_VALUE_ERROR. */
838
839static struct call_site_chain *
840call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
841 CORE_ADDR callee_pc)
842{
c4be5165 843 CORE_ADDR save_callee_pc = callee_pc;
111c6489
JK
844 struct obstack addr_obstack;
845 struct cleanup *back_to_retval, *back_to_workdata;
846 struct call_site_chain *retval = NULL;
847 struct call_site *call_site;
848
849 /* Mark CALL_SITEs so we do not visit the same ones twice. */
850 htab_t addr_hash;
851
852 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
853 call_site nor any possible call_site at CALLEE_PC's function is there.
854 Any CALL_SITE in CHAIN will be iterated to its siblings - via
855 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
856 VEC (call_sitep) *chain = NULL;
857
858 /* We are not interested in the specific PC inside the callee function. */
859 callee_pc = get_pc_function_start (callee_pc);
860 if (callee_pc == 0)
861 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
c4be5165 862 paddress (gdbarch, save_callee_pc));
111c6489
JK
863
864 back_to_retval = make_cleanup (free_current_contents, &retval);
865
866 obstack_init (&addr_obstack);
867 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
868 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
869 &addr_obstack, hashtab_obstack_allocate,
870 NULL);
871 make_cleanup_htab_delete (addr_hash);
872
873 make_cleanup (VEC_cleanup (call_sitep), &chain);
874
875 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
876 at the target's function. All the possible tail call sites in the
877 target's function will get iterated as already pushed into CHAIN via their
878 TAIL_CALL_NEXT. */
879 call_site = call_site_for_pc (gdbarch, caller_pc);
880
881 while (call_site)
882 {
883 CORE_ADDR target_func_addr;
884 struct call_site *target_call_site;
885
886 /* CALLER_FRAME with registers is not available for tail-call jumped
887 frames. */
888 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
889
890 if (target_func_addr == callee_pc)
891 {
892 chain_candidate (gdbarch, &retval, chain);
893 if (retval == NULL)
894 break;
895
896 /* There is no way to reach CALLEE_PC again as we would prevent
897 entering it twice as being already marked in ADDR_HASH. */
898 target_call_site = NULL;
899 }
900 else
901 {
902 struct symbol *target_func;
903
904 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
905 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
906 }
907
908 do
909 {
910 /* Attempt to visit TARGET_CALL_SITE. */
911
912 if (target_call_site)
913 {
914 void **slot;
915
916 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
917 if (*slot == NULL)
918 {
919 /* Successfully entered TARGET_CALL_SITE. */
920
921 *slot = &target_call_site->pc;
922 VEC_safe_push (call_sitep, chain, target_call_site);
923 break;
924 }
925 }
926
927 /* Backtrack (without revisiting the originating call_site). Try the
928 callers's sibling; if there isn't any try the callers's callers's
929 sibling etc. */
930
931 target_call_site = NULL;
932 while (!VEC_empty (call_sitep, chain))
933 {
934 call_site = VEC_pop (call_sitep, chain);
935
936 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
937 NO_INSERT) != NULL);
938 htab_remove_elt (addr_hash, &call_site->pc);
939
940 target_call_site = call_site->tail_call_next;
941 if (target_call_site)
942 break;
943 }
944 }
945 while (target_call_site);
946
947 if (VEC_empty (call_sitep, chain))
948 call_site = NULL;
949 else
950 call_site = VEC_last (call_sitep, chain);
951 }
952
953 if (retval == NULL)
954 {
7cbd4a93 955 struct bound_minimal_symbol msym_caller, msym_callee;
111c6489
JK
956
957 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
958 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
959 throw_error (NO_ENTRY_VALUE_ERROR,
960 _("There are no unambiguously determinable intermediate "
961 "callers or callees between caller function \"%s\" at %s "
962 "and callee function \"%s\" at %s"),
7cbd4a93 963 (msym_caller.minsym == NULL
efd66ac6 964 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
111c6489 965 paddress (gdbarch, caller_pc),
7cbd4a93 966 (msym_callee.minsym == NULL
efd66ac6 967 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
111c6489
JK
968 paddress (gdbarch, callee_pc));
969 }
970
971 do_cleanups (back_to_workdata);
972 discard_cleanups (back_to_retval);
973 return retval;
974}
975
976/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
977 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
978 constructed return NULL. Caller is responsible for xfree of the returned
979 result. */
980
981struct call_site_chain *
982call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
983 CORE_ADDR callee_pc)
984{
111c6489
JK
985 struct call_site_chain *retval = NULL;
986
492d29ea 987 TRY
111c6489
JK
988 {
989 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
990 }
492d29ea 991 CATCH (e, RETURN_MASK_ERROR)
111c6489
JK
992 {
993 if (e.error == NO_ENTRY_VALUE_ERROR)
994 {
995 if (entry_values_debug)
996 exception_print (gdb_stdout, e);
997
998 return NULL;
999 }
1000 else
1001 throw_exception (e);
1002 }
492d29ea
PA
1003 END_CATCH
1004
111c6489
JK
1005 return retval;
1006}
1007
24c5c679
JK
1008/* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1009
1010static int
1011call_site_parameter_matches (struct call_site_parameter *parameter,
1012 enum call_site_parameter_kind kind,
1013 union call_site_parameter_u kind_u)
1014{
1015 if (kind == parameter->kind)
1016 switch (kind)
1017 {
1018 case CALL_SITE_PARAMETER_DWARF_REG:
1019 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1020 case CALL_SITE_PARAMETER_FB_OFFSET:
1021 return kind_u.fb_offset == parameter->u.fb_offset;
1788b2d3
JK
1022 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1023 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
24c5c679
JK
1024 }
1025 return 0;
1026}
1027
1028/* Fetch call_site_parameter from caller matching KIND and KIND_U.
1029 FRAME is for callee.
8e3b41a9
JK
1030
1031 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1032 otherwise. */
1033
1034static struct call_site_parameter *
24c5c679
JK
1035dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1036 enum call_site_parameter_kind kind,
1037 union call_site_parameter_u kind_u,
8e3b41a9
JK
1038 struct dwarf2_per_cu_data **per_cu_return)
1039{
9e3a7d65
JK
1040 CORE_ADDR func_addr, caller_pc;
1041 struct gdbarch *gdbarch;
1042 struct frame_info *caller_frame;
8e3b41a9
JK
1043 struct call_site *call_site;
1044 int iparams;
509f0fd9
JK
1045 /* Initialize it just to avoid a GCC false warning. */
1046 struct call_site_parameter *parameter = NULL;
8e3b41a9
JK
1047 CORE_ADDR target_addr;
1048
9e3a7d65
JK
1049 while (get_frame_type (frame) == INLINE_FRAME)
1050 {
1051 frame = get_prev_frame (frame);
1052 gdb_assert (frame != NULL);
1053 }
1054
1055 func_addr = get_frame_func (frame);
1056 gdbarch = get_frame_arch (frame);
1057 caller_frame = get_prev_frame (frame);
8e3b41a9
JK
1058 if (gdbarch != frame_unwind_arch (frame))
1059 {
7cbd4a93
TT
1060 struct bound_minimal_symbol msym
1061 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1062 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1063
1064 throw_error (NO_ENTRY_VALUE_ERROR,
1065 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1066 "(of %s (%s)) does not match caller gdbarch %s"),
1067 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1068 paddress (gdbarch, func_addr),
7cbd4a93 1069 (msym.minsym == NULL ? "???"
efd66ac6 1070 : MSYMBOL_PRINT_NAME (msym.minsym)),
8e3b41a9
JK
1071 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1072 }
1073
1074 if (caller_frame == NULL)
1075 {
7cbd4a93
TT
1076 struct bound_minimal_symbol msym
1077 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1078
1079 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1080 "requires caller of %s (%s)"),
1081 paddress (gdbarch, func_addr),
7cbd4a93 1082 (msym.minsym == NULL ? "???"
efd66ac6 1083 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
1084 }
1085 caller_pc = get_frame_pc (caller_frame);
1086 call_site = call_site_for_pc (gdbarch, caller_pc);
1087
1088 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1089 if (target_addr != func_addr)
1090 {
1091 struct minimal_symbol *target_msym, *func_msym;
1092
7cbd4a93
TT
1093 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1094 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
8e3b41a9
JK
1095 throw_error (NO_ENTRY_VALUE_ERROR,
1096 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1097 "but the called frame is for %s at %s"),
1098 (target_msym == NULL ? "???"
efd66ac6 1099 : MSYMBOL_PRINT_NAME (target_msym)),
8e3b41a9 1100 paddress (gdbarch, target_addr),
efd66ac6 1101 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
8e3b41a9
JK
1102 paddress (gdbarch, func_addr));
1103 }
1104
2d6c5dc2
JK
1105 /* No entry value based parameters would be reliable if this function can
1106 call itself via tail calls. */
1107 func_verify_no_selftailcall (gdbarch, func_addr);
1108
8e3b41a9
JK
1109 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1110 {
1111 parameter = &call_site->parameter[iparams];
24c5c679 1112 if (call_site_parameter_matches (parameter, kind, kind_u))
8e3b41a9
JK
1113 break;
1114 }
1115 if (iparams == call_site->parameter_count)
1116 {
7cbd4a93
TT
1117 struct minimal_symbol *msym
1118 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
8e3b41a9
JK
1119
1120 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1121 determine its value. */
1122 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1123 "at DW_TAG_GNU_call_site %s at %s"),
1124 paddress (gdbarch, caller_pc),
efd66ac6 1125 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
8e3b41a9
JK
1126 }
1127
1128 *per_cu_return = call_site->per_cu;
1129 return parameter;
1130}
1131
a471c594
JK
1132/* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1133 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1134 DW_AT_GNU_call_site_data_value (dereferenced) block.
e18b2753
JK
1135
1136 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1137 struct value.
1138
1139 Function always returns non-NULL, non-optimized out value. It throws
1140 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1141
1142static struct value *
1143dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
a471c594 1144 CORE_ADDR deref_size, struct type *type,
e18b2753
JK
1145 struct frame_info *caller_frame,
1146 struct dwarf2_per_cu_data *per_cu)
1147{
a471c594 1148 const gdb_byte *data_src;
e18b2753 1149 gdb_byte *data;
a471c594
JK
1150 size_t size;
1151
1152 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1153 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1154
1155 /* DEREF_SIZE size is not verified here. */
1156 if (data_src == NULL)
1157 throw_error (NO_ENTRY_VALUE_ERROR,
1158 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
e18b2753
JK
1159
1160 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1161 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1162 DWARF block. */
a471c594
JK
1163 data = alloca (size + 1);
1164 memcpy (data, data_src, size);
1165 data[size] = DW_OP_stack_value;
e18b2753 1166
a471c594 1167 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
e18b2753
JK
1168}
1169
24c5c679
JK
1170/* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1171 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1172 frame. CTX must be of dwarf_expr_ctx_funcs kind.
8e3b41a9
JK
1173
1174 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1175 can be more simple as it does not support cross-CU DWARF executions. */
1176
1177static void
1178dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
24c5c679
JK
1179 enum call_site_parameter_kind kind,
1180 union call_site_parameter_u kind_u,
a471c594 1181 int deref_size)
8e3b41a9
JK
1182{
1183 struct dwarf_expr_baton *debaton;
1184 struct frame_info *frame, *caller_frame;
1185 struct dwarf2_per_cu_data *caller_per_cu;
1186 struct dwarf_expr_baton baton_local;
1187 struct dwarf_expr_context saved_ctx;
1188 struct call_site_parameter *parameter;
1189 const gdb_byte *data_src;
1190 size_t size;
1191
1192 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1193 debaton = ctx->baton;
1194 frame = debaton->frame;
1195 caller_frame = get_prev_frame (frame);
1196
24c5c679 1197 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
8e3b41a9 1198 &caller_per_cu);
a471c594
JK
1199 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1200 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1201
1202 /* DEREF_SIZE size is not verified here. */
1203 if (data_src == NULL)
1204 throw_error (NO_ENTRY_VALUE_ERROR,
1205 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
8e3b41a9
JK
1206
1207 baton_local.frame = caller_frame;
1208 baton_local.per_cu = caller_per_cu;
08412b07 1209 baton_local.obj_address = 0;
8e3b41a9
JK
1210
1211 saved_ctx.gdbarch = ctx->gdbarch;
1212 saved_ctx.addr_size = ctx->addr_size;
1213 saved_ctx.offset = ctx->offset;
1214 saved_ctx.baton = ctx->baton;
1215 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1216 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1217 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1218 ctx->baton = &baton_local;
1219
1220 dwarf_expr_eval (ctx, data_src, size);
1221
1222 ctx->gdbarch = saved_ctx.gdbarch;
1223 ctx->addr_size = saved_ctx.addr_size;
1224 ctx->offset = saved_ctx.offset;
1225 ctx->baton = saved_ctx.baton;
1226}
1227
3019eac3
DE
1228/* Callback function for dwarf2_evaluate_loc_desc.
1229 Fetch the address indexed by DW_OP_GNU_addr_index. */
1230
1231static CORE_ADDR
1232dwarf_expr_get_addr_index (void *baton, unsigned int index)
1233{
1234 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1235
1236 return dwarf2_read_addr_index (debaton->per_cu, index);
1237}
1238
08412b07
JB
1239/* Callback function for get_object_address. Return the address of the VLA
1240 object. */
1241
1242static CORE_ADDR
1243dwarf_expr_get_obj_addr (void *baton)
1244{
1245 struct dwarf_expr_baton *debaton = baton;
1246
1247 gdb_assert (debaton != NULL);
1248
1249 if (debaton->obj_address == 0)
1250 error (_("Location address is not set."));
1251
1252 return debaton->obj_address;
1253}
1254
a471c594
JK
1255/* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1256 the indirect method on it, that is use its stored target value, the sole
1257 purpose of entry_data_value_funcs.. */
1258
1259static struct value *
1260entry_data_value_coerce_ref (const struct value *value)
1261{
1262 struct type *checked_type = check_typedef (value_type (value));
1263 struct value *target_val;
1264
1265 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1266 return NULL;
1267
1268 target_val = value_computed_closure (value);
1269 value_incref (target_val);
1270 return target_val;
1271}
1272
1273/* Implement copy_closure. */
1274
1275static void *
1276entry_data_value_copy_closure (const struct value *v)
1277{
1278 struct value *target_val = value_computed_closure (v);
1279
1280 value_incref (target_val);
1281 return target_val;
1282}
1283
1284/* Implement free_closure. */
1285
1286static void
1287entry_data_value_free_closure (struct value *v)
1288{
1289 struct value *target_val = value_computed_closure (v);
1290
1291 value_free (target_val);
1292}
1293
1294/* Vector for methods for an entry value reference where the referenced value
1295 is stored in the caller. On the first dereference use
1296 DW_AT_GNU_call_site_data_value in the caller. */
1297
1298static const struct lval_funcs entry_data_value_funcs =
1299{
1300 NULL, /* read */
1301 NULL, /* write */
a471c594
JK
1302 NULL, /* indirect */
1303 entry_data_value_coerce_ref,
1304 NULL, /* check_synthetic_pointer */
1305 entry_data_value_copy_closure,
1306 entry_data_value_free_closure
1307};
1308
24c5c679
JK
1309/* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1310 are used to match DW_AT_location at the caller's
1311 DW_TAG_GNU_call_site_parameter.
e18b2753
JK
1312
1313 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1314 cannot resolve the parameter for any reason. */
1315
1316static struct value *
1317value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
24c5c679
JK
1318 enum call_site_parameter_kind kind,
1319 union call_site_parameter_u kind_u)
e18b2753 1320{
a471c594
JK
1321 struct type *checked_type = check_typedef (type);
1322 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
e18b2753 1323 struct frame_info *caller_frame = get_prev_frame (frame);
a471c594 1324 struct value *outer_val, *target_val, *val;
e18b2753
JK
1325 struct call_site_parameter *parameter;
1326 struct dwarf2_per_cu_data *caller_per_cu;
1327
24c5c679 1328 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
e18b2753
JK
1329 &caller_per_cu);
1330
a471c594
JK
1331 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1332 type, caller_frame,
1333 caller_per_cu);
1334
1335 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1336 used and it is not available do not fall back to OUTER_VAL - dereferencing
1337 TYPE_CODE_REF with non-entry data value would give current value - not the
1338 entry value. */
1339
1340 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1341 || TYPE_TARGET_TYPE (checked_type) == NULL)
1342 return outer_val;
1343
1344 target_val = dwarf_entry_parameter_to_value (parameter,
1345 TYPE_LENGTH (target_type),
1346 target_type, caller_frame,
1347 caller_per_cu);
1348
a471c594
JK
1349 release_value (target_val);
1350 val = allocate_computed_value (type, &entry_data_value_funcs,
1351 target_val /* closure */);
1352
1353 /* Copy the referencing pointer to the new computed value. */
1354 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1355 TYPE_LENGTH (checked_type));
1356 set_value_lazy (val, 0);
1357
1358 return val;
e18b2753
JK
1359}
1360
1361/* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1362 SIZE are DWARF block used to match DW_AT_location at the caller's
