* lib/ld-lib.exp (check_shared_lib_support): Match cris*-*-elf as
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
28e7fd62 3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd
TT
58#include "exceptions.h"
59#include "gdb_stat.h"
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
4c2df51b 72
c906108c
SS
73#include <fcntl.h>
74#include "gdb_string.h"
4bdf3d34 75#include "gdb_assert.h"
c906108c 76#include <sys/types.h>
d8151005 77
34eaf542
TT
78typedef struct symbol *symbolp;
79DEF_VEC_P (symbolp);
80
45cfd468
DE
81/* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83static int dwarf2_read_debug = 0;
84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
ccce17b0 86static unsigned int dwarf2_die_debug = 0;
d97bc12b 87
900e11f9
JK
88/* When non-zero, cross-check physname against demangler. */
89static int check_physname = 0;
90
481860b3 91/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 92static int use_deprecated_index_sections = 0;
481860b3 93
6502dd73
DJ
94static const struct objfile_data *dwarf2_objfile_data_key;
95
f1e6e072
TT
96/* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98static int dwarf2_locexpr_index;
99static int dwarf2_loclist_index;
100static int dwarf2_locexpr_block_index;
101static int dwarf2_loclist_block_index;
102
dce234bc
PP
103struct dwarf2_section_info
104{
105 asection *asection;
d521ce57 106 const gdb_byte *buffer;
dce234bc 107 bfd_size_type size;
be391dca
TT
108 /* True if we have tried to read this section. */
109 int readin;
dce234bc
PP
110};
111
8b70b953
TT
112typedef struct dwarf2_section_info dwarf2_section_info_def;
113DEF_VEC_O (dwarf2_section_info_def);
114
9291a0cd
TT
115/* All offsets in the index are of this type. It must be
116 architecture-independent. */
117typedef uint32_t offset_type;
118
119DEF_VEC_I (offset_type);
120
156942c7
DE
121/* Ensure only legit values are used. */
122#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128/* Ensure only legit values are used. */
129#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136/* Ensure we don't use more than the alloted nuber of bits for the CU. */
137#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
9291a0cd
TT
143/* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145struct mapped_index
146{
559a7a62
JK
147 /* Index data format version. */
148 int version;
149
9291a0cd
TT
150 /* The total length of the buffer. */
151 off_t total_size;
b11b1f88 152
9291a0cd
TT
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
b11b1f88 155
9291a0cd
TT
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
b11b1f88 158
3876f04e
DE
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
b11b1f88 161
9291a0cd 162 /* Size in slots, each slot is 2 offset_types. */
3876f04e 163 offset_type symbol_table_slots;
b11b1f88 164
9291a0cd
TT
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167};
168
95554aad
TT
169typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170DEF_VEC_P (dwarf2_per_cu_ptr);
171
9cdd5dbd
DE
172/* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
6502dd73
DJ
175struct dwarf2_per_objfile
176{
dce234bc
PP
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
dce234bc
PP
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
cf2c3c16 182 struct dwarf2_section_info macro;
dce234bc
PP
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
3019eac3 185 struct dwarf2_section_info addr;
dce234bc
PP
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
9291a0cd 188 struct dwarf2_section_info gdb_index;
ae038cb0 189
8b70b953
TT
190 VEC (dwarf2_section_info_def) *types;
191
be391dca
TT
192 /* Back link. */
193 struct objfile *objfile;
194
d467dd73 195 /* Table of all the compilation units. This is used to locate
10b3939b 196 the target compilation unit of a particular reference. */
ae038cb0
DJ
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
1fd400ff 202 /* The number of .debug_types-related CUs. */
d467dd73 203 int n_type_units;
1fd400ff 204
d467dd73 205 /* The .debug_types-related CUs (TUs). */
b4dd5633 206 struct signatured_type **all_type_units;
1fd400ff 207
f4dc4d17
DE
208 /* The number of entries in all_type_unit_groups. */
209 int n_type_unit_groups;
210
211 /* Table of type unit groups.
212 This exists to make it easy to iterate over all CUs and TU groups. */
213 struct type_unit_group **all_type_unit_groups;
214
215 /* Table of struct type_unit_group objects.
216 The hash key is the DW_AT_stmt_list value. */
217 htab_t type_unit_groups;
72dca2f5 218
348e048f
DE
219 /* A table mapping .debug_types signatures to its signatured_type entry.
220 This is NULL if the .debug_types section hasn't been read in yet. */
221 htab_t signatured_types;
222
f4dc4d17
DE
223 /* Type unit statistics, to see how well the scaling improvements
224 are doing. */
225 struct tu_stats
226 {
227 int nr_uniq_abbrev_tables;
228 int nr_symtabs;
229 int nr_symtab_sharers;
230 int nr_stmt_less_type_units;
231 } tu_stats;
232
233 /* A chain of compilation units that are currently read in, so that
234 they can be freed later. */
235 struct dwarf2_per_cu_data *read_in_chain;
236
3019eac3
DE
237 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
238 This is NULL if the table hasn't been allocated yet. */
239 htab_t dwo_files;
240
80626a55
DE
241 /* Non-zero if we've check for whether there is a DWP file. */
242 int dwp_checked;
243
244 /* The DWP file if there is one, or NULL. */
245 struct dwp_file *dwp_file;
246
36586728
TT
247 /* The shared '.dwz' file, if one exists. This is used when the
248 original data was compressed using 'dwz -m'. */
249 struct dwz_file *dwz_file;
250
72dca2f5
FR
251 /* A flag indicating wether this objfile has a section loaded at a
252 VMA of 0. */
253 int has_section_at_zero;
9291a0cd 254
ae2de4f8
DE
255 /* True if we are using the mapped index,
256 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
257 unsigned char using_index;
258
ae2de4f8 259 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 260 struct mapped_index *index_table;
98bfdba5 261
7b9f3c50 262 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
263 TUs typically share line table entries with a CU, so we maintain a
264 separate table of all line table entries to support the sharing.
265 Note that while there can be way more TUs than CUs, we've already
266 sorted all the TUs into "type unit groups", grouped by their
267 DW_AT_stmt_list value. Therefore the only sharing done here is with a
268 CU and its associated TU group if there is one. */
7b9f3c50
DE
269 htab_t quick_file_names_table;
270
98bfdba5
PA
271 /* Set during partial symbol reading, to prevent queueing of full
272 symbols. */
273 int reading_partial_symbols;
673bfd45 274
dee91e82 275 /* Table mapping type DIEs to their struct type *.
673bfd45 276 This is NULL if not allocated yet.
02142a6c 277 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 278 htab_t die_type_hash;
95554aad
TT
279
280 /* The CUs we recently read. */
281 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
282};
283
284static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 285
251d32d9 286/* Default names of the debugging sections. */
c906108c 287
233a11ab
CS
288/* Note that if the debugging section has been compressed, it might
289 have a name like .zdebug_info. */
290
9cdd5dbd
DE
291static const struct dwarf2_debug_sections dwarf2_elf_names =
292{
251d32d9
TG
293 { ".debug_info", ".zdebug_info" },
294 { ".debug_abbrev", ".zdebug_abbrev" },
295 { ".debug_line", ".zdebug_line" },
296 { ".debug_loc", ".zdebug_loc" },
297 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 298 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
299 { ".debug_str", ".zdebug_str" },
300 { ".debug_ranges", ".zdebug_ranges" },
301 { ".debug_types", ".zdebug_types" },
3019eac3 302 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
303 { ".debug_frame", ".zdebug_frame" },
304 { ".eh_frame", NULL },
24d3216f
TT
305 { ".gdb_index", ".zgdb_index" },
306 23
251d32d9 307};
c906108c 308
80626a55 309/* List of DWO/DWP sections. */
3019eac3 310
80626a55 311static const struct dwop_section_names
3019eac3
DE
312{
313 struct dwarf2_section_names abbrev_dwo;
314 struct dwarf2_section_names info_dwo;
315 struct dwarf2_section_names line_dwo;
316 struct dwarf2_section_names loc_dwo;
09262596
DE
317 struct dwarf2_section_names macinfo_dwo;
318 struct dwarf2_section_names macro_dwo;
3019eac3
DE
319 struct dwarf2_section_names str_dwo;
320 struct dwarf2_section_names str_offsets_dwo;
321 struct dwarf2_section_names types_dwo;
80626a55
DE
322 struct dwarf2_section_names cu_index;
323 struct dwarf2_section_names tu_index;
3019eac3 324}
80626a55 325dwop_section_names =
3019eac3
DE
326{
327 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
328 { ".debug_info.dwo", ".zdebug_info.dwo" },
329 { ".debug_line.dwo", ".zdebug_line.dwo" },
330 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
331 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
332 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
333 { ".debug_str.dwo", ".zdebug_str.dwo" },
334 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
335 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
336 { ".debug_cu_index", ".zdebug_cu_index" },
337 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
338};
339
c906108c
SS
340/* local data types */
341
107d2387
AC
342/* The data in a compilation unit header, after target2host
343 translation, looks like this. */
c906108c 344struct comp_unit_head
a738430d 345{
c764a876 346 unsigned int length;
a738430d 347 short version;
a738430d
MK
348 unsigned char addr_size;
349 unsigned char signed_addr_p;
b64f50a1 350 sect_offset abbrev_offset;
57349743 351
a738430d
MK
352 /* Size of file offsets; either 4 or 8. */
353 unsigned int offset_size;
57349743 354
a738430d
MK
355 /* Size of the length field; either 4 or 12. */
356 unsigned int initial_length_size;
57349743 357
a738430d
MK
358 /* Offset to the first byte of this compilation unit header in the
359 .debug_info section, for resolving relative reference dies. */
b64f50a1 360 sect_offset offset;
57349743 361
d00adf39
DE
362 /* Offset to first die in this cu from the start of the cu.
363 This will be the first byte following the compilation unit header. */
b64f50a1 364 cu_offset first_die_offset;
a738430d 365};
c906108c 366
3da10d80
KS
367/* Type used for delaying computation of method physnames.
368 See comments for compute_delayed_physnames. */
369struct delayed_method_info
370{
371 /* The type to which the method is attached, i.e., its parent class. */
372 struct type *type;
373
374 /* The index of the method in the type's function fieldlists. */
375 int fnfield_index;
376
377 /* The index of the method in the fieldlist. */
378 int index;
379
380 /* The name of the DIE. */
381 const char *name;
382
383 /* The DIE associated with this method. */
384 struct die_info *die;
385};
386
387typedef struct delayed_method_info delayed_method_info;
388DEF_VEC_O (delayed_method_info);
389
e7c27a73
DJ
390/* Internal state when decoding a particular compilation unit. */
391struct dwarf2_cu
392{
393 /* The objfile containing this compilation unit. */
394 struct objfile *objfile;
395
d00adf39 396 /* The header of the compilation unit. */
e7c27a73 397 struct comp_unit_head header;
e142c38c 398
d00adf39
DE
399 /* Base address of this compilation unit. */
400 CORE_ADDR base_address;
401
402 /* Non-zero if base_address has been set. */
403 int base_known;
404
e142c38c
DJ
405 /* The language we are debugging. */
406 enum language language;
407 const struct language_defn *language_defn;
408
b0f35d58
DL
409 const char *producer;
410
e142c38c
DJ
411 /* The generic symbol table building routines have separate lists for
412 file scope symbols and all all other scopes (local scopes). So
413 we need to select the right one to pass to add_symbol_to_list().
414 We do it by keeping a pointer to the correct list in list_in_scope.
415
416 FIXME: The original dwarf code just treated the file scope as the
417 first local scope, and all other local scopes as nested local
418 scopes, and worked fine. Check to see if we really need to
419 distinguish these in buildsym.c. */
420 struct pending **list_in_scope;
421
433df2d4
DE
422 /* The abbrev table for this CU.
423 Normally this points to the abbrev table in the objfile.
424 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
425 struct abbrev_table *abbrev_table;
72bf9492 426
b64f50a1
JK
427 /* Hash table holding all the loaded partial DIEs
428 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
429 htab_t partial_dies;
430
431 /* Storage for things with the same lifetime as this read-in compilation
432 unit, including partial DIEs. */
433 struct obstack comp_unit_obstack;
434
ae038cb0
DJ
435 /* When multiple dwarf2_cu structures are living in memory, this field
436 chains them all together, so that they can be released efficiently.
437 We will probably also want a generation counter so that most-recently-used
438 compilation units are cached... */
439 struct dwarf2_per_cu_data *read_in_chain;
440
441 /* Backchain to our per_cu entry if the tree has been built. */
442 struct dwarf2_per_cu_data *per_cu;
443
444 /* How many compilation units ago was this CU last referenced? */
445 int last_used;
446
b64f50a1
JK
447 /* A hash table of DIE cu_offset for following references with
448 die_info->offset.sect_off as hash. */
51545339 449 htab_t die_hash;
10b3939b
DJ
450
451 /* Full DIEs if read in. */
452 struct die_info *dies;
453
454 /* A set of pointers to dwarf2_per_cu_data objects for compilation
455 units referenced by this one. Only set during full symbol processing;
456 partial symbol tables do not have dependencies. */
457 htab_t dependencies;
458
cb1df416
DJ
459 /* Header data from the line table, during full symbol processing. */
460 struct line_header *line_header;
461
3da10d80
KS
462 /* A list of methods which need to have physnames computed
463 after all type information has been read. */
464 VEC (delayed_method_info) *method_list;
465
96408a79
SA
466 /* To be copied to symtab->call_site_htab. */
467 htab_t call_site_htab;
468
034e5797
DE
469 /* Non-NULL if this CU came from a DWO file.
470 There is an invariant here that is important to remember:
471 Except for attributes copied from the top level DIE in the "main"
472 (or "stub") file in preparation for reading the DWO file
473 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
474 Either there isn't a DWO file (in which case this is NULL and the point
475 is moot), or there is and either we're not going to read it (in which
476 case this is NULL) or there is and we are reading it (in which case this
477 is non-NULL). */
3019eac3
DE
478 struct dwo_unit *dwo_unit;
479
480 /* The DW_AT_addr_base attribute if present, zero otherwise
481 (zero is a valid value though).
482 Note this value comes from the stub CU/TU's DIE. */
483 ULONGEST addr_base;
484
2e3cf129
DE
485 /* The DW_AT_ranges_base attribute if present, zero otherwise
486 (zero is a valid value though).
487 Note this value comes from the stub CU/TU's DIE.
488 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
489 be used without needing to know whether DWO files are in use or not.
490 N.B. This does not apply to DW_AT_ranges appearing in
491 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
492 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
493 DW_AT_ranges_base *would* have to be applied, and we'd have to care
494 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
495 ULONGEST ranges_base;
496
ae038cb0
DJ
497 /* Mark used when releasing cached dies. */
498 unsigned int mark : 1;
499
8be455d7
JK
500 /* This CU references .debug_loc. See the symtab->locations_valid field.
501 This test is imperfect as there may exist optimized debug code not using
502 any location list and still facing inlining issues if handled as
503 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 504 unsigned int has_loclist : 1;
ba919b58 505
1b80a9fa
JK
506 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
507 if all the producer_is_* fields are valid. This information is cached
508 because profiling CU expansion showed excessive time spent in
509 producer_is_gxx_lt_4_6. */
ba919b58
TT
510 unsigned int checked_producer : 1;
511 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 512 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 513 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
514
515 /* When set, the file that we're processing is known to have
516 debugging info for C++ namespaces. GCC 3.3.x did not produce
517 this information, but later versions do. */
518
519 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
520};
521
10b3939b
DJ
522/* Persistent data held for a compilation unit, even when not
523 processing it. We put a pointer to this structure in the
28dee7f5 524 read_symtab_private field of the psymtab. */
10b3939b 525
ae038cb0
DJ
526struct dwarf2_per_cu_data
527{
36586728 528 /* The start offset and length of this compilation unit.
45452591 529 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
530 initial_length_size.
531 If the DIE refers to a DWO file, this is always of the original die,
532 not the DWO file. */
b64f50a1 533 sect_offset offset;
36586728 534 unsigned int length;
ae038cb0
DJ
535
536 /* Flag indicating this compilation unit will be read in before
537 any of the current compilation units are processed. */
c764a876 538 unsigned int queued : 1;
ae038cb0 539
0d99eb77
DE
540 /* This flag will be set when reading partial DIEs if we need to load
541 absolutely all DIEs for this compilation unit, instead of just the ones
542 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
543 hash table and don't find it. */
544 unsigned int load_all_dies : 1;
545
0186c6a7
DE
546 /* Non-zero if this CU is from .debug_types.
547 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
548 this is non-zero. */
3019eac3
DE
549 unsigned int is_debug_types : 1;
550
36586728
TT
551 /* Non-zero if this CU is from the .dwz file. */
552 unsigned int is_dwz : 1;
553
3019eac3
DE
554 /* The section this CU/TU lives in.
555 If the DIE refers to a DWO file, this is always the original die,
556 not the DWO file. */
8a0459fd 557 struct dwarf2_section_info *section;
348e048f 558
17ea53c3
JK
559 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
560 of the CU cache it gets reset to NULL again. */
ae038cb0 561 struct dwarf2_cu *cu;
1c379e20 562
9cdd5dbd
DE
563 /* The corresponding objfile.
564 Normally we can get the objfile from dwarf2_per_objfile.
565 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
566 struct objfile *objfile;
567
568 /* When using partial symbol tables, the 'psymtab' field is active.
569 Otherwise the 'quick' field is active. */
570 union
571 {
572 /* The partial symbol table associated with this compilation unit,
95554aad 573 or NULL for unread partial units. */
9291a0cd
TT
574 struct partial_symtab *psymtab;
575
576 /* Data needed by the "quick" functions. */
577 struct dwarf2_per_cu_quick_data *quick;
578 } v;
95554aad 579
796a7ff8
DE
580 /* The CUs we import using DW_TAG_imported_unit. This is filled in
581 while reading psymtabs, used to compute the psymtab dependencies,
582 and then cleared. Then it is filled in again while reading full
583 symbols, and only deleted when the objfile is destroyed.
584
585 This is also used to work around a difference between the way gold
586 generates .gdb_index version <=7 and the way gdb does. Arguably this
587 is a gold bug. For symbols coming from TUs, gold records in the index
588 the CU that includes the TU instead of the TU itself. This breaks
589 dw2_lookup_symbol: It assumes that if the index says symbol X lives
590 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
591 will find X. Alas TUs live in their own symtab, so after expanding CU Y
592 we need to look in TU Z to find X. Fortunately, this is akin to
593 DW_TAG_imported_unit, so we just use the same mechanism: For
594 .gdb_index version <=7 this also records the TUs that the CU referred
595 to. Concurrently with this change gdb was modified to emit version 8
596 indices so we only pay a price for gold generated indices. */
597 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
598};
599
348e048f
DE
600/* Entry in the signatured_types hash table. */
601
602struct signatured_type
603{
42e7ad6c 604 /* The "per_cu" object of this type.
ac9ec31b 605 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
606 N.B.: This is the first member so that it's easy to convert pointers
607 between them. */
608 struct dwarf2_per_cu_data per_cu;
609
3019eac3 610 /* The type's signature. */
348e048f
DE
611 ULONGEST signature;
612
3019eac3 613 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
614 If this TU is a DWO stub and the definition lives in a DWO file
615 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
616 cu_offset type_offset_in_tu;
617
618 /* Offset in the section of the type's DIE.
619 If the definition lives in a DWO file, this is the offset in the
620 .debug_types.dwo section.
621 The value is zero until the actual value is known.
622 Zero is otherwise not a valid section offset. */
623 sect_offset type_offset_in_section;
0186c6a7
DE
624
625 /* Type units are grouped by their DW_AT_stmt_list entry so that they
626 can share them. This points to the containing symtab. */
627 struct type_unit_group *type_unit_group;
ac9ec31b
DE
628
629 /* The type.
630 The first time we encounter this type we fully read it in and install it
631 in the symbol tables. Subsequent times we only need the type. */
632 struct type *type;
348e048f
DE
633};
634
0186c6a7
DE
635typedef struct signatured_type *sig_type_ptr;
636DEF_VEC_P (sig_type_ptr);
637
094b34ac
DE
638/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
639 This includes type_unit_group and quick_file_names. */
640
641struct stmt_list_hash
642{
643 /* The DWO unit this table is from or NULL if there is none. */
644 struct dwo_unit *dwo_unit;
645
646 /* Offset in .debug_line or .debug_line.dwo. */
647 sect_offset line_offset;
648};
649
f4dc4d17
DE
650/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
651 an object of this type. */
652
653struct type_unit_group
654{
0186c6a7 655 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
656 To simplify things we create an artificial CU that "includes" all the
657 type units using this stmt_list so that the rest of the code still has
658 a "per_cu" handle on the symtab.
659 This PER_CU is recognized by having no section. */
8a0459fd 660#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
661 struct dwarf2_per_cu_data per_cu;
662
0186c6a7
DE
663 /* The TUs that share this DW_AT_stmt_list entry.
664 This is added to while parsing type units to build partial symtabs,
665 and is deleted afterwards and not used again. */
666 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
667
668 /* The primary symtab.
094b34ac
DE
669 Type units in a group needn't all be defined in the same source file,
670 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
671 struct symtab *primary_symtab;
672
094b34ac
DE
673 /* The data used to construct the hash key. */
674 struct stmt_list_hash hash;
f4dc4d17
DE
675
676 /* The number of symtabs from the line header.
677 The value here must match line_header.num_file_names. */
678 unsigned int num_symtabs;
679
680 /* The symbol tables for this TU (obtained from the files listed in
681 DW_AT_stmt_list).
682 WARNING: The order of entries here must match the order of entries
683 in the line header. After the first TU using this type_unit_group, the
684 line header for the subsequent TUs is recreated from this. This is done
685 because we need to use the same symtabs for each TU using the same
686 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
687 there's no guarantee the line header doesn't have duplicate entries. */
688 struct symtab **symtabs;
689};
690
80626a55 691/* These sections are what may appear in a DWO file. */
3019eac3
DE
692
693struct dwo_sections
694{
695 struct dwarf2_section_info abbrev;
3019eac3
DE
696 struct dwarf2_section_info line;
697 struct dwarf2_section_info loc;
09262596
DE
698 struct dwarf2_section_info macinfo;
699 struct dwarf2_section_info macro;
3019eac3
DE
700 struct dwarf2_section_info str;
701 struct dwarf2_section_info str_offsets;
80626a55
DE
702 /* In the case of a virtual DWO file, these two are unused. */
703 struct dwarf2_section_info info;
3019eac3
DE
704 VEC (dwarf2_section_info_def) *types;
705};
706
c88ee1f0 707/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
708
709struct dwo_unit
710{
711 /* Backlink to the containing struct dwo_file. */
712 struct dwo_file *dwo_file;
713
714 /* The "id" that distinguishes this CU/TU.
715 .debug_info calls this "dwo_id", .debug_types calls this "signature".
716 Since signatures came first, we stick with it for consistency. */
717 ULONGEST signature;
718
719 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 720 struct dwarf2_section_info *section;
3019eac3
DE
721
722 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
723 sect_offset offset;
724 unsigned int length;
725
726 /* For types, offset in the type's DIE of the type defined by this TU. */
727 cu_offset type_offset_in_tu;
728};
729
80626a55
DE
730/* Data for one DWO file.
731 This includes virtual DWO files that have been packaged into a
732 DWP file. */
3019eac3
DE
733
734struct dwo_file
735{
0ac5b59e 736 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
737 For virtual DWO files the name is constructed from the section offsets
738 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
739 from related CU+TUs. */
0ac5b59e
DE
740 const char *dwo_name;
741
742 /* The DW_AT_comp_dir attribute. */
743 const char *comp_dir;
3019eac3 744
80626a55
DE
745 /* The bfd, when the file is open. Otherwise this is NULL.
746 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
747 bfd *dbfd;
3019eac3
DE
748
749 /* Section info for this file. */
750 struct dwo_sections sections;
751
19c3d4c9
DE
752 /* The CU in the file.
753 We only support one because having more than one requires hacking the
754 dwo_name of each to match, which is highly unlikely to happen.
755 Doing this means all TUs can share comp_dir: We also assume that
756 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
757 struct dwo_unit *cu;
3019eac3
DE
758
759 /* Table of TUs in the file.
760 Each element is a struct dwo_unit. */
761 htab_t tus;
762};
763
80626a55
DE
764/* These sections are what may appear in a DWP file. */
765
766struct dwp_sections
767{
768 struct dwarf2_section_info str;
769 struct dwarf2_section_info cu_index;
770 struct dwarf2_section_info tu_index;
771 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
772 by section number. We don't need to record them here. */
773};
774
775/* These sections are what may appear in a virtual DWO file. */
776
777struct virtual_dwo_sections
778{
779 struct dwarf2_section_info abbrev;
780 struct dwarf2_section_info line;
781 struct dwarf2_section_info loc;
782 struct dwarf2_section_info macinfo;
783 struct dwarf2_section_info macro;
784 struct dwarf2_section_info str_offsets;
785 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 786 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
787 struct dwarf2_section_info info_or_types;
788};
789
790/* Contents of DWP hash tables. */
791
792struct dwp_hash_table
793{
794 uint32_t nr_units, nr_slots;
795 const gdb_byte *hash_table, *unit_table, *section_pool;
796};
797
798/* Data for one DWP file. */
799
800struct dwp_file
801{
802 /* Name of the file. */
803 const char *name;
804
805 /* The bfd, when the file is open. Otherwise this is NULL. */
806 bfd *dbfd;
807
808 /* Section info for this file. */
809 struct dwp_sections sections;
810
811 /* Table of CUs in the file. */
812 const struct dwp_hash_table *cus;
813
814 /* Table of TUs in the file. */
815 const struct dwp_hash_table *tus;
816
817 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
818 htab_t loaded_cutus;
819
820 /* Table to map ELF section numbers to their sections. */
821 unsigned int num_sections;
822 asection **elf_sections;
823};
824
36586728
TT
825/* This represents a '.dwz' file. */
826
827struct dwz_file
828{
829 /* A dwz file can only contain a few sections. */
830 struct dwarf2_section_info abbrev;
831 struct dwarf2_section_info info;
832 struct dwarf2_section_info str;
833 struct dwarf2_section_info line;
834 struct dwarf2_section_info macro;
2ec9a5e0 835 struct dwarf2_section_info gdb_index;
36586728
TT
836
837 /* The dwz's BFD. */
838 bfd *dwz_bfd;
839};
840
0963b4bd
MS
841/* Struct used to pass misc. parameters to read_die_and_children, et
842 al. which are used for both .debug_info and .debug_types dies.
843 All parameters here are unchanging for the life of the call. This
dee91e82 844 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
845
846struct die_reader_specs
847{
dee91e82 848 /* die_section->asection->owner. */
93311388
DE
849 bfd* abfd;
850
851 /* The CU of the DIE we are parsing. */
852 struct dwarf2_cu *cu;
853
80626a55 854 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
855 struct dwo_file *dwo_file;
856
dee91e82 857 /* The section the die comes from.
3019eac3 858 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
859 struct dwarf2_section_info *die_section;
860
861 /* die_section->buffer. */
d521ce57 862 const gdb_byte *buffer;
f664829e
DE
863
864 /* The end of the buffer. */
865 const gdb_byte *buffer_end;
93311388
DE
866};
867
fd820528 868/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 869typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 870 const gdb_byte *info_ptr,
dee91e82
DE
871 struct die_info *comp_unit_die,
872 int has_children,
873 void *data);
874
debd256d
JB
875/* The line number information for a compilation unit (found in the
876 .debug_line section) begins with a "statement program header",
877 which contains the following information. */
878struct line_header
879{
880 unsigned int total_length;
881 unsigned short version;
882 unsigned int header_length;
883 unsigned char minimum_instruction_length;
2dc7f7b3 884 unsigned char maximum_ops_per_instruction;
debd256d
JB
885 unsigned char default_is_stmt;
886 int line_base;
887 unsigned char line_range;
888 unsigned char opcode_base;
889
890 /* standard_opcode_lengths[i] is the number of operands for the
891 standard opcode whose value is i. This means that
892 standard_opcode_lengths[0] is unused, and the last meaningful
893 element is standard_opcode_lengths[opcode_base - 1]. */
894 unsigned char *standard_opcode_lengths;
895
896 /* The include_directories table. NOTE! These strings are not
897 allocated with xmalloc; instead, they are pointers into
898 debug_line_buffer. If you try to free them, `free' will get
899 indigestion. */
900 unsigned int num_include_dirs, include_dirs_size;
d521ce57 901 const char **include_dirs;
debd256d
JB
902
903 /* The file_names table. NOTE! These strings are not allocated
904 with xmalloc; instead, they are pointers into debug_line_buffer.
905 Don't try to free them directly. */
906 unsigned int num_file_names, file_names_size;
907 struct file_entry
c906108c 908 {
d521ce57 909 const char *name;
debd256d
JB
910 unsigned int dir_index;
911 unsigned int mod_time;
912 unsigned int length;
aaa75496 913 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 914 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
915 } *file_names;
916
917 /* The start and end of the statement program following this
6502dd73 918 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 919 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 920};
c906108c
SS
921
922/* When we construct a partial symbol table entry we only
0963b4bd 923 need this much information. */
c906108c
SS
924struct partial_die_info
925 {
72bf9492 926 /* Offset of this DIE. */
b64f50a1 927 sect_offset offset;
72bf9492
DJ
928
929 /* DWARF-2 tag for this DIE. */
930 ENUM_BITFIELD(dwarf_tag) tag : 16;
931
72bf9492
DJ
932 /* Assorted flags describing the data found in this DIE. */
933 unsigned int has_children : 1;
934 unsigned int is_external : 1;
935 unsigned int is_declaration : 1;
936 unsigned int has_type : 1;
937 unsigned int has_specification : 1;
938 unsigned int has_pc_info : 1;
481860b3 939 unsigned int may_be_inlined : 1;
72bf9492
DJ
940
941 /* Flag set if the SCOPE field of this structure has been
942 computed. */
943 unsigned int scope_set : 1;
944
fa4028e9
JB
945 /* Flag set if the DIE has a byte_size attribute. */
946 unsigned int has_byte_size : 1;
947
98bfdba5
PA
948 /* Flag set if any of the DIE's children are template arguments. */
949 unsigned int has_template_arguments : 1;
950
abc72ce4
DE
951 /* Flag set if fixup_partial_die has been called on this die. */
952 unsigned int fixup_called : 1;
953
36586728
TT
954 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
955 unsigned int is_dwz : 1;
956
957 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
958 unsigned int spec_is_dwz : 1;
959
72bf9492 960 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 961 sometimes a default name for unnamed DIEs. */
15d034d0 962 const char *name;
72bf9492 963
abc72ce4
DE
964 /* The linkage name, if present. */
965 const char *linkage_name;
966
72bf9492
DJ
967 /* The scope to prepend to our children. This is generally
968 allocated on the comp_unit_obstack, so will disappear
969 when this compilation unit leaves the cache. */
15d034d0 970 const char *scope;
72bf9492 971
95554aad
TT
972 /* Some data associated with the partial DIE. The tag determines
973 which field is live. */
974 union
975 {
976 /* The location description associated with this DIE, if any. */
977 struct dwarf_block *locdesc;
978 /* The offset of an import, for DW_TAG_imported_unit. */
979 sect_offset offset;
980 } d;
72bf9492
DJ
981
982 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
983 CORE_ADDR lowpc;
984 CORE_ADDR highpc;
72bf9492 985
93311388 986 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 987 DW_AT_sibling, if any. */
abc72ce4
DE
988 /* NOTE: This member isn't strictly necessary, read_partial_die could
989 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 990 const gdb_byte *sibling;
72bf9492
DJ
991
992 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
993 DW_AT_specification (or DW_AT_abstract_origin or
994 DW_AT_extension). */
b64f50a1 995 sect_offset spec_offset;
72bf9492
DJ
996
997 /* Pointers to this DIE's parent, first child, and next sibling,
998 if any. */
999 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1000 };
1001
0963b4bd 1002/* This data structure holds the information of an abbrev. */
c906108c
SS
1003struct abbrev_info
1004 {
1005 unsigned int number; /* number identifying abbrev */
1006 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1007 unsigned short has_children; /* boolean */
1008 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1009 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1010 struct abbrev_info *next; /* next in chain */
1011 };
1012
1013struct attr_abbrev
1014 {
9d25dd43
DE
1015 ENUM_BITFIELD(dwarf_attribute) name : 16;
1016 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1017 };
1018
433df2d4
DE
1019/* Size of abbrev_table.abbrev_hash_table. */
1020#define ABBREV_HASH_SIZE 121
1021
1022/* Top level data structure to contain an abbreviation table. */
1023
1024struct abbrev_table
1025{
f4dc4d17
DE
1026 /* Where the abbrev table came from.
1027 This is used as a sanity check when the table is used. */
433df2d4
DE
1028 sect_offset offset;
1029
1030 /* Storage for the abbrev table. */
1031 struct obstack abbrev_obstack;
1032
1033 /* Hash table of abbrevs.
1034 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1035 It could be statically allocated, but the previous code didn't so we
1036 don't either. */
1037 struct abbrev_info **abbrevs;
1038};
1039
0963b4bd 1040/* Attributes have a name and a value. */
b60c80d6
DJ
1041struct attribute
1042 {
9d25dd43 1043 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1044 ENUM_BITFIELD(dwarf_form) form : 15;
1045
1046 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1047 field should be in u.str (existing only for DW_STRING) but it is kept
1048 here for better struct attribute alignment. */
1049 unsigned int string_is_canonical : 1;
1050
b60c80d6
DJ
1051 union
1052 {
15d034d0 1053 const char *str;
b60c80d6 1054 struct dwarf_block *blk;
43bbcdc2
PH
1055 ULONGEST unsnd;
1056 LONGEST snd;
b60c80d6 1057 CORE_ADDR addr;
ac9ec31b 1058 ULONGEST signature;
b60c80d6
DJ
1059 }
1060 u;
1061 };
1062
0963b4bd 1063/* This data structure holds a complete die structure. */
c906108c
SS
1064struct die_info
1065 {
76815b17
DE
1066 /* DWARF-2 tag for this DIE. */
1067 ENUM_BITFIELD(dwarf_tag) tag : 16;
1068
1069 /* Number of attributes */
98bfdba5
PA
1070 unsigned char num_attrs;
1071
1072 /* True if we're presently building the full type name for the
1073 type derived from this DIE. */
1074 unsigned char building_fullname : 1;
76815b17
DE
1075
1076 /* Abbrev number */
1077 unsigned int abbrev;
1078
93311388 1079 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1080 sect_offset offset;
78ba4af6
JB
1081
1082 /* The dies in a compilation unit form an n-ary tree. PARENT
1083 points to this die's parent; CHILD points to the first child of
1084 this node; and all the children of a given node are chained
4950bc1c 1085 together via their SIBLING fields. */
639d11d3
DC
1086 struct die_info *child; /* Its first child, if any. */
1087 struct die_info *sibling; /* Its next sibling, if any. */
1088 struct die_info *parent; /* Its parent, if any. */
c906108c 1089
b60c80d6
DJ
1090 /* An array of attributes, with NUM_ATTRS elements. There may be
1091 zero, but it's not common and zero-sized arrays are not
1092 sufficiently portable C. */
1093 struct attribute attrs[1];
c906108c
SS
1094 };
1095
0963b4bd 1096/* Get at parts of an attribute structure. */
c906108c
SS
1097
1098#define DW_STRING(attr) ((attr)->u.str)
8285870a 1099#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1100#define DW_UNSND(attr) ((attr)->u.unsnd)
1101#define DW_BLOCK(attr) ((attr)->u.blk)
1102#define DW_SND(attr) ((attr)->u.snd)
1103#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1104#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1105
0963b4bd 1106/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1107struct dwarf_block
1108 {
56eb65bd 1109 size_t size;
1d6edc3c
JK
1110
1111 /* Valid only if SIZE is not zero. */
d521ce57 1112 const gdb_byte *data;
c906108c
SS
1113 };
1114
c906108c
SS
1115#ifndef ATTR_ALLOC_CHUNK
1116#define ATTR_ALLOC_CHUNK 4
1117#endif
1118
c906108c
SS
1119/* Allocate fields for structs, unions and enums in this size. */
1120#ifndef DW_FIELD_ALLOC_CHUNK
1121#define DW_FIELD_ALLOC_CHUNK 4
1122#endif
1123
c906108c
SS
1124/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1125 but this would require a corresponding change in unpack_field_as_long
1126 and friends. */
1127static int bits_per_byte = 8;
1128
1129/* The routines that read and process dies for a C struct or C++ class
1130 pass lists of data member fields and lists of member function fields
1131 in an instance of a field_info structure, as defined below. */
1132struct field_info
c5aa993b 1133 {
0963b4bd 1134 /* List of data member and baseclasses fields. */
c5aa993b
JM
1135 struct nextfield
1136 {
1137 struct nextfield *next;
1138 int accessibility;
1139 int virtuality;
1140 struct field field;
1141 }
7d0ccb61 1142 *fields, *baseclasses;
c906108c 1143
7d0ccb61 1144 /* Number of fields (including baseclasses). */
c5aa993b 1145 int nfields;
c906108c 1146
c5aa993b
JM
1147 /* Number of baseclasses. */
1148 int nbaseclasses;
c906108c 1149
c5aa993b
JM
1150 /* Set if the accesibility of one of the fields is not public. */
1151 int non_public_fields;
c906108c 1152
c5aa993b
JM
1153 /* Member function fields array, entries are allocated in the order they
1154 are encountered in the object file. */
1155 struct nextfnfield
1156 {
1157 struct nextfnfield *next;
1158 struct fn_field fnfield;
1159 }
1160 *fnfields;
c906108c 1161
c5aa993b
JM
1162 /* Member function fieldlist array, contains name of possibly overloaded
1163 member function, number of overloaded member functions and a pointer
1164 to the head of the member function field chain. */
1165 struct fnfieldlist
1166 {
15d034d0 1167 const char *name;
c5aa993b
JM
1168 int length;
1169 struct nextfnfield *head;
1170 }
1171 *fnfieldlists;
c906108c 1172
c5aa993b
JM
1173 /* Number of entries in the fnfieldlists array. */
1174 int nfnfields;
98751a41
JK
1175
1176 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1177 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1178 struct typedef_field_list
1179 {
1180 struct typedef_field field;
1181 struct typedef_field_list *next;
1182 }
1183 *typedef_field_list;
1184 unsigned typedef_field_list_count;
c5aa993b 1185 };
c906108c 1186
10b3939b
DJ
1187/* One item on the queue of compilation units to read in full symbols
1188 for. */
1189struct dwarf2_queue_item
1190{
1191 struct dwarf2_per_cu_data *per_cu;
95554aad 1192 enum language pretend_language;
10b3939b
DJ
1193 struct dwarf2_queue_item *next;
1194};
1195
1196/* The current queue. */
1197static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1198
ae038cb0
DJ
1199/* Loaded secondary compilation units are kept in memory until they
1200 have not been referenced for the processing of this many
1201 compilation units. Set this to zero to disable caching. Cache
1202 sizes of up to at least twenty will improve startup time for
1203 typical inter-CU-reference binaries, at an obvious memory cost. */
1204static int dwarf2_max_cache_age = 5;
920d2a44
AC
1205static void
1206show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1207 struct cmd_list_element *c, const char *value)
1208{
3e43a32a
MS
1209 fprintf_filtered (file, _("The upper bound on the age of cached "
1210 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1211 value);
1212}
1213
ae038cb0 1214
0963b4bd 1215/* Various complaints about symbol reading that don't abort the process. */
c906108c 1216
4d3c2250
KB
1217static void
1218dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 1219{
4d3c2250 1220 complaint (&symfile_complaints,
e2e0b3e5 1221 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
1222}
1223
25e43795
DJ
1224static void
1225dwarf2_debug_line_missing_file_complaint (void)
1226{
1227 complaint (&symfile_complaints,
1228 _(".debug_line section has line data without a file"));
1229}
1230
59205f5a
JB
1231static void
1232dwarf2_debug_line_missing_end_sequence_complaint (void)
1233{
1234 complaint (&symfile_complaints,
3e43a32a
MS
1235 _(".debug_line section has line "
1236 "program sequence without an end"));
59205f5a
JB
1237}
1238
4d3c2250
KB
1239static void
1240dwarf2_complex_location_expr_complaint (void)
2e276125 1241{
e2e0b3e5 1242 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
1243}
1244
4d3c2250
KB
1245static void
1246dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1247 int arg3)
2e276125 1248{
4d3c2250 1249 complaint (&symfile_complaints,
3e43a32a
MS
1250 _("const value length mismatch for '%s', got %d, expected %d"),
1251 arg1, arg2, arg3);
4d3c2250
KB
1252}
1253
1254static void
f664829e 1255dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2e276125 1256{
4d3c2250 1257 complaint (&symfile_complaints,
f664829e
DE
1258 _("debug info runs off end of %s section"
1259 " [in module %s]"),
1260 section->asection->name,
1261 bfd_get_filename (section->asection->owner));
4d3c2250
KB
1262}
1263
1264static void
1265dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 1266{
4d3c2250 1267 complaint (&symfile_complaints,
3e43a32a
MS
1268 _("macro debug info contains a "
1269 "malformed macro definition:\n`%s'"),
4d3c2250
KB
1270 arg1);
1271}
1272
1273static void
1274dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 1275{
4d3c2250 1276 complaint (&symfile_complaints,
3e43a32a
MS
1277 _("invalid attribute class or form for '%s' in '%s'"),
1278 arg1, arg2);
4d3c2250 1279}
c906108c 1280
c906108c
SS
1281/* local function prototypes */
1282
4efb68b1 1283static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1284
918dd910
JK
1285static void dwarf2_find_base_address (struct die_info *die,
1286 struct dwarf2_cu *cu);
1287
0018ea6f
DE
1288static struct partial_symtab *create_partial_symtab
1289 (struct dwarf2_per_cu_data *per_cu, const char *name);
1290
c67a9c90 1291static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1292
72bf9492
DJ
1293static void scan_partial_symbols (struct partial_die_info *,
1294 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1295 int, struct dwarf2_cu *);
c906108c 1296
72bf9492
DJ
1297static void add_partial_symbol (struct partial_die_info *,
1298 struct dwarf2_cu *);
63d06c5c 1299
72bf9492
DJ
1300static void add_partial_namespace (struct partial_die_info *pdi,
1301 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1302 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1303
5d7cb8df
JK
1304static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1305 CORE_ADDR *highpc, int need_pc,
1306 struct dwarf2_cu *cu);
1307
72bf9492
DJ
1308static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1309 struct dwarf2_cu *cu);
91c24f0a 1310
bc30ff58
JB
1311static void add_partial_subprogram (struct partial_die_info *pdi,
1312 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1313 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1314
257e7a09
YQ
1315static void dwarf2_read_symtab (struct partial_symtab *,
1316 struct objfile *);
c906108c 1317
a14ed312 1318static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1319
433df2d4
DE
1320static struct abbrev_info *abbrev_table_lookup_abbrev
1321 (const struct abbrev_table *, unsigned int);
1322
1323static struct abbrev_table *abbrev_table_read_table
1324 (struct dwarf2_section_info *, sect_offset);
1325
1326static void abbrev_table_free (struct abbrev_table *);
1327
f4dc4d17
DE
1328static void abbrev_table_free_cleanup (void *);
1329
dee91e82
DE
1330static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1331 struct dwarf2_section_info *);
c906108c 1332
f3dd6933 1333static void dwarf2_free_abbrev_table (void *);
c906108c 1334
d521ce57 1335static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1336
dee91e82 1337static struct partial_die_info *load_partial_dies
d521ce57 1338 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1339
d521ce57
TT
1340static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1341 struct partial_die_info *,
1342 struct abbrev_info *,
1343 unsigned int,
1344 const gdb_byte *);
c906108c 1345
36586728 1346static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1347 struct dwarf2_cu *);
72bf9492
DJ
1348
1349static void fixup_partial_die (struct partial_die_info *,
1350 struct dwarf2_cu *);
1351
d521ce57
TT
1352static const gdb_byte *read_attribute (const struct die_reader_specs *,
1353 struct attribute *, struct attr_abbrev *,
1354 const gdb_byte *);
a8329558 1355
a1855c1d 1356static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1357
a1855c1d 1358static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1359
a1855c1d 1360static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1361
a1855c1d 1362static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1363
a1855c1d 1364static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1365
d521ce57 1366static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1367 unsigned int *);
c906108c 1368
d521ce57 1369static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1370
1371static LONGEST read_checked_initial_length_and_offset
d521ce57 1372 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1373 unsigned int *, unsigned int *);
613e1657 1374
d521ce57
TT
1375static LONGEST read_offset (bfd *, const gdb_byte *,
1376 const struct comp_unit_head *,
c764a876
DE
1377 unsigned int *);
1378
d521ce57 1379static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1380
f4dc4d17
DE
1381static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1382 sect_offset);
1383
d521ce57 1384static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1385
d521ce57 1386static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1387
d521ce57
TT
1388static const char *read_indirect_string (bfd *, const gdb_byte *,
1389 const struct comp_unit_head *,
1390 unsigned int *);
4bdf3d34 1391
d521ce57 1392static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1393
d521ce57 1394static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1395
d521ce57 1396static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1397
d521ce57
TT
1398static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1399 const gdb_byte *,
3019eac3
DE
1400 unsigned int *);
1401
d521ce57
TT
1402static const char *read_str_index (const struct die_reader_specs *reader,
1403 struct dwarf2_cu *cu, ULONGEST str_index);
3019eac3 1404
e142c38c 1405static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1406
e142c38c
DJ
1407static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1408 struct dwarf2_cu *);
c906108c 1409
348e048f 1410static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1411 unsigned int);
348e048f 1412
05cf31d1
JB
1413static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1414 struct dwarf2_cu *cu);
1415
e142c38c 1416static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1417
e142c38c 1418static struct die_info *die_specification (struct die_info *die,
f2f0e013 1419 struct dwarf2_cu **);
63d06c5c 1420
debd256d
JB
1421static void free_line_header (struct line_header *lh);
1422
3019eac3
DE
1423static struct line_header *dwarf_decode_line_header (unsigned int offset,
1424 struct dwarf2_cu *cu);
debd256d 1425
f3f5162e
DE
1426static void dwarf_decode_lines (struct line_header *, const char *,
1427 struct dwarf2_cu *, struct partial_symtab *,
1428 int);
c906108c 1429
d521ce57 1430static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1431
f4dc4d17 1432static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1433 const char *, const char *, CORE_ADDR);
f4dc4d17 1434
a14ed312 1435static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1436 struct dwarf2_cu *);
c906108c 1437
34eaf542
TT
1438static struct symbol *new_symbol_full (struct die_info *, struct type *,
1439 struct dwarf2_cu *, struct symbol *);
1440
a14ed312 1441static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1442 struct dwarf2_cu *);
c906108c 1443
98bfdba5
PA
1444static void dwarf2_const_value_attr (struct attribute *attr,
1445 struct type *type,
1446 const char *name,
1447 struct obstack *obstack,
12df843f 1448 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1449 const gdb_byte **bytes,
98bfdba5 1450 struct dwarf2_locexpr_baton **baton);
2df3850c 1451
e7c27a73 1452static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1453
b4ba55a1
JB
1454static int need_gnat_info (struct dwarf2_cu *);
1455
3e43a32a
MS
1456static struct type *die_descriptive_type (struct die_info *,
1457 struct dwarf2_cu *);
b4ba55a1
JB
1458
1459static void set_descriptive_type (struct type *, struct die_info *,
1460 struct dwarf2_cu *);
1461
e7c27a73
DJ
1462static struct type *die_containing_type (struct die_info *,
1463 struct dwarf2_cu *);
c906108c 1464
673bfd45
DE
1465static struct type *lookup_die_type (struct die_info *, struct attribute *,
1466 struct dwarf2_cu *);
c906108c 1467
f792889a 1468static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1469
673bfd45
DE
1470static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1471
0d5cff50 1472static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1473
6e70227d 1474static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1475 const char *suffix, int physname,
1476 struct dwarf2_cu *cu);
63d06c5c 1477
e7c27a73 1478static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1479
348e048f
DE
1480static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1481
e7c27a73 1482static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1483
e7c27a73 1484static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1485
96408a79
SA
1486static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1487
ff013f42
JK
1488static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1489 struct dwarf2_cu *, struct partial_symtab *);
1490
a14ed312 1491static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1492 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1493 struct partial_symtab *);
c906108c 1494
fae299cd
DC
1495static void get_scope_pc_bounds (struct die_info *,
1496 CORE_ADDR *, CORE_ADDR *,
1497 struct dwarf2_cu *);
1498
801e3a5b
JB
1499static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1500 CORE_ADDR, struct dwarf2_cu *);
1501
a14ed312 1502static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1503 struct dwarf2_cu *);
c906108c 1504
a14ed312 1505static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1506 struct type *, struct dwarf2_cu *);
c906108c 1507
a14ed312 1508static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1509 struct die_info *, struct type *,
e7c27a73 1510 struct dwarf2_cu *);
c906108c 1511
a14ed312 1512static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1513 struct type *,
1514 struct dwarf2_cu *);
c906108c 1515
134d01f1 1516static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1517
e7c27a73 1518static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1519
e7c27a73 1520static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1521
5d7cb8df
JK
1522static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1523
27aa8d6a
SW
1524static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1525
f55ee35c
JK
1526static struct type *read_module_type (struct die_info *die,
1527 struct dwarf2_cu *cu);
1528
38d518c9 1529static const char *namespace_name (struct die_info *die,
e142c38c 1530 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1531
134d01f1 1532static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1533
e7c27a73 1534static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1535
6e70227d 1536static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1537 struct dwarf2_cu *);
1538
bf6af496 1539static struct die_info *read_die_and_siblings_1
d521ce57 1540 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1541 struct die_info *);
639d11d3 1542
dee91e82 1543static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1544 const gdb_byte *info_ptr,
1545 const gdb_byte **new_info_ptr,
639d11d3
DC
1546 struct die_info *parent);
1547
d521ce57
TT
1548static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1549 struct die_info **, const gdb_byte *,
1550 int *, int);
3019eac3 1551
d521ce57
TT
1552static const gdb_byte *read_full_die (const struct die_reader_specs *,
1553 struct die_info **, const gdb_byte *,
1554 int *);
93311388 1555
e7c27a73 1556static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1557
15d034d0
TT
1558static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1559 struct obstack *);
71c25dea 1560
15d034d0 1561static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1562
15d034d0 1563static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1564 struct die_info *die,
1565 struct dwarf2_cu *cu);
1566
ca69b9e6
DE
1567static const char *dwarf2_physname (const char *name, struct die_info *die,
1568 struct dwarf2_cu *cu);
1569
e142c38c 1570static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1571 struct dwarf2_cu **);
9219021c 1572
f39c6ffd 1573static const char *dwarf_tag_name (unsigned int);
c906108c 1574
f39c6ffd 1575static const char *dwarf_attr_name (unsigned int);
c906108c 1576
f39c6ffd 1577static const char *dwarf_form_name (unsigned int);
c906108c 1578
a14ed312 1579static char *dwarf_bool_name (unsigned int);
c906108c 1580
f39c6ffd 1581static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1582
f9aca02d 1583static struct die_info *sibling_die (struct die_info *);
c906108c 1584
d97bc12b
DE
1585static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1586
1587static void dump_die_for_error (struct die_info *);
1588
1589static void dump_die_1 (struct ui_file *, int level, int max_level,
1590 struct die_info *);
c906108c 1591
d97bc12b 1592/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1593
51545339 1594static void store_in_ref_table (struct die_info *,
10b3939b 1595 struct dwarf2_cu *);
c906108c 1596
93311388
DE
1597static int is_ref_attr (struct attribute *);
1598
b64f50a1 1599static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1600
43bbcdc2 1601static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1602
348e048f
DE
1603static struct die_info *follow_die_ref_or_sig (struct die_info *,
1604 struct attribute *,
1605 struct dwarf2_cu **);
1606
10b3939b
DJ
1607static struct die_info *follow_die_ref (struct die_info *,
1608 struct attribute *,
f2f0e013 1609 struct dwarf2_cu **);
c906108c 1610
348e048f
DE
1611static struct die_info *follow_die_sig (struct die_info *,
1612 struct attribute *,
1613 struct dwarf2_cu **);
1614
ac9ec31b
DE
1615static struct type *get_signatured_type (struct die_info *, ULONGEST,
1616 struct dwarf2_cu *);
1617
1618static struct type *get_DW_AT_signature_type (struct die_info *,
1619 struct attribute *,
1620 struct dwarf2_cu *);
1621
e5fe5e75 1622static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1623
52dc124a 1624static void read_signatured_type (struct signatured_type *);
348e048f 1625
f4dc4d17 1626static struct type_unit_group *get_type_unit_group
094b34ac 1627 (struct dwarf2_cu *, struct attribute *);
f4dc4d17
DE
1628
1629static void build_type_unit_groups (die_reader_func_ftype *, void *);
1630
c906108c
SS
1631/* memory allocation interface */
1632
7b5a2f43 1633static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1634
b60c80d6 1635static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1636
09262596 1637static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1638 const char *, int);
2e276125 1639
8e19ed76
PS
1640static int attr_form_is_block (struct attribute *);
1641
3690dd37
JB
1642static int attr_form_is_section_offset (struct attribute *);
1643
1644static int attr_form_is_constant (struct attribute *);
1645
8cf6f0b1
TT
1646static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1647 struct dwarf2_loclist_baton *baton,
1648 struct attribute *attr);
1649
93e7bd98
DJ
1650static void dwarf2_symbol_mark_computed (struct attribute *attr,
1651 struct symbol *sym,
f1e6e072
TT
1652 struct dwarf2_cu *cu,
1653 int is_block);
4c2df51b 1654
d521ce57
TT
1655static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1656 const gdb_byte *info_ptr,
1657 struct abbrev_info *abbrev);
4bb7a0a7 1658
72bf9492
DJ
1659static void free_stack_comp_unit (void *);
1660
72bf9492
DJ
1661static hashval_t partial_die_hash (const void *item);
1662
1663static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1664
ae038cb0 1665static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1666 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1667
9816fde3 1668static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1669 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1670
1671static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1672 struct die_info *comp_unit_die,
1673 enum language pretend_language);
93311388 1674
68dc6402 1675static void free_heap_comp_unit (void *);
ae038cb0
DJ
1676
1677static void free_cached_comp_units (void *);
1678
1679static void age_cached_comp_units (void);
1680
dee91e82 1681static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1682
f792889a
DJ
1683static struct type *set_die_type (struct die_info *, struct type *,
1684 struct dwarf2_cu *);
1c379e20 1685
ae038cb0
DJ
1686static void create_all_comp_units (struct objfile *);
1687
0e50663e 1688static int create_all_type_units (struct objfile *);
1fd400ff 1689
95554aad
TT
1690static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1691 enum language);
10b3939b 1692
95554aad
TT
1693static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1694 enum language);
10b3939b 1695
f4dc4d17
DE
1696static void process_full_type_unit (struct dwarf2_per_cu_data *,
1697 enum language);
1698
10b3939b
DJ
1699static void dwarf2_add_dependence (struct dwarf2_cu *,
1700 struct dwarf2_per_cu_data *);
1701
ae038cb0
DJ
1702static void dwarf2_mark (struct dwarf2_cu *);
1703
1704static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1705
b64f50a1 1706static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1707 struct dwarf2_per_cu_data *);
673bfd45 1708
f792889a 1709static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1710
9291a0cd
TT
1711static void dwarf2_release_queue (void *dummy);
1712
95554aad
TT
1713static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1714 enum language pretend_language);
1715
1716static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1717 struct dwarf2_per_cu_data *per_cu,
1718 enum language pretend_language);
9291a0cd 1719
a0f42c21 1720static void process_queue (void);
9291a0cd
TT
1721
1722static void find_file_and_directory (struct die_info *die,
1723 struct dwarf2_cu *cu,
15d034d0 1724 const char **name, const char **comp_dir);
9291a0cd
TT
1725
1726static char *file_full_name (int file, struct line_header *lh,
1727 const char *comp_dir);
1728
d521ce57 1729static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1730 (struct comp_unit_head *header,
1731 struct dwarf2_section_info *section,
d521ce57 1732 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1733 int is_debug_types_section);
1734
fd820528 1735static void init_cutu_and_read_dies
f4dc4d17
DE
1736 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1737 int use_existing_cu, int keep,
3019eac3
DE
1738 die_reader_func_ftype *die_reader_func, void *data);
1739
dee91e82
DE
1740static void init_cutu_and_read_dies_simple
1741 (struct dwarf2_per_cu_data *this_cu,
1742 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1743
673bfd45 1744static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1745
3019eac3
DE
1746static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1747
1748static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1749 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1750
1751static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1752 (struct signatured_type *, const char *, const char *);
3019eac3
DE
1753
1754static void free_dwo_file_cleanup (void *);
1755
95554aad
TT
1756static void process_cu_includes (void);
1757
1b80a9fa
JK
1758static void check_producer (struct dwarf2_cu *cu);
1759
9291a0cd
TT
1760#if WORDS_BIGENDIAN
1761
1762/* Convert VALUE between big- and little-endian. */
1763static offset_type
1764byte_swap (offset_type value)
1765{
1766 offset_type result;
1767
1768 result = (value & 0xff) << 24;
1769 result |= (value & 0xff00) << 8;
1770 result |= (value & 0xff0000) >> 8;
1771 result |= (value & 0xff000000) >> 24;
1772 return result;
1773}
1774
1775#define MAYBE_SWAP(V) byte_swap (V)
1776
1777#else
1778#define MAYBE_SWAP(V) (V)
1779#endif /* WORDS_BIGENDIAN */
1780
1781/* The suffix for an index file. */
1782#define INDEX_SUFFIX ".gdb-index"
1783
c906108c 1784/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1785 information and return true if we have enough to do something.
1786 NAMES points to the dwarf2 section names, or is NULL if the standard
1787 ELF names are used. */
c906108c
SS
1788
1789int
251d32d9
TG
1790dwarf2_has_info (struct objfile *objfile,
1791 const struct dwarf2_debug_sections *names)
c906108c 1792{
be391dca
TT
1793 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1794 if (!dwarf2_per_objfile)
1795 {
1796 /* Initialize per-objfile state. */
1797 struct dwarf2_per_objfile *data
1798 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1799
be391dca
TT
1800 memset (data, 0, sizeof (*data));
1801 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1802 dwarf2_per_objfile = data;
6502dd73 1803
251d32d9
TG
1804 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1805 (void *) names);
be391dca
TT
1806 dwarf2_per_objfile->objfile = objfile;
1807 }
1808 return (dwarf2_per_objfile->info.asection != NULL
1809 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1810}
1811
251d32d9
TG
1812/* When loading sections, we look either for uncompressed section or for
1813 compressed section names. */
233a11ab
CS
1814
1815static int
251d32d9
TG
1816section_is_p (const char *section_name,
1817 const struct dwarf2_section_names *names)
233a11ab 1818{
251d32d9
TG
1819 if (names->normal != NULL
1820 && strcmp (section_name, names->normal) == 0)
1821 return 1;
1822 if (names->compressed != NULL
1823 && strcmp (section_name, names->compressed) == 0)
1824 return 1;
1825 return 0;
233a11ab
CS
1826}
1827
c906108c
SS
1828/* This function is mapped across the sections and remembers the
1829 offset and size of each of the debugging sections we are interested
1830 in. */
1831
1832static void
251d32d9 1833dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 1834{
251d32d9 1835 const struct dwarf2_debug_sections *names;
dc7650b8 1836 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
1837
1838 if (vnames == NULL)
1839 names = &dwarf2_elf_names;
1840 else
1841 names = (const struct dwarf2_debug_sections *) vnames;
1842
dc7650b8
JK
1843 if ((aflag & SEC_HAS_CONTENTS) == 0)
1844 {
1845 }
1846 else if (section_is_p (sectp->name, &names->info))
c906108c 1847 {
dce234bc
PP
1848 dwarf2_per_objfile->info.asection = sectp;
1849 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1850 }
251d32d9 1851 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 1852 {
dce234bc
PP
1853 dwarf2_per_objfile->abbrev.asection = sectp;
1854 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1855 }
251d32d9 1856 else if (section_is_p (sectp->name, &names->line))
c906108c 1857 {
dce234bc
PP
1858 dwarf2_per_objfile->line.asection = sectp;
1859 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1860 }
251d32d9 1861 else if (section_is_p (sectp->name, &names->loc))
c906108c 1862 {
dce234bc
PP
1863 dwarf2_per_objfile->loc.asection = sectp;
1864 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1865 }
251d32d9 1866 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 1867 {
dce234bc
PP
1868 dwarf2_per_objfile->macinfo.asection = sectp;
1869 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1870 }
cf2c3c16
TT
1871 else if (section_is_p (sectp->name, &names->macro))
1872 {
1873 dwarf2_per_objfile->macro.asection = sectp;
1874 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1875 }
251d32d9 1876 else if (section_is_p (sectp->name, &names->str))
c906108c 1877 {
dce234bc
PP
1878 dwarf2_per_objfile->str.asection = sectp;
1879 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1880 }
3019eac3
DE
1881 else if (section_is_p (sectp->name, &names->addr))
1882 {
1883 dwarf2_per_objfile->addr.asection = sectp;
1884 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1885 }
251d32d9 1886 else if (section_is_p (sectp->name, &names->frame))
b6af0555 1887 {
dce234bc
PP
1888 dwarf2_per_objfile->frame.asection = sectp;
1889 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1890 }
251d32d9 1891 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 1892 {
dc7650b8
JK
1893 dwarf2_per_objfile->eh_frame.asection = sectp;
1894 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 1895 }
251d32d9 1896 else if (section_is_p (sectp->name, &names->ranges))
af34e669 1897 {
dce234bc
PP
1898 dwarf2_per_objfile->ranges.asection = sectp;
1899 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1900 }
251d32d9 1901 else if (section_is_p (sectp->name, &names->types))
348e048f 1902 {
8b70b953
TT
1903 struct dwarf2_section_info type_section;
1904
1905 memset (&type_section, 0, sizeof (type_section));
1906 type_section.asection = sectp;
1907 type_section.size = bfd_get_section_size (sectp);
1908
1909 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1910 &type_section);
348e048f 1911 }
251d32d9 1912 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd
TT
1913 {
1914 dwarf2_per_objfile->gdb_index.asection = sectp;
1915 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1916 }
dce234bc 1917
72dca2f5
FR
1918 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1919 && bfd_section_vma (abfd, sectp) == 0)
1920 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1921}
1922
fceca515
DE
1923/* A helper function that decides whether a section is empty,
1924 or not present. */
9e0ac564
TT
1925
1926static int
1927dwarf2_section_empty_p (struct dwarf2_section_info *info)
1928{
1929 return info->asection == NULL || info->size == 0;
1930}
1931
3019eac3
DE
1932/* Read the contents of the section INFO.
1933 OBJFILE is the main object file, but not necessarily the file where
1934 the section comes from. E.g., for DWO files INFO->asection->owner
1935 is the bfd of the DWO file.
dce234bc 1936 If the section is compressed, uncompress it before returning. */
c906108c 1937
dce234bc
PP
1938static void
1939dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1940{
dce234bc 1941 asection *sectp = info->asection;
3019eac3 1942 bfd *abfd;
dce234bc
PP
1943 gdb_byte *buf, *retbuf;
1944 unsigned char header[4];
c906108c 1945
be391dca
TT
1946 if (info->readin)
1947 return;
dce234bc 1948 info->buffer = NULL;
be391dca 1949 info->readin = 1;
188dd5d6 1950
9e0ac564 1951 if (dwarf2_section_empty_p (info))
dce234bc 1952 return;
c906108c 1953
3019eac3
DE
1954 abfd = sectp->owner;
1955
4bf44c1c
TT
1956 /* If the section has relocations, we must read it ourselves.
1957 Otherwise we attach it to the BFD. */
1958 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 1959 {
d521ce57 1960 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 1961 return;
dce234bc 1962 }
dce234bc 1963
4bf44c1c
TT
1964 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1965 info->buffer = buf;
dce234bc
PP
1966
1967 /* When debugging .o files, we may need to apply relocations; see
1968 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1969 We never compress sections in .o files, so we only need to
1970 try this when the section is not compressed. */
ac8035ab 1971 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1972 if (retbuf != NULL)
1973 {
1974 info->buffer = retbuf;
1975 return;
1976 }
1977
1978 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1979 || bfd_bread (buf, info->size, abfd) != info->size)
1980 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1981 bfd_get_filename (abfd));
1982}
1983
9e0ac564
TT
1984/* A helper function that returns the size of a section in a safe way.
1985 If you are positive that the section has been read before using the
1986 size, then it is safe to refer to the dwarf2_section_info object's
1987 "size" field directly. In other cases, you must call this
1988 function, because for compressed sections the size field is not set
1989 correctly until the section has been read. */
1990
1991static bfd_size_type
1992dwarf2_section_size (struct objfile *objfile,
1993 struct dwarf2_section_info *info)
1994{
1995 if (!info->readin)
1996 dwarf2_read_section (objfile, info);
1997 return info->size;
1998}
1999
dce234bc 2000/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2001 SECTION_NAME. */
af34e669 2002
dce234bc 2003void
3017a003
TG
2004dwarf2_get_section_info (struct objfile *objfile,
2005 enum dwarf2_section_enum sect,
d521ce57 2006 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2007 bfd_size_type *sizep)
2008{
2009 struct dwarf2_per_objfile *data
2010 = objfile_data (objfile, dwarf2_objfile_data_key);
2011 struct dwarf2_section_info *info;
a3b2a86b
TT
2012
2013 /* We may see an objfile without any DWARF, in which case we just
2014 return nothing. */
2015 if (data == NULL)
2016 {
2017 *sectp = NULL;
2018 *bufp = NULL;
2019 *sizep = 0;
2020 return;
2021 }
3017a003
TG
2022 switch (sect)
2023 {
2024 case DWARF2_DEBUG_FRAME:
2025 info = &data->frame;
2026 break;
2027 case DWARF2_EH_FRAME:
2028 info = &data->eh_frame;
2029 break;
2030 default:
2031 gdb_assert_not_reached ("unexpected section");
2032 }
dce234bc 2033
9e0ac564 2034 dwarf2_read_section (objfile, info);
dce234bc
PP
2035
2036 *sectp = info->asection;
2037 *bufp = info->buffer;
2038 *sizep = info->size;
2039}
2040
36586728
TT
2041/* A helper function to find the sections for a .dwz file. */
2042
2043static void
2044locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2045{
2046 struct dwz_file *dwz_file = arg;
2047
2048 /* Note that we only support the standard ELF names, because .dwz
2049 is ELF-only (at the time of writing). */
2050 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2051 {
2052 dwz_file->abbrev.asection = sectp;
2053 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2054 }
2055 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2056 {
2057 dwz_file->info.asection = sectp;
2058 dwz_file->info.size = bfd_get_section_size (sectp);
2059 }
2060 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2061 {
2062 dwz_file->str.asection = sectp;
2063 dwz_file->str.size = bfd_get_section_size (sectp);
2064 }
2065 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2066 {
2067 dwz_file->line.asection = sectp;
2068 dwz_file->line.size = bfd_get_section_size (sectp);
2069 }
2070 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2071 {
2072 dwz_file->macro.asection = sectp;
2073 dwz_file->macro.size = bfd_get_section_size (sectp);
2074 }
2ec9a5e0
TT
2075 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2076 {
2077 dwz_file->gdb_index.asection = sectp;
2078 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2079 }
36586728
TT
2080}
2081
2082/* Open the separate '.dwz' debug file, if needed. Error if the file
2083 cannot be found. */
2084
2085static struct dwz_file *
2086dwarf2_get_dwz_file (void)
2087{
2088 bfd *abfd, *dwz_bfd;
2089 asection *section;
2090 gdb_byte *data;
2091 struct cleanup *cleanup;
2092 const char *filename;
2093 struct dwz_file *result;
2094
2095 if (dwarf2_per_objfile->dwz_file != NULL)
2096 return dwarf2_per_objfile->dwz_file;
2097
2098 abfd = dwarf2_per_objfile->objfile->obfd;
2099 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2100 if (section == NULL)
2101 error (_("could not find '.gnu_debugaltlink' section"));
2102 if (!bfd_malloc_and_get_section (abfd, section, &data))
2103 error (_("could not read '.gnu_debugaltlink' section: %s"),
2104 bfd_errmsg (bfd_get_error ()));
2105 cleanup = make_cleanup (xfree, data);
2106
f9d83a0b 2107 filename = (const char *) data;
36586728
TT
2108 if (!IS_ABSOLUTE_PATH (filename))
2109 {
2110 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2111 char *rel;
2112
2113 make_cleanup (xfree, abs);
2114 abs = ldirname (abs);
2115 make_cleanup (xfree, abs);
2116
2117 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2118 make_cleanup (xfree, rel);
2119 filename = rel;
2120 }
2121
2122 /* The format is just a NUL-terminated file name, followed by the
2123 build-id. For now, though, we ignore the build-id. */
2124 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2125 if (dwz_bfd == NULL)
2126 error (_("could not read '%s': %s"), filename,
2127 bfd_errmsg (bfd_get_error ()));
2128
2129 if (!bfd_check_format (dwz_bfd, bfd_object))
2130 {
2131 gdb_bfd_unref (dwz_bfd);
2132 error (_("file '%s' was not usable: %s"), filename,
2133 bfd_errmsg (bfd_get_error ()));
2134 }
2135
2136 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2137 struct dwz_file);
2138 result->dwz_bfd = dwz_bfd;
2139
2140 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2141
2142 do_cleanups (cleanup);
2143
8d2cc612 2144 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2145 return result;
2146}
9291a0cd 2147\f
7b9f3c50
DE
2148/* DWARF quick_symbols_functions support. */
2149
2150/* TUs can share .debug_line entries, and there can be a lot more TUs than
2151 unique line tables, so we maintain a separate table of all .debug_line
2152 derived entries to support the sharing.
2153 All the quick functions need is the list of file names. We discard the
2154 line_header when we're done and don't need to record it here. */
2155struct quick_file_names
2156{
094b34ac
DE
2157 /* The data used to construct the hash key. */
2158 struct stmt_list_hash hash;
7b9f3c50
DE
2159
2160 /* The number of entries in file_names, real_names. */
2161 unsigned int num_file_names;
2162
2163 /* The file names from the line table, after being run through
2164 file_full_name. */
2165 const char **file_names;
2166
2167 /* The file names from the line table after being run through
2168 gdb_realpath. These are computed lazily. */
2169 const char **real_names;
2170};
2171
2172/* When using the index (and thus not using psymtabs), each CU has an
2173 object of this type. This is used to hold information needed by
2174 the various "quick" methods. */
2175struct dwarf2_per_cu_quick_data
2176{
2177 /* The file table. This can be NULL if there was no file table
2178 or it's currently not read in.
2179 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2180 struct quick_file_names *file_names;
2181
2182 /* The corresponding symbol table. This is NULL if symbols for this
2183 CU have not yet been read. */
2184 struct symtab *symtab;
2185
2186 /* A temporary mark bit used when iterating over all CUs in
2187 expand_symtabs_matching. */
2188 unsigned int mark : 1;
2189
2190 /* True if we've tried to read the file table and found there isn't one.
2191 There will be no point in trying to read it again next time. */
2192 unsigned int no_file_data : 1;
2193};
2194
094b34ac
DE
2195/* Utility hash function for a stmt_list_hash. */
2196
2197static hashval_t
2198hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2199{
2200 hashval_t v = 0;
2201
2202 if (stmt_list_hash->dwo_unit != NULL)
2203 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2204 v += stmt_list_hash->line_offset.sect_off;
2205 return v;
2206}
2207
2208/* Utility equality function for a stmt_list_hash. */
2209
2210static int
2211eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2212 const struct stmt_list_hash *rhs)
2213{
2214 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2215 return 0;
2216 if (lhs->dwo_unit != NULL
2217 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2218 return 0;
2219
2220 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2221}
2222
7b9f3c50
DE
2223/* Hash function for a quick_file_names. */
2224
2225static hashval_t
2226hash_file_name_entry (const void *e)
2227{
2228 const struct quick_file_names *file_data = e;
2229
094b34ac 2230 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2231}
2232
2233/* Equality function for a quick_file_names. */
2234
2235static int
2236eq_file_name_entry (const void *a, const void *b)
2237{
2238 const struct quick_file_names *ea = a;
2239 const struct quick_file_names *eb = b;
2240
094b34ac 2241 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2242}
2243
2244/* Delete function for a quick_file_names. */
2245
2246static void
2247delete_file_name_entry (void *e)
2248{
2249 struct quick_file_names *file_data = e;
2250 int i;
2251
2252 for (i = 0; i < file_data->num_file_names; ++i)
2253 {
2254 xfree ((void*) file_data->file_names[i]);
2255 if (file_data->real_names)
2256 xfree ((void*) file_data->real_names[i]);
2257 }
2258
2259 /* The space for the struct itself lives on objfile_obstack,
2260 so we don't free it here. */
2261}
2262
2263/* Create a quick_file_names hash table. */
2264
2265static htab_t
2266create_quick_file_names_table (unsigned int nr_initial_entries)
2267{
2268 return htab_create_alloc (nr_initial_entries,
2269 hash_file_name_entry, eq_file_name_entry,
2270 delete_file_name_entry, xcalloc, xfree);
2271}
9291a0cd 2272
918dd910
JK
2273/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2274 have to be created afterwards. You should call age_cached_comp_units after
2275 processing PER_CU->CU. dw2_setup must have been already called. */
2276
2277static void
2278load_cu (struct dwarf2_per_cu_data *per_cu)
2279{
3019eac3 2280 if (per_cu->is_debug_types)
e5fe5e75 2281 load_full_type_unit (per_cu);
918dd910 2282 else
95554aad 2283 load_full_comp_unit (per_cu, language_minimal);
918dd910 2284
918dd910 2285 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2286
2287 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2288}
2289
a0f42c21 2290/* Read in the symbols for PER_CU. */
2fdf6df6 2291
9291a0cd 2292static void
a0f42c21 2293dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2294{
2295 struct cleanup *back_to;
2296
f4dc4d17
DE
2297 /* Skip type_unit_groups, reading the type units they contain
2298 is handled elsewhere. */
2299 if (IS_TYPE_UNIT_GROUP (per_cu))
2300 return;
2301
9291a0cd
TT
2302 back_to = make_cleanup (dwarf2_release_queue, NULL);
2303
95554aad
TT
2304 if (dwarf2_per_objfile->using_index
2305 ? per_cu->v.quick->symtab == NULL
2306 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2307 {
2308 queue_comp_unit (per_cu, language_minimal);
2309 load_cu (per_cu);
2310 }
9291a0cd 2311
a0f42c21 2312 process_queue ();
9291a0cd
TT
2313
2314 /* Age the cache, releasing compilation units that have not
2315 been used recently. */
2316 age_cached_comp_units ();
2317
2318 do_cleanups (back_to);
2319}
2320
2321/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2322 the objfile from which this CU came. Returns the resulting symbol
2323 table. */
2fdf6df6 2324
9291a0cd 2325static struct symtab *
a0f42c21 2326dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2327{
95554aad 2328 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2329 if (!per_cu->v.quick->symtab)
2330 {
2331 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2332 increment_reading_symtab ();
a0f42c21 2333 dw2_do_instantiate_symtab (per_cu);
95554aad 2334 process_cu_includes ();
9291a0cd
TT
2335 do_cleanups (back_to);
2336 }
2337 return per_cu->v.quick->symtab;
2338}
2339
f4dc4d17
DE
2340/* Return the CU given its index.
2341
2342 This is intended for loops like:
2343
2344 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2345 + dwarf2_per_objfile->n_type_units); ++i)
2346 {
2347 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2348
2349 ...;
2350 }
2351*/
2fdf6df6 2352
1fd400ff
TT
2353static struct dwarf2_per_cu_data *
2354dw2_get_cu (int index)
2355{
2356 if (index >= dwarf2_per_objfile->n_comp_units)
2357 {
f4dc4d17 2358 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2359 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2360 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2361 }
2362
2363 return dwarf2_per_objfile->all_comp_units[index];
2364}
2365
2366/* Return the primary CU given its index.
2367 The difference between this function and dw2_get_cu is in the handling
2368 of type units (TUs). Here we return the type_unit_group object.
2369
2370 This is intended for loops like:
2371
2372 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2373 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2374 {
2375 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2376
2377 ...;
2378 }
2379*/
2380
2381static struct dwarf2_per_cu_data *
2382dw2_get_primary_cu (int index)
2383{
2384 if (index >= dwarf2_per_objfile->n_comp_units)
2385 {
1fd400ff 2386 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2387 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2388 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2389 }
f4dc4d17 2390
1fd400ff
TT
2391 return dwarf2_per_objfile->all_comp_units[index];
2392}
2393
2ec9a5e0
TT
2394/* A helper for create_cus_from_index that handles a given list of
2395 CUs. */
2fdf6df6 2396
74a0d9f6 2397static void
2ec9a5e0
TT
2398create_cus_from_index_list (struct objfile *objfile,
2399 const gdb_byte *cu_list, offset_type n_elements,
2400 struct dwarf2_section_info *section,
2401 int is_dwz,
2402 int base_offset)
9291a0cd
TT
2403{
2404 offset_type i;
9291a0cd 2405
2ec9a5e0 2406 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2407 {
2408 struct dwarf2_per_cu_data *the_cu;
2409 ULONGEST offset, length;
2410
74a0d9f6
JK
2411 gdb_static_assert (sizeof (ULONGEST) >= 8);
2412 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2413 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2414 cu_list += 2 * 8;
2415
2416 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2417 struct dwarf2_per_cu_data);
b64f50a1 2418 the_cu->offset.sect_off = offset;
9291a0cd
TT
2419 the_cu->length = length;
2420 the_cu->objfile = objfile;
8a0459fd 2421 the_cu->section = section;
9291a0cd
TT
2422 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2423 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2424 the_cu->is_dwz = is_dwz;
2425 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2426 }
9291a0cd
TT
2427}
2428
2ec9a5e0 2429/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2430 the CU objects for this objfile. */
2ec9a5e0 2431
74a0d9f6 2432static void
2ec9a5e0
TT
2433create_cus_from_index (struct objfile *objfile,
2434 const gdb_byte *cu_list, offset_type cu_list_elements,
2435 const gdb_byte *dwz_list, offset_type dwz_elements)
2436{
2437 struct dwz_file *dwz;
2438
2439 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2440 dwarf2_per_objfile->all_comp_units
2441 = obstack_alloc (&objfile->objfile_obstack,
2442 dwarf2_per_objfile->n_comp_units
2443 * sizeof (struct dwarf2_per_cu_data *));
2444
74a0d9f6
JK
2445 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2446 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2447
2448 if (dwz_elements == 0)
74a0d9f6 2449 return;
2ec9a5e0
TT
2450
2451 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2452 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2453 cu_list_elements / 2);
2ec9a5e0
TT
2454}
2455
1fd400ff 2456/* Create the signatured type hash table from the index. */
673bfd45 2457
74a0d9f6 2458static void
673bfd45 2459create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2460 struct dwarf2_section_info *section,
673bfd45
DE
2461 const gdb_byte *bytes,
2462 offset_type elements)
1fd400ff
TT
2463{
2464 offset_type i;
673bfd45 2465 htab_t sig_types_hash;
1fd400ff 2466
d467dd73
DE
2467 dwarf2_per_objfile->n_type_units = elements / 3;
2468 dwarf2_per_objfile->all_type_units
1fd400ff 2469 = obstack_alloc (&objfile->objfile_obstack,
d467dd73 2470 dwarf2_per_objfile->n_type_units
b4dd5633 2471 * sizeof (struct signatured_type *));
1fd400ff 2472
673bfd45 2473 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2474
2475 for (i = 0; i < elements; i += 3)
2476 {
52dc124a
DE
2477 struct signatured_type *sig_type;
2478 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2479 void **slot;
2480
74a0d9f6
JK
2481 gdb_static_assert (sizeof (ULONGEST) >= 8);
2482 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2483 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2484 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2485 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2486 bytes += 3 * 8;
2487
52dc124a 2488 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2489 struct signatured_type);
52dc124a 2490 sig_type->signature = signature;
3019eac3
DE
2491 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2492 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2493 sig_type->per_cu.section = section;
52dc124a
DE
2494 sig_type->per_cu.offset.sect_off = offset;
2495 sig_type->per_cu.objfile = objfile;
2496 sig_type->per_cu.v.quick
1fd400ff
TT
2497 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2498 struct dwarf2_per_cu_quick_data);
2499
52dc124a
DE
2500 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2501 *slot = sig_type;
1fd400ff 2502
b4dd5633 2503 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2504 }
2505
673bfd45 2506 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2507}
2508
9291a0cd
TT
2509/* Read the address map data from the mapped index, and use it to
2510 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2511
9291a0cd
TT
2512static void
2513create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2514{
2515 const gdb_byte *iter, *end;
2516 struct obstack temp_obstack;
2517 struct addrmap *mutable_map;
2518 struct cleanup *cleanup;
2519 CORE_ADDR baseaddr;
2520
2521 obstack_init (&temp_obstack);
2522 cleanup = make_cleanup_obstack_free (&temp_obstack);
2523 mutable_map = addrmap_create_mutable (&temp_obstack);
2524
2525 iter = index->address_table;
2526 end = iter + index->address_table_size;
2527
2528 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2529
2530 while (iter < end)
2531 {
2532 ULONGEST hi, lo, cu_index;
2533 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2534 iter += 8;
2535 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2536 iter += 8;
2537 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2538 iter += 4;
f652bce2
DE
2539
2540 if (cu_index < dwarf2_per_objfile->n_comp_units)
2541 {
2542 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2543 dw2_get_cu (cu_index));
2544 }
2545 else
2546 {
2547 complaint (&symfile_complaints,
2548 _(".gdb_index address table has invalid CU number %u"),
2549 (unsigned) cu_index);
2550 }
9291a0cd
TT
2551 }
2552
2553 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2554 &objfile->objfile_obstack);
2555 do_cleanups (cleanup);
2556}
2557
59d7bcaf
JK
2558/* The hash function for strings in the mapped index. This is the same as
2559 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2560 implementation. This is necessary because the hash function is tied to the
2561 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2562 SYMBOL_HASH_NEXT.
2563
2564 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2565
9291a0cd 2566static hashval_t
559a7a62 2567mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2568{
2569 const unsigned char *str = (const unsigned char *) p;
2570 hashval_t r = 0;
2571 unsigned char c;
2572
2573 while ((c = *str++) != 0)
559a7a62
JK
2574 {
2575 if (index_version >= 5)
2576 c = tolower (c);
2577 r = r * 67 + c - 113;
2578 }
9291a0cd
TT
2579
2580 return r;
2581}
2582
2583/* Find a slot in the mapped index INDEX for the object named NAME.
2584 If NAME is found, set *VEC_OUT to point to the CU vector in the
2585 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2586
9291a0cd
TT
2587static int
2588find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2589 offset_type **vec_out)
2590{
0cf03b49
JK
2591 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2592 offset_type hash;
9291a0cd 2593 offset_type slot, step;
559a7a62 2594 int (*cmp) (const char *, const char *);
9291a0cd 2595
0cf03b49
JK
2596 if (current_language->la_language == language_cplus
2597 || current_language->la_language == language_java
2598 || current_language->la_language == language_fortran)
2599 {
2600 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2601 not contain any. */
2602 const char *paren = strchr (name, '(');
2603
2604 if (paren)
2605 {
2606 char *dup;
2607
2608 dup = xmalloc (paren - name + 1);
2609 memcpy (dup, name, paren - name);
2610 dup[paren - name] = 0;
2611
2612 make_cleanup (xfree, dup);
2613 name = dup;
2614 }
2615 }
2616
559a7a62 2617 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2618 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2619 simulate our NAME being searched is also lowercased. */
2620 hash = mapped_index_string_hash ((index->version == 4
2621 && case_sensitivity == case_sensitive_off
2622 ? 5 : index->version),
2623 name);
2624
3876f04e
DE
2625 slot = hash & (index->symbol_table_slots - 1);
2626 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2627 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2628
2629 for (;;)
2630 {
2631 /* Convert a slot number to an offset into the table. */
2632 offset_type i = 2 * slot;
2633 const char *str;
3876f04e 2634 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2635 {
2636 do_cleanups (back_to);
2637 return 0;
2638 }
9291a0cd 2639
3876f04e 2640 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2641 if (!cmp (name, str))
9291a0cd
TT
2642 {
2643 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2644 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2645 do_cleanups (back_to);
9291a0cd
TT
2646 return 1;
2647 }
2648
3876f04e 2649 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2650 }
2651}
2652
2ec9a5e0
TT
2653/* A helper function that reads the .gdb_index from SECTION and fills
2654 in MAP. FILENAME is the name of the file containing the section;
2655 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2656 ok to use deprecated sections.
2657
2658 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2659 out parameters that are filled in with information about the CU and
2660 TU lists in the section.
2661
2662 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2663
9291a0cd 2664static int
2ec9a5e0
TT
2665read_index_from_section (struct objfile *objfile,
2666 const char *filename,
2667 int deprecated_ok,
2668 struct dwarf2_section_info *section,
2669 struct mapped_index *map,
2670 const gdb_byte **cu_list,
2671 offset_type *cu_list_elements,
2672 const gdb_byte **types_list,
2673 offset_type *types_list_elements)
9291a0cd 2674{
948f8e3d 2675 const gdb_byte *addr;
2ec9a5e0 2676 offset_type version;
b3b272e1 2677 offset_type *metadata;
1fd400ff 2678 int i;
9291a0cd 2679
2ec9a5e0 2680 if (dwarf2_section_empty_p (section))
9291a0cd 2681 return 0;
82430852
JK
2682
2683 /* Older elfutils strip versions could keep the section in the main
2684 executable while splitting it for the separate debug info file. */
2ec9a5e0 2685 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
82430852
JK
2686 return 0;
2687
2ec9a5e0 2688 dwarf2_read_section (objfile, section);
9291a0cd 2689
2ec9a5e0 2690 addr = section->buffer;
9291a0cd 2691 /* Version check. */
1fd400ff 2692 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2693 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 2694 causes the index to behave very poorly for certain requests. Version 3
831adc1f 2695 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 2696 indices. */
831adc1f 2697 if (version < 4)
481860b3
GB
2698 {
2699 static int warning_printed = 0;
2700 if (!warning_printed)
2701 {
2702 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 2703 filename);
481860b3
GB
2704 warning_printed = 1;
2705 }
2706 return 0;
2707 }
2708 /* Index version 4 uses a different hash function than index version
2709 5 and later.
