* xcoffread.c (xcoff_sym_fns): Update.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
7b6bb8da 4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
94af9270
KS
51#include "typeprint.h"
52#include "jv-lang.h"
ccefe4c4 53#include "psympriv.h"
9291a0cd
TT
54#include "exceptions.h"
55#include "gdb_stat.h"
96d19272 56#include "completer.h"
34eaf542 57#include "vec.h"
98bfdba5
PA
58#include "c-lang.h"
59#include "valprint.h"
4c2df51b 60
c906108c
SS
61#include <fcntl.h>
62#include "gdb_string.h"
4bdf3d34 63#include "gdb_assert.h"
c906108c 64#include <sys/types.h>
233a11ab
CS
65#ifdef HAVE_ZLIB_H
66#include <zlib.h>
67#endif
dce234bc
PP
68#ifdef HAVE_MMAP
69#include <sys/mman.h>
85d9bd0e
TT
70#ifndef MAP_FAILED
71#define MAP_FAILED ((void *) -1)
72#endif
dce234bc 73#endif
d8151005 74
34eaf542
TT
75typedef struct symbol *symbolp;
76DEF_VEC_P (symbolp);
77
107d2387 78#if 0
357e46e7 79/* .debug_info header for a compilation unit
c906108c
SS
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91_COMP_UNIT_HEADER;
92#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 93#endif
c906108c 94
c906108c
SS
95/* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116_STATEMENT_PROLOGUE;
117
d97bc12b
DE
118/* When non-zero, dump DIEs after they are read in. */
119static int dwarf2_die_debug = 0;
120
dce234bc
PP
121static int pagesize;
122
df8a16a1
DJ
123/* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127static int processing_has_namespace_info;
128
6502dd73
DJ
129static const struct objfile_data *dwarf2_objfile_data_key;
130
dce234bc
PP
131struct dwarf2_section_info
132{
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
be391dca
TT
137 /* True if we have tried to read this section. */
138 int readin;
dce234bc
PP
139};
140
9291a0cd
TT
141/* All offsets in the index are of this type. It must be
142 architecture-independent. */
143typedef uint32_t offset_type;
144
145DEF_VEC_I (offset_type);
146
147/* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149struct mapped_index
150{
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
3876f04e
DE
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
9291a0cd 159 /* Size in slots, each slot is 2 offset_types. */
3876f04e 160 offset_type symbol_table_slots;
9291a0cd
TT
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163};
164
6502dd73
DJ
165struct dwarf2_per_objfile
166{
dce234bc
PP
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
dce234bc
PP
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
348e048f 174 struct dwarf2_section_info types;
dce234bc
PP
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
9291a0cd 177 struct dwarf2_section_info gdb_index;
ae038cb0 178
be391dca
TT
179 /* Back link. */
180 struct objfile *objfile;
181
10b3939b
DJ
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
ae038cb0
DJ
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
1fd400ff
TT
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
ae038cb0
DJ
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 198
348e048f
DE
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
72dca2f5
FR
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
9291a0cd 206
ae2de4f8
DE
207 /* True if we are using the mapped index,
208 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
209 unsigned char using_index;
210
ae2de4f8 211 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 212 struct mapped_index *index_table;
98bfdba5 213
7b9f3c50
DE
214 /* When using index_table, this keeps track of all quick_file_names entries.
215 TUs can share line table entries with CUs or other TUs, and there can be
216 a lot more TUs than unique line tables, so we maintain a separate table
217 of all line table entries to support the sharing. */
218 htab_t quick_file_names_table;
219
98bfdba5
PA
220 /* Set during partial symbol reading, to prevent queueing of full
221 symbols. */
222 int reading_partial_symbols;
673bfd45
DE
223
224 /* Table mapping type .debug_info DIE offsets to types.
225 This is NULL if not allocated yet.
226 It (currently) makes sense to allocate debug_types_type_hash lazily.
227 To keep things simple we allocate both lazily. */
228 htab_t debug_info_type_hash;
229
230 /* Table mapping type .debug_types DIE offsets to types.
231 This is NULL if not allocated yet. */
232 htab_t debug_types_type_hash;
6502dd73
DJ
233};
234
235static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c
SS
236
237/* names of the debugging sections */
238
233a11ab
CS
239/* Note that if the debugging section has been compressed, it might
240 have a name like .zdebug_info. */
241
242#define INFO_SECTION "debug_info"
243#define ABBREV_SECTION "debug_abbrev"
244#define LINE_SECTION "debug_line"
233a11ab
CS
245#define LOC_SECTION "debug_loc"
246#define MACINFO_SECTION "debug_macinfo"
247#define STR_SECTION "debug_str"
248#define RANGES_SECTION "debug_ranges"
348e048f 249#define TYPES_SECTION "debug_types"
233a11ab
CS
250#define FRAME_SECTION "debug_frame"
251#define EH_FRAME_SECTION "eh_frame"
9291a0cd 252#define GDB_INDEX_SECTION "gdb_index"
c906108c
SS
253
254/* local data types */
255
0963b4bd 256/* We hold several abbreviation tables in memory at the same time. */
57349743
JB
257#ifndef ABBREV_HASH_SIZE
258#define ABBREV_HASH_SIZE 121
259#endif
260
107d2387
AC
261/* The data in a compilation unit header, after target2host
262 translation, looks like this. */
c906108c 263struct comp_unit_head
a738430d 264{
c764a876 265 unsigned int length;
a738430d 266 short version;
a738430d
MK
267 unsigned char addr_size;
268 unsigned char signed_addr_p;
9cbfa09e 269 unsigned int abbrev_offset;
57349743 270
a738430d
MK
271 /* Size of file offsets; either 4 or 8. */
272 unsigned int offset_size;
57349743 273
a738430d
MK
274 /* Size of the length field; either 4 or 12. */
275 unsigned int initial_length_size;
57349743 276
a738430d
MK
277 /* Offset to the first byte of this compilation unit header in the
278 .debug_info section, for resolving relative reference dies. */
279 unsigned int offset;
57349743 280
d00adf39
DE
281 /* Offset to first die in this cu from the start of the cu.
282 This will be the first byte following the compilation unit header. */
283 unsigned int first_die_offset;
a738430d 284};
c906108c 285
3da10d80
KS
286/* Type used for delaying computation of method physnames.
287 See comments for compute_delayed_physnames. */
288struct delayed_method_info
289{
290 /* The type to which the method is attached, i.e., its parent class. */
291 struct type *type;
292
293 /* The index of the method in the type's function fieldlists. */
294 int fnfield_index;
295
296 /* The index of the method in the fieldlist. */
297 int index;
298
299 /* The name of the DIE. */
300 const char *name;
301
302 /* The DIE associated with this method. */
303 struct die_info *die;
304};
305
306typedef struct delayed_method_info delayed_method_info;
307DEF_VEC_O (delayed_method_info);
308
e7c27a73
DJ
309/* Internal state when decoding a particular compilation unit. */
310struct dwarf2_cu
311{
312 /* The objfile containing this compilation unit. */
313 struct objfile *objfile;
314
d00adf39 315 /* The header of the compilation unit. */
e7c27a73 316 struct comp_unit_head header;
e142c38c 317
d00adf39
DE
318 /* Base address of this compilation unit. */
319 CORE_ADDR base_address;
320
321 /* Non-zero if base_address has been set. */
322 int base_known;
323
e142c38c
DJ
324 struct function_range *first_fn, *last_fn, *cached_fn;
325
326 /* The language we are debugging. */
327 enum language language;
328 const struct language_defn *language_defn;
329
b0f35d58
DL
330 const char *producer;
331
e142c38c
DJ
332 /* The generic symbol table building routines have separate lists for
333 file scope symbols and all all other scopes (local scopes). So
334 we need to select the right one to pass to add_symbol_to_list().
335 We do it by keeping a pointer to the correct list in list_in_scope.
336
337 FIXME: The original dwarf code just treated the file scope as the
338 first local scope, and all other local scopes as nested local
339 scopes, and worked fine. Check to see if we really need to
340 distinguish these in buildsym.c. */
341 struct pending **list_in_scope;
342
f3dd6933
DJ
343 /* DWARF abbreviation table associated with this compilation unit. */
344 struct abbrev_info **dwarf2_abbrevs;
345
346 /* Storage for the abbrev table. */
347 struct obstack abbrev_obstack;
72bf9492
DJ
348
349 /* Hash table holding all the loaded partial DIEs. */
350 htab_t partial_dies;
351
352 /* Storage for things with the same lifetime as this read-in compilation
353 unit, including partial DIEs. */
354 struct obstack comp_unit_obstack;
355
ae038cb0
DJ
356 /* When multiple dwarf2_cu structures are living in memory, this field
357 chains them all together, so that they can be released efficiently.
358 We will probably also want a generation counter so that most-recently-used
359 compilation units are cached... */
360 struct dwarf2_per_cu_data *read_in_chain;
361
362 /* Backchain to our per_cu entry if the tree has been built. */
363 struct dwarf2_per_cu_data *per_cu;
364
365 /* How many compilation units ago was this CU last referenced? */
366 int last_used;
367
10b3939b 368 /* A hash table of die offsets for following references. */
51545339 369 htab_t die_hash;
10b3939b
DJ
370
371 /* Full DIEs if read in. */
372 struct die_info *dies;
373
374 /* A set of pointers to dwarf2_per_cu_data objects for compilation
375 units referenced by this one. Only set during full symbol processing;
376 partial symbol tables do not have dependencies. */
377 htab_t dependencies;
378
cb1df416
DJ
379 /* Header data from the line table, during full symbol processing. */
380 struct line_header *line_header;
381
3da10d80
KS
382 /* A list of methods which need to have physnames computed
383 after all type information has been read. */
384 VEC (delayed_method_info) *method_list;
385
ae038cb0
DJ
386 /* Mark used when releasing cached dies. */
387 unsigned int mark : 1;
388
389 /* This flag will be set if this compilation unit might include
390 inter-compilation-unit references. */
391 unsigned int has_form_ref_addr : 1;
392
72bf9492
DJ
393 /* This flag will be set if this compilation unit includes any
394 DW_TAG_namespace DIEs. If we know that there are explicit
395 DIEs for namespaces, we don't need to try to infer them
396 from mangled names. */
397 unsigned int has_namespace_info : 1;
e7c27a73
DJ
398};
399
10b3939b
DJ
400/* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. If we encounter
403 inter-compilation-unit references, we also maintain a sorted
404 list of all compilation units. */
405
ae038cb0
DJ
406struct dwarf2_per_cu_data
407{
348e048f 408 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 409 bytes should suffice to store the length of any compilation unit
45452591
DE
410 - if it doesn't, GDB will fall over anyway.
411 NOTE: Unlike comp_unit_head.length, this length includes
412 initial_length_size. */
c764a876 413 unsigned int offset;
348e048f 414 unsigned int length : 29;
ae038cb0
DJ
415
416 /* Flag indicating this compilation unit will be read in before
417 any of the current compilation units are processed. */
c764a876 418 unsigned int queued : 1;
ae038cb0 419
5afb4e99
DJ
420 /* This flag will be set if we need to load absolutely all DIEs
421 for this compilation unit, instead of just the ones we think
422 are interesting. It gets set if we look for a DIE in the
423 hash table and don't find it. */
424 unsigned int load_all_dies : 1;
425
348e048f
DE
426 /* Non-zero if this CU is from .debug_types.
427 Otherwise it's from .debug_info. */
428 unsigned int from_debug_types : 1;
429
17ea53c3
JK
430 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
431 of the CU cache it gets reset to NULL again. */
ae038cb0 432 struct dwarf2_cu *cu;
1c379e20 433
9291a0cd
TT
434 /* The corresponding objfile. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
ae038cb0
DJ
449};
450
348e048f
DE
451/* Entry in the signatured_types hash table. */
452
453struct signatured_type
454{
455 ULONGEST signature;
456
457 /* Offset in .debug_types of the TU (type_unit) for this type. */
458 unsigned int offset;
459
460 /* Offset in .debug_types of the type defined by this TU. */
461 unsigned int type_offset;
462
463 /* The CU(/TU) of this type. */
464 struct dwarf2_per_cu_data per_cu;
465};
466
0963b4bd
MS
467/* Struct used to pass misc. parameters to read_die_and_children, et
468 al. which are used for both .debug_info and .debug_types dies.
469 All parameters here are unchanging for the life of the call. This
470 struct exists to abstract away the constant parameters of die
471 reading. */
93311388
DE
472
473struct die_reader_specs
474{
475 /* The bfd of this objfile. */
476 bfd* abfd;
477
478 /* The CU of the DIE we are parsing. */
479 struct dwarf2_cu *cu;
480
481 /* Pointer to start of section buffer.
482 This is either the start of .debug_info or .debug_types. */
483 const gdb_byte *buffer;
484};
485
debd256d
JB
486/* The line number information for a compilation unit (found in the
487 .debug_line section) begins with a "statement program header",
488 which contains the following information. */
489struct line_header
490{
491 unsigned int total_length;
492 unsigned short version;
493 unsigned int header_length;
494 unsigned char minimum_instruction_length;
2dc7f7b3 495 unsigned char maximum_ops_per_instruction;
debd256d
JB
496 unsigned char default_is_stmt;
497 int line_base;
498 unsigned char line_range;
499 unsigned char opcode_base;
500
501 /* standard_opcode_lengths[i] is the number of operands for the
502 standard opcode whose value is i. This means that
503 standard_opcode_lengths[0] is unused, and the last meaningful
504 element is standard_opcode_lengths[opcode_base - 1]. */
505 unsigned char *standard_opcode_lengths;
506
507 /* The include_directories table. NOTE! These strings are not
508 allocated with xmalloc; instead, they are pointers into
509 debug_line_buffer. If you try to free them, `free' will get
510 indigestion. */
511 unsigned int num_include_dirs, include_dirs_size;
512 char **include_dirs;
513
514 /* The file_names table. NOTE! These strings are not allocated
515 with xmalloc; instead, they are pointers into debug_line_buffer.
516 Don't try to free them directly. */
517 unsigned int num_file_names, file_names_size;
518 struct file_entry
c906108c 519 {
debd256d
JB
520 char *name;
521 unsigned int dir_index;
522 unsigned int mod_time;
523 unsigned int length;
aaa75496 524 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 525 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
526 } *file_names;
527
528 /* The start and end of the statement program following this
6502dd73 529 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 530 gdb_byte *statement_program_start, *statement_program_end;
debd256d 531};
c906108c
SS
532
533/* When we construct a partial symbol table entry we only
0963b4bd 534 need this much information. */
c906108c
SS
535struct partial_die_info
536 {
72bf9492 537 /* Offset of this DIE. */
c906108c 538 unsigned int offset;
72bf9492
DJ
539
540 /* DWARF-2 tag for this DIE. */
541 ENUM_BITFIELD(dwarf_tag) tag : 16;
542
72bf9492
DJ
543 /* Assorted flags describing the data found in this DIE. */
544 unsigned int has_children : 1;
545 unsigned int is_external : 1;
546 unsigned int is_declaration : 1;
547 unsigned int has_type : 1;
548 unsigned int has_specification : 1;
549 unsigned int has_pc_info : 1;
550
551 /* Flag set if the SCOPE field of this structure has been
552 computed. */
553 unsigned int scope_set : 1;
554
fa4028e9
JB
555 /* Flag set if the DIE has a byte_size attribute. */
556 unsigned int has_byte_size : 1;
557
98bfdba5
PA
558 /* Flag set if any of the DIE's children are template arguments. */
559 unsigned int has_template_arguments : 1;
560
abc72ce4
DE
561 /* Flag set if fixup_partial_die has been called on this die. */
562 unsigned int fixup_called : 1;
563
72bf9492 564 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 565 sometimes a default name for unnamed DIEs. */
c906108c 566 char *name;
72bf9492 567
abc72ce4
DE
568 /* The linkage name, if present. */
569 const char *linkage_name;
570
72bf9492
DJ
571 /* The scope to prepend to our children. This is generally
572 allocated on the comp_unit_obstack, so will disappear
573 when this compilation unit leaves the cache. */
574 char *scope;
575
576 /* The location description associated with this DIE, if any. */
577 struct dwarf_block *locdesc;
578
579 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
580 CORE_ADDR lowpc;
581 CORE_ADDR highpc;
72bf9492 582
93311388 583 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 584 DW_AT_sibling, if any. */
abc72ce4
DE
585 /* NOTE: This member isn't strictly necessary, read_partial_die could
586 return DW_AT_sibling values to its caller load_partial_dies. */
fe1b8b76 587 gdb_byte *sibling;
72bf9492
DJ
588
589 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
590 DW_AT_specification (or DW_AT_abstract_origin or
591 DW_AT_extension). */
592 unsigned int spec_offset;
593
594 /* Pointers to this DIE's parent, first child, and next sibling,
595 if any. */
596 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
597 };
598
0963b4bd 599/* This data structure holds the information of an abbrev. */
c906108c
SS
600struct abbrev_info
601 {
602 unsigned int number; /* number identifying abbrev */
603 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
604 unsigned short has_children; /* boolean */
605 unsigned short num_attrs; /* number of attributes */
c906108c
SS
606 struct attr_abbrev *attrs; /* an array of attribute descriptions */
607 struct abbrev_info *next; /* next in chain */
608 };
609
610struct attr_abbrev
611 {
9d25dd43
DE
612 ENUM_BITFIELD(dwarf_attribute) name : 16;
613 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
614 };
615
0963b4bd 616/* Attributes have a name and a value. */
b60c80d6
DJ
617struct attribute
618 {
9d25dd43 619 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
620 ENUM_BITFIELD(dwarf_form) form : 15;
621
622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
623 field should be in u.str (existing only for DW_STRING) but it is kept
624 here for better struct attribute alignment. */
625 unsigned int string_is_canonical : 1;
626
b60c80d6
DJ
627 union
628 {
629 char *str;
630 struct dwarf_block *blk;
43bbcdc2
PH
631 ULONGEST unsnd;
632 LONGEST snd;
b60c80d6 633 CORE_ADDR addr;
348e048f 634 struct signatured_type *signatured_type;
b60c80d6
DJ
635 }
636 u;
637 };
638
0963b4bd 639/* This data structure holds a complete die structure. */
c906108c
SS
640struct die_info
641 {
76815b17
DE
642 /* DWARF-2 tag for this DIE. */
643 ENUM_BITFIELD(dwarf_tag) tag : 16;
644
645 /* Number of attributes */
98bfdba5
PA
646 unsigned char num_attrs;
647
648 /* True if we're presently building the full type name for the
649 type derived from this DIE. */
650 unsigned char building_fullname : 1;
76815b17
DE
651
652 /* Abbrev number */
653 unsigned int abbrev;
654
93311388 655 /* Offset in .debug_info or .debug_types section. */
76815b17 656 unsigned int offset;
78ba4af6
JB
657
658 /* The dies in a compilation unit form an n-ary tree. PARENT
659 points to this die's parent; CHILD points to the first child of
660 this node; and all the children of a given node are chained
4950bc1c 661 together via their SIBLING fields. */
639d11d3
DC
662 struct die_info *child; /* Its first child, if any. */
663 struct die_info *sibling; /* Its next sibling, if any. */
664 struct die_info *parent; /* Its parent, if any. */
c906108c 665
b60c80d6
DJ
666 /* An array of attributes, with NUM_ATTRS elements. There may be
667 zero, but it's not common and zero-sized arrays are not
668 sufficiently portable C. */
669 struct attribute attrs[1];
c906108c
SS
670 };
671
5fb290d7
DJ
672struct function_range
673{
674 const char *name;
675 CORE_ADDR lowpc, highpc;
676 int seen_line;
677 struct function_range *next;
678};
679
0963b4bd 680/* Get at parts of an attribute structure. */
c906108c
SS
681
682#define DW_STRING(attr) ((attr)->u.str)
8285870a 683#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
684#define DW_UNSND(attr) ((attr)->u.unsnd)
685#define DW_BLOCK(attr) ((attr)->u.blk)
686#define DW_SND(attr) ((attr)->u.snd)
687#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 688#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c 689
0963b4bd 690/* Blocks are a bunch of untyped bytes. */
c906108c
SS
691struct dwarf_block
692 {
693 unsigned int size;
fe1b8b76 694 gdb_byte *data;
c906108c
SS
695 };
696
c906108c
SS
697#ifndef ATTR_ALLOC_CHUNK
698#define ATTR_ALLOC_CHUNK 4
699#endif
700
c906108c
SS
701/* Allocate fields for structs, unions and enums in this size. */
702#ifndef DW_FIELD_ALLOC_CHUNK
703#define DW_FIELD_ALLOC_CHUNK 4
704#endif
705
c906108c
SS
706/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
707 but this would require a corresponding change in unpack_field_as_long
708 and friends. */
709static int bits_per_byte = 8;
710
711/* The routines that read and process dies for a C struct or C++ class
712 pass lists of data member fields and lists of member function fields
713 in an instance of a field_info structure, as defined below. */
714struct field_info
c5aa993b 715 {
0963b4bd 716 /* List of data member and baseclasses fields. */
c5aa993b
JM
717 struct nextfield
718 {
719 struct nextfield *next;
720 int accessibility;
721 int virtuality;
722 struct field field;
723 }
7d0ccb61 724 *fields, *baseclasses;
c906108c 725
7d0ccb61 726 /* Number of fields (including baseclasses). */
c5aa993b 727 int nfields;
c906108c 728
c5aa993b
JM
729 /* Number of baseclasses. */
730 int nbaseclasses;
c906108c 731
c5aa993b
JM
732 /* Set if the accesibility of one of the fields is not public. */
733 int non_public_fields;
c906108c 734
c5aa993b
JM
735 /* Member function fields array, entries are allocated in the order they
736 are encountered in the object file. */
737 struct nextfnfield
738 {
739 struct nextfnfield *next;
740 struct fn_field fnfield;
741 }
742 *fnfields;
c906108c 743
c5aa993b
JM
744 /* Member function fieldlist array, contains name of possibly overloaded
745 member function, number of overloaded member functions and a pointer
746 to the head of the member function field chain. */
747 struct fnfieldlist
748 {
749 char *name;
750 int length;
751 struct nextfnfield *head;
752 }
753 *fnfieldlists;
c906108c 754
c5aa993b
JM
755 /* Number of entries in the fnfieldlists array. */
756 int nfnfields;
98751a41
JK
757
758 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
759 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
760 struct typedef_field_list
761 {
762 struct typedef_field field;
763 struct typedef_field_list *next;
764 }
765 *typedef_field_list;
766 unsigned typedef_field_list_count;
c5aa993b 767 };
c906108c 768
10b3939b
DJ
769/* One item on the queue of compilation units to read in full symbols
770 for. */
771struct dwarf2_queue_item
772{
773 struct dwarf2_per_cu_data *per_cu;
774 struct dwarf2_queue_item *next;
775};
776
777/* The current queue. */
778static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
779
ae038cb0
DJ
780/* Loaded secondary compilation units are kept in memory until they
781 have not been referenced for the processing of this many
782 compilation units. Set this to zero to disable caching. Cache
783 sizes of up to at least twenty will improve startup time for
784 typical inter-CU-reference binaries, at an obvious memory cost. */
785static int dwarf2_max_cache_age = 5;
920d2a44
AC
786static void
787show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
788 struct cmd_list_element *c, const char *value)
789{
3e43a32a
MS
790 fprintf_filtered (file, _("The upper bound on the age of cached "
791 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
792 value);
793}
794
ae038cb0 795
0963b4bd 796/* Various complaints about symbol reading that don't abort the process. */
c906108c 797
4d3c2250
KB
798static void
799dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 800{
4d3c2250 801 complaint (&symfile_complaints,
e2e0b3e5 802 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
803}
804
25e43795
DJ
805static void
806dwarf2_debug_line_missing_file_complaint (void)
807{
808 complaint (&symfile_complaints,
809 _(".debug_line section has line data without a file"));
810}
811
59205f5a
JB
812static void
813dwarf2_debug_line_missing_end_sequence_complaint (void)
814{
815 complaint (&symfile_complaints,
3e43a32a
MS
816 _(".debug_line section has line "
817 "program sequence without an end"));
59205f5a
JB
818}
819
4d3c2250
KB
820static void
821dwarf2_complex_location_expr_complaint (void)
2e276125 822{
e2e0b3e5 823 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
824}
825
4d3c2250
KB
826static void
827dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
828 int arg3)
2e276125 829{
4d3c2250 830 complaint (&symfile_complaints,
3e43a32a
MS
831 _("const value length mismatch for '%s', got %d, expected %d"),
832 arg1, arg2, arg3);
4d3c2250
KB
833}
834
835static void
836dwarf2_macros_too_long_complaint (void)
2e276125 837{
4d3c2250 838 complaint (&symfile_complaints,
e2e0b3e5 839 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
840}
841
842static void
843dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 844{
4d3c2250 845 complaint (&symfile_complaints,
3e43a32a
MS
846 _("macro debug info contains a "
847 "malformed macro definition:\n`%s'"),
4d3c2250
KB
848 arg1);
849}
850
851static void
852dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 853{
4d3c2250 854 complaint (&symfile_complaints,
3e43a32a
MS
855 _("invalid attribute class or form for '%s' in '%s'"),
856 arg1, arg2);
4d3c2250 857}
c906108c 858
c906108c
SS
859/* local function prototypes */
860
4efb68b1 861static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 862
aaa75496
JB
863static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
864 struct objfile *);
865
c67a9c90 866static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 867
72bf9492
DJ
868static void scan_partial_symbols (struct partial_die_info *,
869 CORE_ADDR *, CORE_ADDR *,
5734ee8b 870 int, struct dwarf2_cu *);
c906108c 871
72bf9492
DJ
872static void add_partial_symbol (struct partial_die_info *,
873 struct dwarf2_cu *);
63d06c5c 874
72bf9492
DJ
875static void add_partial_namespace (struct partial_die_info *pdi,
876 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 877 int need_pc, struct dwarf2_cu *cu);
63d06c5c 878
5d7cb8df
JK
879static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
880 CORE_ADDR *highpc, int need_pc,
881 struct dwarf2_cu *cu);
882
72bf9492
DJ
883static void add_partial_enumeration (struct partial_die_info *enum_pdi,
884 struct dwarf2_cu *cu);
91c24f0a 885
bc30ff58
JB
886static void add_partial_subprogram (struct partial_die_info *pdi,
887 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 888 int need_pc, struct dwarf2_cu *cu);
bc30ff58 889
fe1b8b76 890static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
891 gdb_byte *buffer, gdb_byte *info_ptr,
892 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 893
a14ed312 894static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 895
a14ed312 896static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 897
e7c27a73 898static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 899
f3dd6933 900static void dwarf2_free_abbrev_table (void *);
c906108c 901
fe1b8b76 902static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 903 struct dwarf2_cu *);
72bf9492 904
57349743 905static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 906 struct dwarf2_cu *);
c906108c 907
93311388
DE
908static struct partial_die_info *load_partial_dies (bfd *,
909 gdb_byte *, gdb_byte *,
910 int, struct dwarf2_cu *);
72bf9492 911
fe1b8b76 912static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
913 struct abbrev_info *abbrev,
914 unsigned int, bfd *,
915 gdb_byte *, gdb_byte *,
916 struct dwarf2_cu *);
c906108c 917
c764a876 918static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 919 struct dwarf2_cu *);
72bf9492
DJ
920
921static void fixup_partial_die (struct partial_die_info *,
922 struct dwarf2_cu *);
923
fe1b8b76
JB
924static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
925 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 926
fe1b8b76
JB
927static gdb_byte *read_attribute_value (struct attribute *, unsigned,
928 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 929
fe1b8b76 930static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 931
fe1b8b76 932static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 933
fe1b8b76 934static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 935
fe1b8b76 936static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 937
93311388 938static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 939
fe1b8b76 940static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 941 unsigned int *);
c906108c 942
c764a876
DE
943static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
944
945static LONGEST read_checked_initial_length_and_offset
946 (bfd *, gdb_byte *, const struct comp_unit_head *,
947 unsigned int *, unsigned int *);
613e1657 948
fe1b8b76 949static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
950 unsigned int *);
951
952static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 953
fe1b8b76 954static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 955
9b1c24c8 956static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
c906108c 957
fe1b8b76
JB
958static char *read_indirect_string (bfd *, gdb_byte *,
959 const struct comp_unit_head *,
960 unsigned int *);
4bdf3d34 961
fe1b8b76 962static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 963
fe1b8b76 964static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 965
fe1b8b76 966static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 967
e142c38c 968static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 969
e142c38c
DJ
970static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
971 struct dwarf2_cu *);
c906108c 972
348e048f
DE
973static struct attribute *dwarf2_attr_no_follow (struct die_info *,
974 unsigned int,
975 struct dwarf2_cu *);
976
05cf31d1
JB
977static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
978 struct dwarf2_cu *cu);
979
e142c38c 980static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 981
e142c38c 982static struct die_info *die_specification (struct die_info *die,
f2f0e013 983 struct dwarf2_cu **);
63d06c5c 984
debd256d
JB
985static void free_line_header (struct line_header *lh);
986
aaa75496
JB
987static void add_file_name (struct line_header *, char *, unsigned int,
988 unsigned int, unsigned int);
989
debd256d
JB
990static struct line_header *(dwarf_decode_line_header
991 (unsigned int offset,
e7c27a73 992 bfd *abfd, struct dwarf2_cu *cu));
debd256d 993
72b9f47f 994static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
aaa75496 995 struct dwarf2_cu *, struct partial_symtab *);
c906108c 996
72b9f47f 997static void dwarf2_start_subfile (char *, const char *, const char *);
c906108c 998
a14ed312 999static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1000 struct dwarf2_cu *);
c906108c 1001
34eaf542
TT
1002static struct symbol *new_symbol_full (struct die_info *, struct type *,
1003 struct dwarf2_cu *, struct symbol *);
1004
a14ed312 1005static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1006 struct dwarf2_cu *);
c906108c 1007
98bfdba5
PA
1008static void dwarf2_const_value_attr (struct attribute *attr,
1009 struct type *type,
1010 const char *name,
1011 struct obstack *obstack,
1012 struct dwarf2_cu *cu, long *value,
1013 gdb_byte **bytes,
1014 struct dwarf2_locexpr_baton **baton);
2df3850c 1015
e7c27a73 1016static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1017
b4ba55a1
JB
1018static int need_gnat_info (struct dwarf2_cu *);
1019
3e43a32a
MS
1020static struct type *die_descriptive_type (struct die_info *,
1021 struct dwarf2_cu *);
b4ba55a1
JB
1022
1023static void set_descriptive_type (struct type *, struct die_info *,
1024 struct dwarf2_cu *);
1025
e7c27a73
DJ
1026static struct type *die_containing_type (struct die_info *,
1027 struct dwarf2_cu *);
c906108c 1028
