Create a correctly-sized demangled names hashtable
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
CommitLineData
4c2df51b 1/* DWARF 2 location expression support for GDB.
feb13ab0 2
42a4f53d 3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
feb13ab0 4
4c2df51b
DJ
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7
JB
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
4c2df51b 13
a9762ec7
JB
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
4c2df51b
DJ
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
21
22#include "defs.h"
4de283e4
TT
23#include "ui-out.h"
24#include "value.h"
25#include "frame.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "inferior.h"
d55e5aa6 29#include "ax.h"
4de283e4
TT
30#include "ax-gdb.h"
31#include "regcache.h"
32#include "objfiles.h"
edb3359d 33#include "block.h"
4de283e4 34#include "gdbcmd.h"
0fde2c53 35#include "complaints.h"
fa8f86ff 36#include "dwarf2.h"
4c2df51b
DJ
37#include "dwarf2expr.h"
38#include "dwarf2loc.h"
587ee17b 39#include "dwarf2read.h"
4de283e4
TT
40#include "dwarf2-frame.h"
41#include "compile/compile.h"
268a13a5 42#include "gdbsupport/selftest.h"
4de283e4
TT
43#include <algorithm>
44#include <vector>
45#include <unordered_set>
268a13a5
TT
46#include "gdbsupport/underlying.h"
47#include "gdbsupport/byte-vector.h"
4c2df51b 48
1632a688
JK
49static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
56eb65bd
SP
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
7942e96e
AA
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
8cf6f0b1 56
192ca6d8
TT
57static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
a6b786da
KB
63static struct value *indirect_synthetic_pointer
64 (sect_offset die, LONGEST byte_offset,
65 struct dwarf2_per_cu_data *per_cu,
66 struct frame_info *frame,
e4a62c65 67 struct type *type, bool resolve_abstract_p = false);
a6b786da 68
f664829e
DE
69/* Until these have formal names, we define these here.
70 ref: http://gcc.gnu.org/wiki/DebugFission
71 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
72 and is then followed by data specific to that entry. */
73
74enum debug_loc_kind
75{
76 /* Indicates the end of the list of entries. */
77 DEBUG_LOC_END_OF_LIST = 0,
78
79 /* This is followed by an unsigned LEB128 number that is an index into
80 .debug_addr and specifies the base address for all following entries. */
81 DEBUG_LOC_BASE_ADDRESS = 1,
82
83 /* This is followed by two unsigned LEB128 numbers that are indices into
84 .debug_addr and specify the beginning and ending addresses, and then
85 a normal location expression as in .debug_loc. */
3771a44c
DE
86 DEBUG_LOC_START_END = 2,
87
88 /* This is followed by an unsigned LEB128 number that is an index into
89 .debug_addr and specifies the beginning address, and a 4 byte unsigned
90 number that specifies the length, and then a normal location expression
91 as in .debug_loc. */
92 DEBUG_LOC_START_LENGTH = 3,
f664829e
DE
93
94 /* An internal value indicating there is insufficient data. */
95 DEBUG_LOC_BUFFER_OVERFLOW = -1,
96
97 /* An internal value indicating an invalid kind of entry was found. */
98 DEBUG_LOC_INVALID_ENTRY = -2
99};
100
b6807d98
TT
101/* Helper function which throws an error if a synthetic pointer is
102 invalid. */
103
104static void
105invalid_synthetic_pointer (void)
106{
107 error (_("access outside bounds of object "
108 "referenced via synthetic pointer"));
109}
110
f664829e
DE
111/* Decode the addresses in a non-dwo .debug_loc entry.
112 A pointer to the next byte to examine is returned in *NEW_PTR.
113 The encoded low,high addresses are return in *LOW,*HIGH.
114 The result indicates the kind of entry found. */
115
116static enum debug_loc_kind
117decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
118 const gdb_byte **new_ptr,
119 CORE_ADDR *low, CORE_ADDR *high,
120 enum bfd_endian byte_order,
121 unsigned int addr_size,
122 int signed_addr_p)
123{
124 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
125
126 if (buf_end - loc_ptr < 2 * addr_size)
127 return DEBUG_LOC_BUFFER_OVERFLOW;
128
129 if (signed_addr_p)
130 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 if (signed_addr_p)
136 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
137 else
138 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
139 loc_ptr += addr_size;
140
141 *new_ptr = loc_ptr;
142
143 /* A base-address-selection entry. */
144 if ((*low & base_mask) == base_mask)
145 return DEBUG_LOC_BASE_ADDRESS;
146
147 /* An end-of-list entry. */
148 if (*low == 0 && *high == 0)
149 return DEBUG_LOC_END_OF_LIST;
150
3771a44c 151 return DEBUG_LOC_START_END;
f664829e
DE
152}
153
43988095
JK
154/* Decode the addresses in .debug_loclists entry.
155 A pointer to the next byte to examine is returned in *NEW_PTR.
156 The encoded low,high addresses are return in *LOW,*HIGH.
157 The result indicates the kind of entry found. */
158
159static enum debug_loc_kind
160decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
161 const gdb_byte *loc_ptr,
162 const gdb_byte *buf_end,
163 const gdb_byte **new_ptr,
164 CORE_ADDR *low, CORE_ADDR *high,
165 enum bfd_endian byte_order,
166 unsigned int addr_size,
167 int signed_addr_p)
168{
169 uint64_t u64;
170
171 if (loc_ptr == buf_end)
172 return DEBUG_LOC_BUFFER_OVERFLOW;
173
174 switch (*loc_ptr++)
175 {
176 case DW_LLE_end_of_list:
177 *new_ptr = loc_ptr;
178 return DEBUG_LOC_END_OF_LIST;
179 case DW_LLE_base_address:
180 if (loc_ptr + addr_size > buf_end)
181 return DEBUG_LOC_BUFFER_OVERFLOW;
182 if (signed_addr_p)
183 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
184 else
185 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
186 loc_ptr += addr_size;
187 *new_ptr = loc_ptr;
188 return DEBUG_LOC_BASE_ADDRESS;
189 case DW_LLE_offset_pair:
190 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
191 if (loc_ptr == NULL)
192 return DEBUG_LOC_BUFFER_OVERFLOW;
193 *low = u64;
194 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
195 if (loc_ptr == NULL)
196 return DEBUG_LOC_BUFFER_OVERFLOW;
197 *high = u64;
198 *new_ptr = loc_ptr;
199 return DEBUG_LOC_START_END;
200 default:
201 return DEBUG_LOC_INVALID_ENTRY;
202 }
203}
204
f664829e
DE
205/* Decode the addresses in .debug_loc.dwo entry.
206 A pointer to the next byte to examine is returned in *NEW_PTR.
207 The encoded low,high addresses are return in *LOW,*HIGH.
208 The result indicates the kind of entry found. */
209
210static enum debug_loc_kind
211decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
212 const gdb_byte *loc_ptr,
213 const gdb_byte *buf_end,
214 const gdb_byte **new_ptr,
3771a44c
DE
215 CORE_ADDR *low, CORE_ADDR *high,
216 enum bfd_endian byte_order)
f664829e 217{
9fccedf7 218 uint64_t low_index, high_index;
f664829e
DE
219
220 if (loc_ptr == buf_end)
221 return DEBUG_LOC_BUFFER_OVERFLOW;
222
223 switch (*loc_ptr++)
224 {
43988095 225 case DW_LLE_GNU_end_of_list_entry:
f664829e
DE
226 *new_ptr = loc_ptr;
227 return DEBUG_LOC_END_OF_LIST;
43988095 228 case DW_LLE_GNU_base_address_selection_entry:
f664829e
DE
229 *low = 0;
230 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
231 if (loc_ptr == NULL)
232 return DEBUG_LOC_BUFFER_OVERFLOW;
233 *high = dwarf2_read_addr_index (per_cu, high_index);
234 *new_ptr = loc_ptr;
235 return DEBUG_LOC_BASE_ADDRESS;
43988095 236 case DW_LLE_GNU_start_end_entry:
f664829e
DE
237 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
238 if (loc_ptr == NULL)
239 return DEBUG_LOC_BUFFER_OVERFLOW;
240 *low = dwarf2_read_addr_index (per_cu, low_index);
241 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
242 if (loc_ptr == NULL)
243 return DEBUG_LOC_BUFFER_OVERFLOW;
244 *high = dwarf2_read_addr_index (per_cu, high_index);
245 *new_ptr = loc_ptr;
3771a44c 246 return DEBUG_LOC_START_END;
43988095 247 case DW_LLE_GNU_start_length_entry:
3771a44c
DE
248 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
249 if (loc_ptr == NULL)
250 return DEBUG_LOC_BUFFER_OVERFLOW;
251 *low = dwarf2_read_addr_index (per_cu, low_index);
252 if (loc_ptr + 4 > buf_end)
253 return DEBUG_LOC_BUFFER_OVERFLOW;
254 *high = *low;
255 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
256 *new_ptr = loc_ptr + 4;
257 return DEBUG_LOC_START_LENGTH;
f664829e
DE
258 default:
259 return DEBUG_LOC_INVALID_ENTRY;
260 }
261}
262
8cf6f0b1 263/* A function for dealing with location lists. Given a
0d53c4c4
DJ
264 symbol baton (BATON) and a pc value (PC), find the appropriate
265 location expression, set *LOCEXPR_LENGTH, and return a pointer
266 to the beginning of the expression. Returns NULL on failure.
267
268 For now, only return the first matching location expression; there
269 can be more than one in the list. */
270
8cf6f0b1
TT
271const gdb_byte *
272dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
273 size_t *locexpr_length, CORE_ADDR pc)
0d53c4c4 274{
ae0d2f24 275 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
f7fd4728 276 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e17a4113 277 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ae0d2f24 278 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
d4a087c7 279 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
8edfa926 280 /* Adjust base_address for relocatable objects. */
9aa1f1e3 281 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
8edfa926 282 CORE_ADDR base_address = baton->base_address + base_offset;
f664829e 283 const gdb_byte *loc_ptr, *buf_end;
0d53c4c4
DJ
284
285 loc_ptr = baton->data;
286 buf_end = baton->data + baton->size;
287
288 while (1)
289 {
f664829e
DE
290 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
291 int length;
292 enum debug_loc_kind kind;
293 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
294
295 if (baton->from_dwo)
296 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
297 loc_ptr, buf_end, &new_ptr,
3771a44c 298 &low, &high, byte_order);
43988095 299 else if (dwarf2_version (baton->per_cu) < 5)
f664829e
DE
300 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
301 &low, &high,
302 byte_order, addr_size,
303 signed_addr_p);
43988095
JK
304 else
305 kind = decode_debug_loclists_addresses (baton->per_cu,
306 loc_ptr, buf_end, &new_ptr,
307 &low, &high, byte_order,
308 addr_size, signed_addr_p);
309
f664829e
DE
310 loc_ptr = new_ptr;
311 switch (kind)
1d6edc3c 312 {
f664829e 313 case DEBUG_LOC_END_OF_LIST:
1d6edc3c
JK
314 *locexpr_length = 0;
315 return NULL;
f664829e
DE
316 case DEBUG_LOC_BASE_ADDRESS:
317 base_address = high + base_offset;
318 continue;
3771a44c
DE
319 case DEBUG_LOC_START_END:
320 case DEBUG_LOC_START_LENGTH:
f664829e
DE
321 break;
322 case DEBUG_LOC_BUFFER_OVERFLOW:
323 case DEBUG_LOC_INVALID_ENTRY:
324 error (_("dwarf2_find_location_expression: "
325 "Corrupted DWARF expression."));
326 default:
327 gdb_assert_not_reached ("bad debug_loc_kind");
1d6edc3c 328 }
b5758fe4 329
bed911e5 330 /* Otherwise, a location expression entry.
8ddd5a6c
DE
331 If the entry is from a DWO, don't add base address: the entry is from
332 .debug_addr which already has the DWARF "base address". We still add
333 base_offset in case we're debugging a PIE executable. */
334 if (baton->from_dwo)
335 {
336 low += base_offset;
337 high += base_offset;
338 }
339 else
bed911e5
DE
340 {
341 low += base_address;
342 high += base_address;
343 }
0d53c4c4 344
43988095
JK
345 if (dwarf2_version (baton->per_cu) < 5)
346 {
347 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
348 loc_ptr += 2;
349 }
350 else
351 {
352 unsigned int bytes_read;
353
354 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
355 loc_ptr += bytes_read;
356 }
0d53c4c4 357
e18b2753
JK
358 if (low == high && pc == low)
359 {
360 /* This is entry PC record present only at entry point
361 of a function. Verify it is really the function entry point. */
362
3977b71f 363 const struct block *pc_block = block_for_pc (pc);
e18b2753
JK
364 struct symbol *pc_func = NULL;
365
366 if (pc_block)
367 pc_func = block_linkage_function (pc_block);
368
2b1ffcfd 369 if (pc_func && pc == BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (pc_func)))
e18b2753
JK
370 {
371 *locexpr_length = length;
372 return loc_ptr;
373 }
374 }
375
0d53c4c4
DJ
376 if (pc >= low && pc < high)
377 {
378 *locexpr_length = length;
379 return loc_ptr;
380 }
381
382 loc_ptr += length;
383 }
384}
385
4c2df51b
DJ
386/* This is the baton used when performing dwarf2 expression
387 evaluation. */
388struct dwarf_expr_baton
389{
390 struct frame_info *frame;
17ea53c3 391 struct dwarf2_per_cu_data *per_cu;
08412b07 392 CORE_ADDR obj_address;
4c2df51b
DJ
393};
394
f1e6e072
TT
395/* Implement find_frame_base_location method for LOC_BLOCK functions using
396 DWARF expression for its DW_AT_frame_base. */
397
398static void
399locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
400 const gdb_byte **start, size_t *length)
401{
9a3c8263
SM
402 struct dwarf2_locexpr_baton *symbaton
403 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
404
405 *length = symbaton->size;
406 *start = symbaton->data;
407}
408
7d1c9c9b
JB
409/* Implement the struct symbol_block_ops::get_frame_base method for
410 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
63e43d3a
PMR
411
412static CORE_ADDR
7d1c9c9b 413locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
63e43d3a
PMR
414{
415 struct gdbarch *gdbarch;
416 struct type *type;
417 struct dwarf2_locexpr_baton *dlbaton;
418 const gdb_byte *start;
419 size_t length;
420 struct value *result;
421
422 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
423 Thus, it's supposed to provide the find_frame_base_location method as
424 well. */
425 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
426
427 gdbarch = get_frame_arch (frame);
428 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 429 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
63e43d3a
PMR
430
431 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
432 (framefunc, get_frame_pc (frame), &start, &length);
433 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
434 dlbaton->per_cu);
435
436 /* The DW_AT_frame_base attribute contains a location description which
437 computes the base address itself. However, the call to
438 dwarf2_evaluate_loc_desc returns a value representing a variable at
439 that address. The frame base address is thus this variable's
440 address. */
441 return value_address (result);
442}
443
f1e6e072
TT
444/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
445 function uses DWARF expression for its DW_AT_frame_base. */
446
447const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
448{
63e43d3a 449 locexpr_find_frame_base_location,
7d1c9c9b 450 locexpr_get_frame_base
f1e6e072
TT
451};
452
453/* Implement find_frame_base_location method for LOC_BLOCK functions using
454 DWARF location list for its DW_AT_frame_base. */
455
456static void
457loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
458 const gdb_byte **start, size_t *length)
459{
9a3c8263
SM
460 struct dwarf2_loclist_baton *symbaton
461 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
462
463 *start = dwarf2_find_location_expression (symbaton, length, pc);
464}
465
7d1c9c9b
JB
466/* Implement the struct symbol_block_ops::get_frame_base method for
467 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
468
469static CORE_ADDR
470loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
471{
472 struct gdbarch *gdbarch;
473 struct type *type;
474 struct dwarf2_loclist_baton *dlbaton;
475 const gdb_byte *start;
476 size_t length;
477 struct value *result;
478
479 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
480 Thus, it's supposed to provide the find_frame_base_location method as
481 well. */
482 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
483
484 gdbarch = get_frame_arch (frame);
485 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 486 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
7d1c9c9b
JB
487
488 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
489 (framefunc, get_frame_pc (frame), &start, &length);
490 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
491 dlbaton->per_cu);
492
493 /* The DW_AT_frame_base attribute contains a location description which
494 computes the base address itself. However, the call to
495 dwarf2_evaluate_loc_desc returns a value representing a variable at
496 that address. The frame base address is thus this variable's
497 address. */
498 return value_address (result);
499}
500
f1e6e072
TT
501/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
502 function uses DWARF location list for its DW_AT_frame_base. */
503
504const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
505{
63e43d3a 506 loclist_find_frame_base_location,
7d1c9c9b 507 loclist_get_frame_base
f1e6e072
TT
508};
509
af945b75
TT
510/* See dwarf2loc.h. */
511
512void
513func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
514 const gdb_byte **start, size_t *length)
0936ad1d 515{
f1e6e072 516 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
0d53c4c4 517 {
f1e6e072 518 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
22c6caba 519
f1e6e072 520 ops_block->find_frame_base_location (framefunc, pc, start, length);
0d53c4c4
DJ
521 }
522 else
f1e6e072 523 *length = 0;
0d53c4c4 524
1d6edc3c 525 if (*length == 0)
8a3fe4f8 526 error (_("Could not find the frame base for \"%s\"."),
0d53c4c4 527 SYMBOL_NATURAL_NAME (framefunc));
4c2df51b
DJ
528}
529
4c2df51b 530static CORE_ADDR
192ca6d8 531get_frame_pc_for_per_cu_dwarf_call (void *baton)
4c2df51b 532{
192ca6d8 533 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
4c2df51b 534
192ca6d8 535 return ctx->get_frame_pc ();
4c2df51b
DJ
536}
537
5c631832 538static void
b64f50a1 539per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
192ca6d8 540 struct dwarf2_per_cu_data *per_cu)
5c631832
JK
541{
542 struct dwarf2_locexpr_baton block;
543
192ca6d8
TT
544 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
545 get_frame_pc_for_per_cu_dwarf_call,
546 ctx);
5c631832
JK
547
548 /* DW_OP_call_ref is currently not supported. */
549 gdb_assert (block.per_cu == per_cu);
550
595d2e30 551 ctx->eval (block.data, block.size);
5c631832
JK
552}
553
a6b786da
KB
554/* Given context CTX, section offset SECT_OFF, and compilation unit
555 data PER_CU, execute the "variable value" operation on the DIE
556 found at SECT_OFF. */
557
558static struct value *
559sect_variable_value (struct dwarf_expr_context *ctx, sect_offset sect_off,
560 struct dwarf2_per_cu_data *per_cu)
561{
562 struct type *die_type = dwarf2_fetch_die_type_sect_off (sect_off, per_cu);
563
564 if (die_type == NULL)
565 error (_("Bad DW_OP_GNU_variable_value DIE."));
566
567 /* Note: Things still work when the following test is removed. This
568 test and error is here to conform to the proposed specification. */
569 if (TYPE_CODE (die_type) != TYPE_CODE_INT
570 && TYPE_CODE (die_type) != TYPE_CODE_PTR)
571 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
572
573 struct type *type = lookup_pointer_type (die_type);
574 struct frame_info *frame = get_selected_frame (_("No frame selected."));
e4a62c65 575 return indirect_synthetic_pointer (sect_off, 0, per_cu, frame, type, true);
a6b786da
KB
576}
577
192ca6d8 578class dwarf_evaluate_loc_desc : public dwarf_expr_context
5c631832 579{
192ca6d8 580 public:
5c631832 581
192ca6d8
TT
582 struct frame_info *frame;
583 struct dwarf2_per_cu_data *per_cu;
584 CORE_ADDR obj_address;
5c631832 585
192ca6d8
TT
586 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
587 the frame in BATON. */
8a9b8146 588
632e107b 589 CORE_ADDR get_frame_cfa () override
192ca6d8
TT
590 {
591 return dwarf2_frame_cfa (frame);
592 }
8a9b8146 593
192ca6d8
TT
594 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
595 the frame in BATON. */
596
632e107b 597 CORE_ADDR get_frame_pc () override
192ca6d8
TT
598 {
599 return get_frame_address_in_block (frame);
600 }
601
602 /* Using the objfile specified in BATON, find the address for the
603 current thread's thread-local storage with offset OFFSET. */
632e107b 604 CORE_ADDR get_tls_address (CORE_ADDR offset) override
192ca6d8
TT
605 {
606 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
607
608 return target_translate_tls_address (objfile, offset);
609 }
610
611 /* Helper interface of per_cu_dwarf_call for
612 dwarf2_evaluate_loc_desc. */
613
632e107b 614 void dwarf_call (cu_offset die_offset) override
192ca6d8
TT
615 {
616 per_cu_dwarf_call (this, die_offset, per_cu);
617 }
618
a6b786da
KB
619 /* Helper interface of sect_variable_value for
620 dwarf2_evaluate_loc_desc. */
621
622 struct value *dwarf_variable_value (sect_offset sect_off) override
623 {
624 return sect_variable_value (this, sect_off, per_cu);
625 }
626
632e107b 627 struct type *get_base_type (cu_offset die_offset, int size) override
192ca6d8 628 {
7d5697f9
TT
629 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
630 if (result == NULL)
216f72a1 631 error (_("Could not find type for DW_OP_const_type"));
7d5697f9 632 if (size != 0 && TYPE_LENGTH (result) != size)
216f72a1 633 error (_("DW_OP_const_type has different sizes for type and data"));
7d5697f9 634 return result;
192ca6d8
TT
635 }
636
637 /* Callback function for dwarf2_evaluate_loc_desc.