2710
2711 Versions earlier than 6 did not emit psymbols for inlined
2712 functions. Using these files will cause GDB not to be able to
2713 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
2714 indices unless the user has done
2715 "set use-deprecated-index-sections on". */
2ec9a5e0 2716 if (version < 6 && !deprecated_ok)
481860b3
GB
2717 {
2718 static int warning_printed = 0;
2719 if (!warning_printed)
2720 {
e615022a
DE
2721 warning (_("\
2722Skipping deprecated .gdb_index section in %s.\n\
2723Do \"set use-deprecated-index-sections on\" before the file is read\n\
2724to use the section anyway."),
2ec9a5e0 2725 filename);
481860b3
GB
2726 warning_printed = 1;
2727 }
2728 return 0;
2729 }
796a7ff8
DE
2730 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2731 of the TU (for symbols coming from TUs). It's just a performance bug, and
2732 we can't distinguish gdb-generated indices from gold-generated ones, so
2733 nothing to do here. */
2734
481860b3 2735 /* Indexes with higher version than the one supported by GDB may be no
594e8718 2736 longer backward compatible. */
796a7ff8 2737 if (version > 8)
594e8718 2738 return 0;
9291a0cd 2739
559a7a62 2740 map->version = version;
2ec9a5e0 2741 map->total_size = section->size;
9291a0cd
TT
2742
2743 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2744
2745 i = 0;
2ec9a5e0
TT
2746 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2747 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2748 / 8);
1fd400ff
TT
2749 ++i;
2750
2ec9a5e0
TT
2751 *types_list = addr + MAYBE_SWAP (metadata[i]);
2752 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2753 - MAYBE_SWAP (metadata[i]))
2754 / 8);
987d643c 2755 ++i;
1fd400ff
TT
2756
2757 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2758 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2759 - MAYBE_SWAP (metadata[i]));
2760 ++i;
2761
3876f04e
DE
2762 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2763 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2764 - MAYBE_SWAP (metadata[i]))
2765 / (2 * sizeof (offset_type)));
1fd400ff 2766 ++i;
9291a0cd 2767
f9d83a0b 2768 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 2769
2ec9a5e0
TT
2770 return 1;
2771}
2772
2773
2774/* Read the index file. If everything went ok, initialize the "quick"
2775 elements of all the CUs and return 1. Otherwise, return 0. */
2776
2777static int
2778dwarf2_read_index (struct objfile *objfile)
2779{
2780 struct mapped_index local_map, *map;
2781 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2782 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2783
2784 if (!read_index_from_section (objfile, objfile->name,
2785 use_deprecated_index_sections,
2786 &dwarf2_per_objfile->gdb_index, &local_map,
2787 &cu_list, &cu_list_elements,
2788 &types_list, &types_list_elements))
2789 return 0;
2790
0fefef59 2791 /* Don't use the index if it's empty. */
2ec9a5e0 2792 if (local_map.symbol_table_slots == 0)
0fefef59
DE
2793 return 0;
2794
2ec9a5e0
TT
2795 /* If there is a .dwz file, read it so we can get its CU list as
2796 well. */
2797 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2798 {
2799 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2800 struct mapped_index dwz_map;
2801 const gdb_byte *dwz_types_ignore;
2802 offset_type dwz_types_elements_ignore;
2803
2804 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2805 1,
2806 &dwz->gdb_index, &dwz_map,
2807 &dwz_list, &dwz_list_elements,
2808 &dwz_types_ignore,
2809 &dwz_types_elements_ignore))
2810 {
2811 warning (_("could not read '.gdb_index' section from %s; skipping"),
2812 bfd_get_filename (dwz->dwz_bfd));
2813 return 0;
2814 }
2815 }
2816
74a0d9f6
JK
2817 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2818 dwz_list_elements);
1fd400ff 2819
8b70b953
TT
2820 if (types_list_elements)
2821 {
2822 struct dwarf2_section_info *section;
2823
2824 /* We can only handle a single .debug_types when we have an
2825 index. */
2826 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2827 return 0;
2828
2829 section = VEC_index (dwarf2_section_info_def,
2830 dwarf2_per_objfile->types, 0);
2831
74a0d9f6
JK
2832 create_signatured_type_table_from_index (objfile, section, types_list,
2833 types_list_elements);
8b70b953 2834 }
9291a0cd 2835
2ec9a5e0
TT
2836 create_addrmap_from_index (objfile, &local_map);
2837
2838 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2839 *map = local_map;
9291a0cd
TT
2840
2841 dwarf2_per_objfile->index_table = map;
2842 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2843 dwarf2_per_objfile->quick_file_names_table =
2844 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2845
2846 return 1;
2847}
2848
2849/* A helper for the "quick" functions which sets the global
2850 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2851
9291a0cd
TT
2852static void
2853dw2_setup (struct objfile *objfile)
2854{
2855 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2856 gdb_assert (dwarf2_per_objfile);
2857}
2858
dee91e82 2859/* die_reader_func for dw2_get_file_names. */
2fdf6df6 2860
dee91e82
DE
2861static void
2862dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 2863 const gdb_byte *info_ptr,
dee91e82
DE
2864 struct die_info *comp_unit_die,
2865 int has_children,
2866 void *data)
9291a0cd 2867{
dee91e82
DE
2868 struct dwarf2_cu *cu = reader->cu;
2869 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2870 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 2871 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 2872 struct line_header *lh;
9291a0cd 2873 struct attribute *attr;
dee91e82 2874 int i;
15d034d0 2875 const char *name, *comp_dir;
7b9f3c50
DE
2876 void **slot;
2877 struct quick_file_names *qfn;
2878 unsigned int line_offset;
9291a0cd 2879
0186c6a7
DE
2880 gdb_assert (! this_cu->is_debug_types);
2881
07261596
TT
2882 /* Our callers never want to match partial units -- instead they
2883 will match the enclosing full CU. */
2884 if (comp_unit_die->tag == DW_TAG_partial_unit)
2885 {
2886 this_cu->v.quick->no_file_data = 1;
2887 return;
2888 }
2889
0186c6a7 2890 lh_cu = this_cu;
7b9f3c50
DE
2891 lh = NULL;
2892 slot = NULL;
2893 line_offset = 0;
dee91e82
DE
2894
2895 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
2896 if (attr)
2897 {
7b9f3c50
DE
2898 struct quick_file_names find_entry;
2899
2900 line_offset = DW_UNSND (attr);
2901
2902 /* We may have already read in this line header (TU line header sharing).
2903 If we have we're done. */
094b34ac
DE
2904 find_entry.hash.dwo_unit = cu->dwo_unit;
2905 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2906 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2907 &find_entry, INSERT);
2908 if (*slot != NULL)
2909 {
094b34ac 2910 lh_cu->v.quick->file_names = *slot;
dee91e82 2911 return;
7b9f3c50
DE
2912 }
2913
3019eac3 2914 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
2915 }
2916 if (lh == NULL)
2917 {
094b34ac 2918 lh_cu->v.quick->no_file_data = 1;
dee91e82 2919 return;
9291a0cd
TT
2920 }
2921
7b9f3c50 2922 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
2923 qfn->hash.dwo_unit = cu->dwo_unit;
2924 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2925 gdb_assert (slot != NULL);
2926 *slot = qfn;
9291a0cd 2927
dee91e82 2928 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 2929
7b9f3c50
DE
2930 qfn->num_file_names = lh->num_file_names;
2931 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2932 lh->num_file_names * sizeof (char *));
9291a0cd 2933 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2934 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2935 qfn->real_names = NULL;
9291a0cd 2936
7b9f3c50 2937 free_line_header (lh);
7b9f3c50 2938
094b34ac 2939 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
2940}
2941
2942/* A helper for the "quick" functions which attempts to read the line
2943 table for THIS_CU. */
2944
2945static struct quick_file_names *
e4a48d9d 2946dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 2947{
0186c6a7
DE
2948 /* This should never be called for TUs. */
2949 gdb_assert (! this_cu->is_debug_types);
2950 /* Nor type unit groups. */
2951 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 2952
dee91e82
DE
2953 if (this_cu->v.quick->file_names != NULL)
2954 return this_cu->v.quick->file_names;
2955 /* If we know there is no line data, no point in looking again. */
2956 if (this_cu->v.quick->no_file_data)
2957 return NULL;
2958
0186c6a7 2959 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
2960
2961 if (this_cu->v.quick->no_file_data)
2962 return NULL;
2963 return this_cu->v.quick->file_names;
9291a0cd
TT
2964}
2965
2966/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2967 real path for a given file name from the line table. */
2fdf6df6 2968
9291a0cd 2969static const char *
7b9f3c50
DE
2970dw2_get_real_path (struct objfile *objfile,
2971 struct quick_file_names *qfn, int index)
9291a0cd 2972{
7b9f3c50
DE
2973 if (qfn->real_names == NULL)
2974 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2975 qfn->num_file_names, sizeof (char *));
9291a0cd 2976
7b9f3c50
DE
2977 if (qfn->real_names[index] == NULL)
2978 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 2979
7b9f3c50 2980 return qfn->real_names[index];
9291a0cd
TT
2981}
2982
2983static struct symtab *
2984dw2_find_last_source_symtab (struct objfile *objfile)
2985{
2986 int index;
ae2de4f8 2987
9291a0cd
TT
2988 dw2_setup (objfile);
2989 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 2990 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
2991}
2992
7b9f3c50
DE
2993/* Traversal function for dw2_forget_cached_source_info. */
2994
2995static int
2996dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 2997{
7b9f3c50 2998 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 2999
7b9f3c50 3000 if (file_data->real_names)
9291a0cd 3001 {
7b9f3c50 3002 int i;
9291a0cd 3003
7b9f3c50 3004 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3005 {
7b9f3c50
DE
3006 xfree ((void*) file_data->real_names[i]);
3007 file_data->real_names[i] = NULL;
9291a0cd
TT
3008 }
3009 }
7b9f3c50
DE
3010
3011 return 1;
3012}
3013
3014static void
3015dw2_forget_cached_source_info (struct objfile *objfile)
3016{
3017 dw2_setup (objfile);
3018
3019 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3020 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3021}
3022
f8eba3c6
TT
3023/* Helper function for dw2_map_symtabs_matching_filename that expands
3024 the symtabs and calls the iterator. */
3025
3026static int
3027dw2_map_expand_apply (struct objfile *objfile,
3028 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3029 const char *name, const char *real_path,
f8eba3c6
TT
3030 int (*callback) (struct symtab *, void *),
3031 void *data)
3032{
3033 struct symtab *last_made = objfile->symtabs;
3034
3035 /* Don't visit already-expanded CUs. */
3036 if (per_cu->v.quick->symtab)
3037 return 0;
3038
3039 /* This may expand more than one symtab, and we want to iterate over
3040 all of them. */
a0f42c21 3041 dw2_instantiate_symtab (per_cu);
f8eba3c6 3042
f5b95b50 3043 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3044 objfile->symtabs, last_made);
3045}
3046
3047/* Implementation of the map_symtabs_matching_filename method. */
3048
9291a0cd 3049static int
f8eba3c6 3050dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3051 const char *real_path,
f8eba3c6
TT
3052 int (*callback) (struct symtab *, void *),
3053 void *data)
9291a0cd
TT
3054{
3055 int i;
c011a4f4 3056 const char *name_basename = lbasename (name);
9291a0cd
TT
3057
3058 dw2_setup (objfile);
ae2de4f8 3059
848e3e78
DE
3060 /* The rule is CUs specify all the files, including those used by
3061 any TU, so there's no need to scan TUs here. */
f4dc4d17 3062
848e3e78 3063 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3064 {
3065 int j;
f4dc4d17 3066 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3067 struct quick_file_names *file_data;
9291a0cd 3068
3d7bb9d9 3069 /* We only need to look at symtabs not already expanded. */
e254ef6a 3070 if (per_cu->v.quick->symtab)
9291a0cd
TT
3071 continue;
3072
e4a48d9d 3073 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3074 if (file_data == NULL)
9291a0cd
TT
3075 continue;
3076
7b9f3c50 3077 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3078 {
7b9f3c50 3079 const char *this_name = file_data->file_names[j];
da235a7c 3080 const char *this_real_name;
9291a0cd 3081
af529f8f 3082 if (compare_filenames_for_search (this_name, name))
9291a0cd 3083 {
f5b95b50 3084 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3085 callback, data))
3086 return 1;
288e77a7 3087 continue;
4aac40c8 3088 }
9291a0cd 3089
c011a4f4
DE
3090 /* Before we invoke realpath, which can get expensive when many
3091 files are involved, do a quick comparison of the basenames. */
3092 if (! basenames_may_differ
3093 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3094 continue;
3095
da235a7c
JK
3096 this_real_name = dw2_get_real_path (objfile, file_data, j);
3097 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3098 {
da235a7c
JK
3099 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3100 callback, data))
3101 return 1;
288e77a7 3102 continue;
da235a7c 3103 }
9291a0cd 3104
da235a7c
JK
3105 if (real_path != NULL)
3106 {
af529f8f
JK
3107 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3108 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3109 if (this_real_name != NULL
af529f8f 3110 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3111 {
f5b95b50 3112 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3113 callback, data))
3114 return 1;
288e77a7 3115 continue;
9291a0cd
TT
3116 }
3117 }
3118 }
3119 }
3120
9291a0cd
TT
3121 return 0;
3122}
3123
da51c347
DE
3124/* Struct used to manage iterating over all CUs looking for a symbol. */
3125
3126struct dw2_symtab_iterator
9291a0cd 3127{
da51c347
DE
3128 /* The internalized form of .gdb_index. */
3129 struct mapped_index *index;
3130 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3131 int want_specific_block;
3132 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3133 Unused if !WANT_SPECIFIC_BLOCK. */
3134 int block_index;
3135 /* The kind of symbol we're looking for. */
3136 domain_enum domain;
3137 /* The list of CUs from the index entry of the symbol,
3138 or NULL if not found. */
3139 offset_type *vec;
3140 /* The next element in VEC to look at. */
3141 int next;
3142 /* The number of elements in VEC, or zero if there is no match. */
3143 int length;
3144};
9291a0cd 3145
da51c347
DE
3146/* Initialize the index symtab iterator ITER.
3147 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3148 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3149
9291a0cd 3150static void
da51c347
DE
3151dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3152 struct mapped_index *index,
3153 int want_specific_block,
3154 int block_index,
3155 domain_enum domain,
3156 const char *name)
3157{
3158 iter->index = index;
3159 iter->want_specific_block = want_specific_block;
3160 iter->block_index = block_index;
3161 iter->domain = domain;
3162 iter->next = 0;
3163
3164 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3165 iter->length = MAYBE_SWAP (*iter->vec);
3166 else
3167 {
3168 iter->vec = NULL;
3169 iter->length = 0;
3170 }
3171}
3172
3173/* Return the next matching CU or NULL if there are no more. */
3174
3175static struct dwarf2_per_cu_data *
3176dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3177{
3178 for ( ; iter->next < iter->length; ++iter->next)
3179 {
3180 offset_type cu_index_and_attrs =
3181 MAYBE_SWAP (iter->vec[iter->next + 1]);
3182 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3183 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3184 int want_static = iter->block_index != GLOBAL_BLOCK;
3185 /* This value is only valid for index versions >= 7. */
3186 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3187 gdb_index_symbol_kind symbol_kind =
3188 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3189 /* Only check the symbol attributes if they're present.
3190 Indices prior to version 7 don't record them,
3191 and indices >= 7 may elide them for certain symbols
3192 (gold does this). */
3193 int attrs_valid =
3194 (iter->index->version >= 7
3195 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3196
3197 /* Skip if already read in. */
3198 if (per_cu->v.quick->symtab)
3199 continue;
3200
3201 if (attrs_valid
3202 && iter->want_specific_block
3203 && want_static != is_static)
3204 continue;
3205
3206 /* Only check the symbol's kind if it has one. */
3207 if (attrs_valid)
3208 {
3209 switch (iter->domain)
3210 {
3211 case VAR_DOMAIN:
3212 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3213 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3214 /* Some types are also in VAR_DOMAIN. */
3215 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3216 continue;
3217 break;
3218 case STRUCT_DOMAIN:
3219 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3220 continue;
3221 break;
3222 case LABEL_DOMAIN:
3223 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3224 continue;
3225 break;
3226 default:
3227 break;
3228 }
3229 }
3230
3231 ++iter->next;
3232 return per_cu;
3233 }
3234
3235 return NULL;
3236}
3237
3238static struct symtab *
3239dw2_lookup_symbol (struct objfile *objfile, int block_index,
3240 const char *name, domain_enum domain)
9291a0cd 3241{
da51c347 3242 struct symtab *stab_best = NULL;
156942c7
DE
3243 struct mapped_index *index;
3244
9291a0cd
TT
3245 dw2_setup (objfile);
3246
156942c7
DE
3247 index = dwarf2_per_objfile->index_table;
3248
da51c347 3249 /* index is NULL if OBJF_READNOW. */
156942c7 3250 if (index)
9291a0cd 3251 {
da51c347
DE
3252 struct dw2_symtab_iterator iter;
3253 struct dwarf2_per_cu_data *per_cu;
3254
3255 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3256
da51c347 3257 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3258 {
da51c347
DE
3259 struct symbol *sym = NULL;
3260 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3261
3262 /* Some caution must be observed with overloaded functions
3263 and methods, since the index will not contain any overload
3264 information (but NAME might contain it). */
3265 if (stab->primary)
9291a0cd 3266 {
da51c347
DE
3267 struct blockvector *bv = BLOCKVECTOR (stab);
3268 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3269
da51c347
DE
3270 sym = lookup_block_symbol (block, name, domain);
3271 }
1fd400ff 3272
da51c347
DE
3273 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3274 {
3275 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3276 return stab;
3277
3278 stab_best = stab;
9291a0cd 3279 }
da51c347
DE
3280
3281 /* Keep looking through other CUs. */
9291a0cd
TT
3282 }
3283 }
9291a0cd 3284
da51c347 3285 return stab_best;
9291a0cd
TT
3286}
3287
3288static void
3289dw2_print_stats (struct objfile *objfile)
3290{
e4a48d9d 3291 int i, total, count;
9291a0cd
TT
3292
3293 dw2_setup (objfile);
e4a48d9d 3294 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3295 count = 0;
e4a48d9d 3296 for (i = 0; i < total; ++i)
9291a0cd 3297 {
e254ef6a 3298 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3299
e254ef6a 3300 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3301 ++count;
3302 }
e4a48d9d 3303 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3304 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3305}
3306
3307static void
3308dw2_dump (struct objfile *objfile)
3309{
3310 /* Nothing worth printing. */
3311}
3312
3313static void
3314dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3315 struct section_offsets *delta)
3316{
3317 /* There's nothing to relocate here. */
3318}
3319
3320static void
3321dw2_expand_symtabs_for_function (struct objfile *objfile,
3322 const char *func_name)
3323{
da51c347
DE
3324 struct mapped_index *index;
3325
3326 dw2_setup (objfile);
3327
3328 index = dwarf2_per_objfile->index_table;
3329
3330 /* index is NULL if OBJF_READNOW. */
3331 if (index)
3332 {
3333 struct dw2_symtab_iterator iter;
3334 struct dwarf2_per_cu_data *per_cu;
3335
3336 /* Note: It doesn't matter what we pass for block_index here. */
3337 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3338 func_name);
3339
3340 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3341 dw2_instantiate_symtab (per_cu);
3342 }
9291a0cd
TT
3343}
3344
3345static void
3346dw2_expand_all_symtabs (struct objfile *objfile)
3347{
3348 int i;
3349
3350 dw2_setup (objfile);
1fd400ff
TT
3351
3352 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3353 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3354 {
e254ef6a 3355 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3356
a0f42c21 3357 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3358 }
3359}
3360
3361static void
652a8996
JK
3362dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3363 const char *fullname)
9291a0cd
TT
3364{
3365 int i;
3366
3367 dw2_setup (objfile);
d4637a04
DE
3368
3369 /* We don't need to consider type units here.
3370 This is only called for examining code, e.g. expand_line_sal.
3371 There can be an order of magnitude (or more) more type units
3372 than comp units, and we avoid them if we can. */
3373
3374 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3375 {
3376 int j;
e254ef6a 3377 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3378 struct quick_file_names *file_data;
9291a0cd 3379
3d7bb9d9 3380 /* We only need to look at symtabs not already expanded. */
e254ef6a 3381 if (per_cu->v.quick->symtab)
9291a0cd
TT
3382 continue;
3383
e4a48d9d 3384 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3385 if (file_data == NULL)
9291a0cd
TT
3386 continue;
3387
7b9f3c50 3388 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3389 {
652a8996
JK
3390 const char *this_fullname = file_data->file_names[j];
3391
3392 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3393 {
a0f42c21 3394 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3395 break;
3396 }
3397 }
3398 }
3399}
3400
356d9f9d
TT
3401/* A helper function for dw2_find_symbol_file that finds the primary
3402 file name for a given CU. This is a die_reader_func. */
3403
3404static void
3405dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
d521ce57 3406 const gdb_byte *info_ptr,
356d9f9d
TT
3407 struct die_info *comp_unit_die,
3408 int has_children,
3409 void *data)
3410{
3411 const char **result_ptr = data;
3412 struct dwarf2_cu *cu = reader->cu;
3413 struct attribute *attr;
3414
3415 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3416 if (attr == NULL)
3417 *result_ptr = NULL;
3418 else
3419 *result_ptr = DW_STRING (attr);
3420}
3421
dd786858 3422static const char *
9291a0cd
TT
3423dw2_find_symbol_file (struct objfile *objfile, const char *name)
3424{
e254ef6a 3425 struct dwarf2_per_cu_data *per_cu;
9291a0cd 3426 offset_type *vec;
356d9f9d 3427 const char *filename;
9291a0cd
TT
3428
3429 dw2_setup (objfile);
3430
ae2de4f8 3431 /* index_table is NULL if OBJF_READNOW. */
9291a0cd 3432 if (!dwarf2_per_objfile->index_table)
96408a79
SA
3433 {
3434 struct symtab *s;
3435
d790cf0a
DE
3436 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3437 {
3438 struct blockvector *bv = BLOCKVECTOR (s);
3439 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3440 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3441
3442 if (sym)
652a8996
JK
3443 {
3444 /* Only file extension of returned filename is recognized. */
3445 return SYMBOL_SYMTAB (sym)->filename;
3446 }
d790cf0a 3447 }
96408a79
SA
3448 return NULL;
3449 }
9291a0cd
TT
3450
3451 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3452 name, &vec))
3453 return NULL;
3454
3455 /* Note that this just looks at the very first one named NAME -- but
3456 actually we are looking for a function. find_main_filename
3457 should be rewritten so that it doesn't require a custom hook. It
3458 could just use the ordinary symbol tables. */
3459 /* vec[0] is the length, which must always be >0. */
156942c7 3460 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
9291a0cd 3461
356d9f9d 3462 if (per_cu->v.quick->symtab != NULL)
652a8996
JK
3463 {
3464 /* Only file extension of returned filename is recognized. */
3465 return per_cu->v.quick->symtab->filename;
3466 }
356d9f9d 3467
f4dc4d17
DE
3468 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3469 dw2_get_primary_filename_reader, &filename);
9291a0cd 3470
652a8996 3471 /* Only file extension of returned filename is recognized. */
356d9f9d 3472 return filename;
9291a0cd
TT
3473}
3474
3475static void
40658b94
PH
3476dw2_map_matching_symbols (const char * name, domain_enum namespace,
3477 struct objfile *objfile, int global,
3478 int (*callback) (struct block *,
3479 struct symbol *, void *),
2edb89d3
JK
3480 void *data, symbol_compare_ftype *match,
3481 symbol_compare_ftype *ordered_compare)
9291a0cd 3482{
40658b94 3483 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3484 current language is Ada for a non-Ada objfile using GNU index. As Ada
3485 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3486}
3487
3488static void
f8eba3c6
TT
3489dw2_expand_symtabs_matching
3490 (struct objfile *objfile,
fbd9ab74 3491 int (*file_matcher) (const char *, void *, int basenames),
e078317b 3492 int (*name_matcher) (const char *, void *),
f8eba3c6
TT
3493 enum search_domain kind,
3494 void *data)
9291a0cd
TT
3495{
3496 int i;
3497 offset_type iter;
4b5246aa 3498 struct mapped_index *index;
9291a0cd
TT
3499
3500 dw2_setup (objfile);
ae2de4f8
DE
3501
3502 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3503 if (!dwarf2_per_objfile->index_table)
3504 return;
4b5246aa 3505 index = dwarf2_per_objfile->index_table;
9291a0cd 3506
7b08b9eb 3507 if (file_matcher != NULL)
24c79950
TT
3508 {
3509 struct cleanup *cleanup;
3510 htab_t visited_found, visited_not_found;
3511
3512 visited_found = htab_create_alloc (10,
3513 htab_hash_pointer, htab_eq_pointer,
3514 NULL, xcalloc, xfree);
3515 cleanup = make_cleanup_htab_delete (visited_found);
3516 visited_not_found = htab_create_alloc (10,
3517 htab_hash_pointer, htab_eq_pointer,
3518 NULL, xcalloc, xfree);
3519 make_cleanup_htab_delete (visited_not_found);
3520
848e3e78
DE
3521 /* The rule is CUs specify all the files, including those used by
3522 any TU, so there's no need to scan TUs here. */
3523
3524 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3525 {
3526 int j;
f4dc4d17 3527 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3528 struct quick_file_names *file_data;
3529 void **slot;
7b08b9eb 3530
24c79950 3531 per_cu->v.quick->mark = 0;
3d7bb9d9 3532
24c79950
TT
3533 /* We only need to look at symtabs not already expanded. */
3534 if (per_cu->v.quick->symtab)
3535 continue;
7b08b9eb 3536
e4a48d9d 3537 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3538 if (file_data == NULL)
3539 continue;
7b08b9eb 3540
24c79950
TT
3541 if (htab_find (visited_not_found, file_data) != NULL)
3542 continue;
3543 else if (htab_find (visited_found, file_data) != NULL)
3544 {
3545 per_cu->v.quick->mark = 1;
3546 continue;
3547 }
3548
3549 for (j = 0; j < file_data->num_file_names; ++j)
3550 {
da235a7c
JK
3551 const char *this_real_name;
3552
fbd9ab74 3553 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3554 {
3555 per_cu->v.quick->mark = 1;
3556 break;
3557 }
da235a7c
JK
3558
3559 /* Before we invoke realpath, which can get expensive when many
3560 files are involved, do a quick comparison of the basenames. */
3561 if (!basenames_may_differ
3562 && !file_matcher (lbasename (file_data->file_names[j]),
3563 data, 1))
3564 continue;
3565
3566 this_real_name = dw2_get_real_path (objfile, file_data, j);
3567 if (file_matcher (this_real_name, data, 0))
3568 {
3569 per_cu->v.quick->mark = 1;
3570 break;
3571 }
24c79950
TT
3572 }
3573
3574 slot = htab_find_slot (per_cu->v.quick->mark
3575 ? visited_found
3576 : visited_not_found,
3577 file_data, INSERT);
3578 *slot = file_data;
3579 }
3580
3581 do_cleanups (cleanup);
3582 }
9291a0cd 3583
3876f04e 3584 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3585 {
3586 offset_type idx = 2 * iter;
3587 const char *name;
3588 offset_type *vec, vec_len, vec_idx;
3589
3876f04e 3590 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3591 continue;
3592
3876f04e 3593 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3594
e078317b 3595 if (! (*name_matcher) (name, data))
9291a0cd
TT
3596 continue;
3597
3598 /* The name was matched, now expand corresponding CUs that were
3599 marked. */
4b5246aa 3600 vec = (offset_type *) (index->constant_pool
3876f04e 3601 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3602 vec_len = MAYBE_SWAP (vec[0]);
3603 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3604 {
e254ef6a 3605 struct dwarf2_per_cu_data *per_cu;
156942c7
DE
3606 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3607 gdb_index_symbol_kind symbol_kind =
3608 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3609 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3610
3611 /* Don't crash on bad data. */
3612 if (cu_index >= (dwarf2_per_objfile->n_comp_units
667e0a4b 3613 + dwarf2_per_objfile->n_type_units))
156942c7 3614 continue;
1fd400ff 3615
156942c7
DE
3616 /* Only check the symbol's kind if it has one.
3617 Indices prior to version 7 don't record it. */
3618 if (index->version >= 7)
3619 {
3620 switch (kind)
3621 {
3622 case VARIABLES_DOMAIN:
3623 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3624 continue;
3625 break;
3626 case FUNCTIONS_DOMAIN:
3627 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3628 continue;
3629 break;
3630 case TYPES_DOMAIN:
3631 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3632 continue;
3633 break;
3634 default:
3635 break;
3636 }
3637 }
3638
3639 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3640 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3641 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3642 }
3643 }
3644}
3645
9703b513
TT
3646/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3647 symtab. */
3648
3649static struct symtab *
3650recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3651{
3652 int i;
3653
3654 if (BLOCKVECTOR (symtab) != NULL
3655 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3656 return symtab;
3657
a3ec0bb1
DE
3658 if (symtab->includes == NULL)
3659 return NULL;
3660
9703b513
TT
3661 for (i = 0; symtab->includes[i]; ++i)
3662 {
a3ec0bb1 3663 struct symtab *s = symtab->includes[i];
9703b513
TT
3664
3665 s = recursively_find_pc_sect_symtab (s, pc);
3666 if (s != NULL)
3667 return s;
3668 }
3669
3670 return NULL;
3671}
3672
9291a0cd
TT
3673static struct symtab *
3674dw2_find_pc_sect_symtab (struct objfile *objfile,
3675 struct minimal_symbol *msymbol,
3676 CORE_ADDR pc,
3677 struct obj_section *section,
3678 int warn_if_readin)
3679{
3680 struct dwarf2_per_cu_data *data;
9703b513 3681 struct symtab *result;
9291a0cd
TT
3682
3683 dw2_setup (objfile);
3684
3685 if (!objfile->psymtabs_addrmap)
3686 return NULL;
3687
3688 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3689 if (!data)
3690 return NULL;
3691
3692 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 3693 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
3694 paddress (get_objfile_arch (objfile), pc));
3695
9703b513
TT
3696 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3697 gdb_assert (result != NULL);
3698 return result;
9291a0cd
TT
3699}
3700
9291a0cd 3701static void
44b13c5a 3702dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 3703 void *data, int need_fullname)
9291a0cd
TT
3704{
3705 int i;
24c79950
TT
3706 struct cleanup *cleanup;
3707 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3708 NULL, xcalloc, xfree);
9291a0cd 3709
24c79950 3710 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 3711 dw2_setup (objfile);
ae2de4f8 3712
848e3e78
DE
3713 /* The rule is CUs specify all the files, including those used by
3714 any TU, so there's no need to scan TUs here.
3715 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 3716
848e3e78 3717 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3718 {
3719 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3720
3721 if (per_cu->v.quick->symtab)
3722 {
3723 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3724 INSERT);
3725
3726 *slot = per_cu->v.quick->file_names;
3727 }
3728 }
3729
848e3e78 3730 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3731 {
3732 int j;
f4dc4d17 3733 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3734 struct quick_file_names *file_data;
24c79950 3735 void **slot;
9291a0cd 3736
3d7bb9d9 3737 /* We only need to look at symtabs not already expanded. */
e254ef6a 3738 if (per_cu->v.quick->symtab)
9291a0cd
TT
3739 continue;
3740
e4a48d9d 3741 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3742 if (file_data == NULL)
9291a0cd
TT
3743 continue;
3744
24c79950
TT
3745 slot = htab_find_slot (visited, file_data, INSERT);
3746 if (*slot)
3747 {
3748 /* Already visited. */
3749 continue;
3750 }
3751 *slot = file_data;
3752
7b9f3c50 3753 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3754 {
74e2f255
DE
3755 const char *this_real_name;
3756
3757 if (need_fullname)
3758 this_real_name = dw2_get_real_path (objfile, file_data, j);
3759 else
3760 this_real_name = NULL;
7b9f3c50 3761 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
3762 }
3763 }
24c79950
TT
3764
3765 do_cleanups (cleanup);
9291a0cd
TT
3766}
3767
3768static int
3769dw2_has_symbols (struct objfile *objfile)
3770{
3771 return 1;
3772}
3773
3774const struct quick_symbol_functions dwarf2_gdb_index_functions =
3775{
3776 dw2_has_symbols,
3777 dw2_find_last_source_symtab,
3778 dw2_forget_cached_source_info,
f8eba3c6 3779 dw2_map_symtabs_matching_filename,
9291a0cd 3780 dw2_lookup_symbol,
9291a0cd
TT
3781 dw2_print_stats,
3782 dw2_dump,
3783 dw2_relocate,
3784 dw2_expand_symtabs_for_function,
3785 dw2_expand_all_symtabs,
652a8996 3786 dw2_expand_symtabs_with_fullname,
9291a0cd 3787 dw2_find_symbol_file,
40658b94 3788 dw2_map_matching_symbols,
9291a0cd
TT
3789 dw2_expand_symtabs_matching,
3790 dw2_find_pc_sect_symtab,
9291a0cd
TT
3791 dw2_map_symbol_filenames
3792};
3793
3794/* Initialize for reading DWARF for this objfile. Return 0 if this
3795 file will use psymtabs, or 1 if using the GNU index. */
3796
3797int
3798dwarf2_initialize_objfile (struct objfile *objfile)
3799{
3800 /* If we're about to read full symbols, don't bother with the
3801 indices. In this case we also don't care if some other debug
3802 format is making psymtabs, because they are all about to be
3803 expanded anyway. */
3804 if ((objfile->flags & OBJF_READNOW))
3805 {
3806 int i;
3807
3808 dwarf2_per_objfile->using_index = 1;
3809 create_all_comp_units (objfile);
0e50663e 3810 create_all_type_units (objfile);
7b9f3c50
DE
3811 dwarf2_per_objfile->quick_file_names_table =
3812 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 3813
1fd400ff 3814 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3815 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3816 {
e254ef6a 3817 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3818
e254ef6a
DE
3819 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3820 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
3821 }
3822
3823 /* Return 1 so that gdb sees the "quick" functions. However,
3824 these functions will be no-ops because we will have expanded
3825 all symtabs. */
3826 return 1;
3827 }
3828
3829 if (dwarf2_read_index (objfile))
3830 return 1;
3831
9291a0cd
TT
3832 return 0;
3833}
3834
3835\f
3836
dce234bc
PP
3837/* Build a partial symbol table. */
3838
3839void
f29dff0a 3840dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 3841{
c9bf0622
TT
3842 volatile struct gdb_exception except;
3843
f29dff0a 3844 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
3845 {
3846 init_psymbol_list (objfile, 1024);
3847 }
3848
c9bf0622
TT
3849 TRY_CATCH (except, RETURN_MASK_ERROR)
3850 {
3851 /* This isn't really ideal: all the data we allocate on the
3852 objfile's obstack is still uselessly kept around. However,
3853 freeing it seems unsafe. */
3854 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3855
3856 dwarf2_build_psymtabs_hard (objfile);
3857 discard_cleanups (cleanups);
3858 }
3859 if (except.reason < 0)
3860 exception_print (gdb_stderr, except);
c906108c 3861}
c906108c 3862
1ce1cefd
DE
3863/* Return the total length of the CU described by HEADER. */
3864
3865static unsigned int
3866get_cu_length (const struct comp_unit_head *header)
3867{
3868 return header->initial_length_size + header->length;
3869}
3870
45452591
DE
3871/* Return TRUE if OFFSET is within CU_HEADER. */
3872
3873static inline int
b64f50a1 3874offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 3875{
b64f50a1 3876 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 3877 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 3878
b64f50a1 3879 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
3880}
3881
3b80fe9b
DE
3882/* Find the base address of the compilation unit for range lists and
3883 location lists. It will normally be specified by DW_AT_low_pc.
3884 In DWARF-3 draft 4, the base address could be overridden by
3885 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3886 compilation units with discontinuous ranges. */
3887
3888static void
3889dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3890{
3891 struct attribute *attr;
3892
3893 cu->base_known = 0;
3894 cu->base_address = 0;
3895
3896 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3897 if (attr)
3898 {
3899 cu->base_address = DW_ADDR (attr);
3900 cu->base_known = 1;
3901 }
3902 else
3903 {
3904 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3905 if (attr)
3906 {
3907 cu->base_address = DW_ADDR (attr);
3908 cu->base_known = 1;
3909 }
3910 }
3911}
3912
93311388
DE
3913/* Read in the comp unit header information from the debug_info at info_ptr.
3914 NOTE: This leaves members offset, first_die_offset to be filled in
3915 by the caller. */
107d2387 3916
d521ce57 3917static const gdb_byte *
107d2387 3918read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 3919 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
3920{
3921 int signed_addr;
891d2f0b 3922 unsigned int bytes_read;
c764a876
DE
3923
3924 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3925 cu_header->initial_length_size = bytes_read;
3926 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 3927 info_ptr += bytes_read;
107d2387
AC
3928 cu_header->version = read_2_bytes (abfd, info_ptr);
3929 info_ptr += 2;
b64f50a1
JK
3930 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3931 &bytes_read);
613e1657 3932 info_ptr += bytes_read;
107d2387
AC
3933 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3934 info_ptr += 1;
3935 signed_addr = bfd_get_sign_extend_vma (abfd);
3936 if (signed_addr < 0)
8e65ff28 3937 internal_error (__FILE__, __LINE__,
e2e0b3e5 3938 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 3939 cu_header->signed_addr_p = signed_addr;
c764a876 3940
107d2387
AC
3941 return info_ptr;
3942}
3943
36586728
TT
3944/* Helper function that returns the proper abbrev section for
3945 THIS_CU. */
3946
3947static struct dwarf2_section_info *
3948get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3949{
3950 struct dwarf2_section_info *abbrev;
3951
3952 if (this_cu->is_dwz)
3953 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3954 else
3955 abbrev = &dwarf2_per_objfile->abbrev;
3956
3957 return abbrev;
3958}
3959
9ff913ba
DE
3960/* Subroutine of read_and_check_comp_unit_head and
3961 read_and_check_type_unit_head to simplify them.
3962 Perform various error checking on the header. */
3963
3964static void
3965error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
3966 struct dwarf2_section_info *section,
3967 struct dwarf2_section_info *abbrev_section)
9ff913ba
DE
3968{
3969 bfd *abfd = section->asection->owner;
3970 const char *filename = bfd_get_filename (abfd);
3971
3972 if (header->version != 2 && header->version != 3 && header->version != 4)
3973 error (_("Dwarf Error: wrong version in compilation unit header "
3974 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3975 filename);
3976
b64f50a1 3977 if (header->abbrev_offset.sect_off
36586728 3978 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
3979 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3980 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 3981 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
3982 filename);
3983
3984 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3985 avoid potential 32-bit overflow. */
1ce1cefd 3986 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
3987 > section->size)
3988 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3989 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 3990 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
3991 filename);
3992}
3993
3994/* Read in a CU/TU header and perform some basic error checking.
3995 The contents of the header are stored in HEADER.
3996 The result is a pointer to the start of the first DIE. */
adabb602 3997
d521ce57 3998static const gdb_byte *
9ff913ba
DE
3999read_and_check_comp_unit_head (struct comp_unit_head *header,
4000 struct dwarf2_section_info *section,
4bdcc0c1 4001 struct dwarf2_section_info *abbrev_section,
d521ce57 4002 const gdb_byte *info_ptr,
9ff913ba 4003 int is_debug_types_section)
72bf9492 4004{
d521ce57 4005 const gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 4006 bfd *abfd = section->asection->owner;
72bf9492 4007
b64f50a1 4008 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4009
72bf9492
DJ
4010 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4011
460c1c54
CC
4012 /* If we're reading a type unit, skip over the signature and
4013 type_offset fields. */
b0df02fd 4014 if (is_debug_types_section)
460c1c54
CC
4015 info_ptr += 8 /*signature*/ + header->offset_size;
4016
b64f50a1 4017 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4018
4bdcc0c1 4019 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4020
4021 return info_ptr;
4022}
4023
348e048f
DE
4024/* Read in the types comp unit header information from .debug_types entry at
4025 types_ptr. The result is a pointer to one past the end of the header. */
4026
d521ce57 4027static const gdb_byte *
9ff913ba
DE
4028read_and_check_type_unit_head (struct comp_unit_head *header,
4029 struct dwarf2_section_info *section,
4bdcc0c1 4030 struct dwarf2_section_info *abbrev_section,
d521ce57 4031 const gdb_byte *info_ptr,
dee91e82
DE
4032 ULONGEST *signature,
4033 cu_offset *type_offset_in_tu)
348e048f 4034{
d521ce57 4035 const gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 4036 bfd *abfd = section->asection->owner;
348e048f 4037
b64f50a1 4038 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4039
9ff913ba 4040 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4041
9ff913ba
DE
4042 /* If we're reading a type unit, skip over the signature and
4043 type_offset fields. */
4044 if (signature != NULL)
4045 *signature = read_8_bytes (abfd, info_ptr);
4046 info_ptr += 8;
dee91e82
DE
4047 if (type_offset_in_tu != NULL)
4048 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4049 header->offset_size);
9ff913ba
DE
4050 info_ptr += header->offset_size;
4051
b64f50a1 4052 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4053
4bdcc0c1 4054 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4055
4056 return info_ptr;
348e048f
DE
4057}
4058
f4dc4d17
DE
4059/* Fetch the abbreviation table offset from a comp or type unit header. */
4060
4061static sect_offset
4062read_abbrev_offset (struct dwarf2_section_info *section,
4063 sect_offset offset)
4064{
4065 bfd *abfd = section->asection->owner;
d521ce57 4066 const gdb_byte *info_ptr;
f4dc4d17
DE
4067 unsigned int length, initial_length_size, offset_size;
4068 sect_offset abbrev_offset;
4069
4070 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4071 info_ptr = section->buffer + offset.sect_off;
4072 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4073 offset_size = initial_length_size == 4 ? 4 : 8;
4074 info_ptr += initial_length_size + 2 /*version*/;
4075 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4076 return abbrev_offset;
4077}
4078
aaa75496
JB
4079/* Allocate a new partial symtab for file named NAME and mark this new
4080 partial symtab as being an include of PST. */
4081
4082static void
d521ce57 4083dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4084 struct objfile *objfile)
4085{
4086 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4087
fbd9ab74
JK
4088 if (!IS_ABSOLUTE_PATH (subpst->filename))
4089 {
4090 /* It shares objfile->objfile_obstack. */
4091 subpst->dirname = pst->dirname;
4092 }
4093
aaa75496
JB
4094 subpst->section_offsets = pst->section_offsets;
4095 subpst->textlow = 0;
4096 subpst->texthigh = 0;
4097
4098 subpst->dependencies = (struct partial_symtab **)
4099 obstack_alloc (&objfile->objfile_obstack,
4100 sizeof (struct partial_symtab *));
4101 subpst->dependencies[0] = pst;
4102 subpst->number_of_dependencies = 1;
4103
4104 subpst->globals_offset = 0;
4105 subpst->n_global_syms = 0;
4106 subpst->statics_offset = 0;
4107 subpst->n_static_syms = 0;
4108 subpst->symtab = NULL;
4109 subpst->read_symtab = pst->read_symtab;
4110 subpst->readin = 0;
4111
4112 /* No private part is necessary for include psymtabs. This property
4113 can be used to differentiate between such include psymtabs and
10b3939b 4114 the regular ones. */
58a9656e 4115 subpst->read_symtab_private = NULL;
aaa75496
JB
4116}
4117
4118/* Read the Line Number Program data and extract the list of files
4119 included by the source file represented by PST. Build an include
d85a05f0 4120 partial symtab for each of these included files. */
aaa75496
JB
4121
4122static void
4123dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4124 struct die_info *die,
4125 struct partial_symtab *pst)
aaa75496 4126{
d85a05f0
DJ
4127 struct line_header *lh = NULL;
4128 struct attribute *attr;
aaa75496 4129
d85a05f0
DJ
4130 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4131 if (attr)
3019eac3 4132 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4133 if (lh == NULL)
4134 return; /* No linetable, so no includes. */
4135
c6da4cef 4136 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4137 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4138
4139 free_line_header (lh);
4140}
4141
348e048f 4142static hashval_t
52dc124a 4143hash_signatured_type (const void *item)
348e048f 4144{
52dc124a 4145 const struct signatured_type *sig_type = item;
9a619af0 4146
348e048f 4147 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4148 return sig_type->signature;
348e048f
DE
4149}
4150
4151static int
52dc124a 4152eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4153{
4154 const struct signatured_type *lhs = item_lhs;
4155 const struct signatured_type *rhs = item_rhs;
9a619af0 4156
348e048f
DE
4157 return lhs->signature == rhs->signature;
4158}
4159
1fd400ff
TT
4160/* Allocate a hash table for signatured types. */
4161
4162static htab_t
673bfd45 4163allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4164{
4165 return htab_create_alloc_ex (41,
52dc124a
DE
4166 hash_signatured_type,
4167 eq_signatured_type,
1fd400ff
TT
4168 NULL,
4169 &objfile->objfile_obstack,
4170 hashtab_obstack_allocate,
4171 dummy_obstack_deallocate);
4172}
4173
d467dd73 4174/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4175
4176static int
d467dd73 4177add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4178{
4179 struct signatured_type *sigt = *slot;
b4dd5633 4180 struct signatured_type ***datap = datum;
1fd400ff 4181
b4dd5633 4182 **datap = sigt;
1fd400ff
TT
4183 ++*datap;
4184
4185 return 1;
4186}
4187
c88ee1f0
DE
4188/* Create the hash table of all entries in the .debug_types
4189 (or .debug_types.dwo) section(s).
4190 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4191 otherwise it is NULL.
4192
4193 The result is a pointer to the hash table or NULL if there are no types.
4194
4195 Note: This function processes DWO files only, not DWP files. */
348e048f 4196
3019eac3
DE
4197static htab_t
4198create_debug_types_hash_table (struct dwo_file *dwo_file,
4199 VEC (dwarf2_section_info_def) *types)
348e048f 4200{
3019eac3 4201 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4202 htab_t types_htab = NULL;
8b70b953
TT
4203 int ix;
4204 struct dwarf2_section_info *section;
4bdcc0c1 4205 struct dwarf2_section_info *abbrev_section;
348e048f 4206
3019eac3
DE
4207 if (VEC_empty (dwarf2_section_info_def, types))
4208 return NULL;
348e048f 4209
4bdcc0c1
DE
4210 abbrev_section = (dwo_file != NULL
4211 ? &dwo_file->sections.abbrev
4212 : &dwarf2_per_objfile->abbrev);
4213
09406207
DE
4214 if (dwarf2_read_debug)
4215 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4216 dwo_file ? ".dwo" : "",
4217 bfd_get_filename (abbrev_section->asection->owner));
4218
8b70b953 4219 for (ix = 0;
3019eac3 4220 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4221 ++ix)
4222 {
3019eac3 4223 bfd *abfd;
d521ce57 4224 const gdb_byte *info_ptr, *end_ptr;
36586728 4225 struct dwarf2_section_info *abbrev_section;
348e048f 4226
8b70b953
TT
4227 dwarf2_read_section (objfile, section);
4228 info_ptr = section->buffer;
348e048f 4229
8b70b953
TT
4230 if (info_ptr == NULL)
4231 continue;
348e048f 4232
3019eac3
DE
4233 /* We can't set abfd until now because the section may be empty or
4234 not present, in which case section->asection will be NULL. */
4235 abfd = section->asection->owner;
4236
36586728
TT
4237 if (dwo_file)
4238 abbrev_section = &dwo_file->sections.abbrev;
4239 else
4240 abbrev_section = &dwarf2_per_objfile->abbrev;
4241
dee91e82
DE
4242 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4243 because we don't need to read any dies: the signature is in the
4244 header. */
8b70b953
TT
4245
4246 end_ptr = info_ptr + section->size;
4247 while (info_ptr < end_ptr)
4248 {
b64f50a1 4249 sect_offset offset;
3019eac3 4250 cu_offset type_offset_in_tu;
8b70b953 4251 ULONGEST signature;
52dc124a 4252 struct signatured_type *sig_type;
3019eac3 4253 struct dwo_unit *dwo_tu;
8b70b953 4254 void **slot;
d521ce57 4255 const gdb_byte *ptr = info_ptr;
9ff913ba 4256 struct comp_unit_head header;
dee91e82 4257 unsigned int length;
348e048f 4258
b64f50a1 4259 offset.sect_off = ptr - section->buffer;
348e048f 4260
8b70b953 4261 /* We need to read the type's signature in order to build the hash
9ff913ba 4262 table, but we don't need anything else just yet. */
348e048f 4263
4bdcc0c1
DE
4264 ptr = read_and_check_type_unit_head (&header, section,
4265 abbrev_section, ptr,
3019eac3 4266 &signature, &type_offset_in_tu);
6caca83c 4267
1ce1cefd 4268 length = get_cu_length (&header);
dee91e82 4269
6caca83c 4270 /* Skip dummy type units. */
dee91e82
DE
4271 if (ptr >= info_ptr + length
4272 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4273 {
1ce1cefd 4274 info_ptr += length;
6caca83c
CC
4275 continue;
4276 }
8b70b953 4277
0349ea22
DE
4278 if (types_htab == NULL)
4279 {
4280 if (dwo_file)
4281 types_htab = allocate_dwo_unit_table (objfile);
4282 else
4283 types_htab = allocate_signatured_type_table (objfile);
4284 }
4285
3019eac3
DE
4286 if (dwo_file)
4287 {
4288 sig_type = NULL;
4289 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4290 struct dwo_unit);
4291 dwo_tu->dwo_file = dwo_file;
4292 dwo_tu->signature = signature;
4293 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4294 dwo_tu->section = section;
3019eac3
DE
4295 dwo_tu->offset = offset;
4296 dwo_tu->length = length;
4297 }
4298 else
4299 {
4300 /* N.B.: type_offset is not usable if this type uses a DWO file.
4301 The real type_offset is in the DWO file. */
4302 dwo_tu = NULL;
4303 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4304 struct signatured_type);
4305 sig_type->signature = signature;
4306 sig_type->type_offset_in_tu = type_offset_in_tu;
4307 sig_type->per_cu.objfile = objfile;
4308 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4309 sig_type->per_cu.section = section;
3019eac3
DE
4310 sig_type->per_cu.offset = offset;
4311 sig_type->per_cu.length = length;
4312 }
8b70b953 4313
3019eac3
DE
4314 slot = htab_find_slot (types_htab,
4315 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4316 INSERT);
8b70b953
TT
4317 gdb_assert (slot != NULL);
4318 if (*slot != NULL)
4319 {
3019eac3
DE
4320 sect_offset dup_offset;
4321
4322 if (dwo_file)
4323 {
4324 const struct dwo_unit *dup_tu = *slot;
4325
4326 dup_offset = dup_tu->offset;
4327 }
4328 else
4329 {
4330 const struct signatured_type *dup_tu = *slot;
4331
4332 dup_offset = dup_tu->per_cu.offset;
4333 }
b3c8eb43 4334
8b70b953 4335 complaint (&symfile_complaints,
c88ee1f0 4336 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4337 " the entry at offset 0x%x, signature %s"),
3019eac3 4338 offset.sect_off, dup_offset.sect_off,
4031ecc5 4339 hex_string (signature));
8b70b953 4340 }
3019eac3 4341 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4342
09406207 4343 if (dwarf2_read_debug)
4031ecc5 4344 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4345 offset.sect_off,
4031ecc5 4346 hex_string (signature));
348e048f 4347
dee91e82 4348 info_ptr += length;
8b70b953 4349 }
348e048f
DE
4350 }
4351
3019eac3
DE
4352 return types_htab;
4353}
4354
4355/* Create the hash table of all entries in the .debug_types section,
4356 and initialize all_type_units.
4357 The result is zero if there is an error (e.g. missing .debug_types section),
4358 otherwise non-zero. */
4359
4360static int
4361create_all_type_units (struct objfile *objfile)
4362{
4363 htab_t types_htab;
b4dd5633 4364 struct signatured_type **iter;
3019eac3
DE
4365
4366 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4367 if (types_htab == NULL)
4368 {
4369 dwarf2_per_objfile->signatured_types = NULL;
4370 return 0;
4371 }
4372
348e048f
DE
4373 dwarf2_per_objfile->signatured_types = types_htab;
4374
d467dd73
DE
4375 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4376 dwarf2_per_objfile->all_type_units
1fd400ff 4377 = obstack_alloc (&objfile->objfile_obstack,
d467dd73 4378 dwarf2_per_objfile->n_type_units
b4dd5633 4379 * sizeof (struct signatured_type *));
d467dd73
DE
4380 iter = &dwarf2_per_objfile->all_type_units[0];
4381 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4382 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4383 == dwarf2_per_objfile->n_type_units);
1fd400ff 4384
348e048f
DE
4385 return 1;
4386}
4387
380bca97 4388/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4389 Returns NULL if signature SIG is not present in the table.
4390 It is up to the caller to complain about this. */
348e048f
DE
4391
4392static struct signatured_type *
e319fa28 4393lookup_signatured_type (ULONGEST sig)
348e048f
DE
4394{
4395 struct signatured_type find_entry, *entry;
4396
4397 if (dwarf2_per_objfile->signatured_types == NULL)
5a8b3f62 4398 return NULL;
348e048f
DE
4399 find_entry.signature = sig;
4400 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4401 return entry;
4402}
42e7ad6c
DE
4403\f
4404/* Low level DIE reading support. */
348e048f 4405
d85a05f0
DJ
4406/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4407
4408static void
4409init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4410 struct dwarf2_cu *cu,
3019eac3
DE
4411 struct dwarf2_section_info *section,
4412 struct dwo_file *dwo_file)
d85a05f0 4413{
fceca515 4414 gdb_assert (section->readin && section->buffer != NULL);
dee91e82 4415 reader->abfd = section->asection->owner;
d85a05f0 4416 reader->cu = cu;
3019eac3 4417 reader->dwo_file = dwo_file;
dee91e82
DE
4418 reader->die_section = section;
4419 reader->buffer = section->buffer;
f664829e 4420 reader->buffer_end = section->buffer + section->size;
d85a05f0
DJ
4421}
4422
b0c7bfa9
DE
4423/* Subroutine of init_cutu_and_read_dies to simplify it.
4424 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4425 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4426 already.
4427
4428 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4429 from it to the DIE in the DWO. If NULL we are skipping the stub.
4430 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4431 are filled in with the info of the DIE from the DWO file.
4432 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4433 provided an abbrev table to use.
4434 The result is non-zero if a valid (non-dummy) DIE was found. */
4435
4436static int
4437read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4438 struct dwo_unit *dwo_unit,
4439 int abbrev_table_provided,
4440 struct die_info *stub_comp_unit_die,
4441 struct die_reader_specs *result_reader,
d521ce57 4442 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4443 struct die_info **result_comp_unit_die,
4444 int *result_has_children)
4445{
4446 struct objfile *objfile = dwarf2_per_objfile->objfile;
4447 struct dwarf2_cu *cu = this_cu->cu;
4448 struct dwarf2_section_info *section;
4449 bfd *abfd;
d521ce57 4450 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4451 const char *comp_dir_string;
4452 ULONGEST signature; /* Or dwo_id. */
4453 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4454 int i,num_extra_attrs;
4455 struct dwarf2_section_info *dwo_abbrev_section;
4456 struct attribute *attr;
4457 struct die_info *comp_unit_die;
4458
4459 /* These attributes aren't processed until later:
4460 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4461 However, the attribute is found in the stub which we won't have later.
4462 In order to not impose this complication on the rest of the code,
4463 we read them here and copy them to the DWO CU/TU die. */
4464
4465 stmt_list = NULL;
4466 low_pc = NULL;
4467 high_pc = NULL;
4468 ranges = NULL;
4469 comp_dir = NULL;
4470
4471 if (stub_comp_unit_die != NULL)
4472 {
4473 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4474 DWO file. */
4475 if (! this_cu->is_debug_types)
4476 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4477 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4478 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4479 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4480 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4481
4482 /* There should be a DW_AT_addr_base attribute here (if needed).
4483 We need the value before we can process DW_FORM_GNU_addr_index. */
4484 cu->addr_base = 0;
4485 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4486 if (attr)
4487 cu->addr_base = DW_UNSND (attr);
4488
4489 /* There should be a DW_AT_ranges_base attribute here (if needed).
4490 We need the value before we can process DW_AT_ranges. */
4491 cu->ranges_base = 0;
4492 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4493 if (attr)
4494 cu->ranges_base = DW_UNSND (attr);
4495 }
4496
4497 /* Set up for reading the DWO CU/TU. */
4498 cu->dwo_unit = dwo_unit;
4499 section = dwo_unit->section;
4500 dwarf2_read_section (objfile, section);
4501 abfd = section->asection->owner;
4502 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4503 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4504 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4505
4506 if (this_cu->is_debug_types)
4507 {
4508 ULONGEST header_signature;
4509 cu_offset type_offset_in_tu;
4510 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4511
4512 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4513 dwo_abbrev_section,
4514 info_ptr,
4515 &header_signature,
4516 &type_offset_in_tu);
4517 gdb_assert (sig_type->signature == header_signature);
4518 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4519 /* For DWOs coming from DWP files, we don't know the CU length
4520 nor the type's offset in the TU until now. */
4521 dwo_unit->length = get_cu_length (&cu->header);
4522 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4523
4524 /* Establish the type offset that can be used to lookup the type.
4525 For DWO files, we don't know it until now. */
4526 sig_type->type_offset_in_section.sect_off =
4527 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4528 }
4529 else
4530 {
4531 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4532 dwo_abbrev_section,
4533 info_ptr, 0);
4534 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4535 /* For DWOs coming from DWP files, we don't know the CU length
4536 until now. */
4537 dwo_unit->length = get_cu_length (&cu->header);
4538 }
4539
02142a6c
DE
4540 /* Replace the CU's original abbrev table with the DWO's.
4541 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
4542 if (abbrev_table_provided)
4543 {
4544 /* Don't free the provided abbrev table, the caller of
4545 init_cutu_and_read_dies owns it. */
4546 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 4547 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
4548 make_cleanup (dwarf2_free_abbrev_table, cu);
4549 }
4550 else
4551 {
4552 dwarf2_free_abbrev_table (cu);
4553 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 4554 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
4555 }
4556
4557 /* Read in the die, but leave space to copy over the attributes
4558 from the stub. This has the benefit of simplifying the rest of
4559 the code - all the work to maintain the illusion of a single
4560 DW_TAG_{compile,type}_unit DIE is done here. */
4561 num_extra_attrs = ((stmt_list != NULL)
4562 + (low_pc != NULL)
4563 + (high_pc != NULL)
4564 + (ranges != NULL)
4565 + (comp_dir != NULL));
4566 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4567 result_has_children, num_extra_attrs);
4568
4569 /* Copy over the attributes from the stub to the DIE we just read in. */
4570 comp_unit_die = *result_comp_unit_die;
4571 i = comp_unit_die->num_attrs;
4572 if (stmt_list != NULL)
4573 comp_unit_die->attrs[i++] = *stmt_list;
4574 if (low_pc != NULL)
4575 comp_unit_die->attrs[i++] = *low_pc;
4576 if (high_pc != NULL)
4577 comp_unit_die->attrs[i++] = *high_pc;
4578 if (ranges != NULL)
4579 comp_unit_die->attrs[i++] = *ranges;
4580 if (comp_dir != NULL)
4581 comp_unit_die->attrs[i++] = *comp_dir;
4582 comp_unit_die->num_attrs += num_extra_attrs;
4583
bf6af496
DE
4584 if (dwarf2_die_debug)
4585 {
4586 fprintf_unfiltered (gdb_stdlog,
4587 "Read die from %s@0x%x of %s:\n",
4588 bfd_section_name (abfd, section->asection),
4589 (unsigned) (begin_info_ptr - section->buffer),
4590 bfd_get_filename (abfd));
4591 dump_die (comp_unit_die, dwarf2_die_debug);
4592 }
4593
b0c7bfa9
DE
4594 /* Skip dummy compilation units. */
4595 if (info_ptr >= begin_info_ptr + dwo_unit->length
4596 || peek_abbrev_code (abfd, info_ptr) == 0)
4597 return 0;
4598
4599 *result_info_ptr = info_ptr;
4600 return 1;
4601}
4602
4603/* Subroutine of init_cutu_and_read_dies to simplify it.
4604 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4605 If the specified DWO unit cannot be found an error is thrown. */
4606
4607static struct dwo_unit *
4608lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4609 struct die_info *comp_unit_die)
4610{
4611 struct dwarf2_cu *cu = this_cu->cu;
4612 struct attribute *attr;
4613 ULONGEST signature;
4614 struct dwo_unit *dwo_unit;
4615 const char *comp_dir, *dwo_name;
4616
4617 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4618 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4619 gdb_assert (attr != NULL);
4620 dwo_name = DW_STRING (attr);
4621 comp_dir = NULL;
4622 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4623 if (attr)
4624 comp_dir = DW_STRING (attr);
4625
4626 if (this_cu->is_debug_types)
4627 {
4628 struct signatured_type *sig_type;
4629
4630 /* Since this_cu is the first member of struct signatured_type,
4631 we can go from a pointer to one to a pointer to the other. */
4632 sig_type = (struct signatured_type *) this_cu;
4633 signature = sig_type->signature;
4634 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4635 }
4636 else
4637 {
4638 struct attribute *attr;
4639
4640 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4641 if (! attr)
4642 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4643 " [in module %s]"),
4644 dwo_name, this_cu->objfile->name);
4645 signature = DW_UNSND (attr);
4646 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4647 signature);
4648 }
4649
4650 if (dwo_unit == NULL)
4651 {
4652 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4653 " with ID %s [in module %s]"),
4031ecc5 4654 this_cu->offset.sect_off, hex_string (signature),
b0c7bfa9
DE
4655 this_cu->objfile->name);
4656 }
4657
4658 return dwo_unit;
4659}
4660
fd820528 4661/* Initialize a CU (or TU) and read its DIEs.
3019eac3 4662 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 4663
f4dc4d17
DE
4664 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4665 Otherwise the table specified in the comp unit header is read in and used.
4666 This is an optimization for when we already have the abbrev table.
4667
dee91e82
DE
4668 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4669 Otherwise, a new CU is allocated with xmalloc.
4670
4671 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4672 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4673
4674 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 4675 linker) then DIE_READER_FUNC will not get called. */
aaa75496 4676
70221824 4677static void
fd820528 4678init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 4679 struct abbrev_table *abbrev_table,
fd820528
DE
4680 int use_existing_cu, int keep,
4681 die_reader_func_ftype *die_reader_func,
4682 void *data)
c906108c 4683{
dee91e82 4684 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 4685 struct dwarf2_section_info *section = this_cu->section;
3019eac3 4686 bfd *abfd = section->asection->owner;
dee91e82 4687 struct dwarf2_cu *cu;
d521ce57 4688 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 4689 struct die_reader_specs reader;
d85a05f0 4690 struct die_info *comp_unit_die;
dee91e82 4691 int has_children;
d85a05f0 4692 struct attribute *attr;
dee91e82
DE
4693 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4694 struct signatured_type *sig_type = NULL;
4bdcc0c1 4695 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
4696 /* Non-zero if CU currently points to a DWO file and we need to
4697 reread it. When this happens we need to reread the skeleton die
4698 before we can reread the DWO file. */
4699 int rereading_dwo_cu = 0;
c906108c 4700
09406207
DE
4701 if (dwarf2_die_debug)
4702 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4703 this_cu->is_debug_types ? "type" : "comp",
4704 this_cu->offset.sect_off);
4705
dee91e82
DE
4706 if (use_existing_cu)
4707 gdb_assert (keep);
23745b47 4708
dee91e82
DE
4709 cleanups = make_cleanup (null_cleanup, NULL);
4710
4711 /* This is cheap if the section is already read in. */
4712 dwarf2_read_section (objfile, section);
4713
4714 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
4715
4716 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
4717
4718 if (use_existing_cu && this_cu->cu != NULL)
4719 {
4720 cu = this_cu->cu;
42e7ad6c
DE
4721
4722 /* If this CU is from a DWO file we need to start over, we need to
4723 refetch the attributes from the skeleton CU.
4724 This could be optimized by retrieving those attributes from when we
4725 were here the first time: the previous comp_unit_die was stored in
4726 comp_unit_obstack. But there's no data yet that we need this
4727 optimization. */
4728 if (cu->dwo_unit != NULL)
4729 rereading_dwo_cu = 1;
dee91e82
DE
4730 }
4731 else
4732 {
4733 /* If !use_existing_cu, this_cu->cu must be NULL. */
4734 gdb_assert (this_cu->cu == NULL);
4735
4736 cu = xmalloc (sizeof (*cu));
4737 init_one_comp_unit (cu, this_cu);
4738
4739 /* If an error occurs while loading, release our storage. */
4740 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 4741 }
dee91e82 4742
b0c7bfa9 4743 /* Get the header. */
42e7ad6c
DE
4744 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4745 {
4746 /* We already have the header, there's no need to read it in again. */
4747 info_ptr += cu->header.first_die_offset.cu_off;
4748 }
4749 else
4750 {
3019eac3 4751 if (this_cu->is_debug_types)
dee91e82
DE
4752 {
4753 ULONGEST signature;
42e7ad6c 4754 cu_offset type_offset_in_tu;
dee91e82 4755
4bdcc0c1
DE
4756 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4757 abbrev_section, info_ptr,
42e7ad6c
DE
4758 &signature,
4759 &type_offset_in_tu);
dee91e82 4760
42e7ad6c
DE
4761 /* Since per_cu is the first member of struct signatured_type,
4762 we can go from a pointer to one to a pointer to the other. */
4763 sig_type = (struct signatured_type *) this_cu;
4764 gdb_assert (sig_type->signature == signature);
4765 gdb_assert (sig_type->type_offset_in_tu.cu_off
4766 == type_offset_in_tu.cu_off);
dee91e82
DE
4767 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4768
42e7ad6c
DE
4769 /* LENGTH has not been set yet for type units if we're
4770 using .gdb_index. */
1ce1cefd 4771 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
4772
4773 /* Establish the type offset that can be used to lookup the type. */
4774 sig_type->type_offset_in_section.sect_off =
4775 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
4776 }
4777 else
4778 {
4bdcc0c1
DE
4779 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4780 abbrev_section,
4781 info_ptr, 0);
dee91e82
DE
4782
4783 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 4784 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
4785 }
4786 }
10b3939b 4787
6caca83c 4788 /* Skip dummy compilation units. */
dee91e82 4789 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
4790 || peek_abbrev_code (abfd, info_ptr) == 0)
4791 {
dee91e82 4792 do_cleanups (cleanups);
21b2bd31 4793 return;
6caca83c
CC
4794 }
4795
433df2d4
DE
4796 /* If we don't have them yet, read the abbrevs for this compilation unit.
4797 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
4798 done. Note that it's important that if the CU had an abbrev table
4799 on entry we don't free it when we're done: Somewhere up the call stack
4800 it may be in use. */
f4dc4d17
DE
4801 if (abbrev_table != NULL)
4802 {
4803 gdb_assert (cu->abbrev_table == NULL);
4804 gdb_assert (cu->header.abbrev_offset.sect_off
4805 == abbrev_table->offset.sect_off);
4806 cu->abbrev_table = abbrev_table;
4807 }
4808 else if (cu->abbrev_table == NULL)
dee91e82 4809 {
4bdcc0c1 4810 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
4811 make_cleanup (dwarf2_free_abbrev_table, cu);
4812 }
42e7ad6c
DE
4813 else if (rereading_dwo_cu)
4814 {
4815 dwarf2_free_abbrev_table (cu);
4816 dwarf2_read_abbrevs (cu, abbrev_section);
4817 }
af703f96 4818
dee91e82 4819 /* Read the top level CU/TU die. */
3019eac3 4820 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 4821 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 4822
b0c7bfa9
DE
4823 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
4824 from the DWO file.
4825 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
4826 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
4827 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4828 if (attr)
4829 {
3019eac3 4830 struct dwo_unit *dwo_unit;
b0c7bfa9 4831 struct die_info *dwo_comp_unit_die;
3019eac3
DE
4832
4833 if (has_children)
4834 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4835 " has children (offset 0x%x) [in module %s]"),
4836 this_cu->offset.sect_off, bfd_get_filename (abfd));
b0c7bfa9
DE
4837 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
4838 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
4839 abbrev_table != NULL,
4840 comp_unit_die,
4841 &reader, &info_ptr,
4842 &dwo_comp_unit_die, &has_children) == 0)
3019eac3 4843 {
b0c7bfa9 4844 /* Dummy die. */
3019eac3
DE
4845 do_cleanups (cleanups);
4846 return;
4847 }
b0c7bfa9 4848 comp_unit_die = dwo_comp_unit_die;
3019eac3
DE
4849 }
4850
b0c7bfa9 4851 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
4852 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4853
b0c7bfa9 4854 /* Done, clean up. */
dee91e82 4855 if (free_cu_cleanup != NULL)
348e048f 4856 {
dee91e82
DE
4857 if (keep)
4858 {
4859 /* We've successfully allocated this compilation unit. Let our
4860 caller clean it up when finished with it. */
4861 discard_cleanups (free_cu_cleanup);
4862
4863 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4864 So we have to manually free the abbrev table. */
4865 dwarf2_free_abbrev_table (cu);
4866
4867 /* Link this CU into read_in_chain. */
4868 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4869 dwarf2_per_objfile->read_in_chain = this_cu;
4870 }
4871 else
4872 do_cleanups (free_cu_cleanup);
348e048f 4873 }
dee91e82
DE
4874
4875 do_cleanups (cleanups);
4876}
4877
3019eac3
DE
4878/* Read CU/TU THIS_CU in section SECTION,
4879 but do not follow DW_AT_GNU_dwo_name if present.
80626a55
DE
4880 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4881 to have already done the lookup to find the DWO/DWP file).
dee91e82
DE
4882
4883 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 4884 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
4885
4886 We fill in THIS_CU->length.
4887
4888 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4889 linker) then DIE_READER_FUNC will not get called.
4890
4891 THIS_CU->cu is always freed when done.
3019eac3
DE
4892 This is done in order to not leave THIS_CU->cu in a state where we have
4893 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
4894
4895static void
4896init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4897 struct dwarf2_section_info *abbrev_section,
3019eac3 4898 struct dwo_file *dwo_file,
dee91e82
DE
4899 die_reader_func_ftype *die_reader_func,
4900 void *data)
4901{
4902 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 4903 struct dwarf2_section_info *section = this_cu->section;
3019eac3 4904 bfd *abfd = section->asection->owner;
dee91e82 4905 struct dwarf2_cu cu;
d521ce57 4906 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
4907 struct die_reader_specs reader;
4908 struct cleanup *cleanups;
4909 struct die_info *comp_unit_die;
4910 int has_children;
4911
09406207
DE
4912 if (dwarf2_die_debug)
4913 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4914 this_cu->is_debug_types ? "type" : "comp",
4915 this_cu->offset.sect_off);
4916
dee91e82
DE
4917 gdb_assert (this_cu->cu == NULL);
4918
dee91e82
DE
4919 /* This is cheap if the section is already read in. */
4920 dwarf2_read_section (objfile, section);
4921
4922 init_one_comp_unit (&cu, this_cu);
4923
4924 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4925
4926 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
4927 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4928 abbrev_section, info_ptr,
3019eac3 4929 this_cu->is_debug_types);
dee91e82 4930
1ce1cefd 4931 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
4932
4933 /* Skip dummy compilation units. */
4934 if (info_ptr >= begin_info_ptr + this_cu->length
4935 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 4936 {
dee91e82 4937 do_cleanups (cleanups);
21b2bd31 4938 return;
93311388 4939 }
72bf9492 4940
dee91e82
DE
4941 dwarf2_read_abbrevs (&cu, abbrev_section);
4942 make_cleanup (dwarf2_free_abbrev_table, &cu);
4943
3019eac3 4944 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
4945 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4946
4947 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4948
4949 do_cleanups (cleanups);
4950}
4951
3019eac3
DE
4952/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4953 does not lookup the specified DWO file.
4954 This cannot be used to read DWO files.
dee91e82
DE
4955
4956 THIS_CU->cu is always freed when done.
3019eac3
DE
4957 This is done in order to not leave THIS_CU->cu in a state where we have
4958 to care whether it refers to the "main" CU or the DWO CU.
4959 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
4960
4961static void
4962init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4963 die_reader_func_ftype *die_reader_func,
4964 void *data)
4965{
4966 init_cutu_and_read_dies_no_follow (this_cu,
36586728 4967 get_abbrev_section_for_cu (this_cu),
3019eac3 4968 NULL,
dee91e82
DE
4969 die_reader_func, data);
4970}
0018ea6f
DE
4971\f
4972/* Type Unit Groups.
dee91e82 4973
0018ea6f
DE
4974 Type Unit Groups are a way to collapse the set of all TUs (type units) into
4975 a more manageable set. The grouping is done by DW_AT_stmt_list entry
4976 so that all types coming from the same compilation (.o file) are grouped
4977 together. A future step could be to put the types in the same symtab as
4978 the CU the types ultimately came from. */
ff013f42 4979
f4dc4d17
DE
4980static hashval_t
4981hash_type_unit_group (const void *item)
4982{
094b34ac 4983 const struct type_unit_group *tu_group = item;
f4dc4d17 4984
094b34ac 4985 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 4986}
348e048f
DE
4987
4988static int
f4dc4d17 4989eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 4990{
f4dc4d17
DE
4991 const struct type_unit_group *lhs = item_lhs;
4992 const struct type_unit_group *rhs = item_rhs;
348e048f 4993
094b34ac 4994 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 4995}
348e048f 4996
f4dc4d17
DE
4997/* Allocate a hash table for type unit groups. */
4998
4999static htab_t
5000allocate_type_unit_groups_table (void)
5001{
5002 return htab_create_alloc_ex (3,
5003 hash_type_unit_group,
5004 eq_type_unit_group,
5005 NULL,
5006 &dwarf2_per_objfile->objfile->objfile_obstack,
5007 hashtab_obstack_allocate,
5008 dummy_obstack_deallocate);
5009}
dee91e82 5010
f4dc4d17
DE
5011/* Type units that don't have DW_AT_stmt_list are grouped into their own
5012 partial symtabs. We combine several TUs per psymtab to not let the size
5013 of any one psymtab grow too big. */
5014#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5015#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5016
094b34ac 5017/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5018 Create the type_unit_group object used to hold one or more TUs. */
5019
5020static struct type_unit_group *
094b34ac 5021create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5022{
5023 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5024 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5025 struct type_unit_group *tu_group;
f4dc4d17
DE
5026
5027 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5028 struct type_unit_group);
094b34ac 5029 per_cu = &tu_group->per_cu;
f4dc4d17 5030 per_cu->objfile = objfile;
f4dc4d17 5031
094b34ac
DE
5032 if (dwarf2_per_objfile->using_index)
5033 {
5034 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5035 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5036 }
5037 else
5038 {
5039 unsigned int line_offset = line_offset_struct.sect_off;
5040 struct partial_symtab *pst;
5041 char *name;
5042
5043 /* Give the symtab a useful name for debug purposes. */
5044 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5045 name = xstrprintf ("<type_units_%d>",
5046 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5047 else
5048 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5049
5050 pst = create_partial_symtab (per_cu, name);
5051 pst->anonymous = 1;
f4dc4d17 5052
094b34ac
DE
5053 xfree (name);
5054 }
f4dc4d17 5055
094b34ac
DE
5056 tu_group->hash.dwo_unit = cu->dwo_unit;
5057 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5058
5059 return tu_group;
5060}
5061
094b34ac
DE
5062/* Look up the type_unit_group for type unit CU, and create it if necessary.
5063 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5064
5065static struct type_unit_group *
094b34ac 5066get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
f4dc4d17
DE
5067{
5068 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5069 struct type_unit_group *tu_group;
5070 void **slot;
5071 unsigned int line_offset;
5072 struct type_unit_group type_unit_group_for_lookup;
5073
5074 if (dwarf2_per_objfile->type_unit_groups == NULL)
5075 {
5076 dwarf2_per_objfile->type_unit_groups =
5077 allocate_type_unit_groups_table ();
5078 }
5079
5080 /* Do we need to create a new group, or can we use an existing one? */
5081
5082 if (stmt_list)
5083 {
5084 line_offset = DW_UNSND (stmt_list);
5085 ++tu_stats->nr_symtab_sharers;
5086 }
5087 else
5088 {
5089 /* Ugh, no stmt_list. Rare, but we have to handle it.
5090 We can do various things here like create one group per TU or
5091 spread them over multiple groups to split up the expansion work.
5092 To avoid worst case scenarios (too many groups or too large groups)
5093 we, umm, group them in bunches. */
5094 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5095 | (tu_stats->nr_stmt_less_type_units
5096 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5097 ++tu_stats->nr_stmt_less_type_units;
5098 }
5099
094b34ac
DE
5100 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5101 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5102 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5103 &type_unit_group_for_lookup, INSERT);
5104 if (*slot != NULL)
5105 {
5106 tu_group = *slot;
5107 gdb_assert (tu_group != NULL);
5108 }
5109 else
5110 {
5111 sect_offset line_offset_struct;
5112
5113 line_offset_struct.sect_off = line_offset;
094b34ac 5114 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5115 *slot = tu_group;
5116 ++tu_stats->nr_symtabs;
5117 }
5118
5119 return tu_group;
5120}
5121
5122/* Struct used to sort TUs by their abbreviation table offset. */
5123
5124struct tu_abbrev_offset
5125{
5126 struct signatured_type *sig_type;
5127 sect_offset abbrev_offset;
5128};
5129
5130/* Helper routine for build_type_unit_groups, passed to qsort. */
5131
5132static int
5133sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5134{
5135 const struct tu_abbrev_offset * const *a = ap;
5136 const struct tu_abbrev_offset * const *b = bp;
5137 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5138 unsigned int boff = (*b)->abbrev_offset.sect_off;
5139
5140 return (aoff > boff) - (aoff < boff);
5141}
5142
5143/* A helper function to add a type_unit_group to a table. */
5144
5145static int
5146add_type_unit_group_to_table (void **slot, void *datum)
5147{
5148 struct type_unit_group *tu_group = *slot;
5149 struct type_unit_group ***datap = datum;
5150
5151 **datap = tu_group;
5152 ++*datap;
5153
5154 return 1;
5155}
5156
5157/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5158 each one passing FUNC,DATA.
5159
5160 The efficiency is because we sort TUs by the abbrev table they use and
5161 only read each abbrev table once. In one program there are 200K TUs
5162 sharing 8K abbrev tables.
5163
5164 The main purpose of this function is to support building the
5165 dwarf2_per_objfile->type_unit_groups table.
5166 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5167 can collapse the search space by grouping them by stmt_list.
5168 The savings can be significant, in the same program from above the 200K TUs
5169 share 8K stmt_list tables.
5170
5171 FUNC is expected to call get_type_unit_group, which will create the
5172 struct type_unit_group if necessary and add it to
5173 dwarf2_per_objfile->type_unit_groups. */
5174
5175static void
5176build_type_unit_groups (die_reader_func_ftype *func, void *data)
5177{
5178 struct objfile *objfile = dwarf2_per_objfile->objfile;
5179 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5180 struct cleanup *cleanups;
5181 struct abbrev_table *abbrev_table;
5182 sect_offset abbrev_offset;
5183 struct tu_abbrev_offset *sorted_by_abbrev;
5184 struct type_unit_group **iter;
5185 int i;
5186
5187 /* It's up to the caller to not call us multiple times. */
5188 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5189
5190 if (dwarf2_per_objfile->n_type_units == 0)
5191 return;
5192
5193 /* TUs typically share abbrev tables, and there can be way more TUs than
5194 abbrev tables. Sort by abbrev table to reduce the number of times we
5195 read each abbrev table in.
5196 Alternatives are to punt or to maintain a cache of abbrev tables.
5197 This is simpler and efficient enough for now.
5198
5199 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5200 symtab to use). Typically TUs with the same abbrev offset have the same
5201 stmt_list value too so in practice this should work well.
5202
5203 The basic algorithm here is:
5204
5205 sort TUs by abbrev table
5206 for each TU with same abbrev table:
5207 read abbrev table if first user
5208 read TU top level DIE
5209 [IWBN if DWO skeletons had DW_AT_stmt_list]
5210 call FUNC */
5211
5212 if (dwarf2_read_debug)
5213 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5214
5215 /* Sort in a separate table to maintain the order of all_type_units
5216 for .gdb_index: TU indices directly index all_type_units. */
5217 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5218 dwarf2_per_objfile->n_type_units);
5219 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5220 {
5221 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5222
5223 sorted_by_abbrev[i].sig_type = sig_type;
5224 sorted_by_abbrev[i].abbrev_offset =
8a0459fd 5225 read_abbrev_offset (sig_type->per_cu.section,
f4dc4d17
DE
5226 sig_type->per_cu.offset);
5227 }
5228 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5229 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5230 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5231
094b34ac
DE
5232 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5233 called any number of times, so we don't reset tu_stats here. */
5234
f4dc4d17
DE
5235 abbrev_offset.sect_off = ~(unsigned) 0;
5236 abbrev_table = NULL;
5237 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5238
5239 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5240 {
5241 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5242
5243 /* Switch to the next abbrev table if necessary. */
5244 if (abbrev_table == NULL
5245 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5246 {
5247 if (abbrev_table != NULL)
5248 {
5249 abbrev_table_free (abbrev_table);
5250 /* Reset to NULL in case abbrev_table_read_table throws
5251 an error: abbrev_table_free_cleanup will get called. */
5252 abbrev_table = NULL;
5253 }
5254 abbrev_offset = tu->abbrev_offset;
5255 abbrev_table =
5256 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5257 abbrev_offset);
5258 ++tu_stats->nr_uniq_abbrev_tables;
5259 }
5260
5261 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5262 func, data);
5263 }
5264
5265 /* Create a vector of pointers to primary type units to make it easy to
5266 iterate over them and CUs. See dw2_get_primary_cu. */
5267 dwarf2_per_objfile->n_type_unit_groups =
5268 htab_elements (dwarf2_per_objfile->type_unit_groups);
5269 dwarf2_per_objfile->all_type_unit_groups =
5270 obstack_alloc (&objfile->objfile_obstack,
5271 dwarf2_per_objfile->n_type_unit_groups
5272 * sizeof (struct type_unit_group *));
5273 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5274 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5275 add_type_unit_group_to_table, &iter);
5276 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5277 == dwarf2_per_objfile->n_type_unit_groups);
5278
5279 do_cleanups (cleanups);
5280
5281 if (dwarf2_read_debug)
5282 {
5283 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5284 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5285 dwarf2_per_objfile->n_type_units);
5286 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5287 tu_stats->nr_uniq_abbrev_tables);
5288 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5289 tu_stats->nr_symtabs);
5290 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5291 tu_stats->nr_symtab_sharers);
5292 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5293 tu_stats->nr_stmt_less_type_units);
5294 }
5295}
0018ea6f
DE
5296\f
5297/* Partial symbol tables. */
5298
5299/* Create a psymtab named NAME and assign it to PER_CU.
5300
5301 The caller must fill in the following details:
5302 dirname, textlow, texthigh. */
5303
5304static struct partial_symtab *
5305create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5306{
5307 struct objfile *objfile = per_cu->objfile;
5308 struct partial_symtab *pst;
5309
5310 pst = start_psymtab_common (objfile, objfile->section_offsets,
5311 name, 0,
5312 objfile->global_psymbols.next,
5313 objfile->static_psymbols.next);
5314
5315 pst->psymtabs_addrmap_supported = 1;
5316
5317 /* This is the glue that links PST into GDB's symbol API. */
5318 pst->read_symtab_private = per_cu;
5319 pst->read_symtab = dwarf2_read_symtab;
5320 per_cu->v.psymtab = pst;
5321
5322 return pst;
5323}
5324
5325/* die_reader_func for process_psymtab_comp_unit. */
5326
5327static void
5328process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5329 const gdb_byte *info_ptr,
0018ea6f
DE
5330 struct die_info *comp_unit_die,
5331 int has_children,
5332 void *data)
5333{
5334 struct dwarf2_cu *cu = reader->cu;
5335 struct objfile *objfile = cu->objfile;
5336 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5337 struct attribute *attr;
5338 CORE_ADDR baseaddr;
5339 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5340 struct partial_symtab *pst;
5341 int has_pc_info;
5342 const char *filename;
5343 int *want_partial_unit_ptr = data;
5344
5345 if (comp_unit_die->tag == DW_TAG_partial_unit
5346 && (want_partial_unit_ptr == NULL
5347 || !*want_partial_unit_ptr))
5348 return;
5349
5350 gdb_assert (! per_cu->is_debug_types);
5351
5352 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5353
5354 cu->list_in_scope = &file_symbols;
5355
5356 /* Allocate a new partial symbol table structure. */
5357 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5358 if (attr == NULL || !DW_STRING (attr))
5359 filename = "";
5360 else
5361 filename = DW_STRING (attr);
5362
5363 pst = create_partial_symtab (per_cu, filename);
5364
5365 /* This must be done before calling dwarf2_build_include_psymtabs. */
5366 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5367 if (attr != NULL)
5368 pst->dirname = DW_STRING (attr);
5369
5370 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5371
5372 dwarf2_find_base_address (comp_unit_die, cu);
5373
5374 /* Possibly set the default values of LOWPC and HIGHPC from
5375 `DW_AT_ranges'. */
5376 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5377 &best_highpc, cu, pst);
5378 if (has_pc_info == 1 && best_lowpc < best_highpc)
5379 /* Store the contiguous range if it is not empty; it can be empty for
5380 CUs with no code. */
5381 addrmap_set_empty (objfile->psymtabs_addrmap,
5382 best_lowpc + baseaddr,
5383 best_highpc + baseaddr - 1, pst);
5384
5385 /* Check if comp unit has_children.