673bfd45
DE
1029static struct type *lookup_die_type (struct die_info *, struct attribute *,
1030 struct dwarf2_cu *);
c906108c 1031
f792889a 1032static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1033
673bfd45
DE
1034static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1035
086ed43d 1036static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1037
6e70227d 1038static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1039 const char *suffix, int physname,
1040 struct dwarf2_cu *cu);
63d06c5c 1041
e7c27a73 1042static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1043
348e048f
DE
1044static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1045
e7c27a73 1046static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1047
e7c27a73 1048static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1049
ff013f42
JK
1050static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1051 struct dwarf2_cu *, struct partial_symtab *);
1052
a14ed312 1053static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1054 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1055 struct partial_symtab *);
c906108c 1056
fae299cd
DC
1057static void get_scope_pc_bounds (struct die_info *,
1058 CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *);
1060
801e3a5b
JB
1061static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1062 CORE_ADDR, struct dwarf2_cu *);
1063
a14ed312 1064static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1065 struct dwarf2_cu *);
c906108c 1066
a14ed312 1067static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1068 struct type *, struct dwarf2_cu *);
c906108c 1069
a14ed312 1070static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1071 struct die_info *, struct type *,
e7c27a73 1072 struct dwarf2_cu *);
c906108c 1073
a14ed312 1074static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1075 struct type *,
1076 struct dwarf2_cu *);
c906108c 1077
134d01f1 1078static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1079
e7c27a73 1080static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1081
e7c27a73 1082static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1083
5d7cb8df
JK
1084static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1085
27aa8d6a
SW
1086static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1087
f55ee35c
JK
1088static struct type *read_module_type (struct die_info *die,
1089 struct dwarf2_cu *cu);
1090
38d518c9 1091static const char *namespace_name (struct die_info *die,
e142c38c 1092 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1093
134d01f1 1094static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1095
e7c27a73 1096static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1097
6e70227d 1098static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1099 struct dwarf2_cu *);
1100
93311388 1101static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 1102
93311388
DE
1103static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1104 gdb_byte *info_ptr,
d97bc12b
DE
1105 gdb_byte **new_info_ptr,
1106 struct die_info *parent);
1107
93311388
DE
1108static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1109 gdb_byte *info_ptr,
fe1b8b76 1110 gdb_byte **new_info_ptr,
639d11d3
DC
1111 struct die_info *parent);
1112
93311388
DE
1113static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1114 gdb_byte *info_ptr,
fe1b8b76 1115 gdb_byte **new_info_ptr,
639d11d3
DC
1116 struct die_info *parent);
1117
93311388
DE
1118static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1119 struct die_info **, gdb_byte *,
1120 int *);
1121
e7c27a73 1122static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1123
71c25dea
TT
1124static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1125 struct obstack *);
1126
e142c38c 1127static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1128
98bfdba5
PA
1129static const char *dwarf2_full_name (char *name,
1130 struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
e142c38c 1133static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1134 struct dwarf2_cu **);
9219021c 1135
a14ed312 1136static char *dwarf_tag_name (unsigned int);
c906108c 1137
a14ed312 1138static char *dwarf_attr_name (unsigned int);
c906108c 1139
a14ed312 1140static char *dwarf_form_name (unsigned int);
c906108c 1141
a14ed312 1142static char *dwarf_bool_name (unsigned int);
c906108c 1143
a14ed312 1144static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1145
1146#if 0
a14ed312 1147static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1148#endif
1149
f9aca02d 1150static struct die_info *sibling_die (struct die_info *);
c906108c 1151
d97bc12b
DE
1152static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1153
1154static void dump_die_for_error (struct die_info *);
1155
1156static void dump_die_1 (struct ui_file *, int level, int max_level,
1157 struct die_info *);
c906108c 1158
d97bc12b 1159/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1160
51545339 1161static void store_in_ref_table (struct die_info *,
10b3939b 1162 struct dwarf2_cu *);
c906108c 1163
93311388
DE
1164static int is_ref_attr (struct attribute *);
1165
c764a876 1166static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1167
43bbcdc2 1168static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1169
348e048f
DE
1170static struct die_info *follow_die_ref_or_sig (struct die_info *,
1171 struct attribute *,
1172 struct dwarf2_cu **);
1173
10b3939b
DJ
1174static struct die_info *follow_die_ref (struct die_info *,
1175 struct attribute *,
f2f0e013 1176 struct dwarf2_cu **);
c906108c 1177
348e048f
DE
1178static struct die_info *follow_die_sig (struct die_info *,
1179 struct attribute *,
1180 struct dwarf2_cu **);
1181
1182static void read_signatured_type_at_offset (struct objfile *objfile,
1183 unsigned int offset);
1184
1185static void read_signatured_type (struct objfile *,
1186 struct signatured_type *type_sig);
1187
c906108c
SS
1188/* memory allocation interface */
1189
7b5a2f43 1190static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1191
f3dd6933 1192static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1193
b60c80d6 1194static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1195
e142c38c 1196static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1197
e142c38c
DJ
1198static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1199 struct dwarf2_cu *);
5fb290d7 1200
2e276125 1201static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1202 char *, bfd *, struct dwarf2_cu *);
2e276125 1203
8e19ed76
PS
1204static int attr_form_is_block (struct attribute *);
1205
3690dd37
JB
1206static int attr_form_is_section_offset (struct attribute *);
1207
1208static int attr_form_is_constant (struct attribute *);
1209
8cf6f0b1
TT
1210static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
93e7bd98
DJ
1214static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
4c2df51b 1217
93311388
DE
1218static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
4bb7a0a7 1221
72bf9492
DJ
1222static void free_stack_comp_unit (void *);
1223
72bf9492
DJ
1224static hashval_t partial_die_hash (const void *item);
1225
1226static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
ae038cb0 1228static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1229 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1230
1231static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1232 (unsigned int offset, struct objfile *objfile);
ae038cb0 1233
9816fde3
JK
1234static void init_one_comp_unit (struct dwarf2_cu *cu,
1235 struct objfile *objfile);
1236
1237static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1238 struct die_info *comp_unit_die);
93311388 1239
ae038cb0
DJ
1240static void free_one_comp_unit (void *);
1241
1242static void free_cached_comp_units (void *);
1243
1244static void age_cached_comp_units (void);
1245
1246static void free_one_cached_comp_unit (void *);
1247
f792889a
DJ
1248static struct type *set_die_type (struct die_info *, struct type *,
1249 struct dwarf2_cu *);
1c379e20 1250
ae038cb0
DJ
1251static void create_all_comp_units (struct objfile *);
1252
1fd400ff
TT
1253static int create_debug_types_hash_table (struct objfile *objfile);
1254
93311388
DE
1255static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1256 struct objfile *);
10b3939b
DJ
1257
1258static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1259
1260static void dwarf2_add_dependence (struct dwarf2_cu *,
1261 struct dwarf2_per_cu_data *);
1262
ae038cb0
DJ
1263static void dwarf2_mark (struct dwarf2_cu *);
1264
1265static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1266
673bfd45
DE
1267static struct type *get_die_type_at_offset (unsigned int,
1268 struct dwarf2_per_cu_data *per_cu);
1269
f792889a 1270static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1271
9291a0cd
TT
1272static void dwarf2_release_queue (void *dummy);
1273
1274static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1275 struct objfile *objfile);
1276
1277static void process_queue (struct objfile *objfile);
1278
1279static void find_file_and_directory (struct die_info *die,
1280 struct dwarf2_cu *cu,
1281 char **name, char **comp_dir);
1282
1283static char *file_full_name (int file, struct line_header *lh,
1284 const char *comp_dir);
1285
1286static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1287 gdb_byte *info_ptr,
1288 gdb_byte *buffer,
1289 unsigned int buffer_size,
1290 bfd *abfd);
1291
1292static void init_cu_die_reader (struct die_reader_specs *reader,
1293 struct dwarf2_cu *cu);
1294
673bfd45 1295static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1296
9291a0cd
TT
1297#if WORDS_BIGENDIAN
1298
1299/* Convert VALUE between big- and little-endian. */
1300static offset_type
1301byte_swap (offset_type value)
1302{
1303 offset_type result;
1304
1305 result = (value & 0xff) << 24;
1306 result |= (value & 0xff00) << 8;
1307 result |= (value & 0xff0000) >> 8;
1308 result |= (value & 0xff000000) >> 24;
1309 return result;
1310}
1311
1312#define MAYBE_SWAP(V) byte_swap (V)
1313
1314#else
1315#define MAYBE_SWAP(V) (V)
1316#endif /* WORDS_BIGENDIAN */
1317
1318/* The suffix for an index file. */
1319#define INDEX_SUFFIX ".gdb-index"
1320
3da10d80
KS
1321static const char *dwarf2_physname (char *name, struct die_info *die,
1322 struct dwarf2_cu *cu);
1323
c906108c
SS
1324/* Try to locate the sections we need for DWARF 2 debugging
1325 information and return true if we have enough to do something. */
1326
1327int
6502dd73 1328dwarf2_has_info (struct objfile *objfile)
c906108c 1329{
be391dca
TT
1330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1331 if (!dwarf2_per_objfile)
1332 {
1333 /* Initialize per-objfile state. */
1334 struct dwarf2_per_objfile *data
1335 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1336
be391dca
TT
1337 memset (data, 0, sizeof (*data));
1338 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1339 dwarf2_per_objfile = data;
6502dd73 1340
be391dca
TT
1341 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1342 dwarf2_per_objfile->objfile = objfile;
1343 }
1344 return (dwarf2_per_objfile->info.asection != NULL
1345 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1346}
1347
233a11ab
CS
1348/* When loading sections, we can either look for ".<name>", or for
1349 * ".z<name>", which indicates a compressed section. */
1350
1351static int
dce234bc 1352section_is_p (const char *section_name, const char *name)
233a11ab 1353{
dce234bc
PP
1354 return (section_name[0] == '.'
1355 && (strcmp (section_name + 1, name) == 0
1356 || (section_name[1] == 'z'
1357 && strcmp (section_name + 2, name) == 0)));
233a11ab
CS
1358}
1359
c906108c
SS
1360/* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364static void
72dca2f5 1365dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1366{
dce234bc 1367 if (section_is_p (sectp->name, INFO_SECTION))
c906108c 1368 {
dce234bc
PP
1369 dwarf2_per_objfile->info.asection = sectp;
1370 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1371 }
dce234bc 1372 else if (section_is_p (sectp->name, ABBREV_SECTION))
c906108c 1373 {
dce234bc
PP
1374 dwarf2_per_objfile->abbrev.asection = sectp;
1375 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1376 }
dce234bc 1377 else if (section_is_p (sectp->name, LINE_SECTION))
c906108c 1378 {
dce234bc
PP
1379 dwarf2_per_objfile->line.asection = sectp;
1380 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1381 }
dce234bc 1382 else if (section_is_p (sectp->name, LOC_SECTION))
c906108c 1383 {
dce234bc
PP
1384 dwarf2_per_objfile->loc.asection = sectp;
1385 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1386 }
dce234bc 1387 else if (section_is_p (sectp->name, MACINFO_SECTION))
c906108c 1388 {
dce234bc
PP
1389 dwarf2_per_objfile->macinfo.asection = sectp;
1390 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1391 }
dce234bc 1392 else if (section_is_p (sectp->name, STR_SECTION))
c906108c 1393 {
dce234bc
PP
1394 dwarf2_per_objfile->str.asection = sectp;
1395 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1396 }
dce234bc 1397 else if (section_is_p (sectp->name, FRAME_SECTION))
b6af0555 1398 {
dce234bc
PP
1399 dwarf2_per_objfile->frame.asection = sectp;
1400 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1401 }
dce234bc 1402 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
b6af0555 1403 {
3799ccc6 1404 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
9a619af0 1405
3799ccc6
EZ
1406 if (aflag & SEC_HAS_CONTENTS)
1407 {
dce234bc
PP
1408 dwarf2_per_objfile->eh_frame.asection = sectp;
1409 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1410 }
b6af0555 1411 }
dce234bc 1412 else if (section_is_p (sectp->name, RANGES_SECTION))
af34e669 1413 {
dce234bc
PP
1414 dwarf2_per_objfile->ranges.asection = sectp;
1415 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1416 }
348e048f
DE
1417 else if (section_is_p (sectp->name, TYPES_SECTION))
1418 {
1419 dwarf2_per_objfile->types.asection = sectp;
1420 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1421 }
9291a0cd
TT
1422 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1423 {
1424 dwarf2_per_objfile->gdb_index.asection = sectp;
1425 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1426 }
dce234bc 1427
72dca2f5
FR
1428 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1429 && bfd_section_vma (abfd, sectp) == 0)
1430 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1431}
1432
dce234bc
PP
1433/* Decompress a section that was compressed using zlib. Store the
1434 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1435
1436static void
dce234bc
PP
1437zlib_decompress_section (struct objfile *objfile, asection *sectp,
1438 gdb_byte **outbuf, bfd_size_type *outsize)
1439{
1440 bfd *abfd = objfile->obfd;
1441#ifndef HAVE_ZLIB_H
1442 error (_("Support for zlib-compressed DWARF data (from '%s') "
1443 "is disabled in this copy of GDB"),
1444 bfd_get_filename (abfd));
1445#else
1446 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1447 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1448 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1449 bfd_size_type uncompressed_size;
1450 gdb_byte *uncompressed_buffer;
1451 z_stream strm;
1452 int rc;
1453 int header_size = 12;
1454
1455 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
3e43a32a
MS
1456 || bfd_bread (compressed_buffer,
1457 compressed_size, abfd) != compressed_size)
dce234bc
PP
1458 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1459 bfd_get_filename (abfd));
1460
1461 /* Read the zlib header. In this case, it should be "ZLIB" followed
1462 by the uncompressed section size, 8 bytes in big-endian order. */
1463 if (compressed_size < header_size
1464 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1465 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1466 bfd_get_filename (abfd));
1467 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[11];
1475
1476 /* It is possible the section consists of several compressed
1477 buffers concatenated together, so we uncompress in a loop. */
1478 strm.zalloc = NULL;
1479 strm.zfree = NULL;
1480 strm.opaque = NULL;
1481 strm.avail_in = compressed_size - header_size;
1482 strm.next_in = (Bytef*) compressed_buffer + header_size;
1483 strm.avail_out = uncompressed_size;
1484 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1485 uncompressed_size);
1486 rc = inflateInit (&strm);
1487 while (strm.avail_in > 0)
1488 {
1489 if (rc != Z_OK)
1490 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1491 bfd_get_filename (abfd), rc);
1492 strm.next_out = ((Bytef*) uncompressed_buffer
1493 + (uncompressed_size - strm.avail_out));
1494 rc = inflate (&strm, Z_FINISH);
1495 if (rc != Z_STREAM_END)
1496 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1497 bfd_get_filename (abfd), rc);
1498 rc = inflateReset (&strm);
1499 }
1500 rc = inflateEnd (&strm);
1501 if (rc != Z_OK
1502 || strm.avail_out != 0)
1503 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505
affddf13 1506 do_cleanups (cleanup);
dce234bc
PP
1507 *outbuf = uncompressed_buffer;
1508 *outsize = uncompressed_size;
1509#endif
233a11ab
CS
1510}
1511
9e0ac564
TT
1512/* A helper function that decides whether a section is empty. */
1513
1514static int
1515dwarf2_section_empty_p (struct dwarf2_section_info *info)
1516{
1517 return info->asection == NULL || info->size == 0;
1518}
1519
dce234bc
PP
1520/* Read the contents of the section SECTP from object file specified by
1521 OBJFILE, store info about the section into INFO.
1522 If the section is compressed, uncompress it before returning. */
c906108c 1523
dce234bc
PP
1524static void
1525dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1526{
dce234bc
PP
1527 bfd *abfd = objfile->obfd;
1528 asection *sectp = info->asection;
1529 gdb_byte *buf, *retbuf;
1530 unsigned char header[4];
c906108c 1531
be391dca
TT
1532 if (info->readin)
1533 return;
dce234bc
PP
1534 info->buffer = NULL;
1535 info->was_mmapped = 0;
be391dca 1536 info->readin = 1;
188dd5d6 1537
9e0ac564 1538 if (dwarf2_section_empty_p (info))
dce234bc 1539 return;
c906108c 1540
dce234bc
PP
1541 /* Check if the file has a 4-byte header indicating compression. */
1542 if (info->size > sizeof (header)
1543 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1544 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1545 {
1546 /* Upon decompression, update the buffer and its size. */
1547 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1548 {
1549 zlib_decompress_section (objfile, sectp, &info->buffer,
1550 &info->size);
1551 return;
1552 }
1553 }
4bdf3d34 1554
dce234bc
PP
1555#ifdef HAVE_MMAP
1556 if (pagesize == 0)
1557 pagesize = getpagesize ();
2e276125 1558
dce234bc
PP
1559 /* Only try to mmap sections which are large enough: we don't want to
1560 waste space due to fragmentation. Also, only try mmap for sections
1561 without relocations. */
1562
1563 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1564 {
1565 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1566 size_t map_length = info->size + sectp->filepos - pg_offset;
1567 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1568 MAP_PRIVATE, pg_offset);
1569
1570 if (retbuf != MAP_FAILED)
1571 {
1572 info->was_mmapped = 1;
1573 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
be391dca
TT
1574#if HAVE_POSIX_MADVISE
1575 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1576#endif
dce234bc
PP
1577 return;
1578 }
1579 }
1580#endif
1581
1582 /* If we get here, we are a normal, not-compressed section. */
1583 info->buffer = buf
1584 = obstack_alloc (&objfile->objfile_obstack, info->size);
1585
1586 /* When debugging .o files, we may need to apply relocations; see
1587 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1588 We never compress sections in .o files, so we only need to
1589 try this when the section is not compressed. */
ac8035ab 1590 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1591 if (retbuf != NULL)
1592 {
1593 info->buffer = retbuf;
1594 return;
1595 }
1596
1597 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1598 || bfd_bread (buf, info->size, abfd) != info->size)
1599 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1600 bfd_get_filename (abfd));
1601}
1602
9e0ac564
TT
1603/* A helper function that returns the size of a section in a safe way.
1604 If you are positive that the section has been read before using the
1605 size, then it is safe to refer to the dwarf2_section_info object's
1606 "size" field directly. In other cases, you must call this
1607 function, because for compressed sections the size field is not set
1608 correctly until the section has been read. */
1609
1610static bfd_size_type
1611dwarf2_section_size (struct objfile *objfile,
1612 struct dwarf2_section_info *info)
1613{
1614 if (!info->readin)
1615 dwarf2_read_section (objfile, info);
1616 return info->size;
1617}
1618
dce234bc 1619/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 1620 SECTION_NAME. */
af34e669 1621
dce234bc
PP
1622void
1623dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1624 asection **sectp, gdb_byte **bufp,
1625 bfd_size_type *sizep)
1626{
1627 struct dwarf2_per_objfile *data
1628 = objfile_data (objfile, dwarf2_objfile_data_key);
1629 struct dwarf2_section_info *info;
a3b2a86b
TT
1630
1631 /* We may see an objfile without any DWARF, in which case we just
1632 return nothing. */
1633 if (data == NULL)
1634 {
1635 *sectp = NULL;
1636 *bufp = NULL;
1637 *sizep = 0;
1638 return;
1639 }
dce234bc
PP
1640 if (section_is_p (section_name, EH_FRAME_SECTION))
1641 info = &data->eh_frame;
1642 else if (section_is_p (section_name, FRAME_SECTION))
1643 info = &data->frame;
0d53c4c4 1644 else
f3574227 1645 gdb_assert_not_reached ("unexpected section");
dce234bc 1646
9e0ac564 1647 dwarf2_read_section (objfile, info);
dce234bc
PP
1648
1649 *sectp = info->asection;
1650 *bufp = info->buffer;
1651 *sizep = info->size;
1652}
1653
9291a0cd 1654\f
7b9f3c50
DE
1655/* DWARF quick_symbols_functions support. */
1656
1657/* TUs can share .debug_line entries, and there can be a lot more TUs than
1658 unique line tables, so we maintain a separate table of all .debug_line
1659 derived entries to support the sharing.
1660 All the quick functions need is the list of file names. We discard the
1661 line_header when we're done and don't need to record it here. */
1662struct quick_file_names
1663{
1664 /* The offset in .debug_line of the line table. We hash on this. */
1665 unsigned int offset;
1666
1667 /* The number of entries in file_names, real_names. */
1668 unsigned int num_file_names;
1669
1670 /* The file names from the line table, after being run through
1671 file_full_name. */
1672 const char **file_names;
1673
1674 /* The file names from the line table after being run through
1675 gdb_realpath. These are computed lazily. */
1676 const char **real_names;
1677};
1678
1679/* When using the index (and thus not using psymtabs), each CU has an
1680 object of this type. This is used to hold information needed by
1681 the various "quick" methods. */
1682struct dwarf2_per_cu_quick_data
1683{
1684 /* The file table. This can be NULL if there was no file table
1685 or it's currently not read in.
1686 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1687 struct quick_file_names *file_names;
1688
1689 /* The corresponding symbol table. This is NULL if symbols for this
1690 CU have not yet been read. */
1691 struct symtab *symtab;
1692
1693 /* A temporary mark bit used when iterating over all CUs in
1694 expand_symtabs_matching. */
1695 unsigned int mark : 1;
1696
1697 /* True if we've tried to read the file table and found there isn't one.
1698 There will be no point in trying to read it again next time. */
1699 unsigned int no_file_data : 1;
1700};
1701
1702/* Hash function for a quick_file_names. */
1703
1704static hashval_t
1705hash_file_name_entry (const void *e)
1706{
1707 const struct quick_file_names *file_data = e;
1708
1709 return file_data->offset;
1710}
1711
1712/* Equality function for a quick_file_names. */
1713
1714static int
1715eq_file_name_entry (const void *a, const void *b)
1716{
1717 const struct quick_file_names *ea = a;
1718 const struct quick_file_names *eb = b;
1719
1720 return ea->offset == eb->offset;
1721}
1722
1723/* Delete function for a quick_file_names. */
1724
1725static void
1726delete_file_name_entry (void *e)
1727{
1728 struct quick_file_names *file_data = e;
1729 int i;
1730
1731 for (i = 0; i < file_data->num_file_names; ++i)
1732 {
1733 xfree ((void*) file_data->file_names[i]);
1734 if (file_data->real_names)
1735 xfree ((void*) file_data->real_names[i]);
1736 }
1737
1738 /* The space for the struct itself lives on objfile_obstack,
1739 so we don't free it here. */
1740}
1741
1742/* Create a quick_file_names hash table. */
1743
1744static htab_t
1745create_quick_file_names_table (unsigned int nr_initial_entries)
1746{
1747 return htab_create_alloc (nr_initial_entries,
1748 hash_file_name_entry, eq_file_name_entry,
1749 delete_file_name_entry, xcalloc, xfree);
1750}
9291a0cd
TT
1751
1752/* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1753 this CU came. */
2fdf6df6 1754
9291a0cd
TT
1755static void
1756dw2_do_instantiate_symtab (struct objfile *objfile,
1757 struct dwarf2_per_cu_data *per_cu)
1758{
1759 struct cleanup *back_to;
1760
1761 back_to = make_cleanup (dwarf2_release_queue, NULL);
1762
1763 queue_comp_unit (per_cu, objfile);
1764
1765 if (per_cu->from_debug_types)
1766 read_signatured_type_at_offset (objfile, per_cu->offset);
1767 else
1768 load_full_comp_unit (per_cu, objfile);
1769
1770 process_queue (objfile);
1771
1772 /* Age the cache, releasing compilation units that have not
1773 been used recently. */
1774 age_cached_comp_units ();
1775
1776 do_cleanups (back_to);
1777}
1778
1779/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1780 the objfile from which this CU came. Returns the resulting symbol
1781 table. */
2fdf6df6 1782
9291a0cd
TT
1783static struct symtab *
1784dw2_instantiate_symtab (struct objfile *objfile,
1785 struct dwarf2_per_cu_data *per_cu)
1786{
1787 if (!per_cu->v.quick->symtab)
1788 {
1789 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1790 increment_reading_symtab ();
1791 dw2_do_instantiate_symtab (objfile, per_cu);
1792 do_cleanups (back_to);
1793 }
1794 return per_cu->v.quick->symtab;
1795}
1796
1fd400ff 1797/* Return the CU given its index. */
2fdf6df6 1798
1fd400ff
TT
1799static struct dwarf2_per_cu_data *
1800dw2_get_cu (int index)
1801{
1802 if (index >= dwarf2_per_objfile->n_comp_units)
1803 {
1804 index -= dwarf2_per_objfile->n_comp_units;
1805 return dwarf2_per_objfile->type_comp_units[index];
1806 }
1807 return dwarf2_per_objfile->all_comp_units[index];
1808}
1809
9291a0cd
TT
1810/* A helper function that knows how to read a 64-bit value in a way
1811 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1812 otherwise. */
2fdf6df6 1813
9291a0cd
TT
1814static int
1815extract_cu_value (const char *bytes, ULONGEST *result)
1816{
1817 if (sizeof (ULONGEST) < 8)
1818 {
1819 int i;
1820
1821 /* Ignore the upper 4 bytes if they are all zero. */
1822 for (i = 0; i < 4; ++i)
1823 if (bytes[i + 4] != 0)
1824 return 0;
1825
1826 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1827 }
1828 else
1829 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1830 return 1;
1831}
1832
1833/* Read the CU list from the mapped index, and use it to create all
1834 the CU objects for this objfile. Return 0 if something went wrong,
1835 1 if everything went ok. */
2fdf6df6 1836
9291a0cd 1837static int
1fd400ff
TT
1838create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1839 offset_type cu_list_elements)
9291a0cd
TT
1840{
1841 offset_type i;
9291a0cd
TT
1842
1843 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1844 dwarf2_per_objfile->all_comp_units
1845 = obstack_alloc (&objfile->objfile_obstack,
1846 dwarf2_per_objfile->n_comp_units
1847 * sizeof (struct dwarf2_per_cu_data *));
1848
1849 for (i = 0; i < cu_list_elements; i += 2)
1850 {
1851 struct dwarf2_per_cu_data *the_cu;
1852 ULONGEST offset, length;
1853
1854 if (!extract_cu_value (cu_list, &offset)
1855 || !extract_cu_value (cu_list + 8, &length))
1856 return 0;
1857 cu_list += 2 * 8;
1858
1859 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1860 struct dwarf2_per_cu_data);
1861 the_cu->offset = offset;
1862 the_cu->length = length;
1863 the_cu->objfile = objfile;
1864 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1865 struct dwarf2_per_cu_quick_data);
1866 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1867 }
1868
1869 return 1;
1870}
1871
1fd400ff 1872/* Create the signatured type hash table from the index. */
673bfd45 1873
1fd400ff 1874static int
673bfd45
DE
1875create_signatured_type_table_from_index (struct objfile *objfile,
1876 const gdb_byte *bytes,
1877 offset_type elements)
1fd400ff
TT
1878{
1879 offset_type i;
673bfd45 1880 htab_t sig_types_hash;
1fd400ff
TT
1881
1882 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1883 dwarf2_per_objfile->type_comp_units
1884 = obstack_alloc (&objfile->objfile_obstack,
1885 dwarf2_per_objfile->n_type_comp_units
1886 * sizeof (struct dwarf2_per_cu_data *));
1887
673bfd45 1888 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
1889
1890 for (i = 0; i < elements; i += 3)
1891 {
1892 struct signatured_type *type_sig;
1893 ULONGEST offset, type_offset, signature;
1894 void **slot;
1895
1896 if (!extract_cu_value (bytes, &offset)
1897 || !extract_cu_value (bytes + 8, &type_offset))
1898 return 0;
1899 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1900 bytes += 3 * 8;
1901
1902 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1903 struct signatured_type);
1904 type_sig->signature = signature;
1905 type_sig->offset = offset;
1906 type_sig->type_offset = type_offset;
1907 type_sig->per_cu.from_debug_types = 1;
1908 type_sig->per_cu.offset = offset;
1909 type_sig->per_cu.objfile = objfile;
1910 type_sig->per_cu.v.quick
1911 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1912 struct dwarf2_per_cu_quick_data);
1913
673bfd45 1914 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1fd400ff
TT
1915 *slot = type_sig;
1916
1917 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1918 }
1919
673bfd45 1920 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
1921
1922 return 1;
1923}
1924
9291a0cd
TT
1925/* Read the address map data from the mapped index, and use it to
1926 populate the objfile's psymtabs_addrmap. */
2fdf6df6 1927
9291a0cd
TT
1928static void
1929create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1930{
1931 const gdb_byte *iter, *end;
1932 struct obstack temp_obstack;
1933 struct addrmap *mutable_map;
1934 struct cleanup *cleanup;
1935 CORE_ADDR baseaddr;
1936
1937 obstack_init (&temp_obstack);
1938 cleanup = make_cleanup_obstack_free (&temp_obstack);
1939 mutable_map = addrmap_create_mutable (&temp_obstack);
1940
1941 iter = index->address_table;
1942 end = iter + index->address_table_size;
1943
1944 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1945
1946 while (iter < end)
1947 {
1948 ULONGEST hi, lo, cu_index;
1949 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1950 iter += 8;
1951 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1952 iter += 8;
1953 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1954 iter += 4;
1955
1956 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1fd400ff 1957 dw2_get_cu (cu_index));
9291a0cd
TT
1958 }
1959
1960 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1961 &objfile->objfile_obstack);
1962 do_cleanups (cleanup);
1963}
1964
1965/* The hash function for strings in the mapped index. This is the
1966 same as the hashtab.c hash function, but we keep a separate copy to
1967 maintain control over the implementation. This is necessary
1968 because the hash function is tied to the format of the mapped index
1969 file. */
2fdf6df6 1970
9291a0cd
TT
1971static hashval_t
1972mapped_index_string_hash (const void *p)
1973{
1974 const unsigned char *str = (const unsigned char *) p;
1975 hashval_t r = 0;
1976 unsigned char c;
1977
1978 while ((c = *str++) != 0)
1979 r = r * 67 + c - 113;
1980
1981 return r;
1982}
1983
1984/* Find a slot in the mapped index INDEX for the object named NAME.