336d760d 638 Fetch the address indexed by DW_OP_addrx or DW_OP_GNU_addr_index. */
192ca6d8 639
632e107b 640 CORE_ADDR get_addr_index (unsigned int index) override
192ca6d8
TT
641 {
642 return dwarf2_read_addr_index (per_cu, index);
643 }
644
645 /* Callback function for get_object_address. Return the address of the VLA
646 object. */
647
632e107b 648 CORE_ADDR get_object_address () override
192ca6d8
TT
649 {
650 if (obj_address == 0)
651 error (_("Location address is not set."));
652 return obj_address;
653 }
654
655 /* Execute DWARF block of call_site_parameter which matches KIND and
656 KIND_U. Choose DEREF_SIZE value of that parameter. Search
657 caller of this objects's frame.
658
659 The caller can be from a different CU - per_cu_dwarf_call
660 implementation can be more simple as it does not support cross-CU
661 DWARF executions. */
662
663 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
664 union call_site_parameter_u kind_u,
632e107b 665 int deref_size) override
192ca6d8
TT
666 {
667 struct frame_info *caller_frame;
668 struct dwarf2_per_cu_data *caller_per_cu;
192ca6d8
TT
669 struct call_site_parameter *parameter;
670 const gdb_byte *data_src;
671 size_t size;
672
673 caller_frame = get_prev_frame (frame);
674
675 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
676 &caller_per_cu);
677 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
678 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
679
680 /* DEREF_SIZE size is not verified here. */
681 if (data_src == NULL)
682 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 683 _("Cannot resolve DW_AT_call_data_value"));
192ca6d8 684
7d5697f9
TT
685 scoped_restore save_frame = make_scoped_restore (&this->frame,
686 caller_frame);
687 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
688 caller_per_cu);
689 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
690 (CORE_ADDR) 0);
192ca6d8
TT
691
692 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
693 this->gdbarch
7d5697f9 694 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
192ca6d8 695 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
7d5697f9 696 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
192ca6d8 697 scoped_restore save_offset = make_scoped_restore (&this->offset);
7d5697f9 698 this->offset = dwarf2_per_cu_text_offset (per_cu);
192ca6d8
TT
699
700 this->eval (data_src, size);
701 }
702
703 /* Using the frame specified in BATON, find the location expression
704 describing the frame base. Return a pointer to it in START and
705 its length in LENGTH. */
632e107b 706 void get_frame_base (const gdb_byte **start, size_t * length) override
192ca6d8
TT
707 {
708 /* FIXME: cagney/2003-03-26: This code should be using
709 get_frame_base_address(), and then implement a dwarf2 specific
710 this_base method. */
711 struct symbol *framefunc;
712 const struct block *bl = get_frame_block (frame, NULL);
713
714 if (bl == NULL)
715 error (_("frame address is not available."));
716
717 /* Use block_linkage_function, which returns a real (not inlined)
718 function, instead of get_frame_function, which may return an
719 inlined function. */
720 framefunc = block_linkage_function (bl);
721
722 /* If we found a frame-relative symbol then it was certainly within
723 some function associated with a frame. If we can't find the frame,
724 something has gone wrong. */
725 gdb_assert (framefunc != NULL);
726
727 func_get_frame_base_dwarf_block (framefunc,
728 get_frame_address_in_block (frame),
729 start, length);
730 }
731
732 /* Read memory at ADDR (length LEN) into BUF. */
733
632e107b 734 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
735 {
736 read_memory (addr, buf, len);
737 }
738
739 /* Using the frame specified in BATON, return the value of register
740 REGNUM, treated as a pointer. */
632e107b 741 CORE_ADDR read_addr_from_reg (int dwarf_regnum) override
192ca6d8
TT
742 {
743 struct gdbarch *gdbarch = get_frame_arch (frame);
744 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
745
746 return address_from_register (regnum, frame);
747 }
748
749 /* Implement "get_reg_value" callback. */
750
632e107b 751 struct value *get_reg_value (struct type *type, int dwarf_regnum) override
192ca6d8
TT
752 {
753 struct gdbarch *gdbarch = get_frame_arch (frame);
754 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
755
756 return value_from_register (type, regnum, frame);
757 }
758};
8a9b8146 759
8e3b41a9
JK
760/* See dwarf2loc.h. */
761
ccce17b0 762unsigned int entry_values_debug = 0;
8e3b41a9
JK
763
764/* Helper to set entry_values_debug. */
765
766static void
767show_entry_values_debug (struct ui_file *file, int from_tty,
768 struct cmd_list_element *c, const char *value)
769{
770 fprintf_filtered (file,
771 _("Entry values and tail call frames debugging is %s.\n"),
772 value);
773}
774
216f72a1 775/* Find DW_TAG_call_site's DW_AT_call_target address.
8e3b41a9
JK
776 CALLER_FRAME (for registers) can be NULL if it is not known. This function
777 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
778
779static CORE_ADDR
780call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
781 struct call_site *call_site,
782 struct frame_info *caller_frame)
783{
784 switch (FIELD_LOC_KIND (call_site->target))
785 {
786 case FIELD_LOC_KIND_DWARF_BLOCK:
787 {
788 struct dwarf2_locexpr_baton *dwarf_block;
789 struct value *val;
790 struct type *caller_core_addr_type;
791 struct gdbarch *caller_arch;
792
793 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
794 if (dwarf_block == NULL)
795 {
7cbd4a93 796 struct bound_minimal_symbol msym;
8e3b41a9
JK
797
798 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
799 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 800 _("DW_AT_call_target is not specified at %s in %s"),
8e3b41a9 801 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 802 (msym.minsym == NULL ? "???"
efd66ac6 803 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
804
805 }
806 if (caller_frame == NULL)
807 {
7cbd4a93 808 struct bound_minimal_symbol msym;
8e3b41a9
JK
809
810 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
811 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 812 _("DW_AT_call_target DWARF block resolving "
8e3b41a9
JK
813 "requires known frame which is currently not "
814 "available at %s in %s"),
815 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 816 (msym.minsym == NULL ? "???"
efd66ac6 817 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
818
819 }
820 caller_arch = get_frame_arch (caller_frame);
821 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
822 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
823 dwarf_block->data, dwarf_block->size,
824 dwarf_block->per_cu);
216f72a1 825 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
8e3b41a9
JK
826 if (VALUE_LVAL (val) == lval_memory)
827 return value_address (val);
828 else
829 return value_as_address (val);
830 }
831
832 case FIELD_LOC_KIND_PHYSNAME:
833 {
834 const char *physname;
3b7344d5 835 struct bound_minimal_symbol msym;
8e3b41a9
JK
836
837 physname = FIELD_STATIC_PHYSNAME (call_site->target);
9112db09
JK
838
839 /* Handle both the mangled and demangled PHYSNAME. */
840 msym = lookup_minimal_symbol (physname, NULL, NULL);
3b7344d5 841 if (msym.minsym == NULL)
8e3b41a9 842 {
3b7344d5 843 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
8e3b41a9
JK
844 throw_error (NO_ENTRY_VALUE_ERROR,
845 _("Cannot find function \"%s\" for a call site target "
846 "at %s in %s"),
847 physname, paddress (call_site_gdbarch, call_site->pc),
3b7344d5
TT
848 (msym.minsym == NULL ? "???"
849 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
850
851 }
77e371c0 852 return BMSYMBOL_VALUE_ADDRESS (msym);
8e3b41a9
JK
853 }
854
855 case FIELD_LOC_KIND_PHYSADDR:
856 return FIELD_STATIC_PHYSADDR (call_site->target);
857
858 default:
859 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
860 }
861}
862
111c6489
JK
863/* Convert function entry point exact address ADDR to the function which is
864 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
865 NO_ENTRY_VALUE_ERROR otherwise. */
866
867static struct symbol *
868func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
869{
870 struct symbol *sym = find_pc_function (addr);
871 struct type *type;
872
2b1ffcfd 873 if (sym == NULL || BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) != addr)
111c6489 874 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 875 _("DW_TAG_call_site resolving failed to find function "
111c6489
JK
876 "name for address %s"),
877 paddress (gdbarch, addr));
878
879 type = SYMBOL_TYPE (sym);
880 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
881 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
882
883 return sym;
884}
885
2d6c5dc2
JK
886/* Verify function with entry point exact address ADDR can never call itself
887 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
888 can call itself via tail calls.
889
890 If a funtion can tail call itself its entry value based parameters are
891 unreliable. There is no verification whether the value of some/all
892 parameters is unchanged through the self tail call, we expect if there is
893 a self tail call all the parameters can be modified. */
894
895static void
896func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
897{
2d6c5dc2
JK
898 CORE_ADDR addr;
899
2d6c5dc2
JK
900 /* The verification is completely unordered. Track here function addresses
901 which still need to be iterated. */
fc4007c9 902 std::vector<CORE_ADDR> todo;
2d6c5dc2 903
fc4007c9
TT
904 /* Track here CORE_ADDRs which were already visited. */
905 std::unordered_set<CORE_ADDR> addr_hash;
2d6c5dc2 906
fc4007c9
TT
907 todo.push_back (verify_addr);
908 while (!todo.empty ())
2d6c5dc2
JK
909 {
910 struct symbol *func_sym;
911 struct call_site *call_site;
912
fc4007c9
TT
913 addr = todo.back ();
914 todo.pop_back ();
2d6c5dc2
JK
915
916 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
917
918 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
919 call_site; call_site = call_site->tail_call_next)
920 {
921 CORE_ADDR target_addr;
2d6c5dc2
JK
922
923 /* CALLER_FRAME with registers is not available for tail-call jumped
924 frames. */
925 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
926
927 if (target_addr == verify_addr)
928 {
7cbd4a93 929 struct bound_minimal_symbol msym;
2d6c5dc2
JK
930
931 msym = lookup_minimal_symbol_by_pc (verify_addr);
932 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 933 _("DW_OP_entry_value resolving has found "
2d6c5dc2
JK
934 "function \"%s\" at %s can call itself via tail "
935 "calls"),
7cbd4a93 936 (msym.minsym == NULL ? "???"
efd66ac6 937 : MSYMBOL_PRINT_NAME (msym.minsym)),
2d6c5dc2
JK
938 paddress (gdbarch, verify_addr));
939 }
940
fc4007c9
TT
941 if (addr_hash.insert (target_addr).second)
942 todo.push_back (target_addr);
2d6c5dc2
JK
943 }
944 }
2d6c5dc2
JK
945}
946
111c6489
JK
947/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
948 ENTRY_VALUES_DEBUG. */
949
950static void
951tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
952{
953 CORE_ADDR addr = call_site->pc;
7cbd4a93 954 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
111c6489
JK
955
956 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
7cbd4a93 957 (msym.minsym == NULL ? "???"
efd66ac6 958 : MSYMBOL_PRINT_NAME (msym.minsym)));
111c6489
JK
959
960}
961
111c6489
JK
962/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
963 only top callers and bottom callees which are present in both. GDBARCH is
964 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
965 no remaining possibilities to provide unambiguous non-trivial result.
966 RESULTP should point to NULL on the first (initialization) call. Caller is
967 responsible for xfree of any RESULTP data. */
968
969static void
fc4007c9
TT
970chain_candidate (struct gdbarch *gdbarch,
971 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
972 std::vector<struct call_site *> *chain)
111c6489 973{
fc4007c9 974 long length = chain->size ();
111c6489
JK
975 int callers, callees, idx;
976
fc4007c9 977 if (*resultp == NULL)
111c6489
JK
978 {
979 /* Create the initial chain containing all the passed PCs. */
980
fc4007c9
TT
981 struct call_site_chain *result
982 = ((struct call_site_chain *)
983 xmalloc (sizeof (*result)
984 + sizeof (*result->call_site) * (length - 1)));
111c6489
JK
985 result->length = length;
986 result->callers = result->callees = length;
fc4007c9
TT
987 if (!chain->empty ())
988 memcpy (result->call_site, chain->data (),
19a1b230 989 sizeof (*result->call_site) * length);
fc4007c9 990 resultp->reset (result);
111c6489
JK
991
992 if (entry_values_debug)
993 {
994 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
995 for (idx = 0; idx < length; idx++)
996 tailcall_dump (gdbarch, result->call_site[idx]);
997 fputc_unfiltered ('\n', gdb_stdlog);
998 }
999
1000 return;
1001 }
1002
1003 if (entry_values_debug)
1004 {
1005 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
1006 for (idx = 0; idx < length; idx++)
fc4007c9 1007 tailcall_dump (gdbarch, chain->at (idx));
111c6489
JK
1008 fputc_unfiltered ('\n', gdb_stdlog);
1009 }
1010
1011 /* Intersect callers. */
1012
fc4007c9 1013 callers = std::min ((long) (*resultp)->callers, length);
111c6489 1014 for (idx = 0; idx < callers; idx++)
fc4007c9 1015 if ((*resultp)->call_site[idx] != chain->at (idx))
111c6489 1016 {
fc4007c9 1017 (*resultp)->callers = idx;
111c6489
JK
1018 break;
1019 }
1020
1021 /* Intersect callees. */
1022
fc4007c9 1023 callees = std::min ((long) (*resultp)->callees, length);
111c6489 1024 for (idx = 0; idx < callees; idx++)
fc4007c9
TT
1025 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
1026 != chain->at (length - 1 - idx))
111c6489 1027 {
fc4007c9 1028 (*resultp)->callees = idx;
111c6489
JK
1029 break;
1030 }
1031
1032 if (entry_values_debug)
1033 {
1034 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
fc4007c9
TT
1035 for (idx = 0; idx < (*resultp)->callers; idx++)
1036 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
111c6489 1037 fputs_unfiltered (" |", gdb_stdlog);
fc4007c9
TT
1038 for (idx = 0; idx < (*resultp)->callees; idx++)
1039 tailcall_dump (gdbarch,
1040 (*resultp)->call_site[(*resultp)->length
1041 - (*resultp)->callees + idx]);
111c6489
JK
1042 fputc_unfiltered ('\n', gdb_stdlog);
1043 }
1044
fc4007c9 1045 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
111c6489
JK
1046 {
1047 /* There are no common callers or callees. It could be also a direct
1048 call (which has length 0) with ambiguous possibility of an indirect
1049 call - CALLERS == CALLEES == 0 is valid during the first allocation
1050 but any subsequence processing of such entry means ambiguity. */
fc4007c9 1051 resultp->reset (NULL);
111c6489
JK
1052 return;
1053 }
1054
1055 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1056 PC again. In such case there must be two different code paths to reach
e0619de6 1057 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
fc4007c9 1058 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
111c6489
JK
1059}
1060
1061/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1062 assumed frames between them use GDBARCH. Use depth first search so we can
1063 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1064 would have needless GDB stack overhead. Caller is responsible for xfree of
1065 the returned result. Any unreliability results in thrown
1066 NO_ENTRY_VALUE_ERROR. */
1067
1068static struct call_site_chain *
1069call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1070 CORE_ADDR callee_pc)
1071{
c4be5165 1072 CORE_ADDR save_callee_pc = callee_pc;
fc4007c9 1073 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
111c6489
JK
1074 struct call_site *call_site;
1075
111c6489
JK
1076 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1077 call_site nor any possible call_site at CALLEE_PC's function is there.
1078 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1079 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
fc4007c9 1080 std::vector<struct call_site *> chain;
111c6489
JK
1081
1082 /* We are not interested in the specific PC inside the callee function. */
1083 callee_pc = get_pc_function_start (callee_pc);
1084 if (callee_pc == 0)
1085 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
c4be5165 1086 paddress (gdbarch, save_callee_pc));
111c6489 1087
fc4007c9
TT
1088 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1089 std::unordered_set<CORE_ADDR> addr_hash;
111c6489
JK
1090
1091 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1092 at the target's function. All the possible tail call sites in the
1093 target's function will get iterated as already pushed into CHAIN via their
1094 TAIL_CALL_NEXT. */
1095 call_site = call_site_for_pc (gdbarch, caller_pc);
1096
1097 while (call_site)
1098 {
1099 CORE_ADDR target_func_addr;
1100 struct call_site *target_call_site;
1101
1102 /* CALLER_FRAME with registers is not available for tail-call jumped
1103 frames. */
1104 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1105
1106 if (target_func_addr == callee_pc)
1107 {
fc4007c9 1108 chain_candidate (gdbarch, &retval, &chain);
111c6489
JK
1109 if (retval == NULL)
1110 break;
1111
1112 /* There is no way to reach CALLEE_PC again as we would prevent
1113 entering it twice as being already marked in ADDR_HASH. */
1114 target_call_site = NULL;
1115 }
1116 else
1117 {
1118 struct symbol *target_func;
1119
1120 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1121 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1122 }
1123
1124 do
1125 {
1126 /* Attempt to visit TARGET_CALL_SITE. */
1127
1128 if (target_call_site)
1129 {
fc4007c9 1130 if (addr_hash.insert (target_call_site->pc).second)
111c6489
JK
1131 {
1132 /* Successfully entered TARGET_CALL_SITE. */
1133
fc4007c9 1134 chain.push_back (target_call_site);
111c6489
JK
1135 break;
1136 }
1137 }
1138
1139 /* Backtrack (without revisiting the originating call_site). Try the
1140 callers's sibling; if there isn't any try the callers's callers's
1141 sibling etc. */
1142
1143 target_call_site = NULL;
fc4007c9 1144 while (!chain.empty ())
111c6489 1145 {
fc4007c9
TT
1146 call_site = chain.back ();
1147 chain.pop_back ();
111c6489 1148
fc4007c9
TT
1149 size_t removed = addr_hash.erase (call_site->pc);
1150 gdb_assert (removed == 1);
111c6489
JK
1151
1152 target_call_site = call_site->tail_call_next;
1153 if (target_call_site)
1154 break;
1155 }
1156 }
1157 while (target_call_site);
1158
fc4007c9 1159 if (chain.empty ())
111c6489
JK
1160 call_site = NULL;
1161 else
fc4007c9 1162 call_site = chain.back ();
111c6489
JK
1163 }
1164
1165 if (retval == NULL)
1166 {
7cbd4a93 1167 struct bound_minimal_symbol msym_caller, msym_callee;
111c6489
JK
1168
1169 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1170 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1171 throw_error (NO_ENTRY_VALUE_ERROR,
1172 _("There are no unambiguously determinable intermediate "
1173 "callers or callees between caller function \"%s\" at %s "
1174 "and callee function \"%s\" at %s"),
7cbd4a93 1175 (msym_caller.minsym == NULL
efd66ac6 1176 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
111c6489 1177 paddress (gdbarch, caller_pc),
7cbd4a93 1178 (msym_callee.minsym == NULL
efd66ac6 1179 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
111c6489
JK
1180 paddress (gdbarch, callee_pc));
1181 }
1182
fc4007c9 1183 return retval.release ();
111c6489
JK
1184}
1185
1186/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1187 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1188 constructed return NULL. Caller is responsible for xfree of the returned
1189 result. */
1190
1191struct call_site_chain *
1192call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1193 CORE_ADDR callee_pc)
1194{
111c6489
JK
1195 struct call_site_chain *retval = NULL;
1196
a70b8144 1197 try
111c6489
JK
1198 {
1199 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1200 }
230d2906 1201 catch (const gdb_exception_error &e)
111c6489
JK
1202 {
1203 if (e.error == NO_ENTRY_VALUE_ERROR)
1204 {
1205 if (entry_values_debug)
1206 exception_print (gdb_stdout, e);
1207
1208 return NULL;
1209 }
1210 else
eedc3f4f 1211 throw;
111c6489 1212 }
492d29ea 1213
111c6489
JK
1214 return retval;
1215}
1216
24c5c679
JK
1217/* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1218
1219static int
1220call_site_parameter_matches (struct call_site_parameter *parameter,
1221 enum call_site_parameter_kind kind,
1222 union call_site_parameter_u kind_u)
1223{
1224 if (kind == parameter->kind)
1225 switch (kind)
1226 {
1227 case CALL_SITE_PARAMETER_DWARF_REG:
1228 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1229 case CALL_SITE_PARAMETER_FB_OFFSET:
1230 return kind_u.fb_offset == parameter->u.fb_offset;
1788b2d3 1231 case CALL_SITE_PARAMETER_PARAM_OFFSET:
9c541725 1232 return kind_u.param_cu_off == parameter->u.param_cu_off;
24c5c679
JK
1233 }
1234 return 0;
1235}
1236
1237/* Fetch call_site_parameter from caller matching KIND and KIND_U.