5386 If so, read the rest of the partial symbols from this comp unit.
5387 If not, there's no more debug_info for this comp unit. */
5388 if (has_children)
5389 {
5390 struct partial_die_info *first_die;
5391 CORE_ADDR lowpc, highpc;
5392
5393 lowpc = ((CORE_ADDR) -1);
5394 highpc = ((CORE_ADDR) 0);
5395
5396 first_die = load_partial_dies (reader, info_ptr, 1);
5397
5398 scan_partial_symbols (first_die, &lowpc, &highpc,
5399 ! has_pc_info, cu);
5400
5401 /* If we didn't find a lowpc, set it to highpc to avoid
5402 complaints from `maint check'. */
5403 if (lowpc == ((CORE_ADDR) -1))
5404 lowpc = highpc;
5405
5406 /* If the compilation unit didn't have an explicit address range,
5407 then use the information extracted from its child dies. */
5408 if (! has_pc_info)
5409 {
5410 best_lowpc = lowpc;
5411 best_highpc = highpc;
5412 }
5413 }
5414 pst->textlow = best_lowpc + baseaddr;
5415 pst->texthigh = best_highpc + baseaddr;
5416
5417 pst->n_global_syms = objfile->global_psymbols.next -
5418 (objfile->global_psymbols.list + pst->globals_offset);
5419 pst->n_static_syms = objfile->static_psymbols.next -
5420 (objfile->static_psymbols.list + pst->statics_offset);
5421 sort_pst_symbols (objfile, pst);
5422
5423 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5424 {
5425 int i;
5426 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5427 struct dwarf2_per_cu_data *iter;
5428
5429 /* Fill in 'dependencies' here; we fill in 'users' in a
5430 post-pass. */
5431 pst->number_of_dependencies = len;
5432 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5433 len * sizeof (struct symtab *));
5434 for (i = 0;
5435 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5436 i, iter);
5437 ++i)
5438 pst->dependencies[i] = iter->v.psymtab;
5439
5440 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5441 }
5442
5443 /* Get the list of files included in the current compilation unit,
5444 and build a psymtab for each of them. */
5445 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5446
5447 if (dwarf2_read_debug)
5448 {
5449 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5450
5451 fprintf_unfiltered (gdb_stdlog,
5452 "Psymtab for %s unit @0x%x: %s - %s"
5453 ", %d global, %d static syms\n",
5454 per_cu->is_debug_types ? "type" : "comp",
5455 per_cu->offset.sect_off,
5456 paddress (gdbarch, pst->textlow),
5457 paddress (gdbarch, pst->texthigh),
5458 pst->n_global_syms, pst->n_static_syms);
5459 }
5460}
5461
5462/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5463 Process compilation unit THIS_CU for a psymtab. */
5464
5465static void
5466process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5467 int want_partial_unit)
5468{
5469 /* If this compilation unit was already read in, free the
5470 cached copy in order to read it in again. This is
5471 necessary because we skipped some symbols when we first
5472 read in the compilation unit (see load_partial_dies).
5473 This problem could be avoided, but the benefit is unclear. */
5474 if (this_cu->cu != NULL)
5475 free_one_cached_comp_unit (this_cu);
5476
5477 gdb_assert (! this_cu->is_debug_types);
5478 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5479 process_psymtab_comp_unit_reader,
5480 &want_partial_unit);
5481
5482 /* Age out any secondary CUs. */
5483 age_cached_comp_units ();
5484}
f4dc4d17
DE
5485
5486/* Reader function for build_type_psymtabs. */
5487
5488static void
5489build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 5490 const gdb_byte *info_ptr,
f4dc4d17
DE
5491 struct die_info *type_unit_die,
5492 int has_children,
5493 void *data)
5494{
5495 struct objfile *objfile = dwarf2_per_objfile->objfile;
5496 struct dwarf2_cu *cu = reader->cu;
5497 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 5498 struct signatured_type *sig_type;
f4dc4d17
DE
5499 struct type_unit_group *tu_group;
5500 struct attribute *attr;
5501 struct partial_die_info *first_die;
5502 CORE_ADDR lowpc, highpc;
5503 struct partial_symtab *pst;
5504
5505 gdb_assert (data == NULL);
0186c6a7
DE
5506 gdb_assert (per_cu->is_debug_types);
5507 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
5508
5509 if (! has_children)
5510 return;
5511
5512 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 5513 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 5514
0186c6a7 5515 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
5516
5517 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5518 cu->list_in_scope = &file_symbols;
5519 pst = create_partial_symtab (per_cu, "");
5520 pst->anonymous = 1;
5521
5522 first_die = load_partial_dies (reader, info_ptr, 1);
5523
5524 lowpc = (CORE_ADDR) -1;
5525 highpc = (CORE_ADDR) 0;
5526 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5527
5528 pst->n_global_syms = objfile->global_psymbols.next -
5529 (objfile->global_psymbols.list + pst->globals_offset);
5530 pst->n_static_syms = objfile->static_psymbols.next -
5531 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 5532 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
5533}
5534
5535/* Traversal function for build_type_psymtabs. */
5536
5537static int
5538build_type_psymtab_dependencies (void **slot, void *info)
5539{
5540 struct objfile *objfile = dwarf2_per_objfile->objfile;
5541 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 5542 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 5543 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
5544 int len = VEC_length (sig_type_ptr, tu_group->tus);
5545 struct signatured_type *iter;
f4dc4d17
DE
5546 int i;
5547
5548 gdb_assert (len > 0);
0186c6a7 5549 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
5550
5551 pst->number_of_dependencies = len;
5552 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5553 len * sizeof (struct psymtab *));
5554 for (i = 0;
0186c6a7 5555 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
5556 ++i)
5557 {
0186c6a7
DE
5558 gdb_assert (iter->per_cu.is_debug_types);
5559 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 5560 iter->type_unit_group = tu_group;
f4dc4d17
DE
5561 }
5562
0186c6a7 5563 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
5564
5565 return 1;
5566}
5567
5568/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5569 Build partial symbol tables for the .debug_types comp-units. */
5570
5571static void
5572build_type_psymtabs (struct objfile *objfile)
5573{
0e50663e 5574 if (! create_all_type_units (objfile))
348e048f
DE
5575 return;
5576
f4dc4d17
DE
5577 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5578
5579 /* Now that all TUs have been processed we can fill in the dependencies. */
5580 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5581 build_type_psymtab_dependencies, NULL);
348e048f
DE
5582}
5583
60606b2c
TT
5584/* A cleanup function that clears objfile's psymtabs_addrmap field. */
5585
5586static void
5587psymtabs_addrmap_cleanup (void *o)
5588{
5589 struct objfile *objfile = o;
ec61707d 5590
60606b2c
TT
5591 objfile->psymtabs_addrmap = NULL;
5592}
5593
95554aad
TT
5594/* Compute the 'user' field for each psymtab in OBJFILE. */
5595
5596static void
5597set_partial_user (struct objfile *objfile)
5598{
5599 int i;
5600
5601 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5602 {
5603 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5604 struct partial_symtab *pst = per_cu->v.psymtab;
5605 int j;
5606
36586728
TT
5607 if (pst == NULL)
5608 continue;
5609
95554aad
TT
5610 for (j = 0; j < pst->number_of_dependencies; ++j)
5611 {
5612 /* Set the 'user' field only if it is not already set. */
5613 if (pst->dependencies[j]->user == NULL)
5614 pst->dependencies[j]->user = pst;
5615 }
5616 }
5617}
5618
93311388
DE
5619/* Build the partial symbol table by doing a quick pass through the
5620 .debug_info and .debug_abbrev sections. */
72bf9492 5621
93311388 5622static void
c67a9c90 5623dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 5624{
60606b2c
TT
5625 struct cleanup *back_to, *addrmap_cleanup;
5626 struct obstack temp_obstack;
21b2bd31 5627 int i;
93311388 5628
45cfd468
DE
5629 if (dwarf2_read_debug)
5630 {
5631 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5632 objfile->name);
5633 }
5634
98bfdba5
PA
5635 dwarf2_per_objfile->reading_partial_symbols = 1;
5636
be391dca 5637 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 5638
93311388
DE
5639 /* Any cached compilation units will be linked by the per-objfile
5640 read_in_chain. Make sure to free them when we're done. */
5641 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 5642
348e048f
DE
5643 build_type_psymtabs (objfile);
5644
93311388 5645 create_all_comp_units (objfile);
c906108c 5646
60606b2c
TT
5647 /* Create a temporary address map on a temporary obstack. We later
5648 copy this to the final obstack. */
5649 obstack_init (&temp_obstack);
5650 make_cleanup_obstack_free (&temp_obstack);
5651 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5652 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 5653
21b2bd31 5654 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 5655 {
21b2bd31 5656 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 5657
95554aad 5658 process_psymtab_comp_unit (per_cu, 0);
c906108c 5659 }
ff013f42 5660
95554aad
TT
5661 set_partial_user (objfile);
5662
ff013f42
JK
5663 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5664 &objfile->objfile_obstack);
60606b2c 5665 discard_cleanups (addrmap_cleanup);
ff013f42 5666
ae038cb0 5667 do_cleanups (back_to);
45cfd468
DE
5668
5669 if (dwarf2_read_debug)
5670 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5671 objfile->name);
ae038cb0
DJ
5672}
5673
3019eac3 5674/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
5675
5676static void
dee91e82 5677load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5678 const gdb_byte *info_ptr,
dee91e82
DE
5679 struct die_info *comp_unit_die,
5680 int has_children,
5681 void *data)
ae038cb0 5682{
dee91e82 5683 struct dwarf2_cu *cu = reader->cu;
ae038cb0 5684
95554aad 5685 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 5686
ae038cb0
DJ
5687 /* Check if comp unit has_children.
5688 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 5689 If not, there's no more debug_info for this comp unit. */
d85a05f0 5690 if (has_children)
dee91e82
DE
5691 load_partial_dies (reader, info_ptr, 0);
5692}
98bfdba5 5693
dee91e82
DE
5694/* Load the partial DIEs for a secondary CU into memory.
5695 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 5696
dee91e82
DE
5697static void
5698load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5699{
f4dc4d17
DE
5700 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5701 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
5702}
5703
ae038cb0 5704static void
36586728
TT
5705read_comp_units_from_section (struct objfile *objfile,
5706 struct dwarf2_section_info *section,
5707 unsigned int is_dwz,
5708 int *n_allocated,
5709 int *n_comp_units,
5710 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 5711{
d521ce57 5712 const gdb_byte *info_ptr;
36586728 5713 bfd *abfd = section->asection->owner;
be391dca 5714
bf6af496
DE
5715 if (dwarf2_read_debug)
5716 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
5717 section->asection->name, bfd_get_filename (abfd));
5718
36586728 5719 dwarf2_read_section (objfile, section);
ae038cb0 5720
36586728 5721 info_ptr = section->buffer;
6e70227d 5722
36586728 5723 while (info_ptr < section->buffer + section->size)
ae038cb0 5724 {
c764a876 5725 unsigned int length, initial_length_size;
ae038cb0 5726 struct dwarf2_per_cu_data *this_cu;
b64f50a1 5727 sect_offset offset;
ae038cb0 5728
36586728 5729 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
5730
5731 /* Read just enough information to find out where the next
5732 compilation unit is. */
36586728 5733 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
5734
5735 /* Save the compilation unit for later lookup. */
5736 this_cu = obstack_alloc (&objfile->objfile_obstack,
5737 sizeof (struct dwarf2_per_cu_data));
5738 memset (this_cu, 0, sizeof (*this_cu));
5739 this_cu->offset = offset;
c764a876 5740 this_cu->length = length + initial_length_size;
36586728 5741 this_cu->is_dwz = is_dwz;
9291a0cd 5742 this_cu->objfile = objfile;
8a0459fd 5743 this_cu->section = section;
ae038cb0 5744
36586728 5745 if (*n_comp_units == *n_allocated)
ae038cb0 5746 {
36586728
TT
5747 *n_allocated *= 2;
5748 *all_comp_units = xrealloc (*all_comp_units,
5749 *n_allocated
5750 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 5751 }
36586728
TT
5752 (*all_comp_units)[*n_comp_units] = this_cu;
5753 ++*n_comp_units;
ae038cb0
DJ
5754
5755 info_ptr = info_ptr + this_cu->length;
5756 }
36586728
TT
5757}
5758
5759/* Create a list of all compilation units in OBJFILE.
5760 This is only done for -readnow and building partial symtabs. */
5761
5762static void
5763create_all_comp_units (struct objfile *objfile)
5764{
5765 int n_allocated;
5766 int n_comp_units;
5767 struct dwarf2_per_cu_data **all_comp_units;
5768
5769 n_comp_units = 0;
5770 n_allocated = 10;
5771 all_comp_units = xmalloc (n_allocated
5772 * sizeof (struct dwarf2_per_cu_data *));
5773
5774 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5775 &n_allocated, &n_comp_units, &all_comp_units);
5776
5777 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5778 {
5779 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5780
5781 read_comp_units_from_section (objfile, &dwz->info, 1,
5782 &n_allocated, &n_comp_units,
5783 &all_comp_units);
5784 }
ae038cb0
DJ
5785
5786 dwarf2_per_objfile->all_comp_units
5787 = obstack_alloc (&objfile->objfile_obstack,
5788 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5789 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5790 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5791 xfree (all_comp_units);
5792 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
5793}
5794
5734ee8b
DJ
5795/* Process all loaded DIEs for compilation unit CU, starting at
5796 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5797 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5798 DW_AT_ranges). If NEED_PC is set, then this function will set
5799 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5800 and record the covered ranges in the addrmap. */
c906108c 5801
72bf9492
DJ
5802static void
5803scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 5804 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 5805{
72bf9492 5806 struct partial_die_info *pdi;
c906108c 5807
91c24f0a
DC
5808 /* Now, march along the PDI's, descending into ones which have
5809 interesting children but skipping the children of the other ones,
5810 until we reach the end of the compilation unit. */
c906108c 5811
72bf9492 5812 pdi = first_die;
91c24f0a 5813
72bf9492
DJ
5814 while (pdi != NULL)
5815 {
5816 fixup_partial_die (pdi, cu);
c906108c 5817
f55ee35c 5818 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
5819 children, so we need to look at them. Ditto for anonymous
5820 enums. */
933c6fe4 5821
72bf9492 5822 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
5823 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5824 || pdi->tag == DW_TAG_imported_unit)
c906108c 5825 {
72bf9492 5826 switch (pdi->tag)
c906108c
SS
5827 {
5828 case DW_TAG_subprogram:
5734ee8b 5829 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 5830 break;
72929c62 5831 case DW_TAG_constant:
c906108c
SS
5832 case DW_TAG_variable:
5833 case DW_TAG_typedef:
91c24f0a 5834 case DW_TAG_union_type:
72bf9492 5835 if (!pdi->is_declaration)
63d06c5c 5836 {
72bf9492 5837 add_partial_symbol (pdi, cu);
63d06c5c
DC
5838 }
5839 break;
c906108c 5840 case DW_TAG_class_type:
680b30c7 5841 case DW_TAG_interface_type:
c906108c 5842 case DW_TAG_structure_type:
72bf9492 5843 if (!pdi->is_declaration)
c906108c 5844 {
72bf9492 5845 add_partial_symbol (pdi, cu);
c906108c
SS
5846 }
5847 break;
91c24f0a 5848 case DW_TAG_enumeration_type:
72bf9492
DJ
5849 if (!pdi->is_declaration)
5850 add_partial_enumeration (pdi, cu);
c906108c
SS
5851 break;
5852 case DW_TAG_base_type:
a02abb62 5853 case DW_TAG_subrange_type:
c906108c 5854 /* File scope base type definitions are added to the partial
c5aa993b 5855 symbol table. */
72bf9492 5856 add_partial_symbol (pdi, cu);
c906108c 5857 break;
d9fa45fe 5858 case DW_TAG_namespace:
5734ee8b 5859 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 5860 break;
5d7cb8df
JK
5861 case DW_TAG_module:
5862 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5863 break;
95554aad
TT
5864 case DW_TAG_imported_unit:
5865 {
5866 struct dwarf2_per_cu_data *per_cu;
5867
f4dc4d17
DE
5868 /* For now we don't handle imported units in type units. */
5869 if (cu->per_cu->is_debug_types)
5870 {
5871 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5872 " supported in type units [in module %s]"),
5873 cu->objfile->name);
5874 }
5875
95554aad 5876 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 5877 pdi->is_dwz,
95554aad
TT
5878 cu->objfile);
5879
5880 /* Go read the partial unit, if needed. */
5881 if (per_cu->v.psymtab == NULL)
5882 process_psymtab_comp_unit (per_cu, 1);
5883
f4dc4d17 5884 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 5885 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
5886 }
5887 break;
c906108c
SS
5888 default:
5889 break;
5890 }
5891 }
5892
72bf9492
DJ
5893 /* If the die has a sibling, skip to the sibling. */
5894
5895 pdi = pdi->die_sibling;
5896 }
5897}
5898
5899/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 5900
72bf9492 5901 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
5902 name is concatenated with "::" and the partial DIE's name. For
5903 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
5904 Enumerators are an exception; they use the scope of their parent
5905 enumeration type, i.e. the name of the enumeration type is not
5906 prepended to the enumerator.
91c24f0a 5907
72bf9492
DJ
5908 There are two complexities. One is DW_AT_specification; in this
5909 case "parent" means the parent of the target of the specification,
5910 instead of the direct parent of the DIE. The other is compilers
5911 which do not emit DW_TAG_namespace; in this case we try to guess
5912 the fully qualified name of structure types from their members'
5913 linkage names. This must be done using the DIE's children rather
5914 than the children of any DW_AT_specification target. We only need
5915 to do this for structures at the top level, i.e. if the target of
5916 any DW_AT_specification (if any; otherwise the DIE itself) does not
5917 have a parent. */
5918
5919/* Compute the scope prefix associated with PDI's parent, in
5920 compilation unit CU. The result will be allocated on CU's
5921 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5922 field. NULL is returned if no prefix is necessary. */
15d034d0 5923static const char *
72bf9492
DJ
5924partial_die_parent_scope (struct partial_die_info *pdi,
5925 struct dwarf2_cu *cu)
5926{
15d034d0 5927 const char *grandparent_scope;
72bf9492 5928 struct partial_die_info *parent, *real_pdi;
91c24f0a 5929
72bf9492
DJ
5930 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5931 then this means the parent of the specification DIE. */
5932
5933 real_pdi = pdi;
72bf9492 5934 while (real_pdi->has_specification)
36586728
TT
5935 real_pdi = find_partial_die (real_pdi->spec_offset,
5936 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
5937
5938 parent = real_pdi->die_parent;
5939 if (parent == NULL)
5940 return NULL;
5941
5942 if (parent->scope_set)
5943 return parent->scope;
5944
5945 fixup_partial_die (parent, cu);
5946
10b3939b 5947 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 5948
acebe513
UW
5949 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5950 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5951 Work around this problem here. */
5952 if (cu->language == language_cplus
6e70227d 5953 && parent->tag == DW_TAG_namespace
acebe513
UW
5954 && strcmp (parent->name, "::") == 0
5955 && grandparent_scope == NULL)
5956 {
5957 parent->scope = NULL;
5958 parent->scope_set = 1;
5959 return NULL;
5960 }
5961
9c6c53f7
SA
5962 if (pdi->tag == DW_TAG_enumerator)
5963 /* Enumerators should not get the name of the enumeration as a prefix. */
5964 parent->scope = grandparent_scope;
5965 else if (parent->tag == DW_TAG_namespace
f55ee35c 5966 || parent->tag == DW_TAG_module
72bf9492
DJ
5967 || parent->tag == DW_TAG_structure_type
5968 || parent->tag == DW_TAG_class_type
680b30c7 5969 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
5970 || parent->tag == DW_TAG_union_type
5971 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
5972 {
5973 if (grandparent_scope == NULL)
5974 parent->scope = parent->name;
5975 else
3e43a32a
MS
5976 parent->scope = typename_concat (&cu->comp_unit_obstack,
5977 grandparent_scope,
f55ee35c 5978 parent->name, 0, cu);
72bf9492 5979 }
72bf9492
DJ
5980 else
5981 {
5982 /* FIXME drow/2004-04-01: What should we be doing with
5983 function-local names? For partial symbols, we should probably be
5984 ignoring them. */
5985 complaint (&symfile_complaints,
e2e0b3e5 5986 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 5987 parent->tag, pdi->offset.sect_off);
72bf9492 5988 parent->scope = grandparent_scope;
c906108c
SS
5989 }
5990
72bf9492
DJ
5991 parent->scope_set = 1;
5992 return parent->scope;
5993}
5994
5995/* Return the fully scoped name associated with PDI, from compilation unit
5996 CU. The result will be allocated with malloc. */
4568ecf9 5997
72bf9492
DJ
5998static char *
5999partial_die_full_name (struct partial_die_info *pdi,
6000 struct dwarf2_cu *cu)
6001{
15d034d0 6002 const char *parent_scope;
72bf9492 6003
98bfdba5
PA
6004 /* If this is a template instantiation, we can not work out the
6005 template arguments from partial DIEs. So, unfortunately, we have
6006 to go through the full DIEs. At least any work we do building
6007 types here will be reused if full symbols are loaded later. */
6008 if (pdi->has_template_arguments)
6009 {
6010 fixup_partial_die (pdi, cu);
6011
6012 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6013 {
6014 struct die_info *die;
6015 struct attribute attr;
6016 struct dwarf2_cu *ref_cu = cu;
6017
b64f50a1 6018 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6019 attr.name = 0;
6020 attr.form = DW_FORM_ref_addr;
4568ecf9 6021 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6022 die = follow_die_ref (NULL, &attr, &ref_cu);
6023
6024 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6025 }
6026 }
6027
72bf9492
DJ
6028 parent_scope = partial_die_parent_scope (pdi, cu);
6029 if (parent_scope == NULL)
6030 return NULL;
6031 else
f55ee35c 6032 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6033}
6034
6035static void
72bf9492 6036add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6037{
e7c27a73 6038 struct objfile *objfile = cu->objfile;
c906108c 6039 CORE_ADDR addr = 0;
15d034d0 6040 const char *actual_name = NULL;
e142c38c 6041 CORE_ADDR baseaddr;
15d034d0 6042 char *built_actual_name;
e142c38c
DJ
6043
6044 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6045
15d034d0
TT
6046 built_actual_name = partial_die_full_name (pdi, cu);
6047 if (built_actual_name != NULL)
6048 actual_name = built_actual_name;
63d06c5c 6049
72bf9492
DJ
6050 if (actual_name == NULL)
6051 actual_name = pdi->name;
6052
c906108c
SS
6053 switch (pdi->tag)
6054 {
6055 case DW_TAG_subprogram:
2cfa0c8d 6056 if (pdi->is_external || cu->language == language_ada)
c906108c 6057 {
2cfa0c8d
JB
6058 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6059 of the global scope. But in Ada, we want to be able to access
6060 nested procedures globally. So all Ada subprograms are stored
6061 in the global scope. */
f47fb265 6062 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6063 mst_text, objfile); */
f47fb265 6064 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6065 built_actual_name != NULL,
f47fb265
MS
6066 VAR_DOMAIN, LOC_BLOCK,
6067 &objfile->global_psymbols,
6068 0, pdi->lowpc + baseaddr,
6069 cu->language, objfile);
c906108c
SS
6070 }
6071 else
6072 {
f47fb265 6073 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6074 mst_file_text, objfile); */
f47fb265 6075 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6076 built_actual_name != NULL,
f47fb265
MS
6077 VAR_DOMAIN, LOC_BLOCK,
6078 &objfile->static_psymbols,
6079 0, pdi->lowpc + baseaddr,
6080 cu->language, objfile);
c906108c
SS
6081 }
6082 break;
72929c62
JB
6083 case DW_TAG_constant:
6084 {
6085 struct psymbol_allocation_list *list;
6086
6087 if (pdi->is_external)
6088 list = &objfile->global_psymbols;
6089 else
6090 list = &objfile->static_psymbols;
f47fb265 6091 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6092 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6093 list, 0, 0, cu->language, objfile);
72929c62
JB
6094 }
6095 break;
c906108c 6096 case DW_TAG_variable:
95554aad
TT
6097 if (pdi->d.locdesc)
6098 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6099
95554aad 6100 if (pdi->d.locdesc
caac4577
JG
6101 && addr == 0
6102 && !dwarf2_per_objfile->has_section_at_zero)
6103 {
6104 /* A global or static variable may also have been stripped
6105 out by the linker if unused, in which case its address
6106 will be nullified; do not add such variables into partial
6107 symbol table then. */
6108 }
6109 else if (pdi->is_external)
c906108c
SS
6110 {
6111 /* Global Variable.
6112 Don't enter into the minimal symbol tables as there is
6113 a minimal symbol table entry from the ELF symbols already.
6114 Enter into partial symbol table if it has a location
6115 descriptor or a type.
6116 If the location descriptor is missing, new_symbol will create
6117 a LOC_UNRESOLVED symbol, the address of the variable will then
6118 be determined from the minimal symbol table whenever the variable
6119 is referenced.
6120 The address for the partial symbol table entry is not
6121 used by GDB, but it comes in handy for debugging partial symbol
6122 table building. */
6123
95554aad 6124 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6125 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6126 built_actual_name != NULL,
f47fb265
MS
6127 VAR_DOMAIN, LOC_STATIC,
6128 &objfile->global_psymbols,
6129 0, addr + baseaddr,
6130 cu->language, objfile);
c906108c
SS
6131 }
6132 else
6133 {
0963b4bd 6134 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6135 if (pdi->d.locdesc == NULL)
decbce07 6136 {
15d034d0 6137 xfree (built_actual_name);
decbce07
MS
6138 return;
6139 }
f47fb265 6140 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6141 mst_file_data, objfile); */
f47fb265 6142 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6143 built_actual_name != NULL,
f47fb265
MS
6144 VAR_DOMAIN, LOC_STATIC,
6145 &objfile->static_psymbols,
6146 0, addr + baseaddr,
6147 cu->language, objfile);
c906108c
SS
6148 }
6149 break;
6150 case DW_TAG_typedef:
6151 case DW_TAG_base_type:
a02abb62 6152 case DW_TAG_subrange_type:
38d518c9 6153 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6154 built_actual_name != NULL,
176620f1 6155 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6156 &objfile->static_psymbols,
e142c38c 6157 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6158 break;
72bf9492
DJ
6159 case DW_TAG_namespace:
6160 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6161 built_actual_name != NULL,
72bf9492
DJ
6162 VAR_DOMAIN, LOC_TYPEDEF,
6163 &objfile->global_psymbols,
6164 0, (CORE_ADDR) 0, cu->language, objfile);
6165 break;
c906108c 6166 case DW_TAG_class_type:
680b30c7 6167 case DW_TAG_interface_type:
c906108c
SS
6168 case DW_TAG_structure_type:
6169 case DW_TAG_union_type:
6170 case DW_TAG_enumeration_type:
fa4028e9
JB
6171 /* Skip external references. The DWARF standard says in the section
6172 about "Structure, Union, and Class Type Entries": "An incomplete
6173 structure, union or class type is represented by a structure,
6174 union or class entry that does not have a byte size attribute
6175 and that has a DW_AT_declaration attribute." */
6176 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6177 {
15d034d0 6178 xfree (built_actual_name);
decbce07
MS
6179 return;
6180 }
fa4028e9 6181
63d06c5c
DC
6182 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6183 static vs. global. */
38d518c9 6184 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6185 built_actual_name != NULL,
176620f1 6186 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6187 (cu->language == language_cplus
6188 || cu->language == language_java)
63d06c5c
DC
6189 ? &objfile->global_psymbols
6190 : &objfile->static_psymbols,
e142c38c 6191 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6192
c906108c
SS
6193 break;
6194 case DW_TAG_enumerator:
38d518c9 6195 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6196 built_actual_name != NULL,
176620f1 6197 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6198 (cu->language == language_cplus
6199 || cu->language == language_java)
f6fe98ef
DJ
6200 ? &objfile->global_psymbols
6201 : &objfile->static_psymbols,
e142c38c 6202 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6203 break;
6204 default:
6205 break;
6206 }
5c4e30ca 6207
15d034d0 6208 xfree (built_actual_name);
c906108c
SS
6209}
6210
5c4e30ca
DC
6211/* Read a partial die corresponding to a namespace; also, add a symbol
6212 corresponding to that namespace to the symbol table. NAMESPACE is
6213 the name of the enclosing namespace. */
91c24f0a 6214
72bf9492
DJ
6215static void
6216add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6217 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6218 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6219{
72bf9492 6220 /* Add a symbol for the namespace. */
e7c27a73 6221
72bf9492 6222 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6223
6224 /* Now scan partial symbols in that namespace. */
6225
91c24f0a 6226 if (pdi->has_children)
5734ee8b 6227 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6228}
6229
5d7cb8df
JK
6230/* Read a partial die corresponding to a Fortran module. */
6231
6232static void
6233add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6234 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6235{
f55ee35c 6236 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6237
6238 if (pdi->has_children)
6239 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6240}
6241
bc30ff58
JB
6242/* Read a partial die corresponding to a subprogram and create a partial
6243 symbol for that subprogram. When the CU language allows it, this
6244 routine also defines a partial symbol for each nested subprogram
6245 that this subprogram contains.
6e70227d 6246
bc30ff58
JB
6247 DIE my also be a lexical block, in which case we simply search
6248 recursively for suprograms defined inside that lexical block.
6249 Again, this is only performed when the CU language allows this
6250 type of definitions. */
6251
6252static void
6253add_partial_subprogram (struct partial_die_info *pdi,
6254 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6255 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6256{
6257 if (pdi->tag == DW_TAG_subprogram)
6258 {
6259 if (pdi->has_pc_info)
6260 {
6261 if (pdi->lowpc < *lowpc)
6262 *lowpc = pdi->lowpc;
6263 if (pdi->highpc > *highpc)
6264 *highpc = pdi->highpc;
5734ee8b
DJ
6265 if (need_pc)
6266 {
6267 CORE_ADDR baseaddr;
6268 struct objfile *objfile = cu->objfile;
6269
6270 baseaddr = ANOFFSET (objfile->section_offsets,
6271 SECT_OFF_TEXT (objfile));
6272 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6273 pdi->lowpc + baseaddr,
6274 pdi->highpc - 1 + baseaddr,
9291a0cd 6275 cu->per_cu->v.psymtab);
5734ee8b 6276 }
481860b3
GB
6277 }
6278
6279 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6280 {
bc30ff58 6281 if (!pdi->is_declaration)
e8d05480
JB
6282 /* Ignore subprogram DIEs that do not have a name, they are
6283 illegal. Do not emit a complaint at this point, we will
6284 do so when we convert this psymtab into a symtab. */
6285 if (pdi->name)
6286 add_partial_symbol (pdi, cu);
bc30ff58
JB
6287 }
6288 }
6e70227d 6289
bc30ff58
JB
6290 if (! pdi->has_children)
6291 return;
6292
6293 if (cu->language == language_ada)
6294 {
6295 pdi = pdi->die_child;
6296 while (pdi != NULL)
6297 {
6298 fixup_partial_die (pdi, cu);
6299 if (pdi->tag == DW_TAG_subprogram
6300 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6301 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6302 pdi = pdi->die_sibling;
6303 }
6304 }
6305}
6306
91c24f0a
DC
6307/* Read a partial die corresponding to an enumeration type. */
6308
72bf9492
DJ
6309static void
6310add_partial_enumeration (struct partial_die_info *enum_pdi,
6311 struct dwarf2_cu *cu)
91c24f0a 6312{
72bf9492 6313 struct partial_die_info *pdi;
91c24f0a
DC
6314
6315 if (enum_pdi->name != NULL)
72bf9492
DJ
6316 add_partial_symbol (enum_pdi, cu);
6317
6318 pdi = enum_pdi->die_child;
6319 while (pdi)
91c24f0a 6320 {
72bf9492 6321 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 6322 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 6323 else
72bf9492
DJ
6324 add_partial_symbol (pdi, cu);
6325 pdi = pdi->die_sibling;
91c24f0a 6326 }
91c24f0a
DC
6327}
6328
6caca83c
CC
6329/* Return the initial uleb128 in the die at INFO_PTR. */
6330
6331static unsigned int
d521ce57 6332peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
6333{
6334 unsigned int bytes_read;
6335
6336 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6337}
6338
4bb7a0a7
DJ
6339/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6340 Return the corresponding abbrev, or NULL if the number is zero (indicating
6341 an empty DIE). In either case *BYTES_READ will be set to the length of
6342 the initial number. */
6343
6344static struct abbrev_info *
d521ce57 6345peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 6346 struct dwarf2_cu *cu)
4bb7a0a7
DJ
6347{
6348 bfd *abfd = cu->objfile->obfd;
6349 unsigned int abbrev_number;
6350 struct abbrev_info *abbrev;
6351
6352 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6353
6354 if (abbrev_number == 0)
6355 return NULL;
6356
433df2d4 6357 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
6358 if (!abbrev)
6359 {
3e43a32a
MS
6360 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6361 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
6362 }
6363
6364 return abbrev;
6365}
6366
93311388
DE
6367/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6368 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
6369 DIE. Any children of the skipped DIEs will also be skipped. */
6370
d521ce57
TT
6371static const gdb_byte *
6372skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 6373{
dee91e82 6374 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
6375 struct abbrev_info *abbrev;
6376 unsigned int bytes_read;
6377
6378 while (1)
6379 {
6380 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6381 if (abbrev == NULL)
6382 return info_ptr + bytes_read;
6383 else
dee91e82 6384 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
6385 }
6386}
6387
93311388
DE
6388/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6389 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
6390 abbrev corresponding to that skipped uleb128 should be passed in
6391 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6392 children. */
6393
d521ce57
TT
6394static const gdb_byte *
6395skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 6396 struct abbrev_info *abbrev)
4bb7a0a7
DJ
6397{
6398 unsigned int bytes_read;
6399 struct attribute attr;
dee91e82
DE
6400 bfd *abfd = reader->abfd;
6401 struct dwarf2_cu *cu = reader->cu;
d521ce57 6402 const gdb_byte *buffer = reader->buffer;
f664829e 6403 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 6404 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
6405 unsigned int form, i;
6406
6407 for (i = 0; i < abbrev->num_attrs; i++)
6408 {
6409 /* The only abbrev we care about is DW_AT_sibling. */
6410 if (abbrev->attrs[i].name == DW_AT_sibling)
6411 {
dee91e82 6412 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 6413 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
6414 complaint (&symfile_complaints,
6415 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 6416 else
b64f50a1 6417 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
4bb7a0a7
DJ
6418 }
6419
6420 /* If it isn't DW_AT_sibling, skip this attribute. */
6421 form = abbrev->attrs[i].form;
6422 skip_attribute:
6423 switch (form)
6424 {
4bb7a0a7 6425 case DW_FORM_ref_addr:
ae411497
TT
6426 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6427 and later it is offset sized. */
6428 if (cu->header.version == 2)
6429 info_ptr += cu->header.addr_size;
6430 else
6431 info_ptr += cu->header.offset_size;
6432 break;
36586728
TT
6433 case DW_FORM_GNU_ref_alt:
6434 info_ptr += cu->header.offset_size;
6435 break;
ae411497 6436 case DW_FORM_addr:
4bb7a0a7
DJ
6437 info_ptr += cu->header.addr_size;
6438 break;
6439 case DW_FORM_data1:
6440 case DW_FORM_ref1:
6441 case DW_FORM_flag:
6442 info_ptr += 1;
6443 break;
2dc7f7b3
TT
6444 case DW_FORM_flag_present:
6445 break;
4bb7a0a7
DJ
6446 case DW_FORM_data2:
6447 case DW_FORM_ref2:
6448 info_ptr += 2;
6449 break;
6450 case DW_FORM_data4:
6451 case DW_FORM_ref4:
6452 info_ptr += 4;
6453 break;
6454 case DW_FORM_data8:
6455 case DW_FORM_ref8:
55f1336d 6456 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
6457 info_ptr += 8;
6458 break;
6459 case DW_FORM_string:
9b1c24c8 6460 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
6461 info_ptr += bytes_read;
6462 break;
2dc7f7b3 6463 case DW_FORM_sec_offset:
4bb7a0a7 6464 case DW_FORM_strp:
36586728 6465 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
6466 info_ptr += cu->header.offset_size;
6467 break;
2dc7f7b3 6468 case DW_FORM_exprloc:
4bb7a0a7
DJ
6469 case DW_FORM_block:
6470 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6471 info_ptr += bytes_read;
6472 break;
6473 case DW_FORM_block1:
6474 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6475 break;
6476 case DW_FORM_block2:
6477 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6478 break;
6479 case DW_FORM_block4:
6480 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6481 break;
6482 case DW_FORM_sdata:
6483 case DW_FORM_udata:
6484 case DW_FORM_ref_udata:
3019eac3
DE
6485 case DW_FORM_GNU_addr_index:
6486 case DW_FORM_GNU_str_index:
d521ce57 6487 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
6488 break;
6489 case DW_FORM_indirect:
6490 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6491 info_ptr += bytes_read;
6492 /* We need to continue parsing from here, so just go back to
6493 the top. */
6494 goto skip_attribute;
6495
6496 default:
3e43a32a
MS
6497 error (_("Dwarf Error: Cannot handle %s "
6498 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
6499 dwarf_form_name (form),
6500 bfd_get_filename (abfd));
6501 }
6502 }
6503
6504 if (abbrev->has_children)
dee91e82 6505 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
6506 else
6507 return info_ptr;
6508}
6509
93311388 6510/* Locate ORIG_PDI's sibling.
dee91e82 6511 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 6512
d521ce57 6513static const gdb_byte *
dee91e82
DE
6514locate_pdi_sibling (const struct die_reader_specs *reader,
6515 struct partial_die_info *orig_pdi,
d521ce57 6516 const gdb_byte *info_ptr)
91c24f0a
DC
6517{
6518 /* Do we know the sibling already? */
72bf9492 6519
91c24f0a
DC
6520 if (orig_pdi->sibling)
6521 return orig_pdi->sibling;
6522
6523 /* Are there any children to deal with? */
6524
6525 if (!orig_pdi->has_children)
6526 return info_ptr;
6527
4bb7a0a7 6528 /* Skip the children the long way. */
91c24f0a 6529
dee91e82 6530 return skip_children (reader, info_ptr);
91c24f0a
DC
6531}
6532
257e7a09 6533/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 6534 not NULL. */
c906108c
SS
6535
6536static void
257e7a09
YQ
6537dwarf2_read_symtab (struct partial_symtab *self,
6538 struct objfile *objfile)
c906108c 6539{
257e7a09 6540 if (self->readin)
c906108c 6541 {
442e4d9c 6542 warning (_("bug: psymtab for %s is already read in."),
257e7a09 6543 self->filename);
442e4d9c
YQ
6544 }
6545 else
6546 {
6547 if (info_verbose)
c906108c 6548 {
442e4d9c 6549 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 6550 self->filename);
442e4d9c 6551 gdb_flush (gdb_stdout);
c906108c 6552 }
c906108c 6553
442e4d9c
YQ
6554 /* Restore our global data. */
6555 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 6556
442e4d9c
YQ
6557 /* If this psymtab is constructed from a debug-only objfile, the
6558 has_section_at_zero flag will not necessarily be correct. We
6559 can get the correct value for this flag by looking at the data
6560 associated with the (presumably stripped) associated objfile. */
6561 if (objfile->separate_debug_objfile_backlink)
6562 {
6563 struct dwarf2_per_objfile *dpo_backlink
6564 = objfile_data (objfile->separate_debug_objfile_backlink,
6565 dwarf2_objfile_data_key);
9a619af0 6566
442e4d9c
YQ
6567 dwarf2_per_objfile->has_section_at_zero
6568 = dpo_backlink->has_section_at_zero;
6569 }
b2ab525c 6570
442e4d9c 6571 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 6572
257e7a09 6573 psymtab_to_symtab_1 (self);
c906108c 6574
442e4d9c
YQ
6575 /* Finish up the debug error message. */
6576 if (info_verbose)
6577 printf_filtered (_("done.\n"));
c906108c 6578 }
95554aad
TT
6579
6580 process_cu_includes ();
c906108c 6581}
9cdd5dbd
DE
6582\f
6583/* Reading in full CUs. */
c906108c 6584
10b3939b
DJ
6585/* Add PER_CU to the queue. */
6586
6587static void
95554aad
TT
6588queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6589 enum language pretend_language)
10b3939b
DJ
6590{
6591 struct dwarf2_queue_item *item;
6592
6593 per_cu->queued = 1;
6594 item = xmalloc (sizeof (*item));
6595 item->per_cu = per_cu;
95554aad 6596 item->pretend_language = pretend_language;
10b3939b
DJ
6597 item->next = NULL;
6598
6599 if (dwarf2_queue == NULL)
6600 dwarf2_queue = item;
6601 else
6602 dwarf2_queue_tail->next = item;
6603
6604 dwarf2_queue_tail = item;
6605}
6606
0907af0c
DE
6607/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6608 unit and add it to our queue.
6609 The result is non-zero if PER_CU was queued, otherwise the result is zero
6610 meaning either PER_CU is already queued or it is already loaded. */
6611
6612static int
6613maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6614 struct dwarf2_per_cu_data *per_cu,
6615 enum language pretend_language)
6616{
6617 /* We may arrive here during partial symbol reading, if we need full
6618 DIEs to process an unusual case (e.g. template arguments). Do
6619 not queue PER_CU, just tell our caller to load its DIEs. */
6620 if (dwarf2_per_objfile->reading_partial_symbols)
6621 {
6622 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6623 return 1;
6624 return 0;
6625 }
6626
6627 /* Mark the dependence relation so that we don't flush PER_CU
6628 too early. */
6629 dwarf2_add_dependence (this_cu, per_cu);
6630
6631 /* If it's already on the queue, we have nothing to do. */
6632 if (per_cu->queued)
6633 return 0;
6634
6635 /* If the compilation unit is already loaded, just mark it as
6636 used. */
6637 if (per_cu->cu != NULL)
6638 {
6639 per_cu->cu->last_used = 0;
6640 return 0;
6641 }
6642
6643 /* Add it to the queue. */
6644 queue_comp_unit (per_cu, pretend_language);
6645
6646 return 1;
6647}
6648
10b3939b
DJ
6649/* Process the queue. */
6650
6651static void
a0f42c21 6652process_queue (void)
10b3939b
DJ
6653{
6654 struct dwarf2_queue_item *item, *next_item;
6655
45cfd468
DE
6656 if (dwarf2_read_debug)
6657 {
6658 fprintf_unfiltered (gdb_stdlog,
6659 "Expanding one or more symtabs of objfile %s ...\n",
6660 dwarf2_per_objfile->objfile->name);
6661 }
6662
03dd20cc
DJ
6663 /* The queue starts out with one item, but following a DIE reference
6664 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
6665 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6666 {
9291a0cd
TT
6667 if (dwarf2_per_objfile->using_index
6668 ? !item->per_cu->v.quick->symtab
6669 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
6670 {
6671 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6672
6673 if (dwarf2_read_debug)
6674 {
6675 fprintf_unfiltered (gdb_stdlog,
6676 "Expanding symtab of %s at offset 0x%x\n",
6677 per_cu->is_debug_types ? "TU" : "CU",
6678 per_cu->offset.sect_off);
6679 }
6680
6681 if (per_cu->is_debug_types)
6682 process_full_type_unit (per_cu, item->pretend_language);
6683 else
6684 process_full_comp_unit (per_cu, item->pretend_language);
6685
6686 if (dwarf2_read_debug)
6687 {
6688 fprintf_unfiltered (gdb_stdlog,
6689 "Done expanding %s at offset 0x%x\n",
6690 per_cu->is_debug_types ? "TU" : "CU",
6691 per_cu->offset.sect_off);
6692 }
6693 }
10b3939b
DJ
6694
6695 item->per_cu->queued = 0;
6696 next_item = item->next;
6697 xfree (item);
6698 }
6699
6700 dwarf2_queue_tail = NULL;
45cfd468
DE
6701
6702 if (dwarf2_read_debug)
6703 {
6704 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6705 dwarf2_per_objfile->objfile->name);
6706 }
10b3939b
DJ
6707}
6708
6709/* Free all allocated queue entries. This function only releases anything if
6710 an error was thrown; if the queue was processed then it would have been
6711 freed as we went along. */
6712
6713static void
6714dwarf2_release_queue (void *dummy)
6715{
6716 struct dwarf2_queue_item *item, *last;
6717
6718 item = dwarf2_queue;
6719 while (item)
6720 {
6721 /* Anything still marked queued is likely to be in an
6722 inconsistent state, so discard it. */
6723 if (item->per_cu->queued)
6724 {
6725 if (item->per_cu->cu != NULL)
dee91e82 6726 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
6727 item->per_cu->queued = 0;
6728 }
6729
6730 last = item;
6731 item = item->next;
6732 xfree (last);
6733 }
6734
6735 dwarf2_queue = dwarf2_queue_tail = NULL;
6736}
6737
6738/* Read in full symbols for PST, and anything it depends on. */
6739
c906108c 6740static void
fba45db2 6741psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 6742{
10b3939b 6743 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
6744 int i;
6745
95554aad
TT
6746 if (pst->readin)
6747 return;
6748
aaa75496 6749 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
6750 if (!pst->dependencies[i]->readin
6751 && pst->dependencies[i]->user == NULL)
aaa75496
JB
6752 {
6753 /* Inform about additional files that need to be read in. */
6754 if (info_verbose)
6755 {
a3f17187 6756 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
6757 fputs_filtered (" ", gdb_stdout);
6758 wrap_here ("");
6759 fputs_filtered ("and ", gdb_stdout);
6760 wrap_here ("");
6761 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 6762 wrap_here (""); /* Flush output. */
aaa75496
JB
6763 gdb_flush (gdb_stdout);
6764 }
6765 psymtab_to_symtab_1 (pst->dependencies[i]);
6766 }
6767
e38df1d0 6768 per_cu = pst->read_symtab_private;
10b3939b
DJ
6769
6770 if (per_cu == NULL)
aaa75496
JB
6771 {
6772 /* It's an include file, no symbols to read for it.
6773 Everything is in the parent symtab. */
6774 pst->readin = 1;
6775 return;
6776 }
c906108c 6777
a0f42c21 6778 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
6779}
6780
dee91e82
DE
6781/* Trivial hash function for die_info: the hash value of a DIE
6782 is its offset in .debug_info for this objfile. */
10b3939b 6783
dee91e82
DE
6784static hashval_t
6785die_hash (const void *item)
10b3939b 6786{
dee91e82 6787 const struct die_info *die = item;
6502dd73 6788
dee91e82
DE
6789 return die->offset.sect_off;
6790}
63d06c5c 6791
dee91e82
DE
6792/* Trivial comparison function for die_info structures: two DIEs
6793 are equal if they have the same offset. */
98bfdba5 6794
dee91e82
DE
6795static int
6796die_eq (const void *item_lhs, const void *item_rhs)
6797{
6798 const struct die_info *die_lhs = item_lhs;
6799 const struct die_info *die_rhs = item_rhs;
c906108c 6800
dee91e82
DE
6801 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6802}
c906108c 6803
dee91e82
DE
6804/* die_reader_func for load_full_comp_unit.
6805 This is identical to read_signatured_type_reader,
6806 but is kept separate for now. */
c906108c 6807
dee91e82
DE
6808static void
6809load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6810 const gdb_byte *info_ptr,
dee91e82
DE
6811 struct die_info *comp_unit_die,
6812 int has_children,
6813 void *data)
6814{
6815 struct dwarf2_cu *cu = reader->cu;
95554aad 6816 enum language *language_ptr = data;
6caca83c 6817
dee91e82
DE
6818 gdb_assert (cu->die_hash == NULL);
6819 cu->die_hash =
6820 htab_create_alloc_ex (cu->header.length / 12,
6821 die_hash,
6822 die_eq,
6823 NULL,
6824 &cu->comp_unit_obstack,
6825 hashtab_obstack_allocate,
6826 dummy_obstack_deallocate);
e142c38c 6827
dee91e82
DE
6828 if (has_children)
6829 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6830 &info_ptr, comp_unit_die);
6831 cu->dies = comp_unit_die;
6832 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
6833
6834 /* We try not to read any attributes in this function, because not
9cdd5dbd 6835 all CUs needed for references have been loaded yet, and symbol
10b3939b 6836 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
6837 or we won't be able to build types correctly.
6838 Similarly, if we do not read the producer, we can not apply
6839 producer-specific interpretation. */
95554aad 6840 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 6841}
10b3939b 6842
dee91e82 6843/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 6844
dee91e82 6845static void
95554aad
TT
6846load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6847 enum language pretend_language)
dee91e82 6848{
3019eac3 6849 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 6850
f4dc4d17
DE
6851 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6852 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
6853}
6854
3da10d80
KS
6855/* Add a DIE to the delayed physname list. */
6856
6857static void
6858add_to_method_list (struct type *type, int fnfield_index, int index,
6859 const char *name, struct die_info *die,
6860 struct dwarf2_cu *cu)
6861{
6862 struct delayed_method_info mi;
6863 mi.type = type;
6864 mi.fnfield_index = fnfield_index;
6865 mi.index = index;
6866 mi.name = name;
6867 mi.die = die;
6868 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6869}
6870
6871/* A cleanup for freeing the delayed method list. */
6872
6873static void
6874free_delayed_list (void *ptr)
6875{
6876 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6877 if (cu->method_list != NULL)
6878 {
6879 VEC_free (delayed_method_info, cu->method_list);
6880 cu->method_list = NULL;
6881 }
6882}
6883
6884/* Compute the physnames of any methods on the CU's method list.
6885
6886 The computation of method physnames is delayed in order to avoid the
6887 (bad) condition that one of the method's formal parameters is of an as yet
6888 incomplete type. */
6889
6890static void
6891compute_delayed_physnames (struct dwarf2_cu *cu)
6892{
6893 int i;
6894 struct delayed_method_info *mi;
6895 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6896 {
1d06ead6 6897 const char *physname;
3da10d80
KS
6898 struct fn_fieldlist *fn_flp
6899 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 6900 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
6901 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6902 }
6903}
6904
a766d390
DE
6905/* Go objects should be embedded in a DW_TAG_module DIE,
6906 and it's not clear if/how imported objects will appear.
6907 To keep Go support simple until that's worked out,
6908 go back through what we've read and create something usable.
6909 We could do this while processing each DIE, and feels kinda cleaner,
6910 but that way is more invasive.
6911 This is to, for example, allow the user to type "p var" or "b main"
6912 without having to specify the package name, and allow lookups
6913 of module.object to work in contexts that use the expression
6914 parser. */
6915
6916static void
6917fixup_go_packaging (struct dwarf2_cu *cu)
6918{
6919 char *package_name = NULL;
6920 struct pending *list;
6921 int i;
6922
6923 for (list = global_symbols; list != NULL; list = list->next)
6924 {
6925 for (i = 0; i < list->nsyms; ++i)
6926 {
6927 struct symbol *sym = list->symbol[i];
6928
6929 if (SYMBOL_LANGUAGE (sym) == language_go
6930 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6931 {
6932 char *this_package_name = go_symbol_package_name (sym);
6933
6934 if (this_package_name == NULL)
6935 continue;
6936 if (package_name == NULL)
6937 package_name = this_package_name;
6938 else
6939 {
6940 if (strcmp (package_name, this_package_name) != 0)
6941 complaint (&symfile_complaints,
6942 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 6943 (SYMBOL_SYMTAB (sym)
05cba821 6944 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
a766d390
DE
6945 : cu->objfile->name),
6946 this_package_name, package_name);
6947 xfree (this_package_name);
6948 }
6949 }
6950 }
6951 }
6952
6953 if (package_name != NULL)
6954 {
6955 struct objfile *objfile = cu->objfile;
10f0c4bb
TT
6956 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6957 package_name,
6958 strlen (package_name));
a766d390 6959 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 6960 saved_package_name, objfile);
a766d390
DE
6961 struct symbol *sym;
6962
6963 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6964
e623cf5d 6965 sym = allocate_symbol (objfile);
f85f34ed 6966 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
6967 SYMBOL_SET_NAMES (sym, saved_package_name,
6968 strlen (saved_package_name), 0, objfile);
a766d390
DE
6969 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6970 e.g., "main" finds the "main" module and not C's main(). */
6971 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 6972 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
6973 SYMBOL_TYPE (sym) = type;
6974
6975 add_symbol_to_list (sym, &global_symbols);
6976
6977 xfree (package_name);
6978 }
6979}
6980
95554aad
TT
6981/* Return the symtab for PER_CU. This works properly regardless of
6982 whether we're using the index or psymtabs. */
6983
6984static struct symtab *
6985get_symtab (struct dwarf2_per_cu_data *per_cu)
6986{
6987 return (dwarf2_per_objfile->using_index
6988 ? per_cu->v.quick->symtab
6989 : per_cu->v.psymtab->symtab);
6990}
6991
6992/* A helper function for computing the list of all symbol tables
6993 included by PER_CU. */
6994
6995static void
6996recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6997 htab_t all_children,
6998 struct dwarf2_per_cu_data *per_cu)
6999{
7000 void **slot;
7001 int ix;
7002 struct dwarf2_per_cu_data *iter;
7003
7004 slot = htab_find_slot (all_children, per_cu, INSERT);
7005 if (*slot != NULL)
7006 {
7007 /* This inclusion and its children have been processed. */
7008 return;
7009 }
7010
7011 *slot = per_cu;
7012 /* Only add a CU if it has a symbol table. */
7013 if (get_symtab (per_cu) != NULL)
7014 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7015
7016 for (ix = 0;
796a7ff8 7017 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad
TT
7018 ++ix)
7019 recursively_compute_inclusions (result, all_children, iter);
7020}
7021
7022/* Compute the symtab 'includes' fields for the symtab related to
7023 PER_CU. */
7024
7025static void
7026compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7027{
f4dc4d17
DE
7028 gdb_assert (! per_cu->is_debug_types);
7029
796a7ff8 7030 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7031 {
7032 int ix, len;
7033 struct dwarf2_per_cu_data *iter;
7034 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7035 htab_t all_children;
7036 struct symtab *symtab = get_symtab (per_cu);
7037
7038 /* If we don't have a symtab, we can just skip this case. */
7039 if (symtab == NULL)
7040 return;
7041
7042 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7043 NULL, xcalloc, xfree);
7044
7045 for (ix = 0;
796a7ff8 7046 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
95554aad
TT
7047 ix, iter);
7048 ++ix)
7049 recursively_compute_inclusions (&result_children, all_children, iter);
7050
796a7ff8
DE
7051 /* Now we have a transitive closure of all the included CUs, and
7052 for .gdb_index version 7 the included TUs, so we can convert it
7053 to a list of symtabs. */
95554aad
TT
7054 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7055 symtab->includes
7056 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7057 (len + 1) * sizeof (struct symtab *));
7058 for (ix = 0;
7059 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7060 ++ix)
7061 symtab->includes[ix] = get_symtab (iter);
7062 symtab->includes[len] = NULL;
7063
7064 VEC_free (dwarf2_per_cu_ptr, result_children);
7065 htab_delete (all_children);
7066 }
7067}
7068
7069/* Compute the 'includes' field for the symtabs of all the CUs we just
7070 read. */
7071
7072static void
7073process_cu_includes (void)
7074{
7075 int ix;
7076 struct dwarf2_per_cu_data *iter;
7077
7078 for (ix = 0;
7079 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7080 ix, iter);
7081 ++ix)
f4dc4d17
DE
7082 {
7083 if (! iter->is_debug_types)
7084 compute_symtab_includes (iter);
7085 }
95554aad
TT
7086
7087 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7088}
7089
9cdd5dbd 7090/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7091 already been loaded into memory. */
7092
7093static void
95554aad
TT
7094process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7095 enum language pretend_language)
10b3939b 7096{
10b3939b 7097 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7098 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7099 CORE_ADDR lowpc, highpc;
7100 struct symtab *symtab;
3da10d80 7101 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7102 CORE_ADDR baseaddr;
4359dff1 7103 struct block *static_block;
10b3939b
DJ
7104
7105 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7106
10b3939b
DJ
7107 buildsym_init ();
7108 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7109 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7110
7111 cu->list_in_scope = &file_symbols;
c906108c 7112
95554aad
TT
7113 cu->language = pretend_language;
7114 cu->language_defn = language_def (cu->language);
7115
c906108c 7116 /* Do line number decoding in read_file_scope () */
10b3939b 7117 process_die (cu->dies, cu);
c906108c 7118
a766d390
DE
7119 /* For now fudge the Go package. */
7120 if (cu->language == language_go)
7121 fixup_go_packaging (cu);
7122
3da10d80
KS
7123 /* Now that we have processed all the DIEs in the CU, all the types
7124 should be complete, and it should now be safe to compute all of the
7125 physnames. */
7126 compute_delayed_physnames (cu);
7127 do_cleanups (delayed_list_cleanup);
7128
fae299cd
DC
7129 /* Some compilers don't define a DW_AT_high_pc attribute for the
7130 compilation unit. If the DW_AT_high_pc is missing, synthesize
7131 it, by scanning the DIE's below the compilation unit. */
10b3939b 7132 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7133
36586728 7134 static_block
ff546935 7135 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7136
7137 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7138 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7139 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7140 addrmap to help ensure it has an accurate map of pc values belonging to
7141 this comp unit. */
7142 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7143
7144 symtab = end_symtab_from_static_block (static_block, objfile,
7145 SECT_OFF_TEXT (objfile), 0);
c906108c 7146
8be455d7 7147 if (symtab != NULL)
c906108c 7148 {
df15bd07 7149 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7150
8be455d7
JK
7151 /* Set symtab language to language from DW_AT_language. If the
7152 compilation is from a C file generated by language preprocessors, do
7153 not set the language if it was already deduced by start_subfile. */
7154 if (!(cu->language == language_c && symtab->language != language_c))
7155 symtab->language = cu->language;
7156
7157 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7158 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7159 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7160 there were bugs in prologue debug info, fixed later in GCC-4.5
7161 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7162
7163 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7164 needed, it would be wrong due to missing DW_AT_producer there.
7165
7166 Still one can confuse GDB by using non-standard GCC compilation
7167 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7168 */
ab260dad 7169 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7170 symtab->locations_valid = 1;
e0d00bc7
JK
7171
7172 if (gcc_4_minor >= 5)
7173 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7174
7175 symtab->call_site_htab = cu->call_site_htab;
c906108c 7176 }
9291a0cd
TT
7177
7178 if (dwarf2_per_objfile->using_index)
7179 per_cu->v.quick->symtab = symtab;
7180 else
7181 {
7182 struct partial_symtab *pst = per_cu->v.psymtab;
7183 pst->symtab = symtab;
7184 pst->readin = 1;
7185 }
c906108c 7186
95554aad
TT
7187 /* Push it for inclusion processing later. */
7188 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7189
c906108c 7190 do_cleanups (back_to);
f4dc4d17 7191}
45cfd468 7192
f4dc4d17
DE
7193/* Generate full symbol information for type unit PER_CU, whose DIEs have
7194 already been loaded into memory. */
7195
7196static void
7197process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7198 enum language pretend_language)
7199{
7200 struct dwarf2_cu *cu = per_cu->cu;
7201 struct objfile *objfile = per_cu->objfile;
7202 struct symtab *symtab;
7203 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
7204 struct signatured_type *sig_type;
7205
7206 gdb_assert (per_cu->is_debug_types);
7207 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
7208
7209 buildsym_init ();
7210 back_to = make_cleanup (really_free_pendings, NULL);
7211 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7212
7213 cu->list_in_scope = &file_symbols;
7214
7215 cu->language = pretend_language;
7216 cu->language_defn = language_def (cu->language);
7217
7218 /* The symbol tables are set up in read_type_unit_scope. */
7219 process_die (cu->dies, cu);
7220
7221 /* For now fudge the Go package. */
7222 if (cu->language == language_go)
7223 fixup_go_packaging (cu);
7224
7225 /* Now that we have processed all the DIEs in the CU, all the types
7226 should be complete, and it should now be safe to compute all of the
7227 physnames. */
7228 compute_delayed_physnames (cu);
7229 do_cleanups (delayed_list_cleanup);
7230
7231 /* TUs share symbol tables.
7232 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7233 of it with end_expandable_symtab. Otherwise, complete the addition of
7234 this TU's symbols to the existing symtab. */
0186c6a7 7235 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 7236 {
f4dc4d17 7237 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 7238 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
7239
7240 if (symtab != NULL)
7241 {
7242 /* Set symtab language to language from DW_AT_language. If the
7243 compilation is from a C file generated by language preprocessors,
7244 do not set the language if it was already deduced by
7245 start_subfile. */
7246 if (!(cu->language == language_c && symtab->language != language_c))
7247 symtab->language = cu->language;
7248 }
7249 }
7250 else
7251 {
7252 augment_type_symtab (objfile,
0186c6a7
DE
7253 sig_type->type_unit_group->primary_symtab);
7254 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
7255 }
7256
7257 if (dwarf2_per_objfile->using_index)
7258 per_cu->v.quick->symtab = symtab;
7259 else
7260 {
7261 struct partial_symtab *pst = per_cu->v.psymtab;
7262 pst->symtab = symtab;
7263 pst->readin = 1;
45cfd468 7264 }
f4dc4d17
DE
7265
7266 do_cleanups (back_to);
c906108c
SS
7267}
7268
95554aad
TT
7269/* Process an imported unit DIE. */
7270
7271static void
7272process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7273{
7274 struct attribute *attr;
7275
f4dc4d17
DE
7276 /* For now we don't handle imported units in type units. */
7277 if (cu->per_cu->is_debug_types)
7278 {
7279 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7280 " supported in type units [in module %s]"),
7281 cu->objfile->name);
7282 }
7283
95554aad
TT
7284 attr = dwarf2_attr (die, DW_AT_import, cu);
7285 if (attr != NULL)
7286 {
7287 struct dwarf2_per_cu_data *per_cu;
7288 struct symtab *imported_symtab;
7289 sect_offset offset;
36586728 7290 int is_dwz;
95554aad
TT
7291
7292 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
7293 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7294 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad
TT
7295
7296 /* Queue the unit, if needed. */
7297 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7298 load_full_comp_unit (per_cu, cu->language);
7299
796a7ff8 7300 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
7301 per_cu);
7302 }
7303}
7304
c906108c
SS
7305/* Process a die and its children. */
7306
7307static void
e7c27a73 7308process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7309{
7310 switch (die->tag)
7311 {
7312 case DW_TAG_padding:
7313 break;
7314 case DW_TAG_compile_unit:
95554aad 7315 case DW_TAG_partial_unit:
e7c27a73 7316 read_file_scope (die, cu);
c906108c 7317 break;
348e048f
DE
7318 case DW_TAG_type_unit:
7319 read_type_unit_scope (die, cu);
7320 break;
c906108c 7321 case DW_TAG_subprogram:
c906108c 7322 case DW_TAG_inlined_subroutine:
edb3359d 7323 read_func_scope (die, cu);
c906108c
SS
7324 break;
7325 case DW_TAG_lexical_block:
14898363
L
7326 case DW_TAG_try_block:
7327 case DW_TAG_catch_block:
e7c27a73 7328 read_lexical_block_scope (die, cu);
c906108c 7329 break;
96408a79
SA
7330 case DW_TAG_GNU_call_site:
7331 read_call_site_scope (die, cu);
7332 break;
c906108c 7333 case DW_TAG_class_type:
680b30c7 7334 case DW_TAG_interface_type:
c906108c
SS
7335 case DW_TAG_structure_type:
7336 case DW_TAG_union_type:
134d01f1 7337 process_structure_scope (die, cu);
c906108c
SS
7338 break;
7339 case DW_TAG_enumeration_type:
134d01f1 7340 process_enumeration_scope (die, cu);
c906108c 7341 break;
134d01f1 7342
f792889a
DJ
7343 /* These dies have a type, but processing them does not create
7344 a symbol or recurse to process the children. Therefore we can
7345 read them on-demand through read_type_die. */
c906108c 7346 case DW_TAG_subroutine_type:
72019c9c 7347 case DW_TAG_set_type:
c906108c 7348 case DW_TAG_array_type:
c906108c 7349 case DW_TAG_pointer_type:
c906108c 7350 case DW_TAG_ptr_to_member_type:
c906108c 7351 case DW_TAG_reference_type:
c906108c 7352 case DW_TAG_string_type:
c906108c 7353 break;
134d01f1 7354
c906108c 7355 case DW_TAG_base_type:
a02abb62 7356 case DW_TAG_subrange_type:
cb249c71 7357 case DW_TAG_typedef:
134d01f1
DJ
7358 /* Add a typedef symbol for the type definition, if it has a
7359 DW_AT_name. */
f792889a 7360 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 7361 break;
c906108c 7362 case DW_TAG_common_block:
e7c27a73 7363 read_common_block (die, cu);
c906108c
SS
7364 break;
7365 case DW_TAG_common_inclusion:
7366 break;
d9fa45fe 7367 case DW_TAG_namespace:
4d4ec4e5 7368 cu->processing_has_namespace_info = 1;
e7c27a73 7369 read_namespace (die, cu);
d9fa45fe 7370 break;
5d7cb8df 7371 case DW_TAG_module:
4d4ec4e5 7372 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
7373 read_module (die, cu);
7374 break;
d9fa45fe
DC
7375 case DW_TAG_imported_declaration:
7376 case DW_TAG_imported_module:
4d4ec4e5 7377 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
7378 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7379 || cu->language != language_fortran))
7380 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7381 dwarf_tag_name (die->tag));
7382 read_import_statement (die, cu);
d9fa45fe 7383 break;
95554aad
TT
7384
7385 case DW_TAG_imported_unit:
7386 process_imported_unit_die (die, cu);
7387 break;
7388
c906108c 7389 default:
e7c27a73 7390 new_symbol (die, NULL, cu);
c906108c
SS
7391 break;
7392 }
7393}
ca69b9e6
DE
7394\f
7395/* DWARF name computation. */
c906108c 7396
94af9270
KS
7397/* A helper function for dwarf2_compute_name which determines whether DIE
7398 needs to have the name of the scope prepended to the name listed in the
7399 die. */
7400
7401static int
7402die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7403{
1c809c68
TT
7404 struct attribute *attr;
7405
94af9270
KS
7406 switch (die->tag)
7407 {
7408 case DW_TAG_namespace:
7409 case DW_TAG_typedef:
7410 case DW_TAG_class_type:
7411 case DW_TAG_interface_type:
7412 case DW_TAG_structure_type:
7413 case DW_TAG_union_type:
7414 case DW_TAG_enumeration_type:
7415 case DW_TAG_enumerator:
7416 case DW_TAG_subprogram:
7417 case DW_TAG_member:
7418 return 1;
7419
7420 case DW_TAG_variable:
c2b0a229 7421 case DW_TAG_constant:
94af9270
KS
7422 /* We only need to prefix "globally" visible variables. These include
7423 any variable marked with DW_AT_external or any variable that
7424 lives in a namespace. [Variables in anonymous namespaces
7425 require prefixing, but they are not DW_AT_external.] */
7426
7427 if (dwarf2_attr (die, DW_AT_specification, cu))
7428 {
7429 struct dwarf2_cu *spec_cu = cu;
9a619af0 7430
94af9270
KS
7431 return die_needs_namespace (die_specification (die, &spec_cu),
7432 spec_cu);
7433 }
7434
1c809c68 7435 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
7436 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7437 && die->parent->tag != DW_TAG_module)
1c809c68
TT
7438 return 0;
7439 /* A variable in a lexical block of some kind does not need a
7440 namespace, even though in C++ such variables may be external
7441 and have a mangled name. */
7442 if (die->parent->tag == DW_TAG_lexical_block
7443 || die->parent->tag == DW_TAG_try_block
1054b214
TT
7444 || die->parent->tag == DW_TAG_catch_block
7445 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
7446 return 0;
7447 return 1;
94af9270
KS
7448
7449 default:
7450 return 0;
7451 }
7452}
7453
98bfdba5
PA
7454/* Retrieve the last character from a mem_file. */
7455
7456static void
7457do_ui_file_peek_last (void *object, const char *buffer, long length)
7458{
7459 char *last_char_p = (char *) object;
7460
7461 if (length > 0)
7462 *last_char_p = buffer[length - 1];
7463}
7464
94af9270 7465/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
7466 compute the physname for the object, which include a method's:
7467 - formal parameters (C++/Java),
7468 - receiver type (Go),
7469 - return type (Java).
7470
7471 The term "physname" is a bit confusing.
7472 For C++, for example, it is the demangled name.
7473 For Go, for example, it's the mangled name.
94af9270 7474
af6b7be1
JB
7475 For Ada, return the DIE's linkage name rather than the fully qualified
7476 name. PHYSNAME is ignored..
7477
94af9270
KS
7478 The result is allocated on the objfile_obstack and canonicalized. */
7479
7480static const char *
15d034d0
TT
7481dwarf2_compute_name (const char *name,
7482 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
7483 int physname)
7484{
bb5ed363
DE
7485 struct objfile *objfile = cu->objfile;
7486
94af9270
KS
7487 if (name == NULL)
7488 name = dwarf2_name (die, cu);
7489
f55ee35c
JK
7490 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7491 compute it by typename_concat inside GDB. */
7492 if (cu->language == language_ada
7493 || (cu->language == language_fortran && physname))
7494 {
7495 /* For Ada unit, we prefer the linkage name over the name, as
7496 the former contains the exported name, which the user expects
7497 to be able to reference. Ideally, we want the user to be able
7498 to reference this entity using either natural or linkage name,
7499 but we haven't started looking at this enhancement yet. */
7500 struct attribute *attr;
7501
7502 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7503 if (attr == NULL)
7504 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7505 if (attr && DW_STRING (attr))
7506 return DW_STRING (attr);
7507 }
7508
94af9270
KS
7509 /* These are the only languages we know how to qualify names in. */
7510 if (name != NULL
f55ee35c
JK
7511 && (cu->language == language_cplus || cu->language == language_java
7512 || cu->language == language_fortran))
94af9270
KS
7513 {
7514 if (die_needs_namespace (die, cu))
7515 {
7516 long length;
0d5cff50 7517 const char *prefix;
94af9270
KS
7518 struct ui_file *buf;
7519
7520 prefix = determine_prefix (die, cu);
7521 buf = mem_fileopen ();
7522 if (*prefix != '\0')
7523 {
f55ee35c
JK
7524 char *prefixed_name = typename_concat (NULL, prefix, name,
7525 physname, cu);
9a619af0 7526
94af9270
KS
7527 fputs_unfiltered (prefixed_name, buf);
7528 xfree (prefixed_name);
7529 }
7530 else
62d5b8da 7531 fputs_unfiltered (name, buf);
94af9270 7532
98bfdba5
PA
7533 /* Template parameters may be specified in the DIE's DW_AT_name, or
7534 as children with DW_TAG_template_type_param or
7535 DW_TAG_value_type_param. If the latter, add them to the name
7536 here. If the name already has template parameters, then
7537 skip this step; some versions of GCC emit both, and
7538 it is more efficient to use the pre-computed name.
7539
7540 Something to keep in mind about this process: it is very
7541 unlikely, or in some cases downright impossible, to produce
7542 something that will match the mangled name of a function.
7543 If the definition of the function has the same debug info,
7544 we should be able to match up with it anyway. But fallbacks
7545 using the minimal symbol, for instance to find a method
7546 implemented in a stripped copy of libstdc++, will not work.
7547 If we do not have debug info for the definition, we will have to
7548 match them up some other way.
7549
7550 When we do name matching there is a related problem with function
7551 templates; two instantiated function templates are allowed to
7552 differ only by their return types, which we do not add here. */
7553
7554 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7555 {
7556 struct attribute *attr;
7557 struct die_info *child;
7558 int first = 1;
7559
7560 die->building_fullname = 1;
7561
7562 for (child = die->child; child != NULL; child = child->sibling)
7563 {
7564 struct type *type;
12df843f 7565 LONGEST value;
d521ce57 7566 const gdb_byte *bytes;
98bfdba5
PA
7567 struct dwarf2_locexpr_baton *baton;
7568 struct value *v;
7569
7570 if (child->tag != DW_TAG_template_type_param
7571 && child->tag != DW_TAG_template_value_param)
7572 continue;
7573
7574 if (first)
7575 {
7576 fputs_unfiltered ("<", buf);
7577 first = 0;
7578 }
7579 else
7580 fputs_unfiltered (", ", buf);
7581
7582 attr = dwarf2_attr (child, DW_AT_type, cu);
7583 if (attr == NULL)
7584 {
7585 complaint (&symfile_complaints,
7586 _("template parameter missing DW_AT_type"));
7587 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7588 continue;
7589 }
7590 type = die_type (child, cu);
7591
7592 if (child->tag == DW_TAG_template_type_param)
7593 {
79d43c61 7594 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
7595 continue;
7596 }
7597
7598 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7599 if (attr == NULL)
7600 {
7601 complaint (&symfile_complaints,
3e43a32a
MS
7602 _("template parameter missing "
7603 "DW_AT_const_value"));
98bfdba5
PA
7604 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7605 continue;
7606 }
7607
7608 dwarf2_const_value_attr (attr, type, name,
7609 &cu->comp_unit_obstack, cu,
7610 &value, &bytes, &baton);
7611
7612 if (TYPE_NOSIGN (type))
7613 /* GDB prints characters as NUMBER 'CHAR'. If that's
7614 changed, this can use value_print instead. */
7615 c_printchar (value, type, buf);
7616 else
7617 {
7618 struct value_print_options opts;
7619
7620 if (baton != NULL)
7621 v = dwarf2_evaluate_loc_desc (type, NULL,
7622 baton->data,
7623 baton->size,
7624 baton->per_cu);
7625 else if (bytes != NULL)
7626 {
7627 v = allocate_value (type);
7628 memcpy (value_contents_writeable (v), bytes,
7629 TYPE_LENGTH (type));
7630 }
7631 else
7632 v = value_from_longest (type, value);
7633
3e43a32a
MS
7634 /* Specify decimal so that we do not depend on
7635 the radix. */
98bfdba5
PA
7636 get_formatted_print_options (&opts, 'd');
7637 opts.raw = 1;
7638 value_print (v, buf, &opts);
7639 release_value (v);
7640 value_free (v);
7641 }
7642 }
7643
7644 die->building_fullname = 0;
7645
7646 if (!first)
7647 {
7648 /* Close the argument list, with a space if necessary
7649 (nested templates). */
7650 char last_char = '\0';
7651 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7652 if (last_char == '>')
7653 fputs_unfiltered (" >", buf);
7654 else
7655 fputs_unfiltered (">", buf);
7656 }
7657 }
7658
94af9270
KS
7659 /* For Java and C++ methods, append formal parameter type
7660 information, if PHYSNAME. */
6e70227d 7661
94af9270
KS
7662 if (physname && die->tag == DW_TAG_subprogram
7663 && (cu->language == language_cplus
7664 || cu->language == language_java))
7665 {
7666 struct type *type = read_type_die (die, cu);
7667
79d43c61
TT
7668 c_type_print_args (type, buf, 1, cu->language,
7669 &type_print_raw_options);
94af9270
KS
7670
7671 if (cu->language == language_java)
7672 {
7673 /* For java, we must append the return type to method
0963b4bd 7674 names. */
94af9270
KS
7675 if (die->tag == DW_TAG_subprogram)
7676 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 7677 0, 0, &type_print_raw_options);
94af9270
KS
7678 }
7679 else if (cu->language == language_cplus)
7680 {
60430eff
DJ
7681 /* Assume that an artificial first parameter is
7682 "this", but do not crash if it is not. RealView
7683 marks unnamed (and thus unused) parameters as
7684 artificial; there is no way to differentiate
7685 the two cases. */
94af9270
KS
7686 if (TYPE_NFIELDS (type) > 0
7687 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 7688 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
7689 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7690 0))))
94af9270
KS
7691 fputs_unfiltered (" const", buf);
7692 }
7693 }
7694
bb5ed363 7695 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
7696 &length);
7697 ui_file_delete (buf);
7698
7699 if (cu->language == language_cplus)
7700 {
15d034d0 7701 const char *cname
94af9270 7702 = dwarf2_canonicalize_name (name, cu,
bb5ed363 7703 &objfile->objfile_obstack);
9a619af0 7704
94af9270
KS
7705 if (cname != NULL)
7706 name = cname;
7707 }
7708 }
7709 }
7710
7711 return name;
7712}
7713
0114d602
DJ
7714/* Return the fully qualified name of DIE, based on its DW_AT_name.
7715 If scope qualifiers are appropriate they will be added. The result
7716 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
7717 not have a name. NAME may either be from a previous call to
7718 dwarf2_name or NULL.
7719
0963b4bd 7720 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
7721
7722static const char *
15d034d0 7723dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 7724{
94af9270
KS
7725 return dwarf2_compute_name (name, die, cu, 0);
7726}
0114d602 7727
94af9270
KS
7728/* Construct a physname for the given DIE in CU. NAME may either be
7729 from a previous call to dwarf2_name or NULL. The result will be
7730 allocated on the objfile_objstack or NULL if the DIE does not have a
7731 name.
0114d602 7732
94af9270 7733 The output string will be canonicalized (if C++/Java). */
0114d602 7734
94af9270 7735static const char *
15d034d0 7736dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 7737{
bb5ed363 7738 struct objfile *objfile = cu->objfile;
900e11f9
JK
7739 struct attribute *attr;
7740 const char *retval, *mangled = NULL, *canon = NULL;
7741 struct cleanup *back_to;
7742 int need_copy = 1;
7743
7744 /* In this case dwarf2_compute_name is just a shortcut not building anything
7745 on its own. */
7746 if (!die_needs_namespace (die, cu))
7747 return dwarf2_compute_name (name, die, cu, 1);
7748
7749 back_to = make_cleanup (null_cleanup, NULL);
7750
7751 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7752 if (!attr)
7753 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7754
7755 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7756 has computed. */
7757 if (attr && DW_STRING (attr))
7758 {
7759 char *demangled;
7760
7761 mangled = DW_STRING (attr);
7762
7763 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7764 type. It is easier for GDB users to search for such functions as
7765 `name(params)' than `long name(params)'. In such case the minimal
7766 symbol names do not match the full symbol names but for template
7767 functions there is never a need to look up their definition from their
7768 declaration so the only disadvantage remains the minimal symbol
7769 variant `long name(params)' does not have the proper inferior type.
7770 */
7771
a766d390
DE
7772 if (cu->language == language_go)
7773 {
7774 /* This is a lie, but we already lie to the caller new_symbol_full.
7775 new_symbol_full assumes we return the mangled name.
7776 This just undoes that lie until things are cleaned up. */
7777 demangled = NULL;
7778 }
7779 else
7780 {
8de20a37
TT
7781 demangled = gdb_demangle (mangled,
7782 (DMGL_PARAMS | DMGL_ANSI
7783 | (cu->language == language_java
7784 ? DMGL_JAVA | DMGL_RET_POSTFIX
7785 : DMGL_RET_DROP)));
a766d390 7786 }
900e11f9
JK
7787 if (demangled)
7788 {
7789 make_cleanup (xfree, demangled);
7790 canon = demangled;
7791 }
7792 else
7793 {
7794 canon = mangled;
7795 need_copy = 0;
7796 }
7797 }
7798
7799 if (canon == NULL || check_physname)
7800 {
7801 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7802
7803 if (canon != NULL && strcmp (physname, canon) != 0)
7804 {
7805 /* It may not mean a bug in GDB. The compiler could also
7806 compute DW_AT_linkage_name incorrectly. But in such case
7807 GDB would need to be bug-to-bug compatible. */
7808
7809 complaint (&symfile_complaints,
7810 _("Computed physname <%s> does not match demangled <%s> "
7811 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
b64f50a1 7812 physname, canon, mangled, die->offset.sect_off, objfile->name);
900e11f9
JK
7813
7814 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7815 is available here - over computed PHYSNAME. It is safer
7816 against both buggy GDB and buggy compilers. */
7817
7818 retval = canon;
7819 }
7820 else
7821 {
7822 retval = physname;
7823 need_copy = 0;
7824 }
7825 }
7826 else
7827 retval = canon;
7828
7829 if (need_copy)
10f0c4bb 7830 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
900e11f9
JK
7831
7832 do_cleanups (back_to);
7833 return retval;
0114d602
DJ
7834}
7835
27aa8d6a
SW
7836/* Read the import statement specified by the given die and record it. */
7837
7838static void
7839read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7840{
bb5ed363 7841 struct objfile *objfile = cu->objfile;
27aa8d6a 7842 struct attribute *import_attr;
32019081 7843 struct die_info *imported_die, *child_die;
de4affc9 7844 struct dwarf2_cu *imported_cu;
27aa8d6a 7845 const char *imported_name;
794684b6 7846 const char *imported_name_prefix;
13387711
SW
7847 const char *canonical_name;
7848 const char *import_alias;
7849 const char *imported_declaration = NULL;
794684b6 7850 const char *import_prefix;
32019081
JK
7851 VEC (const_char_ptr) *excludes = NULL;
7852 struct cleanup *cleanups;
13387711 7853
27aa8d6a
SW
7854 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7855 if (import_attr == NULL)
7856 {
7857 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7858 dwarf_tag_name (die->tag));
7859 return;
7860 }
7861
de4affc9
CC
7862 imported_cu = cu;
7863 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7864 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
7865 if (imported_name == NULL)
7866 {
7867 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7868
7869 The import in the following code:
7870 namespace A
7871 {
7872 typedef int B;
7873 }
7874
7875 int main ()
7876 {
7877 using A::B;
7878 B b;
7879 return b;
7880 }
7881
7882 ...
7883 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7884 <52> DW_AT_decl_file : 1
7885 <53> DW_AT_decl_line : 6
7886 <54> DW_AT_import : <0x75>
7887 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7888 <59> DW_AT_name : B
7889 <5b> DW_AT_decl_file : 1
7890 <5c> DW_AT_decl_line : 2
7891 <5d> DW_AT_type : <0x6e>
7892 ...
7893 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7894 <76> DW_AT_byte_size : 4
7895 <77> DW_AT_encoding : 5 (signed)
7896
7897 imports the wrong die ( 0x75 instead of 0x58 ).
7898 This case will be ignored until the gcc bug is fixed. */
7899 return;
7900 }
7901
82856980
SW
7902 /* Figure out the local name after import. */
7903 import_alias = dwarf2_name (die, cu);
27aa8d6a 7904
794684b6
SW
7905 /* Figure out where the statement is being imported to. */
7906 import_prefix = determine_prefix (die, cu);
7907
7908 /* Figure out what the scope of the imported die is and prepend it
7909 to the name of the imported die. */
de4affc9 7910 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 7911
f55ee35c
JK
7912 if (imported_die->tag != DW_TAG_namespace
7913 && imported_die->tag != DW_TAG_module)
794684b6 7914 {
13387711
SW
7915 imported_declaration = imported_name;
7916 canonical_name = imported_name_prefix;
794684b6 7917 }
13387711 7918 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
7919 canonical_name = obconcat (&objfile->objfile_obstack,
7920 imported_name_prefix, "::", imported_name,
7921 (char *) NULL);
13387711
SW
7922 else
7923 canonical_name = imported_name;
794684b6 7924
32019081
JK
7925 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7926
7927 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7928 for (child_die = die->child; child_die && child_die->tag;
7929 child_die = sibling_die (child_die))
7930 {
7931 /* DWARF-4: A Fortran use statement with a “rename list” may be
7932 represented by an imported module entry with an import attribute
7933 referring to the module and owned entries corresponding to those
7934 entities that are renamed as part of being imported. */
7935
7936 if (child_die->tag != DW_TAG_imported_declaration)
7937 {
7938 complaint (&symfile_complaints,
7939 _("child DW_TAG_imported_declaration expected "
7940 "- DIE at 0x%x [in module %s]"),
b64f50a1 7941 child_die->offset.sect_off, objfile->name);
32019081
JK
7942 continue;
7943 }
7944
7945 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7946 if (import_attr == NULL)
7947 {
7948 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7949 dwarf_tag_name (child_die->tag));
7950 continue;
7951 }
7952
7953 imported_cu = cu;
7954 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7955 &imported_cu);
7956 imported_name = dwarf2_name (imported_die, imported_cu);
7957 if (imported_name == NULL)
7958 {
7959 complaint (&symfile_complaints,
7960 _("child DW_TAG_imported_declaration has unknown "
7961 "imported name - DIE at 0x%x [in module %s]"),
b64f50a1 7962 child_die->offset.sect_off, objfile->name);
32019081
JK
7963 continue;
7964 }
7965
7966 VEC_safe_push (const_char_ptr, excludes, imported_name);
7967
7968 process_die (child_die, cu);
7969 }
7970
c0cc3a76
SW
7971 cp_add_using_directive (import_prefix,
7972 canonical_name,
7973 import_alias,
13387711 7974 imported_declaration,
32019081 7975 excludes,
12aaed36 7976 0,
bb5ed363 7977 &objfile->objfile_obstack);
32019081
JK
7978
7979 do_cleanups (cleanups);
27aa8d6a
SW
7980}
7981
f4dc4d17 7982/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 7983
cb1df416
DJ
7984static void
7985free_cu_line_header (void *arg)
7986{
7987 struct dwarf2_cu *cu = arg;
7988
7989 free_line_header (cu->line_header);
7990 cu->line_header = NULL;
7991}
7992
1b80a9fa
JK
7993/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7994 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7995 this, it was first present in GCC release 4.3.0. */
7996
7997static int
7998producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7999{
8000 if (!cu->checked_producer)
8001 check_producer (cu);
8002
8003 return cu->producer_is_gcc_lt_4_3;
8004}
8005
9291a0cd
TT
8006static void
8007find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8008 const char **name, const char **comp_dir)
9291a0cd
TT
8009{
8010 struct attribute *attr;
8011
8012 *name = NULL;
8013 *comp_dir = NULL;
8014
8015 /* Find the filename. Do not use dwarf2_name here, since the filename
8016 is not a source language identifier. */
8017 attr = dwarf2_attr (die, DW_AT_name, cu);
8018 if (attr)
8019 {
8020 *name = DW_STRING (attr);
8021 }
8022
8023 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8024 if (attr)
8025 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8026 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8027 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8028 {
15d034d0
TT
8029 char *d = ldirname (*name);
8030
8031 *comp_dir = d;
8032 if (d != NULL)
8033 make_cleanup (xfree, d);
9291a0cd
TT
8034 }
8035 if (*comp_dir != NULL)
8036 {
8037 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8038 directory, get rid of it. */
8039 char *cp = strchr (*comp_dir, ':');
8040
8041 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8042 *comp_dir = cp + 1;
8043 }
8044
8045 if (*name == NULL)
8046 *name = "<unknown>";
8047}
8048
f4dc4d17
DE
8049/* Handle DW_AT_stmt_list for a compilation unit.
