* MAINTAINERS (Write After Approval): Add myself.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
72019c9c
GM
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006
8e65ff28 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
c906108c 20
c5aa993b
JM
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
c906108c 25
c5aa993b
JM
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
197e01b6
EZ
28 Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
c906108c
SS
30
31#include "defs.h"
32#include "bfd.h"
c906108c
SS
33#include "symtab.h"
34#include "gdbtypes.h"
c906108c
SS
35#include "objfiles.h"
36#include "elf/dwarf2.h"
37#include "buildsym.h"
38#include "demangle.h"
39#include "expression.h"
d5166ae1 40#include "filenames.h" /* for DOSish file names */
2e276125 41#include "macrotab.h"
c906108c
SS
42#include "language.h"
43#include "complaints.h"
357e46e7 44#include "bcache.h"
4c2df51b
DJ
45#include "dwarf2expr.h"
46#include "dwarf2loc.h"
9219021c 47#include "cp-support.h"
72bf9492 48#include "hashtab.h"
ae038cb0
DJ
49#include "command.h"
50#include "gdbcmd.h"
4c2df51b 51
c906108c
SS
52#include <fcntl.h>
53#include "gdb_string.h"
4bdf3d34 54#include "gdb_assert.h"
c906108c
SS
55#include <sys/types.h>
56
d8151005
DJ
57/* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
88496bb5
MS
71#ifndef DWARF2_REG_TO_REGNUM
72#define DWARF2_REG_TO_REGNUM(REG) (REG)
73#endif
74
107d2387 75#if 0
357e46e7 76/* .debug_info header for a compilation unit
c906108c
SS
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88_COMP_UNIT_HEADER;
89#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 90#endif
c906108c
SS
91
92/* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105_PUBNAMES_HEADER;
106#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108/* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121_ARANGES_HEADER;
122#define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124/* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145_STATEMENT_PROLOGUE;
146
6502dd73
DJ
147static const struct objfile_data *dwarf2_objfile_data_key;
148
149struct dwarf2_per_objfile
150{
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
fe1b8b76
JB
165 gdb_byte *info_buffer;
166 gdb_byte *abbrev_buffer;
167 gdb_byte *line_buffer;
168 gdb_byte *str_buffer;
169 gdb_byte *macinfo_buffer;
170 gdb_byte *ranges_buffer;
171 gdb_byte *loc_buffer;
ae038cb0 172
10b3939b
DJ
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
ae038cb0
DJ
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5
FR
183
184 /* A flag indicating wether this objfile has a section loaded at a
185 VMA of 0. */
186 int has_section_at_zero;
6502dd73
DJ
187};
188
189static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 190
086df311
DJ
191static asection *dwarf_info_section;
192static asection *dwarf_abbrev_section;
193static asection *dwarf_line_section;
194static asection *dwarf_pubnames_section;
195static asection *dwarf_aranges_section;
196static asection *dwarf_loc_section;
197static asection *dwarf_macinfo_section;
198static asection *dwarf_str_section;
199static asection *dwarf_ranges_section;
200asection *dwarf_frame_section;
201asection *dwarf_eh_frame_section;
202
c906108c
SS
203/* names of the debugging sections */
204
205#define INFO_SECTION ".debug_info"
206#define ABBREV_SECTION ".debug_abbrev"
207#define LINE_SECTION ".debug_line"
208#define PUBNAMES_SECTION ".debug_pubnames"
209#define ARANGES_SECTION ".debug_aranges"
210#define LOC_SECTION ".debug_loc"
211#define MACINFO_SECTION ".debug_macinfo"
212#define STR_SECTION ".debug_str"
af34e669 213#define RANGES_SECTION ".debug_ranges"
b6af0555
JS
214#define FRAME_SECTION ".debug_frame"
215#define EH_FRAME_SECTION ".eh_frame"
c906108c
SS
216
217/* local data types */
218
57349743
JB
219/* We hold several abbreviation tables in memory at the same time. */
220#ifndef ABBREV_HASH_SIZE
221#define ABBREV_HASH_SIZE 121
222#endif
223
107d2387
AC
224/* The data in a compilation unit header, after target2host
225 translation, looks like this. */
c906108c 226struct comp_unit_head
a738430d
MK
227{
228 unsigned long length;
229 short version;
230 unsigned int abbrev_offset;
231 unsigned char addr_size;
232 unsigned char signed_addr_p;
57349743 233
a738430d
MK
234 /* Size of file offsets; either 4 or 8. */
235 unsigned int offset_size;
57349743 236
a738430d
MK
237 /* Size of the length field; either 4 or 12. */
238 unsigned int initial_length_size;
57349743 239
a738430d
MK
240 /* Offset to the first byte of this compilation unit header in the
241 .debug_info section, for resolving relative reference dies. */
242 unsigned int offset;
57349743 243
a738430d
MK
244 /* Pointer to this compilation unit header in the .debug_info
245 section. */
fe1b8b76 246 gdb_byte *cu_head_ptr;
57349743 247
a738430d
MK
248 /* Pointer to the first die of this compilation unit. This will be
249 the first byte following the compilation unit header. */
fe1b8b76 250 gdb_byte *first_die_ptr;
af34e669 251
a738430d
MK
252 /* Pointer to the next compilation unit header in the program. */
253 struct comp_unit_head *next;
0d53c4c4 254
a738430d
MK
255 /* Base address of this compilation unit. */
256 CORE_ADDR base_address;
0d53c4c4 257
a738430d
MK
258 /* Non-zero if base_address has been set. */
259 int base_known;
260};
c906108c 261
10b3939b
DJ
262/* Fixed size for the DIE hash table. */
263#ifndef REF_HASH_SIZE
264#define REF_HASH_SIZE 1021
265#endif
266
e7c27a73
DJ
267/* Internal state when decoding a particular compilation unit. */
268struct dwarf2_cu
269{
270 /* The objfile containing this compilation unit. */
271 struct objfile *objfile;
272
273 /* The header of the compilation unit.
274
275 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
f3dd6933 276 should logically be moved to the dwarf2_cu structure. */
e7c27a73 277 struct comp_unit_head header;
e142c38c
DJ
278
279 struct function_range *first_fn, *last_fn, *cached_fn;
280
281 /* The language we are debugging. */
282 enum language language;
283 const struct language_defn *language_defn;
284
b0f35d58
DL
285 const char *producer;
286
e142c38c
DJ
287 /* The generic symbol table building routines have separate lists for
288 file scope symbols and all all other scopes (local scopes). So
289 we need to select the right one to pass to add_symbol_to_list().
290 We do it by keeping a pointer to the correct list in list_in_scope.
291
292 FIXME: The original dwarf code just treated the file scope as the
293 first local scope, and all other local scopes as nested local
294 scopes, and worked fine. Check to see if we really need to
295 distinguish these in buildsym.c. */
296 struct pending **list_in_scope;
297
298 /* Maintain an array of referenced fundamental types for the current
299 compilation unit being read. For DWARF version 1, we have to construct
300 the fundamental types on the fly, since no information about the
301 fundamental types is supplied. Each such fundamental type is created by
302 calling a language dependent routine to create the type, and then a
303 pointer to that type is then placed in the array at the index specified
304 by it's FT_<TYPENAME> value. The array has a fixed size set by the
305 FT_NUM_MEMBERS compile time constant, which is the number of predefined
306 fundamental types gdb knows how to construct. */
307 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
f3dd6933
DJ
308
309 /* DWARF abbreviation table associated with this compilation unit. */
310 struct abbrev_info **dwarf2_abbrevs;
311
312 /* Storage for the abbrev table. */
313 struct obstack abbrev_obstack;
72bf9492
DJ
314
315 /* Hash table holding all the loaded partial DIEs. */
316 htab_t partial_dies;
317
318 /* Storage for things with the same lifetime as this read-in compilation
319 unit, including partial DIEs. */
320 struct obstack comp_unit_obstack;
321
ae038cb0
DJ
322 /* When multiple dwarf2_cu structures are living in memory, this field
323 chains them all together, so that they can be released efficiently.
324 We will probably also want a generation counter so that most-recently-used
325 compilation units are cached... */
326 struct dwarf2_per_cu_data *read_in_chain;
327
328 /* Backchain to our per_cu entry if the tree has been built. */
329 struct dwarf2_per_cu_data *per_cu;
330
331 /* How many compilation units ago was this CU last referenced? */
332 int last_used;
333
10b3939b
DJ
334 /* A hash table of die offsets for following references. */
335 struct die_info *die_ref_table[REF_HASH_SIZE];
336
337 /* Full DIEs if read in. */
338 struct die_info *dies;
339
340 /* A set of pointers to dwarf2_per_cu_data objects for compilation
341 units referenced by this one. Only set during full symbol processing;
342 partial symbol tables do not have dependencies. */
343 htab_t dependencies;
344
ae038cb0
DJ
345 /* Mark used when releasing cached dies. */
346 unsigned int mark : 1;
347
348 /* This flag will be set if this compilation unit might include
349 inter-compilation-unit references. */
350 unsigned int has_form_ref_addr : 1;
351
72bf9492
DJ
352 /* This flag will be set if this compilation unit includes any
353 DW_TAG_namespace DIEs. If we know that there are explicit
354 DIEs for namespaces, we don't need to try to infer them
355 from mangled names. */
356 unsigned int has_namespace_info : 1;
e7c27a73
DJ
357};
358
10b3939b
DJ
359/* Persistent data held for a compilation unit, even when not
360 processing it. We put a pointer to this structure in the
361 read_symtab_private field of the psymtab. If we encounter
362 inter-compilation-unit references, we also maintain a sorted
363 list of all compilation units. */
364
ae038cb0
DJ
365struct dwarf2_per_cu_data
366{
5afb4e99 367 /* The start offset and length of this compilation unit. 2**30-1
ae038cb0
DJ
368 bytes should suffice to store the length of any compilation unit
369 - if it doesn't, GDB will fall over anyway. */
370 unsigned long offset;
5afb4e99 371 unsigned long length : 30;
ae038cb0
DJ
372
373 /* Flag indicating this compilation unit will be read in before
374 any of the current compilation units are processed. */
375 unsigned long queued : 1;
376
5afb4e99
DJ
377 /* This flag will be set if we need to load absolutely all DIEs
378 for this compilation unit, instead of just the ones we think
379 are interesting. It gets set if we look for a DIE in the
380 hash table and don't find it. */
381 unsigned int load_all_dies : 1;
382
ae038cb0
DJ
383 /* Set iff currently read in. */
384 struct dwarf2_cu *cu;
1c379e20
DJ
385
386 /* If full symbols for this CU have been read in, then this field
387 holds a map of DIE offsets to types. It isn't always possible
388 to reconstruct this information later, so we have to preserve
389 it. */
1c379e20 390 htab_t type_hash;
10b3939b 391
31ffec48
DJ
392 /* The partial symbol table associated with this compilation unit,
393 or NULL for partial units (which do not have an associated
394 symtab). */
10b3939b 395 struct partial_symtab *psymtab;
ae038cb0
DJ
396};
397
debd256d
JB
398/* The line number information for a compilation unit (found in the
399 .debug_line section) begins with a "statement program header",
400 which contains the following information. */
401struct line_header
402{
403 unsigned int total_length;
404 unsigned short version;
405 unsigned int header_length;
406 unsigned char minimum_instruction_length;
407 unsigned char default_is_stmt;
408 int line_base;
409 unsigned char line_range;
410 unsigned char opcode_base;
411
412 /* standard_opcode_lengths[i] is the number of operands for the
413 standard opcode whose value is i. This means that
414 standard_opcode_lengths[0] is unused, and the last meaningful
415 element is standard_opcode_lengths[opcode_base - 1]. */
416 unsigned char *standard_opcode_lengths;
417
418 /* The include_directories table. NOTE! These strings are not
419 allocated with xmalloc; instead, they are pointers into
420 debug_line_buffer. If you try to free them, `free' will get
421 indigestion. */
422 unsigned int num_include_dirs, include_dirs_size;
423 char **include_dirs;
424
425 /* The file_names table. NOTE! These strings are not allocated
426 with xmalloc; instead, they are pointers into debug_line_buffer.
427 Don't try to free them directly. */
428 unsigned int num_file_names, file_names_size;
429 struct file_entry
c906108c 430 {
debd256d
JB
431 char *name;
432 unsigned int dir_index;
433 unsigned int mod_time;
434 unsigned int length;
aaa75496 435 int included_p; /* Non-zero if referenced by the Line Number Program. */
debd256d
JB
436 } *file_names;
437
438 /* The start and end of the statement program following this
6502dd73 439 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 440 gdb_byte *statement_program_start, *statement_program_end;
debd256d 441};
c906108c
SS
442
443/* When we construct a partial symbol table entry we only
444 need this much information. */
445struct partial_die_info
446 {
72bf9492 447 /* Offset of this DIE. */
c906108c 448 unsigned int offset;
72bf9492
DJ
449
450 /* DWARF-2 tag for this DIE. */
451 ENUM_BITFIELD(dwarf_tag) tag : 16;
452
453 /* Language code associated with this DIE. This is only used
454 for the compilation unit DIE. */
455 unsigned int language : 8;
456
457 /* Assorted flags describing the data found in this DIE. */
458 unsigned int has_children : 1;
459 unsigned int is_external : 1;
460 unsigned int is_declaration : 1;
461 unsigned int has_type : 1;
462 unsigned int has_specification : 1;
aaa75496 463 unsigned int has_stmt_list : 1;
72bf9492
DJ
464 unsigned int has_pc_info : 1;
465
466 /* Flag set if the SCOPE field of this structure has been
467 computed. */
468 unsigned int scope_set : 1;
469
470 /* The name of this DIE. Normally the value of DW_AT_name, but
471 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
472 other fashion. */
c906108c 473 char *name;
57c22c6c 474 char *dirname;
72bf9492
DJ
475
476 /* The scope to prepend to our children. This is generally
477 allocated on the comp_unit_obstack, so will disappear
478 when this compilation unit leaves the cache. */
479 char *scope;
480
481 /* The location description associated with this DIE, if any. */
482 struct dwarf_block *locdesc;
483
484 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
485 CORE_ADDR lowpc;
486 CORE_ADDR highpc;
72bf9492
DJ
487
488 /* Pointer into the info_buffer pointing at the target of
489 DW_AT_sibling, if any. */
fe1b8b76 490 gdb_byte *sibling;
72bf9492
DJ
491
492 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
493 DW_AT_specification (or DW_AT_abstract_origin or
494 DW_AT_extension). */
495 unsigned int spec_offset;
496
aaa75496
JB
497 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
498 unsigned int line_offset;
499
72bf9492
DJ
500 /* Pointers to this DIE's parent, first child, and next sibling,
501 if any. */
502 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
503 };
504
505/* This data structure holds the information of an abbrev. */
506struct abbrev_info
507 {
508 unsigned int number; /* number identifying abbrev */
509 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
510 unsigned short has_children; /* boolean */
511 unsigned short num_attrs; /* number of attributes */
c906108c
SS
512 struct attr_abbrev *attrs; /* an array of attribute descriptions */
513 struct abbrev_info *next; /* next in chain */
514 };
515
516struct attr_abbrev
517 {
518 enum dwarf_attribute name;
519 enum dwarf_form form;
520 };
521
522/* This data structure holds a complete die structure. */
523struct die_info
524 {
c5aa993b 525 enum dwarf_tag tag; /* Tag indicating type of die */
c5aa993b
JM
526 unsigned int abbrev; /* Abbrev number */
527 unsigned int offset; /* Offset in .debug_info section */
528 unsigned int num_attrs; /* Number of attributes */
529 struct attribute *attrs; /* An array of attributes */
530 struct die_info *next_ref; /* Next die in ref hash table */
78ba4af6
JB
531
532 /* The dies in a compilation unit form an n-ary tree. PARENT
533 points to this die's parent; CHILD points to the first child of
534 this node; and all the children of a given node are chained
535 together via their SIBLING fields, terminated by a die whose
536 tag is zero. */
639d11d3
DC
537 struct die_info *child; /* Its first child, if any. */
538 struct die_info *sibling; /* Its next sibling, if any. */
539 struct die_info *parent; /* Its parent, if any. */
78ba4af6 540
c5aa993b 541 struct type *type; /* Cached type information */
c906108c
SS
542 };
543
544/* Attributes have a name and a value */
545struct attribute
546 {
547 enum dwarf_attribute name;
548 enum dwarf_form form;
549 union
550 {
551 char *str;
552 struct dwarf_block *blk;
ce5d95e1
JB
553 unsigned long unsnd;
554 long int snd;
c906108c
SS
555 CORE_ADDR addr;
556 }
557 u;
558 };
559
5fb290d7
DJ
560struct function_range
561{
562 const char *name;
563 CORE_ADDR lowpc, highpc;
564 int seen_line;
565 struct function_range *next;
566};
567
c906108c
SS
568/* Get at parts of an attribute structure */
569
570#define DW_STRING(attr) ((attr)->u.str)
571#define DW_UNSND(attr) ((attr)->u.unsnd)
572#define DW_BLOCK(attr) ((attr)->u.blk)
573#define DW_SND(attr) ((attr)->u.snd)
574#define DW_ADDR(attr) ((attr)->u.addr)
575
576/* Blocks are a bunch of untyped bytes. */
577struct dwarf_block
578 {
579 unsigned int size;
fe1b8b76 580 gdb_byte *data;
c906108c
SS
581 };
582
c906108c
SS
583#ifndef ATTR_ALLOC_CHUNK
584#define ATTR_ALLOC_CHUNK 4
585#endif
586
c906108c
SS
587/* Allocate fields for structs, unions and enums in this size. */
588#ifndef DW_FIELD_ALLOC_CHUNK
589#define DW_FIELD_ALLOC_CHUNK 4
590#endif
591
c906108c
SS
592/* A zeroed version of a partial die for initialization purposes. */
593static struct partial_die_info zeroed_partial_die;
594
c906108c
SS
595/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
596 but this would require a corresponding change in unpack_field_as_long
597 and friends. */
598static int bits_per_byte = 8;
599
600/* The routines that read and process dies for a C struct or C++ class
601 pass lists of data member fields and lists of member function fields
602 in an instance of a field_info structure, as defined below. */
603struct field_info
c5aa993b
JM
604 {
605 /* List of data member and baseclasses fields. */
606 struct nextfield
607 {
608 struct nextfield *next;
609 int accessibility;
610 int virtuality;
611 struct field field;
612 }
613 *fields;
c906108c 614
c5aa993b
JM
615 /* Number of fields. */
616 int nfields;
c906108c 617
c5aa993b
JM
618 /* Number of baseclasses. */
619 int nbaseclasses;
c906108c 620
c5aa993b
JM
621 /* Set if the accesibility of one of the fields is not public. */
622 int non_public_fields;
c906108c 623
c5aa993b
JM
624 /* Member function fields array, entries are allocated in the order they
625 are encountered in the object file. */
626 struct nextfnfield
627 {
628 struct nextfnfield *next;
629 struct fn_field fnfield;
630 }
631 *fnfields;
c906108c 632
c5aa993b
JM
633 /* Member function fieldlist array, contains name of possibly overloaded
634 member function, number of overloaded member functions and a pointer
635 to the head of the member function field chain. */
636 struct fnfieldlist
637 {
638 char *name;
639 int length;
640 struct nextfnfield *head;
641 }
642 *fnfieldlists;
c906108c 643
c5aa993b
JM
644 /* Number of entries in the fnfieldlists array. */
645 int nfnfields;
646 };
c906108c 647
10b3939b
DJ
648/* One item on the queue of compilation units to read in full symbols
649 for. */
650struct dwarf2_queue_item
651{
652 struct dwarf2_per_cu_data *per_cu;
653 struct dwarf2_queue_item *next;
654};
655
656/* The current queue. */
657static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
658
ae038cb0
DJ
659/* Loaded secondary compilation units are kept in memory until they
660 have not been referenced for the processing of this many
661 compilation units. Set this to zero to disable caching. Cache
662 sizes of up to at least twenty will improve startup time for
663 typical inter-CU-reference binaries, at an obvious memory cost. */
664static int dwarf2_max_cache_age = 5;
920d2a44
AC
665static void
666show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
667 struct cmd_list_element *c, const char *value)
668{
669 fprintf_filtered (file, _("\
670The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
671 value);
672}
673
ae038cb0 674
c906108c
SS
675/* Various complaints about symbol reading that don't abort the process */
676
4d3c2250
KB
677static void
678dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 679{
4d3c2250 680 complaint (&symfile_complaints,
e2e0b3e5 681 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
682}
683
684static void
685dwarf2_complex_location_expr_complaint (void)
2e276125 686{
e2e0b3e5 687 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
688}
689
4d3c2250
KB
690static void
691dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
692 int arg3)
2e276125 693{
4d3c2250 694 complaint (&symfile_complaints,
e2e0b3e5 695 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
696 arg2, arg3);
697}
698
699static void
700dwarf2_macros_too_long_complaint (void)
2e276125 701{
4d3c2250 702 complaint (&symfile_complaints,
e2e0b3e5 703 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
704}
705
706static void
707dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 708{
4d3c2250 709 complaint (&symfile_complaints,
e2e0b3e5 710 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
711 arg1);
712}
713
714static void
715dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 716{
4d3c2250 717 complaint (&symfile_complaints,
e2e0b3e5 718 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 719}
c906108c 720
c906108c
SS
721/* local function prototypes */
722
4efb68b1 723static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
724
725#if 0
a14ed312 726static void dwarf2_build_psymtabs_easy (struct objfile *, int);
c906108c
SS
727#endif
728
aaa75496
JB
729static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
730 struct objfile *);
731
732static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
733 struct partial_die_info *,
734 struct partial_symtab *);
735
a14ed312 736static void dwarf2_build_psymtabs_hard (struct objfile *, int);
c906108c 737
72bf9492
DJ
738static void scan_partial_symbols (struct partial_die_info *,
739 CORE_ADDR *, CORE_ADDR *,
740 struct dwarf2_cu *);
c906108c 741
72bf9492
DJ
742static void add_partial_symbol (struct partial_die_info *,
743 struct dwarf2_cu *);
63d06c5c 744
72bf9492 745static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 746
72bf9492
DJ
747static void add_partial_namespace (struct partial_die_info *pdi,
748 CORE_ADDR *lowpc, CORE_ADDR *highpc,
749 struct dwarf2_cu *cu);
63d06c5c 750
72bf9492
DJ
751static void add_partial_enumeration (struct partial_die_info *enum_pdi,
752 struct dwarf2_cu *cu);
91c24f0a 753
fe1b8b76
JB
754static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
755 gdb_byte *info_ptr,
756 bfd *abfd,
757 struct dwarf2_cu *cu);
91c24f0a 758
a14ed312 759static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 760
a14ed312 761static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 762
fe1b8b76 763gdb_byte *dwarf2_read_section (struct objfile *, asection *);
c906108c 764
e7c27a73 765static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 766
f3dd6933 767static void dwarf2_free_abbrev_table (void *);
c906108c 768
fe1b8b76 769static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 770 struct dwarf2_cu *);
72bf9492 771
57349743 772static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 773 struct dwarf2_cu *);
c906108c 774
fe1b8b76 775static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
72bf9492
DJ
776 struct dwarf2_cu *);
777
fe1b8b76
JB
778static gdb_byte *read_partial_die (struct partial_die_info *,
779 struct abbrev_info *abbrev, unsigned int,
780 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 781
72bf9492 782static struct partial_die_info *find_partial_die (unsigned long,
10b3939b 783 struct dwarf2_cu *);
72bf9492
DJ
784
785static void fixup_partial_die (struct partial_die_info *,
786 struct dwarf2_cu *);
787
fe1b8b76
JB
788static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
789 struct dwarf2_cu *, int *);
c906108c 790
fe1b8b76
JB
791static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
792 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 793
fe1b8b76
JB
794static gdb_byte *read_attribute_value (struct attribute *, unsigned,
795 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 796
fe1b8b76 797static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 798
fe1b8b76 799static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 800
fe1b8b76 801static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 802
fe1b8b76 803static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 804
fe1b8b76 805static unsigned long read_8_bytes (bfd *, gdb_byte *);
c906108c 806
fe1b8b76 807static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 808 unsigned int *);
c906108c 809
fe1b8b76 810static LONGEST read_initial_length (bfd *, gdb_byte *,
891d2f0b 811 struct comp_unit_head *, unsigned int *);
613e1657 812
fe1b8b76 813static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
891d2f0b 814 unsigned int *);
613e1657 815
fe1b8b76 816static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 817
fe1b8b76 818static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 819
fe1b8b76
JB
820static char *read_indirect_string (bfd *, gdb_byte *,
821 const struct comp_unit_head *,
822 unsigned int *);
4bdf3d34 823
fe1b8b76 824static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 825
fe1b8b76 826static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 827
fe1b8b76 828static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 829
e142c38c 830static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 831
e142c38c
DJ
832static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
833 struct dwarf2_cu *);
c906108c 834
05cf31d1
JB
835static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
836 struct dwarf2_cu *cu);
837
e142c38c 838static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 839
e142c38c
DJ
840static struct die_info *die_specification (struct die_info *die,
841 struct dwarf2_cu *);
63d06c5c 842
debd256d
JB
843static void free_line_header (struct line_header *lh);
844
aaa75496
JB
845static void add_file_name (struct line_header *, char *, unsigned int,
846 unsigned int, unsigned int);
847
debd256d
JB
848static struct line_header *(dwarf_decode_line_header
849 (unsigned int offset,
e7c27a73 850 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
851
852static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 853 struct dwarf2_cu *, struct partial_symtab *);
c906108c 854
4f1520fb 855static void dwarf2_start_subfile (char *, char *, char *);
c906108c 856
a14ed312 857static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 858 struct dwarf2_cu *);
c906108c 859
a14ed312 860static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 861 struct dwarf2_cu *);
c906108c 862
2df3850c
JM
863static void dwarf2_const_value_data (struct attribute *attr,
864 struct symbol *sym,
865 int bits);
866
e7c27a73 867static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 868
e7c27a73
DJ
869static struct type *die_containing_type (struct die_info *,
870 struct dwarf2_cu *);
c906108c 871
e7c27a73 872static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 873
e7c27a73 874static void read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 875
086ed43d 876static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 877
fe1b8b76
JB
878static char *typename_concat (struct obstack *,
879 const char *prefix,
880 const char *suffix,
987504bb 881 struct dwarf2_cu *);
63d06c5c 882
e7c27a73 883static void read_typedef (struct die_info *, struct dwarf2_cu *);
c906108c 884
e7c27a73 885static void read_base_type (struct die_info *, struct dwarf2_cu *);
c906108c 886
a02abb62
JB
887static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
888
e7c27a73 889static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 890
e7c27a73 891static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 892
e7c27a73 893static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 894
a14ed312 895static int dwarf2_get_pc_bounds (struct die_info *,
e7c27a73 896 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
c906108c 897
fae299cd
DC
898static void get_scope_pc_bounds (struct die_info *,
899 CORE_ADDR *, CORE_ADDR *,
900 struct dwarf2_cu *);
901
a14ed312 902static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 903 struct dwarf2_cu *);
c906108c 904
a14ed312 905static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 906 struct type *, struct dwarf2_cu *);
c906108c 907
a14ed312 908static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 909 struct die_info *, struct type *,
e7c27a73 910 struct dwarf2_cu *);
c906108c 911
a14ed312 912static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 913 struct type *, struct dwarf2_cu *);
c906108c 914
134d01f1
DJ
915static void read_structure_type (struct die_info *, struct dwarf2_cu *);
916
917static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 918
8176b9b8
DC
919static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
920
e7c27a73 921static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 922
e7c27a73 923static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 924
38d518c9 925static const char *namespace_name (struct die_info *die,
e142c38c 926 int *is_anonymous, struct dwarf2_cu *);
38d518c9 927
134d01f1
DJ
928static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
929
930static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 931
e7c27a73 932static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
c906108c 933
e7c27a73 934static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 935
e7c27a73 936static void read_array_type (struct die_info *, struct dwarf2_cu *);
c906108c 937
7ca2d3a3
DL
938static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
939 struct dwarf2_cu *);
940
e7c27a73 941static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
c906108c 942
e7c27a73
DJ
943static void read_tag_ptr_to_member_type (struct die_info *,
944 struct dwarf2_cu *);
c906108c 945
e7c27a73 946static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
c906108c 947
e7c27a73 948static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
c906108c 949
e7c27a73 950static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
c906108c 951
e7c27a73 952static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
c906108c 953
e7c27a73 954static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
c906108c 955
fe1b8b76 956static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
c906108c 957
fe1b8b76 958static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 959 struct dwarf2_cu *,
fe1b8b76 960 gdb_byte **new_info_ptr,
639d11d3
DC
961 struct die_info *parent);
962
fe1b8b76 963static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 964 struct dwarf2_cu *,
fe1b8b76 965 gdb_byte **new_info_ptr,
639d11d3
DC
966 struct die_info *parent);
967
a14ed312 968static void free_die_list (struct die_info *);
c906108c 969
e7c27a73 970static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 971
e142c38c 972static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 973
e142c38c 974static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 975
e142c38c
DJ
976static struct die_info *dwarf2_extension (struct die_info *die,
977 struct dwarf2_cu *);
9219021c 978
a14ed312 979static char *dwarf_tag_name (unsigned int);
c906108c 980
a14ed312 981static char *dwarf_attr_name (unsigned int);
c906108c 982
a14ed312 983static char *dwarf_form_name (unsigned int);
c906108c 984
a14ed312 985static char *dwarf_stack_op_name (unsigned int);
c906108c 986
a14ed312 987static char *dwarf_bool_name (unsigned int);
c906108c 988
a14ed312 989static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
990
991#if 0
a14ed312 992static char *dwarf_cfi_name (unsigned int);
c906108c 993
a14ed312 994struct die_info *copy_die (struct die_info *);
c906108c
SS
995#endif
996
f9aca02d 997static struct die_info *sibling_die (struct die_info *);
c906108c 998
f9aca02d 999static void dump_die (struct die_info *);
c906108c 1000
f9aca02d 1001static void dump_die_list (struct die_info *);
c906108c 1002
10b3939b
DJ
1003static void store_in_ref_table (unsigned int, struct die_info *,
1004 struct dwarf2_cu *);
c906108c 1005
e142c38c
DJ
1006static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1007 struct dwarf2_cu *);
c906108c 1008
a02abb62
JB
1009static int dwarf2_get_attr_constant_value (struct attribute *, int);
1010
10b3939b
DJ
1011static struct die_info *follow_die_ref (struct die_info *,
1012 struct attribute *,
1013 struct dwarf2_cu *);
c906108c 1014
e142c38c
DJ
1015static struct type *dwarf2_fundamental_type (struct objfile *, int,
1016 struct dwarf2_cu *);
c906108c
SS
1017
1018/* memory allocation interface */
1019
7b5a2f43 1020static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1021
f3dd6933 1022static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1023
a14ed312 1024static struct die_info *dwarf_alloc_die (void);
c906108c 1025
e142c38c 1026static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1027
e142c38c
DJ
1028static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1029 struct dwarf2_cu *);
5fb290d7 1030
2e276125 1031static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1032 char *, bfd *, struct dwarf2_cu *);
2e276125 1033
8e19ed76
PS
1034static int attr_form_is_block (struct attribute *);
1035
4c2df51b
DJ
1036static void
1037dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 1038 struct dwarf2_cu *cu);
4c2df51b 1039
fe1b8b76
JB
1040static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1041 struct dwarf2_cu *cu);
4bb7a0a7 1042
72bf9492
DJ
1043static void free_stack_comp_unit (void *);
1044
72bf9492
DJ
1045static hashval_t partial_die_hash (const void *item);
1046
1047static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1048
ae038cb0
DJ
1049static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1050 (unsigned long offset, struct objfile *objfile);
1051
1052static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1053 (unsigned long offset, struct objfile *objfile);
1054
1055static void free_one_comp_unit (void *);
1056
1057static void free_cached_comp_units (void *);
1058
1059static void age_cached_comp_units (void);
1060
1061static void free_one_cached_comp_unit (void *);
1062
1c379e20
DJ
1063static void set_die_type (struct die_info *, struct type *,
1064 struct dwarf2_cu *);
1065
1c379e20
DJ
1066static void reset_die_and_siblings_types (struct die_info *,
1067 struct dwarf2_cu *);
1c379e20 1068
ae038cb0
DJ
1069static void create_all_comp_units (struct objfile *);
1070
31ffec48
DJ
1071static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1072 struct objfile *);
10b3939b
DJ
1073
1074static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1075
1076static void dwarf2_add_dependence (struct dwarf2_cu *,
1077 struct dwarf2_per_cu_data *);
1078
ae038cb0
DJ
1079static void dwarf2_mark (struct dwarf2_cu *);
1080
1081static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1082
72019c9c
GM
1083static void read_set_type (struct die_info *, struct dwarf2_cu *);
1084
1085
c906108c
SS
1086/* Try to locate the sections we need for DWARF 2 debugging
1087 information and return true if we have enough to do something. */
1088
1089int
6502dd73 1090dwarf2_has_info (struct objfile *objfile)
c906108c 1091{
6502dd73
DJ
1092 struct dwarf2_per_objfile *data;
1093
1094 /* Initialize per-objfile state. */
1095 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1096 memset (data, 0, sizeof (*data));
1097 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1098 dwarf2_per_objfile = data;
1099
188dd5d6
DJ
1100 dwarf_info_section = 0;
1101 dwarf_abbrev_section = 0;
1102 dwarf_line_section = 0;
1103 dwarf_str_section = 0;
1104 dwarf_macinfo_section = 0;
1105 dwarf_frame_section = 0;
1106 dwarf_eh_frame_section = 0;
1107 dwarf_ranges_section = 0;
1108 dwarf_loc_section = 0;
af34e669 1109
6502dd73 1110 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
188dd5d6 1111 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
c906108c
SS
1112}
1113
1114/* This function is mapped across the sections and remembers the
1115 offset and size of each of the debugging sections we are interested
1116 in. */
1117
1118static void
72dca2f5 1119dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1120{
6314a349 1121 if (strcmp (sectp->name, INFO_SECTION) == 0)
c906108c 1122 {
2c500098 1123 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
086df311 1124 dwarf_info_section = sectp;
c906108c 1125 }
6314a349 1126 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
c906108c 1127 {
2c500098 1128 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
086df311 1129 dwarf_abbrev_section = sectp;
c906108c 1130 }
6314a349 1131 else if (strcmp (sectp->name, LINE_SECTION) == 0)
c906108c 1132 {
2c500098 1133 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
086df311 1134 dwarf_line_section = sectp;
c906108c 1135 }
6314a349 1136 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
c906108c 1137 {
2c500098 1138 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
086df311 1139 dwarf_pubnames_section = sectp;
c906108c 1140 }
6314a349 1141 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
c906108c 1142 {
2c500098 1143 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
086df311 1144 dwarf_aranges_section = sectp;
c906108c 1145 }
6314a349 1146 else if (strcmp (sectp->name, LOC_SECTION) == 0)
c906108c 1147 {
2c500098 1148 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
086df311 1149 dwarf_loc_section = sectp;
c906108c 1150 }
6314a349 1151 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
c906108c 1152 {
2c500098 1153 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
0cf824c9 1154 dwarf_macinfo_section = sectp;
c906108c 1155 }
6314a349 1156 else if (strcmp (sectp->name, STR_SECTION) == 0)
c906108c 1157 {
2c500098 1158 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
086df311 1159 dwarf_str_section = sectp;
c906108c 1160 }
6314a349 1161 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
b6af0555 1162 {
2c500098 1163 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
086df311 1164 dwarf_frame_section = sectp;
b6af0555 1165 }
6314a349 1166 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
b6af0555 1167 {
3799ccc6
EZ
1168 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1169 if (aflag & SEC_HAS_CONTENTS)
1170 {
2c500098 1171 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
3799ccc6
EZ
1172 dwarf_eh_frame_section = sectp;
1173 }
b6af0555 1174 }
6314a349 1175 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
af34e669 1176 {
2c500098 1177 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
6f10aeb1 1178 dwarf_ranges_section = sectp;
af34e669 1179 }
72dca2f5
FR
1180
1181 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1182 && bfd_section_vma (abfd, sectp) == 0)
1183 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1184}
1185
1186/* Build a partial symbol table. */
1187
1188void
fba45db2 1189dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
c906108c 1190{
c906108c
SS
1191 /* We definitely need the .debug_info and .debug_abbrev sections */
1192
6502dd73
DJ
1193 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1194 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
188dd5d6
DJ
1195
1196 if (dwarf_line_section)
6502dd73 1197 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
41ff2da1 1198 else
6502dd73 1199 dwarf2_per_objfile->line_buffer = NULL;
c906108c 1200
188dd5d6 1201 if (dwarf_str_section)
6502dd73 1202 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
4bdf3d34 1203 else
6502dd73 1204 dwarf2_per_objfile->str_buffer = NULL;
4bdf3d34 1205
188dd5d6 1206 if (dwarf_macinfo_section)
6502dd73 1207 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
086df311 1208 dwarf_macinfo_section);
2e276125 1209 else
6502dd73 1210 dwarf2_per_objfile->macinfo_buffer = NULL;
2e276125 1211
188dd5d6 1212 if (dwarf_ranges_section)
6502dd73 1213 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
af34e669 1214 else
6502dd73 1215 dwarf2_per_objfile->ranges_buffer = NULL;
af34e669 1216
188dd5d6 1217 if (dwarf_loc_section)
6502dd73 1218 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
0d53c4c4 1219 else
6502dd73 1220 dwarf2_per_objfile->loc_buffer = NULL;
0d53c4c4 1221
ef96bde8
EZ
1222 if (mainline
1223 || (objfile->global_psymbols.size == 0
1224 && objfile->static_psymbols.size == 0))
c906108c
SS
1225 {
1226 init_psymbol_list (objfile, 1024);
1227 }
1228
1229#if 0
1230 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1231 {
d4f3574e 1232 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1233 .debug_pubnames sections */
1234
d4f3574e 1235 dwarf2_build_psymtabs_easy (objfile, mainline);
c906108c
SS
1236 }
1237 else
1238#endif
1239 /* only test this case for now */
c5aa993b 1240 {
c906108c 1241 /* In this case we have to work a bit harder */
d4f3574e 1242 dwarf2_build_psymtabs_hard (objfile, mainline);
c906108c
SS
1243 }
1244}
1245
1246#if 0
1247/* Build the partial symbol table from the information in the
1248 .debug_pubnames and .debug_aranges sections. */
1249
1250static void
fba45db2 1251dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
c906108c
SS
1252{
1253 bfd *abfd = objfile->obfd;
1254 char *aranges_buffer, *pubnames_buffer;
1255 char *aranges_ptr, *pubnames_ptr;
1256 unsigned int entry_length, version, info_offset, info_size;
1257
1258 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1259 dwarf_pubnames_section);
c906108c 1260 pubnames_ptr = pubnames_buffer;
6502dd73 1261 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
c906108c 1262 {
613e1657 1263 struct comp_unit_head cu_header;
891d2f0b 1264 unsigned int bytes_read;
613e1657
KB
1265
1266 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
891d2f0b 1267 &bytes_read);
613e1657 1268 pubnames_ptr += bytes_read;
c906108c
SS
1269 version = read_1_byte (abfd, pubnames_ptr);
1270 pubnames_ptr += 1;
1271 info_offset = read_4_bytes (abfd, pubnames_ptr);
1272 pubnames_ptr += 4;
1273 info_size = read_4_bytes (abfd, pubnames_ptr);
1274 pubnames_ptr += 4;
1275 }
1276
1277 aranges_buffer = dwarf2_read_section (objfile,
086df311 1278 dwarf_aranges_section);
c906108c
SS
1279
1280}
1281#endif
1282
107d2387 1283/* Read in the comp unit header information from the debug_info at
917c78fc 1284 info_ptr. */
107d2387 1285
fe1b8b76 1286static gdb_byte *
107d2387 1287read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1288 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1289{
1290 int signed_addr;
891d2f0b 1291 unsigned int bytes_read;
613e1657
KB
1292 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1293 &bytes_read);
1294 info_ptr += bytes_read;
107d2387
AC
1295 cu_header->version = read_2_bytes (abfd, info_ptr);
1296 info_ptr += 2;
613e1657
KB
1297 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1298 &bytes_read);
1299 info_ptr += bytes_read;
107d2387
AC
1300 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1301 info_ptr += 1;
1302 signed_addr = bfd_get_sign_extend_vma (abfd);
1303 if (signed_addr < 0)
8e65ff28 1304 internal_error (__FILE__, __LINE__,
e2e0b3e5 1305 _("read_comp_unit_head: dwarf from non elf file"));
107d2387
AC
1306 cu_header->signed_addr_p = signed_addr;
1307 return info_ptr;
1308}
1309
fe1b8b76
JB
1310static gdb_byte *
1311partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
72bf9492
DJ
1312 bfd *abfd)
1313{
fe1b8b76 1314 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1315
1316 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1317
2b949cb6 1318 if (header->version != 2 && header->version != 3)
8a3fe4f8
AC
1319 error (_("Dwarf Error: wrong version in compilation unit header "
1320 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1321 2, bfd_get_filename (abfd));
1322
1323 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
8a3fe4f8
AC
1324 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1325 "(offset 0x%lx + 6) [in module %s]"),
72bf9492
DJ
1326 (long) header->abbrev_offset,
1327 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1328 bfd_get_filename (abfd));
1329
1330 if (beg_of_comp_unit + header->length + header->initial_length_size
1331 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
8a3fe4f8
AC
1332 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1333 "(offset 0x%lx + 0) [in module %s]"),
72bf9492
DJ
1334 (long) header->length,
1335 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1336 bfd_get_filename (abfd));
1337
1338 return info_ptr;
1339}
1340
aaa75496
JB
1341/* Allocate a new partial symtab for file named NAME and mark this new
1342 partial symtab as being an include of PST. */
1343
1344static void
1345dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1346 struct objfile *objfile)
1347{
1348 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1349
1350 subpst->section_offsets = pst->section_offsets;
1351 subpst->textlow = 0;
1352 subpst->texthigh = 0;
1353
1354 subpst->dependencies = (struct partial_symtab **)
1355 obstack_alloc (&objfile->objfile_obstack,
1356 sizeof (struct partial_symtab *));
1357 subpst->dependencies[0] = pst;
1358 subpst->number_of_dependencies = 1;
1359
1360 subpst->globals_offset = 0;
1361 subpst->n_global_syms = 0;
1362 subpst->statics_offset = 0;
1363 subpst->n_static_syms = 0;
1364 subpst->symtab = NULL;
1365 subpst->read_symtab = pst->read_symtab;
1366 subpst->readin = 0;
1367
1368 /* No private part is necessary for include psymtabs. This property
1369 can be used to differentiate between such include psymtabs and
10b3939b 1370 the regular ones. */
58a9656e 1371 subpst->read_symtab_private = NULL;
aaa75496
JB
1372}
1373
1374/* Read the Line Number Program data and extract the list of files
1375 included by the source file represented by PST. Build an include
1376 partial symtab for each of these included files.