1985 If NAME is found, set *VEC_OUT to point to the CU vector in the
1986 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 1987
9291a0cd
TT
1988static int
1989find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1990 offset_type **vec_out)
1991{
1992 offset_type hash = mapped_index_string_hash (name);
1993 offset_type slot, step;
1994
3876f04e
DE
1995 slot = hash & (index->symbol_table_slots - 1);
1996 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
9291a0cd
TT
1997
1998 for (;;)
1999 {
2000 /* Convert a slot number to an offset into the table. */
2001 offset_type i = 2 * slot;
2002 const char *str;
3876f04e 2003 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
9291a0cd
TT
2004 return 0;
2005
3876f04e 2006 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
9291a0cd
TT
2007 if (!strcmp (name, str))
2008 {
2009 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2010 + MAYBE_SWAP (index->symbol_table[i + 1]));
9291a0cd
TT
2011 return 1;
2012 }
2013
3876f04e 2014 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2015 }
2016}
2017
2018/* Read the index file. If everything went ok, initialize the "quick"
2019 elements of all the CUs and return 1. Otherwise, return 0. */
2fdf6df6 2020
9291a0cd
TT
2021static int
2022dwarf2_read_index (struct objfile *objfile)
2023{
9291a0cd
TT
2024 char *addr;
2025 struct mapped_index *map;
b3b272e1 2026 offset_type *metadata;
ac0b195c
KW
2027 const gdb_byte *cu_list;
2028 const gdb_byte *types_list = NULL;
2029 offset_type version, cu_list_elements;
2030 offset_type types_list_elements = 0;
1fd400ff 2031 int i;
9291a0cd 2032
9e0ac564 2033 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
9291a0cd 2034 return 0;
82430852
JK
2035
2036 /* Older elfutils strip versions could keep the section in the main
2037 executable while splitting it for the separate debug info file. */
2038 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2039 & SEC_HAS_CONTENTS) == 0)
2040 return 0;
2041
9291a0cd
TT
2042 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2043
2044 addr = dwarf2_per_objfile->gdb_index.buffer;
2045 /* Version check. */
1fd400ff 2046 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2047 /* Versions earlier than 3 emitted every copy of a psymbol. This
831adc1f
JK
2048 causes the index to behave very poorly for certain requests. Version 4
2049 contained incomplete addrmap. So, it seems better to just ignore such
2050 indices. */
2051 if (version < 4)
9291a0cd 2052 return 0;
594e8718
JK
2053 /* Indexes with higher version than the one supported by GDB may be no
2054 longer backward compatible. */
831adc1f 2055 if (version > 4)
594e8718 2056 return 0;
9291a0cd
TT
2057
2058 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
b3b272e1 2059 map->total_size = dwarf2_per_objfile->gdb_index.size;
9291a0cd
TT
2060
2061 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2062
2063 i = 0;
2064 cu_list = addr + MAYBE_SWAP (metadata[i]);
2065 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
9291a0cd 2066 / 8);
1fd400ff
TT
2067 ++i;
2068
987d643c
TT
2069 types_list = addr + MAYBE_SWAP (metadata[i]);
2070 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2071 - MAYBE_SWAP (metadata[i]))
2072 / 8);
2073 ++i;
1fd400ff
TT
2074
2075 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2076 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2077 - MAYBE_SWAP (metadata[i]));
2078 ++i;
2079
3876f04e
DE
2080 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2081 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2082 - MAYBE_SWAP (metadata[i]))
2083 / (2 * sizeof (offset_type)));
1fd400ff 2084 ++i;
9291a0cd 2085
1fd400ff
TT
2086 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2087
2088 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2089 return 0;
2090
987d643c 2091 if (types_list_elements
673bfd45
DE
2092 && !create_signatured_type_table_from_index (objfile, types_list,
2093 types_list_elements))
9291a0cd
TT
2094 return 0;
2095
2096 create_addrmap_from_index (objfile, map);
2097
2098 dwarf2_per_objfile->index_table = map;
2099 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2100 dwarf2_per_objfile->quick_file_names_table =
2101 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2102
2103 return 1;
2104}
2105
2106/* A helper for the "quick" functions which sets the global
2107 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2108
9291a0cd
TT
2109static void
2110dw2_setup (struct objfile *objfile)
2111{
2112 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2113 gdb_assert (dwarf2_per_objfile);
2114}
2115
2116/* A helper for the "quick" functions which attempts to read the line
2117 table for THIS_CU. */
2fdf6df6 2118
7b9f3c50
DE
2119static struct quick_file_names *
2120dw2_get_file_names (struct objfile *objfile,
2121 struct dwarf2_per_cu_data *this_cu)
9291a0cd
TT
2122{
2123 bfd *abfd = objfile->obfd;
7b9f3c50 2124 struct line_header *lh;
9291a0cd
TT
2125 struct attribute *attr;
2126 struct cleanup *cleanups;
2127 struct die_info *comp_unit_die;
36374493 2128 struct dwarf2_section_info* sec;
9291a0cd
TT
2129 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2130 int has_children, i;
2131 struct dwarf2_cu cu;
2132 unsigned int bytes_read, buffer_size;
2133 struct die_reader_specs reader_specs;
2134 char *name, *comp_dir;
7b9f3c50
DE
2135 void **slot;
2136 struct quick_file_names *qfn;
2137 unsigned int line_offset;
9291a0cd 2138
7b9f3c50
DE
2139 if (this_cu->v.quick->file_names != NULL)
2140 return this_cu->v.quick->file_names;
2141 /* If we know there is no line data, no point in looking again. */
2142 if (this_cu->v.quick->no_file_data)
2143 return NULL;
9291a0cd 2144
9816fde3 2145 init_one_comp_unit (&cu, objfile);
9291a0cd
TT
2146 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2147
36374493
DE
2148 if (this_cu->from_debug_types)
2149 sec = &dwarf2_per_objfile->types;
2150 else
2151 sec = &dwarf2_per_objfile->info;
2152 dwarf2_read_section (objfile, sec);
2153 buffer_size = sec->size;
2154 buffer = sec->buffer;
9291a0cd
TT
2155 info_ptr = buffer + this_cu->offset;
2156 beg_of_comp_unit = info_ptr;
2157
2158 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2159 buffer, buffer_size,
2160 abfd);
2161
2162 /* Complete the cu_header. */
2163 cu.header.offset = beg_of_comp_unit - buffer;
2164 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2165
2166 this_cu->cu = &cu;
2167 cu.per_cu = this_cu;
2168
2169 dwarf2_read_abbrevs (abfd, &cu);
2170 make_cleanup (dwarf2_free_abbrev_table, &cu);
2171
2172 if (this_cu->from_debug_types)
2173 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2174 init_cu_die_reader (&reader_specs, &cu);
e8e80198
MS
2175 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2176 &has_children);
9291a0cd 2177
7b9f3c50
DE
2178 lh = NULL;
2179 slot = NULL;
2180 line_offset = 0;
9291a0cd
TT
2181 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2182 if (attr)
2183 {
7b9f3c50
DE
2184 struct quick_file_names find_entry;
2185
2186 line_offset = DW_UNSND (attr);
2187
2188 /* We may have already read in this line header (TU line header sharing).
2189 If we have we're done. */
2190 find_entry.offset = line_offset;
2191 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2192 &find_entry, INSERT);
2193 if (*slot != NULL)
2194 {
2195 do_cleanups (cleanups);
2196 this_cu->v.quick->file_names = *slot;
2197 return *slot;
2198 }
2199
9291a0cd
TT
2200 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2201 }
2202 if (lh == NULL)
2203 {
2204 do_cleanups (cleanups);
7b9f3c50
DE
2205 this_cu->v.quick->no_file_data = 1;
2206 return NULL;
9291a0cd
TT
2207 }
2208
7b9f3c50
DE
2209 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2210 qfn->offset = line_offset;
2211 gdb_assert (slot != NULL);
2212 *slot = qfn;
9291a0cd 2213
7b9f3c50 2214 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
9291a0cd 2215
7b9f3c50
DE
2216 qfn->num_file_names = lh->num_file_names;
2217 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2218 lh->num_file_names * sizeof (char *));
9291a0cd 2219 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2220 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2221 qfn->real_names = NULL;
9291a0cd 2222
7b9f3c50 2223 free_line_header (lh);
9291a0cd 2224 do_cleanups (cleanups);
7b9f3c50
DE
2225
2226 this_cu->v.quick->file_names = qfn;
2227 return qfn;
9291a0cd
TT
2228}
2229
2230/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2231 real path for a given file name from the line table. */
2fdf6df6 2232
9291a0cd 2233static const char *
7b9f3c50
DE
2234dw2_get_real_path (struct objfile *objfile,
2235 struct quick_file_names *qfn, int index)
9291a0cd 2236{
7b9f3c50
DE
2237 if (qfn->real_names == NULL)
2238 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2239 qfn->num_file_names, sizeof (char *));
9291a0cd 2240
7b9f3c50
DE
2241 if (qfn->real_names[index] == NULL)
2242 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 2243
7b9f3c50 2244 return qfn->real_names[index];
9291a0cd
TT
2245}
2246
2247static struct symtab *
2248dw2_find_last_source_symtab (struct objfile *objfile)
2249{
2250 int index;
ae2de4f8 2251
9291a0cd
TT
2252 dw2_setup (objfile);
2253 index = dwarf2_per_objfile->n_comp_units - 1;
1fd400ff 2254 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
9291a0cd
TT
2255}
2256
7b9f3c50
DE
2257/* Traversal function for dw2_forget_cached_source_info. */
2258
2259static int
2260dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 2261{
7b9f3c50 2262 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 2263
7b9f3c50 2264 if (file_data->real_names)
9291a0cd 2265 {
7b9f3c50 2266 int i;
9291a0cd 2267
7b9f3c50 2268 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 2269 {
7b9f3c50
DE
2270 xfree ((void*) file_data->real_names[i]);
2271 file_data->real_names[i] = NULL;
9291a0cd
TT
2272 }
2273 }
7b9f3c50
DE
2274
2275 return 1;
2276}
2277
2278static void
2279dw2_forget_cached_source_info (struct objfile *objfile)
2280{
2281 dw2_setup (objfile);
2282
2283 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2284 dw2_free_cached_file_names, NULL);
9291a0cd
TT
2285}
2286
2287static int
2288dw2_lookup_symtab (struct objfile *objfile, const char *name,
2289 const char *full_path, const char *real_path,
2290 struct symtab **result)
2291{
2292 int i;
2293 int check_basename = lbasename (name) == name;
2294 struct dwarf2_per_cu_data *base_cu = NULL;
2295
2296 dw2_setup (objfile);
ae2de4f8 2297
1fd400ff
TT
2298 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2299 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2300 {
2301 int j;
e254ef6a 2302 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2303 struct quick_file_names *file_data;
9291a0cd 2304
e254ef6a 2305 if (per_cu->v.quick->symtab)
9291a0cd
TT
2306 continue;
2307
7b9f3c50
DE
2308 file_data = dw2_get_file_names (objfile, per_cu);
2309 if (file_data == NULL)
9291a0cd
TT
2310 continue;
2311
7b9f3c50 2312 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2313 {
7b9f3c50 2314 const char *this_name = file_data->file_names[j];
9291a0cd
TT
2315
2316 if (FILENAME_CMP (name, this_name) == 0)
2317 {
e254ef6a 2318 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2319 return 1;
2320 }
2321
2322 if (check_basename && ! base_cu
2323 && FILENAME_CMP (lbasename (this_name), name) == 0)
e254ef6a 2324 base_cu = per_cu;
9291a0cd
TT
2325
2326 if (full_path != NULL)
2327 {
7b9f3c50
DE
2328 const char *this_real_name = dw2_get_real_path (objfile,
2329 file_data, j);
9291a0cd 2330
7b9f3c50
DE
2331 if (this_real_name != NULL
2332 && FILENAME_CMP (full_path, this_real_name) == 0)
9291a0cd 2333 {
e254ef6a 2334 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2335 return 1;
2336 }
2337 }
2338
2339 if (real_path != NULL)
2340 {
7b9f3c50
DE
2341 const char *this_real_name = dw2_get_real_path (objfile,
2342 file_data, j);
9291a0cd 2343
7b9f3c50
DE
2344 if (this_real_name != NULL
2345 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 2346 {
74dd2ca6
DE
2347 *result = dw2_instantiate_symtab (objfile, per_cu);
2348 return 1;
9291a0cd
TT
2349 }
2350 }
2351 }
2352 }
2353
2354 if (base_cu)
2355 {
2356 *result = dw2_instantiate_symtab (objfile, base_cu);
2357 return 1;
2358 }
2359
2360 return 0;
2361}
2362
2363static struct symtab *
2364dw2_lookup_symbol (struct objfile *objfile, int block_index,
2365 const char *name, domain_enum domain)
2366{
774b6a14 2367 /* We do all the work in the pre_expand_symtabs_matching hook
9291a0cd
TT
2368 instead. */
2369 return NULL;
2370}
2371
2372/* A helper function that expands all symtabs that hold an object
2373 named NAME. */
2fdf6df6 2374
9291a0cd
TT
2375static void
2376dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2377{
2378 dw2_setup (objfile);
2379
ae2de4f8 2380 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2381 if (dwarf2_per_objfile->index_table)
2382 {
2383 offset_type *vec;
2384
2385 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2386 name, &vec))
2387 {
2388 offset_type i, len = MAYBE_SWAP (*vec);
2389 for (i = 0; i < len; ++i)
2390 {
2391 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
e254ef6a 2392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
1fd400ff 2393
e254ef6a 2394 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2395 }
2396 }
2397 }
2398}
2399
774b6a14
TT
2400static void
2401dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2402 int kind, const char *name,
2403 domain_enum domain)
9291a0cd 2404{
774b6a14 2405 dw2_do_expand_symtabs_matching (objfile, name);
9291a0cd
TT
2406}
2407
2408static void
2409dw2_print_stats (struct objfile *objfile)
2410{
2411 int i, count;
2412
2413 dw2_setup (objfile);
2414 count = 0;
1fd400ff
TT
2415 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2416 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2417 {
e254ef6a 2418 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2419
e254ef6a 2420 if (!per_cu->v.quick->symtab)
9291a0cd
TT
2421 ++count;
2422 }
2423 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2424}
2425
2426static void
2427dw2_dump (struct objfile *objfile)
2428{
2429 /* Nothing worth printing. */
2430}
2431
2432static void
2433dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2434 struct section_offsets *delta)
2435{
2436 /* There's nothing to relocate here. */
2437}
2438
2439static void
2440dw2_expand_symtabs_for_function (struct objfile *objfile,
2441 const char *func_name)
2442{
2443 dw2_do_expand_symtabs_matching (objfile, func_name);
2444}
2445
2446static void
2447dw2_expand_all_symtabs (struct objfile *objfile)
2448{
2449 int i;
2450
2451 dw2_setup (objfile);
1fd400ff
TT
2452
2453 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2454 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2455 {
e254ef6a 2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2457
e254ef6a 2458 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2459 }
2460}
2461
2462static void
2463dw2_expand_symtabs_with_filename (struct objfile *objfile,
2464 const char *filename)
2465{
2466 int i;
2467
2468 dw2_setup (objfile);
d4637a04
DE
2469
2470 /* We don't need to consider type units here.
2471 This is only called for examining code, e.g. expand_line_sal.
2472 There can be an order of magnitude (or more) more type units
2473 than comp units, and we avoid them if we can. */
2474
2475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
2476 {
2477 int j;
e254ef6a 2478 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2479 struct quick_file_names *file_data;
9291a0cd 2480
e254ef6a 2481 if (per_cu->v.quick->symtab)
9291a0cd
TT
2482 continue;
2483
7b9f3c50
DE
2484 file_data = dw2_get_file_names (objfile, per_cu);
2485 if (file_data == NULL)
9291a0cd
TT
2486 continue;
2487
7b9f3c50 2488 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2489 {
7b9f3c50 2490 const char *this_name = file_data->file_names[j];
1ef75ecc 2491 if (FILENAME_CMP (this_name, filename) == 0)
9291a0cd 2492 {
e254ef6a 2493 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2494 break;
2495 }
2496 }
2497 }
2498}
2499
dd786858 2500static const char *
9291a0cd
TT
2501dw2_find_symbol_file (struct objfile *objfile, const char *name)
2502{
e254ef6a 2503 struct dwarf2_per_cu_data *per_cu;
9291a0cd 2504 offset_type *vec;
7b9f3c50 2505 struct quick_file_names *file_data;
9291a0cd
TT
2506
2507 dw2_setup (objfile);
2508
ae2de4f8 2509 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2510 if (!dwarf2_per_objfile->index_table)
2511 return NULL;
2512
2513 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2514 name, &vec))
2515 return NULL;
2516
2517 /* Note that this just looks at the very first one named NAME -- but
2518 actually we are looking for a function. find_main_filename
2519 should be rewritten so that it doesn't require a custom hook. It
2520 could just use the ordinary symbol tables. */
2521 /* vec[0] is the length, which must always be >0. */
e254ef6a 2522 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
9291a0cd 2523
7b9f3c50
DE
2524 file_data = dw2_get_file_names (objfile, per_cu);
2525 if (file_data == NULL)
9291a0cd
TT
2526 return NULL;
2527
7b9f3c50 2528 return file_data->file_names[file_data->num_file_names - 1];
9291a0cd
TT
2529}
2530
2531static void
40658b94
PH
2532dw2_map_matching_symbols (const char * name, domain_enum namespace,
2533 struct objfile *objfile, int global,
2534 int (*callback) (struct block *,
2535 struct symbol *, void *),
2edb89d3
JK
2536 void *data, symbol_compare_ftype *match,
2537 symbol_compare_ftype *ordered_compare)
9291a0cd 2538{
40658b94 2539 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
2540 current language is Ada for a non-Ada objfile using GNU index. As Ada
2541 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
2542}
2543
2544static void
2545dw2_expand_symtabs_matching (struct objfile *objfile,
2546 int (*file_matcher) (const char *, void *),
2547 int (*name_matcher) (const char *, void *),
2548 domain_enum kind,
2549 void *data)
2550{
2551 int i;
2552 offset_type iter;
4b5246aa 2553 struct mapped_index *index;
9291a0cd
TT
2554
2555 dw2_setup (objfile);
ae2de4f8
DE
2556
2557 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2558 if (!dwarf2_per_objfile->index_table)
2559 return;
4b5246aa 2560 index = dwarf2_per_objfile->index_table;
9291a0cd 2561
1fd400ff
TT
2562 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2563 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2564 {
2565 int j;
e254ef6a 2566 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2567 struct quick_file_names *file_data;
9291a0cd 2568
e254ef6a
DE
2569 per_cu->v.quick->mark = 0;
2570 if (per_cu->v.quick->symtab)
9291a0cd
TT
2571 continue;
2572
7b9f3c50
DE
2573 file_data = dw2_get_file_names (objfile, per_cu);
2574 if (file_data == NULL)
9291a0cd
TT
2575 continue;
2576
7b9f3c50 2577 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2578 {
7b9f3c50 2579 if (file_matcher (file_data->file_names[j], data))
9291a0cd 2580 {
e254ef6a 2581 per_cu->v.quick->mark = 1;
9291a0cd
TT
2582 break;
2583 }
2584 }
2585 }
2586
3876f04e 2587 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2588 {
2589 offset_type idx = 2 * iter;
2590 const char *name;
2591 offset_type *vec, vec_len, vec_idx;
2592
3876f04e 2593 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2594 continue;
2595
3876f04e 2596 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd
TT
2597
2598 if (! (*name_matcher) (name, data))
2599 continue;
2600
2601 /* The name was matched, now expand corresponding CUs that were
2602 marked. */
4b5246aa 2603 vec = (offset_type *) (index->constant_pool
3876f04e 2604 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
2605 vec_len = MAYBE_SWAP (vec[0]);
2606 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2607 {
e254ef6a 2608 struct dwarf2_per_cu_data *per_cu;
1fd400ff 2609
e254ef6a
DE
2610 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2611 if (per_cu->v.quick->mark)
2612 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2613 }
2614 }
2615}
2616
2617static struct symtab *
2618dw2_find_pc_sect_symtab (struct objfile *objfile,
2619 struct minimal_symbol *msymbol,
2620 CORE_ADDR pc,
2621 struct obj_section *section,
2622 int warn_if_readin)
2623{
2624 struct dwarf2_per_cu_data *data;
2625
2626 dw2_setup (objfile);
2627
2628 if (!objfile->psymtabs_addrmap)
2629 return NULL;
2630
2631 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2632 if (!data)
2633 return NULL;
2634
2635 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 2636 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
2637 paddress (get_objfile_arch (objfile), pc));
2638
2639 return dw2_instantiate_symtab (objfile, data);
2640}
2641
2642static void
2643dw2_map_symbol_names (struct objfile *objfile,
2644 void (*fun) (const char *, void *),
2645 void *data)
2646{
2647 offset_type iter;
4b5246aa
TT
2648 struct mapped_index *index;
2649
9291a0cd
TT
2650 dw2_setup (objfile);
2651
ae2de4f8 2652 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2653 if (!dwarf2_per_objfile->index_table)
2654 return;
4b5246aa 2655 index = dwarf2_per_objfile->index_table;
9291a0cd 2656
3876f04e 2657 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2658 {
2659 offset_type idx = 2 * iter;
2660 const char *name;
2661 offset_type *vec, vec_len, vec_idx;
2662
3876f04e 2663 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2664 continue;
2665
3876f04e 2666 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
9291a0cd
TT
2667
2668 (*fun) (name, data);
2669 }
2670}
2671
2672static void
2673dw2_map_symbol_filenames (struct objfile *objfile,
2674 void (*fun) (const char *, const char *, void *),
2675 void *data)
2676{
2677 int i;
2678
2679 dw2_setup (objfile);
ae2de4f8 2680
1fd400ff
TT
2681 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2682 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2683 {
2684 int j;
e254ef6a 2685 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2686 struct quick_file_names *file_data;
9291a0cd 2687
e254ef6a 2688 if (per_cu->v.quick->symtab)
9291a0cd
TT
2689 continue;
2690
7b9f3c50
DE
2691 file_data = dw2_get_file_names (objfile, per_cu);
2692 if (file_data == NULL)
9291a0cd
TT
2693 continue;
2694
7b9f3c50 2695 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2696 {
7b9f3c50
DE
2697 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2698 j);
2699 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
2700 }
2701 }
2702}
2703
2704static int
2705dw2_has_symbols (struct objfile *objfile)
2706{
2707 return 1;
2708}
2709
2710const struct quick_symbol_functions dwarf2_gdb_index_functions =
2711{
2712 dw2_has_symbols,
2713 dw2_find_last_source_symtab,
2714 dw2_forget_cached_source_info,
2715 dw2_lookup_symtab,
2716 dw2_lookup_symbol,
774b6a14 2717 dw2_pre_expand_symtabs_matching,
9291a0cd
TT
2718 dw2_print_stats,
2719 dw2_dump,
2720 dw2_relocate,
2721 dw2_expand_symtabs_for_function,
2722 dw2_expand_all_symtabs,
2723 dw2_expand_symtabs_with_filename,
2724 dw2_find_symbol_file,
40658b94 2725 dw2_map_matching_symbols,
9291a0cd
TT
2726 dw2_expand_symtabs_matching,
2727 dw2_find_pc_sect_symtab,
2728 dw2_map_symbol_names,
2729 dw2_map_symbol_filenames
2730};
2731
2732/* Initialize for reading DWARF for this objfile. Return 0 if this
2733 file will use psymtabs, or 1 if using the GNU index. */
2734
2735int
2736dwarf2_initialize_objfile (struct objfile *objfile)
2737{
2738 /* If we're about to read full symbols, don't bother with the
2739 indices. In this case we also don't care if some other debug
2740 format is making psymtabs, because they are all about to be
2741 expanded anyway. */
2742 if ((objfile->flags & OBJF_READNOW))
2743 {
2744 int i;
2745
2746 dwarf2_per_objfile->using_index = 1;
2747 create_all_comp_units (objfile);
1fd400ff 2748 create_debug_types_hash_table (objfile);
7b9f3c50
DE
2749 dwarf2_per_objfile->quick_file_names_table =
2750 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 2751
1fd400ff
TT
2752 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2753 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2754 {
e254ef6a 2755 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2756
e254ef6a
DE
2757 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2758 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
2759 }
2760
2761 /* Return 1 so that gdb sees the "quick" functions. However,
2762 these functions will be no-ops because we will have expanded
2763 all symtabs. */
2764 return 1;
2765 }
2766
2767 if (dwarf2_read_index (objfile))
2768 return 1;
2769
9291a0cd
TT
2770 return 0;
2771}
2772
2773\f
2774
dce234bc
PP
2775/* Build a partial symbol table. */
2776
2777void
f29dff0a 2778dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 2779{
f29dff0a 2780 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
2781 {
2782 init_psymbol_list (objfile, 1024);
2783 }
2784
d146bf1e 2785 dwarf2_build_psymtabs_hard (objfile);
c906108c 2786}
c906108c 2787
45452591
DE
2788/* Return TRUE if OFFSET is within CU_HEADER. */
2789
2790static inline int
2791offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2792{
2793 unsigned int bottom = cu_header->offset;
2794 unsigned int top = (cu_header->offset
2795 + cu_header->length
2796 + cu_header->initial_length_size);
9a619af0 2797
45452591
DE
2798 return (offset >= bottom && offset < top);
2799}
2800
93311388
DE
2801/* Read in the comp unit header information from the debug_info at info_ptr.
2802 NOTE: This leaves members offset, first_die_offset to be filled in
2803 by the caller. */
107d2387 2804
fe1b8b76 2805static gdb_byte *
107d2387 2806read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 2807 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
2808{
2809 int signed_addr;
891d2f0b 2810 unsigned int bytes_read;
c764a876
DE
2811
2812 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2813 cu_header->initial_length_size = bytes_read;
2814 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 2815 info_ptr += bytes_read;
107d2387
AC
2816 cu_header->version = read_2_bytes (abfd, info_ptr);
2817 info_ptr += 2;
613e1657 2818 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 2819 &bytes_read);
613e1657 2820 info_ptr += bytes_read;
107d2387
AC
2821 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2822 info_ptr += 1;
2823 signed_addr = bfd_get_sign_extend_vma (abfd);
2824 if (signed_addr < 0)
8e65ff28 2825 internal_error (__FILE__, __LINE__,
e2e0b3e5 2826 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 2827 cu_header->signed_addr_p = signed_addr;
c764a876 2828
107d2387
AC
2829 return info_ptr;
2830}
2831
fe1b8b76
JB
2832static gdb_byte *
2833partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 2834 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
2835 bfd *abfd)
2836{
fe1b8b76 2837 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
2838
2839 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2840
2dc7f7b3 2841 if (header->version != 2 && header->version != 3 && header->version != 4)
8a3fe4f8 2842 error (_("Dwarf Error: wrong version in compilation unit header "
2dc7f7b3
TT
2843 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2844 bfd_get_filename (abfd));
72bf9492 2845
9e0ac564
TT
2846 if (header->abbrev_offset
2847 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
2848 &dwarf2_per_objfile->abbrev))
8a3fe4f8
AC
2849 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2850 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 2851 (long) header->abbrev_offset,
93311388 2852 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2853 bfd_get_filename (abfd));
2854
2855 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 2856 > buffer + buffer_size)
8a3fe4f8
AC
2857 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2858 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 2859 (long) header->length,
93311388 2860 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2861 bfd_get_filename (abfd));
2862
2863 return info_ptr;
2864}
2865
348e048f
DE
2866/* Read in the types comp unit header information from .debug_types entry at
2867 types_ptr. The result is a pointer to one past the end of the header. */
2868
2869static gdb_byte *
2870read_type_comp_unit_head (struct comp_unit_head *cu_header,
2871 ULONGEST *signature,
2872 gdb_byte *types_ptr, bfd *abfd)
2873{
348e048f
DE
2874 gdb_byte *initial_types_ptr = types_ptr;
2875
6e70227d 2876 dwarf2_read_section (dwarf2_per_objfile->objfile,
fa238c03 2877 &dwarf2_per_objfile->types);
348e048f
DE
2878 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2879
2880 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2881
2882 *signature = read_8_bytes (abfd, types_ptr);
2883 types_ptr += 8;
2884 types_ptr += cu_header->offset_size;
2885 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2886
2887 return types_ptr;
2888}
2889
aaa75496
JB
2890/* Allocate a new partial symtab for file named NAME and mark this new
2891 partial symtab as being an include of PST. */
2892
2893static void
2894dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2895 struct objfile *objfile)
2896{
2897 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2898
2899 subpst->section_offsets = pst->section_offsets;
2900 subpst->textlow = 0;
2901 subpst->texthigh = 0;
2902
2903 subpst->dependencies = (struct partial_symtab **)
2904 obstack_alloc (&objfile->objfile_obstack,
2905 sizeof (struct partial_symtab *));
2906 subpst->dependencies[0] = pst;
2907 subpst->number_of_dependencies = 1;
2908
2909 subpst->globals_offset = 0;
2910 subpst->n_global_syms = 0;
2911 subpst->statics_offset = 0;
2912 subpst->n_static_syms = 0;
2913 subpst->symtab = NULL;
2914 subpst->read_symtab = pst->read_symtab;
2915 subpst->readin = 0;
2916
2917 /* No private part is necessary for include psymtabs. This property
2918 can be used to differentiate between such include psymtabs and
10b3939b 2919 the regular ones. */
58a9656e 2920 subpst->read_symtab_private = NULL;
aaa75496
JB
2921}
2922
2923/* Read the Line Number Program data and extract the list of files
2924 included by the source file represented by PST. Build an include
d85a05f0 2925 partial symtab for each of these included files. */
aaa75496
JB
2926
2927static void
2928dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 2929 struct die_info *die,
aaa75496
JB
2930 struct partial_symtab *pst)
2931{
2932 struct objfile *objfile = cu->objfile;
2933 bfd *abfd = objfile->obfd;
d85a05f0
DJ
2934 struct line_header *lh = NULL;
2935 struct attribute *attr;
aaa75496 2936
d85a05f0
DJ
2937 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2938 if (attr)
2939 {
2940 unsigned int line_offset = DW_UNSND (attr);
9a619af0 2941
d85a05f0
DJ
2942 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2943 }
aaa75496
JB
2944 if (lh == NULL)
2945 return; /* No linetable, so no includes. */
2946
c6da4cef
DE
2947 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2948 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
aaa75496
JB
2949
2950 free_line_header (lh);
2951}
2952
348e048f
DE
2953static hashval_t
2954hash_type_signature (const void *item)
2955{
2956 const struct signatured_type *type_sig = item;
9a619af0 2957
348e048f
DE
2958 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2959 return type_sig->signature;
2960}
2961
2962static int
2963eq_type_signature (const void *item_lhs, const void *item_rhs)
2964{
2965 const struct signatured_type *lhs = item_lhs;
2966 const struct signatured_type *rhs = item_rhs;
9a619af0 2967
348e048f
DE
2968 return lhs->signature == rhs->signature;
2969}
2970
1fd400ff
TT
2971/* Allocate a hash table for signatured types. */
2972
2973static htab_t
673bfd45 2974allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
2975{
2976 return htab_create_alloc_ex (41,
2977 hash_type_signature,
2978 eq_type_signature,
2979 NULL,
2980 &objfile->objfile_obstack,
2981 hashtab_obstack_allocate,
2982 dummy_obstack_deallocate);
2983}
2984
2985/* A helper function to add a signatured type CU to a list. */
2986
2987static int
2988add_signatured_type_cu_to_list (void **slot, void *datum)
2989{
2990 struct signatured_type *sigt = *slot;
2991 struct dwarf2_per_cu_data ***datap = datum;
2992
2993 **datap = &sigt->per_cu;
2994 ++*datap;
2995
2996 return 1;
2997}
2998
348e048f
DE
2999/* Create the hash table of all entries in the .debug_types section.