8050 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
8051 COMP_DIR is the compilation directory.
8052 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
8053
8054static void
8055handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8056 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8057{
8058 struct attribute *attr;
2ab95328 8059
f4dc4d17
DE
8060 gdb_assert (! cu->per_cu->is_debug_types);
8061
2ab95328
TT
8062 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8063 if (attr)
8064 {
8065 unsigned int line_offset = DW_UNSND (attr);
8066 struct line_header *line_header
3019eac3 8067 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8068
8069 if (line_header)
dee91e82
DE
8070 {
8071 cu->line_header = line_header;
8072 make_cleanup (free_cu_line_header, cu);
f4dc4d17 8073 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 8074 }
2ab95328
TT
8075 }
8076}
8077
95554aad 8078/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8079
c906108c 8080static void
e7c27a73 8081read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8082{
dee91e82 8083 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 8084 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 8085 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
8086 CORE_ADDR highpc = ((CORE_ADDR) 0);
8087 struct attribute *attr;
15d034d0
TT
8088 const char *name = NULL;
8089 const char *comp_dir = NULL;
c906108c
SS
8090 struct die_info *child_die;
8091 bfd *abfd = objfile->obfd;
e142c38c 8092 CORE_ADDR baseaddr;
6e70227d 8093
e142c38c 8094 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8095
fae299cd 8096 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
8097
8098 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8099 from finish_block. */
2acceee2 8100 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
8101 lowpc = highpc;
8102 lowpc += baseaddr;
8103 highpc += baseaddr;
8104
9291a0cd 8105 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 8106
95554aad 8107 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 8108
f4b8a18d
KW
8109 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8110 standardised yet. As a workaround for the language detection we fall
8111 back to the DW_AT_producer string. */
8112 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8113 cu->language = language_opencl;
8114
3019eac3
DE
8115 /* Similar hack for Go. */
8116 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8117 set_cu_language (DW_LANG_Go, cu);
8118
f4dc4d17 8119 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
8120
8121 /* Decode line number information if present. We do this before
8122 processing child DIEs, so that the line header table is available
8123 for DW_AT_decl_file. */
f4dc4d17 8124 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
8125
8126 /* Process all dies in compilation unit. */
8127 if (die->child != NULL)
8128 {
8129 child_die = die->child;
8130 while (child_die && child_die->tag)
8131 {
8132 process_die (child_die, cu);
8133 child_die = sibling_die (child_die);
8134 }
8135 }
8136
8137 /* Decode macro information, if present. Dwarf 2 macro information
8138 refers to information in the line number info statement program
8139 header, so we can only read it if we've read the header
8140 successfully. */
8141 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8142 if (attr && cu->line_header)
8143 {
8144 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8145 complaint (&symfile_complaints,
8146 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8147
09262596 8148 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
8149 }
8150 else
8151 {
8152 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8153 if (attr && cu->line_header)
8154 {
8155 unsigned int macro_offset = DW_UNSND (attr);
8156
09262596 8157 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
8158 }
8159 }
8160
8161 do_cleanups (back_to);
8162}
8163
f4dc4d17
DE
8164/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8165 Create the set of symtabs used by this TU, or if this TU is sharing
8166 symtabs with another TU and the symtabs have already been created
8167 then restore those symtabs in the line header.
8168 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
8169
8170static void
f4dc4d17 8171setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 8172{
f4dc4d17
DE
8173 struct objfile *objfile = dwarf2_per_objfile->objfile;
8174 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8175 struct type_unit_group *tu_group;
8176 int first_time;
8177 struct line_header *lh;
3019eac3 8178 struct attribute *attr;
f4dc4d17 8179 unsigned int i, line_offset;
0186c6a7 8180 struct signatured_type *sig_type;
3019eac3 8181
f4dc4d17 8182 gdb_assert (per_cu->is_debug_types);
0186c6a7 8183 sig_type = (struct signatured_type *) per_cu;
3019eac3 8184
f4dc4d17 8185 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 8186
f4dc4d17 8187 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 8188 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
8189 if (sig_type->type_unit_group == NULL)
8190 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8191 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
8192
8193 /* If we've already processed this stmt_list there's no real need to
8194 do it again, we could fake it and just recreate the part we need
8195 (file name,index -> symtab mapping). If data shows this optimization
8196 is useful we can do it then. */
8197 first_time = tu_group->primary_symtab == NULL;
8198
8199 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8200 debug info. */
8201 lh = NULL;
8202 if (attr != NULL)
3019eac3 8203 {
f4dc4d17
DE
8204 line_offset = DW_UNSND (attr);
8205 lh = dwarf_decode_line_header (line_offset, cu);
8206 }
8207 if (lh == NULL)
8208 {
8209 if (first_time)
8210 dwarf2_start_symtab (cu, "", NULL, 0);
8211 else
8212 {
8213 gdb_assert (tu_group->symtabs == NULL);
8214 restart_symtab (0);
8215 }
8216 /* Note: The primary symtab will get allocated at the end. */
8217 return;
3019eac3
DE
8218 }
8219
f4dc4d17
DE
8220 cu->line_header = lh;
8221 make_cleanup (free_cu_line_header, cu);
3019eac3 8222
f4dc4d17
DE
8223 if (first_time)
8224 {
8225 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 8226
f4dc4d17
DE
8227 tu_group->num_symtabs = lh->num_file_names;
8228 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 8229
f4dc4d17
DE
8230 for (i = 0; i < lh->num_file_names; ++i)
8231 {
d521ce57 8232 const char *dir = NULL;
f4dc4d17 8233 struct file_entry *fe = &lh->file_names[i];
3019eac3 8234
f4dc4d17
DE
8235 if (fe->dir_index)
8236 dir = lh->include_dirs[fe->dir_index - 1];
8237 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 8238
f4dc4d17
DE
8239 /* Note: We don't have to watch for the main subfile here, type units
8240 don't have DW_AT_name. */
3019eac3 8241
f4dc4d17
DE
8242 if (current_subfile->symtab == NULL)
8243 {
8244 /* NOTE: start_subfile will recognize when it's been passed
8245 a file it has already seen. So we can't assume there's a
8246 simple mapping from lh->file_names to subfiles,
8247 lh->file_names may contain dups. */
8248 current_subfile->symtab = allocate_symtab (current_subfile->name,
8249 objfile);
8250 }
8251
8252 fe->symtab = current_subfile->symtab;
8253 tu_group->symtabs[i] = fe->symtab;
8254 }
8255 }
8256 else
3019eac3 8257 {
f4dc4d17
DE
8258 restart_symtab (0);
8259
8260 for (i = 0; i < lh->num_file_names; ++i)
8261 {
8262 struct file_entry *fe = &lh->file_names[i];
8263
8264 fe->symtab = tu_group->symtabs[i];
8265 }
3019eac3
DE
8266 }
8267
f4dc4d17
DE
8268 /* The main symtab is allocated last. Type units don't have DW_AT_name
8269 so they don't have a "real" (so to speak) symtab anyway.
8270 There is later code that will assign the main symtab to all symbols
8271 that don't have one. We need to handle the case of a symbol with a
8272 missing symtab (DW_AT_decl_file) anyway. */
8273}
3019eac3 8274
f4dc4d17
DE
8275/* Process DW_TAG_type_unit.
8276 For TUs we want to skip the first top level sibling if it's not the
8277 actual type being defined by this TU. In this case the first top
8278 level sibling is there to provide context only. */
3019eac3 8279
f4dc4d17
DE
8280static void
8281read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8282{
8283 struct die_info *child_die;
3019eac3 8284
f4dc4d17
DE
8285 prepare_one_comp_unit (cu, die, language_minimal);
8286
8287 /* Initialize (or reinitialize) the machinery for building symtabs.
8288 We do this before processing child DIEs, so that the line header table
8289 is available for DW_AT_decl_file. */
8290 setup_type_unit_groups (die, cu);
8291
8292 if (die->child != NULL)
8293 {
8294 child_die = die->child;
8295 while (child_die && child_die->tag)
8296 {
8297 process_die (child_die, cu);
8298 child_die = sibling_die (child_die);
8299 }
8300 }
3019eac3
DE
8301}
8302\f
80626a55
DE
8303/* DWO/DWP files.
8304
8305 http://gcc.gnu.org/wiki/DebugFission
8306 http://gcc.gnu.org/wiki/DebugFissionDWP
8307
8308 To simplify handling of both DWO files ("object" files with the DWARF info)
8309 and DWP files (a file with the DWOs packaged up into one file), we treat
8310 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
8311
8312static hashval_t
8313hash_dwo_file (const void *item)
8314{
8315 const struct dwo_file *dwo_file = item;
8316
0ac5b59e
DE
8317 return (htab_hash_string (dwo_file->dwo_name)
8318 + htab_hash_string (dwo_file->comp_dir));
3019eac3
DE
8319}
8320
8321static int
8322eq_dwo_file (const void *item_lhs, const void *item_rhs)
8323{
8324 const struct dwo_file *lhs = item_lhs;
8325 const struct dwo_file *rhs = item_rhs;
8326
0ac5b59e
DE
8327 return (strcmp (lhs->dwo_name, rhs->dwo_name) == 0
8328 && strcmp (lhs->comp_dir, rhs->comp_dir) == 0);
3019eac3
DE
8329}
8330
8331/* Allocate a hash table for DWO files. */
8332
8333static htab_t
8334allocate_dwo_file_hash_table (void)
8335{
8336 struct objfile *objfile = dwarf2_per_objfile->objfile;
8337
8338 return htab_create_alloc_ex (41,
8339 hash_dwo_file,
8340 eq_dwo_file,
8341 NULL,
8342 &objfile->objfile_obstack,
8343 hashtab_obstack_allocate,
8344 dummy_obstack_deallocate);
8345}
8346
80626a55
DE
8347/* Lookup DWO file DWO_NAME. */
8348
8349static void **
0ac5b59e 8350lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
8351{
8352 struct dwo_file find_entry;
8353 void **slot;
8354
8355 if (dwarf2_per_objfile->dwo_files == NULL)
8356 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8357
8358 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
8359 find_entry.dwo_name = dwo_name;
8360 find_entry.comp_dir = comp_dir;
80626a55
DE
8361 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8362
8363 return slot;
8364}
8365
3019eac3
DE
8366static hashval_t
8367hash_dwo_unit (const void *item)
8368{
8369 const struct dwo_unit *dwo_unit = item;
8370
8371 /* This drops the top 32 bits of the id, but is ok for a hash. */
8372 return dwo_unit->signature;
8373}
8374
8375static int
8376eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8377{
8378 const struct dwo_unit *lhs = item_lhs;
8379 const struct dwo_unit *rhs = item_rhs;
8380
8381 /* The signature is assumed to be unique within the DWO file.
8382 So while object file CU dwo_id's always have the value zero,
8383 that's OK, assuming each object file DWO file has only one CU,
8384 and that's the rule for now. */
8385 return lhs->signature == rhs->signature;
8386}
8387
8388/* Allocate a hash table for DWO CUs,TUs.
8389 There is one of these tables for each of CUs,TUs for each DWO file. */
8390
8391static htab_t
8392allocate_dwo_unit_table (struct objfile *objfile)
8393{
8394 /* Start out with a pretty small number.
8395 Generally DWO files contain only one CU and maybe some TUs. */
8396 return htab_create_alloc_ex (3,
8397 hash_dwo_unit,
8398 eq_dwo_unit,
8399 NULL,
8400 &objfile->objfile_obstack,
8401 hashtab_obstack_allocate,
8402 dummy_obstack_deallocate);
8403}
8404
80626a55 8405/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 8406
19c3d4c9 8407struct create_dwo_cu_data
3019eac3
DE
8408{
8409 struct dwo_file *dwo_file;
19c3d4c9 8410 struct dwo_unit dwo_unit;
3019eac3
DE
8411};
8412
19c3d4c9 8413/* die_reader_func for create_dwo_cu. */
3019eac3
DE
8414
8415static void
19c3d4c9
DE
8416create_dwo_cu_reader (const struct die_reader_specs *reader,
8417 const gdb_byte *info_ptr,
8418 struct die_info *comp_unit_die,
8419 int has_children,
8420 void *datap)
3019eac3
DE
8421{
8422 struct dwarf2_cu *cu = reader->cu;
8423 struct objfile *objfile = dwarf2_per_objfile->objfile;
8424 sect_offset offset = cu->per_cu->offset;
8a0459fd 8425 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 8426 struct create_dwo_cu_data *data = datap;
3019eac3 8427 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 8428 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 8429 struct attribute *attr;
3019eac3
DE
8430
8431 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8432 if (attr == NULL)
8433 {
19c3d4c9
DE
8434 complaint (&symfile_complaints,
8435 _("Dwarf Error: debug entry at offset 0x%x is missing"
8436 " its dwo_id [in module %s]"),
8437 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
8438 return;
8439 }
8440
3019eac3
DE
8441 dwo_unit->dwo_file = dwo_file;
8442 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 8443 dwo_unit->section = section;
3019eac3
DE
8444 dwo_unit->offset = offset;
8445 dwo_unit->length = cu->per_cu->length;
8446
09406207 8447 if (dwarf2_read_debug)
4031ecc5
DE
8448 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8449 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
8450}
8451
19c3d4c9
DE
8452/* Create the dwo_unit for the lone CU in DWO_FILE.
8453 Note: This function processes DWO files only, not DWP files. */
3019eac3 8454
19c3d4c9
DE
8455static struct dwo_unit *
8456create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
8457{
8458 struct objfile *objfile = dwarf2_per_objfile->objfile;
8459 struct dwarf2_section_info *section = &dwo_file->sections.info;
8460 bfd *abfd;
8461 htab_t cu_htab;
d521ce57 8462 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
8463 struct create_dwo_cu_data create_dwo_cu_data;
8464 struct dwo_unit *dwo_unit;
3019eac3
DE
8465
8466 dwarf2_read_section (objfile, section);
8467 info_ptr = section->buffer;
8468
8469 if (info_ptr == NULL)
8470 return NULL;
8471
8472 /* We can't set abfd until now because the section may be empty or
8473 not present, in which case section->asection will be NULL. */
8474 abfd = section->asection->owner;
8475
09406207 8476 if (dwarf2_read_debug)
19c3d4c9
DE
8477 {
8478 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8479 bfd_section_name (abfd, section->asection),
8480 bfd_get_filename (abfd));
8481 }
3019eac3 8482
19c3d4c9
DE
8483 create_dwo_cu_data.dwo_file = dwo_file;
8484 dwo_unit = NULL;
3019eac3
DE
8485
8486 end_ptr = info_ptr + section->size;
8487 while (info_ptr < end_ptr)
8488 {
8489 struct dwarf2_per_cu_data per_cu;
8490
19c3d4c9
DE
8491 memset (&create_dwo_cu_data.dwo_unit, 0,
8492 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
8493 memset (&per_cu, 0, sizeof (per_cu));
8494 per_cu.objfile = objfile;
8495 per_cu.is_debug_types = 0;
8496 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 8497 per_cu.section = section;
3019eac3
DE
8498
8499 init_cutu_and_read_dies_no_follow (&per_cu,
8500 &dwo_file->sections.abbrev,
8501 dwo_file,
19c3d4c9
DE
8502 create_dwo_cu_reader,
8503 &create_dwo_cu_data);
8504
8505 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8506 {
8507 /* If we've already found one, complain. We only support one
8508 because having more than one requires hacking the dwo_name of
8509 each to match, which is highly unlikely to happen. */
8510 if (dwo_unit != NULL)
8511 {
8512 complaint (&symfile_complaints,
8513 _("Multiple CUs in DWO file %s [in module %s]"),
8514 dwo_file->dwo_name, objfile->name);
8515 break;
8516 }
8517
8518 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8519 *dwo_unit = create_dwo_cu_data.dwo_unit;
8520 }
3019eac3
DE
8521
8522 info_ptr += per_cu.length;
8523 }
8524
19c3d4c9 8525 return dwo_unit;
3019eac3
DE
8526}
8527
80626a55
DE
8528/* DWP file .debug_{cu,tu}_index section format:
8529 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8530
8531 Both index sections have the same format, and serve to map a 64-bit
8532 signature to a set of section numbers. Each section begins with a header,
8533 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8534 indexes, and a pool of 32-bit section numbers. The index sections will be
8535 aligned at 8-byte boundaries in the file.
8536
8537 The index section header contains two unsigned 32-bit values (using the
8538 byte order of the application binary):
8539
8540 N, the number of compilation units or type units in the index
8541 M, the number of slots in the hash table
8542
8543 (We assume that N and M will not exceed 2^32 - 1.)
8544
8545 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8546
8547 The hash table begins at offset 8 in the section, and consists of an array
8548 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8549 order of the application binary). Unused slots in the hash table are 0.
8550 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8551
8552 The parallel table begins immediately after the hash table
8553 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8554 array of 32-bit indexes (using the byte order of the application binary),
8555 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8556 table contains a 32-bit index into the pool of section numbers. For unused
8557 hash table slots, the corresponding entry in the parallel table will be 0.
8558
8559 Given a 64-bit compilation unit signature or a type signature S, an entry
8560 in the hash table is located as follows:
8561
8562 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8563 the low-order k bits all set to 1.
8564
8565 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8566
8567 3) If the hash table entry at index H matches the signature, use that
8568 entry. If the hash table entry at index H is unused (all zeroes),
8569 terminate the search: the signature is not present in the table.
8570
8571 4) Let H = (H + H') modulo M. Repeat at Step 3.
8572
8573 Because M > N and H' and M are relatively prime, the search is guaranteed
8574 to stop at an unused slot or find the match.
8575
8576 The pool of section numbers begins immediately following the hash table
8577 (at offset 8 + 12 * M from the beginning of the section). The pool of
8578 section numbers consists of an array of 32-bit words (using the byte order
8579 of the application binary). Each item in the array is indexed starting
8580 from 0. The hash table entry provides the index of the first section
8581 number in the set. Additional section numbers in the set follow, and the
8582 set is terminated by a 0 entry (section number 0 is not used in ELF).
8583
8584 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8585 section must be the first entry in the set, and the .debug_abbrev.dwo must
8586 be the second entry. Other members of the set may follow in any order. */
8587
8588/* Create a hash table to map DWO IDs to their CU/TU entry in
8589 .debug_{info,types}.dwo in DWP_FILE.
8590 Returns NULL if there isn't one.
8591 Note: This function processes DWP files only, not DWO files. */
8592
8593static struct dwp_hash_table *
8594create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8595{
8596 struct objfile *objfile = dwarf2_per_objfile->objfile;
8597 bfd *dbfd = dwp_file->dbfd;
948f8e3d 8598 const gdb_byte *index_ptr, *index_end;
80626a55
DE
8599 struct dwarf2_section_info *index;
8600 uint32_t version, nr_units, nr_slots;
8601 struct dwp_hash_table *htab;
8602
8603 if (is_debug_types)
8604 index = &dwp_file->sections.tu_index;
8605 else
8606 index = &dwp_file->sections.cu_index;
8607
8608 if (dwarf2_section_empty_p (index))
8609 return NULL;
8610 dwarf2_read_section (objfile, index);
8611
8612 index_ptr = index->buffer;
8613 index_end = index_ptr + index->size;
8614
8615 version = read_4_bytes (dbfd, index_ptr);
8616 index_ptr += 8; /* Skip the unused word. */
8617 nr_units = read_4_bytes (dbfd, index_ptr);
8618 index_ptr += 4;
8619 nr_slots = read_4_bytes (dbfd, index_ptr);
8620 index_ptr += 4;
8621
8622 if (version != 1)
8623 {
8624 error (_("Dwarf Error: unsupported DWP file version (%u)"
8625 " [in module %s]"),
8626 version, dwp_file->name);
8627 }
8628 if (nr_slots != (nr_slots & -nr_slots))
8629 {
8630 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8631 " is not power of 2 [in module %s]"),
8632 nr_slots, dwp_file->name);
8633 }
8634
8635 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8636 htab->nr_units = nr_units;
8637 htab->nr_slots = nr_slots;
8638 htab->hash_table = index_ptr;
8639 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8640 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8641
8642 return htab;
8643}
8644
8645/* Update SECTIONS with the data from SECTP.
8646
8647 This function is like the other "locate" section routines that are
8648 passed to bfd_map_over_sections, but in this context the sections to
8649 read comes from the DWP hash table, not the full ELF section table.
8650
8651 The result is non-zero for success, or zero if an error was found. */
8652
8653static int
8654locate_virtual_dwo_sections (asection *sectp,
8655 struct virtual_dwo_sections *sections)
8656{
8657 const struct dwop_section_names *names = &dwop_section_names;
8658
8659 if (section_is_p (sectp->name, &names->abbrev_dwo))
8660 {
8661 /* There can be only one. */
8662 if (sections->abbrev.asection != NULL)
8663 return 0;
8664 sections->abbrev.asection = sectp;
8665 sections->abbrev.size = bfd_get_section_size (sectp);
8666 }
8667 else if (section_is_p (sectp->name, &names->info_dwo)
8668 || section_is_p (sectp->name, &names->types_dwo))
8669 {
8670 /* There can be only one. */
8671 if (sections->info_or_types.asection != NULL)
8672 return 0;
8673 sections->info_or_types.asection = sectp;
8674 sections->info_or_types.size = bfd_get_section_size (sectp);
8675 }
8676 else if (section_is_p (sectp->name, &names->line_dwo))
8677 {
8678 /* There can be only one. */
8679 if (sections->line.asection != NULL)
8680 return 0;
8681 sections->line.asection = sectp;
8682 sections->line.size = bfd_get_section_size (sectp);
8683 }
8684 else if (section_is_p (sectp->name, &names->loc_dwo))
8685 {
8686 /* There can be only one. */
8687 if (sections->loc.asection != NULL)
8688 return 0;
8689 sections->loc.asection = sectp;
8690 sections->loc.size = bfd_get_section_size (sectp);
8691 }
8692 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8693 {
8694 /* There can be only one. */
8695 if (sections->macinfo.asection != NULL)
8696 return 0;
8697 sections->macinfo.asection = sectp;
8698 sections->macinfo.size = bfd_get_section_size (sectp);
8699 }
8700 else if (section_is_p (sectp->name, &names->macro_dwo))
8701 {
8702 /* There can be only one. */
8703 if (sections->macro.asection != NULL)
8704 return 0;
8705 sections->macro.asection = sectp;
8706 sections->macro.size = bfd_get_section_size (sectp);
8707 }
8708 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8709 {
8710 /* There can be only one. */
8711 if (sections->str_offsets.asection != NULL)
8712 return 0;
8713 sections->str_offsets.asection = sectp;
8714 sections->str_offsets.size = bfd_get_section_size (sectp);
8715 }
8716 else
8717 {
8718 /* No other kind of section is valid. */
8719 return 0;
8720 }
8721
8722 return 1;
8723}
8724
8725/* Create a dwo_unit object for the DWO with signature SIGNATURE.
8726 HTAB is the hash table from the DWP file.
0ac5b59e
DE
8727 SECTION_INDEX is the index of the DWO in HTAB.
8728 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
80626a55
DE
8729
8730static struct dwo_unit *
8731create_dwo_in_dwp (struct dwp_file *dwp_file,
8732 const struct dwp_hash_table *htab,
8733 uint32_t section_index,
0ac5b59e 8734 const char *comp_dir,
80626a55
DE
8735 ULONGEST signature, int is_debug_types)
8736{
8737 struct objfile *objfile = dwarf2_per_objfile->objfile;
8738 bfd *dbfd = dwp_file->dbfd;
8739 const char *kind = is_debug_types ? "TU" : "CU";
8740 struct dwo_file *dwo_file;
8741 struct dwo_unit *dwo_unit;
8742 struct virtual_dwo_sections sections;
8743 void **dwo_file_slot;
8744 char *virtual_dwo_name;
8745 struct dwarf2_section_info *cutu;
8746 struct cleanup *cleanups;
8747 int i;
8748
8749 if (dwarf2_read_debug)
8750 {
4031ecc5 8751 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/%s in DWP file: %s\n",
80626a55 8752 kind,
4031ecc5 8753 section_index, hex_string (signature),
80626a55
DE
8754 dwp_file->name);
8755 }
8756
8757 /* Fetch the sections of this DWO.
8758 Put a limit on the number of sections we look for so that bad data
8759 doesn't cause us to loop forever. */
8760
8761#define MAX_NR_DWO_SECTIONS \
8762 (1 /* .debug_info or .debug_types */ \
8763 + 1 /* .debug_abbrev */ \
8764 + 1 /* .debug_line */ \
8765 + 1 /* .debug_loc */ \
8766 + 1 /* .debug_str_offsets */ \
8767 + 1 /* .debug_macro */ \
8768 + 1 /* .debug_macinfo */ \
8769 + 1 /* trailing zero */)
8770
8771 memset (&sections, 0, sizeof (sections));
8772 cleanups = make_cleanup (null_cleanup, 0);
8773
8774 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8775 {
8776 asection *sectp;
8777 uint32_t section_nr =
8778 read_4_bytes (dbfd,
8779 htab->section_pool
8780 + (section_index + i) * sizeof (uint32_t));
8781
8782 if (section_nr == 0)
8783 break;
8784 if (section_nr >= dwp_file->num_sections)
8785 {
8786 error (_("Dwarf Error: bad DWP hash table, section number too large"
8787 " [in module %s]"),
8788 dwp_file->name);
8789 }
8790
8791 sectp = dwp_file->elf_sections[section_nr];
8792 if (! locate_virtual_dwo_sections (sectp, &sections))
8793 {
8794 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8795 " [in module %s]"),
8796 dwp_file->name);
8797 }
8798 }
8799
8800 if (i < 2
8801 || sections.info_or_types.asection == NULL
8802 || sections.abbrev.asection == NULL)
8803 {
8804 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8805 " [in module %s]"),
8806 dwp_file->name);
8807 }
8808 if (i == MAX_NR_DWO_SECTIONS)
8809 {
8810 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8811 " [in module %s]"),
8812 dwp_file->name);
8813 }
8814
8815 /* It's easier for the rest of the code if we fake a struct dwo_file and
8816 have dwo_unit "live" in that. At least for now.
8817
8818 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec
DE
8819 However, for each CU + set of TUs that came from the same original DWO
8820 file, we want to combine them back into a virtual DWO file to save space
80626a55
DE
8821 (fewer struct dwo_file objects to allocated). Remember that for really
8822 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8823
2792b94d
PM
8824 virtual_dwo_name =
8825 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8826 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8827 sections.line.asection ? sections.line.asection->id : 0,
8828 sections.loc.asection ? sections.loc.asection->id : 0,
8829 (sections.str_offsets.asection
8830 ? sections.str_offsets.asection->id
8831 : 0));
80626a55
DE
8832 make_cleanup (xfree, virtual_dwo_name);
8833 /* Can we use an existing virtual DWO file? */
0ac5b59e 8834 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
8835 /* Create one if necessary. */
8836 if (*dwo_file_slot == NULL)
8837 {
8838 if (dwarf2_read_debug)
8839 {
8840 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8841 virtual_dwo_name);
8842 }
8843 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
8844 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
8845 virtual_dwo_name,
8846 strlen (virtual_dwo_name));
8847 dwo_file->comp_dir = comp_dir;
80626a55
DE
8848 dwo_file->sections.abbrev = sections.abbrev;
8849 dwo_file->sections.line = sections.line;
8850 dwo_file->sections.loc = sections.loc;
8851 dwo_file->sections.macinfo = sections.macinfo;
8852 dwo_file->sections.macro = sections.macro;
8853 dwo_file->sections.str_offsets = sections.str_offsets;
8854 /* The "str" section is global to the entire DWP file. */
8855 dwo_file->sections.str = dwp_file->sections.str;
8856 /* The info or types section is assigned later to dwo_unit,
8857 there's no need to record it in dwo_file.
8858 Also, we can't simply record type sections in dwo_file because
8859 we record a pointer into the vector in dwo_unit. As we collect more
8860 types we'll grow the vector and eventually have to reallocate space
8861 for it, invalidating all the pointers into the current copy. */
8862 *dwo_file_slot = dwo_file;
8863 }
8864 else
8865 {
8866 if (dwarf2_read_debug)
8867 {
8868 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8869 virtual_dwo_name);
8870 }
8871 dwo_file = *dwo_file_slot;
8872 }
8873 do_cleanups (cleanups);
8874
8875 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8876 dwo_unit->dwo_file = dwo_file;
8877 dwo_unit->signature = signature;
8a0459fd
DE
8878 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
8879 sizeof (struct dwarf2_section_info));
8880 *dwo_unit->section = sections.info_or_types;
80626a55
DE
8881 /* offset, length, type_offset_in_tu are set later. */
8882
8883 return dwo_unit;
8884}
8885
8886/* Lookup the DWO with SIGNATURE in DWP_FILE. */
8887
8888static struct dwo_unit *
8889lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8890 const struct dwp_hash_table *htab,
0ac5b59e 8891 const char *comp_dir,
80626a55
DE
8892 ULONGEST signature, int is_debug_types)
8893{
8894 bfd *dbfd = dwp_file->dbfd;
8895 uint32_t mask = htab->nr_slots - 1;
8896 uint32_t hash = signature & mask;
8897 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8898 unsigned int i;
8899 void **slot;
8900 struct dwo_unit find_dwo_cu, *dwo_cu;
8901
8902 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8903 find_dwo_cu.signature = signature;
8904 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8905
8906 if (*slot != NULL)
8907 return *slot;
8908
8909 /* Use a for loop so that we don't loop forever on bad debug info. */
8910 for (i = 0; i < htab->nr_slots; ++i)
8911 {
8912 ULONGEST signature_in_table;
8913
8914 signature_in_table =
8915 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8916 if (signature_in_table == signature)
8917 {
8918 uint32_t section_index =
8919 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8920
8921 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
0ac5b59e 8922 comp_dir, signature, is_debug_types);
80626a55
DE
8923 return *slot;
8924 }
8925 if (signature_in_table == 0)
8926 return NULL;
8927 hash = (hash + hash2) & mask;
8928 }
8929
8930 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8931 " [in module %s]"),
8932 dwp_file->name);
8933}
8934
ab5088bf 8935/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
8936 Open the file specified by FILE_NAME and hand it off to BFD for
8937 preliminary analysis. Return a newly initialized bfd *, which
8938 includes a canonicalized copy of FILE_NAME.
80626a55 8939 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
3019eac3
DE
8940 In case of trouble, return NULL.
8941 NOTE: This function is derived from symfile_bfd_open. */
8942
8943static bfd *
80626a55 8944try_open_dwop_file (const char *file_name, int is_dwp)
3019eac3
DE
8945{
8946 bfd *sym_bfd;
80626a55 8947 int desc, flags;
3019eac3 8948 char *absolute_name;
3019eac3 8949
80626a55
DE
8950 flags = OPF_TRY_CWD_FIRST;
8951 if (is_dwp)
8952 flags |= OPF_SEARCH_IN_PATH;
8953 desc = openp (debug_file_directory, flags, file_name,
3019eac3
DE
8954 O_RDONLY | O_BINARY, &absolute_name);
8955 if (desc < 0)
8956 return NULL;
8957
bb397797 8958 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
3019eac3
DE
8959 if (!sym_bfd)
8960 {
3019eac3
DE
8961 xfree (absolute_name);
8962 return NULL;
8963 }
a4453b7e 8964 xfree (absolute_name);
3019eac3
DE
8965 bfd_set_cacheable (sym_bfd, 1);
8966
8967 if (!bfd_check_format (sym_bfd, bfd_object))
8968 {
cbb099e8 8969 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
8970 return NULL;
8971 }
8972
3019eac3
DE
8973 return sym_bfd;
8974}
8975
ab5088bf 8976/* Try to open DWO file FILE_NAME.
3019eac3
DE
8977 COMP_DIR is the DW_AT_comp_dir attribute.
8978 The result is the bfd handle of the file.
8979 If there is a problem finding or opening the file, return NULL.
8980 Upon success, the canonicalized path of the file is stored in the bfd,
8981 same as symfile_bfd_open. */
8982
8983static bfd *
ab5088bf 8984open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
8985{
8986 bfd *abfd;
3019eac3 8987
80626a55 8988 if (IS_ABSOLUTE_PATH (file_name))
ab5088bf 8989 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
3019eac3
DE
8990
8991 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8992
8993 if (comp_dir != NULL)
8994 {
80626a55 8995 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
8996
8997 /* NOTE: If comp_dir is a relative path, this will also try the
8998 search path, which seems useful. */
ab5088bf 8999 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/);
3019eac3
DE
9000 xfree (path_to_try);
9001 if (abfd != NULL)
9002 return abfd;
9003 }
9004
9005 /* That didn't work, try debug-file-directory, which, despite its name,
9006 is a list of paths. */
9007
9008 if (*debug_file_directory == '\0')
9009 return NULL;
9010
ab5088bf 9011 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
3019eac3
DE
9012}
9013
80626a55
DE
9014/* This function is mapped across the sections and remembers the offset and
9015 size of each of the DWO debugging sections we are interested in. */
9016
9017static void
9018dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9019{
9020 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9021 const struct dwop_section_names *names = &dwop_section_names;
9022
9023 if (section_is_p (sectp->name, &names->abbrev_dwo))
9024 {
9025 dwo_sections->abbrev.asection = sectp;
9026 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9027 }
9028 else if (section_is_p (sectp->name, &names->info_dwo))
9029 {
9030 dwo_sections->info.asection = sectp;
9031 dwo_sections->info.size = bfd_get_section_size (sectp);
9032 }
9033 else if (section_is_p (sectp->name, &names->line_dwo))
9034 {
9035 dwo_sections->line.asection = sectp;
9036 dwo_sections->line.size = bfd_get_section_size (sectp);
9037 }
9038 else if (section_is_p (sectp->name, &names->loc_dwo))
9039 {
9040 dwo_sections->loc.asection = sectp;
9041 dwo_sections->loc.size = bfd_get_section_size (sectp);
9042 }
9043 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9044 {
9045 dwo_sections->macinfo.asection = sectp;
9046 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9047 }
9048 else if (section_is_p (sectp->name, &names->macro_dwo))
9049 {
9050 dwo_sections->macro.asection = sectp;
9051 dwo_sections->macro.size = bfd_get_section_size (sectp);
9052 }
9053 else if (section_is_p (sectp->name, &names->str_dwo))
9054 {
9055 dwo_sections->str.asection = sectp;
9056 dwo_sections->str.size = bfd_get_section_size (sectp);
9057 }
9058 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9059 {
9060 dwo_sections->str_offsets.asection = sectp;
9061 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9062 }
9063 else if (section_is_p (sectp->name, &names->types_dwo))
9064 {
9065 struct dwarf2_section_info type_section;
9066
9067 memset (&type_section, 0, sizeof (type_section));
9068 type_section.asection = sectp;
9069 type_section.size = bfd_get_section_size (sectp);
9070 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9071 &type_section);
9072 }
9073}
9074
ab5088bf 9075/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 9076 by PER_CU. This is for the non-DWP case.
80626a55 9077 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
9078
9079static struct dwo_file *
0ac5b59e
DE
9080open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9081 const char *dwo_name, const char *comp_dir)
3019eac3
DE
9082{
9083 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
9084 struct dwo_file *dwo_file;
9085 bfd *dbfd;
3019eac3
DE
9086 struct cleanup *cleanups;
9087
ab5088bf 9088 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
9089 if (dbfd == NULL)
9090 {
9091 if (dwarf2_read_debug)
9092 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9093 return NULL;
9094 }
9095 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9096 dwo_file->dwo_name = dwo_name;
9097 dwo_file->comp_dir = comp_dir;
80626a55 9098 dwo_file->dbfd = dbfd;
3019eac3
DE
9099
9100 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9101
80626a55 9102 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 9103
19c3d4c9 9104 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
9105
9106 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9107 dwo_file->sections.types);
9108
9109 discard_cleanups (cleanups);
9110
80626a55
DE
9111 if (dwarf2_read_debug)
9112 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9113
3019eac3
DE
9114 return dwo_file;
9115}
9116
80626a55
DE
9117/* This function is mapped across the sections and remembers the offset and
9118 size of each of the DWP debugging sections we are interested in. */
3019eac3 9119
80626a55
DE
9120static void
9121dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
3019eac3 9122{
80626a55
DE
9123 struct dwp_file *dwp_file = dwp_file_ptr;
9124 const struct dwop_section_names *names = &dwop_section_names;
9125 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 9126
80626a55
DE
9127 /* Record the ELF section number for later lookup: this is what the
9128 .debug_cu_index,.debug_tu_index tables use. */
9129 gdb_assert (elf_section_nr < dwp_file->num_sections);
9130 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 9131
80626a55
DE
9132 /* Look for specific sections that we need. */
9133 if (section_is_p (sectp->name, &names->str_dwo))
9134 {
9135 dwp_file->sections.str.asection = sectp;
9136 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9137 }
9138 else if (section_is_p (sectp->name, &names->cu_index))
9139 {
9140 dwp_file->sections.cu_index.asection = sectp;
9141 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9142 }
9143 else if (section_is_p (sectp->name, &names->tu_index))
9144 {
9145 dwp_file->sections.tu_index.asection = sectp;
9146 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9147 }
9148}
3019eac3 9149
80626a55 9150/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 9151
80626a55
DE
9152static hashval_t
9153hash_dwp_loaded_cutus (const void *item)
9154{
9155 const struct dwo_unit *dwo_unit = item;
3019eac3 9156
80626a55
DE
9157 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9158 return dwo_unit->signature;
3019eac3
DE
9159}
9160
80626a55 9161/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 9162
80626a55
DE
9163static int
9164eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 9165{
80626a55
DE
9166 const struct dwo_unit *dua = a;
9167 const struct dwo_unit *dub = b;
3019eac3 9168
80626a55
DE
9169 return dua->signature == dub->signature;
9170}
3019eac3 9171
80626a55 9172/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 9173
80626a55
DE
9174static htab_t
9175allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9176{
9177 return htab_create_alloc_ex (3,
9178 hash_dwp_loaded_cutus,
9179 eq_dwp_loaded_cutus,
9180 NULL,
9181 &objfile->objfile_obstack,
9182 hashtab_obstack_allocate,
9183 dummy_obstack_deallocate);
9184}
3019eac3 9185
ab5088bf
DE
9186/* Try to open DWP file FILE_NAME.
9187 The result is the bfd handle of the file.
9188 If there is a problem finding or opening the file, return NULL.
9189 Upon success, the canonicalized path of the file is stored in the bfd,
9190 same as symfile_bfd_open. */
9191
9192static bfd *
9193open_dwp_file (const char *file_name)
9194{
9195 return try_open_dwop_file (file_name, 1 /*is_dwp*/);
9196}
9197
80626a55
DE
9198/* Initialize the use of the DWP file for the current objfile.
9199 By convention the name of the DWP file is ${objfile}.dwp.
9200 The result is NULL if it can't be found. */
a766d390 9201
80626a55 9202static struct dwp_file *
ab5088bf 9203open_and_init_dwp_file (void)
80626a55
DE
9204{
9205 struct objfile *objfile = dwarf2_per_objfile->objfile;
9206 struct dwp_file *dwp_file;
9207 char *dwp_name;
9208 bfd *dbfd;
9209 struct cleanup *cleanups;
9210
2792b94d 9211 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
80626a55
DE
9212 cleanups = make_cleanup (xfree, dwp_name);
9213
ab5088bf 9214 dbfd = open_dwp_file (dwp_name);
80626a55
DE
9215 if (dbfd == NULL)
9216 {
9217 if (dwarf2_read_debug)
9218 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9219 do_cleanups (cleanups);
9220 return NULL;
3019eac3 9221 }
80626a55
DE
9222 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9223 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9224 dwp_name, strlen (dwp_name));
9225 dwp_file->dbfd = dbfd;
9226 do_cleanups (cleanups);
c906108c 9227
80626a55
DE
9228 /* +1: section 0 is unused */
9229 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9230 dwp_file->elf_sections =
9231 OBSTACK_CALLOC (&objfile->objfile_obstack,
9232 dwp_file->num_sections, asection *);
9233
9234 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9235
9236 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9237
9238 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9239
9240 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9241
80626a55
DE
9242 if (dwarf2_read_debug)
9243 {
9244 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9245 fprintf_unfiltered (gdb_stdlog,
9246 " %u CUs, %u TUs\n",
9247 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9248 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9249 }
9250
9251 return dwp_file;
3019eac3 9252}
c906108c 9253
ab5088bf
DE
9254/* Wrapper around open_and_init_dwp_file, only open it once. */
9255
9256static struct dwp_file *
9257get_dwp_file (void)
9258{
9259 if (! dwarf2_per_objfile->dwp_checked)
9260 {
9261 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9262 dwarf2_per_objfile->dwp_checked = 1;
9263 }
9264 return dwarf2_per_objfile->dwp_file;
9265}
9266
80626a55
DE
9267/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9268 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9269 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 9270 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
9271 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9272
9273 This is called, for example, when wanting to read a variable with a
9274 complex location. Therefore we don't want to do file i/o for every call.
9275 Therefore we don't want to look for a DWO file on every call.
9276 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9277 then we check if we've already seen DWO_NAME, and only THEN do we check
9278 for a DWO file.
9279
1c658ad5 9280 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 9281 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 9282
3019eac3 9283static struct dwo_unit *
80626a55
DE
9284lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9285 const char *dwo_name, const char *comp_dir,
9286 ULONGEST signature, int is_debug_types)
3019eac3
DE
9287{
9288 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
9289 const char *kind = is_debug_types ? "TU" : "CU";
9290 void **dwo_file_slot;
3019eac3 9291 struct dwo_file *dwo_file;
80626a55 9292 struct dwp_file *dwp_file;
cb1df416 9293
80626a55 9294 /* Have we already read SIGNATURE from a DWP file? */
cf2c3c16 9295
ab5088bf 9296 dwp_file = get_dwp_file ();
80626a55 9297 if (dwp_file != NULL)
cf2c3c16 9298 {
80626a55
DE
9299 const struct dwp_hash_table *dwp_htab =
9300 is_debug_types ? dwp_file->tus : dwp_file->cus;
9301
9302 if (dwp_htab != NULL)
9303 {
9304 struct dwo_unit *dwo_cutu =
0ac5b59e
DE
9305 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9306 signature, is_debug_types);
80626a55
DE
9307
9308 if (dwo_cutu != NULL)
9309 {
9310 if (dwarf2_read_debug)
9311 {
9312 fprintf_unfiltered (gdb_stdlog,
9313 "Virtual DWO %s %s found: @%s\n",
9314 kind, hex_string (signature),
9315 host_address_to_string (dwo_cutu));
9316 }
9317 return dwo_cutu;
9318 }
9319 }
9320 }
9321
9322 /* Have we already seen DWO_NAME? */
9323
0ac5b59e 9324 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
80626a55
DE
9325 if (*dwo_file_slot == NULL)
9326 {
9327 /* Read in the file and build a table of the DWOs it contains. */
0ac5b59e 9328 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
80626a55
DE
9329 }
9330 /* NOTE: This will be NULL if unable to open the file. */
9331 dwo_file = *dwo_file_slot;
9332
9333 if (dwo_file != NULL)
9334 {
19c3d4c9 9335 struct dwo_unit *dwo_cutu = NULL;
80626a55 9336
19c3d4c9 9337 if (is_debug_types && dwo_file->tus)
80626a55 9338 {
19c3d4c9 9339 struct dwo_unit find_dwo_cutu;
9a619af0 9340
80626a55
DE
9341 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9342 find_dwo_cutu.signature = signature;
19c3d4c9
DE
9343 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9344 }
9345 else if (!is_debug_types && dwo_file->cu)
9346 {
9347 if (signature == dwo_file->cu->signature)
9348 dwo_cutu = dwo_file->cu;
9349 }
3019eac3 9350
19c3d4c9
DE
9351 if (dwo_cutu != NULL)
9352 {
9353 if (dwarf2_read_debug)
80626a55 9354 {
19c3d4c9
DE
9355 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9356 kind, dwo_name, hex_string (signature),
9357 host_address_to_string (dwo_cutu));
80626a55 9358 }
19c3d4c9 9359 return dwo_cutu;
80626a55 9360 }
2e276125 9361 }
9cdd5dbd 9362
80626a55
DE
9363 /* We didn't find it. This could mean a dwo_id mismatch, or
9364 someone deleted the DWO/DWP file, or the search path isn't set up
9365 correctly to find the file. */
9366
9367 if (dwarf2_read_debug)
9368 {
9369 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9370 kind, dwo_name, hex_string (signature));
9371 }
3019eac3
DE
9372
9373 complaint (&symfile_complaints,
6296d8c1 9374 _("Could not find DWO %s referenced by CU at offset 0x%x"
3019eac3 9375 " [in module %s]"),
6296d8c1 9376 kind, this_unit->offset.sect_off, objfile->name);
3019eac3 9377 return NULL;
5fb290d7
DJ
9378}
9379
80626a55
DE
9380/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9381 See lookup_dwo_cutu_unit for details. */
9382
9383static struct dwo_unit *
9384lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9385 const char *dwo_name, const char *comp_dir,
9386 ULONGEST signature)
9387{
9388 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9389}
9390
9391/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9392 See lookup_dwo_cutu_unit for details. */
9393
9394static struct dwo_unit *
9395lookup_dwo_type_unit (struct signatured_type *this_tu,
9396 const char *dwo_name, const char *comp_dir)
9397{
9398 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9399}
9400
3019eac3
DE
9401/* Free all resources associated with DWO_FILE.
9402 Close the DWO file and munmap the sections.
9403 All memory should be on the objfile obstack. */
348e048f
DE
9404
9405static void
3019eac3 9406free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 9407{
3019eac3
DE
9408 int ix;
9409 struct dwarf2_section_info *section;
348e048f 9410
5c6fa7ab 9411 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 9412 gdb_bfd_unref (dwo_file->dbfd);
348e048f 9413
3019eac3
DE
9414 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9415}
348e048f 9416
3019eac3 9417/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 9418
3019eac3
DE
9419static void
9420free_dwo_file_cleanup (void *arg)
9421{
9422 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9423 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 9424
3019eac3
DE
9425 free_dwo_file (dwo_file, objfile);
9426}
348e048f 9427
3019eac3 9428/* Traversal function for free_dwo_files. */
2ab95328 9429
3019eac3
DE
9430static int
9431free_dwo_file_from_slot (void **slot, void *info)
9432{
9433 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9434 struct objfile *objfile = (struct objfile *) info;
348e048f 9435
3019eac3 9436 free_dwo_file (dwo_file, objfile);
348e048f 9437
3019eac3
DE
9438 return 1;
9439}
348e048f 9440
3019eac3 9441/* Free all resources associated with DWO_FILES. */
348e048f 9442
3019eac3
DE
9443static void
9444free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9445{
9446 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 9447}
3019eac3
DE
9448\f
9449/* Read in various DIEs. */
348e048f 9450
d389af10
JK
9451/* qsort helper for inherit_abstract_dies. */
9452
9453static int
9454unsigned_int_compar (const void *ap, const void *bp)
9455{
9456 unsigned int a = *(unsigned int *) ap;
9457 unsigned int b = *(unsigned int *) bp;
9458
9459 return (a > b) - (b > a);
9460}
9461
9462/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
9463 Inherit only the children of the DW_AT_abstract_origin DIE not being
9464 already referenced by DW_AT_abstract_origin from the children of the
9465 current DIE. */
d389af10
JK
9466
9467static void
9468inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9469{
9470 struct die_info *child_die;
9471 unsigned die_children_count;
9472 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
9473 sect_offset *offsets;
9474 sect_offset *offsets_end, *offsetp;
d389af10
JK
9475 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9476 struct die_info *origin_die;
9477 /* Iterator of the ORIGIN_DIE children. */
9478 struct die_info *origin_child_die;
9479 struct cleanup *cleanups;
9480 struct attribute *attr;
cd02d79d
PA
9481 struct dwarf2_cu *origin_cu;
9482 struct pending **origin_previous_list_in_scope;
d389af10
JK
9483
9484 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9485 if (!attr)
9486 return;
9487
cd02d79d
PA
9488 /* Note that following die references may follow to a die in a
9489 different cu. */
9490
9491 origin_cu = cu;
9492 origin_die = follow_die_ref (die, attr, &origin_cu);
9493
9494 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9495 symbols in. */
9496 origin_previous_list_in_scope = origin_cu->list_in_scope;
9497 origin_cu->list_in_scope = cu->list_in_scope;
9498
edb3359d
DJ
9499 if (die->tag != origin_die->tag
9500 && !(die->tag == DW_TAG_inlined_subroutine
9501 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9502 complaint (&symfile_complaints,
9503 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 9504 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
9505
9506 child_die = die->child;
9507 die_children_count = 0;
9508 while (child_die && child_die->tag)
9509 {
9510 child_die = sibling_die (child_die);
9511 die_children_count++;
9512 }
9513 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9514 cleanups = make_cleanup (xfree, offsets);
9515
9516 offsets_end = offsets;
9517 child_die = die->child;
9518 while (child_die && child_die->tag)
9519 {
c38f313d
DJ
9520 /* For each CHILD_DIE, find the corresponding child of
9521 ORIGIN_DIE. If there is more than one layer of
9522 DW_AT_abstract_origin, follow them all; there shouldn't be,
9523 but GCC versions at least through 4.4 generate this (GCC PR
9524 40573). */
9525 struct die_info *child_origin_die = child_die;
cd02d79d 9526 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 9527
c38f313d
DJ
9528 while (1)
9529 {
cd02d79d
PA
9530 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9531 child_origin_cu);
c38f313d
DJ
9532 if (attr == NULL)
9533 break;
cd02d79d
PA
9534 child_origin_die = follow_die_ref (child_origin_die, attr,
9535 &child_origin_cu);
c38f313d
DJ
9536 }
9537
d389af10
JK
9538 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9539 counterpart may exist. */
c38f313d 9540 if (child_origin_die != child_die)
d389af10 9541 {
edb3359d
DJ
9542 if (child_die->tag != child_origin_die->tag
9543 && !(child_die->tag == DW_TAG_inlined_subroutine
9544 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9545 complaint (&symfile_complaints,
9546 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9547 "different tags"), child_die->offset.sect_off,
9548 child_origin_die->offset.sect_off);
c38f313d
DJ
9549 if (child_origin_die->parent != origin_die)
9550 complaint (&symfile_complaints,
9551 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9552 "different parents"), child_die->offset.sect_off,
9553 child_origin_die->offset.sect_off);
c38f313d
DJ
9554 else
9555 *offsets_end++ = child_origin_die->offset;
d389af10
JK
9556 }
9557 child_die = sibling_die (child_die);
9558 }
9559 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9560 unsigned_int_compar);
9561 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 9562 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
9563 complaint (&symfile_complaints,
9564 _("Multiple children of DIE 0x%x refer "
9565 "to DIE 0x%x as their abstract origin"),
b64f50a1 9566 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
9567
9568 offsetp = offsets;
9569 origin_child_die = origin_die->child;
9570 while (origin_child_die && origin_child_die->tag)
9571 {
9572 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
9573 while (offsetp < offsets_end
9574 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 9575 offsetp++;
b64f50a1
JK
9576 if (offsetp >= offsets_end
9577 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10
JK
9578 {
9579 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 9580 process_die (origin_child_die, origin_cu);
d389af10
JK
9581 }
9582 origin_child_die = sibling_die (origin_child_die);
9583 }
cd02d79d 9584 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
9585
9586 do_cleanups (cleanups);
9587}
9588
c906108c 9589static void
e7c27a73 9590read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9591{
e7c27a73 9592 struct objfile *objfile = cu->objfile;
52f0bd74 9593 struct context_stack *new;
c906108c
SS
9594 CORE_ADDR lowpc;
9595 CORE_ADDR highpc;
9596 struct die_info *child_die;
edb3359d 9597 struct attribute *attr, *call_line, *call_file;
15d034d0 9598 const char *name;
e142c38c 9599 CORE_ADDR baseaddr;
801e3a5b 9600 struct block *block;
edb3359d 9601 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
9602 VEC (symbolp) *template_args = NULL;
9603 struct template_symbol *templ_func = NULL;
edb3359d
DJ
9604
9605 if (inlined_func)
9606 {
9607 /* If we do not have call site information, we can't show the
9608 caller of this inlined function. That's too confusing, so
9609 only use the scope for local variables. */
9610 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9611 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9612 if (call_line == NULL || call_file == NULL)
9613 {
9614 read_lexical_block_scope (die, cu);
9615 return;
9616 }
9617 }
c906108c 9618
e142c38c
DJ
9619 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9620
94af9270 9621 name = dwarf2_name (die, cu);
c906108c 9622
e8d05480
JB
9623 /* Ignore functions with missing or empty names. These are actually
9624 illegal according to the DWARF standard. */
9625 if (name == NULL)
9626 {
9627 complaint (&symfile_complaints,
b64f50a1
JK
9628 _("missing name for subprogram DIE at %d"),
9629 die->offset.sect_off);
e8d05480
JB
9630 return;
9631 }
9632
9633 /* Ignore functions with missing or invalid low and high pc attributes. */
9634 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9635 {
ae4d0c03
PM
9636 attr = dwarf2_attr (die, DW_AT_external, cu);
9637 if (!attr || !DW_UNSND (attr))
9638 complaint (&symfile_complaints,
3e43a32a
MS
9639 _("cannot get low and high bounds "
9640 "for subprogram DIE at %d"),
b64f50a1 9641 die->offset.sect_off);
e8d05480
JB
9642 return;
9643 }
c906108c
SS
9644
9645 lowpc += baseaddr;
9646 highpc += baseaddr;
9647
34eaf542
TT
9648 /* If we have any template arguments, then we must allocate a
9649 different sort of symbol. */
9650 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9651 {
9652 if (child_die->tag == DW_TAG_template_type_param
9653 || child_die->tag == DW_TAG_template_value_param)
9654 {
e623cf5d 9655 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
9656 templ_func->base.is_cplus_template_function = 1;
9657 break;
9658 }
9659 }
9660
c906108c 9661 new = push_context (0, lowpc);
34eaf542
TT
9662 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9663 (struct symbol *) templ_func);
4c2df51b 9664
4cecd739
DJ
9665 /* If there is a location expression for DW_AT_frame_base, record
9666 it. */
e142c38c 9667 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 9668 if (attr)
f1e6e072 9669 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 9670
e142c38c 9671 cu->list_in_scope = &local_symbols;
c906108c 9672
639d11d3 9673 if (die->child != NULL)
c906108c 9674 {
639d11d3 9675 child_die = die->child;
c906108c
SS
9676 while (child_die && child_die->tag)
9677 {
34eaf542
TT
9678 if (child_die->tag == DW_TAG_template_type_param
9679 || child_die->tag == DW_TAG_template_value_param)
9680 {
9681 struct symbol *arg = new_symbol (child_die, NULL, cu);
9682
f1078f66
DJ
9683 if (arg != NULL)
9684 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
9685 }
9686 else
9687 process_die (child_die, cu);
c906108c
SS
9688 child_die = sibling_die (child_die);
9689 }
9690 }
9691
d389af10
JK
9692 inherit_abstract_dies (die, cu);
9693
4a811a97
UW
9694 /* If we have a DW_AT_specification, we might need to import using
9695 directives from the context of the specification DIE. See the
9696 comment in determine_prefix. */
9697 if (cu->language == language_cplus
9698 && dwarf2_attr (die, DW_AT_specification, cu))
9699 {
9700 struct dwarf2_cu *spec_cu = cu;
9701 struct die_info *spec_die = die_specification (die, &spec_cu);
9702
9703 while (spec_die)
9704 {
9705 child_die = spec_die->child;
9706 while (child_die && child_die->tag)
9707 {
9708 if (child_die->tag == DW_TAG_imported_module)
9709 process_die (child_die, spec_cu);
9710 child_die = sibling_die (child_die);
9711 }
9712
9713 /* In some cases, GCC generates specification DIEs that
9714 themselves contain DW_AT_specification attributes. */
9715 spec_die = die_specification (spec_die, &spec_cu);
9716 }
9717 }
9718
c906108c
SS
9719 new = pop_context ();
9720 /* Make a block for the local symbols within. */
801e3a5b
JB
9721 block = finish_block (new->name, &local_symbols, new->old_blocks,
9722 lowpc, highpc, objfile);
9723
df8a16a1 9724 /* For C++, set the block's scope. */
195a3f6c 9725 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 9726 && cu->processing_has_namespace_info)
195a3f6c
TT
9727 block_set_scope (block, determine_prefix (die, cu),
9728 &objfile->objfile_obstack);
df8a16a1 9729
801e3a5b
JB
9730 /* If we have address ranges, record them. */
9731 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 9732
34eaf542
TT
9733 /* Attach template arguments to function. */
9734 if (! VEC_empty (symbolp, template_args))
9735 {
9736 gdb_assert (templ_func != NULL);
9737
9738 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9739 templ_func->template_arguments
9740 = obstack_alloc (&objfile->objfile_obstack,
9741 (templ_func->n_template_arguments
9742 * sizeof (struct symbol *)));
9743 memcpy (templ_func->template_arguments,
9744 VEC_address (symbolp, template_args),
9745 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9746 VEC_free (symbolp, template_args);
9747 }
9748
208d8187
JB
9749 /* In C++, we can have functions nested inside functions (e.g., when
9750 a function declares a class that has methods). This means that
9751 when we finish processing a function scope, we may need to go
9752 back to building a containing block's symbol lists. */
9753 local_symbols = new->locals;
27aa8d6a 9754 using_directives = new->using_directives;
208d8187 9755
921e78cf
JB
9756 /* If we've finished processing a top-level function, subsequent
9757 symbols go in the file symbol list. */
9758 if (outermost_context_p ())
e142c38c 9759 cu->list_in_scope = &file_symbols;
c906108c
SS
9760}
9761
9762/* Process all the DIES contained within a lexical block scope. Start
9763 a new scope, process the dies, and then close the scope. */
9764
9765static void
e7c27a73 9766read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9767{
e7c27a73 9768 struct objfile *objfile = cu->objfile;
52f0bd74 9769 struct context_stack *new;
c906108c
SS
9770 CORE_ADDR lowpc, highpc;
9771 struct die_info *child_die;
e142c38c
DJ
9772 CORE_ADDR baseaddr;
9773
9774 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
9775
9776 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
9777 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9778 as multiple lexical blocks? Handling children in a sane way would
6e70227d 9779 be nasty. Might be easier to properly extend generic blocks to
af34e669 9780 describe ranges. */
d85a05f0 9781 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
9782 return;
9783 lowpc += baseaddr;
9784 highpc += baseaddr;
9785
9786 push_context (0, lowpc);
639d11d3 9787 if (die->child != NULL)
c906108c 9788 {
639d11d3 9789 child_die = die->child;
c906108c
SS
9790 while (child_die && child_die->tag)
9791 {
e7c27a73 9792 process_die (child_die, cu);
c906108c
SS
9793 child_die = sibling_die (child_die);
9794 }
9795 }
9796 new = pop_context ();
9797
8540c487 9798 if (local_symbols != NULL || using_directives != NULL)
c906108c 9799 {
801e3a5b
JB
9800 struct block *block
9801 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9802 highpc, objfile);
9803
9804 /* Note that recording ranges after traversing children, as we
9805 do here, means that recording a parent's ranges entails
9806 walking across all its children's ranges as they appear in
9807 the address map, which is quadratic behavior.
9808
9809 It would be nicer to record the parent's ranges before
9810 traversing its children, simply overriding whatever you find
9811 there. But since we don't even decide whether to create a
9812 block until after we've traversed its children, that's hard
9813 to do. */
9814 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
9815 }
9816 local_symbols = new->locals;
27aa8d6a 9817 using_directives = new->using_directives;
c906108c
SS
9818}
9819
96408a79
SA
9820/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9821
9822static void
9823read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9824{
9825 struct objfile *objfile = cu->objfile;
9826 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9827 CORE_ADDR pc, baseaddr;
9828 struct attribute *attr;
9829 struct call_site *call_site, call_site_local;
9830 void **slot;
9831 int nparams;
9832 struct die_info *child_die;
9833
9834 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9835
9836 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9837 if (!attr)
9838 {
9839 complaint (&symfile_complaints,
9840 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9841 "DIE 0x%x [in module %s]"),
b64f50a1 9842 die->offset.sect_off, objfile->name);
96408a79
SA
9843 return;
9844 }
9845 pc = DW_ADDR (attr) + baseaddr;
9846
9847 if (cu->call_site_htab == NULL)
9848 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9849 NULL, &objfile->objfile_obstack,
9850 hashtab_obstack_allocate, NULL);
9851 call_site_local.pc = pc;
9852 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9853 if (*slot != NULL)
9854 {
9855 complaint (&symfile_complaints,
9856 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9857 "DIE 0x%x [in module %s]"),
b64f50a1 9858 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
96408a79
SA
9859 return;
9860 }
9861
9862 /* Count parameters at the caller. */
9863
9864 nparams = 0;
9865 for (child_die = die->child; child_die && child_die->tag;
9866 child_die = sibling_die (child_die))
9867 {
9868 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9869 {
9870 complaint (&symfile_complaints,
9871 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9872 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 9873 child_die->tag, child_die->offset.sect_off, objfile->name);
96408a79
SA
9874 continue;
9875 }
9876
9877 nparams++;
9878 }
9879
9880 call_site = obstack_alloc (&objfile->objfile_obstack,
9881 (sizeof (*call_site)
9882 + (sizeof (*call_site->parameter)
9883 * (nparams - 1))));
9884 *slot = call_site;
9885 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9886 call_site->pc = pc;
9887
9888 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9889 {
9890 struct die_info *func_die;
9891
9892 /* Skip also over DW_TAG_inlined_subroutine. */
9893 for (func_die = die->parent;
9894 func_die && func_die->tag != DW_TAG_subprogram
9895 && func_die->tag != DW_TAG_subroutine_type;
9896 func_die = func_die->parent);
9897
9898 /* DW_AT_GNU_all_call_sites is a superset
9899 of DW_AT_GNU_all_tail_call_sites. */
9900 if (func_die
9901 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9902 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9903 {
9904 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9905 not complete. But keep CALL_SITE for look ups via call_site_htab,
9906 both the initial caller containing the real return address PC and
9907 the final callee containing the current PC of a chain of tail
9908 calls do not need to have the tail call list complete. But any
9909 function candidate for a virtual tail call frame searched via
9910 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9911 determined unambiguously. */
9912 }
9913 else
9914 {
9915 struct type *func_type = NULL;
9916
9917 if (func_die)
9918 func_type = get_die_type (func_die, cu);
9919 if (func_type != NULL)
9920 {
9921 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9922
9923 /* Enlist this call site to the function. */
9924 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9925 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9926 }
9927 else
9928 complaint (&symfile_complaints,
9929 _("Cannot find function owning DW_TAG_GNU_call_site "
9930 "DIE 0x%x [in module %s]"),
b64f50a1 9931 die->offset.sect_off, objfile->name);
96408a79
SA
9932 }
9933 }
9934
9935 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9936 if (attr == NULL)
9937 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9938 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9939 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9940 /* Keep NULL DWARF_BLOCK. */;
9941 else if (attr_form_is_block (attr))
9942 {
9943 struct dwarf2_locexpr_baton *dlbaton;
9944
9945 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9946 dlbaton->data = DW_BLOCK (attr)->data;
9947 dlbaton->size = DW_BLOCK (attr)->size;
9948 dlbaton->per_cu = cu->per_cu;
9949
9950 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9951 }
9952 else if (is_ref_attr (attr))
9953 {
96408a79
SA
9954 struct dwarf2_cu *target_cu = cu;
9955 struct die_info *target_die;
9956
ac9ec31b 9957 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
9958 gdb_assert (target_cu->objfile == objfile);
9959 if (die_is_declaration (target_die, target_cu))
9960 {
9112db09
JK
9961 const char *target_physname = NULL;
9962 struct attribute *target_attr;
9963
9964 /* Prefer the mangled name; otherwise compute the demangled one. */
9965 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
9966 if (target_attr == NULL)
9967 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
9968 target_cu);
9969 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
9970 target_physname = DW_STRING (target_attr);
9971 else
9972 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
9973 if (target_physname == NULL)
9974 complaint (&symfile_complaints,
9975 _("DW_AT_GNU_call_site_target target DIE has invalid "
9976 "physname, for referencing DIE 0x%x [in module %s]"),
b64f50a1 9977 die->offset.sect_off, objfile->name);
96408a79 9978 else
7d455152 9979 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
9980 }
9981 else
9982 {
9983 CORE_ADDR lowpc;
9984
9985 /* DW_AT_entry_pc should be preferred. */
9986 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9987 complaint (&symfile_complaints,
9988 _("DW_AT_GNU_call_site_target target DIE has invalid "
9989 "low pc, for referencing DIE 0x%x [in module %s]"),
b64f50a1 9990 die->offset.sect_off, objfile->name);
96408a79
SA
9991 else
9992 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9993 }
9994 }
9995 else
9996 complaint (&symfile_complaints,
9997 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9998 "block nor reference, for DIE 0x%x [in module %s]"),
b64f50a1 9999 die->offset.sect_off, objfile->name);
96408a79
SA
10000
10001 call_site->per_cu = cu->per_cu;
10002
10003 for (child_die = die->child;
10004 child_die && child_die->tag;
10005 child_die = sibling_die (child_die))
10006 {
96408a79 10007 struct call_site_parameter *parameter;
1788b2d3 10008 struct attribute *loc, *origin;
96408a79
SA
10009
10010 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10011 {
10012 /* Already printed the complaint above. */
10013 continue;
10014 }
10015
10016 gdb_assert (call_site->parameter_count < nparams);
10017 parameter = &call_site->parameter[call_site->parameter_count];
10018
1788b2d3
JK
10019 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10020 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10021 register is contained in DW_AT_GNU_call_site_value. */
96408a79 10022
24c5c679 10023 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3
JK
10024 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10025 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10026 {
10027 sect_offset offset;
10028
10029 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10030 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
10031 if (!offset_in_cu_p (&cu->header, offset))
10032 {
10033 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10034 binding can be done only inside one CU. Such referenced DIE
10035 therefore cannot be even moved to DW_TAG_partial_unit. */
10036 complaint (&symfile_complaints,
10037 _("DW_AT_abstract_origin offset is not in CU for "
10038 "DW_TAG_GNU_call_site child DIE 0x%x "
10039 "[in module %s]"),
10040 child_die->offset.sect_off, objfile->name);
10041 continue;
10042 }
1788b2d3
JK
10043 parameter->u.param_offset.cu_off = (offset.sect_off
10044 - cu->header.offset.sect_off);
10045 }
10046 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
10047 {
10048 complaint (&symfile_complaints,
10049 _("No DW_FORM_block* DW_AT_location for "
10050 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10051 child_die->offset.sect_off, objfile->name);
96408a79
SA
10052 continue;
10053 }
24c5c679 10054 else
96408a79 10055 {
24c5c679
JK
10056 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10057 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10058 if (parameter->u.dwarf_reg != -1)
10059 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10060 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10061 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10062 &parameter->u.fb_offset))
10063 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10064 else
10065 {
10066 complaint (&symfile_complaints,
10067 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10068 "for DW_FORM_block* DW_AT_location is supported for "
10069 "DW_TAG_GNU_call_site child DIE 0x%x "
10070 "[in module %s]"),
10071 child_die->offset.sect_off, objfile->name);
10072 continue;
10073 }
96408a79
SA
10074 }
10075
10076 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10077 if (!attr_form_is_block (attr))
10078 {
10079 complaint (&symfile_complaints,
10080 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10081 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10082 child_die->offset.sect_off, objfile->name);
96408a79
SA
10083 continue;
10084 }
10085 parameter->value = DW_BLOCK (attr)->data;
10086 parameter->value_size = DW_BLOCK (attr)->size;
10087
10088 /* Parameters are not pre-cleared by memset above. */
10089 parameter->data_value = NULL;
10090 parameter->data_value_size = 0;
10091 call_site->parameter_count++;
10092
10093 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10094 if (attr)
10095 {
10096 if (!attr_form_is_block (attr))
10097 complaint (&symfile_complaints,
10098 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10099 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10100 child_die->offset.sect_off, objfile->name);
96408a79
SA
10101 else
10102 {
10103 parameter->data_value = DW_BLOCK (attr)->data;
10104 parameter->data_value_size = DW_BLOCK (attr)->size;
10105 }
10106 }
10107 }
10108}
10109
43039443 10110/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
10111 Return 1 if the attributes are present and valid, otherwise, return 0.
10112 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
10113
10114static int
10115dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
10116 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10117 struct partial_symtab *ranges_pst)
43039443
JK
10118{
10119 struct objfile *objfile = cu->objfile;
10120 struct comp_unit_head *cu_header = &cu->header;
10121 bfd *obfd = objfile->obfd;
10122 unsigned int addr_size = cu_header->addr_size;
10123 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10124 /* Base address selection entry. */
10125 CORE_ADDR base;
10126 int found_base;
10127 unsigned int dummy;
d521ce57 10128 const gdb_byte *buffer;
43039443
JK
10129 CORE_ADDR marker;
10130 int low_set;
10131 CORE_ADDR low = 0;
10132 CORE_ADDR high = 0;
ff013f42 10133 CORE_ADDR baseaddr;
43039443 10134
d00adf39
DE
10135 found_base = cu->base_known;
10136 base = cu->base_address;
43039443 10137
be391dca 10138 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 10139 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
10140 {
10141 complaint (&symfile_complaints,
10142 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10143 offset);
10144 return 0;
10145 }
dce234bc 10146 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
10147
10148 /* Read in the largest possible address. */
10149 marker = read_address (obfd, buffer, cu, &dummy);
10150 if ((marker & mask) == mask)
10151 {
10152 /* If we found the largest possible address, then
10153 read the base address. */
10154 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10155 buffer += 2 * addr_size;
10156 offset += 2 * addr_size;
10157 found_base = 1;
10158 }
10159
10160 low_set = 0;
10161
e7030f15 10162 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 10163
43039443
JK
10164 while (1)
10165 {
10166 CORE_ADDR range_beginning, range_end;
10167
10168 range_beginning = read_address (obfd, buffer, cu, &dummy);
10169 buffer += addr_size;
10170 range_end = read_address (obfd, buffer, cu, &dummy);
10171 buffer += addr_size;
10172 offset += 2 * addr_size;
10173
10174 /* An end of list marker is a pair of zero addresses. */
10175 if (range_beginning == 0 && range_end == 0)
10176 /* Found the end of list entry. */
10177 break;
10178
10179 /* Each base address selection entry is a pair of 2 values.
10180 The first is the largest possible address, the second is
10181 the base address. Check for a base address here. */
10182 if ((range_beginning & mask) == mask)
10183 {
10184 /* If we found the largest possible address, then
10185 read the base address. */
10186 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10187 found_base = 1;
10188 continue;
10189 }
10190
10191 if (!found_base)
10192 {
10193 /* We have no valid base address for the ranges
10194 data. */
10195 complaint (&symfile_complaints,
10196 _("Invalid .debug_ranges data (no base address)"));
10197 return 0;
10198 }
10199
9277c30c
UW
10200 if (range_beginning > range_end)
10201 {
10202 /* Inverted range entries are invalid. */
10203 complaint (&symfile_complaints,
10204 _("Invalid .debug_ranges data (inverted range)"));
10205 return 0;
10206 }
10207
10208 /* Empty range entries have no effect. */
10209 if (range_beginning == range_end)
10210 continue;
10211
43039443
JK
10212 range_beginning += base;
10213 range_end += base;
10214
01093045
DE
10215 /* A not-uncommon case of bad debug info.
10216 Don't pollute the addrmap with bad data. */
10217 if (range_beginning + baseaddr == 0
10218 && !dwarf2_per_objfile->has_section_at_zero)
10219 {
10220 complaint (&symfile_complaints,
10221 _(".debug_ranges entry has start address of zero"
10222 " [in module %s]"), objfile->name);
10223 continue;
10224 }
10225
9277c30c 10226 if (ranges_pst != NULL)
ff013f42 10227 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
10228 range_beginning + baseaddr,
10229 range_end - 1 + baseaddr,
ff013f42
JK
10230 ranges_pst);
10231
43039443
JK
10232 /* FIXME: This is recording everything as a low-high
10233 segment of consecutive addresses. We should have a
10234 data structure for discontiguous block ranges
10235 instead. */
10236 if (! low_set)
10237 {
10238 low = range_beginning;
10239 high = range_end;
10240 low_set = 1;
10241 }
10242 else
10243 {
10244 if (range_beginning < low)
10245 low = range_beginning;
10246 if (range_end > high)
10247 high = range_end;
10248 }
10249 }
10250
10251 if (! low_set)
10252 /* If the first entry is an end-of-list marker, the range
10253 describes an empty scope, i.e. no instructions. */
10254 return 0;
10255
10256 if (low_return)
10257 *low_return = low;
10258 if (high_return)
10259 *high_return = high;
10260 return 1;
10261}
10262
af34e669
DJ
10263/* Get low and high pc attributes from a die. Return 1 if the attributes
10264 are present and valid, otherwise, return 0. Return -1 if the range is
10265 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 10266
c906108c 10267static int
af34e669 10268dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
10269 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10270 struct partial_symtab *pst)
c906108c
SS
10271{
10272 struct attribute *attr;
91da1414 10273 struct attribute *attr_high;
af34e669
DJ
10274 CORE_ADDR low = 0;
10275 CORE_ADDR high = 0;
10276 int ret = 0;
c906108c 10277
91da1414
MW
10278 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10279 if (attr_high)
af34e669 10280 {
e142c38c 10281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 10282 if (attr)
91da1414
MW
10283 {
10284 low = DW_ADDR (attr);
3019eac3
DE
10285 if (attr_high->form == DW_FORM_addr
10286 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10287 high = DW_ADDR (attr_high);
10288 else
10289 high = low + DW_UNSND (attr_high);
10290 }
af34e669
DJ
10291 else
10292 /* Found high w/o low attribute. */
10293 return 0;
10294
10295 /* Found consecutive range of addresses. */
10296 ret = 1;
10297 }
c906108c 10298 else
af34e669 10299 {
e142c38c 10300 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
10301 if (attr != NULL)
10302 {
ab435259
DE
10303 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10304 We take advantage of the fact that DW_AT_ranges does not appear
10305 in DW_TAG_compile_unit of DWO files. */
10306 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10307 unsigned int ranges_offset = (DW_UNSND (attr)
10308 + (need_ranges_base
10309 ? cu->ranges_base
10310 : 0));
2e3cf129 10311
af34e669 10312 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 10313 .debug_ranges section. */
2e3cf129 10314 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 10315 return 0;
43039443 10316 /* Found discontinuous range of addresses. */
af34e669
DJ
10317 ret = -1;
10318 }
10319 }
c906108c 10320
9373cf26
JK
10321 /* read_partial_die has also the strict LOW < HIGH requirement. */
10322 if (high <= low)
c906108c
SS
10323 return 0;
10324
10325 /* When using the GNU linker, .gnu.linkonce. sections are used to
10326 eliminate duplicate copies of functions and vtables and such.
10327 The linker will arbitrarily choose one and discard the others.
10328 The AT_*_pc values for such functions refer to local labels in
10329 these sections. If the section from that file was discarded, the
10330 labels are not in the output, so the relocs get a value of 0.
10331 If this is a discarded function, mark the pc bounds as invalid,
10332 so that GDB will ignore it. */
72dca2f5 10333 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
10334 return 0;
10335
10336 *lowpc = low;
96408a79
SA
10337 if (highpc)
10338 *highpc = high;
af34e669 10339 return ret;
c906108c
SS
10340}
10341
b084d499
JB
10342/* Assuming that DIE represents a subprogram DIE or a lexical block, get
10343 its low and high PC addresses. Do nothing if these addresses could not
10344 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10345 and HIGHPC to the high address if greater than HIGHPC. */
10346
10347static void
10348dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10349 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10350 struct dwarf2_cu *cu)
10351{
10352 CORE_ADDR low, high;
10353 struct die_info *child = die->child;
10354
d85a05f0 10355 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
10356 {
10357 *lowpc = min (*lowpc, low);
10358 *highpc = max (*highpc, high);
10359 }
10360
10361 /* If the language does not allow nested subprograms (either inside
10362 subprograms or lexical blocks), we're done. */
10363 if (cu->language != language_ada)
10364 return;
6e70227d 10365
b084d499
JB
10366 /* Check all the children of the given DIE. If it contains nested
10367 subprograms, then check their pc bounds. Likewise, we need to
10368 check lexical blocks as well, as they may also contain subprogram
10369 definitions. */
10370 while (child && child->tag)
10371 {
10372 if (child->tag == DW_TAG_subprogram
10373 || child->tag == DW_TAG_lexical_block)
10374 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10375 child = sibling_die (child);
10376 }
10377}
10378
fae299cd
DC
10379/* Get the low and high pc's represented by the scope DIE, and store
10380 them in *LOWPC and *HIGHPC. If the correct values can't be
10381 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10382
10383static void
10384get_scope_pc_bounds (struct die_info *die,
10385 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10386 struct dwarf2_cu *cu)
10387{
10388 CORE_ADDR best_low = (CORE_ADDR) -1;
10389 CORE_ADDR best_high = (CORE_ADDR) 0;
10390 CORE_ADDR current_low, current_high;
10391
d85a05f0 10392 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
10393 {
10394 best_low = current_low;
10395 best_high = current_high;
10396 }
10397 else
10398 {
10399 struct die_info *child = die->child;
10400
10401 while (child && child->tag)
10402 {
10403 switch (child->tag) {
10404 case DW_TAG_subprogram:
b084d499 10405 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
10406 break;
10407 case DW_TAG_namespace:
f55ee35c 10408 case DW_TAG_module:
fae299cd
DC
10409 /* FIXME: carlton/2004-01-16: Should we do this for
10410 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10411 that current GCC's always emit the DIEs corresponding
10412 to definitions of methods of classes as children of a
10413 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10414 the DIEs giving the declarations, which could be
10415 anywhere). But I don't see any reason why the
10416 standards says that they have to be there. */
10417 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10418
10419 if (current_low != ((CORE_ADDR) -1))
10420 {
10421 best_low = min (best_low, current_low);
10422 best_high = max (best_high, current_high);
10423 }
10424 break;
10425 default:
0963b4bd 10426 /* Ignore. */
fae299cd
DC
10427 break;
10428 }
10429
10430 child = sibling_die (child);
10431 }
10432 }
10433
10434 *lowpc = best_low;
10435 *highpc = best_high;
10436}
10437
801e3a5b
JB
10438/* Record the address ranges for BLOCK, offset by BASEADDR, as given
10439 in DIE. */
380bca97 10440
801e3a5b
JB
10441static void
10442dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10443 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10444{
bb5ed363 10445 struct objfile *objfile = cu->objfile;
801e3a5b 10446 struct attribute *attr;
91da1414 10447 struct attribute *attr_high;
801e3a5b 10448
91da1414
MW
10449 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10450 if (attr_high)
801e3a5b 10451 {
801e3a5b
JB
10452 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10453 if (attr)
10454 {
10455 CORE_ADDR low = DW_ADDR (attr);
91da1414 10456 CORE_ADDR high;
3019eac3
DE
10457 if (attr_high->form == DW_FORM_addr
10458 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10459 high = DW_ADDR (attr_high);
10460 else
10461 high = low + DW_UNSND (attr_high);
9a619af0 10462
801e3a5b
JB
10463 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10464 }
10465 }
10466
10467 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10468 if (attr)
10469 {
bb5ed363 10470 bfd *obfd = objfile->obfd;
ab435259
DE
10471 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10472 We take advantage of the fact that DW_AT_ranges does not appear
10473 in DW_TAG_compile_unit of DWO files. */
10474 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
10475
10476 /* The value of the DW_AT_ranges attribute is the offset of the
10477 address range list in the .debug_ranges section. */
ab435259
DE
10478 unsigned long offset = (DW_UNSND (attr)
10479 + (need_ranges_base ? cu->ranges_base : 0));
d521ce57 10480 const gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
10481
10482 /* For some target architectures, but not others, the
10483 read_address function sign-extends the addresses it returns.
10484 To recognize base address selection entries, we need a
10485 mask. */
10486 unsigned int addr_size = cu->header.addr_size;
10487 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10488
10489 /* The base address, to which the next pair is relative. Note
10490 that this 'base' is a DWARF concept: most entries in a range
10491 list are relative, to reduce the number of relocs against the
10492 debugging information. This is separate from this function's
10493 'baseaddr' argument, which GDB uses to relocate debugging
10494 information from a shared library based on the address at
10495 which the library was loaded. */
d00adf39
DE
10496 CORE_ADDR base = cu->base_address;
10497 int base_known = cu->base_known;
801e3a5b 10498
be391dca 10499 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 10500 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
10501 {
10502 complaint (&symfile_complaints,
10503 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10504 offset);
10505 return;
10506 }
10507
10508 for (;;)
10509 {
10510 unsigned int bytes_read;
10511 CORE_ADDR start, end;
10512
10513 start = read_address (obfd, buffer, cu, &bytes_read);
10514 buffer += bytes_read;
10515 end = read_address (obfd, buffer, cu, &bytes_read);
10516 buffer += bytes_read;
10517
10518 /* Did we find the end of the range list? */
10519 if (start == 0 && end == 0)
10520 break;
10521
10522 /* Did we find a base address selection entry? */
10523 else if ((start & base_select_mask) == base_select_mask)
10524 {
10525 base = end;
10526 base_known = 1;
10527 }
10528
10529 /* We found an ordinary address range. */
10530 else
10531 {
10532 if (!base_known)
10533 {
10534 complaint (&symfile_complaints,
3e43a32a
MS
10535 _("Invalid .debug_ranges data "
10536 "(no base address)"));
801e3a5b
JB
10537 return;
10538 }
10539
9277c30c
UW
10540 if (start > end)
10541 {
10542 /* Inverted range entries are invalid. */
10543 complaint (&symfile_complaints,
10544 _("Invalid .debug_ranges data "
10545 "(inverted range)"));
10546 return;
10547 }
10548
10549 /* Empty range entries have no effect. */
10550 if (start == end)
10551 continue;
10552
01093045
DE
10553 start += base + baseaddr;
10554 end += base + baseaddr;
10555
10556 /* A not-uncommon case of bad debug info.
10557 Don't pollute the addrmap with bad data. */
10558 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10559 {
10560 complaint (&symfile_complaints,
10561 _(".debug_ranges entry has start address of zero"
10562 " [in module %s]"), objfile->name);
10563 continue;
10564 }
10565
10566 record_block_range (block, start, end - 1);
801e3a5b
JB
10567 }
10568 }
10569 }
10570}
10571
685b1105
JK
10572/* Check whether the producer field indicates either of GCC < 4.6, or the
10573 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 10574
685b1105
JK
10575static void
10576check_producer (struct dwarf2_cu *cu)
60d5a603
JK
10577{
10578 const char *cs;
10579 int major, minor, release;
10580
10581 if (cu->producer == NULL)
10582 {
10583 /* For unknown compilers expect their behavior is DWARF version
10584 compliant.
10585
10586 GCC started to support .debug_types sections by -gdwarf-4 since
10587 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10588 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10589 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10590 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 10591 }
685b1105 10592 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 10593 {
685b1105
JK
10594 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10595
ba919b58
TT
10596 cs = &cu->producer[strlen ("GNU ")];
10597 while (*cs && !isdigit (*cs))
10598 cs++;
10599 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10600 {
10601 /* Not recognized as GCC. */
10602 }
10603 else
1b80a9fa
JK
10604 {
10605 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10606 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10607 }
685b1105
JK
10608 }
10609 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10610 cu->producer_is_icc = 1;
10611 else
10612 {
10613 /* For other non-GCC compilers, expect their behavior is DWARF version
10614 compliant. */
60d5a603
JK
10615 }
10616
ba919b58 10617 cu->checked_producer = 1;
685b1105 10618}
ba919b58 10619
685b1105
JK
10620/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10621 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10622 during 4.6.0 experimental. */
10623
10624static int
10625producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10626{
10627 if (!cu->checked_producer)
10628 check_producer (cu);
10629
10630 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
10631}
10632
10633/* Return the default accessibility type if it is not overriden by
10634 DW_AT_accessibility. */
10635
10636static enum dwarf_access_attribute
10637dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10638{
10639 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10640 {
10641 /* The default DWARF 2 accessibility for members is public, the default
10642 accessibility for inheritance is private. */
10643
10644 if (die->tag != DW_TAG_inheritance)
10645 return DW_ACCESS_public;
10646 else
10647 return DW_ACCESS_private;
10648 }
10649 else
10650 {
10651 /* DWARF 3+ defines the default accessibility a different way. The same
10652 rules apply now for DW_TAG_inheritance as for the members and it only
10653 depends on the container kind. */
10654
10655 if (die->parent->tag == DW_TAG_class_type)
10656 return DW_ACCESS_private;
10657 else
10658 return DW_ACCESS_public;
10659 }
10660}
10661
74ac6d43
TT
10662/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10663 offset. If the attribute was not found return 0, otherwise return
10664 1. If it was found but could not properly be handled, set *OFFSET
10665 to 0. */
10666
10667static int
10668handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10669 LONGEST *offset)
10670{
10671 struct attribute *attr;
10672
10673 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10674 if (attr != NULL)
10675 {
10676 *offset = 0;
10677
10678 /* Note that we do not check for a section offset first here.