1377
1378 This procedure assumes that there *is* a Line Number Program in
1379 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1380 before calling this procedure. */
1381
1382static void
1383dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1384 struct partial_die_info *pdi,
1385 struct partial_symtab *pst)
1386{
1387 struct objfile *objfile = cu->objfile;
1388 bfd *abfd = objfile->obfd;
1389 struct line_header *lh;
1390
1391 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1392 if (lh == NULL)
1393 return; /* No linetable, so no includes. */
1394
1395 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1396
1397 free_line_header (lh);
1398}
1399
1400
c906108c
SS
1401/* Build the partial symbol table by doing a quick pass through the
1402 .debug_info and .debug_abbrev sections. */
1403
1404static void
fba45db2 1405dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
c906108c
SS
1406{
1407 /* Instead of reading this into a big buffer, we should probably use
1408 mmap() on architectures that support it. (FIXME) */
1409 bfd *abfd = objfile->obfd;
fe1b8b76
JB
1410 gdb_byte *info_ptr;
1411 gdb_byte *beg_of_comp_unit;
c906108c
SS
1412 struct partial_die_info comp_unit_die;
1413 struct partial_symtab *pst;
ae038cb0 1414 struct cleanup *back_to;
e142c38c 1415 CORE_ADDR lowpc, highpc, baseaddr;
c906108c 1416
6502dd73 1417 info_ptr = dwarf2_per_objfile->info_buffer;
c906108c 1418
ae038cb0
DJ
1419 /* Any cached compilation units will be linked by the per-objfile
1420 read_in_chain. Make sure to free them when we're done. */
1421 back_to = make_cleanup (free_cached_comp_units, NULL);
1422
10b3939b
DJ
1423 create_all_comp_units (objfile);
1424
6502dd73 1425 /* Since the objects we're extracting from .debug_info vary in
af703f96 1426 length, only the individual functions to extract them (like
72bf9492 1427 read_comp_unit_head and load_partial_die) can really know whether
af703f96
JB
1428 the buffer is large enough to hold another complete object.
1429
6502dd73
DJ
1430 At the moment, they don't actually check that. If .debug_info
1431 holds just one extra byte after the last compilation unit's dies,
1432 then read_comp_unit_head will happily read off the end of the
1433 buffer. read_partial_die is similarly casual. Those functions
1434 should be fixed.
af703f96
JB
1435
1436 For this loop condition, simply checking whether there's any data
1437 left at all should be sufficient. */
6502dd73
DJ
1438 while (info_ptr < (dwarf2_per_objfile->info_buffer
1439 + dwarf2_per_objfile->info_size))
c906108c 1440 {
f3dd6933 1441 struct cleanup *back_to_inner;
e7c27a73 1442 struct dwarf2_cu cu;
72bf9492
DJ
1443 struct abbrev_info *abbrev;
1444 unsigned int bytes_read;
1445 struct dwarf2_per_cu_data *this_cu;
1446
c906108c 1447 beg_of_comp_unit = info_ptr;
c906108c 1448
72bf9492
DJ
1449 memset (&cu, 0, sizeof (cu));
1450
1451 obstack_init (&cu.comp_unit_obstack);
1452
1453 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1454
e7c27a73 1455 cu.objfile = objfile;
72bf9492 1456 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
e7c27a73 1457
57349743 1458 /* Complete the cu_header */
6502dd73 1459 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
e7c27a73
DJ
1460 cu.header.first_die_ptr = info_ptr;
1461 cu.header.cu_head_ptr = beg_of_comp_unit;
57349743 1462
e142c38c
DJ
1463 cu.list_in_scope = &file_symbols;
1464
c906108c 1465 /* Read the abbrevs for this compilation unit into a table */
e7c27a73 1466 dwarf2_read_abbrevs (abfd, &cu);
72bf9492 1467 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c 1468
10b3939b 1469 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
ae038cb0 1470
c906108c 1471 /* Read the compilation unit die */
72bf9492
DJ
1472 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1473 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1474 abfd, info_ptr, &cu);
c906108c 1475
31ffec48
DJ
1476 if (comp_unit_die.tag == DW_TAG_partial_unit)
1477 {
1478 info_ptr = (beg_of_comp_unit + cu.header.length
1479 + cu.header.initial_length_size);
1480 do_cleanups (back_to_inner);
1481 continue;
1482 }
1483
c906108c 1484 /* Set the language we're debugging */
e142c38c 1485 set_cu_language (comp_unit_die.language, &cu);
c906108c
SS
1486
1487 /* Allocate a new partial symbol table structure */
d4f3574e 1488 pst = start_psymtab_common (objfile, objfile->section_offsets,
96baa820 1489 comp_unit_die.name ? comp_unit_die.name : "",
c906108c
SS
1490 comp_unit_die.lowpc,
1491 objfile->global_psymbols.next,
1492 objfile->static_psymbols.next);
1493
ae038cb0
DJ
1494 if (comp_unit_die.dirname)
1495 pst->dirname = xstrdup (comp_unit_die.dirname);
57c22c6c 1496
10b3939b
DJ
1497 pst->read_symtab_private = (char *) this_cu;
1498
613e1657 1499 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
1500
1501 /* Store the function that reads in the rest of the symbol table */
1502 pst->read_symtab = dwarf2_psymtab_to_symtab;
1503
10b3939b
DJ
1504 /* If this compilation unit was already read in, free the
1505 cached copy in order to read it in again. This is
1506 necessary because we skipped some symbols when we first
1507 read in the compilation unit (see load_partial_dies).
1508 This problem could be avoided, but the benefit is
1509 unclear. */
1510 if (this_cu->cu != NULL)
1511 free_one_cached_comp_unit (this_cu->cu);
ae038cb0 1512
10b3939b 1513 cu.per_cu = this_cu;
ae038cb0 1514
10b3939b
DJ
1515 /* Note that this is a pointer to our stack frame, being
1516 added to a global data structure. It will be cleaned up
1517 in free_stack_comp_unit when we finish with this
1518 compilation unit. */
1519 this_cu->cu = &cu;
ae038cb0 1520
10b3939b 1521 this_cu->psymtab = pst;
ae038cb0 1522
c906108c
SS
1523 /* Check if comp unit has_children.
1524 If so, read the rest of the partial symbols from this comp unit.
1525 If not, there's no more debug_info for this comp unit. */
1526 if (comp_unit_die.has_children)
1527 {
72bf9492
DJ
1528 struct partial_die_info *first_die;
1529
91c24f0a
DC
1530 lowpc = ((CORE_ADDR) -1);
1531 highpc = ((CORE_ADDR) 0);
1532
72bf9492
DJ
1533 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1534
1535 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
c906108c 1536
91c24f0a
DC
1537 /* If we didn't find a lowpc, set it to highpc to avoid
1538 complaints from `maint check'. */
1539 if (lowpc == ((CORE_ADDR) -1))
1540 lowpc = highpc;
72bf9492 1541
c906108c
SS
1542 /* If the compilation unit didn't have an explicit address range,
1543 then use the information extracted from its child dies. */
0b010bcc 1544 if (! comp_unit_die.has_pc_info)
c906108c 1545 {
c5aa993b 1546 comp_unit_die.lowpc = lowpc;
c906108c
SS
1547 comp_unit_die.highpc = highpc;
1548 }
1549 }
c5aa993b 1550 pst->textlow = comp_unit_die.lowpc + baseaddr;
c906108c
SS
1551 pst->texthigh = comp_unit_die.highpc + baseaddr;
1552
1553 pst->n_global_syms = objfile->global_psymbols.next -
1554 (objfile->global_psymbols.list + pst->globals_offset);
1555 pst->n_static_syms = objfile->static_psymbols.next -
1556 (objfile->static_psymbols.list + pst->statics_offset);
1557 sort_pst_symbols (pst);
1558
1559 /* If there is already a psymtab or symtab for a file of this
1560 name, remove it. (If there is a symtab, more drastic things
1561 also happen.) This happens in VxWorks. */
1562 free_named_symtabs (pst->filename);
1563
dd373385
EZ
1564 info_ptr = beg_of_comp_unit + cu.header.length
1565 + cu.header.initial_length_size;
1566
aaa75496
JB
1567 if (comp_unit_die.has_stmt_list)
1568 {
1569 /* Get the list of files included in the current compilation unit,
1570 and build a psymtab for each of them. */
1571 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1572 }
1573
f3dd6933 1574 do_cleanups (back_to_inner);
c906108c 1575 }
ae038cb0
DJ
1576 do_cleanups (back_to);
1577}
1578
1579/* Load the DIEs for a secondary CU into memory. */
1580
1581static void
1582load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1583{
1584 bfd *abfd = objfile->obfd;
fe1b8b76 1585 gdb_byte *info_ptr, *beg_of_comp_unit;
ae038cb0
DJ
1586 struct partial_die_info comp_unit_die;
1587 struct dwarf2_cu *cu;
1588 struct abbrev_info *abbrev;
1589 unsigned int bytes_read;
1590 struct cleanup *back_to;
1591
1592 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1593 beg_of_comp_unit = info_ptr;
1594
1595 cu = xmalloc (sizeof (struct dwarf2_cu));
1596 memset (cu, 0, sizeof (struct dwarf2_cu));
1597
1598 obstack_init (&cu->comp_unit_obstack);
1599
1600 cu->objfile = objfile;
1601 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1602
1603 /* Complete the cu_header. */
1604 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1605 cu->header.first_die_ptr = info_ptr;
1606 cu->header.cu_head_ptr = beg_of_comp_unit;
1607
1608 /* Read the abbrevs for this compilation unit into a table. */
1609 dwarf2_read_abbrevs (abfd, cu);
1610 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1611
1612 /* Read the compilation unit die. */
1613 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1614 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1615 abfd, info_ptr, cu);
1616
1617 /* Set the language we're debugging. */
1618 set_cu_language (comp_unit_die.language, cu);
1619
1620 /* Link this compilation unit into the compilation unit tree. */
1621 this_cu->cu = cu;
1622 cu->per_cu = this_cu;
1623
1624 /* Check if comp unit has_children.
1625 If so, read the rest of the partial symbols from this comp unit.
1626 If not, there's no more debug_info for this comp unit. */
1627 if (comp_unit_die.has_children)
1628 load_partial_dies (abfd, info_ptr, 0, cu);
1629
1630 do_cleanups (back_to);
1631}
1632
1633/* Create a list of all compilation units in OBJFILE. We do this only
1634 if an inter-comp-unit reference is found; presumably if there is one,
1635 there will be many, and one will occur early in the .debug_info section.
1636 So there's no point in building this list incrementally. */
1637
1638static void
1639create_all_comp_units (struct objfile *objfile)
1640{
1641 int n_allocated;
1642 int n_comp_units;
1643 struct dwarf2_per_cu_data **all_comp_units;
fe1b8b76 1644 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
ae038cb0
DJ
1645
1646 n_comp_units = 0;
1647 n_allocated = 10;
1648 all_comp_units = xmalloc (n_allocated
1649 * sizeof (struct dwarf2_per_cu_data *));
1650
1651 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1652 {
1653 struct comp_unit_head cu_header;
fe1b8b76 1654 gdb_byte *beg_of_comp_unit;
ae038cb0
DJ
1655 struct dwarf2_per_cu_data *this_cu;
1656 unsigned long offset;
891d2f0b 1657 unsigned int bytes_read;
ae038cb0
DJ
1658
1659 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1660
1661 /* Read just enough information to find out where the next
1662 compilation unit is. */
dd373385 1663 cu_header.initial_length_size = 0;
ae038cb0
DJ
1664 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1665 &cu_header, &bytes_read);
1666
1667 /* Save the compilation unit for later lookup. */
1668 this_cu = obstack_alloc (&objfile->objfile_obstack,
1669 sizeof (struct dwarf2_per_cu_data));
1670 memset (this_cu, 0, sizeof (*this_cu));
1671 this_cu->offset = offset;
1672 this_cu->length = cu_header.length + cu_header.initial_length_size;
1673
1674 if (n_comp_units == n_allocated)
1675 {
1676 n_allocated *= 2;
1677 all_comp_units = xrealloc (all_comp_units,
1678 n_allocated
1679 * sizeof (struct dwarf2_per_cu_data *));
1680 }
1681 all_comp_units[n_comp_units++] = this_cu;
1682
1683 info_ptr = info_ptr + this_cu->length;
1684 }
1685
1686 dwarf2_per_objfile->all_comp_units
1687 = obstack_alloc (&objfile->objfile_obstack,
1688 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1689 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1690 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1691 xfree (all_comp_units);
1692 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
1693}
1694
72bf9492
DJ
1695/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1696 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1697 in CU. */
c906108c 1698
72bf9492
DJ
1699static void
1700scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1701 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 1702{
e7c27a73 1703 struct objfile *objfile = cu->objfile;
c906108c 1704 bfd *abfd = objfile->obfd;
72bf9492 1705 struct partial_die_info *pdi;
c906108c 1706
91c24f0a
DC
1707 /* Now, march along the PDI's, descending into ones which have
1708 interesting children but skipping the children of the other ones,
1709 until we reach the end of the compilation unit. */
c906108c 1710
72bf9492 1711 pdi = first_die;
91c24f0a 1712
72bf9492
DJ
1713 while (pdi != NULL)
1714 {
1715 fixup_partial_die (pdi, cu);
c906108c 1716
91c24f0a
DC
1717 /* Anonymous namespaces have no name but have interesting
1718 children, so we need to look at them. Ditto for anonymous
1719 enums. */
933c6fe4 1720
72bf9492
DJ
1721 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1722 || pdi->tag == DW_TAG_enumeration_type)
c906108c 1723 {
72bf9492 1724 switch (pdi->tag)
c906108c
SS
1725 {
1726 case DW_TAG_subprogram:
72bf9492 1727 if (pdi->has_pc_info)
c906108c 1728 {
72bf9492 1729 if (pdi->lowpc < *lowpc)
c906108c 1730 {
72bf9492 1731 *lowpc = pdi->lowpc;
c906108c 1732 }
72bf9492 1733 if (pdi->highpc > *highpc)
c906108c 1734 {
72bf9492 1735 *highpc = pdi->highpc;
c906108c 1736 }
72bf9492 1737 if (!pdi->is_declaration)
c906108c 1738 {
72bf9492 1739 add_partial_symbol (pdi, cu);
c906108c
SS
1740 }
1741 }
1742 break;
1743 case DW_TAG_variable:
1744 case DW_TAG_typedef:
91c24f0a 1745 case DW_TAG_union_type:
72bf9492 1746 if (!pdi->is_declaration)
63d06c5c 1747 {
72bf9492 1748 add_partial_symbol (pdi, cu);
63d06c5c
DC
1749 }
1750 break;
c906108c
SS
1751 case DW_TAG_class_type:
1752 case DW_TAG_structure_type:
72bf9492 1753 if (!pdi->is_declaration)
c906108c 1754 {
72bf9492 1755 add_partial_symbol (pdi, cu);
c906108c
SS
1756 }
1757 break;
91c24f0a 1758 case DW_TAG_enumeration_type:
72bf9492
DJ
1759 if (!pdi->is_declaration)
1760 add_partial_enumeration (pdi, cu);
c906108c
SS
1761 break;
1762 case DW_TAG_base_type:
a02abb62 1763 case DW_TAG_subrange_type:
c906108c 1764 /* File scope base type definitions are added to the partial
c5aa993b 1765 symbol table. */
72bf9492 1766 add_partial_symbol (pdi, cu);
c906108c 1767 break;
d9fa45fe 1768 case DW_TAG_namespace:
72bf9492 1769 add_partial_namespace (pdi, lowpc, highpc, cu);
91c24f0a 1770 break;
c906108c
SS
1771 default:
1772 break;
1773 }
1774 }
1775
72bf9492
DJ
1776 /* If the die has a sibling, skip to the sibling. */
1777
1778 pdi = pdi->die_sibling;
1779 }
1780}
1781
1782/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 1783
72bf9492 1784 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
1785 name is concatenated with "::" and the partial DIE's name. For
1786 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
1787 Enumerators are an exception; they use the scope of their parent
1788 enumeration type, i.e. the name of the enumeration type is not
1789 prepended to the enumerator.
91c24f0a 1790
72bf9492
DJ
1791 There are two complexities. One is DW_AT_specification; in this
1792 case "parent" means the parent of the target of the specification,
1793 instead of the direct parent of the DIE. The other is compilers
1794 which do not emit DW_TAG_namespace; in this case we try to guess
1795 the fully qualified name of structure types from their members'
1796 linkage names. This must be done using the DIE's children rather
1797 than the children of any DW_AT_specification target. We only need
1798 to do this for structures at the top level, i.e. if the target of
1799 any DW_AT_specification (if any; otherwise the DIE itself) does not
1800 have a parent. */
1801
1802/* Compute the scope prefix associated with PDI's parent, in
1803 compilation unit CU. The result will be allocated on CU's
1804 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1805 field. NULL is returned if no prefix is necessary. */
1806static char *
1807partial_die_parent_scope (struct partial_die_info *pdi,
1808 struct dwarf2_cu *cu)
1809{
1810 char *grandparent_scope;
1811 struct partial_die_info *parent, *real_pdi;
91c24f0a 1812
72bf9492
DJ
1813 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1814 then this means the parent of the specification DIE. */
1815
1816 real_pdi = pdi;
72bf9492 1817 while (real_pdi->has_specification)
10b3939b 1818 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
1819
1820 parent = real_pdi->die_parent;
1821 if (parent == NULL)
1822 return NULL;
1823
1824 if (parent->scope_set)
1825 return parent->scope;
1826
1827 fixup_partial_die (parent, cu);
1828
10b3939b 1829 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492
DJ
1830
1831 if (parent->tag == DW_TAG_namespace
1832 || parent->tag == DW_TAG_structure_type
1833 || parent->tag == DW_TAG_class_type
1834 || parent->tag == DW_TAG_union_type)
1835 {
1836 if (grandparent_scope == NULL)
1837 parent->scope = parent->name;
1838 else
987504bb
JJ
1839 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1840 parent->name, cu);
72bf9492
DJ
1841 }
1842 else if (parent->tag == DW_TAG_enumeration_type)
1843 /* Enumerators should not get the name of the enumeration as a prefix. */
1844 parent->scope = grandparent_scope;
1845 else
1846 {
1847 /* FIXME drow/2004-04-01: What should we be doing with
1848 function-local names? For partial symbols, we should probably be
1849 ignoring them. */
1850 complaint (&symfile_complaints,
e2e0b3e5 1851 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
1852 parent->tag, pdi->offset);
1853 parent->scope = grandparent_scope;
c906108c
SS
1854 }
1855
72bf9492
DJ
1856 parent->scope_set = 1;
1857 return parent->scope;
1858}
1859
1860/* Return the fully scoped name associated with PDI, from compilation unit
1861 CU. The result will be allocated with malloc. */
1862static char *
1863partial_die_full_name (struct partial_die_info *pdi,
1864 struct dwarf2_cu *cu)
1865{
1866 char *parent_scope;
1867
1868 parent_scope = partial_die_parent_scope (pdi, cu);
1869 if (parent_scope == NULL)
1870 return NULL;
1871 else
987504bb 1872 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
1873}
1874
1875static void
72bf9492 1876add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 1877{
e7c27a73 1878 struct objfile *objfile = cu->objfile;
c906108c 1879 CORE_ADDR addr = 0;
72bf9492
DJ
1880 char *actual_name;
1881 const char *my_prefix;
5c4e30ca 1882 const struct partial_symbol *psym = NULL;
e142c38c 1883 CORE_ADDR baseaddr;
72bf9492 1884 int built_actual_name = 0;
e142c38c
DJ
1885
1886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 1887
72bf9492
DJ
1888 actual_name = NULL;
1889
1890 if (pdi_needs_namespace (pdi->tag))
63d06c5c 1891 {
72bf9492
DJ
1892 actual_name = partial_die_full_name (pdi, cu);
1893 if (actual_name)
1894 built_actual_name = 1;
63d06c5c
DC
1895 }
1896
72bf9492
DJ
1897 if (actual_name == NULL)
1898 actual_name = pdi->name;
1899
c906108c
SS
1900 switch (pdi->tag)
1901 {
1902 case DW_TAG_subprogram:
1903 if (pdi->is_external)
1904 {
38d518c9 1905 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1906 mst_text, objfile); */
38d518c9 1907 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1908 VAR_DOMAIN, LOC_BLOCK,
1909 &objfile->global_psymbols,
1910 0, pdi->lowpc + baseaddr,
e142c38c 1911 cu->language, objfile);
c906108c
SS
1912 }
1913 else
1914 {
38d518c9 1915 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1916 mst_file_text, objfile); */
38d518c9 1917 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1918 VAR_DOMAIN, LOC_BLOCK,
1919 &objfile->static_psymbols,
1920 0, pdi->lowpc + baseaddr,
e142c38c 1921 cu->language, objfile);
c906108c
SS
1922 }
1923 break;
1924 case DW_TAG_variable:
1925 if (pdi->is_external)
1926 {
1927 /* Global Variable.
1928 Don't enter into the minimal symbol tables as there is
1929 a minimal symbol table entry from the ELF symbols already.
1930 Enter into partial symbol table if it has a location
1931 descriptor or a type.
1932 If the location descriptor is missing, new_symbol will create
1933 a LOC_UNRESOLVED symbol, the address of the variable will then
1934 be determined from the minimal symbol table whenever the variable
1935 is referenced.
1936 The address for the partial symbol table entry is not
1937 used by GDB, but it comes in handy for debugging partial symbol
1938 table building. */
1939
1940 if (pdi->locdesc)
e7c27a73 1941 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 1942 if (pdi->locdesc || pdi->has_type)
38d518c9 1943 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1944 VAR_DOMAIN, LOC_STATIC,
1945 &objfile->global_psymbols,
1946 0, addr + baseaddr,
e142c38c 1947 cu->language, objfile);
c906108c
SS
1948 }
1949 else
1950 {
1951 /* Static Variable. Skip symbols without location descriptors. */
1952 if (pdi->locdesc == NULL)
1953 return;
e7c27a73 1954 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 1955 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 1956 mst_file_data, objfile); */
38d518c9 1957 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1958 VAR_DOMAIN, LOC_STATIC,
1959 &objfile->static_psymbols,
1960 0, addr + baseaddr,
e142c38c 1961 cu->language, objfile);
c906108c
SS
1962 }
1963 break;
1964 case DW_TAG_typedef:
1965 case DW_TAG_base_type:
a02abb62 1966 case DW_TAG_subrange_type:
38d518c9 1967 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1968 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 1969 &objfile->static_psymbols,
e142c38c 1970 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1971 break;
72bf9492
DJ
1972 case DW_TAG_namespace:
1973 add_psymbol_to_list (actual_name, strlen (actual_name),
1974 VAR_DOMAIN, LOC_TYPEDEF,
1975 &objfile->global_psymbols,
1976 0, (CORE_ADDR) 0, cu->language, objfile);
1977 break;
c906108c
SS
1978 case DW_TAG_class_type:
1979 case DW_TAG_structure_type:
1980 case DW_TAG_union_type:
1981 case DW_TAG_enumeration_type:
1982 /* Skip aggregate types without children, these are external
c5aa993b 1983 references. */
63d06c5c
DC
1984 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1985 static vs. global. */
c906108c
SS
1986 if (pdi->has_children == 0)
1987 return;
38d518c9 1988 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1989 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
1990 (cu->language == language_cplus
1991 || cu->language == language_java)
63d06c5c
DC
1992 ? &objfile->global_psymbols
1993 : &objfile->static_psymbols,
e142c38c 1994 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1995
987504bb
JJ
1996 if (cu->language == language_cplus
1997 || cu->language == language_java)
c906108c 1998 {
987504bb 1999 /* For C++ and Java, these implicitly act as typedefs as well. */
38d518c9 2000 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2001 VAR_DOMAIN, LOC_TYPEDEF,
63d06c5c 2002 &objfile->global_psymbols,
e142c38c 2003 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2004 }
2005 break;
2006 case DW_TAG_enumerator:
38d518c9 2007 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2008 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2009 (cu->language == language_cplus
2010 || cu->language == language_java)
f6fe98ef
DJ
2011 ? &objfile->global_psymbols
2012 : &objfile->static_psymbols,
e142c38c 2013 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2014 break;
2015 default:
2016 break;
2017 }
5c4e30ca
DC
2018
2019 /* Check to see if we should scan the name for possible namespace
2020 info. Only do this if this is C++, if we don't have namespace
2021 debugging info in the file, if the psym is of an appropriate type
2022 (otherwise we'll have psym == NULL), and if we actually had a
2023 mangled name to begin with. */
2024
72bf9492
DJ
2025 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2026 cases which do not set PSYM above? */
2027
e142c38c 2028 if (cu->language == language_cplus
72bf9492 2029 && cu->has_namespace_info == 0
5c4e30ca
DC
2030 && psym != NULL
2031 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2032 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2033 objfile);
72bf9492
DJ
2034
2035 if (built_actual_name)
2036 xfree (actual_name);
c906108c
SS
2037}
2038
72bf9492
DJ
2039/* Determine whether a die of type TAG living in a C++ class or
2040 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
2041 name listed in the die. */
2042
2043static int
72bf9492 2044pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 2045{
63d06c5c
DC
2046 switch (tag)
2047 {
72bf9492 2048 case DW_TAG_namespace:
63d06c5c
DC
2049 case DW_TAG_typedef:
2050 case DW_TAG_class_type:
2051 case DW_TAG_structure_type:
2052 case DW_TAG_union_type:
2053 case DW_TAG_enumeration_type:
2054 case DW_TAG_enumerator:
2055 return 1;
2056 default:
2057 return 0;
2058 }
2059}
2060
5c4e30ca
DC
2061/* Read a partial die corresponding to a namespace; also, add a symbol
2062 corresponding to that namespace to the symbol table. NAMESPACE is
2063 the name of the enclosing namespace. */
91c24f0a 2064
72bf9492
DJ
2065static void
2066add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2067 CORE_ADDR *lowpc, CORE_ADDR *highpc,
72bf9492 2068 struct dwarf2_cu *cu)
91c24f0a 2069{
e7c27a73 2070 struct objfile *objfile = cu->objfile;
5c4e30ca 2071
72bf9492 2072 /* Add a symbol for the namespace. */
e7c27a73 2073
72bf9492 2074 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2075
2076 /* Now scan partial symbols in that namespace. */
2077
91c24f0a 2078 if (pdi->has_children)
72bf9492 2079 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
91c24f0a
DC
2080}
2081
72bf9492
DJ
2082/* See if we can figure out if the class lives in a namespace. We do
2083 this by looking for a member function; its demangled name will
2084 contain namespace info, if there is any. */
63d06c5c 2085
72bf9492
DJ
2086static void
2087guess_structure_name (struct partial_die_info *struct_pdi,
2088 struct dwarf2_cu *cu)
63d06c5c 2089{
987504bb
JJ
2090 if ((cu->language == language_cplus
2091 || cu->language == language_java)
72bf9492 2092 && cu->has_namespace_info == 0
63d06c5c
DC
2093 && struct_pdi->has_children)
2094 {
63d06c5c
DC
2095 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2096 what template types look like, because the demangler
2097 frequently doesn't give the same name as the debug info. We
2098 could fix this by only using the demangled name to get the
134d01f1 2099 prefix (but see comment in read_structure_type). */
63d06c5c 2100
72bf9492
DJ
2101 struct partial_die_info *child_pdi = struct_pdi->die_child;
2102 struct partial_die_info *real_pdi;
5d51ca54 2103
72bf9492
DJ
2104 /* If this DIE (this DIE's specification, if any) has a parent, then
2105 we should not do this. We'll prepend the parent's fully qualified
2106 name when we create the partial symbol. */
5d51ca54 2107
72bf9492 2108 real_pdi = struct_pdi;
72bf9492 2109 while (real_pdi->has_specification)
10b3939b 2110 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2111
72bf9492
DJ
2112 if (real_pdi->die_parent != NULL)
2113 return;
63d06c5c 2114
72bf9492
DJ
2115 while (child_pdi != NULL)
2116 {
2117 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 2118 {
72bf9492 2119 char *actual_class_name
31c27f77
JJ
2120 = language_class_name_from_physname (cu->language_defn,
2121 child_pdi->name);
63d06c5c 2122 if (actual_class_name != NULL)
72bf9492
DJ
2123 {
2124 struct_pdi->name
2125 = obsavestring (actual_class_name,
2126 strlen (actual_class_name),
2127 &cu->comp_unit_obstack);
2128 xfree (actual_class_name);
2129 }
63d06c5c
DC
2130 break;
2131 }
72bf9492
DJ
2132
2133 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
2134 }
2135 }
63d06c5c
DC
2136}
2137
91c24f0a
DC
2138/* Read a partial die corresponding to an enumeration type. */
2139
72bf9492
DJ
2140static void
2141add_partial_enumeration (struct partial_die_info *enum_pdi,
2142 struct dwarf2_cu *cu)
91c24f0a 2143{
e7c27a73 2144 struct objfile *objfile = cu->objfile;
91c24f0a 2145 bfd *abfd = objfile->obfd;
72bf9492 2146 struct partial_die_info *pdi;
91c24f0a
DC
2147
2148 if (enum_pdi->name != NULL)
72bf9492
DJ
2149 add_partial_symbol (enum_pdi, cu);
2150
2151 pdi = enum_pdi->die_child;
2152 while (pdi)
91c24f0a 2153 {
72bf9492 2154 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2155 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2156 else
72bf9492
DJ
2157 add_partial_symbol (pdi, cu);
2158 pdi = pdi->die_sibling;
91c24f0a 2159 }
91c24f0a
DC
2160}
2161
4bb7a0a7
DJ
2162/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2163 Return the corresponding abbrev, or NULL if the number is zero (indicating
2164 an empty DIE). In either case *BYTES_READ will be set to the length of
2165 the initial number. */
2166
2167static struct abbrev_info *
fe1b8b76 2168peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2169 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2170{
2171 bfd *abfd = cu->objfile->obfd;
2172 unsigned int abbrev_number;
2173 struct abbrev_info *abbrev;
2174
2175 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2176
2177 if (abbrev_number == 0)
2178 return NULL;
2179
2180 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2181 if (!abbrev)
2182 {
8a3fe4f8 2183 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2184 bfd_get_filename (abfd));
2185 }
2186
2187 return abbrev;
2188}
2189
2190/* Scan the debug information for CU starting at INFO_PTR. Returns a
2191 pointer to the end of a series of DIEs, terminated by an empty
2192 DIE. Any children of the skipped DIEs will also be skipped. */
2193
fe1b8b76
JB
2194static gdb_byte *
2195skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2196{
2197 struct abbrev_info *abbrev;
2198 unsigned int bytes_read;
2199
2200 while (1)
2201 {
2202 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2203 if (abbrev == NULL)
2204 return info_ptr + bytes_read;
2205 else
2206 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2207 }
2208}
2209
2210/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2211 should point just after the initial uleb128 of a DIE, and the
2212 abbrev corresponding to that skipped uleb128 should be passed in
2213 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2214 children. */
2215
fe1b8b76
JB
2216static gdb_byte *
2217skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
4bb7a0a7
DJ
2218 struct dwarf2_cu *cu)
2219{
2220 unsigned int bytes_read;
2221 struct attribute attr;
2222 bfd *abfd = cu->objfile->obfd;
2223 unsigned int form, i;
2224
2225 for (i = 0; i < abbrev->num_attrs; i++)
2226 {
2227 /* The only abbrev we care about is DW_AT_sibling. */
2228 if (abbrev->attrs[i].name == DW_AT_sibling)
2229 {
2230 read_attribute (&attr, &abbrev->attrs[i],
2231 abfd, info_ptr, cu);
2232 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2233 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2234 else
6502dd73
DJ
2235 return dwarf2_per_objfile->info_buffer
2236 + dwarf2_get_ref_die_offset (&attr, cu);
4bb7a0a7
DJ
2237 }
2238
2239 /* If it isn't DW_AT_sibling, skip this attribute. */
2240 form = abbrev->attrs[i].form;
2241 skip_attribute:
2242 switch (form)
2243 {
2244 case DW_FORM_addr:
2245 case DW_FORM_ref_addr:
2246 info_ptr += cu->header.addr_size;
2247 break;
2248 case DW_FORM_data1:
2249 case DW_FORM_ref1:
2250 case DW_FORM_flag:
2251 info_ptr += 1;
2252 break;
2253 case DW_FORM_data2:
2254 case DW_FORM_ref2:
2255 info_ptr += 2;
2256 break;
2257 case DW_FORM_data4:
2258 case DW_FORM_ref4:
2259 info_ptr += 4;
2260 break;
2261 case DW_FORM_data8:
2262 case DW_FORM_ref8:
2263 info_ptr += 8;
2264 break;
2265 case DW_FORM_string:
2266 read_string (abfd, info_ptr, &bytes_read);
2267 info_ptr += bytes_read;
2268 break;
2269 case DW_FORM_strp:
2270 info_ptr += cu->header.offset_size;
2271 break;
2272 case DW_FORM_block:
2273 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2274 info_ptr += bytes_read;
2275 break;
2276 case DW_FORM_block1:
2277 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2278 break;
2279 case DW_FORM_block2:
2280 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2281 break;
2282 case DW_FORM_block4:
2283 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2284 break;
2285 case DW_FORM_sdata:
2286 case DW_FORM_udata:
2287 case DW_FORM_ref_udata:
2288 info_ptr = skip_leb128 (abfd, info_ptr);
2289 break;
2290 case DW_FORM_indirect:
2291 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2292 info_ptr += bytes_read;
2293 /* We need to continue parsing from here, so just go back to
2294 the top. */
2295 goto skip_attribute;
2296
2297 default:
8a3fe4f8 2298 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2299 dwarf_form_name (form),
2300 bfd_get_filename (abfd));
2301 }
2302 }
2303
2304 if (abbrev->has_children)
2305 return skip_children (info_ptr, cu);
2306 else
2307 return info_ptr;
2308}
2309
2310/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2311 the next DIE after ORIG_PDI. */
91c24f0a 2312
fe1b8b76
JB
2313static gdb_byte *
2314locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
e7c27a73 2315 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2316{
2317 /* Do we know the sibling already? */
72bf9492 2318
91c24f0a
DC
2319 if (orig_pdi->sibling)
2320 return orig_pdi->sibling;
2321
2322 /* Are there any children to deal with? */
2323
2324 if (!orig_pdi->has_children)
2325 return info_ptr;
2326
4bb7a0a7 2327 /* Skip the children the long way. */
91c24f0a 2328
4bb7a0a7 2329 return skip_children (info_ptr, cu);
91c24f0a
DC
2330}
2331
c906108c
SS
2332/* Expand this partial symbol table into a full symbol table. */
2333
2334static void
fba45db2 2335dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2336{
2337 /* FIXME: This is barely more than a stub. */
2338 if (pst != NULL)
2339 {
2340 if (pst->readin)
2341 {
8a3fe4f8 2342 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2343 }
2344 else
2345 {
2346 if (info_verbose)
2347 {
a3f17187 2348 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2349 gdb_flush (gdb_stdout);
2350 }
2351
10b3939b
DJ
2352 /* Restore our global data. */
2353 dwarf2_per_objfile = objfile_data (pst->objfile,
2354 dwarf2_objfile_data_key);
2355
c906108c
SS
2356 psymtab_to_symtab_1 (pst);
2357
2358 /* Finish up the debug error message. */
2359 if (info_verbose)
a3f17187 2360 printf_filtered (_("done.\n"));
c906108c
SS
2361 }
2362 }
2363}
2364
10b3939b
DJ
2365/* Add PER_CU to the queue. */
2366
2367static void
2368queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2369{
2370 struct dwarf2_queue_item *item;
2371
2372 per_cu->queued = 1;
2373 item = xmalloc (sizeof (*item));
2374 item->per_cu = per_cu;
2375 item->next = NULL;
2376
2377 if (dwarf2_queue == NULL)
2378 dwarf2_queue = item;
2379 else
2380 dwarf2_queue_tail->next = item;
2381
2382 dwarf2_queue_tail = item;
2383}
2384
2385/* Process the queue. */
2386
2387static void
2388process_queue (struct objfile *objfile)
2389{
2390 struct dwarf2_queue_item *item, *next_item;
2391
2392 /* Initially, there is just one item on the queue. Load its DIEs,
2393 and the DIEs of any other compilation units it requires,
2394 transitively. */
2395
2396 for (item = dwarf2_queue; item != NULL; item = item->next)
2397 {
2398 /* Read in this compilation unit. This may add new items to
2399 the end of the queue. */
31ffec48 2400 load_full_comp_unit (item->per_cu, objfile);
10b3939b
DJ
2401
2402 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2403 dwarf2_per_objfile->read_in_chain = item->per_cu;
2404
2405 /* If this compilation unit has already had full symbols created,
2406 reset the TYPE fields in each DIE. */
31ffec48 2407 if (item->per_cu->type_hash)
10b3939b
DJ
2408 reset_die_and_siblings_types (item->per_cu->cu->dies,
2409 item->per_cu->cu);
2410 }
2411
2412 /* Now everything left on the queue needs to be read in. Process
2413 them, one at a time, removing from the queue as we finish. */
2414 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2415 {
31ffec48 2416 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
2417 process_full_comp_unit (item->per_cu);
2418
2419 item->per_cu->queued = 0;
2420 next_item = item->next;
2421 xfree (item);
2422 }
2423
2424 dwarf2_queue_tail = NULL;
2425}
2426
2427/* Free all allocated queue entries. This function only releases anything if
2428 an error was thrown; if the queue was processed then it would have been
2429 freed as we went along. */
2430
2431static void
2432dwarf2_release_queue (void *dummy)
2433{
2434 struct dwarf2_queue_item *item, *last;
2435
2436 item = dwarf2_queue;
2437 while (item)
2438 {
2439 /* Anything still marked queued is likely to be in an
2440 inconsistent state, so discard it. */
2441 if (item->per_cu->queued)
2442 {
2443 if (item->per_cu->cu != NULL)
2444 free_one_cached_comp_unit (item->per_cu->cu);
2445 item->per_cu->queued = 0;
2446 }
2447
2448 last = item;
2449 item = item->next;
2450 xfree (last);
2451 }
2452
2453 dwarf2_queue = dwarf2_queue_tail = NULL;
2454}
2455
2456/* Read in full symbols for PST, and anything it depends on. */
2457
c906108c 2458static void
fba45db2 2459psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2460{
10b3939b 2461 struct dwarf2_per_cu_data *per_cu;
c906108c 2462 struct cleanup *back_to;
aaa75496
JB
2463 int i;
2464
2465 for (i = 0; i < pst->number_of_dependencies; i++)
2466 if (!pst->dependencies[i]->readin)
2467 {
2468 /* Inform about additional files that need to be read in. */
2469 if (info_verbose)
2470 {
a3f17187 2471 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2472 fputs_filtered (" ", gdb_stdout);
2473 wrap_here ("");
2474 fputs_filtered ("and ", gdb_stdout);
2475 wrap_here ("");
2476 printf_filtered ("%s...", pst->dependencies[i]->filename);
2477 wrap_here (""); /* Flush output */
2478 gdb_flush (gdb_stdout);
2479 }
2480 psymtab_to_symtab_1 (pst->dependencies[i]);
2481 }
2482
10b3939b
DJ
2483 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2484
2485 if (per_cu == NULL)
aaa75496
JB
2486 {
2487 /* It's an include file, no symbols to read for it.