1363 DW_TAG_GNU_call_site_parameter.
1364
1365 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1366 cannot resolve the parameter for any reason. */
1367
1368static struct value *
1369value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1370 const gdb_byte *block, size_t block_len)
1371{
24c5c679 1372 union call_site_parameter_u kind_u;
e18b2753 1373
24c5c679
JK
1374 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1375 if (kind_u.dwarf_reg != -1)
1376 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1377 kind_u);
e18b2753 1378
24c5c679
JK
1379 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1380 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1381 kind_u);
e18b2753
JK
1382
1383 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1384 suppressed during normal operation. The expression can be arbitrary if
1385 there is no caller-callee entry value binding expected. */
1386 throw_error (NO_ENTRY_VALUE_ERROR,
1387 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1388 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1389}
1390
052b9502
NF
1391struct piece_closure
1392{
88bfdde4
TT
1393 /* Reference count. */
1394 int refc;
1395
8cf6f0b1
TT
1396 /* The CU from which this closure's expression came. */
1397 struct dwarf2_per_cu_data *per_cu;
1398
052b9502
NF
1399 /* The number of pieces used to describe this variable. */
1400 int n_pieces;
1401
6063c216
UW
1402 /* The target address size, used only for DWARF_VALUE_STACK. */
1403 int addr_size;
cec03d70 1404
052b9502
NF
1405 /* The pieces themselves. */
1406 struct dwarf_expr_piece *pieces;
1407};
1408
1409/* Allocate a closure for a value formed from separately-described
1410 PIECES. */
1411
1412static struct piece_closure *
8cf6f0b1
TT
1413allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1414 int n_pieces, struct dwarf_expr_piece *pieces,
6063c216 1415 int addr_size)
052b9502 1416{
41bf6aca 1417 struct piece_closure *c = XCNEW (struct piece_closure);
8a9b8146 1418 int i;
052b9502 1419
88bfdde4 1420 c->refc = 1;
8cf6f0b1 1421 c->per_cu = per_cu;
052b9502 1422 c->n_pieces = n_pieces;
6063c216 1423 c->addr_size = addr_size;
fc270c35 1424 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
052b9502
NF
1425
1426 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
8a9b8146
TT
1427 for (i = 0; i < n_pieces; ++i)
1428 if (c->pieces[i].location == DWARF_VALUE_STACK)
1429 value_incref (c->pieces[i].v.value);
052b9502
NF
1430
1431 return c;
1432}
1433
d3b1e874
TT
1434/* The lowest-level function to extract bits from a byte buffer.
1435 SOURCE is the buffer. It is updated if we read to the end of a
1436 byte.
1437 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1438 updated to reflect the number of bits actually read.
1439 NBITS is the number of bits we want to read. It is updated to
1440 reflect the number of bits actually read. This function may read
1441 fewer bits.
1442 BITS_BIG_ENDIAN is taken directly from gdbarch.
1443 This function returns the extracted bits. */
1444
1445static unsigned int
1446extract_bits_primitive (const gdb_byte **source,
1447 unsigned int *source_offset_bits,
1448 int *nbits, int bits_big_endian)
1449{
1450 unsigned int avail, mask, datum;
1451
1452 gdb_assert (*source_offset_bits < 8);
1453
1454 avail = 8 - *source_offset_bits;
1455 if (avail > *nbits)
1456 avail = *nbits;
1457
1458 mask = (1 << avail) - 1;
1459 datum = **source;
1460 if (bits_big_endian)
1461 datum >>= 8 - (*source_offset_bits + *nbits);
1462 else
1463 datum >>= *source_offset_bits;
1464 datum &= mask;
1465
1466 *nbits -= avail;
1467 *source_offset_bits += avail;
1468 if (*source_offset_bits >= 8)
1469 {
1470 *source_offset_bits -= 8;
1471 ++*source;
1472 }
1473
1474 return datum;
1475}
1476
1477/* Extract some bits from a source buffer and move forward in the
1478 buffer.
1479
1480 SOURCE is the source buffer. It is updated as bytes are read.
1481 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1482 bits are read.
1483 NBITS is the number of bits to read.
1484 BITS_BIG_ENDIAN is taken directly from gdbarch.
1485
1486 This function returns the bits that were read. */
1487
1488static unsigned int
1489extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1490 int nbits, int bits_big_endian)
1491{
1492 unsigned int datum;
1493
1494 gdb_assert (nbits > 0 && nbits <= 8);
1495
1496 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1497 bits_big_endian);
1498 if (nbits > 0)
1499 {
1500 unsigned int more;
1501
1502 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1503 bits_big_endian);
1504 if (bits_big_endian)
1505 datum <<= nbits;
1506 else
1507 more <<= nbits;
1508 datum |= more;
1509 }
1510
1511 return datum;
1512}
1513
1514/* Write some bits into a buffer and move forward in the buffer.
1515
1516 DATUM is the bits to write. The low-order bits of DATUM are used.
1517 DEST is the destination buffer. It is updated as bytes are
1518 written.
1519 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1520 done.
1521 NBITS is the number of valid bits in DATUM.
1522 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1523
1524static void
1525insert_bits (unsigned int datum,
1526 gdb_byte *dest, unsigned int dest_offset_bits,
1527 int nbits, int bits_big_endian)
1528{
1529 unsigned int mask;
1530
8c814cdd 1531 gdb_assert (dest_offset_bits + nbits <= 8);
d3b1e874
TT
1532
1533 mask = (1 << nbits) - 1;
1534 if (bits_big_endian)
1535 {
1536 datum <<= 8 - (dest_offset_bits + nbits);
1537 mask <<= 8 - (dest_offset_bits + nbits);
1538 }
1539 else
1540 {
1541 datum <<= dest_offset_bits;
1542 mask <<= dest_offset_bits;
1543 }
1544
1545 gdb_assert ((datum & ~mask) == 0);
1546
1547 *dest = (*dest & ~mask) | datum;
1548}
1549
1550/* Copy bits from a source to a destination.
1551
1552 DEST is where the bits should be written.
1553 DEST_OFFSET_BITS is the bit offset into DEST.
1554 SOURCE is the source of bits.
1555 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1556 BIT_COUNT is the number of bits to copy.
1557 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1558
1559static void
1560copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1561 const gdb_byte *source, unsigned int source_offset_bits,
1562 unsigned int bit_count,
1563 int bits_big_endian)
1564{
1565 unsigned int dest_avail;
1566 int datum;
1567
1568 /* Reduce everything to byte-size pieces. */
1569 dest += dest_offset_bits / 8;
1570 dest_offset_bits %= 8;
1571 source += source_offset_bits / 8;
1572 source_offset_bits %= 8;
1573
1574 dest_avail = 8 - dest_offset_bits % 8;
1575
1576 /* See if we can fill the first destination byte. */
1577 if (dest_avail < bit_count)
1578 {
1579 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1580 bits_big_endian);
1581 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1582 ++dest;
1583 dest_offset_bits = 0;
1584 bit_count -= dest_avail;
1585 }
1586
1587 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1588 than 8 bits remaining. */
1589 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1590 for (; bit_count >= 8; bit_count -= 8)
1591 {
1592 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1593 *dest++ = (gdb_byte) datum;
1594 }
1595
1596 /* Finally, we may have a few leftover bits. */
1597 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1598 if (bit_count > 0)
1599 {
1600 datum = extract_bits (&source, &source_offset_bits, bit_count,
1601 bits_big_endian);
1602 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1603 }
1604}
1605
052b9502
NF
1606static void
1607read_pieced_value (struct value *v)
1608{
1609 int i;
1610 long offset = 0;
d3b1e874 1611 ULONGEST bits_to_skip;
052b9502 1612 gdb_byte *contents;
3e43a32a
MS
1613 struct piece_closure *c
1614 = (struct piece_closure *) value_computed_closure (v);
052b9502 1615 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
afd74c5f 1616 size_t type_len;
d3b1e874 1617 size_t buffer_size = 0;
948f8e3d 1618 gdb_byte *buffer = NULL;
d3b1e874
TT
1619 struct cleanup *cleanup;
1620 int bits_big_endian
1621 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
afd74c5f
TT
1622
1623 if (value_type (v) != value_enclosing_type (v))
1624 internal_error (__FILE__, __LINE__,
1625 _("Should not be able to create a lazy value with "
1626 "an enclosing type"));
052b9502 1627
d3b1e874
TT
1628 cleanup = make_cleanup (free_current_contents, &buffer);
1629
052b9502 1630 contents = value_contents_raw (v);
d3b1e874 1631 bits_to_skip = 8 * value_offset (v);
0e03807e
TT
1632 if (value_bitsize (v))
1633 {
1634 bits_to_skip += value_bitpos (v);
1635 type_len = value_bitsize (v);
1636 }
1637 else
1638 type_len = 8 * TYPE_LENGTH (value_type (v));
d3b1e874 1639
afd74c5f 1640 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
1641 {
1642 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
1643 size_t this_size, this_size_bits;
1644 long dest_offset_bits, source_offset_bits, source_offset;
0d45f56e 1645 const gdb_byte *intermediate_buffer;
d3b1e874
TT
1646
1647 /* Compute size, source, and destination offsets for copying, in
1648 bits. */
1649 this_size_bits = p->size;
1650 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 1651 {
d3b1e874 1652 bits_to_skip -= this_size_bits;
afd74c5f
TT
1653 continue;
1654 }
d3b1e874 1655 if (bits_to_skip > 0)
afd74c5f 1656 {
d3b1e874
TT
1657 dest_offset_bits = 0;
1658 source_offset_bits = bits_to_skip;
1659 this_size_bits -= bits_to_skip;
1660 bits_to_skip = 0;
afd74c5f
TT
1661 }
1662 else
1663 {
d3b1e874
TT
1664 dest_offset_bits = offset;
1665 source_offset_bits = 0;
afd74c5f 1666 }
5bd1ef56
TT
1667 if (this_size_bits > type_len - offset)
1668 this_size_bits = type_len - offset;
9a619af0 1669
d3b1e874
TT
1670 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1671 source_offset = source_offset_bits / 8;
1672 if (buffer_size < this_size)
1673 {
1674 buffer_size = this_size;
1675 buffer = xrealloc (buffer, buffer_size);
1676 }
1677 intermediate_buffer = buffer;
1678
1679 /* Copy from the source to DEST_BUFFER. */
cec03d70 1680 switch (p->location)
052b9502 1681 {
cec03d70
TT
1682 case DWARF_VALUE_REGISTER:
1683 {
1684 struct gdbarch *arch = get_frame_arch (frame);
8a9b8146 1685 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
dcbf108f 1686
63b4f126
MGD
1687 if (gdb_regnum != -1)
1688 {
8dccd430 1689 int optim, unavail;
ca45ab26
VK
1690 int reg_offset = source_offset;
1691
1692 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1693 && this_size < register_size (arch, gdb_regnum))
1694 {
1695 /* Big-endian, and we want less than full size. */
1696 reg_offset = register_size (arch, gdb_regnum) - this_size;
1697 /* We want the lower-order THIS_SIZE_BITS of the bytes
1698 we extract from the register. */
1699 source_offset_bits += 8 * this_size - this_size_bits;
1700 }
8dccd430
PA
1701
1702 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1703 this_size, buffer,
1704 &optim, &unavail))
1705 {
1706 /* Just so garbage doesn't ever shine through. */
1707 memset (buffer, 0, this_size);
1708
1709 if (optim)
9a0dc9e3 1710 mark_value_bits_optimized_out (v, offset, this_size_bits);
8dccd430 1711 if (unavail)
bdf22206 1712 mark_value_bits_unavailable (v, offset, this_size_bits);
8dccd430 1713 }
63b4f126
MGD
1714 }
1715 else
1716 {
1717 error (_("Unable to access DWARF register number %s"),
8a9b8146 1718 paddress (arch, p->v.regno));
63b4f126 1719 }
cec03d70
TT
1720 }
1721 break;
1722
1723 case DWARF_VALUE_MEMORY:
e6ca34fc
PA
1724 read_value_memory (v, offset,
1725 p->v.mem.in_stack_memory,
1726 p->v.mem.addr + source_offset,
1727 buffer, this_size);
cec03d70
TT
1728 break;
1729
1730 case DWARF_VALUE_STACK:
1731 {
afd74c5f 1732 size_t n = this_size;
9a619af0 1733
afd74c5f
TT
1734 if (n > c->addr_size - source_offset)
1735 n = (c->addr_size >= source_offset
1736 ? c->addr_size - source_offset
1737 : 0);
1738 if (n == 0)
1739 {
1740 /* Nothing. */
1741 }
afd74c5f
TT
1742 else
1743 {
8a9b8146 1744 const gdb_byte *val_bytes = value_contents_all (p->v.value);
afd74c5f 1745
8a9b8146 1746 intermediate_buffer = val_bytes + source_offset;
afd74c5f 1747 }
cec03d70
TT
1748 }
1749 break;
1750
1751 case DWARF_VALUE_LITERAL:
1752 {
afd74c5f
TT
1753 size_t n = this_size;
1754
1755 if (n > p->v.literal.length - source_offset)
1756 n = (p->v.literal.length >= source_offset
1757 ? p->v.literal.length - source_offset
1758 : 0);
1759 if (n != 0)
d3b1e874 1760 intermediate_buffer = p->v.literal.data + source_offset;
cec03d70
TT
1761 }
1762 break;
1763
8cf6f0b1
TT
1764 /* These bits show up as zeros -- but do not cause the value
1765 to be considered optimized-out. */
1766 case DWARF_VALUE_IMPLICIT_POINTER:
1767 break;
1768
cb826367 1769 case DWARF_VALUE_OPTIMIZED_OUT:
9a0dc9e3 1770 mark_value_bits_optimized_out (v, offset, this_size_bits);
cb826367
TT
1771 break;
1772
cec03d70
TT
1773 default:
1774 internal_error (__FILE__, __LINE__, _("invalid location type"));
052b9502 1775 }
d3b1e874 1776
8cf6f0b1
TT
1777 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1778 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
d3b1e874
TT
1779 copy_bitwise (contents, dest_offset_bits,
1780 intermediate_buffer, source_offset_bits % 8,
1781 this_size_bits, bits_big_endian);
1782
1783 offset += this_size_bits;
052b9502 1784 }
d3b1e874
TT
1785
1786 do_cleanups (cleanup);
052b9502
NF
1787}
1788
1789static void
1790write_pieced_value (struct value *to, struct value *from)
1791{
1792 int i;
1793 long offset = 0;
d3b1e874 1794 ULONGEST bits_to_skip;
afd74c5f 1795 const gdb_byte *contents;
3e43a32a
MS
1796 struct piece_closure *c
1797 = (struct piece_closure *) value_computed_closure (to);
052b9502 1798 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
afd74c5f 1799 size_t type_len;
d3b1e874 1800 size_t buffer_size = 0;
948f8e3d 1801 gdb_byte *buffer = NULL;
d3b1e874
TT
1802 struct cleanup *cleanup;
1803 int bits_big_endian
1804 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
052b9502
NF
1805
1806 if (frame == NULL)
1807 {
9a0dc9e3 1808 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
052b9502
NF
1809 return;
1810 }
1811
d3b1e874
TT
1812 cleanup = make_cleanup (free_current_contents, &buffer);
1813
afd74c5f 1814 contents = value_contents (from);
d3b1e874 1815 bits_to_skip = 8 * value_offset (to);
0e03807e
TT
1816 if (value_bitsize (to))
1817 {
1818 bits_to_skip += value_bitpos (to);
1819 type_len = value_bitsize (to);
1820 }
1821 else
1822 type_len = 8 * TYPE_LENGTH (value_type (to));
1823
afd74c5f 1824 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
1825 {
1826 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
1827 size_t this_size_bits, this_size;
1828 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1829 int need_bitwise;
1830 const gdb_byte *source_buffer;
afd74c5f 1831
d3b1e874
TT
1832 this_size_bits = p->size;
1833 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 1834 {
d3b1e874 1835 bits_to_skip -= this_size_bits;