10679 This is because DW_AT_data_member_location is new in DWARF 4,
10680 so if we see it, we can assume that a constant form is really
10681 a constant and not a section offset. */
10682 if (attr_form_is_constant (attr))
10683 *offset = dwarf2_get_attr_constant_value (attr, 0);
10684 else if (attr_form_is_section_offset (attr))
10685 dwarf2_complex_location_expr_complaint ();
10686 else if (attr_form_is_block (attr))
10687 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10688 else
10689 dwarf2_complex_location_expr_complaint ();
10690
10691 return 1;
10692 }
10693
10694 return 0;
10695}
10696
c906108c
SS
10697/* Add an aggregate field to the field list. */
10698
10699static void
107d2387 10700dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 10701 struct dwarf2_cu *cu)
6e70227d 10702{
e7c27a73 10703 struct objfile *objfile = cu->objfile;
5e2b427d 10704 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
10705 struct nextfield *new_field;
10706 struct attribute *attr;
10707 struct field *fp;
15d034d0 10708 const char *fieldname = "";
c906108c
SS
10709
10710 /* Allocate a new field list entry and link it in. */
10711 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 10712 make_cleanup (xfree, new_field);
c906108c 10713 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
10714
10715 if (die->tag == DW_TAG_inheritance)
10716 {
10717 new_field->next = fip->baseclasses;
10718 fip->baseclasses = new_field;
10719 }
10720 else
10721 {
10722 new_field->next = fip->fields;
10723 fip->fields = new_field;
10724 }
c906108c
SS
10725 fip->nfields++;
10726
e142c38c 10727 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
10728 if (attr)
10729 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
10730 else
10731 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
10732 if (new_field->accessibility != DW_ACCESS_public)
10733 fip->non_public_fields = 1;
60d5a603 10734
e142c38c 10735 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
10736 if (attr)
10737 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
10738 else
10739 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
10740
10741 fp = &new_field->field;
a9a9bd0f 10742
e142c38c 10743 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 10744 {
74ac6d43
TT
10745 LONGEST offset;
10746
a9a9bd0f 10747 /* Data member other than a C++ static data member. */
6e70227d 10748
c906108c 10749 /* Get type of field. */
e7c27a73 10750 fp->type = die_type (die, cu);
c906108c 10751
d6a843b5 10752 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 10753
c906108c 10754 /* Get bit size of field (zero if none). */
e142c38c 10755 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
10756 if (attr)
10757 {
10758 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10759 }
10760 else
10761 {
10762 FIELD_BITSIZE (*fp) = 0;
10763 }
10764
10765 /* Get bit offset of field. */
74ac6d43
TT
10766 if (handle_data_member_location (die, cu, &offset))
10767 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 10768 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
10769 if (attr)
10770 {
5e2b427d 10771 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
10772 {
10773 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
10774 additional bit offset from the MSB of the containing
10775 anonymous object to the MSB of the field. We don't
10776 have to do anything special since we don't need to
10777 know the size of the anonymous object. */
f41f5e61 10778 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
10779 }
10780 else
10781 {
10782 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
10783 MSB of the anonymous object, subtract off the number of
10784 bits from the MSB of the field to the MSB of the
10785 object, and then subtract off the number of bits of
10786 the field itself. The result is the bit offset of
10787 the LSB of the field. */
c906108c
SS
10788 int anonymous_size;
10789 int bit_offset = DW_UNSND (attr);
10790
e142c38c 10791 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
10792 if (attr)
10793 {
10794 /* The size of the anonymous object containing
10795 the bit field is explicit, so use the
10796 indicated size (in bytes). */
10797 anonymous_size = DW_UNSND (attr);
10798 }
10799 else
10800 {
10801 /* The size of the anonymous object containing
10802 the bit field must be inferred from the type
10803 attribute of the data member containing the
10804 bit field. */
10805 anonymous_size = TYPE_LENGTH (fp->type);
10806 }
f41f5e61
PA
10807 SET_FIELD_BITPOS (*fp,
10808 (FIELD_BITPOS (*fp)
10809 + anonymous_size * bits_per_byte
10810 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
10811 }
10812 }
10813
10814 /* Get name of field. */
39cbfefa
DJ
10815 fieldname = dwarf2_name (die, cu);
10816 if (fieldname == NULL)
10817 fieldname = "";
d8151005
DJ
10818
10819 /* The name is already allocated along with this objfile, so we don't
10820 need to duplicate it for the type. */
10821 fp->name = fieldname;
c906108c
SS
10822
10823 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 10824 pointer or virtual base class pointer) to private. */
e142c38c 10825 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 10826 {
d48cc9dd 10827 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
10828 new_field->accessibility = DW_ACCESS_private;
10829 fip->non_public_fields = 1;
10830 }
10831 }
a9a9bd0f 10832 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 10833 {
a9a9bd0f
DC
10834 /* C++ static member. */
10835
10836 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10837 is a declaration, but all versions of G++ as of this writing
10838 (so through at least 3.2.1) incorrectly generate
10839 DW_TAG_variable tags. */
6e70227d 10840
ff355380 10841 const char *physname;
c906108c 10842
a9a9bd0f 10843 /* Get name of field. */
39cbfefa
DJ
10844 fieldname = dwarf2_name (die, cu);
10845 if (fieldname == NULL)
c906108c
SS
10846 return;
10847
254e6b9e 10848 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
10849 if (attr
10850 /* Only create a symbol if this is an external value.
10851 new_symbol checks this and puts the value in the global symbol
10852 table, which we want. If it is not external, new_symbol
10853 will try to put the value in cu->list_in_scope which is wrong. */
10854 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
10855 {
10856 /* A static const member, not much different than an enum as far as
10857 we're concerned, except that we can support more types. */
10858 new_symbol (die, NULL, cu);
10859 }
10860
2df3850c 10861 /* Get physical name. */
ff355380 10862 physname = dwarf2_physname (fieldname, die, cu);
c906108c 10863
d8151005
DJ
10864 /* The name is already allocated along with this objfile, so we don't
10865 need to duplicate it for the type. */
10866 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 10867 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 10868 FIELD_NAME (*fp) = fieldname;
c906108c
SS
10869 }
10870 else if (die->tag == DW_TAG_inheritance)
10871 {
74ac6d43 10872 LONGEST offset;
d4b96c9a 10873
74ac6d43
TT
10874 /* C++ base class field. */
10875 if (handle_data_member_location (die, cu, &offset))
10876 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 10877 FIELD_BITSIZE (*fp) = 0;
e7c27a73 10878 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
10879 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10880 fip->nbaseclasses++;
10881 }
10882}
10883
98751a41
JK
10884/* Add a typedef defined in the scope of the FIP's class. */
10885
10886static void
10887dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10888 struct dwarf2_cu *cu)
6e70227d 10889{
98751a41 10890 struct objfile *objfile = cu->objfile;
98751a41
JK
10891 struct typedef_field_list *new_field;
10892 struct attribute *attr;
10893 struct typedef_field *fp;
10894 char *fieldname = "";
10895
10896 /* Allocate a new field list entry and link it in. */
10897 new_field = xzalloc (sizeof (*new_field));
10898 make_cleanup (xfree, new_field);
10899
10900 gdb_assert (die->tag == DW_TAG_typedef);
10901
10902 fp = &new_field->field;
10903
10904 /* Get name of field. */
10905 fp->name = dwarf2_name (die, cu);
10906 if (fp->name == NULL)
10907 return;
10908
10909 fp->type = read_type_die (die, cu);
10910
10911 new_field->next = fip->typedef_field_list;
10912 fip->typedef_field_list = new_field;
10913 fip->typedef_field_list_count++;
10914}
10915
c906108c
SS
10916/* Create the vector of fields, and attach it to the type. */
10917
10918static void
fba45db2 10919dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 10920 struct dwarf2_cu *cu)
c906108c
SS
10921{
10922 int nfields = fip->nfields;
10923
10924 /* Record the field count, allocate space for the array of fields,
10925 and create blank accessibility bitfields if necessary. */
10926 TYPE_NFIELDS (type) = nfields;
10927 TYPE_FIELDS (type) = (struct field *)
10928 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10929 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10930
b4ba55a1 10931 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
10932 {
10933 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10934
10935 TYPE_FIELD_PRIVATE_BITS (type) =
10936 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10937 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10938
10939 TYPE_FIELD_PROTECTED_BITS (type) =
10940 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10941 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10942
774b6a14
TT
10943 TYPE_FIELD_IGNORE_BITS (type) =
10944 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10945 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
10946 }
10947
10948 /* If the type has baseclasses, allocate and clear a bit vector for
10949 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 10950 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
10951 {
10952 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 10953 unsigned char *pointer;
c906108c
SS
10954
10955 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
10956 pointer = TYPE_ALLOC (type, num_bytes);
10957 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
10958 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10959 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10960 }
10961
3e43a32a
MS
10962 /* Copy the saved-up fields into the field vector. Start from the head of
10963 the list, adding to the tail of the field array, so that they end up in
10964 the same order in the array in which they were added to the list. */
c906108c
SS
10965 while (nfields-- > 0)
10966 {
7d0ccb61
DJ
10967 struct nextfield *fieldp;
10968
10969 if (fip->fields)
10970 {
10971 fieldp = fip->fields;
10972 fip->fields = fieldp->next;
10973 }
10974 else
10975 {
10976 fieldp = fip->baseclasses;
10977 fip->baseclasses = fieldp->next;
10978 }
10979
10980 TYPE_FIELD (type, nfields) = fieldp->field;
10981 switch (fieldp->accessibility)
c906108c 10982 {
c5aa993b 10983 case DW_ACCESS_private:
b4ba55a1
JB
10984 if (cu->language != language_ada)
10985 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 10986 break;
c906108c 10987
c5aa993b 10988 case DW_ACCESS_protected:
b4ba55a1
JB
10989 if (cu->language != language_ada)
10990 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 10991 break;
c906108c 10992
c5aa993b
JM
10993 case DW_ACCESS_public:
10994 break;
c906108c 10995
c5aa993b
JM
10996 default:
10997 /* Unknown accessibility. Complain and treat it as public. */
10998 {
e2e0b3e5 10999 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 11000 fieldp->accessibility);
c5aa993b
JM
11001 }
11002 break;
c906108c
SS
11003 }
11004 if (nfields < fip->nbaseclasses)
11005 {
7d0ccb61 11006 switch (fieldp->virtuality)
c906108c 11007 {
c5aa993b
JM
11008 case DW_VIRTUALITY_virtual:
11009 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 11010 if (cu->language == language_ada)
a73c6dcd 11011 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
11012 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11013 break;
c906108c
SS
11014 }
11015 }
c906108c
SS
11016 }
11017}
11018
7d27a96d
TT
11019/* Return true if this member function is a constructor, false
11020 otherwise. */
11021
11022static int
11023dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11024{
11025 const char *fieldname;
11026 const char *typename;
11027 int len;
11028
11029 if (die->parent == NULL)
11030 return 0;
11031
11032 if (die->parent->tag != DW_TAG_structure_type
11033 && die->parent->tag != DW_TAG_union_type
11034 && die->parent->tag != DW_TAG_class_type)
11035 return 0;
11036
11037 fieldname = dwarf2_name (die, cu);
11038 typename = dwarf2_name (die->parent, cu);
11039 if (fieldname == NULL || typename == NULL)
11040 return 0;
11041
11042 len = strlen (fieldname);
11043 return (strncmp (fieldname, typename, len) == 0
11044 && (typename[len] == '\0' || typename[len] == '<'));
11045}
11046
c906108c
SS
11047/* Add a member function to the proper fieldlist. */
11048
11049static void
107d2387 11050dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 11051 struct type *type, struct dwarf2_cu *cu)
c906108c 11052{
e7c27a73 11053 struct objfile *objfile = cu->objfile;
c906108c
SS
11054 struct attribute *attr;
11055 struct fnfieldlist *flp;
11056 int i;
11057 struct fn_field *fnp;
15d034d0 11058 const char *fieldname;
c906108c 11059 struct nextfnfield *new_fnfield;
f792889a 11060 struct type *this_type;
60d5a603 11061 enum dwarf_access_attribute accessibility;
c906108c 11062
b4ba55a1 11063 if (cu->language == language_ada)
a73c6dcd 11064 error (_("unexpected member function in Ada type"));
b4ba55a1 11065
2df3850c 11066 /* Get name of member function. */
39cbfefa
DJ
11067 fieldname = dwarf2_name (die, cu);
11068 if (fieldname == NULL)
2df3850c 11069 return;
c906108c 11070
c906108c
SS
11071 /* Look up member function name in fieldlist. */
11072 for (i = 0; i < fip->nfnfields; i++)
11073 {
27bfe10e 11074 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
11075 break;
11076 }
11077
11078 /* Create new list element if necessary. */
11079 if (i < fip->nfnfields)
11080 flp = &fip->fnfieldlists[i];
11081 else
11082 {
11083 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11084 {
11085 fip->fnfieldlists = (struct fnfieldlist *)
11086 xrealloc (fip->fnfieldlists,
11087 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 11088 * sizeof (struct fnfieldlist));
c906108c 11089 if (fip->nfnfields == 0)
c13c43fd 11090 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
11091 }
11092 flp = &fip->fnfieldlists[fip->nfnfields];
11093 flp->name = fieldname;
11094 flp->length = 0;
11095 flp->head = NULL;
3da10d80 11096 i = fip->nfnfields++;
c906108c
SS
11097 }
11098
11099 /* Create a new member function field and chain it to the field list
0963b4bd 11100 entry. */
c906108c 11101 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 11102 make_cleanup (xfree, new_fnfield);
c906108c
SS
11103 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11104 new_fnfield->next = flp->head;
11105 flp->head = new_fnfield;
11106 flp->length++;
11107
11108 /* Fill in the member function field info. */
11109 fnp = &new_fnfield->fnfield;
3da10d80
KS
11110
11111 /* Delay processing of the physname until later. */
11112 if (cu->language == language_cplus || cu->language == language_java)
11113 {
11114 add_to_method_list (type, i, flp->length - 1, fieldname,
11115 die, cu);
11116 }
11117 else
11118 {
1d06ead6 11119 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
11120 fnp->physname = physname ? physname : "";
11121 }
11122
c906108c 11123 fnp->type = alloc_type (objfile);
f792889a
DJ
11124 this_type = read_type_die (die, cu);
11125 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 11126 {
f792889a 11127 int nparams = TYPE_NFIELDS (this_type);
c906108c 11128
f792889a 11129 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
11130 of the method itself (TYPE_CODE_METHOD). */
11131 smash_to_method_type (fnp->type, type,
f792889a
DJ
11132 TYPE_TARGET_TYPE (this_type),
11133 TYPE_FIELDS (this_type),
11134 TYPE_NFIELDS (this_type),
11135 TYPE_VARARGS (this_type));
c906108c
SS
11136
11137 /* Handle static member functions.
c5aa993b 11138 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
11139 member functions. G++ helps GDB by marking the first
11140 parameter for non-static member functions (which is the this
11141 pointer) as artificial. We obtain this information from
11142 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 11143 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
11144 fnp->voffset = VOFFSET_STATIC;
11145 }
11146 else
e2e0b3e5 11147 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 11148 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
11149
11150 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 11151 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 11152 fnp->fcontext = die_containing_type (die, cu);
c906108c 11153
3e43a32a
MS
11154 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11155 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
11156
11157 /* Get accessibility. */
e142c38c 11158 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 11159 if (attr)
60d5a603
JK
11160 accessibility = DW_UNSND (attr);
11161 else
11162 accessibility = dwarf2_default_access_attribute (die, cu);
11163 switch (accessibility)
c906108c 11164 {
60d5a603
JK
11165 case DW_ACCESS_private:
11166 fnp->is_private = 1;
11167 break;
11168 case DW_ACCESS_protected:
11169 fnp->is_protected = 1;
11170 break;
c906108c
SS
11171 }
11172
b02dede2 11173 /* Check for artificial methods. */
e142c38c 11174 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
11175 if (attr && DW_UNSND (attr) != 0)
11176 fnp->is_artificial = 1;
11177
7d27a96d
TT
11178 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11179
0d564a31 11180 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
11181 function. For older versions of GCC, this is an offset in the
11182 appropriate virtual table, as specified by DW_AT_containing_type.
11183 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
11184 to the object address. */
11185
e142c38c 11186 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 11187 if (attr)
8e19ed76 11188 {
aec5aa8b 11189 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 11190 {
aec5aa8b
TT
11191 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11192 {
11193 /* Old-style GCC. */
11194 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11195 }
11196 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11197 || (DW_BLOCK (attr)->size > 1
11198 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11199 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11200 {
11201 struct dwarf_block blk;
11202 int offset;
11203
11204 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11205 ? 1 : 2);
11206 blk.size = DW_BLOCK (attr)->size - offset;
11207 blk.data = DW_BLOCK (attr)->data + offset;
11208 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11209 if ((fnp->voffset % cu->header.addr_size) != 0)
11210 dwarf2_complex_location_expr_complaint ();
11211 else
11212 fnp->voffset /= cu->header.addr_size;
11213 fnp->voffset += 2;
11214 }
11215 else
11216 dwarf2_complex_location_expr_complaint ();
11217
11218 if (!fnp->fcontext)
11219 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11220 }
3690dd37 11221 else if (attr_form_is_section_offset (attr))
8e19ed76 11222 {
4d3c2250 11223 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
11224 }
11225 else
11226 {
4d3c2250
KB
11227 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11228 fieldname);
8e19ed76 11229 }
0d564a31 11230 }
d48cc9dd
DJ
11231 else
11232 {
11233 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11234 if (attr && DW_UNSND (attr))
11235 {
11236 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11237 complaint (&symfile_complaints,
3e43a32a
MS
11238 _("Member function \"%s\" (offset %d) is virtual "
11239 "but the vtable offset is not specified"),
b64f50a1 11240 fieldname, die->offset.sect_off);
9655fd1a 11241 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
11242 TYPE_CPLUS_DYNAMIC (type) = 1;
11243 }
11244 }
c906108c
SS
11245}
11246
11247/* Create the vector of member function fields, and attach it to the type. */
11248
11249static void
fba45db2 11250dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 11251 struct dwarf2_cu *cu)
c906108c
SS
11252{
11253 struct fnfieldlist *flp;
c906108c
SS
11254 int i;
11255
b4ba55a1 11256 if (cu->language == language_ada)
a73c6dcd 11257 error (_("unexpected member functions in Ada type"));
b4ba55a1 11258
c906108c
SS
11259 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11260 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11261 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11262
11263 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11264 {
11265 struct nextfnfield *nfp = flp->head;
11266 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11267 int k;
11268
11269 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11270 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11271 fn_flp->fn_fields = (struct fn_field *)
11272 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11273 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 11274 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
11275 }
11276
11277 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
11278}
11279
1168df01
JB
11280/* Returns non-zero if NAME is the name of a vtable member in CU's
11281 language, zero otherwise. */
11282static int
11283is_vtable_name (const char *name, struct dwarf2_cu *cu)
11284{
11285 static const char vptr[] = "_vptr";
987504bb 11286 static const char vtable[] = "vtable";
1168df01 11287
987504bb
JJ
11288 /* Look for the C++ and Java forms of the vtable. */
11289 if ((cu->language == language_java
11290 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11291 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11292 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
11293 return 1;
11294
11295 return 0;
11296}
11297
c0dd20ea 11298/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
11299 functions, with the ABI-specified layout. If TYPE describes
11300 such a structure, smash it into a member function type.
61049d3b
DJ
11301
11302 GCC shouldn't do this; it should just output pointer to member DIEs.
11303 This is GCC PR debug/28767. */
c0dd20ea 11304
0b92b5bb
TT
11305static void
11306quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 11307{
0b92b5bb 11308 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
11309
11310 /* Check for a structure with no name and two children. */
0b92b5bb
TT
11311 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11312 return;
c0dd20ea
DJ
11313
11314 /* Check for __pfn and __delta members. */
0b92b5bb
TT
11315 if (TYPE_FIELD_NAME (type, 0) == NULL
11316 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11317 || TYPE_FIELD_NAME (type, 1) == NULL
11318 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11319 return;
c0dd20ea
DJ
11320
11321 /* Find the type of the method. */
0b92b5bb 11322 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
11323 if (pfn_type == NULL
11324 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11325 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 11326 return;
c0dd20ea
DJ
11327
11328 /* Look for the "this" argument. */
11329 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11330 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 11331 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 11332 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 11333 return;
c0dd20ea
DJ
11334
11335 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
11336 new_type = alloc_type (objfile);
11337 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
11338 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11339 TYPE_VARARGS (pfn_type));
0b92b5bb 11340 smash_to_methodptr_type (type, new_type);
c0dd20ea 11341}
1168df01 11342
685b1105
JK
11343/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11344 (icc). */
11345
11346static int
11347producer_is_icc (struct dwarf2_cu *cu)
11348{
11349 if (!cu->checked_producer)
11350 check_producer (cu);
11351
11352 return cu->producer_is_icc;
11353}
11354
c906108c 11355/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
11356 (definition) to create a type for the structure or union. Fill in
11357 the type's name and general properties; the members will not be
3d1d5ea3 11358 processed until process_structure_scope.
c906108c 11359
c767944b
DJ
11360 NOTE: we need to call these functions regardless of whether or not the
11361 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
11362 structure or union. This gets the type entered into our set of
11363 user defined types.
11364
11365 However, if the structure is incomplete (an opaque struct/union)
11366 then suppress creating a symbol table entry for it since gdb only
11367 wants to find the one with the complete definition. Note that if
11368 it is complete, we just call new_symbol, which does it's own
11369 checking about whether the struct/union is anonymous or not (and
11370 suppresses creating a symbol table entry itself). */
11371
f792889a 11372static struct type *
134d01f1 11373read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11374{
e7c27a73 11375 struct objfile *objfile = cu->objfile;
c906108c
SS
11376 struct type *type;
11377 struct attribute *attr;
15d034d0 11378 const char *name;
c906108c 11379
348e048f
DE
11380 /* If the definition of this type lives in .debug_types, read that type.
11381 Don't follow DW_AT_specification though, that will take us back up
11382 the chain and we want to go down. */
45e58e77 11383 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
11384 if (attr)
11385 {
ac9ec31b 11386 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 11387
ac9ec31b 11388 /* The type's CU may not be the same as CU.
02142a6c 11389 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
11390 return set_die_type (die, type, cu);
11391 }
11392
c0dd20ea 11393 type = alloc_type (objfile);
c906108c 11394 INIT_CPLUS_SPECIFIC (type);
93311388 11395
39cbfefa
DJ
11396 name = dwarf2_name (die, cu);
11397 if (name != NULL)
c906108c 11398 {
987504bb
JJ
11399 if (cu->language == language_cplus
11400 || cu->language == language_java)
63d06c5c 11401 {
15d034d0 11402 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
11403
11404 /* dwarf2_full_name might have already finished building the DIE's
11405 type. If so, there is no need to continue. */
11406 if (get_die_type (die, cu) != NULL)
11407 return get_die_type (die, cu);
11408
11409 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
11410 if (die->tag == DW_TAG_structure_type
11411 || die->tag == DW_TAG_class_type)
11412 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
11413 }
11414 else
11415 {
d8151005
DJ
11416 /* The name is already allocated along with this objfile, so
11417 we don't need to duplicate it for the type. */
7d455152 11418 TYPE_TAG_NAME (type) = name;
94af9270
KS
11419 if (die->tag == DW_TAG_class_type)
11420 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 11421 }
c906108c
SS
11422 }
11423
11424 if (die->tag == DW_TAG_structure_type)
11425 {
11426 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11427 }
11428 else if (die->tag == DW_TAG_union_type)
11429 {
11430 TYPE_CODE (type) = TYPE_CODE_UNION;
11431 }
11432 else
11433 {
c906108c
SS
11434 TYPE_CODE (type) = TYPE_CODE_CLASS;
11435 }
11436
0cc2414c
TT
11437 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11438 TYPE_DECLARED_CLASS (type) = 1;
11439
e142c38c 11440 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11441 if (attr)
11442 {
11443 TYPE_LENGTH (type) = DW_UNSND (attr);
11444 }
11445 else
11446 {
11447 TYPE_LENGTH (type) = 0;
11448 }
11449
685b1105
JK
11450 if (producer_is_icc (cu))
11451 {
11452 /* ICC does not output the required DW_AT_declaration
11453 on incomplete types, but gives them a size of zero. */
11454 }
11455 else
11456 TYPE_STUB_SUPPORTED (type) = 1;
11457
dc718098 11458 if (die_is_declaration (die, cu))
876cecd0 11459 TYPE_STUB (type) = 1;
a6c727b2
DJ
11460 else if (attr == NULL && die->child == NULL
11461 && producer_is_realview (cu->producer))
11462 /* RealView does not output the required DW_AT_declaration
11463 on incomplete types. */
11464 TYPE_STUB (type) = 1;
dc718098 11465
c906108c
SS
11466 /* We need to add the type field to the die immediately so we don't
11467 infinitely recurse when dealing with pointers to the structure
0963b4bd 11468 type within the structure itself. */
1c379e20 11469 set_die_type (die, type, cu);
c906108c 11470
7e314c57
JK
11471 /* set_die_type should be already done. */
11472 set_descriptive_type (type, die, cu);
11473
c767944b
DJ
11474 return type;
11475}
11476
11477/* Finish creating a structure or union type, including filling in
11478 its members and creating a symbol for it. */
11479
11480static void
11481process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11482{
11483 struct objfile *objfile = cu->objfile;
11484 struct die_info *child_die = die->child;
11485 struct type *type;
11486
11487 type = get_die_type (die, cu);
11488 if (type == NULL)
11489 type = read_structure_type (die, cu);
11490
e142c38c 11491 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
11492 {
11493 struct field_info fi;
11494 struct die_info *child_die;
34eaf542 11495 VEC (symbolp) *template_args = NULL;
c767944b 11496 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
11497
11498 memset (&fi, 0, sizeof (struct field_info));
11499
639d11d3 11500 child_die = die->child;
c906108c
SS
11501
11502 while (child_die && child_die->tag)
11503 {
a9a9bd0f
DC
11504 if (child_die->tag == DW_TAG_member
11505 || child_die->tag == DW_TAG_variable)
c906108c 11506 {
a9a9bd0f
DC
11507 /* NOTE: carlton/2002-11-05: A C++ static data member
11508 should be a DW_TAG_member that is a declaration, but
11509 all versions of G++ as of this writing (so through at
11510 least 3.2.1) incorrectly generate DW_TAG_variable
11511 tags for them instead. */
e7c27a73 11512 dwarf2_add_field (&fi, child_die, cu);
c906108c 11513 }
8713b1b1 11514 else if (child_die->tag == DW_TAG_subprogram)
c906108c 11515 {
0963b4bd 11516 /* C++ member function. */
e7c27a73 11517 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
11518 }
11519 else if (child_die->tag == DW_TAG_inheritance)
11520 {
11521 /* C++ base class field. */
e7c27a73 11522 dwarf2_add_field (&fi, child_die, cu);
c906108c 11523 }
98751a41
JK
11524 else if (child_die->tag == DW_TAG_typedef)
11525 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
11526 else if (child_die->tag == DW_TAG_template_type_param
11527 || child_die->tag == DW_TAG_template_value_param)
11528 {
11529 struct symbol *arg = new_symbol (child_die, NULL, cu);
11530
f1078f66
DJ
11531 if (arg != NULL)
11532 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11533 }
11534
c906108c
SS
11535 child_die = sibling_die (child_die);
11536 }
11537
34eaf542
TT
11538 /* Attach template arguments to type. */
11539 if (! VEC_empty (symbolp, template_args))
11540 {
11541 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11542 TYPE_N_TEMPLATE_ARGUMENTS (type)
11543 = VEC_length (symbolp, template_args);
11544 TYPE_TEMPLATE_ARGUMENTS (type)
11545 = obstack_alloc (&objfile->objfile_obstack,
11546 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11547 * sizeof (struct symbol *)));
11548 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11549 VEC_address (symbolp, template_args),
11550 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11551 * sizeof (struct symbol *)));
11552 VEC_free (symbolp, template_args);
11553 }
11554
c906108c
SS
11555 /* Attach fields and member functions to the type. */
11556 if (fi.nfields)
e7c27a73 11557 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
11558 if (fi.nfnfields)
11559 {
e7c27a73 11560 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 11561
c5aa993b 11562 /* Get the type which refers to the base class (possibly this
c906108c 11563 class itself) which contains the vtable pointer for the current
0d564a31
DJ
11564 class from the DW_AT_containing_type attribute. This use of
11565 DW_AT_containing_type is a GNU extension. */
c906108c 11566
e142c38c 11567 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 11568 {
e7c27a73 11569 struct type *t = die_containing_type (die, cu);
c906108c
SS
11570
11571 TYPE_VPTR_BASETYPE (type) = t;
11572 if (type == t)
11573 {
c906108c
SS
11574 int i;
11575
11576 /* Our own class provides vtbl ptr. */
11577 for (i = TYPE_NFIELDS (t) - 1;
11578 i >= TYPE_N_BASECLASSES (t);
11579 --i)
11580 {
0d5cff50 11581 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 11582
1168df01 11583 if (is_vtable_name (fieldname, cu))
c906108c
SS
11584 {
11585 TYPE_VPTR_FIELDNO (type) = i;
11586 break;
11587 }
11588 }
11589
11590 /* Complain if virtual function table field not found. */
11591 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 11592 complaint (&symfile_complaints,
3e43a32a
MS
11593 _("virtual function table pointer "
11594 "not found when defining class '%s'"),
4d3c2250
KB
11595 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11596 "");
c906108c
SS
11597 }
11598 else
11599 {
11600 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11601 }
11602 }
f6235d4c
EZ
11603 else if (cu->producer
11604 && strncmp (cu->producer,
11605 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11606 {
11607 /* The IBM XLC compiler does not provide direct indication
11608 of the containing type, but the vtable pointer is
11609 always named __vfp. */
11610
11611 int i;
11612
11613 for (i = TYPE_NFIELDS (type) - 1;
11614 i >= TYPE_N_BASECLASSES (type);
11615 --i)
11616 {
11617 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11618 {
11619 TYPE_VPTR_FIELDNO (type) = i;
11620 TYPE_VPTR_BASETYPE (type) = type;
11621 break;
11622 }
11623 }
11624 }
c906108c 11625 }
98751a41
JK
11626
11627 /* Copy fi.typedef_field_list linked list elements content into the
11628 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11629 if (fi.typedef_field_list)
11630 {
11631 int i = fi.typedef_field_list_count;
11632
a0d7a4ff 11633 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
11634 TYPE_TYPEDEF_FIELD_ARRAY (type)
11635 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11636 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11637
11638 /* Reverse the list order to keep the debug info elements order. */
11639 while (--i >= 0)
11640 {
11641 struct typedef_field *dest, *src;
6e70227d 11642
98751a41
JK
11643 dest = &TYPE_TYPEDEF_FIELD (type, i);
11644 src = &fi.typedef_field_list->field;
11645 fi.typedef_field_list = fi.typedef_field_list->next;
11646 *dest = *src;
11647 }
11648 }
c767944b
DJ
11649
11650 do_cleanups (back_to);
eb2a6f42
TT
11651
11652 if (HAVE_CPLUS_STRUCT (type))
11653 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 11654 }
63d06c5c 11655
bb5ed363 11656 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 11657
90aeadfc
DC
11658 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11659 snapshots) has been known to create a die giving a declaration
11660 for a class that has, as a child, a die giving a definition for a
11661 nested class. So we have to process our children even if the
11662 current die is a declaration. Normally, of course, a declaration
11663 won't have any children at all. */
134d01f1 11664
90aeadfc
DC
11665 while (child_die != NULL && child_die->tag)
11666 {
11667 if (child_die->tag == DW_TAG_member
11668 || child_die->tag == DW_TAG_variable
34eaf542
TT
11669 || child_die->tag == DW_TAG_inheritance
11670 || child_die->tag == DW_TAG_template_value_param
11671 || child_die->tag == DW_TAG_template_type_param)
134d01f1 11672 {
90aeadfc 11673 /* Do nothing. */
134d01f1 11674 }
90aeadfc
DC
11675 else
11676 process_die (child_die, cu);
134d01f1 11677
90aeadfc 11678 child_die = sibling_die (child_die);
134d01f1
DJ
11679 }
11680
fa4028e9
JB
11681 /* Do not consider external references. According to the DWARF standard,
11682 these DIEs are identified by the fact that they have no byte_size
11683 attribute, and a declaration attribute. */
11684 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11685 || !die_is_declaration (die, cu))
c767944b 11686 new_symbol (die, type, cu);
134d01f1
DJ
11687}
11688
11689/* Given a DW_AT_enumeration_type die, set its type. We do not
11690 complete the type's fields yet, or create any symbols. */
c906108c 11691
f792889a 11692static struct type *
134d01f1 11693read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11694{
e7c27a73 11695 struct objfile *objfile = cu->objfile;
c906108c 11696 struct type *type;
c906108c 11697 struct attribute *attr;
0114d602 11698 const char *name;
134d01f1 11699
348e048f
DE
11700 /* If the definition of this type lives in .debug_types, read that type.
11701 Don't follow DW_AT_specification though, that will take us back up
11702 the chain and we want to go down. */
45e58e77 11703 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
11704 if (attr)
11705 {
ac9ec31b 11706 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 11707
ac9ec31b 11708 /* The type's CU may not be the same as CU.
02142a6c 11709 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
11710 return set_die_type (die, type, cu);
11711 }
11712
c906108c
SS
11713 type = alloc_type (objfile);
11714
11715 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 11716 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 11717 if (name != NULL)
7d455152 11718 TYPE_TAG_NAME (type) = name;
c906108c 11719
e142c38c 11720 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11721 if (attr)
11722 {
11723 TYPE_LENGTH (type) = DW_UNSND (attr);
11724 }
11725 else
11726 {
11727 TYPE_LENGTH (type) = 0;
11728 }
11729
137033e9
JB
11730 /* The enumeration DIE can be incomplete. In Ada, any type can be
11731 declared as private in the package spec, and then defined only
11732 inside the package body. Such types are known as Taft Amendment
11733 Types. When another package uses such a type, an incomplete DIE
11734 may be generated by the compiler. */
02eb380e 11735 if (die_is_declaration (die, cu))
876cecd0 11736 TYPE_STUB (type) = 1;
02eb380e 11737
f792889a 11738 return set_die_type (die, type, cu);
134d01f1
DJ
11739}
11740
11741/* Given a pointer to a die which begins an enumeration, process all
11742 the dies that define the members of the enumeration, and create the
11743 symbol for the enumeration type.
11744
11745 NOTE: We reverse the order of the element list. */
11746
11747static void
11748process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11749{
f792889a 11750 struct type *this_type;
134d01f1 11751
f792889a
DJ
11752 this_type = get_die_type (die, cu);
11753 if (this_type == NULL)
11754 this_type = read_enumeration_type (die, cu);
9dc481d3 11755
639d11d3 11756 if (die->child != NULL)
c906108c 11757 {
9dc481d3
DE
11758 struct die_info *child_die;
11759 struct symbol *sym;
11760 struct field *fields = NULL;
11761 int num_fields = 0;
11762 int unsigned_enum = 1;
15d034d0 11763 const char *name;
cafec441
TT
11764 int flag_enum = 1;
11765 ULONGEST mask = 0;
9dc481d3 11766
639d11d3 11767 child_die = die->child;
c906108c
SS
11768 while (child_die && child_die->tag)
11769 {
11770 if (child_die->tag != DW_TAG_enumerator)
11771 {
e7c27a73 11772 process_die (child_die, cu);
c906108c
SS
11773 }
11774 else
11775 {
39cbfefa
DJ
11776 name = dwarf2_name (child_die, cu);
11777 if (name)
c906108c 11778 {
f792889a 11779 sym = new_symbol (child_die, this_type, cu);
c906108c 11780 if (SYMBOL_VALUE (sym) < 0)
cafec441
TT
11781 {
11782 unsigned_enum = 0;
11783 flag_enum = 0;
11784 }
11785 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11786 flag_enum = 0;
11787 else
11788 mask |= SYMBOL_VALUE (sym);
c906108c
SS
11789
11790 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11791 {
11792 fields = (struct field *)
11793 xrealloc (fields,
11794 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 11795 * sizeof (struct field));
c906108c
SS
11796 }
11797
3567439c 11798 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 11799 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 11800 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
11801 FIELD_BITSIZE (fields[num_fields]) = 0;
11802
11803 num_fields++;
11804 }
11805 }
11806
11807 child_die = sibling_die (child_die);
11808 }
11809
11810 if (num_fields)
11811 {
f792889a
DJ
11812 TYPE_NFIELDS (this_type) = num_fields;
11813 TYPE_FIELDS (this_type) = (struct field *)
11814 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11815 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 11816 sizeof (struct field) * num_fields);
b8c9b27d 11817 xfree (fields);
c906108c
SS
11818 }
11819 if (unsigned_enum)
876cecd0 11820 TYPE_UNSIGNED (this_type) = 1;
cafec441
TT
11821 if (flag_enum)
11822 TYPE_FLAG_ENUM (this_type) = 1;
c906108c 11823 }
134d01f1 11824
6c83ed52
TT
11825 /* If we are reading an enum from a .debug_types unit, and the enum
11826 is a declaration, and the enum is not the signatured type in the
11827 unit, then we do not want to add a symbol for it. Adding a
11828 symbol would in some cases obscure the true definition of the
11829 enum, giving users an incomplete type when the definition is
11830 actually available. Note that we do not want to do this for all
11831 enums which are just declarations, because C++0x allows forward
11832 enum declarations. */
3019eac3 11833 if (cu->per_cu->is_debug_types
6c83ed52
TT
11834 && die_is_declaration (die, cu))
11835 {
52dc124a 11836 struct signatured_type *sig_type;
6c83ed52 11837
c0f78cd4 11838 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
11839 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11840 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
11841 return;
11842 }
11843
f792889a 11844 new_symbol (die, this_type, cu);
c906108c
SS
11845}
11846
11847/* Extract all information from a DW_TAG_array_type DIE and put it in
11848 the DIE's type field. For now, this only handles one dimensional
11849 arrays. */
11850
f792889a 11851static struct type *
e7c27a73 11852read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11853{
e7c27a73 11854 struct objfile *objfile = cu->objfile;
c906108c 11855 struct die_info *child_die;
7e314c57 11856 struct type *type;
c906108c
SS
11857 struct type *element_type, *range_type, *index_type;
11858 struct type **range_types = NULL;
11859 struct attribute *attr;
11860 int ndim = 0;
11861 struct cleanup *back_to;
15d034d0 11862 const char *name;
c906108c 11863
e7c27a73 11864 element_type = die_type (die, cu);
c906108c 11865
7e314c57
JK
11866 /* The die_type call above may have already set the type for this DIE. */
11867 type = get_die_type (die, cu);
11868 if (type)
11869 return type;
11870
c906108c
SS
11871 /* Irix 6.2 native cc creates array types without children for
11872 arrays with unspecified length. */
639d11d3 11873 if (die->child == NULL)
c906108c 11874 {
46bf5051 11875 index_type = objfile_type (objfile)->builtin_int;
c906108c 11876 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
11877 type = create_array_type (NULL, element_type, range_type);
11878 return set_die_type (die, type, cu);
c906108c
SS
11879 }
11880
11881 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 11882 child_die = die->child;
c906108c
SS
11883 while (child_die && child_die->tag)
11884 {
11885 if (child_die->tag == DW_TAG_subrange_type)
11886 {
f792889a 11887 struct type *child_type = read_type_die (child_die, cu);
9a619af0 11888
f792889a 11889 if (child_type != NULL)
a02abb62 11890 {
0963b4bd
MS
11891 /* The range type was succesfully read. Save it for the
11892 array type creation. */
a02abb62
JB
11893 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11894 {
11895 range_types = (struct type **)
11896 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11897 * sizeof (struct type *));
11898 if (ndim == 0)
11899 make_cleanup (free_current_contents, &range_types);
11900 }
f792889a 11901 range_types[ndim++] = child_type;
a02abb62 11902 }
c906108c
SS
11903 }
11904 child_die = sibling_die (child_die);
11905 }
11906
11907 /* Dwarf2 dimensions are output from left to right, create the
11908 necessary array types in backwards order. */
7ca2d3a3 11909
c906108c 11910 type = element_type;
7ca2d3a3
DL
11911
11912 if (read_array_order (die, cu) == DW_ORD_col_major)
11913 {
11914 int i = 0;
9a619af0 11915
7ca2d3a3
DL
11916 while (i < ndim)
11917 type = create_array_type (NULL, type, range_types[i++]);
11918 }
11919 else
11920 {
11921 while (ndim-- > 0)
11922 type = create_array_type (NULL, type, range_types[ndim]);
11923 }
c906108c 11924
f5f8a009
EZ
11925 /* Understand Dwarf2 support for vector types (like they occur on
11926 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11927 array type. This is not part of the Dwarf2/3 standard yet, but a
11928 custom vendor extension. The main difference between a regular
11929 array and the vector variant is that vectors are passed by value
11930 to functions. */
e142c38c 11931 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 11932 if (attr)
ea37ba09 11933 make_vector_type (type);
f5f8a009 11934
dbc98a8b
KW
11935 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11936 implementation may choose to implement triple vectors using this
11937 attribute. */
11938 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11939 if (attr)
11940 {
11941 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11942 TYPE_LENGTH (type) = DW_UNSND (attr);
11943 else
3e43a32a
MS
11944 complaint (&symfile_complaints,
11945 _("DW_AT_byte_size for array type smaller "
11946 "than the total size of elements"));
dbc98a8b
KW
11947 }
11948
39cbfefa
DJ
11949 name = dwarf2_name (die, cu);
11950 if (name)
11951 TYPE_NAME (type) = name;
6e70227d 11952
0963b4bd 11953 /* Install the type in the die. */
7e314c57
JK
11954 set_die_type (die, type, cu);
11955
11956 /* set_die_type should be already done. */
b4ba55a1
JB
11957 set_descriptive_type (type, die, cu);
11958
c906108c
SS
11959 do_cleanups (back_to);
11960
7e314c57 11961 return type;
c906108c
SS
11962}
11963
7ca2d3a3 11964static enum dwarf_array_dim_ordering
6e70227d 11965read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
11966{
11967 struct attribute *attr;
11968
11969 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11970
11971 if (attr) return DW_SND (attr);
11972
0963b4bd
MS
11973 /* GNU F77 is a special case, as at 08/2004 array type info is the
11974 opposite order to the dwarf2 specification, but data is still
11975 laid out as per normal fortran.
7ca2d3a3 11976
0963b4bd
MS
11977 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11978 version checking. */
7ca2d3a3 11979
905e0470
PM
11980 if (cu->language == language_fortran
11981 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
11982 {
11983 return DW_ORD_row_major;
11984 }
11985
6e70227d 11986 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
11987 {
11988 case array_column_major:
11989 return DW_ORD_col_major;
11990 case array_row_major:
11991 default:
11992 return DW_ORD_row_major;
11993 };
11994}
11995
72019c9c 11996/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 11997 the DIE's type field. */
72019c9c 11998
f792889a 11999static struct type *
72019c9c
GM
12000read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12001{
7e314c57
JK
12002 struct type *domain_type, *set_type;
12003 struct attribute *attr;
f792889a 12004
7e314c57
JK
12005 domain_type = die_type (die, cu);
12006
12007 /* The die_type call above may have already set the type for this DIE. */
12008 set_type = get_die_type (die, cu);
12009 if (set_type)
12010 return set_type;
12011
12012 set_type = create_set_type (NULL, domain_type);
12013
12014 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
12015 if (attr)
12016 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 12017
f792889a 12018 return set_die_type (die, set_type, cu);
72019c9c 12019}
7ca2d3a3 12020
0971de02
TT
12021/* A helper for read_common_block that creates a locexpr baton.
12022 SYM is the symbol which we are marking as computed.
12023 COMMON_DIE is the DIE for the common block.
12024 COMMON_LOC is the location expression attribute for the common
12025 block itself.
12026 MEMBER_LOC is the location expression attribute for the particular
12027 member of the common block that we are processing.
12028 CU is the CU from which the above come. */
12029
12030static void
12031mark_common_block_symbol_computed (struct symbol *sym,
12032 struct die_info *common_die,
12033 struct attribute *common_loc,
12034 struct attribute *member_loc,
12035 struct dwarf2_cu *cu)
12036{
12037 struct objfile *objfile = dwarf2_per_objfile->objfile;
12038 struct dwarf2_locexpr_baton *baton;
12039 gdb_byte *ptr;
12040 unsigned int cu_off;
12041 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12042 LONGEST offset = 0;
12043
12044 gdb_assert (common_loc && member_loc);
12045 gdb_assert (attr_form_is_block (common_loc));
12046 gdb_assert (attr_form_is_block (member_loc)
12047 || attr_form_is_constant (member_loc));
12048
12049 baton = obstack_alloc (&objfile->objfile_obstack,
12050 sizeof (struct dwarf2_locexpr_baton));
12051 baton->per_cu = cu->per_cu;
12052 gdb_assert (baton->per_cu);
12053
12054 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12055
12056 if (attr_form_is_constant (member_loc))
12057 {
12058 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12059 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12060 }
12061 else
12062 baton->size += DW_BLOCK (member_loc)->size;
12063
12064 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12065 baton->data = ptr;
12066
12067 *ptr++ = DW_OP_call4;
12068 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12069 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12070 ptr += 4;
12071
12072 if (attr_form_is_constant (member_loc))
12073 {
12074 *ptr++ = DW_OP_addr;
12075 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12076 ptr += cu->header.addr_size;
12077 }
12078 else
12079 {
12080 /* We have to copy the data here, because DW_OP_call4 will only
12081 use a DW_AT_location attribute. */
12082 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12083 ptr += DW_BLOCK (member_loc)->size;
12084 }
12085
12086 *ptr++ = DW_OP_plus;
12087 gdb_assert (ptr - baton->data == baton->size);
12088
0971de02 12089 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 12090 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
12091}
12092
4357ac6c
TT
12093/* Create appropriate locally-scoped variables for all the
12094 DW_TAG_common_block entries. Also create a struct common_block
12095 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12096 is used to sepate the common blocks name namespace from regular
12097 variable names. */
c906108c
SS
12098
12099static void
e7c27a73 12100read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12101{
0971de02
TT
12102 struct attribute *attr;
12103
12104 attr = dwarf2_attr (die, DW_AT_location, cu);
12105 if (attr)
12106 {
12107 /* Support the .debug_loc offsets. */
12108 if (attr_form_is_block (attr))
12109 {
12110 /* Ok. */
12111 }
12112 else if (attr_form_is_section_offset (attr))
12113 {
12114 dwarf2_complex_location_expr_complaint ();
12115 attr = NULL;
12116 }
12117 else
12118 {
12119 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12120 "common block member");
12121 attr = NULL;
12122 }
12123 }
12124
639d11d3 12125 if (die->child != NULL)
c906108c 12126 {
4357ac6c
TT
12127 struct objfile *objfile = cu->objfile;
12128 struct die_info *child_die;
12129 size_t n_entries = 0, size;
12130 struct common_block *common_block;
12131 struct symbol *sym;
74ac6d43 12132
4357ac6c
TT
12133 for (child_die = die->child;
12134 child_die && child_die->tag;
12135 child_die = sibling_die (child_die))
12136 ++n_entries;
12137
12138 size = (sizeof (struct common_block)
12139 + (n_entries - 1) * sizeof (struct symbol *));
12140 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12141 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12142 common_block->n_entries = 0;
12143
12144 for (child_die = die->child;
12145 child_die && child_die->tag;
12146 child_die = sibling_die (child_die))
12147 {
12148 /* Create the symbol in the DW_TAG_common_block block in the current
12149 symbol scope. */
e7c27a73 12150 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
12151 if (sym != NULL)
12152 {
12153 struct attribute *member_loc;
12154
12155 common_block->contents[common_block->n_entries++] = sym;
12156
12157 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12158 cu);
12159 if (member_loc)
12160 {
12161 /* GDB has handled this for a long time, but it is
12162 not specified by DWARF. It seems to have been
12163 emitted by gfortran at least as recently as:
12164 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12165 complaint (&symfile_complaints,
12166 _("Variable in common block has "
12167 "DW_AT_data_member_location "
12168 "- DIE at 0x%x [in module %s]"),
12169 child_die->offset.sect_off, cu->objfile->name);
12170
12171 if (attr_form_is_section_offset (member_loc))
12172 dwarf2_complex_location_expr_complaint ();
12173 else if (attr_form_is_constant (member_loc)
12174 || attr_form_is_block (member_loc))
12175 {
12176 if (attr)
12177 mark_common_block_symbol_computed (sym, die, attr,
12178 member_loc, cu);
12179 }
12180 else
12181 dwarf2_complex_location_expr_complaint ();
12182 }
12183 }
c906108c 12184 }
4357ac6c
TT
12185
12186 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12187 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
12188 }
12189}
12190
0114d602 12191/* Create a type for a C++ namespace. */
d9fa45fe 12192
0114d602
DJ
12193static struct type *
12194read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 12195{
e7c27a73 12196 struct objfile *objfile = cu->objfile;
0114d602 12197 const char *previous_prefix, *name;
9219021c 12198 int is_anonymous;
0114d602
DJ
12199 struct type *type;
12200
12201 /* For extensions, reuse the type of the original namespace. */
12202 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12203 {
12204 struct die_info *ext_die;
12205 struct dwarf2_cu *ext_cu = cu;
9a619af0 12206
0114d602
DJ
12207 ext_die = dwarf2_extension (die, &ext_cu);
12208 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
12209
12210 /* EXT_CU may not be the same as CU.
02142a6c 12211 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
12212 return set_die_type (die, type, cu);
12213 }
9219021c 12214
e142c38c 12215 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
12216
12217 /* Now build the name of the current namespace. */
12218
0114d602
DJ
12219 previous_prefix = determine_prefix (die, cu);
12220 if (previous_prefix[0] != '\0')
12221 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 12222 previous_prefix, name, 0, cu);
0114d602
DJ
12223
12224 /* Create the type. */
12225 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12226 objfile);
abee88f2 12227 TYPE_NAME (type) = name;
0114d602
DJ
12228 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12229
60531b24 12230 return set_die_type (die, type, cu);
0114d602
DJ
12231}
12232
12233/* Read a C++ namespace. */
12234
12235static void
12236read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12237{
12238 struct objfile *objfile = cu->objfile;
0114d602 12239 int is_anonymous;
9219021c 12240
5c4e30ca
DC
12241 /* Add a symbol associated to this if we haven't seen the namespace
12242 before. Also, add a using directive if it's an anonymous
12243 namespace. */
9219021c 12244
f2f0e013 12245 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
12246 {
12247 struct type *type;
12248
0114d602 12249 type = read_type_die (die, cu);
e7c27a73 12250 new_symbol (die, type, cu);
5c4e30ca 12251
e8e80198 12252 namespace_name (die, &is_anonymous, cu);
5c4e30ca 12253 if (is_anonymous)
0114d602
DJ
12254 {
12255 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 12256
c0cc3a76 12257 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 12258 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 12259 }
5c4e30ca 12260 }
9219021c 12261
639d11d3 12262 if (die->child != NULL)
d9fa45fe 12263 {
639d11d3 12264 struct die_info *child_die = die->child;
6e70227d 12265
d9fa45fe
DC
12266 while (child_die && child_die->tag)
12267 {
e7c27a73 12268 process_die (child_die, cu);
d9fa45fe
DC
12269 child_die = sibling_die (child_die);
12270 }
12271 }
38d518c9
EZ
12272}
12273
f55ee35c
JK
12274/* Read a Fortran module as type. This DIE can be only a declaration used for
12275 imported module. Still we need that type as local Fortran "use ... only"
12276 declaration imports depend on the created type in determine_prefix. */
12277
12278static struct type *
12279read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12280{
12281 struct objfile *objfile = cu->objfile;
15d034d0 12282 const char *module_name;
f55ee35c
JK
12283 struct type *type;
12284
12285 module_name = dwarf2_name (die, cu);
12286 if (!module_name)
3e43a32a
MS
12287 complaint (&symfile_complaints,
12288 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 12289 die->offset.sect_off);
f55ee35c
JK
12290 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12291
12292 /* determine_prefix uses TYPE_TAG_NAME. */
12293 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12294
12295 return set_die_type (die, type, cu);
12296}
12297
5d7cb8df
JK
12298/* Read a Fortran module. */
12299
12300static void
12301read_module (struct die_info *die, struct dwarf2_cu *cu)
12302{
12303 struct die_info *child_die = die->child;
12304
5d7cb8df
JK
12305 while (child_die && child_die->tag)
12306 {
12307 process_die (child_die, cu);
12308 child_die = sibling_die (child_die);
12309 }
12310}
12311
38d518c9
EZ
12312/* Return the name of the namespace represented by DIE. Set
12313 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12314 namespace. */
12315
12316static const char *
e142c38c 12317namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
12318{
12319 struct die_info *current_die;
12320 const char *name = NULL;
12321
12322 /* Loop through the extensions until we find a name. */
12323
12324 for (current_die = die;
12325 current_die != NULL;
f2f0e013 12326 current_die = dwarf2_extension (die, &cu))
38d518c9 12327 {
e142c38c 12328 name = dwarf2_name (current_die, cu);
38d518c9
EZ
12329 if (name != NULL)
12330 break;
12331 }
12332
12333 /* Is it an anonymous namespace? */
12334
12335 *is_anonymous = (name == NULL);
12336 if (*is_anonymous)
2b1dbab0 12337 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
12338
12339 return name;
d9fa45fe
DC
12340}
12341
c906108c
SS
12342/* Extract all information from a DW_TAG_pointer_type DIE and add to
12343 the user defined type vector. */
12344
f792889a 12345static struct type *
e7c27a73 12346read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12347{
5e2b427d 12348 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 12349 struct comp_unit_head *cu_header = &cu->header;
c906108c 12350 struct type *type;
8b2dbe47
KB
12351 struct attribute *attr_byte_size;
12352 struct attribute *attr_address_class;
12353 int byte_size, addr_class;
7e314c57
JK
12354 struct type *target_type;
12355
12356 target_type = die_type (die, cu);
c906108c 12357
7e314c57
JK
12358 /* The die_type call above may have already set the type for this DIE. */
12359 type = get_die_type (die, cu);
12360 if (type)
12361 return type;
12362
12363 type = lookup_pointer_type (target_type);
8b2dbe47 12364
e142c38c 12365 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
12366 if (attr_byte_size)
12367 byte_size = DW_UNSND (attr_byte_size);
c906108c 12368 else
8b2dbe47
KB
12369 byte_size = cu_header->addr_size;
12370
e142c38c 12371 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
12372 if (attr_address_class)
12373 addr_class = DW_UNSND (attr_address_class);
12374 else
12375 addr_class = DW_ADDR_none;
12376
12377 /* If the pointer size or address class is different than the
12378 default, create a type variant marked as such and set the
12379 length accordingly. */
12380 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 12381 {
5e2b427d 12382 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
12383 {
12384 int type_flags;
12385
849957d9 12386 type_flags = gdbarch_address_class_type_flags
5e2b427d 12387 (gdbarch, byte_size, addr_class);
876cecd0
TT
12388 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12389 == 0);
8b2dbe47
KB
12390 type = make_type_with_address_space (type, type_flags);
12391 }
12392 else if (TYPE_LENGTH (type) != byte_size)
12393 {
3e43a32a
MS
12394 complaint (&symfile_complaints,
12395 _("invalid pointer size %d"), byte_size);
8b2dbe47 12396 }
6e70227d 12397 else
9a619af0
MS
12398 {
12399 /* Should we also complain about unhandled address classes? */
12400 }
c906108c 12401 }
8b2dbe47
KB
12402
12403 TYPE_LENGTH (type) = byte_size;
f792889a 12404 return set_die_type (die, type, cu);
c906108c
SS
12405}
12406
12407/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12408 the user defined type vector. */
12409
f792889a 12410static struct type *
e7c27a73 12411read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
12412{
12413 struct type *type;
12414 struct type *to_type;
12415 struct type *domain;
12416
e7c27a73
DJ
12417 to_type = die_type (die, cu);
12418 domain = die_containing_type (die, cu);
0d5de010 12419
7e314c57
JK
12420 /* The calls above may have already set the type for this DIE. */
12421 type = get_die_type (die, cu);
12422 if (type)
12423 return type;
12424
0d5de010
DJ
12425 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12426 type = lookup_methodptr_type (to_type);
7078baeb
TT
12427 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12428 {
12429 struct type *new_type = alloc_type (cu->objfile);
12430
12431 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12432 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12433 TYPE_VARARGS (to_type));
12434 type = lookup_methodptr_type (new_type);
12435 }
0d5de010
DJ
12436 else
12437 type = lookup_memberptr_type (to_type, domain);
c906108c 12438
f792889a 12439 return set_die_type (die, type, cu);
c906108c
SS
12440}
12441
12442/* Extract all information from a DW_TAG_reference_type DIE and add to
12443 the user defined type vector. */
12444
f792889a 12445static struct type *
e7c27a73 12446read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12447{
e7c27a73 12448 struct comp_unit_head *cu_header = &cu->header;
7e314c57 12449 struct type *type, *target_type;
c906108c
SS
12450 struct attribute *attr;
12451
7e314c57
JK
12452 target_type = die_type (die, cu);
12453
12454 /* The die_type call above may have already set the type for this DIE. */
12455 type = get_die_type (die, cu);
12456 if (type)
12457 return type;
12458
12459 type = lookup_reference_type (target_type);
e142c38c 12460 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12461 if (attr)
12462 {
12463 TYPE_LENGTH (type) = DW_UNSND (attr);
12464 }
12465 else
12466 {
107d2387 12467 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 12468 }
f792889a 12469 return set_die_type (die, type, cu);
c906108c
SS
12470}
12471
f792889a 12472static struct type *
e7c27a73 12473read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12474{
f792889a 12475 struct type *base_type, *cv_type;
c906108c 12476
e7c27a73 12477 base_type = die_type (die, cu);
7e314c57
JK
12478
12479 /* The die_type call above may have already set the type for this DIE. */
12480 cv_type = get_die_type (die, cu);
12481 if (cv_type)
12482 return cv_type;
12483
2f608a3a
KW
12484 /* In case the const qualifier is applied to an array type, the element type
12485 is so qualified, not the array type (section 6.7.3 of C99). */
12486 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12487 {
12488 struct type *el_type, *inner_array;
12489
12490 base_type = copy_type (base_type);
12491 inner_array = base_type;
12492
12493 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12494 {
12495 TYPE_TARGET_TYPE (inner_array) =
12496 copy_type (TYPE_TARGET_TYPE (inner_array));
12497 inner_array = TYPE_TARGET_TYPE (inner_array);
12498 }
12499
12500 el_type = TYPE_TARGET_TYPE (inner_array);
12501 TYPE_TARGET_TYPE (inner_array) =
12502 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12503
12504 return set_die_type (die, base_type, cu);
12505 }
12506
f792889a
DJ
12507 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12508 return set_die_type (die, cv_type, cu);
c906108c
SS
12509}
12510
f792889a 12511static struct type *
e7c27a73 12512read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12513{
f792889a 12514 struct type *base_type, *cv_type;
c906108c 12515
e7c27a73 12516 base_type = die_type (die, cu);
7e314c57
JK
12517
12518 /* The die_type call above may have already set the type for this DIE. */
12519 cv_type = get_die_type (die, cu);
12520 if (cv_type)
12521 return cv_type;
12522
f792889a
DJ
12523 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12524 return set_die_type (die, cv_type, cu);
c906108c
SS
12525}
12526
06d66ee9
TT
12527/* Handle DW_TAG_restrict_type. */
12528
12529static struct type *
12530read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12531{
12532 struct type *base_type, *cv_type;
12533
12534 base_type = die_type (die, cu);
12535
12536 /* The die_type call above may have already set the type for this DIE. */
12537 cv_type = get_die_type (die, cu);
12538 if (cv_type)
12539 return cv_type;
12540
12541 cv_type = make_restrict_type (base_type);
12542 return set_die_type (die, cv_type, cu);
12543}
12544
c906108c
SS
12545/* Extract all information from a DW_TAG_string_type DIE and add to
12546 the user defined type vector. It isn't really a user defined type,
12547 but it behaves like one, with other DIE's using an AT_user_def_type
12548 attribute to reference it. */
12549
f792889a 12550static struct type *
e7c27a73 12551read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12552{
e7c27a73 12553 struct objfile *objfile = cu->objfile;
3b7538c0 12554 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12555 struct type *type, *range_type, *index_type, *char_type;
12556 struct attribute *attr;
12557 unsigned int length;
12558
e142c38c 12559 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
12560 if (attr)
12561 {
12562 length = DW_UNSND (attr);
12563 }
12564 else
12565 {
0963b4bd 12566 /* Check for the DW_AT_byte_size attribute. */
e142c38c 12567 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
12568 if (attr)
12569 {
12570 length = DW_UNSND (attr);
12571 }
12572 else
12573 {
12574 length = 1;
12575 }
c906108c 12576 }
6ccb9162 12577
46bf5051 12578 index_type = objfile_type (objfile)->builtin_int;
c906108c 12579 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
12580 char_type = language_string_char_type (cu->language_defn, gdbarch);
12581 type = create_string_type (NULL, char_type, range_type);
6ccb9162 12582
f792889a 12583 return set_die_type (die, type, cu);
c906108c
SS
12584}
12585
12586/* Handle DIES due to C code like:
12587
12588 struct foo
c5aa993b
JM
12589 {
12590 int (*funcp)(int a, long l);
12591 int b;
12592 };
c906108c 12593
0963b4bd 12594 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 12595
f792889a 12596static struct type *
e7c27a73 12597read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12598{
bb5ed363 12599 struct objfile *objfile = cu->objfile;
0963b4bd
MS
12600 struct type *type; /* Type that this function returns. */
12601 struct type *ftype; /* Function that returns above type. */
c906108c
SS
12602 struct attribute *attr;
12603
e7c27a73 12604 type = die_type (die, cu);
7e314c57
JK
12605
12606 /* The die_type call above may have already set the type for this DIE. */
12607 ftype = get_die_type (die, cu);
12608 if (ftype)
12609 return ftype;
12610
0c8b41f1 12611 ftype = lookup_function_type (type);
c906108c 12612
5b8101ae 12613 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 12614 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 12615 if ((attr && (DW_UNSND (attr) != 0))
987504bb 12616 || cu->language == language_cplus
5b8101ae
PM
12617 || cu->language == language_java
12618 || cu->language == language_pascal)
876cecd0 12619 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
12620 else if (producer_is_realview (cu->producer))
12621 /* RealView does not emit DW_AT_prototyped. We can not
12622 distinguish prototyped and unprototyped functions; default to
12623 prototyped, since that is more common in modern code (and
12624 RealView warns about unprototyped functions). */
12625 TYPE_PROTOTYPED (ftype) = 1;
c906108c 12626
c055b101
CV
12627 /* Store the calling convention in the type if it's available in
12628 the subroutine die. Otherwise set the calling convention to
12629 the default value DW_CC_normal. */
12630 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
12631 if (attr)
12632 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12633 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12634 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12635 else
12636 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
12637
12638 /* We need to add the subroutine type to the die immediately so
12639 we don't infinitely recurse when dealing with parameters
0963b4bd 12640 declared as the same subroutine type. */
76c10ea2 12641 set_die_type (die, ftype, cu);
6e70227d 12642
639d11d3 12643 if (die->child != NULL)
c906108c 12644 {
bb5ed363 12645 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 12646 struct die_info *child_die;
8072405b 12647 int nparams, iparams;
c906108c
SS
12648
12649 /* Count the number of parameters.
12650 FIXME: GDB currently ignores vararg functions, but knows about
12651 vararg member functions. */
8072405b 12652 nparams = 0;
639d11d3 12653 child_die = die->child;
c906108c
SS
12654 while (child_die && child_die->tag)
12655 {
12656 if (child_die->tag == DW_TAG_formal_parameter)
12657 nparams++;
12658 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 12659 TYPE_VARARGS (ftype) = 1;
c906108c
SS
12660 child_die = sibling_die (child_die);
12661 }
12662
12663 /* Allocate storage for parameters and fill them in. */
12664 TYPE_NFIELDS (ftype) = nparams;
12665 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 12666 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 12667
8072405b
JK
12668 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12669 even if we error out during the parameters reading below. */
12670 for (iparams = 0; iparams < nparams; iparams++)
12671 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12672
12673 iparams = 0;
639d11d3 12674 child_die = die->child;
c906108c
SS
12675 while (child_die && child_die->tag)
12676 {
12677 if (child_die->tag == DW_TAG_formal_parameter)
12678 {
3ce3b1ba
PA
12679 struct type *arg_type;
12680
12681 /* DWARF version 2 has no clean way to discern C++
12682 static and non-static member functions. G++ helps
12683 GDB by marking the first parameter for non-static
12684 member functions (which is the this pointer) as
12685 artificial. We pass this information to
12686 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12687
12688 DWARF version 3 added DW_AT_object_pointer, which GCC
12689 4.5 does not yet generate. */
e142c38c 12690 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
12691 if (attr)
12692 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12693 else
418835cc
KS
12694 {
12695 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12696
12697 /* GCC/43521: In java, the formal parameter
12698 "this" is sometimes not marked with DW_AT_artificial. */
12699 if (cu->language == language_java)
12700 {
12701 const char *name = dwarf2_name (child_die, cu);
9a619af0 12702
418835cc
KS
12703 if (name && !strcmp (name, "this"))
12704 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12705 }
12706 }
3ce3b1ba
PA
12707 arg_type = die_type (child_die, cu);
12708
12709 /* RealView does not mark THIS as const, which the testsuite
12710 expects. GCC marks THIS as const in method definitions,
12711 but not in the class specifications (GCC PR 43053). */
12712 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12713 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12714 {
12715 int is_this = 0;
12716 struct dwarf2_cu *arg_cu = cu;
12717 const char *name = dwarf2_name (child_die, cu);
12718
12719 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12720 if (attr)
12721 {
12722 /* If the compiler emits this, use it. */
12723 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12724 is_this = 1;
12725 }
12726 else if (name && strcmp (name, "this") == 0)
12727 /* Function definitions will have the argument names. */
12728 is_this = 1;
12729 else if (name == NULL && iparams == 0)
12730 /* Declarations may not have the names, so like
12731 elsewhere in GDB, assume an artificial first
12732 argument is "this". */
12733 is_this = 1;
12734
12735 if (is_this)
12736 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12737 arg_type, 0);
12738 }
12739
12740 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
12741 iparams++;
12742 }
12743 child_die = sibling_die (child_die);
12744 }
12745 }
12746
76c10ea2 12747 return ftype;
c906108c
SS
12748}
12749
f792889a 12750static struct type *
e7c27a73 12751read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12752{
e7c27a73 12753 struct objfile *objfile = cu->objfile;
0114d602 12754 const char *name = NULL;
3c8e0968 12755 struct type *this_type, *target_type;
c906108c 12756
94af9270 12757 name = dwarf2_full_name (NULL, die, cu);
f792889a 12758 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 12759 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 12760 TYPE_NAME (this_type) = name;
f792889a 12761 set_die_type (die, this_type, cu);
3c8e0968
DE
12762 target_type = die_type (die, cu);
12763 if (target_type != this_type)
12764 TYPE_TARGET_TYPE (this_type) = target_type;
12765 else
12766 {
12767 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12768 spec and cause infinite loops in GDB. */
12769 complaint (&symfile_complaints,
12770 _("Self-referential DW_TAG_typedef "
12771 "- DIE at 0x%x [in module %s]"),
b64f50a1 12772 die->offset.sect_off, objfile->name);
3c8e0968
DE
12773 TYPE_TARGET_TYPE (this_type) = NULL;
12774 }
f792889a 12775 return this_type;
c906108c
SS
12776}
12777
12778/* Find a representation of a given base type and install
12779 it in the TYPE field of the die. */
12780
f792889a 12781static struct type *
e7c27a73 12782read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12783{
e7c27a73 12784 struct objfile *objfile = cu->objfile;
c906108c
SS
12785 struct type *type;
12786 struct attribute *attr;
12787 int encoding = 0, size = 0;
15d034d0 12788 const char *name;
6ccb9162
UW
12789 enum type_code code = TYPE_CODE_INT;
12790 int type_flags = 0;
12791 struct type *target_type = NULL;
c906108c 12792
e142c38c 12793 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
12794 if (attr)
12795 {
12796 encoding = DW_UNSND (attr);
12797 }
e142c38c 12798 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12799 if (attr)
12800 {
12801 size = DW_UNSND (attr);
12802 }
39cbfefa 12803 name = dwarf2_name (die, cu);
6ccb9162 12804 if (!name)
c906108c 12805 {
6ccb9162
UW
12806 complaint (&symfile_complaints,
12807 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 12808 }
6ccb9162
UW
12809
12810 switch (encoding)
c906108c 12811 {
6ccb9162
UW
12812 case DW_ATE_address:
12813 /* Turn DW_ATE_address into a void * pointer. */
12814 code = TYPE_CODE_PTR;
12815 type_flags |= TYPE_FLAG_UNSIGNED;
12816 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12817 break;
12818 case DW_ATE_boolean:
12819 code = TYPE_CODE_BOOL;
12820 type_flags |= TYPE_FLAG_UNSIGNED;
12821 break;
12822 case DW_ATE_complex_float:
12823 code = TYPE_CODE_COMPLEX;
12824 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12825 break;
12826 case DW_ATE_decimal_float:
12827 code = TYPE_CODE_DECFLOAT;
12828 break;
12829 case DW_ATE_float:
12830 code = TYPE_CODE_FLT;
12831 break;
12832 case DW_ATE_signed:
12833 break;
12834 case DW_ATE_unsigned:
12835 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
12836 if (cu->language == language_fortran
12837 && name
12838 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12839 code = TYPE_CODE_CHAR;
6ccb9162
UW
12840 break;
12841 case DW_ATE_signed_char:
6e70227d 12842 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
12843 || cu->language == language_pascal
12844 || cu->language == language_fortran)
6ccb9162
UW
12845 code = TYPE_CODE_CHAR;
12846 break;
12847 case DW_ATE_unsigned_char:
868a0084 12848 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
12849 || cu->language == language_pascal
12850 || cu->language == language_fortran)
6ccb9162
UW
12851 code = TYPE_CODE_CHAR;
12852 type_flags |= TYPE_FLAG_UNSIGNED;
12853 break;
75079b2b
TT
12854 case DW_ATE_UTF:
12855 /* We just treat this as an integer and then recognize the
12856 type by name elsewhere. */
12857 break;
12858
6ccb9162
UW
12859 default:
12860 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12861 dwarf_type_encoding_name (encoding));
12862 break;
c906108c 12863 }
6ccb9162 12864
0114d602
DJ
12865 type = init_type (code, size, type_flags, NULL, objfile);
12866 TYPE_NAME (type) = name;
6ccb9162
UW
12867 TYPE_TARGET_TYPE (type) = target_type;
12868
0114d602 12869 if (name && strcmp (name, "char") == 0)
876cecd0 12870 TYPE_NOSIGN (type) = 1;
0114d602 12871
f792889a 12872 return set_die_type (die, type, cu);
c906108c
SS
12873}
12874
a02abb62
JB
12875/* Read the given DW_AT_subrange DIE. */
12876
f792889a 12877static struct type *
a02abb62
JB
12878read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12879{
4c9ad8c2 12880 struct type *base_type, *orig_base_type;
a02abb62
JB
12881 struct type *range_type;
12882 struct attribute *attr;
4fae6e18
JK
12883 LONGEST low, high;
12884 int low_default_is_valid;
15d034d0 12885 const char *name;
43bbcdc2 12886 LONGEST negative_mask;
e77813c8 12887
4c9ad8c2
TT
12888 orig_base_type = die_type (die, cu);
12889 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
12890 whereas the real type might be. So, we use ORIG_BASE_TYPE when
12891 creating the range type, but we use the result of check_typedef
12892 when examining properties of the type. */
12893 base_type = check_typedef (orig_base_type);
a02abb62 12894
7e314c57
JK
12895 /* The die_type call above may have already set the type for this DIE. */
12896 range_type = get_die_type (die, cu);
12897 if (range_type)
12898 return range_type;
12899
4fae6e18
JK
12900 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12901 omitting DW_AT_lower_bound. */
12902 switch (cu->language)
6e70227d 12903 {
4fae6e18
JK
12904 case language_c:
12905 case language_cplus:
12906 low = 0;
12907 low_default_is_valid = 1;
12908 break;
12909 case language_fortran:
12910 low = 1;
12911 low_default_is_valid = 1;
12912 break;
12913 case language_d:
12914 case language_java:
12915 case language_objc:
12916 low = 0;
12917 low_default_is_valid = (cu->header.version >= 4);
12918 break;
12919 case language_ada:
12920 case language_m2:
12921 case language_pascal:
a02abb62 12922 low = 1;
4fae6e18
JK
12923 low_default_is_valid = (cu->header.version >= 4);
12924 break;
12925 default:
12926 low = 0;
12927 low_default_is_valid = 0;
12928 break;
a02abb62
JB
12929 }
12930
dd5e6932
DJ
12931 /* FIXME: For variable sized arrays either of these could be
12932 a variable rather than a constant value. We'll allow it,
12933 but we don't know how to handle it. */
e142c38c 12934 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 12935 if (attr)
4fae6e18
JK
12936 low = dwarf2_get_attr_constant_value (attr, low);
12937 else if (!low_default_is_valid)
12938 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12939 "- DIE at 0x%x [in module %s]"),
12940 die->offset.sect_off, cu->objfile->name);
a02abb62 12941
e142c38c 12942 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 12943 if (attr)
6e70227d 12944 {
d48323d8 12945 if (attr_form_is_block (attr) || is_ref_attr (attr))
a02abb62
JB
12946 {
12947 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 12948 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
12949 FIXME: GDB does not yet know how to handle dynamic
12950 arrays properly, treat them as arrays with unspecified
12951 length for now.
12952
12953 FIXME: jimb/2003-09-22: GDB does not really know
12954 how to handle arrays of unspecified length
12955 either; we just represent them as zero-length
12956 arrays. Choose an appropriate upper bound given
12957 the lower bound we've computed above. */
12958 high = low - 1;
12959 }
12960 else
12961 high = dwarf2_get_attr_constant_value (attr, 1);
12962 }
e77813c8
PM
12963 else
12964 {
12965 attr = dwarf2_attr (die, DW_AT_count, cu);
12966 if (attr)
12967 {
12968 int count = dwarf2_get_attr_constant_value (attr, 1);
12969 high = low + count - 1;
12970 }
c2ff108b
JK
12971 else
12972 {
12973 /* Unspecified array length. */
12974 high = low - 1;
12975 }
e77813c8
PM
12976 }
12977
12978 /* Dwarf-2 specifications explicitly allows to create subrange types
12979 without specifying a base type.
12980 In that case, the base type must be set to the type of
12981 the lower bound, upper bound or count, in that order, if any of these
12982 three attributes references an object that has a type.
12983 If no base type is found, the Dwarf-2 specifications say that
12984 a signed integer type of size equal to the size of an address should
12985 be used.
12986 For the following C code: `extern char gdb_int [];'
12987 GCC produces an empty range DIE.
12988 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 12989 high bound or count are not yet handled by this code. */
e77813c8
PM
12990 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12991 {
12992 struct objfile *objfile = cu->objfile;
12993 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12994 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12995 struct type *int_type = objfile_type (objfile)->builtin_int;
12996
12997 /* Test "int", "long int", and "long long int" objfile types,
12998 and select the first one having a size above or equal to the
12999 architecture address size. */
13000 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13001 base_type = int_type;
13002 else
13003 {
13004 int_type = objfile_type (objfile)->builtin_long;
13005 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13006 base_type = int_type;
13007 else
13008 {
13009 int_type = objfile_type (objfile)->builtin_long_long;
13010 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13011 base_type = int_type;
13012 }
13013 }
13014 }
a02abb62 13015
6e70227d 13016 negative_mask =
43bbcdc2
PH
13017 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13018 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13019 low |= negative_mask;
13020 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13021 high |= negative_mask;
13022
4c9ad8c2 13023 range_type = create_range_type (NULL, orig_base_type, low, high);
a02abb62 13024
bbb0eef6
JK
13025 /* Mark arrays with dynamic length at least as an array of unspecified
13026 length. GDB could check the boundary but before it gets implemented at
13027 least allow accessing the array elements. */
d48323d8 13028 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
13029 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13030
c2ff108b
JK
13031 /* Ada expects an empty array on no boundary attributes. */
13032 if (attr == NULL && cu->language != language_ada)
13033 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13034
39cbfefa
DJ
13035 name = dwarf2_name (die, cu);
13036 if (name)
13037 TYPE_NAME (range_type) = name;
6e70227d 13038
e142c38c 13039 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
13040 if (attr)
13041 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13042
7e314c57
JK
13043 set_die_type (die, range_type, cu);
13044
13045 /* set_die_type should be already done. */
b4ba55a1
JB
13046 set_descriptive_type (range_type, die, cu);
13047
7e314c57 13048 return range_type;
a02abb62 13049}
6e70227d 13050
f792889a 13051static struct type *
81a17f79
JB
13052read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13053{
13054 struct type *type;
81a17f79 13055
81a17f79
JB
13056 /* For now, we only support the C meaning of an unspecified type: void. */
13057
0114d602
DJ
13058 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13059 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 13060
f792889a 13061 return set_die_type (die, type, cu);
81a17f79 13062}
a02abb62 13063
639d11d3
DC
13064/* Read a single die and all its descendents. Set the die's sibling
13065 field to NULL; set other fields in the die correctly, and set all
13066 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13067 location of the info_ptr after reading all of those dies. PARENT
13068 is the parent of the die in question. */
13069
13070static struct die_info *
dee91e82 13071read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
13072 const gdb_byte *info_ptr,
13073 const gdb_byte **new_info_ptr,
dee91e82 13074 struct die_info *parent)
639d11d3
DC
13075{
13076 struct die_info *die;
d521ce57 13077 const gdb_byte *cur_ptr;
639d11d3
DC
13078 int has_children;
13079
bf6af496 13080 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
13081 if (die == NULL)
13082 {
13083 *new_info_ptr = cur_ptr;
13084 return NULL;
13085 }
93311388 13086 store_in_ref_table (die, reader->cu);
639d11d3
DC
13087
13088 if (has_children)
bf6af496 13089 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
13090 else
13091 {
13092 die->child = NULL;
13093 *new_info_ptr = cur_ptr;
13094 }
13095
13096 die->sibling = NULL;
13097 die->parent = parent;
13098 return die;
13099}
13100
13101/* Read a die, all of its descendents, and all of its siblings; set
13102 all of the fields of all of the dies correctly. Arguments are as
13103 in read_die_and_children. */
13104
13105static struct die_info *
bf6af496 13106read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
13107 const gdb_byte *info_ptr,
13108 const gdb_byte **new_info_ptr,
bf6af496 13109 struct die_info *parent)
639d11d3
DC
13110{
13111 struct die_info *first_die, *last_sibling;
d521ce57 13112 const gdb_byte *cur_ptr;
639d11d3 13113
c906108c 13114 cur_ptr = info_ptr;
639d11d3
DC
13115 first_die = last_sibling = NULL;
13116
13117 while (1)
c906108c 13118 {
639d11d3 13119 struct die_info *die
dee91e82 13120 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 13121
1d325ec1 13122 if (die == NULL)
c906108c 13123 {
639d11d3
DC
13124 *new_info_ptr = cur_ptr;
13125 return first_die;
c906108c 13126 }
1d325ec1
DJ
13127
13128 if (!first_die)
13129 first_die = die;
c906108c 13130 else
1d325ec1
DJ
13131 last_sibling->sibling = die;
13132
13133 last_sibling = die;
c906108c 13134 }
c906108c
SS
13135}
13136
bf6af496
DE
13137/* Read a die, all of its descendents, and all of its siblings; set
13138 all of the fields of all of the dies correctly. Arguments are as
13139 in read_die_and_children.
13140 This the main entry point for reading a DIE and all its children. */
13141
13142static struct die_info *
13143read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
13144 const gdb_byte *info_ptr,
13145 const gdb_byte **new_info_ptr,
bf6af496
DE
13146 struct die_info *parent)
13147{
13148 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13149 new_info_ptr, parent);
13150
13151 if (dwarf2_die_debug)
13152 {
13153 fprintf_unfiltered (gdb_stdlog,
13154 "Read die from %s@0x%x of %s:\n",
13155 bfd_section_name (reader->abfd,
13156 reader->die_section->asection),
13157 (unsigned) (info_ptr - reader->die_section->buffer),
13158 bfd_get_filename (reader->abfd));
13159 dump_die (die, dwarf2_die_debug);
13160 }
13161
13162 return die;
13163}
13164
3019eac3
DE
13165/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13166 attributes.
13167 The caller is responsible for filling in the extra attributes
13168 and updating (*DIEP)->num_attrs.
13169 Set DIEP to point to a newly allocated die with its information,
13170 except for its child, sibling, and parent fields.
13171 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 13172
d521ce57 13173static const gdb_byte *
3019eac3 13174read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 13175 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 13176 int *has_children, int num_extra_attrs)
93311388 13177{
b64f50a1
JK
13178 unsigned int abbrev_number, bytes_read, i;
13179 sect_offset offset;
93311388
DE
13180 struct abbrev_info *abbrev;
13181 struct die_info *die;
13182 struct dwarf2_cu *cu = reader->cu;
13183 bfd *abfd = reader->abfd;
13184
b64f50a1 13185 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
13186 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13187 info_ptr += bytes_read;
13188 if (!abbrev_number)
13189 {
13190 *diep = NULL;
13191 *has_children = 0;
13192 return info_ptr;
13193 }
13194
433df2d4 13195 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 13196 if (!abbrev)
348e048f
DE
13197 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13198 abbrev_number,
13199 bfd_get_filename (abfd));
13200
3019eac3 13201 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
13202 die->offset = offset;
13203 die->tag = abbrev->tag;
13204 die->abbrev = abbrev_number;
13205
3019eac3
DE
13206 /* Make the result usable.
13207 The caller needs to update num_attrs after adding the extra
13208 attributes. */
93311388
DE
13209 die->num_attrs = abbrev->num_attrs;
13210
13211 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
13212 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13213 info_ptr);
93311388
DE
13214
13215 *diep = die;
13216 *has_children = abbrev->has_children;
13217 return info_ptr;
13218}
13219
3019eac3
DE
13220/* Read a die and all its attributes.
13221 Set DIEP to point to a newly allocated die with its information,
13222 except for its child, sibling, and parent fields.
13223 Set HAS_CHILDREN to tell whether the die has children or not. */
13224
d521ce57 13225static const gdb_byte *
3019eac3 13226read_full_die (const struct die_reader_specs *reader,
d521ce57 13227 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
13228 int *has_children)
13229{
d521ce57 13230 const gdb_byte *result;
bf6af496
DE
13231
13232 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13233
13234 if (dwarf2_die_debug)
13235 {
13236 fprintf_unfiltered (gdb_stdlog,
13237 "Read die from %s@0x%x of %s:\n",
13238 bfd_section_name (reader->abfd,
13239 reader->die_section->asection),
13240 (unsigned) (info_ptr - reader->die_section->buffer),
13241 bfd_get_filename (reader->abfd));
13242 dump_die (*diep, dwarf2_die_debug);
13243 }
13244
13245 return result;
3019eac3 13246}
433df2d4
DE
13247\f
13248/* Abbreviation tables.
3019eac3 13249
433df2d4 13250 In DWARF version 2, the description of the debugging information is
c906108c
SS
13251 stored in a separate .debug_abbrev section. Before we read any
13252 dies from a section we read in all abbreviations and install them
433df2d4
DE
13253 in a hash table. */
13254
13255/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13256
13257static struct abbrev_info *
13258abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13259{
13260 struct abbrev_info *abbrev;
13261
13262 abbrev = (struct abbrev_info *)
13263 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13264 memset (abbrev, 0, sizeof (struct abbrev_info));
13265 return abbrev;
13266}
13267
13268/* Add an abbreviation to the table. */
c906108c
SS
13269
13270static void
433df2d4
DE
13271abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13272 unsigned int abbrev_number,
13273 struct abbrev_info *abbrev)
13274{
13275 unsigned int hash_number;
13276
13277 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13278 abbrev->next = abbrev_table->abbrevs[hash_number];
13279 abbrev_table->abbrevs[hash_number] = abbrev;
13280}
dee91e82 13281
433df2d4
DE
13282/* Look up an abbrev in the table.