2488 Everything is in the parent symtab. */
2489 pst->readin = 1;
2490 return;
2491 }
c906108c 2492
10b3939b
DJ
2493 back_to = make_cleanup (dwarf2_release_queue, NULL);
2494
2495 queue_comp_unit (per_cu);
2496
2497 process_queue (pst->objfile);
2498
2499 /* Age the cache, releasing compilation units that have not
2500 been used recently. */
2501 age_cached_comp_units ();
2502
2503 do_cleanups (back_to);
2504}
2505
2506/* Load the DIEs associated with PST and PER_CU into memory. */
2507
2508static struct dwarf2_cu *
31ffec48 2509load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 2510{
31ffec48 2511 bfd *abfd = objfile->obfd;
10b3939b
DJ
2512 struct dwarf2_cu *cu;
2513 unsigned long offset;
fe1b8b76 2514 gdb_byte *info_ptr;
10b3939b
DJ
2515 struct cleanup *back_to, *free_cu_cleanup;
2516 struct attribute *attr;
2517 CORE_ADDR baseaddr;
6502dd73 2518
c906108c 2519 /* Set local variables from the partial symbol table info. */
10b3939b 2520 offset = per_cu->offset;
6502dd73
DJ
2521
2522 info_ptr = dwarf2_per_objfile->info_buffer + offset;
63d06c5c 2523
10b3939b
DJ
2524 cu = xmalloc (sizeof (struct dwarf2_cu));
2525 memset (cu, 0, sizeof (struct dwarf2_cu));
c906108c 2526
10b3939b
DJ
2527 /* If an error occurs while loading, release our storage. */
2528 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 2529
31ffec48 2530 cu->objfile = objfile;
e7c27a73 2531
c906108c 2532 /* read in the comp_unit header */
10b3939b 2533 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c
SS
2534
2535 /* Read the abbrevs for this compilation unit */
10b3939b
DJ
2536 dwarf2_read_abbrevs (abfd, cu);
2537 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2538
2539 cu->header.offset = offset;
c906108c 2540
10b3939b
DJ
2541 cu->per_cu = per_cu;
2542 per_cu->cu = cu;
e142c38c 2543
10b3939b
DJ
2544 /* We use this obstack for block values in dwarf_alloc_block. */
2545 obstack_init (&cu->comp_unit_obstack);
2546
2547 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2548
2549 /* We try not to read any attributes in this function, because not
2550 all objfiles needed for references have been loaded yet, and symbol
2551 table processing isn't initialized. But we have to set the CU language,
2552 or we won't be able to build types correctly. */
2553 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2554 if (attr)
2555 set_cu_language (DW_UNSND (attr), cu);
2556 else
2557 set_cu_language (language_minimal, cu);
2558
2559 do_cleanups (back_to);
e142c38c 2560
10b3939b
DJ
2561 /* We've successfully allocated this compilation unit. Let our caller
2562 clean it up when finished with it. */
2563 discard_cleanups (free_cu_cleanup);
c906108c 2564
10b3939b
DJ
2565 return cu;
2566}
2567
2568/* Generate full symbol information for PST and CU, whose DIEs have
2569 already been loaded into memory. */
2570
2571static void
2572process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2573{
2574 struct partial_symtab *pst = per_cu->psymtab;
2575 struct dwarf2_cu *cu = per_cu->cu;
2576 struct objfile *objfile = pst->objfile;
2577 bfd *abfd = objfile->obfd;
2578 CORE_ADDR lowpc, highpc;
2579 struct symtab *symtab;
2580 struct cleanup *back_to;
2581 struct attribute *attr;
2582 CORE_ADDR baseaddr;
2583
2584 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2585
2586 /* We're in the global namespace. */
2587 processing_current_prefix = "";
2588
2589 buildsym_init ();
2590 back_to = make_cleanup (really_free_pendings, NULL);
2591
2592 cu->list_in_scope = &file_symbols;
c906108c 2593
0d53c4c4
DJ
2594 /* Find the base address of the compilation unit for range lists and
2595 location lists. It will normally be specified by DW_AT_low_pc.
2596 In DWARF-3 draft 4, the base address could be overridden by
2597 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2598 compilation units with discontinuous ranges. */
2599
10b3939b
DJ
2600 cu->header.base_known = 0;
2601 cu->header.base_address = 0;
0d53c4c4 2602
10b3939b 2603 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
0d53c4c4
DJ
2604 if (attr)
2605 {
10b3939b
DJ
2606 cu->header.base_address = DW_ADDR (attr);
2607 cu->header.base_known = 1;
0d53c4c4
DJ
2608 }
2609 else
2610 {
10b3939b 2611 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
0d53c4c4
DJ
2612 if (attr)
2613 {
10b3939b
DJ
2614 cu->header.base_address = DW_ADDR (attr);
2615 cu->header.base_known = 1;
0d53c4c4
DJ
2616 }
2617 }
2618
c906108c 2619 /* Do line number decoding in read_file_scope () */
10b3939b 2620 process_die (cu->dies, cu);
c906108c 2621
fae299cd
DC
2622 /* Some compilers don't define a DW_AT_high_pc attribute for the
2623 compilation unit. If the DW_AT_high_pc is missing, synthesize
2624 it, by scanning the DIE's below the compilation unit. */
10b3939b 2625 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 2626
613e1657 2627 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
2628
2629 /* Set symtab language to language from DW_AT_language.
2630 If the compilation is from a C file generated by language preprocessors,
2631 do not set the language if it was already deduced by start_subfile. */
2632 if (symtab != NULL
10b3939b 2633 && !(cu->language == language_c && symtab->language != language_c))
c906108c 2634 {
10b3939b 2635 symtab->language = cu->language;
c906108c
SS
2636 }
2637 pst->symtab = symtab;
2638 pst->readin = 1;
c906108c
SS
2639
2640 do_cleanups (back_to);
2641}
2642
2643/* Process a die and its children. */
2644
2645static void
e7c27a73 2646process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
2647{
2648 switch (die->tag)
2649 {
2650 case DW_TAG_padding:
2651 break;
2652 case DW_TAG_compile_unit:
e7c27a73 2653 read_file_scope (die, cu);
c906108c
SS
2654 break;
2655 case DW_TAG_subprogram:
e7c27a73
DJ
2656 read_subroutine_type (die, cu);
2657 read_func_scope (die, cu);
c906108c
SS
2658 break;
2659 case DW_TAG_inlined_subroutine:
2660 /* FIXME: These are ignored for now.
c5aa993b
JM
2661 They could be used to set breakpoints on all inlined instances
2662 of a function and make GDB `next' properly over inlined functions. */
c906108c
SS
2663 break;
2664 case DW_TAG_lexical_block:
14898363
L
2665 case DW_TAG_try_block:
2666 case DW_TAG_catch_block:
e7c27a73 2667 read_lexical_block_scope (die, cu);
c906108c
SS
2668 break;
2669 case DW_TAG_class_type:
2670 case DW_TAG_structure_type:
2671 case DW_TAG_union_type:
134d01f1
DJ
2672 read_structure_type (die, cu);
2673 process_structure_scope (die, cu);
c906108c
SS
2674 break;
2675 case DW_TAG_enumeration_type:
134d01f1
DJ
2676 read_enumeration_type (die, cu);
2677 process_enumeration_scope (die, cu);
c906108c 2678 break;
134d01f1
DJ
2679
2680 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2681 a symbol or process any children. Therefore it doesn't do anything
2682 that won't be done on-demand by read_type_die. */
c906108c 2683 case DW_TAG_subroutine_type:
e7c27a73 2684 read_subroutine_type (die, cu);
c906108c 2685 break;
72019c9c
GM
2686 case DW_TAG_set_type:
2687 read_set_type (die, cu);
2688 break;
c906108c 2689 case DW_TAG_array_type:
e7c27a73 2690 read_array_type (die, cu);
c906108c
SS
2691 break;
2692 case DW_TAG_pointer_type:
e7c27a73 2693 read_tag_pointer_type (die, cu);
c906108c
SS
2694 break;
2695 case DW_TAG_ptr_to_member_type:
e7c27a73 2696 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
2697 break;
2698 case DW_TAG_reference_type:
e7c27a73 2699 read_tag_reference_type (die, cu);
c906108c
SS
2700 break;
2701 case DW_TAG_string_type:
e7c27a73 2702 read_tag_string_type (die, cu);
c906108c 2703 break;
134d01f1
DJ
2704 /* END FIXME */
2705
c906108c 2706 case DW_TAG_base_type:
e7c27a73 2707 read_base_type (die, cu);
134d01f1
DJ
2708 /* Add a typedef symbol for the type definition, if it has a
2709 DW_AT_name. */
2710 new_symbol (die, die->type, cu);
c906108c 2711 break;
a02abb62
JB
2712 case DW_TAG_subrange_type:
2713 read_subrange_type (die, cu);
134d01f1
DJ
2714 /* Add a typedef symbol for the type definition, if it has a
2715 DW_AT_name. */
2716 new_symbol (die, die->type, cu);
a02abb62 2717 break;
c906108c 2718 case DW_TAG_common_block:
e7c27a73 2719 read_common_block (die, cu);
c906108c
SS
2720 break;
2721 case DW_TAG_common_inclusion:
2722 break;
d9fa45fe 2723 case DW_TAG_namespace:
63d06c5c 2724 processing_has_namespace_info = 1;
e7c27a73 2725 read_namespace (die, cu);
d9fa45fe
DC
2726 break;
2727 case DW_TAG_imported_declaration:
2728 case DW_TAG_imported_module:
2729 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2730 information contained in these. DW_TAG_imported_declaration
2731 dies shouldn't have children; DW_TAG_imported_module dies
2732 shouldn't in the C++ case, but conceivably could in the
2733 Fortran case, so we'll have to replace this gdb_assert if
2734 Fortran compilers start generating that info. */
63d06c5c 2735 processing_has_namespace_info = 1;
639d11d3 2736 gdb_assert (die->child == NULL);
d9fa45fe 2737 break;
c906108c 2738 default:
e7c27a73 2739 new_symbol (die, NULL, cu);
c906108c
SS
2740 break;
2741 }
2742}
2743
5fb290d7 2744static void
e142c38c 2745initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 2746{
e142c38c 2747 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
2748}
2749
c906108c 2750static void
e7c27a73 2751read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2752{
e7c27a73
DJ
2753 struct objfile *objfile = cu->objfile;
2754 struct comp_unit_head *cu_header = &cu->header;
debd256d 2755 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 2756 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
2757 CORE_ADDR highpc = ((CORE_ADDR) 0);
2758 struct attribute *attr;
2759 char *name = "<unknown>";
2760 char *comp_dir = NULL;
2761 struct die_info *child_die;
2762 bfd *abfd = objfile->obfd;
debd256d 2763 struct line_header *line_header = 0;
e142c38c
DJ
2764 CORE_ADDR baseaddr;
2765
2766 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2767
fae299cd 2768 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
2769
2770 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2771 from finish_block. */
2acceee2 2772 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
2773 lowpc = highpc;
2774 lowpc += baseaddr;
2775 highpc += baseaddr;
2776
e142c38c 2777 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2778 if (attr)
2779 {
2780 name = DW_STRING (attr);
2781 }
e142c38c 2782 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c
SS
2783 if (attr)
2784 {
2785 comp_dir = DW_STRING (attr);
2786 if (comp_dir)
2787 {
2788 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2789 directory, get rid of it. */
2790 char *cp = strchr (comp_dir, ':');
2791
2792 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2793 comp_dir = cp + 1;
2794 }
2795 }
2796
e142c38c 2797 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
2798 if (attr)
2799 {
e142c38c 2800 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
2801 }
2802
b0f35d58
DL
2803 attr = dwarf2_attr (die, DW_AT_producer, cu);
2804 if (attr)
2805 cu->producer = DW_STRING (attr);
2806
c906108c
SS
2807 /* We assume that we're processing GCC output. */
2808 processing_gcc_compilation = 2;
2809#if 0
c5aa993b
JM
2810 /* FIXME:Do something here. */
2811 if (dip->at_producer != NULL)
c906108c
SS
2812 {
2813 handle_producer (dip->at_producer);
2814 }
2815#endif
2816
2817 /* The compilation unit may be in a different language or objfile,
2818 zero out all remembered fundamental types. */
e142c38c 2819 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c906108c
SS
2820
2821 start_symtab (name, comp_dir, lowpc);
2822 record_debugformat ("DWARF 2");
2823
e142c38c 2824 initialize_cu_func_list (cu);
c906108c
SS
2825
2826 /* Process all dies in compilation unit. */
639d11d3 2827 if (die->child != NULL)
c906108c 2828 {
639d11d3 2829 child_die = die->child;
c906108c
SS
2830 while (child_die && child_die->tag)
2831 {
e7c27a73 2832 process_die (child_die, cu);
c906108c
SS
2833 child_die = sibling_die (child_die);
2834 }
2835 }
5fb290d7
DJ
2836
2837 /* Decode line number information if present. */
e142c38c 2838 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
2839 if (attr)
2840 {
debd256d 2841 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 2842 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
2843 if (line_header)
2844 {
2845 make_cleanup ((make_cleanup_ftype *) free_line_header,
2846 (void *) line_header);
aaa75496 2847 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 2848 }
5fb290d7 2849 }
debd256d 2850
2e276125
JB
2851 /* Decode macro information, if present. Dwarf 2 macro information
2852 refers to information in the line number info statement program
2853 header, so we can only read it if we've read the header
2854 successfully. */
e142c38c 2855 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 2856 if (attr && line_header)
2e276125
JB
2857 {
2858 unsigned int macro_offset = DW_UNSND (attr);
2859 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 2860 comp_dir, abfd, cu);
2e276125 2861 }
debd256d 2862 do_cleanups (back_to);
5fb290d7
DJ
2863}
2864
2865static void
e142c38c
DJ
2866add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2867 struct dwarf2_cu *cu)
5fb290d7
DJ
2868{
2869 struct function_range *thisfn;
2870
2871 thisfn = (struct function_range *)
7b5a2f43 2872 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
2873 thisfn->name = name;
2874 thisfn->lowpc = lowpc;
2875 thisfn->highpc = highpc;
2876 thisfn->seen_line = 0;
2877 thisfn->next = NULL;
2878
e142c38c
DJ
2879 if (cu->last_fn == NULL)
2880 cu->first_fn = thisfn;
5fb290d7 2881 else
e142c38c 2882 cu->last_fn->next = thisfn;
5fb290d7 2883
e142c38c 2884 cu->last_fn = thisfn;
c906108c
SS
2885}
2886
2887static void
e7c27a73 2888read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2889{
e7c27a73 2890 struct objfile *objfile = cu->objfile;
52f0bd74 2891 struct context_stack *new;
c906108c
SS
2892 CORE_ADDR lowpc;
2893 CORE_ADDR highpc;
2894 struct die_info *child_die;
2895 struct attribute *attr;
2896 char *name;
fdde2d81
DC
2897 const char *previous_prefix = processing_current_prefix;
2898 struct cleanup *back_to = NULL;
e142c38c 2899 CORE_ADDR baseaddr;
c906108c 2900
e142c38c
DJ
2901 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2902
2903 name = dwarf2_linkage_name (die, cu);
c906108c
SS
2904
2905 /* Ignore functions with missing or empty names and functions with
2906 missing or invalid low and high pc attributes. */
e7c27a73 2907 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2908 return;
2909
987504bb
JJ
2910 if (cu->language == language_cplus
2911 || cu->language == language_java)
fdde2d81 2912 {
086ed43d 2913 struct die_info *spec_die = die_specification (die, cu);
fdde2d81 2914
2a35147e
JB
2915 /* NOTE: carlton/2004-01-23: We have to be careful in the
2916 presence of DW_AT_specification. For example, with GCC 3.4,
2917 given the code
2918
2919 namespace N {
2920 void foo() {
2921 // Definition of N::foo.
2922 }
2923 }
2924
2925 then we'll have a tree of DIEs like this:
2926
2927 1: DW_TAG_compile_unit
2928 2: DW_TAG_namespace // N
2929 3: DW_TAG_subprogram // declaration of N::foo
2930 4: DW_TAG_subprogram // definition of N::foo
2931 DW_AT_specification // refers to die #3
2932
2933 Thus, when processing die #4, we have to pretend that we're
2934 in the context of its DW_AT_specification, namely the contex
2935 of die #3. */
fdde2d81
DC
2936
2937 if (spec_die != NULL)
2938 {
e142c38c 2939 char *specification_prefix = determine_prefix (spec_die, cu);
fdde2d81
DC
2940 processing_current_prefix = specification_prefix;
2941 back_to = make_cleanup (xfree, specification_prefix);
2942 }
2943 }
2944
c906108c
SS
2945 lowpc += baseaddr;
2946 highpc += baseaddr;
2947
5fb290d7 2948 /* Record the function range for dwarf_decode_lines. */
e142c38c 2949 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 2950
c906108c 2951 new = push_context (0, lowpc);
e7c27a73 2952 new->name = new_symbol (die, die->type, cu);
4c2df51b 2953
4cecd739
DJ
2954 /* If there is a location expression for DW_AT_frame_base, record
2955 it. */
e142c38c 2956 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 2957 if (attr)
c034e007
AC
2958 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2959 expression is being recorded directly in the function's symbol
2960 and not in a separate frame-base object. I guess this hack is
2961 to avoid adding some sort of frame-base adjunct/annex to the
2962 function's symbol :-(. The problem with doing this is that it
2963 results in a function symbol with a location expression that
2964 has nothing to do with the location of the function, ouch! The
2965 relationship should be: a function's symbol has-a frame base; a
2966 frame-base has-a location expression. */
e7c27a73 2967 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 2968
e142c38c 2969 cu->list_in_scope = &local_symbols;
c906108c 2970
639d11d3 2971 if (die->child != NULL)
c906108c 2972 {
639d11d3 2973 child_die = die->child;
c906108c
SS
2974 while (child_die && child_die->tag)
2975 {
e7c27a73 2976 process_die (child_die, cu);
c906108c
SS
2977 child_die = sibling_die (child_die);
2978 }
2979 }
2980
2981 new = pop_context ();
2982 /* Make a block for the local symbols within. */
2983 finish_block (new->name, &local_symbols, new->old_blocks,
2984 lowpc, highpc, objfile);
208d8187
JB
2985
2986 /* In C++, we can have functions nested inside functions (e.g., when
2987 a function declares a class that has methods). This means that
2988 when we finish processing a function scope, we may need to go
2989 back to building a containing block's symbol lists. */
2990 local_symbols = new->locals;
2991 param_symbols = new->params;
2992
921e78cf
JB
2993 /* If we've finished processing a top-level function, subsequent
2994 symbols go in the file symbol list. */
2995 if (outermost_context_p ())
e142c38c 2996 cu->list_in_scope = &file_symbols;
fdde2d81
DC
2997
2998 processing_current_prefix = previous_prefix;
2999 if (back_to != NULL)
3000 do_cleanups (back_to);
c906108c
SS
3001}
3002
3003/* Process all the DIES contained within a lexical block scope. Start
3004 a new scope, process the dies, and then close the scope. */
3005
3006static void
e7c27a73 3007read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3008{
e7c27a73 3009 struct objfile *objfile = cu->objfile;
52f0bd74 3010 struct context_stack *new;
c906108c
SS
3011 CORE_ADDR lowpc, highpc;
3012 struct die_info *child_die;
e142c38c
DJ
3013 CORE_ADDR baseaddr;
3014
3015 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
3016
3017 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
3018 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3019 as multiple lexical blocks? Handling children in a sane way would
3020 be nasty. Might be easier to properly extend generic blocks to
3021 describe ranges. */
e7c27a73 3022 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
3023 return;
3024 lowpc += baseaddr;
3025 highpc += baseaddr;
3026
3027 push_context (0, lowpc);
639d11d3 3028 if (die->child != NULL)
c906108c 3029 {
639d11d3 3030 child_die = die->child;
c906108c
SS
3031 while (child_die && child_die->tag)
3032 {
e7c27a73 3033 process_die (child_die, cu);
c906108c
SS
3034 child_die = sibling_die (child_die);
3035 }
3036 }
3037 new = pop_context ();
3038
3039 if (local_symbols != NULL)
3040 {
3041 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3042 highpc, objfile);
3043 }
3044 local_symbols = new->locals;
3045}
3046
af34e669
DJ
3047/* Get low and high pc attributes from a die. Return 1 if the attributes
3048 are present and valid, otherwise, return 0. Return -1 if the range is
3049 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 3050static int
af34e669 3051dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
e7c27a73 3052 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 3053{
e7c27a73
DJ
3054 struct objfile *objfile = cu->objfile;
3055 struct comp_unit_head *cu_header = &cu->header;
c906108c 3056 struct attribute *attr;
af34e669
DJ
3057 bfd *obfd = objfile->obfd;
3058 CORE_ADDR low = 0;
3059 CORE_ADDR high = 0;
3060 int ret = 0;
c906108c 3061
e142c38c 3062 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 3063 if (attr)
af34e669
DJ
3064 {
3065 high = DW_ADDR (attr);
e142c38c 3066 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
3067 if (attr)
3068 low = DW_ADDR (attr);
3069 else
3070 /* Found high w/o low attribute. */
3071 return 0;
3072
3073 /* Found consecutive range of addresses. */
3074 ret = 1;
3075 }
c906108c 3076 else
af34e669 3077 {
e142c38c 3078 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
3079 if (attr != NULL)
3080 {
3081 unsigned int addr_size = cu_header->addr_size;
3082 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3083 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 3084 .debug_ranges section. */
af34e669
DJ
3085 unsigned int offset = DW_UNSND (attr);
3086 /* Base address selection entry. */
0d53c4c4
DJ
3087 CORE_ADDR base;
3088 int found_base;
891d2f0b 3089 unsigned int dummy;
fe1b8b76 3090 gdb_byte *buffer;
af34e669
DJ
3091 CORE_ADDR marker;
3092 int low_set;
3093
0d53c4c4
DJ
3094 found_base = cu_header->base_known;
3095 base = cu_header->base_address;
a604369a 3096
6502dd73 3097 if (offset >= dwarf2_per_objfile->ranges_size)
a604369a
KB
3098 {
3099 complaint (&symfile_complaints,
e2e0b3e5 3100 _("Offset %d out of bounds for DW_AT_ranges attribute"),
a604369a
KB
3101 offset);
3102 return 0;
3103 }
6502dd73 3104 buffer = dwarf2_per_objfile->ranges_buffer + offset;
af34e669 3105
af34e669 3106 /* Read in the largest possible address. */
e7c27a73 3107 marker = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3108 if ((marker & mask) == mask)
3109 {
3110 /* If we found the largest possible address, then
3111 read the base address. */
e7c27a73 3112 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3113 buffer += 2 * addr_size;
3114 offset += 2 * addr_size;
3115 found_base = 1;
3116 }
3117
3118 low_set = 0;
3119
3120 while (1)
3121 {
3122 CORE_ADDR range_beginning, range_end;
3123
e7c27a73 3124 range_beginning = read_address (obfd, buffer, cu, &dummy);
af34e669 3125 buffer += addr_size;
e7c27a73 3126 range_end = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3127 buffer += addr_size;
3128 offset += 2 * addr_size;
3129
3130 /* An end of list marker is a pair of zero addresses. */
3131 if (range_beginning == 0 && range_end == 0)
3132 /* Found the end of list entry. */
3133 break;
3134
3135 /* Each base address selection entry is a pair of 2 values.
3136 The first is the largest possible address, the second is
3137 the base address. Check for a base address here. */
3138 if ((range_beginning & mask) == mask)
3139 {
3140 /* If we found the largest possible address, then
3141 read the base address. */
e7c27a73 3142 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3143 found_base = 1;
3144 continue;
3145 }
3146
3147 if (!found_base)
3148 {
3149 /* We have no valid base address for the ranges
3150 data. */
3151 complaint (&symfile_complaints,
e2e0b3e5 3152 _("Invalid .debug_ranges data (no base address)"));
af34e669
DJ
3153 return 0;
3154 }
3155
8f05cde5
DJ
3156 range_beginning += base;
3157 range_end += base;
3158
af34e669
DJ
3159 /* FIXME: This is recording everything as a low-high
3160 segment of consecutive addresses. We should have a
3161 data structure for discontiguous block ranges
3162 instead. */
3163 if (! low_set)
3164 {
3165 low = range_beginning;
3166 high = range_end;
3167 low_set = 1;
3168 }
3169 else
3170 {
3171 if (range_beginning < low)
3172 low = range_beginning;
3173 if (range_end > high)
3174 high = range_end;
3175 }
3176 }
3177
3178 if (! low_set)
3179 /* If the first entry is an end-of-list marker, the range
3180 describes an empty scope, i.e. no instructions. */
3181 return 0;
3182
3183 ret = -1;
3184 }
3185 }
c906108c
SS
3186
3187 if (high < low)
3188 return 0;
3189
3190 /* When using the GNU linker, .gnu.linkonce. sections are used to
3191 eliminate duplicate copies of functions and vtables and such.
3192 The linker will arbitrarily choose one and discard the others.
3193 The AT_*_pc values for such functions refer to local labels in
3194 these sections. If the section from that file was discarded, the
3195 labels are not in the output, so the relocs get a value of 0.
3196 If this is a discarded function, mark the pc bounds as invalid,
3197 so that GDB will ignore it. */
72dca2f5 3198 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
3199 return 0;
3200
3201 *lowpc = low;
3202 *highpc = high;
af34e669 3203 return ret;
c906108c
SS
3204}
3205
fae299cd
DC
3206/* Get the low and high pc's represented by the scope DIE, and store
3207 them in *LOWPC and *HIGHPC. If the correct values can't be
3208 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3209
3210static void
3211get_scope_pc_bounds (struct die_info *die,
3212 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3213 struct dwarf2_cu *cu)
3214{
3215 CORE_ADDR best_low = (CORE_ADDR) -1;
3216 CORE_ADDR best_high = (CORE_ADDR) 0;
3217 CORE_ADDR current_low, current_high;
3218
3219 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3220 {
3221 best_low = current_low;
3222 best_high = current_high;
3223 }
3224 else
3225 {
3226 struct die_info *child = die->child;
3227
3228 while (child && child->tag)
3229 {
3230 switch (child->tag) {
3231 case DW_TAG_subprogram:
3232 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3233 {
3234 best_low = min (best_low, current_low);
3235 best_high = max (best_high, current_high);
3236 }
3237 break;
3238 case DW_TAG_namespace:
3239 /* FIXME: carlton/2004-01-16: Should we do this for
3240 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3241 that current GCC's always emit the DIEs corresponding
3242 to definitions of methods of classes as children of a
3243 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3244 the DIEs giving the declarations, which could be
3245 anywhere). But I don't see any reason why the
3246 standards says that they have to be there. */
3247 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3248
3249 if (current_low != ((CORE_ADDR) -1))
3250 {
3251 best_low = min (best_low, current_low);
3252 best_high = max (best_high, current_high);
3253 }
3254 break;
3255 default:
3256 /* Ignore. */
3257 break;
3258 }
3259
3260 child = sibling_die (child);
3261 }
3262 }
3263
3264 *lowpc = best_low;
3265 *highpc = best_high;
3266}
3267
c906108c
SS
3268/* Add an aggregate field to the field list. */
3269
3270static void
107d2387 3271dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
3272 struct dwarf2_cu *cu)
3273{
3274 struct objfile *objfile = cu->objfile;
c906108c
SS
3275 struct nextfield *new_field;
3276 struct attribute *attr;
3277 struct field *fp;
3278 char *fieldname = "";
3279
3280 /* Allocate a new field list entry and link it in. */
3281 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3282 make_cleanup (xfree, new_field);
c906108c
SS
3283 memset (new_field, 0, sizeof (struct nextfield));
3284 new_field->next = fip->fields;
3285 fip->fields = new_field;
3286 fip->nfields++;
3287
3288 /* Handle accessibility and virtuality of field.
3289 The default accessibility for members is public, the default
3290 accessibility for inheritance is private. */
3291 if (die->tag != DW_TAG_inheritance)
3292 new_field->accessibility = DW_ACCESS_public;
3293 else
3294 new_field->accessibility = DW_ACCESS_private;
3295 new_field->virtuality = DW_VIRTUALITY_none;
3296
e142c38c 3297 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3298 if (attr)
3299 new_field->accessibility = DW_UNSND (attr);
3300 if (new_field->accessibility != DW_ACCESS_public)
3301 fip->non_public_fields = 1;
e142c38c 3302 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
3303 if (attr)
3304 new_field->virtuality = DW_UNSND (attr);
3305
3306 fp = &new_field->field;
a9a9bd0f 3307
e142c38c 3308 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 3309 {
a9a9bd0f
DC
3310 /* Data member other than a C++ static data member. */
3311
c906108c 3312 /* Get type of field. */
e7c27a73 3313 fp->type = die_type (die, cu);
c906108c 3314
01ad7f36
DJ
3315 FIELD_STATIC_KIND (*fp) = 0;
3316
c906108c 3317 /* Get bit size of field (zero if none). */
e142c38c 3318 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
3319 if (attr)
3320 {
3321 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3322 }
3323 else
3324 {
3325 FIELD_BITSIZE (*fp) = 0;
3326 }
3327
3328 /* Get bit offset of field. */
e142c38c 3329 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
3330 if (attr)
3331 {
3332 FIELD_BITPOS (*fp) =
e7c27a73 3333 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
c906108c
SS
3334 }
3335 else
3336 FIELD_BITPOS (*fp) = 0;
e142c38c 3337 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
3338 if (attr)
3339 {
3340 if (BITS_BIG_ENDIAN)
3341 {
3342 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
3343 additional bit offset from the MSB of the containing
3344 anonymous object to the MSB of the field. We don't
3345 have to do anything special since we don't need to
3346 know the size of the anonymous object. */
c906108c
SS
3347 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3348 }
3349 else
3350 {
3351 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
3352 MSB of the anonymous object, subtract off the number of
3353 bits from the MSB of the field to the MSB of the
3354 object, and then subtract off the number of bits of
3355 the field itself. The result is the bit offset of
3356 the LSB of the field. */
c906108c
SS
3357 int anonymous_size;
3358 int bit_offset = DW_UNSND (attr);
3359
e142c38c 3360 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3361 if (attr)
3362 {
3363 /* The size of the anonymous object containing
3364 the bit field is explicit, so use the
3365 indicated size (in bytes). */
3366 anonymous_size = DW_UNSND (attr);
3367 }
3368 else
3369 {
3370 /* The size of the anonymous object containing
3371 the bit field must be inferred from the type
3372 attribute of the data member containing the
3373 bit field. */
3374 anonymous_size = TYPE_LENGTH (fp->type);
3375 }
3376 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3377 - bit_offset - FIELD_BITSIZE (*fp);
3378 }
3379 }
3380
3381 /* Get name of field. */
e142c38c 3382 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3383 if (attr && DW_STRING (attr))
3384 fieldname = DW_STRING (attr);
d8151005
DJ
3385
3386 /* The name is already allocated along with this objfile, so we don't
3387 need to duplicate it for the type. */
3388 fp->name = fieldname;
c906108c
SS
3389
3390 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 3391 pointer or virtual base class pointer) to private. */
e142c38c 3392 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c
SS
3393 {
3394 new_field->accessibility = DW_ACCESS_private;
3395 fip->non_public_fields = 1;
3396 }
3397 }
a9a9bd0f 3398 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 3399 {
a9a9bd0f
DC
3400 /* C++ static member. */
3401
3402 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3403 is a declaration, but all versions of G++ as of this writing
3404 (so through at least 3.2.1) incorrectly generate
3405 DW_TAG_variable tags. */
3406
c906108c 3407 char *physname;
c906108c 3408
a9a9bd0f 3409 /* Get name of field. */
e142c38c 3410 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3411 if (attr && DW_STRING (attr))
3412 fieldname = DW_STRING (attr);
3413 else
c906108c
SS
3414 return;
3415
2df3850c 3416 /* Get physical name. */
e142c38c 3417 physname = dwarf2_linkage_name (die, cu);
c906108c 3418
d8151005
DJ
3419 /* The name is already allocated along with this objfile, so we don't
3420 need to duplicate it for the type. */
3421 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 3422 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 3423 FIELD_NAME (*fp) = fieldname;
c906108c
SS
3424 }
3425 else if (die->tag == DW_TAG_inheritance)
3426 {
3427 /* C++ base class field. */
e142c38c 3428 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 3429 if (attr)
e7c27a73 3430 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
107d2387 3431 * bits_per_byte);
c906108c 3432 FIELD_BITSIZE (*fp) = 0;
01ad7f36 3433 FIELD_STATIC_KIND (*fp) = 0;
e7c27a73 3434 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
3435 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3436 fip->nbaseclasses++;
3437 }
3438}
3439
3440/* Create the vector of fields, and attach it to the type. */
3441
3442static void
fba45db2 3443dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3444 struct dwarf2_cu *cu)
c906108c
SS
3445{
3446 int nfields = fip->nfields;
3447
3448 /* Record the field count, allocate space for the array of fields,
3449 and create blank accessibility bitfields if necessary. */
3450 TYPE_NFIELDS (type) = nfields;
3451 TYPE_FIELDS (type) = (struct field *)
3452 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3453 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3454
3455 if (fip->non_public_fields)
3456 {
3457 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3458
3459 TYPE_FIELD_PRIVATE_BITS (type) =
3460 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3461 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3462
3463 TYPE_FIELD_PROTECTED_BITS (type) =
3464 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3465 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3466
3467 TYPE_FIELD_IGNORE_BITS (type) =
3468 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3469 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3470 }
3471
3472 /* If the type has baseclasses, allocate and clear a bit vector for
3473 TYPE_FIELD_VIRTUAL_BITS. */
3474 if (fip->nbaseclasses)
3475 {
3476 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 3477 unsigned char *pointer;
c906108c
SS
3478
3479 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
3480 pointer = TYPE_ALLOC (type, num_bytes);
3481 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
3482 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3483 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3484 }
3485
3486 /* Copy the saved-up fields into the field vector. Start from the head
3487 of the list, adding to the tail of the field array, so that they end
3488 up in the same order in the array in which they were added to the list. */
3489 while (nfields-- > 0)
3490 {
3491 TYPE_FIELD (type, nfields) = fip->fields->field;
3492 switch (fip->fields->accessibility)
3493 {
c5aa993b
JM
3494 case DW_ACCESS_private:
3495 SET_TYPE_FIELD_PRIVATE (type, nfields);
3496 break;
c906108c 3497
c5aa993b
JM
3498 case DW_ACCESS_protected:
3499 SET_TYPE_FIELD_PROTECTED (type, nfields);
3500 break;
c906108c 3501
c5aa993b
JM
3502 case DW_ACCESS_public:
3503 break;
c906108c 3504
c5aa993b
JM
3505 default:
3506 /* Unknown accessibility. Complain and treat it as public. */
3507 {
e2e0b3e5 3508 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4d3c2250 3509 fip->fields->accessibility);
c5aa993b
JM
3510 }
3511 break;
c906108c
SS
3512 }
3513 if (nfields < fip->nbaseclasses)
3514 {
3515 switch (fip->fields->virtuality)
3516 {
c5aa993b
JM
3517 case DW_VIRTUALITY_virtual:
3518 case DW_VIRTUALITY_pure_virtual:
3519 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3520 break;
c906108c
SS
3521 }
3522 }
3523 fip->fields = fip->fields->next;
3524 }
3525}
3526
c906108c
SS
3527/* Add a member function to the proper fieldlist. */
3528
3529static void
107d2387 3530dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 3531 struct type *type, struct dwarf2_cu *cu)
c906108c 3532{
e7c27a73 3533 struct objfile *objfile = cu->objfile;
c906108c
SS
3534 struct attribute *attr;
3535 struct fnfieldlist *flp;
3536 int i;
3537 struct fn_field *fnp;
3538 char *fieldname;
3539 char *physname;
3540 struct nextfnfield *new_fnfield;
3541
2df3850c 3542 /* Get name of member function. */
e142c38c 3543 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3544 if (attr && DW_STRING (attr))
3545 fieldname = DW_STRING (attr);
c906108c 3546 else
2df3850c 3547 return;
c906108c 3548
2df3850c 3549 /* Get the mangled name. */
e142c38c 3550 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
3551
3552 /* Look up member function name in fieldlist. */
3553 for (i = 0; i < fip->nfnfields; i++)
3554 {
27bfe10e 3555 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
3556 break;
3557 }
3558
3559 /* Create new list element if necessary. */
3560 if (i < fip->nfnfields)
3561 flp = &fip->fnfieldlists[i];
3562 else
3563 {
3564 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3565 {
3566 fip->fnfieldlists = (struct fnfieldlist *)
3567 xrealloc (fip->fnfieldlists,
3568 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3569 * sizeof (struct fnfieldlist));
c906108c 3570 if (fip->nfnfields == 0)
c13c43fd 3571 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
3572 }
3573 flp = &fip->fnfieldlists[fip->nfnfields];
3574 flp->name = fieldname;
3575 flp->length = 0;
3576 flp->head = NULL;
3577 fip->nfnfields++;
3578 }
3579
3580 /* Create a new member function field and chain it to the field list
3581 entry. */
3582 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 3583 make_cleanup (xfree, new_fnfield);
c906108c
SS
3584 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3585 new_fnfield->next = flp->head;
3586 flp->head = new_fnfield;
3587 flp->length++;
3588
3589 /* Fill in the member function field info. */
3590 fnp = &new_fnfield->fnfield;
d8151005
DJ
3591 /* The name is already allocated along with this objfile, so we don't
3592 need to duplicate it for the type. */
3593 fnp->physname = physname ? physname : "";
c906108c
SS
3594 fnp->type = alloc_type (objfile);
3595 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3596 {
c906108c 3597 int nparams = TYPE_NFIELDS (die->type);
c906108c 3598
e26fb1d7
DC
3599 /* TYPE is the domain of this method, and DIE->TYPE is the type
3600 of the method itself (TYPE_CODE_METHOD). */
3601 smash_to_method_type (fnp->type, type,
ad2f7632
DJ
3602 TYPE_TARGET_TYPE (die->type),
3603 TYPE_FIELDS (die->type),
3604 TYPE_NFIELDS (die->type),
3605 TYPE_VARARGS (die->type));
c906108c
SS
3606
3607 /* Handle static member functions.
c5aa993b
JM
3608 Dwarf2 has no clean way to discern C++ static and non-static
3609 member functions. G++ helps GDB by marking the first
3610 parameter for non-static member functions (which is the
3611 this pointer) as artificial. We obtain this information
3612 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
c906108c
SS
3613 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3614 fnp->voffset = VOFFSET_STATIC;
3615 }
3616 else
e2e0b3e5 3617 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 3618 physname);
c906108c
SS
3619
3620 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 3621 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 3622 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
3623
3624 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3625 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3626
3627 /* Get accessibility. */
e142c38c 3628 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3629 if (attr)
3630 {
3631 switch (DW_UNSND (attr))
3632 {
c5aa993b
JM
3633 case DW_ACCESS_private:
3634 fnp->is_private = 1;
3635 break;
3636 case DW_ACCESS_protected:
3637 fnp->is_protected = 1;
3638 break;
c906108c
SS
3639 }
3640 }
3641
b02dede2 3642 /* Check for artificial methods. */
e142c38c 3643 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
3644 if (attr && DW_UNSND (attr) != 0)
3645 fnp->is_artificial = 1;
3646
c906108c 3647 /* Get index in virtual function table if it is a virtual member function. */
e142c38c 3648 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
c906108c 3649 if (attr)
8e19ed76
PS
3650 {
3651 /* Support the .debug_loc offsets */
3652 if (attr_form_is_block (attr))
3653 {
e7c27a73 3654 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76
PS
3655 }
3656 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3657 {
4d3c2250 3658 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3659 }
3660 else
3661 {
4d3c2250
KB
3662 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3663 fieldname);
8e19ed76
PS
3664 }
3665 }
c906108c
SS
3666}
3667
3668/* Create the vector of member function fields, and attach it to the type. */
3669
3670static void
fba45db2 3671dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3672 struct dwarf2_cu *cu)
c906108c
SS
3673{
3674 struct fnfieldlist *flp;
3675 int total_length = 0;
3676 int i;
3677
3678 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3679 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3680 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3681
3682 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3683 {
3684 struct nextfnfield *nfp = flp->head;
3685 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3686 int k;
3687
3688 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3689 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3690 fn_flp->fn_fields = (struct fn_field *)
3691 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3692 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 3693 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
3694
3695 total_length += flp->length;
3696 }
3697
3698 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3699 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3700}
3701
1168df01
JB
3702
3703/* Returns non-zero if NAME is the name of a vtable member in CU's
3704 language, zero otherwise. */
3705static int
3706is_vtable_name (const char *name, struct dwarf2_cu *cu)
3707{
3708 static const char vptr[] = "_vptr";
987504bb 3709 static const char vtable[] = "vtable";
1168df01 3710
987504bb
JJ
3711 /* Look for the C++ and Java forms of the vtable. */
3712 if ((cu->language == language_java
3713 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3714 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3715 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
3716 return 1;
3717
3718 return 0;
3719}
3720
c0dd20ea
DJ
3721/* GCC outputs unnamed structures that are really pointers to member
3722 functions, with the ABI-specified layout. If DIE (from CU) describes
3723 such a structure, set its type, and return nonzero. Otherwise return
61049d3b
DJ
3724 zero.