3000 The result is zero if there is an error (e.g. missing .debug_types section),
3001 otherwise non-zero. */
3002
3003static int
3004create_debug_types_hash_table (struct objfile *objfile)
3005{
be391dca 3006 gdb_byte *info_ptr;
348e048f 3007 htab_t types_htab;
1fd400ff 3008 struct dwarf2_per_cu_data **iter;
348e048f 3009
be391dca
TT
3010 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
3011 info_ptr = dwarf2_per_objfile->types.buffer;
3012
348e048f
DE
3013 if (info_ptr == NULL)
3014 {
3015 dwarf2_per_objfile->signatured_types = NULL;
3016 return 0;
3017 }
3018
673bfd45 3019 types_htab = allocate_signatured_type_table (objfile);
348e048f
DE
3020
3021 if (dwarf2_die_debug)
3022 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3023
3e43a32a
MS
3024 while (info_ptr < dwarf2_per_objfile->types.buffer
3025 + dwarf2_per_objfile->types.size)
348e048f
DE
3026 {
3027 unsigned int offset;
3028 unsigned int offset_size;
3029 unsigned int type_offset;
3030 unsigned int length, initial_length_size;
3031 unsigned short version;
3032 ULONGEST signature;
3033 struct signatured_type *type_sig;
3034 void **slot;
3035 gdb_byte *ptr = info_ptr;
3036
3037 offset = ptr - dwarf2_per_objfile->types.buffer;
3038
3039 /* We need to read the type's signature in order to build the hash
3040 table, but we don't need to read anything else just yet. */
3041
3042 /* Sanity check to ensure entire cu is present. */
3043 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
3044 if (ptr + length + initial_length_size
3045 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
3046 {
3047 complaint (&symfile_complaints,
3e43a32a
MS
3048 _("debug type entry runs off end "
3049 "of `.debug_types' section, ignored"));
348e048f
DE
3050 break;
3051 }
3052
3053 offset_size = initial_length_size == 4 ? 4 : 8;
3054 ptr += initial_length_size;
3055 version = bfd_get_16 (objfile->obfd, ptr);
3056 ptr += 2;
3057 ptr += offset_size; /* abbrev offset */
3058 ptr += 1; /* address size */
3059 signature = bfd_get_64 (objfile->obfd, ptr);
3060 ptr += 8;
3061 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3062
3063 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3064 memset (type_sig, 0, sizeof (*type_sig));
3065 type_sig->signature = signature;
3066 type_sig->offset = offset;
3067 type_sig->type_offset = type_offset;
ca1f3406 3068 type_sig->per_cu.objfile = objfile;
1fd400ff 3069 type_sig->per_cu.from_debug_types = 1;
348e048f
DE
3070
3071 slot = htab_find_slot (types_htab, type_sig, INSERT);
3072 gdb_assert (slot != NULL);
3073 *slot = type_sig;
3074
3075 if (dwarf2_die_debug)
3076 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3077 offset, phex (signature, sizeof (signature)));
3078
3079 info_ptr = info_ptr + initial_length_size + length;
3080 }
3081
3082 dwarf2_per_objfile->signatured_types = types_htab;
3083
1fd400ff
TT
3084 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3085 dwarf2_per_objfile->type_comp_units
3086 = obstack_alloc (&objfile->objfile_obstack,
3087 dwarf2_per_objfile->n_type_comp_units
3088 * sizeof (struct dwarf2_per_cu_data *));
3089 iter = &dwarf2_per_objfile->type_comp_units[0];
3090 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3091 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3092 == dwarf2_per_objfile->n_type_comp_units);
3093
348e048f
DE
3094 return 1;
3095}
3096
3097/* Lookup a signature based type.
3098 Returns NULL if SIG is not present in the table. */
3099
3100static struct signatured_type *
3101lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3102{
3103 struct signatured_type find_entry, *entry;
3104
3105 if (dwarf2_per_objfile->signatured_types == NULL)
3106 {
3107 complaint (&symfile_complaints,
3108 _("missing `.debug_types' section for DW_FORM_sig8 die"));
3109 return 0;
3110 }
3111
3112 find_entry.signature = sig;
3113 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3114 return entry;
3115}
3116
d85a05f0
DJ
3117/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3118
3119static void
3120init_cu_die_reader (struct die_reader_specs *reader,
3121 struct dwarf2_cu *cu)
3122{
3123 reader->abfd = cu->objfile->obfd;
3124 reader->cu = cu;
3125 if (cu->per_cu->from_debug_types)
be391dca
TT
3126 {
3127 gdb_assert (dwarf2_per_objfile->types.readin);
3128 reader->buffer = dwarf2_per_objfile->types.buffer;
3129 }
d85a05f0 3130 else
be391dca
TT
3131 {
3132 gdb_assert (dwarf2_per_objfile->info.readin);
3133 reader->buffer = dwarf2_per_objfile->info.buffer;
3134 }
d85a05f0
DJ
3135}
3136
3137/* Find the base address of the compilation unit for range lists and
3138 location lists. It will normally be specified by DW_AT_low_pc.
3139 In DWARF-3 draft 4, the base address could be overridden by
3140 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3141 compilation units with discontinuous ranges. */
3142
3143static void
3144dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3145{
3146 struct attribute *attr;
3147
3148 cu->base_known = 0;
3149 cu->base_address = 0;
3150
3151 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3152 if (attr)
3153 {
3154 cu->base_address = DW_ADDR (attr);
3155 cu->base_known = 1;
3156 }
3157 else
3158 {
3159 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3160 if (attr)
3161 {
3162 cu->base_address = DW_ADDR (attr);
3163 cu->base_known = 1;
3164 }
3165 }
3166}
3167
348e048f
DE
3168/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3169 to combine the common parts.
93311388 3170 Process a compilation unit for a psymtab.
348e048f
DE
3171 BUFFER is a pointer to the beginning of the dwarf section buffer,
3172 either .debug_info or debug_types.
93311388
DE
3173 INFO_PTR is a pointer to the start of the CU.
3174 Returns a pointer to the next CU. */
aaa75496 3175
93311388
DE
3176static gdb_byte *
3177process_psymtab_comp_unit (struct objfile *objfile,
3178 struct dwarf2_per_cu_data *this_cu,
3179 gdb_byte *buffer, gdb_byte *info_ptr,
3180 unsigned int buffer_size)
c906108c 3181{
c906108c 3182 bfd *abfd = objfile->obfd;
93311388 3183 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 3184 struct die_info *comp_unit_die;
c906108c 3185 struct partial_symtab *pst;
5734ee8b 3186 CORE_ADDR baseaddr;
93311388
DE
3187 struct cleanup *back_to_inner;
3188 struct dwarf2_cu cu;
d85a05f0
DJ
3189 int has_children, has_pc_info;
3190 struct attribute *attr;
d85a05f0
DJ
3191 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3192 struct die_reader_specs reader_specs;
3e2a0cee 3193 const char *filename;
c906108c 3194
9816fde3 3195 init_one_comp_unit (&cu, objfile);
93311388 3196 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 3197
93311388
DE
3198 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3199 buffer, buffer_size,
3200 abfd);
10b3939b 3201
93311388
DE
3202 /* Complete the cu_header. */
3203 cu.header.offset = beg_of_comp_unit - buffer;
3204 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 3205
93311388 3206 cu.list_in_scope = &file_symbols;
af703f96 3207
328c9494
DJ
3208 /* If this compilation unit was already read in, free the
3209 cached copy in order to read it in again. This is
3210 necessary because we skipped some symbols when we first
3211 read in the compilation unit (see load_partial_dies).
3212 This problem could be avoided, but the benefit is
3213 unclear. */
3214 if (this_cu->cu != NULL)
3215 free_one_cached_comp_unit (this_cu->cu);
3216
3217 /* Note that this is a pointer to our stack frame, being
3218 added to a global data structure. It will be cleaned up
3219 in free_stack_comp_unit when we finish with this
3220 compilation unit. */
3221 this_cu->cu = &cu;
d85a05f0
DJ
3222 cu.per_cu = this_cu;
3223
93311388
DE
3224 /* Read the abbrevs for this compilation unit into a table. */
3225 dwarf2_read_abbrevs (abfd, &cu);
3226 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 3227
93311388 3228 /* Read the compilation unit die. */
348e048f
DE
3229 if (this_cu->from_debug_types)
3230 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
3231 init_cu_die_reader (&reader_specs, &cu);
3232 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3233 &has_children);
93311388 3234
348e048f
DE
3235 if (this_cu->from_debug_types)
3236 {
3237 /* offset,length haven't been set yet for type units. */
3238 this_cu->offset = cu.header.offset;
3239 this_cu->length = cu.header.length + cu.header.initial_length_size;
3240 }
d85a05f0 3241 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 3242 {
93311388
DE
3243 info_ptr = (beg_of_comp_unit + cu.header.length
3244 + cu.header.initial_length_size);
3245 do_cleanups (back_to_inner);
3246 return info_ptr;
3247 }
72bf9492 3248
9816fde3 3249 prepare_one_comp_unit (&cu, comp_unit_die);
c906108c 3250
93311388 3251 /* Allocate a new partial symbol table structure. */
d85a05f0 3252 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3e2a0cee
TT
3253 if (attr == NULL || !DW_STRING (attr))
3254 filename = "";
3255 else
3256 filename = DW_STRING (attr);
93311388 3257 pst = start_psymtab_common (objfile, objfile->section_offsets,
3e2a0cee 3258 filename,
93311388
DE
3259 /* TEXTLOW and TEXTHIGH are set below. */
3260 0,
3261 objfile->global_psymbols.next,
3262 objfile->static_psymbols.next);
72bf9492 3263
d85a05f0
DJ
3264 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3265 if (attr != NULL)
3266 pst->dirname = DW_STRING (attr);
72bf9492 3267
e38df1d0 3268 pst->read_symtab_private = this_cu;
72bf9492 3269
93311388 3270 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 3271
0963b4bd 3272 /* Store the function that reads in the rest of the symbol table. */
93311388 3273 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 3274
9291a0cd 3275 this_cu->v.psymtab = pst;
c906108c 3276
d85a05f0
DJ
3277 dwarf2_find_base_address (comp_unit_die, &cu);
3278
93311388
DE
3279 /* Possibly set the default values of LOWPC and HIGHPC from
3280 `DW_AT_ranges'. */
d85a05f0
DJ
3281 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3282 &best_highpc, &cu, pst);
3283 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
3284 /* Store the contiguous range if it is not empty; it can be empty for
3285 CUs with no code. */
3286 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
3287 best_lowpc + baseaddr,
3288 best_highpc + baseaddr - 1, pst);
93311388
DE
3289
3290 /* Check if comp unit has_children.
3291 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 3292 If not, there's no more debug_info for this comp unit. */
d85a05f0 3293 if (has_children)
93311388
DE
3294 {
3295 struct partial_die_info *first_die;
3296 CORE_ADDR lowpc, highpc;
31ffec48 3297
93311388
DE
3298 lowpc = ((CORE_ADDR) -1);
3299 highpc = ((CORE_ADDR) 0);
c906108c 3300
93311388 3301 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 3302
93311388 3303 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 3304 ! has_pc_info, &cu);
57c22c6c 3305
93311388
DE
3306 /* If we didn't find a lowpc, set it to highpc to avoid
3307 complaints from `maint check'. */
3308 if (lowpc == ((CORE_ADDR) -1))
3309 lowpc = highpc;
10b3939b 3310
93311388
DE
3311 /* If the compilation unit didn't have an explicit address range,
3312 then use the information extracted from its child dies. */
d85a05f0 3313 if (! has_pc_info)
93311388 3314 {
d85a05f0
DJ
3315 best_lowpc = lowpc;
3316 best_highpc = highpc;
93311388
DE
3317 }
3318 }
d85a05f0
DJ
3319 pst->textlow = best_lowpc + baseaddr;
3320 pst->texthigh = best_highpc + baseaddr;
c906108c 3321
93311388
DE
3322 pst->n_global_syms = objfile->global_psymbols.next -
3323 (objfile->global_psymbols.list + pst->globals_offset);
3324 pst->n_static_syms = objfile->static_psymbols.next -
3325 (objfile->static_psymbols.list + pst->statics_offset);
3326 sort_pst_symbols (pst);
c906108c 3327
93311388
DE
3328 info_ptr = (beg_of_comp_unit + cu.header.length
3329 + cu.header.initial_length_size);
ae038cb0 3330
348e048f
DE
3331 if (this_cu->from_debug_types)
3332 {
3333 /* It's not clear we want to do anything with stmt lists here.
3334 Waiting to see what gcc ultimately does. */
3335 }
d85a05f0 3336 else
93311388
DE
3337 {
3338 /* Get the list of files included in the current compilation unit,
3339 and build a psymtab for each of them. */
d85a05f0 3340 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 3341 }
ae038cb0 3342
93311388 3343 do_cleanups (back_to_inner);
ae038cb0 3344
93311388
DE
3345 return info_ptr;
3346}
ff013f42 3347
348e048f
DE
3348/* Traversal function for htab_traverse_noresize.
3349 Process one .debug_types comp-unit. */
3350
3351static int
3352process_type_comp_unit (void **slot, void *info)
3353{
3354 struct signatured_type *entry = (struct signatured_type *) *slot;
3355 struct objfile *objfile = (struct objfile *) info;
3356 struct dwarf2_per_cu_data *this_cu;
3357
3358 this_cu = &entry->per_cu;
348e048f 3359
be391dca 3360 gdb_assert (dwarf2_per_objfile->types.readin);
348e048f
DE
3361 process_psymtab_comp_unit (objfile, this_cu,
3362 dwarf2_per_objfile->types.buffer,
3363 dwarf2_per_objfile->types.buffer + entry->offset,
3364 dwarf2_per_objfile->types.size);
3365
3366 return 1;
3367}
3368
3369/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3370 Build partial symbol tables for the .debug_types comp-units. */
3371
3372static void
3373build_type_psymtabs (struct objfile *objfile)
3374{
3375 if (! create_debug_types_hash_table (objfile))
3376 return;
3377
3378 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3379 process_type_comp_unit, objfile);
3380}
3381
60606b2c
TT
3382/* A cleanup function that clears objfile's psymtabs_addrmap field. */
3383
3384static void
3385psymtabs_addrmap_cleanup (void *o)
3386{
3387 struct objfile *objfile = o;
ec61707d 3388
60606b2c
TT
3389 objfile->psymtabs_addrmap = NULL;
3390}
3391
93311388
DE
3392/* Build the partial symbol table by doing a quick pass through the
3393 .debug_info and .debug_abbrev sections. */
72bf9492 3394
93311388 3395static void
c67a9c90 3396dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 3397{
93311388 3398 gdb_byte *info_ptr;
60606b2c
TT
3399 struct cleanup *back_to, *addrmap_cleanup;
3400 struct obstack temp_obstack;
93311388 3401
98bfdba5
PA
3402 dwarf2_per_objfile->reading_partial_symbols = 1;
3403
be391dca 3404 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
93311388 3405 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 3406
93311388
DE
3407 /* Any cached compilation units will be linked by the per-objfile
3408 read_in_chain. Make sure to free them when we're done. */
3409 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 3410
348e048f
DE
3411 build_type_psymtabs (objfile);
3412
93311388 3413 create_all_comp_units (objfile);
c906108c 3414
60606b2c
TT
3415 /* Create a temporary address map on a temporary obstack. We later
3416 copy this to the final obstack. */
3417 obstack_init (&temp_obstack);
3418 make_cleanup_obstack_free (&temp_obstack);
3419 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3420 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 3421
93311388
DE
3422 /* Since the objects we're extracting from .debug_info vary in
3423 length, only the individual functions to extract them (like
3424 read_comp_unit_head and load_partial_die) can really know whether
3425 the buffer is large enough to hold another complete object.
c906108c 3426
93311388
DE
3427 At the moment, they don't actually check that. If .debug_info
3428 holds just one extra byte after the last compilation unit's dies,
3429 then read_comp_unit_head will happily read off the end of the
3430 buffer. read_partial_die is similarly casual. Those functions
3431 should be fixed.
c906108c 3432
93311388
DE
3433 For this loop condition, simply checking whether there's any data
3434 left at all should be sufficient. */
c906108c 3435
93311388
DE
3436 while (info_ptr < (dwarf2_per_objfile->info.buffer
3437 + dwarf2_per_objfile->info.size))
3438 {
3439 struct dwarf2_per_cu_data *this_cu;
dd373385 3440
3e43a32a
MS
3441 this_cu = dwarf2_find_comp_unit (info_ptr
3442 - dwarf2_per_objfile->info.buffer,
93311388 3443 objfile);
aaa75496 3444
93311388
DE
3445 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3446 dwarf2_per_objfile->info.buffer,
3447 info_ptr,
3448 dwarf2_per_objfile->info.size);
c906108c 3449 }
ff013f42
JK
3450
3451 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3452 &objfile->objfile_obstack);
60606b2c 3453 discard_cleanups (addrmap_cleanup);
ff013f42 3454
ae038cb0
DJ
3455 do_cleanups (back_to);
3456}
3457
93311388 3458/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
3459
3460static void
93311388
DE
3461load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3462 struct objfile *objfile)
ae038cb0
DJ
3463{
3464 bfd *abfd = objfile->obfd;
fe1b8b76 3465 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 3466 struct die_info *comp_unit_die;
ae038cb0 3467 struct dwarf2_cu *cu;
1d9ec526 3468 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
d85a05f0
DJ
3469 int has_children;
3470 struct die_reader_specs reader_specs;
98bfdba5 3471 int read_cu = 0;
ae038cb0 3472
348e048f
DE
3473 gdb_assert (! this_cu->from_debug_types);
3474
be391dca 3475 gdb_assert (dwarf2_per_objfile->info.readin);
dce234bc 3476 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
3477 beg_of_comp_unit = info_ptr;
3478
98bfdba5
PA
3479 if (this_cu->cu == NULL)
3480 {
9816fde3
JK
3481 cu = xmalloc (sizeof (*cu));
3482 init_one_comp_unit (cu, objfile);
ae038cb0 3483
98bfdba5 3484 read_cu = 1;
ae038cb0 3485
98bfdba5
PA
3486 /* If an error occurs while loading, release our storage. */
3487 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
328c9494 3488
98bfdba5
PA
3489 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3490 dwarf2_per_objfile->info.buffer,
3491 dwarf2_per_objfile->info.size,
3492 abfd);
ae038cb0 3493
98bfdba5
PA
3494 /* Complete the cu_header. */
3495 cu->header.offset = this_cu->offset;
3496 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3497
3498 /* Link this compilation unit into the compilation unit tree. */
3499 this_cu->cu = cu;
3500 cu->per_cu = this_cu;
98bfdba5
PA
3501
3502 /* Link this CU into read_in_chain. */
3503 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3504 dwarf2_per_objfile->read_in_chain = this_cu;
3505 }
3506 else
3507 {
3508 cu = this_cu->cu;
3509 info_ptr += cu->header.first_die_offset;
3510 }
ae038cb0
DJ
3511
3512 /* Read the abbrevs for this compilation unit into a table. */
98bfdba5 3513 gdb_assert (cu->dwarf2_abbrevs == NULL);
ae038cb0 3514 dwarf2_read_abbrevs (abfd, cu);
98bfdba5 3515 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
ae038cb0
DJ
3516
3517 /* Read the compilation unit die. */
d85a05f0
DJ
3518 init_cu_die_reader (&reader_specs, cu);
3519 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3520 &has_children);
ae038cb0 3521
9816fde3 3522 prepare_one_comp_unit (cu, comp_unit_die);
ae038cb0 3523
ae038cb0
DJ
3524 /* Check if comp unit has_children.
3525 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 3526 If not, there's no more debug_info for this comp unit. */
d85a05f0 3527 if (has_children)
93311388 3528 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0 3529
98bfdba5
PA
3530 do_cleanups (free_abbrevs_cleanup);
3531
3532 if (read_cu)
3533 {
3534 /* We've successfully allocated this compilation unit. Let our
3535 caller clean it up when finished with it. */
3536 discard_cleanups (free_cu_cleanup);
3537 }
ae038cb0
DJ
3538}
3539
3540/* Create a list of all compilation units in OBJFILE. We do this only
3541 if an inter-comp-unit reference is found; presumably if there is one,
3542 there will be many, and one will occur early in the .debug_info section.
3543 So there's no point in building this list incrementally. */
3544
3545static void
3546create_all_comp_units (struct objfile *objfile)
3547{
3548 int n_allocated;
3549 int n_comp_units;
3550 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
3551 gdb_byte *info_ptr;
3552
3553 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3554 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3555
3556 n_comp_units = 0;
3557 n_allocated = 10;
3558 all_comp_units = xmalloc (n_allocated
3559 * sizeof (struct dwarf2_per_cu_data *));
6e70227d 3560
3e43a32a
MS
3561 while (info_ptr < dwarf2_per_objfile->info.buffer
3562 + dwarf2_per_objfile->info.size)
ae038cb0 3563 {
c764a876 3564 unsigned int length, initial_length_size;
ae038cb0 3565 struct dwarf2_per_cu_data *this_cu;
c764a876 3566 unsigned int offset;
ae038cb0 3567
dce234bc 3568 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3569
3570 /* Read just enough information to find out where the next
3571 compilation unit is. */
c764a876
DE
3572 length = read_initial_length (objfile->obfd, info_ptr,
3573 &initial_length_size);
ae038cb0
DJ
3574
3575 /* Save the compilation unit for later lookup. */
3576 this_cu = obstack_alloc (&objfile->objfile_obstack,
3577 sizeof (struct dwarf2_per_cu_data));
3578 memset (this_cu, 0, sizeof (*this_cu));
3579 this_cu->offset = offset;
c764a876 3580 this_cu->length = length + initial_length_size;
9291a0cd 3581 this_cu->objfile = objfile;
ae038cb0
DJ
3582
3583 if (n_comp_units == n_allocated)
3584 {
3585 n_allocated *= 2;
3586 all_comp_units = xrealloc (all_comp_units,
3587 n_allocated
3588 * sizeof (struct dwarf2_per_cu_data *));
3589 }
3590 all_comp_units[n_comp_units++] = this_cu;
3591
3592 info_ptr = info_ptr + this_cu->length;
3593 }
3594
3595 dwarf2_per_objfile->all_comp_units
3596 = obstack_alloc (&objfile->objfile_obstack,
3597 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3598 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3599 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3600 xfree (all_comp_units);
3601 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
3602}
3603
5734ee8b
DJ
3604/* Process all loaded DIEs for compilation unit CU, starting at
3605 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3606 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3607 DW_AT_ranges). If NEED_PC is set, then this function will set
3608 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3609 and record the covered ranges in the addrmap. */
c906108c 3610
72bf9492
DJ
3611static void
3612scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 3613 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 3614{
72bf9492 3615 struct partial_die_info *pdi;
c906108c 3616
91c24f0a
DC
3617 /* Now, march along the PDI's, descending into ones which have
3618 interesting children but skipping the children of the other ones,
3619 until we reach the end of the compilation unit. */
c906108c 3620
72bf9492 3621 pdi = first_die;
91c24f0a 3622
72bf9492
DJ
3623 while (pdi != NULL)
3624 {
3625 fixup_partial_die (pdi, cu);
c906108c 3626
f55ee35c 3627 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
3628 children, so we need to look at them. Ditto for anonymous
3629 enums. */
933c6fe4 3630
72bf9492 3631 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
f55ee35c 3632 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
c906108c 3633 {
72bf9492 3634 switch (pdi->tag)
c906108c
SS
3635 {
3636 case DW_TAG_subprogram:
5734ee8b 3637 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 3638 break;
72929c62 3639 case DW_TAG_constant:
c906108c
SS
3640 case DW_TAG_variable:
3641 case DW_TAG_typedef:
91c24f0a 3642 case DW_TAG_union_type:
72bf9492 3643 if (!pdi->is_declaration)
63d06c5c 3644 {
72bf9492 3645 add_partial_symbol (pdi, cu);
63d06c5c
DC
3646 }
3647 break;
c906108c 3648 case DW_TAG_class_type:
680b30c7 3649 case DW_TAG_interface_type:
c906108c 3650 case DW_TAG_structure_type:
72bf9492 3651 if (!pdi->is_declaration)
c906108c 3652 {
72bf9492 3653 add_partial_symbol (pdi, cu);
c906108c
SS
3654 }
3655 break;
91c24f0a 3656 case DW_TAG_enumeration_type:
72bf9492
DJ
3657 if (!pdi->is_declaration)
3658 add_partial_enumeration (pdi, cu);
c906108c
SS
3659 break;
3660 case DW_TAG_base_type:
a02abb62 3661 case DW_TAG_subrange_type:
c906108c 3662 /* File scope base type definitions are added to the partial
c5aa993b 3663 symbol table. */
72bf9492 3664 add_partial_symbol (pdi, cu);
c906108c 3665 break;
d9fa45fe 3666 case DW_TAG_namespace:
5734ee8b 3667 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 3668 break;
5d7cb8df
JK
3669 case DW_TAG_module:
3670 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3671 break;
c906108c
SS
3672 default:
3673 break;
3674 }
3675 }
3676
72bf9492
DJ
3677 /* If the die has a sibling, skip to the sibling. */
3678
3679 pdi = pdi->die_sibling;
3680 }
3681}
3682
3683/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 3684
72bf9492 3685 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
3686 name is concatenated with "::" and the partial DIE's name. For
3687 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
3688 Enumerators are an exception; they use the scope of their parent
3689 enumeration type, i.e. the name of the enumeration type is not
3690 prepended to the enumerator.
91c24f0a 3691
72bf9492
DJ
3692 There are two complexities. One is DW_AT_specification; in this
3693 case "parent" means the parent of the target of the specification,
3694 instead of the direct parent of the DIE. The other is compilers
3695 which do not emit DW_TAG_namespace; in this case we try to guess
3696 the fully qualified name of structure types from their members'
3697 linkage names. This must be done using the DIE's children rather
3698 than the children of any DW_AT_specification target. We only need
3699 to do this for structures at the top level, i.e. if the target of
3700 any DW_AT_specification (if any; otherwise the DIE itself) does not
3701 have a parent. */
3702
3703/* Compute the scope prefix associated with PDI's parent, in
3704 compilation unit CU. The result will be allocated on CU's
3705 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3706 field. NULL is returned if no prefix is necessary. */
3707static char *
3708partial_die_parent_scope (struct partial_die_info *pdi,
3709 struct dwarf2_cu *cu)
3710{
3711 char *grandparent_scope;
3712 struct partial_die_info *parent, *real_pdi;
91c24f0a 3713
72bf9492
DJ
3714 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3715 then this means the parent of the specification DIE. */
3716
3717 real_pdi = pdi;
72bf9492 3718 while (real_pdi->has_specification)
10b3939b 3719 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
3720
3721 parent = real_pdi->die_parent;
3722 if (parent == NULL)
3723 return NULL;
3724
3725 if (parent->scope_set)
3726 return parent->scope;
3727
3728 fixup_partial_die (parent, cu);
3729
10b3939b 3730 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 3731
acebe513
UW
3732 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3733 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3734 Work around this problem here. */
3735 if (cu->language == language_cplus
6e70227d 3736 && parent->tag == DW_TAG_namespace
acebe513
UW
3737 && strcmp (parent->name, "::") == 0
3738 && grandparent_scope == NULL)
3739 {
3740 parent->scope = NULL;
3741 parent->scope_set = 1;
3742 return NULL;
3743 }
3744
72bf9492 3745 if (parent->tag == DW_TAG_namespace
f55ee35c 3746 || parent->tag == DW_TAG_module
72bf9492
DJ
3747 || parent->tag == DW_TAG_structure_type
3748 || parent->tag == DW_TAG_class_type
680b30c7 3749 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
3750 || parent->tag == DW_TAG_union_type
3751 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
3752 {
3753 if (grandparent_scope == NULL)
3754 parent->scope = parent->name;
3755 else
3e43a32a
MS
3756 parent->scope = typename_concat (&cu->comp_unit_obstack,
3757 grandparent_scope,
f55ee35c 3758 parent->name, 0, cu);
72bf9492 3759 }
ceeb3d5a 3760 else if (parent->tag == DW_TAG_enumerator)
72bf9492
DJ
3761 /* Enumerators should not get the name of the enumeration as a prefix. */
3762 parent->scope = grandparent_scope;
3763 else
3764 {
3765 /* FIXME drow/2004-04-01: What should we be doing with
3766 function-local names? For partial symbols, we should probably be
3767 ignoring them. */
3768 complaint (&symfile_complaints,
e2e0b3e5 3769 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
3770 parent->tag, pdi->offset);
3771 parent->scope = grandparent_scope;
c906108c
SS
3772 }
3773
72bf9492
DJ
3774 parent->scope_set = 1;
3775 return parent->scope;
3776}
3777
3778/* Return the fully scoped name associated with PDI, from compilation unit
3779 CU. The result will be allocated with malloc. */
3780static char *
3781partial_die_full_name (struct partial_die_info *pdi,
3782 struct dwarf2_cu *cu)
3783{
3784 char *parent_scope;
3785
98bfdba5
PA
3786 /* If this is a template instantiation, we can not work out the
3787 template arguments from partial DIEs. So, unfortunately, we have
3788 to go through the full DIEs. At least any work we do building
3789 types here will be reused if full symbols are loaded later. */
3790 if (pdi->has_template_arguments)
3791 {
3792 fixup_partial_die (pdi, cu);
3793
3794 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3795 {
3796 struct die_info *die;
3797 struct attribute attr;
3798 struct dwarf2_cu *ref_cu = cu;
3799
3800 attr.name = 0;
3801 attr.form = DW_FORM_ref_addr;
3802 attr.u.addr = pdi->offset;
3803 die = follow_die_ref (NULL, &attr, &ref_cu);
3804
3805 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3806 }
3807 }
3808
72bf9492
DJ
3809 parent_scope = partial_die_parent_scope (pdi, cu);
3810 if (parent_scope == NULL)
3811 return NULL;
3812 else
f55ee35c 3813 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
3814}
3815
3816static void
72bf9492 3817add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 3818{
e7c27a73 3819 struct objfile *objfile = cu->objfile;
c906108c 3820 CORE_ADDR addr = 0;
decbce07 3821 char *actual_name = NULL;
5c4e30ca 3822 const struct partial_symbol *psym = NULL;
e142c38c 3823 CORE_ADDR baseaddr;
72bf9492 3824 int built_actual_name = 0;
e142c38c
DJ
3825
3826 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3827
94af9270
KS
3828 actual_name = partial_die_full_name (pdi, cu);
3829 if (actual_name)
3830 built_actual_name = 1;
63d06c5c 3831
72bf9492
DJ
3832 if (actual_name == NULL)
3833 actual_name = pdi->name;
3834
c906108c
SS
3835 switch (pdi->tag)
3836 {
3837 case DW_TAG_subprogram:
2cfa0c8d 3838 if (pdi->is_external || cu->language == language_ada)
c906108c 3839 {
2cfa0c8d
JB
3840 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3841 of the global scope. But in Ada, we want to be able to access
3842 nested procedures globally. So all Ada subprograms are stored
3843 in the global scope. */
f47fb265 3844 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3845 mst_text, objfile); */
f47fb265
MS
3846 add_psymbol_to_list (actual_name, strlen (actual_name),
3847 built_actual_name,
3848 VAR_DOMAIN, LOC_BLOCK,
3849 &objfile->global_psymbols,
3850 0, pdi->lowpc + baseaddr,
3851 cu->language, objfile);
c906108c
SS
3852 }
3853 else
3854 {
f47fb265 3855 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3856 mst_file_text, objfile); */
f47fb265
MS
3857 add_psymbol_to_list (actual_name, strlen (actual_name),
3858 built_actual_name,
3859 VAR_DOMAIN, LOC_BLOCK,
3860 &objfile->static_psymbols,
3861 0, pdi->lowpc + baseaddr,
3862 cu->language, objfile);
c906108c
SS
3863 }
3864 break;
72929c62
JB
3865 case DW_TAG_constant:
3866 {
3867 struct psymbol_allocation_list *list;
3868
3869 if (pdi->is_external)
3870 list = &objfile->global_psymbols;
3871 else
3872 list = &objfile->static_psymbols;
f47fb265
MS
3873 add_psymbol_to_list (actual_name, strlen (actual_name),
3874 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3875 list, 0, 0, cu->language, objfile);
72929c62
JB
3876 }
3877 break;
c906108c 3878 case DW_TAG_variable:
caac4577
JG
3879 if (pdi->locdesc)
3880 addr = decode_locdesc (pdi->locdesc, cu);
3881
3882 if (pdi->locdesc
3883 && addr == 0
3884 && !dwarf2_per_objfile->has_section_at_zero)
3885 {
3886 /* A global or static variable may also have been stripped
3887 out by the linker if unused, in which case its address
3888 will be nullified; do not add such variables into partial
3889 symbol table then. */
3890 }
3891 else if (pdi->is_external)
c906108c
SS
3892 {
3893 /* Global Variable.