afd74c5f
TT
1836 continue;
1837 }
d3b1e874
TT
1838 if (this_size_bits > type_len - offset)
1839 this_size_bits = type_len - offset;
1840 if (bits_to_skip > 0)
afd74c5f 1841 {
d3b1e874
TT
1842 dest_offset_bits = bits_to_skip;
1843 source_offset_bits = 0;
1844 this_size_bits -= bits_to_skip;
1845 bits_to_skip = 0;
afd74c5f
TT
1846 }
1847 else
1848 {
d3b1e874
TT
1849 dest_offset_bits = 0;
1850 source_offset_bits = offset;
1851 }
1852
1853 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1854 source_offset = source_offset_bits / 8;
1855 dest_offset = dest_offset_bits / 8;
1856 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1857 {
1858 source_buffer = contents + source_offset;
1859 need_bitwise = 0;
1860 }
1861 else
1862 {
1863 if (buffer_size < this_size)
1864 {
1865 buffer_size = this_size;
1866 buffer = xrealloc (buffer, buffer_size);
1867 }
1868 source_buffer = buffer;
1869 need_bitwise = 1;
afd74c5f 1870 }
9a619af0 1871
cec03d70 1872 switch (p->location)
052b9502 1873 {
cec03d70
TT
1874 case DWARF_VALUE_REGISTER:
1875 {
1876 struct gdbarch *arch = get_frame_arch (frame);
8a9b8146 1877 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
dcbf108f 1878
63b4f126
MGD
1879 if (gdb_regnum != -1)
1880 {
ca45ab26
VK
1881 int reg_offset = dest_offset;
1882
1883 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1884 && this_size <= register_size (arch, gdb_regnum))
1885 {
1886 /* Big-endian, and we want less than full size. */
1887 reg_offset = register_size (arch, gdb_regnum) - this_size;
1888 }
1889
d3b1e874
TT
1890 if (need_bitwise)
1891 {
8dccd430
PA
1892 int optim, unavail;
1893
1894 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1895 this_size, buffer,
1896 &optim, &unavail))
1897 {
1898 if (optim)
710409a2
PA
1899 throw_error (OPTIMIZED_OUT_ERROR,
1900 _("Can't do read-modify-write to "
1901 "update bitfield; containing word "
1902 "has been optimized out"));
8dccd430
PA
1903 if (unavail)
1904 throw_error (NOT_AVAILABLE_ERROR,
1905 _("Can't do read-modify-write to update "
1906 "bitfield; containing word "
1907 "is unavailable"));
1908 }
d3b1e874
TT
1909 copy_bitwise (buffer, dest_offset_bits,
1910 contents, source_offset_bits,
1911 this_size_bits,
1912 bits_big_endian);
1913 }
1914
63b4f126 1915 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
d3b1e874 1916 this_size, source_buffer);
63b4f126
MGD
1917 }
1918 else
1919 {
1920 error (_("Unable to write to DWARF register number %s"),
8a9b8146 1921 paddress (arch, p->v.regno));
63b4f126 1922 }
cec03d70
TT
1923 }
1924 break;
1925 case DWARF_VALUE_MEMORY:
d3b1e874
TT
1926 if (need_bitwise)
1927 {
1928 /* Only the first and last bytes can possibly have any
1929 bits reused. */
f2c7657e
UW
1930 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1931 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
d3b1e874
TT
1932 buffer + this_size - 1, 1);
1933 copy_bitwise (buffer, dest_offset_bits,
1934 contents, source_offset_bits,
1935 this_size_bits,
1936 bits_big_endian);
1937 }
1938
f2c7657e 1939 write_memory (p->v.mem.addr + dest_offset,
d3b1e874 1940 source_buffer, this_size);
cec03d70
TT
1941 break;
1942 default:
9a0dc9e3 1943 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
0e03807e 1944 break;
052b9502 1945 }
d3b1e874 1946 offset += this_size_bits;
052b9502 1947 }
d3b1e874 1948
d3b1e874 1949 do_cleanups (cleanup);
052b9502
NF
1950}
1951
9a0dc9e3
PA
1952/* An implementation of an lval_funcs method to see whether a value is
1953 a synthetic pointer. */
8cf6f0b1 1954
0e03807e 1955static int
9a0dc9e3
PA
1956check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
1957 int bit_length)
0e03807e
TT
1958{
1959 struct piece_closure *c
1960 = (struct piece_closure *) value_computed_closure (value);
1961 int i;
1962
1963 bit_offset += 8 * value_offset (value);
1964 if (value_bitsize (value))
1965 bit_offset += value_bitpos (value);
1966
1967 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1968 {
1969 struct dwarf_expr_piece *p = &c->pieces[i];
1970 size_t this_size_bits = p->size;
1971
1972 if (bit_offset > 0)
1973 {
1974 if (bit_offset >= this_size_bits)
1975 {
1976 bit_offset -= this_size_bits;
1977 continue;
1978 }
1979
1980 bit_length -= this_size_bits - bit_offset;
1981 bit_offset = 0;
1982 }
1983 else
1984 bit_length -= this_size_bits;
1985
9a0dc9e3
PA
1986 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1987 return 0;
0e03807e
TT
1988 }
1989
9a0dc9e3 1990 return 1;
8cf6f0b1
TT
1991}
1992
1993/* A wrapper function for get_frame_address_in_block. */
1994
1995static CORE_ADDR
1996get_frame_address_in_block_wrapper (void *baton)
1997{
1998 return get_frame_address_in_block (baton);
1999}
2000
2001/* An implementation of an lval_funcs method to indirect through a
2002 pointer. This handles the synthetic pointer case when needed. */
2003
2004static struct value *
2005indirect_pieced_value (struct value *value)
2006{
2007 struct piece_closure *c
2008 = (struct piece_closure *) value_computed_closure (value);
2009 struct type *type;
2010 struct frame_info *frame;
2011 struct dwarf2_locexpr_baton baton;
2012 int i, bit_offset, bit_length;
2013 struct dwarf_expr_piece *piece = NULL;
8cf6f0b1 2014 LONGEST byte_offset;
b597c318 2015 enum bfd_endian byte_order;
8cf6f0b1 2016
0e37a63c 2017 type = check_typedef (value_type (value));
8cf6f0b1
TT
2018 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2019 return NULL;
2020
2021 bit_length = 8 * TYPE_LENGTH (type);
2022 bit_offset = 8 * value_offset (value);
2023 if (value_bitsize (value))
2024 bit_offset += value_bitpos (value);
2025
2026 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2027 {
2028 struct dwarf_expr_piece *p = &c->pieces[i];
2029 size_t this_size_bits = p->size;
2030
2031 if (bit_offset > 0)
2032 {
2033 if (bit_offset >= this_size_bits)
2034 {
2035 bit_offset -= this_size_bits;
2036 continue;
2037 }
2038
2039 bit_length -= this_size_bits - bit_offset;
2040 bit_offset = 0;
2041 }
2042 else
2043 bit_length -= this_size_bits;
2044
2045 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2046 return NULL;
2047
2048 if (bit_length != 0)
2049 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2050
2051 piece = p;
2052 break;
2053 }
2054
2055 frame = get_selected_frame (_("No frame selected."));
543305c9 2056
5bd1ef56
TT
2057 /* This is an offset requested by GDB, such as value subscripts.
2058 However, due to how synthetic pointers are implemented, this is
2059 always presented to us as a pointer type. This means we have to
b597c318
YQ
2060 sign-extend it manually as appropriate. Use raw
2061 extract_signed_integer directly rather than value_as_address and
2062 sign extend afterwards on architectures that would need it
2063 (mostly everywhere except MIPS, which has signed addresses) as
2064 the later would go through gdbarch_pointer_to_address and thus
2065 return a CORE_ADDR with high bits set on architectures that
2066 encode address spaces and other things in CORE_ADDR. */
2067 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2068 byte_offset = extract_signed_integer (value_contents (value),
2069 TYPE_LENGTH (type), byte_order);
5bd1ef56 2070 byte_offset += piece->v.ptr.offset;
8cf6f0b1 2071
e0e40094 2072 gdb_assert (piece);
8b9737bf
TT
2073 baton
2074 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2075 get_frame_address_in_block_wrapper,
2076 frame);
8cf6f0b1 2077
b6807d98
TT
2078 if (baton.data != NULL)
2079 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2080 baton.data, baton.size, baton.per_cu,
5bd1ef56 2081 byte_offset);
b6807d98
TT
2082
2083 {
2084 struct obstack temp_obstack;
2085 struct cleanup *cleanup;
2086 const gdb_byte *bytes;
2087 LONGEST len;
2088 struct value *result;
2089
2090 obstack_init (&temp_obstack);
2091 cleanup = make_cleanup_obstack_free (&temp_obstack);
2092
2093 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2094 &temp_obstack, &len);
2095 if (bytes == NULL)
2096 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2097 else
2098 {
2099 if (byte_offset < 0
2100 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2101 invalid_synthetic_pointer ();
2102 bytes += byte_offset;
2103 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2104 }
2105
2106 do_cleanups (cleanup);
2107 return result;
2108 }
0e03807e
TT
2109}
2110
052b9502 2111static void *
0e03807e 2112copy_pieced_value_closure (const struct value *v)
052b9502 2113{
3e43a32a
MS
2114 struct piece_closure *c
2115 = (struct piece_closure *) value_computed_closure (v);
052b9502 2116
88bfdde4
TT
2117 ++c->refc;
2118 return c;
052b9502
NF
2119}
2120
2121static void
2122free_pieced_value_closure (struct value *v)
2123{
3e43a32a
MS
2124 struct piece_closure *c
2125 = (struct piece_closure *) value_computed_closure (v);
052b9502 2126
88bfdde4
TT
2127 --c->refc;
2128 if (c->refc == 0)
2129 {
8a9b8146
TT
2130 int i;
2131
2132 for (i = 0; i < c->n_pieces; ++i)
2133 if (c->pieces[i].location == DWARF_VALUE_STACK)
2134 value_free (c->pieces[i].v.value);
2135
88bfdde4
TT
2136 xfree (c->pieces);
2137 xfree (c);
2138 }
052b9502
NF
2139}
2140
2141/* Functions for accessing a variable described by DW_OP_piece. */
c8f2448a 2142static const struct lval_funcs pieced_value_funcs = {
052b9502
NF
2143 read_pieced_value,
2144 write_pieced_value,
8cf6f0b1 2145 indirect_pieced_value,
a471c594 2146 NULL, /* coerce_ref */
8cf6f0b1 2147 check_pieced_synthetic_pointer,
052b9502
NF
2148 copy_pieced_value_closure,
2149 free_pieced_value_closure
2150};
2151
9e8b7a03
JK
2152/* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2153
e36122e9 2154const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
9e8b7a03 2155{
b1370418 2156 dwarf_expr_read_addr_from_reg,
0acf8b65 2157 dwarf_expr_get_reg_value,
9e8b7a03
JK
2158 dwarf_expr_read_mem,
2159 dwarf_expr_frame_base,
2160 dwarf_expr_frame_cfa,
2161 dwarf_expr_frame_pc,
2162 dwarf_expr_tls_address,
2163 dwarf_expr_dwarf_call,
8e3b41a9 2164 dwarf_expr_get_base_type,
3019eac3 2165 dwarf_expr_push_dwarf_reg_entry_value,
08412b07
JB
2166 dwarf_expr_get_addr_index,
2167 dwarf_expr_get_obj_addr
9e8b7a03
JK
2168};
2169
4c2df51b 2170/* Evaluate a location description, starting at DATA and with length
8cf6f0b1
TT
2171 SIZE, to find the current location of variable of TYPE in the
2172 context of FRAME. BYTE_OFFSET is applied after the contents are
2173 computed. */
a2d33775 2174
8cf6f0b1
TT
2175static struct value *
2176dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
56eb65bd 2177 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2178 struct dwarf2_per_cu_data *per_cu,
2179 LONGEST byte_offset)
4c2df51b 2180{
4c2df51b
DJ
2181 struct value *retval;
2182 struct dwarf_expr_baton baton;
2183 struct dwarf_expr_context *ctx;
72fc29ff 2184 struct cleanup *old_chain, *value_chain;
ac56253d 2185 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2186
8cf6f0b1
TT
2187 if (byte_offset < 0)
2188 invalid_synthetic_pointer ();
2189
0d53c4c4 2190 if (size == 0)
a7035dbb 2191 return allocate_optimized_out_value (type);
0d53c4c4 2192
4c2df51b 2193 baton.frame = frame;
17ea53c3 2194 baton.per_cu = per_cu;
08412b07 2195 baton.obj_address = 0;
4c2df51b
DJ
2196
2197 ctx = new_dwarf_expr_context ();
4a227398 2198 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 2199 value_chain = make_cleanup_value_free_to_mark (value_mark ());
4a227398 2200
ac56253d 2201 ctx->gdbarch = get_objfile_arch (objfile);
ae0d2f24 2202 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
181cebd4 2203 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
9aa1f1e3 2204 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2205 ctx->baton = &baton;
9e8b7a03 2206 ctx->funcs = &dwarf_expr_ctx_funcs;
4c2df51b 2207
492d29ea 2208 TRY
79e1a869
PA
2209 {
2210 dwarf_expr_eval (ctx, data, size);
2211 }
492d29ea 2212 CATCH (ex, RETURN_MASK_ERROR)
79e1a869
PA
2213 {
2214 if (ex.error == NOT_AVAILABLE_ERROR)
2215 {
72fc29ff 2216 do_cleanups (old_chain);
79e1a869
PA
2217 retval = allocate_value (type);
2218 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2219 return retval;
2220 }
8e3b41a9
JK
2221 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2222 {
2223 if (entry_values_debug)
2224 exception_print (gdb_stdout, ex);
2225 do_cleanups (old_chain);
2226 return allocate_optimized_out_value (type);
2227 }
79e1a869
PA
2228 else
2229 throw_exception (ex);
2230 }
492d29ea 2231 END_CATCH
79e1a869 2232
87808bd6
JB
2233 if (ctx->num_pieces > 0)
2234 {
052b9502
NF
2235 struct piece_closure *c;
2236 struct frame_id frame_id = get_frame_id (frame);
8cf6f0b1
TT
2237 ULONGEST bit_size = 0;
2238 int i;
052b9502 2239
8cf6f0b1
TT
2240 for (i = 0; i < ctx->num_pieces; ++i)
2241 bit_size += ctx->pieces[i].size;
2242 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2243 invalid_synthetic_pointer ();
2244
2245 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
6063c216 2246 ctx->addr_size);
72fc29ff
TT
2247 /* We must clean up the value chain after creating the piece
2248 closure but before allocating the result. */
2249 do_cleanups (value_chain);
a2d33775 2250 retval = allocate_computed_value (type, &pieced_value_funcs, c);
052b9502 2251 VALUE_FRAME_ID (retval) = frame_id;
8cf6f0b1 2252 set_value_offset (retval, byte_offset);
87808bd6 2253 }
4c2df51b
DJ
2254 else
2255 {
cec03d70
TT
2256 switch (ctx->location)
2257 {
2258 case DWARF_VALUE_REGISTER:
2259 {
2260 struct gdbarch *arch = get_frame_arch (frame);
7c33b57c
PA
2261 int dwarf_regnum
2262 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
cec03d70 2263 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
9a619af0 2264
8cf6f0b1
TT
2265 if (byte_offset != 0)
2266 error (_("cannot use offset on synthetic pointer to register"));
72fc29ff 2267 do_cleanups (value_chain);
901461f8 2268 if (gdb_regnum == -1)
7c33b57c
PA
2269 error (_("Unable to access DWARF register number %d"),
2270 dwarf_regnum);
901461f8
PA
2271 retval = value_from_register (type, gdb_regnum, frame);
2272 if (value_optimized_out (retval))
2273 {
9a0dc9e3
PA
2274 struct value *tmp;
2275
901461f8
PA
2276 /* This means the register has undefined value / was
2277 not saved. As we're computing the location of some
2278 variable etc. in the program, not a value for
2279 inspecting a register ($pc, $sp, etc.), return a
2280 generic optimized out value instead, so that we show
2281 <optimized out> instead of <not saved>. */
2282 do_cleanups (value_chain);
9a0dc9e3
PA
2283 tmp = allocate_value (type);
2284 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2285 retval = tmp;
901461f8 2286 }
cec03d70
TT
2287 }
2288 break;
2289
2290 case DWARF_VALUE_MEMORY:
2291 {
f2c7657e 2292 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
44353522 2293 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
cec03d70 2294
72fc29ff 2295 do_cleanups (value_chain);
08039c9e 2296 retval = value_at_lazy (type, address + byte_offset);
44353522
DE
2297 if (in_stack_memory)