3725
3726 GCC shouldn't do this; it should just output pointer to member DIEs.
3727 This is GCC PR debug/28767. */
c0dd20ea
DJ
3728
3729static int
3730quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3731{
3732 struct objfile *objfile = cu->objfile;
3733 struct type *type;
3734 struct die_info *pfn_die, *delta_die;
3735 struct attribute *pfn_name, *delta_name;
3736 struct type *pfn_type, *domain_type;
3737
3738 /* Check for a structure with no name and two children. */
3739 if (die->tag != DW_TAG_structure_type
3740 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3741 || die->child == NULL
3742 || die->child->sibling == NULL
3743 || (die->child->sibling->sibling != NULL
3744 && die->child->sibling->sibling->tag != DW_TAG_padding))
3745 return 0;
3746
3747 /* Check for __pfn and __delta members. */
3748 pfn_die = die->child;
3749 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3750 if (pfn_die->tag != DW_TAG_member
3751 || pfn_name == NULL
3752 || DW_STRING (pfn_name) == NULL
3753 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3754 return 0;
3755
3756 delta_die = pfn_die->sibling;
3757 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3758 if (delta_die->tag != DW_TAG_member
3759 || delta_name == NULL
3760 || DW_STRING (delta_name) == NULL
3761 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3762 return 0;
3763
3764 /* Find the type of the method. */
3765 pfn_type = die_type (pfn_die, cu);
3766 if (pfn_type == NULL
3767 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3768 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3769 return 0;
3770
3771 /* Look for the "this" argument. */
3772 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3773 if (TYPE_NFIELDS (pfn_type) == 0
3774 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3775 return 0;
3776
3777 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3778 type = alloc_type (objfile);
3779 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3780 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3781 TYPE_VARARGS (pfn_type));
3782 type = lookup_pointer_type (type);
3783 set_die_type (die, type, cu);
3784
3785 return 1;
3786}
1168df01 3787
c906108c
SS
3788/* Called when we find the DIE that starts a structure or union scope
3789 (definition) to process all dies that define the members of the
3790 structure or union.
3791
3792 NOTE: we need to call struct_type regardless of whether or not the
3793 DIE has an at_name attribute, since it might be an anonymous
3794 structure or union. This gets the type entered into our set of
3795 user defined types.
3796
3797 However, if the structure is incomplete (an opaque struct/union)
3798 then suppress creating a symbol table entry for it since gdb only
3799 wants to find the one with the complete definition. Note that if
3800 it is complete, we just call new_symbol, which does it's own
3801 checking about whether the struct/union is anonymous or not (and
3802 suppresses creating a symbol table entry itself). */
3803
3804static void
134d01f1 3805read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3806{
e7c27a73 3807 struct objfile *objfile = cu->objfile;
c906108c
SS
3808 struct type *type;
3809 struct attribute *attr;
63d06c5c
DC
3810 const char *previous_prefix = processing_current_prefix;
3811 struct cleanup *back_to = NULL;
c906108c 3812
134d01f1
DJ
3813 if (die->type)
3814 return;
3815
c0dd20ea
DJ
3816 if (quirk_gcc_member_function_pointer (die, cu))
3817 return;
c906108c 3818
c0dd20ea 3819 type = alloc_type (objfile);
c906108c 3820 INIT_CPLUS_SPECIFIC (type);
e142c38c 3821 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3822 if (attr && DW_STRING (attr))
3823 {
987504bb
JJ
3824 if (cu->language == language_cplus
3825 || cu->language == language_java)
63d06c5c 3826 {
8176b9b8
DC
3827 char *new_prefix = determine_class_name (die, cu);
3828 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3829 strlen (new_prefix),
3830 &objfile->objfile_obstack);
3831 back_to = make_cleanup (xfree, new_prefix);
63d06c5c
DC
3832 processing_current_prefix = new_prefix;
3833 }
3834 else
3835 {
d8151005
DJ
3836 /* The name is already allocated along with this objfile, so
3837 we don't need to duplicate it for the type. */
8176b9b8 3838 TYPE_TAG_NAME (type) = DW_STRING (attr);
63d06c5c 3839 }
c906108c
SS
3840 }
3841
3842 if (die->tag == DW_TAG_structure_type)
3843 {
3844 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3845 }
3846 else if (die->tag == DW_TAG_union_type)
3847 {
3848 TYPE_CODE (type) = TYPE_CODE_UNION;
3849 }
3850 else
3851 {
3852 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
c5aa993b 3853 in gdbtypes.h. */
c906108c
SS
3854 TYPE_CODE (type) = TYPE_CODE_CLASS;
3855 }
3856
e142c38c 3857 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3858 if (attr)
3859 {
3860 TYPE_LENGTH (type) = DW_UNSND (attr);
3861 }
3862 else
3863 {
3864 TYPE_LENGTH (type) = 0;
3865 }
3866
dc718098
JB
3867 if (die_is_declaration (die, cu))
3868 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3869
c906108c
SS
3870 /* We need to add the type field to the die immediately so we don't
3871 infinitely recurse when dealing with pointers to the structure
3872 type within the structure itself. */
1c379e20 3873 set_die_type (die, type, cu);
c906108c 3874
e142c38c 3875 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
3876 {
3877 struct field_info fi;
3878 struct die_info *child_die;
3879 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3880
3881 memset (&fi, 0, sizeof (struct field_info));
3882
639d11d3 3883 child_die = die->child;
c906108c
SS
3884
3885 while (child_die && child_die->tag)
3886 {
a9a9bd0f
DC
3887 if (child_die->tag == DW_TAG_member
3888 || child_die->tag == DW_TAG_variable)
c906108c 3889 {
a9a9bd0f
DC
3890 /* NOTE: carlton/2002-11-05: A C++ static data member
3891 should be a DW_TAG_member that is a declaration, but
3892 all versions of G++ as of this writing (so through at
3893 least 3.2.1) incorrectly generate DW_TAG_variable
3894 tags for them instead. */
e7c27a73 3895 dwarf2_add_field (&fi, child_die, cu);
c906108c 3896 }
8713b1b1 3897 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
3898 {
3899 /* C++ member function. */
134d01f1 3900 read_type_die (child_die, cu);
e7c27a73 3901 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
3902 }
3903 else if (child_die->tag == DW_TAG_inheritance)
3904 {
3905 /* C++ base class field. */
e7c27a73 3906 dwarf2_add_field (&fi, child_die, cu);
c906108c 3907 }
c906108c
SS
3908 child_die = sibling_die (child_die);
3909 }
3910
3911 /* Attach fields and member functions to the type. */
3912 if (fi.nfields)
e7c27a73 3913 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
3914 if (fi.nfnfields)
3915 {
e7c27a73 3916 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 3917
c5aa993b 3918 /* Get the type which refers to the base class (possibly this
c906108c
SS
3919 class itself) which contains the vtable pointer for the current
3920 class from the DW_AT_containing_type attribute. */
3921
e142c38c 3922 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 3923 {
e7c27a73 3924 struct type *t = die_containing_type (die, cu);
c906108c
SS
3925
3926 TYPE_VPTR_BASETYPE (type) = t;
3927 if (type == t)
3928 {
c906108c
SS
3929 int i;
3930
3931 /* Our own class provides vtbl ptr. */
3932 for (i = TYPE_NFIELDS (t) - 1;
3933 i >= TYPE_N_BASECLASSES (t);
3934 --i)
3935 {
3936 char *fieldname = TYPE_FIELD_NAME (t, i);
3937
1168df01 3938 if (is_vtable_name (fieldname, cu))
c906108c
SS
3939 {
3940 TYPE_VPTR_FIELDNO (type) = i;
3941 break;
3942 }
3943 }
3944
3945 /* Complain if virtual function table field not found. */
3946 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 3947 complaint (&symfile_complaints,
e2e0b3e5 3948 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
3949 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3950 "");
c906108c
SS
3951 }
3952 else
3953 {
3954 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3955 }
3956 }
f6235d4c
EZ
3957 else if (cu->producer
3958 && strncmp (cu->producer,
3959 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3960 {
3961 /* The IBM XLC compiler does not provide direct indication
3962 of the containing type, but the vtable pointer is
3963 always named __vfp. */
3964
3965 int i;
3966
3967 for (i = TYPE_NFIELDS (type) - 1;
3968 i >= TYPE_N_BASECLASSES (type);
3969 --i)
3970 {
3971 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
3972 {
3973 TYPE_VPTR_FIELDNO (type) = i;
3974 TYPE_VPTR_BASETYPE (type) = type;
3975 break;
3976 }
3977 }
3978 }
c906108c
SS
3979 }
3980
c906108c
SS
3981 do_cleanups (back_to);
3982 }
63d06c5c
DC
3983
3984 processing_current_prefix = previous_prefix;
3985 if (back_to != NULL)
3986 do_cleanups (back_to);
c906108c
SS
3987}
3988
134d01f1
DJ
3989static void
3990process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3991{
3992 struct objfile *objfile = cu->objfile;
3993 const char *previous_prefix = processing_current_prefix;
90aeadfc 3994 struct die_info *child_die = die->child;
c906108c 3995
134d01f1
DJ
3996 if (TYPE_TAG_NAME (die->type) != NULL)
3997 processing_current_prefix = TYPE_TAG_NAME (die->type);
c906108c 3998
90aeadfc
DC
3999 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4000 snapshots) has been known to create a die giving a declaration
4001 for a class that has, as a child, a die giving a definition for a
4002 nested class. So we have to process our children even if the
4003 current die is a declaration. Normally, of course, a declaration
4004 won't have any children at all. */
134d01f1 4005
90aeadfc
DC
4006 while (child_die != NULL && child_die->tag)
4007 {
4008 if (child_die->tag == DW_TAG_member
4009 || child_die->tag == DW_TAG_variable
4010 || child_die->tag == DW_TAG_inheritance)
134d01f1 4011 {
90aeadfc 4012 /* Do nothing. */
134d01f1 4013 }
90aeadfc
DC
4014 else
4015 process_die (child_die, cu);
134d01f1 4016
90aeadfc 4017 child_die = sibling_die (child_die);
134d01f1
DJ
4018 }
4019
90aeadfc
DC
4020 if (die->child != NULL && ! die_is_declaration (die, cu))
4021 new_symbol (die, die->type, cu);
4022
134d01f1
DJ
4023 processing_current_prefix = previous_prefix;
4024}
4025
4026/* Given a DW_AT_enumeration_type die, set its type. We do not
4027 complete the type's fields yet, or create any symbols. */
c906108c
SS
4028
4029static void
134d01f1 4030read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4031{
e7c27a73 4032 struct objfile *objfile = cu->objfile;
c906108c 4033 struct type *type;
c906108c 4034 struct attribute *attr;
134d01f1
DJ
4035
4036 if (die->type)
4037 return;
c906108c
SS
4038
4039 type = alloc_type (objfile);
4040
4041 TYPE_CODE (type) = TYPE_CODE_ENUM;
e142c38c 4042 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
4043 if (attr && DW_STRING (attr))
4044 {
d8151005 4045 char *name = DW_STRING (attr);
63d06c5c
DC
4046
4047 if (processing_has_namespace_info)
4048 {
987504bb
JJ
4049 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4050 processing_current_prefix,
4051 name, cu);
63d06c5c
DC
4052 }
4053 else
4054 {
d8151005
DJ
4055 /* The name is already allocated along with this objfile, so
4056 we don't need to duplicate it for the type. */
4057 TYPE_TAG_NAME (type) = name;
63d06c5c 4058 }
c906108c
SS
4059 }
4060
e142c38c 4061 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4062 if (attr)
4063 {
4064 TYPE_LENGTH (type) = DW_UNSND (attr);
4065 }
4066 else
4067 {
4068 TYPE_LENGTH (type) = 0;
4069 }
4070
1c379e20 4071 set_die_type (die, type, cu);
134d01f1
DJ
4072}
4073
8176b9b8 4074/* Determine the name of the type represented by DIE, which should be
987504bb 4075 a named C++ or Java compound type. Return the name in question; the caller
8176b9b8
DC
4076 is responsible for xfree()'ing it. */
4077
4078static char *
4079determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4080{
4081 struct cleanup *back_to = NULL;
4082 struct die_info *spec_die = die_specification (die, cu);
4083 char *new_prefix = NULL;
4084
4085 /* If this is the definition of a class that is declared by another
4086 die, then processing_current_prefix may not be accurate; see
4087 read_func_scope for a similar example. */
4088 if (spec_die != NULL)
4089 {
4090 char *specification_prefix = determine_prefix (spec_die, cu);
4091 processing_current_prefix = specification_prefix;
4092 back_to = make_cleanup (xfree, specification_prefix);
4093 }
4094
4095 /* If we don't have namespace debug info, guess the name by trying
4096 to demangle the names of members, just like we did in
72bf9492 4097 guess_structure_name. */
8176b9b8
DC
4098 if (!processing_has_namespace_info)
4099 {
4100 struct die_info *child;
4101
4102 for (child = die->child;
4103 child != NULL && child->tag != 0;
4104 child = sibling_die (child))
4105 {
4106 if (child->tag == DW_TAG_subprogram)
4107 {
31c27f77
JJ
4108 new_prefix
4109 = language_class_name_from_physname (cu->language_defn,
4110 dwarf2_linkage_name
8176b9b8
DC
4111 (child, cu));
4112
4113 if (new_prefix != NULL)
4114 break;
4115 }
4116 }
4117 }
4118
4119 if (new_prefix == NULL)
4120 {
4121 const char *name = dwarf2_name (die, cu);
987504bb
JJ
4122 new_prefix = typename_concat (NULL, processing_current_prefix,
4123 name ? name : "<<anonymous>>",
4124 cu);
8176b9b8
DC
4125 }
4126
4127 if (back_to != NULL)
4128 do_cleanups (back_to);
4129
4130 return new_prefix;
4131}
4132
134d01f1
DJ
4133/* Given a pointer to a die which begins an enumeration, process all
4134 the dies that define the members of the enumeration, and create the
4135 symbol for the enumeration type.
4136
4137 NOTE: We reverse the order of the element list. */
4138
4139static void
4140process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4141{
4142 struct objfile *objfile = cu->objfile;
4143 struct die_info *child_die;
4144 struct field *fields;
4145 struct attribute *attr;
4146 struct symbol *sym;
4147 int num_fields;
4148 int unsigned_enum = 1;
4149
c906108c
SS
4150 num_fields = 0;
4151 fields = NULL;
639d11d3 4152 if (die->child != NULL)
c906108c 4153 {
639d11d3 4154 child_die = die->child;
c906108c
SS
4155 while (child_die && child_die->tag)
4156 {
4157 if (child_die->tag != DW_TAG_enumerator)
4158 {
e7c27a73 4159 process_die (child_die, cu);
c906108c
SS
4160 }
4161 else
4162 {
e142c38c 4163 attr = dwarf2_attr (child_die, DW_AT_name, cu);
c906108c
SS
4164 if (attr)
4165 {
134d01f1 4166 sym = new_symbol (child_die, die->type, cu);
c906108c
SS
4167 if (SYMBOL_VALUE (sym) < 0)
4168 unsigned_enum = 0;
4169
4170 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4171 {
4172 fields = (struct field *)
4173 xrealloc (fields,
4174 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4175 * sizeof (struct field));
c906108c
SS
4176 }
4177
22abf04a 4178 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
c906108c
SS
4179 FIELD_TYPE (fields[num_fields]) = NULL;
4180 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4181 FIELD_BITSIZE (fields[num_fields]) = 0;
01ad7f36 4182 FIELD_STATIC_KIND (fields[num_fields]) = 0;
c906108c
SS
4183
4184 num_fields++;
4185 }
4186 }
4187
4188 child_die = sibling_die (child_die);
4189 }
4190
4191 if (num_fields)
4192 {
134d01f1
DJ
4193 TYPE_NFIELDS (die->type) = num_fields;
4194 TYPE_FIELDS (die->type) = (struct field *)
4195 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4196 memcpy (TYPE_FIELDS (die->type), fields,
c906108c 4197 sizeof (struct field) * num_fields);
b8c9b27d 4198 xfree (fields);
c906108c
SS
4199 }
4200 if (unsigned_enum)
134d01f1 4201 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
c906108c 4202 }
134d01f1
DJ
4203
4204 new_symbol (die, die->type, cu);
c906108c
SS
4205}
4206
4207/* Extract all information from a DW_TAG_array_type DIE and put it in
4208 the DIE's type field. For now, this only handles one dimensional
4209 arrays. */
4210
4211static void
e7c27a73 4212read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4213{
e7c27a73 4214 struct objfile *objfile = cu->objfile;
c906108c
SS
4215 struct die_info *child_die;
4216 struct type *type = NULL;
4217 struct type *element_type, *range_type, *index_type;
4218 struct type **range_types = NULL;
4219 struct attribute *attr;
4220 int ndim = 0;
4221 struct cleanup *back_to;
4222
4223 /* Return if we've already decoded this type. */
4224 if (die->type)
4225 {
4226 return;
4227 }
4228
e7c27a73 4229 element_type = die_type (die, cu);
c906108c
SS
4230
4231 /* Irix 6.2 native cc creates array types without children for
4232 arrays with unspecified length. */
639d11d3 4233 if (die->child == NULL)
c906108c 4234 {
e142c38c 4235 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4236 range_type = create_range_type (NULL, index_type, 0, -1);
1c379e20
DJ
4237 set_die_type (die, create_array_type (NULL, element_type, range_type),
4238 cu);
c906108c
SS
4239 return;
4240 }
4241
4242 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 4243 child_die = die->child;
c906108c
SS
4244 while (child_die && child_die->tag)
4245 {
4246 if (child_die->tag == DW_TAG_subrange_type)
4247 {
a02abb62 4248 read_subrange_type (child_die, cu);
c906108c 4249
a02abb62
JB
4250 if (child_die->type != NULL)
4251 {
4252 /* The range type was succesfully read. Save it for
4253 the array type creation. */
4254 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4255 {
4256 range_types = (struct type **)
4257 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4258 * sizeof (struct type *));
4259 if (ndim == 0)
4260 make_cleanup (free_current_contents, &range_types);
4261 }
4262 range_types[ndim++] = child_die->type;
4263 }
c906108c
SS
4264 }
4265 child_die = sibling_die (child_die);
4266 }
4267
4268 /* Dwarf2 dimensions are output from left to right, create the
4269 necessary array types in backwards order. */
7ca2d3a3 4270
c906108c 4271 type = element_type;
7ca2d3a3
DL
4272
4273 if (read_array_order (die, cu) == DW_ORD_col_major)
4274 {
4275 int i = 0;
4276 while (i < ndim)
4277 type = create_array_type (NULL, type, range_types[i++]);
4278 }
4279 else
4280 {
4281 while (ndim-- > 0)
4282 type = create_array_type (NULL, type, range_types[ndim]);
4283 }
c906108c 4284
f5f8a009
EZ
4285 /* Understand Dwarf2 support for vector types (like they occur on
4286 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4287 array type. This is not part of the Dwarf2/3 standard yet, but a
4288 custom vendor extension. The main difference between a regular
4289 array and the vector variant is that vectors are passed by value
4290 to functions. */
e142c38c 4291 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009
EZ
4292 if (attr)
4293 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4294
714e295e
JB
4295 attr = dwarf2_attr (die, DW_AT_name, cu);
4296 if (attr && DW_STRING (attr))
4297 TYPE_NAME (type) = DW_STRING (attr);
4298
c906108c
SS
4299 do_cleanups (back_to);
4300
4301 /* Install the type in the die. */
1c379e20 4302 set_die_type (die, type, cu);
c906108c
SS
4303}
4304
7ca2d3a3
DL
4305static enum dwarf_array_dim_ordering
4306read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4307{
4308 struct attribute *attr;
4309
4310 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4311
4312 if (attr) return DW_SND (attr);
4313
4314 /*
4315 GNU F77 is a special case, as at 08/2004 array type info is the
4316 opposite order to the dwarf2 specification, but data is still
4317 laid out as per normal fortran.
4318
4319 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4320 version checking.
4321 */
4322
4323 if (cu->language == language_fortran &&
4324 cu->producer && strstr (cu->producer, "GNU F77"))
4325 {
4326 return DW_ORD_row_major;
4327 }
4328
4329 switch (cu->language_defn->la_array_ordering)
4330 {
4331 case array_column_major:
4332 return DW_ORD_col_major;
4333 case array_row_major:
4334 default:
4335 return DW_ORD_row_major;
4336 };
4337}
4338
72019c9c
GM
4339/* Extract all information from a DW_TAG_set_type DIE and put it in
4340 the DIE's type field. */
4341
4342static void
4343read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4344{
4345 if (die->type == NULL)
4346 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4347}
7ca2d3a3 4348
c906108c
SS
4349/* First cut: install each common block member as a global variable. */
4350
4351static void
e7c27a73 4352read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4353{
4354 struct die_info *child_die;
4355 struct attribute *attr;
4356 struct symbol *sym;
4357 CORE_ADDR base = (CORE_ADDR) 0;
4358
e142c38c 4359 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
4360 if (attr)
4361 {
8e19ed76
PS
4362 /* Support the .debug_loc offsets */
4363 if (attr_form_is_block (attr))
4364 {
e7c27a73 4365 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76
PS
4366 }
4367 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4368 {
4d3c2250 4369 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4370 }
4371 else
4372 {
4d3c2250
KB
4373 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4374 "common block member");
8e19ed76 4375 }
c906108c 4376 }
639d11d3 4377 if (die->child != NULL)
c906108c 4378 {
639d11d3 4379 child_die = die->child;
c906108c
SS
4380 while (child_die && child_die->tag)
4381 {
e7c27a73 4382 sym = new_symbol (child_die, NULL, cu);
e142c38c 4383 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
4384 if (attr)
4385 {
4386 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 4387 base + decode_locdesc (DW_BLOCK (attr), cu);
c906108c
SS
4388 add_symbol_to_list (sym, &global_symbols);
4389 }
4390 child_die = sibling_die (child_die);
4391 }
4392 }
4393}
4394
d9fa45fe
DC
4395/* Read a C++ namespace. */
4396
d9fa45fe 4397static void
e7c27a73 4398read_namespace (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 4399{
e7c27a73 4400 struct objfile *objfile = cu->objfile;
38d518c9 4401 const char *previous_prefix = processing_current_prefix;
63d06c5c 4402 const char *name;
9219021c
DC
4403 int is_anonymous;
4404 struct die_info *current_die;
987504bb 4405 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9219021c 4406
e142c38c 4407 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
4408
4409 /* Now build the name of the current namespace. */
4410
38d518c9 4411 if (previous_prefix[0] == '\0')
9219021c 4412 {
38d518c9 4413 processing_current_prefix = name;
9219021c
DC
4414 }
4415 else
4416 {
987504bb
JJ
4417 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4418 make_cleanup (xfree, temp_name);
38d518c9 4419 processing_current_prefix = temp_name;
9219021c
DC
4420 }
4421
5c4e30ca
DC
4422 /* Add a symbol associated to this if we haven't seen the namespace
4423 before. Also, add a using directive if it's an anonymous
4424 namespace. */
9219021c 4425
e142c38c 4426 if (dwarf2_extension (die, cu) == NULL)
5c4e30ca
DC
4427 {
4428 struct type *type;
4429
4430 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4431 this cast will hopefully become unnecessary. */
4432 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
38d518c9 4433 (char *) processing_current_prefix,
5c4e30ca
DC
4434 objfile);
4435 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4436
e7c27a73 4437 new_symbol (die, type, cu);
1c379e20 4438 set_die_type (die, type, cu);
5c4e30ca
DC
4439
4440 if (is_anonymous)
38d518c9
EZ
4441 cp_add_using_directive (processing_current_prefix,
4442 strlen (previous_prefix),
4443 strlen (processing_current_prefix));
5c4e30ca 4444 }
9219021c 4445
639d11d3 4446 if (die->child != NULL)
d9fa45fe 4447 {
639d11d3 4448 struct die_info *child_die = die->child;
d9fa45fe
DC
4449
4450 while (child_die && child_die->tag)
4451 {
e7c27a73 4452 process_die (child_die, cu);
d9fa45fe
DC
4453 child_die = sibling_die (child_die);
4454 }
4455 }
9219021c 4456
38d518c9 4457 processing_current_prefix = previous_prefix;
987504bb 4458 do_cleanups (back_to);
38d518c9
EZ
4459}
4460
4461/* Return the name of the namespace represented by DIE. Set
4462 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4463 namespace. */
4464
4465static const char *
e142c38c 4466namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
4467{
4468 struct die_info *current_die;
4469 const char *name = NULL;
4470
4471 /* Loop through the extensions until we find a name. */
4472
4473 for (current_die = die;
4474 current_die != NULL;
e142c38c 4475 current_die = dwarf2_extension (die, cu))
38d518c9 4476 {
e142c38c 4477 name = dwarf2_name (current_die, cu);
38d518c9
EZ
4478 if (name != NULL)
4479 break;
4480 }
4481
4482 /* Is it an anonymous namespace? */
4483
4484 *is_anonymous = (name == NULL);
4485 if (*is_anonymous)
4486 name = "(anonymous namespace)";
4487
4488 return name;
d9fa45fe
DC
4489}
4490
c906108c
SS
4491/* Extract all information from a DW_TAG_pointer_type DIE and add to
4492 the user defined type vector. */
4493
4494static void
e7c27a73 4495read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4496{
e7c27a73 4497 struct comp_unit_head *cu_header = &cu->header;
c906108c 4498 struct type *type;
8b2dbe47
KB
4499 struct attribute *attr_byte_size;
4500 struct attribute *attr_address_class;
4501 int byte_size, addr_class;
c906108c
SS
4502
4503 if (die->type)
4504 {
4505 return;
4506 }
4507
e7c27a73 4508 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 4509
e142c38c 4510 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
4511 if (attr_byte_size)
4512 byte_size = DW_UNSND (attr_byte_size);
c906108c 4513 else
8b2dbe47
KB
4514 byte_size = cu_header->addr_size;
4515
e142c38c 4516 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
4517 if (attr_address_class)
4518 addr_class = DW_UNSND (attr_address_class);
4519 else
4520 addr_class = DW_ADDR_none;
4521
4522 /* If the pointer size or address class is different than the
4523 default, create a type variant marked as such and set the
4524 length accordingly. */
4525 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 4526 {
8b2dbe47
KB
4527 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4528 {
4529 int type_flags;
4530
4531 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4532 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4533 type = make_type_with_address_space (type, type_flags);
4534 }
4535 else if (TYPE_LENGTH (type) != byte_size)
4536 {
e2e0b3e5 4537 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
4538 }
4539 else {
4540 /* Should we also complain about unhandled address classes? */
4541 }
c906108c 4542 }
8b2dbe47
KB
4543
4544 TYPE_LENGTH (type) = byte_size;
1c379e20 4545 set_die_type (die, type, cu);
c906108c
SS
4546}
4547
4548/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4549 the user defined type vector. */
4550
4551static void
e7c27a73 4552read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4553{
e7c27a73 4554 struct objfile *objfile = cu->objfile;
c906108c
SS
4555 struct type *type;
4556 struct type *to_type;
4557 struct type *domain;
4558
4559 if (die->type)
4560 {
4561 return;
4562 }
4563
4564 type = alloc_type (objfile);
e7c27a73
DJ
4565 to_type = die_type (die, cu);
4566 domain = die_containing_type (die, cu);
c906108c
SS
4567 smash_to_member_type (type, domain, to_type);
4568
1c379e20 4569 set_die_type (die, type, cu);
c906108c
SS
4570}
4571
4572/* Extract all information from a DW_TAG_reference_type DIE and add to
4573 the user defined type vector. */
4574
4575static void
e7c27a73 4576read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4577{
e7c27a73 4578 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4579 struct type *type;
4580 struct attribute *attr;
4581
4582 if (die->type)
4583 {
4584 return;
4585 }
4586
e7c27a73 4587 type = lookup_reference_type (die_type (die, cu));
e142c38c 4588 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4589 if (attr)
4590 {
4591 TYPE_LENGTH (type) = DW_UNSND (attr);
4592 }
4593 else
4594 {
107d2387 4595 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 4596 }
1c379e20 4597 set_die_type (die, type, cu);
c906108c
SS
4598}
4599
4600static void
e7c27a73 4601read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4602{
090c42a4
JB
4603 struct type *base_type;
4604
c906108c
SS
4605 if (die->type)
4606 {
4607 return;
4608 }
4609
e7c27a73 4610 base_type = die_type (die, cu);
1c379e20
DJ
4611 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4612 cu);
c906108c
SS
4613}
4614
4615static void
e7c27a73 4616read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4617{
090c42a4
JB
4618 struct type *base_type;
4619
c906108c
SS
4620 if (die->type)
4621 {
4622 return;
4623 }
4624
e7c27a73 4625 base_type = die_type (die, cu);
1c379e20
DJ
4626 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4627 cu);
c906108c
SS
4628}
4629
4630/* Extract all information from a DW_TAG_string_type DIE and add to
4631 the user defined type vector. It isn't really a user defined type,
4632 but it behaves like one, with other DIE's using an AT_user_def_type
4633 attribute to reference it. */
4634
4635static void
e7c27a73 4636read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4637{
e7c27a73 4638 struct objfile *objfile = cu->objfile;
c906108c
SS
4639 struct type *type, *range_type, *index_type, *char_type;
4640 struct attribute *attr;
4641 unsigned int length;
4642
4643 if (die->type)
4644 {
4645 return;
4646 }
4647
e142c38c 4648 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
4649 if (attr)
4650 {
4651 length = DW_UNSND (attr);
4652 }
4653 else
4654 {
b21b22e0 4655 /* check for the DW_AT_byte_size attribute */
e142c38c 4656 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
4657 if (attr)
4658 {
4659 length = DW_UNSND (attr);
4660 }
4661 else
4662 {
4663 length = 1;
4664 }
c906108c 4665 }
e142c38c 4666 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4667 range_type = create_range_type (NULL, index_type, 1, length);
e142c38c 4668 if (cu->language == language_fortran)
b21b22e0
PS
4669 {
4670 /* Need to create a unique string type for bounds
4671 information */
4672 type = create_string_type (0, range_type);
4673 }
4674 else
4675 {
e142c38c 4676 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
b21b22e0
PS
4677 type = create_string_type (char_type, range_type);
4678 }
1c379e20 4679 set_die_type (die, type, cu);
c906108c
SS
4680}
4681
4682/* Handle DIES due to C code like:
4683
4684 struct foo
c5aa993b
JM
4685 {
4686 int (*funcp)(int a, long l);
4687 int b;
4688 };
c906108c
SS
4689
4690 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 4691 */
c906108c
SS
4692
4693static void
e7c27a73 4694read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4695{
4696 struct type *type; /* Type that this function returns */
4697 struct type *ftype; /* Function that returns above type */
4698 struct attribute *attr;
4699
4700 /* Decode the type that this subroutine returns */
4701 if (die->type)
4702 {
4703 return;
4704 }
e7c27a73 4705 type = die_type (die, cu);
1326e61b 4706 ftype = make_function_type (type, (struct type **) 0);
c906108c 4707
987504bb 4708 /* All functions in C++ and Java have prototypes. */
e142c38c 4709 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 4710 if ((attr && (DW_UNSND (attr) != 0))
987504bb
JJ
4711 || cu->language == language_cplus
4712 || cu->language == language_java)
c906108c
SS
4713 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4714
639d11d3 4715 if (die->child != NULL)
c906108c
SS
4716 {
4717 struct die_info *child_die;
4718 int nparams = 0;
4719 int iparams = 0;
4720
4721 /* Count the number of parameters.
4722 FIXME: GDB currently ignores vararg functions, but knows about
4723 vararg member functions. */
639d11d3 4724 child_die = die->child;
c906108c
SS
4725 while (child_die && child_die->tag)
4726 {
4727 if (child_die->tag == DW_TAG_formal_parameter)
4728 nparams++;
4729 else if (child_die->tag == DW_TAG_unspecified_parameters)
4730 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4731 child_die = sibling_die (child_die);
4732 }
4733
4734 /* Allocate storage for parameters and fill them in. */
4735 TYPE_NFIELDS (ftype) = nparams;
4736 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 4737 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 4738
639d11d3 4739 child_die = die->child;
c906108c
SS
4740 while (child_die && child_die->tag)
4741 {
4742 if (child_die->tag == DW_TAG_formal_parameter)
4743 {
4744 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
4745 member functions. G++ helps GDB by marking the first
4746 parameter for non-static member functions (which is the
4747 this pointer) as artificial. We pass this information
4748 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 4749 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
4750 if (attr)
4751 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4752 else
4753 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 4754 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
4755 iparams++;
4756 }
4757 child_die = sibling_die (child_die);
4758 }
4759 }
4760
1c379e20 4761 set_die_type (die, ftype, cu);
c906108c
SS
4762}
4763
4764static void
e7c27a73 4765read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4766{
e7c27a73 4767 struct objfile *objfile = cu->objfile;
2f038fcb
FF
4768 struct attribute *attr;
4769 char *name = NULL;
c906108c
SS
4770
4771 if (!die->type)
4772 {
e142c38c 4773 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c 4774 if (attr && DW_STRING (attr))
2f038fcb
FF
4775 {
4776 name = DW_STRING (attr);
4777 }
1c379e20
DJ
4778 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4779 TYPE_FLAG_TARGET_STUB, name, objfile),
4780 cu);
e7c27a73 4781 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
c906108c
SS
4782 }
4783}
4784
4785/* Find a representation of a given base type and install
4786 it in the TYPE field of the die. */
4787
4788static void
e7c27a73 4789read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4790{
e7c27a73 4791 struct objfile *objfile = cu->objfile;
c906108c
SS
4792 struct type *type;
4793 struct attribute *attr;
4794 int encoding = 0, size = 0;
4795
4796 /* If we've already decoded this die, this is a no-op. */
4797 if (die->type)
4798 {
4799 return;
4800 }
4801
e142c38c 4802 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
4803 if (attr)
4804 {
4805 encoding = DW_UNSND (attr);
4806 }
e142c38c 4807 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4808 if (attr)
4809 {
4810 size = DW_UNSND (attr);
4811 }
e142c38c 4812 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
4813 if (attr && DW_STRING (attr))
4814 {
4815 enum type_code code = TYPE_CODE_INT;
f5ef7c67 4816 int type_flags = 0;
c906108c
SS
4817
4818 switch (encoding)
4819 {
4820 case DW_ATE_address:
4821 /* Turn DW_ATE_address into a void * pointer. */
4822 code = TYPE_CODE_PTR;
f5ef7c67 4823 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4824 break;
4825 case DW_ATE_boolean:
4826 code = TYPE_CODE_BOOL;
f5ef7c67 4827 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4828 break;
4829 case DW_ATE_complex_float:
4830 code = TYPE_CODE_COMPLEX;
4831 break;
4832 case DW_ATE_float:
4833 code = TYPE_CODE_FLT;
4834 break;
4835 case DW_ATE_signed:
c906108c
SS
4836 break;
4837 case DW_ATE_unsigned:
72019c9c
GM
4838 type_flags |= TYPE_FLAG_UNSIGNED;
4839 break;
4840 case DW_ATE_signed_char:
4841 if (cu->language == language_m2)
4842 code = TYPE_CODE_CHAR;
4843 break;
4844 case DW_ATE_unsigned_char:
4845 if (cu->language == language_m2)
4846 code = TYPE_CODE_CHAR;
f5ef7c67 4847 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4848 break;
4849 default:
e2e0b3e5 4850 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4d3c2250 4851 dwarf_type_encoding_name (encoding));
c906108c
SS
4852 break;
4853 }
f5ef7c67 4854 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
c906108c 4855 if (encoding == DW_ATE_address)
e142c38c
DJ
4856 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4857 cu);
f65ca430
DJ
4858 else if (encoding == DW_ATE_complex_float)
4859 {
4860 if (size == 32)
4861 TYPE_TARGET_TYPE (type)
e142c38c 4862 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
f65ca430
DJ
4863 else if (size == 16)
4864 TYPE_TARGET_TYPE (type)
e142c38c 4865 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
f65ca430
DJ
4866 else if (size == 8)
4867 TYPE_TARGET_TYPE (type)
e142c38c 4868 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
f65ca430 4869 }
c906108c
SS
4870 }
4871 else
4872 {
e7c27a73 4873 type = dwarf_base_type (encoding, size, cu);
c906108c 4874 }
1c379e20 4875 set_die_type (die, type, cu);
c906108c
SS
4876}
4877
a02abb62
JB
4878/* Read the given DW_AT_subrange DIE. */
4879
4880static void
4881read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4882{
4883 struct type *base_type;
4884 struct type *range_type;
4885 struct attribute *attr;
4886 int low = 0;
4887 int high = -1;
4888
4889 /* If we have already decoded this die, then nothing more to do. */
4890 if (die->type)
4891 return;
4892
4893 base_type = die_type (die, cu);
4894 if (base_type == NULL)
4895 {
4896 complaint (&symfile_complaints,
e2e0b3e5 4897 _("DW_AT_type missing from DW_TAG_subrange_type"));
a02abb62
JB
4898 return;
4899 }
4900
4901 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4902 base_type = alloc_type (NULL);
4903
e142c38c 4904 if (cu->language == language_fortran)
a02abb62
JB
4905 {
4906 /* FORTRAN implies a lower bound of 1, if not given. */
4907 low = 1;
4908 }
4909
dd5e6932
DJ
4910 /* FIXME: For variable sized arrays either of these could be
4911 a variable rather than a constant value. We'll allow it,
4912 but we don't know how to handle it. */
e142c38c 4913 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
4914 if (attr)
4915 low = dwarf2_get_attr_constant_value (attr, 0);
4916
e142c38c 4917 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
4918 if (attr)
4919 {
4920 if (attr->form == DW_FORM_block1)
4921 {
4922 /* GCC encodes arrays with unspecified or dynamic length
4923 with a DW_FORM_block1 attribute.
4924 FIXME: GDB does not yet know how to handle dynamic
4925 arrays properly, treat them as arrays with unspecified
4926 length for now.