3894 Don't enter into the minimal symbol tables as there is
3895 a minimal symbol table entry from the ELF symbols already.
3896 Enter into partial symbol table if it has a location
3897 descriptor or a type.
3898 If the location descriptor is missing, new_symbol will create
3899 a LOC_UNRESOLVED symbol, the address of the variable will then
3900 be determined from the minimal symbol table whenever the variable
3901 is referenced.
3902 The address for the partial symbol table entry is not
3903 used by GDB, but it comes in handy for debugging partial symbol
3904 table building. */
3905
c906108c 3906 if (pdi->locdesc || pdi->has_type)
f47fb265
MS
3907 add_psymbol_to_list (actual_name, strlen (actual_name),
3908 built_actual_name,
3909 VAR_DOMAIN, LOC_STATIC,
3910 &objfile->global_psymbols,
3911 0, addr + baseaddr,
3912 cu->language, objfile);
c906108c
SS
3913 }
3914 else
3915 {
0963b4bd 3916 /* Static Variable. Skip symbols without location descriptors. */
c906108c 3917 if (pdi->locdesc == NULL)
decbce07
MS
3918 {
3919 if (built_actual_name)
3920 xfree (actual_name);
3921 return;
3922 }
f47fb265 3923 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 3924 mst_file_data, objfile); */
f47fb265
MS
3925 add_psymbol_to_list (actual_name, strlen (actual_name),
3926 built_actual_name,
3927 VAR_DOMAIN, LOC_STATIC,
3928 &objfile->static_psymbols,
3929 0, addr + baseaddr,
3930 cu->language, objfile);
c906108c
SS
3931 }
3932 break;
3933 case DW_TAG_typedef:
3934 case DW_TAG_base_type:
a02abb62 3935 case DW_TAG_subrange_type:
38d518c9 3936 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3937 built_actual_name,
176620f1 3938 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 3939 &objfile->static_psymbols,
e142c38c 3940 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3941 break;
72bf9492
DJ
3942 case DW_TAG_namespace:
3943 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3944 built_actual_name,
72bf9492
DJ
3945 VAR_DOMAIN, LOC_TYPEDEF,
3946 &objfile->global_psymbols,
3947 0, (CORE_ADDR) 0, cu->language, objfile);
3948 break;
c906108c 3949 case DW_TAG_class_type:
680b30c7 3950 case DW_TAG_interface_type:
c906108c
SS
3951 case DW_TAG_structure_type:
3952 case DW_TAG_union_type:
3953 case DW_TAG_enumeration_type:
fa4028e9
JB
3954 /* Skip external references. The DWARF standard says in the section
3955 about "Structure, Union, and Class Type Entries": "An incomplete
3956 structure, union or class type is represented by a structure,
3957 union or class entry that does not have a byte size attribute
3958 and that has a DW_AT_declaration attribute." */
3959 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
3960 {
3961 if (built_actual_name)
3962 xfree (actual_name);
3963 return;
3964 }
fa4028e9 3965
63d06c5c
DC
3966 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3967 static vs. global. */
38d518c9 3968 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3969 built_actual_name,
176620f1 3970 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
3971 (cu->language == language_cplus
3972 || cu->language == language_java)
63d06c5c
DC
3973 ? &objfile->global_psymbols
3974 : &objfile->static_psymbols,
e142c38c 3975 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3976
c906108c
SS
3977 break;
3978 case DW_TAG_enumerator:
38d518c9 3979 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3980 built_actual_name,
176620f1 3981 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
3982 (cu->language == language_cplus
3983 || cu->language == language_java)
f6fe98ef
DJ
3984 ? &objfile->global_psymbols
3985 : &objfile->static_psymbols,
e142c38c 3986 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
3987 break;
3988 default:
3989 break;
3990 }
5c4e30ca 3991
72bf9492
DJ
3992 if (built_actual_name)
3993 xfree (actual_name);
c906108c
SS
3994}
3995
5c4e30ca
DC
3996/* Read a partial die corresponding to a namespace; also, add a symbol
3997 corresponding to that namespace to the symbol table. NAMESPACE is
3998 the name of the enclosing namespace. */
91c24f0a 3999
72bf9492
DJ
4000static void
4001add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 4002 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4003 int need_pc, struct dwarf2_cu *cu)
91c24f0a 4004{
72bf9492 4005 /* Add a symbol for the namespace. */
e7c27a73 4006
72bf9492 4007 add_partial_symbol (pdi, cu);
5c4e30ca
DC
4008
4009 /* Now scan partial symbols in that namespace. */
4010
91c24f0a 4011 if (pdi->has_children)
5734ee8b 4012 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
4013}
4014
5d7cb8df
JK
4015/* Read a partial die corresponding to a Fortran module. */
4016
4017static void
4018add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4019 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4020{
f55ee35c 4021 /* Now scan partial symbols in that module. */
5d7cb8df
JK
4022
4023 if (pdi->has_children)
4024 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4025}
4026
bc30ff58
JB
4027/* Read a partial die corresponding to a subprogram and create a partial
4028 symbol for that subprogram. When the CU language allows it, this
4029 routine also defines a partial symbol for each nested subprogram
4030 that this subprogram contains.
6e70227d 4031
bc30ff58
JB
4032 DIE my also be a lexical block, in which case we simply search
4033 recursively for suprograms defined inside that lexical block.
4034 Again, this is only performed when the CU language allows this
4035 type of definitions. */
4036
4037static void
4038add_partial_subprogram (struct partial_die_info *pdi,
4039 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4040 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
4041{
4042 if (pdi->tag == DW_TAG_subprogram)
4043 {
4044 if (pdi->has_pc_info)
4045 {
4046 if (pdi->lowpc < *lowpc)
4047 *lowpc = pdi->lowpc;
4048 if (pdi->highpc > *highpc)
4049 *highpc = pdi->highpc;
5734ee8b
DJ
4050 if (need_pc)
4051 {
4052 CORE_ADDR baseaddr;
4053 struct objfile *objfile = cu->objfile;
4054
4055 baseaddr = ANOFFSET (objfile->section_offsets,
4056 SECT_OFF_TEXT (objfile));
4057 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
4058 pdi->lowpc + baseaddr,
4059 pdi->highpc - 1 + baseaddr,
9291a0cd 4060 cu->per_cu->v.psymtab);
5734ee8b 4061 }
bc30ff58 4062 if (!pdi->is_declaration)
e8d05480
JB
4063 /* Ignore subprogram DIEs that do not have a name, they are
4064 illegal. Do not emit a complaint at this point, we will
4065 do so when we convert this psymtab into a symtab. */
4066 if (pdi->name)
4067 add_partial_symbol (pdi, cu);
bc30ff58
JB
4068 }
4069 }
6e70227d 4070
bc30ff58
JB
4071 if (! pdi->has_children)
4072 return;
4073
4074 if (cu->language == language_ada)
4075 {
4076 pdi = pdi->die_child;
4077 while (pdi != NULL)
4078 {
4079 fixup_partial_die (pdi, cu);
4080 if (pdi->tag == DW_TAG_subprogram
4081 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 4082 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
4083 pdi = pdi->die_sibling;
4084 }
4085 }
4086}
4087
91c24f0a
DC
4088/* Read a partial die corresponding to an enumeration type. */
4089
72bf9492
DJ
4090static void
4091add_partial_enumeration (struct partial_die_info *enum_pdi,
4092 struct dwarf2_cu *cu)
91c24f0a 4093{
72bf9492 4094 struct partial_die_info *pdi;
91c24f0a
DC
4095
4096 if (enum_pdi->name != NULL)
72bf9492
DJ
4097 add_partial_symbol (enum_pdi, cu);
4098
4099 pdi = enum_pdi->die_child;
4100 while (pdi)
91c24f0a 4101 {
72bf9492 4102 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 4103 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 4104 else
72bf9492
DJ
4105 add_partial_symbol (pdi, cu);
4106 pdi = pdi->die_sibling;
91c24f0a 4107 }
91c24f0a
DC
4108}
4109
4bb7a0a7
DJ
4110/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4111 Return the corresponding abbrev, or NULL if the number is zero (indicating
4112 an empty DIE). In either case *BYTES_READ will be set to the length of
4113 the initial number. */
4114
4115static struct abbrev_info *
fe1b8b76 4116peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 4117 struct dwarf2_cu *cu)
4bb7a0a7
DJ
4118{
4119 bfd *abfd = cu->objfile->obfd;
4120 unsigned int abbrev_number;
4121 struct abbrev_info *abbrev;
4122
4123 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4124
4125 if (abbrev_number == 0)
4126 return NULL;
4127
4128 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4129 if (!abbrev)
4130 {
3e43a32a
MS
4131 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4132 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
4133 }
4134
4135 return abbrev;
4136}
4137
93311388
DE
4138/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4139 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
4140 DIE. Any children of the skipped DIEs will also be skipped. */
4141
fe1b8b76 4142static gdb_byte *
93311388 4143skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4144{
4145 struct abbrev_info *abbrev;
4146 unsigned int bytes_read;
4147
4148 while (1)
4149 {
4150 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4151 if (abbrev == NULL)
4152 return info_ptr + bytes_read;
4153 else
93311388 4154 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
4155 }
4156}
4157
93311388
DE
4158/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4159 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
4160 abbrev corresponding to that skipped uleb128 should be passed in
4161 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4162 children. */
4163
fe1b8b76 4164static gdb_byte *
93311388
DE
4165skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4166 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4167{
4168 unsigned int bytes_read;
4169 struct attribute attr;
4170 bfd *abfd = cu->objfile->obfd;
4171 unsigned int form, i;
4172
4173 for (i = 0; i < abbrev->num_attrs; i++)
4174 {
4175 /* The only abbrev we care about is DW_AT_sibling. */
4176 if (abbrev->attrs[i].name == DW_AT_sibling)
4177 {
4178 read_attribute (&attr, &abbrev->attrs[i],
4179 abfd, info_ptr, cu);
4180 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
4181 complaint (&symfile_complaints,
4182 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 4183 else
93311388 4184 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
4185 }
4186
4187 /* If it isn't DW_AT_sibling, skip this attribute. */
4188 form = abbrev->attrs[i].form;
4189 skip_attribute:
4190 switch (form)
4191 {
4bb7a0a7 4192 case DW_FORM_ref_addr:
ae411497
TT
4193 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4194 and later it is offset sized. */
4195 if (cu->header.version == 2)
4196 info_ptr += cu->header.addr_size;
4197 else
4198 info_ptr += cu->header.offset_size;
4199 break;
4200 case DW_FORM_addr:
4bb7a0a7
DJ
4201 info_ptr += cu->header.addr_size;
4202 break;
4203 case DW_FORM_data1:
4204 case DW_FORM_ref1:
4205 case DW_FORM_flag:
4206 info_ptr += 1;
4207 break;
2dc7f7b3
TT
4208 case DW_FORM_flag_present:
4209 break;
4bb7a0a7
DJ
4210 case DW_FORM_data2:
4211 case DW_FORM_ref2:
4212 info_ptr += 2;
4213 break;
4214 case DW_FORM_data4:
4215 case DW_FORM_ref4:
4216 info_ptr += 4;
4217 break;
4218 case DW_FORM_data8:
4219 case DW_FORM_ref8:
348e048f 4220 case DW_FORM_sig8:
4bb7a0a7
DJ
4221 info_ptr += 8;
4222 break;
4223 case DW_FORM_string:
9b1c24c8 4224 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
4225 info_ptr += bytes_read;
4226 break;
2dc7f7b3 4227 case DW_FORM_sec_offset:
4bb7a0a7
DJ
4228 case DW_FORM_strp:
4229 info_ptr += cu->header.offset_size;
4230 break;
2dc7f7b3 4231 case DW_FORM_exprloc:
4bb7a0a7
DJ
4232 case DW_FORM_block:
4233 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4234 info_ptr += bytes_read;
4235 break;
4236 case DW_FORM_block1:
4237 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4238 break;
4239 case DW_FORM_block2:
4240 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4241 break;
4242 case DW_FORM_block4:
4243 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4244 break;
4245 case DW_FORM_sdata:
4246 case DW_FORM_udata:
4247 case DW_FORM_ref_udata:
4248 info_ptr = skip_leb128 (abfd, info_ptr);
4249 break;
4250 case DW_FORM_indirect:
4251 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4252 info_ptr += bytes_read;
4253 /* We need to continue parsing from here, so just go back to
4254 the top. */
4255 goto skip_attribute;
4256
4257 default:
3e43a32a
MS
4258 error (_("Dwarf Error: Cannot handle %s "
4259 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
4260 dwarf_form_name (form),
4261 bfd_get_filename (abfd));
4262 }
4263 }
4264
4265 if (abbrev->has_children)
93311388 4266 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
4267 else
4268 return info_ptr;
4269}
4270
93311388
DE
4271/* Locate ORIG_PDI's sibling.
4272 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4273 in BUFFER. */
91c24f0a 4274
fe1b8b76 4275static gdb_byte *
93311388
DE
4276locate_pdi_sibling (struct partial_die_info *orig_pdi,
4277 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 4278 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
4279{
4280 /* Do we know the sibling already? */
72bf9492 4281
91c24f0a
DC
4282 if (orig_pdi->sibling)
4283 return orig_pdi->sibling;
4284
4285 /* Are there any children to deal with? */
4286
4287 if (!orig_pdi->has_children)
4288 return info_ptr;
4289
4bb7a0a7 4290 /* Skip the children the long way. */
91c24f0a 4291
93311388 4292 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
4293}
4294
c906108c
SS
4295/* Expand this partial symbol table into a full symbol table. */
4296
4297static void
fba45db2 4298dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 4299{
c906108c
SS
4300 if (pst != NULL)
4301 {
4302 if (pst->readin)
4303 {
3e43a32a
MS
4304 warning (_("bug: psymtab for %s is already read in."),
4305 pst->filename);
c906108c
SS
4306 }
4307 else
4308 {
4309 if (info_verbose)
4310 {
3e43a32a
MS
4311 printf_filtered (_("Reading in symbols for %s..."),
4312 pst->filename);
c906108c
SS
4313 gdb_flush (gdb_stdout);
4314 }
4315
10b3939b
DJ
4316 /* Restore our global data. */
4317 dwarf2_per_objfile = objfile_data (pst->objfile,
4318 dwarf2_objfile_data_key);
4319
b2ab525c
KB
4320 /* If this psymtab is constructed from a debug-only objfile, the
4321 has_section_at_zero flag will not necessarily be correct. We
4322 can get the correct value for this flag by looking at the data
4323 associated with the (presumably stripped) associated objfile. */
4324 if (pst->objfile->separate_debug_objfile_backlink)
4325 {
4326 struct dwarf2_per_objfile *dpo_backlink
4327 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4328 dwarf2_objfile_data_key);
9a619af0 4329
b2ab525c
KB
4330 dwarf2_per_objfile->has_section_at_zero
4331 = dpo_backlink->has_section_at_zero;
4332 }
4333
98bfdba5
PA
4334 dwarf2_per_objfile->reading_partial_symbols = 0;
4335
c906108c
SS
4336 psymtab_to_symtab_1 (pst);
4337
4338 /* Finish up the debug error message. */
4339 if (info_verbose)
a3f17187 4340 printf_filtered (_("done.\n"));
c906108c
SS
4341 }
4342 }
4343}
4344
10b3939b
DJ
4345/* Add PER_CU to the queue. */
4346
4347static void
03dd20cc 4348queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
4349{
4350 struct dwarf2_queue_item *item;
4351
4352 per_cu->queued = 1;
4353 item = xmalloc (sizeof (*item));
4354 item->per_cu = per_cu;
4355 item->next = NULL;
4356
4357 if (dwarf2_queue == NULL)
4358 dwarf2_queue = item;
4359 else
4360 dwarf2_queue_tail->next = item;
4361
4362 dwarf2_queue_tail = item;
4363}
4364
4365/* Process the queue. */
4366
4367static void
4368process_queue (struct objfile *objfile)
4369{
4370 struct dwarf2_queue_item *item, *next_item;
4371
03dd20cc
DJ
4372 /* The queue starts out with one item, but following a DIE reference
4373 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
4374 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4375 {
9291a0cd
TT
4376 if (dwarf2_per_objfile->using_index
4377 ? !item->per_cu->v.quick->symtab
4378 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
10b3939b
DJ
4379 process_full_comp_unit (item->per_cu);
4380
4381 item->per_cu->queued = 0;
4382 next_item = item->next;
4383 xfree (item);
4384 }
4385
4386 dwarf2_queue_tail = NULL;
4387}
4388
4389/* Free all allocated queue entries. This function only releases anything if
4390 an error was thrown; if the queue was processed then it would have been
4391 freed as we went along. */
4392
4393static void
4394dwarf2_release_queue (void *dummy)
4395{
4396 struct dwarf2_queue_item *item, *last;
4397
4398 item = dwarf2_queue;
4399 while (item)
4400 {
4401 /* Anything still marked queued is likely to be in an
4402 inconsistent state, so discard it. */
4403 if (item->per_cu->queued)
4404 {
4405 if (item->per_cu->cu != NULL)
4406 free_one_cached_comp_unit (item->per_cu->cu);
4407 item->per_cu->queued = 0;
4408 }
4409
4410 last = item;
4411 item = item->next;
4412 xfree (last);
4413 }
4414
4415 dwarf2_queue = dwarf2_queue_tail = NULL;
4416}
4417
4418/* Read in full symbols for PST, and anything it depends on. */
4419
c906108c 4420static void
fba45db2 4421psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 4422{
10b3939b 4423 struct dwarf2_per_cu_data *per_cu;
c906108c 4424 struct cleanup *back_to;
aaa75496
JB
4425 int i;
4426
4427 for (i = 0; i < pst->number_of_dependencies; i++)
4428 if (!pst->dependencies[i]->readin)
4429 {
4430 /* Inform about additional files that need to be read in. */
4431 if (info_verbose)
4432 {
a3f17187 4433 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
4434 fputs_filtered (" ", gdb_stdout);
4435 wrap_here ("");
4436 fputs_filtered ("and ", gdb_stdout);
4437 wrap_here ("");
4438 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 4439 wrap_here (""); /* Flush output. */
aaa75496
JB
4440 gdb_flush (gdb_stdout);
4441 }
4442 psymtab_to_symtab_1 (pst->dependencies[i]);
4443 }
4444
e38df1d0 4445 per_cu = pst->read_symtab_private;
10b3939b
DJ
4446
4447 if (per_cu == NULL)
aaa75496
JB
4448 {
4449 /* It's an include file, no symbols to read for it.
4450 Everything is in the parent symtab. */
4451 pst->readin = 1;
4452 return;
4453 }
c906108c 4454
9291a0cd 4455 dw2_do_instantiate_symtab (pst->objfile, per_cu);
10b3939b
DJ
4456}
4457
93311388 4458/* Load the DIEs associated with PER_CU into memory. */
10b3939b 4459
93311388 4460static void
3e43a32a
MS
4461load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4462 struct objfile *objfile)
10b3939b 4463{
31ffec48 4464 bfd *abfd = objfile->obfd;
10b3939b 4465 struct dwarf2_cu *cu;
c764a876 4466 unsigned int offset;
93311388 4467 gdb_byte *info_ptr, *beg_of_comp_unit;
98bfdba5 4468 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
10b3939b 4469 struct attribute *attr;
98bfdba5 4470 int read_cu = 0;
6502dd73 4471
348e048f
DE
4472 gdb_assert (! per_cu->from_debug_types);
4473
c906108c 4474 /* Set local variables from the partial symbol table info. */
10b3939b 4475 offset = per_cu->offset;
6502dd73 4476
be391dca 4477 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 4478 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 4479 beg_of_comp_unit = info_ptr;
63d06c5c 4480
98bfdba5
PA
4481 if (per_cu->cu == NULL)
4482 {
9816fde3
JK
4483 cu = xmalloc (sizeof (*cu));
4484 init_one_comp_unit (cu, objfile);
98bfdba5
PA
4485
4486 read_cu = 1;
c906108c 4487
98bfdba5
PA
4488 /* If an error occurs while loading, release our storage. */
4489 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 4490
98bfdba5
PA
4491 /* Read in the comp_unit header. */
4492 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 4493
98bfdba5
PA
4494 /* Complete the cu_header. */
4495 cu->header.offset = offset;
4496 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
93311388 4497
98bfdba5
PA
4498 /* Read the abbrevs for this compilation unit. */
4499 dwarf2_read_abbrevs (abfd, cu);
4500 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
10b3939b 4501
98bfdba5
PA
4502 /* Link this compilation unit into the compilation unit tree. */
4503 per_cu->cu = cu;
4504 cu->per_cu = per_cu;
98bfdba5
PA
4505
4506 /* Link this CU into read_in_chain. */
4507 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4508 dwarf2_per_objfile->read_in_chain = per_cu;
4509 }
4510 else
4511 {
4512 cu = per_cu->cu;
4513 info_ptr += cu->header.first_die_offset;
4514 }
e142c38c 4515
93311388 4516 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
4517
4518 /* We try not to read any attributes in this function, because not
4519 all objfiles needed for references have been loaded yet, and symbol
4520 table processing isn't initialized. But we have to set the CU language,
4521 or we won't be able to build types correctly. */
9816fde3 4522 prepare_one_comp_unit (cu, cu->dies);
10b3939b 4523
a6c727b2
DJ
4524 /* Similarly, if we do not read the producer, we can not apply
4525 producer-specific interpretation. */
4526 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4527 if (attr)
4528 cu->producer = DW_STRING (attr);
4529
98bfdba5
PA
4530 if (read_cu)
4531 {
4532 do_cleanups (free_abbrevs_cleanup);
e142c38c 4533
98bfdba5
PA
4534 /* We've successfully allocated this compilation unit. Let our
4535 caller clean it up when finished with it. */
4536 discard_cleanups (free_cu_cleanup);
4537 }
10b3939b
DJ
4538}
4539
3da10d80
KS
4540/* Add a DIE to the delayed physname list. */
4541
4542static void
4543add_to_method_list (struct type *type, int fnfield_index, int index,
4544 const char *name, struct die_info *die,
4545 struct dwarf2_cu *cu)
4546{
4547 struct delayed_method_info mi;
4548 mi.type = type;
4549 mi.fnfield_index = fnfield_index;
4550 mi.index = index;
4551 mi.name = name;
4552 mi.die = die;
4553 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4554}
4555
4556/* A cleanup for freeing the delayed method list. */
4557
4558static void
4559free_delayed_list (void *ptr)
4560{
4561 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4562 if (cu->method_list != NULL)
4563 {
4564 VEC_free (delayed_method_info, cu->method_list);
4565 cu->method_list = NULL;
4566 }
4567}
4568
4569/* Compute the physnames of any methods on the CU's method list.
4570
4571 The computation of method physnames is delayed in order to avoid the
4572 (bad) condition that one of the method's formal parameters is of an as yet
4573 incomplete type. */
4574
4575static void
4576compute_delayed_physnames (struct dwarf2_cu *cu)
4577{
4578 int i;
4579 struct delayed_method_info *mi;
4580 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4581 {
4582 char *physname;
4583 struct fn_fieldlist *fn_flp
4584 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4585 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4586 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4587 }
4588}
4589
10b3939b
DJ
4590/* Generate full symbol information for PST and CU, whose DIEs have
4591 already been loaded into memory. */
4592
4593static void
4594process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4595{
10b3939b 4596 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 4597 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
4598 CORE_ADDR lowpc, highpc;
4599 struct symtab *symtab;
3da10d80 4600 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b
DJ
4601 CORE_ADDR baseaddr;
4602
4603 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4604
10b3939b
DJ
4605 buildsym_init ();
4606 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 4607 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
4608
4609 cu->list_in_scope = &file_symbols;
c906108c 4610
d85a05f0 4611 dwarf2_find_base_address (cu->dies, cu);
0d53c4c4 4612
c906108c 4613 /* Do line number decoding in read_file_scope () */
10b3939b 4614 process_die (cu->dies, cu);
c906108c 4615
3da10d80
KS
4616 /* Now that we have processed all the DIEs in the CU, all the types
4617 should be complete, and it should now be safe to compute all of the
4618 physnames. */
4619 compute_delayed_physnames (cu);
4620 do_cleanups (delayed_list_cleanup);
4621
fae299cd
DC
4622 /* Some compilers don't define a DW_AT_high_pc attribute for the
4623 compilation unit. If the DW_AT_high_pc is missing, synthesize
4624 it, by scanning the DIE's below the compilation unit. */
10b3939b 4625 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 4626
613e1657 4627 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
4628
4629 /* Set symtab language to language from DW_AT_language.