13283 Returns NULL if the abbrev is not found. */
13284
13285static struct abbrev_info *
13286abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13287 unsigned int abbrev_number)
c906108c 13288{
433df2d4
DE
13289 unsigned int hash_number;
13290 struct abbrev_info *abbrev;
13291
13292 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13293 abbrev = abbrev_table->abbrevs[hash_number];
13294
13295 while (abbrev)
13296 {
13297 if (abbrev->number == abbrev_number)
13298 return abbrev;
13299 abbrev = abbrev->next;
13300 }
13301 return NULL;
13302}
13303
13304/* Read in an abbrev table. */
13305
13306static struct abbrev_table *
13307abbrev_table_read_table (struct dwarf2_section_info *section,
13308 sect_offset offset)
13309{
13310 struct objfile *objfile = dwarf2_per_objfile->objfile;
13311 bfd *abfd = section->asection->owner;
13312 struct abbrev_table *abbrev_table;
d521ce57 13313 const gdb_byte *abbrev_ptr;
c906108c
SS
13314 struct abbrev_info *cur_abbrev;
13315 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 13316 unsigned int abbrev_form;
f3dd6933
DJ
13317 struct attr_abbrev *cur_attrs;
13318 unsigned int allocated_attrs;
c906108c 13319
433df2d4 13320 abbrev_table = XMALLOC (struct abbrev_table);
f4dc4d17 13321 abbrev_table->offset = offset;
433df2d4
DE
13322 obstack_init (&abbrev_table->abbrev_obstack);
13323 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13324 (ABBREV_HASH_SIZE
13325 * sizeof (struct abbrev_info *)));
13326 memset (abbrev_table->abbrevs, 0,
13327 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 13328
433df2d4
DE
13329 dwarf2_read_section (objfile, section);
13330 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
13331 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13332 abbrev_ptr += bytes_read;
13333
f3dd6933
DJ
13334 allocated_attrs = ATTR_ALLOC_CHUNK;
13335 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 13336
0963b4bd 13337 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
13338 while (abbrev_number)
13339 {
433df2d4 13340 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
13341
13342 /* read in abbrev header */
13343 cur_abbrev->number = abbrev_number;
13344 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13345 abbrev_ptr += bytes_read;
13346 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13347 abbrev_ptr += 1;
13348
13349 /* now read in declarations */
13350 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13351 abbrev_ptr += bytes_read;
13352 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13353 abbrev_ptr += bytes_read;
13354 while (abbrev_name)
13355 {
f3dd6933 13356 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 13357 {
f3dd6933
DJ
13358 allocated_attrs += ATTR_ALLOC_CHUNK;
13359 cur_attrs
13360 = xrealloc (cur_attrs, (allocated_attrs
13361 * sizeof (struct attr_abbrev)));
c906108c 13362 }
ae038cb0 13363
f3dd6933
DJ
13364 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13365 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
13366 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13367 abbrev_ptr += bytes_read;
13368 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13369 abbrev_ptr += bytes_read;
13370 }
13371
433df2d4 13372 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
13373 (cur_abbrev->num_attrs
13374 * sizeof (struct attr_abbrev)));
13375 memcpy (cur_abbrev->attrs, cur_attrs,
13376 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13377
433df2d4 13378 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
13379
13380 /* Get next abbreviation.
13381 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
13382 always properly terminated with an abbrev number of 0.
13383 Exit loop if we encounter an abbreviation which we have
13384 already read (which means we are about to read the abbreviations
13385 for the next compile unit) or if the end of the abbreviation
13386 table is reached. */
433df2d4 13387 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
13388 break;
13389 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13390 abbrev_ptr += bytes_read;
433df2d4 13391 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
13392 break;
13393 }
f3dd6933
DJ
13394
13395 xfree (cur_attrs);
433df2d4 13396 return abbrev_table;
c906108c
SS
13397}
13398
433df2d4 13399/* Free the resources held by ABBREV_TABLE. */
c906108c 13400
c906108c 13401static void
433df2d4 13402abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 13403{
433df2d4
DE
13404 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13405 xfree (abbrev_table);
c906108c
SS
13406}
13407
f4dc4d17
DE
13408/* Same as abbrev_table_free but as a cleanup.
13409 We pass in a pointer to the pointer to the table so that we can
13410 set the pointer to NULL when we're done. It also simplifies
13411 build_type_unit_groups. */
13412
13413static void
13414abbrev_table_free_cleanup (void *table_ptr)
13415{
13416 struct abbrev_table **abbrev_table_ptr = table_ptr;
13417
13418 if (*abbrev_table_ptr != NULL)
13419 abbrev_table_free (*abbrev_table_ptr);
13420 *abbrev_table_ptr = NULL;
13421}
13422
433df2d4
DE
13423/* Read the abbrev table for CU from ABBREV_SECTION. */
13424
13425static void
13426dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13427 struct dwarf2_section_info *abbrev_section)
c906108c 13428{
433df2d4
DE
13429 cu->abbrev_table =
13430 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13431}
c906108c 13432
433df2d4 13433/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 13434
433df2d4
DE
13435static void
13436dwarf2_free_abbrev_table (void *ptr_to_cu)
13437{
13438 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 13439
433df2d4
DE
13440 abbrev_table_free (cu->abbrev_table);
13441 /* Set this to NULL so that we SEGV if we try to read it later,
13442 and also because free_comp_unit verifies this is NULL. */
13443 cu->abbrev_table = NULL;
13444}
13445\f
72bf9492
DJ
13446/* Returns nonzero if TAG represents a type that we might generate a partial
13447 symbol for. */
13448
13449static int
13450is_type_tag_for_partial (int tag)
13451{
13452 switch (tag)
13453 {
13454#if 0
13455 /* Some types that would be reasonable to generate partial symbols for,
13456 that we don't at present. */
13457 case DW_TAG_array_type:
13458 case DW_TAG_file_type:
13459 case DW_TAG_ptr_to_member_type:
13460 case DW_TAG_set_type:
13461 case DW_TAG_string_type:
13462 case DW_TAG_subroutine_type:
13463#endif
13464 case DW_TAG_base_type:
13465 case DW_TAG_class_type:
680b30c7 13466 case DW_TAG_interface_type:
72bf9492
DJ
13467 case DW_TAG_enumeration_type:
13468 case DW_TAG_structure_type:
13469 case DW_TAG_subrange_type:
13470 case DW_TAG_typedef:
13471 case DW_TAG_union_type:
13472 return 1;
13473 default:
13474 return 0;
13475 }
13476}
13477
13478/* Load all DIEs that are interesting for partial symbols into memory. */
13479
13480static struct partial_die_info *
dee91e82 13481load_partial_dies (const struct die_reader_specs *reader,
d521ce57 13482 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 13483{
dee91e82 13484 struct dwarf2_cu *cu = reader->cu;
bb5ed363 13485 struct objfile *objfile = cu->objfile;
72bf9492
DJ
13486 struct partial_die_info *part_die;
13487 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13488 struct abbrev_info *abbrev;
13489 unsigned int bytes_read;
5afb4e99 13490 unsigned int load_all = 0;
72bf9492
DJ
13491 int nesting_level = 1;
13492
13493 parent_die = NULL;
13494 last_die = NULL;
13495
7adf1e79
DE
13496 gdb_assert (cu->per_cu != NULL);
13497 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
13498 load_all = 1;
13499
72bf9492
DJ
13500 cu->partial_dies
13501 = htab_create_alloc_ex (cu->header.length / 12,
13502 partial_die_hash,
13503 partial_die_eq,
13504 NULL,
13505 &cu->comp_unit_obstack,
13506 hashtab_obstack_allocate,
13507 dummy_obstack_deallocate);
13508
13509 part_die = obstack_alloc (&cu->comp_unit_obstack,
13510 sizeof (struct partial_die_info));
13511
13512 while (1)
13513 {
13514 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13515
13516 /* A NULL abbrev means the end of a series of children. */
13517 if (abbrev == NULL)
13518 {
13519 if (--nesting_level == 0)
13520 {
13521 /* PART_DIE was probably the last thing allocated on the
13522 comp_unit_obstack, so we could call obstack_free
13523 here. We don't do that because the waste is small,
13524 and will be cleaned up when we're done with this
13525 compilation unit. This way, we're also more robust
13526 against other users of the comp_unit_obstack. */
13527 return first_die;
13528 }
13529 info_ptr += bytes_read;
13530 last_die = parent_die;
13531 parent_die = parent_die->die_parent;
13532 continue;
13533 }
13534
98bfdba5
PA
13535 /* Check for template arguments. We never save these; if
13536 they're seen, we just mark the parent, and go on our way. */
13537 if (parent_die != NULL
13538 && cu->language == language_cplus
13539 && (abbrev->tag == DW_TAG_template_type_param
13540 || abbrev->tag == DW_TAG_template_value_param))
13541 {
13542 parent_die->has_template_arguments = 1;
13543
13544 if (!load_all)
13545 {
13546 /* We don't need a partial DIE for the template argument. */
dee91e82 13547 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
13548 continue;
13549 }
13550 }
13551
0d99eb77 13552 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
13553 Skip their other children. */
13554 if (!load_all
13555 && cu->language == language_cplus
13556 && parent_die != NULL
13557 && parent_die->tag == DW_TAG_subprogram)
13558 {
dee91e82 13559 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
13560 continue;
13561 }
13562
5afb4e99
DJ
13563 /* Check whether this DIE is interesting enough to save. Normally
13564 we would not be interested in members here, but there may be
13565 later variables referencing them via DW_AT_specification (for
13566 static members). */
13567 if (!load_all
13568 && !is_type_tag_for_partial (abbrev->tag)
72929c62 13569 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
13570 && abbrev->tag != DW_TAG_enumerator
13571 && abbrev->tag != DW_TAG_subprogram
bc30ff58 13572 && abbrev->tag != DW_TAG_lexical_block
72bf9492 13573 && abbrev->tag != DW_TAG_variable
5afb4e99 13574 && abbrev->tag != DW_TAG_namespace
f55ee35c 13575 && abbrev->tag != DW_TAG_module
95554aad
TT
13576 && abbrev->tag != DW_TAG_member
13577 && abbrev->tag != DW_TAG_imported_unit)
72bf9492
DJ
13578 {
13579 /* Otherwise we skip to the next sibling, if any. */
dee91e82 13580 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
13581 continue;
13582 }
13583
dee91e82
DE
13584 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13585 info_ptr);
72bf9492
DJ
13586
13587 /* This two-pass algorithm for processing partial symbols has a
13588 high cost in cache pressure. Thus, handle some simple cases
13589 here which cover the majority of C partial symbols. DIEs
13590 which neither have specification tags in them, nor could have
13591 specification tags elsewhere pointing at them, can simply be
13592 processed and discarded.
13593
13594 This segment is also optional; scan_partial_symbols and
13595 add_partial_symbol will handle these DIEs if we chain
13596 them in normally. When compilers which do not emit large
13597 quantities of duplicate debug information are more common,
13598 this code can probably be removed. */
13599
13600 /* Any complete simple types at the top level (pretty much all
13601 of them, for a language without namespaces), can be processed
13602 directly. */
13603 if (parent_die == NULL
13604 && part_die->has_specification == 0
13605 && part_die->is_declaration == 0
d8228535 13606 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
13607 || part_die->tag == DW_TAG_base_type
13608 || part_die->tag == DW_TAG_subrange_type))
13609 {
13610 if (building_psymtab && part_die->name != NULL)
04a679b8 13611 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 13612 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
13613 &objfile->static_psymbols,
13614 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 13615 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
13616 continue;
13617 }
13618
d8228535
JK
13619 /* The exception for DW_TAG_typedef with has_children above is
13620 a workaround of GCC PR debug/47510. In the case of this complaint
13621 type_name_no_tag_or_error will error on such types later.
13622
13623 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13624 it could not find the child DIEs referenced later, this is checked
13625 above. In correct DWARF DW_TAG_typedef should have no children. */
13626
13627 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13628 complaint (&symfile_complaints,
13629 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13630 "- DIE at 0x%x [in module %s]"),
b64f50a1 13631 part_die->offset.sect_off, objfile->name);
d8228535 13632
72bf9492
DJ
13633 /* If we're at the second level, and we're an enumerator, and
13634 our parent has no specification (meaning possibly lives in a
13635 namespace elsewhere), then we can add the partial symbol now
13636 instead of queueing it. */
13637 if (part_die->tag == DW_TAG_enumerator
13638 && parent_die != NULL
13639 && parent_die->die_parent == NULL
13640 && parent_die->tag == DW_TAG_enumeration_type
13641 && parent_die->has_specification == 0)
13642 {
13643 if (part_die->name == NULL)
3e43a32a
MS
13644 complaint (&symfile_complaints,
13645 _("malformed enumerator DIE ignored"));
72bf9492 13646 else if (building_psymtab)
04a679b8 13647 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 13648 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
13649 (cu->language == language_cplus
13650 || cu->language == language_java)
bb5ed363
DE
13651 ? &objfile->global_psymbols
13652 : &objfile->static_psymbols,
13653 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 13654
dee91e82 13655 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
13656 continue;
13657 }
13658
13659 /* We'll save this DIE so link it in. */
13660 part_die->die_parent = parent_die;
13661 part_die->die_sibling = NULL;
13662 part_die->die_child = NULL;
13663
13664 if (last_die && last_die == parent_die)
13665 last_die->die_child = part_die;
13666 else if (last_die)
13667 last_die->die_sibling = part_die;
13668
13669 last_die = part_die;
13670
13671 if (first_die == NULL)
13672 first_die = part_die;
13673
13674 /* Maybe add the DIE to the hash table. Not all DIEs that we
13675 find interesting need to be in the hash table, because we
13676 also have the parent/sibling/child chains; only those that we
13677 might refer to by offset later during partial symbol reading.
13678
13679 For now this means things that might have be the target of a
13680 DW_AT_specification, DW_AT_abstract_origin, or
13681 DW_AT_extension. DW_AT_extension will refer only to
13682 namespaces; DW_AT_abstract_origin refers to functions (and
13683 many things under the function DIE, but we do not recurse
13684 into function DIEs during partial symbol reading) and
13685 possibly variables as well; DW_AT_specification refers to
13686 declarations. Declarations ought to have the DW_AT_declaration
13687 flag. It happens that GCC forgets to put it in sometimes, but
13688 only for functions, not for types.
13689
13690 Adding more things than necessary to the hash table is harmless
13691 except for the performance cost. Adding too few will result in
5afb4e99
DJ
13692 wasted time in find_partial_die, when we reread the compilation
13693 unit with load_all_dies set. */
72bf9492 13694
5afb4e99 13695 if (load_all
72929c62 13696 || abbrev->tag == DW_TAG_constant
5afb4e99 13697 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
13698 || abbrev->tag == DW_TAG_variable
13699 || abbrev->tag == DW_TAG_namespace
13700 || part_die->is_declaration)
13701 {
13702 void **slot;
13703
13704 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 13705 part_die->offset.sect_off, INSERT);
72bf9492
DJ
13706 *slot = part_die;
13707 }
13708
13709 part_die = obstack_alloc (&cu->comp_unit_obstack,
13710 sizeof (struct partial_die_info));
13711
13712 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 13713 we have no reason to follow the children of structures; for other
98bfdba5
PA
13714 languages we have to, so that we can get at method physnames
13715 to infer fully qualified class names, for DW_AT_specification,
13716 and for C++ template arguments. For C++, we also look one level
13717 inside functions to find template arguments (if the name of the
13718 function does not already contain the template arguments).
bc30ff58
JB
13719
13720 For Ada, we need to scan the children of subprograms and lexical
13721 blocks as well because Ada allows the definition of nested
13722 entities that could be interesting for the debugger, such as
13723 nested subprograms for instance. */
72bf9492 13724 if (last_die->has_children
5afb4e99
DJ
13725 && (load_all
13726 || last_die->tag == DW_TAG_namespace
f55ee35c 13727 || last_die->tag == DW_TAG_module
72bf9492 13728 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
13729 || (cu->language == language_cplus
13730 && last_die->tag == DW_TAG_subprogram
13731 && (last_die->name == NULL
13732 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
13733 || (cu->language != language_c
13734 && (last_die->tag == DW_TAG_class_type
680b30c7 13735 || last_die->tag == DW_TAG_interface_type
72bf9492 13736 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
13737 || last_die->tag == DW_TAG_union_type))
13738 || (cu->language == language_ada
13739 && (last_die->tag == DW_TAG_subprogram
13740 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
13741 {
13742 nesting_level++;
13743 parent_die = last_die;
13744 continue;
13745 }
13746
13747 /* Otherwise we skip to the next sibling, if any. */
dee91e82 13748 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
13749
13750 /* Back to the top, do it again. */
13751 }
13752}
13753
c906108c
SS
13754/* Read a minimal amount of information into the minimal die structure. */
13755
d521ce57 13756static const gdb_byte *
dee91e82
DE
13757read_partial_die (const struct die_reader_specs *reader,
13758 struct partial_die_info *part_die,
13759 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 13760 const gdb_byte *info_ptr)
c906108c 13761{
dee91e82 13762 struct dwarf2_cu *cu = reader->cu;
bb5ed363 13763 struct objfile *objfile = cu->objfile;
d521ce57 13764 const gdb_byte *buffer = reader->buffer;
fa238c03 13765 unsigned int i;
c906108c 13766 struct attribute attr;
c5aa993b 13767 int has_low_pc_attr = 0;
c906108c 13768 int has_high_pc_attr = 0;
91da1414 13769 int high_pc_relative = 0;
c906108c 13770
72bf9492 13771 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 13772
b64f50a1 13773 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
13774
13775 info_ptr += abbrev_len;
13776
13777 if (abbrev == NULL)
13778 return info_ptr;
13779
c906108c
SS
13780 part_die->tag = abbrev->tag;
13781 part_die->has_children = abbrev->has_children;
c906108c
SS
13782
13783 for (i = 0; i < abbrev->num_attrs; ++i)
13784 {
dee91e82 13785 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
13786
13787 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 13788 partial symbol table. */
c906108c
SS
13789 switch (attr.name)
13790 {
13791 case DW_AT_name:
71c25dea
TT
13792 switch (part_die->tag)
13793 {
13794 case DW_TAG_compile_unit:
95554aad 13795 case DW_TAG_partial_unit:
348e048f 13796 case DW_TAG_type_unit:
71c25dea
TT
13797 /* Compilation units have a DW_AT_name that is a filename, not
13798 a source language identifier. */
13799 case DW_TAG_enumeration_type:
13800 case DW_TAG_enumerator:
13801 /* These tags always have simple identifiers already; no need
13802 to canonicalize them. */
13803 part_die->name = DW_STRING (&attr);
13804 break;
13805 default:
13806 part_die->name
13807 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 13808 &objfile->objfile_obstack);
71c25dea
TT
13809 break;
13810 }
c906108c 13811 break;
31ef98ae 13812 case DW_AT_linkage_name:
c906108c 13813 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
13814 /* Note that both forms of linkage name might appear. We
13815 assume they will be the same, and we only store the last
13816 one we see. */
94af9270
KS
13817 if (cu->language == language_ada)
13818 part_die->name = DW_STRING (&attr);
abc72ce4 13819 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
13820 break;
13821 case DW_AT_low_pc:
13822 has_low_pc_attr = 1;
13823 part_die->lowpc = DW_ADDR (&attr);
13824 break;
13825 case DW_AT_high_pc:
13826 has_high_pc_attr = 1;
3019eac3
DE
13827 if (attr.form == DW_FORM_addr
13828 || attr.form == DW_FORM_GNU_addr_index)
91da1414
MW
13829 part_die->highpc = DW_ADDR (&attr);
13830 else
13831 {
13832 high_pc_relative = 1;
13833 part_die->highpc = DW_UNSND (&attr);
13834 }
c906108c
SS
13835 break;
13836 case DW_AT_location:
0963b4bd 13837 /* Support the .debug_loc offsets. */
8e19ed76
PS
13838 if (attr_form_is_block (&attr))
13839 {
95554aad 13840 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 13841 }
3690dd37 13842 else if (attr_form_is_section_offset (&attr))
8e19ed76 13843 {
4d3c2250 13844 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13845 }
13846 else
13847 {
4d3c2250
KB
13848 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13849 "partial symbol information");
8e19ed76 13850 }
c906108c 13851 break;
c906108c
SS
13852 case DW_AT_external:
13853 part_die->is_external = DW_UNSND (&attr);
13854 break;
13855 case DW_AT_declaration:
13856 part_die->is_declaration = DW_UNSND (&attr);
13857 break;
13858 case DW_AT_type:
13859 part_die->has_type = 1;
13860 break;
13861 case DW_AT_abstract_origin:
13862 case DW_AT_specification:
72bf9492
DJ
13863 case DW_AT_extension:
13864 part_die->has_specification = 1;
c764a876 13865 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
13866 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13867 || cu->per_cu->is_dwz);
c906108c
SS
13868 break;
13869 case DW_AT_sibling:
13870 /* Ignore absolute siblings, they might point outside of
13871 the current compile unit. */
13872 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
13873 complaint (&symfile_complaints,
13874 _("ignoring absolute DW_AT_sibling"));
c906108c 13875 else
b64f50a1 13876 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
c906108c 13877 break;
fa4028e9
JB
13878 case DW_AT_byte_size:
13879 part_die->has_byte_size = 1;
13880 break;
68511cec
CES
13881 case DW_AT_calling_convention:
13882 /* DWARF doesn't provide a way to identify a program's source-level
13883 entry point. DW_AT_calling_convention attributes are only meant
13884 to describe functions' calling conventions.
13885
13886 However, because it's a necessary piece of information in
13887 Fortran, and because DW_CC_program is the only piece of debugging
13888 information whose definition refers to a 'main program' at all,
13889 several compilers have begun marking Fortran main programs with
13890 DW_CC_program --- even when those functions use the standard
13891 calling conventions.
13892
13893 So until DWARF specifies a way to provide this information and
13894 compilers pick up the new representation, we'll support this
13895 practice. */
13896 if (DW_UNSND (&attr) == DW_CC_program
13897 && cu->language == language_fortran)
01f8c46d
JK
13898 {
13899 set_main_name (part_die->name);
13900
13901 /* As this DIE has a static linkage the name would be difficult
13902 to look up later. */
13903 language_of_main = language_fortran;
13904 }
68511cec 13905 break;
481860b3
GB
13906 case DW_AT_inline:
13907 if (DW_UNSND (&attr) == DW_INL_inlined
13908 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13909 part_die->may_be_inlined = 1;
13910 break;
95554aad
TT
13911
13912 case DW_AT_import:
13913 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
13914 {
13915 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13916 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13917 || cu->per_cu->is_dwz);
13918 }
95554aad
TT
13919 break;
13920
c906108c
SS
13921 default:
13922 break;
13923 }
13924 }
13925
91da1414
MW
13926 if (high_pc_relative)
13927 part_die->highpc += part_die->lowpc;
13928
9373cf26
JK
13929 if (has_low_pc_attr && has_high_pc_attr)
13930 {
13931 /* When using the GNU linker, .gnu.linkonce. sections are used to
13932 eliminate duplicate copies of functions and vtables and such.
13933 The linker will arbitrarily choose one and discard the others.
13934 The AT_*_pc values for such functions refer to local labels in
13935 these sections. If the section from that file was discarded, the
13936 labels are not in the output, so the relocs get a value of 0.
13937 If this is a discarded function, mark the pc bounds as invalid,
13938 so that GDB will ignore it. */
13939 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13940 {
bb5ed363 13941 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
13942
13943 complaint (&symfile_complaints,
13944 _("DW_AT_low_pc %s is zero "
13945 "for DIE at 0x%x [in module %s]"),
13946 paddress (gdbarch, part_die->lowpc),
b64f50a1 13947 part_die->offset.sect_off, objfile->name);
9373cf26
JK
13948 }
13949 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13950 else if (part_die->lowpc >= part_die->highpc)
13951 {
bb5ed363 13952 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
13953
13954 complaint (&symfile_complaints,
13955 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13956 "for DIE at 0x%x [in module %s]"),
13957 paddress (gdbarch, part_die->lowpc),
13958 paddress (gdbarch, part_die->highpc),
b64f50a1 13959 part_die->offset.sect_off, objfile->name);
9373cf26
JK
13960 }
13961 else
13962 part_die->has_pc_info = 1;
13963 }
85cbf3d3 13964
c906108c
SS
13965 return info_ptr;
13966}
13967
72bf9492
DJ
13968/* Find a cached partial DIE at OFFSET in CU. */
13969
13970static struct partial_die_info *
b64f50a1 13971find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
13972{
13973 struct partial_die_info *lookup_die = NULL;
13974 struct partial_die_info part_die;
13975
13976 part_die.offset = offset;
b64f50a1
JK
13977 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13978 offset.sect_off);
72bf9492 13979
72bf9492
DJ
13980 return lookup_die;
13981}
13982
348e048f
DE
13983/* Find a partial DIE at OFFSET, which may or may not be in CU,
13984 except in the case of .debug_types DIEs which do not reference
13985 outside their CU (they do however referencing other types via
55f1336d 13986 DW_FORM_ref_sig8). */
72bf9492
DJ
13987
13988static struct partial_die_info *
36586728 13989find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 13990{
bb5ed363 13991 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
13992 struct dwarf2_per_cu_data *per_cu = NULL;
13993 struct partial_die_info *pd = NULL;
72bf9492 13994
36586728
TT
13995 if (offset_in_dwz == cu->per_cu->is_dwz
13996 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
13997 {
13998 pd = find_partial_die_in_comp_unit (offset, cu);
13999 if (pd != NULL)
14000 return pd;
0d99eb77
DE
14001 /* We missed recording what we needed.
14002 Load all dies and try again. */
14003 per_cu = cu->per_cu;
5afb4e99 14004 }
0d99eb77
DE
14005 else
14006 {
14007 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 14008 if (cu->per_cu->is_debug_types)
0d99eb77
DE
14009 {
14010 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14011 " external reference to offset 0x%lx [in module %s].\n"),
14012 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14013 bfd_get_filename (objfile->obfd));
14014 }
36586728
TT
14015 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14016 objfile);
72bf9492 14017
0d99eb77
DE
14018 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14019 load_partial_comp_unit (per_cu);
ae038cb0 14020
0d99eb77
DE
14021 per_cu->cu->last_used = 0;
14022 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14023 }
5afb4e99 14024
dee91e82
DE
14025 /* If we didn't find it, and not all dies have been loaded,
14026 load them all and try again. */
14027
5afb4e99
DJ
14028 if (pd == NULL && per_cu->load_all_dies == 0)
14029 {
5afb4e99 14030 per_cu->load_all_dies = 1;
fd820528
DE
14031
14032 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14033 THIS_CU->cu may already be in use. So we can't just free it and
14034 replace its DIEs with the ones we read in. Instead, we leave those
14035 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14036 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14037 set. */
dee91e82 14038 load_partial_comp_unit (per_cu);
5afb4e99
DJ
14039
14040 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14041 }
14042
14043 if (pd == NULL)
14044 internal_error (__FILE__, __LINE__,
3e43a32a
MS
14045 _("could not find partial DIE 0x%x "
14046 "in cache [from module %s]\n"),
b64f50a1 14047 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 14048 return pd;
72bf9492
DJ
14049}
14050
abc72ce4
DE
14051/* See if we can figure out if the class lives in a namespace. We do
14052 this by looking for a member function; its demangled name will
14053 contain namespace info, if there is any. */
14054
14055static void
14056guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14057 struct dwarf2_cu *cu)
14058{
14059 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14060 what template types look like, because the demangler
14061 frequently doesn't give the same name as the debug info. We
14062 could fix this by only using the demangled name to get the
14063 prefix (but see comment in read_structure_type). */
14064
14065 struct partial_die_info *real_pdi;
14066 struct partial_die_info *child_pdi;
14067
14068 /* If this DIE (this DIE's specification, if any) has a parent, then
14069 we should not do this. We'll prepend the parent's fully qualified
14070 name when we create the partial symbol. */
14071
14072 real_pdi = struct_pdi;
14073 while (real_pdi->has_specification)
36586728
TT
14074 real_pdi = find_partial_die (real_pdi->spec_offset,
14075 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
14076
14077 if (real_pdi->die_parent != NULL)
14078 return;
14079
14080 for (child_pdi = struct_pdi->die_child;
14081 child_pdi != NULL;
14082 child_pdi = child_pdi->die_sibling)
14083 {
14084 if (child_pdi->tag == DW_TAG_subprogram
14085 && child_pdi->linkage_name != NULL)
14086 {
14087 char *actual_class_name
14088 = language_class_name_from_physname (cu->language_defn,
14089 child_pdi->linkage_name);
14090 if (actual_class_name != NULL)
14091 {
14092 struct_pdi->name
10f0c4bb
TT
14093 = obstack_copy0 (&cu->objfile->objfile_obstack,
14094 actual_class_name,
14095 strlen (actual_class_name));
abc72ce4
DE
14096 xfree (actual_class_name);
14097 }
14098 break;
14099 }
14100 }
14101}
14102
72bf9492
DJ
14103/* Adjust PART_DIE before generating a symbol for it. This function
14104 may set the is_external flag or change the DIE's name. */
14105
14106static void
14107fixup_partial_die (struct partial_die_info *part_die,
14108 struct dwarf2_cu *cu)
14109{
abc72ce4
DE
14110 /* Once we've fixed up a die, there's no point in doing so again.
14111 This also avoids a memory leak if we were to call
14112 guess_partial_die_structure_name multiple times. */
14113 if (part_die->fixup_called)
14114 return;
14115
72bf9492
DJ
14116 /* If we found a reference attribute and the DIE has no name, try
14117 to find a name in the referred to DIE. */
14118
14119 if (part_die->name == NULL && part_die->has_specification)
14120 {
14121 struct partial_die_info *spec_die;
72bf9492 14122
36586728
TT
14123 spec_die = find_partial_die (part_die->spec_offset,
14124 part_die->spec_is_dwz, cu);
72bf9492 14125
10b3939b 14126 fixup_partial_die (spec_die, cu);
72bf9492
DJ
14127
14128 if (spec_die->name)
14129 {
14130 part_die->name = spec_die->name;
14131
14132 /* Copy DW_AT_external attribute if it is set. */
14133 if (spec_die->is_external)
14134 part_die->is_external = spec_die->is_external;
14135 }
14136 }
14137
14138 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
14139
14140 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 14141 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 14142
abc72ce4
DE
14143 /* If there is no parent die to provide a namespace, and there are
14144 children, see if we can determine the namespace from their linkage
122d1940 14145 name. */
abc72ce4 14146 if (cu->language == language_cplus
8b70b953 14147 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
14148 && part_die->die_parent == NULL
14149 && part_die->has_children
14150 && (part_die->tag == DW_TAG_class_type
14151 || part_die->tag == DW_TAG_structure_type
14152 || part_die->tag == DW_TAG_union_type))
14153 guess_partial_die_structure_name (part_die, cu);
14154
53832f31
TT
14155 /* GCC might emit a nameless struct or union that has a linkage
14156 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14157 if (part_die->name == NULL
96408a79
SA
14158 && (part_die->tag == DW_TAG_class_type
14159 || part_die->tag == DW_TAG_interface_type
14160 || part_die->tag == DW_TAG_structure_type
14161 || part_die->tag == DW_TAG_union_type)
53832f31
TT
14162 && part_die->linkage_name != NULL)
14163 {
14164 char *demangled;
14165
8de20a37 14166 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
14167 if (demangled)
14168 {
96408a79
SA
14169 const char *base;
14170
14171 /* Strip any leading namespaces/classes, keep only the base name.
14172 DW_AT_name for named DIEs does not contain the prefixes. */
14173 base = strrchr (demangled, ':');
14174 if (base && base > demangled && base[-1] == ':')
14175 base++;
14176 else
14177 base = demangled;
14178
10f0c4bb
TT
14179 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14180 base, strlen (base));
53832f31
TT
14181 xfree (demangled);
14182 }
14183 }
14184
abc72ce4 14185 part_die->fixup_called = 1;
72bf9492
DJ
14186}
14187
a8329558 14188/* Read an attribute value described by an attribute form. */
c906108c 14189
d521ce57 14190static const gdb_byte *
dee91e82
DE
14191read_attribute_value (const struct die_reader_specs *reader,
14192 struct attribute *attr, unsigned form,
d521ce57 14193 const gdb_byte *info_ptr)
c906108c 14194{
dee91e82
DE
14195 struct dwarf2_cu *cu = reader->cu;
14196 bfd *abfd = reader->abfd;
e7c27a73 14197 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
14198 unsigned int bytes_read;
14199 struct dwarf_block *blk;
14200
a8329558
KW
14201 attr->form = form;
14202 switch (form)
c906108c 14203 {
c906108c 14204 case DW_FORM_ref_addr:
ae411497 14205 if (cu->header.version == 2)
4568ecf9 14206 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 14207 else
4568ecf9
DE
14208 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14209 &cu->header, &bytes_read);
ae411497
TT
14210 info_ptr += bytes_read;
14211 break;
36586728
TT
14212 case DW_FORM_GNU_ref_alt:
14213 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14214 info_ptr += bytes_read;
14215 break;
ae411497 14216 case DW_FORM_addr:
e7c27a73 14217 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 14218 info_ptr += bytes_read;
c906108c
SS
14219 break;
14220 case DW_FORM_block2:
7b5a2f43 14221 blk = dwarf_alloc_block (cu);
c906108c
SS
14222 blk->size = read_2_bytes (abfd, info_ptr);
14223 info_ptr += 2;
14224 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14225 info_ptr += blk->size;
14226 DW_BLOCK (attr) = blk;
14227 break;
14228 case DW_FORM_block4:
7b5a2f43 14229 blk = dwarf_alloc_block (cu);
c906108c
SS
14230 blk->size = read_4_bytes (abfd, info_ptr);
14231 info_ptr += 4;
14232 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14233 info_ptr += blk->size;
14234 DW_BLOCK (attr) = blk;
14235 break;
14236 case DW_FORM_data2:
14237 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14238 info_ptr += 2;
14239 break;
14240 case DW_FORM_data4:
14241 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14242 info_ptr += 4;
14243 break;
14244 case DW_FORM_data8:
14245 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14246 info_ptr += 8;
14247 break;
2dc7f7b3
TT
14248 case DW_FORM_sec_offset:
14249 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14250 info_ptr += bytes_read;
14251 break;
c906108c 14252 case DW_FORM_string:
9b1c24c8 14253 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 14254 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
14255 info_ptr += bytes_read;
14256 break;
4bdf3d34 14257 case DW_FORM_strp:
36586728
TT
14258 if (!cu->per_cu->is_dwz)
14259 {
14260 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14261 &bytes_read);
14262 DW_STRING_IS_CANONICAL (attr) = 0;
14263 info_ptr += bytes_read;
14264 break;
14265 }
14266 /* FALLTHROUGH */
14267 case DW_FORM_GNU_strp_alt:
14268 {
14269 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14270 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14271 &bytes_read);
14272
14273 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14274 DW_STRING_IS_CANONICAL (attr) = 0;
14275 info_ptr += bytes_read;
14276 }
4bdf3d34 14277 break;
2dc7f7b3 14278 case DW_FORM_exprloc:
c906108c 14279 case DW_FORM_block:
7b5a2f43 14280 blk = dwarf_alloc_block (cu);
c906108c
SS
14281 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14282 info_ptr += bytes_read;
14283 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14284 info_ptr += blk->size;
14285 DW_BLOCK (attr) = blk;
14286 break;
14287 case DW_FORM_block1:
7b5a2f43 14288 blk = dwarf_alloc_block (cu);
c906108c
SS
14289 blk->size = read_1_byte (abfd, info_ptr);
14290 info_ptr += 1;
14291 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14292 info_ptr += blk->size;
14293 DW_BLOCK (attr) = blk;
14294 break;
14295 case DW_FORM_data1:
14296 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14297 info_ptr += 1;
14298 break;
14299 case DW_FORM_flag:
14300 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14301 info_ptr += 1;
14302 break;
2dc7f7b3
TT
14303 case DW_FORM_flag_present:
14304 DW_UNSND (attr) = 1;
14305 break;
c906108c
SS
14306 case DW_FORM_sdata:
14307 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14308 info_ptr += bytes_read;
14309 break;
14310 case DW_FORM_udata:
14311 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14312 info_ptr += bytes_read;
14313 break;
14314 case DW_FORM_ref1:
4568ecf9
DE
14315 DW_UNSND (attr) = (cu->header.offset.sect_off
14316 + read_1_byte (abfd, info_ptr));
c906108c
SS
14317 info_ptr += 1;
14318 break;
14319 case DW_FORM_ref2:
4568ecf9
DE
14320 DW_UNSND (attr) = (cu->header.offset.sect_off
14321 + read_2_bytes (abfd, info_ptr));
c906108c
SS
14322 info_ptr += 2;
14323 break;
14324 case DW_FORM_ref4:
4568ecf9
DE
14325 DW_UNSND (attr) = (cu->header.offset.sect_off
14326 + read_4_bytes (abfd, info_ptr));
c906108c
SS
14327 info_ptr += 4;
14328 break;
613e1657 14329 case DW_FORM_ref8:
4568ecf9
DE
14330 DW_UNSND (attr) = (cu->header.offset.sect_off
14331 + read_8_bytes (abfd, info_ptr));
613e1657
KB
14332 info_ptr += 8;
14333 break;
55f1336d 14334 case DW_FORM_ref_sig8:
ac9ec31b 14335 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
14336 info_ptr += 8;
14337 break;
c906108c 14338 case DW_FORM_ref_udata:
4568ecf9
DE
14339 DW_UNSND (attr) = (cu->header.offset.sect_off
14340 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
14341 info_ptr += bytes_read;
14342 break;
c906108c 14343 case DW_FORM_indirect:
a8329558
KW
14344 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14345 info_ptr += bytes_read;
dee91e82 14346 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 14347 break;
3019eac3
DE
14348 case DW_FORM_GNU_addr_index:
14349 if (reader->dwo_file == NULL)
14350 {
14351 /* For now flag a hard error.
14352 Later we can turn this into a complaint. */
14353 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14354 dwarf_form_name (form),
14355 bfd_get_filename (abfd));
14356 }
14357 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14358 info_ptr += bytes_read;
14359 break;
14360 case DW_FORM_GNU_str_index:
14361 if (reader->dwo_file == NULL)
14362 {
14363 /* For now flag a hard error.
14364 Later we can turn this into a complaint if warranted. */
14365 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14366 dwarf_form_name (form),
14367 bfd_get_filename (abfd));
14368 }
14369 {
14370 ULONGEST str_index =
14371 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14372
14373 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14374 DW_STRING_IS_CANONICAL (attr) = 0;
14375 info_ptr += bytes_read;
14376 }
14377 break;
c906108c 14378 default:
8a3fe4f8 14379 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
14380 dwarf_form_name (form),
14381 bfd_get_filename (abfd));
c906108c 14382 }
28e94949 14383
36586728
TT
14384 /* Super hack. */
14385 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14386 attr->form = DW_FORM_GNU_ref_alt;
14387
28e94949
JB
14388 /* We have seen instances where the compiler tried to emit a byte
14389 size attribute of -1 which ended up being encoded as an unsigned
14390 0xffffffff. Although 0xffffffff is technically a valid size value,
14391 an object of this size seems pretty unlikely so we can relatively
14392 safely treat these cases as if the size attribute was invalid and
14393 treat them as zero by default. */
14394 if (attr->name == DW_AT_byte_size
14395 && form == DW_FORM_data4
14396 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
14397 {
14398 complaint
14399 (&symfile_complaints,
43bbcdc2
PH
14400 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14401 hex_string (DW_UNSND (attr)));
01c66ae6
JB
14402 DW_UNSND (attr) = 0;
14403 }
28e94949 14404
c906108c
SS
14405 return info_ptr;
14406}
14407
a8329558
KW
14408/* Read an attribute described by an abbreviated attribute. */
14409
d521ce57 14410static const gdb_byte *
dee91e82
DE
14411read_attribute (const struct die_reader_specs *reader,
14412 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 14413 const gdb_byte *info_ptr)
a8329558
KW
14414{
14415 attr->name = abbrev->name;
dee91e82 14416 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
14417}
14418
0963b4bd 14419/* Read dwarf information from a buffer. */
c906108c
SS
14420
14421static unsigned int
a1855c1d 14422read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14423{
fe1b8b76 14424 return bfd_get_8 (abfd, buf);
c906108c
SS
14425}
14426
14427static int
a1855c1d 14428read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14429{
fe1b8b76 14430 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
14431}
14432
14433static unsigned int
a1855c1d 14434read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14435{
fe1b8b76 14436 return bfd_get_16 (abfd, buf);
c906108c
SS
14437}
14438
21ae7a4d 14439static int
a1855c1d 14440read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14441{
14442 return bfd_get_signed_16 (abfd, buf);
14443}
14444
c906108c 14445static unsigned int
a1855c1d 14446read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14447{
fe1b8b76 14448 return bfd_get_32 (abfd, buf);
c906108c
SS
14449}
14450
21ae7a4d 14451static int
a1855c1d 14452read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14453{
14454 return bfd_get_signed_32 (abfd, buf);
14455}
14456
93311388 14457static ULONGEST
a1855c1d 14458read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14459{
fe1b8b76 14460 return bfd_get_64 (abfd, buf);
c906108c
SS
14461}
14462
14463static CORE_ADDR
d521ce57 14464read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 14465 unsigned int *bytes_read)
c906108c 14466{
e7c27a73 14467 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
14468 CORE_ADDR retval = 0;
14469
107d2387 14470 if (cu_header->signed_addr_p)
c906108c 14471 {
107d2387
AC
14472 switch (cu_header->addr_size)
14473 {
14474 case 2:
fe1b8b76 14475 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
14476 break;
14477 case 4:
fe1b8b76 14478 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
14479 break;
14480 case 8:
fe1b8b76 14481 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
14482 break;
14483 default:
8e65ff28 14484 internal_error (__FILE__, __LINE__,
e2e0b3e5 14485 _("read_address: bad switch, signed [in module %s]"),
659b0389 14486 bfd_get_filename (abfd));
107d2387
AC
14487 }
14488 }
14489 else
14490 {
14491 switch (cu_header->addr_size)
14492 {
14493 case 2:
fe1b8b76 14494 retval = bfd_get_16 (abfd, buf);
107d2387
AC
14495 break;
14496 case 4:
fe1b8b76 14497 retval = bfd_get_32 (abfd, buf);
107d2387
AC
14498 break;
14499 case 8:
fe1b8b76 14500 retval = bfd_get_64 (abfd, buf);
107d2387
AC
14501 break;
14502 default:
8e65ff28 14503 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
14504 _("read_address: bad switch, "
14505 "unsigned [in module %s]"),
659b0389 14506 bfd_get_filename (abfd));
107d2387 14507 }
c906108c 14508 }
64367e0a 14509
107d2387
AC
14510 *bytes_read = cu_header->addr_size;
14511 return retval;
c906108c
SS
14512}
14513
f7ef9339 14514/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
14515 specification allows the initial length to take up either 4 bytes
14516 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14517 bytes describe the length and all offsets will be 8 bytes in length
14518 instead of 4.
14519
f7ef9339
KB
14520 An older, non-standard 64-bit format is also handled by this
14521 function. The older format in question stores the initial length
14522 as an 8-byte quantity without an escape value. Lengths greater
14523 than 2^32 aren't very common which means that the initial 4 bytes
14524 is almost always zero. Since a length value of zero doesn't make
14525 sense for the 32-bit format, this initial zero can be considered to
14526 be an escape value which indicates the presence of the older 64-bit
14527 format. As written, the code can't detect (old format) lengths
917c78fc
MK
14528 greater than 4GB. If it becomes necessary to handle lengths
14529 somewhat larger than 4GB, we could allow other small values (such
14530 as the non-sensical values of 1, 2, and 3) to also be used as
14531 escape values indicating the presence of the old format.
f7ef9339 14532
917c78fc
MK
14533 The value returned via bytes_read should be used to increment the
14534 relevant pointer after calling read_initial_length().
c764a876 14535
613e1657
KB
14536 [ Note: read_initial_length() and read_offset() are based on the
14537 document entitled "DWARF Debugging Information Format", revision
f7ef9339 14538 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
14539 from:
14540
f7ef9339 14541 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 14542
613e1657
KB
14543 This document is only a draft and is subject to change. (So beware.)
14544
f7ef9339 14545 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
14546 determined empirically by examining 64-bit ELF files produced by
14547 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
14548
14549 - Kevin, July 16, 2002
613e1657
KB
14550 ] */
14551
14552static LONGEST
d521ce57 14553read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 14554{
fe1b8b76 14555 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 14556
dd373385 14557 if (length == 0xffffffff)
613e1657 14558 {
fe1b8b76 14559 length = bfd_get_64 (abfd, buf + 4);
613e1657 14560 *bytes_read = 12;
613e1657 14561 }
dd373385 14562 else if (length == 0)
f7ef9339 14563 {
dd373385 14564 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 14565 length = bfd_get_64 (abfd, buf);
f7ef9339 14566 *bytes_read = 8;
f7ef9339 14567 }
613e1657
KB
14568 else
14569 {
14570 *bytes_read = 4;
613e1657
KB
14571 }
14572
c764a876
DE
14573 return length;
14574}
dd373385 14575
c764a876
DE
14576/* Cover function for read_initial_length.
14577 Returns the length of the object at BUF, and stores the size of the
14578 initial length in *BYTES_READ and stores the size that offsets will be in
14579 *OFFSET_SIZE.
14580 If the initial length size is not equivalent to that specified in
14581 CU_HEADER then issue a complaint.
14582 This is useful when reading non-comp-unit headers. */
dd373385 14583
c764a876 14584static LONGEST
d521ce57 14585read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
14586 const struct comp_unit_head *cu_header,
14587 unsigned int *bytes_read,
14588 unsigned int *offset_size)
14589{
14590 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14591
14592 gdb_assert (cu_header->initial_length_size == 4
14593 || cu_header->initial_length_size == 8
14594 || cu_header->initial_length_size == 12);
14595
14596 if (cu_header->initial_length_size != *bytes_read)
14597 complaint (&symfile_complaints,
14598 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 14599
c764a876 14600 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 14601 return length;
613e1657
KB
14602}
14603
14604/* Read an offset from the data stream. The size of the offset is
917c78fc 14605 given by cu_header->offset_size. */
613e1657
KB
14606
14607static LONGEST
d521ce57
TT
14608read_offset (bfd *abfd, const gdb_byte *buf,
14609 const struct comp_unit_head *cu_header,
891d2f0b 14610 unsigned int *bytes_read)
c764a876
DE
14611{
14612 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 14613
c764a876
DE
14614 *bytes_read = cu_header->offset_size;
14615 return offset;
14616}
14617
14618/* Read an offset from the data stream. */
14619
14620static LONGEST
d521ce57 14621read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
14622{
14623 LONGEST retval = 0;
14624
c764a876 14625 switch (offset_size)
613e1657
KB
14626 {
14627 case 4:
fe1b8b76 14628 retval = bfd_get_32 (abfd, buf);
613e1657
KB
14629 break;
14630 case 8:
fe1b8b76 14631 retval = bfd_get_64 (abfd, buf);
613e1657
KB
14632 break;
14633 default:
8e65ff28 14634 internal_error (__FILE__, __LINE__,
c764a876 14635 _("read_offset_1: bad switch [in module %s]"),
659b0389 14636 bfd_get_filename (abfd));
613e1657
KB
14637 }
14638
917c78fc 14639 return retval;
613e1657
KB
14640}
14641
d521ce57
TT
14642static const gdb_byte *
14643read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
14644{
14645 /* If the size of a host char is 8 bits, we can return a pointer
14646 to the buffer, otherwise we have to copy the data to a buffer
14647 allocated on the temporary obstack. */
4bdf3d34 14648 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 14649 return buf;
c906108c
SS
14650}
14651
d521ce57
TT
14652static const char *
14653read_direct_string (bfd *abfd, const gdb_byte *buf,
14654 unsigned int *bytes_read_ptr)
c906108c
SS
14655{
14656 /* If the size of a host char is 8 bits, we can return a pointer
14657 to the string, otherwise we have to copy the string to a buffer
14658 allocated on the temporary obstack. */
4bdf3d34 14659 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
14660 if (*buf == '\0')
14661 {
14662 *bytes_read_ptr = 1;
14663 return NULL;
14664 }
d521ce57
TT
14665 *bytes_read_ptr = strlen ((const char *) buf) + 1;
14666 return (const char *) buf;
4bdf3d34
JJ
14667}
14668
d521ce57 14669static const char *
cf2c3c16 14670read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 14671{
be391dca 14672 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 14673 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
14674 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14675 bfd_get_filename (abfd));
dce234bc 14676 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
14677 error (_("DW_FORM_strp pointing outside of "
14678 ".debug_str section [in module %s]"),
14679 bfd_get_filename (abfd));
4bdf3d34 14680 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 14681 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 14682 return NULL;
d521ce57 14683 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
14684}
14685
36586728
TT
14686/* Read a string at offset STR_OFFSET in the .debug_str section from
14687 the .dwz file DWZ. Throw an error if the offset is too large. If
14688 the string consists of a single NUL byte, return NULL; otherwise
14689 return a pointer to the string. */
14690
d521ce57 14691static const char *
36586728
TT
14692read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14693{
14694 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14695
14696 if (dwz->str.buffer == NULL)
14697 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14698 "section [in module %s]"),
14699 bfd_get_filename (dwz->dwz_bfd));
14700 if (str_offset >= dwz->str.size)
14701 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14702 ".debug_str section [in module %s]"),
14703 bfd_get_filename (dwz->dwz_bfd));
14704 gdb_assert (HOST_CHAR_BIT == 8);
14705 if (dwz->str.buffer[str_offset] == '\0')
14706 return NULL;
d521ce57 14707 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
14708}
14709
d521ce57
TT
14710static const char *
14711read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
14712 const struct comp_unit_head *cu_header,
14713 unsigned int *bytes_read_ptr)
14714{
14715 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14716
14717 return read_indirect_string_at_offset (abfd, str_offset);
14718}
14719
12df843f 14720static ULONGEST
d521ce57
TT
14721read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
14722 unsigned int *bytes_read_ptr)
c906108c 14723{
12df843f 14724 ULONGEST result;
ce5d95e1 14725 unsigned int num_read;
c906108c
SS
14726 int i, shift;
14727 unsigned char byte;
14728
14729 result = 0;
14730 shift = 0;
14731 num_read = 0;
14732 i = 0;
14733 while (1)
14734 {
fe1b8b76 14735 byte = bfd_get_8 (abfd, buf);
c906108c
SS
14736 buf++;
14737 num_read++;
12df843f 14738 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
14739 if ((byte & 128) == 0)
14740 {
14741 break;
14742 }
14743 shift += 7;
14744 }
14745 *bytes_read_ptr = num_read;
14746 return result;
14747}
14748
12df843f 14749static LONGEST
d521ce57
TT
14750read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
14751 unsigned int *bytes_read_ptr)
c906108c 14752{
12df843f 14753 LONGEST result;
77e0b926 14754 int i, shift, num_read;
c906108c
SS
14755 unsigned char byte;
14756
14757 result = 0;
14758 shift = 0;
c906108c
SS
14759 num_read = 0;
14760 i = 0;
14761 while (1)
14762 {
fe1b8b76 14763 byte = bfd_get_8 (abfd, buf);
c906108c
SS
14764 buf++;
14765 num_read++;
12df843f 14766 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
14767 shift += 7;
14768 if ((byte & 128) == 0)
14769 {
14770 break;
14771 }
14772 }
77e0b926 14773 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 14774 result |= -(((LONGEST) 1) << shift);
c906108c
SS
14775 *bytes_read_ptr = num_read;
14776 return result;
14777}
14778
3019eac3
DE
14779/* Given index ADDR_INDEX in .debug_addr, fetch the value.
14780 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14781 ADDR_SIZE is the size of addresses from the CU header. */
14782
14783static CORE_ADDR
14784read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14785{
14786 struct objfile *objfile = dwarf2_per_objfile->objfile;
14787 bfd *abfd = objfile->obfd;
14788 const gdb_byte *info_ptr;
14789
14790 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14791 if (dwarf2_per_objfile->addr.buffer == NULL)
14792 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14793 objfile->name);
14794 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14795 error (_("DW_FORM_addr_index pointing outside of "
14796 ".debug_addr section [in module %s]"),
14797 objfile->name);
14798 info_ptr = (dwarf2_per_objfile->addr.buffer
14799 + addr_base + addr_index * addr_size);
14800 if (addr_size == 4)
14801 return bfd_get_32 (abfd, info_ptr);
14802 else
14803 return bfd_get_64 (abfd, info_ptr);
14804}
14805
14806/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14807
14808static CORE_ADDR
14809read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14810{
14811 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14812}
14813
14814/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14815
14816static CORE_ADDR
d521ce57 14817read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
14818 unsigned int *bytes_read)
14819{
14820 bfd *abfd = cu->objfile->obfd;
14821 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14822
14823 return read_addr_index (cu, addr_index);
14824}
14825
14826/* Data structure to pass results from dwarf2_read_addr_index_reader
14827 back to dwarf2_read_addr_index. */
14828
14829struct dwarf2_read_addr_index_data
14830{
14831 ULONGEST addr_base;
14832 int addr_size;
14833};
14834
14835/* die_reader_func for dwarf2_read_addr_index. */
14836
14837static void
14838dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 14839 const gdb_byte *info_ptr,
3019eac3
DE
14840 struct die_info *comp_unit_die,
14841 int has_children,
14842 void *data)
14843{
14844 struct dwarf2_cu *cu = reader->cu;
14845 struct dwarf2_read_addr_index_data *aidata =
14846 (struct dwarf2_read_addr_index_data *) data;
14847
14848 aidata->addr_base = cu->addr_base;
14849 aidata->addr_size = cu->header.addr_size;
14850}
14851
14852/* Given an index in .debug_addr, fetch the value.
14853 NOTE: This can be called during dwarf expression evaluation,
14854 long after the debug information has been read, and thus per_cu->cu
14855 may no longer exist. */
14856
14857CORE_ADDR
14858dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14859 unsigned int addr_index)
14860{
14861 struct objfile *objfile = per_cu->objfile;
14862 struct dwarf2_cu *cu = per_cu->cu;
14863 ULONGEST addr_base;
14864 int addr_size;
14865
14866 /* This is intended to be called from outside this file. */
14867 dw2_setup (objfile);
14868
14869 /* We need addr_base and addr_size.
14870 If we don't have PER_CU->cu, we have to get it.
14871 Nasty, but the alternative is storing the needed info in PER_CU,
14872 which at this point doesn't seem justified: it's not clear how frequently
14873 it would get used and it would increase the size of every PER_CU.
14874 Entry points like dwarf2_per_cu_addr_size do a similar thing
14875 so we're not in uncharted territory here.
14876 Alas we need to be a bit more complicated as addr_base is contained
14877 in the DIE.
14878
14879 We don't need to read the entire CU(/TU).
14880 We just need the header and top level die.
a1b64ce1 14881
3019eac3 14882 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 14883 For now we skip this optimization. */
3019eac3
DE
14884
14885 if (cu != NULL)
14886 {
14887 addr_base = cu->addr_base;
14888 addr_size = cu->header.addr_size;
14889 }
14890 else
14891 {
14892 struct dwarf2_read_addr_index_data aidata;
14893
a1b64ce1
DE
14894 /* Note: We can't use init_cutu_and_read_dies_simple here,
14895 we need addr_base. */
14896 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14897 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
14898 addr_base = aidata.addr_base;
14899 addr_size = aidata.addr_size;
14900 }
14901
14902 return read_addr_index_1 (addr_index, addr_base, addr_size);
14903}
14904
14905/* Given a DW_AT_str_index, fetch the string. */
14906
d521ce57 14907static const char *
3019eac3
DE
14908read_str_index (const struct die_reader_specs *reader,
14909 struct dwarf2_cu *cu, ULONGEST str_index)
14910{
14911 struct objfile *objfile = dwarf2_per_objfile->objfile;
14912 const char *dwo_name = objfile->name;
14913 bfd *abfd = objfile->obfd;
14914 struct dwo_sections *sections = &reader->dwo_file->sections;
d521ce57 14915 const gdb_byte *info_ptr;
3019eac3
DE
14916 ULONGEST str_offset;
14917
14918 dwarf2_read_section (objfile, &sections->str);
14919 dwarf2_read_section (objfile, &sections->str_offsets);
14920 if (sections->str.buffer == NULL)
14921 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14922 " in CU at offset 0x%lx [in module %s]"),
14923 (long) cu->header.offset.sect_off, dwo_name);
14924 if (sections->str_offsets.buffer == NULL)
14925 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14926 " in CU at offset 0x%lx [in module %s]"),
14927 (long) cu->header.offset.sect_off, dwo_name);
14928 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14929 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14930 " section in CU at offset 0x%lx [in module %s]"),
14931 (long) cu->header.offset.sect_off, dwo_name);
14932 info_ptr = (sections->str_offsets.buffer
14933 + str_index * cu->header.offset_size);
14934 if (cu->header.offset_size == 4)
14935 str_offset = bfd_get_32 (abfd, info_ptr);
14936 else
14937 str_offset = bfd_get_64 (abfd, info_ptr);
14938 if (str_offset >= sections->str.size)
14939 error (_("Offset from DW_FORM_str_index pointing outside of"
14940 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14941 (long) cu->header.offset.sect_off, dwo_name);
d521ce57 14942 return (const char *) (sections->str.buffer + str_offset);
3019eac3
DE
14943}
14944
3019eac3
DE
14945/* Return the length of an LEB128 number in BUF. */
14946
14947static int
14948leb128_size (const gdb_byte *buf)
14949{
14950 const gdb_byte *begin = buf;
14951 gdb_byte byte;
14952
14953 while (1)
14954 {
14955 byte = *buf++;
14956 if ((byte & 128) == 0)
14957 return buf - begin;
14958 }
14959}
14960
c906108c 14961static void
e142c38c 14962set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
14963{
14964 switch (lang)
14965 {
14966 case DW_LANG_C89:
76bee0cc 14967 case DW_LANG_C99:
c906108c 14968 case DW_LANG_C:
e142c38c 14969 cu->language = language_c;
c906108c
SS
14970 break;
14971 case DW_LANG_C_plus_plus:
e142c38c 14972 cu->language = language_cplus;
c906108c 14973 break;
6aecb9c2
JB
14974 case DW_LANG_D:
14975 cu->language = language_d;
14976 break;
c906108c
SS
14977 case DW_LANG_Fortran77:
14978 case DW_LANG_Fortran90:
b21b22e0 14979 case DW_LANG_Fortran95:
e142c38c 14980 cu->language = language_fortran;
c906108c 14981 break;
a766d390
DE
14982 case DW_LANG_Go:
14983 cu->language = language_go;
14984 break;
c906108c 14985 case DW_LANG_Mips_Assembler:
e142c38c 14986 cu->language = language_asm;
c906108c 14987 break;
bebd888e 14988 case DW_LANG_Java:
e142c38c 14989 cu->language = language_java;
bebd888e 14990 break;
c906108c 14991 case DW_LANG_Ada83:
8aaf0b47 14992 case DW_LANG_Ada95:
bc5f45f8
JB
14993 cu->language = language_ada;
14994 break;
72019c9c
GM
14995 case DW_LANG_Modula2:
14996 cu->language = language_m2;
14997 break;
fe8e67fd
PM
14998 case DW_LANG_Pascal83:
14999 cu->language = language_pascal;
15000 break;
22566fbd
DJ
15001 case DW_LANG_ObjC:
15002 cu->language = language_objc;
15003 break;
c906108c
SS
15004 case DW_LANG_Cobol74:
15005 case DW_LANG_Cobol85:
c906108c 15006 default:
e142c38c 15007 cu->language = language_minimal;
c906108c
SS
15008 break;
15009 }
e142c38c 15010 cu->language_defn = language_def (cu->language);
c906108c
SS
15011}
15012
15013/* Return the named attribute or NULL if not there. */
15014
15015static struct attribute *
e142c38c 15016dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 15017{
a48e046c 15018 for (;;)
c906108c 15019 {
a48e046c
TT
15020 unsigned int i;
15021 struct attribute *spec = NULL;
15022
15023 for (i = 0; i < die->num_attrs; ++i)
15024 {
15025 if (die->attrs[i].name == name)
15026 return &die->attrs[i];
15027 if (die->attrs[i].name == DW_AT_specification
15028 || die->attrs[i].name == DW_AT_abstract_origin)
15029 spec = &die->attrs[i];
15030 }
15031
15032 if (!spec)
15033 break;
c906108c 15034
f2f0e013 15035 die = follow_die_ref (die, spec, &cu);
f2f0e013 15036 }
c5aa993b 15037
c906108c
SS
15038 return NULL;
15039}
15040
348e048f
DE
15041/* Return the named attribute or NULL if not there,
15042 but do not follow DW_AT_specification, etc.
15043 This is for use in contexts where we're reading .debug_types dies.
15044 Following DW_AT_specification, DW_AT_abstract_origin will take us
15045 back up the chain, and we want to go down. */
15046
15047static struct attribute *
45e58e77 15048dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
15049{
15050 unsigned int i;
15051
15052 for (i = 0; i < die->num_attrs; ++i)
15053 if (die->attrs[i].name == name)
15054 return &die->attrs[i];
15055
15056 return NULL;
15057}
15058
05cf31d1
JB
15059/* Return non-zero iff the attribute NAME is defined for the given DIE,
15060 and holds a non-zero value. This function should only be used for
2dc7f7b3 15061 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
15062
15063static int
15064dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15065{
15066 struct attribute *attr = dwarf2_attr (die, name, cu);
15067
15068 return (attr && DW_UNSND (attr));
15069}
15070
3ca72b44 15071static int
e142c38c 15072die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 15073{
05cf31d1
JB
15074 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15075 which value is non-zero. However, we have to be careful with
15076 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15077 (via dwarf2_flag_true_p) follows this attribute. So we may
15078 end up accidently finding a declaration attribute that belongs
15079 to a different DIE referenced by the specification attribute,
15080 even though the given DIE does not have a declaration attribute. */
15081 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15082 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
15083}
15084
63d06c5c 15085/* Return the die giving the specification for DIE, if there is
f2f0e013 15086 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
15087 containing the return value on output. If there is no
15088 specification, but there is an abstract origin, that is
15089 returned. */
63d06c5c
DC
15090
15091static struct die_info *
f2f0e013 15092die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 15093{
f2f0e013
DJ
15094 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15095 *spec_cu);
63d06c5c 15096
edb3359d
DJ
15097 if (spec_attr == NULL)
15098 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15099
63d06c5c
DC
15100 if (spec_attr == NULL)
15101 return NULL;
15102 else
f2f0e013 15103 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 15104}
c906108c 15105
debd256d 15106/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
15107 refers to.
15108 NOTE: This is also used as a "cleanup" function. */
15109
debd256d
JB
15110static void
15111free_line_header (struct line_header *lh)
15112{
15113 if (lh->standard_opcode_lengths)
a8bc7b56 15114 xfree (lh->standard_opcode_lengths);
debd256d
JB
15115
15116 /* Remember that all the lh->file_names[i].name pointers are
15117 pointers into debug_line_buffer, and don't need to be freed. */
15118 if (lh->file_names)
a8bc7b56 15119 xfree (lh->file_names);
debd256d
JB
15120
15121 /* Similarly for the include directory names. */
15122 if (lh->include_dirs)
a8bc7b56 15123 xfree (lh->include_dirs);
debd256d 15124
a8bc7b56 15125 xfree (lh);
debd256d
JB
15126}
15127
debd256d 15128/* Add an entry to LH's include directory table. */
ae2de4f8 15129
debd256d 15130static void
d521ce57 15131add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 15132{
debd256d
JB
15133 /* Grow the array if necessary. */
15134 if (lh->include_dirs_size == 0)
c5aa993b 15135 {
debd256d
JB
15136 lh->include_dirs_size = 1; /* for testing */
15137 lh->include_dirs = xmalloc (lh->include_dirs_size
15138 * sizeof (*lh->include_dirs));
15139 }
15140 else if (lh->num_include_dirs >= lh->include_dirs_size)
15141 {
15142 lh->include_dirs_size *= 2;
15143 lh->include_dirs = xrealloc (lh->include_dirs,
15144 (lh->include_dirs_size
15145 * sizeof (*lh->include_dirs)));
c5aa993b 15146 }
c906108c 15147
debd256d
JB
15148 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15149}
6e70227d 15150
debd256d 15151/* Add an entry to LH's file name table. */
ae2de4f8 15152
debd256d
JB
15153static void
15154add_file_name (struct line_header *lh,
d521ce57 15155 const char *name,
debd256d
JB
15156 unsigned int dir_index,
15157 unsigned int mod_time,
15158 unsigned int length)
15159{
15160 struct file_entry *fe;
15161
15162 /* Grow the array if necessary. */
15163 if (lh->file_names_size == 0)
15164 {
15165 lh->file_names_size = 1; /* for testing */
15166 lh->file_names = xmalloc (lh->file_names_size
15167 * sizeof (*lh->file_names));
15168 }
15169 else if (lh->num_file_names >= lh->file_names_size)
15170 {
15171 lh->file_names_size *= 2;
15172 lh->file_names = xrealloc (lh->file_names,
15173 (lh->file_names_size
15174 * sizeof (*lh->file_names)));
15175 }
15176
15177 fe = &lh->file_names[lh->num_file_names++];
15178 fe->name = name;
15179 fe->dir_index = dir_index;
15180 fe->mod_time = mod_time;
15181 fe->length = length;
aaa75496 15182 fe->included_p = 0;
cb1df416 15183 fe->symtab = NULL;
debd256d 15184}
6e70227d 15185
36586728
TT
15186/* A convenience function to find the proper .debug_line section for a
15187 CU. */
15188
15189static struct dwarf2_section_info *
15190get_debug_line_section (struct dwarf2_cu *cu)
15191{
15192 struct dwarf2_section_info *section;
15193
15194 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15195 DWO file. */
15196 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15197 section = &cu->dwo_unit->dwo_file->sections.line;
15198 else if (cu->per_cu->is_dwz)
15199 {
15200 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15201
15202 section = &dwz->line;
15203 }
15204 else
15205 section = &dwarf2_per_objfile->line;
15206
15207 return section;
15208}
15209
debd256d 15210/* Read the statement program header starting at OFFSET in
3019eac3 15211 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 15212 to a struct line_header, allocated using xmalloc.
debd256d
JB
15213
15214 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
15215 the returned object point into the dwarf line section buffer,
15216 and must not be freed. */
ae2de4f8 15217
debd256d 15218static struct line_header *
3019eac3 15219dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
15220{
15221 struct cleanup *back_to;
15222 struct line_header *lh;
d521ce57 15223 const gdb_byte *line_ptr;
c764a876 15224 unsigned int bytes_read, offset_size;
debd256d 15225 int i;
d521ce57 15226 const char *cur_dir, *cur_file;
3019eac3
DE
15227 struct dwarf2_section_info *section;
15228 bfd *abfd;
15229
36586728 15230 section = get_debug_line_section (cu);
3019eac3
DE
15231 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15232 if (section->buffer == NULL)
debd256d 15233 {
3019eac3
DE
15234 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15235 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15236 else
15237 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
15238 return 0;
15239 }
15240
fceca515
DE
15241 /* We can't do this until we know the section is non-empty.
15242 Only then do we know we have such a section. */
15243 abfd = section->asection->owner;
15244
a738430d
MK
15245 /* Make sure that at least there's room for the total_length field.
15246 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 15247 if (offset + 4 >= section->size)
debd256d 15248 {
4d3c2250 15249 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
15250 return 0;
15251 }
15252
15253 lh = xmalloc (sizeof (*lh));
15254 memset (lh, 0, sizeof (*lh));
15255 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15256 (void *) lh);
15257
3019eac3 15258 line_ptr = section->buffer + offset;
debd256d 15259
a738430d 15260 /* Read in the header. */
6e70227d 15261 lh->total_length =
c764a876
DE
15262 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15263 &bytes_read, &offset_size);
debd256d 15264 line_ptr += bytes_read;
3019eac3 15265 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 15266 {
4d3c2250 15267 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
15268 return 0;
15269 }
15270 lh->statement_program_end = line_ptr + lh->total_length;
15271 lh->version = read_2_bytes (abfd, line_ptr);
15272 line_ptr += 2;
c764a876
DE
15273 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15274 line_ptr += offset_size;
debd256d
JB
15275 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15276 line_ptr += 1;
2dc7f7b3
TT
15277 if (lh->version >= 4)
15278 {
15279 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15280 line_ptr += 1;
15281 }
15282 else
15283 lh->maximum_ops_per_instruction = 1;
15284
15285 if (lh->maximum_ops_per_instruction == 0)
15286 {
15287 lh->maximum_ops_per_instruction = 1;
15288 complaint (&symfile_complaints,
3e43a32a
MS
15289 _("invalid maximum_ops_per_instruction "
15290 "in `.debug_line' section"));
2dc7f7b3
TT
15291 }
15292
debd256d
JB
15293 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15294 line_ptr += 1;
15295 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15296 line_ptr += 1;
15297 lh->line_range = read_1_byte (abfd, line_ptr);
15298 line_ptr += 1;
15299 lh->opcode_base = read_1_byte (abfd, line_ptr);
15300 line_ptr += 1;
15301 lh->standard_opcode_lengths
fe1b8b76 15302 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
15303
15304 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15305 for (i = 1; i < lh->opcode_base; ++i)
15306 {
15307 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15308 line_ptr += 1;
15309 }
15310
a738430d 15311 /* Read directory table. */
9b1c24c8 15312 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
15313 {
15314 line_ptr += bytes_read;
15315 add_include_dir (lh, cur_dir);
15316 }
15317 line_ptr += bytes_read;
15318
a738430d 15319 /* Read file name table. */
9b1c24c8 15320 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
15321 {
15322 unsigned int dir_index, mod_time, length;
15323
15324 line_ptr += bytes_read;
15325 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15326 line_ptr += bytes_read;
15327 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15328 line_ptr += bytes_read;
15329 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15330 line_ptr += bytes_read;
15331
15332 add_file_name (lh, cur_file, dir_index, mod_time, length);
15333 }
15334 line_ptr += bytes_read;
6e70227d 15335 lh->statement_program_start = line_ptr;
debd256d 15336
3019eac3 15337 if (line_ptr > (section->buffer + section->size))
4d3c2250 15338 complaint (&symfile_complaints,
3e43a32a
MS
15339 _("line number info header doesn't "
15340 "fit in `.debug_line' section"));
debd256d
JB
15341
15342 discard_cleanups (back_to);
15343 return lh;
15344}
c906108c 15345
c6da4cef
DE
15346/* Subroutine of dwarf_decode_lines to simplify it.
15347 Return the file name of the psymtab for included file FILE_INDEX
15348 in line header LH of PST.
15349 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15350 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
15351 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15352
15353 The function creates dangling cleanup registration. */
c6da4cef 15354
d521ce57 15355static const char *
c6da4cef
DE
15356psymtab_include_file_name (const struct line_header *lh, int file_index,
15357 const struct partial_symtab *pst,
15358 const char *comp_dir)
15359{
15360 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
15361 const char *include_name = fe.name;
15362 const char *include_name_to_compare = include_name;
15363 const char *dir_name = NULL;
72b9f47f
TT
15364 const char *pst_filename;
15365 char *copied_name = NULL;
c6da4cef
DE
15366 int file_is_pst;
15367
15368 if (fe.dir_index)
15369 dir_name = lh->include_dirs[fe.dir_index - 1];
15370
15371 if (!IS_ABSOLUTE_PATH (include_name)
15372 && (dir_name != NULL || comp_dir != NULL))
15373 {
15374 /* Avoid creating a duplicate psymtab for PST.
15375 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15376 Before we do the comparison, however, we need to account
15377 for DIR_NAME and COMP_DIR.
15378 First prepend dir_name (if non-NULL). If we still don't
15379 have an absolute path prepend comp_dir (if non-NULL).
15380 However, the directory we record in the include-file's
15381 psymtab does not contain COMP_DIR (to match the
15382 corresponding symtab(s)).
15383
15384 Example:
15385
15386 bash$ cd /tmp
15387 bash$ gcc -g ./hello.c
15388 include_name = "hello.c"
15389 dir_name = "."
15390 DW_AT_comp_dir = comp_dir = "/tmp"
15391 DW_AT_name = "./hello.c" */
15392
15393 if (dir_name != NULL)
15394 {
d521ce57
TT
15395 char *tem = concat (dir_name, SLASH_STRING,
15396 include_name, (char *)NULL);
15397
15398 make_cleanup (xfree, tem);
15399 include_name = tem;
c6da4cef 15400 include_name_to_compare = include_name;
c6da4cef
DE
15401 }
15402 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15403 {
d521ce57
TT
15404 char *tem = concat (comp_dir, SLASH_STRING,
15405 include_name, (char *)NULL);
15406
15407 make_cleanup (xfree, tem);
15408 include_name_to_compare = tem;
c6da4cef
DE
15409 }
15410 }
15411
15412 pst_filename = pst->filename;
15413 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15414 {
72b9f47f
TT
15415 copied_name = concat (pst->dirname, SLASH_STRING,
15416 pst_filename, (char *)NULL);
15417 pst_filename = copied_name;
c6da4cef
DE
15418 }
15419
1e3fad37 15420 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 15421
72b9f47f
TT
15422 if (copied_name != NULL)
15423 xfree (copied_name);
c6da4cef
DE
15424
15425 if (file_is_pst)
15426 return NULL;
15427 return include_name;
15428}
15429
c91513d8
PP
15430/* Ignore this record_line request. */
15431
15432static void
15433noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15434{
15435 return;
15436}
15437
f3f5162e
DE
15438/* Subroutine of dwarf_decode_lines to simplify it.
15439 Process the line number information in LH. */
debd256d 15440
c906108c 15441static void
f3f5162e
DE
15442dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15443 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 15444{
d521ce57
TT
15445 const gdb_byte *line_ptr, *extended_end;
15446 const gdb_byte *line_end;
a8c50c1f 15447 unsigned int bytes_read, extended_len;
c906108c 15448 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
15449 CORE_ADDR baseaddr;
15450 struct objfile *objfile = cu->objfile;
f3f5162e 15451 bfd *abfd = objfile->obfd;
fbf65064 15452 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 15453 const int decode_for_pst_p = (pst != NULL);
f3f5162e 15454 struct subfile *last_subfile = NULL;
c91513d8
PP
15455 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15456 = record_line;
e142c38c
DJ
15457
15458 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 15459
debd256d
JB
15460 line_ptr = lh->statement_program_start;
15461 line_end = lh->statement_program_end;
c906108c
SS
15462
15463 /* Read the statement sequences until there's nothing left. */
15464 while (line_ptr < line_end)
15465 {
15466 /* state machine registers */
15467 CORE_ADDR address = 0;
15468 unsigned int file = 1;
15469 unsigned int line = 1;
15470 unsigned int column = 0;
debd256d 15471 int is_stmt = lh->default_is_stmt;
c906108c
SS
15472 int basic_block = 0;
15473 int end_sequence = 0;
fbf65064 15474 CORE_ADDR addr;
2dc7f7b3 15475 unsigned char op_index = 0;
c906108c 15476
aaa75496 15477 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 15478 {
aaa75496 15479 /* Start a subfile for the current file of the state machine. */
debd256d
JB
15480 /* lh->include_dirs and lh->file_names are 0-based, but the
15481 directory and file name numbers in the statement program
15482 are 1-based. */
15483 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 15484 const char *dir = NULL;
a738430d 15485
debd256d
JB
15486 if (fe->dir_index)
15487 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
15488
15489 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
15490 }
15491
a738430d 15492 /* Decode the table. */
c5aa993b 15493 while (!end_sequence)
c906108c
SS
15494 {
15495 op_code = read_1_byte (abfd, line_ptr);
15496 line_ptr += 1;
59205f5a
JB
15497 if (line_ptr > line_end)
15498 {
15499 dwarf2_debug_line_missing_end_sequence_complaint ();
15500 break;
15501 }
9aa1fe7e 15502
debd256d 15503 if (op_code >= lh->opcode_base)
6e70227d 15504 {
a738430d 15505 /* Special operand. */
debd256d 15506 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
15507 address += (((op_index + (adj_opcode / lh->line_range))
15508 / lh->maximum_ops_per_instruction)
15509 * lh->minimum_instruction_length);
15510 op_index = ((op_index + (adj_opcode / lh->line_range))
15511 % lh->maximum_ops_per_instruction);
debd256d 15512 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 15513 if (lh->num_file_names < file || file == 0)
25e43795 15514 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
15515 /* For now we ignore lines not starting on an
15516 instruction boundary. */
15517 else if (op_index == 0)
25e43795
DJ
15518 {
15519 lh->file_names[file - 1].included_p = 1;
ca5f395d 15520 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
15521 {
15522 if (last_subfile != current_subfile)
15523 {
15524 addr = gdbarch_addr_bits_remove (gdbarch, address);
15525 if (last_subfile)
c91513d8 15526 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
15527 last_subfile = current_subfile;
15528 }
25e43795 15529 /* Append row to matrix using current values. */
7019d805 15530 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15531 (*p_record_line) (current_subfile, line, addr);
366da635 15532 }
25e43795 15533 }
ca5f395d 15534 basic_block = 0;
9aa1fe7e
GK
15535 }
15536 else switch (op_code)
c906108c
SS
15537 {
15538 case DW_LNS_extended_op:
3e43a32a
MS
15539 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15540 &bytes_read);
473b7be6 15541 line_ptr += bytes_read;
a8c50c1f 15542 extended_end = line_ptr + extended_len;
c906108c
SS
15543 extended_op = read_1_byte (abfd, line_ptr);
15544 line_ptr += 1;
15545 switch (extended_op)
15546 {
15547 case DW_LNE_end_sequence:
c91513d8 15548 p_record_line = record_line;
c906108c 15549 end_sequence = 1;
c906108c
SS
15550 break;
15551 case DW_LNE_set_address:
e7c27a73 15552 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
15553
15554 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15555 {
15556 /* This line table is for a function which has been
15557 GCd by the linker. Ignore it. PR gdb/12528 */
15558
15559 long line_offset
36586728 15560 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
15561
15562 complaint (&symfile_complaints,
15563 _(".debug_line address at offset 0x%lx is 0 "
15564 "[in module %s]"),
bb5ed363 15565 line_offset, objfile->name);
c91513d8
PP
15566 p_record_line = noop_record_line;
15567 }
15568
2dc7f7b3 15569 op_index = 0;
107d2387
AC
15570 line_ptr += bytes_read;
15571 address += baseaddr;
c906108c
SS
15572 break;
15573 case DW_LNE_define_file:
debd256d 15574 {
d521ce57 15575 const char *cur_file;
debd256d 15576 unsigned int dir_index, mod_time, length;
6e70227d 15577
3e43a32a
MS
15578 cur_file = read_direct_string (abfd, line_ptr,
15579 &bytes_read);
debd256d
JB
15580 line_ptr += bytes_read;
15581 dir_index =
15582 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15583 line_ptr += bytes_read;
15584 mod_time =
15585 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15586 line_ptr += bytes_read;
15587 length =
15588 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15589 line_ptr += bytes_read;
15590 add_file_name (lh, cur_file, dir_index, mod_time, length);
15591 }
c906108c 15592 break;
d0c6ba3d
CC
15593 case DW_LNE_set_discriminator:
15594 /* The discriminator is not interesting to the debugger;
15595 just ignore it. */
15596 line_ptr = extended_end;
15597 break;
c906108c 15598 default:
4d3c2250 15599 complaint (&symfile_complaints,
e2e0b3e5 15600 _("mangled .debug_line section"));
debd256d 15601 return;
c906108c 15602 }
a8c50c1f
DJ
15603 /* Make sure that we parsed the extended op correctly. If e.g.
15604 we expected a different address size than the producer used,
15605 we may have read the wrong number of bytes. */
15606 if (line_ptr != extended_end)
15607 {
15608 complaint (&symfile_complaints,
15609 _("mangled .debug_line section"));
15610 return;
15611 }
c906108c
SS
15612 break;
15613 case DW_LNS_copy:
59205f5a 15614 if (lh->num_file_names < file || file == 0)
25e43795
DJ
15615 dwarf2_debug_line_missing_file_complaint ();
15616 else
366da635 15617 {
25e43795 15618 lh->file_names[file - 1].included_p = 1;
ca5f395d 15619 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
15620 {
15621 if (last_subfile != current_subfile)
15622 {
15623 addr = gdbarch_addr_bits_remove (gdbarch, address);
15624 if (last_subfile)
c91513d8 15625 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
15626 last_subfile = current_subfile;
15627 }
7019d805 15628 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15629 (*p_record_line) (current_subfile, line, addr);
fbf65064 15630 }
366da635 15631 }
c906108c
SS
15632 basic_block = 0;
15633 break;
15634 case DW_LNS_advance_pc:
2dc7f7b3
TT
15635 {
15636 CORE_ADDR adjust
15637 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15638
15639 address += (((op_index + adjust)
15640 / lh->maximum_ops_per_instruction)
15641 * lh->minimum_instruction_length);
15642 op_index = ((op_index + adjust)
15643 % lh->maximum_ops_per_instruction);
15644 line_ptr += bytes_read;
15645 }
c906108c
SS
15646 break;
15647 case DW_LNS_advance_line:
15648 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15649 line_ptr += bytes_read;
15650 break;
15651 case DW_LNS_set_file:
debd256d 15652 {
a738430d
MK
15653 /* The arrays lh->include_dirs and lh->file_names are
15654 0-based, but the directory and file name numbers in
15655 the statement program are 1-based. */
debd256d 15656 struct file_entry *fe;
d521ce57 15657 const char *dir = NULL;
a738430d 15658
debd256d
JB
15659 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15660 line_ptr += bytes_read;
59205f5a 15661 if (lh->num_file_names < file || file == 0)
25e43795
DJ
15662 dwarf2_debug_line_missing_file_complaint ();
15663 else
15664 {
15665 fe = &lh->file_names[file - 1];
15666 if (fe->dir_index)
15667 dir = lh->include_dirs[fe->dir_index - 1];
15668 if (!decode_for_pst_p)
15669 {
15670 last_subfile = current_subfile;
15671 dwarf2_start_subfile (fe->name, dir, comp_dir);
15672 }
15673 }
debd256d 15674 }
c906108c
SS
15675 break;
15676 case DW_LNS_set_column:
15677 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15678 line_ptr += bytes_read;
15679 break;
15680 case DW_LNS_negate_stmt:
15681 is_stmt = (!is_stmt);
15682 break;
15683 case DW_LNS_set_basic_block:
15684 basic_block = 1;
15685 break;
c2c6d25f
JM
15686 /* Add to the address register of the state machine the
15687 address increment value corresponding to special opcode
a738430d
MK
15688 255. I.e., this value is scaled by the minimum
15689 instruction length since special opcode 255 would have
b021a221 15690 scaled the increment. */
c906108c 15691 case DW_LNS_const_add_pc:
2dc7f7b3
TT
15692 {
15693 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15694
15695 address += (((op_index + adjust)
15696 / lh->maximum_ops_per_instruction)
15697 * lh->minimum_instruction_length);
15698 op_index = ((op_index + adjust)
15699 % lh->maximum_ops_per_instruction);
15700 }
c906108c
SS
15701 break;
15702 case DW_LNS_fixed_advance_pc:
15703 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 15704 op_index = 0;
c906108c
SS
15705 line_ptr += 2;
15706 break;
9aa1fe7e 15707 default:
a738430d
MK
15708 {
15709 /* Unknown standard opcode, ignore it. */
9aa1fe7e 15710 int i;
a738430d 15711
debd256d 15712 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
15713 {
15714 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15715 line_ptr += bytes_read;
15716 }
15717 }
c906108c
SS
15718 }
15719 }
59205f5a
JB
15720 if (lh->num_file_names < file || file == 0)
15721 dwarf2_debug_line_missing_file_complaint ();
15722 else
15723 {
15724 lh->file_names[file - 1].included_p = 1;
15725 if (!decode_for_pst_p)
fbf65064
UW
15726 {
15727 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15728 (*p_record_line) (current_subfile, 0, addr);
fbf65064 15729 }
59205f5a 15730 }
c906108c 15731 }
f3f5162e
DE
15732}
15733
15734/* Decode the Line Number Program (LNP) for the given line_header
15735 structure and CU. The actual information extracted and the type
15736 of structures created from the LNP depends on the value of PST.
15737
15738 1. If PST is NULL, then this procedure uses the data from the program
15739 to create all necessary symbol tables, and their linetables.
15740
15741 2. If PST is not NULL, this procedure reads the program to determine
15742 the list of files included by the unit represented by PST, and
15743 builds all the associated partial symbol tables.
15744
15745 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15746 It is used for relative paths in the line table.
15747 NOTE: When processing partial symtabs (pst != NULL),
15748 comp_dir == pst->dirname.
15749
15750 NOTE: It is important that psymtabs have the same file name (via strcmp)
15751 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15752 symtab we don't use it in the name of the psymtabs we create.
15753 E.g. expand_line_sal requires this when finding psymtabs to expand.
15754 A good testcase for this is mb-inline.exp. */
15755
15756static void
15757dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15758 struct dwarf2_cu *cu, struct partial_symtab *pst,
15759 int want_line_info)
15760{
15761 struct objfile *objfile = cu->objfile;
15762 const int decode_for_pst_p = (pst != NULL);
15763 struct subfile *first_subfile = current_subfile;
15764
15765 if (want_line_info)
15766 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
15767
15768 if (decode_for_pst_p)
15769 {
15770 int file_index;
15771
15772 /* Now that we're done scanning the Line Header Program, we can
15773 create the psymtab of each included file. */
15774 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15775 if (lh->file_names[file_index].included_p == 1)
15776 {
d521ce57 15777 const char *include_name =
c6da4cef
DE
15778 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15779 if (include_name != NULL)
aaa75496
JB
15780 dwarf2_create_include_psymtab (include_name, pst, objfile);
15781 }
15782 }
cb1df416
DJ
15783 else
15784 {
15785 /* Make sure a symtab is created for every file, even files
15786 which contain only variables (i.e. no code with associated
15787 line numbers). */
cb1df416 15788 int i;
cb1df416
DJ
15789
15790 for (i = 0; i < lh->num_file_names; i++)
15791 {
d521ce57 15792 const char *dir = NULL;
f3f5162e 15793 struct file_entry *fe;
9a619af0 15794
cb1df416
DJ
15795 fe = &lh->file_names[i];
15796 if (fe->dir_index)
15797 dir = lh->include_dirs[fe->dir_index - 1];
15798 dwarf2_start_subfile (fe->name, dir, comp_dir);
15799
15800 /* Skip the main file; we don't need it, and it must be
15801 allocated last, so that it will show up before the
15802 non-primary symtabs in the objfile's symtab list. */
15803 if (current_subfile == first_subfile)
15804 continue;
15805
15806 if (current_subfile->symtab == NULL)
15807 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 15808 objfile);
cb1df416
DJ
15809 fe->symtab = current_subfile->symtab;
15810 }
15811 }
c906108c
SS
15812}
15813
15814/* Start a subfile for DWARF. FILENAME is the name of the file and
15815 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
15816 or NULL if not known. COMP_DIR is the compilation directory for the
15817 linetable's compilation unit or NULL if not known.
c906108c
SS
15818 This routine tries to keep line numbers from identical absolute and
15819 relative file names in a common subfile.