4927
4928 FIXME: jimb/2003-09-22: GDB does not really know
4929 how to handle arrays of unspecified length
4930 either; we just represent them as zero-length
4931 arrays. Choose an appropriate upper bound given
4932 the lower bound we've computed above. */
4933 high = low - 1;
4934 }
4935 else
4936 high = dwarf2_get_attr_constant_value (attr, 1);
4937 }
4938
4939 range_type = create_range_type (NULL, base_type, low, high);
4940
e142c38c 4941 attr = dwarf2_attr (die, DW_AT_name, cu);
a02abb62
JB
4942 if (attr && DW_STRING (attr))
4943 TYPE_NAME (range_type) = DW_STRING (attr);
4944
e142c38c 4945 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
4946 if (attr)
4947 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4948
1c379e20 4949 set_die_type (die, range_type, cu);
a02abb62
JB
4950}
4951
81a17f79
JB
4952static void
4953read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4954{
4955 struct type *type;
4956 struct attribute *attr;
4957
4958 if (die->type)
4959 return;
4960
4961 /* For now, we only support the C meaning of an unspecified type: void. */
4962
4963 attr = dwarf2_attr (die, DW_AT_name, cu);
4964 type = init_type (TYPE_CODE_VOID, 0, 0, attr ? DW_STRING (attr) : "",
4965 cu->objfile);
4966
4967 set_die_type (die, type, cu);
4968}
a02abb62 4969
c906108c
SS
4970/* Read a whole compilation unit into a linked list of dies. */
4971
f9aca02d 4972static struct die_info *
fe1b8b76 4973read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
c906108c 4974{
e7c27a73 4975 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
639d11d3
DC
4976}
4977
4978/* Read a single die and all its descendents. Set the die's sibling
4979 field to NULL; set other fields in the die correctly, and set all
4980 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4981 location of the info_ptr after reading all of those dies. PARENT
4982 is the parent of the die in question. */
4983
4984static struct die_info *
fe1b8b76 4985read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 4986 struct dwarf2_cu *cu,
fe1b8b76 4987 gdb_byte **new_info_ptr,
639d11d3
DC
4988 struct die_info *parent)
4989{
4990 struct die_info *die;
fe1b8b76 4991 gdb_byte *cur_ptr;
639d11d3
DC
4992 int has_children;
4993
e7c27a73 4994 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
10b3939b 4995 store_in_ref_table (die->offset, die, cu);
639d11d3
DC
4996
4997 if (has_children)
4998 {
e7c27a73 4999 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
639d11d3
DC
5000 new_info_ptr, die);
5001 }
5002 else
5003 {
5004 die->child = NULL;
5005 *new_info_ptr = cur_ptr;
5006 }
5007
5008 die->sibling = NULL;
5009 die->parent = parent;
5010 return die;
5011}
5012
5013/* Read a die, all of its descendents, and all of its siblings; set
5014 all of the fields of all of the dies correctly. Arguments are as
5015 in read_die_and_children. */
5016
5017static struct die_info *
fe1b8b76 5018read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5019 struct dwarf2_cu *cu,
fe1b8b76 5020 gdb_byte **new_info_ptr,
639d11d3
DC
5021 struct die_info *parent)
5022{
5023 struct die_info *first_die, *last_sibling;
fe1b8b76 5024 gdb_byte *cur_ptr;
639d11d3 5025
c906108c 5026 cur_ptr = info_ptr;
639d11d3
DC
5027 first_die = last_sibling = NULL;
5028
5029 while (1)
c906108c 5030 {
639d11d3 5031 struct die_info *die
e7c27a73 5032 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
639d11d3
DC
5033
5034 if (!first_die)
c906108c 5035 {
639d11d3 5036 first_die = die;
c906108c 5037 }
639d11d3 5038 else
c906108c 5039 {
639d11d3 5040 last_sibling->sibling = die;
c906108c
SS
5041 }
5042
639d11d3 5043 if (die->tag == 0)
c906108c 5044 {
639d11d3
DC
5045 *new_info_ptr = cur_ptr;
5046 return first_die;
c906108c
SS
5047 }
5048 else
5049 {
639d11d3 5050 last_sibling = die;
c906108c
SS
5051 }
5052 }
c906108c
SS
5053}
5054
5055/* Free a linked list of dies. */
5056
5057static void
fba45db2 5058free_die_list (struct die_info *dies)
c906108c
SS
5059{
5060 struct die_info *die, *next;
5061
5062 die = dies;
5063 while (die)
5064 {
639d11d3
DC
5065 if (die->child != NULL)
5066 free_die_list (die->child);
5067 next = die->sibling;
b8c9b27d
KB
5068 xfree (die->attrs);
5069 xfree (die);
c906108c
SS
5070 die = next;
5071 }
5072}
5073
5074/* Read the contents of the section at OFFSET and of size SIZE from the
8b92e4d5 5075 object file specified by OBJFILE into the objfile_obstack and return it. */
c906108c 5076
fe1b8b76 5077gdb_byte *
188dd5d6 5078dwarf2_read_section (struct objfile *objfile, asection *sectp)
c906108c
SS
5079{
5080 bfd *abfd = objfile->obfd;
fe1b8b76 5081 gdb_byte *buf, *retbuf;
2c500098 5082 bfd_size_type size = bfd_get_section_size (sectp);
c906108c
SS
5083
5084 if (size == 0)
5085 return NULL;
5086
fe1b8b76
JB
5087 buf = obstack_alloc (&objfile->objfile_obstack, size);
5088 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
086df311
DJ
5089 if (retbuf != NULL)
5090 return retbuf;
5091
188dd5d6
DJ
5092 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5093 || bfd_bread (buf, size, abfd) != size)
8a3fe4f8 5094 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
188dd5d6
DJ
5095 bfd_get_filename (abfd));
5096
c906108c
SS
5097 return buf;
5098}
5099
5100/* In DWARF version 2, the description of the debugging information is
5101 stored in a separate .debug_abbrev section. Before we read any
5102 dies from a section we read in all abbreviations and install them
72bf9492
DJ
5103 in a hash table. This function also sets flags in CU describing
5104 the data found in the abbrev table. */
c906108c
SS
5105
5106static void
e7c27a73 5107dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 5108{
e7c27a73 5109 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 5110 gdb_byte *abbrev_ptr;
c906108c
SS
5111 struct abbrev_info *cur_abbrev;
5112 unsigned int abbrev_number, bytes_read, abbrev_name;
5113 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
5114 struct attr_abbrev *cur_attrs;
5115 unsigned int allocated_attrs;
c906108c 5116
57349743 5117 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
5118 obstack_init (&cu->abbrev_obstack);
5119 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5120 (ABBREV_HASH_SIZE
5121 * sizeof (struct abbrev_info *)));
5122 memset (cu->dwarf2_abbrevs, 0,
5123 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 5124
6502dd73 5125 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
c906108c
SS
5126 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5127 abbrev_ptr += bytes_read;
5128
f3dd6933
DJ
5129 allocated_attrs = ATTR_ALLOC_CHUNK;
5130 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5131
c906108c
SS
5132 /* loop until we reach an abbrev number of 0 */
5133 while (abbrev_number)
5134 {
f3dd6933 5135 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
5136
5137 /* read in abbrev header */
5138 cur_abbrev->number = abbrev_number;
5139 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5140 abbrev_ptr += bytes_read;
5141 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5142 abbrev_ptr += 1;
5143
72bf9492
DJ
5144 if (cur_abbrev->tag == DW_TAG_namespace)
5145 cu->has_namespace_info = 1;
5146
c906108c
SS
5147 /* now read in declarations */
5148 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5149 abbrev_ptr += bytes_read;
5150 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5151 abbrev_ptr += bytes_read;
5152 while (abbrev_name)
5153 {
f3dd6933 5154 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 5155 {
f3dd6933
DJ
5156 allocated_attrs += ATTR_ALLOC_CHUNK;
5157 cur_attrs
5158 = xrealloc (cur_attrs, (allocated_attrs
5159 * sizeof (struct attr_abbrev)));
c906108c 5160 }
ae038cb0
DJ
5161
5162 /* Record whether this compilation unit might have
5163 inter-compilation-unit references. If we don't know what form
5164 this attribute will have, then it might potentially be a
5165 DW_FORM_ref_addr, so we conservatively expect inter-CU
5166 references. */
5167
5168 if (abbrev_form == DW_FORM_ref_addr
5169 || abbrev_form == DW_FORM_indirect)
5170 cu->has_form_ref_addr = 1;
5171
f3dd6933
DJ
5172 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5173 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
5174 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5175 abbrev_ptr += bytes_read;
5176 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5177 abbrev_ptr += bytes_read;
5178 }
5179
f3dd6933
DJ
5180 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5181 (cur_abbrev->num_attrs
5182 * sizeof (struct attr_abbrev)));
5183 memcpy (cur_abbrev->attrs, cur_attrs,
5184 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5185
c906108c 5186 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
5187 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5188 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
5189
5190 /* Get next abbreviation.
5191 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
5192 always properly terminated with an abbrev number of 0.
5193 Exit loop if we encounter an abbreviation which we have
5194 already read (which means we are about to read the abbreviations
5195 for the next compile unit) or if the end of the abbreviation
5196 table is reached. */
6502dd73
DJ
5197 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5198 >= dwarf2_per_objfile->abbrev_size)
c906108c
SS
5199 break;
5200 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5201 abbrev_ptr += bytes_read;
e7c27a73 5202 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
5203 break;
5204 }
f3dd6933
DJ
5205
5206 xfree (cur_attrs);
c906108c
SS
5207}
5208
f3dd6933 5209/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 5210
c906108c 5211static void
f3dd6933 5212dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 5213{
f3dd6933 5214 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 5215
f3dd6933
DJ
5216 obstack_free (&cu->abbrev_obstack, NULL);
5217 cu->dwarf2_abbrevs = NULL;
c906108c
SS
5218}
5219
5220/* Lookup an abbrev_info structure in the abbrev hash table. */
5221
5222static struct abbrev_info *
e7c27a73 5223dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
5224{
5225 unsigned int hash_number;
5226 struct abbrev_info *abbrev;
5227
5228 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 5229 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
5230
5231 while (abbrev)
5232 {
5233 if (abbrev->number == number)
5234 return abbrev;
5235 else
5236 abbrev = abbrev->next;
5237 }
5238 return NULL;
5239}
5240
72bf9492
DJ
5241/* Returns nonzero if TAG represents a type that we might generate a partial
5242 symbol for. */
5243
5244static int
5245is_type_tag_for_partial (int tag)
5246{
5247 switch (tag)
5248 {
5249#if 0
5250 /* Some types that would be reasonable to generate partial symbols for,
5251 that we don't at present. */
5252 case DW_TAG_array_type:
5253 case DW_TAG_file_type:
5254 case DW_TAG_ptr_to_member_type:
5255 case DW_TAG_set_type:
5256 case DW_TAG_string_type:
5257 case DW_TAG_subroutine_type:
5258#endif
5259 case DW_TAG_base_type:
5260 case DW_TAG_class_type:
5261 case DW_TAG_enumeration_type:
5262 case DW_TAG_structure_type:
5263 case DW_TAG_subrange_type:
5264 case DW_TAG_typedef:
5265 case DW_TAG_union_type:
5266 return 1;
5267 default:
5268 return 0;
5269 }
5270}
5271
5272/* Load all DIEs that are interesting for partial symbols into memory. */
5273
5274static struct partial_die_info *
fe1b8b76 5275load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
72bf9492
DJ
5276 struct dwarf2_cu *cu)
5277{
5278 struct partial_die_info *part_die;
5279 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5280 struct abbrev_info *abbrev;
5281 unsigned int bytes_read;
5afb4e99 5282 unsigned int load_all = 0;
72bf9492
DJ
5283
5284 int nesting_level = 1;
5285
5286 parent_die = NULL;
5287 last_die = NULL;
5288
5afb4e99
DJ
5289 if (cu->per_cu && cu->per_cu->load_all_dies)
5290 load_all = 1;
5291
72bf9492
DJ
5292 cu->partial_dies
5293 = htab_create_alloc_ex (cu->header.length / 12,
5294 partial_die_hash,
5295 partial_die_eq,
5296 NULL,
5297 &cu->comp_unit_obstack,
5298 hashtab_obstack_allocate,
5299 dummy_obstack_deallocate);
5300
5301 part_die = obstack_alloc (&cu->comp_unit_obstack,
5302 sizeof (struct partial_die_info));
5303
5304 while (1)
5305 {
5306 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5307
5308 /* A NULL abbrev means the end of a series of children. */
5309 if (abbrev == NULL)
5310 {
5311 if (--nesting_level == 0)
5312 {
5313 /* PART_DIE was probably the last thing allocated on the
5314 comp_unit_obstack, so we could call obstack_free
5315 here. We don't do that because the waste is small,
5316 and will be cleaned up when we're done with this
5317 compilation unit. This way, we're also more robust
5318 against other users of the comp_unit_obstack. */
5319 return first_die;
5320 }
5321 info_ptr += bytes_read;
5322 last_die = parent_die;
5323 parent_die = parent_die->die_parent;
5324 continue;
5325 }
5326
5afb4e99
DJ
5327 /* Check whether this DIE is interesting enough to save. Normally
5328 we would not be interested in members here, but there may be
5329 later variables referencing them via DW_AT_specification (for
5330 static members). */
5331 if (!load_all
5332 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
5333 && abbrev->tag != DW_TAG_enumerator
5334 && abbrev->tag != DW_TAG_subprogram
5335 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
5336 && abbrev->tag != DW_TAG_namespace
5337 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
5338 {
5339 /* Otherwise we skip to the next sibling, if any. */
5340 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5341 continue;
5342 }
5343
5344 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5345 abfd, info_ptr, cu);
5346
5347 /* This two-pass algorithm for processing partial symbols has a
5348 high cost in cache pressure. Thus, handle some simple cases
5349 here which cover the majority of C partial symbols. DIEs
5350 which neither have specification tags in them, nor could have
5351 specification tags elsewhere pointing at them, can simply be
5352 processed and discarded.
5353
5354 This segment is also optional; scan_partial_symbols and
5355 add_partial_symbol will handle these DIEs if we chain
5356 them in normally. When compilers which do not emit large
5357 quantities of duplicate debug information are more common,
5358 this code can probably be removed. */
5359
5360 /* Any complete simple types at the top level (pretty much all
5361 of them, for a language without namespaces), can be processed
5362 directly. */
5363 if (parent_die == NULL
5364 && part_die->has_specification == 0
5365 && part_die->is_declaration == 0
5366 && (part_die->tag == DW_TAG_typedef
5367 || part_die->tag == DW_TAG_base_type
5368 || part_die->tag == DW_TAG_subrange_type))
5369 {
5370 if (building_psymtab && part_die->name != NULL)
5371 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5372 VAR_DOMAIN, LOC_TYPEDEF,
5373 &cu->objfile->static_psymbols,
5374 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5375 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5376 continue;
5377 }
5378
5379 /* If we're at the second level, and we're an enumerator, and
5380 our parent has no specification (meaning possibly lives in a
5381 namespace elsewhere), then we can add the partial symbol now
5382 instead of queueing it. */
5383 if (part_die->tag == DW_TAG_enumerator
5384 && parent_die != NULL
5385 && parent_die->die_parent == NULL
5386 && parent_die->tag == DW_TAG_enumeration_type
5387 && parent_die->has_specification == 0)
5388 {
5389 if (part_die->name == NULL)
e2e0b3e5 5390 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492
DJ
5391 else if (building_psymtab)
5392 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5393 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
5394 (cu->language == language_cplus
5395 || cu->language == language_java)
72bf9492
DJ
5396 ? &cu->objfile->global_psymbols
5397 : &cu->objfile->static_psymbols,
5398 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5399
5400 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5401 continue;
5402 }
5403
5404 /* We'll save this DIE so link it in. */
5405 part_die->die_parent = parent_die;
5406 part_die->die_sibling = NULL;
5407 part_die->die_child = NULL;
5408
5409 if (last_die && last_die == parent_die)
5410 last_die->die_child = part_die;
5411 else if (last_die)
5412 last_die->die_sibling = part_die;
5413
5414 last_die = part_die;
5415
5416 if (first_die == NULL)
5417 first_die = part_die;
5418
5419 /* Maybe add the DIE to the hash table. Not all DIEs that we
5420 find interesting need to be in the hash table, because we
5421 also have the parent/sibling/child chains; only those that we
5422 might refer to by offset later during partial symbol reading.
5423
5424 For now this means things that might have be the target of a
5425 DW_AT_specification, DW_AT_abstract_origin, or
5426 DW_AT_extension. DW_AT_extension will refer only to
5427 namespaces; DW_AT_abstract_origin refers to functions (and
5428 many things under the function DIE, but we do not recurse
5429 into function DIEs during partial symbol reading) and
5430 possibly variables as well; DW_AT_specification refers to
5431 declarations. Declarations ought to have the DW_AT_declaration
5432 flag. It happens that GCC forgets to put it in sometimes, but
5433 only for functions, not for types.
5434
5435 Adding more things than necessary to the hash table is harmless
5436 except for the performance cost. Adding too few will result in
5afb4e99
DJ
5437 wasted time in find_partial_die, when we reread the compilation
5438 unit with load_all_dies set. */
72bf9492 5439
5afb4e99
DJ
5440 if (load_all
5441 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
5442 || abbrev->tag == DW_TAG_variable
5443 || abbrev->tag == DW_TAG_namespace
5444 || part_die->is_declaration)
5445 {
5446 void **slot;
5447
5448 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5449 part_die->offset, INSERT);
5450 *slot = part_die;
5451 }
5452
5453 part_die = obstack_alloc (&cu->comp_unit_obstack,
5454 sizeof (struct partial_die_info));
5455
5456 /* For some DIEs we want to follow their children (if any). For C
5457 we have no reason to follow the children of structures; for other
5458 languages we have to, both so that we can get at method physnames
5459 to infer fully qualified class names, and for DW_AT_specification. */
5460 if (last_die->has_children
5afb4e99
DJ
5461 && (load_all
5462 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
5463 || last_die->tag == DW_TAG_enumeration_type
5464 || (cu->language != language_c
5465 && (last_die->tag == DW_TAG_class_type
5466 || last_die->tag == DW_TAG_structure_type
5467 || last_die->tag == DW_TAG_union_type))))
5468 {
5469 nesting_level++;
5470 parent_die = last_die;
5471 continue;
5472 }
5473
5474 /* Otherwise we skip to the next sibling, if any. */
5475 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5476
5477 /* Back to the top, do it again. */
5478 }
5479}
5480
c906108c
SS
5481/* Read a minimal amount of information into the minimal die structure. */
5482
fe1b8b76 5483static gdb_byte *
72bf9492
DJ
5484read_partial_die (struct partial_die_info *part_die,
5485 struct abbrev_info *abbrev,
5486 unsigned int abbrev_len, bfd *abfd,
fe1b8b76 5487 gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 5488{
72bf9492 5489 unsigned int bytes_read, i;
c906108c 5490 struct attribute attr;
c5aa993b 5491 int has_low_pc_attr = 0;
c906108c
SS
5492 int has_high_pc_attr = 0;
5493
72bf9492 5494 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 5495
6502dd73 5496 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
72bf9492
DJ
5497
5498 info_ptr += abbrev_len;
5499
5500 if (abbrev == NULL)
5501 return info_ptr;
5502
c906108c
SS
5503 part_die->tag = abbrev->tag;
5504 part_die->has_children = abbrev->has_children;
c906108c
SS
5505
5506 for (i = 0; i < abbrev->num_attrs; ++i)
5507 {
e7c27a73 5508 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
5509
5510 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 5511 partial symbol table. */
c906108c
SS
5512 switch (attr.name)
5513 {
5514 case DW_AT_name:
5515
5516 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5517 if (part_die->name == NULL)
5518 part_die->name = DW_STRING (&attr);
5519 break;
57c22c6c
BR
5520 case DW_AT_comp_dir:
5521 if (part_die->dirname == NULL)
5522 part_die->dirname = DW_STRING (&attr);
5523 break;
c906108c
SS
5524 case DW_AT_MIPS_linkage_name:
5525 part_die->name = DW_STRING (&attr);
5526 break;
5527 case DW_AT_low_pc:
5528 has_low_pc_attr = 1;
5529 part_die->lowpc = DW_ADDR (&attr);
5530 break;
5531 case DW_AT_high_pc:
5532 has_high_pc_attr = 1;
5533 part_die->highpc = DW_ADDR (&attr);
5534 break;
5535 case DW_AT_location:
8e19ed76
PS
5536 /* Support the .debug_loc offsets */
5537 if (attr_form_is_block (&attr))
5538 {
5539 part_die->locdesc = DW_BLOCK (&attr);
5540 }
5541 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5542 {
4d3c2250 5543 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5544 }
5545 else
5546 {
4d3c2250
KB
5547 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5548 "partial symbol information");
8e19ed76 5549 }
c906108c
SS
5550 break;
5551 case DW_AT_language:
5552 part_die->language = DW_UNSND (&attr);
5553 break;
5554 case DW_AT_external:
5555 part_die->is_external = DW_UNSND (&attr);
5556 break;
5557 case DW_AT_declaration:
5558 part_die->is_declaration = DW_UNSND (&attr);
5559 break;
5560 case DW_AT_type:
5561 part_die->has_type = 1;
5562 break;
5563 case DW_AT_abstract_origin:
5564 case DW_AT_specification:
72bf9492
DJ
5565 case DW_AT_extension:
5566 part_die->has_specification = 1;
5567 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
c906108c
SS
5568 break;
5569 case DW_AT_sibling:
5570 /* Ignore absolute siblings, they might point outside of
5571 the current compile unit. */
5572 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 5573 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 5574 else
6502dd73
DJ
5575 part_die->sibling = dwarf2_per_objfile->info_buffer
5576 + dwarf2_get_ref_die_offset (&attr, cu);
c906108c 5577 break;
aaa75496
JB
5578 case DW_AT_stmt_list:
5579 part_die->has_stmt_list = 1;
5580 part_die->line_offset = DW_UNSND (&attr);
5581 break;
c906108c
SS
5582 default:
5583 break;
5584 }
5585 }
5586
c906108c
SS
5587 /* When using the GNU linker, .gnu.linkonce. sections are used to
5588 eliminate duplicate copies of functions and vtables and such.
5589 The linker will arbitrarily choose one and discard the others.
5590 The AT_*_pc values for such functions refer to local labels in
5591 these sections. If the section from that file was discarded, the
5592 labels are not in the output, so the relocs get a value of 0.
5593 If this is a discarded function, mark the pc bounds as invalid,
5594 so that GDB will ignore it. */
5595 if (has_low_pc_attr && has_high_pc_attr
5596 && part_die->lowpc < part_die->highpc
5597 && (part_die->lowpc != 0
72dca2f5 5598 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 5599 part_die->has_pc_info = 1;
c906108c
SS
5600 return info_ptr;
5601}
5602
72bf9492
DJ
5603/* Find a cached partial DIE at OFFSET in CU. */
5604
5605static struct partial_die_info *
5606find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5607{
5608 struct partial_die_info *lookup_die = NULL;
5609 struct partial_die_info part_die;
5610
5611 part_die.offset = offset;
5612 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5613
72bf9492
DJ
5614 return lookup_die;
5615}
5616
5617/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5618
5619static struct partial_die_info *
10b3939b 5620find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
72bf9492 5621{
5afb4e99
DJ
5622 struct dwarf2_per_cu_data *per_cu = NULL;
5623 struct partial_die_info *pd = NULL;
72bf9492
DJ
5624
5625 if (offset >= cu->header.offset
5626 && offset < cu->header.offset + cu->header.length)
5afb4e99
DJ
5627 {
5628 pd = find_partial_die_in_comp_unit (offset, cu);
5629 if (pd != NULL)
5630 return pd;
5631 }
72bf9492 5632
ae038cb0
DJ
5633 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5634
ae038cb0
DJ
5635 if (per_cu->cu == NULL)
5636 {
5637 load_comp_unit (per_cu, cu->objfile);
5638 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = per_cu;
5640 }
5641
5642 per_cu->cu->last_used = 0;
5afb4e99
DJ
5643 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5644
5645 if (pd == NULL && per_cu->load_all_dies == 0)
5646 {
5647 struct cleanup *back_to;
5648 struct partial_die_info comp_unit_die;
5649 struct abbrev_info *abbrev;
5650 unsigned int bytes_read;
5651 char *info_ptr;
5652
5653 per_cu->load_all_dies = 1;
5654
5655 /* Re-read the DIEs. */
5656 back_to = make_cleanup (null_cleanup, 0);
5657 if (per_cu->cu->dwarf2_abbrevs == NULL)
5658 {
5659 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5660 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5661 }
5662 info_ptr = per_cu->cu->header.first_die_ptr;
5663 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5664 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5665 per_cu->cu->objfile->obfd, info_ptr,
5666 per_cu->cu);
5667 if (comp_unit_die.has_children)
5668 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5669 do_cleanups (back_to);
5670
5671 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5672 }
5673
5674 if (pd == NULL)
5675 internal_error (__FILE__, __LINE__,
5676 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5677 offset, bfd_get_filename (cu->objfile->obfd));
5678 return pd;
72bf9492
DJ
5679}
5680
5681/* Adjust PART_DIE before generating a symbol for it. This function
5682 may set the is_external flag or change the DIE's name. */
5683
5684static void
5685fixup_partial_die (struct partial_die_info *part_die,
5686 struct dwarf2_cu *cu)
5687{
5688 /* If we found a reference attribute and the DIE has no name, try
5689 to find a name in the referred to DIE. */
5690
5691 if (part_die->name == NULL && part_die->has_specification)
5692 {
5693 struct partial_die_info *spec_die;
72bf9492 5694
10b3939b 5695 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 5696
10b3939b 5697 fixup_partial_die (spec_die, cu);
72bf9492
DJ
5698
5699 if (spec_die->name)
5700 {
5701 part_die->name = spec_die->name;
5702
5703 /* Copy DW_AT_external attribute if it is set. */
5704 if (spec_die->is_external)
5705 part_die->is_external = spec_die->is_external;
5706 }
5707 }
5708
5709 /* Set default names for some unnamed DIEs. */
5710 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5711 || part_die->tag == DW_TAG_class_type))
5712 part_die->name = "(anonymous class)";
5713
5714 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5715 part_die->name = "(anonymous namespace)";
5716
5717 if (part_die->tag == DW_TAG_structure_type
5718 || part_die->tag == DW_TAG_class_type
5719 || part_die->tag == DW_TAG_union_type)
5720 guess_structure_name (part_die, cu);
5721}
5722
639d11d3
DC
5723/* Read the die from the .debug_info section buffer. Set DIEP to
5724 point to a newly allocated die with its information, except for its
5725 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5726 whether the die has children or not. */
c906108c 5727
fe1b8b76
JB
5728static gdb_byte *
5729read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5730 struct dwarf2_cu *cu, int *has_children)
c906108c
SS
5731{
5732 unsigned int abbrev_number, bytes_read, i, offset;
5733 struct abbrev_info *abbrev;
5734 struct die_info *die;
5735
6502dd73 5736 offset = info_ptr - dwarf2_per_objfile->info_buffer;
c906108c
SS
5737 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5738 info_ptr += bytes_read;
5739 if (!abbrev_number)
5740 {
5741 die = dwarf_alloc_die ();
5742 die->tag = 0;
5743 die->abbrev = abbrev_number;
5744 die->type = NULL;
5745 *diep = die;
639d11d3 5746 *has_children = 0;
c906108c
SS
5747 return info_ptr;
5748 }
5749
e7c27a73 5750 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
c906108c
SS
5751 if (!abbrev)
5752 {
8a3fe4f8 5753 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
72bf9492 5754 abbrev_number,
639d11d3 5755 bfd_get_filename (abfd));
c906108c
SS
5756 }
5757 die = dwarf_alloc_die ();
5758 die->offset = offset;
5759 die->tag = abbrev->tag;
c906108c
SS
5760 die->abbrev = abbrev_number;
5761 die->type = NULL;
5762
5763 die->num_attrs = abbrev->num_attrs;
5764 die->attrs = (struct attribute *)
5765 xmalloc (die->num_attrs * sizeof (struct attribute));
5766
5767 for (i = 0; i < abbrev->num_attrs; ++i)
5768 {
5769 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
e7c27a73 5770 abfd, info_ptr, cu);
10b3939b
DJ
5771
5772 /* If this attribute is an absolute reference to a different
5773 compilation unit, make sure that compilation unit is loaded
5774 also. */
5775 if (die->attrs[i].form == DW_FORM_ref_addr
5776 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5777 || (DW_ADDR (&die->attrs[i])
5778 >= cu->header.offset + cu->header.length)))
5779 {
5780 struct dwarf2_per_cu_data *per_cu;
5781 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5782 cu->objfile);
5783
5784 /* Mark the dependence relation so that we don't flush PER_CU
5785 too early. */
5786 dwarf2_add_dependence (cu, per_cu);
5787
5788 /* If it's already on the queue, we have nothing to do. */
5789 if (per_cu->queued)
5790 continue;
5791
5792 /* If the compilation unit is already loaded, just mark it as
5793 used. */
5794 if (per_cu->cu != NULL)
5795 {
5796 per_cu->cu->last_used = 0;
5797 continue;
5798 }
5799
5800 /* Add it to the queue. */
5801 queue_comp_unit (per_cu);
5802 }
c906108c
SS
5803 }
5804
5805 *diep = die;
639d11d3 5806 *has_children = abbrev->has_children;
c906108c
SS
5807 return info_ptr;
5808}
5809
a8329558 5810/* Read an attribute value described by an attribute form. */
c906108c 5811
fe1b8b76 5812static gdb_byte *
a8329558 5813read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 5814 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5815 struct dwarf2_cu *cu)
c906108c 5816{
e7c27a73 5817 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5818 unsigned int bytes_read;
5819 struct dwarf_block *blk;
5820
a8329558
KW
5821 attr->form = form;
5822 switch (form)
c906108c
SS
5823 {
5824 case DW_FORM_addr:
5825 case DW_FORM_ref_addr:
e7c27a73 5826 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 5827 info_ptr += bytes_read;
c906108c
SS
5828 break;
5829 case DW_FORM_block2:
7b5a2f43 5830 blk = dwarf_alloc_block (cu);
c906108c
SS
5831 blk->size = read_2_bytes (abfd, info_ptr);
5832 info_ptr += 2;
5833 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5834 info_ptr += blk->size;
5835 DW_BLOCK (attr) = blk;
5836 break;
5837 case DW_FORM_block4:
7b5a2f43 5838 blk = dwarf_alloc_block (cu);
c906108c
SS
5839 blk->size = read_4_bytes (abfd, info_ptr);
5840 info_ptr += 4;
5841 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5842 info_ptr += blk->size;
5843 DW_BLOCK (attr) = blk;
5844 break;
5845 case DW_FORM_data2:
5846 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5847 info_ptr += 2;
5848 break;
5849 case DW_FORM_data4:
5850 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5851 info_ptr += 4;
5852 break;
5853 case DW_FORM_data8:
5854 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5855 info_ptr += 8;
5856 break;
5857 case DW_FORM_string:
5858 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5859 info_ptr += bytes_read;
5860 break;
4bdf3d34
JJ
5861 case DW_FORM_strp:
5862 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5863 &bytes_read);
5864 info_ptr += bytes_read;
5865 break;
c906108c 5866 case DW_FORM_block:
7b5a2f43 5867 blk = dwarf_alloc_block (cu);
c906108c
SS
5868 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5869 info_ptr += bytes_read;
5870 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5871 info_ptr += blk->size;
5872 DW_BLOCK (attr) = blk;
5873 break;
5874 case DW_FORM_block1:
7b5a2f43 5875 blk = dwarf_alloc_block (cu);
c906108c
SS
5876 blk->size = read_1_byte (abfd, info_ptr);
5877 info_ptr += 1;
5878 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5879 info_ptr += blk->size;
5880 DW_BLOCK (attr) = blk;
5881 break;
5882 case DW_FORM_data1:
5883 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5884 info_ptr += 1;
5885 break;
5886 case DW_FORM_flag:
5887 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5888 info_ptr += 1;
5889 break;
5890 case DW_FORM_sdata:
5891 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5892 info_ptr += bytes_read;
5893 break;
5894 case DW_FORM_udata:
5895 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5896 info_ptr += bytes_read;
5897 break;
5898 case DW_FORM_ref1:
10b3939b 5899 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
5900 info_ptr += 1;
5901 break;
5902 case DW_FORM_ref2:
10b3939b 5903 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
5904 info_ptr += 2;
5905 break;
5906 case DW_FORM_ref4:
10b3939b 5907 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
5908 info_ptr += 4;
5909 break;
613e1657 5910 case DW_FORM_ref8:
10b3939b 5911 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
5912 info_ptr += 8;
5913 break;
c906108c 5914 case DW_FORM_ref_udata:
10b3939b
DJ
5915 DW_ADDR (attr) = (cu->header.offset
5916 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
5917 info_ptr += bytes_read;
5918 break;
c906108c 5919 case DW_FORM_indirect:
a8329558
KW
5920 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5921 info_ptr += bytes_read;
e7c27a73 5922 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 5923 break;
c906108c 5924 default:
8a3fe4f8 5925 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
5926 dwarf_form_name (form),
5927 bfd_get_filename (abfd));
c906108c
SS
5928 }
5929 return info_ptr;
5930}
5931
a8329558
KW
5932/* Read an attribute described by an abbreviated attribute. */
5933
fe1b8b76 5934static gdb_byte *
a8329558 5935read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 5936 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
5937{
5938 attr->name = abbrev->name;
e7c27a73 5939 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
5940}
5941
c906108c
SS
5942/* read dwarf information from a buffer */
5943
5944static unsigned int
fe1b8b76 5945read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 5946{
fe1b8b76 5947 return bfd_get_8 (abfd, buf);
c906108c
SS
5948}
5949
5950static int
fe1b8b76 5951read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 5952{
fe1b8b76 5953 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
5954}
5955
5956static unsigned int
fe1b8b76 5957read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5958{
fe1b8b76 5959 return bfd_get_16 (abfd, buf);
c906108c
SS
5960}
5961
5962static int
fe1b8b76 5963read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5964{
fe1b8b76 5965 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
5966}
5967
5968static unsigned int
fe1b8b76 5969read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5970{
fe1b8b76 5971 return bfd_get_32 (abfd, buf);
c906108c
SS
5972}
5973
5974static int
fe1b8b76 5975read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5976{
fe1b8b76 5977 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
5978}
5979
ce5d95e1 5980static unsigned long
fe1b8b76 5981read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5982{
fe1b8b76 5983 return bfd_get_64 (abfd, buf);
c906108c
SS
5984}
5985
5986static CORE_ADDR
fe1b8b76 5987read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 5988 unsigned int *bytes_read)
c906108c 5989{
e7c27a73 5990 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5991 CORE_ADDR retval = 0;
5992
107d2387 5993 if (cu_header->signed_addr_p)
c906108c 5994 {
107d2387
AC
5995 switch (cu_header->addr_size)
5996 {
5997 case 2:
fe1b8b76 5998 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
5999 break;
6000 case 4:
fe1b8b76 6001 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
6002 break;
6003 case 8:
fe1b8b76 6004 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
6005 break;
6006 default:
8e65ff28 6007 internal_error (__FILE__, __LINE__,
e2e0b3e5 6008 _("read_address: bad switch, signed [in module %s]"),
659b0389 6009 bfd_get_filename (abfd));
107d2387
AC
6010 }
6011 }
6012 else
6013 {
6014 switch (cu_header->addr_size)
6015 {
6016 case 2:
fe1b8b76 6017 retval = bfd_get_16 (abfd, buf);
107d2387
AC
6018 break;
6019 case 4:
fe1b8b76 6020 retval = bfd_get_32 (abfd, buf);
107d2387
AC
6021 break;
6022 case 8:
fe1b8b76 6023 retval = bfd_get_64 (abfd, buf);
107d2387
AC
6024 break;
6025 default:
8e65ff28 6026 internal_error (__FILE__, __LINE__,
e2e0b3e5 6027 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 6028 bfd_get_filename (abfd));
107d2387 6029 }
c906108c 6030 }
64367e0a 6031
107d2387
AC
6032 *bytes_read = cu_header->addr_size;
6033 return retval;
c906108c
SS
6034}
6035
f7ef9339 6036/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
6037 specification allows the initial length to take up either 4 bytes
6038 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6039 bytes describe the length and all offsets will be 8 bytes in length
6040 instead of 4.
6041
f7ef9339
KB
6042 An older, non-standard 64-bit format is also handled by this
6043 function. The older format in question stores the initial length
6044 as an 8-byte quantity without an escape value. Lengths greater
6045 than 2^32 aren't very common which means that the initial 4 bytes
6046 is almost always zero. Since a length value of zero doesn't make
6047 sense for the 32-bit format, this initial zero can be considered to
6048 be an escape value which indicates the presence of the older 64-bit
6049 format. As written, the code can't detect (old format) lengths
917c78fc
MK
6050 greater than 4GB. If it becomes necessary to handle lengths
6051 somewhat larger than 4GB, we could allow other small values (such
6052 as the non-sensical values of 1, 2, and 3) to also be used as
6053 escape values indicating the presence of the old format.
f7ef9339 6054
917c78fc
MK
6055 The value returned via bytes_read should be used to increment the
6056 relevant pointer after calling read_initial_length().
613e1657
KB
6057
6058 As a side effect, this function sets the fields initial_length_size
6059 and offset_size in cu_header to the values appropriate for the
6060 length field. (The format of the initial length field determines
dd373385 6061 the width of file offsets to be fetched later with read_offset().)