1238 FRAME is for callee.
8e3b41a9
JK
1239
1240 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1241 otherwise. */
1242
1243static struct call_site_parameter *
24c5c679
JK
1244dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1245 enum call_site_parameter_kind kind,
1246 union call_site_parameter_u kind_u,
8e3b41a9
JK
1247 struct dwarf2_per_cu_data **per_cu_return)
1248{
9e3a7d65
JK
1249 CORE_ADDR func_addr, caller_pc;
1250 struct gdbarch *gdbarch;
1251 struct frame_info *caller_frame;
8e3b41a9
JK
1252 struct call_site *call_site;
1253 int iparams;
509f0fd9
JK
1254 /* Initialize it just to avoid a GCC false warning. */
1255 struct call_site_parameter *parameter = NULL;
8e3b41a9
JK
1256 CORE_ADDR target_addr;
1257
9e3a7d65
JK
1258 while (get_frame_type (frame) == INLINE_FRAME)
1259 {
1260 frame = get_prev_frame (frame);
1261 gdb_assert (frame != NULL);
1262 }
1263
1264 func_addr = get_frame_func (frame);
1265 gdbarch = get_frame_arch (frame);
1266 caller_frame = get_prev_frame (frame);
8e3b41a9
JK
1267 if (gdbarch != frame_unwind_arch (frame))
1268 {
7cbd4a93
TT
1269 struct bound_minimal_symbol msym
1270 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1271 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1272
1273 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1274 _("DW_OP_entry_value resolving callee gdbarch %s "
8e3b41a9
JK
1275 "(of %s (%s)) does not match caller gdbarch %s"),
1276 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1277 paddress (gdbarch, func_addr),
7cbd4a93 1278 (msym.minsym == NULL ? "???"
efd66ac6 1279 : MSYMBOL_PRINT_NAME (msym.minsym)),
8e3b41a9
JK
1280 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1281 }
1282
1283 if (caller_frame == NULL)
1284 {
7cbd4a93
TT
1285 struct bound_minimal_symbol msym
1286 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9 1287
216f72a1 1288 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
8e3b41a9
JK
1289 "requires caller of %s (%s)"),
1290 paddress (gdbarch, func_addr),
7cbd4a93 1291 (msym.minsym == NULL ? "???"
efd66ac6 1292 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
1293 }
1294 caller_pc = get_frame_pc (caller_frame);
1295 call_site = call_site_for_pc (gdbarch, caller_pc);
1296
1297 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1298 if (target_addr != func_addr)
1299 {
1300 struct minimal_symbol *target_msym, *func_msym;
1301
7cbd4a93
TT
1302 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1303 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
8e3b41a9 1304 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1305 _("DW_OP_entry_value resolving expects callee %s at %s "
8e3b41a9
JK
1306 "but the called frame is for %s at %s"),
1307 (target_msym == NULL ? "???"
efd66ac6 1308 : MSYMBOL_PRINT_NAME (target_msym)),
8e3b41a9 1309 paddress (gdbarch, target_addr),
efd66ac6 1310 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
8e3b41a9
JK
1311 paddress (gdbarch, func_addr));
1312 }
1313
2d6c5dc2
JK
1314 /* No entry value based parameters would be reliable if this function can
1315 call itself via tail calls. */
1316 func_verify_no_selftailcall (gdbarch, func_addr);
1317
8e3b41a9
JK
1318 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1319 {
1320 parameter = &call_site->parameter[iparams];
24c5c679 1321 if (call_site_parameter_matches (parameter, kind, kind_u))
8e3b41a9
JK
1322 break;
1323 }
1324 if (iparams == call_site->parameter_count)
1325 {
7cbd4a93
TT
1326 struct minimal_symbol *msym
1327 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
8e3b41a9 1328
216f72a1 1329 /* DW_TAG_call_site_parameter will be missing just if GCC could not
8e3b41a9
JK
1330 determine its value. */
1331 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
216f72a1 1332 "at DW_TAG_call_site %s at %s"),
8e3b41a9 1333 paddress (gdbarch, caller_pc),
efd66ac6 1334 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
8e3b41a9
JK
1335 }
1336
1337 *per_cu_return = call_site->per_cu;
1338 return parameter;
1339}
1340
a471c594 1341/* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
216f72a1
JK
1342 the normal DW_AT_call_value block. Otherwise return the
1343 DW_AT_call_data_value (dereferenced) block.
e18b2753
JK
1344
1345 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1346 struct value.
1347
1348 Function always returns non-NULL, non-optimized out value. It throws
1349 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1350
1351static struct value *
1352dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
a471c594 1353 CORE_ADDR deref_size, struct type *type,
e18b2753
JK
1354 struct frame_info *caller_frame,
1355 struct dwarf2_per_cu_data *per_cu)
1356{
a471c594 1357 const gdb_byte *data_src;
e18b2753 1358 gdb_byte *data;
a471c594
JK
1359 size_t size;
1360
1361 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1362 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1363
1364 /* DEREF_SIZE size is not verified here. */
1365 if (data_src == NULL)
1366 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1367 _("Cannot resolve DW_AT_call_data_value"));
e18b2753 1368
216f72a1 1369 /* DW_AT_call_value is a DWARF expression, not a DWARF
e18b2753
JK
1370 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1371 DWARF block. */
224c3ddb 1372 data = (gdb_byte *) alloca (size + 1);
a471c594
JK
1373 memcpy (data, data_src, size);
1374 data[size] = DW_OP_stack_value;
e18b2753 1375
a471c594 1376 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
e18b2753
JK
1377}
1378
a471c594
JK
1379/* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1380 the indirect method on it, that is use its stored target value, the sole
1381 purpose of entry_data_value_funcs.. */
1382
1383static struct value *
1384entry_data_value_coerce_ref (const struct value *value)
1385{
1386 struct type *checked_type = check_typedef (value_type (value));
1387 struct value *target_val;
1388
aa006118 1389 if (!TYPE_IS_REFERENCE (checked_type))
a471c594
JK
1390 return NULL;
1391
9a3c8263 1392 target_val = (struct value *) value_computed_closure (value);
a471c594
JK
1393 value_incref (target_val);
1394 return target_val;
1395}
1396
1397/* Implement copy_closure. */
1398
1399static void *
1400entry_data_value_copy_closure (const struct value *v)
1401{
9a3c8263 1402 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594
JK
1403
1404 value_incref (target_val);
1405 return target_val;
1406}
1407
1408/* Implement free_closure. */
1409
1410static void
1411entry_data_value_free_closure (struct value *v)
1412{
9a3c8263 1413 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594 1414
22bc8444 1415 value_decref (target_val);
a471c594
JK
1416}
1417
1418/* Vector for methods for an entry value reference where the referenced value
1419 is stored in the caller. On the first dereference use
216f72a1 1420 DW_AT_call_data_value in the caller. */
a471c594
JK
1421
1422static const struct lval_funcs entry_data_value_funcs =
1423{
1424 NULL, /* read */
1425 NULL, /* write */
a471c594
JK
1426 NULL, /* indirect */
1427 entry_data_value_coerce_ref,
1428 NULL, /* check_synthetic_pointer */
1429 entry_data_value_copy_closure,
1430 entry_data_value_free_closure
1431};
1432
24c5c679
JK
1433/* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1434 are used to match DW_AT_location at the caller's
216f72a1 1435 DW_TAG_call_site_parameter.
e18b2753
JK
1436
1437 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1438 cannot resolve the parameter for any reason. */
1439
1440static struct value *
1441value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
24c5c679
JK
1442 enum call_site_parameter_kind kind,
1443 union call_site_parameter_u kind_u)
e18b2753 1444{
a471c594
JK
1445 struct type *checked_type = check_typedef (type);
1446 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
e18b2753 1447 struct frame_info *caller_frame = get_prev_frame (frame);
a471c594 1448 struct value *outer_val, *target_val, *val;
e18b2753
JK
1449 struct call_site_parameter *parameter;
1450 struct dwarf2_per_cu_data *caller_per_cu;
1451
24c5c679 1452 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
e18b2753
JK
1453 &caller_per_cu);
1454
a471c594
JK
1455 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1456 type, caller_frame,
1457 caller_per_cu);
1458
216f72a1 1459 /* Check if DW_AT_call_data_value cannot be used. If it should be
a471c594
JK
1460 used and it is not available do not fall back to OUTER_VAL - dereferencing
1461 TYPE_CODE_REF with non-entry data value would give current value - not the
1462 entry value. */
1463
aa006118 1464 if (!TYPE_IS_REFERENCE (checked_type)
a471c594
JK
1465 || TYPE_TARGET_TYPE (checked_type) == NULL)
1466 return outer_val;
1467
1468 target_val = dwarf_entry_parameter_to_value (parameter,
1469 TYPE_LENGTH (target_type),
1470 target_type, caller_frame,
1471 caller_per_cu);
1472
a471c594 1473 val = allocate_computed_value (type, &entry_data_value_funcs,
895dafa6 1474 release_value (target_val).release ());
a471c594
JK
1475
1476 /* Copy the referencing pointer to the new computed value. */
1477 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1478 TYPE_LENGTH (checked_type));
1479 set_value_lazy (val, 0);
1480
1481 return val;
e18b2753
JK
1482}
1483
1484/* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1485 SIZE are DWARF block used to match DW_AT_location at the caller's
216f72a1 1486 DW_TAG_call_site_parameter.
e18b2753
JK
1487
1488 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1489 cannot resolve the parameter for any reason. */
1490
1491static struct value *
1492value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1493 const gdb_byte *block, size_t block_len)
1494{
24c5c679 1495 union call_site_parameter_u kind_u;
e18b2753 1496
24c5c679
JK
1497 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1498 if (kind_u.dwarf_reg != -1)
1499 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1500 kind_u);
e18b2753 1501
24c5c679
JK
1502 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1503 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1504 kind_u);
e18b2753
JK
1505
1506 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1507 suppressed during normal operation. The expression can be arbitrary if
1508 there is no caller-callee entry value binding expected. */
1509 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1510 _("DWARF-2 expression error: DW_OP_entry_value is supported "
e18b2753
JK
1511 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1512}
1513
052b9502
NF
1514struct piece_closure
1515{
88bfdde4 1516 /* Reference count. */
1e467161 1517 int refc = 0;
88bfdde4 1518
8cf6f0b1 1519 /* The CU from which this closure's expression came. */
1e467161 1520 struct dwarf2_per_cu_data *per_cu = NULL;
052b9502 1521
1e467161
SM
1522 /* The pieces describing this variable. */
1523 std::vector<dwarf_expr_piece> pieces;
ee40d8d4
YQ
1524
1525 /* Frame ID of frame to which a register value is relative, used
1526 only by DWARF_VALUE_REGISTER. */
1527 struct frame_id frame_id;
052b9502
NF
1528};
1529
1530/* Allocate a closure for a value formed from separately-described
1531 PIECES. */
1532
1533static struct piece_closure *
8cf6f0b1 1534allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1e467161 1535 std::vector<dwarf_expr_piece> &&pieces,
ddd7882a 1536 struct frame_info *frame)
052b9502 1537{
1e467161 1538 struct piece_closure *c = new piece_closure;
052b9502 1539
88bfdde4 1540 c->refc = 1;
8cf6f0b1 1541 c->per_cu = per_cu;
1e467161 1542 c->pieces = std::move (pieces);
ee40d8d4
YQ
1543 if (frame == NULL)
1544 c->frame_id = null_frame_id;
1545 else
1546 c->frame_id = get_frame_id (frame);
052b9502 1547
1e467161
SM
1548 for (dwarf_expr_piece &piece : c->pieces)
1549 if (piece.location == DWARF_VALUE_STACK)
1550 value_incref (piece.v.value);
052b9502
NF
1551
1552 return c;
1553}
1554
03c8af18
AA
1555/* Return the number of bytes overlapping a contiguous chunk of N_BITS
1556 bits whose first bit is located at bit offset START. */
1557
1558static size_t
1559bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1560{
1561 return (start % 8 + n_bits + 7) / 8;
1562}
1563
55acdf22
AA
1564/* Read or write a pieced value V. If FROM != NULL, operate in "write
1565 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1566 operate in "read mode": fetch the contents of the (lazy) value V by
1567 composing it from its pieces. */
1568
052b9502 1569static void
55acdf22 1570rw_pieced_value (struct value *v, struct value *from)
052b9502
NF
1571{
1572 int i;
359b19bb 1573 LONGEST offset = 0, max_offset;
d3b1e874 1574 ULONGEST bits_to_skip;
55acdf22
AA
1575 gdb_byte *v_contents;
1576 const gdb_byte *from_contents;
3e43a32a
MS
1577 struct piece_closure *c
1578 = (struct piece_closure *) value_computed_closure (v);
d5722aa2 1579 gdb::byte_vector buffer;
d3b1e874
TT
1580 int bits_big_endian
1581 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
afd74c5f 1582
55acdf22
AA
1583 if (from != NULL)
1584 {
1585 from_contents = value_contents (from);
1586 v_contents = NULL;
1587 }
1588 else
1589 {
1590 if (value_type (v) != value_enclosing_type (v))
1591 internal_error (__FILE__, __LINE__,
1592 _("Should not be able to create a lazy value with "
1593 "an enclosing type"));
1594 v_contents = value_contents_raw (v);
1595 from_contents = NULL;
1596 }
052b9502 1597
d3b1e874 1598 bits_to_skip = 8 * value_offset (v);
0e03807e
TT
1599 if (value_bitsize (v))
1600 {
af547a96
AA
1601 bits_to_skip += (8 * value_offset (value_parent (v))
1602 + value_bitpos (v));
55acdf22 1603 if (from != NULL
34877895 1604 && (type_byte_order (value_type (from))
55acdf22
AA
1605 == BFD_ENDIAN_BIG))
1606 {
1607 /* Use the least significant bits of FROM. */
1608 max_offset = 8 * TYPE_LENGTH (value_type (from));
1609 offset = max_offset - value_bitsize (v);
1610 }
1611 else
1612 max_offset = value_bitsize (v);
0e03807e
TT
1613 }
1614 else
359b19bb 1615 max_offset = 8 * TYPE_LENGTH (value_type (v));
d3b1e874 1616
f236533e 1617 /* Advance to the first non-skipped piece. */
1e467161 1618 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
f236533e
AA
1619 bits_to_skip -= c->pieces[i].size;
1620
1e467161 1621 for (; i < c->pieces.size () && offset < max_offset; i++)
052b9502
NF
1622 {
1623 struct dwarf_expr_piece *p = &c->pieces[i];
55acdf22 1624 size_t this_size_bits, this_size;
359b19bb 1625
f236533e 1626 this_size_bits = p->size - bits_to_skip;
359b19bb
AA
1627 if (this_size_bits > max_offset - offset)
1628 this_size_bits = max_offset - offset;
9a619af0 1629
cec03d70 1630 switch (p->location)
052b9502 1631 {
cec03d70
TT
1632 case DWARF_VALUE_REGISTER:
1633 {
ee40d8d4 1634 struct frame_info *frame = frame_find_by_id (c->frame_id);
cec03d70 1635 struct gdbarch *arch = get_frame_arch (frame);
0fde2c53 1636 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
03c8af18 1637 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
0fde2c53 1638 int optim, unavail;
dcbf108f 1639
0fde2c53 1640 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
65d84b76 1641 && p->offset + p->size < reg_bits)
63b4f126 1642 {
0fde2c53 1643 /* Big-endian, and we want less than full size. */
f236533e 1644 bits_to_skip += reg_bits - (p->offset + p->size);
63b4f126 1645 }
65d84b76 1646 else
f236533e 1647 bits_to_skip += p->offset;
65d84b76 1648
f236533e 1649 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
d5722aa2 1650 buffer.resize (this_size);
0fde2c53 1651
55acdf22 1652 if (from == NULL)
63b4f126 1653 {
55acdf22
AA
1654 /* Read mode. */
1655 if (!get_frame_register_bytes (frame, gdb_regnum,
1656 bits_to_skip / 8,
1657 this_size, buffer.data (),
1658 &optim, &unavail))
1659 {
1660 if (optim)
1661 mark_value_bits_optimized_out (v, offset,
1662 this_size_bits);
1663 if (unavail)
1664 mark_value_bits_unavailable (v, offset,
1665 this_size_bits);
1666 break;
1667 }
1668
1669 copy_bitwise (v_contents, offset,
1670 buffer.data (), bits_to_skip % 8,
1671 this_size_bits, bits_big_endian);
1672 }
1673 else
1674 {
1675 /* Write mode. */
1676 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1677 {
1678 /* Data is copied non-byte-aligned into the register.