2298 set_value_stack (retval, 1);
cec03d70
TT
2299 }
2300 break;
2301
2302 case DWARF_VALUE_STACK:
2303 {
8a9b8146
TT
2304 struct value *value = dwarf_expr_fetch (ctx, 0);
2305 gdb_byte *contents;
2306 const gdb_byte *val_bytes;
2307 size_t n = TYPE_LENGTH (value_type (value));
cec03d70 2308
8cf6f0b1
TT
2309 if (byte_offset + TYPE_LENGTH (type) > n)
2310 invalid_synthetic_pointer ();
2311
8a9b8146
TT
2312 val_bytes = value_contents_all (value);
2313 val_bytes += byte_offset;
8cf6f0b1
TT
2314 n -= byte_offset;
2315
72fc29ff
TT
2316 /* Preserve VALUE because we are going to free values back
2317 to the mark, but we still need the value contents
2318 below. */
2319 value_incref (value);
2320 do_cleanups (value_chain);
2321 make_cleanup_value_free (value);
2322
a2d33775 2323 retval = allocate_value (type);
cec03d70 2324 contents = value_contents_raw (retval);
a2d33775 2325 if (n > TYPE_LENGTH (type))
b6cede78
JK
2326 {
2327 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2328
2329 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2330 val_bytes += n - TYPE_LENGTH (type);
2331 n = TYPE_LENGTH (type);
2332 }
8a9b8146 2333 memcpy (contents, val_bytes, n);
cec03d70
TT
2334 }
2335 break;
2336
2337 case DWARF_VALUE_LITERAL:
2338 {
2339 bfd_byte *contents;
8c814cdd 2340 const bfd_byte *ldata;
cec03d70
TT
2341 size_t n = ctx->len;
2342
8cf6f0b1
TT
2343 if (byte_offset + TYPE_LENGTH (type) > n)
2344 invalid_synthetic_pointer ();
2345
72fc29ff 2346 do_cleanups (value_chain);
a2d33775 2347 retval = allocate_value (type);
cec03d70 2348 contents = value_contents_raw (retval);
8cf6f0b1 2349
8c814cdd 2350 ldata = ctx->data + byte_offset;
8cf6f0b1
TT
2351 n -= byte_offset;
2352
a2d33775 2353 if (n > TYPE_LENGTH (type))
b6cede78
JK
2354 {
2355 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2356
2357 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2358 ldata += n - TYPE_LENGTH (type);
2359 n = TYPE_LENGTH (type);
2360 }
8c814cdd 2361 memcpy (contents, ldata, n);
cec03d70
TT
2362 }
2363 break;
2364
dd90784c 2365 case DWARF_VALUE_OPTIMIZED_OUT:
72fc29ff 2366 do_cleanups (value_chain);
a7035dbb 2367 retval = allocate_optimized_out_value (type);
dd90784c
JK
2368 break;
2369
8cf6f0b1
TT
2370 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2371 operation by execute_stack_op. */
2372 case DWARF_VALUE_IMPLICIT_POINTER:
cb826367
TT
2373 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2374 it can only be encountered when making a piece. */
cec03d70
TT
2375 default:
2376 internal_error (__FILE__, __LINE__, _("invalid location type"));
2377 }
4c2df51b
DJ
2378 }
2379
42be36b3
CT
2380 set_value_initialized (retval, ctx->initialized);
2381
4a227398 2382 do_cleanups (old_chain);
4c2df51b
DJ
2383
2384 return retval;
2385}
8cf6f0b1
TT
2386
2387/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2388 passes 0 as the byte_offset. */
2389
2390struct value *
2391dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
56eb65bd 2392 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2393 struct dwarf2_per_cu_data *per_cu)
2394{
2395 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2396}
2397
80180f79
SA
2398/* Evaluates a dwarf expression and stores the result in VAL, expecting
2399 that the dwarf expression only produces a single CORE_ADDR. ADDR is a
2400 context (location of a variable) and might be needed to evaluate the
2401 location expression.
2402 Returns 1 on success, 0 otherwise. */
2403
2404static int
2405dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
08412b07 2406 CORE_ADDR addr,
1cfdf534 2407 CORE_ADDR *valp)
80180f79
SA
2408{
2409 struct dwarf_expr_context *ctx;
2410 struct dwarf_expr_baton baton;
2411 struct objfile *objfile;
2412 struct cleanup *cleanup;
2413
2414 if (dlbaton == NULL || dlbaton->size == 0)
2415 return 0;
2416
2417 ctx = new_dwarf_expr_context ();
2418 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2419
2420 baton.frame = get_selected_frame (NULL);
2421 baton.per_cu = dlbaton->per_cu;
08412b07 2422 baton.obj_address = addr;
80180f79
SA
2423
2424 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2425
2426 ctx->gdbarch = get_objfile_arch (objfile);
2427 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2428 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2429 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2430 ctx->funcs = &dwarf_expr_ctx_funcs;
2431 ctx->baton = &baton;
2432
2433 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2434
2435 switch (ctx->location)
2436 {
2437 case DWARF_VALUE_REGISTER:
2438 case DWARF_VALUE_MEMORY:
2439 case DWARF_VALUE_STACK:
2440 *valp = dwarf_expr_fetch_address (ctx, 0);
2441 if (ctx->location == DWARF_VALUE_REGISTER)
2442 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2443 do_cleanups (cleanup);
2444 return 1;
2445 case DWARF_VALUE_LITERAL:
2446 *valp = extract_signed_integer (ctx->data, ctx->len,
2447 gdbarch_byte_order (ctx->gdbarch));
2448 do_cleanups (cleanup);
2449 return 1;
2450 /* Unsupported dwarf values. */
2451 case DWARF_VALUE_OPTIMIZED_OUT:
2452 case DWARF_VALUE_IMPLICIT_POINTER:
2453 break;
2454 }
2455
2456 do_cleanups (cleanup);
2457 return 0;
2458}
2459
2460/* See dwarf2loc.h. */
2461
2462int
08412b07 2463dwarf2_evaluate_property (const struct dynamic_prop *prop,
df25ebbd
JB
2464 struct property_addr_info *addr_stack,
2465 CORE_ADDR *value)
80180f79
SA
2466{
2467 if (prop == NULL)
2468 return 0;
2469
2470 switch (prop->kind)
2471 {
2472 case PROP_LOCEXPR:
2473 {
2474 const struct dwarf2_property_baton *baton = prop->data.baton;
2475
df25ebbd
JB
2476 if (dwarf2_locexpr_baton_eval (&baton->locexpr, addr_stack->addr,
2477 value))
80180f79
SA
2478 {
2479 if (baton->referenced_type)
2480 {
2481 struct value *val = value_at (baton->referenced_type, *value);
2482
2483 *value = value_as_address (val);
2484 }
2485 return 1;
2486 }
2487 }
2488 break;
2489
2490 case PROP_LOCLIST:
2491 {
2492 struct dwarf2_property_baton *baton = prop->data.baton;
2493 struct frame_info *frame = get_selected_frame (NULL);
2494 CORE_ADDR pc = get_frame_address_in_block (frame);
2495 const gdb_byte *data;
2496 struct value *val;
2497 size_t size;
2498
2499 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2500 if (data != NULL)
2501 {
2502 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2503 size, baton->loclist.per_cu);
2504 if (!value_optimized_out (val))
2505 {
2506 *value = value_as_address (val);
2507 return 1;
2508 }
2509 }
2510 }
2511 break;
2512
2513 case PROP_CONST:
2514 *value = prop->data.const_val;
2515 return 1;
df25ebbd
JB
2516
2517 case PROP_ADDR_OFFSET:
2518 {
2519 struct dwarf2_property_baton *baton = prop->data.baton;
2520 struct property_addr_info *pinfo;
2521 struct value *val;
2522
2523 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2524 if (pinfo->type == baton->referenced_type)
2525 break;
2526 if (pinfo == NULL)
2c811c0f 2527 error (_("cannot find reference address for offset property"));
c3345124
JB
2528 if (pinfo->valaddr != NULL)
2529 val = value_from_contents
2530 (baton->offset_info.type,
2531 pinfo->valaddr + baton->offset_info.offset);
2532 else
2533 val = value_at (baton->offset_info.type,
2534 pinfo->addr + baton->offset_info.offset);
df25ebbd
JB
2535 *value = value_as_address (val);
2536 return 1;
2537 }
80180f79
SA
2538 }
2539
2540 return 0;
2541}
2542
bb2ec1b3
TT
2543/* See dwarf2loc.h. */
2544
2545void
2546dwarf2_compile_property_to_c (struct ui_file *stream,
2547 const char *result_name,
2548 struct gdbarch *gdbarch,
2549 unsigned char *registers_used,
2550 const struct dynamic_prop *prop,
2551 CORE_ADDR pc,
2552 struct symbol *sym)
2553{
2554 struct dwarf2_property_baton *baton = prop->data.baton;
2555 const gdb_byte *data;
2556 size_t size;
2557 struct dwarf2_per_cu_data *per_cu;
2558
2559 if (prop->kind == PROP_LOCEXPR)
2560 {
2561 data = baton->locexpr.data;
2562 size = baton->locexpr.size;
2563 per_cu = baton->locexpr.per_cu;
2564 }
2565 else
2566 {
2567 gdb_assert (prop->kind == PROP_LOCLIST);
2568
2569 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2570 per_cu = baton->loclist.per_cu;
2571 }
2572
2573 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2574 gdbarch, registers_used,
2575 dwarf2_per_cu_addr_size (per_cu),
2576 data, data + size, per_cu);
2577}
2578
4c2df51b
DJ
2579\f
2580/* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2581
2582struct needs_frame_baton
2583{
2584 int needs_frame;
17ea53c3 2585 struct dwarf2_per_cu_data *per_cu;
4c2df51b
DJ
2586};
2587
2588/* Reads from registers do require a frame. */
2589static CORE_ADDR
b1370418 2590needs_frame_read_addr_from_reg (void *baton, int regnum)
4c2df51b
DJ
2591{
2592 struct needs_frame_baton *nf_baton = baton;
9a619af0 2593
4c2df51b
DJ
2594 nf_baton->needs_frame = 1;
2595 return 1;
2596}
2597
0acf8b65
JB
2598/* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2599 Reads from registers do require a frame. */
2600
2601static struct value *
2602needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2603{
2604 struct needs_frame_baton *nf_baton = baton;
2605
2606 nf_baton->needs_frame = 1;
2607 return value_zero (type, not_lval);
2608}
2609
4c2df51b
DJ
2610/* Reads from memory do not require a frame. */
2611static void
852483bc 2612needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
4c2df51b
DJ
2613{
2614 memset (buf, 0, len);
2615}
2616
2617/* Frame-relative accesses do require a frame. */
2618static void
0d45f56e 2619needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
4c2df51b 2620{
852483bc 2621 static gdb_byte lit0 = DW_OP_lit0;
4c2df51b
DJ
2622 struct needs_frame_baton *nf_baton = baton;
2623
2624 *start = &lit0;
2625 *length = 1;
2626
2627 nf_baton->needs_frame = 1;
2628}
2629
e7802207
TT
2630/* CFA accesses require a frame. */
2631
2632static CORE_ADDR
2633needs_frame_frame_cfa (void *baton)
2634{
2635 struct needs_frame_baton *nf_baton = baton;
9a619af0 2636
e7802207
TT
2637 nf_baton->needs_frame = 1;
2638 return 1;
2639}
2640
4c2df51b
DJ
2641/* Thread-local accesses do require a frame. */
2642static CORE_ADDR
2643needs_frame_tls_address (void *baton, CORE_ADDR offset)
2644{
2645 struct needs_frame_baton *nf_baton = baton;
9a619af0 2646
4c2df51b
DJ
2647 nf_baton->needs_frame = 1;
2648 return 1;
2649}
2650
5c631832
JK
2651/* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2652
2653static void
b64f50a1 2654needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
5c631832
JK
2655{
2656 struct needs_frame_baton *nf_baton = ctx->baton;
2657
37b50a69 2658 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
9e8b7a03 2659 ctx->funcs->get_frame_pc, ctx->baton);
5c631832
JK
2660}
2661
8e3b41a9
JK
2662/* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2663
2664static void
2665needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
24c5c679
JK
2666 enum call_site_parameter_kind kind,
2667 union call_site_parameter_u kind_u, int deref_size)
8e3b41a9
JK
2668{
2669 struct needs_frame_baton *nf_baton = ctx->baton;
2670
2671 nf_baton->needs_frame = 1;
1788b2d3
JK
2672
2673 /* The expression may require some stub values on DWARF stack. */
2674 dwarf_expr_push_address (ctx, 0, 0);
8e3b41a9
JK
2675}
2676
3019eac3
DE
2677/* DW_OP_GNU_addr_index doesn't require a frame. */
2678
2679static CORE_ADDR
2680needs_get_addr_index (void *baton, unsigned int index)
2681{
2682 /* Nothing to do. */
2683 return 1;
2684}
2685
08412b07
JB
2686/* DW_OP_push_object_address has a frame already passed through. */
2687
2688static CORE_ADDR
2689needs_get_obj_addr (void *baton)
2690{
2691 /* Nothing to do. */
2692 return 1;
2693}
2694
9e8b7a03
JK
2695/* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2696
2697static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2698{
b1370418 2699 needs_frame_read_addr_from_reg,
0acf8b65 2700 needs_frame_get_reg_value,
9e8b7a03
JK
2701 needs_frame_read_mem,
2702 needs_frame_frame_base,
2703 needs_frame_frame_cfa,
2704 needs_frame_frame_cfa, /* get_frame_pc */
2705 needs_frame_tls_address,
2706 needs_frame_dwarf_call,
8e3b41a9 2707 NULL, /* get_base_type */
3019eac3 2708 needs_dwarf_reg_entry_value,
08412b07
JB
2709 needs_get_addr_index,
2710 needs_get_obj_addr
9e8b7a03
JK
2711};
2712
4c2df51b
DJ
2713/* Return non-zero iff the location expression at DATA (length SIZE)
2714 requires a frame to evaluate. */
2715
2716static int
56eb65bd 2717dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
ae0d2f24 2718 struct dwarf2_per_cu_data *per_cu)
4c2df51b
DJ
2719{
2720 struct needs_frame_baton baton;
2721 struct dwarf_expr_context *ctx;
f630a401 2722 int in_reg;
4a227398 2723 struct cleanup *old_chain;
ac56253d 2724 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b
DJ
2725
2726 baton.needs_frame = 0;
17ea53c3 2727 baton.per_cu = per_cu;
4c2df51b
DJ
2728
2729 ctx = new_dwarf_expr_context ();
4a227398 2730 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 2731 make_cleanup_value_free_to_mark (value_mark ());
4a227398 2732
ac56253d 2733 ctx->gdbarch = get_objfile_arch (objfile);
ae0d2f24 2734 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
181cebd4 2735 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
9aa1f1e3 2736 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2737 ctx->baton = &baton;
9e8b7a03 2738 ctx->funcs = &needs_frame_ctx_funcs;
4c2df51b
DJ
2739
2740 dwarf_expr_eval (ctx, data, size);
2741
cec03d70 2742 in_reg = ctx->location == DWARF_VALUE_REGISTER;
f630a401 2743
87808bd6
JB
2744 if (ctx->num_pieces > 0)
2745 {
2746 int i;
2747
2748 /* If the location has several pieces, and any of them are in
2749 registers, then we will need a frame to fetch them from. */
2750 for (i = 0; i < ctx->num_pieces; i++)
cec03d70 2751 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
87808bd6
JB
2752 in_reg = 1;
2753 }
2754
4a227398 2755 do_cleanups (old_chain);
4c2df51b 2756
f630a401 2757 return baton.needs_frame || in_reg;
4c2df51b
DJ
2758}
2759
3cf03773
TT
2760/* A helper function that throws an unimplemented error mentioning a
2761 given DWARF operator. */
2762
2763static void
2764unimplemented (unsigned int op)
0d53c4c4 2765{
f39c6ffd 2766 const char *name = get_DW_OP_name (op);
b1bfef65
TT
2767
2768 if (name)
2769 error (_("DWARF operator %s cannot be translated to an agent expression"),
2770 name);
2771 else
1ba1b353
TT
2772 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2773 "to an agent expression"),
b1bfef65 2774 op);
3cf03773 2775}
08922a10 2776
d064d1be 2777/* See dwarf2loc.h. */
08922a10 2778
d064d1be
JK
2779int
2780dwarf2_reg_to_regnum_or_error (struct gdbarch *arch, int dwarf_reg)
3cf03773
TT
2781{
2782 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2783 if (reg == -1)
2784 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2785 return reg;
2786}
08922a10 2787
3cf03773
TT
2788/* A helper function that emits an access to memory. ARCH is the
2789 target architecture. EXPR is the expression which we are building.