613e1657
KB
6062
6063 [ Note: read_initial_length() and read_offset() are based on the
6064 document entitled "DWARF Debugging Information Format", revision
f7ef9339 6065 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
6066 from:
6067
f7ef9339 6068 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
6069
6070 This document is only a draft and is subject to change. (So beware.)
6071
f7ef9339 6072 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
6073 determined empirically by examining 64-bit ELF files produced by
6074 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
6075
6076 - Kevin, July 16, 2002
613e1657
KB
6077 ] */
6078
6079static LONGEST
fe1b8b76 6080read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
891d2f0b 6081 unsigned int *bytes_read)
613e1657 6082{
fe1b8b76 6083 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 6084
dd373385 6085 if (length == 0xffffffff)
613e1657 6086 {
fe1b8b76 6087 length = bfd_get_64 (abfd, buf + 4);
613e1657 6088 *bytes_read = 12;
613e1657 6089 }
dd373385 6090 else if (length == 0)
f7ef9339 6091 {
dd373385 6092 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 6093 length = bfd_get_64 (abfd, buf);
f7ef9339 6094 *bytes_read = 8;
f7ef9339 6095 }
613e1657
KB
6096 else
6097 {
6098 *bytes_read = 4;
613e1657
KB
6099 }
6100
dd373385
EZ
6101 if (cu_header)
6102 {
6103 gdb_assert (cu_header->initial_length_size == 0
6104 || cu_header->initial_length_size == 4
6105 || cu_header->initial_length_size == 8
6106 || cu_header->initial_length_size == 12);
6107
6108 if (cu_header->initial_length_size != 0
6109 && cu_header->initial_length_size != *bytes_read)
6110 complaint (&symfile_complaints,
6111 _("intermixed 32-bit and 64-bit DWARF sections"));
6112
6113 cu_header->initial_length_size = *bytes_read;
6114 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6115 }
6116
6117 return length;
613e1657
KB
6118}
6119
6120/* Read an offset from the data stream. The size of the offset is
917c78fc 6121 given by cu_header->offset_size. */
613e1657
KB
6122
6123static LONGEST
fe1b8b76 6124read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 6125 unsigned int *bytes_read)
613e1657
KB
6126{
6127 LONGEST retval = 0;
6128
6129 switch (cu_header->offset_size)
6130 {
6131 case 4:
fe1b8b76 6132 retval = bfd_get_32 (abfd, buf);
613e1657
KB
6133 *bytes_read = 4;
6134 break;
6135 case 8:
fe1b8b76 6136 retval = bfd_get_64 (abfd, buf);
613e1657
KB
6137 *bytes_read = 8;
6138 break;
6139 default:
8e65ff28 6140 internal_error (__FILE__, __LINE__,
e2e0b3e5 6141 _("read_offset: bad switch [in module %s]"),
659b0389 6142 bfd_get_filename (abfd));
613e1657
KB
6143 }
6144
917c78fc 6145 return retval;
613e1657
KB
6146}
6147
fe1b8b76
JB
6148static gdb_byte *
6149read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
6150{
6151 /* If the size of a host char is 8 bits, we can return a pointer
6152 to the buffer, otherwise we have to copy the data to a buffer
6153 allocated on the temporary obstack. */
4bdf3d34 6154 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 6155 return buf;
c906108c
SS
6156}
6157
6158static char *
fe1b8b76 6159read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
6160{
6161 /* If the size of a host char is 8 bits, we can return a pointer
6162 to the string, otherwise we have to copy the string to a buffer
6163 allocated on the temporary obstack. */
4bdf3d34 6164 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
6165 if (*buf == '\0')
6166 {
6167 *bytes_read_ptr = 1;
6168 return NULL;
6169 }
fe1b8b76
JB
6170 *bytes_read_ptr = strlen ((char *) buf) + 1;
6171 return (char *) buf;
4bdf3d34
JJ
6172}
6173
6174static char *
fe1b8b76 6175read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
6176 const struct comp_unit_head *cu_header,
6177 unsigned int *bytes_read_ptr)
6178{
6179 LONGEST str_offset = read_offset (abfd, buf, cu_header,
891d2f0b 6180 bytes_read_ptr);
c906108c 6181
6502dd73 6182 if (dwarf2_per_objfile->str_buffer == NULL)
c906108c 6183 {
8a3fe4f8 6184 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 6185 bfd_get_filename (abfd));
4bdf3d34 6186 return NULL;
c906108c 6187 }
6502dd73 6188 if (str_offset >= dwarf2_per_objfile->str_size)
c906108c 6189 {
8a3fe4f8 6190 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 6191 bfd_get_filename (abfd));
c906108c
SS
6192 return NULL;
6193 }
4bdf3d34 6194 gdb_assert (HOST_CHAR_BIT == 8);
6502dd73 6195 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
4bdf3d34 6196 return NULL;
fe1b8b76 6197 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
c906108c
SS
6198}
6199
ce5d95e1 6200static unsigned long
fe1b8b76 6201read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6202{
ce5d95e1
JB
6203 unsigned long result;
6204 unsigned int num_read;
c906108c
SS
6205 int i, shift;
6206 unsigned char byte;
6207
6208 result = 0;
6209 shift = 0;
6210 num_read = 0;
6211 i = 0;
6212 while (1)
6213 {
fe1b8b76 6214 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6215 buf++;
6216 num_read++;
ce5d95e1 6217 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
6218 if ((byte & 128) == 0)
6219 {
6220 break;
6221 }
6222 shift += 7;
6223 }
6224 *bytes_read_ptr = num_read;
6225 return result;
6226}
6227
ce5d95e1 6228static long
fe1b8b76 6229read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6230{
ce5d95e1 6231 long result;
77e0b926 6232 int i, shift, num_read;
c906108c
SS
6233 unsigned char byte;
6234
6235 result = 0;
6236 shift = 0;
c906108c
SS
6237 num_read = 0;
6238 i = 0;
6239 while (1)
6240 {
fe1b8b76 6241 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6242 buf++;
6243 num_read++;
ce5d95e1 6244 result |= ((long)(byte & 127) << shift);
c906108c
SS
6245 shift += 7;
6246 if ((byte & 128) == 0)
6247 {
6248 break;
6249 }
6250 }
77e0b926
DJ
6251 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6252 result |= -(((long)1) << shift);
c906108c
SS
6253 *bytes_read_ptr = num_read;
6254 return result;
6255}
6256
4bb7a0a7
DJ
6257/* Return a pointer to just past the end of an LEB128 number in BUF. */
6258
fe1b8b76
JB
6259static gdb_byte *
6260skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
6261{
6262 int byte;
6263
6264 while (1)
6265 {
fe1b8b76 6266 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
6267 buf++;
6268 if ((byte & 128) == 0)
6269 return buf;
6270 }
6271}
6272
c906108c 6273static void
e142c38c 6274set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
6275{
6276 switch (lang)
6277 {
6278 case DW_LANG_C89:
6279 case DW_LANG_C:
e142c38c 6280 cu->language = language_c;
c906108c
SS
6281 break;
6282 case DW_LANG_C_plus_plus:
e142c38c 6283 cu->language = language_cplus;
c906108c
SS
6284 break;
6285 case DW_LANG_Fortran77:
6286 case DW_LANG_Fortran90:
b21b22e0 6287 case DW_LANG_Fortran95:
e142c38c 6288 cu->language = language_fortran;
c906108c
SS
6289 break;
6290 case DW_LANG_Mips_Assembler:
e142c38c 6291 cu->language = language_asm;
c906108c 6292 break;
bebd888e 6293 case DW_LANG_Java:
e142c38c 6294 cu->language = language_java;
bebd888e 6295 break;
c906108c 6296 case DW_LANG_Ada83:
8aaf0b47 6297 case DW_LANG_Ada95:
bc5f45f8
JB
6298 cu->language = language_ada;
6299 break;
72019c9c
GM
6300 case DW_LANG_Modula2:
6301 cu->language = language_m2;
6302 break;
c906108c
SS
6303 case DW_LANG_Cobol74:
6304 case DW_LANG_Cobol85:
6305 case DW_LANG_Pascal83:
c906108c 6306 default:
e142c38c 6307 cu->language = language_minimal;
c906108c
SS
6308 break;
6309 }
e142c38c 6310 cu->language_defn = language_def (cu->language);
c906108c
SS
6311}
6312
6313/* Return the named attribute or NULL if not there. */
6314
6315static struct attribute *
e142c38c 6316dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
6317{
6318 unsigned int i;
6319 struct attribute *spec = NULL;
6320
6321 for (i = 0; i < die->num_attrs; ++i)
6322 {
6323 if (die->attrs[i].name == name)
10b3939b 6324 return &die->attrs[i];
c906108c
SS
6325 if (die->attrs[i].name == DW_AT_specification
6326 || die->attrs[i].name == DW_AT_abstract_origin)
6327 spec = &die->attrs[i];
6328 }
c906108c 6329
10b3939b
DJ
6330 if (spec)
6331 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
c5aa993b 6332
c906108c
SS
6333 return NULL;
6334}
6335
05cf31d1
JB
6336/* Return non-zero iff the attribute NAME is defined for the given DIE,
6337 and holds a non-zero value. This function should only be used for
6338 DW_FORM_flag attributes. */
6339
6340static int
6341dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6342{
6343 struct attribute *attr = dwarf2_attr (die, name, cu);
6344
6345 return (attr && DW_UNSND (attr));
6346}
6347
3ca72b44 6348static int
e142c38c 6349die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 6350{
05cf31d1
JB
6351 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6352 which value is non-zero. However, we have to be careful with
6353 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6354 (via dwarf2_flag_true_p) follows this attribute. So we may
6355 end up accidently finding a declaration attribute that belongs
6356 to a different DIE referenced by the specification attribute,
6357 even though the given DIE does not have a declaration attribute. */
6358 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6359 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
6360}
6361
63d06c5c
DC
6362/* Return the die giving the specification for DIE, if there is
6363 one. */
6364
6365static struct die_info *
e142c38c 6366die_specification (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 6367{
e142c38c 6368 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
63d06c5c
DC
6369
6370 if (spec_attr == NULL)
6371 return NULL;
6372 else
10b3939b 6373 return follow_die_ref (die, spec_attr, cu);
63d06c5c 6374}
c906108c 6375
debd256d
JB
6376/* Free the line_header structure *LH, and any arrays and strings it
6377 refers to. */
6378static void
6379free_line_header (struct line_header *lh)
6380{
6381 if (lh->standard_opcode_lengths)
a8bc7b56 6382 xfree (lh->standard_opcode_lengths);
debd256d
JB
6383
6384 /* Remember that all the lh->file_names[i].name pointers are
6385 pointers into debug_line_buffer, and don't need to be freed. */
6386 if (lh->file_names)
a8bc7b56 6387 xfree (lh->file_names);
debd256d
JB
6388
6389 /* Similarly for the include directory names. */
6390 if (lh->include_dirs)
a8bc7b56 6391 xfree (lh->include_dirs);
debd256d 6392
a8bc7b56 6393 xfree (lh);
debd256d
JB
6394}
6395
6396
6397/* Add an entry to LH's include directory table. */
6398static void
6399add_include_dir (struct line_header *lh, char *include_dir)
c906108c 6400{
debd256d
JB
6401 /* Grow the array if necessary. */
6402 if (lh->include_dirs_size == 0)
c5aa993b 6403 {
debd256d
JB
6404 lh->include_dirs_size = 1; /* for testing */
6405 lh->include_dirs = xmalloc (lh->include_dirs_size
6406 * sizeof (*lh->include_dirs));
6407 }
6408 else if (lh->num_include_dirs >= lh->include_dirs_size)
6409 {
6410 lh->include_dirs_size *= 2;
6411 lh->include_dirs = xrealloc (lh->include_dirs,
6412 (lh->include_dirs_size
6413 * sizeof (*lh->include_dirs)));
c5aa993b 6414 }
c906108c 6415
debd256d
JB
6416 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6417}
6418
6419
6420/* Add an entry to LH's file name table. */
6421static void
6422add_file_name (struct line_header *lh,
6423 char *name,
6424 unsigned int dir_index,
6425 unsigned int mod_time,
6426 unsigned int length)
6427{
6428 struct file_entry *fe;
6429
6430 /* Grow the array if necessary. */
6431 if (lh->file_names_size == 0)
6432 {
6433 lh->file_names_size = 1; /* for testing */
6434 lh->file_names = xmalloc (lh->file_names_size
6435 * sizeof (*lh->file_names));
6436 }
6437 else if (lh->num_file_names >= lh->file_names_size)
6438 {
6439 lh->file_names_size *= 2;
6440 lh->file_names = xrealloc (lh->file_names,
6441 (lh->file_names_size
6442 * sizeof (*lh->file_names)));
6443 }
6444
6445 fe = &lh->file_names[lh->num_file_names++];
6446 fe->name = name;
6447 fe->dir_index = dir_index;
6448 fe->mod_time = mod_time;
6449 fe->length = length;
aaa75496 6450 fe->included_p = 0;
debd256d
JB
6451}
6452
6453
6454/* Read the statement program header starting at OFFSET in
6502dd73
DJ
6455 .debug_line, according to the endianness of ABFD. Return a pointer
6456 to a struct line_header, allocated using xmalloc.
debd256d
JB
6457
6458 NOTE: the strings in the include directory and file name tables of
6459 the returned object point into debug_line_buffer, and must not be
6460 freed. */
6461static struct line_header *
6462dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 6463 struct dwarf2_cu *cu)
debd256d
JB
6464{
6465 struct cleanup *back_to;
6466 struct line_header *lh;
fe1b8b76 6467 gdb_byte *line_ptr;
891d2f0b 6468 unsigned int bytes_read;
debd256d
JB
6469 int i;
6470 char *cur_dir, *cur_file;
6471
6502dd73 6472 if (dwarf2_per_objfile->line_buffer == NULL)
debd256d 6473 {
e2e0b3e5 6474 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
6475 return 0;
6476 }
6477
a738430d
MK
6478 /* Make sure that at least there's room for the total_length field.
6479 That could be 12 bytes long, but we're just going to fudge that. */
6502dd73 6480 if (offset + 4 >= dwarf2_per_objfile->line_size)
debd256d 6481 {
4d3c2250 6482 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6483 return 0;
6484 }
6485
6486 lh = xmalloc (sizeof (*lh));
6487 memset (lh, 0, sizeof (*lh));
6488 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6489 (void *) lh);
6490
6502dd73 6491 line_ptr = dwarf2_per_objfile->line_buffer + offset;
debd256d 6492
a738430d 6493 /* Read in the header. */
dd373385
EZ
6494 lh->total_length =
6495 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
debd256d 6496 line_ptr += bytes_read;
6502dd73
DJ
6497 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6498 + dwarf2_per_objfile->line_size))
debd256d 6499 {
4d3c2250 6500 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6501 return 0;
6502 }
6503 lh->statement_program_end = line_ptr + lh->total_length;
6504 lh->version = read_2_bytes (abfd, line_ptr);
6505 line_ptr += 2;
e7c27a73 6506 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
debd256d
JB
6507 line_ptr += bytes_read;
6508 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6509 line_ptr += 1;
6510 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6511 line_ptr += 1;
6512 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6513 line_ptr += 1;
6514 lh->line_range = read_1_byte (abfd, line_ptr);
6515 line_ptr += 1;
6516 lh->opcode_base = read_1_byte (abfd, line_ptr);
6517 line_ptr += 1;
6518 lh->standard_opcode_lengths
fe1b8b76 6519 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
6520
6521 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6522 for (i = 1; i < lh->opcode_base; ++i)
6523 {
6524 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6525 line_ptr += 1;
6526 }
6527
a738430d 6528 /* Read directory table. */
debd256d
JB
6529 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6530 {
6531 line_ptr += bytes_read;
6532 add_include_dir (lh, cur_dir);
6533 }
6534 line_ptr += bytes_read;
6535
a738430d 6536 /* Read file name table. */
debd256d
JB
6537 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6538 {
6539 unsigned int dir_index, mod_time, length;
6540
6541 line_ptr += bytes_read;
6542 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6543 line_ptr += bytes_read;
6544 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6545 line_ptr += bytes_read;
6546 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6547 line_ptr += bytes_read;
6548
6549 add_file_name (lh, cur_file, dir_index, mod_time, length);
6550 }
6551 line_ptr += bytes_read;
6552 lh->statement_program_start = line_ptr;
6553
6502dd73
DJ
6554 if (line_ptr > (dwarf2_per_objfile->line_buffer
6555 + dwarf2_per_objfile->line_size))
4d3c2250 6556 complaint (&symfile_complaints,
e2e0b3e5 6557 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
6558
6559 discard_cleanups (back_to);
6560 return lh;
6561}
c906108c 6562
5fb290d7
DJ
6563/* This function exists to work around a bug in certain compilers
6564 (particularly GCC 2.95), in which the first line number marker of a
6565 function does not show up until after the prologue, right before
6566 the second line number marker. This function shifts ADDRESS down
6567 to the beginning of the function if necessary, and is called on
6568 addresses passed to record_line. */
6569
6570static CORE_ADDR
e142c38c 6571check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
6572{
6573 struct function_range *fn;
6574
6575 /* Find the function_range containing address. */
e142c38c 6576 if (!cu->first_fn)
5fb290d7
DJ
6577 return address;
6578
e142c38c
DJ
6579 if (!cu->cached_fn)
6580 cu->cached_fn = cu->first_fn;
5fb290d7 6581
e142c38c 6582 fn = cu->cached_fn;
5fb290d7
DJ
6583 while (fn)
6584 if (fn->lowpc <= address && fn->highpc > address)
6585 goto found;
6586 else
6587 fn = fn->next;
6588
e142c38c
DJ
6589 fn = cu->first_fn;
6590 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
6591 if (fn->lowpc <= address && fn->highpc > address)
6592 goto found;
6593 else
6594 fn = fn->next;
6595
6596 return address;
6597
6598 found:
6599 if (fn->seen_line)
6600 return address;
6601 if (address != fn->lowpc)
4d3c2250 6602 complaint (&symfile_complaints,
e2e0b3e5 6603 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 6604 (unsigned long) address, fn->name);
5fb290d7
DJ
6605 fn->seen_line = 1;
6606 return fn->lowpc;
6607}
6608
aaa75496
JB
6609/* Decode the Line Number Program (LNP) for the given line_header
6610 structure and CU. The actual information extracted and the type
6611 of structures created from the LNP depends on the value of PST.
6612
6613 1. If PST is NULL, then this procedure uses the data from the program
6614 to create all necessary symbol tables, and their linetables.
6615 The compilation directory of the file is passed in COMP_DIR,
6616 and must not be NULL.
6617
6618 2. If PST is not NULL, this procedure reads the program to determine
6619 the list of files included by the unit represented by PST, and
6620 builds all the associated partial symbol tables. In this case,
6621 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6622 is not used to compute the full name of the symtab, and therefore
6623 omitting it when building the partial symtab does not introduce
6624 the potential for inconsistency - a partial symtab and its associated
6625 symbtab having a different fullname -). */
debd256d 6626
c906108c 6627static void
debd256d 6628dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 6629 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 6630{
fe1b8b76
JB
6631 gdb_byte *line_ptr;
6632 gdb_byte *line_end;
e7c27a73 6633 unsigned int bytes_read;
c906108c 6634 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
6635 CORE_ADDR baseaddr;
6636 struct objfile *objfile = cu->objfile;
aaa75496 6637 const int decode_for_pst_p = (pst != NULL);
366da635 6638 struct subfile *last_subfile = NULL;
e142c38c
DJ
6639
6640 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6641
debd256d
JB
6642 line_ptr = lh->statement_program_start;
6643 line_end = lh->statement_program_end;
c906108c
SS
6644
6645 /* Read the statement sequences until there's nothing left. */
6646 while (line_ptr < line_end)
6647 {
6648 /* state machine registers */
6649 CORE_ADDR address = 0;
6650 unsigned int file = 1;
6651 unsigned int line = 1;
6652 unsigned int column = 0;
debd256d 6653 int is_stmt = lh->default_is_stmt;
c906108c
SS
6654 int basic_block = 0;
6655 int end_sequence = 0;
6656
aaa75496 6657 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 6658 {
aaa75496 6659 /* Start a subfile for the current file of the state machine. */
debd256d
JB
6660 /* lh->include_dirs and lh->file_names are 0-based, but the
6661 directory and file name numbers in the statement program
6662 are 1-based. */
6663 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 6664 char *dir = NULL;
a738430d 6665
debd256d
JB
6666 if (fe->dir_index)
6667 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
6668
6669 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
6670 }
6671
a738430d 6672 /* Decode the table. */
c5aa993b 6673 while (!end_sequence)
c906108c
SS
6674 {
6675 op_code = read_1_byte (abfd, line_ptr);
6676 line_ptr += 1;
9aa1fe7e 6677
debd256d 6678 if (op_code >= lh->opcode_base)
a738430d
MK
6679 {
6680 /* Special operand. */
debd256d
JB
6681 adj_opcode = op_code - lh->opcode_base;
6682 address += (adj_opcode / lh->line_range)
6683 * lh->minimum_instruction_length;
6684 line += lh->line_base + (adj_opcode % lh->line_range);
aa495d11 6685 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6686 if (!decode_for_pst_p)
6687 {
366da635
DJ
6688 if (last_subfile != current_subfile)
6689 {
6690 if (last_subfile)
6691 record_line (last_subfile, 0, address);
6692 last_subfile = current_subfile;
6693 }
a738430d 6694 /* Append row to matrix using current values. */
aaa75496
JB
6695 record_line (current_subfile, line,
6696 check_cu_functions (address, cu));
6697 }
9aa1fe7e
GK
6698 basic_block = 1;
6699 }
6700 else switch (op_code)
c906108c
SS
6701 {
6702 case DW_LNS_extended_op:
473b7be6
DJ
6703 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6704 line_ptr += bytes_read;
c906108c
SS
6705 extended_op = read_1_byte (abfd, line_ptr);
6706 line_ptr += 1;
6707 switch (extended_op)
6708 {
6709 case DW_LNE_end_sequence:
6710 end_sequence = 1;
aa495d11 6711 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6712 if (!decode_for_pst_p)
6713 record_line (current_subfile, 0, address);
c906108c
SS
6714 break;
6715 case DW_LNE_set_address:
e7c27a73 6716 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
6717 line_ptr += bytes_read;
6718 address += baseaddr;
c906108c
SS
6719 break;
6720 case DW_LNE_define_file:
debd256d
JB
6721 {
6722 char *cur_file;
6723 unsigned int dir_index, mod_time, length;
6724
6725 cur_file = read_string (abfd, line_ptr, &bytes_read);
6726 line_ptr += bytes_read;
6727 dir_index =
6728 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6729 line_ptr += bytes_read;
6730 mod_time =
6731 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6732 line_ptr += bytes_read;
6733 length =
6734 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6735 line_ptr += bytes_read;
6736 add_file_name (lh, cur_file, dir_index, mod_time, length);
6737 }
c906108c
SS
6738 break;
6739 default:
4d3c2250 6740 complaint (&symfile_complaints,
e2e0b3e5 6741 _("mangled .debug_line section"));
debd256d 6742 return;
c906108c
SS
6743 }
6744 break;
6745 case DW_LNS_copy:
aa495d11 6746 lh->file_names[file - 1].included_p = 1;
aaa75496 6747 if (!decode_for_pst_p)
366da635
DJ
6748 {
6749 if (last_subfile != current_subfile)
6750 {
6751 if (last_subfile)
6752 record_line (last_subfile, 0, address);
6753 last_subfile = current_subfile;
6754 }
6755 record_line (current_subfile, line,
6756 check_cu_functions (address, cu));
6757 }
c906108c
SS
6758 basic_block = 0;
6759 break;
6760 case DW_LNS_advance_pc:
debd256d 6761 address += lh->minimum_instruction_length
c906108c
SS
6762 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6763 line_ptr += bytes_read;
6764 break;
6765 case DW_LNS_advance_line:
6766 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6767 line_ptr += bytes_read;
6768 break;
6769 case DW_LNS_set_file:
debd256d 6770 {
a738430d
MK
6771 /* The arrays lh->include_dirs and lh->file_names are
6772 0-based, but the directory and file name numbers in
6773 the statement program are 1-based. */
debd256d 6774 struct file_entry *fe;
4f1520fb 6775 char *dir = NULL;
a738430d 6776
debd256d
JB
6777 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6778 line_ptr += bytes_read;
6779 fe = &lh->file_names[file - 1];
6780 if (fe->dir_index)
6781 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 6782
aaa75496 6783 if (!decode_for_pst_p)
366da635
DJ
6784 {
6785 last_subfile = current_subfile;
6786 dwarf2_start_subfile (fe->name, dir, comp_dir);
6787 }
debd256d 6788 }
c906108c
SS
6789 break;
6790 case DW_LNS_set_column:
6791 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6792 line_ptr += bytes_read;
6793 break;
6794 case DW_LNS_negate_stmt:
6795 is_stmt = (!is_stmt);
6796 break;
6797 case DW_LNS_set_basic_block:
6798 basic_block = 1;
6799 break;
c2c6d25f
JM
6800 /* Add to the address register of the state machine the
6801 address increment value corresponding to special opcode
a738430d
MK
6802 255. I.e., this value is scaled by the minimum
6803 instruction length since special opcode 255 would have
6804 scaled the the increment. */
c906108c 6805 case DW_LNS_const_add_pc:
debd256d
JB
6806 address += (lh->minimum_instruction_length
6807 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
6808 break;
6809 case DW_LNS_fixed_advance_pc:
6810 address += read_2_bytes (abfd, line_ptr);
6811 line_ptr += 2;
6812 break;
9aa1fe7e 6813 default:
a738430d
MK
6814 {
6815 /* Unknown standard opcode, ignore it. */
9aa1fe7e 6816 int i;
a738430d 6817
debd256d 6818 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
6819 {
6820 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6821 line_ptr += bytes_read;
6822 }
6823 }
c906108c
SS
6824 }
6825 }
6826 }
aaa75496
JB
6827
6828 if (decode_for_pst_p)
6829 {
6830 int file_index;
6831
6832 /* Now that we're done scanning the Line Header Program, we can
6833 create the psymtab of each included file. */
6834 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6835 if (lh->file_names[file_index].included_p == 1)
6836 {
5b5464ad
JB
6837 const struct file_entry fe = lh->file_names [file_index];
6838 char *include_name = fe.name;
6839 char *dir_name = NULL;
6840 char *pst_filename = pst->filename;
6841
6842 if (fe.dir_index)
6843 dir_name = lh->include_dirs[fe.dir_index - 1];
6844
6845 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6846 {
1754f103
MK
6847 include_name = concat (dir_name, SLASH_STRING,
6848 include_name, (char *)NULL);
5b5464ad
JB
6849 make_cleanup (xfree, include_name);
6850 }
6851
6852 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6853 {
1754f103
MK
6854 pst_filename = concat (pst->dirname, SLASH_STRING,
6855 pst_filename, (char *)NULL);
5b5464ad
JB
6856 make_cleanup (xfree, pst_filename);
6857 }
6858
6859 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
6860 dwarf2_create_include_psymtab (include_name, pst, objfile);
6861 }
6862 }
c906108c
SS
6863}
6864
6865/* Start a subfile for DWARF. FILENAME is the name of the file and
6866 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
6867 or NULL if not known. COMP_DIR is the compilation directory for the
6868 linetable's compilation unit or NULL if not known.
c906108c
SS
6869 This routine tries to keep line numbers from identical absolute and
6870 relative file names in a common subfile.
6871
6872 Using the `list' example from the GDB testsuite, which resides in
6873 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6874 of /srcdir/list0.c yields the following debugging information for list0.c:
6875
c5aa993b
JM
6876 DW_AT_name: /srcdir/list0.c
6877 DW_AT_comp_dir: /compdir
357e46e7 6878 files.files[0].name: list0.h
c5aa993b 6879 files.files[0].dir: /srcdir
357e46e7 6880 files.files[1].name: list0.c
c5aa993b 6881 files.files[1].dir: /srcdir
c906108c
SS
6882
6883 The line number information for list0.c has to end up in a single
4f1520fb
FR
6884 subfile, so that `break /srcdir/list0.c:1' works as expected.
6885 start_subfile will ensure that this happens provided that we pass the
6886 concatenation of files.files[1].dir and files.files[1].name as the
6887 subfile's name. */
c906108c
SS
6888
6889static void
4f1520fb 6890dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 6891{
4f1520fb
FR
6892 char *fullname;
6893
6894 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6895 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6896 second argument to start_subfile. To be consistent, we do the
6897 same here. In order not to lose the line information directory,
6898 we concatenate it to the filename when it makes sense.
6899 Note that the Dwarf3 standard says (speaking of filenames in line
6900 information): ``The directory index is ignored for file names
6901 that represent full path names''. Thus ignoring dirname in the
6902 `else' branch below isn't an issue. */
c906108c 6903
d5166ae1 6904 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
6905 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
6906 else
6907 fullname = filename;
c906108c 6908
4f1520fb
FR
6909 start_subfile (fullname, comp_dir);
6910
6911 if (fullname != filename)
6912 xfree (fullname);
c906108c
SS
6913}
6914
4c2df51b
DJ
6915static void
6916var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 6917 struct dwarf2_cu *cu)
4c2df51b 6918{
e7c27a73
DJ
6919 struct objfile *objfile = cu->objfile;
6920 struct comp_unit_head *cu_header = &cu->header;
6921
4c2df51b
DJ
6922 /* NOTE drow/2003-01-30: There used to be a comment and some special
6923 code here to turn a symbol with DW_AT_external and a
6924 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6925 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6926 with some versions of binutils) where shared libraries could have
6927 relocations against symbols in their debug information - the
6928 minimal symbol would have the right address, but the debug info
6929 would not. It's no longer necessary, because we will explicitly
6930 apply relocations when we read in the debug information now. */
6931
6932 /* A DW_AT_location attribute with no contents indicates that a
6933 variable has been optimized away. */
6934 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6935 {
6936 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6937 return;
6938 }
6939
6940 /* Handle one degenerate form of location expression specially, to
6941 preserve GDB's previous behavior when section offsets are
6942 specified. If this is just a DW_OP_addr then mark this symbol
6943 as LOC_STATIC. */
6944
6945 if (attr_form_is_block (attr)
6946 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6947 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6948 {
891d2f0b 6949 unsigned int dummy;
4c2df51b
DJ
6950
6951 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 6952 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
4c2df51b
DJ
6953 fixup_symbol_section (sym, objfile);
6954 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6955 SYMBOL_SECTION (sym));
6956 SYMBOL_CLASS (sym) = LOC_STATIC;
6957 return;
6958 }
6959
6960 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6961 expression evaluator, and use LOC_COMPUTED only when necessary
6962 (i.e. when the value of a register or memory location is
6963 referenced, or a thread-local block, etc.). Then again, it might
6964 not be worthwhile. I'm assuming that it isn't unless performance
6965 or memory numbers show me otherwise. */
6966
e7c27a73 6967 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
6968 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6969}
6970
c906108c
SS
6971/* Given a pointer to a DWARF information entry, figure out if we need
6972 to make a symbol table entry for it, and if so, create a new entry
6973 and return a pointer to it.
6974 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 6975 used the passed type. */
c906108c
SS
6976
6977static struct symbol *
e7c27a73 6978new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 6979{
e7c27a73 6980 struct objfile *objfile = cu->objfile;
c906108c
SS
6981 struct symbol *sym = NULL;
6982 char *name;
6983 struct attribute *attr = NULL;
6984 struct attribute *attr2 = NULL;
e142c38c
DJ
6985 CORE_ADDR baseaddr;
6986
6987 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6988
5c4e30ca 6989 if (die->tag != DW_TAG_namespace)
e142c38c 6990 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
6991 else
6992 name = TYPE_NAME (type);
6993
c906108c
SS
6994 if (name)
6995 {
4a146b47 6996 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
6997 sizeof (struct symbol));
6998 OBJSTAT (objfile, n_syms++);
6999 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
7000
7001 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 7002 SYMBOL_LANGUAGE (sym) = cu->language;
2de7ced7 7003 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
c906108c
SS
7004
7005 /* Default assumptions.
c5aa993b 7006 Use the passed type or decode it from the die. */
176620f1 7007 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 7008 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
7009 if (type != NULL)
7010 SYMBOL_TYPE (sym) = type;
7011 else
e7c27a73 7012 SYMBOL_TYPE (sym) = die_type (die, cu);
e142c38c 7013 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
c906108c
SS
7014 if (attr)
7015 {
7016 SYMBOL_LINE (sym) = DW_UNSND (attr);
7017 }
c906108c
SS
7018 switch (die->tag)
7019 {
7020 case DW_TAG_label:
e142c38c 7021 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
7022 if (attr)
7023 {
7024 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7025 }
7026 SYMBOL_CLASS (sym) = LOC_LABEL;
7027 break;
7028 case DW_TAG_subprogram:
7029 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7030 finish_block. */
7031 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 7032 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7033 if (attr2 && (DW_UNSND (attr2) != 0))
7034 {
7035 add_symbol_to_list (sym, &global_symbols);
7036 }
7037 else
7038 {
e142c38c 7039 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7040 }
7041 break;
7042 case DW_TAG_variable:
7043 /* Compilation with minimal debug info may result in variables
7044 with missing type entries. Change the misleading `void' type
7045 to something sensible. */
7046 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7047 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
7048 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
7049 "<variable, no debug info>",
7050 objfile);
e142c38c 7051 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7052 if (attr)
7053 {
e7c27a73 7054 dwarf2_const_value (attr, sym, cu);
e142c38c 7055 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7056 if (attr2 && (DW_UNSND (attr2) != 0))
7057 add_symbol_to_list (sym, &global_symbols);
7058 else
e142c38c 7059 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7060 break;
7061 }
e142c38c 7062 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7063 if (attr)
7064 {
e7c27a73 7065 var_decode_location (attr, sym, cu);
e142c38c 7066 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7067 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 7068 add_symbol_to_list (sym, &global_symbols);
c906108c 7069 else
e142c38c 7070 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7071 }
7072 else
7073 {
7074 /* We do not know the address of this symbol.
c5aa993b
JM
7075 If it is an external symbol and we have type information
7076 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7077 The address of the variable will then be determined from
7078 the minimal symbol table whenever the variable is
7079 referenced. */
e142c38c 7080 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7081 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 7082 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c
SS
7083 {
7084 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7085 add_symbol_to_list (sym, &global_symbols);
7086 }
7087 }
7088 break;
7089 case DW_TAG_formal_parameter:
e142c38c 7090 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7091 if (attr)
7092 {
e7c27a73 7093 var_decode_location (attr, sym, cu);
7cf6e574
DJ
7094 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7095 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7096 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
c906108c 7097 }
e142c38c 7098 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7099 if (attr)
7100 {
e7c27a73 7101 dwarf2_const_value (attr, sym, cu);
c906108c 7102 }
e142c38c 7103 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7104 break;
7105 case DW_TAG_unspecified_parameters:
7106 /* From varargs functions; gdb doesn't seem to have any
7107 interest in this information, so just ignore it for now.