15820
15821 Using the `list' example from the GDB testsuite, which resides in
15822 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15823 of /srcdir/list0.c yields the following debugging information for list0.c:
15824
c5aa993b
JM
15825 DW_AT_name: /srcdir/list0.c
15826 DW_AT_comp_dir: /compdir
357e46e7 15827 files.files[0].name: list0.h
c5aa993b 15828 files.files[0].dir: /srcdir
357e46e7 15829 files.files[1].name: list0.c
c5aa993b 15830 files.files[1].dir: /srcdir
c906108c
SS
15831
15832 The line number information for list0.c has to end up in a single
4f1520fb
FR
15833 subfile, so that `break /srcdir/list0.c:1' works as expected.
15834 start_subfile will ensure that this happens provided that we pass the
15835 concatenation of files.files[1].dir and files.files[1].name as the
15836 subfile's name. */
c906108c
SS
15837
15838static void
d521ce57 15839dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 15840 const char *comp_dir)
c906108c 15841{
d521ce57 15842 char *copy = NULL;
4f1520fb
FR
15843
15844 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15845 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15846 second argument to start_subfile. To be consistent, we do the
15847 same here. In order not to lose the line information directory,
15848 we concatenate it to the filename when it makes sense.
15849 Note that the Dwarf3 standard says (speaking of filenames in line
15850 information): ``The directory index is ignored for file names
15851 that represent full path names''. Thus ignoring dirname in the
15852 `else' branch below isn't an issue. */
c906108c 15853
d5166ae1 15854 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
15855 {
15856 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15857 filename = copy;
15858 }
c906108c 15859
d521ce57 15860 start_subfile (filename, comp_dir);
4f1520fb 15861
d521ce57
TT
15862 if (copy != NULL)
15863 xfree (copy);
c906108c
SS
15864}
15865
f4dc4d17
DE
15866/* Start a symtab for DWARF.
15867 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15868
15869static void
15870dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 15871 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
15872{
15873 start_symtab (name, comp_dir, low_pc);
15874 record_debugformat ("DWARF 2");
15875 record_producer (cu->producer);
15876
15877 /* We assume that we're processing GCC output. */
15878 processing_gcc_compilation = 2;
15879
4d4ec4e5 15880 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
15881}
15882
4c2df51b
DJ
15883static void
15884var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 15885 struct dwarf2_cu *cu)
4c2df51b 15886{
e7c27a73
DJ
15887 struct objfile *objfile = cu->objfile;
15888 struct comp_unit_head *cu_header = &cu->header;
15889
4c2df51b
DJ
15890 /* NOTE drow/2003-01-30: There used to be a comment and some special
15891 code here to turn a symbol with DW_AT_external and a
15892 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15893 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15894 with some versions of binutils) where shared libraries could have
15895 relocations against symbols in their debug information - the
15896 minimal symbol would have the right address, but the debug info
15897 would not. It's no longer necessary, because we will explicitly
15898 apply relocations when we read in the debug information now. */
15899
15900 /* A DW_AT_location attribute with no contents indicates that a
15901 variable has been optimized away. */
15902 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15903 {
f1e6e072 15904 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
15905 return;
15906 }
15907
15908 /* Handle one degenerate form of location expression specially, to
15909 preserve GDB's previous behavior when section offsets are
3019eac3
DE
15910 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15911 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
15912
15913 if (attr_form_is_block (attr)
3019eac3
DE
15914 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15915 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15916 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15917 && (DW_BLOCK (attr)->size
15918 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 15919 {
891d2f0b 15920 unsigned int dummy;
4c2df51b 15921
3019eac3
DE
15922 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15923 SYMBOL_VALUE_ADDRESS (sym) =
15924 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15925 else
15926 SYMBOL_VALUE_ADDRESS (sym) =
15927 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 15928 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
15929 fixup_symbol_section (sym, objfile);
15930 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15931 SYMBOL_SECTION (sym));
4c2df51b
DJ
15932 return;
15933 }
15934
15935 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15936 expression evaluator, and use LOC_COMPUTED only when necessary
15937 (i.e. when the value of a register or memory location is
15938 referenced, or a thread-local block, etc.). Then again, it might
15939 not be worthwhile. I'm assuming that it isn't unless performance
15940 or memory numbers show me otherwise. */
15941
f1e6e072 15942 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 15943
f1e6e072 15944 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 15945 cu->has_loclist = 1;
4c2df51b
DJ
15946}
15947
c906108c
SS
15948/* Given a pointer to a DWARF information entry, figure out if we need
15949 to make a symbol table entry for it, and if so, create a new entry
15950 and return a pointer to it.
15951 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
15952 used the passed type.
15953 If SPACE is not NULL, use it to hold the new symbol. If it is
15954 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
15955
15956static struct symbol *
34eaf542
TT
15957new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15958 struct symbol *space)
c906108c 15959{
e7c27a73 15960 struct objfile *objfile = cu->objfile;
c906108c 15961 struct symbol *sym = NULL;
15d034d0 15962 const char *name;
c906108c
SS
15963 struct attribute *attr = NULL;
15964 struct attribute *attr2 = NULL;
e142c38c 15965 CORE_ADDR baseaddr;
e37fd15a
SW
15966 struct pending **list_to_add = NULL;
15967
edb3359d 15968 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
15969
15970 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 15971
94af9270 15972 name = dwarf2_name (die, cu);
c906108c
SS
15973 if (name)
15974 {
94af9270 15975 const char *linkagename;
34eaf542 15976 int suppress_add = 0;
94af9270 15977
34eaf542
TT
15978 if (space)
15979 sym = space;
15980 else
e623cf5d 15981 sym = allocate_symbol (objfile);
c906108c 15982 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
15983
15984 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 15985 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
15986 linkagename = dwarf2_physname (name, die, cu);
15987 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 15988
f55ee35c
JK
15989 /* Fortran does not have mangling standard and the mangling does differ
15990 between gfortran, iFort etc. */
15991 if (cu->language == language_fortran
b250c185 15992 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 15993 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 15994 dwarf2_full_name (name, die, cu),
29df156d 15995 NULL);
f55ee35c 15996
c906108c 15997 /* Default assumptions.
c5aa993b 15998 Use the passed type or decode it from the die. */
176620f1 15999 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 16000 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
16001 if (type != NULL)
16002 SYMBOL_TYPE (sym) = type;
16003 else
e7c27a73 16004 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
16005 attr = dwarf2_attr (die,
16006 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16007 cu);
c906108c
SS
16008 if (attr)
16009 {
16010 SYMBOL_LINE (sym) = DW_UNSND (attr);
16011 }
cb1df416 16012
edb3359d
DJ
16013 attr = dwarf2_attr (die,
16014 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16015 cu);
cb1df416
DJ
16016 if (attr)
16017 {
16018 int file_index = DW_UNSND (attr);
9a619af0 16019
cb1df416
DJ
16020 if (cu->line_header == NULL
16021 || file_index > cu->line_header->num_file_names)
16022 complaint (&symfile_complaints,
16023 _("file index out of range"));
1c3d648d 16024 else if (file_index > 0)
cb1df416
DJ
16025 {
16026 struct file_entry *fe;
9a619af0 16027
cb1df416
DJ
16028 fe = &cu->line_header->file_names[file_index - 1];
16029 SYMBOL_SYMTAB (sym) = fe->symtab;
16030 }
16031 }
16032
c906108c
SS
16033 switch (die->tag)
16034 {
16035 case DW_TAG_label:
e142c38c 16036 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
16037 if (attr)
16038 {
16039 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16040 }
0f5238ed
TT
16041 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16042 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 16043 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 16044 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
16045 break;
16046 case DW_TAG_subprogram:
16047 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16048 finish_block. */
f1e6e072 16049 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 16050 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
16051 if ((attr2 && (DW_UNSND (attr2) != 0))
16052 || cu->language == language_ada)
c906108c 16053 {
2cfa0c8d
JB
16054 /* Subprograms marked external are stored as a global symbol.
16055 Ada subprograms, whether marked external or not, are always
16056 stored as a global symbol, because we want to be able to
16057 access them globally. For instance, we want to be able
16058 to break on a nested subprogram without having to
16059 specify the context. */
e37fd15a 16060 list_to_add = &global_symbols;
c906108c
SS
16061 }
16062 else
16063 {
e37fd15a 16064 list_to_add = cu->list_in_scope;
c906108c
SS
16065 }
16066 break;
edb3359d
DJ
16067 case DW_TAG_inlined_subroutine:
16068 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16069 finish_block. */
f1e6e072 16070 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 16071 SYMBOL_INLINED (sym) = 1;
481860b3 16072 list_to_add = cu->list_in_scope;
edb3359d 16073 break;
34eaf542
TT
16074 case DW_TAG_template_value_param:
16075 suppress_add = 1;
16076 /* Fall through. */
72929c62 16077 case DW_TAG_constant:
c906108c 16078 case DW_TAG_variable:
254e6b9e 16079 case DW_TAG_member:
0963b4bd
MS
16080 /* Compilation with minimal debug info may result in
16081 variables with missing type entries. Change the
16082 misleading `void' type to something sensible. */
c906108c 16083 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 16084 SYMBOL_TYPE (sym)
46bf5051 16085 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 16086
e142c38c 16087 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
16088 /* In the case of DW_TAG_member, we should only be called for
16089 static const members. */
16090 if (die->tag == DW_TAG_member)
16091 {
3863f96c
DE
16092 /* dwarf2_add_field uses die_is_declaration,
16093 so we do the same. */
254e6b9e
DE
16094 gdb_assert (die_is_declaration (die, cu));
16095 gdb_assert (attr);
16096 }
c906108c
SS
16097 if (attr)
16098 {
e7c27a73 16099 dwarf2_const_value (attr, sym, cu);
e142c38c 16100 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 16101 if (!suppress_add)
34eaf542
TT
16102 {
16103 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 16104 list_to_add = &global_symbols;
34eaf542 16105 else
e37fd15a 16106 list_to_add = cu->list_in_scope;
34eaf542 16107 }
c906108c
SS
16108 break;
16109 }
e142c38c 16110 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
16111 if (attr)
16112 {
e7c27a73 16113 var_decode_location (attr, sym, cu);
e142c38c 16114 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
16115
16116 /* Fortran explicitly imports any global symbols to the local
16117 scope by DW_TAG_common_block. */
16118 if (cu->language == language_fortran && die->parent
16119 && die->parent->tag == DW_TAG_common_block)
16120 attr2 = NULL;
16121
caac4577
JG
16122 if (SYMBOL_CLASS (sym) == LOC_STATIC
16123 && SYMBOL_VALUE_ADDRESS (sym) == 0
16124 && !dwarf2_per_objfile->has_section_at_zero)
16125 {
16126 /* When a static variable is eliminated by the linker,
16127 the corresponding debug information is not stripped
16128 out, but the variable address is set to null;
16129 do not add such variables into symbol table. */
16130 }
16131 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 16132 {
f55ee35c
JK
16133 /* Workaround gfortran PR debug/40040 - it uses
16134 DW_AT_location for variables in -fPIC libraries which may
16135 get overriden by other libraries/executable and get
16136 a different address. Resolve it by the minimal symbol
16137 which may come from inferior's executable using copy
16138 relocation. Make this workaround only for gfortran as for
16139 other compilers GDB cannot guess the minimal symbol
16140 Fortran mangling kind. */
16141 if (cu->language == language_fortran && die->parent
16142 && die->parent->tag == DW_TAG_module
16143 && cu->producer
16144 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 16145 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 16146
1c809c68
TT
16147 /* A variable with DW_AT_external is never static,
16148 but it may be block-scoped. */
16149 list_to_add = (cu->list_in_scope == &file_symbols
16150 ? &global_symbols : cu->list_in_scope);
1c809c68 16151 }
c906108c 16152 else
e37fd15a 16153 list_to_add = cu->list_in_scope;
c906108c
SS
16154 }
16155 else
16156 {
16157 /* We do not know the address of this symbol.
c5aa993b
JM
16158 If it is an external symbol and we have type information
16159 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16160 The address of the variable will then be determined from
16161 the minimal symbol table whenever the variable is
16162 referenced. */
e142c38c 16163 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
16164
16165 /* Fortran explicitly imports any global symbols to the local
16166 scope by DW_TAG_common_block. */
16167 if (cu->language == language_fortran && die->parent
16168 && die->parent->tag == DW_TAG_common_block)
16169 {
16170 /* SYMBOL_CLASS doesn't matter here because
16171 read_common_block is going to reset it. */
16172 if (!suppress_add)
16173 list_to_add = cu->list_in_scope;
16174 }
16175 else if (attr2 && (DW_UNSND (attr2) != 0)
16176 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 16177 {
0fe7935b
DJ
16178 /* A variable with DW_AT_external is never static, but it
16179 may be block-scoped. */
16180 list_to_add = (cu->list_in_scope == &file_symbols
16181 ? &global_symbols : cu->list_in_scope);
16182
f1e6e072 16183 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 16184 }
442ddf59
JK
16185 else if (!die_is_declaration (die, cu))
16186 {
16187 /* Use the default LOC_OPTIMIZED_OUT class. */
16188 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
16189 if (!suppress_add)
16190 list_to_add = cu->list_in_scope;
442ddf59 16191 }
c906108c
SS
16192 }
16193 break;
16194 case DW_TAG_formal_parameter:
edb3359d
DJ
16195 /* If we are inside a function, mark this as an argument. If
16196 not, we might be looking at an argument to an inlined function
16197 when we do not have enough information to show inlined frames;
16198 pretend it's a local variable in that case so that the user can
16199 still see it. */
16200 if (context_stack_depth > 0
16201 && context_stack[context_stack_depth - 1].name != NULL)
16202 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 16203 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
16204 if (attr)
16205 {
e7c27a73 16206 var_decode_location (attr, sym, cu);
c906108c 16207 }
e142c38c 16208 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
16209 if (attr)
16210 {
e7c27a73 16211 dwarf2_const_value (attr, sym, cu);
c906108c 16212 }
f346a30d 16213
e37fd15a 16214 list_to_add = cu->list_in_scope;
c906108c
SS
16215 break;
16216 case DW_TAG_unspecified_parameters:
16217 /* From varargs functions; gdb doesn't seem to have any
16218 interest in this information, so just ignore it for now.
16219 (FIXME?) */
16220 break;
34eaf542
TT
16221 case DW_TAG_template_type_param:
16222 suppress_add = 1;
16223 /* Fall through. */
c906108c 16224 case DW_TAG_class_type:
680b30c7 16225 case DW_TAG_interface_type:
c906108c
SS
16226 case DW_TAG_structure_type:
16227 case DW_TAG_union_type:
72019c9c 16228 case DW_TAG_set_type:
c906108c 16229 case DW_TAG_enumeration_type:
f1e6e072 16230 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 16231 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 16232
63d06c5c 16233 {
987504bb 16234 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
16235 really ever be static objects: otherwise, if you try
16236 to, say, break of a class's method and you're in a file
16237 which doesn't mention that class, it won't work unless
16238 the check for all static symbols in lookup_symbol_aux
16239 saves you. See the OtherFileClass tests in
16240 gdb.c++/namespace.exp. */
16241
e37fd15a 16242 if (!suppress_add)
34eaf542 16243 {
34eaf542
TT
16244 list_to_add = (cu->list_in_scope == &file_symbols
16245 && (cu->language == language_cplus
16246 || cu->language == language_java)
16247 ? &global_symbols : cu->list_in_scope);
63d06c5c 16248
64382290
TT
16249 /* The semantics of C++ state that "struct foo {
16250 ... }" also defines a typedef for "foo". A Java
16251 class declaration also defines a typedef for the
16252 class. */
16253 if (cu->language == language_cplus
16254 || cu->language == language_java
16255 || cu->language == language_ada)
16256 {
16257 /* The symbol's name is already allocated along
16258 with this objfile, so we don't need to
16259 duplicate it for the type. */
16260 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16261 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16262 }
63d06c5c
DC
16263 }
16264 }
c906108c
SS
16265 break;
16266 case DW_TAG_typedef:
f1e6e072 16267 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 16268 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 16269 list_to_add = cu->list_in_scope;
63d06c5c 16270 break;
c906108c 16271 case DW_TAG_base_type:
a02abb62 16272 case DW_TAG_subrange_type:
f1e6e072 16273 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 16274 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 16275 list_to_add = cu->list_in_scope;
c906108c
SS
16276 break;
16277 case DW_TAG_enumerator:
e142c38c 16278 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
16279 if (attr)
16280 {
e7c27a73 16281 dwarf2_const_value (attr, sym, cu);
c906108c 16282 }
63d06c5c
DC
16283 {
16284 /* NOTE: carlton/2003-11-10: See comment above in the
16285 DW_TAG_class_type, etc. block. */
16286
e142c38c 16287 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
16288 && (cu->language == language_cplus
16289 || cu->language == language_java)
e142c38c 16290 ? &global_symbols : cu->list_in_scope);
63d06c5c 16291 }
c906108c 16292 break;
5c4e30ca 16293 case DW_TAG_namespace:
f1e6e072 16294 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 16295 list_to_add = &global_symbols;
5c4e30ca 16296 break;
4357ac6c 16297 case DW_TAG_common_block:
f1e6e072 16298 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
16299 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16300 add_symbol_to_list (sym, cu->list_in_scope);
16301 break;
c906108c
SS
16302 default:
16303 /* Not a tag we recognize. Hopefully we aren't processing
16304 trash data, but since we must specifically ignore things
16305 we don't recognize, there is nothing else we should do at
0963b4bd 16306 this point. */
e2e0b3e5 16307 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 16308 dwarf_tag_name (die->tag));
c906108c
SS
16309 break;
16310 }
df8a16a1 16311
e37fd15a
SW
16312 if (suppress_add)
16313 {
16314 sym->hash_next = objfile->template_symbols;
16315 objfile->template_symbols = sym;
16316 list_to_add = NULL;
16317 }
16318
16319 if (list_to_add != NULL)
16320 add_symbol_to_list (sym, list_to_add);
16321
df8a16a1
DJ
16322 /* For the benefit of old versions of GCC, check for anonymous
16323 namespaces based on the demangled name. */
4d4ec4e5 16324 if (!cu->processing_has_namespace_info
94af9270 16325 && cu->language == language_cplus)
a10964d1 16326 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
16327 }
16328 return (sym);
16329}
16330
34eaf542
TT
16331/* A wrapper for new_symbol_full that always allocates a new symbol. */
16332
16333static struct symbol *
16334new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16335{
16336 return new_symbol_full (die, type, cu, NULL);
16337}
16338
98bfdba5
PA
16339/* Given an attr with a DW_FORM_dataN value in host byte order,
16340 zero-extend it as appropriate for the symbol's type. The DWARF
16341 standard (v4) is not entirely clear about the meaning of using
16342 DW_FORM_dataN for a constant with a signed type, where the type is
16343 wider than the data. The conclusion of a discussion on the DWARF
16344 list was that this is unspecified. We choose to always zero-extend
16345 because that is the interpretation long in use by GCC. */
c906108c 16346
98bfdba5
PA
16347static gdb_byte *
16348dwarf2_const_value_data (struct attribute *attr, struct type *type,
16349 const char *name, struct obstack *obstack,
12df843f 16350 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 16351{
e7c27a73 16352 struct objfile *objfile = cu->objfile;
e17a4113
UW
16353 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16354 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
16355 LONGEST l = DW_UNSND (attr);
16356
16357 if (bits < sizeof (*value) * 8)
16358 {
16359 l &= ((LONGEST) 1 << bits) - 1;
16360 *value = l;
16361 }
16362 else if (bits == sizeof (*value) * 8)
16363 *value = l;
16364 else
16365 {
16366 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16367 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16368 return bytes;
16369 }
16370
16371 return NULL;
16372}
16373
16374/* Read a constant value from an attribute. Either set *VALUE, or if
16375 the value does not fit in *VALUE, set *BYTES - either already
16376 allocated on the objfile obstack, or newly allocated on OBSTACK,
16377 or, set *BATON, if we translated the constant to a location
16378 expression. */
16379
16380static void
16381dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16382 const char *name, struct obstack *obstack,
16383 struct dwarf2_cu *cu,
d521ce57 16384 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
16385 struct dwarf2_locexpr_baton **baton)
16386{
16387 struct objfile *objfile = cu->objfile;
16388 struct comp_unit_head *cu_header = &cu->header;
c906108c 16389 struct dwarf_block *blk;
98bfdba5
PA
16390 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16391 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16392
16393 *value = 0;
16394 *bytes = NULL;
16395 *baton = NULL;
c906108c
SS
16396
16397 switch (attr->form)
16398 {
16399 case DW_FORM_addr:
3019eac3 16400 case DW_FORM_GNU_addr_index:
ac56253d 16401 {
ac56253d
TT
16402 gdb_byte *data;
16403
98bfdba5
PA
16404 if (TYPE_LENGTH (type) != cu_header->addr_size)
16405 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 16406 cu_header->addr_size,
98bfdba5 16407 TYPE_LENGTH (type));
ac56253d
TT
16408 /* Symbols of this form are reasonably rare, so we just
16409 piggyback on the existing location code rather than writing
16410 a new implementation of symbol_computed_ops. */
98bfdba5
PA
16411 *baton = obstack_alloc (&objfile->objfile_obstack,
16412 sizeof (struct dwarf2_locexpr_baton));
16413 (*baton)->per_cu = cu->per_cu;
16414 gdb_assert ((*baton)->per_cu);
ac56253d 16415
98bfdba5
PA
16416 (*baton)->size = 2 + cu_header->addr_size;
16417 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16418 (*baton)->data = data;
ac56253d
TT
16419
16420 data[0] = DW_OP_addr;
16421 store_unsigned_integer (&data[1], cu_header->addr_size,
16422 byte_order, DW_ADDR (attr));
16423 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 16424 }
c906108c 16425 break;
4ac36638 16426 case DW_FORM_string:
93b5768b 16427 case DW_FORM_strp:
3019eac3 16428 case DW_FORM_GNU_str_index:
36586728 16429 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
16430 /* DW_STRING is already allocated on the objfile obstack, point
16431 directly to it. */
d521ce57 16432 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 16433 break;
c906108c
SS
16434 case DW_FORM_block1:
16435 case DW_FORM_block2:
16436 case DW_FORM_block4:
16437 case DW_FORM_block:
2dc7f7b3 16438 case DW_FORM_exprloc:
c906108c 16439 blk = DW_BLOCK (attr);
98bfdba5
PA
16440 if (TYPE_LENGTH (type) != blk->size)
16441 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16442 TYPE_LENGTH (type));
16443 *bytes = blk->data;
c906108c 16444 break;
2df3850c
JM
16445
16446 /* The DW_AT_const_value attributes are supposed to carry the
16447 symbol's value "represented as it would be on the target
16448 architecture." By the time we get here, it's already been
16449 converted to host endianness, so we just need to sign- or
16450 zero-extend it as appropriate. */
16451 case DW_FORM_data1:
3e43a32a
MS
16452 *bytes = dwarf2_const_value_data (attr, type, name,
16453 obstack, cu, value, 8);
2df3850c 16454 break;
c906108c 16455 case DW_FORM_data2:
3e43a32a
MS
16456 *bytes = dwarf2_const_value_data (attr, type, name,
16457 obstack, cu, value, 16);
2df3850c 16458 break;
c906108c 16459 case DW_FORM_data4:
3e43a32a
MS
16460 *bytes = dwarf2_const_value_data (attr, type, name,
16461 obstack, cu, value, 32);
2df3850c 16462 break;
c906108c 16463 case DW_FORM_data8:
3e43a32a
MS
16464 *bytes = dwarf2_const_value_data (attr, type, name,
16465 obstack, cu, value, 64);
2df3850c
JM
16466 break;
16467
c906108c 16468 case DW_FORM_sdata:
98bfdba5 16469 *value = DW_SND (attr);
2df3850c
JM
16470 break;
16471
c906108c 16472 case DW_FORM_udata:
98bfdba5 16473 *value = DW_UNSND (attr);
c906108c 16474 break;
2df3850c 16475
c906108c 16476 default:
4d3c2250 16477 complaint (&symfile_complaints,
e2e0b3e5 16478 _("unsupported const value attribute form: '%s'"),
4d3c2250 16479 dwarf_form_name (attr->form));
98bfdba5 16480 *value = 0;
c906108c
SS
16481 break;
16482 }
16483}
16484
2df3850c 16485
98bfdba5
PA
16486/* Copy constant value from an attribute to a symbol. */
16487
2df3850c 16488static void
98bfdba5
PA
16489dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16490 struct dwarf2_cu *cu)
2df3850c 16491{
98bfdba5
PA
16492 struct objfile *objfile = cu->objfile;
16493 struct comp_unit_head *cu_header = &cu->header;
12df843f 16494 LONGEST value;
d521ce57 16495 const gdb_byte *bytes;
98bfdba5 16496 struct dwarf2_locexpr_baton *baton;
2df3850c 16497
98bfdba5
PA
16498 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16499 SYMBOL_PRINT_NAME (sym),
16500 &objfile->objfile_obstack, cu,
16501 &value, &bytes, &baton);
2df3850c 16502
98bfdba5
PA
16503 if (baton != NULL)
16504 {
98bfdba5 16505 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 16506 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
16507 }
16508 else if (bytes != NULL)
16509 {
16510 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 16511 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
16512 }
16513 else
16514 {
16515 SYMBOL_VALUE (sym) = value;
f1e6e072 16516 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 16517 }
2df3850c
JM
16518}
16519
c906108c
SS
16520/* Return the type of the die in question using its DW_AT_type attribute. */
16521
16522static struct type *
e7c27a73 16523die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16524{
c906108c 16525 struct attribute *type_attr;
c906108c 16526
e142c38c 16527 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
16528 if (!type_attr)
16529 {
16530 /* A missing DW_AT_type represents a void type. */
46bf5051 16531 return objfile_type (cu->objfile)->builtin_void;
c906108c 16532 }
348e048f 16533
673bfd45 16534 return lookup_die_type (die, type_attr, cu);
c906108c
SS
16535}
16536
b4ba55a1
JB
16537/* True iff CU's producer generates GNAT Ada auxiliary information
16538 that allows to find parallel types through that information instead
16539 of having to do expensive parallel lookups by type name. */
16540
16541static int
16542need_gnat_info (struct dwarf2_cu *cu)
16543{
16544 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16545 of GNAT produces this auxiliary information, without any indication
16546 that it is produced. Part of enhancing the FSF version of GNAT
16547 to produce that information will be to put in place an indicator
16548 that we can use in order to determine whether the descriptive type
16549 info is available or not. One suggestion that has been made is
16550 to use a new attribute, attached to the CU die. For now, assume
16551 that the descriptive type info is not available. */
16552 return 0;
16553}
16554
b4ba55a1
JB
16555/* Return the auxiliary type of the die in question using its
16556 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16557 attribute is not present. */
16558
16559static struct type *
16560die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16561{
b4ba55a1 16562 struct attribute *type_attr;
b4ba55a1
JB
16563
16564 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16565 if (!type_attr)
16566 return NULL;
16567
673bfd45 16568 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
16569}
16570
16571/* If DIE has a descriptive_type attribute, then set the TYPE's
16572 descriptive type accordingly. */
16573
16574static void
16575set_descriptive_type (struct type *type, struct die_info *die,
16576 struct dwarf2_cu *cu)
16577{
16578 struct type *descriptive_type = die_descriptive_type (die, cu);
16579
16580 if (descriptive_type)
16581 {
16582 ALLOCATE_GNAT_AUX_TYPE (type);
16583 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16584 }
16585}
16586
c906108c
SS
16587/* Return the containing type of the die in question using its
16588 DW_AT_containing_type attribute. */
16589
16590static struct type *
e7c27a73 16591die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16592{
c906108c 16593 struct attribute *type_attr;
c906108c 16594
e142c38c 16595 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
16596 if (!type_attr)
16597 error (_("Dwarf Error: Problem turning containing type into gdb type "
16598 "[in module %s]"), cu->objfile->name);
16599
673bfd45 16600 return lookup_die_type (die, type_attr, cu);
c906108c
SS
16601}
16602
ac9ec31b
DE
16603/* Return an error marker type to use for the ill formed type in DIE/CU. */
16604
16605static struct type *
16606build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
16607{
16608 struct objfile *objfile = dwarf2_per_objfile->objfile;
16609 char *message, *saved;
16610
16611 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16612 objfile->name,
16613 cu->header.offset.sect_off,
16614 die->offset.sect_off);
16615 saved = obstack_copy0 (&objfile->objfile_obstack,
16616 message, strlen (message));
16617 xfree (message);
16618
16619 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16620}
16621
673bfd45 16622/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
16623 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
16624 DW_AT_containing_type.
673bfd45
DE
16625 If there is no type substitute an error marker. */
16626
c906108c 16627static struct type *
673bfd45
DE
16628lookup_die_type (struct die_info *die, struct attribute *attr,
16629 struct dwarf2_cu *cu)
c906108c 16630{
bb5ed363 16631 struct objfile *objfile = cu->objfile;
f792889a
DJ
16632 struct type *this_type;
16633
ac9ec31b
DE
16634 gdb_assert (attr->name == DW_AT_type
16635 || attr->name == DW_AT_GNAT_descriptive_type
16636 || attr->name == DW_AT_containing_type);
16637
673bfd45
DE
16638 /* First see if we have it cached. */
16639
36586728
TT
16640 if (attr->form == DW_FORM_GNU_ref_alt)
16641 {
16642 struct dwarf2_per_cu_data *per_cu;
16643 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16644
16645 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16646 this_type = get_die_type_at_offset (offset, per_cu);
16647 }
16648 else if (is_ref_attr (attr))
673bfd45 16649 {
b64f50a1 16650 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
16651
16652 this_type = get_die_type_at_offset (offset, cu->per_cu);
16653 }
55f1336d 16654 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 16655 {
ac9ec31b 16656 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 16657
ac9ec31b 16658 return get_signatured_type (die, signature, cu);
673bfd45
DE
16659 }
16660 else
16661 {
ac9ec31b
DE
16662 complaint (&symfile_complaints,
16663 _("Dwarf Error: Bad type attribute %s in DIE"
16664 " at 0x%x [in module %s]"),
16665 dwarf_attr_name (attr->name), die->offset.sect_off,
16666 objfile->name);
16667 return build_error_marker_type (cu, die);
673bfd45
DE
16668 }
16669
16670 /* If not cached we need to read it in. */
16671
16672 if (this_type == NULL)
16673 {
ac9ec31b 16674 struct die_info *type_die = NULL;
673bfd45
DE
16675 struct dwarf2_cu *type_cu = cu;
16676
ac9ec31b
DE
16677 if (is_ref_attr (attr))
16678 type_die = follow_die_ref (die, attr, &type_cu);
16679 if (type_die == NULL)
16680 return build_error_marker_type (cu, die);
16681 /* If we find the type now, it's probably because the type came
3019eac3
DE
16682 from an inter-CU reference and the type's CU got expanded before
16683 ours. */
ac9ec31b 16684 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
16685 }
16686
16687 /* If we still don't have a type use an error marker. */
16688
16689 if (this_type == NULL)
ac9ec31b 16690 return build_error_marker_type (cu, die);
673bfd45 16691
f792889a 16692 return this_type;
c906108c
SS
16693}
16694
673bfd45
DE
16695/* Return the type in DIE, CU.
16696 Returns NULL for invalid types.
16697
02142a6c 16698 This first does a lookup in die_type_hash,
673bfd45
DE
16699 and only reads the die in if necessary.
16700
16701 NOTE: This can be called when reading in partial or full symbols. */
16702
f792889a 16703static struct type *
e7c27a73 16704read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16705{
f792889a
DJ
16706 struct type *this_type;
16707
16708 this_type = get_die_type (die, cu);
16709 if (this_type)
16710 return this_type;
16711
673bfd45
DE
16712 return read_type_die_1 (die, cu);
16713}
16714
16715/* Read the type in DIE, CU.
16716 Returns NULL for invalid types. */
16717
16718static struct type *
16719read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16720{
16721 struct type *this_type = NULL;
16722
c906108c
SS
16723 switch (die->tag)
16724 {
16725 case DW_TAG_class_type:
680b30c7 16726 case DW_TAG_interface_type:
c906108c
SS
16727 case DW_TAG_structure_type:
16728 case DW_TAG_union_type:
f792889a 16729 this_type = read_structure_type (die, cu);
c906108c
SS
16730 break;
16731 case DW_TAG_enumeration_type:
f792889a 16732 this_type = read_enumeration_type (die, cu);
c906108c
SS
16733 break;
16734 case DW_TAG_subprogram:
16735 case DW_TAG_subroutine_type:
edb3359d 16736 case DW_TAG_inlined_subroutine:
f792889a 16737 this_type = read_subroutine_type (die, cu);
c906108c
SS
16738 break;
16739 case DW_TAG_array_type:
f792889a 16740 this_type = read_array_type (die, cu);
c906108c 16741 break;
72019c9c 16742 case DW_TAG_set_type:
f792889a 16743 this_type = read_set_type (die, cu);
72019c9c 16744 break;
c906108c 16745 case DW_TAG_pointer_type:
f792889a 16746 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
16747 break;
16748 case DW_TAG_ptr_to_member_type:
f792889a 16749 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
16750 break;
16751 case DW_TAG_reference_type:
f792889a 16752 this_type = read_tag_reference_type (die, cu);
c906108c
SS
16753 break;
16754 case DW_TAG_const_type:
f792889a 16755 this_type = read_tag_const_type (die, cu);
c906108c
SS
16756 break;
16757 case DW_TAG_volatile_type:
f792889a 16758 this_type = read_tag_volatile_type (die, cu);
c906108c 16759 break;
06d66ee9
TT
16760 case DW_TAG_restrict_type:
16761 this_type = read_tag_restrict_type (die, cu);
16762 break;
c906108c 16763 case DW_TAG_string_type:
f792889a 16764 this_type = read_tag_string_type (die, cu);
c906108c
SS
16765 break;
16766 case DW_TAG_typedef:
f792889a 16767 this_type = read_typedef (die, cu);
c906108c 16768 break;
a02abb62 16769 case DW_TAG_subrange_type:
f792889a 16770 this_type = read_subrange_type (die, cu);
a02abb62 16771 break;
c906108c 16772 case DW_TAG_base_type:
f792889a 16773 this_type = read_base_type (die, cu);
c906108c 16774 break;
81a17f79 16775 case DW_TAG_unspecified_type:
f792889a 16776 this_type = read_unspecified_type (die, cu);
81a17f79 16777 break;
0114d602
DJ
16778 case DW_TAG_namespace:
16779 this_type = read_namespace_type (die, cu);
16780 break;
f55ee35c
JK
16781 case DW_TAG_module:
16782 this_type = read_module_type (die, cu);
16783 break;
c906108c 16784 default:
3e43a32a
MS
16785 complaint (&symfile_complaints,
16786 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 16787 dwarf_tag_name (die->tag));
c906108c
SS
16788 break;
16789 }
63d06c5c 16790
f792889a 16791 return this_type;
63d06c5c
DC
16792}
16793
abc72ce4
DE
16794/* See if we can figure out if the class lives in a namespace. We do
16795 this by looking for a member function; its demangled name will
16796 contain namespace info, if there is any.
16797 Return the computed name or NULL.
16798 Space for the result is allocated on the objfile's obstack.
16799 This is the full-die version of guess_partial_die_structure_name.
16800 In this case we know DIE has no useful parent. */
16801
16802static char *
16803guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16804{
16805 struct die_info *spec_die;
16806 struct dwarf2_cu *spec_cu;
16807 struct die_info *child;
16808
16809 spec_cu = cu;
16810 spec_die = die_specification (die, &spec_cu);
16811 if (spec_die != NULL)
16812 {
16813 die = spec_die;
16814 cu = spec_cu;
16815 }
16816
16817 for (child = die->child;
16818 child != NULL;
16819 child = child->sibling)
16820 {
16821 if (child->tag == DW_TAG_subprogram)
16822 {
16823 struct attribute *attr;
16824
16825 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16826 if (attr == NULL)
16827 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16828 if (attr != NULL)
16829 {
16830 char *actual_name
16831 = language_class_name_from_physname (cu->language_defn,
16832 DW_STRING (attr));
16833 char *name = NULL;
16834
16835 if (actual_name != NULL)
16836 {
15d034d0 16837 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
16838
16839 if (die_name != NULL
16840 && strcmp (die_name, actual_name) != 0)
16841 {
16842 /* Strip off the class name from the full name.
16843 We want the prefix. */
16844 int die_name_len = strlen (die_name);
16845 int actual_name_len = strlen (actual_name);
16846
16847 /* Test for '::' as a sanity check. */
16848 if (actual_name_len > die_name_len + 2
3e43a32a
MS
16849 && actual_name[actual_name_len
16850 - die_name_len - 1] == ':')
abc72ce4 16851 name =
10f0c4bb
TT
16852 obstack_copy0 (&cu->objfile->objfile_obstack,
16853 actual_name,
16854 actual_name_len - die_name_len - 2);
abc72ce4
DE
16855 }
16856 }
16857 xfree (actual_name);
16858 return name;
16859 }
16860 }
16861 }
16862
16863 return NULL;
16864}
16865
96408a79
SA
16866/* GCC might emit a nameless typedef that has a linkage name. Determine the
16867 prefix part in such case. See
16868 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16869
16870static char *
16871anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16872{
16873 struct attribute *attr;
16874 char *base;
16875
16876 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16877 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16878 return NULL;
16879
16880 attr = dwarf2_attr (die, DW_AT_name, cu);
16881 if (attr != NULL && DW_STRING (attr) != NULL)
16882 return NULL;
16883
16884 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16885 if (attr == NULL)
16886 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16887 if (attr == NULL || DW_STRING (attr) == NULL)
16888 return NULL;
16889
16890 /* dwarf2_name had to be already called. */
16891 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16892
16893 /* Strip the base name, keep any leading namespaces/classes. */
16894 base = strrchr (DW_STRING (attr), ':');
16895 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16896 return "";
16897
10f0c4bb
TT
16898 return obstack_copy0 (&cu->objfile->objfile_obstack,
16899 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
16900}
16901
fdde2d81 16902/* Return the name of the namespace/class that DIE is defined within,
0114d602 16903 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 16904
0114d602
DJ
16905 For example, if we're within the method foo() in the following
16906 code:
16907
16908 namespace N {
16909 class C {
16910 void foo () {
16911 }
16912 };
16913 }
16914
16915 then determine_prefix on foo's die will return "N::C". */
fdde2d81 16916
0d5cff50 16917static const char *
e142c38c 16918determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 16919{
0114d602
DJ
16920 struct die_info *parent, *spec_die;
16921 struct dwarf2_cu *spec_cu;
16922 struct type *parent_type;
96408a79 16923 char *retval;
63d06c5c 16924
f55ee35c
JK
16925 if (cu->language != language_cplus && cu->language != language_java
16926 && cu->language != language_fortran)
0114d602
DJ
16927 return "";
16928
96408a79
SA
16929 retval = anonymous_struct_prefix (die, cu);
16930 if (retval)
16931 return retval;
16932
0114d602
DJ
16933 /* We have to be careful in the presence of DW_AT_specification.
16934 For example, with GCC 3.4, given the code
16935
16936 namespace N {
16937 void foo() {
16938 // Definition of N::foo.
16939 }
16940 }
16941
16942 then we'll have a tree of DIEs like this:
16943
16944 1: DW_TAG_compile_unit
16945 2: DW_TAG_namespace // N
16946 3: DW_TAG_subprogram // declaration of N::foo
16947 4: DW_TAG_subprogram // definition of N::foo
16948 DW_AT_specification // refers to die #3
16949
16950 Thus, when processing die #4, we have to pretend that we're in
16951 the context of its DW_AT_specification, namely the contex of die
16952 #3. */
16953 spec_cu = cu;
16954 spec_die = die_specification (die, &spec_cu);
16955 if (spec_die == NULL)
16956 parent = die->parent;
16957 else
63d06c5c 16958 {
0114d602
DJ
16959 parent = spec_die->parent;
16960 cu = spec_cu;
63d06c5c 16961 }
0114d602
DJ
16962
16963 if (parent == NULL)
16964 return "";
98bfdba5
PA
16965 else if (parent->building_fullname)
16966 {
16967 const char *name;
16968 const char *parent_name;
16969
16970 /* It has been seen on RealView 2.2 built binaries,
16971 DW_TAG_template_type_param types actually _defined_ as
16972 children of the parent class:
16973
16974 enum E {};
16975 template class <class Enum> Class{};
16976 Class<enum E> class_e;
16977
16978 1: DW_TAG_class_type (Class)
16979 2: DW_TAG_enumeration_type (E)
16980 3: DW_TAG_enumerator (enum1:0)
16981 3: DW_TAG_enumerator (enum2:1)
16982 ...
16983 2: DW_TAG_template_type_param
16984 DW_AT_type DW_FORM_ref_udata (E)
16985
16986 Besides being broken debug info, it can put GDB into an
16987 infinite loop. Consider:
16988
16989 When we're building the full name for Class<E>, we'll start
16990 at Class, and go look over its template type parameters,
16991 finding E. We'll then try to build the full name of E, and
16992 reach here. We're now trying to build the full name of E,
16993 and look over the parent DIE for containing scope. In the
16994 broken case, if we followed the parent DIE of E, we'd again
16995 find Class, and once again go look at its template type
16996 arguments, etc., etc. Simply don't consider such parent die
16997 as source-level parent of this die (it can't be, the language
16998 doesn't allow it), and break the loop here. */
16999 name = dwarf2_name (die, cu);
17000 parent_name = dwarf2_name (parent, cu);
17001 complaint (&symfile_complaints,
17002 _("template param type '%s' defined within parent '%s'"),
17003 name ? name : "<unknown>",
17004 parent_name ? parent_name : "<unknown>");
17005 return "";
17006 }
63d06c5c 17007 else
0114d602
DJ
17008 switch (parent->tag)
17009 {
63d06c5c 17010 case DW_TAG_namespace:
0114d602 17011 parent_type = read_type_die (parent, cu);
acebe513
UW
17012 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17013 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17014 Work around this problem here. */
17015 if (cu->language == language_cplus
17016 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17017 return "";
0114d602
DJ
17018 /* We give a name to even anonymous namespaces. */
17019 return TYPE_TAG_NAME (parent_type);
63d06c5c 17020 case DW_TAG_class_type:
680b30c7 17021 case DW_TAG_interface_type:
63d06c5c 17022 case DW_TAG_structure_type:
0114d602 17023 case DW_TAG_union_type:
f55ee35c 17024 case DW_TAG_module:
0114d602
DJ
17025 parent_type = read_type_die (parent, cu);
17026 if (TYPE_TAG_NAME (parent_type) != NULL)
17027 return TYPE_TAG_NAME (parent_type);
17028 else
17029 /* An anonymous structure is only allowed non-static data
17030 members; no typedefs, no member functions, et cetera.
17031 So it does not need a prefix. */
17032 return "";
abc72ce4 17033 case DW_TAG_compile_unit:
95554aad 17034 case DW_TAG_partial_unit:
abc72ce4
DE
17035 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17036 if (cu->language == language_cplus
8b70b953 17037 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
17038 && die->child != NULL
17039 && (die->tag == DW_TAG_class_type
17040 || die->tag == DW_TAG_structure_type
17041 || die->tag == DW_TAG_union_type))
17042 {
17043 char *name = guess_full_die_structure_name (die, cu);
17044 if (name != NULL)
17045 return name;
17046 }
17047 return "";
63d06c5c 17048 default:
8176b9b8 17049 return determine_prefix (parent, cu);
63d06c5c 17050 }
63d06c5c
DC
17051}
17052
3e43a32a
MS
17053/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17054 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17055 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17056 an obconcat, otherwise allocate storage for the result. The CU argument is
17057 used to determine the language and hence, the appropriate separator. */
987504bb 17058
f55ee35c 17059#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
17060
17061static char *
f55ee35c
JK
17062typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17063 int physname, struct dwarf2_cu *cu)
63d06c5c 17064{
f55ee35c 17065 const char *lead = "";
5c315b68 17066 const char *sep;
63d06c5c 17067
3e43a32a
MS
17068 if (suffix == NULL || suffix[0] == '\0'
17069 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
17070 sep = "";
17071 else if (cu->language == language_java)
17072 sep = ".";
f55ee35c
JK
17073 else if (cu->language == language_fortran && physname)
17074 {
17075 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17076 DW_AT_MIPS_linkage_name is preferred and used instead. */
17077
17078 lead = "__";
17079 sep = "_MOD_";
17080 }
987504bb
JJ
17081 else
17082 sep = "::";
63d06c5c 17083
6dd47d34
DE
17084 if (prefix == NULL)
17085 prefix = "";
17086 if (suffix == NULL)
17087 suffix = "";
17088
987504bb
JJ
17089 if (obs == NULL)
17090 {
3e43a32a
MS
17091 char *retval
17092 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 17093
f55ee35c
JK
17094 strcpy (retval, lead);
17095 strcat (retval, prefix);
6dd47d34
DE
17096 strcat (retval, sep);
17097 strcat (retval, suffix);
63d06c5c
DC
17098 return retval;
17099 }
987504bb
JJ
17100 else
17101 {
17102 /* We have an obstack. */
f55ee35c 17103 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 17104 }
63d06c5c
DC
17105}
17106
c906108c
SS
17107/* Return sibling of die, NULL if no sibling. */
17108
f9aca02d 17109static struct die_info *
fba45db2 17110sibling_die (struct die_info *die)
c906108c 17111{
639d11d3 17112 return die->sibling;
c906108c
SS
17113}
17114
71c25dea
TT
17115/* Get name of a die, return NULL if not found. */
17116
15d034d0
TT
17117static const char *
17118dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
17119 struct obstack *obstack)
17120{
17121 if (name && cu->language == language_cplus)
17122 {
17123 char *canon_name = cp_canonicalize_string (name);
17124
17125 if (canon_name != NULL)
17126 {
17127 if (strcmp (canon_name, name) != 0)
10f0c4bb 17128 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
17129 xfree (canon_name);
17130 }
17131 }
17132
17133 return name;
c906108c
SS
17134}
17135
9219021c
DC
17136/* Get name of a die, return NULL if not found. */
17137
15d034d0 17138static const char *
e142c38c 17139dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
17140{
17141 struct attribute *attr;
17142
e142c38c 17143 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
17144 if ((!attr || !DW_STRING (attr))
17145 && die->tag != DW_TAG_class_type
17146 && die->tag != DW_TAG_interface_type
17147 && die->tag != DW_TAG_structure_type
17148 && die->tag != DW_TAG_union_type)
71c25dea
TT
17149 return NULL;
17150
17151 switch (die->tag)
17152 {
17153 case DW_TAG_compile_unit:
95554aad 17154 case DW_TAG_partial_unit:
71c25dea
TT
17155 /* Compilation units have a DW_AT_name that is a filename, not
17156 a source language identifier. */
17157 case DW_TAG_enumeration_type:
17158 case DW_TAG_enumerator:
17159 /* These tags always have simple identifiers already; no need
17160 to canonicalize them. */
17161 return DW_STRING (attr);
907af001 17162
418835cc
KS
17163 case DW_TAG_subprogram:
17164 /* Java constructors will all be named "<init>", so return
17165 the class name when we see this special case. */
17166 if (cu->language == language_java
17167 && DW_STRING (attr) != NULL
17168 && strcmp (DW_STRING (attr), "<init>") == 0)
17169 {
17170 struct dwarf2_cu *spec_cu = cu;
17171 struct die_info *spec_die;
17172
17173 /* GCJ will output '<init>' for Java constructor names.
17174 For this special case, return the name of the parent class. */
17175
17176 /* GCJ may output suprogram DIEs with AT_specification set.
17177 If so, use the name of the specified DIE. */
17178 spec_die = die_specification (die, &spec_cu);
17179 if (spec_die != NULL)
17180 return dwarf2_name (spec_die, spec_cu);
17181
17182 do
17183 {
17184 die = die->parent;
17185 if (die->tag == DW_TAG_class_type)
17186 return dwarf2_name (die, cu);
17187 }
95554aad
TT
17188 while (die->tag != DW_TAG_compile_unit
17189 && die->tag != DW_TAG_partial_unit);
418835cc 17190 }
907af001
UW
17191 break;
17192
17193 case DW_TAG_class_type:
17194 case DW_TAG_interface_type:
17195 case DW_TAG_structure_type:
17196 case DW_TAG_union_type:
17197 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17198 structures or unions. These were of the form "._%d" in GCC 4.1,
17199 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17200 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
17201 if (attr && DW_STRING (attr)
17202 && (strncmp (DW_STRING (attr), "._", 2) == 0
17203 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 17204 return NULL;
53832f31
TT
17205
17206 /* GCC might emit a nameless typedef that has a linkage name. See
17207 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17208 if (!attr || DW_STRING (attr) == NULL)
17209 {
df5c6c50 17210 char *demangled = NULL;
53832f31
TT
17211
17212 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17213 if (attr == NULL)
17214 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17215
17216 if (attr == NULL || DW_STRING (attr) == NULL)
17217 return NULL;
17218
df5c6c50
JK
17219 /* Avoid demangling DW_STRING (attr) the second time on a second
17220 call for the same DIE. */
17221 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 17222 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
17223
17224 if (demangled)
17225 {
96408a79
SA
17226 char *base;
17227
53832f31 17228 /* FIXME: we already did this for the partial symbol... */
10f0c4bb
TT
17229 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17230 demangled, strlen (demangled));
53832f31
TT
17231 DW_STRING_IS_CANONICAL (attr) = 1;
17232 xfree (demangled);
96408a79
SA
17233
17234 /* Strip any leading namespaces/classes, keep only the base name.
17235 DW_AT_name for named DIEs does not contain the prefixes. */
17236 base = strrchr (DW_STRING (attr), ':');
17237 if (base && base > DW_STRING (attr) && base[-1] == ':')
17238 return &base[1];
17239 else
17240 return DW_STRING (attr);
53832f31
TT
17241 }
17242 }
907af001
UW
17243 break;
17244
71c25dea 17245 default:
907af001
UW
17246 break;
17247 }
17248
17249 if (!DW_STRING_IS_CANONICAL (attr))
17250 {
17251 DW_STRING (attr)
17252 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17253 &cu->objfile->objfile_obstack);
17254 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 17255 }
907af001 17256 return DW_STRING (attr);
9219021c
DC
17257}
17258
17259/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
17260 is none. *EXT_CU is the CU containing DIE on input, and the CU
17261 containing the return value on output. */
9219021c
DC
17262
17263static struct die_info *
f2f0e013 17264dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
17265{
17266 struct attribute *attr;
9219021c 17267
f2f0e013 17268 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
17269 if (attr == NULL)
17270 return NULL;
17271
f2f0e013 17272 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
17273}
17274
c906108c
SS
17275/* Convert a DIE tag into its string name. */
17276
f39c6ffd 17277static const char *
aa1ee363 17278dwarf_tag_name (unsigned tag)
c906108c 17279{
f39c6ffd
TT
17280 const char *name = get_DW_TAG_name (tag);
17281
17282 if (name == NULL)
17283 return "DW_TAG_<unknown>";
17284
17285 return name;
c906108c
SS
17286}
17287
17288/* Convert a DWARF attribute code into its string name. */
17289
f39c6ffd 17290static const char *
aa1ee363 17291dwarf_attr_name (unsigned attr)
c906108c 17292{
f39c6ffd
TT
17293 const char *name;
17294
c764a876 17295#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
17296 if (attr == DW_AT_MIPS_fde)
17297 return "DW_AT_MIPS_fde";
17298#else
17299 if (attr == DW_AT_HP_block_index)
17300 return "DW_AT_HP_block_index";
c764a876 17301#endif
f39c6ffd
TT
17302
17303 name = get_DW_AT_name (attr);
17304
17305 if (name == NULL)
17306 return "DW_AT_<unknown>";
17307
17308 return name;
c906108c
SS
17309}
17310
17311/* Convert a DWARF value form code into its string name. */
17312
f39c6ffd 17313static const char *
aa1ee363 17314dwarf_form_name (unsigned form)
c906108c 17315{
f39c6ffd
TT
17316 const char *name = get_DW_FORM_name (form);
17317
17318 if (name == NULL)
17319 return "DW_FORM_<unknown>";
17320
17321 return name;
c906108c
SS
17322}
17323
17324static char *
fba45db2 17325dwarf_bool_name (unsigned mybool)
c906108c
SS
17326{
17327 if (mybool)
17328 return "TRUE";
17329 else
17330 return "FALSE";
17331}
17332
17333/* Convert a DWARF type code into its string name. */
17334
f39c6ffd 17335static const char *
aa1ee363 17336dwarf_type_encoding_name (unsigned enc)
c906108c 17337{
f39c6ffd 17338 const char *name = get_DW_ATE_name (enc);
c906108c 17339
f39c6ffd
TT
17340 if (name == NULL)
17341 return "DW_ATE_<unknown>";
c906108c 17342
f39c6ffd 17343 return name;
c906108c 17344}
c906108c 17345
f9aca02d 17346static void
d97bc12b 17347dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
17348{
17349 unsigned int i;
17350
d97bc12b
DE
17351 print_spaces (indent, f);
17352 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 17353 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
17354
17355 if (die->parent != NULL)
17356 {
17357 print_spaces (indent, f);
17358 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 17359 die->parent->offset.sect_off);
d97bc12b
DE
17360 }
17361
17362 print_spaces (indent, f);
17363 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 17364 dwarf_bool_name (die->child != NULL));
c906108c 17365
d97bc12b
DE
17366 print_spaces (indent, f);
17367 fprintf_unfiltered (f, " attributes:\n");
17368
c906108c
SS
17369 for (i = 0; i < die->num_attrs; ++i)
17370 {
d97bc12b
DE
17371 print_spaces (indent, f);
17372 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
17373 dwarf_attr_name (die->attrs[i].name),
17374 dwarf_form_name (die->attrs[i].form));
d97bc12b 17375
c906108c
SS
17376 switch (die->attrs[i].form)
17377 {
c906108c 17378 case DW_FORM_addr:
3019eac3 17379 case DW_FORM_GNU_addr_index:
d97bc12b 17380 fprintf_unfiltered (f, "address: ");
5af949e3 17381 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
17382 break;
17383 case DW_FORM_block2:
17384 case DW_FORM_block4:
17385 case DW_FORM_block:
17386 case DW_FORM_block1:
56eb65bd
SP
17387 fprintf_unfiltered (f, "block: size %s",
17388 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 17389 break;
2dc7f7b3 17390 case DW_FORM_exprloc:
56eb65bd
SP
17391 fprintf_unfiltered (f, "expression: size %s",
17392 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 17393 break;
4568ecf9
DE
17394 case DW_FORM_ref_addr:
17395 fprintf_unfiltered (f, "ref address: ");
17396 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17397 break;
36586728
TT
17398 case DW_FORM_GNU_ref_alt:
17399 fprintf_unfiltered (f, "alt ref address: ");
17400 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17401 break;
10b3939b
DJ
17402 case DW_FORM_ref1:
17403 case DW_FORM_ref2:
17404 case DW_FORM_ref4:
4568ecf9
DE
17405 case DW_FORM_ref8:
17406 case DW_FORM_ref_udata:
d97bc12b 17407 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 17408 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 17409 break;
c906108c
SS
17410 case DW_FORM_data1:
17411 case DW_FORM_data2:
17412 case DW_FORM_data4:
ce5d95e1 17413 case DW_FORM_data8:
c906108c
SS
17414 case DW_FORM_udata:
17415 case DW_FORM_sdata:
43bbcdc2
PH
17416 fprintf_unfiltered (f, "constant: %s",
17417 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 17418 break;
2dc7f7b3
TT
17419 case DW_FORM_sec_offset:
17420 fprintf_unfiltered (f, "section offset: %s",
17421 pulongest (DW_UNSND (&die->attrs[i])));
17422 break;
55f1336d 17423 case DW_FORM_ref_sig8:
ac9ec31b
DE
17424 fprintf_unfiltered (f, "signature: %s",
17425 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 17426 break;
c906108c 17427 case DW_FORM_string:
4bdf3d34 17428 case DW_FORM_strp:
3019eac3 17429 case DW_FORM_GNU_str_index:
36586728 17430 case DW_FORM_GNU_strp_alt:
8285870a 17431 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 17432 DW_STRING (&die->attrs[i])
8285870a
JK
17433 ? DW_STRING (&die->attrs[i]) : "",
17434 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
17435 break;
17436 case DW_FORM_flag:
17437 if (DW_UNSND (&die->attrs[i]))
d97bc12b 17438 fprintf_unfiltered (f, "flag: TRUE");
c906108c 17439 else
d97bc12b 17440 fprintf_unfiltered (f, "flag: FALSE");
c906108c 17441 break;
2dc7f7b3
TT
17442 case DW_FORM_flag_present:
17443 fprintf_unfiltered (f, "flag: TRUE");
17444 break;
a8329558 17445 case DW_FORM_indirect:
0963b4bd
MS
17446 /* The reader will have reduced the indirect form to
17447 the "base form" so this form should not occur. */
3e43a32a
MS
17448 fprintf_unfiltered (f,
17449 "unexpected attribute form: DW_FORM_indirect");
a8329558 17450 break;
c906108c 17451 default:
d97bc12b 17452 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 17453 die->attrs[i].form);
d97bc12b 17454 break;
c906108c 17455 }
d97bc12b 17456 fprintf_unfiltered (f, "\n");
c906108c
SS
17457 }
17458}
17459
f9aca02d 17460static void
d97bc12b 17461dump_die_for_error (struct die_info *die)
c906108c 17462{
d97bc12b
DE
17463 dump_die_shallow (gdb_stderr, 0, die);
17464}
17465
17466static void
17467dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17468{
17469 int indent = level * 4;
17470
17471 gdb_assert (die != NULL);
17472
17473 if (level >= max_level)
17474 return;
17475
17476 dump_die_shallow (f, indent, die);
17477
17478 if (die->child != NULL)
c906108c 17479 {
d97bc12b
DE
17480 print_spaces (indent, f);
17481 fprintf_unfiltered (f, " Children:");
17482 if (level + 1 < max_level)
17483 {
17484 fprintf_unfiltered (f, "\n");
17485 dump_die_1 (f, level + 1, max_level, die->child);
17486 }
17487 else
17488 {
3e43a32a
MS
17489 fprintf_unfiltered (f,
17490 " [not printed, max nesting level reached]\n");
d97bc12b
DE
17491 }
17492 }
17493
17494 if (die->sibling != NULL && level > 0)
17495 {
17496 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
17497 }
17498}
17499
d97bc12b
DE
17500/* This is called from the pdie macro in gdbinit.in.
17501 It's not static so gcc will keep a copy callable from gdb. */
17502
17503void
17504dump_die (struct die_info *die, int max_level)
17505{
17506 dump_die_1 (gdb_stdlog, 0, max_level, die);
17507}
17508
f9aca02d 17509static void
51545339 17510store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17511{
51545339 17512 void **slot;
c906108c 17513
b64f50a1
JK
17514 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17515 INSERT);
51545339
DJ
17516
17517 *slot = die;
c906108c
SS
17518}
17519
b64f50a1
JK
17520/* DW_ADDR is always stored already as sect_offset; despite for the forms
17521 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17522
93311388
DE
17523static int
17524is_ref_attr (struct attribute *attr)
c906108c 17525{
c906108c
SS
17526 switch (attr->form)
17527 {
17528 case DW_FORM_ref_addr:
c906108c
SS
17529 case DW_FORM_ref1:
17530 case DW_FORM_ref2:
17531 case DW_FORM_ref4:
613e1657 17532 case DW_FORM_ref8:
c906108c 17533 case DW_FORM_ref_udata:
36586728 17534 case DW_FORM_GNU_ref_alt:
93311388 17535 return 1;
c906108c 17536 default:
93311388 17537 return 0;
c906108c 17538 }
93311388
DE
17539}
17540
b64f50a1
JK
17541/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17542 required kind. */
17543
17544static sect_offset
93311388
DE
17545dwarf2_get_ref_die_offset (struct attribute *attr)
17546{
4568ecf9 17547 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 17548
93311388 17549 if (is_ref_attr (attr))
b64f50a1 17550 return retval;
93311388 17551
b64f50a1 17552 retval.sect_off = 0;
93311388
DE
17553 complaint (&symfile_complaints,
17554 _("unsupported die ref attribute form: '%s'"),
17555 dwarf_form_name (attr->form));
b64f50a1 17556 return retval;
c906108c
SS
17557}
17558
43bbcdc2
PH
17559/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17560 * the value held by the attribute is not constant. */
a02abb62 17561
43bbcdc2 17562static LONGEST
a02abb62
JB
17563dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17564{
17565 if (attr->form == DW_FORM_sdata)
17566 return DW_SND (attr);
17567 else if (attr->form == DW_FORM_udata
17568 || attr->form == DW_FORM_data1
17569 || attr->form == DW_FORM_data2
17570 || attr->form == DW_FORM_data4
17571 || attr->form == DW_FORM_data8)
17572 return DW_UNSND (attr);
17573 else
17574 {
3e43a32a
MS
17575 complaint (&symfile_complaints,
17576 _("Attribute value is not a constant (%s)"),
a02abb62
JB
17577 dwarf_form_name (attr->form));
17578 return default_value;
17579 }
17580}
17581
348e048f
DE
17582/* Follow reference or signature attribute ATTR of SRC_DIE.
17583 On entry *REF_CU is the CU of SRC_DIE.
17584 On exit *REF_CU is the CU of the result. */
17585
17586static struct die_info *
17587follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17588 struct dwarf2_cu **ref_cu)
17589{
17590 struct die_info *die;
17591
17592 if (is_ref_attr (attr))
17593 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 17594 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
17595 die = follow_die_sig (src_die, attr, ref_cu);
17596 else
17597 {
17598 dump_die_for_error (src_die);
17599 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17600 (*ref_cu)->objfile->name);
17601 }
17602
17603 return die;
03dd20cc
DJ
17604}
17605
5c631832 17606/* Follow reference OFFSET.
673bfd45
DE
17607 On entry *REF_CU is the CU of the source die referencing OFFSET.
17608 On exit *REF_CU is the CU of the result.
17609 Returns NULL if OFFSET is invalid. */
f504f079 17610
f9aca02d 17611static struct die_info *
36586728
TT
17612follow_die_offset (sect_offset offset, int offset_in_dwz,
17613 struct dwarf2_cu **ref_cu)
c906108c 17614{
10b3939b 17615 struct die_info temp_die;
f2f0e013 17616 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 17617
348e048f
DE
17618 gdb_assert (cu->per_cu != NULL);
17619
98bfdba5
PA
17620 target_cu = cu;
17621
3019eac3 17622 if (cu->per_cu->is_debug_types)
348e048f
DE
17623 {
17624 /* .debug_types CUs cannot reference anything outside their CU.
17625 If they need to, they have to reference a signatured type via
55f1336d 17626 DW_FORM_ref_sig8. */
348e048f 17627 if (! offset_in_cu_p (&cu->header, offset))
5c631832 17628 return NULL;
348e048f 17629 }
36586728
TT
17630 else if (offset_in_dwz != cu->per_cu->is_dwz
17631 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
17632 {
17633 struct dwarf2_per_cu_data *per_cu;
9a619af0 17634
36586728
TT
17635 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17636 cu->objfile);
03dd20cc
DJ
17637
17638 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
17639 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17640 load_full_comp_unit (per_cu, cu->language);
03dd20cc 17641
10b3939b
DJ
17642 target_cu = per_cu->cu;
17643 }
98bfdba5
PA
17644 else if (cu->dies == NULL)
17645 {
17646 /* We're loading full DIEs during partial symbol reading. */
17647 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 17648 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 17649 }
c906108c 17650
f2f0e013 17651 *ref_cu = target_cu;
51545339 17652 temp_die.offset = offset;
b64f50a1 17653 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 17654}
10b3939b 17655
5c631832
JK
17656/* Follow reference attribute ATTR of SRC_DIE.
17657 On entry *REF_CU is the CU of SRC_DIE.
17658 On exit *REF_CU is the CU of the result. */
17659
17660static struct die_info *
17661follow_die_ref (struct die_info *src_die, struct attribute *attr,
17662 struct dwarf2_cu **ref_cu)
17663{
b64f50a1 17664 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
17665 struct dwarf2_cu *cu = *ref_cu;
17666 struct die_info *die;
17667
36586728
TT
17668 die = follow_die_offset (offset,
17669 (attr->form == DW_FORM_GNU_ref_alt
17670 || cu->per_cu->is_dwz),
17671 ref_cu);
5c631832
JK
17672 if (!die)
17673 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17674 "at 0x%x [in module %s]"),
b64f50a1 17675 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
348e048f 17676
5c631832
JK
17677 return die;
17678}
17679
d83e736b
JK
17680/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17681 Returned value is intended for DW_OP_call*. Returned
17682 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
17683
17684struct dwarf2_locexpr_baton
8b9737bf
TT
17685dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17686 struct dwarf2_per_cu_data *per_cu,
17687 CORE_ADDR (*get_frame_pc) (void *baton),
17688 void *baton)
5c631832 17689{
918dd910 17690 struct dwarf2_cu *cu;
5c631832
JK
17691 struct die_info *die;
17692 struct attribute *attr;
17693 struct dwarf2_locexpr_baton retval;
17694
8cf6f0b1
TT
17695 dw2_setup (per_cu->objfile);
17696
918dd910
JK
17697 if (per_cu->cu == NULL)
17698 load_cu (per_cu);
17699 cu = per_cu->cu;
17700
36586728 17701 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
17702 if (!die)
17703 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
b64f50a1 17704 offset.sect_off, per_cu->objfile->name);
5c631832
JK
17705
17706 attr = dwarf2_attr (die, DW_AT_location, cu);
17707 if (!attr)
17708 {
e103e986
JK
17709 /* DWARF: "If there is no such attribute, then there is no effect.".
17710 DATA is ignored if SIZE is 0. */
5c631832 17711
e103e986 17712 retval.data = NULL;
5c631832
JK
17713 retval.size = 0;
17714 }
8cf6f0b1
TT
17715 else if (attr_form_is_section_offset (attr))
17716 {
17717 struct dwarf2_loclist_baton loclist_baton;
17718 CORE_ADDR pc = (*get_frame_pc) (baton);
17719 size_t size;
17720
17721 fill_in_loclist_baton (cu, &loclist_baton, attr);
17722
17723 retval.data = dwarf2_find_location_expression (&loclist_baton,
17724 &size, pc);
17725 retval.size = size;
17726 }
5c631832
JK
17727 else
17728 {
17729 if (!attr_form_is_block (attr))
17730 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17731 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
b64f50a1 17732 offset.sect_off, per_cu->objfile->name);
5c631832
JK
17733
17734 retval.data = DW_BLOCK (attr)->data;
17735 retval.size = DW_BLOCK (attr)->size;
17736 }
17737 retval.per_cu = cu->per_cu;
918dd910 17738
918dd910
JK
17739 age_cached_comp_units ();
17740
5c631832 17741 return retval;
348e048f
DE
17742}
17743
8b9737bf
TT
17744/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17745 offset. */
17746
17747struct dwarf2_locexpr_baton
17748dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17749 struct dwarf2_per_cu_data *per_cu,
17750 CORE_ADDR (*get_frame_pc) (void *baton),
17751 void *baton)
17752{
17753 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17754
17755 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17756}
17757
8a9b8146
TT
17758/* Return the type of the DIE at DIE_OFFSET in the CU named by
17759 PER_CU. */
17760
17761struct type *
b64f50a1 17762dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
17763 struct dwarf2_per_cu_data *per_cu)
17764{
b64f50a1
JK
17765 sect_offset die_offset_sect;
17766
8a9b8146 17767 dw2_setup (per_cu->objfile);
b64f50a1
JK
17768
17769 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17770 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
17771}
17772
ac9ec31b 17773/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 17774 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
17775 On exit *REF_CU is the CU of the result.
17776 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
17777
17778static struct die_info *
ac9ec31b
DE
17779follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
17780 struct dwarf2_cu **ref_cu)
348e048f
DE
17781{
17782 struct objfile *objfile = (*ref_cu)->objfile;
17783 struct die_info temp_die;
348e048f
DE
17784 struct dwarf2_cu *sig_cu;
17785 struct die_info *die;
17786
ac9ec31b
DE
17787 /* While it might be nice to assert sig_type->type == NULL here,
17788 we can get here for DW_AT_imported_declaration where we need
17789 the DIE not the type. */
348e048f
DE
17790
17791 /* If necessary, add it to the queue and load its DIEs. */
17792
95554aad 17793 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 17794 read_signatured_type (sig_type);
348e048f
DE
17795
17796 gdb_assert (sig_type->per_cu.cu != NULL);
17797
17798 sig_cu = sig_type->per_cu.cu;
3019eac3
DE
17799 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17800 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
17801 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17802 temp_die.offset.sect_off);
348e048f
DE
17803 if (die)
17804 {
796a7ff8
DE
17805 /* For .gdb_index version 7 keep track of included TUs.
17806 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17807 if (dwarf2_per_objfile->index_table != NULL
17808 && dwarf2_per_objfile->index_table->version <= 7)
17809 {
17810 VEC_safe_push (dwarf2_per_cu_ptr,
17811 (*ref_cu)->per_cu->imported_symtabs,
17812 sig_cu->per_cu);
17813 }
17814
348e048f
DE
17815 *ref_cu = sig_cu;
17816 return die;
17817 }
17818
ac9ec31b
DE
17819 return NULL;
17820}
17821
17822/* Follow signatured type referenced by ATTR in SRC_DIE.
17823 On entry *REF_CU is the CU of SRC_DIE.
17824 On exit *REF_CU is the CU of the result.
17825 The result is the DIE of the type.
17826 If the referenced type cannot be found an error is thrown. */
17827
17828static struct die_info *
17829follow_die_sig (struct die_info *src_die, struct attribute *attr,
17830 struct dwarf2_cu **ref_cu)
17831{
17832 ULONGEST signature = DW_SIGNATURE (attr);
17833 struct signatured_type *sig_type;
17834 struct die_info *die;
17835
17836 gdb_assert (attr->form == DW_FORM_ref_sig8);
17837
17838 sig_type = lookup_signatured_type (signature);
17839 /* sig_type will be NULL if the signatured type is missing from
17840 the debug info. */
17841 if (sig_type == NULL)
17842 {
17843 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
17844 " from DIE at 0x%x [in module %s]"),
17845 hex_string (signature), src_die->offset.sect_off,
17846 (*ref_cu)->objfile->name);
17847 }
17848
17849 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
17850 if (die == NULL)
17851 {
17852 dump_die_for_error (src_die);
17853 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
17854 " from DIE at 0x%x [in module %s]"),
17855 hex_string (signature), src_die->offset.sect_off,
17856 (*ref_cu)->objfile->name);
17857 }
17858
17859 return die;
17860}
17861
17862/* Get the type specified by SIGNATURE referenced in DIE/CU,
17863 reading in and processing the type unit if necessary. */
17864
17865static struct type *
17866get_signatured_type (struct die_info *die, ULONGEST signature,
17867 struct dwarf2_cu *cu)
17868{
17869 struct signatured_type *sig_type;
17870 struct dwarf2_cu *type_cu;
17871 struct die_info *type_die;
17872 struct type *type;
17873
17874 sig_type = lookup_signatured_type (signature);
17875 /* sig_type will be NULL if the signatured type is missing from
17876 the debug info. */
17877 if (sig_type == NULL)
17878 {
17879 complaint (&symfile_complaints,
17880 _("Dwarf Error: Cannot find signatured DIE %s referenced"
17881 " from DIE at 0x%x [in module %s]"),
17882 hex_string (signature), die->offset.sect_off,
17883 dwarf2_per_objfile->objfile->name);
17884 return build_error_marker_type (cu, die);
17885 }
17886
17887 /* If we already know the type we're done. */
17888 if (sig_type->type != NULL)
17889 return sig_type->type;
17890
17891 type_cu = cu;
17892 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
17893 if (type_die != NULL)
17894 {
17895 /* N.B. We need to call get_die_type to ensure only one type for this DIE
17896 is created. This is important, for example, because for c++ classes
17897 we need TYPE_NAME set which is only done by new_symbol. Blech. */
17898 type = read_type_die (type_die, type_cu);
17899 if (type == NULL)
17900 {
17901 complaint (&symfile_complaints,
17902 _("Dwarf Error: Cannot build signatured type %s"
17903 " referenced from DIE at 0x%x [in module %s]"),
17904 hex_string (signature), die->offset.sect_off,
17905 dwarf2_per_objfile->objfile->name);
17906 type = build_error_marker_type (cu, die);
17907 }
17908 }
17909 else
17910 {
17911 complaint (&symfile_complaints,
17912 _("Dwarf Error: Problem reading signatured DIE %s referenced"
17913 " from DIE at 0x%x [in module %s]"),
17914 hex_string (signature), die->offset.sect_off,
17915 dwarf2_per_objfile->objfile->name);
17916 type = build_error_marker_type (cu, die);
17917 }
17918 sig_type->type = type;
17919
17920 return type;
17921}
17922
17923/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
17924 reading in and processing the type unit if necessary. */
17925
17926static struct type *
b385a60d
PM
17927get_DW_AT_signature_type (struct die_info *die, struct attribute *attr,
17928 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
17929{
17930 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
17931 if (is_ref_attr (attr))
17932 {
17933 struct dwarf2_cu *type_cu = cu;
17934 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
17935
17936 return read_type_die (type_die, type_cu);
17937 }
17938 else if (attr->form == DW_FORM_ref_sig8)
17939 {
17940 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
17941 }
17942 else
17943 {
17944 complaint (&symfile_complaints,
17945 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
17946 " at 0x%x [in module %s]"),
17947 dwarf_form_name (attr->form), die->offset.sect_off,
17948 dwarf2_per_objfile->objfile->name);
17949 return build_error_marker_type (cu, die);
17950 }
348e048f
DE
17951}
17952
e5fe5e75 17953/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
17954
17955static void
e5fe5e75 17956load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 17957{
52dc124a 17958 struct signatured_type *sig_type;
348e048f 17959
f4dc4d17
DE
17960 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17961 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17962
6721b2ec
DE
17963 /* We have the per_cu, but we need the signatured_type.
17964 Fortunately this is an easy translation. */
17965 gdb_assert (per_cu->is_debug_types);
17966 sig_type = (struct signatured_type *) per_cu;
348e048f 17967
6721b2ec 17968 gdb_assert (per_cu->cu == NULL);
348e048f 17969
52dc124a 17970 read_signatured_type (sig_type);
348e048f 17971
6721b2ec 17972 gdb_assert (per_cu->cu != NULL);
348e048f
DE
17973}
17974
dee91e82
DE
17975/* die_reader_func for read_signatured_type.
17976 This is identical to load_full_comp_unit_reader,
17977 but is kept separate for now. */
348e048f
DE
17978
17979static void
dee91e82 17980read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 17981 const gdb_byte *info_ptr,
dee91e82
DE
17982 struct die_info *comp_unit_die,
17983 int has_children,
17984 void *data)
348e048f 17985{
dee91e82 17986 struct dwarf2_cu *cu = reader->cu;
348e048f 17987
dee91e82
DE
17988 gdb_assert (cu->die_hash == NULL);
17989 cu->die_hash =
17990 htab_create_alloc_ex (cu->header.length / 12,
17991 die_hash,
17992 die_eq,
17993 NULL,
17994 &cu->comp_unit_obstack,
17995 hashtab_obstack_allocate,
17996 dummy_obstack_deallocate);
348e048f 17997
dee91e82
DE
17998 if (has_children)
17999 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18000 &info_ptr, comp_unit_die);
18001 cu->dies = comp_unit_die;
18002 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
18003
18004 /* We try not to read any attributes in this function, because not
9cdd5dbd 18005 all CUs needed for references have been loaded yet, and symbol
348e048f 18006 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
18007 or we won't be able to build types correctly.
18008 Similarly, if we do not read the producer, we can not apply
18009 producer-specific interpretation. */
95554aad 18010 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 18011}
348e048f 18012
3019eac3
DE
18013/* Read in a signatured type and build its CU and DIEs.
18014 If the type is a stub for the real type in a DWO file,
18015 read in the real type from the DWO file as well. */
dee91e82
DE
18016
18017static void
18018read_signatured_type (struct signatured_type *sig_type)
18019{
18020 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 18021
3019eac3 18022 gdb_assert (per_cu->is_debug_types);
dee91e82 18023 gdb_assert (per_cu->cu == NULL);
348e048f 18024
f4dc4d17
DE
18025 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18026 read_signatured_type_reader, NULL);
c906108c
SS
18027}
18028
c906108c
SS
18029/* Decode simple location descriptions.
18030 Given a pointer to a dwarf block that defines a location, compute
18031 the location and return the value.
18032
4cecd739
DJ
18033 NOTE drow/2003-11-18: This function is called in two situations
18034 now: for the address of static or global variables (partial symbols
18035 only) and for offsets into structures which are expected to be
18036 (more or less) constant. The partial symbol case should go away,
18037 and only the constant case should remain. That will let this
18038 function complain more accurately. A few special modes are allowed
18039 without complaint for global variables (for instance, global
18040 register values and thread-local values).
c906108c
SS
18041
18042 A location description containing no operations indicates that the
4cecd739 18043 object is optimized out. The return value is 0 for that case.
6b992462
DJ
18044 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18045 callers will only want a very basic result and this can become a
21ae7a4d
JK
18046 complaint.
18047
18048 Note that stack[0] is unused except as a default error return. */
c906108c
SS
18049
18050static CORE_ADDR
e7c27a73 18051decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 18052{
e7c27a73 18053 struct objfile *objfile = cu->objfile;
56eb65bd
SP
18054 size_t i;
18055 size_t size = blk->size;
d521ce57 18056 const gdb_byte *data = blk->data;
21ae7a4d
JK
18057 CORE_ADDR stack[64];
18058 int stacki;
18059 unsigned int bytes_read, unsnd;
18060 gdb_byte op;
c906108c 18061
21ae7a4d
JK
18062 i = 0;
18063 stacki = 0;
18064 stack[stacki] = 0;
18065 stack[++stacki] = 0;
18066
18067 while (i < size)
18068 {
18069 op = data[i++];
18070 switch (op)
18071 {
18072 case DW_OP_lit0:
18073 case DW_OP_lit1:
18074 case DW_OP_lit2:
18075 case DW_OP_lit3:
18076 case DW_OP_lit4:
18077 case DW_OP_lit5:
18078 case DW_OP_lit6:
18079 case DW_OP_lit7:
18080 case DW_OP_lit8:
18081 case DW_OP_lit9:
18082 case DW_OP_lit10:
18083 case DW_OP_lit11:
18084 case DW_OP_lit12:
18085 case DW_OP_lit13:
18086 case DW_OP_lit14:
18087 case DW_OP_lit15:
18088 case DW_OP_lit16:
18089 case DW_OP_lit17:
18090 case DW_OP_lit18:
18091 case DW_OP_lit19:
18092 case DW_OP_lit20:
18093 case DW_OP_lit21:
18094 case DW_OP_lit22:
18095 case DW_OP_lit23:
18096 case DW_OP_lit24:
18097 case DW_OP_lit25:
18098 case DW_OP_lit26:
18099 case DW_OP_lit27:
18100 case DW_OP_lit28:
18101 case DW_OP_lit29:
18102 case DW_OP_lit30:
18103 case DW_OP_lit31:
18104 stack[++stacki] = op - DW_OP_lit0;
18105 break;
f1bea926 18106
21ae7a4d
JK
18107 case DW_OP_reg0:
18108 case DW_OP_reg1:
18109 case DW_OP_reg2:
18110 case DW_OP_reg3:
18111 case DW_OP_reg4:
18112 case DW_OP_reg5:
18113 case DW_OP_reg6:
18114 case DW_OP_reg7:
18115 case DW_OP_reg8:
18116 case DW_OP_reg9:
18117 case DW_OP_reg10:
18118 case DW_OP_reg11:
18119 case DW_OP_reg12:
18120 case DW_OP_reg13:
18121 case DW_OP_reg14:
18122 case DW_OP_reg15:
18123 case DW_OP_reg16:
18124 case DW_OP_reg17:
18125 case DW_OP_reg18:
18126 case DW_OP_reg19:
18127 case DW_OP_reg20:
18128 case DW_OP_reg21:
18129 case DW_OP_reg22:
18130 case DW_OP_reg23:
18131 case DW_OP_reg24:
18132 case DW_OP_reg25:
18133 case DW_OP_reg26:
18134 case DW_OP_reg27:
18135 case DW_OP_reg28:
18136 case DW_OP_reg29:
18137 case DW_OP_reg30:
18138 case DW_OP_reg31:
18139 stack[++stacki] = op - DW_OP_reg0;
18140 if (i < size)
18141 dwarf2_complex_location_expr_complaint ();
18142 break;
c906108c 18143
21ae7a4d
JK
18144 case DW_OP_regx:
18145 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18146 i += bytes_read;
18147 stack[++stacki] = unsnd;
18148 if (i < size)
18149 dwarf2_complex_location_expr_complaint ();
18150 break;
c906108c 18151
21ae7a4d
JK
18152 case DW_OP_addr:
18153 stack[++stacki] = read_address (objfile->obfd, &data[i],
18154 cu, &bytes_read);
18155 i += bytes_read;
18156 break;
d53d4ac5 18157
21ae7a4d
JK
18158 case DW_OP_const1u:
18159 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18160 i += 1;
18161 break;
18162
18163 case DW_OP_const1s:
18164 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18165 i += 1;
18166 break;
18167
18168 case DW_OP_const2u:
18169 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18170 i += 2;
18171 break;
18172
18173 case DW_OP_const2s:
18174 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18175 i += 2;
18176 break;
d53d4ac5 18177
21ae7a4d
JK
18178 case DW_OP_const4u:
18179 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18180 i += 4;
18181 break;
18182
18183 case DW_OP_const4s:
18184 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18185 i += 4;
18186 break;
18187
585861ea
JK
18188 case DW_OP_const8u:
18189 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18190 i += 8;
18191 break;
18192
21ae7a4d
JK
18193 case DW_OP_constu:
18194 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18195 &bytes_read);
18196 i += bytes_read;
18197 break;
18198
18199 case DW_OP_consts:
18200 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18201 i += bytes_read;
18202 break;
18203
18204 case DW_OP_dup:
18205 stack[stacki + 1] = stack[stacki];
18206 stacki++;
18207 break;
18208
18209 case DW_OP_plus:
18210 stack[stacki - 1] += stack[stacki];
18211 stacki--;
18212 break;
18213
18214 case DW_OP_plus_uconst:
18215 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18216 &bytes_read);
18217 i += bytes_read;
18218 break;
18219
18220 case DW_OP_minus:
18221 stack[stacki - 1] -= stack[stacki];
18222 stacki--;
18223 break;
18224
18225 case DW_OP_deref:
18226 /* If we're not the last op, then we definitely can't encode
18227 this using GDB's address_class enum. This is valid for partial
18228 global symbols, although the variable's address will be bogus
18229 in the psymtab. */
18230 if (i < size)
18231 dwarf2_complex_location_expr_complaint ();
18232 break;
18233
18234 case DW_OP_GNU_push_tls_address:
18235 /* The top of the stack has the offset from the beginning
18236 of the thread control block at which the variable is located. */
18237 /* Nothing should follow this operator, so the top of stack would
18238 be returned. */
18239 /* This is valid for partial global symbols, but the variable's
585861ea
JK
18240 address will be bogus in the psymtab. Make it always at least
18241 non-zero to not look as a variable garbage collected by linker
18242 which have DW_OP_addr 0. */
21ae7a4d
JK
18243 if (i < size)
18244 dwarf2_complex_location_expr_complaint ();
585861ea 18245 stack[stacki]++;
21ae7a4d
JK
18246 break;
18247
18248 case DW_OP_GNU_uninit:
18249 break;
18250
3019eac3 18251 case DW_OP_GNU_addr_index:
49f6c839 18252 case DW_OP_GNU_const_index:
3019eac3
DE
18253 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18254 &bytes_read);
18255 i += bytes_read;
18256 break;
18257
21ae7a4d
JK
18258 default:
18259 {
f39c6ffd 18260 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
18261
18262 if (name)
18263 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18264 name);
18265 else
18266 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18267 op);
18268 }
18269
18270 return (stack[stacki]);
d53d4ac5 18271 }
3c6e0cb3 18272
21ae7a4d
JK
18273 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18274 outside of the allocated space. Also enforce minimum>0. */
18275 if (stacki >= ARRAY_SIZE (stack) - 1)
18276 {
18277 complaint (&symfile_complaints,
18278 _("location description stack overflow"));
18279 return 0;
18280 }
18281
18282 if (stacki <= 0)
18283 {
18284 complaint (&symfile_complaints,
18285 _("location description stack underflow"));
18286 return 0;
18287 }
18288 }
18289 return (stack[stacki]);
c906108c
SS
18290}
18291
18292/* memory allocation interface */
18293
c906108c 18294static struct dwarf_block *
7b5a2f43 18295dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
18296{
18297 struct dwarf_block *blk;
18298
18299 blk = (struct dwarf_block *)
7b5a2f43 18300 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
18301 return (blk);
18302}
18303
c906108c 18304static struct die_info *
b60c80d6 18305dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
18306{
18307 struct die_info *die;
b60c80d6
DJ
18308 size_t size = sizeof (struct die_info);
18309
18310 if (num_attrs > 1)
18311 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 18312
b60c80d6 18313 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
18314 memset (die, 0, sizeof (struct die_info));
18315 return (die);
18316}
2e276125
JB
18317
18318\f
18319/* Macro support. */
18320
233d95b5
JK
18321/* Return file name relative to the compilation directory of file number I in
18322 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 18323 responsible for freeing it. */
233d95b5 18324
2e276125 18325static char *
233d95b5 18326file_file_name (int file, struct line_header *lh)
2e276125 18327{
6a83a1e6
EZ
18328 /* Is the file number a valid index into the line header's file name
18329 table? Remember that file numbers start with one, not zero. */
18330 if (1 <= file && file <= lh->num_file_names)
18331 {
18332 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 18333
233d95b5 18334 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 18335 return xstrdup (fe->name);
233d95b5
JK
18336 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18337 fe->name, NULL);
6a83a1e6 18338 }
2e276125
JB
18339 else
18340 {
6a83a1e6
EZ
18341 /* The compiler produced a bogus file number. We can at least
18342 record the macro definitions made in the file, even if we
18343 won't be able to find the file by name. */
18344 char fake_name[80];
9a619af0 18345
8c042590
PM
18346 xsnprintf (fake_name, sizeof (fake_name),
18347 "<bad macro file number %d>", file);
2e276125 18348
6e70227d 18349 complaint (&symfile_complaints,
6a83a1e6
EZ
18350 _("bad file number in macro information (%d)"),
18351 file);
2e276125 18352
6a83a1e6 18353 return xstrdup (fake_name);
2e276125
JB
18354 }
18355}
18356
233d95b5
JK
18357/* Return the full name of file number I in *LH's file name table.