2790 NBITS is the number of bits we want to read. This emits the
2791 opcodes needed to read the memory and then extract the desired
2792 bits. */
08922a10 2793
3cf03773
TT
2794static void
2795access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
08922a10 2796{
3cf03773
TT
2797 ULONGEST nbytes = (nbits + 7) / 8;
2798
9df7235c 2799 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3cf03773 2800
92bc6a20 2801 if (expr->tracing)
3cf03773
TT
2802 ax_trace_quick (expr, nbytes);
2803
2804 if (nbits <= 8)
2805 ax_simple (expr, aop_ref8);
2806 else if (nbits <= 16)
2807 ax_simple (expr, aop_ref16);
2808 else if (nbits <= 32)
2809 ax_simple (expr, aop_ref32);
2810 else
2811 ax_simple (expr, aop_ref64);
2812
2813 /* If we read exactly the number of bytes we wanted, we're done. */
2814 if (8 * nbytes == nbits)
2815 return;
2816
2817 if (gdbarch_bits_big_endian (arch))
0d53c4c4 2818 {
3cf03773
TT
2819 /* On a bits-big-endian machine, we want the high-order
2820 NBITS. */
2821 ax_const_l (expr, 8 * nbytes - nbits);
2822 ax_simple (expr, aop_rsh_unsigned);
0d53c4c4 2823 }
3cf03773 2824 else
0d53c4c4 2825 {
3cf03773
TT
2826 /* On a bits-little-endian box, we want the low-order NBITS. */
2827 ax_zero_ext (expr, nbits);
0d53c4c4 2828 }
3cf03773 2829}
0936ad1d 2830
8cf6f0b1
TT
2831/* A helper function to return the frame's PC. */
2832
2833static CORE_ADDR
2834get_ax_pc (void *baton)
2835{
2836 struct agent_expr *expr = baton;
2837
2838 return expr->scope;
2839}
2840
3cf03773
TT
2841/* Compile a DWARF location expression to an agent expression.
2842
2843 EXPR is the agent expression we are building.
2844 LOC is the agent value we modify.
2845 ARCH is the architecture.
2846 ADDR_SIZE is the size of addresses, in bytes.
2847 OP_PTR is the start of the location expression.
2848 OP_END is one past the last byte of the location expression.
2849
2850 This will throw an exception for various kinds of errors -- for
2851 example, if the expression cannot be compiled, or if the expression
2852 is invalid. */
0936ad1d 2853
9f6f94ff
TT
2854void
2855dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2856 struct gdbarch *arch, unsigned int addr_size,
2857 const gdb_byte *op_ptr, const gdb_byte *op_end,
2858 struct dwarf2_per_cu_data *per_cu)
3cf03773
TT
2859{
2860 struct cleanup *cleanups;
2861 int i, *offsets;
2862 VEC(int) *dw_labels = NULL, *patches = NULL;
2863 const gdb_byte * const base = op_ptr;
2864 const gdb_byte *previous_piece = op_ptr;
2865 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2866 ULONGEST bits_collected = 0;
2867 unsigned int addr_size_bits = 8 * addr_size;
2868 int bits_big_endian = gdbarch_bits_big_endian (arch);
0936ad1d 2869
3cf03773
TT
2870 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2871 cleanups = make_cleanup (xfree, offsets);
0936ad1d 2872
3cf03773
TT
2873 for (i = 0; i < op_end - op_ptr; ++i)
2874 offsets[i] = -1;
0936ad1d 2875
3cf03773
TT
2876 make_cleanup (VEC_cleanup (int), &dw_labels);
2877 make_cleanup (VEC_cleanup (int), &patches);
0936ad1d 2878
3cf03773
TT
2879 /* By default we are making an address. */
2880 loc->kind = axs_lvalue_memory;
0d45f56e 2881
3cf03773
TT
2882 while (op_ptr < op_end)
2883 {
aead7601 2884 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
9fccedf7
DE
2885 uint64_t uoffset, reg;
2886 int64_t offset;
3cf03773
TT
2887 int i;
2888
2889 offsets[op_ptr - base] = expr->len;
2890 ++op_ptr;
2891
2892 /* Our basic approach to code generation is to map DWARF
2893 operations directly to AX operations. However, there are
2894 some differences.
2895
2896 First, DWARF works on address-sized units, but AX always uses
2897 LONGEST. For most operations we simply ignore this
2898 difference; instead we generate sign extensions as needed
2899 before division and comparison operations. It would be nice
2900 to omit the sign extensions, but there is no way to determine
2901 the size of the target's LONGEST. (This code uses the size
2902 of the host LONGEST in some cases -- that is a bug but it is
2903 difficult to fix.)
2904
2905 Second, some DWARF operations cannot be translated to AX.
2906 For these we simply fail. See
2907 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2908 switch (op)
0936ad1d 2909 {
3cf03773
TT
2910 case DW_OP_lit0:
2911 case DW_OP_lit1:
2912 case DW_OP_lit2:
2913 case DW_OP_lit3:
2914 case DW_OP_lit4:
2915 case DW_OP_lit5:
2916 case DW_OP_lit6:
2917 case DW_OP_lit7:
2918 case DW_OP_lit8:
2919 case DW_OP_lit9:
2920 case DW_OP_lit10:
2921 case DW_OP_lit11:
2922 case DW_OP_lit12:
2923 case DW_OP_lit13:
2924 case DW_OP_lit14:
2925 case DW_OP_lit15:
2926 case DW_OP_lit16:
2927 case DW_OP_lit17:
2928 case DW_OP_lit18:
2929 case DW_OP_lit19:
2930 case DW_OP_lit20:
2931 case DW_OP_lit21:
2932 case DW_OP_lit22:
2933 case DW_OP_lit23:
2934 case DW_OP_lit24:
2935 case DW_OP_lit25:
2936 case DW_OP_lit26:
2937 case DW_OP_lit27:
2938 case DW_OP_lit28:
2939 case DW_OP_lit29:
2940 case DW_OP_lit30:
2941 case DW_OP_lit31:
2942 ax_const_l (expr, op - DW_OP_lit0);
2943 break;
0d53c4c4 2944
3cf03773 2945 case DW_OP_addr:
ac56253d 2946 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3cf03773 2947 op_ptr += addr_size;
ac56253d
TT
2948 /* Some versions of GCC emit DW_OP_addr before
2949 DW_OP_GNU_push_tls_address. In this case the value is an
2950 index, not an address. We don't support things like
2951 branching between the address and the TLS op. */
2952 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
9aa1f1e3 2953 uoffset += dwarf2_per_cu_text_offset (per_cu);
ac56253d 2954 ax_const_l (expr, uoffset);
3cf03773 2955 break;
4c2df51b 2956
3cf03773
TT
2957 case DW_OP_const1u:
2958 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2959 op_ptr += 1;
2960 break;
2961 case DW_OP_const1s:
2962 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2963 op_ptr += 1;
2964 break;
2965 case DW_OP_const2u:
2966 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2967 op_ptr += 2;
2968 break;
2969 case DW_OP_const2s:
2970 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2971 op_ptr += 2;
2972 break;
2973 case DW_OP_const4u:
2974 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2975 op_ptr += 4;
2976 break;
2977 case DW_OP_const4s:
2978 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2979 op_ptr += 4;
2980 break;
2981 case DW_OP_const8u:
2982 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2983 op_ptr += 8;
2984 break;
2985 case DW_OP_const8s:
2986 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2987 op_ptr += 8;
2988 break;
2989 case DW_OP_constu:
f664829e 2990 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3cf03773
TT
2991 ax_const_l (expr, uoffset);
2992 break;
2993 case DW_OP_consts:
f664829e 2994 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
2995 ax_const_l (expr, offset);
2996 break;
9c238357 2997
3cf03773
TT
2998 case DW_OP_reg0:
2999 case DW_OP_reg1:
3000 case DW_OP_reg2:
3001 case DW_OP_reg3:
3002 case DW_OP_reg4:
3003 case DW_OP_reg5:
3004 case DW_OP_reg6:
3005 case DW_OP_reg7:
3006 case DW_OP_reg8:
3007 case DW_OP_reg9:
3008 case DW_OP_reg10:
3009 case DW_OP_reg11:
3010 case DW_OP_reg12:
3011 case DW_OP_reg13:
3012 case DW_OP_reg14:
3013 case DW_OP_reg15:
3014 case DW_OP_reg16:
3015 case DW_OP_reg17:
3016 case DW_OP_reg18:
3017 case DW_OP_reg19:
3018 case DW_OP_reg20:
3019 case DW_OP_reg21:
3020 case DW_OP_reg22:
3021 case DW_OP_reg23:
3022 case DW_OP_reg24:
3023 case DW_OP_reg25:
3024 case DW_OP_reg26:
3025 case DW_OP_reg27:
3026 case DW_OP_reg28:
3027 case DW_OP_reg29:
3028 case DW_OP_reg30:
3029 case DW_OP_reg31:
3030 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
d064d1be 3031 loc->u.reg = dwarf2_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3cf03773
TT
3032 loc->kind = axs_lvalue_register;
3033 break;
9c238357 3034
3cf03773 3035 case DW_OP_regx:
f664829e 3036 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773 3037 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
d064d1be 3038 loc->u.reg = dwarf2_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3039 loc->kind = axs_lvalue_register;
3040 break;
08922a10 3041
3cf03773
TT
3042 case DW_OP_implicit_value:
3043 {
9fccedf7 3044 uint64_t len;
3cf03773 3045
f664829e 3046 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3cf03773
TT
3047 if (op_ptr + len > op_end)
3048 error (_("DW_OP_implicit_value: too few bytes available."));
3049 if (len > sizeof (ULONGEST))
3050 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3051 (int) len);
3052
3053 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3054 byte_order));
3055 op_ptr += len;
3056 dwarf_expr_require_composition (op_ptr, op_end,
3057 "DW_OP_implicit_value");
3058
3059 loc->kind = axs_rvalue;
3060 }
3061 break;
08922a10 3062
3cf03773
TT
3063 case DW_OP_stack_value:
3064 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3065 loc->kind = axs_rvalue;
3066 break;
08922a10 3067
3cf03773
TT
3068 case DW_OP_breg0:
3069 case DW_OP_breg1:
3070 case DW_OP_breg2:
3071 case DW_OP_breg3:
3072 case DW_OP_breg4:
3073 case DW_OP_breg5:
3074 case DW_OP_breg6:
3075 case DW_OP_breg7:
3076 case DW_OP_breg8:
3077 case DW_OP_breg9:
3078 case DW_OP_breg10:
3079 case DW_OP_breg11:
3080 case DW_OP_breg12:
3081 case DW_OP_breg13:
3082 case DW_OP_breg14:
3083 case DW_OP_breg15:
3084 case DW_OP_breg16:
3085 case DW_OP_breg17:
3086 case DW_OP_breg18:
3087 case DW_OP_breg19:
3088 case DW_OP_breg20:
3089 case DW_OP_breg21:
3090 case DW_OP_breg22:
3091 case DW_OP_breg23:
3092 case DW_OP_breg24:
3093 case DW_OP_breg25:
3094 case DW_OP_breg26:
3095 case DW_OP_breg27:
3096 case DW_OP_breg28:
3097 case DW_OP_breg29:
3098 case DW_OP_breg30:
3099 case DW_OP_breg31:
f664829e 3100 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
d064d1be 3101 i = dwarf2_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3cf03773
TT
3102 ax_reg (expr, i);
3103 if (offset != 0)
3104 {
3105 ax_const_l (expr, offset);
3106 ax_simple (expr, aop_add);
3107 }
3108 break;
3109 case DW_OP_bregx:
3110 {
f664829e
DE
3111 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3112 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
d064d1be 3113 i = dwarf2_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3114 ax_reg (expr, i);
3115 if (offset != 0)
3116 {
3117 ax_const_l (expr, offset);
3118 ax_simple (expr, aop_add);
3119 }
3120 }
3121 break;
3122 case DW_OP_fbreg:
3123 {
3124 const gdb_byte *datastart;
3125 size_t datalen;
3977b71f 3126 const struct block *b;
3cf03773 3127 struct symbol *framefunc;
08922a10 3128
3cf03773
TT
3129 b = block_for_pc (expr->scope);
3130
3131 if (!b)
3132 error (_("No block found for address"));
3133
3134 framefunc = block_linkage_function (b);
3135
3136 if (!framefunc)
3137 error (_("No function found for block"));
3138
af945b75
TT
3139 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3140 &datastart, &datalen);
3cf03773 3141
f664829e 3142 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
9f6f94ff
TT
3143 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3144 datastart + datalen, per_cu);
d84cf7eb
TT
3145 if (loc->kind == axs_lvalue_register)
3146 require_rvalue (expr, loc);
3cf03773
TT
3147
3148 if (offset != 0)
3149 {
3150 ax_const_l (expr, offset);
3151 ax_simple (expr, aop_add);
3152 }
3153
3154 loc->kind = axs_lvalue_memory;
3155 }
08922a10 3156 break;
08922a10 3157
3cf03773
TT
3158 case DW_OP_dup:
3159 ax_simple (expr, aop_dup);
3160 break;
08922a10 3161
3cf03773
TT
3162 case DW_OP_drop:
3163 ax_simple (expr, aop_pop);
3164 break;
08922a10 3165
3cf03773
TT
3166 case DW_OP_pick:
3167 offset = *op_ptr++;
c7f96d2b 3168 ax_pick (expr, offset);
3cf03773
TT
3169 break;
3170
3171 case DW_OP_swap:
3172 ax_simple (expr, aop_swap);
3173 break;
08922a10 3174
3cf03773 3175 case DW_OP_over:
c7f96d2b 3176 ax_pick (expr, 1);
3cf03773 3177 break;
08922a10 3178
3cf03773 3179 case DW_OP_rot:
c7f96d2b 3180 ax_simple (expr, aop_rot);
3cf03773 3181 break;
08922a10 3182
3cf03773
TT
3183 case DW_OP_deref:
3184 case DW_OP_deref_size:
3185 {
3186 int size;
08922a10 3187
3cf03773
TT
3188 if (op == DW_OP_deref_size)
3189 size = *op_ptr++;
3190 else
3191 size = addr_size;
3192
9df7235c 3193 if (size != 1 && size != 2 && size != 4 && size != 8)
f3cec7e6
HZ
3194 error (_("Unsupported size %d in %s"),
3195 size, get_DW_OP_name (op));
9df7235c 3196 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3cf03773
TT
3197 }
3198 break;
3199
3200 case DW_OP_abs:
3201 /* Sign extend the operand. */
3202 ax_ext (expr, addr_size_bits);
3203 ax_simple (expr, aop_dup);
3204 ax_const_l (expr, 0);
3205 ax_simple (expr, aop_less_signed);
3206 ax_simple (expr, aop_log_not);
3207 i = ax_goto (expr, aop_if_goto);
3208 /* We have to emit 0 - X. */
3209 ax_const_l (expr, 0);
3210 ax_simple (expr, aop_swap);
3211 ax_simple (expr, aop_sub);
3212 ax_label (expr, i, expr->len);
3213 break;
3214
3215 case DW_OP_neg:
3216 /* No need to sign extend here. */
3217 ax_const_l (expr, 0);
3218 ax_simple (expr, aop_swap);
3219 ax_simple (expr, aop_sub);
3220 break;
3221
3222 case DW_OP_not:
3223 /* Sign extend the operand. */
3224 ax_ext (expr, addr_size_bits);
3225 ax_simple (expr, aop_bit_not);
3226 break;
3227
3228 case DW_OP_plus_uconst:
f664829e 3229 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773
TT
3230 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3231 but we micro-optimize anyhow. */
3232 if (reg != 0)
3233 {
3234 ax_const_l (expr, reg);
3235 ax_simple (expr, aop_add);
3236 }
3237 break;
3238
3239 case DW_OP_and:
3240 ax_simple (expr, aop_bit_and);
3241 break;
3242
3243 case DW_OP_div:
3244 /* Sign extend the operands. */
3245 ax_ext (expr, addr_size_bits);
3246 ax_simple (expr, aop_swap);
3247 ax_ext (expr, addr_size_bits);
3248 ax_simple (expr, aop_swap);
3249 ax_simple (expr, aop_div_signed);
08922a10
SS
3250 break;
3251
3cf03773
TT
3252 case DW_OP_minus:
3253 ax_simple (expr, aop_sub);
3254 break;
3255
3256 case DW_OP_mod:
3257 ax_simple (expr, aop_rem_unsigned);
3258 break;
3259
3260 case DW_OP_mul:
3261 ax_simple (expr, aop_mul);
3262 break;
3263
3264 case DW_OP_or:
3265 ax_simple (expr, aop_bit_or);
3266 break;
3267
3268 case DW_OP_plus:
3269 ax_simple (expr, aop_add);
3270 break;
3271
3272 case DW_OP_shl:
3273 ax_simple (expr, aop_lsh);
3274 break;
3275
3276 case DW_OP_shr:
3277 ax_simple (expr, aop_rsh_unsigned);
3278 break;
3279
3280 case DW_OP_shra:
3281 ax_simple (expr, aop_rsh_signed);
3282 break;
3283
3284 case DW_OP_xor:
3285 ax_simple (expr, aop_bit_xor);
3286 break;
3287
3288 case DW_OP_le:
3289 /* Sign extend the operands. */
3290 ax_ext (expr, addr_size_bits);
3291 ax_simple (expr, aop_swap);
3292 ax_ext (expr, addr_size_bits);
3293 /* Note no swap here: A <= B is !(B < A). */
3294 ax_simple (expr, aop_less_signed);
3295 ax_simple (expr, aop_log_not);
3296 break;
3297
3298 case DW_OP_ge:
3299 /* Sign extend the operands. */
3300 ax_ext (expr, addr_size_bits);
3301 ax_simple (expr, aop_swap);
3302 ax_ext (expr, addr_size_bits);
3303 ax_simple (expr, aop_swap);
3304 /* A >= B is !(A < B). */
3305 ax_simple (expr, aop_less_signed);
3306 ax_simple (expr, aop_log_not);
3307 break;
3308
3309 case DW_OP_eq:
3310 /* Sign extend the operands. */
3311 ax_ext (expr, addr_size_bits);
3312 ax_simple (expr, aop_swap);
3313 ax_ext (expr, addr_size_bits);
3314 /* No need for a second swap here. */
3315 ax_simple (expr, aop_equal);
3316 break;
3317
3318 case DW_OP_lt:
3319 /* Sign extend the operands. */
3320 ax_ext (expr, addr_size_bits);
3321 ax_simple (expr, aop_swap);
3322 ax_ext (expr, addr_size_bits);
3323 ax_simple (expr, aop_swap);
3324 ax_simple (expr, aop_less_signed);
3325 break;
3326
3327 case DW_OP_gt:
3328 /* Sign extend the operands. */
3329 ax_ext (expr, addr_size_bits);
3330 ax_simple (expr, aop_swap);
3331 ax_ext (expr, addr_size_bits);
3332 /* Note no swap here: A > B is B < A. */
3333 ax_simple (expr, aop_less_signed);
3334 break;
3335
3336 case DW_OP_ne:
3337 /* Sign extend the operands. */
3338 ax_ext (expr, addr_size_bits);
3339 ax_simple (expr, aop_swap);
3340 ax_ext (expr, addr_size_bits);
3341 /* No need for a swap here. */
3342 ax_simple (expr, aop_equal);
3343 ax_simple (expr, aop_log_not);
3344 break;
3345
3346 case DW_OP_call_frame_cfa:
a8fd5589
TT
3347 {
3348 int regnum;
3349 CORE_ADDR text_offset;
3350 LONGEST off;
3351 const gdb_byte *cfa_start, *cfa_end;
3352
3353 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3354 &regnum, &off,
3355 &text_offset, &cfa_start, &cfa_end))
3356 {
3357 /* Register. */
3358 ax_reg (expr, regnum);
3359 if (off != 0)
3360 {
3361 ax_const_l (expr, off);
3362 ax_simple (expr, aop_add);
3363 }
3364 }
3365 else
3366 {
3367 /* Another expression. */
3368 ax_const_l (expr, text_offset);
3369 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3370 cfa_start, cfa_end, per_cu);
3371 }
3372
3373 loc->kind = axs_lvalue_memory;
3374 }
3cf03773
TT
3375 break;
3376
3377 case DW_OP_GNU_push_tls_address:
3378 unimplemented (op);
3379 break;
3380
08412b07
JB
3381 case DW_OP_push_object_address:
3382 unimplemented (op);
3383 break;
3384
3cf03773
TT
3385 case DW_OP_skip:
3386 offset = extract_signed_integer (op_ptr, 2, byte_order);
3387 op_ptr += 2;
3388 i = ax_goto (expr, aop_goto);
3389 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3390 VEC_safe_push (int, patches, i);
3391 break;
3392
3393 case DW_OP_bra:
3394 offset = extract_signed_integer (op_ptr, 2, byte_order);
3395 op_ptr += 2;
3396 /* Zero extend the operand. */
3397 ax_zero_ext (expr, addr_size_bits);
3398 i = ax_goto (expr, aop_if_goto);
3399 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3400 VEC_safe_push (int, patches, i);
3401 break;
3402
3403 case DW_OP_nop:
3404 break;
3405
3406 case DW_OP_piece:
3407 case DW_OP_bit_piece:
08922a10 3408 {
9fccedf7 3409 uint64_t size, offset;
3cf03773
TT
3410
3411 if (op_ptr - 1 == previous_piece)
3412 error (_("Cannot translate empty pieces to agent expressions"));
3413 previous_piece = op_ptr - 1;
3414
f664829e 3415 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3cf03773
TT
3416 if (op == DW_OP_piece)
3417 {
3418 size *= 8;
3419 offset = 0;
3420 }
3421 else
f664829e 3422 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
08922a10 3423
3cf03773
TT
3424 if (bits_collected + size > 8 * sizeof (LONGEST))
3425 error (_("Expression pieces exceed word size"));
3426
3427 /* Access the bits. */
3428 switch (loc->kind)
3429 {
3430 case axs_lvalue_register:
3431 ax_reg (expr, loc->u.reg);
3432 break;
3433
3434 case axs_lvalue_memory:
3435 /* Offset the pointer, if needed. */
3436 if (offset > 8)
3437 {
3438 ax_const_l (expr, offset / 8);
3439 ax_simple (expr, aop_add);
3440 offset %= 8;
3441 }
3442 access_memory (arch, expr, size);
3443 break;
3444 }
3445
3446 /* For a bits-big-endian target, shift up what we already
3447 have. For a bits-little-endian target, shift up the
3448 new data. Note that there is a potential bug here if
3449 the DWARF expression leaves multiple values on the
3450 stack. */
3451 if (bits_collected > 0)
3452 {
3453 if (bits_big_endian)
3454 {
3455 ax_simple (expr, aop_swap);
3456 ax_const_l (expr, size);
3457 ax_simple (expr, aop_lsh);
3458 /* We don't need a second swap here, because
3459 aop_bit_or is symmetric. */
3460 }
3461 else
3462 {
3463 ax_const_l (expr, size);
3464 ax_simple (expr, aop_lsh);
3465 }
3466 ax_simple (expr, aop_bit_or);
3467 }
3468
3469 bits_collected += size;
3470 loc->kind = axs_rvalue;
08922a10
SS
3471 }
3472 break;
08922a10 3473
3cf03773
TT
3474 case DW_OP_GNU_uninit:
3475 unimplemented (op);
3476
3477 case DW_OP_call2:
3478 case DW_OP_call4:
3479 {
3480 struct dwarf2_locexpr_baton block;
3481 int size = (op == DW_OP_call2 ? 2 : 4);
b64f50a1 3482 cu_offset offset;
3cf03773
TT
3483
3484 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3485 op_ptr += size;
3486
b64f50a1 3487 offset.cu_off = uoffset;
8b9737bf
TT
3488 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3489 get_ax_pc, expr);
3cf03773
TT
3490
3491 /* DW_OP_call_ref is currently not supported. */
3492 gdb_assert (block.per_cu == per_cu);
3493
9f6f94ff
TT
3494 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3495 block.data, block.data + block.size,
3496 per_cu);
3cf03773
TT
3497 }
3498 break;
3499
3500 case DW_OP_call_ref:
3501 unimplemented (op);
3502
3503 default:
b1bfef65 3504 unimplemented (op);
08922a10 3505 }
08922a10 3506 }
3cf03773
TT
3507
3508 /* Patch all the branches we emitted. */
3509 for (i = 0; i < VEC_length (int, patches); ++i)
3510 {
3511 int targ = offsets[VEC_index (int, dw_labels, i)];
3512 if (targ == -1)
3513 internal_error (__FILE__, __LINE__, _("invalid label"));
3514 ax_label (expr, VEC_index (int, patches, i), targ);
3515 }
3516
3517 do_cleanups (cleanups);
08922a10
SS
3518}
3519
4c2df51b
DJ
3520\f
3521/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3522 evaluator to calculate the location. */
3523static struct value *
3524locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3525{
3526 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3527 struct value *val;
9a619af0 3528
a2d33775
JK
3529 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3530 dlbaton->size, dlbaton->per_cu);
4c2df51b
DJ
3531
3532 return val;
3533}
3534
e18b2753
JK
3535/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3536 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3537 will be thrown. */
3538
3539static struct value *
3540locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3541{
3542 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3543
3544 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3545 dlbaton->size);
3546}
3547
4c2df51b
DJ
3548/* Return non-zero iff we need a frame to evaluate SYMBOL. */
3549static int
3550locexpr_read_needs_frame (struct symbol *symbol)
3551{
3552 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
9a619af0 3553
ae0d2f24
UW
3554 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3555 dlbaton->per_cu);
4c2df51b
DJ
3556}
3557
9eae7c52
TT
3558/* Return true if DATA points to the end of a piece. END is one past
3559 the last byte in the expression. */
3560
3561static int
3562piece_end_p (const gdb_byte *data, const gdb_byte *end)
3563{
3564 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3565}
3566
5e44ecb3
TT
3567/* Helper for locexpr_describe_location_piece that finds the name of a
3568 DWARF register. */
3569
3570static const char *
3571locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3572{
3573 int regnum;
3574
3575 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3576 return gdbarch_register_name (gdbarch, regnum);
3577}
3578
9eae7c52
TT
3579/* Nicely describe a single piece of a location, returning an updated
3580 position in the bytecode sequence. This function cannot recognize
3581 all locations; if a location is not recognized, it simply returns
f664829e
DE
3582 DATA. If there is an error during reading, e.g. we run off the end
3583 of the buffer, an error is thrown. */
08922a10 3584
0d45f56e 3585static const gdb_byte *
08922a10
SS
3586locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3587 CORE_ADDR addr, struct objfile *objfile,
49f6c839 3588 struct dwarf2_per_cu_data *per_cu,
9eae7c52 3589 const gdb_byte *data, const gdb_byte *end,
0d45f56e 3590 unsigned int addr_size)
4c2df51b 3591{
08922a10 3592 struct gdbarch *gdbarch = get_objfile_arch (objfile);
49f6c839 3593 size_t leb128_size;
08922a10
SS
3594
3595 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3596 {
08922a10 3597 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3598 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
08922a10
SS
3599 data += 1;
3600 }
3601 else if (data[0] == DW_OP_regx)
3602 {
9fccedf7 3603 uint64_t reg;
4c2df51b 3604
f664829e 3605 data = safe_read_uleb128 (data + 1, end, &reg);
08922a10 3606 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3607 locexpr_regname (gdbarch, reg));
08922a10
SS
3608 }
3609 else if (data[0] == DW_OP_fbreg)
4c2df51b 3610 {
3977b71f 3611 const struct block *b;
08922a10
SS
3612 struct symbol *framefunc;
3613 int frame_reg = 0;
9fccedf7 3614 int64_t frame_offset;
7155d578 3615 const gdb_byte *base_data, *new_data, *save_data = data;
08922a10 3616 size_t base_size;
9fccedf7 3617 int64_t base_offset = 0;
08922a10 3618
f664829e 3619 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
9eae7c52
TT
3620 if (!piece_end_p (new_data, end))
3621 return data;
3622 data = new_data;
3623
08922a10
SS
3624 b = block_for_pc (addr);
3625
3626 if (!b)
3627 error (_("No block found for address for symbol \"%s\"."),
3628 SYMBOL_PRINT_NAME (symbol));
3629
3630 framefunc = block_linkage_function (b);
3631
3632 if (!framefunc)
3633 error (_("No function found for block for symbol \"%s\"."),
3634 SYMBOL_PRINT_NAME (symbol));
3635
af945b75 3636 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
08922a10
SS
3637
3638 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3639 {
0d45f56e 3640 const gdb_byte *buf_end;
08922a10
SS
3641
3642 frame_reg = base_data[0] - DW_OP_breg0;
f664829e
DE
3643 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3644 &base_offset);
08922a10 3645 if (buf_end != base_data + base_size)
3e43a32a
MS
3646 error (_("Unexpected opcode after "
3647 "DW_OP_breg%u for symbol \"%s\"."),
08922a10
SS
3648 frame_reg, SYMBOL_PRINT_NAME (symbol));
3649 }
3650 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3651 {
3652 /* The frame base is just the register, with no offset. */
3653 frame_reg = base_data[0] - DW_OP_reg0;
3654 base_offset = 0;
3655 }
3656 else
3657 {
3658 /* We don't know what to do with the frame base expression,
3659 so we can't trace this variable; give up. */
7155d578 3660 return save_data;
08922a10
SS
3661 }
3662
3e43a32a
MS
3663 fprintf_filtered (stream,
3664 _("a variable at frame base reg $%s offset %s+%s"),
5e44ecb3 3665 locexpr_regname (gdbarch, frame_reg),
08922a10
SS
3666 plongest (base_offset), plongest (frame_offset));
3667 }
9eae7c52
TT
3668 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3669 && piece_end_p (data, end))
08922a10 3670 {
9fccedf7 3671 int64_t offset;
08922a10 3672
f664829e 3673 data = safe_read_sleb128 (data + 1, end, &offset);
08922a10 3674
4c2df51b 3675 fprintf_filtered (stream,
08922a10
SS
3676 _("a variable at offset %s from base reg $%s"),
3677 plongest (offset),
5e44ecb3 3678 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
4c2df51b
DJ
3679 }
3680
c3228f12
EZ
3681 /* The location expression for a TLS variable looks like this (on a
3682 64-bit LE machine):
3683
3684 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3685 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
09d8bd00 3686
c3228f12
EZ
3687 0x3 is the encoding for DW_OP_addr, which has an operand as long
3688 as the size of an address on the target machine (here is 8
09d8bd00
TT
3689 bytes). Note that more recent version of GCC emit DW_OP_const4u
3690 or DW_OP_const8u, depending on address size, rather than
0963b4bd
MS
3691 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3692 The operand represents the offset at which the variable is within