7108 (FIXME?) */
7109 break;
7110 case DW_TAG_class_type:
7111 case DW_TAG_structure_type:
7112 case DW_TAG_union_type:
72019c9c 7113 case DW_TAG_set_type:
c906108c
SS
7114 case DW_TAG_enumeration_type:
7115 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7116 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 7117
63d06c5c
DC
7118 /* Make sure that the symbol includes appropriate enclosing
7119 classes/namespaces in its name. These are calculated in
134d01f1 7120 read_structure_type, and the correct name is saved in
63d06c5c
DC
7121 the type. */
7122
987504bb
JJ
7123 if (cu->language == language_cplus
7124 || cu->language == language_java)
c906108c 7125 {
63d06c5c
DC
7126 struct type *type = SYMBOL_TYPE (sym);
7127
7128 if (TYPE_TAG_NAME (type) != NULL)
7129 {
7130 /* FIXME: carlton/2003-11-10: Should this use
7131 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
7132 arises further down in this function.) */
7133 /* The type's name is already allocated along with
7134 this objfile, so we don't need to duplicate it
7135 for the symbol. */
7136 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 7137 }
c906108c 7138 }
63d06c5c
DC
7139
7140 {
987504bb 7141 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
7142 really ever be static objects: otherwise, if you try
7143 to, say, break of a class's method and you're in a file
7144 which doesn't mention that class, it won't work unless
7145 the check for all static symbols in lookup_symbol_aux
7146 saves you. See the OtherFileClass tests in
7147 gdb.c++/namespace.exp. */
7148
7149 struct pending **list_to_add;
7150
e142c38c 7151 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7152 && (cu->language == language_cplus
7153 || cu->language == language_java)
e142c38c 7154 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7155
7156 add_symbol_to_list (sym, list_to_add);
7157
7158 /* The semantics of C++ state that "struct foo { ... }" also
987504bb
JJ
7159 defines a typedef for "foo". A Java class declaration also
7160 defines a typedef for the class. Synthesize a typedef symbol
7161 so that "ptype foo" works as expected. */
7162 if (cu->language == language_cplus
7163 || cu->language == language_java)
63d06c5c
DC
7164 {
7165 struct symbol *typedef_sym = (struct symbol *)
4a146b47 7166 obstack_alloc (&objfile->objfile_obstack,
63d06c5c
DC
7167 sizeof (struct symbol));
7168 *typedef_sym = *sym;
7169 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
d8151005
DJ
7170 /* The symbol's name is already allocated along with
7171 this objfile, so we don't need to duplicate it for
7172 the type. */
63d06c5c 7173 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 7174 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
7175 add_symbol_to_list (typedef_sym, list_to_add);
7176 }
7177 }
c906108c
SS
7178 break;
7179 case DW_TAG_typedef:
63d06c5c
DC
7180 if (processing_has_namespace_info
7181 && processing_current_prefix[0] != '\0')
7182 {
987504bb
JJ
7183 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7184 processing_current_prefix,
7185 name, cu);
63d06c5c
DC
7186 }
7187 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7188 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7189 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 7190 break;
c906108c 7191 case DW_TAG_base_type:
a02abb62 7192 case DW_TAG_subrange_type:
c906108c 7193 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7194 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7195 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7196 break;
7197 case DW_TAG_enumerator:
63d06c5c
DC
7198 if (processing_has_namespace_info
7199 && processing_current_prefix[0] != '\0')
7200 {
987504bb
JJ
7201 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7202 processing_current_prefix,
7203 name, cu);
63d06c5c 7204 }
e142c38c 7205 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7206 if (attr)
7207 {
e7c27a73 7208 dwarf2_const_value (attr, sym, cu);
c906108c 7209 }
63d06c5c
DC
7210 {
7211 /* NOTE: carlton/2003-11-10: See comment above in the
7212 DW_TAG_class_type, etc. block. */
7213
7214 struct pending **list_to_add;
7215
e142c38c 7216 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7217 && (cu->language == language_cplus
7218 || cu->language == language_java)
e142c38c 7219 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7220
7221 add_symbol_to_list (sym, list_to_add);
7222 }
c906108c 7223 break;
5c4e30ca
DC
7224 case DW_TAG_namespace:
7225 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7226 add_symbol_to_list (sym, &global_symbols);
7227 break;
c906108c
SS
7228 default:
7229 /* Not a tag we recognize. Hopefully we aren't processing
7230 trash data, but since we must specifically ignore things
7231 we don't recognize, there is nothing else we should do at
7232 this point. */
e2e0b3e5 7233 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 7234 dwarf_tag_name (die->tag));
c906108c
SS
7235 break;
7236 }
7237 }
7238 return (sym);
7239}
7240
7241/* Copy constant value from an attribute to a symbol. */
7242
7243static void
107d2387 7244dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 7245 struct dwarf2_cu *cu)
c906108c 7246{
e7c27a73
DJ
7247 struct objfile *objfile = cu->objfile;
7248 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7249 struct dwarf_block *blk;
7250
7251 switch (attr->form)
7252 {
7253 case DW_FORM_addr:
107d2387 7254 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
22abf04a 7255 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7256 cu_header->addr_size,
7257 TYPE_LENGTH (SYMBOL_TYPE
7258 (sym)));
4e38b386 7259 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7260 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
7261 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7262 it's body - store_unsigned_integer. */
7263 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7264 DW_ADDR (attr));
c906108c
SS
7265 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7266 break;
7267 case DW_FORM_block1:
7268 case DW_FORM_block2:
7269 case DW_FORM_block4:
7270 case DW_FORM_block:
7271 blk = DW_BLOCK (attr);
7272 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
22abf04a 7273 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7274 blk->size,
7275 TYPE_LENGTH (SYMBOL_TYPE
7276 (sym)));
4e38b386 7277 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7278 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
7279 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7280 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7281 break;
2df3850c
JM
7282
7283 /* The DW_AT_const_value attributes are supposed to carry the
7284 symbol's value "represented as it would be on the target
7285 architecture." By the time we get here, it's already been
7286 converted to host endianness, so we just need to sign- or
7287 zero-extend it as appropriate. */
7288 case DW_FORM_data1:
7289 dwarf2_const_value_data (attr, sym, 8);
7290 break;
c906108c 7291 case DW_FORM_data2:
2df3850c
JM
7292 dwarf2_const_value_data (attr, sym, 16);
7293 break;
c906108c 7294 case DW_FORM_data4:
2df3850c
JM
7295 dwarf2_const_value_data (attr, sym, 32);
7296 break;
c906108c 7297 case DW_FORM_data8:
2df3850c
JM
7298 dwarf2_const_value_data (attr, sym, 64);
7299 break;
7300
c906108c 7301 case DW_FORM_sdata:
2df3850c
JM
7302 SYMBOL_VALUE (sym) = DW_SND (attr);
7303 SYMBOL_CLASS (sym) = LOC_CONST;
7304 break;
7305
c906108c
SS
7306 case DW_FORM_udata:
7307 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7308 SYMBOL_CLASS (sym) = LOC_CONST;
7309 break;
2df3850c 7310
c906108c 7311 default:
4d3c2250 7312 complaint (&symfile_complaints,
e2e0b3e5 7313 _("unsupported const value attribute form: '%s'"),
4d3c2250 7314 dwarf_form_name (attr->form));
c906108c
SS
7315 SYMBOL_VALUE (sym) = 0;
7316 SYMBOL_CLASS (sym) = LOC_CONST;
7317 break;
7318 }
7319}
7320
2df3850c
JM
7321
7322/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7323 or zero-extend it as appropriate for the symbol's type. */
7324static void
7325dwarf2_const_value_data (struct attribute *attr,
7326 struct symbol *sym,
7327 int bits)
7328{
7329 LONGEST l = DW_UNSND (attr);
7330
7331 if (bits < sizeof (l) * 8)
7332 {
7333 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7334 l &= ((LONGEST) 1 << bits) - 1;
7335 else
bf9198f1 7336 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
7337 }
7338
7339 SYMBOL_VALUE (sym) = l;
7340 SYMBOL_CLASS (sym) = LOC_CONST;
7341}
7342
7343
c906108c
SS
7344/* Return the type of the die in question using its DW_AT_type attribute. */
7345
7346static struct type *
e7c27a73 7347die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7348{
7349 struct type *type;
7350 struct attribute *type_attr;
7351 struct die_info *type_die;
c906108c 7352
e142c38c 7353 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
7354 if (!type_attr)
7355 {
7356 /* A missing DW_AT_type represents a void type. */
e142c38c 7357 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
c906108c
SS
7358 }
7359 else
10b3939b
DJ
7360 type_die = follow_die_ref (die, type_attr, cu);
7361
e7c27a73 7362 type = tag_type_to_type (type_die, cu);
c906108c
SS
7363 if (!type)
7364 {
7365 dump_die (type_die);
8a3fe4f8 7366 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 7367 cu->objfile->name);
c906108c
SS
7368 }
7369 return type;
7370}
7371
7372/* Return the containing type of the die in question using its
7373 DW_AT_containing_type attribute. */
7374
7375static struct type *
e7c27a73 7376die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7377{
7378 struct type *type = NULL;
7379 struct attribute *type_attr;
7380 struct die_info *type_die = NULL;
c906108c 7381
e142c38c 7382 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
7383 if (type_attr)
7384 {
10b3939b 7385 type_die = follow_die_ref (die, type_attr, cu);
e7c27a73 7386 type = tag_type_to_type (type_die, cu);
c906108c
SS
7387 }
7388 if (!type)
7389 {
7390 if (type_die)
7391 dump_die (type_die);
8a3fe4f8 7392 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 7393 cu->objfile->name);
c906108c
SS
7394 }
7395 return type;
7396}
7397
c906108c 7398static struct type *
e7c27a73 7399tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7400{
7401 if (die->type)
7402 {
7403 return die->type;
7404 }
7405 else
7406 {
e7c27a73 7407 read_type_die (die, cu);
c906108c
SS
7408 if (!die->type)
7409 {
7410 dump_die (die);
8a3fe4f8 7411 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
e7c27a73 7412 cu->objfile->name);
c906108c
SS
7413 }
7414 return die->type;
7415 }
7416}
7417
7418static void
e7c27a73 7419read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7420{
e142c38c 7421 char *prefix = determine_prefix (die, cu);
63d06c5c
DC
7422 const char *old_prefix = processing_current_prefix;
7423 struct cleanup *back_to = make_cleanup (xfree, prefix);
7424 processing_current_prefix = prefix;
7425
c906108c
SS
7426 switch (die->tag)
7427 {
7428 case DW_TAG_class_type:
7429 case DW_TAG_structure_type:
7430 case DW_TAG_union_type:
134d01f1 7431 read_structure_type (die, cu);
c906108c
SS
7432 break;
7433 case DW_TAG_enumeration_type:
134d01f1 7434 read_enumeration_type (die, cu);
c906108c
SS
7435 break;
7436 case DW_TAG_subprogram:
7437 case DW_TAG_subroutine_type:
e7c27a73 7438 read_subroutine_type (die, cu);
c906108c
SS
7439 break;
7440 case DW_TAG_array_type:
e7c27a73 7441 read_array_type (die, cu);
c906108c 7442 break;
72019c9c
GM
7443 case DW_TAG_set_type:
7444 read_set_type (die, cu);
7445 break;
c906108c 7446 case DW_TAG_pointer_type:
e7c27a73 7447 read_tag_pointer_type (die, cu);
c906108c
SS
7448 break;
7449 case DW_TAG_ptr_to_member_type:
e7c27a73 7450 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
7451 break;
7452 case DW_TAG_reference_type:
e7c27a73 7453 read_tag_reference_type (die, cu);
c906108c
SS
7454 break;
7455 case DW_TAG_const_type:
e7c27a73 7456 read_tag_const_type (die, cu);
c906108c
SS
7457 break;
7458 case DW_TAG_volatile_type:
e7c27a73 7459 read_tag_volatile_type (die, cu);
c906108c
SS
7460 break;
7461 case DW_TAG_string_type:
e7c27a73 7462 read_tag_string_type (die, cu);
c906108c
SS
7463 break;
7464 case DW_TAG_typedef:
e7c27a73 7465 read_typedef (die, cu);
c906108c 7466 break;
a02abb62
JB
7467 case DW_TAG_subrange_type:
7468 read_subrange_type (die, cu);
7469 break;
c906108c 7470 case DW_TAG_base_type:
e7c27a73 7471 read_base_type (die, cu);
c906108c 7472 break;
81a17f79
JB
7473 case DW_TAG_unspecified_type:
7474 read_unspecified_type (die, cu);
7475 break;
c906108c 7476 default:
a1f5b845 7477 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 7478 dwarf_tag_name (die->tag));
c906108c
SS
7479 break;
7480 }
63d06c5c
DC
7481
7482 processing_current_prefix = old_prefix;
7483 do_cleanups (back_to);
7484}
7485
fdde2d81
DC
7486/* Return the name of the namespace/class that DIE is defined within,
7487 or "" if we can't tell. The caller should xfree the result. */
7488
7489/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7490 therein) for an example of how to use this function to deal with
7491 DW_AT_specification. */
7492
7493static char *
e142c38c 7494determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c
DC
7495{
7496 struct die_info *parent;
7497
987504bb
JJ
7498 if (cu->language != language_cplus
7499 && cu->language != language_java)
63d06c5c
DC
7500 return NULL;
7501
7502 parent = die->parent;
7503
7504 if (parent == NULL)
7505 {
8176b9b8 7506 return xstrdup ("");
63d06c5c
DC
7507 }
7508 else
7509 {
63d06c5c
DC
7510 switch (parent->tag) {
7511 case DW_TAG_namespace:
7512 {
8176b9b8
DC
7513 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7514 before doing this check? */
7515 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7516 {
7517 return xstrdup (TYPE_TAG_NAME (parent->type));
7518 }
7519 else
7520 {
7521 int dummy;
7522 char *parent_prefix = determine_prefix (parent, cu);
987504bb 7523 char *retval = typename_concat (NULL, parent_prefix,
8176b9b8 7524 namespace_name (parent, &dummy,
987504bb
JJ
7525 cu),
7526 cu);
8176b9b8
DC
7527 xfree (parent_prefix);
7528 return retval;
7529 }
63d06c5c
DC
7530 }
7531 break;
7532 case DW_TAG_class_type:
7533 case DW_TAG_structure_type:
7534 {
8176b9b8 7535 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
63d06c5c 7536 {
8176b9b8 7537 return xstrdup (TYPE_TAG_NAME (parent->type));
63d06c5c
DC
7538 }
7539 else
8176b9b8
DC
7540 {
7541 const char *old_prefix = processing_current_prefix;
7542 char *new_prefix = determine_prefix (parent, cu);
7543 char *retval;
7544
7545 processing_current_prefix = new_prefix;
7546 retval = determine_class_name (parent, cu);
7547 processing_current_prefix = old_prefix;
7548
7549 xfree (new_prefix);
7550 return retval;
7551 }
63d06c5c 7552 }
63d06c5c 7553 default:
8176b9b8 7554 return determine_prefix (parent, cu);
63d06c5c 7555 }
63d06c5c
DC
7556 }
7557}
7558
987504bb
JJ
7559/* Return a newly-allocated string formed by concatenating PREFIX and
7560 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7561 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7562 perform an obconcat, otherwise allocate storage for the result. The CU argument
7563 is used to determine the language and hence, the appropriate separator. */
7564
7565#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
7566
7567static char *
987504bb
JJ
7568typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7569 struct dwarf2_cu *cu)
63d06c5c 7570{
987504bb 7571 char *sep;
63d06c5c 7572
987504bb
JJ
7573 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7574 sep = "";
7575 else if (cu->language == language_java)
7576 sep = ".";
7577 else
7578 sep = "::";
63d06c5c 7579
987504bb
JJ
7580 if (obs == NULL)
7581 {
7582 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7583 retval[0] = '\0';
7584
7585 if (prefix)
7586 {
7587 strcpy (retval, prefix);
7588 strcat (retval, sep);
7589 }
7590 if (suffix)
7591 strcat (retval, suffix);
7592
63d06c5c
DC
7593 return retval;
7594 }
987504bb
JJ
7595 else
7596 {
7597 /* We have an obstack. */
7598 return obconcat (obs, prefix, sep, suffix);
7599 }
63d06c5c
DC
7600}
7601
c906108c 7602static struct type *
e7c27a73 7603dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
c906108c 7604{
e7c27a73
DJ
7605 struct objfile *objfile = cu->objfile;
7606
c906108c
SS
7607 /* FIXME - this should not produce a new (struct type *)
7608 every time. It should cache base types. */
7609 struct type *type;
7610 switch (encoding)
7611 {
7612 case DW_ATE_address:
e142c38c 7613 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
c906108c
SS
7614 return type;
7615 case DW_ATE_boolean:
e142c38c 7616 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
c906108c
SS
7617 return type;
7618 case DW_ATE_complex_float:
7619 if (size == 16)
7620 {
e142c38c 7621 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
c906108c
SS
7622 }
7623 else
7624 {
e142c38c 7625 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
c906108c
SS
7626 }
7627 return type;
7628 case DW_ATE_float:
7629 if (size == 8)
7630 {
e142c38c 7631 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
c906108c
SS
7632 }
7633 else
7634 {
e142c38c 7635 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
c906108c
SS
7636 }
7637 return type;
7638 case DW_ATE_signed:
7639 switch (size)
7640 {
7641 case 1:
e142c38c 7642 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7643 break;
7644 case 2:
e142c38c 7645 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
c906108c
SS
7646 break;
7647 default:
7648 case 4:
e142c38c 7649 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7650 break;
7651 }
7652 return type;
7653 case DW_ATE_signed_char:
e142c38c 7654 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7655 return type;
7656 case DW_ATE_unsigned:
7657 switch (size)
7658 {
7659 case 1:
e142c38c 7660 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7661 break;
7662 case 2:
e142c38c 7663 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
c906108c
SS
7664 break;
7665 default:
7666 case 4:
e142c38c 7667 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
c906108c
SS
7668 break;
7669 }
7670 return type;
7671 case DW_ATE_unsigned_char:
e142c38c 7672 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7673 return type;
7674 default:
e142c38c 7675 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7676 return type;
7677 }
7678}
7679
7680#if 0
7681struct die_info *
fba45db2 7682copy_die (struct die_info *old_die)
c906108c
SS
7683{
7684 struct die_info *new_die;
7685 int i, num_attrs;
7686
7687 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7688 memset (new_die, 0, sizeof (struct die_info));
7689
7690 new_die->tag = old_die->tag;
7691 new_die->has_children = old_die->has_children;
7692 new_die->abbrev = old_die->abbrev;
7693 new_die->offset = old_die->offset;
7694 new_die->type = NULL;
7695
7696 num_attrs = old_die->num_attrs;
7697 new_die->num_attrs = num_attrs;
7698 new_die->attrs = (struct attribute *)
7699 xmalloc (num_attrs * sizeof (struct attribute));
7700
7701 for (i = 0; i < old_die->num_attrs; ++i)
7702 {
7703 new_die->attrs[i].name = old_die->attrs[i].name;
7704 new_die->attrs[i].form = old_die->attrs[i].form;
7705 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7706 }
7707
7708 new_die->next = NULL;
7709 return new_die;
7710}
7711#endif
7712
7713/* Return sibling of die, NULL if no sibling. */
7714
f9aca02d 7715static struct die_info *
fba45db2 7716sibling_die (struct die_info *die)
c906108c 7717{
639d11d3 7718 return die->sibling;
c906108c
SS
7719}
7720
7721/* Get linkage name of a die, return NULL if not found. */
7722
7723static char *
e142c38c 7724dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7725{
7726 struct attribute *attr;
7727
e142c38c 7728 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
7729 if (attr && DW_STRING (attr))
7730 return DW_STRING (attr);
e142c38c 7731 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
7732 if (attr && DW_STRING (attr))
7733 return DW_STRING (attr);
7734 return NULL;
7735}
7736
9219021c
DC
7737/* Get name of a die, return NULL if not found. */
7738
7739static char *
e142c38c 7740dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7741{
7742 struct attribute *attr;
7743
e142c38c 7744 attr = dwarf2_attr (die, DW_AT_name, cu);
9219021c
DC
7745 if (attr && DW_STRING (attr))
7746 return DW_STRING (attr);
7747 return NULL;
7748}
7749
7750/* Return the die that this die in an extension of, or NULL if there
7751 is none. */
7752
7753static struct die_info *
e142c38c 7754dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7755{
7756 struct attribute *attr;
9219021c 7757
e142c38c 7758 attr = dwarf2_attr (die, DW_AT_extension, cu);
9219021c
DC
7759 if (attr == NULL)
7760 return NULL;
7761
10b3939b 7762 return follow_die_ref (die, attr, cu);
9219021c
DC
7763}
7764
c906108c
SS
7765/* Convert a DIE tag into its string name. */
7766
7767static char *
aa1ee363 7768dwarf_tag_name (unsigned tag)
c906108c
SS
7769{
7770 switch (tag)
7771 {
7772 case DW_TAG_padding:
7773 return "DW_TAG_padding";
7774 case DW_TAG_array_type:
7775 return "DW_TAG_array_type";
7776 case DW_TAG_class_type:
7777 return "DW_TAG_class_type";
7778 case DW_TAG_entry_point:
7779 return "DW_TAG_entry_point";
7780 case DW_TAG_enumeration_type:
7781 return "DW_TAG_enumeration_type";
7782 case DW_TAG_formal_parameter:
7783 return "DW_TAG_formal_parameter";
7784 case DW_TAG_imported_declaration:
7785 return "DW_TAG_imported_declaration";
7786 case DW_TAG_label:
7787 return "DW_TAG_label";
7788 case DW_TAG_lexical_block:
7789 return "DW_TAG_lexical_block";
7790 case DW_TAG_member:
7791 return "DW_TAG_member";
7792 case DW_TAG_pointer_type:
7793 return "DW_TAG_pointer_type";
7794 case DW_TAG_reference_type:
7795 return "DW_TAG_reference_type";
7796 case DW_TAG_compile_unit:
7797 return "DW_TAG_compile_unit";
7798 case DW_TAG_string_type:
7799 return "DW_TAG_string_type";
7800 case DW_TAG_structure_type:
7801 return "DW_TAG_structure_type";
7802 case DW_TAG_subroutine_type:
7803 return "DW_TAG_subroutine_type";
7804 case DW_TAG_typedef:
7805 return "DW_TAG_typedef";
7806 case DW_TAG_union_type:
7807 return "DW_TAG_union_type";
7808 case DW_TAG_unspecified_parameters:
7809 return "DW_TAG_unspecified_parameters";
7810 case DW_TAG_variant:
7811 return "DW_TAG_variant";
7812 case DW_TAG_common_block:
7813 return "DW_TAG_common_block";
7814 case DW_TAG_common_inclusion:
7815 return "DW_TAG_common_inclusion";
7816 case DW_TAG_inheritance:
7817 return "DW_TAG_inheritance";
7818 case DW_TAG_inlined_subroutine:
7819 return "DW_TAG_inlined_subroutine";
7820 case DW_TAG_module:
7821 return "DW_TAG_module";
7822 case DW_TAG_ptr_to_member_type:
7823 return "DW_TAG_ptr_to_member_type";
7824 case DW_TAG_set_type:
7825 return "DW_TAG_set_type";
7826 case DW_TAG_subrange_type:
7827 return "DW_TAG_subrange_type";
7828 case DW_TAG_with_stmt:
7829 return "DW_TAG_with_stmt";
7830 case DW_TAG_access_declaration:
7831 return "DW_TAG_access_declaration";
7832 case DW_TAG_base_type:
7833 return "DW_TAG_base_type";
7834 case DW_TAG_catch_block:
7835 return "DW_TAG_catch_block";
7836 case DW_TAG_const_type:
7837 return "DW_TAG_const_type";
7838 case DW_TAG_constant:
7839 return "DW_TAG_constant";
7840 case DW_TAG_enumerator:
7841 return "DW_TAG_enumerator";
7842 case DW_TAG_file_type:
7843 return "DW_TAG_file_type";
7844 case DW_TAG_friend:
7845 return "DW_TAG_friend";
7846 case DW_TAG_namelist:
7847 return "DW_TAG_namelist";
7848 case DW_TAG_namelist_item:
7849 return "DW_TAG_namelist_item";
7850 case DW_TAG_packed_type:
7851 return "DW_TAG_packed_type";
7852 case DW_TAG_subprogram:
7853 return "DW_TAG_subprogram";
7854 case DW_TAG_template_type_param:
7855 return "DW_TAG_template_type_param";
7856 case DW_TAG_template_value_param:
7857 return "DW_TAG_template_value_param";
7858 case DW_TAG_thrown_type:
7859 return "DW_TAG_thrown_type";
7860 case DW_TAG_try_block:
7861 return "DW_TAG_try_block";
7862 case DW_TAG_variant_part:
7863 return "DW_TAG_variant_part";
7864 case DW_TAG_variable:
7865 return "DW_TAG_variable";
7866 case DW_TAG_volatile_type:
7867 return "DW_TAG_volatile_type";
d9fa45fe
DC
7868 case DW_TAG_dwarf_procedure:
7869 return "DW_TAG_dwarf_procedure";
7870 case DW_TAG_restrict_type:
7871 return "DW_TAG_restrict_type";
7872 case DW_TAG_interface_type:
7873 return "DW_TAG_interface_type";
7874 case DW_TAG_namespace:
7875 return "DW_TAG_namespace";
7876 case DW_TAG_imported_module:
7877 return "DW_TAG_imported_module";
7878 case DW_TAG_unspecified_type:
7879 return "DW_TAG_unspecified_type";
7880 case DW_TAG_partial_unit:
7881 return "DW_TAG_partial_unit";
7882 case DW_TAG_imported_unit:
7883 return "DW_TAG_imported_unit";
c906108c
SS
7884 case DW_TAG_MIPS_loop:
7885 return "DW_TAG_MIPS_loop";
7886 case DW_TAG_format_label:
7887 return "DW_TAG_format_label";
7888 case DW_TAG_function_template:
7889 return "DW_TAG_function_template";
7890 case DW_TAG_class_template:
7891 return "DW_TAG_class_template";
7892 default:
7893 return "DW_TAG_<unknown>";
7894 }
7895}
7896
7897/* Convert a DWARF attribute code into its string name. */
7898
7899static char *
aa1ee363 7900dwarf_attr_name (unsigned attr)
c906108c
SS
7901{
7902 switch (attr)
7903 {
7904 case DW_AT_sibling:
7905 return "DW_AT_sibling";
7906 case DW_AT_location:
7907 return "DW_AT_location";
7908 case DW_AT_name:
7909 return "DW_AT_name";
7910 case DW_AT_ordering:
7911 return "DW_AT_ordering";
7912 case DW_AT_subscr_data:
7913 return "DW_AT_subscr_data";
7914 case DW_AT_byte_size:
7915 return "DW_AT_byte_size";
7916 case DW_AT_bit_offset:
7917 return "DW_AT_bit_offset";
7918 case DW_AT_bit_size:
7919 return "DW_AT_bit_size";
7920 case DW_AT_element_list:
7921 return "DW_AT_element_list";
7922 case DW_AT_stmt_list:
7923 return "DW_AT_stmt_list";
7924 case DW_AT_low_pc:
7925 return "DW_AT_low_pc";
7926 case DW_AT_high_pc:
7927 return "DW_AT_high_pc";
7928 case DW_AT_language:
7929 return "DW_AT_language";
7930 case DW_AT_member:
7931 return "DW_AT_member";
7932 case DW_AT_discr:
7933 return "DW_AT_discr";
7934 case DW_AT_discr_value:
7935 return "DW_AT_discr_value";
7936 case DW_AT_visibility:
7937 return "DW_AT_visibility";
7938 case DW_AT_import:
7939 return "DW_AT_import";
7940 case DW_AT_string_length:
7941 return "DW_AT_string_length";
7942 case DW_AT_common_reference:
7943 return "DW_AT_common_reference";
7944 case DW_AT_comp_dir:
7945 return "DW_AT_comp_dir";
7946 case DW_AT_const_value:
7947 return "DW_AT_const_value";
7948 case DW_AT_containing_type:
7949 return "DW_AT_containing_type";
7950 case DW_AT_default_value:
7951 return "DW_AT_default_value";
7952 case DW_AT_inline:
7953 return "DW_AT_inline";
7954 case DW_AT_is_optional:
7955 return "DW_AT_is_optional";
7956 case DW_AT_lower_bound:
7957 return "DW_AT_lower_bound";
7958 case DW_AT_producer:
7959 return "DW_AT_producer";
7960 case DW_AT_prototyped:
7961 return "DW_AT_prototyped";
7962 case DW_AT_return_addr:
7963 return "DW_AT_return_addr";
7964 case DW_AT_start_scope:
7965 return "DW_AT_start_scope";
7966 case DW_AT_stride_size:
7967 return "DW_AT_stride_size";
7968 case DW_AT_upper_bound:
7969 return "DW_AT_upper_bound";
7970 case DW_AT_abstract_origin:
7971 return "DW_AT_abstract_origin";
7972 case DW_AT_accessibility:
7973 return "DW_AT_accessibility";
7974 case DW_AT_address_class:
7975 return "DW_AT_address_class";
7976 case DW_AT_artificial:
7977 return "DW_AT_artificial";
7978 case DW_AT_base_types:
7979 return "DW_AT_base_types";
7980 case DW_AT_calling_convention:
7981 return "DW_AT_calling_convention";
7982 case DW_AT_count:
7983 return "DW_AT_count";
7984 case DW_AT_data_member_location:
7985 return "DW_AT_data_member_location";
7986 case DW_AT_decl_column:
7987 return "DW_AT_decl_column";
7988 case DW_AT_decl_file:
7989 return "DW_AT_decl_file";
7990 case DW_AT_decl_line:
7991 return "DW_AT_decl_line";
7992 case DW_AT_declaration:
7993 return "DW_AT_declaration";
7994 case DW_AT_discr_list:
7995 return "DW_AT_discr_list";
7996 case DW_AT_encoding:
7997 return "DW_AT_encoding";
7998 case DW_AT_external:
7999 return "DW_AT_external";
8000 case DW_AT_frame_base:
8001 return "DW_AT_frame_base";
8002 case DW_AT_friend:
8003 return "DW_AT_friend";
8004 case DW_AT_identifier_case:
8005 return "DW_AT_identifier_case";
8006 case DW_AT_macro_info:
8007 return "DW_AT_macro_info";
8008 case DW_AT_namelist_items:
8009 return "DW_AT_namelist_items";
8010 case DW_AT_priority:
8011 return "DW_AT_priority";
8012 case DW_AT_segment:
8013 return "DW_AT_segment";
8014 case DW_AT_specification:
8015 return "DW_AT_specification";
8016 case DW_AT_static_link:
8017 return "DW_AT_static_link";
8018 case DW_AT_type:
8019 return "DW_AT_type";
8020 case DW_AT_use_location:
8021 return "DW_AT_use_location";
8022 case DW_AT_variable_parameter:
8023 return "DW_AT_variable_parameter";
8024 case DW_AT_virtuality:
8025 return "DW_AT_virtuality";
8026 case DW_AT_vtable_elem_location:
8027 return "DW_AT_vtable_elem_location";
d9fa45fe
DC
8028 case DW_AT_allocated:
8029 return "DW_AT_allocated";
8030 case DW_AT_associated:
8031 return "DW_AT_associated";
8032 case DW_AT_data_location:
8033 return "DW_AT_data_location";
8034 case DW_AT_stride:
8035 return "DW_AT_stride";
8036 case DW_AT_entry_pc:
8037 return "DW_AT_entry_pc";
8038 case DW_AT_use_UTF8:
8039 return "DW_AT_use_UTF8";
8040 case DW_AT_extension:
8041 return "DW_AT_extension";
8042 case DW_AT_ranges:
8043 return "DW_AT_ranges";
8044 case DW_AT_trampoline:
8045 return "DW_AT_trampoline";
8046 case DW_AT_call_column:
8047 return "DW_AT_call_column";
8048 case DW_AT_call_file:
8049 return "DW_AT_call_file";
8050 case DW_AT_call_line:
8051 return "DW_AT_call_line";
c906108c
SS
8052#ifdef MIPS
8053 case DW_AT_MIPS_fde:
8054 return "DW_AT_MIPS_fde";
8055 case DW_AT_MIPS_loop_begin:
8056 return "DW_AT_MIPS_loop_begin";
8057 case DW_AT_MIPS_tail_loop_begin:
8058 return "DW_AT_MIPS_tail_loop_begin";
8059 case DW_AT_MIPS_epilog_begin:
8060 return "DW_AT_MIPS_epilog_begin";
8061 case DW_AT_MIPS_loop_unroll_factor:
8062 return "DW_AT_MIPS_loop_unroll_factor";
8063 case DW_AT_MIPS_software_pipeline_depth:
8064 return "DW_AT_MIPS_software_pipeline_depth";
e0a4f5a1 8065#endif
c906108c
SS
8066 case DW_AT_MIPS_linkage_name:
8067 return "DW_AT_MIPS_linkage_name";
c906108c
SS
8068
8069 case DW_AT_sf_names:
8070 return "DW_AT_sf_names";
8071 case DW_AT_src_info:
8072 return "DW_AT_src_info";
8073 case DW_AT_mac_info:
8074 return "DW_AT_mac_info";
8075 case DW_AT_src_coords:
8076 return "DW_AT_src_coords";
8077 case DW_AT_body_begin:
8078 return "DW_AT_body_begin";
8079 case DW_AT_body_end:
8080 return "DW_AT_body_end";
f5f8a009
EZ
8081 case DW_AT_GNU_vector:
8082 return "DW_AT_GNU_vector";
c906108c
SS
8083 default:
8084 return "DW_AT_<unknown>";
8085 }
8086}
8087
8088/* Convert a DWARF value form code into its string name. */
8089
8090static char *
aa1ee363 8091dwarf_form_name (unsigned form)
c906108c
SS
8092{
8093 switch (form)
8094 {
8095 case DW_FORM_addr:
8096 return "DW_FORM_addr";
8097 case DW_FORM_block2:
8098 return "DW_FORM_block2";
8099 case DW_FORM_block4:
8100 return "DW_FORM_block4";
8101 case DW_FORM_data2:
8102 return "DW_FORM_data2";
8103 case DW_FORM_data4:
8104 return "DW_FORM_data4";
8105 case DW_FORM_data8:
8106 return "DW_FORM_data8";
8107 case DW_FORM_string:
8108 return "DW_FORM_string";
8109 case DW_FORM_block:
8110 return "DW_FORM_block";
8111 case DW_FORM_block1:
8112 return "DW_FORM_block1";
8113 case DW_FORM_data1:
8114 return "DW_FORM_data1";
8115 case DW_FORM_flag:
8116 return "DW_FORM_flag";
8117 case DW_FORM_sdata:
8118 return "DW_FORM_sdata";
8119 case DW_FORM_strp:
8120 return "DW_FORM_strp";
8121 case DW_FORM_udata:
8122 return "DW_FORM_udata";
8123 case DW_FORM_ref_addr:
8124 return "DW_FORM_ref_addr";
8125 case DW_FORM_ref1:
8126 return "DW_FORM_ref1";
8127 case DW_FORM_ref2:
8128 return "DW_FORM_ref2";
8129 case DW_FORM_ref4:
8130 return "DW_FORM_ref4";
8131 case DW_FORM_ref8:
8132 return "DW_FORM_ref8";
8133 case DW_FORM_ref_udata:
8134 return "DW_FORM_ref_udata";
8135 case DW_FORM_indirect:
8136 return "DW_FORM_indirect";
8137 default:
8138 return "DW_FORM_<unknown>";
8139 }
8140}
8141
8142/* Convert a DWARF stack opcode into its string name. */
8143
8144static char *
aa1ee363 8145dwarf_stack_op_name (unsigned op)
c906108c
SS
8146{
8147 switch (op)
8148 {
8149 case DW_OP_addr:
8150 return "DW_OP_addr";
8151 case DW_OP_deref:
8152 return "DW_OP_deref";
8153 case DW_OP_const1u:
8154 return "DW_OP_const1u";
8155 case DW_OP_const1s:
8156 return "DW_OP_const1s";
8157 case DW_OP_const2u:
8158 return "DW_OP_const2u";
8159 case DW_OP_const2s:
8160 return "DW_OP_const2s";
8161 case DW_OP_const4u:
8162 return "DW_OP_const4u";
8163 case DW_OP_const4s:
8164 return "DW_OP_const4s";
8165 case DW_OP_const8u:
8166 return "DW_OP_const8u";
8167 case DW_OP_const8s:
8168 return "DW_OP_const8s";
8169 case DW_OP_constu:
8170 return "DW_OP_constu";
8171 case DW_OP_consts:
8172 return "DW_OP_consts";
8173 case DW_OP_dup:
8174 return "DW_OP_dup";
8175 case DW_OP_drop:
8176 return "DW_OP_drop";
8177 case DW_OP_over:
8178 return "DW_OP_over";
8179 case DW_OP_pick:
8180 return "DW_OP_pick";
8181 case DW_OP_swap:
8182 return "DW_OP_swap";
8183 case DW_OP_rot:
8184 return "DW_OP_rot";
8185 case DW_OP_xderef:
8186 return "DW_OP_xderef";
8187 case DW_OP_abs:
8188 return "DW_OP_abs";
8189 case DW_OP_and:
8190 return "DW_OP_and";
8191 case DW_OP_div:
8192 return "DW_OP_div";
8193 case DW_OP_minus:
8194 return "DW_OP_minus";
8195 case DW_OP_mod:
8196 return "DW_OP_mod";
8197 case DW_OP_mul:
8198 return "DW_OP_mul";
8199 case DW_OP_neg:
8200 return "DW_OP_neg";
8201 case DW_OP_not:
8202 return "DW_OP_not";
8203 case DW_OP_or:
8204 return "DW_OP_or";
8205 case DW_OP_plus:
8206 return "DW_OP_plus";
8207 case DW_OP_plus_uconst:
8208 return "DW_OP_plus_uconst";
8209 case DW_OP_shl:
8210 return "DW_OP_shl";
8211 case DW_OP_shr:
8212 return "DW_OP_shr";
8213 case DW_OP_shra:
8214 return "DW_OP_shra";
8215 case DW_OP_xor:
8216 return "DW_OP_xor";
8217 case DW_OP_bra:
8218 return "DW_OP_bra";
8219 case DW_OP_eq:
8220 return "DW_OP_eq";
8221 case DW_OP_ge:
8222 return "DW_OP_ge";
8223 case DW_OP_gt:
8224 return "DW_OP_gt";
8225 case DW_OP_le:
8226 return "DW_OP_le";
8227 case DW_OP_lt:
8228 return "DW_OP_lt";
8229 case DW_OP_ne:
8230 return "DW_OP_ne";
8231 case DW_OP_skip:
8232 return "DW_OP_skip";
8233 case DW_OP_lit0:
8234 return "DW_OP_lit0";
8235 case DW_OP_lit1:
8236 return "DW_OP_lit1";
8237 case DW_OP_lit2:
8238 return "DW_OP_lit2";
8239 case DW_OP_lit3:
8240 return "DW_OP_lit3";
8241 case DW_OP_lit4:
8242 return "DW_OP_lit4";
8243 case DW_OP_lit5:
8244 return "DW_OP_lit5";
8245 case DW_OP_lit6:
8246 return "DW_OP_lit6";
8247 case DW_OP_lit7:
8248 return "DW_OP_lit7";
8249 case DW_OP_lit8:
8250 return "DW_OP_lit8";
8251 case DW_OP_lit9:
8252 return "DW_OP_lit9";
8253 case DW_OP_lit10:
8254 return "DW_OP_lit10";
8255 case DW_OP_lit11:
8256 return "DW_OP_lit11";
8257 case DW_OP_lit12:
8258 return "DW_OP_lit12";
8259 case DW_OP_lit13:
8260 return "DW_OP_lit13";
8261 case DW_OP_lit14:
8262 return "DW_OP_lit14";
8263 case DW_OP_lit15:
8264 return "DW_OP_lit15";
8265 case DW_OP_lit16:
8266 return "DW_OP_lit16";
8267 case DW_OP_lit17:
8268 return "DW_OP_lit17";
8269 case DW_OP_lit18:
8270 return "DW_OP_lit18";
8271 case DW_OP_lit19:
8272 return "DW_OP_lit19";
8273 case DW_OP_lit20:
8274 return "DW_OP_lit20";
8275 case DW_OP_lit21:
8276 return "DW_OP_lit21";
8277 case DW_OP_lit22:
8278 return "DW_OP_lit22";
8279 case DW_OP_lit23:
8280 return "DW_OP_lit23";
8281 case DW_OP_lit24:
8282 return "DW_OP_lit24";
8283 case DW_OP_lit25:
8284 return "DW_OP_lit25";
8285 case DW_OP_lit26:
8286 return "DW_OP_lit26";
8287 case DW_OP_lit27:
8288 return "DW_OP_lit27";
8289 case DW_OP_lit28:
8290 return "DW_OP_lit28";
8291 case DW_OP_lit29:
8292 return "DW_OP_lit29";
8293 case DW_OP_lit30:
8294 return "DW_OP_lit30";
8295 case DW_OP_lit31:
8296 return "DW_OP_lit31";
8297 case DW_OP_reg0:
8298 return "DW_OP_reg0";
8299 case DW_OP_reg1:
8300 return "DW_OP_reg1";
8301 case DW_OP_reg2:
8302 return "DW_OP_reg2";
8303 case DW_OP_reg3:
8304 return "DW_OP_reg3";
8305 case DW_OP_reg4:
8306 return "DW_OP_reg4";
8307 case DW_OP_reg5:
8308 return "DW_OP_reg5";
8309 case DW_OP_reg6:
8310 return "DW_OP_reg6";
8311 case DW_OP_reg7:
8312 return "DW_OP_reg7";
8313 case DW_OP_reg8:
8314 return "DW_OP_reg8";
8315 case DW_OP_reg9:
8316 return "DW_OP_reg9";
8317 case DW_OP_reg10:
8318 return "DW_OP_reg10";
8319 case DW_OP_reg11:
8320 return "DW_OP_reg11";
8321 case DW_OP_reg12:
8322 return "DW_OP_reg12";
8323 case DW_OP_reg13:
8324 return "DW_OP_reg13";
8325 case DW_OP_reg14:
8326 return "DW_OP_reg14";
8327 case DW_OP_reg15:
8328 return "DW_OP_reg15";
8329 case DW_OP_reg16:
8330 return "DW_OP_reg16";
8331 case DW_OP_reg17:
8332 return "DW_OP_reg17";
8333 case DW_OP_reg18:
8334 return "DW_OP_reg18";
8335 case DW_OP_reg19:
8336 return "DW_OP_reg19";
8337 case DW_OP_reg20:
8338 return "DW_OP_reg20";
8339 case DW_OP_reg21:
8340 return "DW_OP_reg21";
8341 case DW_OP_reg22:
8342 return "DW_OP_reg22";
8343 case DW_OP_reg23:
8344 return "DW_OP_reg23";
8345 case DW_OP_reg24:
8346 return "DW_OP_reg24";
8347 case DW_OP_reg25:
8348 return "DW_OP_reg25";
8349 case DW_OP_reg26:
8350 return "DW_OP_reg26";
8351 case DW_OP_reg27:
8352 return "DW_OP_reg27";
8353 case DW_OP_reg28:
8354 return "DW_OP_reg28";
8355 case DW_OP_reg29:
8356 return "DW_OP_reg29";
8357 case DW_OP_reg30:
8358 return "DW_OP_reg30";
8359 case DW_OP_reg31:
8360 return "DW_OP_reg31";
8361 case DW_OP_breg0:
8362 return "DW_OP_breg0";
8363 case DW_OP_breg1:
8364 return "DW_OP_breg1";
8365 case DW_OP_breg2:
8366 return "DW_OP_breg2";
8367 case DW_OP_breg3:
8368 return "DW_OP_breg3";
8369 case DW_OP_breg4:
8370 return "DW_OP_breg4";
8371 case DW_OP_breg5:
8372 return "DW_OP_breg5";
8373 case DW_OP_breg6:
8374 return "DW_OP_breg6";
8375 case DW_OP_breg7:
8376 return "DW_OP_breg7";
8377 case DW_OP_breg8:
8378 return "DW_OP_breg8";
8379 case DW_OP_breg9:
8380 return "DW_OP_breg9";
8381 case DW_OP_breg10:
8382 return "DW_OP_breg10";
8383 case DW_OP_breg11:
8384 return "DW_OP_breg11";
8385 case DW_OP_breg12:
8386 return "DW_OP_breg12";
8387 case DW_OP_breg13:
8388 return "DW_OP_breg13";
8389 case DW_OP_breg14:
8390 return "DW_OP_breg14";
8391 case DW_OP_breg15:
8392 return "DW_OP_breg15";
8393 case DW_OP_breg16:
8394 return "DW_OP_breg16";
8395 case DW_OP_breg17:
8396 return "DW_OP_breg17";
8397 case DW_OP_breg18:
8398 return "DW_OP_breg18";
8399 case DW_OP_breg19:
8400 return "DW_OP_breg19";
8401 case DW_OP_breg20:
8402 return "DW_OP_breg20";
8403 case DW_OP_breg21:
8404 return "DW_OP_breg21";
8405 case DW_OP_breg22:
8406 return "DW_OP_breg22";
8407 case DW_OP_breg23:
8408 return "DW_OP_breg23";
8409 case DW_OP_breg24:
8410 return "DW_OP_breg24";
8411 case DW_OP_breg25:
8412 return "DW_OP_breg25";
8413 case DW_OP_breg26:
8414 return "DW_OP_breg26";
8415 case DW_OP_breg27:
8416 return "DW_OP_breg27";
8417 case DW_OP_breg28:
8418 return "DW_OP_breg28";
8419 case DW_OP_breg29:
8420 return "DW_OP_breg29";
8421 case DW_OP_breg30:
8422 return "DW_OP_breg30";
8423 case DW_OP_breg31:
8424 return "DW_OP_breg31";
8425 case DW_OP_regx:
8426 return "DW_OP_regx";
8427 case DW_OP_fbreg:
8428 return "DW_OP_fbreg";
8429 case DW_OP_bregx:
8430 return "DW_OP_bregx";
8431 case DW_OP_piece:
8432 return "DW_OP_piece";
8433 case DW_OP_deref_size:
8434 return "DW_OP_deref_size";
8435 case DW_OP_xderef_size:
8436 return "DW_OP_xderef_size";
8437 case DW_OP_nop:
8438 return "DW_OP_nop";
ed348acc
EZ
8439 /* DWARF 3 extensions. */
8440 case DW_OP_push_object_address:
8441 return "DW_OP_push_object_address";
8442 case DW_OP_call2:
8443 return "DW_OP_call2";
8444 case DW_OP_call4:
8445 return "DW_OP_call4";
8446 case DW_OP_call_ref:
8447 return "DW_OP_call_ref";
8448 /* GNU extensions. */
8449 case DW_OP_GNU_push_tls_address:
8450 return "DW_OP_GNU_push_tls_address";
c906108c
SS
8451 default:
8452 return "OP_<unknown>";
8453 }
8454}
8455
8456static char *
fba45db2 8457dwarf_bool_name (unsigned mybool)
c906108c
SS
8458{
8459 if (mybool)
8460 return "TRUE";
8461 else
8462 return "FALSE";
8463}
8464
8465/* Convert a DWARF type code into its string name. */
8466
8467static char *
aa1ee363 8468dwarf_type_encoding_name (unsigned enc)
c906108c
SS
8469{
8470 switch (enc)
8471 {
8472 case DW_ATE_address:
8473 return "DW_ATE_address";
8474 case DW_ATE_boolean:
8475 return "DW_ATE_boolean";
8476 case DW_ATE_complex_float:
8477 return "DW_ATE_complex_float";
8478 case DW_ATE_float:
8479 return "DW_ATE_float";
8480 case DW_ATE_signed:
8481 return "DW_ATE_signed";
8482 case DW_ATE_signed_char:
8483 return "DW_ATE_signed_char";
8484 case DW_ATE_unsigned:
8485 return "DW_ATE_unsigned";
8486 case DW_ATE_unsigned_char:
8487 return "DW_ATE_unsigned_char";
d9fa45fe
DC
8488 case DW_ATE_imaginary_float:
8489 return "DW_ATE_imaginary_float";
c906108c
SS
8490 default:
8491 return "DW_ATE_<unknown>";
8492 }
8493}
8494
8495/* Convert a DWARF call frame info operation to its string name. */
8496
8497#if 0
8498static char *
aa1ee363 8499dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
8500{
8501 switch (cfi_opc)
8502 {
8503 case DW_CFA_advance_loc:
8504 return "DW_CFA_advance_loc";
8505 case DW_CFA_offset:
8506 return "DW_CFA_offset";
8507 case DW_CFA_restore:
8508 return "DW_CFA_restore";
8509 case DW_CFA_nop:
8510 return "DW_CFA_nop";
8511 case DW_CFA_set_loc:
8512 return "DW_CFA_set_loc";
8513 case DW_CFA_advance_loc1:
8514 return "DW_CFA_advance_loc1";
8515 case DW_CFA_advance_loc2:
8516 return "DW_CFA_advance_loc2";
8517 case DW_CFA_advance_loc4:
8518 return "DW_CFA_advance_loc4";
8519 case DW_CFA_offset_extended:
8520 return "DW_CFA_offset_extended";
8521 case DW_CFA_restore_extended:
8522 return "DW_CFA_restore_extended";
8523 case DW_CFA_undefined:
8524 return "DW_CFA_undefined";
8525 case DW_CFA_same_value:
8526 return "DW_CFA_same_value";
8527 case DW_CFA_register:
8528 return "DW_CFA_register";
8529 case DW_CFA_remember_state:
8530 return "DW_CFA_remember_state";
8531 case DW_CFA_restore_state:
8532 return "DW_CFA_restore_state";
8533 case DW_CFA_def_cfa:
8534 return "DW_CFA_def_cfa";
8535 case DW_CFA_def_cfa_register:
8536 return "DW_CFA_def_cfa_register";
8537 case DW_CFA_def_cfa_offset:
8538 return "DW_CFA_def_cfa_offset";
985cb1a3
JM
8539
8540 /* DWARF 3 */
8541 case DW_CFA_def_cfa_expression:
8542 return "DW_CFA_def_cfa_expression";
8543 case DW_CFA_expression:
8544 return "DW_CFA_expression";
8545 case DW_CFA_offset_extended_sf:
8546 return "DW_CFA_offset_extended_sf";
8547 case DW_CFA_def_cfa_sf:
8548 return "DW_CFA_def_cfa_sf";
8549 case DW_CFA_def_cfa_offset_sf:
8550 return "DW_CFA_def_cfa_offset_sf";
8551
c906108c
SS
8552 /* SGI/MIPS specific */
8553 case DW_CFA_MIPS_advance_loc8:
8554 return "DW_CFA_MIPS_advance_loc8";
985cb1a3
JM
8555
8556 /* GNU extensions */
8557 case DW_CFA_GNU_window_save:
8558 return "DW_CFA_GNU_window_save";
8559 case DW_CFA_GNU_args_size:
8560 return "DW_CFA_GNU_args_size";
8561 case DW_CFA_GNU_negative_offset_extended:
8562 return "DW_CFA_GNU_negative_offset_extended";
8563
c906108c
SS
8564 default:
8565 return "DW_CFA_<unknown>";
8566 }
8567}
8568#endif
8569
f9aca02d 8570static void
fba45db2 8571dump_die (struct die_info *die)
c906108c
SS
8572{
8573 unsigned int i;
8574
48cd0caa 8575 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
c906108c 8576 dwarf_tag_name (die->tag), die->abbrev, die->offset);
48cd0caa 8577 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
639d11d3 8578 dwarf_bool_name (die->child != NULL));
c906108c 8579
48cd0caa 8580 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
c906108c
SS
8581 for (i = 0; i < die->num_attrs; ++i)
8582 {
48cd0caa 8583 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
c906108c
SS
8584 dwarf_attr_name (die->attrs[i].name),
8585 dwarf_form_name (die->attrs[i].form));
8586 switch (die->attrs[i].form)
8587 {
8588 case DW_FORM_ref_addr:
8589 case DW_FORM_addr:
48cd0caa 8590 fprintf_unfiltered (gdb_stderr, "address: ");
66bf4b3a 8591 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
c906108c
SS
8592 break;
8593 case DW_FORM_block2:
8594 case DW_FORM_block4:
8595 case DW_FORM_block:
8596 case DW_FORM_block1:
48cd0caa 8597 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 8598 break;
10b3939b
DJ
8599 case DW_FORM_ref1:
8600 case DW_FORM_ref2:
8601 case DW_FORM_ref4:
8602 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8603 (long) (DW_ADDR (&die->attrs[i])));
8604 break;
c906108c
SS
8605 case DW_FORM_data1:
8606 case DW_FORM_data2:
8607 case DW_FORM_data4:
ce5d95e1 8608 case DW_FORM_data8:
c906108c
SS
8609 case DW_FORM_udata:
8610 case DW_FORM_sdata:
48cd0caa 8611 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
c906108c
SS
8612 break;
8613 case DW_FORM_string:
4bdf3d34 8614 case DW_FORM_strp:
48cd0caa 8615 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
c906108c 8616 DW_STRING (&die->attrs[i])
c5aa993b 8617 ? DW_STRING (&die->attrs[i]) : "");
c906108c
SS
8618 break;
8619 case DW_FORM_flag:
8620 if (DW_UNSND (&die->attrs[i]))
48cd0caa 8621 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
c906108c 8622 else
48cd0caa 8623 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
c906108c 8624 break;
a8329558
KW
8625 case DW_FORM_indirect:
8626 /* the reader will have reduced the indirect form to
8627 the "base form" so this form should not occur */
48cd0caa 8628 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
a8329558 8629 break;
c906108c 8630 default:
48cd0caa 8631 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
c5aa993b 8632 die->attrs[i].form);
c906108c 8633 }
48cd0caa 8634 fprintf_unfiltered (gdb_stderr, "\n");
c906108c
SS
8635 }
8636}
8637
f9aca02d 8638static void
fba45db2 8639dump_die_list (struct die_info *die)
c906108c
SS
8640{
8641 while (die)
8642 {
8643 dump_die (die);
639d11d3
DC
8644 if (die->child != NULL)
8645 dump_die_list (die->child);
8646 if (die->sibling != NULL)
8647 dump_die_list (die->sibling);
c906108c
SS
8648 }
8649}
8650
f9aca02d 8651static void
10b3939b
DJ
8652store_in_ref_table (unsigned int offset, struct die_info *die,
8653 struct dwarf2_cu *cu)
c906108c
SS
8654{
8655 int h;
8656 struct die_info *old;
8657
8658 h = (offset % REF_HASH_SIZE);
10b3939b 8659 old = cu->die_ref_table[h];
c906108c 8660 die->next_ref = old;
10b3939b 8661 cu->die_ref_table[h] = die;
c906108c
SS
8662}
8663
8664static unsigned int
e142c38c 8665dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
c906108c
SS
8666{
8667 unsigned int result = 0;
8668
8669 switch (attr->form)
8670 {
8671 case DW_FORM_ref_addr:
c906108c
SS
8672 case DW_FORM_ref1:
8673 case DW_FORM_ref2:
8674 case DW_FORM_ref4:
613e1657 8675 case DW_FORM_ref8:
c906108c 8676 case DW_FORM_ref_udata:
10b3939b 8677 result = DW_ADDR (attr);
c906108c
SS
8678 break;
8679 default:
4d3c2250 8680 complaint (&symfile_complaints,
e2e0b3e5 8681 _("unsupported die ref attribute form: '%s'"),
4d3c2250 8682 dwarf_form_name (attr->form));
c906108c
SS
8683 }
8684 return result;
8685}
8686
a02abb62
JB
8687/* Return the constant value held by the given attribute. Return -1
8688 if the value held by the attribute is not constant. */
8689
8690static int
8691dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8692{
8693 if (attr->form == DW_FORM_sdata)
8694 return DW_SND (attr);
8695 else if (attr->form == DW_FORM_udata
8696 || attr->form == DW_FORM_data1
8697 || attr->form == DW_FORM_data2
8698 || attr->form == DW_FORM_data4
8699 || attr->form == DW_FORM_data8)
8700 return DW_UNSND (attr);
8701 else
8702 {
e2e0b3e5 8703 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
8704 dwarf_form_name (attr->form));
8705 return default_value;
8706 }
8707}
8708
f9aca02d 8709static struct die_info *
10b3939b
DJ
8710follow_die_ref (struct die_info *src_die, struct attribute *attr,
8711 struct dwarf2_cu *cu)
c906108c
SS
8712{
8713 struct die_info *die;
10b3939b 8714 unsigned int offset;
c906108c 8715 int h;
10b3939b
DJ
8716 struct die_info temp_die;
8717 struct dwarf2_cu *target_cu;
8718
8719 offset = dwarf2_get_ref_die_offset (attr, cu);
8720
8721 if (DW_ADDR (attr) < cu->header.offset
8722 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8723 {
8724 struct dwarf2_per_cu_data *per_cu;
8725 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8726 cu->objfile);
8727 target_cu = per_cu->cu;
8728 }
8729 else
8730 target_cu = cu;
c906108c
SS
8731
8732 h = (offset % REF_HASH_SIZE);
10b3939b 8733 die = target_cu->die_ref_table[h];
c906108c
SS
8734 while (die)
8735 {
8736 if (die->offset == offset)
10b3939b 8737 return die;
c906108c
SS
8738 die = die->next_ref;
8739 }
10b3939b 8740
8a3fe4f8
AC
8741 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8742 "at 0x%lx [in module %s]"),
10b3939b
DJ
8743 (long) src_die->offset, (long) offset, cu->objfile->name);
8744
c906108c
SS
8745 return NULL;
8746}
8747
8748static struct type *
e142c38c
DJ
8749dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8750 struct dwarf2_cu *cu)
c906108c
SS
8751{
8752 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8753 {
8a3fe4f8 8754 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
659b0389 8755 typeid, objfile->name);
c906108c
SS
8756 }
8757
8758 /* Look for this particular type in the fundamental type vector. If
8759 one is not found, create and install one appropriate for the
8760 current language and the current target machine. */
8761
e142c38c 8762 if (cu->ftypes[typeid] == NULL)
c906108c 8763 {
e142c38c 8764 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
c906108c
SS
8765 }
8766
e142c38c 8767 return (cu->ftypes[typeid]);
c906108c
SS
8768}
8769
8770/* Decode simple location descriptions.