1679 Need some bits from original register value. */
1680 get_frame_register_bytes (frame, gdb_regnum,
1681 bits_to_skip / 8,
1682 this_size, buffer.data (),
1683 &optim, &unavail);
1684 if (optim)
1685 throw_error (OPTIMIZED_OUT_ERROR,
1686 _("Can't do read-modify-write to "
1687 "update bitfield; containing word "
1688 "has been optimized out"));
1689 if (unavail)
1690 throw_error (NOT_AVAILABLE_ERROR,
1691 _("Can't do read-modify-write to "
1692 "update bitfield; containing word "
1693 "is unavailable"));
1694 }
1695
1696 copy_bitwise (buffer.data (), bits_to_skip % 8,
1697 from_contents, offset,
1698 this_size_bits, bits_big_endian);
1699 put_frame_register_bytes (frame, gdb_regnum,
1700 bits_to_skip / 8,
1701 this_size, buffer.data ());
63b4f126 1702 }
cec03d70
TT
1703 }
1704 break;
1705
1706 case DWARF_VALUE_MEMORY:
55acdf22
AA
1707 {
1708 bits_to_skip += p->offset;
1709
1710 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1711
1712 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1713 && offset % 8 == 0)
1714 {
1715 /* Everything is byte-aligned; no buffer needed. */
1716 if (from != NULL)
1717 write_memory_with_notification (start_addr,
1718 (from_contents
1719 + offset / 8),
1720 this_size_bits / 8);
1721 else
1722 read_value_memory (v, offset,
1723 p->v.mem.in_stack_memory,
1724 p->v.mem.addr + bits_to_skip / 8,
1725 v_contents + offset / 8,
1726 this_size_bits / 8);
1727 break;
1728 }
1729
1730 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
d5722aa2 1731 buffer.resize (this_size);
55acdf22
AA
1732
1733 if (from == NULL)
1734 {
1735 /* Read mode. */
1736 read_value_memory (v, offset,
1737 p->v.mem.in_stack_memory,
1738 p->v.mem.addr + bits_to_skip / 8,
1739 buffer.data (), this_size);
1740 copy_bitwise (v_contents, offset,
1741 buffer.data (), bits_to_skip % 8,
1742 this_size_bits, bits_big_endian);
1743 }
1744 else
1745 {
1746 /* Write mode. */
1747 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1748 {
1749 if (this_size <= 8)
1750 {
1751 /* Perform a single read for small sizes. */
1752 read_memory (start_addr, buffer.data (),
1753 this_size);
1754 }
1755 else
1756 {
1757 /* Only the first and last bytes can possibly have
1758 any bits reused. */
1759 read_memory (start_addr, buffer.data (), 1);
1760 read_memory (start_addr + this_size - 1,
1761 &buffer[this_size - 1], 1);
1762 }
1763 }
1764
1765 copy_bitwise (buffer.data (), bits_to_skip % 8,
1766 from_contents, offset,
1767 this_size_bits, bits_big_endian);
1768 write_memory_with_notification (start_addr,
1769 buffer.data (),
1770 this_size);
1771 }
1772 }
cec03d70
TT
1773 break;
1774
1775 case DWARF_VALUE_STACK:
1776 {
55acdf22
AA
1777 if (from != NULL)
1778 {
1779 mark_value_bits_optimized_out (v, offset, this_size_bits);
1780 break;
1781 }
1782
e9352324
AA
1783 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1784 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1785 ULONGEST stack_value_size_bits
1786 = 8 * TYPE_LENGTH (value_type (p->v.value));
1787
1788 /* Use zeroes if piece reaches beyond stack value. */
65d84b76 1789 if (p->offset + p->size > stack_value_size_bits)
e9352324
AA
1790 break;
1791
1792 /* Piece is anchored at least significant bit end. */
1793 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
f236533e 1794 bits_to_skip += stack_value_size_bits - p->offset - p->size;
65d84b76 1795 else
f236533e 1796 bits_to_skip += p->offset;
e9352324 1797
55acdf22 1798 copy_bitwise (v_contents, offset,
e9352324 1799 value_contents_all (p->v.value),
f236533e 1800 bits_to_skip,
e9352324 1801 this_size_bits, bits_big_endian);
cec03d70
TT
1802 }
1803 break;
1804
1805 case DWARF_VALUE_LITERAL:
1806 {
55acdf22
AA
1807 if (from != NULL)
1808 {
1809 mark_value_bits_optimized_out (v, offset, this_size_bits);
1810 break;
1811 }
1812
242d31ab
AA
1813 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1814 size_t n = this_size_bits;
afd74c5f 1815
242d31ab 1816 /* Cut off at the end of the implicit value. */
f236533e
AA
1817 bits_to_skip += p->offset;
1818 if (bits_to_skip >= literal_size_bits)
242d31ab 1819 break;
f236533e
AA
1820 if (n > literal_size_bits - bits_to_skip)
1821 n = literal_size_bits - bits_to_skip;
e9352324 1822
55acdf22 1823 copy_bitwise (v_contents, offset,
f236533e 1824 p->v.literal.data, bits_to_skip,
242d31ab 1825 n, bits_big_endian);
cec03d70
TT
1826 }
1827 break;
1828
8cf6f0b1 1829 case DWARF_VALUE_IMPLICIT_POINTER:
55acdf22
AA
1830 if (from != NULL)
1831 {
1832 mark_value_bits_optimized_out (v, offset, this_size_bits);
1833 break;
1834 }
1835
1836 /* These bits show up as zeros -- but do not cause the value to
1837 be considered optimized-out. */
8cf6f0b1
TT
1838 break;
1839
cb826367 1840 case DWARF_VALUE_OPTIMIZED_OUT:
9a0dc9e3 1841 mark_value_bits_optimized_out (v, offset, this_size_bits);
cb826367
TT
1842 break;
1843
cec03d70
TT
1844 default:
1845 internal_error (__FILE__, __LINE__, _("invalid location type"));
052b9502 1846 }
d3b1e874 1847
d3b1e874 1848 offset += this_size_bits;
f236533e 1849 bits_to_skip = 0;
052b9502
NF
1850 }
1851}
1852
55acdf22 1853
052b9502 1854static void
55acdf22 1855read_pieced_value (struct value *v)
052b9502 1856{
55acdf22
AA
1857 rw_pieced_value (v, NULL);
1858}
242d31ab 1859
55acdf22
AA
1860static void
1861write_pieced_value (struct value *to, struct value *from)
1862{
1863 rw_pieced_value (to, from);
052b9502
NF
1864}
1865
9a0dc9e3
PA
1866/* An implementation of an lval_funcs method to see whether a value is
1867 a synthetic pointer. */
8cf6f0b1 1868
0e03807e 1869static int
6b850546 1870check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
9a0dc9e3 1871 int bit_length)
0e03807e
TT
1872{
1873 struct piece_closure *c
1874 = (struct piece_closure *) value_computed_closure (value);
1875 int i;
1876
1877 bit_offset += 8 * value_offset (value);
1878 if (value_bitsize (value))
1879 bit_offset += value_bitpos (value);
1880
1e467161 1881 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
0e03807e
TT
1882 {
1883 struct dwarf_expr_piece *p = &c->pieces[i];
1884 size_t this_size_bits = p->size;
1885
1886 if (bit_offset > 0)
1887 {
1888 if (bit_offset >= this_size_bits)
1889 {
1890 bit_offset -= this_size_bits;
1891 continue;
1892 }
1893
1894 bit_length -= this_size_bits - bit_offset;
1895 bit_offset = 0;
1896 }
1897 else
1898 bit_length -= this_size_bits;
1899
9a0dc9e3
PA
1900 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1901 return 0;
0e03807e
TT
1902 }
1903
9a0dc9e3 1904 return 1;
8cf6f0b1
TT
1905}
1906
1907/* A wrapper function for get_frame_address_in_block. */
1908
1909static CORE_ADDR
1910get_frame_address_in_block_wrapper (void *baton)
1911{
9a3c8263 1912 return get_frame_address_in_block ((struct frame_info *) baton);
8cf6f0b1
TT
1913}
1914
3326303b
MG
1915/* Fetch a DW_AT_const_value through a synthetic pointer. */
1916
1917static struct value *
1918fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1919 struct dwarf2_per_cu_data *per_cu,
1920 struct type *type)
1921{
1922 struct value *result = NULL;
3326303b
MG
1923 const gdb_byte *bytes;
1924 LONGEST len;
1925
8268c778 1926 auto_obstack temp_obstack;
3326303b
MG
1927 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
1928
1929 if (bytes != NULL)
1930 {
1931 if (byte_offset >= 0
1932 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
1933 {
1934 bytes += byte_offset;
1935 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
1936 }
1937 else
1938 invalid_synthetic_pointer ();
1939 }
1940 else
1941 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
1942
3326303b
MG
1943 return result;
1944}
1945
1946/* Fetch the value pointed to by a synthetic pointer. */
1947
1948static struct value *
1949indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1950 struct dwarf2_per_cu_data *per_cu,
e4a62c65
TV
1951 struct frame_info *frame, struct type *type,
1952 bool resolve_abstract_p)
3326303b
MG
1953{
1954 /* Fetch the location expression of the DIE we're pointing to. */
1955 struct dwarf2_locexpr_baton baton
1956 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
e4a62c65
TV
1957 get_frame_address_in_block_wrapper, frame,
1958 resolve_abstract_p);
3326303b 1959
7942e96e
AA
1960 /* Get type of pointed-to DIE. */
1961 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
1962 if (orig_type == NULL)
1963 invalid_synthetic_pointer ();
1964
3326303b
MG
1965 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
1966 resulting value. Otherwise, it may have a DW_AT_const_value instead,
1967 or it may've been optimized out. */
1968 if (baton.data != NULL)
7942e96e
AA
1969 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
1970 baton.size, baton.per_cu,
1971 TYPE_TARGET_TYPE (type),
3326303b
MG
1972 byte_offset);
1973 else
1974 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
1975 type);
1976}
1977
8cf6f0b1
TT
1978/* An implementation of an lval_funcs method to indirect through a
1979 pointer. This handles the synthetic pointer case when needed. */
1980
1981static struct value *
1982indirect_pieced_value (struct value *value)
1983{
1984 struct piece_closure *c
1985 = (struct piece_closure *) value_computed_closure (value);
1986 struct type *type;
1987 struct frame_info *frame;
6b850546
DT
1988 int i, bit_length;
1989 LONGEST bit_offset;
8cf6f0b1 1990 struct dwarf_expr_piece *piece = NULL;
8cf6f0b1 1991 LONGEST byte_offset;
b597c318 1992 enum bfd_endian byte_order;
8cf6f0b1 1993
0e37a63c 1994 type = check_typedef (value_type (value));
8cf6f0b1
TT
1995 if (TYPE_CODE (type) != TYPE_CODE_PTR)
1996 return NULL;
1997
1998 bit_length = 8 * TYPE_LENGTH (type);
1999 bit_offset = 8 * value_offset (value);
2000 if (value_bitsize (value))
2001 bit_offset += value_bitpos (value);
2002
1e467161 2003 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
8cf6f0b1
TT
2004 {
2005 struct dwarf_expr_piece *p = &c->pieces[i];
2006 size_t this_size_bits = p->size;
2007
2008 if (bit_offset > 0)
2009 {
2010 if (bit_offset >= this_size_bits)
2011 {
2012 bit_offset -= this_size_bits;
2013 continue;
2014 }
2015
2016 bit_length -= this_size_bits - bit_offset;
2017 bit_offset = 0;
2018 }
2019 else
2020 bit_length -= this_size_bits;
2021
2022 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2023 return NULL;
2024
2025 if (bit_length != 0)
216f72a1 2026 error (_("Invalid use of DW_OP_implicit_pointer"));
8cf6f0b1
TT
2027
2028 piece = p;
2029 break;
2030 }
2031
3326303b 2032 gdb_assert (piece != NULL);
8cf6f0b1 2033 frame = get_selected_frame (_("No frame selected."));
543305c9 2034
5bd1ef56
TT
2035 /* This is an offset requested by GDB, such as value subscripts.
2036 However, due to how synthetic pointers are implemented, this is
2037 always presented to us as a pointer type. This means we have to
b597c318
YQ
2038 sign-extend it manually as appropriate. Use raw
2039 extract_signed_integer directly rather than value_as_address and
2040 sign extend afterwards on architectures that would need it
2041 (mostly everywhere except MIPS, which has signed addresses) as
2042 the later would go through gdbarch_pointer_to_address and thus
2043 return a CORE_ADDR with high bits set on architectures that
2044 encode address spaces and other things in CORE_ADDR. */
2045 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2046 byte_offset = extract_signed_integer (value_contents (value),
2047 TYPE_LENGTH (type), byte_order);
5bd1ef56 2048 byte_offset += piece->v.ptr.offset;
8cf6f0b1 2049
9c541725
PA
2050 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2051 byte_offset, c->per_cu,
3326303b
MG
2052 frame, type);
2053}
8cf6f0b1 2054
3326303b
MG
2055/* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2056 references. */
b6807d98 2057
3326303b
MG
2058static struct value *
2059coerce_pieced_ref (const struct value *value)
2060{
2061 struct type *type = check_typedef (value_type (value));
b6807d98 2062
3326303b
MG
2063 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2064 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2065 {
2066 const struct piece_closure *closure
2067 = (struct piece_closure *) value_computed_closure (value);
2068 struct frame_info *frame
2069 = get_selected_frame (_("No frame selected."));
2070
2071 /* gdb represents synthetic pointers as pieced values with a single
2072 piece. */
2073 gdb_assert (closure != NULL);
1e467161 2074 gdb_assert (closure->pieces.size () == 1);
3326303b 2075
1e467161
SM
2076 return indirect_synthetic_pointer
2077 (closure->pieces[0].v.ptr.die_sect_off,
2078 closure->pieces[0].v.ptr.offset,
2079 closure->per_cu, frame, type);
3326303b
MG
2080 }
2081 else
2082 {
2083 /* Else: not a synthetic reference; do nothing. */
2084 return NULL;
2085 }
0e03807e
TT
2086}
2087
052b9502 2088static void *
0e03807e 2089copy_pieced_value_closure (const struct value *v)
052b9502 2090{
3e43a32a
MS
2091 struct piece_closure *c
2092 = (struct piece_closure *) value_computed_closure (v);
052b9502 2093
88bfdde4
TT
2094 ++c->refc;
2095 return c;
052b9502
NF
2096}
2097
2098static void
2099free_pieced_value_closure (struct value *v)
2100{
3e43a32a
MS
2101 struct piece_closure *c
2102 = (struct piece_closure *) value_computed_closure (v);
052b9502 2103
88bfdde4
TT
2104 --c->refc;
2105 if (c->refc == 0)
2106 {
1e467161
SM
2107 for (dwarf_expr_piece &p : c->pieces)
2108 if (p.location == DWARF_VALUE_STACK)
22bc8444 2109 value_decref (p.v.value);
8a9b8146 2110
1e467161 2111 delete c;
88bfdde4 2112 }
052b9502
NF
2113}
2114
2115/* Functions for accessing a variable described by DW_OP_piece. */
c8f2448a 2116static const struct lval_funcs pieced_value_funcs = {
052b9502
NF
2117 read_pieced_value,
2118 write_pieced_value,
8cf6f0b1 2119 indirect_pieced_value,
3326303b 2120 coerce_pieced_ref,
8cf6f0b1 2121 check_pieced_synthetic_pointer,
052b9502
NF
2122 copy_pieced_value_closure,
2123 free_pieced_value_closure
2124};
2125
4c2df51b 2126/* Evaluate a location description, starting at DATA and with length
8cf6f0b1 2127 SIZE, to find the current location of variable of TYPE in the
7942e96e
AA
2128 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2129 location of the subobject of type SUBOBJ_TYPE at byte offset
2130 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
a2d33775 2131
8cf6f0b1
TT
2132static struct value *
2133dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
56eb65bd 2134 const gdb_byte *data, size_t size,
8cf6f0b1 2135 struct dwarf2_per_cu_data *per_cu,
7942e96e
AA
2136 struct type *subobj_type,
2137 LONGEST subobj_byte_offset)
4c2df51b 2138{
4c2df51b 2139 struct value *retval;
ac56253d 2140 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2141
7942e96e
AA
2142 if (subobj_type == NULL)
2143 {
2144 subobj_type = type;
2145 subobj_byte_offset = 0;
2146 }
2147 else if (subobj_byte_offset < 0)
8cf6f0b1
TT
2148 invalid_synthetic_pointer ();
2149
0d53c4c4 2150 if (size == 0)
7942e96e 2151 return allocate_optimized_out_value (subobj_type);
0d53c4c4 2152
192ca6d8
TT
2153 dwarf_evaluate_loc_desc ctx;
2154 ctx.frame = frame;
2155 ctx.per_cu = per_cu;
2156 ctx.obj_address = 0;
4c2df51b 2157
0cf08227 2158 scoped_value_mark free_values;
4a227398 2159
718b9626
TT
2160 ctx.gdbarch = get_objfile_arch (objfile);
2161 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2162 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2163 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2164
a70b8144 2165 try
79e1a869 2166 {
595d2e30 2167 ctx.eval (data, size);
79e1a869 2168 }
230d2906 2169 catch (const gdb_exception_error &ex)
79e1a869
PA
2170 {
2171 if (ex.error == NOT_AVAILABLE_ERROR)
2172 {
0cf08227 2173 free_values.free_to_mark ();
7942e96e
AA
2174 retval = allocate_value (subobj_type);
2175 mark_value_bytes_unavailable (retval, 0,
2176 TYPE_LENGTH (subobj_type));
79e1a869
PA
2177 return retval;
2178 }
8e3b41a9
JK
2179 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2180 {
2181 if (entry_values_debug)
2182 exception_print (gdb_stdout, ex);
0cf08227 2183 free_values.free_to_mark ();
7942e96e 2184 return allocate_optimized_out_value (subobj_type);
8e3b41a9 2185 }
79e1a869 2186 else
eedc3f4f 2187 throw;
79e1a869
PA
2188 }
2189
1e467161 2190 if (ctx.pieces.size () > 0)
87808bd6 2191 {
052b9502 2192 struct piece_closure *c;
8cf6f0b1 2193 ULONGEST bit_size = 0;
052b9502 2194
1e467161
SM
2195 for (dwarf_expr_piece &piece : ctx.pieces)
2196 bit_size += piece.size;
03278692
TT
2197 /* Complain if the expression is larger than the size of the
2198 outer type. */
2199 if (bit_size > 8 * TYPE_LENGTH (type))
8cf6f0b1
TT
2200 invalid_synthetic_pointer ();
2201
1e467161 2202 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
72fc29ff
TT
2203 /* We must clean up the value chain after creating the piece
2204 closure but before allocating the result. */
0cf08227 2205 free_values.free_to_mark ();
7942e96e
AA
2206 retval = allocate_computed_value (subobj_type,
2207 &pieced_value_funcs, c);
2208 set_value_offset (retval, subobj_byte_offset);
87808bd6 2209 }
4c2df51b
DJ
2210 else
2211 {
718b9626 2212 switch (ctx.location)
cec03d70
TT
2213 {
2214 case DWARF_VALUE_REGISTER:
2215 {
2216 struct gdbarch *arch = get_frame_arch (frame);
7c33b57c 2217 int dwarf_regnum
595d2e30 2218 = longest_to_int (value_as_long (ctx.fetch (0)));
0fde2c53 2219 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
9a619af0 2220
7942e96e 2221 if (subobj_byte_offset != 0)
8cf6f0b1 2222 error (_("cannot use offset on synthetic pointer to register"));
0cf08227 2223 free_values.free_to_mark ();
7942e96e 2224 retval = value_from_register (subobj_type, gdb_regnum, frame);
0fde2c53
DE
2225 if (value_optimized_out (retval))
2226 {
2227 struct value *tmp;
2228
2229 /* This means the register has undefined value / was
2230 not saved. As we're computing the location of some
2231 variable etc. in the program, not a value for
2232 inspecting a register ($pc, $sp, etc.), return a
2233 generic optimized out value instead, so that we show
2234 <optimized out> instead of <not saved>. */
7942e96e
AA
2235 tmp = allocate_value (subobj_type);
2236 value_contents_copy (tmp, 0, retval, 0,
2237 TYPE_LENGTH (subobj_type));
0fde2c53
DE
2238 retval = tmp;
2239 }
cec03d70
TT
2240 }
2241 break;
2242
2243 case DWARF_VALUE_MEMORY:
2244 {
f56331b4 2245 struct type *ptr_type;
595d2e30 2246 CORE_ADDR address = ctx.fetch_address (0);
69009882 2247 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
cec03d70 2248
f56331b4
KB
2249 /* DW_OP_deref_size (and possibly other operations too) may
2250 create a pointer instead of an address. Ideally, the
2251 pointer to address conversion would be performed as part
2252 of those operations, but the type of the object to
2253 which the address refers is not known at the time of
2254 the operation. Therefore, we do the conversion here
2255 since the type is readily available. */
2256
7942e96e 2257 switch (TYPE_CODE (subobj_type))
f56331b4
KB
2258 {
2259 case TYPE_CODE_FUNC:
2260 case TYPE_CODE_METHOD:
718b9626 2261 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
f56331b4
KB
2262 break;
2263 default:
718b9626 2264 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
f56331b4
KB
2265 break;
2266 }
2267 address = value_as_address (value_from_pointer (ptr_type, address));
2268
0cf08227 2269 free_values.free_to_mark ();
7942e96e
AA
2270 retval = value_at_lazy (subobj_type,
2271 address + subobj_byte_offset);
44353522
DE
2272 if (in_stack_memory)
2273 set_value_stack (retval, 1);
cec03d70
TT
2274 }
2275 break;
2276
2277 case DWARF_VALUE_STACK:
2278 {
595d2e30 2279 struct value *value = ctx.fetch (0);
8a9b8146 2280 size_t n = TYPE_LENGTH (value_type (value));
7942e96e
AA
2281 size_t len = TYPE_LENGTH (subobj_type);
2282 size_t max = TYPE_LENGTH (type);
2283 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
cec03d70 2284
7942e96e 2285 if (subobj_byte_offset + len > max)
8cf6f0b1
TT
2286 invalid_synthetic_pointer ();
2287
72fc29ff
TT
2288 /* Preserve VALUE because we are going to free values back
2289 to the mark, but we still need the value contents
2290 below. */
bbfa6f00 2291 value_ref_ptr value_holder = value_ref_ptr::new_reference (value);
0cf08227 2292 free_values.free_to_mark ();
72fc29ff 2293
7942e96e 2294 retval = allocate_value (subobj_type);
b6cede78 2295
7942e96e
AA
2296 /* The given offset is relative to the actual object. */
2297 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2298 subobj_byte_offset += n - max;
2299
2300 memcpy (value_contents_raw (retval),
2301 value_contents_all (value) + subobj_byte_offset, len);
cec03d70
TT
2302 }
2303 break;
2304
2305 case DWARF_VALUE_LITERAL:
2306 {
2307 bfd_byte *contents;
7942e96e 2308 size_t n = TYPE_LENGTH (subobj_type);
cec03d70 2309
7942e96e 2310 if (subobj_byte_offset + n > ctx.len)
8cf6f0b1
TT
2311 invalid_synthetic_pointer ();
2312
0cf08227 2313 free_values.free_to_mark ();
7942e96e 2314 retval = allocate_value (subobj_type);
cec03d70 2315 contents = value_contents_raw (retval);
7942e96e 2316 memcpy (contents, ctx.data + subobj_byte_offset, n);
cec03d70
TT
2317 }
2318 break;
2319
dd90784c 2320 case DWARF_VALUE_OPTIMIZED_OUT:
0cf08227 2321 free_values.free_to_mark ();
7942e96e 2322 retval = allocate_optimized_out_value (subobj_type);
dd90784c
JK
2323 break;
2324
8cf6f0b1
TT
2325 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2326 operation by execute_stack_op. */
2327 case DWARF_VALUE_IMPLICIT_POINTER:
cb826367
TT
2328 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2329 it can only be encountered when making a piece. */
cec03d70
TT
2330 default:
2331 internal_error (__FILE__, __LINE__, _("invalid location type"));
2332 }
4c2df51b
DJ
2333 }
2334
718b9626 2335 set_value_initialized (retval, ctx.initialized);
42be36b3 2336
4c2df51b
DJ
2337 return retval;
2338}
8cf6f0b1
TT
2339
2340/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2341 passes 0 as the byte_offset. */
2342
2343struct value *
2344dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
56eb65bd 2345 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2346 struct dwarf2_per_cu_data *per_cu)
2347{
7942e96e
AA
2348 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2349 NULL, 0);
8cf6f0b1
TT
2350}
2351
80180f79 2352/* Evaluates a dwarf expression and stores the result in VAL, expecting
63e43d3a
PMR
2353 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2354 frame in which the expression is evaluated. ADDR is a context (location of
2355 a variable) and might be needed to evaluate the location expression.