4630 If the compilation is from a C file generated by language preprocessors,
4631 do not set the language if it was already deduced by start_subfile. */
4632 if (symtab != NULL
10b3939b 4633 && !(cu->language == language_c && symtab->language != language_c))
c906108c 4634 {
10b3939b 4635 symtab->language = cu->language;
c906108c 4636 }
9291a0cd
TT
4637
4638 if (dwarf2_per_objfile->using_index)
4639 per_cu->v.quick->symtab = symtab;
4640 else
4641 {
4642 struct partial_symtab *pst = per_cu->v.psymtab;
4643 pst->symtab = symtab;
4644 pst->readin = 1;
4645 }
c906108c
SS
4646
4647 do_cleanups (back_to);
4648}
4649
4650/* Process a die and its children. */
4651
4652static void
e7c27a73 4653process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4654{
4655 switch (die->tag)
4656 {
4657 case DW_TAG_padding:
4658 break;
4659 case DW_TAG_compile_unit:
e7c27a73 4660 read_file_scope (die, cu);
c906108c 4661 break;
348e048f
DE
4662 case DW_TAG_type_unit:
4663 read_type_unit_scope (die, cu);
4664 break;
c906108c 4665 case DW_TAG_subprogram:
c906108c 4666 case DW_TAG_inlined_subroutine:
edb3359d 4667 read_func_scope (die, cu);
c906108c
SS
4668 break;
4669 case DW_TAG_lexical_block:
14898363
L
4670 case DW_TAG_try_block:
4671 case DW_TAG_catch_block:
e7c27a73 4672 read_lexical_block_scope (die, cu);
c906108c
SS
4673 break;
4674 case DW_TAG_class_type:
680b30c7 4675 case DW_TAG_interface_type:
c906108c
SS
4676 case DW_TAG_structure_type:
4677 case DW_TAG_union_type:
134d01f1 4678 process_structure_scope (die, cu);
c906108c
SS
4679 break;
4680 case DW_TAG_enumeration_type:
134d01f1 4681 process_enumeration_scope (die, cu);
c906108c 4682 break;
134d01f1 4683
f792889a
DJ
4684 /* These dies have a type, but processing them does not create
4685 a symbol or recurse to process the children. Therefore we can
4686 read them on-demand through read_type_die. */
c906108c 4687 case DW_TAG_subroutine_type:
72019c9c 4688 case DW_TAG_set_type:
c906108c 4689 case DW_TAG_array_type:
c906108c 4690 case DW_TAG_pointer_type:
c906108c 4691 case DW_TAG_ptr_to_member_type:
c906108c 4692 case DW_TAG_reference_type:
c906108c 4693 case DW_TAG_string_type:
c906108c 4694 break;
134d01f1 4695
c906108c 4696 case DW_TAG_base_type:
a02abb62 4697 case DW_TAG_subrange_type:
cb249c71 4698 case DW_TAG_typedef:
134d01f1
DJ
4699 /* Add a typedef symbol for the type definition, if it has a
4700 DW_AT_name. */
f792889a 4701 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 4702 break;
c906108c 4703 case DW_TAG_common_block:
e7c27a73 4704 read_common_block (die, cu);
c906108c
SS
4705 break;
4706 case DW_TAG_common_inclusion:
4707 break;
d9fa45fe 4708 case DW_TAG_namespace:
63d06c5c 4709 processing_has_namespace_info = 1;
e7c27a73 4710 read_namespace (die, cu);
d9fa45fe 4711 break;
5d7cb8df 4712 case DW_TAG_module:
f55ee35c 4713 processing_has_namespace_info = 1;
5d7cb8df
JK
4714 read_module (die, cu);
4715 break;
d9fa45fe
DC
4716 case DW_TAG_imported_declaration:
4717 case DW_TAG_imported_module:
63d06c5c 4718 processing_has_namespace_info = 1;
27aa8d6a
SW
4719 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4720 || cu->language != language_fortran))
4721 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4722 dwarf_tag_name (die->tag));
4723 read_import_statement (die, cu);
d9fa45fe 4724 break;
c906108c 4725 default:
e7c27a73 4726 new_symbol (die, NULL, cu);
c906108c
SS
4727 break;
4728 }
4729}
4730
94af9270
KS
4731/* A helper function for dwarf2_compute_name which determines whether DIE
4732 needs to have the name of the scope prepended to the name listed in the
4733 die. */
4734
4735static int
4736die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4737{
1c809c68
TT
4738 struct attribute *attr;
4739
94af9270
KS
4740 switch (die->tag)
4741 {
4742 case DW_TAG_namespace:
4743 case DW_TAG_typedef:
4744 case DW_TAG_class_type:
4745 case DW_TAG_interface_type:
4746 case DW_TAG_structure_type:
4747 case DW_TAG_union_type:
4748 case DW_TAG_enumeration_type:
4749 case DW_TAG_enumerator:
4750 case DW_TAG_subprogram:
4751 case DW_TAG_member:
4752 return 1;
4753
4754 case DW_TAG_variable:
c2b0a229 4755 case DW_TAG_constant:
94af9270
KS
4756 /* We only need to prefix "globally" visible variables. These include
4757 any variable marked with DW_AT_external or any variable that
4758 lives in a namespace. [Variables in anonymous namespaces
4759 require prefixing, but they are not DW_AT_external.] */
4760
4761 if (dwarf2_attr (die, DW_AT_specification, cu))
4762 {
4763 struct dwarf2_cu *spec_cu = cu;
9a619af0 4764
94af9270
KS
4765 return die_needs_namespace (die_specification (die, &spec_cu),
4766 spec_cu);
4767 }
4768
1c809c68 4769 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
4770 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4771 && die->parent->tag != DW_TAG_module)
1c809c68
TT
4772 return 0;
4773 /* A variable in a lexical block of some kind does not need a
4774 namespace, even though in C++ such variables may be external
4775 and have a mangled name. */
4776 if (die->parent->tag == DW_TAG_lexical_block
4777 || die->parent->tag == DW_TAG_try_block
1054b214
TT
4778 || die->parent->tag == DW_TAG_catch_block
4779 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
4780 return 0;
4781 return 1;
94af9270
KS
4782
4783 default:
4784 return 0;
4785 }
4786}
4787
98bfdba5
PA
4788/* Retrieve the last character from a mem_file. */
4789
4790static void
4791do_ui_file_peek_last (void *object, const char *buffer, long length)
4792{
4793 char *last_char_p = (char *) object;
4794
4795 if (length > 0)
4796 *last_char_p = buffer[length - 1];
4797}
4798
94af9270
KS
4799/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4800 compute the physname for the object, which include a method's
4801 formal parameters (C++/Java) and return type (Java).
4802
af6b7be1
JB
4803 For Ada, return the DIE's linkage name rather than the fully qualified
4804 name. PHYSNAME is ignored..
4805
94af9270
KS
4806 The result is allocated on the objfile_obstack and canonicalized. */
4807
4808static const char *
4809dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4810 int physname)
4811{
4812 if (name == NULL)
4813 name = dwarf2_name (die, cu);
4814
f55ee35c
JK
4815 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4816 compute it by typename_concat inside GDB. */
4817 if (cu->language == language_ada
4818 || (cu->language == language_fortran && physname))
4819 {
4820 /* For Ada unit, we prefer the linkage name over the name, as
4821 the former contains the exported name, which the user expects
4822 to be able to reference. Ideally, we want the user to be able
4823 to reference this entity using either natural or linkage name,
4824 but we haven't started looking at this enhancement yet. */
4825 struct attribute *attr;
4826
4827 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4828 if (attr == NULL)
4829 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4830 if (attr && DW_STRING (attr))
4831 return DW_STRING (attr);
4832 }
4833
94af9270
KS
4834 /* These are the only languages we know how to qualify names in. */
4835 if (name != NULL
f55ee35c
JK
4836 && (cu->language == language_cplus || cu->language == language_java
4837 || cu->language == language_fortran))
94af9270
KS
4838 {
4839 if (die_needs_namespace (die, cu))
4840 {
4841 long length;
4842 char *prefix;
4843 struct ui_file *buf;
4844
4845 prefix = determine_prefix (die, cu);
4846 buf = mem_fileopen ();
4847 if (*prefix != '\0')
4848 {
f55ee35c
JK
4849 char *prefixed_name = typename_concat (NULL, prefix, name,
4850 physname, cu);
9a619af0 4851
94af9270
KS
4852 fputs_unfiltered (prefixed_name, buf);
4853 xfree (prefixed_name);
4854 }
4855 else
62d5b8da 4856 fputs_unfiltered (name, buf);
94af9270 4857
98bfdba5
PA
4858 /* Template parameters may be specified in the DIE's DW_AT_name, or
4859 as children with DW_TAG_template_type_param or
4860 DW_TAG_value_type_param. If the latter, add them to the name
4861 here. If the name already has template parameters, then
4862 skip this step; some versions of GCC emit both, and
4863 it is more efficient to use the pre-computed name.
4864
4865 Something to keep in mind about this process: it is very
4866 unlikely, or in some cases downright impossible, to produce
4867 something that will match the mangled name of a function.
4868 If the definition of the function has the same debug info,
4869 we should be able to match up with it anyway. But fallbacks
4870 using the minimal symbol, for instance to find a method
4871 implemented in a stripped copy of libstdc++, will not work.
4872 If we do not have debug info for the definition, we will have to
4873 match them up some other way.
4874
4875 When we do name matching there is a related problem with function
4876 templates; two instantiated function templates are allowed to
4877 differ only by their return types, which we do not add here. */
4878
4879 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4880 {
4881 struct attribute *attr;
4882 struct die_info *child;
4883 int first = 1;
4884
4885 die->building_fullname = 1;
4886
4887 for (child = die->child; child != NULL; child = child->sibling)
4888 {
4889 struct type *type;
4890 long value;
4891 gdb_byte *bytes;
4892 struct dwarf2_locexpr_baton *baton;
4893 struct value *v;
4894
4895 if (child->tag != DW_TAG_template_type_param
4896 && child->tag != DW_TAG_template_value_param)
4897 continue;
4898
4899 if (first)
4900 {
4901 fputs_unfiltered ("<", buf);
4902 first = 0;
4903 }
4904 else
4905 fputs_unfiltered (", ", buf);
4906
4907 attr = dwarf2_attr (child, DW_AT_type, cu);
4908 if (attr == NULL)
4909 {
4910 complaint (&symfile_complaints,
4911 _("template parameter missing DW_AT_type"));
4912 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4913 continue;
4914 }
4915 type = die_type (child, cu);
4916
4917 if (child->tag == DW_TAG_template_type_param)
4918 {
4919 c_print_type (type, "", buf, -1, 0);
4920 continue;
4921 }
4922
4923 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4924 if (attr == NULL)
4925 {
4926 complaint (&symfile_complaints,
3e43a32a
MS
4927 _("template parameter missing "
4928 "DW_AT_const_value"));
98bfdba5
PA
4929 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4930 continue;
4931 }
4932
4933 dwarf2_const_value_attr (attr, type, name,
4934 &cu->comp_unit_obstack, cu,
4935 &value, &bytes, &baton);
4936
4937 if (TYPE_NOSIGN (type))
4938 /* GDB prints characters as NUMBER 'CHAR'. If that's
4939 changed, this can use value_print instead. */
4940 c_printchar (value, type, buf);
4941 else
4942 {
4943 struct value_print_options opts;
4944
4945 if (baton != NULL)
4946 v = dwarf2_evaluate_loc_desc (type, NULL,
4947 baton->data,
4948 baton->size,
4949 baton->per_cu);
4950 else if (bytes != NULL)
4951 {
4952 v = allocate_value (type);
4953 memcpy (value_contents_writeable (v), bytes,
4954 TYPE_LENGTH (type));
4955 }
4956 else
4957 v = value_from_longest (type, value);
4958
3e43a32a
MS
4959 /* Specify decimal so that we do not depend on
4960 the radix. */
98bfdba5
PA
4961 get_formatted_print_options (&opts, 'd');
4962 opts.raw = 1;
4963 value_print (v, buf, &opts);
4964 release_value (v);
4965 value_free (v);
4966 }
4967 }
4968
4969 die->building_fullname = 0;
4970
4971 if (!first)
4972 {
4973 /* Close the argument list, with a space if necessary
4974 (nested templates). */
4975 char last_char = '\0';
4976 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4977 if (last_char == '>')
4978 fputs_unfiltered (" >", buf);
4979 else
4980 fputs_unfiltered (">", buf);
4981 }
4982 }
4983
94af9270
KS
4984 /* For Java and C++ methods, append formal parameter type
4985 information, if PHYSNAME. */
6e70227d 4986
94af9270
KS
4987 if (physname && die->tag == DW_TAG_subprogram
4988 && (cu->language == language_cplus
4989 || cu->language == language_java))
4990 {
4991 struct type *type = read_type_die (die, cu);
4992
4993 c_type_print_args (type, buf, 0, cu->language);
4994
4995 if (cu->language == language_java)
4996 {
4997 /* For java, we must append the return type to method
0963b4bd 4998 names. */
94af9270
KS
4999 if (die->tag == DW_TAG_subprogram)
5000 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5001 0, 0);
5002 }
5003 else if (cu->language == language_cplus)
5004 {
60430eff
DJ
5005 /* Assume that an artificial first parameter is
5006 "this", but do not crash if it is not. RealView
5007 marks unnamed (and thus unused) parameters as
5008 artificial; there is no way to differentiate
5009 the two cases. */
94af9270
KS
5010 if (TYPE_NFIELDS (type) > 0
5011 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 5012 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
5013 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5014 0))))
94af9270
KS
5015 fputs_unfiltered (" const", buf);
5016 }
5017 }
5018
5019 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
5020 &length);
5021 ui_file_delete (buf);
5022
5023 if (cu->language == language_cplus)
5024 {
5025 char *cname
5026 = dwarf2_canonicalize_name (name, cu,
5027 &cu->objfile->objfile_obstack);
9a619af0 5028
94af9270
KS
5029 if (cname != NULL)
5030 name = cname;
5031 }
5032 }
5033 }
5034
5035 return name;
5036}
5037
0114d602
DJ
5038/* Return the fully qualified name of DIE, based on its DW_AT_name.
5039 If scope qualifiers are appropriate they will be added. The result
5040 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
5041 not have a name. NAME may either be from a previous call to
5042 dwarf2_name or NULL.
5043
0963b4bd 5044 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
5045
5046static const char *
94af9270 5047dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 5048{
94af9270
KS
5049 return dwarf2_compute_name (name, die, cu, 0);
5050}
0114d602 5051
94af9270
KS
5052/* Construct a physname for the given DIE in CU. NAME may either be
5053 from a previous call to dwarf2_name or NULL. The result will be
5054 allocated on the objfile_objstack or NULL if the DIE does not have a
5055 name.
0114d602 5056
94af9270 5057 The output string will be canonicalized (if C++/Java). */
0114d602 5058
94af9270
KS
5059static const char *
5060dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5061{
5062 return dwarf2_compute_name (name, die, cu, 1);
0114d602
DJ
5063}
5064
27aa8d6a
SW
5065/* Read the import statement specified by the given die and record it. */
5066
5067static void
5068read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5069{
5070 struct attribute *import_attr;
5071 struct die_info *imported_die;
de4affc9 5072 struct dwarf2_cu *imported_cu;
27aa8d6a 5073 const char *imported_name;
794684b6 5074 const char *imported_name_prefix;
13387711
SW
5075 const char *canonical_name;
5076 const char *import_alias;
5077 const char *imported_declaration = NULL;
794684b6 5078 const char *import_prefix;
13387711
SW
5079
5080 char *temp;
27aa8d6a
SW
5081
5082 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5083 if (import_attr == NULL)
5084 {
5085 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5086 dwarf_tag_name (die->tag));
5087 return;
5088 }
5089
de4affc9
CC
5090 imported_cu = cu;
5091 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5092 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
5093 if (imported_name == NULL)
5094 {
5095 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5096
5097 The import in the following code:
5098 namespace A
5099 {
5100 typedef int B;
5101 }
5102
5103 int main ()
5104 {
5105 using A::B;
5106 B b;
5107 return b;
5108 }
5109
5110 ...
5111 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5112 <52> DW_AT_decl_file : 1
5113 <53> DW_AT_decl_line : 6
5114 <54> DW_AT_import : <0x75>
5115 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5116 <59> DW_AT_name : B
5117 <5b> DW_AT_decl_file : 1
5118 <5c> DW_AT_decl_line : 2
5119 <5d> DW_AT_type : <0x6e>
5120 ...
5121 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5122 <76> DW_AT_byte_size : 4
5123 <77> DW_AT_encoding : 5 (signed)
5124
5125 imports the wrong die ( 0x75 instead of 0x58 ).
5126 This case will be ignored until the gcc bug is fixed. */
5127 return;
5128 }
5129
82856980
SW
5130 /* Figure out the local name after import. */
5131 import_alias = dwarf2_name (die, cu);
27aa8d6a 5132
794684b6
SW
5133 /* Figure out where the statement is being imported to. */
5134 import_prefix = determine_prefix (die, cu);
5135
5136 /* Figure out what the scope of the imported die is and prepend it
5137 to the name of the imported die. */
de4affc9 5138 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 5139
f55ee35c
JK
5140 if (imported_die->tag != DW_TAG_namespace
5141 && imported_die->tag != DW_TAG_module)
794684b6 5142 {
13387711
SW
5143 imported_declaration = imported_name;
5144 canonical_name = imported_name_prefix;
794684b6 5145 }
13387711 5146 else if (strlen (imported_name_prefix) > 0)
794684b6 5147 {
13387711
SW
5148 temp = alloca (strlen (imported_name_prefix)
5149 + 2 + strlen (imported_name) + 1);
5150 strcpy (temp, imported_name_prefix);
5151 strcat (temp, "::");
5152 strcat (temp, imported_name);
5153 canonical_name = temp;
794684b6 5154 }
13387711
SW
5155 else
5156 canonical_name = imported_name;
794684b6 5157
c0cc3a76
SW
5158 cp_add_using_directive (import_prefix,
5159 canonical_name,
5160 import_alias,
13387711 5161 imported_declaration,
c0cc3a76 5162 &cu->objfile->objfile_obstack);
27aa8d6a
SW
5163}
5164
5fb290d7 5165static void
e142c38c 5166initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 5167{
e142c38c 5168 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
5169}
5170
ae2de4f8
DE
5171/* Cleanup function for read_file_scope. */
5172
cb1df416
DJ
5173static void
5174free_cu_line_header (void *arg)
5175{
5176 struct dwarf2_cu *cu = arg;
5177
5178 free_line_header (cu->line_header);
5179 cu->line_header = NULL;
5180}
5181
9291a0cd
TT
5182static void
5183find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5184 char **name, char **comp_dir)
5185{
5186 struct attribute *attr;
5187
5188 *name = NULL;
5189 *comp_dir = NULL;
5190
5191 /* Find the filename. Do not use dwarf2_name here, since the filename
5192 is not a source language identifier. */
5193 attr = dwarf2_attr (die, DW_AT_name, cu);
5194 if (attr)
5195 {
5196 *name = DW_STRING (attr);
5197 }
5198
5199 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5200 if (attr)
5201 *comp_dir = DW_STRING (attr);
5202 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5203 {
5204 *comp_dir = ldirname (*name);
5205 if (*comp_dir != NULL)
5206 make_cleanup (xfree, *comp_dir);
5207 }
5208 if (*comp_dir != NULL)
5209 {
5210 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5211 directory, get rid of it. */
5212 char *cp = strchr (*comp_dir, ':');
5213
5214 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5215 *comp_dir = cp + 1;
5216 }
5217
5218 if (*name == NULL)
5219 *name = "<unknown>";
5220}
5221
ae2de4f8
DE
5222/* Process DW_TAG_compile_unit. */
5223
c906108c 5224static void
e7c27a73 5225read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5226{
e7c27a73 5227 struct objfile *objfile = cu->objfile;
debd256d 5228 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 5229 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
5230 CORE_ADDR highpc = ((CORE_ADDR) 0);
5231 struct attribute *attr;
e1024ff1 5232 char *name = NULL;
c906108c
SS
5233 char *comp_dir = NULL;
5234 struct die_info *child_die;
5235 bfd *abfd = objfile->obfd;
debd256d 5236 struct line_header *line_header = 0;
e142c38c 5237 CORE_ADDR baseaddr;
6e70227d 5238
e142c38c 5239 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 5240
fae299cd 5241 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
5242
5243 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5244 from finish_block. */
2acceee2 5245 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
5246 lowpc = highpc;
5247 lowpc += baseaddr;
5248 highpc += baseaddr;
5249
9291a0cd 5250 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 5251
e142c38c 5252 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
5253 if (attr)
5254 {
e142c38c 5255 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
5256 }
5257
b0f35d58 5258 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5259 if (attr)
b0f35d58 5260 cu->producer = DW_STRING (attr);
303b6f5d 5261
f4b8a18d
KW
5262 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5263 standardised yet. As a workaround for the language detection we fall
5264 back to the DW_AT_producer string. */
5265 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5266 cu->language = language_opencl;
5267
0963b4bd 5268 /* We assume that we're processing GCC output. */
c906108c 5269 processing_gcc_compilation = 2;
c906108c 5270
df8a16a1
DJ
5271 processing_has_namespace_info = 0;
5272
c906108c
SS
5273 start_symtab (name, comp_dir, lowpc);
5274 record_debugformat ("DWARF 2");
303b6f5d 5275 record_producer (cu->producer);
c906108c 5276
e142c38c 5277 initialize_cu_func_list (cu);
c906108c 5278
cb1df416
DJ
5279 /* Decode line number information if present. We do this before
5280 processing child DIEs, so that the line header table is available
5281 for DW_AT_decl_file. */
e142c38c 5282 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
5283 if (attr)
5284 {
debd256d 5285 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 5286 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
5287 if (line_header)
5288 {
cb1df416
DJ
5289 cu->line_header = line_header;
5290 make_cleanup (free_cu_line_header, cu);
aaa75496 5291 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 5292 }
5fb290d7 5293 }
debd256d 5294
cb1df416
DJ
5295 /* Process all dies in compilation unit. */
5296 if (die->child != NULL)
5297 {
5298 child_die = die->child;
5299 while (child_die && child_die->tag)
5300 {
5301 process_die (child_die, cu);
5302 child_die = sibling_die (child_die);
5303 }
5304 }
5305
2e276125
JB
5306 /* Decode macro information, if present. Dwarf 2 macro information
5307 refers to information in the line number info statement program
5308 header, so we can only read it if we've read the header
5309 successfully. */
e142c38c 5310 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 5311 if (attr && line_header)
2e276125
JB
5312 {
5313 unsigned int macro_offset = DW_UNSND (attr);
9a619af0 5314
2e276125 5315 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 5316 comp_dir, abfd, cu);
2e276125 5317 }
debd256d 5318 do_cleanups (back_to);
5fb290d7
DJ
5319}
5320
ae2de4f8
DE
5321/* Process DW_TAG_type_unit.
5322 For TUs we want to skip the first top level sibling if it's not the
348e048f
DE
5323 actual type being defined by this TU. In this case the first top
5324 level sibling is there to provide context only. */
5325
5326static void
5327read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5328{
5329 struct objfile *objfile = cu->objfile;
5330 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5331 CORE_ADDR lowpc;
5332 struct attribute *attr;
5333 char *name = NULL;
5334 char *comp_dir = NULL;
5335 struct die_info *child_die;
5336 bfd *abfd = objfile->obfd;
348e048f
DE
5337
5338 /* start_symtab needs a low pc, but we don't really have one.
5339 Do what read_file_scope would do in the absence of such info. */
5340 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5341
5342 /* Find the filename. Do not use dwarf2_name here, since the filename
5343 is not a source language identifier. */
5344 attr = dwarf2_attr (die, DW_AT_name, cu);
5345 if (attr)
5346 name = DW_STRING (attr);
5347
5348 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5349 if (attr)
5350 comp_dir = DW_STRING (attr);
5351 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5352 {
5353 comp_dir = ldirname (name);
5354 if (comp_dir != NULL)
5355 make_cleanup (xfree, comp_dir);
5356 }
5357
5358 if (name == NULL)
5359 name = "<unknown>";
5360
5361 attr = dwarf2_attr (die, DW_AT_language, cu);
5362 if (attr)
5363 set_cu_language (DW_UNSND (attr), cu);
5364
5365 /* This isn't technically needed today. It is done for symmetry
5366 with read_file_scope. */
5367 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5368 if (attr)
348e048f
DE
5369 cu->producer = DW_STRING (attr);
5370
0963b4bd 5371 /* We assume that we're processing GCC output. */
348e048f
DE
5372 processing_gcc_compilation = 2;
5373
5374 processing_has_namespace_info = 0;
5375
5376 start_symtab (name, comp_dir, lowpc);
5377 record_debugformat ("DWARF 2");
5378 record_producer (cu->producer);
5379
5380 /* Process the dies in the type unit. */
5381 if (die->child == NULL)
5382 {
5383 dump_die_for_error (die);
5384 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5385 bfd_get_filename (abfd));
5386 }
5387
5388 child_die = die->child;
5389
5390 while (child_die && child_die->tag)
5391 {
5392 process_die (child_die, cu);
5393
5394 child_die = sibling_die (child_die);
5395 }
5396
5397 do_cleanups (back_to);
5398}
5399
5fb290d7 5400static void
e142c38c
DJ
5401add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5402 struct dwarf2_cu *cu)
5fb290d7
DJ
5403{
5404 struct function_range *thisfn;
5405
5406 thisfn = (struct function_range *)
7b5a2f43 5407 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
5408 thisfn->name = name;
5409 thisfn->lowpc = lowpc;
5410 thisfn->highpc = highpc;
5411 thisfn->seen_line = 0;
5412 thisfn->next = NULL;
5413
e142c38c
DJ
5414 if (cu->last_fn == NULL)
5415 cu->first_fn = thisfn;
5fb290d7 5416 else
e142c38c 5417 cu->last_fn->next = thisfn;
5fb290d7 5418
e142c38c 5419 cu->last_fn = thisfn;
c906108c
SS
5420}
5421
d389af10
JK
5422/* qsort helper for inherit_abstract_dies. */
5423
5424static int
5425unsigned_int_compar (const void *ap, const void *bp)
5426{
5427 unsigned int a = *(unsigned int *) ap;
5428 unsigned int b = *(unsigned int *) bp;
5429
5430 return (a > b) - (b > a);
5431}
5432
5433/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
5434 Inherit only the children of the DW_AT_abstract_origin DIE not being
5435 already referenced by DW_AT_abstract_origin from the children of the
5436 current DIE. */
d389af10
JK
5437
5438static void
5439inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5440{
5441 struct die_info *child_die;
5442 unsigned die_children_count;
5443 /* CU offsets which were referenced by children of the current DIE. */
5444 unsigned *offsets;
5445 unsigned *offsets_end, *offsetp;
5446 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5447 struct die_info *origin_die;
5448 /* Iterator of the ORIGIN_DIE children. */
5449 struct die_info *origin_child_die;
5450 struct cleanup *cleanups;
5451 struct attribute *attr;
cd02d79d
PA
5452 struct dwarf2_cu *origin_cu;
5453 struct pending **origin_previous_list_in_scope;
d389af10
JK
5454
5455 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5456 if (!attr)
5457 return;
5458
cd02d79d
PA
5459 /* Note that following die references may follow to a die in a
5460 different cu. */
5461
5462 origin_cu = cu;
5463 origin_die = follow_die_ref (die, attr, &origin_cu);
5464
5465 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5466 symbols in. */
5467 origin_previous_list_in_scope = origin_cu->list_in_scope;
5468 origin_cu->list_in_scope = cu->list_in_scope;
5469
edb3359d
DJ
5470 if (die->tag != origin_die->tag
5471 && !(die->tag == DW_TAG_inlined_subroutine
5472 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5473 complaint (&symfile_complaints,
5474 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5475 die->offset, origin_die->offset);
5476
5477 child_die = die->child;
5478 die_children_count = 0;
5479 while (child_die && child_die->tag)
5480 {
5481 child_die = sibling_die (child_die);
5482 die_children_count++;
5483 }
5484 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5485 cleanups = make_cleanup (xfree, offsets);
5486
5487 offsets_end = offsets;
5488 child_die = die->child;
5489 while (child_die && child_die->tag)
5490 {
c38f313d
DJ
5491 /* For each CHILD_DIE, find the corresponding child of
5492 ORIGIN_DIE. If there is more than one layer of
5493 DW_AT_abstract_origin, follow them all; there shouldn't be,
5494 but GCC versions at least through 4.4 generate this (GCC PR
5495 40573). */
5496 struct die_info *child_origin_die = child_die;
cd02d79d 5497 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 5498
c38f313d
DJ
5499 while (1)
5500 {
cd02d79d
PA
5501 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5502 child_origin_cu);
c38f313d
DJ
5503 if (attr == NULL)
5504 break;
cd02d79d
PA
5505 child_origin_die = follow_die_ref (child_origin_die, attr,
5506 &child_origin_cu);
c38f313d
DJ
5507 }
5508
d389af10
JK
5509 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5510 counterpart may exist. */
c38f313d 5511 if (child_origin_die != child_die)
d389af10 5512 {
edb3359d
DJ
5513 if (child_die->tag != child_origin_die->tag
5514 && !(child_die->tag == DW_TAG_inlined_subroutine
5515 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5516 complaint (&symfile_complaints,
5517 _("Child DIE 0x%x and its abstract origin 0x%x have "
5518 "different tags"), child_die->offset,
5519 child_origin_die->offset);
c38f313d
DJ
5520 if (child_origin_die->parent != origin_die)
5521 complaint (&symfile_complaints,
5522 _("Child DIE 0x%x and its abstract origin 0x%x have "
5523 "different parents"), child_die->offset,
5524 child_origin_die->offset);
5525 else
5526 *offsets_end++ = child_origin_die->offset;
d389af10
JK
5527 }
5528 child_die = sibling_die (child_die);
5529 }
5530 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5531 unsigned_int_compar);
5532 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5533 if (offsetp[-1] == *offsetp)
3e43a32a
MS
5534 complaint (&symfile_complaints,
5535 _("Multiple children of DIE 0x%x refer "
5536 "to DIE 0x%x as their abstract origin"),
d389af10
JK
5537 die->offset, *offsetp);
5538
5539 offsetp = offsets;
5540 origin_child_die = origin_die->child;
5541 while (origin_child_die && origin_child_die->tag)
5542 {
5543 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5544 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5545 offsetp++;
5546 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5547 {
5548 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 5549 process_die (origin_child_die, origin_cu);
d389af10
JK
5550 }
5551 origin_child_die = sibling_die (origin_child_die);
5552 }
cd02d79d 5553 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
5554
5555 do_cleanups (cleanups);
5556}
5557
c906108c 5558static void
e7c27a73 5559read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5560{
e7c27a73 5561 struct objfile *objfile = cu->objfile;
52f0bd74 5562 struct context_stack *new;
c906108c
SS
5563 CORE_ADDR lowpc;
5564 CORE_ADDR highpc;
5565 struct die_info *child_die;
edb3359d 5566 struct attribute *attr, *call_line, *call_file;
c906108c 5567 char *name;
e142c38c 5568 CORE_ADDR baseaddr;
801e3a5b 5569 struct block *block;
edb3359d 5570 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
5571 VEC (symbolp) *template_args = NULL;
5572 struct template_symbol *templ_func = NULL;
edb3359d
DJ
5573
5574 if (inlined_func)
5575 {
5576 /* If we do not have call site information, we can't show the
5577 caller of this inlined function. That's too confusing, so
5578 only use the scope for local variables. */
5579 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5580 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5581 if (call_line == NULL || call_file == NULL)
5582 {
5583 read_lexical_block_scope (die, cu);
5584 return;
5585 }
5586 }
c906108c 5587
e142c38c
DJ
5588 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5589
94af9270 5590 name = dwarf2_name (die, cu);
c906108c 5591
e8d05480
JB
5592 /* Ignore functions with missing or empty names. These are actually
5593 illegal according to the DWARF standard. */
5594 if (name == NULL)
5595 {
5596 complaint (&symfile_complaints,
5597 _("missing name for subprogram DIE at %d"), die->offset);
5598 return;
5599 }
5600
5601 /* Ignore functions with missing or invalid low and high pc attributes. */
5602 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5603 {
ae4d0c03
PM
5604 attr = dwarf2_attr (die, DW_AT_external, cu);
5605 if (!attr || !DW_UNSND (attr))
5606 complaint (&symfile_complaints,
3e43a32a
MS
5607 _("cannot get low and high bounds "
5608 "for subprogram DIE at %d"),
ae4d0c03 5609 die->offset);
e8d05480
JB
5610 return;
5611 }
c906108c
SS
5612
5613 lowpc += baseaddr;
5614 highpc += baseaddr;
5615
5fb290d7 5616 /* Record the function range for dwarf_decode_lines. */
e142c38c 5617 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 5618
34eaf542
TT
5619 /* If we have any template arguments, then we must allocate a
5620 different sort of symbol. */
5621 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5622 {
5623 if (child_die->tag == DW_TAG_template_type_param
5624 || child_die->tag == DW_TAG_template_value_param)
5625 {
5626 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5627 struct template_symbol);
5628 templ_func->base.is_cplus_template_function = 1;
5629 break;
5630 }
5631 }
5632
c906108c 5633 new = push_context (0, lowpc);
34eaf542
TT
5634 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5635 (struct symbol *) templ_func);
4c2df51b 5636
4cecd739
DJ
5637 /* If there is a location expression for DW_AT_frame_base, record
5638 it. */
e142c38c 5639 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 5640 if (attr)
c034e007
AC
5641 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5642 expression is being recorded directly in the function's symbol
5643 and not in a separate frame-base object. I guess this hack is
5644 to avoid adding some sort of frame-base adjunct/annex to the
5645 function's symbol :-(. The problem with doing this is that it
5646 results in a function symbol with a location expression that
5647 has nothing to do with the location of the function, ouch! The
5648 relationship should be: a function's symbol has-a frame base; a
5649 frame-base has-a location expression. */
e7c27a73 5650 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 5651
e142c38c 5652 cu->list_in_scope = &local_symbols;
c906108c 5653
639d11d3 5654 if (die->child != NULL)
c906108c 5655 {
639d11d3 5656 child_die = die->child;
c906108c
SS
5657 while (child_die && child_die->tag)
5658 {
34eaf542
TT
5659 if (child_die->tag == DW_TAG_template_type_param
5660 || child_die->tag == DW_TAG_template_value_param)
5661 {
5662 struct symbol *arg = new_symbol (child_die, NULL, cu);
5663
f1078f66
DJ
5664 if (arg != NULL)
5665 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
5666 }
5667 else
5668 process_die (child_die, cu);
c906108c
SS
5669 child_die = sibling_die (child_die);
5670 }
5671 }
5672
d389af10
JK
5673 inherit_abstract_dies (die, cu);
5674
4a811a97
UW
5675 /* If we have a DW_AT_specification, we might need to import using
5676 directives from the context of the specification DIE. See the
5677 comment in determine_prefix. */
5678 if (cu->language == language_cplus
5679 && dwarf2_attr (die, DW_AT_specification, cu))
5680 {
5681 struct dwarf2_cu *spec_cu = cu;
5682 struct die_info *spec_die = die_specification (die, &spec_cu);
5683
5684 while (spec_die)
5685 {
5686 child_die = spec_die->child;
5687 while (child_die && child_die->tag)
5688 {
5689 if (child_die->tag == DW_TAG_imported_module)
5690 process_die (child_die, spec_cu);
5691 child_die = sibling_die (child_die);
5692 }
5693
5694 /* In some cases, GCC generates specification DIEs that
5695 themselves contain DW_AT_specification attributes. */
5696 spec_die = die_specification (spec_die, &spec_cu);
5697 }
5698 }
5699
c906108c
SS
5700 new = pop_context ();
5701 /* Make a block for the local symbols within. */
801e3a5b
JB
5702 block = finish_block (new->name, &local_symbols, new->old_blocks,
5703 lowpc, highpc, objfile);
5704
df8a16a1 5705 /* For C++, set the block's scope. */
f55ee35c 5706 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 5707 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 5708 determine_prefix (die, cu),
df8a16a1
DJ
5709 processing_has_namespace_info);
5710
801e3a5b
JB
5711 /* If we have address ranges, record them. */
5712 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 5713
34eaf542
TT
5714 /* Attach template arguments to function. */
5715 if (! VEC_empty (symbolp, template_args))
5716 {
5717 gdb_assert (templ_func != NULL);
5718
5719 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5720 templ_func->template_arguments
5721 = obstack_alloc (&objfile->objfile_obstack,
5722 (templ_func->n_template_arguments
5723 * sizeof (struct symbol *)));
5724 memcpy (templ_func->template_arguments,
5725 VEC_address (symbolp, template_args),
5726 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5727 VEC_free (symbolp, template_args);
5728 }
5729
208d8187
JB
5730 /* In C++, we can have functions nested inside functions (e.g., when
5731 a function declares a class that has methods). This means that
5732 when we finish processing a function scope, we may need to go
5733 back to building a containing block's symbol lists. */
5734 local_symbols = new->locals;
5735 param_symbols = new->params;
27aa8d6a 5736 using_directives = new->using_directives;
208d8187 5737
921e78cf
JB
5738 /* If we've finished processing a top-level function, subsequent
5739 symbols go in the file symbol list. */
5740 if (outermost_context_p ())
e142c38c 5741 cu->list_in_scope = &file_symbols;
c906108c
SS
5742}
5743
5744/* Process all the DIES contained within a lexical block scope. Start
5745 a new scope, process the dies, and then close the scope. */
5746
5747static void
e7c27a73 5748read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5749{
e7c27a73 5750 struct objfile *objfile = cu->objfile;
52f0bd74 5751 struct context_stack *new;
c906108c
SS
5752 CORE_ADDR lowpc, highpc;
5753 struct die_info *child_die;
e142c38c
DJ
5754 CORE_ADDR baseaddr;
5755
5756 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
5757
5758 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
5759 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5760 as multiple lexical blocks? Handling children in a sane way would
6e70227d 5761 be nasty. Might be easier to properly extend generic blocks to
af34e669 5762 describe ranges. */
d85a05f0 5763 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
5764 return;
5765 lowpc += baseaddr;
5766 highpc += baseaddr;
5767
5768 push_context (0, lowpc);
639d11d3 5769 if (die->child != NULL)
c906108c 5770 {
639d11d3 5771 child_die = die->child;
c906108c
SS
5772 while (child_die && child_die->tag)
5773 {
e7c27a73 5774 process_die (child_die, cu);
c906108c
SS
5775 child_die = sibling_die (child_die);
5776 }
5777 }
5778 new = pop_context ();
5779
8540c487 5780 if (local_symbols != NULL || using_directives != NULL)
c906108c 5781 {
801e3a5b
JB
5782 struct block *block
5783 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5784 highpc, objfile);
5785
5786 /* Note that recording ranges after traversing children, as we
5787 do here, means that recording a parent's ranges entails
5788 walking across all its children's ranges as they appear in
5789 the address map, which is quadratic behavior.