3693 the thread local storage. */
c3228f12 3694
9eae7c52 3695 else if (data + 1 + addr_size < end
09d8bd00
TT
3696 && (data[0] == DW_OP_addr
3697 || (addr_size == 4 && data[0] == DW_OP_const4u)
3698 || (addr_size == 8 && data[0] == DW_OP_const8u))
9eae7c52
TT
3699 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3700 && piece_end_p (data + 2 + addr_size, end))
08922a10 3701 {
d4a087c7
UW
3702 ULONGEST offset;
3703 offset = extract_unsigned_integer (data + 1, addr_size,
3704 gdbarch_byte_order (gdbarch));
9a619af0 3705
08922a10 3706 fprintf_filtered (stream,
d4a087c7 3707 _("a thread-local variable at offset 0x%s "
08922a10 3708 "in the thread-local storage for `%s'"),
4262abfb 3709 phex_nz (offset, addr_size), objfile_name (objfile));
08922a10
SS
3710
3711 data += 1 + addr_size + 1;
3712 }
49f6c839
DE
3713
3714 /* With -gsplit-dwarf a TLS variable can also look like this:
3715 DW_AT_location : 3 byte block: fc 4 e0
3716 (DW_OP_GNU_const_index: 4;
3717 DW_OP_GNU_push_tls_address) */
3718 else if (data + 3 <= end
3719 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3720 && data[0] == DW_OP_GNU_const_index
3721 && leb128_size > 0
3722 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3723 && piece_end_p (data + 2 + leb128_size, end))
3724 {
a55c1f32 3725 uint64_t offset;
49f6c839
DE
3726
3727 data = safe_read_uleb128 (data + 1, end, &offset);
3728 offset = dwarf2_read_addr_index (per_cu, offset);
3729 fprintf_filtered (stream,
3730 _("a thread-local variable at offset 0x%s "
3731 "in the thread-local storage for `%s'"),
4262abfb 3732 phex_nz (offset, addr_size), objfile_name (objfile));
49f6c839
DE
3733 ++data;
3734 }
3735
9eae7c52
TT
3736 else if (data[0] >= DW_OP_lit0
3737 && data[0] <= DW_OP_lit31
3738 && data + 1 < end
3739 && data[1] == DW_OP_stack_value)
3740 {
3741 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3742 data += 2;
3743 }
3744
3745 return data;
3746}
3747
3748/* Disassemble an expression, stopping at the end of a piece or at the
3749 end of the expression. Returns a pointer to the next unread byte
3750 in the input expression. If ALL is nonzero, then this function
f664829e
DE
3751 will keep going until it reaches the end of the expression.
3752 If there is an error during reading, e.g. we run off the end
3753 of the buffer, an error is thrown. */
9eae7c52
TT
3754
3755static const gdb_byte *
3756disassemble_dwarf_expression (struct ui_file *stream,
3757 struct gdbarch *arch, unsigned int addr_size,
2bda9cc5 3758 int offset_size, const gdb_byte *start,
9eae7c52 3759 const gdb_byte *data, const gdb_byte *end,
2bda9cc5 3760 int indent, int all,
5e44ecb3 3761 struct dwarf2_per_cu_data *per_cu)
9eae7c52 3762{
9eae7c52
TT
3763 while (data < end
3764 && (all
3765 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3766 {
aead7601 3767 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
9fccedf7
DE
3768 uint64_t ul;
3769 int64_t l;
9eae7c52
TT
3770 const char *name;
3771
f39c6ffd 3772 name = get_DW_OP_name (op);
9eae7c52
TT
3773
3774 if (!name)
3775 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
06826322 3776 op, (long) (data - 1 - start));
2bda9cc5
JK
3777 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3778 (long) (data - 1 - start), name);
9eae7c52
TT
3779
3780 switch (op)
3781 {
3782 case DW_OP_addr:
d4a087c7
UW
3783 ul = extract_unsigned_integer (data, addr_size,
3784 gdbarch_byte_order (arch));
9eae7c52 3785 data += addr_size;
d4a087c7 3786 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
9eae7c52
TT
3787 break;
3788
3789 case DW_OP_const1u:
3790 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3791 data += 1;
3792 fprintf_filtered (stream, " %s", pulongest (ul));
3793 break;
3794 case DW_OP_const1s:
3795 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3796 data += 1;
3797 fprintf_filtered (stream, " %s", plongest (l));
3798 break;
3799 case DW_OP_const2u:
3800 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3801 data += 2;
3802 fprintf_filtered (stream, " %s", pulongest (ul));
3803 break;
3804 case DW_OP_const2s:
3805 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3806 data += 2;
3807 fprintf_filtered (stream, " %s", plongest (l));
3808 break;
3809 case DW_OP_const4u:
3810 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3811 data += 4;
3812 fprintf_filtered (stream, " %s", pulongest (ul));
3813 break;
3814 case DW_OP_const4s:
3815 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3816 data += 4;
3817 fprintf_filtered (stream, " %s", plongest (l));
3818 break;
3819 case DW_OP_const8u:
3820 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3821 data += 8;
3822 fprintf_filtered (stream, " %s", pulongest (ul));
3823 break;
3824 case DW_OP_const8s:
3825 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3826 data += 8;
3827 fprintf_filtered (stream, " %s", plongest (l));
3828 break;
3829 case DW_OP_constu:
f664829e 3830 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3831 fprintf_filtered (stream, " %s", pulongest (ul));
3832 break;
3833 case DW_OP_consts:
f664829e 3834 data = safe_read_sleb128 (data, end, &l);
9eae7c52
TT
3835 fprintf_filtered (stream, " %s", plongest (l));
3836 break;
3837
3838 case DW_OP_reg0:
3839 case DW_OP_reg1:
3840 case DW_OP_reg2:
3841 case DW_OP_reg3:
3842 case DW_OP_reg4:
3843 case DW_OP_reg5:
3844 case DW_OP_reg6:
3845 case DW_OP_reg7:
3846 case DW_OP_reg8:
3847 case DW_OP_reg9:
3848 case DW_OP_reg10:
3849 case DW_OP_reg11:
3850 case DW_OP_reg12:
3851 case DW_OP_reg13:
3852 case DW_OP_reg14:
3853 case DW_OP_reg15:
3854 case DW_OP_reg16:
3855 case DW_OP_reg17:
3856 case DW_OP_reg18:
3857 case DW_OP_reg19:
3858 case DW_OP_reg20:
3859 case DW_OP_reg21:
3860 case DW_OP_reg22:
3861 case DW_OP_reg23:
3862 case DW_OP_reg24:
3863 case DW_OP_reg25:
3864 case DW_OP_reg26:
3865 case DW_OP_reg27:
3866 case DW_OP_reg28:
3867 case DW_OP_reg29:
3868 case DW_OP_reg30:
3869 case DW_OP_reg31:
3870 fprintf_filtered (stream, " [$%s]",
5e44ecb3 3871 locexpr_regname (arch, op - DW_OP_reg0));
9eae7c52
TT
3872 break;
3873
3874 case DW_OP_regx:
f664829e 3875 data = safe_read_uleb128 (data, end, &ul);
9eae7c52 3876 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
5e44ecb3 3877 locexpr_regname (arch, (int) ul));
9eae7c52
TT
3878 break;
3879
3880 case DW_OP_implicit_value:
f664829e 3881 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3882 data += ul;
3883 fprintf_filtered (stream, " %s", pulongest (ul));
3884 break;
3885
3886 case DW_OP_breg0:
3887 case DW_OP_breg1:
3888 case DW_OP_breg2:
3889 case DW_OP_breg3:
3890 case DW_OP_breg4:
3891 case DW_OP_breg5:
3892 case DW_OP_breg6:
3893 case DW_OP_breg7:
3894 case DW_OP_breg8:
3895 case DW_OP_breg9:
3896 case DW_OP_breg10:
3897 case DW_OP_breg11:
3898 case DW_OP_breg12:
3899 case DW_OP_breg13:
3900 case DW_OP_breg14:
3901 case DW_OP_breg15:
3902 case DW_OP_breg16:
3903 case DW_OP_breg17:
3904 case DW_OP_breg18:
3905 case DW_OP_breg19:
3906 case DW_OP_breg20:
3907 case DW_OP_breg21:
3908 case DW_OP_breg22:
3909 case DW_OP_breg23:
3910 case DW_OP_breg24:
3911 case DW_OP_breg25:
3912 case DW_OP_breg26:
3913 case DW_OP_breg27:
3914 case DW_OP_breg28:
3915 case DW_OP_breg29:
3916 case DW_OP_breg30:
3917 case DW_OP_breg31:
f664829e 3918 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3919 fprintf_filtered (stream, " %s [$%s]", plongest (l),
5e44ecb3 3920 locexpr_regname (arch, op - DW_OP_breg0));
9eae7c52
TT
3921 break;
3922
3923 case DW_OP_bregx:
f664829e
DE
3924 data = safe_read_uleb128 (data, end, &ul);
3925 data = safe_read_sleb128 (data, end, &l);
0502ed8c
JK
3926 fprintf_filtered (stream, " register %s [$%s] offset %s",
3927 pulongest (ul),
5e44ecb3 3928 locexpr_regname (arch, (int) ul),
0502ed8c 3929 plongest (l));
9eae7c52
TT
3930 break;
3931
3932 case DW_OP_fbreg:
f664829e 3933 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3934 fprintf_filtered (stream, " %s", plongest (l));
9eae7c52
TT
3935 break;
3936
3937 case DW_OP_xderef_size:
3938 case DW_OP_deref_size:
3939 case DW_OP_pick:
3940 fprintf_filtered (stream, " %d", *data);
3941 ++data;
3942 break;
3943
3944 case DW_OP_plus_uconst:
f664829e 3945 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3946 fprintf_filtered (stream, " %s", pulongest (ul));
3947 break;
3948
3949 case DW_OP_skip:
3950 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3951 data += 2;
3952 fprintf_filtered (stream, " to %ld",
3953 (long) (data + l - start));
3954 break;
3955
3956 case DW_OP_bra:
3957 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3958 data += 2;
3959 fprintf_filtered (stream, " %ld",
3960 (long) (data + l - start));
3961 break;
3962
3963 case DW_OP_call2:
3964 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3965 data += 2;
3966 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3967 break;
3968
3969 case DW_OP_call4:
3970 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3971 data += 4;
3972 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3973 break;
3974
3975 case DW_OP_call_ref:
3976 ul = extract_unsigned_integer (data, offset_size,
3977 gdbarch_byte_order (arch));
3978 data += offset_size;
3979 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3980 break;
3981
3982 case DW_OP_piece:
f664829e 3983 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3984 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3985 break;
3986
3987 case DW_OP_bit_piece:
3988 {
9fccedf7 3989 uint64_t offset;
9eae7c52 3990
f664829e
DE
3991 data = safe_read_uleb128 (data, end, &ul);
3992 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
3993 fprintf_filtered (stream, " size %s offset %s (bits)",
3994 pulongest (ul), pulongest (offset));
3995 }
3996 break;
8cf6f0b1
TT
3997
3998 case DW_OP_GNU_implicit_pointer:
3999 {
4000 ul = extract_unsigned_integer (data, offset_size,
4001 gdbarch_byte_order (arch));
4002 data += offset_size;
4003
f664829e 4004 data = safe_read_sleb128 (data, end, &l);
8cf6f0b1
TT
4005
4006 fprintf_filtered (stream, " DIE %s offset %s",
4007 phex_nz (ul, offset_size),
4008 plongest (l));
4009 }
4010 break;
5e44ecb3
TT
4011
4012 case DW_OP_GNU_deref_type:
4013 {
4014 int addr_size = *data++;
b64f50a1 4015 cu_offset offset;
5e44ecb3
TT
4016 struct type *type;
4017
f664829e 4018 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4019 offset.cu_off = ul;
5e44ecb3
TT
4020 type = dwarf2_get_die_type (offset, per_cu);
4021 fprintf_filtered (stream, "<");
4022 type_print (type, "", stream, -1);
b64f50a1 4023 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
5e44ecb3
TT
4024 addr_size);
4025 }
4026 break;
4027
4028 case DW_OP_GNU_const_type:
4029 {
b64f50a1 4030 cu_offset type_die;
5e44ecb3
TT
4031 struct type *type;
4032
f664829e 4033 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4034 type_die.cu_off = ul;
5e44ecb3
TT
4035 type = dwarf2_get_die_type (type_die, per_cu);
4036 fprintf_filtered (stream, "<");
4037 type_print (type, "", stream, -1);
b64f50a1 4038 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
5e44ecb3
TT
4039 }
4040 break;
4041
4042 case DW_OP_GNU_regval_type:
4043 {
9fccedf7 4044 uint64_t reg;
b64f50a1 4045 cu_offset type_die;
5e44ecb3
TT
4046 struct type *type;
4047
f664829e
DE
4048 data = safe_read_uleb128 (data, end, &reg);
4049 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4050 type_die.cu_off = ul;
5e44ecb3
TT
4051
4052 type = dwarf2_get_die_type (type_die, per_cu);
4053 fprintf_filtered (stream, "<");
4054 type_print (type, "", stream, -1);
b64f50a1
JK
4055 fprintf_filtered (stream, " [0x%s]> [$%s]",
4056 phex_nz (type_die.cu_off, 0),
5e44ecb3
TT
4057 locexpr_regname (arch, reg));
4058 }
4059 break;
4060
4061 case DW_OP_GNU_convert:
4062 case DW_OP_GNU_reinterpret:
4063 {
b64f50a1 4064 cu_offset type_die;
5e44ecb3 4065
f664829e 4066 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4067 type_die.cu_off = ul;
5e44ecb3 4068
b64f50a1 4069 if (type_die.cu_off == 0)
5e44ecb3
TT
4070 fprintf_filtered (stream, "<0>");
4071 else
4072 {
4073 struct type *type;
4074
4075 type = dwarf2_get_die_type (type_die, per_cu);
4076 fprintf_filtered (stream, "<");
4077 type_print (type, "", stream, -1);
b64f50a1 4078 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
5e44ecb3
TT
4079 }
4080 }
4081 break;
2bda9cc5
JK
4082
4083 case DW_OP_GNU_entry_value:
f664829e 4084 data = safe_read_uleb128 (data, end, &ul);
2bda9cc5
JK
4085 fputc_filtered ('\n', stream);
4086 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4087 start, data, data + ul, indent + 2,
4088 all, per_cu);
4089 data += ul;
4090 continue;
49f6c839 4091
a24f71ab
JK
4092 case DW_OP_GNU_parameter_ref:
4093 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4094 data += 4;
4095 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4096 break;
4097
49f6c839
DE
4098 case DW_OP_GNU_addr_index:
4099 data = safe_read_uleb128 (data, end, &ul);
4100 ul = dwarf2_read_addr_index (per_cu, ul);
4101 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4102 break;
4103 case DW_OP_GNU_const_index:
4104 data = safe_read_uleb128 (data, end, &ul);
4105 ul = dwarf2_read_addr_index (per_cu, ul);
4106 fprintf_filtered (stream, " %s", pulongest (ul));
4107 break;
9eae7c52
TT
4108 }
4109
4110 fprintf_filtered (stream, "\n");
4111 }
c3228f12 4112
08922a10 4113 return data;
4c2df51b
DJ
4114}
4115
08922a10
SS
4116/* Describe a single location, which may in turn consist of multiple
4117 pieces. */
a55cc764 4118
08922a10
SS
4119static void
4120locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