80180f79
SA
2356 Returns 1 on success, 0 otherwise. */
2357
2358static int
2359dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
63e43d3a 2360 struct frame_info *frame,
08412b07 2361 CORE_ADDR addr,
1cfdf534 2362 CORE_ADDR *valp)
80180f79 2363{
80180f79 2364 struct objfile *objfile;
80180f79
SA
2365
2366 if (dlbaton == NULL || dlbaton->size == 0)
2367 return 0;
2368
192ca6d8 2369 dwarf_evaluate_loc_desc ctx;
80180f79 2370
192ca6d8
TT
2371 ctx.frame = frame;
2372 ctx.per_cu = dlbaton->per_cu;
2373 ctx.obj_address = addr;
80180f79
SA
2374
2375 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2376
718b9626
TT
2377 ctx.gdbarch = get_objfile_arch (objfile);
2378 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2379 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2380 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
80180f79 2381
a70b8144 2382 try
16f808ec
TV
2383 {
2384 ctx.eval (dlbaton->data, dlbaton->size);
2385 }
230d2906 2386 catch (const gdb_exception_error &ex)
16f808ec
TV
2387 {
2388 if (ex.error == NOT_AVAILABLE_ERROR)
2389 {
2390 return 0;
2391 }
2392 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2393 {
2394 if (entry_values_debug)
2395 exception_print (gdb_stdout, ex);
2396 return 0;
2397 }
2398 else
eedc3f4f 2399 throw;
16f808ec 2400 }
80180f79 2401
718b9626 2402 switch (ctx.location)
80180f79
SA
2403 {
2404 case DWARF_VALUE_REGISTER:
2405 case DWARF_VALUE_MEMORY:
2406 case DWARF_VALUE_STACK:
595d2e30 2407 *valp = ctx.fetch_address (0);
718b9626 2408 if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 2409 *valp = ctx.read_addr_from_reg (*valp);
80180f79
SA
2410 return 1;
2411 case DWARF_VALUE_LITERAL:
718b9626
TT
2412 *valp = extract_signed_integer (ctx.data, ctx.len,
2413 gdbarch_byte_order (ctx.gdbarch));
80180f79
SA
2414 return 1;
2415 /* Unsupported dwarf values. */
2416 case DWARF_VALUE_OPTIMIZED_OUT:
2417 case DWARF_VALUE_IMPLICIT_POINTER:
2418 break;
2419 }
2420
80180f79
SA
2421 return 0;
2422}
2423
2424/* See dwarf2loc.h. */
2425
603490bf 2426bool
08412b07 2427dwarf2_evaluate_property (const struct dynamic_prop *prop,
63e43d3a 2428 struct frame_info *frame,
df25ebbd
JB
2429 struct property_addr_info *addr_stack,
2430 CORE_ADDR *value)
80180f79
SA
2431{
2432 if (prop == NULL)
603490bf 2433 return false;
80180f79 2434
63e43d3a
PMR
2435 if (frame == NULL && has_stack_frames ())
2436 frame = get_selected_frame (NULL);
2437
80180f79
SA
2438 switch (prop->kind)
2439 {
2440 case PROP_LOCEXPR:
2441 {
9a3c8263
SM
2442 const struct dwarf2_property_baton *baton
2443 = (const struct dwarf2_property_baton *) prop->data.baton;
9a49df9d 2444 gdb_assert (baton->property_type != NULL);
80180f79 2445
63e43d3a
PMR
2446 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2447 addr_stack ? addr_stack->addr : 0,
df25ebbd 2448 value))
80180f79 2449 {
9a49df9d 2450 if (baton->locexpr.is_reference)
80180f79 2451 {
9a49df9d 2452 struct value *val = value_at (baton->property_type, *value);
80180f79
SA
2453 *value = value_as_address (val);
2454 }
0d4e84ed
AB
2455 else
2456 {
2457 gdb_assert (baton->property_type != NULL);
2458
2459 struct type *type = check_typedef (baton->property_type);
2460 if (TYPE_LENGTH (type) < sizeof (CORE_ADDR)
2461 && !TYPE_UNSIGNED (type))
2462 {
2463 /* If we have a valid return candidate and it's value
2464 is signed, we have to sign-extend the value because
2465 CORE_ADDR on 64bit machine has 8 bytes but address
2466 size of an 32bit application is bytes. */
2467 const int addr_size
2468 = (dwarf2_per_cu_addr_size (baton->locexpr.per_cu)
2469 * TARGET_CHAR_BIT);
2470 const CORE_ADDR neg_mask
2471 = (~((CORE_ADDR) 0) << (addr_size - 1));
2472
2473 /* Check if signed bit is set and sign-extend values. */
2474 if (*value & neg_mask)
2475 *value |= neg_mask;
2476 }
2477 }
603490bf 2478 return true;
80180f79
SA
2479 }
2480 }
2481 break;
2482
2483 case PROP_LOCLIST:
2484 {
9a3c8263
SM
2485 struct dwarf2_property_baton *baton
2486 = (struct dwarf2_property_baton *) prop->data.baton;
80180f79
SA
2487 CORE_ADDR pc = get_frame_address_in_block (frame);
2488 const gdb_byte *data;
2489 struct value *val;
2490 size_t size;
2491
2492 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2493 if (data != NULL)
2494 {
9a49df9d 2495 val = dwarf2_evaluate_loc_desc (baton->property_type, frame, data,
80180f79
SA
2496 size, baton->loclist.per_cu);
2497 if (!value_optimized_out (val))
2498 {
2499 *value = value_as_address (val);
603490bf 2500 return true;
80180f79
SA
2501 }
2502 }
2503 }
2504 break;
2505
2506 case PROP_CONST:
2507 *value = prop->data.const_val;
603490bf 2508 return true;
df25ebbd
JB
2509
2510 case PROP_ADDR_OFFSET:
2511 {
9a3c8263
SM
2512 struct dwarf2_property_baton *baton
2513 = (struct dwarf2_property_baton *) prop->data.baton;
df25ebbd
JB
2514 struct property_addr_info *pinfo;
2515 struct value *val;
2516
2517 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
988915ee
TT
2518 {
2519 /* This approach lets us avoid checking the qualifiers. */
2520 if (TYPE_MAIN_TYPE (pinfo->type)
9a49df9d 2521 == TYPE_MAIN_TYPE (baton->property_type))
988915ee
TT
2522 break;
2523 }
df25ebbd 2524 if (pinfo == NULL)
2c811c0f 2525 error (_("cannot find reference address for offset property"));
c3345124
JB
2526 if (pinfo->valaddr != NULL)
2527 val = value_from_contents
2528 (baton->offset_info.type,
2529 pinfo->valaddr + baton->offset_info.offset);
2530 else
2531 val = value_at (baton->offset_info.type,
2532 pinfo->addr + baton->offset_info.offset);
df25ebbd 2533 *value = value_as_address (val);
603490bf 2534 return true;
df25ebbd 2535 }
80180f79
SA
2536 }
2537
603490bf 2538 return false;
80180f79
SA
2539}
2540
bb2ec1b3
TT
2541/* See dwarf2loc.h. */
2542
2543void
d82b3862 2544dwarf2_compile_property_to_c (string_file *stream,
bb2ec1b3
TT
2545 const char *result_name,
2546 struct gdbarch *gdbarch,
2547 unsigned char *registers_used,
2548 const struct dynamic_prop *prop,
2549 CORE_ADDR pc,
2550 struct symbol *sym)
2551{
9a3c8263
SM
2552 struct dwarf2_property_baton *baton
2553 = (struct dwarf2_property_baton *) prop->data.baton;
bb2ec1b3
TT
2554 const gdb_byte *data;
2555 size_t size;
2556 struct dwarf2_per_cu_data *per_cu;
2557
2558 if (prop->kind == PROP_LOCEXPR)
2559 {
2560 data = baton->locexpr.data;
2561 size = baton->locexpr.size;
2562 per_cu = baton->locexpr.per_cu;
2563 }
2564 else
2565 {
2566 gdb_assert (prop->kind == PROP_LOCLIST);
2567
2568 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2569 per_cu = baton->loclist.per_cu;
2570 }
2571
2572 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2573 gdbarch, registers_used,
2574 dwarf2_per_cu_addr_size (per_cu),
2575 data, data + size, per_cu);
2576}
2577
4c2df51b 2578\f
0b31a4bc 2579/* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
4c2df51b 2580
192ca6d8 2581class symbol_needs_eval_context : public dwarf_expr_context
4c2df51b 2582{
192ca6d8
TT
2583 public:
2584
0b31a4bc 2585 enum symbol_needs_kind needs;
17ea53c3 2586 struct dwarf2_per_cu_data *per_cu;
4c2df51b 2587
192ca6d8 2588 /* Reads from registers do require a frame. */
632e107b 2589 CORE_ADDR read_addr_from_reg (int regnum) override
192ca6d8
TT
2590 {
2591 needs = SYMBOL_NEEDS_FRAME;
2592 return 1;
2593 }
2594
2595 /* "get_reg_value" callback: Reads from registers do require a
2596 frame. */
2597
632e107b 2598 struct value *get_reg_value (struct type *type, int regnum) override
192ca6d8
TT
2599 {
2600 needs = SYMBOL_NEEDS_FRAME;
2601 return value_zero (type, not_lval);
2602 }
2603
2604 /* Reads from memory do not require a frame. */
632e107b 2605 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
2606 {
2607 memset (buf, 0, len);
2608 }
2609
2610 /* Frame-relative accesses do require a frame. */
632e107b 2611 void get_frame_base (const gdb_byte **start, size_t *length) override
192ca6d8
TT
2612 {
2613 static gdb_byte lit0 = DW_OP_lit0;
2614
2615 *start = &lit0;
2616 *length = 1;
2617
2618 needs = SYMBOL_NEEDS_FRAME;
2619 }
2620
2621 /* CFA accesses require a frame. */
632e107b 2622 CORE_ADDR get_frame_cfa () override
192ca6d8
TT
2623 {
2624 needs = SYMBOL_NEEDS_FRAME;
2625 return 1;
2626 }
2627
632e107b 2628 CORE_ADDR get_frame_pc () override
7d5697f9
TT
2629 {
2630 needs = SYMBOL_NEEDS_FRAME;
2631 return 1;
2632 }
2633
192ca6d8 2634 /* Thread-local accesses require registers, but not a frame. */
632e107b 2635 CORE_ADDR get_tls_address (CORE_ADDR offset) override
192ca6d8
TT
2636 {
2637 if (needs <= SYMBOL_NEEDS_REGISTERS)
2638 needs = SYMBOL_NEEDS_REGISTERS;
2639 return 1;
2640 }
2641
2642 /* Helper interface of per_cu_dwarf_call for
2643 dwarf2_loc_desc_get_symbol_read_needs. */
2644
632e107b 2645 void dwarf_call (cu_offset die_offset) override
192ca6d8
TT
2646 {
2647 per_cu_dwarf_call (this, die_offset, per_cu);
2648 }
2649
a6b786da
KB
2650 /* Helper interface of sect_variable_value for
2651 dwarf2_loc_desc_get_symbol_read_needs. */
2652
2653 struct value *dwarf_variable_value (sect_offset sect_off) override
2654 {
2655 return sect_variable_value (this, sect_off, per_cu);
2656 }
2657
216f72a1 2658 /* DW_OP_entry_value accesses require a caller, therefore a
192ca6d8
TT
2659 frame. */
2660
2661 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2662 union call_site_parameter_u kind_u,
632e107b 2663 int deref_size) override
192ca6d8
TT
2664 {
2665 needs = SYMBOL_NEEDS_FRAME;
3019eac3 2666
192ca6d8
TT
2667 /* The expression may require some stub values on DWARF stack. */
2668 push_address (0, 0);
2669 }
3019eac3 2670
336d760d 2671 /* DW_OP_addrx and DW_OP_GNU_addr_index doesn't require a frame. */
08412b07 2672
632e107b 2673 CORE_ADDR get_addr_index (unsigned int index) override
192ca6d8
TT
2674 {
2675 /* Nothing to do. */
2676 return 1;
2677 }
08412b07 2678
192ca6d8 2679 /* DW_OP_push_object_address has a frame already passed through. */
9e8b7a03 2680
632e107b 2681 CORE_ADDR get_object_address () override
192ca6d8
TT
2682 {
2683 /* Nothing to do. */
2684 return 1;
2685 }
9e8b7a03
JK
2686};
2687
0b31a4bc
TT
2688/* Compute the correct symbol_needs_kind value for the location
2689 expression at DATA (length SIZE). */
4c2df51b 2690
0b31a4bc
TT
2691static enum symbol_needs_kind
2692dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2693 struct dwarf2_per_cu_data *per_cu)
4c2df51b 2694{
f630a401 2695 int in_reg;
ac56253d 2696 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2697
eb115069
TT
2698 scoped_value_mark free_values;
2699
192ca6d8
TT
2700 symbol_needs_eval_context ctx;
2701
2702 ctx.needs = SYMBOL_NEEDS_NONE;
2703 ctx.per_cu = per_cu;
718b9626
TT
2704 ctx.gdbarch = get_objfile_arch (objfile);
2705 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2706 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2707 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2708
595d2e30 2709 ctx.eval (data, size);
4c2df51b 2710
718b9626 2711 in_reg = ctx.location == DWARF_VALUE_REGISTER;
f630a401 2712
1e467161
SM
2713 /* If the location has several pieces, and any of them are in
2714 registers, then we will need a frame to fetch them from. */
2715 for (dwarf_expr_piece &p : ctx.pieces)
2716 if (p.location == DWARF_VALUE_REGISTER)
2717 in_reg = 1;
87808bd6 2718
0b31a4bc 2719 if (in_reg)
192ca6d8
TT
2720 ctx.needs = SYMBOL_NEEDS_FRAME;
2721 return ctx.needs;
4c2df51b
DJ
2722}
2723
3cf03773
TT
2724/* A helper function that throws an unimplemented error mentioning a
2725 given DWARF operator. */
2726
621846f4 2727static void ATTRIBUTE_NORETURN
3cf03773 2728unimplemented (unsigned int op)
0d53c4c4 2729{
f39c6ffd 2730 const char *name = get_DW_OP_name (op);
b1bfef65
TT
2731
2732 if (name)
2733 error (_("DWARF operator %s cannot be translated to an agent expression"),
2734 name);
2735 else
1ba1b353
TT
2736 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2737 "to an agent expression"),
b1bfef65 2738 op);
3cf03773 2739}
08922a10 2740
0fde2c53
DE
2741/* See dwarf2loc.h.
2742
2743 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2744 can issue a complaint, which is better than having every target's
2745 implementation of dwarf2_reg_to_regnum do it. */
08922a10 2746
d064d1be 2747int
0fde2c53 2748dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
3cf03773
TT
2749{
2750 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
0fde2c53 2751
3cf03773 2752 if (reg == -1)
0fde2c53 2753 {
b98664d3 2754 complaint (_("bad DWARF register number %d"), dwarf_reg);
0fde2c53
DE
2755 }
2756 return reg;
2757}
2758
2759/* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2760 Throw an error because DWARF_REG is bad. */
2761
2762static void
2763throw_bad_regnum_error (ULONGEST dwarf_reg)
2764{
2765 /* Still want to print -1 as "-1".
2766 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2767 but that's overkill for now. */
2768 if ((int) dwarf_reg == dwarf_reg)
2769 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2770 error (_("Unable to access DWARF register number %s"),
2771 pulongest (dwarf_reg));
2772}
2773
2774/* See dwarf2loc.h. */
2775
2776int
2777dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2778{
2779 int reg;
2780
2781 if (dwarf_reg > INT_MAX)
2782 throw_bad_regnum_error (dwarf_reg);
2783 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2784 bad, but that's ok. */
2785 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2786 if (reg == -1)
2787 throw_bad_regnum_error (dwarf_reg);
3cf03773
TT
2788 return reg;
2789}
08922a10 2790
3cf03773
TT
2791/* A helper function that emits an access to memory. ARCH is the
2792 target architecture. EXPR is the expression which we are building.
2793 NBITS is the number of bits we want to read. This emits the
2794 opcodes needed to read the memory and then extract the desired
2795 bits. */
08922a10 2796
3cf03773
TT
2797static void
2798access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
08922a10 2799{
3cf03773
TT
2800 ULONGEST nbytes = (nbits + 7) / 8;
2801
9df7235c 2802 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3cf03773 2803
92bc6a20 2804 if (expr->tracing)
3cf03773
TT
2805 ax_trace_quick (expr, nbytes);
2806
2807 if (nbits <= 8)
2808 ax_simple (expr, aop_ref8);
2809 else if (nbits <= 16)
2810 ax_simple (expr, aop_ref16);
2811 else if (nbits <= 32)
2812 ax_simple (expr, aop_ref32);
2813 else
2814 ax_simple (expr, aop_ref64);
2815
2816 /* If we read exactly the number of bytes we wanted, we're done. */
2817 if (8 * nbytes == nbits)
2818 return;
2819
2820 if (gdbarch_bits_big_endian (arch))
0d53c4c4 2821 {
3cf03773
TT
2822 /* On a bits-big-endian machine, we want the high-order
2823 NBITS. */
2824 ax_const_l (expr, 8 * nbytes - nbits);
2825 ax_simple (expr, aop_rsh_unsigned);
0d53c4c4 2826 }
3cf03773 2827 else
0d53c4c4 2828 {
3cf03773
TT
2829 /* On a bits-little-endian box, we want the low-order NBITS. */
2830 ax_zero_ext (expr, nbits);
0d53c4c4 2831 }
3cf03773 2832}
0936ad1d 2833
8cf6f0b1
TT
2834/* A helper function to return the frame's PC. */
2835
2836static CORE_ADDR
2837get_ax_pc (void *baton)
2838{
9a3c8263 2839 struct agent_expr *expr = (struct agent_expr *) baton;
8cf6f0b1
TT
2840
2841 return expr->scope;
2842}
2843
3cf03773
TT
2844/* Compile a DWARF location expression to an agent expression.