18358 Use COMP_DIR as the name of the current directory of the
18359 compilation. The result is allocated using xmalloc; the caller is
18360 responsible for freeing it. */
18361static char *
18362file_full_name (int file, struct line_header *lh, const char *comp_dir)
18363{
18364 /* Is the file number a valid index into the line header's file name
18365 table? Remember that file numbers start with one, not zero. */
18366 if (1 <= file && file <= lh->num_file_names)
18367 {
18368 char *relative = file_file_name (file, lh);
18369
18370 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18371 return relative;
18372 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18373 }
18374 else
18375 return file_file_name (file, lh);
18376}
18377
2e276125
JB
18378
18379static struct macro_source_file *
18380macro_start_file (int file, int line,
18381 struct macro_source_file *current_file,
18382 const char *comp_dir,
18383 struct line_header *lh, struct objfile *objfile)
18384{
233d95b5
JK
18385 /* File name relative to the compilation directory of this source file. */
18386 char *file_name = file_file_name (file, lh);
2e276125
JB
18387
18388 /* We don't create a macro table for this compilation unit
18389 at all until we actually get a filename. */
18390 if (! pending_macros)
6532ff36 18391 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
233d95b5
JK
18392 objfile->per_bfd->macro_cache,
18393 comp_dir);
2e276125
JB
18394
18395 if (! current_file)
abc9d0dc
TT
18396 {
18397 /* If we have no current file, then this must be the start_file
18398 directive for the compilation unit's main source file. */
233d95b5 18399 current_file = macro_set_main (pending_macros, file_name);
abc9d0dc
TT
18400 macro_define_special (pending_macros);
18401 }
2e276125 18402 else
233d95b5 18403 current_file = macro_include (current_file, line, file_name);
2e276125 18404
233d95b5 18405 xfree (file_name);
6e70227d 18406
2e276125
JB
18407 return current_file;
18408}
18409
18410
18411/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18412 followed by a null byte. */
18413static char *
18414copy_string (const char *buf, int len)
18415{
18416 char *s = xmalloc (len + 1);
9a619af0 18417
2e276125
JB
18418 memcpy (s, buf, len);
18419 s[len] = '\0';
2e276125
JB
18420 return s;
18421}
18422
18423
18424static const char *
18425consume_improper_spaces (const char *p, const char *body)
18426{
18427 if (*p == ' ')
18428 {
4d3c2250 18429 complaint (&symfile_complaints,
3e43a32a
MS
18430 _("macro definition contains spaces "
18431 "in formal argument list:\n`%s'"),
4d3c2250 18432 body);
2e276125
JB
18433
18434 while (*p == ' ')
18435 p++;
18436 }
18437
18438 return p;
18439}
18440
18441
18442static void
18443parse_macro_definition (struct macro_source_file *file, int line,
18444 const char *body)
18445{
18446 const char *p;
18447
18448 /* The body string takes one of two forms. For object-like macro
18449 definitions, it should be:
18450
18451 <macro name> " " <definition>
18452
18453 For function-like macro definitions, it should be:
18454
18455 <macro name> "() " <definition>
18456 or
18457 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18458
18459 Spaces may appear only where explicitly indicated, and in the
18460 <definition>.
18461
18462 The Dwarf 2 spec says that an object-like macro's name is always
18463 followed by a space, but versions of GCC around March 2002 omit
6e70227d 18464 the space when the macro's definition is the empty string.
2e276125
JB
18465
18466 The Dwarf 2 spec says that there should be no spaces between the
18467 formal arguments in a function-like macro's formal argument list,
18468 but versions of GCC around March 2002 include spaces after the
18469 commas. */
18470
18471
18472 /* Find the extent of the macro name. The macro name is terminated
18473 by either a space or null character (for an object-like macro) or
18474 an opening paren (for a function-like macro). */
18475 for (p = body; *p; p++)
18476 if (*p == ' ' || *p == '(')
18477 break;
18478
18479 if (*p == ' ' || *p == '\0')
18480 {
18481 /* It's an object-like macro. */
18482 int name_len = p - body;
18483 char *name = copy_string (body, name_len);
18484 const char *replacement;
18485
18486 if (*p == ' ')
18487 replacement = body + name_len + 1;
18488 else
18489 {
4d3c2250 18490 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18491 replacement = body + name_len;
18492 }
6e70227d 18493
2e276125
JB
18494 macro_define_object (file, line, name, replacement);
18495
18496 xfree (name);
18497 }
18498 else if (*p == '(')
18499 {
18500 /* It's a function-like macro. */
18501 char *name = copy_string (body, p - body);
18502 int argc = 0;
18503 int argv_size = 1;
18504 char **argv = xmalloc (argv_size * sizeof (*argv));
18505
18506 p++;
18507
18508 p = consume_improper_spaces (p, body);
18509
18510 /* Parse the formal argument list. */
18511 while (*p && *p != ')')
18512 {
18513 /* Find the extent of the current argument name. */
18514 const char *arg_start = p;
18515
18516 while (*p && *p != ',' && *p != ')' && *p != ' ')
18517 p++;
18518
18519 if (! *p || p == arg_start)
4d3c2250 18520 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18521 else
18522 {
18523 /* Make sure argv has room for the new argument. */
18524 if (argc >= argv_size)
18525 {
18526 argv_size *= 2;
18527 argv = xrealloc (argv, argv_size * sizeof (*argv));
18528 }
18529
18530 argv[argc++] = copy_string (arg_start, p - arg_start);
18531 }
18532
18533 p = consume_improper_spaces (p, body);
18534
18535 /* Consume the comma, if present. */
18536 if (*p == ',')
18537 {
18538 p++;
18539
18540 p = consume_improper_spaces (p, body);
18541 }
18542 }
18543
18544 if (*p == ')')
18545 {
18546 p++;
18547
18548 if (*p == ' ')
18549 /* Perfectly formed definition, no complaints. */
18550 macro_define_function (file, line, name,
6e70227d 18551 argc, (const char **) argv,
2e276125
JB
18552 p + 1);
18553 else if (*p == '\0')
18554 {
18555 /* Complain, but do define it. */
4d3c2250 18556 dwarf2_macro_malformed_definition_complaint (body);
2e276125 18557 macro_define_function (file, line, name,
6e70227d 18558 argc, (const char **) argv,
2e276125
JB
18559 p);
18560 }
18561 else
18562 /* Just complain. */
4d3c2250 18563 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18564 }
18565 else
18566 /* Just complain. */
4d3c2250 18567 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18568
18569 xfree (name);
18570 {
18571 int i;
18572
18573 for (i = 0; i < argc; i++)
18574 xfree (argv[i]);
18575 }
18576 xfree (argv);
18577 }
18578 else
4d3c2250 18579 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18580}
18581
cf2c3c16
TT
18582/* Skip some bytes from BYTES according to the form given in FORM.
18583 Returns the new pointer. */
2e276125 18584
d521ce57
TT
18585static const gdb_byte *
18586skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
18587 enum dwarf_form form,
18588 unsigned int offset_size,
18589 struct dwarf2_section_info *section)
2e276125 18590{
cf2c3c16 18591 unsigned int bytes_read;
2e276125 18592
cf2c3c16 18593 switch (form)
2e276125 18594 {
cf2c3c16
TT
18595 case DW_FORM_data1:
18596 case DW_FORM_flag:
18597 ++bytes;
18598 break;
18599
18600 case DW_FORM_data2:
18601 bytes += 2;
18602 break;
18603
18604 case DW_FORM_data4:
18605 bytes += 4;
18606 break;
18607
18608 case DW_FORM_data8:
18609 bytes += 8;
18610 break;
18611
18612 case DW_FORM_string:
18613 read_direct_string (abfd, bytes, &bytes_read);
18614 bytes += bytes_read;
18615 break;
18616
18617 case DW_FORM_sec_offset:
18618 case DW_FORM_strp:
36586728 18619 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
18620 bytes += offset_size;
18621 break;
18622
18623 case DW_FORM_block:
18624 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18625 bytes += bytes_read;
18626 break;
18627
18628 case DW_FORM_block1:
18629 bytes += 1 + read_1_byte (abfd, bytes);
18630 break;
18631 case DW_FORM_block2:
18632 bytes += 2 + read_2_bytes (abfd, bytes);
18633 break;
18634 case DW_FORM_block4:
18635 bytes += 4 + read_4_bytes (abfd, bytes);
18636 break;
18637
18638 case DW_FORM_sdata:
18639 case DW_FORM_udata:
3019eac3
DE
18640 case DW_FORM_GNU_addr_index:
18641 case DW_FORM_GNU_str_index:
d521ce57 18642 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
18643 if (bytes == NULL)
18644 {
18645 dwarf2_section_buffer_overflow_complaint (section);
18646 return NULL;
18647 }
cf2c3c16
TT
18648 break;
18649
18650 default:
18651 {
18652 complain:
18653 complaint (&symfile_complaints,
18654 _("invalid form 0x%x in `%s'"),
18655 form,
18656 section->asection->name);
18657 return NULL;
18658 }
2e276125
JB
18659 }
18660
cf2c3c16
TT
18661 return bytes;
18662}
757a13d0 18663
cf2c3c16
TT
18664/* A helper for dwarf_decode_macros that handles skipping an unknown
18665 opcode. Returns an updated pointer to the macro data buffer; or,
18666 on error, issues a complaint and returns NULL. */
757a13d0 18667
d521ce57 18668static const gdb_byte *
cf2c3c16 18669skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
18670 const gdb_byte **opcode_definitions,
18671 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
18672 bfd *abfd,
18673 unsigned int offset_size,
18674 struct dwarf2_section_info *section)
18675{
18676 unsigned int bytes_read, i;
18677 unsigned long arg;
d521ce57 18678 const gdb_byte *defn;
2e276125 18679
cf2c3c16 18680 if (opcode_definitions[opcode] == NULL)
2e276125 18681 {
cf2c3c16
TT
18682 complaint (&symfile_complaints,
18683 _("unrecognized DW_MACFINO opcode 0x%x"),
18684 opcode);
18685 return NULL;
18686 }
2e276125 18687
cf2c3c16
TT
18688 defn = opcode_definitions[opcode];
18689 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18690 defn += bytes_read;
2e276125 18691
cf2c3c16
TT
18692 for (i = 0; i < arg; ++i)
18693 {
f664829e
DE
18694 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18695 section);
cf2c3c16
TT
18696 if (mac_ptr == NULL)
18697 {
18698 /* skip_form_bytes already issued the complaint. */
18699 return NULL;
18700 }
18701 }
757a13d0 18702
cf2c3c16
TT
18703 return mac_ptr;
18704}
757a13d0 18705
cf2c3c16
TT
18706/* A helper function which parses the header of a macro section.
18707 If the macro section is the extended (for now called "GNU") type,
18708 then this updates *OFFSET_SIZE. Returns a pointer to just after
18709 the header, or issues a complaint and returns NULL on error. */
757a13d0 18710
d521ce57
TT
18711static const gdb_byte *
18712dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 18713 bfd *abfd,
d521ce57 18714 const gdb_byte *mac_ptr,
cf2c3c16
TT
18715 unsigned int *offset_size,
18716 int section_is_gnu)
18717{
18718 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 18719
cf2c3c16
TT
18720 if (section_is_gnu)
18721 {
18722 unsigned int version, flags;
757a13d0 18723
cf2c3c16
TT
18724 version = read_2_bytes (abfd, mac_ptr);
18725 if (version != 4)
18726 {
18727 complaint (&symfile_complaints,
18728 _("unrecognized version `%d' in .debug_macro section"),
18729 version);
18730 return NULL;
18731 }
18732 mac_ptr += 2;
757a13d0 18733
cf2c3c16
TT
18734 flags = read_1_byte (abfd, mac_ptr);
18735 ++mac_ptr;
18736 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 18737
cf2c3c16
TT
18738 if ((flags & 2) != 0)
18739 /* We don't need the line table offset. */
18740 mac_ptr += *offset_size;
757a13d0 18741
cf2c3c16
TT
18742 /* Vendor opcode descriptions. */
18743 if ((flags & 4) != 0)
18744 {
18745 unsigned int i, count;
757a13d0 18746
cf2c3c16
TT
18747 count = read_1_byte (abfd, mac_ptr);
18748 ++mac_ptr;
18749 for (i = 0; i < count; ++i)
18750 {
18751 unsigned int opcode, bytes_read;
18752 unsigned long arg;
18753
18754 opcode = read_1_byte (abfd, mac_ptr);
18755 ++mac_ptr;
18756 opcode_definitions[opcode] = mac_ptr;
18757 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18758 mac_ptr += bytes_read;
18759 mac_ptr += arg;
18760 }
757a13d0 18761 }
cf2c3c16 18762 }
757a13d0 18763
cf2c3c16
TT
18764 return mac_ptr;
18765}
757a13d0 18766
cf2c3c16 18767/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 18768 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
18769
18770static void
d521ce57
TT
18771dwarf_decode_macro_bytes (bfd *abfd,
18772 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 18773 struct macro_source_file *current_file,
15d034d0 18774 struct line_header *lh, const char *comp_dir,
cf2c3c16 18775 struct dwarf2_section_info *section,
36586728 18776 int section_is_gnu, int section_is_dwz,
cf2c3c16 18777 unsigned int offset_size,
8fc3fc34
TT
18778 struct objfile *objfile,
18779 htab_t include_hash)
cf2c3c16
TT
18780{
18781 enum dwarf_macro_record_type macinfo_type;
18782 int at_commandline;
d521ce57 18783 const gdb_byte *opcode_definitions[256];
757a13d0 18784
cf2c3c16
TT
18785 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18786 &offset_size, section_is_gnu);
18787 if (mac_ptr == NULL)
18788 {
18789 /* We already issued a complaint. */
18790 return;
18791 }
757a13d0
JK
18792
18793 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18794 GDB is still reading the definitions from command line. First
18795 DW_MACINFO_start_file will need to be ignored as it was already executed
18796 to create CURRENT_FILE for the main source holding also the command line
18797 definitions. On first met DW_MACINFO_start_file this flag is reset to
18798 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18799
18800 at_commandline = 1;
18801
18802 do
18803 {
18804 /* Do we at least have room for a macinfo type byte? */
18805 if (mac_ptr >= mac_end)
18806 {
f664829e 18807 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
18808 break;
18809 }
18810
18811 macinfo_type = read_1_byte (abfd, mac_ptr);
18812 mac_ptr++;
18813
cf2c3c16
TT
18814 /* Note that we rely on the fact that the corresponding GNU and
18815 DWARF constants are the same. */
757a13d0
JK
18816 switch (macinfo_type)
18817 {
18818 /* A zero macinfo type indicates the end of the macro
18819 information. */
18820 case 0:
18821 break;
2e276125 18822
cf2c3c16
TT
18823 case DW_MACRO_GNU_define:
18824 case DW_MACRO_GNU_undef:
18825 case DW_MACRO_GNU_define_indirect:
18826 case DW_MACRO_GNU_undef_indirect:
36586728
TT
18827 case DW_MACRO_GNU_define_indirect_alt:
18828 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 18829 {
891d2f0b 18830 unsigned int bytes_read;
2e276125 18831 int line;
d521ce57 18832 const char *body;
cf2c3c16 18833 int is_define;
2e276125 18834
cf2c3c16
TT
18835 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18836 mac_ptr += bytes_read;
18837
18838 if (macinfo_type == DW_MACRO_GNU_define
18839 || macinfo_type == DW_MACRO_GNU_undef)
18840 {
18841 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18842 mac_ptr += bytes_read;
18843 }
18844 else
18845 {
18846 LONGEST str_offset;
18847
18848 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18849 mac_ptr += offset_size;
2e276125 18850
36586728 18851 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
18852 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18853 || section_is_dwz)
36586728
TT
18854 {
18855 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18856
18857 body = read_indirect_string_from_dwz (dwz, str_offset);
18858 }
18859 else
18860 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
18861 }
18862
18863 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
18864 || macinfo_type == DW_MACRO_GNU_define_indirect
18865 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 18866 if (! current_file)
757a13d0
JK
18867 {
18868 /* DWARF violation as no main source is present. */
18869 complaint (&symfile_complaints,
18870 _("debug info with no main source gives macro %s "
18871 "on line %d: %s"),
cf2c3c16
TT
18872 is_define ? _("definition") : _("undefinition"),
18873 line, body);
757a13d0
JK
18874 break;
18875 }
3e43a32a
MS
18876 if ((line == 0 && !at_commandline)
18877 || (line != 0 && at_commandline))
4d3c2250 18878 complaint (&symfile_complaints,
757a13d0
JK
18879 _("debug info gives %s macro %s with %s line %d: %s"),
18880 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 18881 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
18882 line == 0 ? _("zero") : _("non-zero"), line, body);
18883
cf2c3c16 18884 if (is_define)
757a13d0 18885 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
18886 else
18887 {
18888 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
18889 || macinfo_type == DW_MACRO_GNU_undef_indirect
18890 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
18891 macro_undef (current_file, line, body);
18892 }
2e276125
JB
18893 }
18894 break;
18895
cf2c3c16 18896 case DW_MACRO_GNU_start_file:
2e276125 18897 {
891d2f0b 18898 unsigned int bytes_read;
2e276125
JB
18899 int line, file;
18900
18901 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18902 mac_ptr += bytes_read;
18903 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18904 mac_ptr += bytes_read;
18905
3e43a32a
MS
18906 if ((line == 0 && !at_commandline)
18907 || (line != 0 && at_commandline))
757a13d0
JK
18908 complaint (&symfile_complaints,
18909 _("debug info gives source %d included "
18910 "from %s at %s line %d"),
18911 file, at_commandline ? _("command-line") : _("file"),
18912 line == 0 ? _("zero") : _("non-zero"), line);
18913
18914 if (at_commandline)
18915 {
cf2c3c16
TT
18916 /* This DW_MACRO_GNU_start_file was executed in the
18917 pass one. */
757a13d0
JK
18918 at_commandline = 0;
18919 }
18920 else
18921 current_file = macro_start_file (file, line,
18922 current_file, comp_dir,
cf2c3c16 18923 lh, objfile);
2e276125
JB
18924 }
18925 break;
18926
cf2c3c16 18927 case DW_MACRO_GNU_end_file:
2e276125 18928 if (! current_file)
4d3c2250 18929 complaint (&symfile_complaints,
3e43a32a
MS
18930 _("macro debug info has an unmatched "
18931 "`close_file' directive"));
2e276125
JB
18932 else
18933 {
18934 current_file = current_file->included_by;
18935 if (! current_file)
18936 {
cf2c3c16 18937 enum dwarf_macro_record_type next_type;
2e276125
JB
18938
18939 /* GCC circa March 2002 doesn't produce the zero
18940 type byte marking the end of the compilation
18941 unit. Complain if it's not there, but exit no
18942 matter what. */
18943
18944 /* Do we at least have room for a macinfo type byte? */
18945 if (mac_ptr >= mac_end)
18946 {
f664829e 18947 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
18948 return;
18949 }
18950
18951 /* We don't increment mac_ptr here, so this is just
18952 a look-ahead. */
18953 next_type = read_1_byte (abfd, mac_ptr);
18954 if (next_type != 0)
4d3c2250 18955 complaint (&symfile_complaints,
3e43a32a
MS
18956 _("no terminating 0-type entry for "
18957 "macros in `.debug_macinfo' section"));
2e276125
JB
18958
18959 return;
18960 }
18961 }
18962 break;
18963
cf2c3c16 18964 case DW_MACRO_GNU_transparent_include:
36586728 18965 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
18966 {
18967 LONGEST offset;
8fc3fc34 18968 void **slot;
a036ba48
TT
18969 bfd *include_bfd = abfd;
18970 struct dwarf2_section_info *include_section = section;
18971 struct dwarf2_section_info alt_section;
d521ce57 18972 const gdb_byte *include_mac_end = mac_end;
a036ba48 18973 int is_dwz = section_is_dwz;
d521ce57 18974 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
18975
18976 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18977 mac_ptr += offset_size;
18978
a036ba48
TT
18979 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18980 {
18981 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18982
18983 dwarf2_read_section (dwarf2_per_objfile->objfile,
18984 &dwz->macro);
18985
18986 include_bfd = dwz->macro.asection->owner;
18987 include_section = &dwz->macro;
18988 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18989 is_dwz = 1;
18990 }
18991
18992 new_mac_ptr = include_section->buffer + offset;
18993 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18994
8fc3fc34
TT
18995 if (*slot != NULL)
18996 {
18997 /* This has actually happened; see
18998 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18999 complaint (&symfile_complaints,
19000 _("recursive DW_MACRO_GNU_transparent_include in "
19001 ".debug_macro section"));
19002 }
19003 else
19004 {
d521ce57 19005 *slot = (void *) new_mac_ptr;
36586728 19006
a036ba48 19007 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 19008 include_mac_end, current_file,
8fc3fc34 19009 lh, comp_dir,
36586728 19010 section, section_is_gnu, is_dwz,
8fc3fc34
TT
19011 offset_size, objfile, include_hash);
19012
d521ce57 19013 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 19014 }
cf2c3c16
TT
19015 }
19016 break;
19017
2e276125 19018 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
19019 if (!section_is_gnu)
19020 {
19021 unsigned int bytes_read;
19022 int constant;
2e276125 19023
cf2c3c16
TT
19024 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19025 mac_ptr += bytes_read;
19026 read_direct_string (abfd, mac_ptr, &bytes_read);
19027 mac_ptr += bytes_read;
2e276125 19028
cf2c3c16
TT
19029 /* We don't recognize any vendor extensions. */
19030 break;
19031 }
19032 /* FALLTHROUGH */
19033
19034 default:
19035 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 19036 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
19037 section);
19038 if (mac_ptr == NULL)
19039 return;
19040 break;
2e276125 19041 }
757a13d0 19042 } while (macinfo_type != 0);
2e276125 19043}
8e19ed76 19044
cf2c3c16 19045static void
09262596 19046dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 19047 const char *comp_dir, int section_is_gnu)
cf2c3c16 19048{
bb5ed363 19049 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
19050 struct line_header *lh = cu->line_header;
19051 bfd *abfd;
d521ce57 19052 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
19053 struct macro_source_file *current_file = 0;
19054 enum dwarf_macro_record_type macinfo_type;
19055 unsigned int offset_size = cu->header.offset_size;
d521ce57 19056 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
19057 struct cleanup *cleanup;
19058 htab_t include_hash;
19059 void **slot;
09262596
DE
19060 struct dwarf2_section_info *section;
19061 const char *section_name;
19062
19063 if (cu->dwo_unit != NULL)
19064 {
19065 if (section_is_gnu)
19066 {
19067 section = &cu->dwo_unit->dwo_file->sections.macro;
19068 section_name = ".debug_macro.dwo";
19069 }
19070 else
19071 {
19072 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19073 section_name = ".debug_macinfo.dwo";
19074 }
19075 }
19076 else
19077 {
19078 if (section_is_gnu)
19079 {
19080 section = &dwarf2_per_objfile->macro;
19081 section_name = ".debug_macro";
19082 }
19083 else
19084 {
19085 section = &dwarf2_per_objfile->macinfo;
19086 section_name = ".debug_macinfo";
19087 }
19088 }
cf2c3c16 19089
bb5ed363 19090 dwarf2_read_section (objfile, section);
cf2c3c16
TT
19091 if (section->buffer == NULL)
19092 {
fceca515 19093 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
19094 return;
19095 }
09262596 19096 abfd = section->asection->owner;
cf2c3c16
TT
19097
19098 /* First pass: Find the name of the base filename.
19099 This filename is needed in order to process all macros whose definition
19100 (or undefinition) comes from the command line. These macros are defined
19101 before the first DW_MACINFO_start_file entry, and yet still need to be
19102 associated to the base file.
19103
19104 To determine the base file name, we scan the macro definitions until we
19105 reach the first DW_MACINFO_start_file entry. We then initialize
19106 CURRENT_FILE accordingly so that any macro definition found before the
19107 first DW_MACINFO_start_file can still be associated to the base file. */
19108
19109 mac_ptr = section->buffer + offset;
19110 mac_end = section->buffer + section->size;
19111
19112 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19113 &offset_size, section_is_gnu);
19114 if (mac_ptr == NULL)
19115 {
19116 /* We already issued a complaint. */
19117 return;
19118 }
19119
19120 do
19121 {
19122 /* Do we at least have room for a macinfo type byte? */
19123 if (mac_ptr >= mac_end)
19124 {
19125 /* Complaint is printed during the second pass as GDB will probably
19126 stop the first pass earlier upon finding
19127 DW_MACINFO_start_file. */
19128 break;
19129 }
19130
19131 macinfo_type = read_1_byte (abfd, mac_ptr);
19132 mac_ptr++;
19133
19134 /* Note that we rely on the fact that the corresponding GNU and
19135 DWARF constants are the same. */
19136 switch (macinfo_type)
19137 {
19138 /* A zero macinfo type indicates the end of the macro
19139 information. */
19140 case 0:
19141 break;
19142
19143 case DW_MACRO_GNU_define:
19144 case DW_MACRO_GNU_undef:
19145 /* Only skip the data by MAC_PTR. */
19146 {
19147 unsigned int bytes_read;
19148
19149 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19150 mac_ptr += bytes_read;
19151 read_direct_string (abfd, mac_ptr, &bytes_read);
19152 mac_ptr += bytes_read;
19153 }
19154 break;
19155
19156 case DW_MACRO_GNU_start_file:
19157 {
19158 unsigned int bytes_read;
19159 int line, file;
19160
19161 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19162 mac_ptr += bytes_read;
19163 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19164 mac_ptr += bytes_read;
19165
19166 current_file = macro_start_file (file, line, current_file,
bb5ed363 19167 comp_dir, lh, objfile);
cf2c3c16
TT
19168 }
19169 break;
19170
19171 case DW_MACRO_GNU_end_file:
19172 /* No data to skip by MAC_PTR. */
19173 break;
19174
19175 case DW_MACRO_GNU_define_indirect:
19176 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
19177 case DW_MACRO_GNU_define_indirect_alt:
19178 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
19179 {
19180 unsigned int bytes_read;
19181
19182 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19183 mac_ptr += bytes_read;
19184 mac_ptr += offset_size;
19185 }
19186 break;
19187
19188 case DW_MACRO_GNU_transparent_include:
f7a35f02 19189 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
19190 /* Note that, according to the spec, a transparent include
19191 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19192 skip this opcode. */
19193 mac_ptr += offset_size;
19194 break;
19195
19196 case DW_MACINFO_vendor_ext:
19197 /* Only skip the data by MAC_PTR. */
19198 if (!section_is_gnu)
19199 {
19200 unsigned int bytes_read;
19201
19202 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19203 mac_ptr += bytes_read;
19204 read_direct_string (abfd, mac_ptr, &bytes_read);
19205 mac_ptr += bytes_read;
19206 }
19207 /* FALLTHROUGH */
19208
19209 default:
19210 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 19211 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
19212 section);
19213 if (mac_ptr == NULL)
19214 return;
19215 break;
19216 }
19217 } while (macinfo_type != 0 && current_file == NULL);
19218
19219 /* Second pass: Process all entries.
19220
19221 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19222 command-line macro definitions/undefinitions. This flag is unset when we
19223 reach the first DW_MACINFO_start_file entry. */
19224
8fc3fc34
TT
19225 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19226 NULL, xcalloc, xfree);
19227 cleanup = make_cleanup_htab_delete (include_hash);
19228 mac_ptr = section->buffer + offset;
19229 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 19230 *slot = (void *) mac_ptr;
8fc3fc34 19231 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
19232 current_file, lh, comp_dir, section,
19233 section_is_gnu, 0,
8fc3fc34
TT
19234 offset_size, objfile, include_hash);
19235 do_cleanups (cleanup);
cf2c3c16
TT
19236}
19237
8e19ed76 19238/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 19239 if so return true else false. */
380bca97 19240
8e19ed76
PS
19241static int
19242attr_form_is_block (struct attribute *attr)
19243{
19244 return (attr == NULL ? 0 :
19245 attr->form == DW_FORM_block1
19246 || attr->form == DW_FORM_block2
19247 || attr->form == DW_FORM_block4
2dc7f7b3
TT
19248 || attr->form == DW_FORM_block
19249 || attr->form == DW_FORM_exprloc);
8e19ed76 19250}
4c2df51b 19251
c6a0999f
JB
19252/* Return non-zero if ATTR's value is a section offset --- classes
19253 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19254 You may use DW_UNSND (attr) to retrieve such offsets.
19255
19256 Section 7.5.4, "Attribute Encodings", explains that no attribute
19257 may have a value that belongs to more than one of these classes; it
19258 would be ambiguous if we did, because we use the same forms for all
19259 of them. */
380bca97 19260
3690dd37
JB
19261static int
19262attr_form_is_section_offset (struct attribute *attr)
19263{
19264 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
19265 || attr->form == DW_FORM_data8
19266 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
19267}
19268
3690dd37
JB
19269/* Return non-zero if ATTR's value falls in the 'constant' class, or
19270 zero otherwise. When this function returns true, you can apply
19271 dwarf2_get_attr_constant_value to it.
19272
19273 However, note that for some attributes you must check
19274 attr_form_is_section_offset before using this test. DW_FORM_data4
19275 and DW_FORM_data8 are members of both the constant class, and of
19276 the classes that contain offsets into other debug sections
19277 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19278 that, if an attribute's can be either a constant or one of the
19279 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19280 taken as section offsets, not constants. */
380bca97 19281
3690dd37
JB
19282static int
19283attr_form_is_constant (struct attribute *attr)
19284{
19285 switch (attr->form)
19286 {
19287 case DW_FORM_sdata:
19288 case DW_FORM_udata:
19289 case DW_FORM_data1:
19290 case DW_FORM_data2:
19291 case DW_FORM_data4:
19292 case DW_FORM_data8:
19293 return 1;
19294 default:
19295 return 0;
19296 }
19297}
19298
3019eac3
DE
19299/* Return the .debug_loc section to use for CU.
19300 For DWO files use .debug_loc.dwo. */
19301
19302static struct dwarf2_section_info *
19303cu_debug_loc_section (struct dwarf2_cu *cu)
19304{
19305 if (cu->dwo_unit)
19306 return &cu->dwo_unit->dwo_file->sections.loc;
19307 return &dwarf2_per_objfile->loc;
19308}
19309
8cf6f0b1
TT
19310/* A helper function that fills in a dwarf2_loclist_baton. */
19311
19312static void
19313fill_in_loclist_baton (struct dwarf2_cu *cu,
19314 struct dwarf2_loclist_baton *baton,
19315 struct attribute *attr)
19316{
3019eac3
DE
19317 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19318
19319 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
19320
19321 baton->per_cu = cu->per_cu;
19322 gdb_assert (baton->per_cu);
19323 /* We don't know how long the location list is, but make sure we
19324 don't run off the edge of the section. */
3019eac3
DE
19325 baton->size = section->size - DW_UNSND (attr);
19326 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 19327 baton->base_address = cu->base_address;
f664829e 19328 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
19329}
19330
4c2df51b
DJ
19331static void
19332dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
f1e6e072 19333 struct dwarf2_cu *cu, int is_block)
4c2df51b 19334{
bb5ed363 19335 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 19336 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 19337
3690dd37 19338 if (attr_form_is_section_offset (attr)
3019eac3 19339 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
19340 the section. If so, fall through to the complaint in the
19341 other branch. */
3019eac3 19342 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 19343 {
0d53c4c4 19344 struct dwarf2_loclist_baton *baton;
4c2df51b 19345
bb5ed363 19346 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 19347 sizeof (struct dwarf2_loclist_baton));
4c2df51b 19348
8cf6f0b1 19349 fill_in_loclist_baton (cu, baton, attr);
be391dca 19350
d00adf39 19351 if (cu->base_known == 0)
0d53c4c4 19352 complaint (&symfile_complaints,
3e43a32a
MS
19353 _("Location list used without "
19354 "specifying the CU base address."));
4c2df51b 19355
f1e6e072
TT
19356 SYMBOL_ACLASS_INDEX (sym) = (is_block
19357 ? dwarf2_loclist_block_index
19358 : dwarf2_loclist_index);
0d53c4c4
DJ
19359 SYMBOL_LOCATION_BATON (sym) = baton;
19360 }
19361 else
19362 {
19363 struct dwarf2_locexpr_baton *baton;
19364
bb5ed363 19365 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 19366 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
19367 baton->per_cu = cu->per_cu;
19368 gdb_assert (baton->per_cu);
0d53c4c4
DJ
19369
19370 if (attr_form_is_block (attr))
19371 {
19372 /* Note that we're just copying the block's data pointer
19373 here, not the actual data. We're still pointing into the
6502dd73
DJ
19374 info_buffer for SYM's objfile; right now we never release
19375 that buffer, but when we do clean up properly this may
19376 need to change. */
0d53c4c4
DJ
19377 baton->size = DW_BLOCK (attr)->size;
19378 baton->data = DW_BLOCK (attr)->data;
19379 }
19380 else
19381 {
19382 dwarf2_invalid_attrib_class_complaint ("location description",
19383 SYMBOL_NATURAL_NAME (sym));
19384 baton->size = 0;
0d53c4c4 19385 }
6e70227d 19386
f1e6e072
TT
19387 SYMBOL_ACLASS_INDEX (sym) = (is_block
19388 ? dwarf2_locexpr_block_index
19389 : dwarf2_locexpr_index);
0d53c4c4
DJ
19390 SYMBOL_LOCATION_BATON (sym) = baton;
19391 }
4c2df51b 19392}
6502dd73 19393
9aa1f1e3
TT
19394/* Return the OBJFILE associated with the compilation unit CU. If CU
19395 came from a separate debuginfo file, then the master objfile is
19396 returned. */
ae0d2f24
UW
19397
19398struct objfile *
19399dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19400{
9291a0cd 19401 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
19402
19403 /* Return the master objfile, so that we can report and look up the
19404 correct file containing this variable. */
19405 if (objfile->separate_debug_objfile_backlink)
19406 objfile = objfile->separate_debug_objfile_backlink;
19407
19408 return objfile;
19409}
19410
96408a79
SA
19411/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19412 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19413 CU_HEADERP first. */
19414
19415static const struct comp_unit_head *
19416per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19417 struct dwarf2_per_cu_data *per_cu)
19418{
d521ce57 19419 const gdb_byte *info_ptr;
96408a79
SA
19420
19421 if (per_cu->cu)
19422 return &per_cu->cu->header;
19423
8a0459fd 19424 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
19425
19426 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 19427 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
19428
19429 return cu_headerp;
19430}
19431
ae0d2f24
UW
19432/* Return the address size given in the compilation unit header for CU. */
19433
98714339 19434int
ae0d2f24
UW
19435dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19436{
96408a79
SA
19437 struct comp_unit_head cu_header_local;
19438 const struct comp_unit_head *cu_headerp;
c471e790 19439
96408a79
SA
19440 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19441
19442 return cu_headerp->addr_size;
ae0d2f24
UW
19443}
19444
9eae7c52
TT
19445/* Return the offset size given in the compilation unit header for CU. */
19446
19447int
19448dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19449{
96408a79
SA
19450 struct comp_unit_head cu_header_local;
19451 const struct comp_unit_head *cu_headerp;
9c6c53f7 19452
96408a79
SA
19453 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19454
19455 return cu_headerp->offset_size;
19456}
19457
19458/* See its dwarf2loc.h declaration. */
19459
19460int
19461dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19462{
19463 struct comp_unit_head cu_header_local;
19464 const struct comp_unit_head *cu_headerp;
19465
19466 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19467
19468 if (cu_headerp->version == 2)
19469 return cu_headerp->addr_size;
19470 else
19471 return cu_headerp->offset_size;
181cebd4
JK
19472}
19473
9aa1f1e3
TT
19474/* Return the text offset of the CU. The returned offset comes from
19475 this CU's objfile. If this objfile came from a separate debuginfo
19476 file, then the offset may be different from the corresponding
19477 offset in the parent objfile. */
19478
19479CORE_ADDR
19480dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19481{
bb3fa9d0 19482 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
19483
19484 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19485}
19486
348e048f
DE
19487/* Locate the .debug_info compilation unit from CU's objfile which contains
19488 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
19489
19490static struct dwarf2_per_cu_data *
b64f50a1 19491dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 19492 unsigned int offset_in_dwz,
ae038cb0
DJ
19493 struct objfile *objfile)
19494{
19495 struct dwarf2_per_cu_data *this_cu;
19496 int low, high;
36586728 19497 const sect_offset *cu_off;
ae038cb0 19498
ae038cb0
DJ
19499 low = 0;
19500 high = dwarf2_per_objfile->n_comp_units - 1;
19501 while (high > low)
19502 {
36586728 19503 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 19504 int mid = low + (high - low) / 2;
9a619af0 19505
36586728
TT
19506 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19507 cu_off = &mid_cu->offset;
19508 if (mid_cu->is_dwz > offset_in_dwz
19509 || (mid_cu->is_dwz == offset_in_dwz
19510 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
19511 high = mid;
19512 else
19513 low = mid + 1;
19514 }
19515 gdb_assert (low == high);
36586728
TT
19516 this_cu = dwarf2_per_objfile->all_comp_units[low];
19517 cu_off = &this_cu->offset;
19518 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 19519 {
36586728 19520 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
19521 error (_("Dwarf Error: could not find partial DIE containing "
19522 "offset 0x%lx [in module %s]"),
b64f50a1 19523 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 19524
b64f50a1
JK
19525 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19526 <= offset.sect_off);
ae038cb0
DJ
19527 return dwarf2_per_objfile->all_comp_units[low-1];
19528 }
19529 else
19530 {
19531 this_cu = dwarf2_per_objfile->all_comp_units[low];
19532 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
19533 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19534 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19535 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
19536 return this_cu;
19537 }
19538}
19539
23745b47 19540/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 19541
9816fde3 19542static void
23745b47 19543init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 19544{
9816fde3 19545 memset (cu, 0, sizeof (*cu));
23745b47
DE
19546 per_cu->cu = cu;
19547 cu->per_cu = per_cu;
19548 cu->objfile = per_cu->objfile;
93311388 19549 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
19550}
19551
19552/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19553
19554static void
95554aad
TT
19555prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19556 enum language pretend_language)
9816fde3
JK
19557{
19558 struct attribute *attr;
19559
19560 /* Set the language we're debugging. */
19561 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19562 if (attr)
19563 set_cu_language (DW_UNSND (attr), cu);
19564 else
9cded63f 19565 {
95554aad 19566 cu->language = pretend_language;
9cded63f
TT
19567 cu->language_defn = language_def (cu->language);
19568 }
dee91e82
DE
19569
19570 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19571 if (attr)
19572 cu->producer = DW_STRING (attr);
93311388
DE
19573}
19574
ae038cb0
DJ
19575/* Release one cached compilation unit, CU. We unlink it from the tree
19576 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
19577 the caller is responsible for that.
19578 NOTE: DATA is a void * because this function is also used as a
19579 cleanup routine. */
ae038cb0
DJ
19580
19581static void
68dc6402 19582free_heap_comp_unit (void *data)
ae038cb0
DJ
19583{
19584 struct dwarf2_cu *cu = data;
19585
23745b47
DE
19586 gdb_assert (cu->per_cu != NULL);
19587 cu->per_cu->cu = NULL;
ae038cb0
DJ
19588 cu->per_cu = NULL;
19589
19590 obstack_free (&cu->comp_unit_obstack, NULL);
19591
19592 xfree (cu);
19593}
19594
72bf9492 19595/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 19596 when we're finished with it. We can't free the pointer itself, but be
dee91e82 19597 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
19598
19599static void
19600free_stack_comp_unit (void *data)
19601{
19602 struct dwarf2_cu *cu = data;
19603
23745b47
DE
19604 gdb_assert (cu->per_cu != NULL);
19605 cu->per_cu->cu = NULL;
19606 cu->per_cu = NULL;
19607
72bf9492
DJ
19608 obstack_free (&cu->comp_unit_obstack, NULL);
19609 cu->partial_dies = NULL;
ae038cb0
DJ
19610}
19611
19612/* Free all cached compilation units. */
19613
19614static void
19615free_cached_comp_units (void *data)
19616{
19617 struct dwarf2_per_cu_data *per_cu, **last_chain;
19618
19619 per_cu = dwarf2_per_objfile->read_in_chain;
19620 last_chain = &dwarf2_per_objfile->read_in_chain;
19621 while (per_cu != NULL)
19622 {
19623 struct dwarf2_per_cu_data *next_cu;
19624
19625 next_cu = per_cu->cu->read_in_chain;
19626
68dc6402 19627 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
19628 *last_chain = next_cu;
19629
19630 per_cu = next_cu;
19631 }
19632}
19633
19634/* Increase the age counter on each cached compilation unit, and free
19635 any that are too old. */
19636
19637static void
19638age_cached_comp_units (void)
19639{
19640 struct dwarf2_per_cu_data *per_cu, **last_chain;
19641
19642 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19643 per_cu = dwarf2_per_objfile->read_in_chain;
19644 while (per_cu != NULL)
19645 {
19646 per_cu->cu->last_used ++;
19647 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19648 dwarf2_mark (per_cu->cu);
19649 per_cu = per_cu->cu->read_in_chain;
19650 }
19651
19652 per_cu = dwarf2_per_objfile->read_in_chain;
19653 last_chain = &dwarf2_per_objfile->read_in_chain;
19654 while (per_cu != NULL)
19655 {
19656 struct dwarf2_per_cu_data *next_cu;
19657
19658 next_cu = per_cu->cu->read_in_chain;
19659
19660 if (!per_cu->cu->mark)
19661 {
68dc6402 19662 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
19663 *last_chain = next_cu;
19664 }
19665 else
19666 last_chain = &per_cu->cu->read_in_chain;
19667
19668 per_cu = next_cu;
19669 }
19670}
19671
19672/* Remove a single compilation unit from the cache. */
19673
19674static void
dee91e82 19675free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
19676{
19677 struct dwarf2_per_cu_data *per_cu, **last_chain;
19678
19679 per_cu = dwarf2_per_objfile->read_in_chain;
19680 last_chain = &dwarf2_per_objfile->read_in_chain;
19681 while (per_cu != NULL)
19682 {
19683 struct dwarf2_per_cu_data *next_cu;
19684
19685 next_cu = per_cu->cu->read_in_chain;
19686
dee91e82 19687 if (per_cu == target_per_cu)
ae038cb0 19688 {
68dc6402 19689 free_heap_comp_unit (per_cu->cu);
dee91e82 19690 per_cu->cu = NULL;
ae038cb0
DJ
19691 *last_chain = next_cu;
19692 break;
19693 }
19694 else
19695 last_chain = &per_cu->cu->read_in_chain;
19696
19697 per_cu = next_cu;
19698 }
19699}
19700
fe3e1990
DJ
19701/* Release all extra memory associated with OBJFILE. */
19702
19703void
19704dwarf2_free_objfile (struct objfile *objfile)
19705{
19706 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19707
19708 if (dwarf2_per_objfile == NULL)
19709 return;
19710
19711 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19712 free_cached_comp_units (NULL);
19713
7b9f3c50
DE
19714 if (dwarf2_per_objfile->quick_file_names_table)
19715 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 19716
fe3e1990
DJ
19717 /* Everything else should be on the objfile obstack. */
19718}
19719
dee91e82
DE
19720/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19721 We store these in a hash table separate from the DIEs, and preserve them
19722 when the DIEs are flushed out of cache.
19723
19724 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 19725 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
19726 or the type may come from a DWO file. Furthermore, while it's more logical
19727 to use per_cu->section+offset, with Fission the section with the data is in
19728 the DWO file but we don't know that section at the point we need it.
19729 We have to use something in dwarf2_per_cu_data (or the pointer to it)
19730 because we can enter the lookup routine, get_die_type_at_offset, from
19731 outside this file, and thus won't necessarily have PER_CU->cu.
19732 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 19733
dee91e82 19734struct dwarf2_per_cu_offset_and_type
1c379e20 19735{
dee91e82 19736 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 19737 sect_offset offset;
1c379e20
DJ
19738 struct type *type;
19739};
19740
dee91e82 19741/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
19742
19743static hashval_t
dee91e82 19744per_cu_offset_and_type_hash (const void *item)
1c379e20 19745{
dee91e82 19746 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 19747
dee91e82 19748 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
19749}
19750
dee91e82 19751/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
19752
19753static int
dee91e82 19754per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 19755{
dee91e82
DE
19756 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19757 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 19758
dee91e82
DE
19759 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19760 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
19761}
19762
19763/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
19764 table if necessary. For convenience, return TYPE.
19765
19766 The DIEs reading must have careful ordering to:
19767 * Not cause infite loops trying to read in DIEs as a prerequisite for
19768 reading current DIE.
19769 * Not trying to dereference contents of still incompletely read in types
19770 while reading in other DIEs.
19771 * Enable referencing still incompletely read in types just by a pointer to
19772 the type without accessing its fields.
19773
19774 Therefore caller should follow these rules:
19775 * Try to fetch any prerequisite types we may need to build this DIE type
19776 before building the type and calling set_die_type.
e71ec853 19777 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
19778 possible before fetching more types to complete the current type.
19779 * Make the type as complete as possible before fetching more types. */
1c379e20 19780
f792889a 19781static struct type *
1c379e20
DJ
19782set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19783{
dee91e82 19784 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 19785 struct objfile *objfile = cu->objfile;
1c379e20 19786
b4ba55a1
JB
19787 /* For Ada types, make sure that the gnat-specific data is always
19788 initialized (if not already set). There are a few types where
19789 we should not be doing so, because the type-specific area is
19790 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19791 where the type-specific area is used to store the floatformat).
19792 But this is not a problem, because the gnat-specific information
19793 is actually not needed for these types. */
19794 if (need_gnat_info (cu)
19795 && TYPE_CODE (type) != TYPE_CODE_FUNC
19796 && TYPE_CODE (type) != TYPE_CODE_FLT
19797 && !HAVE_GNAT_AUX_INFO (type))
19798 INIT_GNAT_SPECIFIC (type);
19799
dee91e82 19800 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 19801 {
dee91e82
DE
19802 dwarf2_per_objfile->die_type_hash =
19803 htab_create_alloc_ex (127,
19804 per_cu_offset_and_type_hash,
19805 per_cu_offset_and_type_eq,
19806 NULL,
19807 &objfile->objfile_obstack,
19808 hashtab_obstack_allocate,
19809 dummy_obstack_deallocate);
f792889a 19810 }
1c379e20 19811
dee91e82 19812 ofs.per_cu = cu->per_cu;
1c379e20
DJ
19813 ofs.offset = die->offset;
19814 ofs.type = type;
dee91e82
DE
19815 slot = (struct dwarf2_per_cu_offset_and_type **)
19816 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
19817 if (*slot)
19818 complaint (&symfile_complaints,
19819 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 19820 die->offset.sect_off);
673bfd45 19821 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 19822 **slot = ofs;
f792889a 19823 return type;
1c379e20
DJ
19824}
19825
02142a6c
DE
19826/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
19827 or return NULL if the die does not have a saved type. */
1c379e20
DJ
19828
19829static struct type *
b64f50a1 19830get_die_type_at_offset (sect_offset offset,
673bfd45 19831 struct dwarf2_per_cu_data *per_cu)
1c379e20 19832{
dee91e82 19833 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 19834
dee91e82 19835 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 19836 return NULL;
1c379e20 19837
dee91e82 19838 ofs.per_cu = per_cu;
673bfd45 19839 ofs.offset = offset;
dee91e82 19840 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
19841 if (slot)
19842 return slot->type;
19843 else
19844 return NULL;
19845}
19846
02142a6c 19847/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
19848 or return NULL if DIE does not have a saved type. */
19849
19850static struct type *
19851get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19852{
19853 return get_die_type_at_offset (die->offset, cu->per_cu);
19854}
19855
10b3939b
DJ
19856/* Add a dependence relationship from CU to REF_PER_CU. */
19857
19858static void
19859dwarf2_add_dependence (struct dwarf2_cu *cu,
19860 struct dwarf2_per_cu_data *ref_per_cu)
19861{
19862 void **slot;
19863
19864 if (cu->dependencies == NULL)
19865 cu->dependencies
19866 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19867 NULL, &cu->comp_unit_obstack,
19868 hashtab_obstack_allocate,
19869 dummy_obstack_deallocate);
19870
19871 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19872 if (*slot == NULL)
19873 *slot = ref_per_cu;
19874}
1c379e20 19875
f504f079
DE
19876/* Subroutine of dwarf2_mark to pass to htab_traverse.
19877 Set the mark field in every compilation unit in the
ae038cb0
DJ
19878 cache that we must keep because we are keeping CU. */
19879
10b3939b
DJ
19880static int
19881dwarf2_mark_helper (void **slot, void *data)
19882{
19883 struct dwarf2_per_cu_data *per_cu;
19884
19885 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
19886
19887 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19888 reading of the chain. As such dependencies remain valid it is not much
19889 useful to track and undo them during QUIT cleanups. */
19890 if (per_cu->cu == NULL)
19891 return 1;
19892
10b3939b
DJ
19893 if (per_cu->cu->mark)
19894 return 1;
19895 per_cu->cu->mark = 1;
19896
19897 if (per_cu->cu->dependencies != NULL)
19898 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19899
19900 return 1;
19901}
19902
f504f079
DE
19903/* Set the mark field in CU and in every other compilation unit in the
19904 cache that we must keep because we are keeping CU. */
19905
ae038cb0
DJ
19906static void
19907dwarf2_mark (struct dwarf2_cu *cu)
19908{
19909 if (cu->mark)
19910 return;
19911 cu->mark = 1;
10b3939b
DJ
19912 if (cu->dependencies != NULL)
19913 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
19914}
19915
19916static void
19917dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19918{
19919 while (per_cu)
19920 {
19921 per_cu->cu->mark = 0;
19922 per_cu = per_cu->cu->read_in_chain;
19923 }
72bf9492
DJ
19924}
19925
72bf9492
DJ
19926/* Trivial hash function for partial_die_info: the hash value of a DIE
19927 is its offset in .debug_info for this objfile. */
19928
19929static hashval_t
19930partial_die_hash (const void *item)
19931{
19932 const struct partial_die_info *part_die = item;
9a619af0 19933
b64f50a1 19934 return part_die->offset.sect_off;
72bf9492
DJ
19935}
19936
19937/* Trivial comparison function for partial_die_info structures: two DIEs
19938 are equal if they have the same offset. */
19939
19940static int
19941partial_die_eq (const void *item_lhs, const void *item_rhs)
19942{
19943 const struct partial_die_info *part_die_lhs = item_lhs;
19944 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 19945
b64f50a1 19946 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
19947}
19948
ae038cb0
DJ
19949static struct cmd_list_element *set_dwarf2_cmdlist;
19950static struct cmd_list_element *show_dwarf2_cmdlist;
19951
19952static void
19953set_dwarf2_cmd (char *args, int from_tty)
19954{
19955 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19956}
19957
19958static void
19959show_dwarf2_cmd (char *args, int from_tty)
6e70227d 19960{
ae038cb0
DJ
19961 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19962}
19963
4bf44c1c 19964/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
19965
19966static void
c1bd65d0 19967dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
19968{
19969 struct dwarf2_per_objfile *data = d;
8b70b953 19970 int ix;
8b70b953 19971
95554aad
TT
19972 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19973 VEC_free (dwarf2_per_cu_ptr,
796a7ff8
DE
19974 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19975
19976 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19977 VEC_free (dwarf2_per_cu_ptr,
19978 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
95554aad 19979
8b70b953 19980 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
19981
19982 if (data->dwo_files)
19983 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
19984 if (data->dwp_file)
19985 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
19986
19987 if (data->dwz_file && data->dwz_file->dwz_bfd)
19988 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
19989}
19990
19991\f
ae2de4f8 19992/* The "save gdb-index" command. */
9291a0cd
TT
19993
19994/* The contents of the hash table we create when building the string
19995 table. */
19996struct strtab_entry
19997{
19998 offset_type offset;
19999 const char *str;
20000};
20001
559a7a62
JK
20002/* Hash function for a strtab_entry.
20003
20004 Function is used only during write_hash_table so no index format backward
20005 compatibility is needed. */
b89be57b 20006
9291a0cd
TT
20007static hashval_t
20008hash_strtab_entry (const void *e)
20009{
20010 const struct strtab_entry *entry = e;
559a7a62 20011 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
20012}
20013
20014/* Equality function for a strtab_entry. */
b89be57b 20015
9291a0cd
TT
20016static int
20017eq_strtab_entry (const void *a, const void *b)
20018{
20019 const struct strtab_entry *ea = a;
20020 const struct strtab_entry *eb = b;
20021 return !strcmp (ea->str, eb->str);
20022}
20023
20024/* Create a strtab_entry hash table. */
b89be57b 20025
9291a0cd
TT
20026static htab_t
20027create_strtab (void)
20028{
20029 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20030 xfree, xcalloc, xfree);
20031}
20032
20033/* Add a string to the constant pool. Return the string's offset in
20034 host order. */
b89be57b 20035
9291a0cd
TT
20036static offset_type
20037add_string (htab_t table, struct obstack *cpool, const char *str)
20038{
20039 void **slot;
20040 struct strtab_entry entry;
20041 struct strtab_entry *result;
20042
20043 entry.str = str;
20044 slot = htab_find_slot (table, &entry, INSERT);
20045 if (*slot)
20046 result = *slot;
20047 else
20048 {
20049 result = XNEW (struct strtab_entry);
20050 result->offset = obstack_object_size (cpool);
20051 result->str = str;
20052 obstack_grow_str0 (cpool, str);
20053 *slot = result;
20054 }
20055 return result->offset;
20056}
20057
20058/* An entry in the symbol table. */
20059struct symtab_index_entry
20060{
20061 /* The name of the symbol. */
20062 const char *name;
20063 /* The offset of the name in the constant pool. */
20064 offset_type index_offset;
20065 /* A sorted vector of the indices of all the CUs that hold an object
20066 of this name. */
20067 VEC (offset_type) *cu_indices;
20068};
20069
20070/* The symbol table. This is a power-of-2-sized hash table. */
20071struct mapped_symtab
20072{
20073 offset_type n_elements;
20074 offset_type size;
20075 struct symtab_index_entry **data;
20076};
20077
20078/* Hash function for a symtab_index_entry. */
b89be57b 20079
9291a0cd
TT
20080static hashval_t
20081hash_symtab_entry (const void *e)
20082{
20083 const struct symtab_index_entry *entry = e;
20084 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20085 sizeof (offset_type) * VEC_length (offset_type,
20086 entry->cu_indices),
20087 0);
20088}
20089
20090/* Equality function for a symtab_index_entry. */
b89be57b 20091
9291a0cd
TT
20092static int
20093eq_symtab_entry (const void *a, const void *b)
20094{
20095 const struct symtab_index_entry *ea = a;
20096 const struct symtab_index_entry *eb = b;
20097 int len = VEC_length (offset_type, ea->cu_indices);
20098 if (len != VEC_length (offset_type, eb->cu_indices))
20099 return 0;
20100 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20101 VEC_address (offset_type, eb->cu_indices),
20102 sizeof (offset_type) * len);
20103}
20104
20105/* Destroy a symtab_index_entry. */
b89be57b 20106
9291a0cd
TT
20107static void
20108delete_symtab_entry (void *p)
20109{
20110 struct symtab_index_entry *entry = p;
20111 VEC_free (offset_type, entry->cu_indices);
20112 xfree (entry);
20113}
20114
20115/* Create a hash table holding symtab_index_entry objects. */
b89be57b 20116
9291a0cd 20117static htab_t
3876f04e 20118create_symbol_hash_table (void)
9291a0cd
TT
20119{
20120 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20121 delete_symtab_entry, xcalloc, xfree);
20122}
20123
20124/* Create a new mapped symtab object. */
b89be57b 20125
9291a0cd
TT
20126static struct mapped_symtab *
20127create_mapped_symtab (void)
20128{
20129 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20130 symtab->n_elements = 0;
20131 symtab->size = 1024;
20132 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20133 return symtab;
20134}
20135
20136/* Destroy a mapped_symtab. */
b89be57b 20137
9291a0cd
TT
20138static void
20139cleanup_mapped_symtab (void *p)
20140{
20141 struct mapped_symtab *symtab = p;
20142 /* The contents of the array are freed when the other hash table is
20143 destroyed. */
20144 xfree (symtab->data);
20145 xfree (symtab);
20146}
20147
20148/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
20149 the slot.
20150
20151 Function is used only during write_hash_table so no index format backward
20152 compatibility is needed. */
b89be57b 20153
9291a0cd
TT
20154static struct symtab_index_entry **
20155find_slot (struct mapped_symtab *symtab, const char *name)
20156{
559a7a62 20157 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
20158
20159 index = hash & (symtab->size - 1);
20160 step = ((hash * 17) & (symtab->size - 1)) | 1;
20161
20162 for (;;)
20163 {
20164 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20165 return &symtab->data[index];
20166 index = (index + step) & (symtab->size - 1);
20167 }
20168}
20169
20170/* Expand SYMTAB's hash table. */
b89be57b 20171
9291a0cd
TT
20172static void
20173hash_expand (struct mapped_symtab *symtab)
20174{
20175 offset_type old_size = symtab->size;
20176 offset_type i;
20177 struct symtab_index_entry **old_entries = symtab->data;
20178
20179 symtab->size *= 2;
20180 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20181
20182 for (i = 0; i < old_size; ++i)
20183 {
20184 if (old_entries[i])
20185 {
20186 struct symtab_index_entry **slot = find_slot (symtab,
20187 old_entries[i]->name);
20188 *slot = old_entries[i];
20189 }
20190 }
20191
20192 xfree (old_entries);
20193}
20194
156942c7
DE
20195/* Add an entry to SYMTAB. NAME is the name of the symbol.
20196 CU_INDEX is the index of the CU in which the symbol appears.
20197 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 20198
9291a0cd
TT
20199static void
20200add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 20201 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
20202 offset_type cu_index)
20203{
20204 struct symtab_index_entry **slot;
156942c7 20205 offset_type cu_index_and_attrs;
9291a0cd
TT
20206
20207 ++symtab->n_elements;
20208 if (4 * symtab->n_elements / 3 >= symtab->size)
20209 hash_expand (symtab);
20210
20211 slot = find_slot (symtab, name);
20212 if (!*slot)
20213 {
20214 *slot = XNEW (struct symtab_index_entry);
20215 (*slot)->name = name;
156942c7 20216 /* index_offset is set later. */
9291a0cd
TT
20217 (*slot)->cu_indices = NULL;
20218 }
156942c7
DE
20219
20220 cu_index_and_attrs = 0;
20221 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20222 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20223 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20224
20225 /* We don't want to record an index value twice as we want to avoid the
20226 duplication.
20227 We process all global symbols and then all static symbols
20228 (which would allow us to avoid the duplication by only having to check
20229 the last entry pushed), but a symbol could have multiple kinds in one CU.
20230 To keep things simple we don't worry about the duplication here and
20231 sort and uniqufy the list after we've processed all symbols. */
20232 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20233}
20234
20235/* qsort helper routine for uniquify_cu_indices. */
20236
20237static int
20238offset_type_compare (const void *ap, const void *bp)
20239{
20240 offset_type a = *(offset_type *) ap;
20241 offset_type b = *(offset_type *) bp;
20242
20243 return (a > b) - (b > a);
20244}
20245
20246/* Sort and remove duplicates of all symbols' cu_indices lists. */
20247
20248static void
20249uniquify_cu_indices (struct mapped_symtab *symtab)
20250{
20251 int i;
20252
20253 for (i = 0; i < symtab->size; ++i)
20254 {
20255 struct symtab_index_entry *entry = symtab->data[i];
20256
20257 if (entry
20258 && entry->cu_indices != NULL)
20259 {
20260 unsigned int next_to_insert, next_to_check;
20261 offset_type last_value;
20262
20263 qsort (VEC_address (offset_type, entry->cu_indices),
20264 VEC_length (offset_type, entry->cu_indices),
20265 sizeof (offset_type), offset_type_compare);
20266
20267 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20268 next_to_insert = 1;
20269 for (next_to_check = 1;
20270 next_to_check < VEC_length (offset_type, entry->cu_indices);
20271 ++next_to_check)
20272 {
20273 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20274 != last_value)
20275 {
20276 last_value = VEC_index (offset_type, entry->cu_indices,
20277 next_to_check);
20278 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20279 last_value);
20280 ++next_to_insert;
20281 }
20282 }
20283 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20284 }
20285 }
9291a0cd
TT
20286}
20287
20288/* Add a vector of indices to the constant pool. */
b89be57b 20289
9291a0cd 20290static offset_type
3876f04e 20291add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
20292 struct symtab_index_entry *entry)
20293{
20294 void **slot;
20295
3876f04e 20296 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
20297 if (!*slot)
20298 {
20299 offset_type len = VEC_length (offset_type, entry->cu_indices);
20300 offset_type val = MAYBE_SWAP (len);
20301 offset_type iter;
20302 int i;
20303
20304 *slot = entry;
20305 entry->index_offset = obstack_object_size (cpool);
20306
20307 obstack_grow (cpool, &val, sizeof (val));
20308 for (i = 0;
20309 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20310 ++i)
20311 {
20312 val = MAYBE_SWAP (iter);
20313 obstack_grow (cpool, &val, sizeof (val));
20314 }
20315 }
20316 else
20317 {
20318 struct symtab_index_entry *old_entry = *slot;
20319 entry->index_offset = old_entry->index_offset;
20320 entry = old_entry;
20321 }
20322 return entry->index_offset;
20323}
20324
20325/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20326 constant pool entries going into the obstack CPOOL. */
b89be57b 20327
9291a0cd
TT
20328static void
20329write_hash_table (struct mapped_symtab *symtab,
20330 struct obstack *output, struct obstack *cpool)
20331{
20332 offset_type i;
3876f04e 20333 htab_t symbol_hash_table;
9291a0cd
TT
20334 htab_t str_table;
20335
3876f04e 20336 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 20337 str_table = create_strtab ();
3876f04e 20338
9291a0cd
TT
20339 /* We add all the index vectors to the constant pool first, to
20340 ensure alignment is ok. */
20341 for (i = 0; i < symtab->size; ++i)
20342 {
20343 if (symtab->data[i])
3876f04e 20344 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
20345 }
20346
20347 /* Now write out the hash table. */
20348 for (i = 0; i < symtab->size; ++i)
20349 {
20350 offset_type str_off, vec_off;
20351
20352 if (symtab->data[i])
20353 {
20354 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20355 vec_off = symtab->data[i]->index_offset;
20356 }
20357 else
20358 {
20359 /* While 0 is a valid constant pool index, it is not valid
20360 to have 0 for both offsets. */
20361 str_off = 0;
20362 vec_off = 0;
20363 }
20364
20365 str_off = MAYBE_SWAP (str_off);
20366 vec_off = MAYBE_SWAP (vec_off);
20367
20368 obstack_grow (output, &str_off, sizeof (str_off));
20369 obstack_grow (output, &vec_off, sizeof (vec_off));
20370 }
20371
20372 htab_delete (str_table);
3876f04e 20373 htab_delete (symbol_hash_table);
9291a0cd
TT
20374}
20375
0a5429f6
DE
20376/* Struct to map psymtab to CU index in the index file. */
20377struct psymtab_cu_index_map
20378{
20379 struct partial_symtab *psymtab;
20380 unsigned int cu_index;
20381};
20382
20383static hashval_t
20384hash_psymtab_cu_index (const void *item)
20385{
20386 const struct psymtab_cu_index_map *map = item;
20387
20388 return htab_hash_pointer (map->psymtab);
20389}
20390
20391static int
20392eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20393{
20394 const struct psymtab_cu_index_map *lhs = item_lhs;
20395 const struct psymtab_cu_index_map *rhs = item_rhs;
20396
20397 return lhs->psymtab == rhs->psymtab;
20398}
20399
20400/* Helper struct for building the address table. */
20401struct addrmap_index_data
20402{
20403 struct objfile *objfile;
20404 struct obstack *addr_obstack;
20405 htab_t cu_index_htab;
20406
20407 /* Non-zero if the previous_* fields are valid.
20408 We can't write an entry until we see the next entry (since it is only then
20409 that we know the end of the entry). */
20410 int previous_valid;
20411 /* Index of the CU in the table of all CUs in the index file. */
20412 unsigned int previous_cu_index;
0963b4bd 20413 /* Start address of the CU. */
0a5429f6
DE
20414 CORE_ADDR previous_cu_start;
20415};
20416
20417/* Write an address entry to OBSTACK. */
b89be57b 20418
9291a0cd 20419static void
0a5429f6
DE
20420add_address_entry (struct objfile *objfile, struct obstack *obstack,
20421 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 20422{
0a5429f6 20423 offset_type cu_index_to_write;
948f8e3d 20424 gdb_byte addr[8];
9291a0cd
TT
20425 CORE_ADDR baseaddr;
20426
20427 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20428
0a5429f6
DE
20429 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20430 obstack_grow (obstack, addr, 8);
20431 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20432 obstack_grow (obstack, addr, 8);
20433 cu_index_to_write = MAYBE_SWAP (cu_index);
20434 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20435}
20436
20437/* Worker function for traversing an addrmap to build the address table. */
20438
20439static int
20440add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20441{
20442 struct addrmap_index_data *data = datap;
20443 struct partial_symtab *pst = obj;
0a5429f6
DE
20444
20445 if (data->previous_valid)
20446 add_address_entry (data->objfile, data->addr_obstack,
20447 data->previous_cu_start, start_addr,
20448 data->previous_cu_index);
20449
20450 data->previous_cu_start = start_addr;
20451 if (pst != NULL)
20452 {
20453 struct psymtab_cu_index_map find_map, *map;
20454 find_map.psymtab = pst;
20455 map = htab_find (data->cu_index_htab, &find_map);
20456 gdb_assert (map != NULL);
20457 data->previous_cu_index = map->cu_index;
20458 data->previous_valid = 1;
20459 }
20460 else
20461 data->previous_valid = 0;
20462
20463 return 0;
20464}
20465
20466/* Write OBJFILE's address map to OBSTACK.
20467 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20468 in the index file. */
20469
20470static void
20471write_address_map (struct objfile *objfile, struct obstack *obstack,
20472 htab_t cu_index_htab)
20473{
20474 struct addrmap_index_data addrmap_index_data;
20475
20476 /* When writing the address table, we have to cope with the fact that
20477 the addrmap iterator only provides the start of a region; we have to
20478 wait until the next invocation to get the start of the next region. */
20479
20480 addrmap_index_data.objfile = objfile;
20481 addrmap_index_data.addr_obstack = obstack;
20482 addrmap_index_data.cu_index_htab = cu_index_htab;
20483 addrmap_index_data.previous_valid = 0;
20484
20485 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20486 &addrmap_index_data);
20487
20488 /* It's highly unlikely the last entry (end address = 0xff...ff)
20489 is valid, but we should still handle it.
20490 The end address is recorded as the start of the next region, but that
20491 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20492 anyway. */
20493 if (addrmap_index_data.previous_valid)
20494 add_address_entry (objfile, obstack,
20495 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20496 addrmap_index_data.previous_cu_index);
9291a0cd
TT
20497}
20498
156942c7
DE
20499/* Return the symbol kind of PSYM. */
20500
20501static gdb_index_symbol_kind
20502symbol_kind (struct partial_symbol *psym)
20503{
20504 domain_enum domain = PSYMBOL_DOMAIN (psym);
20505 enum address_class aclass = PSYMBOL_CLASS (psym);
20506
20507 switch (domain)
20508 {
20509 case VAR_DOMAIN:
20510 switch (aclass)
20511 {
20512 case LOC_BLOCK:
20513 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20514 case LOC_TYPEDEF:
20515 return GDB_INDEX_SYMBOL_KIND_TYPE;
20516 case LOC_COMPUTED:
20517 case LOC_CONST_BYTES:
20518 case LOC_OPTIMIZED_OUT:
20519 case LOC_STATIC:
20520 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20521 case LOC_CONST:
20522 /* Note: It's currently impossible to recognize psyms as enum values
20523 short of reading the type info. For now punt. */
20524 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20525 default:
20526 /* There are other LOC_FOO values that one might want to classify
20527 as variables, but dwarf2read.c doesn't currently use them. */
20528 return GDB_INDEX_SYMBOL_KIND_OTHER;
20529 }
20530 case STRUCT_DOMAIN:
20531 return GDB_INDEX_SYMBOL_KIND_TYPE;
20532 default:
20533 return GDB_INDEX_SYMBOL_KIND_OTHER;
20534 }
20535}
20536
9291a0cd 20537/* Add a list of partial symbols to SYMTAB. */
b89be57b 20538
9291a0cd
TT
20539static void
20540write_psymbols (struct mapped_symtab *symtab,
987d643c 20541 htab_t psyms_seen,
9291a0cd
TT
20542 struct partial_symbol **psymp,
20543 int count,
987d643c
TT
20544 offset_type cu_index,
20545 int is_static)
9291a0cd
TT
20546{
20547 for (; count-- > 0; ++psymp)
20548 {
156942c7
DE
20549 struct partial_symbol *psym = *psymp;
20550 void **slot;
987d643c 20551
156942c7 20552 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 20553 error (_("Ada is not currently supported by the index"));
987d643c 20554
987d643c 20555 /* Only add a given psymbol once. */
156942c7 20556 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
20557 if (!*slot)
20558 {
156942c7
DE
20559 gdb_index_symbol_kind kind = symbol_kind (psym);
20560
20561 *slot = psym;
20562 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20563 is_static, kind, cu_index);
987d643c 20564 }
9291a0cd
TT
20565 }
20566}
20567
20568/* Write the contents of an ("unfinished") obstack to FILE. Throw an
20569 exception if there is an error. */
b89be57b 20570
9291a0cd
TT
20571static void
20572write_obstack (FILE *file, struct obstack *obstack)
20573{
20574 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20575 file)
20576 != obstack_object_size (obstack))
20577 error (_("couldn't data write to file"));
20578}
20579
20580/* Unlink a file if the argument is not NULL. */
b89be57b 20581
9291a0cd
TT
20582static void
20583unlink_if_set (void *p)
20584{
20585 char **filename = p;
20586 if (*filename)
20587 unlink (*filename);
20588}
20589
1fd400ff
TT
20590/* A helper struct used when iterating over debug_types. */
20591struct signatured_type_index_data
20592{
20593 struct objfile *objfile;
20594 struct mapped_symtab *symtab;
20595 struct obstack *types_list;
987d643c 20596 htab_t psyms_seen;
1fd400ff
TT
20597 int cu_index;
20598};
20599
20600/* A helper function that writes a single signatured_type to an
20601 obstack. */
b89be57b 20602
1fd400ff
TT
20603static int
20604write_one_signatured_type (void **slot, void *d)
20605{
20606 struct signatured_type_index_data *info = d;
20607 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 20608 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
20609 gdb_byte val[8];
20610
20611 write_psymbols (info->symtab,
987d643c 20612 info->psyms_seen,
3e43a32a
MS
20613 info->objfile->global_psymbols.list
20614 + psymtab->globals_offset,
987d643c
TT
20615 psymtab->n_global_syms, info->cu_index,
20616 0);
1fd400ff 20617 write_psymbols (info->symtab,
987d643c 20618 info->psyms_seen,
3e43a32a
MS
20619 info->objfile->static_psymbols.list
20620 + psymtab->statics_offset,
987d643c
TT
20621 psymtab->n_static_syms, info->cu_index,
20622 1);
1fd400ff 20623
b64f50a1
JK
20624 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20625 entry->per_cu.offset.sect_off);
1fd400ff 20626 obstack_grow (info->types_list, val, 8);
3019eac3
DE
20627 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20628 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
20629 obstack_grow (info->types_list, val, 8);
20630 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20631 obstack_grow (info->types_list, val, 8);
20632
20633 ++info->cu_index;
20634
20635 return 1;
20636}
20637
95554aad
TT
20638/* Recurse into all "included" dependencies and write their symbols as
20639 if they appeared in this psymtab. */
20640
20641static void
20642recursively_write_psymbols (struct objfile *objfile,
20643 struct partial_symtab *psymtab,
20644 struct mapped_symtab *symtab,
20645 htab_t psyms_seen,
20646 offset_type cu_index)
20647{
20648 int i;
20649
20650 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20651 if (psymtab->dependencies[i]->user != NULL)
20652 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20653 symtab, psyms_seen, cu_index);
20654
20655 write_psymbols (symtab,
20656 psyms_seen,
20657 objfile->global_psymbols.list + psymtab->globals_offset,
20658 psymtab->n_global_syms, cu_index,
20659 0);
20660 write_psymbols (symtab,
20661 psyms_seen,
20662 objfile->static_psymbols.list + psymtab->statics_offset,
20663 psymtab->n_static_syms, cu_index,
20664 1);
20665}
20666
9291a0cd 20667/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 20668
9291a0cd
TT
20669static void
20670write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20671{
20672 struct cleanup *cleanup;
20673 char *filename, *cleanup_filename;
1fd400ff
TT
20674 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20675 struct obstack cu_list, types_cu_list;
9291a0cd
TT
20676 int i;
20677 FILE *out_file;
20678 struct mapped_symtab *symtab;
20679 offset_type val, size_of_contents, total_len;
20680 struct stat st;
987d643c 20681 htab_t psyms_seen;
0a5429f6
DE
20682 htab_t cu_index_htab;
20683 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 20684
b4f2f049 20685 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
9291a0cd 20686 return;
b4f2f049 20687
9291a0cd
TT
20688 if (dwarf2_per_objfile->using_index)
20689 error (_("Cannot use an index to create the index"));
20690
8b70b953
TT
20691 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20692 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20693
9291a0cd 20694 if (stat (objfile->name, &st) < 0)
7e17e088 20695 perror_with_name (objfile->name);
9291a0cd
TT
20696
20697 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20698 INDEX_SUFFIX, (char *) NULL);
20699 cleanup = make_cleanup (xfree, filename);
20700
614c279d 20701 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
20702 if (!out_file)
20703 error (_("Can't open `%s' for writing"), filename);
20704
20705 cleanup_filename = filename;
20706 make_cleanup (unlink_if_set, &cleanup_filename);
20707
20708 symtab = create_mapped_symtab ();
20709 make_cleanup (cleanup_mapped_symtab, symtab);
20710
20711 obstack_init (&addr_obstack);
20712 make_cleanup_obstack_free (&addr_obstack);
20713
20714 obstack_init (&cu_list);
20715 make_cleanup_obstack_free (&cu_list);
20716
1fd400ff
TT
20717 obstack_init (&types_cu_list);
20718 make_cleanup_obstack_free (&types_cu_list);
20719
987d643c
TT
20720 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20721 NULL, xcalloc, xfree);
96408a79 20722 make_cleanup_htab_delete (psyms_seen);
987d643c 20723
0a5429f6
DE
20724 /* While we're scanning CU's create a table that maps a psymtab pointer
20725 (which is what addrmap records) to its index (which is what is recorded
20726 in the index file). This will later be needed to write the address
20727 table. */
20728 cu_index_htab = htab_create_alloc (100,
20729 hash_psymtab_cu_index,
20730 eq_psymtab_cu_index,
20731 NULL, xcalloc, xfree);
96408a79 20732 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
20733 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20734 xmalloc (sizeof (struct psymtab_cu_index_map)
20735 * dwarf2_per_objfile->n_comp_units);
20736 make_cleanup (xfree, psymtab_cu_index_map);
20737
20738 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
20739 work here. Also, the debug_types entries do not appear in
20740 all_comp_units, but only in their own hash table. */
9291a0cd
TT
20741 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20742 {
3e43a32a
MS
20743 struct dwarf2_per_cu_data *per_cu
20744 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 20745 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 20746 gdb_byte val[8];
0a5429f6
DE
20747 struct psymtab_cu_index_map *map;
20748 void **slot;
9291a0cd 20749
95554aad
TT
20750 if (psymtab->user == NULL)
20751 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 20752
0a5429f6
DE
20753 map = &psymtab_cu_index_map[i];
20754 map->psymtab = psymtab;
20755 map->cu_index = i;
20756 slot = htab_find_slot (cu_index_htab, map, INSERT);
20757 gdb_assert (slot != NULL);
20758 gdb_assert (*slot == NULL);
20759 *slot = map;
9291a0cd 20760
b64f50a1
JK
20761 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20762 per_cu->offset.sect_off);
9291a0cd 20763 obstack_grow (&cu_list, val, 8);
e254ef6a 20764 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
20765 obstack_grow (&cu_list, val, 8);
20766 }
20767
0a5429f6
DE
20768 /* Dump the address map. */
20769 write_address_map (objfile, &addr_obstack, cu_index_htab);
20770
1fd400ff
TT
20771 /* Write out the .debug_type entries, if any. */
20772 if (dwarf2_per_objfile->signatured_types)
20773 {
20774 struct signatured_type_index_data sig_data;
20775
20776 sig_data.objfile = objfile;
20777 sig_data.symtab = symtab;
20778 sig_data.types_list = &types_cu_list;
987d643c 20779 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
20780 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20781 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20782 write_one_signatured_type, &sig_data);
20783 }
20784
156942c7
DE
20785 /* Now that we've processed all symbols we can shrink their cu_indices
20786 lists. */
20787 uniquify_cu_indices (symtab);
20788
9291a0cd
TT
20789 obstack_init (&constant_pool);
20790 make_cleanup_obstack_free (&constant_pool);
20791 obstack_init (&symtab_obstack);
20792 make_cleanup_obstack_free (&symtab_obstack);
20793 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20794
20795 obstack_init (&contents);
20796 make_cleanup_obstack_free (&contents);
1fd400ff 20797 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
20798 total_len = size_of_contents;
20799
20800 /* The version number. */
796a7ff8 20801 val = MAYBE_SWAP (8);
9291a0cd
TT
20802 obstack_grow (&contents, &val, sizeof (val));
20803
20804 /* The offset of the CU list from the start of the file. */
20805 val = MAYBE_SWAP (total_len);
20806 obstack_grow (&contents, &val, sizeof (val));
20807 total_len += obstack_object_size (&cu_list);
20808
1fd400ff
TT
20809 /* The offset of the types CU list from the start of the file. */
20810 val = MAYBE_SWAP (total_len);
20811 obstack_grow (&contents, &val, sizeof (val));
20812 total_len += obstack_object_size (&types_cu_list);
20813
9291a0cd
TT
20814 /* The offset of the address table from the start of the file. */
20815 val = MAYBE_SWAP (total_len);
20816 obstack_grow (&contents, &val, sizeof (val));
20817 total_len += obstack_object_size (&addr_obstack);
20818
20819 /* The offset of the symbol table from the start of the file. */
20820 val = MAYBE_SWAP (total_len);
20821 obstack_grow (&contents, &val, sizeof (val));
20822 total_len += obstack_object_size (&symtab_obstack);
20823
20824 /* The offset of the constant pool from the start of the file. */
20825 val = MAYBE_SWAP (total_len);
20826 obstack_grow (&contents, &val, sizeof (val));
20827 total_len += obstack_object_size (&constant_pool);
20828
20829 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20830
20831 write_obstack (out_file, &contents);
20832 write_obstack (out_file, &cu_list);
1fd400ff 20833 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
20834 write_obstack (out_file, &addr_obstack);
20835 write_obstack (out_file, &symtab_obstack);
20836 write_obstack (out_file, &constant_pool);
20837
20838 fclose (out_file);
20839
20840 /* We want to keep the file, so we set cleanup_filename to NULL
20841 here. See unlink_if_set. */
20842 cleanup_filename = NULL;
20843
20844 do_cleanups (cleanup);
20845}
20846
90476074
TT
20847/* Implementation of the `save gdb-index' command.
20848
20849 Note that the file format used by this command is documented in the
20850 GDB manual. Any changes here must be documented there. */
11570e71 20851
9291a0cd
TT
20852static void
20853save_gdb_index_command (char *arg, int from_tty)
20854{
20855 struct objfile *objfile;
20856
20857 if (!arg || !*arg)
96d19272 20858 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
20859
20860 ALL_OBJFILES (objfile)
20861 {
20862 struct stat st;
20863
20864 /* If the objfile does not correspond to an actual file, skip it. */
20865 if (stat (objfile->name, &st) < 0)
20866 continue;
20867
20868 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20869 if (dwarf2_per_objfile)
20870 {
20871 volatile struct gdb_exception except;
20872
20873 TRY_CATCH (except, RETURN_MASK_ERROR)
20874 {
20875 write_psymtabs_to_index (objfile, arg);
20876 }
20877 if (except.reason < 0)
20878 exception_fprintf (gdb_stderr, except,
20879 _("Error while writing index for `%s': "),
20880 objfile->name);
20881 }
20882 }
dce234bc
PP
20883}
20884
9291a0cd
TT
20885\f
20886
9eae7c52
TT
20887int dwarf2_always_disassemble;
20888
20889static void
20890show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20891 struct cmd_list_element *c, const char *value)
20892{
3e43a32a
MS
20893 fprintf_filtered (file,
20894 _("Whether to always disassemble "
20895 "DWARF expressions is %s.\n"),
9eae7c52
TT
20896 value);
20897}
20898
900e11f9
JK
20899static void
20900show_check_physname (struct ui_file *file, int from_tty,
20901 struct cmd_list_element *c, const char *value)
20902{
20903 fprintf_filtered (file,
20904 _("Whether to check \"physname\" is %s.\n"),
20905 value);
20906}
20907
6502dd73
DJ
20908void _initialize_dwarf2_read (void);
20909
20910void
20911_initialize_dwarf2_read (void)
20912{
96d19272
JK
20913 struct cmd_list_element *c;
20914
dce234bc 20915 dwarf2_objfile_data_key
c1bd65d0 20916 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 20917
1bedd215
AC
20918 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20919Set DWARF 2 specific variables.\n\
20920Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
20921 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20922 0/*allow-unknown*/, &maintenance_set_cmdlist);
20923
1bedd215
AC
20924 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20925Show DWARF 2 specific variables\n\
20926Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
20927 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20928 0/*allow-unknown*/, &maintenance_show_cmdlist);
20929
20930 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
20931 &dwarf2_max_cache_age, _("\
20932Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20933Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20934A higher limit means that cached compilation units will be stored\n\
20935in memory longer, and more total memory will be used. Zero disables\n\
20936caching, which can slow down startup."),
2c5b56ce 20937 NULL,
920d2a44 20938 show_dwarf2_max_cache_age,
2c5b56ce 20939 &set_dwarf2_cmdlist,
ae038cb0 20940 &show_dwarf2_cmdlist);
d97bc12b 20941
9eae7c52
TT
20942 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20943 &dwarf2_always_disassemble, _("\
20944Set whether `info address' always disassembles DWARF expressions."), _("\
20945Show whether `info address' always disassembles DWARF expressions."), _("\
20946When enabled, DWARF expressions are always printed in an assembly-like\n\
20947syntax. When disabled, expressions will be printed in a more\n\
20948conversational style, when possible."),
20949 NULL,
20950 show_dwarf2_always_disassemble,
20951 &set_dwarf2_cmdlist,
20952 &show_dwarf2_cmdlist);
20953
45cfd468
DE
20954 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20955Set debugging of the dwarf2 reader."), _("\
20956Show debugging of the dwarf2 reader."), _("\
20957When enabled, debugging messages are printed during dwarf2 reading\n\
20958and symtab expansion."),
20959 NULL,
20960 NULL,
20961 &setdebuglist, &showdebuglist);
20962
ccce17b0 20963 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
20964Set debugging of the dwarf2 DIE reader."), _("\
20965Show debugging of the dwarf2 DIE reader."), _("\
20966When enabled (non-zero), DIEs are dumped after they are read in.\n\
20967The value is the maximum depth to print."),
ccce17b0
YQ
20968 NULL,
20969 NULL,
20970 &setdebuglist, &showdebuglist);
9291a0cd 20971
900e11f9
JK
20972 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20973Set cross-checking of \"physname\" code against demangler."), _("\
20974Show cross-checking of \"physname\" code against demangler."), _("\
20975When enabled, GDB's internal \"physname\" code is checked against\n\
20976the demangler."),
20977 NULL, show_check_physname,
20978 &setdebuglist, &showdebuglist);
20979
e615022a
DE
20980 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20981 no_class, &use_deprecated_index_sections, _("\
20982Set whether to use deprecated gdb_index sections."), _("\
20983Show whether to use deprecated gdb_index sections."), _("\
20984When enabled, deprecated .gdb_index sections are used anyway.\n\
20985Normally they are ignored either because of a missing feature or\n\
20986performance issue.\n\
20987Warning: This option must be enabled before gdb reads the file."),
20988 NULL,
20989 NULL,
20990 &setlist, &showlist);
20991
96d19272 20992 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 20993 _("\
fc1a9d6e 20994Save a gdb-index file.\n\
11570e71 20995Usage: save gdb-index DIRECTORY"),
96d19272
JK
20996 &save_cmdlist);
20997 set_cmd_completer (c, filename_completer);
f1e6e072
TT
20998
20999 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21000 &dwarf2_locexpr_funcs);
21001 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21002 &dwarf2_loclist_funcs);
21003
21004 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21005 &dwarf2_block_frame_base_locexpr_funcs);
21006 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21007 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 21008}
This page took 3.145324 seconds and 4 git commands to generate.