0d45f56e 4121 struct ui_file *stream,
56eb65bd 4122 const gdb_byte *data, size_t size,
9eae7c52 4123 struct objfile *objfile, unsigned int addr_size,
5e44ecb3 4124 int offset_size, struct dwarf2_per_cu_data *per_cu)
08922a10 4125{
0d45f56e 4126 const gdb_byte *end = data + size;
9eae7c52 4127 int first_piece = 1, bad = 0;
08922a10 4128
08922a10
SS
4129 while (data < end)
4130 {
9eae7c52
TT
4131 const gdb_byte *here = data;
4132 int disassemble = 1;
4133
4134 if (first_piece)
4135 first_piece = 0;
4136 else
4137 fprintf_filtered (stream, _(", and "));
08922a10 4138
b4f54984 4139 if (!dwarf_always_disassemble)
9eae7c52 4140 {
3e43a32a 4141 data = locexpr_describe_location_piece (symbol, stream,
49f6c839 4142 addr, objfile, per_cu,
9eae7c52
TT
4143 data, end, addr_size);
4144 /* If we printed anything, or if we have an empty piece,
4145 then don't disassemble. */
4146 if (data != here
4147 || data[0] == DW_OP_piece
4148 || data[0] == DW_OP_bit_piece)
4149 disassemble = 0;
08922a10 4150 }
9eae7c52 4151 if (disassemble)
2bda9cc5
JK
4152 {
4153 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4154 data = disassemble_dwarf_expression (stream,
4155 get_objfile_arch (objfile),
4156 addr_size, offset_size, data,
4157 data, end, 0,
b4f54984 4158 dwarf_always_disassemble,
2bda9cc5
JK
4159 per_cu);
4160 }
9eae7c52
TT
4161
4162 if (data < end)
08922a10 4163 {
9eae7c52 4164 int empty = data == here;
08922a10 4165
9eae7c52
TT
4166 if (disassemble)
4167 fprintf_filtered (stream, " ");
4168 if (data[0] == DW_OP_piece)
4169 {
9fccedf7 4170 uint64_t bytes;
08922a10 4171
f664829e 4172 data = safe_read_uleb128 (data + 1, end, &bytes);
08922a10 4173
9eae7c52
TT
4174 if (empty)
4175 fprintf_filtered (stream, _("an empty %s-byte piece"),
4176 pulongest (bytes));
4177 else
4178 fprintf_filtered (stream, _(" [%s-byte piece]"),
4179 pulongest (bytes));
4180 }
4181 else if (data[0] == DW_OP_bit_piece)
4182 {
9fccedf7 4183 uint64_t bits, offset;
9eae7c52 4184
f664829e
DE
4185 data = safe_read_uleb128 (data + 1, end, &bits);
4186 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4187
4188 if (empty)
4189 fprintf_filtered (stream,
4190 _("an empty %s-bit piece"),
4191 pulongest (bits));
4192 else
4193 fprintf_filtered (stream,
4194 _(" [%s-bit piece, offset %s bits]"),
4195 pulongest (bits), pulongest (offset));
4196 }
4197 else
4198 {
4199 bad = 1;
4200 break;
4201 }
08922a10
SS
4202 }
4203 }
4204
4205 if (bad || data > end)
4206 error (_("Corrupted DWARF2 expression for \"%s\"."),
4207 SYMBOL_PRINT_NAME (symbol));
4208}
4209
4210/* Print a natural-language description of SYMBOL to STREAM. This
4211 version is for a symbol with a single location. */
a55cc764 4212
08922a10
SS
4213static void
4214locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4215 struct ui_file *stream)
4216{
4217 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4218 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4219 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4220 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
08922a10 4221
3e43a32a
MS
4222 locexpr_describe_location_1 (symbol, addr, stream,
4223 dlbaton->data, dlbaton->size,
5e44ecb3
TT
4224 objfile, addr_size, offset_size,
4225 dlbaton->per_cu);
08922a10
SS
4226}
4227
4228/* Describe the location of SYMBOL as an agent value in VALUE, generating
4229 any necessary bytecode in AX. */
a55cc764 4230
0d53c4c4 4231static void
505e835d
UW
4232locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4233 struct agent_expr *ax, struct axs_value *value)
a55cc764
DJ
4234{
4235 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3cf03773 4236 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
a55cc764 4237
1d6edc3c 4238 if (dlbaton->size == 0)
cabe9ab6
PA
4239 value->optimized_out = 1;
4240 else
9f6f94ff
TT
4241 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4242 dlbaton->data, dlbaton->data + dlbaton->size,
4243 dlbaton->per_cu);
a55cc764
DJ
4244}
4245
bb2ec1b3
TT
4246/* symbol_computed_ops 'generate_c_location' method. */
4247
4248static void
4249locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4250 struct gdbarch *gdbarch,
4251 unsigned char *registers_used,
4252 CORE_ADDR pc, const char *result_name)
4253{
4254 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (sym);
4255 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4256
4257 if (dlbaton->size == 0)
4258 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4259
4260 compile_dwarf_expr_to_c (stream, result_name,
4261 sym, pc, gdbarch, registers_used, addr_size,
4262 dlbaton->data, dlbaton->data + dlbaton->size,
4263 dlbaton->per_cu);
4264}
4265
4c2df51b
DJ
4266/* The set of location functions used with the DWARF-2 expression
4267 evaluator. */
768a979c 4268const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4c2df51b 4269 locexpr_read_variable,
e18b2753 4270 locexpr_read_variable_at_entry,
4c2df51b
DJ
4271 locexpr_read_needs_frame,
4272 locexpr_describe_location,
f1e6e072 4273 0, /* location_has_loclist */
bb2ec1b3
TT
4274 locexpr_tracepoint_var_ref,
4275 locexpr_generate_c_location
4c2df51b 4276};
0d53c4c4
DJ
4277
4278
4279/* Wrapper functions for location lists. These generally find
4280 the appropriate location expression and call something above. */
4281
4282/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4283 evaluator to calculate the location. */
4284static struct value *
4285loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4286{
4287 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4288 struct value *val;
947bb88f 4289 const gdb_byte *data;
b6b08ebf 4290 size_t size;
8cf6f0b1 4291 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
0d53c4c4 4292
8cf6f0b1 4293 data = dwarf2_find_location_expression (dlbaton, &size, pc);
1d6edc3c
JK
4294 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4295 dlbaton->per_cu);
0d53c4c4
DJ
4296
4297 return val;
4298}
4299
e18b2753
JK
4300/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4301 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4302 will be thrown.
4303
4304 Function always returns non-NULL value, it may be marked optimized out if
4305 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4306 if it cannot resolve the parameter for any reason. */
4307
4308static struct value *
4309loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4310{
4311 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4312 const gdb_byte *data;
4313 size_t size;
4314 CORE_ADDR pc;
4315
4316 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4317 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4318
4319 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4320 if (data == NULL)
4321 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4322
4323 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4324}
4325
0d53c4c4
DJ
4326/* Return non-zero iff we need a frame to evaluate SYMBOL. */
4327static int
4328loclist_read_needs_frame (struct symbol *symbol)
4329{
4330 /* If there's a location list, then assume we need to have a frame
4331 to choose the appropriate location expression. With tracking of
4332 global variables this is not necessarily true, but such tracking
4333 is disabled in GCC at the moment until we figure out how to
4334 represent it. */
4335
4336 return 1;
4337}
4338
08922a10
SS
4339/* Print a natural-language description of SYMBOL to STREAM. This
4340 version applies when there is a list of different locations, each
4341 with a specified address range. */
4342
4343static void
4344loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4345 struct ui_file *stream)
0d53c4c4 4346{
08922a10 4347 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
947bb88f 4348 const gdb_byte *loc_ptr, *buf_end;
08922a10
SS
4349 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4350 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4351 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4352 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4353 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
d4a087c7 4354 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
08922a10 4355 /* Adjust base_address for relocatable objects. */
9aa1f1e3 4356 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
08922a10 4357 CORE_ADDR base_address = dlbaton->base_address + base_offset;
f664829e 4358 int done = 0;
08922a10
SS
4359
4360 loc_ptr = dlbaton->data;
4361 buf_end = dlbaton->data + dlbaton->size;
4362
9eae7c52 4363 fprintf_filtered (stream, _("multi-location:\n"));
08922a10
SS
4364
4365 /* Iterate through locations until we run out. */
f664829e 4366 while (!done)
08922a10 4367 {
f664829e
DE
4368 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4369 int length;
4370 enum debug_loc_kind kind;
4371 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4372
4373 if (dlbaton->from_dwo)
4374 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4375 loc_ptr, buf_end, &new_ptr,
3771a44c 4376 &low, &high, byte_order);
d4a087c7 4377 else
f664829e
DE
4378 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4379 &low, &high,
4380 byte_order, addr_size,
4381 signed_addr_p);
4382 loc_ptr = new_ptr;
4383 switch (kind)
08922a10 4384 {
f664829e
DE
4385 case DEBUG_LOC_END_OF_LIST:
4386 done = 1;
4387 continue;
4388 case DEBUG_LOC_BASE_ADDRESS:
d4a087c7 4389 base_address = high + base_offset;
9eae7c52 4390 fprintf_filtered (stream, _(" Base address %s"),
08922a10 4391 paddress (gdbarch, base_address));
08922a10 4392 continue;
3771a44c
DE
4393 case DEBUG_LOC_START_END:
4394 case DEBUG_LOC_START_LENGTH:
f664829e
DE
4395 break;
4396 case DEBUG_LOC_BUFFER_OVERFLOW:
4397 case DEBUG_LOC_INVALID_ENTRY:
4398 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4399 SYMBOL_PRINT_NAME (symbol));
4400 default:
4401 gdb_assert_not_reached ("bad debug_loc_kind");
08922a10
SS
4402 }
4403
08922a10
SS
4404 /* Otherwise, a location expression entry. */
4405 low += base_address;
4406 high += base_address;
4407
3e29f34a
MR
4408 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4409 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4410
08922a10
SS
4411 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4412 loc_ptr += 2;
4413
08922a10
SS
4414 /* (It would improve readability to print only the minimum
4415 necessary digits of the second number of the range.) */
9eae7c52 4416 fprintf_filtered (stream, _(" Range %s-%s: "),
08922a10
SS
4417 paddress (gdbarch, low), paddress (gdbarch, high));
4418
4419 /* Now describe this particular location. */
4420 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
5e44ecb3
TT
4421 objfile, addr_size, offset_size,
4422 dlbaton->per_cu);
9eae7c52
TT
4423
4424 fprintf_filtered (stream, "\n");
08922a10
SS
4425
4426 loc_ptr += length;
4427 }
0d53c4c4
DJ
4428}
4429
4430/* Describe the location of SYMBOL as an agent value in VALUE, generating
4431 any necessary bytecode in AX. */
4432static void
505e835d
UW
4433loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4434 struct agent_expr *ax, struct axs_value *value)
0d53c4c4
DJ
4435{
4436 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
947bb88f 4437 const gdb_byte *data;
b6b08ebf 4438 size_t size;
3cf03773 4439 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
0d53c4c4 4440
8cf6f0b1 4441 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
1d6edc3c 4442 if (size == 0)
cabe9ab6
PA
4443 value->optimized_out = 1;
4444 else
9f6f94ff
TT
4445 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4446 dlbaton->per_cu);
0d53c4c4
DJ
4447}
4448
bb2ec1b3
TT
4449/* symbol_computed_ops 'generate_c_location' method. */
4450
4451static void
4452loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4453 struct gdbarch *gdbarch,
4454 unsigned char *registers_used,
4455 CORE_ADDR pc, const char *result_name)
4456{
4457 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (sym);
4458 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4459 const gdb_byte *data;
4460 size_t size;
4461
4462 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4463 if (size == 0)
4464 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4465
4466 compile_dwarf_expr_to_c (stream, result_name,
4467 sym, pc, gdbarch, registers_used, addr_size,
4468 data, data + size,
4469 dlbaton->per_cu);
4470}
4471
0d53c4c4
DJ
4472/* The set of location functions used with the DWARF-2 expression
4473 evaluator and location lists. */
768a979c 4474const struct symbol_computed_ops dwarf2_loclist_funcs = {
0d53c4c4 4475 loclist_read_variable,
e18b2753 4476 loclist_read_variable_at_entry,
0d53c4c4
DJ
4477 loclist_read_needs_frame,
4478 loclist_describe_location,
f1e6e072 4479 1, /* location_has_loclist */
bb2ec1b3
TT
4480 loclist_tracepoint_var_ref,
4481 loclist_generate_c_location
0d53c4c4 4482};
8e3b41a9 4483
70221824
PA
4484/* Provide a prototype to silence -Wmissing-prototypes. */
4485extern initialize_file_ftype _initialize_dwarf2loc;
4486
8e3b41a9
JK
4487void
4488_initialize_dwarf2loc (void)
4489{
ccce17b0
YQ
4490 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4491 &entry_values_debug,
4492 _("Set entry values and tail call frames "
4493 "debugging."),
4494 _("Show entry values and tail call frames "
4495 "debugging."),
4496 _("When non-zero, the process of determining "
4497 "parameter values from function entry point "
4498 "and tail call frames will be printed."),
4499 NULL,
4500 show_entry_values_debug,
4501 &setdebuglist, &showdebuglist);
8e3b41a9 4502}
This page took 1.198049 seconds and 4 git commands to generate.