2845
2846 EXPR is the agent expression we are building.
2847 LOC is the agent value we modify.
2848 ARCH is the architecture.
2849 ADDR_SIZE is the size of addresses, in bytes.
2850 OP_PTR is the start of the location expression.
2851 OP_END is one past the last byte of the location expression.
2852
2853 This will throw an exception for various kinds of errors -- for
2854 example, if the expression cannot be compiled, or if the expression
2855 is invalid. */
0936ad1d 2856
9f6f94ff
TT
2857void
2858dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
40f4af28
SM
2859 unsigned int addr_size, const gdb_byte *op_ptr,
2860 const gdb_byte *op_end,
9f6f94ff 2861 struct dwarf2_per_cu_data *per_cu)
3cf03773 2862{
40f4af28 2863 gdbarch *arch = expr->gdbarch;
58414334 2864 std::vector<int> dw_labels, patches;
3cf03773
TT
2865 const gdb_byte * const base = op_ptr;
2866 const gdb_byte *previous_piece = op_ptr;
2867 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2868 ULONGEST bits_collected = 0;
2869 unsigned int addr_size_bits = 8 * addr_size;
2870 int bits_big_endian = gdbarch_bits_big_endian (arch);
0936ad1d 2871
58414334 2872 std::vector<int> offsets (op_end - op_ptr, -1);
0936ad1d 2873
3cf03773
TT
2874 /* By default we are making an address. */
2875 loc->kind = axs_lvalue_memory;
0d45f56e 2876
3cf03773
TT
2877 while (op_ptr < op_end)
2878 {
aead7601 2879 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
9fccedf7
DE
2880 uint64_t uoffset, reg;
2881 int64_t offset;
3cf03773
TT
2882 int i;
2883
2884 offsets[op_ptr - base] = expr->len;
2885 ++op_ptr;
2886
2887 /* Our basic approach to code generation is to map DWARF
2888 operations directly to AX operations. However, there are
2889 some differences.
2890
2891 First, DWARF works on address-sized units, but AX always uses
2892 LONGEST. For most operations we simply ignore this
2893 difference; instead we generate sign extensions as needed
2894 before division and comparison operations. It would be nice
2895 to omit the sign extensions, but there is no way to determine
2896 the size of the target's LONGEST. (This code uses the size
2897 of the host LONGEST in some cases -- that is a bug but it is
2898 difficult to fix.)
2899
2900 Second, some DWARF operations cannot be translated to AX.
2901 For these we simply fail. See
2902 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2903 switch (op)
0936ad1d 2904 {
3cf03773
TT
2905 case DW_OP_lit0:
2906 case DW_OP_lit1:
2907 case DW_OP_lit2:
2908 case DW_OP_lit3:
2909 case DW_OP_lit4:
2910 case DW_OP_lit5:
2911 case DW_OP_lit6:
2912 case DW_OP_lit7:
2913 case DW_OP_lit8:
2914 case DW_OP_lit9:
2915 case DW_OP_lit10:
2916 case DW_OP_lit11:
2917 case DW_OP_lit12:
2918 case DW_OP_lit13:
2919 case DW_OP_lit14:
2920 case DW_OP_lit15:
2921 case DW_OP_lit16:
2922 case DW_OP_lit17:
2923 case DW_OP_lit18:
2924 case DW_OP_lit19:
2925 case DW_OP_lit20:
2926 case DW_OP_lit21:
2927 case DW_OP_lit22:
2928 case DW_OP_lit23:
2929 case DW_OP_lit24:
2930 case DW_OP_lit25:
2931 case DW_OP_lit26:
2932 case DW_OP_lit27:
2933 case DW_OP_lit28:
2934 case DW_OP_lit29:
2935 case DW_OP_lit30:
2936 case DW_OP_lit31:
2937 ax_const_l (expr, op - DW_OP_lit0);
2938 break;
0d53c4c4 2939
3cf03773 2940 case DW_OP_addr:
ac56253d 2941 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3cf03773 2942 op_ptr += addr_size;
ac56253d
TT
2943 /* Some versions of GCC emit DW_OP_addr before
2944 DW_OP_GNU_push_tls_address. In this case the value is an
2945 index, not an address. We don't support things like
2946 branching between the address and the TLS op. */
2947 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
9aa1f1e3 2948 uoffset += dwarf2_per_cu_text_offset (per_cu);
ac56253d 2949 ax_const_l (expr, uoffset);
3cf03773 2950 break;
4c2df51b 2951
3cf03773
TT
2952 case DW_OP_const1u:
2953 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2954 op_ptr += 1;
2955 break;
2956 case DW_OP_const1s:
2957 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2958 op_ptr += 1;
2959 break;
2960 case DW_OP_const2u:
2961 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2962 op_ptr += 2;
2963 break;
2964 case DW_OP_const2s:
2965 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2966 op_ptr += 2;
2967 break;
2968 case DW_OP_const4u:
2969 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2970 op_ptr += 4;
2971 break;
2972 case DW_OP_const4s:
2973 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2974 op_ptr += 4;
2975 break;
2976 case DW_OP_const8u:
2977 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2978 op_ptr += 8;
2979 break;
2980 case DW_OP_const8s:
2981 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2982 op_ptr += 8;
2983 break;
2984 case DW_OP_constu:
f664829e 2985 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3cf03773
TT
2986 ax_const_l (expr, uoffset);
2987 break;
2988 case DW_OP_consts:
f664829e 2989 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
2990 ax_const_l (expr, offset);
2991 break;
9c238357 2992
3cf03773
TT
2993 case DW_OP_reg0:
2994 case DW_OP_reg1:
2995 case DW_OP_reg2:
2996 case DW_OP_reg3:
2997 case DW_OP_reg4:
2998 case DW_OP_reg5:
2999 case DW_OP_reg6:
3000 case DW_OP_reg7:
3001 case DW_OP_reg8:
3002 case DW_OP_reg9:
3003 case DW_OP_reg10:
3004 case DW_OP_reg11:
3005 case DW_OP_reg12:
3006 case DW_OP_reg13:
3007 case DW_OP_reg14:
3008 case DW_OP_reg15:
3009 case DW_OP_reg16:
3010 case DW_OP_reg17:
3011 case DW_OP_reg18:
3012 case DW_OP_reg19:
3013 case DW_OP_reg20:
3014 case DW_OP_reg21:
3015 case DW_OP_reg22:
3016 case DW_OP_reg23:
3017 case DW_OP_reg24:
3018 case DW_OP_reg25:
3019 case DW_OP_reg26:
3020 case DW_OP_reg27:
3021 case DW_OP_reg28:
3022 case DW_OP_reg29:
3023 case DW_OP_reg30:
3024 case DW_OP_reg31:
3025 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3026 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3cf03773
TT
3027 loc->kind = axs_lvalue_register;
3028 break;
9c238357 3029
3cf03773 3030 case DW_OP_regx:
f664829e 3031 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773 3032 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3033 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3034 loc->kind = axs_lvalue_register;
3035 break;
08922a10 3036
3cf03773
TT
3037 case DW_OP_implicit_value:
3038 {
9fccedf7 3039 uint64_t len;
3cf03773 3040
f664829e 3041 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3cf03773
TT
3042 if (op_ptr + len > op_end)
3043 error (_("DW_OP_implicit_value: too few bytes available."));
3044 if (len > sizeof (ULONGEST))
3045 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3046 (int) len);
3047
3048 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3049 byte_order));
3050 op_ptr += len;
3051 dwarf_expr_require_composition (op_ptr, op_end,
3052 "DW_OP_implicit_value");
3053
3054 loc->kind = axs_rvalue;
3055 }
3056 break;
08922a10 3057
3cf03773
TT
3058 case DW_OP_stack_value:
3059 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3060 loc->kind = axs_rvalue;
3061 break;
08922a10 3062
3cf03773
TT
3063 case DW_OP_breg0:
3064 case DW_OP_breg1:
3065 case DW_OP_breg2:
3066 case DW_OP_breg3:
3067 case DW_OP_breg4:
3068 case DW_OP_breg5:
3069 case DW_OP_breg6:
3070 case DW_OP_breg7:
3071 case DW_OP_breg8:
3072 case DW_OP_breg9:
3073 case DW_OP_breg10:
3074 case DW_OP_breg11:
3075 case DW_OP_breg12:
3076 case DW_OP_breg13:
3077 case DW_OP_breg14:
3078 case DW_OP_breg15:
3079 case DW_OP_breg16:
3080 case DW_OP_breg17:
3081 case DW_OP_breg18:
3082 case DW_OP_breg19:
3083 case DW_OP_breg20:
3084 case DW_OP_breg21:
3085 case DW_OP_breg22:
3086 case DW_OP_breg23:
3087 case DW_OP_breg24:
3088 case DW_OP_breg25:
3089 case DW_OP_breg26:
3090 case DW_OP_breg27:
3091 case DW_OP_breg28:
3092 case DW_OP_breg29:
3093 case DW_OP_breg30:
3094 case DW_OP_breg31:
f664829e 3095 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3096 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3cf03773
TT
3097 ax_reg (expr, i);
3098 if (offset != 0)
3099 {
3100 ax_const_l (expr, offset);
3101 ax_simple (expr, aop_add);
3102 }
3103 break;
3104 case DW_OP_bregx:
3105 {
f664829e
DE
3106 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3107 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3108 i = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3109 ax_reg (expr, i);
3110 if (offset != 0)
3111 {
3112 ax_const_l (expr, offset);
3113 ax_simple (expr, aop_add);
3114 }
3115 }
3116 break;
3117 case DW_OP_fbreg:
3118 {
3119 const gdb_byte *datastart;
3120 size_t datalen;
3977b71f 3121 const struct block *b;
3cf03773 3122 struct symbol *framefunc;
08922a10 3123
3cf03773
TT
3124 b = block_for_pc (expr->scope);
3125
3126 if (!b)
3127 error (_("No block found for address"));
3128
3129 framefunc = block_linkage_function (b);
3130
3131 if (!framefunc)
3132 error (_("No function found for block"));
3133
af945b75
TT
3134 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3135 &datastart, &datalen);
3cf03773 3136
f664829e 3137 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
40f4af28 3138 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
9f6f94ff 3139 datastart + datalen, per_cu);
d84cf7eb
TT
3140 if (loc->kind == axs_lvalue_register)
3141 require_rvalue (expr, loc);
3cf03773
TT
3142
3143 if (offset != 0)
3144 {
3145 ax_const_l (expr, offset);
3146 ax_simple (expr, aop_add);
3147 }
3148
3149 loc->kind = axs_lvalue_memory;
3150 }
08922a10 3151 break;
08922a10 3152
3cf03773
TT
3153 case DW_OP_dup:
3154 ax_simple (expr, aop_dup);
3155 break;
08922a10 3156
3cf03773
TT
3157 case DW_OP_drop:
3158 ax_simple (expr, aop_pop);
3159 break;
08922a10 3160
3cf03773
TT
3161 case DW_OP_pick:
3162 offset = *op_ptr++;
c7f96d2b 3163 ax_pick (expr, offset);
3cf03773
TT
3164 break;
3165
3166 case DW_OP_swap:
3167 ax_simple (expr, aop_swap);
3168 break;
08922a10 3169
3cf03773 3170 case DW_OP_over:
c7f96d2b 3171 ax_pick (expr, 1);
3cf03773 3172 break;
08922a10 3173
3cf03773 3174 case DW_OP_rot:
c7f96d2b 3175 ax_simple (expr, aop_rot);
3cf03773 3176 break;
08922a10 3177
3cf03773
TT
3178 case DW_OP_deref:
3179 case DW_OP_deref_size:
3180 {
3181 int size;
08922a10 3182
3cf03773
TT
3183 if (op == DW_OP_deref_size)
3184 size = *op_ptr++;
3185 else
3186 size = addr_size;
3187
9df7235c 3188 if (size != 1 && size != 2 && size != 4 && size != 8)
f3cec7e6
HZ
3189 error (_("Unsupported size %d in %s"),
3190 size, get_DW_OP_name (op));
9df7235c 3191 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3cf03773
TT
3192 }
3193 break;
3194
3195 case DW_OP_abs:
3196 /* Sign extend the operand. */
3197 ax_ext (expr, addr_size_bits);
3198 ax_simple (expr, aop_dup);
3199 ax_const_l (expr, 0);
3200 ax_simple (expr, aop_less_signed);
3201 ax_simple (expr, aop_log_not);
3202 i = ax_goto (expr, aop_if_goto);
3203 /* We have to emit 0 - X. */
3204 ax_const_l (expr, 0);
3205 ax_simple (expr, aop_swap);
3206 ax_simple (expr, aop_sub);
3207 ax_label (expr, i, expr->len);
3208 break;
3209
3210 case DW_OP_neg:
3211 /* No need to sign extend here. */
3212 ax_const_l (expr, 0);
3213 ax_simple (expr, aop_swap);
3214 ax_simple (expr, aop_sub);
3215 break;
3216
3217 case DW_OP_not:
3218 /* Sign extend the operand. */
3219 ax_ext (expr, addr_size_bits);
3220 ax_simple (expr, aop_bit_not);
3221 break;
3222
3223 case DW_OP_plus_uconst:
f664829e 3224 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773
TT
3225 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3226 but we micro-optimize anyhow. */
3227 if (reg != 0)
3228 {
3229 ax_const_l (expr, reg);
3230 ax_simple (expr, aop_add);
3231 }
3232 break;
3233
3234 case DW_OP_and:
3235 ax_simple (expr, aop_bit_and);
3236 break;
3237
3238 case DW_OP_div:
3239 /* Sign extend the operands. */
3240 ax_ext (expr, addr_size_bits);
3241 ax_simple (expr, aop_swap);
3242 ax_ext (expr, addr_size_bits);
3243 ax_simple (expr, aop_swap);
3244 ax_simple (expr, aop_div_signed);
08922a10
SS
3245 break;
3246
3cf03773
TT
3247 case DW_OP_minus:
3248 ax_simple (expr, aop_sub);
3249 break;
3250
3251 case DW_OP_mod:
3252 ax_simple (expr, aop_rem_unsigned);
3253 break;
3254
3255 case DW_OP_mul:
3256 ax_simple (expr, aop_mul);
3257 break;
3258
3259 case DW_OP_or:
3260 ax_simple (expr, aop_bit_or);
3261 break;
3262
3263 case DW_OP_plus:
3264 ax_simple (expr, aop_add);
3265 break;
3266
3267 case DW_OP_shl:
3268 ax_simple (expr, aop_lsh);
3269 break;
3270
3271 case DW_OP_shr:
3272 ax_simple (expr, aop_rsh_unsigned);
3273 break;
3274
3275 case DW_OP_shra:
3276 ax_simple (expr, aop_rsh_signed);
3277 break;
3278
3279 case DW_OP_xor:
3280 ax_simple (expr, aop_bit_xor);
3281 break;
3282
3283 case DW_OP_le:
3284 /* Sign extend the operands. */
3285 ax_ext (expr, addr_size_bits);
3286 ax_simple (expr, aop_swap);
3287 ax_ext (expr, addr_size_bits);
3288 /* Note no swap here: A <= B is !(B < A). */
3289 ax_simple (expr, aop_less_signed);
3290 ax_simple (expr, aop_log_not);
3291 break;
3292
3293 case DW_OP_ge:
3294 /* Sign extend the operands. */
3295 ax_ext (expr, addr_size_bits);
3296 ax_simple (expr, aop_swap);
3297 ax_ext (expr, addr_size_bits);
3298 ax_simple (expr, aop_swap);
3299 /* A >= B is !(A < B). */
3300 ax_simple (expr, aop_less_signed);
3301 ax_simple (expr, aop_log_not);
3302 break;
3303
3304 case DW_OP_eq:
3305 /* Sign extend the operands. */
3306 ax_ext (expr, addr_size_bits);
3307 ax_simple (expr, aop_swap);
3308 ax_ext (expr, addr_size_bits);
3309 /* No need for a second swap here. */
3310 ax_simple (expr, aop_equal);
3311 break;
3312
3313 case DW_OP_lt:
3314 /* Sign extend the operands. */
3315 ax_ext (expr, addr_size_bits);
3316 ax_simple (expr, aop_swap);
3317 ax_ext (expr, addr_size_bits);
3318 ax_simple (expr, aop_swap);
3319 ax_simple (expr, aop_less_signed);
3320 break;
3321
3322 case DW_OP_gt:
3323 /* Sign extend the operands. */
3324 ax_ext (expr, addr_size_bits);
3325 ax_simple (expr, aop_swap);
3326 ax_ext (expr, addr_size_bits);
3327 /* Note no swap here: A > B is B < A. */
3328 ax_simple (expr, aop_less_signed);
3329 break;
3330
3331 case DW_OP_ne:
3332 /* Sign extend the operands. */
3333 ax_ext (expr, addr_size_bits);
3334 ax_simple (expr, aop_swap);
3335 ax_ext (expr, addr_size_bits);
3336 /* No need for a swap here. */
3337 ax_simple (expr, aop_equal);
3338 ax_simple (expr, aop_log_not);
3339 break;
3340
3341 case DW_OP_call_frame_cfa:
a8fd5589
TT
3342 {
3343 int regnum;
3344 CORE_ADDR text_offset;
3345 LONGEST off;
3346 const gdb_byte *cfa_start, *cfa_end;
3347
3348 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3349 &regnum, &off,
3350 &text_offset, &cfa_start, &cfa_end))
3351 {
3352 /* Register. */
3353 ax_reg (expr, regnum);
3354 if (off != 0)
3355 {
3356 ax_const_l (expr, off);
3357 ax_simple (expr, aop_add);
3358 }
3359 }
3360 else
3361 {
3362 /* Another expression. */
3363 ax_const_l (expr, text_offset);
40f4af28
SM
3364 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
3365 cfa_end, per_cu);
a8fd5589
TT
3366 }
3367
3368 loc->kind = axs_lvalue_memory;
3369 }
3cf03773
TT
3370 break;
3371
3372 case DW_OP_GNU_push_tls_address:
4aa4e28b 3373 case DW_OP_form_tls_address:
3cf03773
TT
3374 unimplemented (op);
3375 break;
3376
08412b07
JB
3377 case DW_OP_push_object_address:
3378 unimplemented (op);
3379 break;
3380
3cf03773
TT
3381 case DW_OP_skip:
3382 offset = extract_signed_integer (op_ptr, 2, byte_order);
3383 op_ptr += 2;
3384 i = ax_goto (expr, aop_goto);
58414334
TT
3385 dw_labels.push_back (op_ptr + offset - base);
3386 patches.push_back (i);
3cf03773
TT
3387 break;
3388
3389 case DW_OP_bra:
3390 offset = extract_signed_integer (op_ptr, 2, byte_order);
3391 op_ptr += 2;
3392 /* Zero extend the operand. */
3393 ax_zero_ext (expr, addr_size_bits);
3394 i = ax_goto (expr, aop_if_goto);
58414334
TT
3395 dw_labels.push_back (op_ptr + offset - base);
3396 patches.push_back (i);
3cf03773
TT
3397 break;
3398
3399 case DW_OP_nop:
3400 break;
3401
3402 case DW_OP_piece:
3403 case DW_OP_bit_piece:
08922a10 3404 {
b926417a 3405 uint64_t size;
3cf03773
TT
3406
3407 if (op_ptr - 1 == previous_piece)
3408 error (_("Cannot translate empty pieces to agent expressions"));
3409 previous_piece = op_ptr - 1;
3410
f664829e 3411 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3cf03773
TT
3412 if (op == DW_OP_piece)
3413 {
3414 size *= 8;
b926417a 3415 uoffset = 0;
3cf03773
TT
3416 }
3417 else
b926417a 3418 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
08922a10 3419
3cf03773
TT
3420 if (bits_collected + size > 8 * sizeof (LONGEST))
3421 error (_("Expression pieces exceed word size"));
3422
3423 /* Access the bits. */
3424 switch (loc->kind)
3425 {
3426 case axs_lvalue_register:
3427 ax_reg (expr, loc->u.reg);
3428 break;
3429
3430 case axs_lvalue_memory:
3431 /* Offset the pointer, if needed. */
b926417a 3432 if (uoffset > 8)
3cf03773 3433 {
b926417a 3434 ax_const_l (expr, uoffset / 8);
3cf03773 3435 ax_simple (expr, aop_add);
b926417a 3436 uoffset %= 8;
3cf03773
TT
3437 }
3438 access_memory (arch, expr, size);
3439 break;
3440 }
3441
3442 /* For a bits-big-endian target, shift up what we already
3443 have. For a bits-little-endian target, shift up the
3444 new data. Note that there is a potential bug here if
3445 the DWARF expression leaves multiple values on the
3446 stack. */
3447 if (bits_collected > 0)
3448 {
3449 if (bits_big_endian)
3450 {
3451 ax_simple (expr, aop_swap);
3452 ax_const_l (expr, size);
3453 ax_simple (expr, aop_lsh);
3454 /* We don't need a second swap here, because
3455 aop_bit_or is symmetric. */
3456 }
3457 else
3458 {
3459 ax_const_l (expr, size);
3460 ax_simple (expr, aop_lsh);
3461 }
3462 ax_simple (expr, aop_bit_or);
3463 }
3464
3465 bits_collected += size;
3466 loc->kind = axs_rvalue;
08922a10
SS
3467 }
3468 break;
08922a10 3469
3cf03773
TT
3470 case DW_OP_GNU_uninit:
3471 unimplemented (op);
3472
3473 case DW_OP_call2:
3474 case DW_OP_call4:
3475 {
3476 struct dwarf2_locexpr_baton block;
3477 int size = (op == DW_OP_call2 ? 2 : 4);
3478
3479 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3480 op_ptr += size;
3481
b926417a
TT
3482 cu_offset cuoffset = (cu_offset) uoffset;
3483 block = dwarf2_fetch_die_loc_cu_off (cuoffset, per_cu,
8b9737bf 3484 get_ax_pc, expr);
3cf03773
TT
3485
3486 /* DW_OP_call_ref is currently not supported. */
3487 gdb_assert (block.per_cu == per_cu);
3488
40f4af28
SM
3489 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
3490 block.data + block.size, per_cu);
3cf03773
TT
3491 }
3492 break;
3493
3494 case DW_OP_call_ref:
3495 unimplemented (op);
3496
a6b786da
KB
3497 case DW_OP_GNU_variable_value:
3498 unimplemented (op);
3499
3cf03773 3500 default:
b1bfef65 3501 unimplemented (op);
08922a10 3502 }
08922a10 3503 }
3cf03773
TT
3504
3505 /* Patch all the branches we emitted. */
b926417a 3506 for (int i = 0; i < patches.size (); ++i)
3cf03773 3507 {
58414334 3508 int targ = offsets[dw_labels[i]];
3cf03773
TT
3509 if (targ == -1)
3510 internal_error (__FILE__, __LINE__, _("invalid label"));
58414334 3511 ax_label (expr, patches[i], targ);
3cf03773 3512 }
08922a10
SS
3513}
3514
4c2df51b
DJ
3515\f
3516/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3517 evaluator to calculate the location. */
3518static struct value *
3519locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3520{
9a3c8263
SM
3521 struct dwarf2_locexpr_baton *dlbaton
3522 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4c2df51b 3523 struct value *val;
9a619af0 3524
a2d33775
JK
3525 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3526 dlbaton->size, dlbaton->per_cu);
4c2df51b
DJ
3527
3528 return val;
3529}
3530
e18b2753
JK
3531/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3532 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3533 will be thrown. */
3534
3535static struct value *
3536locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3537{
9a3c8263
SM
3538 struct dwarf2_locexpr_baton *dlbaton
3539 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
3540
3541 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3542 dlbaton->size);
3543}
3544
0b31a4bc
TT
3545/* Implementation of get_symbol_read_needs from
3546 symbol_computed_ops. */
3547
3548static enum symbol_needs_kind
3549locexpr_get_symbol_read_needs (struct symbol *symbol)
4c2df51b 3550{
9a3c8263
SM
3551 struct dwarf2_locexpr_baton *dlbaton
3552 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
9a619af0 3553
0b31a4bc
TT
3554 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3555 dlbaton->per_cu);
4c2df51b
DJ
3556}
3557
9eae7c52
TT
3558/* Return true if DATA points to the end of a piece. END is one past
3559 the last byte in the expression. */
3560
3561static int
3562piece_end_p (const gdb_byte *data, const gdb_byte *end)
3563{
3564 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3565}
3566
5e44ecb3
TT
3567/* Helper for locexpr_describe_location_piece that finds the name of a
3568 DWARF register. */
3569
3570static const char *
3571locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3572{
3573 int regnum;
3574
0fde2c53
DE
3575 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3576 We'd rather print *something* here than throw an error. */
3577 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3578 /* gdbarch_register_name may just return "", return something more
3579 descriptive for bad register numbers. */
3580 if (regnum == -1)
3581 {
3582 /* The text is output as "$bad_register_number".