5790
5791 It would be nicer to record the parent's ranges before
5792 traversing its children, simply overriding whatever you find
5793 there. But since we don't even decide whether to create a
5794 block until after we've traversed its children, that's hard
5795 to do. */
5796 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
5797 }
5798 local_symbols = new->locals;
27aa8d6a 5799 using_directives = new->using_directives;
c906108c
SS
5800}
5801
43039443 5802/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
5803 Return 1 if the attributes are present and valid, otherwise, return 0.
5804 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
5805
5806static int
5807dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
5808 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5809 struct partial_symtab *ranges_pst)
43039443
JK
5810{
5811 struct objfile *objfile = cu->objfile;
5812 struct comp_unit_head *cu_header = &cu->header;
5813 bfd *obfd = objfile->obfd;
5814 unsigned int addr_size = cu_header->addr_size;
5815 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5816 /* Base address selection entry. */
5817 CORE_ADDR base;
5818 int found_base;
5819 unsigned int dummy;
5820 gdb_byte *buffer;
5821 CORE_ADDR marker;
5822 int low_set;
5823 CORE_ADDR low = 0;
5824 CORE_ADDR high = 0;
ff013f42 5825 CORE_ADDR baseaddr;
43039443 5826
d00adf39
DE
5827 found_base = cu->base_known;
5828 base = cu->base_address;
43039443 5829
be391dca 5830 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 5831 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
5832 {
5833 complaint (&symfile_complaints,
5834 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5835 offset);
5836 return 0;
5837 }
dce234bc 5838 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
5839
5840 /* Read in the largest possible address. */
5841 marker = read_address (obfd, buffer, cu, &dummy);
5842 if ((marker & mask) == mask)
5843 {
5844 /* If we found the largest possible address, then
5845 read the base address. */
5846 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5847 buffer += 2 * addr_size;
5848 offset += 2 * addr_size;
5849 found_base = 1;
5850 }
5851
5852 low_set = 0;
5853
e7030f15 5854 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 5855
43039443
JK
5856 while (1)
5857 {
5858 CORE_ADDR range_beginning, range_end;
5859
5860 range_beginning = read_address (obfd, buffer, cu, &dummy);
5861 buffer += addr_size;
5862 range_end = read_address (obfd, buffer, cu, &dummy);
5863 buffer += addr_size;
5864 offset += 2 * addr_size;
5865
5866 /* An end of list marker is a pair of zero addresses. */
5867 if (range_beginning == 0 && range_end == 0)
5868 /* Found the end of list entry. */
5869 break;
5870
5871 /* Each base address selection entry is a pair of 2 values.
5872 The first is the largest possible address, the second is
5873 the base address. Check for a base address here. */
5874 if ((range_beginning & mask) == mask)
5875 {
5876 /* If we found the largest possible address, then
5877 read the base address. */
5878 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5879 found_base = 1;
5880 continue;
5881 }
5882
5883 if (!found_base)
5884 {
5885 /* We have no valid base address for the ranges
5886 data. */
5887 complaint (&symfile_complaints,
5888 _("Invalid .debug_ranges data (no base address)"));
5889 return 0;
5890 }
5891
9277c30c
UW
5892 if (range_beginning > range_end)
5893 {
5894 /* Inverted range entries are invalid. */
5895 complaint (&symfile_complaints,
5896 _("Invalid .debug_ranges data (inverted range)"));
5897 return 0;
5898 }
5899
5900 /* Empty range entries have no effect. */
5901 if (range_beginning == range_end)
5902 continue;
5903
43039443
JK
5904 range_beginning += base;
5905 range_end += base;
5906
9277c30c 5907 if (ranges_pst != NULL)
ff013f42 5908 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
5909 range_beginning + baseaddr,
5910 range_end - 1 + baseaddr,
ff013f42
JK
5911 ranges_pst);
5912
43039443
JK
5913 /* FIXME: This is recording everything as a low-high
5914 segment of consecutive addresses. We should have a
5915 data structure for discontiguous block ranges
5916 instead. */
5917 if (! low_set)
5918 {
5919 low = range_beginning;
5920 high = range_end;
5921 low_set = 1;
5922 }
5923 else
5924 {
5925 if (range_beginning < low)
5926 low = range_beginning;
5927 if (range_end > high)
5928 high = range_end;
5929 }
5930 }
5931
5932 if (! low_set)
5933 /* If the first entry is an end-of-list marker, the range
5934 describes an empty scope, i.e. no instructions. */
5935 return 0;
5936
5937 if (low_return)
5938 *low_return = low;
5939 if (high_return)
5940 *high_return = high;
5941 return 1;
5942}
5943
af34e669
DJ
5944/* Get low and high pc attributes from a die. Return 1 if the attributes
5945 are present and valid, otherwise, return 0. Return -1 if the range is
5946 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 5947static int
af34e669 5948dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
5949 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5950 struct partial_symtab *pst)
c906108c
SS
5951{
5952 struct attribute *attr;
af34e669
DJ
5953 CORE_ADDR low = 0;
5954 CORE_ADDR high = 0;
5955 int ret = 0;
c906108c 5956
e142c38c 5957 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 5958 if (attr)
af34e669
DJ
5959 {
5960 high = DW_ADDR (attr);
e142c38c 5961 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
5962 if (attr)
5963 low = DW_ADDR (attr);
5964 else
5965 /* Found high w/o low attribute. */
5966 return 0;
5967
5968 /* Found consecutive range of addresses. */
5969 ret = 1;
5970 }
c906108c 5971 else
af34e669 5972 {
e142c38c 5973 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
5974 if (attr != NULL)
5975 {
af34e669 5976 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 5977 .debug_ranges section. */
d85a05f0 5978 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 5979 return 0;
43039443 5980 /* Found discontinuous range of addresses. */
af34e669
DJ
5981 ret = -1;
5982 }
5983 }
c906108c
SS
5984
5985 if (high < low)
5986 return 0;
5987
5988 /* When using the GNU linker, .gnu.linkonce. sections are used to
5989 eliminate duplicate copies of functions and vtables and such.
5990 The linker will arbitrarily choose one and discard the others.
5991 The AT_*_pc values for such functions refer to local labels in
5992 these sections. If the section from that file was discarded, the
5993 labels are not in the output, so the relocs get a value of 0.
5994 If this is a discarded function, mark the pc bounds as invalid,
5995 so that GDB will ignore it. */
72dca2f5 5996 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
5997 return 0;
5998
5999 *lowpc = low;
6000 *highpc = high;
af34e669 6001 return ret;
c906108c
SS
6002}
6003
b084d499
JB
6004/* Assuming that DIE represents a subprogram DIE or a lexical block, get
6005 its low and high PC addresses. Do nothing if these addresses could not
6006 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6007 and HIGHPC to the high address if greater than HIGHPC. */
6008
6009static void
6010dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6011 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6012 struct dwarf2_cu *cu)
6013{
6014 CORE_ADDR low, high;
6015 struct die_info *child = die->child;
6016
d85a05f0 6017 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
6018 {
6019 *lowpc = min (*lowpc, low);
6020 *highpc = max (*highpc, high);
6021 }
6022
6023 /* If the language does not allow nested subprograms (either inside
6024 subprograms or lexical blocks), we're done. */
6025 if (cu->language != language_ada)
6026 return;
6e70227d 6027
b084d499
JB
6028 /* Check all the children of the given DIE. If it contains nested
6029 subprograms, then check their pc bounds. Likewise, we need to
6030 check lexical blocks as well, as they may also contain subprogram
6031 definitions. */
6032 while (child && child->tag)
6033 {
6034 if (child->tag == DW_TAG_subprogram
6035 || child->tag == DW_TAG_lexical_block)
6036 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6037 child = sibling_die (child);
6038 }
6039}
6040
fae299cd
DC
6041/* Get the low and high pc's represented by the scope DIE, and store
6042 them in *LOWPC and *HIGHPC. If the correct values can't be
6043 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6044
6045static void
6046get_scope_pc_bounds (struct die_info *die,
6047 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6048 struct dwarf2_cu *cu)
6049{
6050 CORE_ADDR best_low = (CORE_ADDR) -1;
6051 CORE_ADDR best_high = (CORE_ADDR) 0;
6052 CORE_ADDR current_low, current_high;
6053
d85a05f0 6054 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
6055 {
6056 best_low = current_low;
6057 best_high = current_high;
6058 }
6059 else
6060 {
6061 struct die_info *child = die->child;
6062
6063 while (child && child->tag)
6064 {
6065 switch (child->tag) {
6066 case DW_TAG_subprogram:
b084d499 6067 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
6068 break;
6069 case DW_TAG_namespace:
f55ee35c 6070 case DW_TAG_module:
fae299cd
DC
6071 /* FIXME: carlton/2004-01-16: Should we do this for
6072 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6073 that current GCC's always emit the DIEs corresponding
6074 to definitions of methods of classes as children of a
6075 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6076 the DIEs giving the declarations, which could be
6077 anywhere). But I don't see any reason why the
6078 standards says that they have to be there. */
6079 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6080
6081 if (current_low != ((CORE_ADDR) -1))
6082 {
6083 best_low = min (best_low, current_low);
6084 best_high = max (best_high, current_high);
6085 }
6086 break;
6087 default:
0963b4bd 6088 /* Ignore. */
fae299cd
DC
6089 break;
6090 }
6091
6092 child = sibling_die (child);
6093 }
6094 }
6095
6096 *lowpc = best_low;
6097 *highpc = best_high;
6098}
6099
801e3a5b
JB
6100/* Record the address ranges for BLOCK, offset by BASEADDR, as given
6101 in DIE. */
6102static void
6103dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6104 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6105{
6106 struct attribute *attr;
6107
6108 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6109 if (attr)
6110 {
6111 CORE_ADDR high = DW_ADDR (attr);
9a619af0 6112
801e3a5b
JB
6113 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6114 if (attr)
6115 {
6116 CORE_ADDR low = DW_ADDR (attr);
9a619af0 6117
801e3a5b
JB
6118 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6119 }
6120 }
6121
6122 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6123 if (attr)
6124 {
6125 bfd *obfd = cu->objfile->obfd;
6126
6127 /* The value of the DW_AT_ranges attribute is the offset of the
6128 address range list in the .debug_ranges section. */
6129 unsigned long offset = DW_UNSND (attr);
dce234bc 6130 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
6131
6132 /* For some target architectures, but not others, the
6133 read_address function sign-extends the addresses it returns.
6134 To recognize base address selection entries, we need a
6135 mask. */
6136 unsigned int addr_size = cu->header.addr_size;
6137 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6138
6139 /* The base address, to which the next pair is relative. Note
6140 that this 'base' is a DWARF concept: most entries in a range
6141 list are relative, to reduce the number of relocs against the
6142 debugging information. This is separate from this function's
6143 'baseaddr' argument, which GDB uses to relocate debugging
6144 information from a shared library based on the address at
6145 which the library was loaded. */
d00adf39
DE
6146 CORE_ADDR base = cu->base_address;
6147 int base_known = cu->base_known;
801e3a5b 6148
be391dca 6149 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 6150 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
6151 {
6152 complaint (&symfile_complaints,
6153 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6154 offset);
6155 return;
6156 }
6157
6158 for (;;)
6159 {
6160 unsigned int bytes_read;
6161 CORE_ADDR start, end;
6162
6163 start = read_address (obfd, buffer, cu, &bytes_read);
6164 buffer += bytes_read;
6165 end = read_address (obfd, buffer, cu, &bytes_read);
6166 buffer += bytes_read;
6167
6168 /* Did we find the end of the range list? */
6169 if (start == 0 && end == 0)
6170 break;
6171
6172 /* Did we find a base address selection entry? */
6173 else if ((start & base_select_mask) == base_select_mask)
6174 {
6175 base = end;
6176 base_known = 1;
6177 }
6178
6179 /* We found an ordinary address range. */
6180 else
6181 {
6182 if (!base_known)
6183 {
6184 complaint (&symfile_complaints,
3e43a32a
MS
6185 _("Invalid .debug_ranges data "
6186 "(no base address)"));
801e3a5b
JB
6187 return;
6188 }
6189
9277c30c
UW
6190 if (start > end)
6191 {
6192 /* Inverted range entries are invalid. */
6193 complaint (&symfile_complaints,
6194 _("Invalid .debug_ranges data "
6195 "(inverted range)"));
6196 return;
6197 }
6198
6199 /* Empty range entries have no effect. */
6200 if (start == end)
6201 continue;
6202
6e70227d
DE
6203 record_block_range (block,
6204 baseaddr + base + start,
801e3a5b
JB
6205 baseaddr + base + end - 1);
6206 }
6207 }
6208 }
6209}
6210
c906108c
SS
6211/* Add an aggregate field to the field list. */
6212
6213static void
107d2387 6214dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 6215 struct dwarf2_cu *cu)
6e70227d 6216{
e7c27a73 6217 struct objfile *objfile = cu->objfile;
5e2b427d 6218 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
6219 struct nextfield *new_field;
6220 struct attribute *attr;
6221 struct field *fp;
6222 char *fieldname = "";
6223
6224 /* Allocate a new field list entry and link it in. */
6225 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 6226 make_cleanup (xfree, new_field);
c906108c 6227 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
6228
6229 if (die->tag == DW_TAG_inheritance)
6230 {
6231 new_field->next = fip->baseclasses;
6232 fip->baseclasses = new_field;
6233 }
6234 else
6235 {
6236 new_field->next = fip->fields;
6237 fip->fields = new_field;
6238 }
c906108c
SS
6239 fip->nfields++;
6240
6241 /* Handle accessibility and virtuality of field.
6242 The default accessibility for members is public, the default
6243 accessibility for inheritance is private. */
6244 if (die->tag != DW_TAG_inheritance)
6245 new_field->accessibility = DW_ACCESS_public;
6246 else
6247 new_field->accessibility = DW_ACCESS_private;
6248 new_field->virtuality = DW_VIRTUALITY_none;
6249
e142c38c 6250 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6251 if (attr)
6252 new_field->accessibility = DW_UNSND (attr);
6253 if (new_field->accessibility != DW_ACCESS_public)
6254 fip->non_public_fields = 1;
e142c38c 6255 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
6256 if (attr)
6257 new_field->virtuality = DW_UNSND (attr);
6258
6259 fp = &new_field->field;
a9a9bd0f 6260
e142c38c 6261 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 6262 {
a9a9bd0f 6263 /* Data member other than a C++ static data member. */
6e70227d 6264
c906108c 6265 /* Get type of field. */
e7c27a73 6266 fp->type = die_type (die, cu);
c906108c 6267
d6a843b5 6268 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 6269
c906108c 6270 /* Get bit size of field (zero if none). */
e142c38c 6271 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
6272 if (attr)
6273 {
6274 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6275 }
6276 else
6277 {
6278 FIELD_BITSIZE (*fp) = 0;
6279 }
6280
6281 /* Get bit offset of field. */
e142c38c 6282 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
6283 if (attr)
6284 {
d4b96c9a 6285 int byte_offset = 0;
c6a0999f 6286
3690dd37 6287 if (attr_form_is_section_offset (attr))
d4b96c9a 6288 dwarf2_complex_location_expr_complaint ();
3690dd37 6289 else if (attr_form_is_constant (attr))
c6a0999f 6290 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
d4b96c9a 6291 else if (attr_form_is_block (attr))
c6a0999f 6292 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
d4b96c9a
JK
6293 else
6294 dwarf2_complex_location_expr_complaint ();
c6a0999f 6295
d6a843b5 6296 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
c906108c 6297 }
e142c38c 6298 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
6299 if (attr)
6300 {
5e2b427d 6301 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
6302 {
6303 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
6304 additional bit offset from the MSB of the containing
6305 anonymous object to the MSB of the field. We don't
6306 have to do anything special since we don't need to
6307 know the size of the anonymous object. */
c906108c
SS
6308 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6309 }
6310 else
6311 {
6312 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
6313 MSB of the anonymous object, subtract off the number of
6314 bits from the MSB of the field to the MSB of the
6315 object, and then subtract off the number of bits of
6316 the field itself. The result is the bit offset of
6317 the LSB of the field. */
c906108c
SS
6318 int anonymous_size;
6319 int bit_offset = DW_UNSND (attr);
6320
e142c38c 6321 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6322 if (attr)
6323 {
6324 /* The size of the anonymous object containing
6325 the bit field is explicit, so use the
6326 indicated size (in bytes). */
6327 anonymous_size = DW_UNSND (attr);
6328 }
6329 else
6330 {
6331 /* The size of the anonymous object containing
6332 the bit field must be inferred from the type
6333 attribute of the data member containing the
6334 bit field. */
6335 anonymous_size = TYPE_LENGTH (fp->type);
6336 }
6337 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6338 - bit_offset - FIELD_BITSIZE (*fp);
6339 }
6340 }
6341
6342 /* Get name of field. */
39cbfefa
DJ
6343 fieldname = dwarf2_name (die, cu);
6344 if (fieldname == NULL)
6345 fieldname = "";
d8151005
DJ
6346
6347 /* The name is already allocated along with this objfile, so we don't
6348 need to duplicate it for the type. */
6349 fp->name = fieldname;
c906108c
SS
6350
6351 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 6352 pointer or virtual base class pointer) to private. */
e142c38c 6353 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 6354 {
d48cc9dd 6355 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
6356 new_field->accessibility = DW_ACCESS_private;
6357 fip->non_public_fields = 1;
6358 }
6359 }
a9a9bd0f 6360 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 6361 {
a9a9bd0f
DC
6362 /* C++ static member. */
6363
6364 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6365 is a declaration, but all versions of G++ as of this writing
6366 (so through at least 3.2.1) incorrectly generate
6367 DW_TAG_variable tags. */
6e70227d 6368
c906108c 6369 char *physname;
c906108c 6370
a9a9bd0f 6371 /* Get name of field. */
39cbfefa
DJ
6372 fieldname = dwarf2_name (die, cu);
6373 if (fieldname == NULL)
c906108c
SS
6374 return;
6375
254e6b9e 6376 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
6377 if (attr
6378 /* Only create a symbol if this is an external value.
6379 new_symbol checks this and puts the value in the global symbol
6380 table, which we want. If it is not external, new_symbol
6381 will try to put the value in cu->list_in_scope which is wrong. */
6382 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
6383 {
6384 /* A static const member, not much different than an enum as far as
6385 we're concerned, except that we can support more types. */
6386 new_symbol (die, NULL, cu);
6387 }
6388
2df3850c 6389 /* Get physical name. */
94af9270 6390 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c 6391
d8151005
DJ
6392 /* The name is already allocated along with this objfile, so we don't
6393 need to duplicate it for the type. */
6394 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 6395 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 6396 FIELD_NAME (*fp) = fieldname;
c906108c
SS
6397 }
6398 else if (die->tag == DW_TAG_inheritance)
6399 {
6400 /* C++ base class field. */
e142c38c 6401 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 6402 if (attr)
d4b96c9a
JK
6403 {
6404 int byte_offset = 0;
6405
6406 if (attr_form_is_section_offset (attr))
6407 dwarf2_complex_location_expr_complaint ();
6408 else if (attr_form_is_constant (attr))
6409 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6410 else if (attr_form_is_block (attr))
6411 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6412 else
6413 dwarf2_complex_location_expr_complaint ();
6414
6415 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6416 }
c906108c 6417 FIELD_BITSIZE (*fp) = 0;
e7c27a73 6418 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
6419 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6420 fip->nbaseclasses++;
6421 }
6422}
6423
98751a41
JK
6424/* Add a typedef defined in the scope of the FIP's class. */
6425
6426static void
6427dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6428 struct dwarf2_cu *cu)
6e70227d 6429{
98751a41 6430 struct objfile *objfile = cu->objfile;
98751a41
JK
6431 struct typedef_field_list *new_field;
6432 struct attribute *attr;
6433 struct typedef_field *fp;
6434 char *fieldname = "";
6435
6436 /* Allocate a new field list entry and link it in. */
6437 new_field = xzalloc (sizeof (*new_field));
6438 make_cleanup (xfree, new_field);
6439
6440 gdb_assert (die->tag == DW_TAG_typedef);
6441
6442 fp = &new_field->field;
6443
6444 /* Get name of field. */
6445 fp->name = dwarf2_name (die, cu);
6446 if (fp->name == NULL)
6447 return;
6448
6449 fp->type = read_type_die (die, cu);
6450
6451 new_field->next = fip->typedef_field_list;
6452 fip->typedef_field_list = new_field;
6453 fip->typedef_field_list_count++;
6454}
6455
c906108c
SS
6456/* Create the vector of fields, and attach it to the type. */
6457
6458static void
fba45db2 6459dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6460 struct dwarf2_cu *cu)
c906108c
SS
6461{
6462 int nfields = fip->nfields;
6463
6464 /* Record the field count, allocate space for the array of fields,
6465 and create blank accessibility bitfields if necessary. */
6466 TYPE_NFIELDS (type) = nfields;
6467 TYPE_FIELDS (type) = (struct field *)
6468 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6469 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6470
b4ba55a1 6471 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
6472 {
6473 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6474
6475 TYPE_FIELD_PRIVATE_BITS (type) =
6476 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6477 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6478
6479 TYPE_FIELD_PROTECTED_BITS (type) =
6480 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6481 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6482
774b6a14
TT
6483 TYPE_FIELD_IGNORE_BITS (type) =
6484 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6485 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
6486 }
6487
6488 /* If the type has baseclasses, allocate and clear a bit vector for
6489 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 6490 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
6491 {
6492 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 6493 unsigned char *pointer;
c906108c
SS
6494
6495 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
6496 pointer = TYPE_ALLOC (type, num_bytes);
6497 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
6498 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6499 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6500 }
6501
3e43a32a
MS
6502 /* Copy the saved-up fields into the field vector. Start from the head of
6503 the list, adding to the tail of the field array, so that they end up in
6504 the same order in the array in which they were added to the list. */
c906108c
SS
6505 while (nfields-- > 0)
6506 {
7d0ccb61
DJ
6507 struct nextfield *fieldp;
6508
6509 if (fip->fields)
6510 {
6511 fieldp = fip->fields;
6512 fip->fields = fieldp->next;
6513 }
6514 else
6515 {
6516 fieldp = fip->baseclasses;
6517 fip->baseclasses = fieldp->next;
6518 }
6519
6520 TYPE_FIELD (type, nfields) = fieldp->field;
6521 switch (fieldp->accessibility)
c906108c 6522 {
c5aa993b 6523 case DW_ACCESS_private:
b4ba55a1
JB
6524 if (cu->language != language_ada)
6525 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 6526 break;
c906108c 6527
c5aa993b 6528 case DW_ACCESS_protected:
b4ba55a1
JB
6529 if (cu->language != language_ada)
6530 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 6531 break;
c906108c 6532
c5aa993b
JM
6533 case DW_ACCESS_public:
6534 break;
c906108c 6535
c5aa993b
JM
6536 default:
6537 /* Unknown accessibility. Complain and treat it as public. */
6538 {
e2e0b3e5 6539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 6540 fieldp->accessibility);
c5aa993b
JM
6541 }
6542 break;
c906108c
SS
6543 }
6544 if (nfields < fip->nbaseclasses)
6545 {
7d0ccb61 6546 switch (fieldp->virtuality)
c906108c 6547 {
c5aa993b
JM
6548 case DW_VIRTUALITY_virtual:
6549 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 6550 if (cu->language == language_ada)
a73c6dcd 6551 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
6552 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6553 break;
c906108c
SS
6554 }
6555 }
c906108c
SS
6556 }
6557}
6558
c906108c
SS
6559/* Add a member function to the proper fieldlist. */
6560
6561static void
107d2387 6562dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 6563 struct type *type, struct dwarf2_cu *cu)
c906108c 6564{
e7c27a73 6565 struct objfile *objfile = cu->objfile;
c906108c
SS
6566 struct attribute *attr;
6567 struct fnfieldlist *flp;
6568 int i;
6569 struct fn_field *fnp;
6570 char *fieldname;
c906108c 6571 struct nextfnfield *new_fnfield;
f792889a 6572 struct type *this_type;
c906108c 6573
b4ba55a1 6574 if (cu->language == language_ada)
a73c6dcd 6575 error (_("unexpected member function in Ada type"));
b4ba55a1 6576
2df3850c 6577 /* Get name of member function. */
39cbfefa
DJ
6578 fieldname = dwarf2_name (die, cu);
6579 if (fieldname == NULL)
2df3850c 6580 return;
c906108c 6581
c906108c
SS
6582 /* Look up member function name in fieldlist. */
6583 for (i = 0; i < fip->nfnfields; i++)
6584 {
27bfe10e 6585 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
6586 break;
6587 }
6588
6589 /* Create new list element if necessary. */
6590 if (i < fip->nfnfields)
6591 flp = &fip->fnfieldlists[i];
6592 else
6593 {
6594 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6595 {
6596 fip->fnfieldlists = (struct fnfieldlist *)
6597 xrealloc (fip->fnfieldlists,
6598 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 6599 * sizeof (struct fnfieldlist));
c906108c 6600 if (fip->nfnfields == 0)
c13c43fd 6601 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
6602 }
6603 flp = &fip->fnfieldlists[fip->nfnfields];
6604 flp->name = fieldname;
6605 flp->length = 0;
6606 flp->head = NULL;
3da10d80 6607 i = fip->nfnfields++;
c906108c
SS
6608 }
6609
6610 /* Create a new member function field and chain it to the field list
0963b4bd 6611 entry. */
c906108c 6612 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 6613 make_cleanup (xfree, new_fnfield);
c906108c
SS
6614 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6615 new_fnfield->next = flp->head;
6616 flp->head = new_fnfield;
6617 flp->length++;
6618
6619 /* Fill in the member function field info. */
6620 fnp = &new_fnfield->fnfield;
3da10d80
KS
6621
6622 /* Delay processing of the physname until later. */
6623 if (cu->language == language_cplus || cu->language == language_java)
6624 {
6625 add_to_method_list (type, i, flp->length - 1, fieldname,
6626 die, cu);
6627 }
6628 else
6629 {
6630 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6631 fnp->physname = physname ? physname : "";
6632 }
6633
c906108c 6634 fnp->type = alloc_type (objfile);
f792889a
DJ
6635 this_type = read_type_die (die, cu);
6636 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 6637 {
f792889a 6638 int nparams = TYPE_NFIELDS (this_type);
c906108c 6639
f792889a 6640 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
6641 of the method itself (TYPE_CODE_METHOD). */
6642 smash_to_method_type (fnp->type, type,
f792889a
DJ
6643 TYPE_TARGET_TYPE (this_type),
6644 TYPE_FIELDS (this_type),
6645 TYPE_NFIELDS (this_type),
6646 TYPE_VARARGS (this_type));
c906108c
SS
6647
6648 /* Handle static member functions.
c5aa993b 6649 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
6650 member functions. G++ helps GDB by marking the first
6651 parameter for non-static member functions (which is the this
6652 pointer) as artificial. We obtain this information from
6653 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 6654 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
6655 fnp->voffset = VOFFSET_STATIC;
6656 }
6657 else
e2e0b3e5 6658 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 6659 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
6660
6661 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 6662 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 6663 fnp->fcontext = die_containing_type (die, cu);
c906108c 6664
3e43a32a
MS
6665 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
6666 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
6667
6668 /* Get accessibility. */
e142c38c 6669 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6670 if (attr)
6671 {
6672 switch (DW_UNSND (attr))
6673 {
c5aa993b
JM
6674 case DW_ACCESS_private:
6675 fnp->is_private = 1;
6676 break;
6677 case DW_ACCESS_protected:
6678 fnp->is_protected = 1;
6679 break;
c906108c
SS
6680 }
6681 }
6682
b02dede2 6683 /* Check for artificial methods. */
e142c38c 6684 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
6685 if (attr && DW_UNSND (attr) != 0)
6686 fnp->is_artificial = 1;
6687
0d564a31 6688 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
6689 function. For older versions of GCC, this is an offset in the
6690 appropriate virtual table, as specified by DW_AT_containing_type.