8771 Given a pointer to a dwarf block that defines a location, compute
8772 the location and return the value.
8773
4cecd739
DJ
8774 NOTE drow/2003-11-18: This function is called in two situations
8775 now: for the address of static or global variables (partial symbols
8776 only) and for offsets into structures which are expected to be
8777 (more or less) constant. The partial symbol case should go away,
8778 and only the constant case should remain. That will let this
8779 function complain more accurately. A few special modes are allowed
8780 without complaint for global variables (for instance, global
8781 register values and thread-local values).
c906108c
SS
8782
8783 A location description containing no operations indicates that the
4cecd739 8784 object is optimized out. The return value is 0 for that case.
6b992462
DJ
8785 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8786 callers will only want a very basic result and this can become a
8787 complaint.
c906108c 8788
c906108c
SS
8789 Note that stack[0] is unused except as a default error return.
8790 Note that stack overflow is not yet handled. */
8791
8792static CORE_ADDR
e7c27a73 8793decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 8794{
e7c27a73
DJ
8795 struct objfile *objfile = cu->objfile;
8796 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
8797 int i;
8798 int size = blk->size;
fe1b8b76 8799 gdb_byte *data = blk->data;
c906108c
SS
8800 CORE_ADDR stack[64];
8801 int stacki;
8802 unsigned int bytes_read, unsnd;
fe1b8b76 8803 gdb_byte op;
c906108c
SS
8804
8805 i = 0;
8806 stacki = 0;
8807 stack[stacki] = 0;
c906108c
SS
8808
8809 while (i < size)
8810 {
c906108c
SS
8811 op = data[i++];
8812 switch (op)
8813 {
f1bea926
JM
8814 case DW_OP_lit0:
8815 case DW_OP_lit1:
8816 case DW_OP_lit2:
8817 case DW_OP_lit3:
8818 case DW_OP_lit4:
8819 case DW_OP_lit5:
8820 case DW_OP_lit6:
8821 case DW_OP_lit7:
8822 case DW_OP_lit8:
8823 case DW_OP_lit9:
8824 case DW_OP_lit10:
8825 case DW_OP_lit11:
8826 case DW_OP_lit12:
8827 case DW_OP_lit13:
8828 case DW_OP_lit14:
8829 case DW_OP_lit15:
8830 case DW_OP_lit16:
8831 case DW_OP_lit17:
8832 case DW_OP_lit18:
8833 case DW_OP_lit19:
8834 case DW_OP_lit20:
8835 case DW_OP_lit21:
8836 case DW_OP_lit22:
8837 case DW_OP_lit23:
8838 case DW_OP_lit24:
8839 case DW_OP_lit25:
8840 case DW_OP_lit26:
8841 case DW_OP_lit27:
8842 case DW_OP_lit28:
8843 case DW_OP_lit29:
8844 case DW_OP_lit30:
8845 case DW_OP_lit31:
8846 stack[++stacki] = op - DW_OP_lit0;
8847 break;
8848
c906108c
SS
8849 case DW_OP_reg0:
8850 case DW_OP_reg1:
8851 case DW_OP_reg2:
8852 case DW_OP_reg3:
8853 case DW_OP_reg4:
8854 case DW_OP_reg5:
8855 case DW_OP_reg6:
8856 case DW_OP_reg7:
8857 case DW_OP_reg8:
8858 case DW_OP_reg9:
8859 case DW_OP_reg10:
8860 case DW_OP_reg11:
8861 case DW_OP_reg12:
8862 case DW_OP_reg13:
8863 case DW_OP_reg14:
8864 case DW_OP_reg15:
8865 case DW_OP_reg16:
8866 case DW_OP_reg17:
8867 case DW_OP_reg18:
8868 case DW_OP_reg19:
8869 case DW_OP_reg20:
8870 case DW_OP_reg21:
8871 case DW_OP_reg22:
8872 case DW_OP_reg23:
8873 case DW_OP_reg24:
8874 case DW_OP_reg25:
8875 case DW_OP_reg26:
8876 case DW_OP_reg27:
8877 case DW_OP_reg28:
8878 case DW_OP_reg29:
8879 case DW_OP_reg30:
8880 case DW_OP_reg31:
c906108c 8881 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
8882 if (i < size)
8883 dwarf2_complex_location_expr_complaint ();
c906108c
SS
8884 break;
8885
8886 case DW_OP_regx:
c906108c
SS
8887 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8888 i += bytes_read;
c906108c 8889 stack[++stacki] = unsnd;
4cecd739
DJ
8890 if (i < size)
8891 dwarf2_complex_location_expr_complaint ();
c906108c
SS
8892 break;
8893
8894 case DW_OP_addr:
107d2387 8895 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 8896 cu, &bytes_read);
107d2387 8897 i += bytes_read;
c906108c
SS
8898 break;
8899
8900 case DW_OP_const1u:
8901 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8902 i += 1;
8903 break;
8904
8905 case DW_OP_const1s:
8906 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8907 i += 1;
8908 break;
8909
8910 case DW_OP_const2u:
8911 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8912 i += 2;
8913 break;
8914
8915 case DW_OP_const2s:
8916 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8917 i += 2;
8918 break;
8919
8920 case DW_OP_const4u:
8921 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8922 i += 4;
8923 break;
8924
8925 case DW_OP_const4s:
8926 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8927 i += 4;
8928 break;
8929
8930 case DW_OP_constu:
8931 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 8932 &bytes_read);
c906108c
SS
8933 i += bytes_read;
8934 break;
8935
8936 case DW_OP_consts:
8937 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8938 i += bytes_read;
8939 break;
8940
f1bea926
JM
8941 case DW_OP_dup:
8942 stack[stacki + 1] = stack[stacki];
8943 stacki++;
8944 break;
8945
c906108c
SS
8946 case DW_OP_plus:
8947 stack[stacki - 1] += stack[stacki];
8948 stacki--;
8949 break;
8950
8951 case DW_OP_plus_uconst:
8952 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8953 i += bytes_read;
8954 break;
8955
8956 case DW_OP_minus:
f1bea926 8957 stack[stacki - 1] -= stack[stacki];
c906108c
SS
8958 stacki--;
8959 break;
8960
7a292a7a 8961 case DW_OP_deref:
7a292a7a 8962 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
8963 this using GDB's address_class enum. This is valid for partial
8964 global symbols, although the variable's address will be bogus
8965 in the psymtab. */
7a292a7a 8966 if (i < size)
4d3c2250 8967 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
8968 break;
8969
9d774e44 8970 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
8971 /* The top of the stack has the offset from the beginning
8972 of the thread control block at which the variable is located. */
8973 /* Nothing should follow this operator, so the top of stack would
8974 be returned. */
4cecd739
DJ
8975 /* This is valid for partial global symbols, but the variable's
8976 address will be bogus in the psymtab. */
9d774e44 8977 if (i < size)
4d3c2250 8978 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
8979 break;
8980
c906108c 8981 default:
e2e0b3e5 8982 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 8983 dwarf_stack_op_name (op));
c906108c
SS
8984 return (stack[stacki]);
8985 }
8986 }
8987 return (stack[stacki]);
8988}
8989
8990/* memory allocation interface */
8991
c906108c 8992static struct dwarf_block *
7b5a2f43 8993dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
8994{
8995 struct dwarf_block *blk;
8996
8997 blk = (struct dwarf_block *)
7b5a2f43 8998 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
8999 return (blk);
9000}
9001
9002static struct abbrev_info *
f3dd6933 9003dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
9004{
9005 struct abbrev_info *abbrev;
9006
f3dd6933
DJ
9007 abbrev = (struct abbrev_info *)
9008 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
9009 memset (abbrev, 0, sizeof (struct abbrev_info));
9010 return (abbrev);
9011}
9012
9013static struct die_info *
fba45db2 9014dwarf_alloc_die (void)
c906108c
SS
9015{
9016 struct die_info *die;
9017
9018 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9019 memset (die, 0, sizeof (struct die_info));
9020 return (die);
9021}
2e276125
JB
9022
9023\f
9024/* Macro support. */
9025
9026
9027/* Return the full name of file number I in *LH's file name table.
9028 Use COMP_DIR as the name of the current directory of the
9029 compilation. The result is allocated using xmalloc; the caller is
9030 responsible for freeing it. */
9031static char *
9032file_full_name (int file, struct line_header *lh, const char *comp_dir)
9033{
6a83a1e6
EZ
9034 /* Is the file number a valid index into the line header's file name
9035 table? Remember that file numbers start with one, not zero. */
9036 if (1 <= file && file <= lh->num_file_names)
9037 {
9038 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 9039
6a83a1e6
EZ
9040 if (IS_ABSOLUTE_PATH (fe->name))
9041 return xstrdup (fe->name);
9042 else
9043 {
9044 const char *dir;
9045 int dir_len;
9046 char *full_name;
9047
9048 if (fe->dir_index)
9049 dir = lh->include_dirs[fe->dir_index - 1];
9050 else
9051 dir = comp_dir;
9052
9053 if (dir)
9054 {
9055 dir_len = strlen (dir);
9056 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9057 strcpy (full_name, dir);
9058 full_name[dir_len] = '/';
9059 strcpy (full_name + dir_len + 1, fe->name);
9060 return full_name;
9061 }
9062 else
9063 return xstrdup (fe->name);
9064 }
9065 }
2e276125
JB
9066 else
9067 {
6a83a1e6
EZ
9068 /* The compiler produced a bogus file number. We can at least
9069 record the macro definitions made in the file, even if we
9070 won't be able to find the file by name. */
9071 char fake_name[80];
9072 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 9073
6a83a1e6
EZ
9074 complaint (&symfile_complaints,
9075 _("bad file number in macro information (%d)"),
9076 file);
2e276125 9077
6a83a1e6 9078 return xstrdup (fake_name);
2e276125
JB
9079 }
9080}
9081
9082
9083static struct macro_source_file *
9084macro_start_file (int file, int line,
9085 struct macro_source_file *current_file,
9086 const char *comp_dir,
9087 struct line_header *lh, struct objfile *objfile)
9088{
9089 /* The full name of this source file. */
9090 char *full_name = file_full_name (file, lh, comp_dir);
9091
9092 /* We don't create a macro table for this compilation unit
9093 at all until we actually get a filename. */
9094 if (! pending_macros)
4a146b47 9095 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 9096 objfile->macro_cache);
2e276125
JB
9097
9098 if (! current_file)
9099 /* If we have no current file, then this must be the start_file
9100 directive for the compilation unit's main source file. */
9101 current_file = macro_set_main (pending_macros, full_name);
9102 else
9103 current_file = macro_include (current_file, line, full_name);
9104
9105 xfree (full_name);
9106
9107 return current_file;
9108}
9109
9110
9111/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9112 followed by a null byte. */
9113static char *
9114copy_string (const char *buf, int len)
9115{
9116 char *s = xmalloc (len + 1);
9117 memcpy (s, buf, len);
9118 s[len] = '\0';
9119
9120 return s;
9121}
9122
9123
9124static const char *
9125consume_improper_spaces (const char *p, const char *body)
9126{
9127 if (*p == ' ')
9128 {
4d3c2250 9129 complaint (&symfile_complaints,
e2e0b3e5 9130 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 9131 body);
2e276125
JB
9132
9133 while (*p == ' ')
9134 p++;
9135 }
9136
9137 return p;
9138}
9139
9140
9141static void
9142parse_macro_definition (struct macro_source_file *file, int line,
9143 const char *body)
9144{
9145 const char *p;
9146
9147 /* The body string takes one of two forms. For object-like macro
9148 definitions, it should be:
9149
9150 <macro name> " " <definition>
9151
9152 For function-like macro definitions, it should be:
9153
9154 <macro name> "() " <definition>
9155 or
9156 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9157
9158 Spaces may appear only where explicitly indicated, and in the
9159 <definition>.
9160
9161 The Dwarf 2 spec says that an object-like macro's name is always
9162 followed by a space, but versions of GCC around March 2002 omit
9163 the space when the macro's definition is the empty string.
9164
9165 The Dwarf 2 spec says that there should be no spaces between the
9166 formal arguments in a function-like macro's formal argument list,
9167 but versions of GCC around March 2002 include spaces after the
9168 commas. */
9169
9170
9171 /* Find the extent of the macro name. The macro name is terminated
9172 by either a space or null character (for an object-like macro) or
9173 an opening paren (for a function-like macro). */
9174 for (p = body; *p; p++)
9175 if (*p == ' ' || *p == '(')
9176 break;
9177
9178 if (*p == ' ' || *p == '\0')
9179 {
9180 /* It's an object-like macro. */
9181 int name_len = p - body;
9182 char *name = copy_string (body, name_len);
9183 const char *replacement;
9184
9185 if (*p == ' ')
9186 replacement = body + name_len + 1;
9187 else
9188 {
4d3c2250 9189 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9190 replacement = body + name_len;
9191 }
9192
9193 macro_define_object (file, line, name, replacement);
9194
9195 xfree (name);
9196 }
9197 else if (*p == '(')
9198 {
9199 /* It's a function-like macro. */
9200 char *name = copy_string (body, p - body);
9201 int argc = 0;
9202 int argv_size = 1;
9203 char **argv = xmalloc (argv_size * sizeof (*argv));
9204
9205 p++;
9206
9207 p = consume_improper_spaces (p, body);
9208
9209 /* Parse the formal argument list. */
9210 while (*p && *p != ')')
9211 {
9212 /* Find the extent of the current argument name. */
9213 const char *arg_start = p;
9214
9215 while (*p && *p != ',' && *p != ')' && *p != ' ')
9216 p++;
9217
9218 if (! *p || p == arg_start)
4d3c2250 9219 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9220 else
9221 {
9222 /* Make sure argv has room for the new argument. */
9223 if (argc >= argv_size)
9224 {
9225 argv_size *= 2;
9226 argv = xrealloc (argv, argv_size * sizeof (*argv));
9227 }
9228
9229 argv[argc++] = copy_string (arg_start, p - arg_start);
9230 }
9231
9232 p = consume_improper_spaces (p, body);
9233
9234 /* Consume the comma, if present. */
9235 if (*p == ',')
9236 {
9237 p++;
9238
9239 p = consume_improper_spaces (p, body);
9240 }
9241 }
9242
9243 if (*p == ')')
9244 {
9245 p++;
9246
9247 if (*p == ' ')
9248 /* Perfectly formed definition, no complaints. */
9249 macro_define_function (file, line, name,
9250 argc, (const char **) argv,
9251 p + 1);
9252 else if (*p == '\0')
9253 {
9254 /* Complain, but do define it. */
4d3c2250 9255 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9256 macro_define_function (file, line, name,
9257 argc, (const char **) argv,
9258 p);
9259 }
9260 else
9261 /* Just complain. */
4d3c2250 9262 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9263 }
9264 else
9265 /* Just complain. */
4d3c2250 9266 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9267
9268 xfree (name);
9269 {
9270 int i;
9271
9272 for (i = 0; i < argc; i++)
9273 xfree (argv[i]);
9274 }
9275 xfree (argv);
9276 }
9277 else
4d3c2250 9278 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9279}
9280
9281
9282static void
9283dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9284 char *comp_dir, bfd *abfd,
e7c27a73 9285 struct dwarf2_cu *cu)
2e276125 9286{
fe1b8b76 9287 gdb_byte *mac_ptr, *mac_end;
2e276125
JB
9288 struct macro_source_file *current_file = 0;
9289
6502dd73 9290 if (dwarf2_per_objfile->macinfo_buffer == NULL)
2e276125 9291 {
e2e0b3e5 9292 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
9293 return;
9294 }
9295
6502dd73
DJ
9296 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9297 mac_end = dwarf2_per_objfile->macinfo_buffer
9298 + dwarf2_per_objfile->macinfo_size;
2e276125
JB
9299
9300 for (;;)
9301 {
9302 enum dwarf_macinfo_record_type macinfo_type;
9303
9304 /* Do we at least have room for a macinfo type byte? */
9305 if (mac_ptr >= mac_end)
9306 {
4d3c2250 9307 dwarf2_macros_too_long_complaint ();
2e276125
JB
9308 return;
9309 }
9310
9311 macinfo_type = read_1_byte (abfd, mac_ptr);
9312 mac_ptr++;
9313
9314 switch (macinfo_type)
9315 {
9316 /* A zero macinfo type indicates the end of the macro
9317 information. */
9318 case 0:
9319 return;
9320
9321 case DW_MACINFO_define:
9322 case DW_MACINFO_undef:
9323 {
891d2f0b 9324 unsigned int bytes_read;
2e276125
JB
9325 int line;
9326 char *body;
9327
9328 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9329 mac_ptr += bytes_read;
9330 body = read_string (abfd, mac_ptr, &bytes_read);
9331 mac_ptr += bytes_read;
9332
9333 if (! current_file)
4d3c2250 9334 complaint (&symfile_complaints,
e2e0b3e5 9335 _("debug info gives macro %s outside of any file: %s"),
4d3c2250
KB
9336 macinfo_type ==
9337 DW_MACINFO_define ? "definition" : macinfo_type ==
9338 DW_MACINFO_undef ? "undefinition" :
9339 "something-or-other", body);
2e276125
JB
9340 else
9341 {
9342 if (macinfo_type == DW_MACINFO_define)
9343 parse_macro_definition (current_file, line, body);
9344 else if (macinfo_type == DW_MACINFO_undef)
9345 macro_undef (current_file, line, body);
9346 }
9347 }
9348 break;
9349
9350 case DW_MACINFO_start_file:
9351 {
891d2f0b 9352 unsigned int bytes_read;
2e276125
JB
9353 int line, file;
9354
9355 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9356 mac_ptr += bytes_read;
9357 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9358 mac_ptr += bytes_read;
9359
9360 current_file = macro_start_file (file, line,
9361 current_file, comp_dir,
e7c27a73 9362 lh, cu->objfile);
2e276125
JB
9363 }
9364 break;
9365
9366 case DW_MACINFO_end_file:
9367 if (! current_file)
4d3c2250 9368 complaint (&symfile_complaints,
e2e0b3e5 9369 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
9370 else
9371 {
9372 current_file = current_file->included_by;
9373 if (! current_file)
9374 {
9375 enum dwarf_macinfo_record_type next_type;
9376
9377 /* GCC circa March 2002 doesn't produce the zero
9378 type byte marking the end of the compilation
9379 unit. Complain if it's not there, but exit no
9380 matter what. */
9381
9382 /* Do we at least have room for a macinfo type byte? */
9383 if (mac_ptr >= mac_end)
9384 {
4d3c2250 9385 dwarf2_macros_too_long_complaint ();
2e276125
JB
9386 return;
9387 }
9388
9389 /* We don't increment mac_ptr here, so this is just
9390 a look-ahead. */
9391 next_type = read_1_byte (abfd, mac_ptr);
9392 if (next_type != 0)
4d3c2250 9393 complaint (&symfile_complaints,
e2e0b3e5 9394 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
9395
9396 return;
9397 }
9398 }
9399 break;
9400
9401 case DW_MACINFO_vendor_ext:
9402 {
891d2f0b 9403 unsigned int bytes_read;
2e276125
JB
9404 int constant;
9405 char *string;
9406
9407 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9408 mac_ptr += bytes_read;
9409 string = read_string (abfd, mac_ptr, &bytes_read);
9410 mac_ptr += bytes_read;
9411
9412 /* We don't recognize any vendor extensions. */
9413 }
9414 break;
9415 }
9416 }
9417}
8e19ed76
PS
9418
9419/* Check if the attribute's form is a DW_FORM_block*
9420 if so return true else false. */
9421static int
9422attr_form_is_block (struct attribute *attr)
9423{
9424 return (attr == NULL ? 0 :
9425 attr->form == DW_FORM_block1
9426 || attr->form == DW_FORM_block2
9427 || attr->form == DW_FORM_block4
9428 || attr->form == DW_FORM_block);
9429}
4c2df51b
DJ
9430
9431static void
9432dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 9433 struct dwarf2_cu *cu)
4c2df51b 9434{
99bcc461
DJ
9435 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9436 /* ".debug_loc" may not exist at all, or the offset may be outside
9437 the section. If so, fall through to the complaint in the
9438 other branch. */
9439 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
4c2df51b 9440 {
0d53c4c4 9441 struct dwarf2_loclist_baton *baton;
4c2df51b 9442
4a146b47 9443 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9444 sizeof (struct dwarf2_loclist_baton));
e7c27a73 9445 baton->objfile = cu->objfile;
4c2df51b 9446
0d53c4c4
DJ
9447 /* We don't know how long the location list is, but make sure we
9448 don't run off the edge of the section. */
6502dd73
DJ
9449 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9450 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
e7c27a73
DJ
9451 baton->base_address = cu->header.base_address;
9452 if (cu->header.base_known == 0)
0d53c4c4 9453 complaint (&symfile_complaints,
e2e0b3e5 9454 _("Location list used without specifying the CU base address."));
4c2df51b 9455
a67af2b9 9456 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
9457 SYMBOL_LOCATION_BATON (sym) = baton;
9458 }
9459 else
9460 {
9461 struct dwarf2_locexpr_baton *baton;
9462
4a146b47 9463 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9464 sizeof (struct dwarf2_locexpr_baton));
e7c27a73 9465 baton->objfile = cu->objfile;
0d53c4c4
DJ
9466
9467 if (attr_form_is_block (attr))
9468 {
9469 /* Note that we're just copying the block's data pointer
9470 here, not the actual data. We're still pointing into the
6502dd73
DJ
9471 info_buffer for SYM's objfile; right now we never release
9472 that buffer, but when we do clean up properly this may
9473 need to change. */
0d53c4c4
DJ
9474 baton->size = DW_BLOCK (attr)->size;
9475 baton->data = DW_BLOCK (attr)->data;
9476 }
9477 else
9478 {
9479 dwarf2_invalid_attrib_class_complaint ("location description",
9480 SYMBOL_NATURAL_NAME (sym));
9481 baton->size = 0;
9482 baton->data = NULL;
9483 }
9484
a67af2b9 9485 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
9486 SYMBOL_LOCATION_BATON (sym) = baton;
9487 }
4c2df51b 9488}
6502dd73 9489
ae038cb0 9490/* Locate the compilation unit from CU's objfile which contains the
10b3939b 9491 DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
9492
9493static struct dwarf2_per_cu_data *
9494dwarf2_find_containing_comp_unit (unsigned long offset,
9495 struct objfile *objfile)
9496{
9497 struct dwarf2_per_cu_data *this_cu;
9498 int low, high;
9499
ae038cb0
DJ
9500 low = 0;
9501 high = dwarf2_per_objfile->n_comp_units - 1;
9502 while (high > low)
9503 {
9504 int mid = low + (high - low) / 2;
9505 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9506 high = mid;
9507 else
9508 low = mid + 1;
9509 }
9510 gdb_assert (low == high);
9511 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9512 {
10b3939b 9513 if (low == 0)
8a3fe4f8
AC
9514 error (_("Dwarf Error: could not find partial DIE containing "
9515 "offset 0x%lx [in module %s]"),
10b3939b
DJ
9516 (long) offset, bfd_get_filename (objfile->obfd));
9517
ae038cb0
DJ
9518 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9519 return dwarf2_per_objfile->all_comp_units[low-1];
9520 }
9521 else
9522 {
9523 this_cu = dwarf2_per_objfile->all_comp_units[low];
9524 if (low == dwarf2_per_objfile->n_comp_units - 1
9525 && offset >= this_cu->offset + this_cu->length)
8a3fe4f8 9526 error (_("invalid dwarf2 offset %ld"), offset);
ae038cb0
DJ
9527 gdb_assert (offset < this_cu->offset + this_cu->length);
9528 return this_cu;
9529 }
9530}
9531
10b3939b
DJ
9532/* Locate the compilation unit from OBJFILE which is located at exactly
9533 OFFSET. Raises an error on failure. */
9534
ae038cb0
DJ
9535static struct dwarf2_per_cu_data *
9536dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9537{
9538 struct dwarf2_per_cu_data *this_cu;
9539 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9540 if (this_cu->offset != offset)
8a3fe4f8 9541 error (_("no compilation unit with offset %ld."), offset);
ae038cb0
DJ
9542 return this_cu;
9543}
9544
9545/* Release one cached compilation unit, CU. We unlink it from the tree
9546 of compilation units, but we don't remove it from the read_in_chain;
9547 the caller is responsible for that. */
9548
9549static void
9550free_one_comp_unit (void *data)
9551{
9552 struct dwarf2_cu *cu = data;
9553
9554 if (cu->per_cu != NULL)
9555 cu->per_cu->cu = NULL;
9556 cu->per_cu = NULL;
9557
9558 obstack_free (&cu->comp_unit_obstack, NULL);
10b3939b
DJ
9559 if (cu->dies)
9560 free_die_list (cu->dies);
ae038cb0
DJ
9561
9562 xfree (cu);
9563}
9564
72bf9492 9565/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
9566 when we're finished with it. We can't free the pointer itself, but be
9567 sure to unlink it from the cache. Also release any associated storage
9568 and perform cache maintenance.
72bf9492
DJ
9569
9570 Only used during partial symbol parsing. */
9571
9572static void
9573free_stack_comp_unit (void *data)
9574{
9575 struct dwarf2_cu *cu = data;
9576
9577 obstack_free (&cu->comp_unit_obstack, NULL);
9578 cu->partial_dies = NULL;
ae038cb0
DJ
9579
9580 if (cu->per_cu != NULL)
9581 {
9582 /* This compilation unit is on the stack in our caller, so we
9583 should not xfree it. Just unlink it. */
9584 cu->per_cu->cu = NULL;
9585 cu->per_cu = NULL;
9586
9587 /* If we had a per-cu pointer, then we may have other compilation
9588 units loaded, so age them now. */
9589 age_cached_comp_units ();
9590 }
9591}
9592
9593/* Free all cached compilation units. */
9594
9595static void
9596free_cached_comp_units (void *data)
9597{
9598 struct dwarf2_per_cu_data *per_cu, **last_chain;
9599
9600 per_cu = dwarf2_per_objfile->read_in_chain;
9601 last_chain = &dwarf2_per_objfile->read_in_chain;
9602 while (per_cu != NULL)
9603 {
9604 struct dwarf2_per_cu_data *next_cu;
9605
9606 next_cu = per_cu->cu->read_in_chain;
9607
9608 free_one_comp_unit (per_cu->cu);
9609 *last_chain = next_cu;
9610
9611 per_cu = next_cu;
9612 }
9613}
9614
9615/* Increase the age counter on each cached compilation unit, and free
9616 any that are too old. */
9617
9618static void
9619age_cached_comp_units (void)
9620{
9621 struct dwarf2_per_cu_data *per_cu, **last_chain;
9622
9623 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9624 per_cu = dwarf2_per_objfile->read_in_chain;
9625 while (per_cu != NULL)
9626 {
9627 per_cu->cu->last_used ++;
9628 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9629 dwarf2_mark (per_cu->cu);
9630 per_cu = per_cu->cu->read_in_chain;
9631 }
9632
9633 per_cu = dwarf2_per_objfile->read_in_chain;
9634 last_chain = &dwarf2_per_objfile->read_in_chain;
9635 while (per_cu != NULL)
9636 {
9637 struct dwarf2_per_cu_data *next_cu;
9638
9639 next_cu = per_cu->cu->read_in_chain;
9640
9641 if (!per_cu->cu->mark)
9642 {
9643 free_one_comp_unit (per_cu->cu);
9644 *last_chain = next_cu;
9645 }
9646 else
9647 last_chain = &per_cu->cu->read_in_chain;
9648
9649 per_cu = next_cu;
9650 }
9651}
9652
9653/* Remove a single compilation unit from the cache. */
9654
9655static void
9656free_one_cached_comp_unit (void *target_cu)
9657{
9658 struct dwarf2_per_cu_data *per_cu, **last_chain;
9659
9660 per_cu = dwarf2_per_objfile->read_in_chain;
9661 last_chain = &dwarf2_per_objfile->read_in_chain;
9662 while (per_cu != NULL)
9663 {
9664 struct dwarf2_per_cu_data *next_cu;
9665
9666 next_cu = per_cu->cu->read_in_chain;
9667
9668 if (per_cu->cu == target_cu)
9669 {
9670 free_one_comp_unit (per_cu->cu);
9671 *last_chain = next_cu;
9672 break;
9673 }
9674 else
9675 last_chain = &per_cu->cu->read_in_chain;
9676
9677 per_cu = next_cu;
9678 }
9679}
9680
1c379e20
DJ
9681/* A pair of DIE offset and GDB type pointer. We store these
9682 in a hash table separate from the DIEs, and preserve them
9683 when the DIEs are flushed out of cache. */
9684
9685struct dwarf2_offset_and_type
9686{
9687 unsigned int offset;
9688 struct type *type;
9689};
9690
9691/* Hash function for a dwarf2_offset_and_type. */
9692
9693static hashval_t
9694offset_and_type_hash (const void *item)
9695{
9696 const struct dwarf2_offset_and_type *ofs = item;
9697 return ofs->offset;
9698}
9699
9700/* Equality function for a dwarf2_offset_and_type. */
9701
9702static int
9703offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9704{
9705 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9706 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9707 return ofs_lhs->offset == ofs_rhs->offset;
9708}
9709
9710/* Set the type associated with DIE to TYPE. Save it in CU's hash
9711 table if necessary. */
9712
9713static void
9714set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9715{
9716 struct dwarf2_offset_and_type **slot, ofs;
9717
9718 die->type = type;
9719
9720 if (cu->per_cu == NULL)
9721 return;
9722
9723 if (cu->per_cu->type_hash == NULL)
9724 cu->per_cu->type_hash
9725 = htab_create_alloc_ex (cu->header.length / 24,
9726 offset_and_type_hash,
9727 offset_and_type_eq,
9728 NULL,
9729 &cu->objfile->objfile_obstack,
9730 hashtab_obstack_allocate,
9731 dummy_obstack_deallocate);
9732
9733 ofs.offset = die->offset;
9734 ofs.type = type;
9735 slot = (struct dwarf2_offset_and_type **)
9736 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9737 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9738 **slot = ofs;
9739}
9740
1c379e20
DJ
9741/* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9742 have a saved type. */
9743
9744static struct type *
9745get_die_type (struct die_info *die, htab_t type_hash)
9746{
9747 struct dwarf2_offset_and_type *slot, ofs;
9748
9749 ofs.offset = die->offset;
9750 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9751 if (slot)
9752 return slot->type;
9753 else
9754 return NULL;
9755}
9756
9757/* Restore the types of the DIE tree starting at START_DIE from the hash
9758 table saved in CU. */
9759
9760static void
9761reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9762{
9763 struct die_info *die;
9764
9765 if (cu->per_cu->type_hash == NULL)
9766 return;
9767
9768 for (die = start_die; die != NULL; die = die->sibling)
9769 {
9770 die->type = get_die_type (die, cu->per_cu->type_hash);
9771 if (die->child != NULL)
9772 reset_die_and_siblings_types (die->child, cu);
9773 }
9774}
9775
10b3939b
DJ
9776/* Set the mark field in CU and in every other compilation unit in the
9777 cache that we must keep because we are keeping CU. */
9778
9779/* Add a dependence relationship from CU to REF_PER_CU. */
9780
9781static void
9782dwarf2_add_dependence (struct dwarf2_cu *cu,
9783 struct dwarf2_per_cu_data *ref_per_cu)
9784{
9785 void **slot;
9786
9787 if (cu->dependencies == NULL)
9788 cu->dependencies
9789 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9790 NULL, &cu->comp_unit_obstack,
9791 hashtab_obstack_allocate,
9792 dummy_obstack_deallocate);
9793
9794 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9795 if (*slot == NULL)
9796 *slot = ref_per_cu;
9797}
1c379e20 9798
ae038cb0
DJ
9799/* Set the mark field in CU and in every other compilation unit in the
9800 cache that we must keep because we are keeping CU. */
9801
10b3939b
DJ
9802static int
9803dwarf2_mark_helper (void **slot, void *data)
9804{
9805 struct dwarf2_per_cu_data *per_cu;
9806
9807 per_cu = (struct dwarf2_per_cu_data *) *slot;
9808 if (per_cu->cu->mark)
9809 return 1;
9810 per_cu->cu->mark = 1;
9811
9812 if (per_cu->cu->dependencies != NULL)
9813 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9814
9815 return 1;
9816}
9817
ae038cb0
DJ
9818static void
9819dwarf2_mark (struct dwarf2_cu *cu)
9820{
9821 if (cu->mark)
9822 return;
9823 cu->mark = 1;
10b3939b
DJ
9824 if (cu->dependencies != NULL)
9825 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
9826}
9827
9828static void
9829dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9830{
9831 while (per_cu)
9832 {
9833 per_cu->cu->mark = 0;
9834 per_cu = per_cu->cu->read_in_chain;
9835 }
72bf9492
DJ
9836}
9837
72bf9492
DJ
9838/* Trivial hash function for partial_die_info: the hash value of a DIE
9839 is its offset in .debug_info for this objfile. */
9840
9841static hashval_t
9842partial_die_hash (const void *item)
9843{
9844 const struct partial_die_info *part_die = item;
9845 return part_die->offset;
9846}
9847
9848/* Trivial comparison function for partial_die_info structures: two DIEs
9849 are equal if they have the same offset. */
9850
9851static int
9852partial_die_eq (const void *item_lhs, const void *item_rhs)
9853{
9854 const struct partial_die_info *part_die_lhs = item_lhs;
9855 const struct partial_die_info *part_die_rhs = item_rhs;
9856 return part_die_lhs->offset == part_die_rhs->offset;
9857}
9858
ae038cb0
DJ
9859static struct cmd_list_element *set_dwarf2_cmdlist;
9860static struct cmd_list_element *show_dwarf2_cmdlist;
9861
9862static void
9863set_dwarf2_cmd (char *args, int from_tty)
9864{
9865 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9866}
9867
9868static void
9869show_dwarf2_cmd (char *args, int from_tty)
9870{
9871 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9872}
9873
6502dd73
DJ
9874void _initialize_dwarf2_read (void);
9875
9876void
9877_initialize_dwarf2_read (void)
9878{
9879 dwarf2_objfile_data_key = register_objfile_data ();
ae038cb0 9880
1bedd215
AC
9881 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
9882Set DWARF 2 specific variables.\n\
9883Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
9884 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9885 0/*allow-unknown*/, &maintenance_set_cmdlist);
9886
1bedd215
AC
9887 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
9888Show DWARF 2 specific variables\n\
9889Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
9890 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9891 0/*allow-unknown*/, &maintenance_show_cmdlist);
9892
9893 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
9894 &dwarf2_max_cache_age, _("\
9895Set the upper bound on the age of cached dwarf2 compilation units."), _("\
9896Show the upper bound on the age of cached dwarf2 compilation units."), _("\
9897A higher limit means that cached compilation units will be stored\n\
9898in memory longer, and more total memory will be used. Zero disables\n\
9899caching, which can slow down startup."),
2c5b56ce 9900 NULL,
920d2a44 9901 show_dwarf2_max_cache_age,
2c5b56ce 9902 &set_dwarf2_cmdlist,
ae038cb0 9903 &show_dwarf2_cmdlist);
6502dd73 9904}
This page took 1.500016 seconds and 4 git commands to generate.