3583 That is why we use the underscores. */
3584 return _("bad_register_number");
3585 }
5e44ecb3
TT
3586 return gdbarch_register_name (gdbarch, regnum);
3587}
3588
9eae7c52
TT
3589/* Nicely describe a single piece of a location, returning an updated
3590 position in the bytecode sequence. This function cannot recognize
3591 all locations; if a location is not recognized, it simply returns
f664829e
DE
3592 DATA. If there is an error during reading, e.g. we run off the end
3593 of the buffer, an error is thrown. */
08922a10 3594
0d45f56e 3595static const gdb_byte *
08922a10
SS
3596locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3597 CORE_ADDR addr, struct objfile *objfile,
49f6c839 3598 struct dwarf2_per_cu_data *per_cu,
9eae7c52 3599 const gdb_byte *data, const gdb_byte *end,
0d45f56e 3600 unsigned int addr_size)
4c2df51b 3601{
08922a10 3602 struct gdbarch *gdbarch = get_objfile_arch (objfile);
49f6c839 3603 size_t leb128_size;
08922a10
SS
3604
3605 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3606 {
08922a10 3607 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3608 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
08922a10
SS
3609 data += 1;
3610 }
3611 else if (data[0] == DW_OP_regx)
3612 {
9fccedf7 3613 uint64_t reg;
4c2df51b 3614
f664829e 3615 data = safe_read_uleb128 (data + 1, end, &reg);
08922a10 3616 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3617 locexpr_regname (gdbarch, reg));
08922a10
SS
3618 }
3619 else if (data[0] == DW_OP_fbreg)
4c2df51b 3620 {
3977b71f 3621 const struct block *b;
08922a10
SS
3622 struct symbol *framefunc;
3623 int frame_reg = 0;
9fccedf7 3624 int64_t frame_offset;
7155d578 3625 const gdb_byte *base_data, *new_data, *save_data = data;
08922a10 3626 size_t base_size;
9fccedf7 3627 int64_t base_offset = 0;
08922a10 3628
f664829e 3629 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
9eae7c52
TT
3630 if (!piece_end_p (new_data, end))
3631 return data;
3632 data = new_data;
3633
08922a10
SS
3634 b = block_for_pc (addr);
3635
3636 if (!b)
3637 error (_("No block found for address for symbol \"%s\"."),
3638 SYMBOL_PRINT_NAME (symbol));
3639
3640 framefunc = block_linkage_function (b);
3641
3642 if (!framefunc)
3643 error (_("No function found for block for symbol \"%s\"."),
3644 SYMBOL_PRINT_NAME (symbol));
3645
af945b75 3646 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
08922a10
SS
3647
3648 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3649 {
0d45f56e 3650 const gdb_byte *buf_end;
08922a10
SS
3651
3652 frame_reg = base_data[0] - DW_OP_breg0;
f664829e
DE
3653 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3654 &base_offset);
08922a10 3655 if (buf_end != base_data + base_size)
3e43a32a
MS
3656 error (_("Unexpected opcode after "
3657 "DW_OP_breg%u for symbol \"%s\"."),
08922a10
SS
3658 frame_reg, SYMBOL_PRINT_NAME (symbol));
3659 }
3660 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3661 {
3662 /* The frame base is just the register, with no offset. */
3663 frame_reg = base_data[0] - DW_OP_reg0;
3664 base_offset = 0;
3665 }
3666 else
3667 {
3668 /* We don't know what to do with the frame base expression,
3669 so we can't trace this variable; give up. */
7155d578 3670 return save_data;
08922a10
SS
3671 }
3672
3e43a32a
MS
3673 fprintf_filtered (stream,
3674 _("a variable at frame base reg $%s offset %s+%s"),
5e44ecb3 3675 locexpr_regname (gdbarch, frame_reg),
08922a10
SS
3676 plongest (base_offset), plongest (frame_offset));
3677 }
9eae7c52
TT
3678 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3679 && piece_end_p (data, end))
08922a10 3680 {
9fccedf7 3681 int64_t offset;
08922a10 3682
f664829e 3683 data = safe_read_sleb128 (data + 1, end, &offset);
08922a10 3684
4c2df51b 3685 fprintf_filtered (stream,
08922a10
SS
3686 _("a variable at offset %s from base reg $%s"),
3687 plongest (offset),
5e44ecb3 3688 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
4c2df51b
DJ
3689 }
3690
c3228f12
EZ
3691 /* The location expression for a TLS variable looks like this (on a
3692 64-bit LE machine):
3693
3694 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3695 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
09d8bd00 3696
c3228f12
EZ
3697 0x3 is the encoding for DW_OP_addr, which has an operand as long
3698 as the size of an address on the target machine (here is 8
09d8bd00
TT
3699 bytes). Note that more recent version of GCC emit DW_OP_const4u
3700 or DW_OP_const8u, depending on address size, rather than
0963b4bd
MS
3701 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3702 The operand represents the offset at which the variable is within
3703 the thread local storage. */
c3228f12 3704
9eae7c52 3705 else if (data + 1 + addr_size < end
09d8bd00
TT
3706 && (data[0] == DW_OP_addr
3707 || (addr_size == 4 && data[0] == DW_OP_const4u)
3708 || (addr_size == 8 && data[0] == DW_OP_const8u))
4aa4e28b
TT
3709 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3710 || data[1 + addr_size] == DW_OP_form_tls_address)
9eae7c52 3711 && piece_end_p (data + 2 + addr_size, end))
08922a10 3712 {
d4a087c7
UW
3713 ULONGEST offset;
3714 offset = extract_unsigned_integer (data + 1, addr_size,
3715 gdbarch_byte_order (gdbarch));
9a619af0 3716
08922a10 3717 fprintf_filtered (stream,
d4a087c7 3718 _("a thread-local variable at offset 0x%s "
08922a10 3719 "in the thread-local storage for `%s'"),
4262abfb 3720 phex_nz (offset, addr_size), objfile_name (objfile));
08922a10
SS
3721
3722 data += 1 + addr_size + 1;
3723 }
49f6c839
DE
3724
3725 /* With -gsplit-dwarf a TLS variable can also look like this:
3726 DW_AT_location : 3 byte block: fc 4 e0
3727 (DW_OP_GNU_const_index: 4;
3728 DW_OP_GNU_push_tls_address) */
3729 else if (data + 3 <= end
3730 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3731 && data[0] == DW_OP_GNU_const_index
3732 && leb128_size > 0
4aa4e28b
TT
3733 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3734 || data[1 + leb128_size] == DW_OP_form_tls_address)
49f6c839
DE
3735 && piece_end_p (data + 2 + leb128_size, end))
3736 {
a55c1f32 3737 uint64_t offset;
49f6c839
DE
3738
3739 data = safe_read_uleb128 (data + 1, end, &offset);
3740 offset = dwarf2_read_addr_index (per_cu, offset);
3741 fprintf_filtered (stream,
3742 _("a thread-local variable at offset 0x%s "
3743 "in the thread-local storage for `%s'"),
4262abfb 3744 phex_nz (offset, addr_size), objfile_name (objfile));
49f6c839
DE
3745 ++data;
3746 }
3747
9eae7c52
TT
3748 else if (data[0] >= DW_OP_lit0
3749 && data[0] <= DW_OP_lit31
3750 && data + 1 < end
3751 && data[1] == DW_OP_stack_value)
3752 {
3753 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3754 data += 2;
3755 }
3756
3757 return data;
3758}
3759
3760/* Disassemble an expression, stopping at the end of a piece or at the
3761 end of the expression. Returns a pointer to the next unread byte
3762 in the input expression. If ALL is nonzero, then this function
f664829e
DE
3763 will keep going until it reaches the end of the expression.
3764 If there is an error during reading, e.g. we run off the end
3765 of the buffer, an error is thrown. */
9eae7c52
TT
3766
3767static const gdb_byte *
3768disassemble_dwarf_expression (struct ui_file *stream,
3769 struct gdbarch *arch, unsigned int addr_size,
2bda9cc5 3770 int offset_size, const gdb_byte *start,
9eae7c52 3771 const gdb_byte *data, const gdb_byte *end,
2bda9cc5 3772 int indent, int all,
5e44ecb3 3773 struct dwarf2_per_cu_data *per_cu)
9eae7c52 3774{
9eae7c52
TT
3775 while (data < end
3776 && (all
3777 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3778 {
aead7601 3779 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
9fccedf7
DE
3780 uint64_t ul;
3781 int64_t l;
9eae7c52
TT
3782 const char *name;
3783
f39c6ffd 3784 name = get_DW_OP_name (op);
9eae7c52
TT
3785
3786 if (!name)
3787 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
06826322 3788 op, (long) (data - 1 - start));
2bda9cc5
JK
3789 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3790 (long) (data - 1 - start), name);
9eae7c52
TT
3791
3792 switch (op)
3793 {
3794 case DW_OP_addr:
d4a087c7
UW
3795 ul = extract_unsigned_integer (data, addr_size,
3796 gdbarch_byte_order (arch));
9eae7c52 3797 data += addr_size;
d4a087c7 3798 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
9eae7c52
TT
3799 break;
3800
3801 case DW_OP_const1u:
3802 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3803 data += 1;
3804 fprintf_filtered (stream, " %s", pulongest (ul));
3805 break;
3806 case DW_OP_const1s:
3807 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3808 data += 1;
3809 fprintf_filtered (stream, " %s", plongest (l));
3810 break;
3811 case DW_OP_const2u:
3812 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3813 data += 2;
3814 fprintf_filtered (stream, " %s", pulongest (ul));
3815 break;
3816 case DW_OP_const2s:
3817 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3818 data += 2;
3819 fprintf_filtered (stream, " %s", plongest (l));
3820 break;
3821 case DW_OP_const4u:
3822 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3823 data += 4;
3824 fprintf_filtered (stream, " %s", pulongest (ul));
3825 break;
3826 case DW_OP_const4s:
3827 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3828 data += 4;
3829 fprintf_filtered (stream, " %s", plongest (l));
3830 break;
3831 case DW_OP_const8u:
3832 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3833 data += 8;
3834 fprintf_filtered (stream, " %s", pulongest (ul));
3835 break;
3836 case DW_OP_const8s:
3837 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3838 data += 8;
3839 fprintf_filtered (stream, " %s", plongest (l));
3840 break;
3841 case DW_OP_constu:
f664829e 3842 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3843 fprintf_filtered (stream, " %s", pulongest (ul));
3844 break;
3845 case DW_OP_consts:
f664829e 3846 data = safe_read_sleb128 (data, end, &l);
9eae7c52
TT
3847 fprintf_filtered (stream, " %s", plongest (l));
3848 break;
3849
3850 case DW_OP_reg0:
3851 case DW_OP_reg1:
3852 case DW_OP_reg2:
3853 case DW_OP_reg3:
3854 case DW_OP_reg4:
3855 case DW_OP_reg5:
3856 case DW_OP_reg6:
3857 case DW_OP_reg7:
3858 case DW_OP_reg8:
3859 case DW_OP_reg9:
3860 case DW_OP_reg10:
3861 case DW_OP_reg11:
3862 case DW_OP_reg12:
3863 case DW_OP_reg13:
3864 case DW_OP_reg14:
3865 case DW_OP_reg15:
3866 case DW_OP_reg16:
3867 case DW_OP_reg17:
3868 case DW_OP_reg18:
3869 case DW_OP_reg19:
3870 case DW_OP_reg20:
3871 case DW_OP_reg21:
3872 case DW_OP_reg22:
3873 case DW_OP_reg23:
3874 case DW_OP_reg24:
3875 case DW_OP_reg25:
3876 case DW_OP_reg26:
3877 case DW_OP_reg27:
3878 case DW_OP_reg28:
3879 case DW_OP_reg29:
3880 case DW_OP_reg30:
3881 case DW_OP_reg31:
3882 fprintf_filtered (stream, " [$%s]",
5e44ecb3 3883 locexpr_regname (arch, op - DW_OP_reg0));
9eae7c52
TT
3884 break;
3885
3886 case DW_OP_regx:
f664829e 3887 data = safe_read_uleb128 (data, end, &ul);
9eae7c52 3888 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
5e44ecb3 3889 locexpr_regname (arch, (int) ul));
9eae7c52
TT
3890 break;
3891
3892 case DW_OP_implicit_value:
f664829e 3893 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3894 data += ul;
3895 fprintf_filtered (stream, " %s", pulongest (ul));
3896 break;
3897
3898 case DW_OP_breg0:
3899 case DW_OP_breg1:
3900 case DW_OP_breg2:
3901 case DW_OP_breg3:
3902 case DW_OP_breg4:
3903 case DW_OP_breg5:
3904 case DW_OP_breg6:
3905 case DW_OP_breg7:
3906 case DW_OP_breg8:
3907 case DW_OP_breg9:
3908 case DW_OP_breg10:
3909 case DW_OP_breg11:
3910 case DW_OP_breg12:
3911 case DW_OP_breg13:
3912 case DW_OP_breg14:
3913 case DW_OP_breg15:
3914 case DW_OP_breg16:
3915 case DW_OP_breg17:
3916 case DW_OP_breg18:
3917 case DW_OP_breg19:
3918 case DW_OP_breg20:
3919 case DW_OP_breg21:
3920 case DW_OP_breg22:
3921 case DW_OP_breg23:
3922 case DW_OP_breg24:
3923 case DW_OP_breg25:
3924 case DW_OP_breg26:
3925 case DW_OP_breg27:
3926 case DW_OP_breg28:
3927 case DW_OP_breg29:
3928 case DW_OP_breg30:
3929 case DW_OP_breg31:
f664829e 3930 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3931 fprintf_filtered (stream, " %s [$%s]", plongest (l),
5e44ecb3 3932 locexpr_regname (arch, op - DW_OP_breg0));
9eae7c52
TT
3933 break;
3934
3935 case DW_OP_bregx:
f664829e
DE
3936 data = safe_read_uleb128 (data, end, &ul);
3937 data = safe_read_sleb128 (data, end, &l);
0502ed8c
JK
3938 fprintf_filtered (stream, " register %s [$%s] offset %s",
3939 pulongest (ul),
5e44ecb3 3940 locexpr_regname (arch, (int) ul),
0502ed8c 3941 plongest (l));
9eae7c52
TT
3942 break;
3943
3944 case DW_OP_fbreg:
f664829e 3945 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3946 fprintf_filtered (stream, " %s", plongest (l));
9eae7c52
TT
3947 break;
3948
3949 case DW_OP_xderef_size:
3950 case DW_OP_deref_size:
3951 case DW_OP_pick:
3952 fprintf_filtered (stream, " %d", *data);
3953 ++data;
3954 break;
3955
3956 case DW_OP_plus_uconst:
f664829e 3957 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3958 fprintf_filtered (stream, " %s", pulongest (ul));
3959 break;
3960
3961 case DW_OP_skip:
3962 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3963 data += 2;
3964 fprintf_filtered (stream, " to %ld",
3965 (long) (data + l - start));
3966 break;
3967
3968 case DW_OP_bra:
3969 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3970 data += 2;
3971 fprintf_filtered (stream, " %ld",
3972 (long) (data + l - start));
3973 break;
3974
3975 case DW_OP_call2:
3976 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3977 data += 2;
3978 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3979 break;
3980
3981 case DW_OP_call4:
3982 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3983 data += 4;
3984 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3985 break;
3986
3987 case DW_OP_call_ref:
3988 ul = extract_unsigned_integer (data, offset_size,
3989 gdbarch_byte_order (arch));
3990 data += offset_size;
3991 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3992 break;
3993
3994 case DW_OP_piece:
f664829e 3995 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3996 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3997 break;
3998
3999 case DW_OP_bit_piece:
4000 {
9fccedf7 4001 uint64_t offset;
9eae7c52 4002
f664829e
DE
4003 data = safe_read_uleb128 (data, end, &ul);
4004 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4005 fprintf_filtered (stream, " size %s offset %s (bits)",
4006 pulongest (ul), pulongest (offset));
4007 }
4008 break;
8cf6f0b1 4009
216f72a1 4010 case DW_OP_implicit_pointer:
8cf6f0b1
TT
4011 case DW_OP_GNU_implicit_pointer:
4012 {
4013 ul = extract_unsigned_integer (data, offset_size,
4014 gdbarch_byte_order (arch));
4015 data += offset_size;
4016
f664829e 4017 data = safe_read_sleb128 (data, end, &l);
8cf6f0b1
TT
4018
4019 fprintf_filtered (stream, " DIE %s offset %s",
4020 phex_nz (ul, offset_size),
4021 plongest (l));
4022 }
4023 break;
5e44ecb3 4024
216f72a1 4025 case DW_OP_deref_type:
5e44ecb3
TT
4026 case DW_OP_GNU_deref_type:
4027 {
b926417a 4028 int deref_addr_size = *data++;
5e44ecb3
TT
4029 struct type *type;
4030
f664829e 4031 data = safe_read_uleb128 (data, end, &ul);
9c541725 4032 cu_offset offset = (cu_offset) ul;
5e44ecb3
TT
4033 type = dwarf2_get_die_type (offset, per_cu);
4034 fprintf_filtered (stream, "<");
4035 type_print (type, "", stream, -1);
9c541725
PA
4036 fprintf_filtered (stream, " [0x%s]> %d",
4037 phex_nz (to_underlying (offset), 0),
b926417a 4038 deref_addr_size);
5e44ecb3
TT
4039 }
4040 break;
4041
216f72a1 4042 case DW_OP_const_type:
5e44ecb3
TT
4043 case DW_OP_GNU_const_type:
4044 {
5e44ecb3
TT
4045 struct type *type;
4046
f664829e 4047 data = safe_read_uleb128 (data, end, &ul);
9c541725 4048 cu_offset type_die = (cu_offset) ul;
5e44ecb3
TT
4049 type = dwarf2_get_die_type (type_die, per_cu);
4050 fprintf_filtered (stream, "<");
4051 type_print (type, "", stream, -1);
9c541725
PA
4052 fprintf_filtered (stream, " [0x%s]>",
4053 phex_nz (to_underlying (type_die), 0));
5e44ecb3
TT
4054 }
4055 break;
4056
216f72a1 4057 case DW_OP_regval_type:
5e44ecb3
TT
4058 case DW_OP_GNU_regval_type:
4059 {
9fccedf7 4060 uint64_t reg;
5e44ecb3
TT
4061 struct type *type;
4062
f664829e
DE
4063 data = safe_read_uleb128 (data, end, &reg);
4064 data = safe_read_uleb128 (data, end, &ul);
9c541725 4065 cu_offset type_die = (cu_offset) ul;
5e44ecb3
TT
4066
4067 type = dwarf2_get_die_type (type_die, per_cu);
4068 fprintf_filtered (stream, "<");
4069 type_print (type, "", stream, -1);
b64f50a1 4070 fprintf_filtered (stream, " [0x%s]> [$%s]",
9c541725 4071 phex_nz (to_underlying (type_die), 0),
5e44ecb3
TT
4072 locexpr_regname (arch, reg));
4073 }
4074 break;
4075
216f72a1 4076 case DW_OP_convert:
5e44ecb3 4077 case DW_OP_GNU_convert:
216f72a1 4078 case DW_OP_reinterpret:
5e44ecb3
TT
4079 case DW_OP_GNU_reinterpret:
4080 {
f664829e 4081 data = safe_read_uleb128 (data, end, &ul);
9c541725 4082 cu_offset type_die = (cu_offset) ul;
5e44ecb3 4083
9c541725 4084 if (to_underlying (type_die) == 0)
5e44ecb3
TT
4085 fprintf_filtered (stream, "<0>");
4086 else
4087 {
4088 struct type *type;
4089
4090 type = dwarf2_get_die_type (type_die, per_cu);
4091 fprintf_filtered (stream, "<");
4092 type_print (type, "", stream, -1);
9c541725
PA
4093 fprintf_filtered (stream, " [0x%s]>",
4094 phex_nz (to_underlying (type_die), 0));
5e44ecb3
TT
4095 }
4096 }
4097 break;
2bda9cc5 4098
216f72a1 4099 case DW_OP_entry_value:
2bda9cc5 4100 case DW_OP_GNU_entry_value:
f664829e 4101 data = safe_read_uleb128 (data, end, &ul);
2bda9cc5
JK
4102 fputc_filtered ('\n', stream);
4103 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4104 start, data, data + ul, indent + 2,
4105 all, per_cu);
4106 data += ul;
4107 continue;
49f6c839 4108
a24f71ab
JK
4109 case DW_OP_GNU_parameter_ref:
4110 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4111 data += 4;
4112 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4113 break;
4114
336d760d 4115 case DW_OP_addrx:
49f6c839
DE
4116 case DW_OP_GNU_addr_index:
4117 data = safe_read_uleb128 (data, end, &ul);
4118 ul = dwarf2_read_addr_index (per_cu, ul);
4119 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4120 break;
4121 case DW_OP_GNU_const_index:
4122 data = safe_read_uleb128 (data, end, &ul);
4123 ul = dwarf2_read_addr_index (per_cu, ul);
4124 fprintf_filtered (stream, " %s", pulongest (ul));
4125 break;
a6b786da
KB
4126
4127 case DW_OP_GNU_variable_value:
4128 ul = extract_unsigned_integer (data, offset_size,
4129 gdbarch_byte_order (arch));
4130 data += offset_size;
4131 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4132 break;
9eae7c52
TT
4133 }
4134
4135 fprintf_filtered (stream, "\n");
4136 }
c3228f12 4137
08922a10 4138 return data;
4c2df51b
DJ
4139}
4140
08922a10
SS
4141/* Describe a single location, which may in turn consist of multiple
4142 pieces. */
a55cc764 4143
08922a10
SS
4144static void
4145locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
0d45f56e 4146 struct ui_file *stream,
56eb65bd 4147 const gdb_byte *data, size_t size,
9eae7c52 4148 struct objfile *objfile, unsigned int addr_size,
5e44ecb3 4149 int offset_size, struct dwarf2_per_cu_data *per_cu)
08922a10 4150{
0d45f56e 4151 const gdb_byte *end = data + size;
9eae7c52 4152 int first_piece = 1, bad = 0;
08922a10 4153
08922a10
SS
4154 while (data < end)
4155 {
9eae7c52
TT
4156 const gdb_byte *here = data;
4157 int disassemble = 1;
4158
4159 if (first_piece)
4160 first_piece = 0;
4161 else
4162 fprintf_filtered (stream, _(", and "));
08922a10 4163
b4f54984 4164 if (!dwarf_always_disassemble)
9eae7c52 4165 {
3e43a32a 4166 data = locexpr_describe_location_piece (symbol, stream,
49f6c839 4167 addr, objfile, per_cu,
9eae7c52
TT
4168 data, end, addr_size);
4169 /* If we printed anything, or if we have an empty piece,
4170 then don't disassemble. */
4171 if (data != here
4172 || data[0] == DW_OP_piece
4173 || data[0] == DW_OP_bit_piece)
4174 disassemble = 0;
08922a10 4175 }
9eae7c52 4176 if (disassemble)
2bda9cc5
JK
4177 {
4178 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4179 data = disassemble_dwarf_expression (stream,
4180 get_objfile_arch (objfile),
4181 addr_size, offset_size, data,
4182 data, end, 0,
b4f54984 4183 dwarf_always_disassemble,
2bda9cc5
JK
4184 per_cu);
4185 }
9eae7c52
TT
4186
4187 if (data < end)
08922a10 4188 {
9eae7c52 4189 int empty = data == here;
08922a10 4190
9eae7c52
TT
4191 if (disassemble)
4192 fprintf_filtered (stream, " ");
4193 if (data[0] == DW_OP_piece)
4194 {
9fccedf7 4195 uint64_t bytes;
08922a10 4196
f664829e 4197 data = safe_read_uleb128 (data + 1, end, &bytes);
08922a10 4198
9eae7c52
TT
4199 if (empty)
4200 fprintf_filtered (stream, _("an empty %s-byte piece"),
4201 pulongest (bytes));
4202 else
4203 fprintf_filtered (stream, _(" [%s-byte piece]"),
4204 pulongest (bytes));
4205 }
4206 else if (data[0] == DW_OP_bit_piece)
4207 {
9fccedf7 4208 uint64_t bits, offset;
9eae7c52 4209
f664829e
DE
4210 data = safe_read_uleb128 (data + 1, end, &bits);
4211 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4212
4213 if (empty)
4214 fprintf_filtered (stream,
4215 _("an empty %s-bit piece"),
4216 pulongest (bits));
4217 else
4218 fprintf_filtered (stream,
4219 _(" [%s-bit piece, offset %s bits]"),
4220 pulongest (bits), pulongest (offset));
4221 }
4222 else
4223 {
4224 bad = 1;
4225 break;
4226 }
08922a10
SS
4227 }
4228 }
4229
4230 if (bad || data > end)
4231 error (_("Corrupted DWARF2 expression for \"%s\"."),
4232 SYMBOL_PRINT_NAME (symbol));
4233}
4234
4235/* Print a natural-language description of SYMBOL to STREAM. This
4236 version is for a symbol with a single location. */
a55cc764 4237
08922a10
SS
4238static void
4239locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4240 struct ui_file *stream)
4241{
9a3c8263
SM
4242 struct dwarf2_locexpr_baton *dlbaton
4243 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
08922a10
SS
4244 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4245 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4246 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
08922a10 4247
3e43a32a
MS
4248 locexpr_describe_location_1 (symbol, addr, stream,
4249 dlbaton->data, dlbaton->size,
5e44ecb3
TT
4250 objfile, addr_size, offset_size,
4251 dlbaton->per_cu);
08922a10
SS
4252}
4253
4254/* Describe the location of SYMBOL as an agent value in VALUE, generating
4255 any necessary bytecode in AX. */
a55cc764 4256
0d53c4c4 4257static void
40f4af28
SM
4258locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4259 struct axs_value *value)
a55cc764 4260{
9a3c8263
SM
4261 struct dwarf2_locexpr_baton *dlbaton
4262 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3cf03773 4263 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
a55cc764 4264
1d6edc3c 4265 if (dlbaton->size == 0)
cabe9ab6
PA
4266 value->optimized_out = 1;
4267 else
40f4af28
SM
4268 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4269 dlbaton->data + dlbaton->size, dlbaton->per_cu);
a55cc764
DJ
4270}
4271
bb2ec1b3
TT
4272/* symbol_computed_ops 'generate_c_location' method. */
4273
4274static void
d82b3862 4275locexpr_generate_c_location (struct symbol *sym, string_file *stream,
bb2ec1b3
TT
4276 struct gdbarch *gdbarch,
4277 unsigned char *registers_used,
4278 CORE_ADDR pc, const char *result_name)
4279{
9a3c8263
SM
4280 struct dwarf2_locexpr_baton *dlbaton
4281 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
bb2ec1b3
TT
4282 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4283
4284 if (dlbaton->size == 0)
4285 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4286
4287 compile_dwarf_expr_to_c (stream, result_name,
4288 sym, pc, gdbarch, registers_used, addr_size,
4289 dlbaton->data, dlbaton->data + dlbaton->size,
4290 dlbaton->per_cu);
4291}
4292
4c2df51b
DJ
4293/* The set of location functions used with the DWARF-2 expression
4294 evaluator. */
768a979c 4295const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4c2df51b 4296 locexpr_read_variable,
e18b2753 4297 locexpr_read_variable_at_entry,
0b31a4bc 4298 locexpr_get_symbol_read_needs,
4c2df51b 4299 locexpr_describe_location,
f1e6e072 4300 0, /* location_has_loclist */
bb2ec1b3
TT
4301 locexpr_tracepoint_var_ref,
4302 locexpr_generate_c_location
4c2df51b 4303};
0d53c4c4
DJ
4304
4305
4306/* Wrapper functions for location lists. These generally find
4307 the appropriate location expression and call something above. */
4308
4309/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4310 evaluator to calculate the location. */
4311static struct value *
4312loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4313{
9a3c8263
SM
4314 struct dwarf2_loclist_baton *dlbaton
4315 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
0d53c4c4 4316 struct value *val;
947bb88f 4317 const gdb_byte *data;
b6b08ebf 4318 size_t size;
8cf6f0b1 4319 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
0d53c4c4 4320
8cf6f0b1 4321 data = dwarf2_find_location_expression (dlbaton, &size, pc);
1d6edc3c
JK
4322 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4323 dlbaton->per_cu);
0d53c4c4
DJ
4324
4325 return val;
4326}
4327
e18b2753
JK
4328/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4329 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4330 will be thrown.
4331
4332 Function always returns non-NULL value, it may be marked optimized out if
4333 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4334 if it cannot resolve the parameter for any reason. */
4335
4336static struct value *
4337loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4338{
9a3c8263
SM
4339 struct dwarf2_loclist_baton *dlbaton
4340 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
4341 const gdb_byte *data;
4342 size_t size;
4343 CORE_ADDR pc;
4344
4345 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4346 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4347
4348 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4349 if (data == NULL)
4350 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4351
4352 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4353}
4354
0b31a4bc
TT
4355/* Implementation of get_symbol_read_needs from
4356 symbol_computed_ops. */
4357
4358static enum symbol_needs_kind
4359loclist_symbol_needs (struct symbol *symbol)
0d53c4c4
DJ
4360{
4361 /* If there's a location list, then assume we need to have a frame
4362 to choose the appropriate location expression. With tracking of
4363 global variables this is not necessarily true, but such tracking
4364 is disabled in GCC at the moment until we figure out how to
4365 represent it. */
4366
0b31a4bc 4367 return SYMBOL_NEEDS_FRAME;
0d53c4c4
DJ
4368}
4369
08922a10
SS
4370/* Print a natural-language description of SYMBOL to STREAM. This
4371 version applies when there is a list of different locations, each
4372 with a specified address range. */
4373
4374static void
4375loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4376 struct ui_file *stream)
0d53c4c4 4377{
9a3c8263
SM
4378 struct dwarf2_loclist_baton *dlbaton
4379 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4380 const gdb_byte *loc_ptr, *buf_end;
08922a10
SS
4381 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4382 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4383 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4384 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4385 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
d4a087c7 4386 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
08922a10 4387 /* Adjust base_address for relocatable objects. */
9aa1f1e3 4388 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
08922a10 4389 CORE_ADDR base_address = dlbaton->base_address + base_offset;
f664829e 4390 int done = 0;
08922a10
SS
4391
4392 loc_ptr = dlbaton->data;
4393 buf_end = dlbaton->data + dlbaton->size;
4394
9eae7c52 4395 fprintf_filtered (stream, _("multi-location:\n"));
08922a10
SS
4396
4397 /* Iterate through locations until we run out. */
f664829e 4398 while (!done)
08922a10 4399 {
f664829e
DE
4400 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4401 int length;
4402 enum debug_loc_kind kind;
4403 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4404
4405 if (dlbaton->from_dwo)
4406 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4407 loc_ptr, buf_end, &new_ptr,
3771a44c 4408 &low, &high, byte_order);
d4a087c7 4409 else
f664829e
DE
4410 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4411 &low, &high,
4412 byte_order, addr_size,
4413 signed_addr_p);
4414 loc_ptr = new_ptr;
4415 switch (kind)
08922a10 4416 {
f664829e
DE
4417 case DEBUG_LOC_END_OF_LIST:
4418 done = 1;
4419 continue;
4420 case DEBUG_LOC_BASE_ADDRESS:
d4a087c7 4421 base_address = high + base_offset;
9eae7c52 4422 fprintf_filtered (stream, _(" Base address %s"),
08922a10 4423 paddress (gdbarch, base_address));
08922a10 4424 continue;
3771a44c
DE
4425 case DEBUG_LOC_START_END:
4426 case DEBUG_LOC_START_LENGTH:
f664829e
DE
4427 break;
4428 case DEBUG_LOC_BUFFER_OVERFLOW:
4429 case DEBUG_LOC_INVALID_ENTRY:
4430 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4431 SYMBOL_PRINT_NAME (symbol));
4432 default:
4433 gdb_assert_not_reached ("bad debug_loc_kind");
08922a10
SS
4434 }
4435
08922a10
SS
4436 /* Otherwise, a location expression entry. */
4437 low += base_address;
4438 high += base_address;
4439
3e29f34a
MR
4440 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4441 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4442
08922a10
SS
4443 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4444 loc_ptr += 2;
4445
08922a10
SS
4446 /* (It would improve readability to print only the minimum
4447 necessary digits of the second number of the range.) */
9eae7c52 4448 fprintf_filtered (stream, _(" Range %s-%s: "),
08922a10
SS
4449 paddress (gdbarch, low), paddress (gdbarch, high));
4450
4451 /* Now describe this particular location. */
4452 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
5e44ecb3
TT
4453 objfile, addr_size, offset_size,
4454 dlbaton->per_cu);
9eae7c52
TT
4455
4456 fprintf_filtered (stream, "\n");
08922a10
SS
4457
4458 loc_ptr += length;
4459 }
0d53c4c4
DJ
4460}
4461
4462/* Describe the location of SYMBOL as an agent value in VALUE, generating
4463 any necessary bytecode in AX. */
4464static void
40f4af28
SM
4465loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4466 struct axs_value *value)
0d53c4c4 4467{
9a3c8263
SM
4468 struct dwarf2_loclist_baton *dlbaton
4469 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4470 const gdb_byte *data;
b6b08ebf 4471 size_t size;
3cf03773 4472 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
0d53c4c4 4473
8cf6f0b1 4474 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
1d6edc3c 4475 if (size == 0)
cabe9ab6
PA
4476 value->optimized_out = 1;
4477 else
40f4af28 4478 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
9f6f94ff 4479 dlbaton->per_cu);
0d53c4c4
DJ
4480}
4481
bb2ec1b3
TT
4482/* symbol_computed_ops 'generate_c_location' method. */
4483
4484static void
d82b3862 4485loclist_generate_c_location (struct symbol *sym, string_file *stream,
bb2ec1b3
TT
4486 struct gdbarch *gdbarch,
4487 unsigned char *registers_used,
4488 CORE_ADDR pc, const char *result_name)
4489{
9a3c8263
SM
4490 struct dwarf2_loclist_baton *dlbaton
4491 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
bb2ec1b3
TT
4492 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4493 const gdb_byte *data;
4494 size_t size;
4495
4496 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4497 if (size == 0)
4498 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4499
4500 compile_dwarf_expr_to_c (stream, result_name,
4501 sym, pc, gdbarch, registers_used, addr_size,
4502 data, data + size,
4503 dlbaton->per_cu);
4504}
4505
0d53c4c4
DJ
4506/* The set of location functions used with the DWARF-2 expression
4507 evaluator and location lists. */
768a979c 4508const struct symbol_computed_ops dwarf2_loclist_funcs = {
0d53c4c4 4509 loclist_read_variable,
e18b2753 4510 loclist_read_variable_at_entry,
0b31a4bc 4511 loclist_symbol_needs,
0d53c4c4 4512 loclist_describe_location,
f1e6e072 4513 1, /* location_has_loclist */
bb2ec1b3
TT
4514 loclist_tracepoint_var_ref,
4515 loclist_generate_c_location
0d53c4c4 4516};
8e3b41a9
JK
4517
4518void
4519_initialize_dwarf2loc (void)
4520{
ccce17b0
YQ
4521 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4522 &entry_values_debug,
4523 _("Set entry values and tail call frames "
4524 "debugging."),
4525 _("Show entry values and tail call frames "
4526 "debugging."),
4527 _("When non-zero, the process of determining "
4528 "parameter values from function entry point "
4529 "and tail call frames will be printed."),
4530 NULL,
4531 show_entry_values_debug,
4532 &setdebuglist, &showdebuglist);
8e3b41a9 4533}
This page took 1.948752 seconds and 4 git commands to generate.