6691 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
6692 to the object address. */
6693
e142c38c 6694 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 6695 if (attr)
8e19ed76 6696 {
aec5aa8b 6697 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 6698 {
aec5aa8b
TT
6699 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6700 {
6701 /* Old-style GCC. */
6702 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6703 }
6704 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6705 || (DW_BLOCK (attr)->size > 1
6706 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6707 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6708 {
6709 struct dwarf_block blk;
6710 int offset;
6711
6712 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6713 ? 1 : 2);
6714 blk.size = DW_BLOCK (attr)->size - offset;
6715 blk.data = DW_BLOCK (attr)->data + offset;
6716 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6717 if ((fnp->voffset % cu->header.addr_size) != 0)
6718 dwarf2_complex_location_expr_complaint ();
6719 else
6720 fnp->voffset /= cu->header.addr_size;
6721 fnp->voffset += 2;
6722 }
6723 else
6724 dwarf2_complex_location_expr_complaint ();
6725
6726 if (!fnp->fcontext)
6727 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6728 }
3690dd37 6729 else if (attr_form_is_section_offset (attr))
8e19ed76 6730 {
4d3c2250 6731 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
6732 }
6733 else
6734 {
4d3c2250
KB
6735 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6736 fieldname);
8e19ed76 6737 }
0d564a31 6738 }
d48cc9dd
DJ
6739 else
6740 {
6741 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6742 if (attr && DW_UNSND (attr))
6743 {
6744 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6745 complaint (&symfile_complaints,
3e43a32a
MS
6746 _("Member function \"%s\" (offset %d) is virtual "
6747 "but the vtable offset is not specified"),
d48cc9dd 6748 fieldname, die->offset);
9655fd1a 6749 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
6750 TYPE_CPLUS_DYNAMIC (type) = 1;
6751 }
6752 }
c906108c
SS
6753}
6754
6755/* Create the vector of member function fields, and attach it to the type. */
6756
6757static void
fba45db2 6758dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6759 struct dwarf2_cu *cu)
c906108c
SS
6760{
6761 struct fnfieldlist *flp;
6762 int total_length = 0;
6763 int i;
6764
b4ba55a1 6765 if (cu->language == language_ada)
a73c6dcd 6766 error (_("unexpected member functions in Ada type"));
b4ba55a1 6767
c906108c
SS
6768 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6769 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6770 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6771
6772 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6773 {
6774 struct nextfnfield *nfp = flp->head;
6775 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6776 int k;
6777
6778 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6779 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6780 fn_flp->fn_fields = (struct fn_field *)
6781 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6782 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 6783 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
6784
6785 total_length += flp->length;
6786 }
6787
6788 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6789 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6790}
6791
1168df01
JB
6792/* Returns non-zero if NAME is the name of a vtable member in CU's
6793 language, zero otherwise. */
6794static int
6795is_vtable_name (const char *name, struct dwarf2_cu *cu)
6796{
6797 static const char vptr[] = "_vptr";
987504bb 6798 static const char vtable[] = "vtable";
1168df01 6799
987504bb
JJ
6800 /* Look for the C++ and Java forms of the vtable. */
6801 if ((cu->language == language_java
6802 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6803 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6804 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
6805 return 1;
6806
6807 return 0;
6808}
6809
c0dd20ea 6810/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
6811 functions, with the ABI-specified layout. If TYPE describes
6812 such a structure, smash it into a member function type.
61049d3b
DJ
6813
6814 GCC shouldn't do this; it should just output pointer to member DIEs.
6815 This is GCC PR debug/28767. */
c0dd20ea 6816
0b92b5bb
TT
6817static void
6818quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 6819{
0b92b5bb 6820 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
6821
6822 /* Check for a structure with no name and two children. */
0b92b5bb
TT
6823 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6824 return;
c0dd20ea
DJ
6825
6826 /* Check for __pfn and __delta members. */
0b92b5bb
TT
6827 if (TYPE_FIELD_NAME (type, 0) == NULL
6828 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6829 || TYPE_FIELD_NAME (type, 1) == NULL
6830 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6831 return;
c0dd20ea
DJ
6832
6833 /* Find the type of the method. */
0b92b5bb 6834 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
6835 if (pfn_type == NULL
6836 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6837 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 6838 return;
c0dd20ea
DJ
6839
6840 /* Look for the "this" argument. */
6841 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6842 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 6843 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 6844 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 6845 return;
c0dd20ea
DJ
6846
6847 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
6848 new_type = alloc_type (objfile);
6849 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
6850 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6851 TYPE_VARARGS (pfn_type));
0b92b5bb 6852 smash_to_methodptr_type (type, new_type);
c0dd20ea 6853}
1168df01 6854
c906108c 6855/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
6856 (definition) to create a type for the structure or union. Fill in
6857 the type's name and general properties; the members will not be
6858 processed until process_structure_type.
c906108c 6859
c767944b
DJ
6860 NOTE: we need to call these functions regardless of whether or not the
6861 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
6862 structure or union. This gets the type entered into our set of
6863 user defined types.
6864
6865 However, if the structure is incomplete (an opaque struct/union)
6866 then suppress creating a symbol table entry for it since gdb only
6867 wants to find the one with the complete definition. Note that if
6868 it is complete, we just call new_symbol, which does it's own
6869 checking about whether the struct/union is anonymous or not (and
6870 suppresses creating a symbol table entry itself). */
6871
f792889a 6872static struct type *
134d01f1 6873read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6874{
e7c27a73 6875 struct objfile *objfile = cu->objfile;
c906108c
SS
6876 struct type *type;
6877 struct attribute *attr;
39cbfefa 6878 char *name;
c906108c 6879
348e048f
DE
6880 /* If the definition of this type lives in .debug_types, read that type.
6881 Don't follow DW_AT_specification though, that will take us back up
6882 the chain and we want to go down. */
6883 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6884 if (attr)
6885 {
6886 struct dwarf2_cu *type_cu = cu;
6887 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 6888
348e048f
DE
6889 /* We could just recurse on read_structure_type, but we need to call
6890 get_die_type to ensure only one type for this DIE is created.
6891 This is important, for example, because for c++ classes we need
6892 TYPE_NAME set which is only done by new_symbol. Blech. */
6893 type = read_type_die (type_die, type_cu);
9dc481d3
DE
6894
6895 /* TYPE_CU may not be the same as CU.
6896 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
6897 return set_die_type (die, type, cu);
6898 }
6899
c0dd20ea 6900 type = alloc_type (objfile);
c906108c 6901 INIT_CPLUS_SPECIFIC (type);
93311388 6902
39cbfefa
DJ
6903 name = dwarf2_name (die, cu);
6904 if (name != NULL)
c906108c 6905 {
987504bb
JJ
6906 if (cu->language == language_cplus
6907 || cu->language == language_java)
63d06c5c 6908 {
3da10d80
KS
6909 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6910
6911 /* dwarf2_full_name might have already finished building the DIE's
6912 type. If so, there is no need to continue. */
6913 if (get_die_type (die, cu) != NULL)
6914 return get_die_type (die, cu);
6915
6916 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
6917 if (die->tag == DW_TAG_structure_type
6918 || die->tag == DW_TAG_class_type)
6919 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
6920 }
6921 else
6922 {
d8151005
DJ
6923 /* The name is already allocated along with this objfile, so
6924 we don't need to duplicate it for the type. */
94af9270
KS
6925 TYPE_TAG_NAME (type) = (char *) name;
6926 if (die->tag == DW_TAG_class_type)
6927 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 6928 }
c906108c
SS
6929 }
6930
6931 if (die->tag == DW_TAG_structure_type)
6932 {
6933 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6934 }
6935 else if (die->tag == DW_TAG_union_type)
6936 {
6937 TYPE_CODE (type) = TYPE_CODE_UNION;
6938 }
6939 else
6940 {
c906108c
SS
6941 TYPE_CODE (type) = TYPE_CODE_CLASS;
6942 }
6943
0cc2414c
TT
6944 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6945 TYPE_DECLARED_CLASS (type) = 1;
6946
e142c38c 6947 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6948 if (attr)
6949 {
6950 TYPE_LENGTH (type) = DW_UNSND (attr);
6951 }
6952 else
6953 {
6954 TYPE_LENGTH (type) = 0;
6955 }
6956
876cecd0 6957 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 6958 if (die_is_declaration (die, cu))
876cecd0 6959 TYPE_STUB (type) = 1;
a6c727b2
DJ
6960 else if (attr == NULL && die->child == NULL
6961 && producer_is_realview (cu->producer))
6962 /* RealView does not output the required DW_AT_declaration
6963 on incomplete types. */
6964 TYPE_STUB (type) = 1;
dc718098 6965
c906108c
SS
6966 /* We need to add the type field to the die immediately so we don't
6967 infinitely recurse when dealing with pointers to the structure
0963b4bd 6968 type within the structure itself. */
1c379e20 6969 set_die_type (die, type, cu);
c906108c 6970
7e314c57
JK
6971 /* set_die_type should be already done. */
6972 set_descriptive_type (type, die, cu);
6973
c767944b
DJ
6974 return type;
6975}
6976
6977/* Finish creating a structure or union type, including filling in
6978 its members and creating a symbol for it. */
6979
6980static void
6981process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6982{
6983 struct objfile *objfile = cu->objfile;
6984 struct die_info *child_die = die->child;
6985 struct type *type;
6986
6987 type = get_die_type (die, cu);
6988 if (type == NULL)
6989 type = read_structure_type (die, cu);
6990
e142c38c 6991 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
6992 {
6993 struct field_info fi;
6994 struct die_info *child_die;
34eaf542 6995 VEC (symbolp) *template_args = NULL;
c767944b 6996 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
6997
6998 memset (&fi, 0, sizeof (struct field_info));
6999
639d11d3 7000 child_die = die->child;
c906108c
SS
7001
7002 while (child_die && child_die->tag)
7003 {
a9a9bd0f
DC
7004 if (child_die->tag == DW_TAG_member
7005 || child_die->tag == DW_TAG_variable)
c906108c 7006 {
a9a9bd0f
DC
7007 /* NOTE: carlton/2002-11-05: A C++ static data member
7008 should be a DW_TAG_member that is a declaration, but
7009 all versions of G++ as of this writing (so through at
7010 least 3.2.1) incorrectly generate DW_TAG_variable
7011 tags for them instead. */
e7c27a73 7012 dwarf2_add_field (&fi, child_die, cu);
c906108c 7013 }
8713b1b1 7014 else if (child_die->tag == DW_TAG_subprogram)
c906108c 7015 {
0963b4bd 7016 /* C++ member function. */
e7c27a73 7017 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
7018 }
7019 else if (child_die->tag == DW_TAG_inheritance)
7020 {
7021 /* C++ base class field. */
e7c27a73 7022 dwarf2_add_field (&fi, child_die, cu);
c906108c 7023 }
98751a41
JK
7024 else if (child_die->tag == DW_TAG_typedef)
7025 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
7026 else if (child_die->tag == DW_TAG_template_type_param
7027 || child_die->tag == DW_TAG_template_value_param)
7028 {
7029 struct symbol *arg = new_symbol (child_die, NULL, cu);
7030
f1078f66
DJ
7031 if (arg != NULL)
7032 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
7033 }
7034
c906108c
SS
7035 child_die = sibling_die (child_die);
7036 }
7037
34eaf542
TT
7038 /* Attach template arguments to type. */
7039 if (! VEC_empty (symbolp, template_args))
7040 {
7041 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7042 TYPE_N_TEMPLATE_ARGUMENTS (type)
7043 = VEC_length (symbolp, template_args);
7044 TYPE_TEMPLATE_ARGUMENTS (type)
7045 = obstack_alloc (&objfile->objfile_obstack,
7046 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7047 * sizeof (struct symbol *)));
7048 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7049 VEC_address (symbolp, template_args),
7050 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7051 * sizeof (struct symbol *)));
7052 VEC_free (symbolp, template_args);
7053 }
7054
c906108c
SS
7055 /* Attach fields and member functions to the type. */
7056 if (fi.nfields)
e7c27a73 7057 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
7058 if (fi.nfnfields)
7059 {
e7c27a73 7060 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 7061
c5aa993b 7062 /* Get the type which refers to the base class (possibly this
c906108c 7063 class itself) which contains the vtable pointer for the current
0d564a31
DJ
7064 class from the DW_AT_containing_type attribute. This use of
7065 DW_AT_containing_type is a GNU extension. */
c906108c 7066
e142c38c 7067 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 7068 {
e7c27a73 7069 struct type *t = die_containing_type (die, cu);
c906108c
SS
7070
7071 TYPE_VPTR_BASETYPE (type) = t;
7072 if (type == t)
7073 {
c906108c
SS
7074 int i;
7075
7076 /* Our own class provides vtbl ptr. */
7077 for (i = TYPE_NFIELDS (t) - 1;
7078 i >= TYPE_N_BASECLASSES (t);
7079 --i)
7080 {
7081 char *fieldname = TYPE_FIELD_NAME (t, i);
7082
1168df01 7083 if (is_vtable_name (fieldname, cu))
c906108c
SS
7084 {
7085 TYPE_VPTR_FIELDNO (type) = i;
7086 break;
7087 }
7088 }
7089
7090 /* Complain if virtual function table field not found. */
7091 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 7092 complaint (&symfile_complaints,
3e43a32a
MS
7093 _("virtual function table pointer "
7094 "not found when defining class '%s'"),
4d3c2250
KB
7095 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7096 "");
c906108c
SS
7097 }
7098 else
7099 {
7100 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7101 }
7102 }
f6235d4c
EZ
7103 else if (cu->producer
7104 && strncmp (cu->producer,
7105 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7106 {
7107 /* The IBM XLC compiler does not provide direct indication
7108 of the containing type, but the vtable pointer is
7109 always named __vfp. */
7110
7111 int i;
7112
7113 for (i = TYPE_NFIELDS (type) - 1;
7114 i >= TYPE_N_BASECLASSES (type);
7115 --i)
7116 {
7117 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7118 {
7119 TYPE_VPTR_FIELDNO (type) = i;
7120 TYPE_VPTR_BASETYPE (type) = type;
7121 break;
7122 }
7123 }
7124 }
c906108c 7125 }
98751a41
JK
7126
7127 /* Copy fi.typedef_field_list linked list elements content into the
7128 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7129 if (fi.typedef_field_list)
7130 {
7131 int i = fi.typedef_field_list_count;
7132
a0d7a4ff 7133 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
7134 TYPE_TYPEDEF_FIELD_ARRAY (type)
7135 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7136 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7137
7138 /* Reverse the list order to keep the debug info elements order. */
7139 while (--i >= 0)
7140 {
7141 struct typedef_field *dest, *src;
6e70227d 7142
98751a41
JK
7143 dest = &TYPE_TYPEDEF_FIELD (type, i);
7144 src = &fi.typedef_field_list->field;
7145 fi.typedef_field_list = fi.typedef_field_list->next;
7146 *dest = *src;
7147 }
7148 }
c767944b
DJ
7149
7150 do_cleanups (back_to);
c906108c 7151 }
63d06c5c 7152
0b92b5bb
TT
7153 quirk_gcc_member_function_pointer (type, cu->objfile);
7154
90aeadfc
DC
7155 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7156 snapshots) has been known to create a die giving a declaration
7157 for a class that has, as a child, a die giving a definition for a
7158 nested class. So we have to process our children even if the
7159 current die is a declaration. Normally, of course, a declaration
7160 won't have any children at all. */
134d01f1 7161
90aeadfc
DC
7162 while (child_die != NULL && child_die->tag)
7163 {
7164 if (child_die->tag == DW_TAG_member
7165 || child_die->tag == DW_TAG_variable
34eaf542
TT
7166 || child_die->tag == DW_TAG_inheritance
7167 || child_die->tag == DW_TAG_template_value_param
7168 || child_die->tag == DW_TAG_template_type_param)
134d01f1 7169 {
90aeadfc 7170 /* Do nothing. */
134d01f1 7171 }
90aeadfc
DC
7172 else
7173 process_die (child_die, cu);
134d01f1 7174
90aeadfc 7175 child_die = sibling_die (child_die);
134d01f1
DJ
7176 }
7177
fa4028e9
JB
7178 /* Do not consider external references. According to the DWARF standard,
7179 these DIEs are identified by the fact that they have no byte_size
7180 attribute, and a declaration attribute. */
7181 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7182 || !die_is_declaration (die, cu))
c767944b 7183 new_symbol (die, type, cu);
134d01f1
DJ
7184}
7185
7186/* Given a DW_AT_enumeration_type die, set its type. We do not
7187 complete the type's fields yet, or create any symbols. */
c906108c 7188
f792889a 7189static struct type *
134d01f1 7190read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7191{
e7c27a73 7192 struct objfile *objfile = cu->objfile;
c906108c 7193 struct type *type;
c906108c 7194 struct attribute *attr;
0114d602 7195 const char *name;
134d01f1 7196
348e048f
DE
7197 /* If the definition of this type lives in .debug_types, read that type.
7198 Don't follow DW_AT_specification though, that will take us back up
7199 the chain and we want to go down. */
7200 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7201 if (attr)
7202 {
7203 struct dwarf2_cu *type_cu = cu;
7204 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 7205
348e048f 7206 type = read_type_die (type_die, type_cu);
9dc481d3
DE
7207
7208 /* TYPE_CU may not be the same as CU.
7209 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
7210 return set_die_type (die, type, cu);
7211 }
7212
c906108c
SS
7213 type = alloc_type (objfile);
7214
7215 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 7216 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 7217 if (name != NULL)
0114d602 7218 TYPE_TAG_NAME (type) = (char *) name;
c906108c 7219
e142c38c 7220 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7221 if (attr)
7222 {
7223 TYPE_LENGTH (type) = DW_UNSND (attr);
7224 }
7225 else
7226 {
7227 TYPE_LENGTH (type) = 0;
7228 }
7229
137033e9
JB
7230 /* The enumeration DIE can be incomplete. In Ada, any type can be
7231 declared as private in the package spec, and then defined only
7232 inside the package body. Such types are known as Taft Amendment
7233 Types. When another package uses such a type, an incomplete DIE
7234 may be generated by the compiler. */
02eb380e 7235 if (die_is_declaration (die, cu))
876cecd0 7236 TYPE_STUB (type) = 1;
02eb380e 7237
f792889a 7238 return set_die_type (die, type, cu);
134d01f1
DJ
7239}
7240
7241/* Given a pointer to a die which begins an enumeration, process all
7242 the dies that define the members of the enumeration, and create the
7243 symbol for the enumeration type.
7244
7245 NOTE: We reverse the order of the element list. */
7246
7247static void
7248process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7249{
f792889a 7250 struct type *this_type;
134d01f1 7251
f792889a
DJ
7252 this_type = get_die_type (die, cu);
7253 if (this_type == NULL)
7254 this_type = read_enumeration_type (die, cu);
9dc481d3 7255
639d11d3 7256 if (die->child != NULL)
c906108c 7257 {
9dc481d3
DE
7258 struct die_info *child_die;
7259 struct symbol *sym;
7260 struct field *fields = NULL;
7261 int num_fields = 0;
7262 int unsigned_enum = 1;
7263 char *name;
7264
639d11d3 7265 child_die = die->child;
c906108c
SS
7266 while (child_die && child_die->tag)
7267 {
7268 if (child_die->tag != DW_TAG_enumerator)
7269 {
e7c27a73 7270 process_die (child_die, cu);
c906108c
SS
7271 }
7272 else
7273 {
39cbfefa
DJ
7274 name = dwarf2_name (child_die, cu);
7275 if (name)
c906108c 7276 {
f792889a 7277 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
7278 if (SYMBOL_VALUE (sym) < 0)
7279 unsigned_enum = 0;
7280
7281 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7282 {
7283 fields = (struct field *)
7284 xrealloc (fields,
7285 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 7286 * sizeof (struct field));
c906108c
SS
7287 }
7288
3567439c 7289 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 7290 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 7291 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
7292 FIELD_BITSIZE (fields[num_fields]) = 0;
7293
7294 num_fields++;
7295 }
7296 }
7297
7298 child_die = sibling_die (child_die);
7299 }
7300
7301 if (num_fields)
7302 {
f792889a
DJ
7303 TYPE_NFIELDS (this_type) = num_fields;
7304 TYPE_FIELDS (this_type) = (struct field *)
7305 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7306 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 7307 sizeof (struct field) * num_fields);
b8c9b27d 7308 xfree (fields);
c906108c
SS
7309 }
7310 if (unsigned_enum)
876cecd0 7311 TYPE_UNSIGNED (this_type) = 1;
c906108c 7312 }
134d01f1 7313
f792889a 7314 new_symbol (die, this_type, cu);
c906108c
SS
7315}
7316
7317/* Extract all information from a DW_TAG_array_type DIE and put it in
7318 the DIE's type field. For now, this only handles one dimensional
7319 arrays. */
7320
f792889a 7321static struct type *
e7c27a73 7322read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7323{
e7c27a73 7324 struct objfile *objfile = cu->objfile;
c906108c 7325 struct die_info *child_die;
7e314c57 7326 struct type *type;
c906108c
SS
7327 struct type *element_type, *range_type, *index_type;
7328 struct type **range_types = NULL;
7329 struct attribute *attr;
7330 int ndim = 0;
7331 struct cleanup *back_to;
39cbfefa 7332 char *name;
c906108c 7333
e7c27a73 7334 element_type = die_type (die, cu);
c906108c 7335
7e314c57
JK
7336 /* The die_type call above may have already set the type for this DIE. */
7337 type = get_die_type (die, cu);
7338 if (type)
7339 return type;
7340
c906108c
SS
7341 /* Irix 6.2 native cc creates array types without children for
7342 arrays with unspecified length. */
639d11d3 7343 if (die->child == NULL)
c906108c 7344 {
46bf5051 7345 index_type = objfile_type (objfile)->builtin_int;
c906108c 7346 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
7347 type = create_array_type (NULL, element_type, range_type);
7348 return set_die_type (die, type, cu);
c906108c
SS
7349 }
7350
7351 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 7352 child_die = die->child;
c906108c
SS
7353 while (child_die && child_die->tag)
7354 {
7355 if (child_die->tag == DW_TAG_subrange_type)
7356 {
f792889a 7357 struct type *child_type = read_type_die (child_die, cu);
9a619af0 7358
f792889a 7359 if (child_type != NULL)
a02abb62 7360 {
0963b4bd
MS
7361 /* The range type was succesfully read. Save it for the
7362 array type creation. */
a02abb62
JB
7363 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7364 {
7365 range_types = (struct type **)
7366 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7367 * sizeof (struct type *));
7368 if (ndim == 0)
7369 make_cleanup (free_current_contents, &range_types);
7370 }
f792889a 7371 range_types[ndim++] = child_type;
a02abb62 7372 }
c906108c
SS
7373 }
7374 child_die = sibling_die (child_die);
7375 }
7376
7377 /* Dwarf2 dimensions are output from left to right, create the
7378 necessary array types in backwards order. */
7ca2d3a3 7379
c906108c 7380 type = element_type;
7ca2d3a3
DL
7381
7382 if (read_array_order (die, cu) == DW_ORD_col_major)
7383 {
7384 int i = 0;
9a619af0 7385
7ca2d3a3
DL
7386 while (i < ndim)
7387 type = create_array_type (NULL, type, range_types[i++]);
7388 }
7389 else
7390 {
7391 while (ndim-- > 0)
7392 type = create_array_type (NULL, type, range_types[ndim]);
7393 }
c906108c 7394
f5f8a009
EZ
7395 /* Understand Dwarf2 support for vector types (like they occur on
7396 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7397 array type. This is not part of the Dwarf2/3 standard yet, but a
7398 custom vendor extension. The main difference between a regular
7399 array and the vector variant is that vectors are passed by value
7400 to functions. */
e142c38c 7401 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 7402 if (attr)
ea37ba09 7403 make_vector_type (type);
f5f8a009 7404
dbc98a8b
KW
7405 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7406 implementation may choose to implement triple vectors using this
7407 attribute. */
7408 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7409 if (attr)
7410 {
7411 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7412 TYPE_LENGTH (type) = DW_UNSND (attr);
7413 else
3e43a32a
MS
7414 complaint (&symfile_complaints,
7415 _("DW_AT_byte_size for array type smaller "
7416 "than the total size of elements"));
dbc98a8b
KW
7417 }
7418
39cbfefa
DJ
7419 name = dwarf2_name (die, cu);
7420 if (name)
7421 TYPE_NAME (type) = name;
6e70227d 7422
0963b4bd 7423 /* Install the type in the die. */
7e314c57
JK
7424 set_die_type (die, type, cu);
7425
7426 /* set_die_type should be already done. */
b4ba55a1
JB
7427 set_descriptive_type (type, die, cu);
7428
c906108c
SS
7429 do_cleanups (back_to);
7430
7e314c57 7431 return type;
c906108c
SS
7432}
7433
7ca2d3a3 7434static enum dwarf_array_dim_ordering
6e70227d 7435read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
7436{
7437 struct attribute *attr;
7438
7439 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7440
7441 if (attr) return DW_SND (attr);
7442
0963b4bd
MS
7443 /* GNU F77 is a special case, as at 08/2004 array type info is the
7444 opposite order to the dwarf2 specification, but data is still
7445 laid out as per normal fortran.
7ca2d3a3 7446
0963b4bd
MS
7447 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7448 version checking. */
7ca2d3a3 7449
905e0470
PM
7450 if (cu->language == language_fortran
7451 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
7452 {
7453 return DW_ORD_row_major;
7454 }
7455
6e70227d 7456 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
7457 {
7458 case array_column_major:
7459 return DW_ORD_col_major;
7460 case array_row_major:
7461 default:
7462 return DW_ORD_row_major;
7463 };
7464}
7465
72019c9c 7466/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 7467 the DIE's type field. */
72019c9c 7468
f792889a 7469static struct type *
72019c9c
GM
7470read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7471{
7e314c57
JK
7472 struct type *domain_type, *set_type;
7473 struct attribute *attr;
f792889a 7474
7e314c57
JK
7475 domain_type = die_type (die, cu);
7476
7477 /* The die_type call above may have already set the type for this DIE. */
7478 set_type = get_die_type (die, cu);
7479 if (set_type)
7480 return set_type;
7481
7482 set_type = create_set_type (NULL, domain_type);
7483
7484 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
7485 if (attr)
7486 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 7487
f792889a 7488 return set_die_type (die, set_type, cu);
72019c9c 7489}
7ca2d3a3 7490
c906108c
SS
7491/* First cut: install each common block member as a global variable. */
7492
7493static void
e7c27a73 7494read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7495{
7496 struct die_info *child_die;
7497 struct attribute *attr;
7498 struct symbol *sym;
7499 CORE_ADDR base = (CORE_ADDR) 0;
7500
e142c38c 7501 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7502 if (attr)
7503 {
0963b4bd 7504 /* Support the .debug_loc offsets. */
8e19ed76
PS
7505 if (attr_form_is_block (attr))
7506 {
e7c27a73 7507 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 7508 }
3690dd37 7509 else if (attr_form_is_section_offset (attr))
8e19ed76 7510 {
4d3c2250 7511 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
7512 }
7513 else
7514 {
4d3c2250
KB
7515 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7516 "common block member");
8e19ed76 7517 }
c906108c 7518 }
639d11d3 7519 if (die->child != NULL)
c906108c 7520 {
639d11d3 7521 child_die = die->child;
c906108c
SS
7522 while (child_die && child_die->tag)
7523 {
e7c27a73 7524 sym = new_symbol (child_die, NULL, cu);
e142c38c 7525 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
f1078f66 7526 if (sym != NULL && attr != NULL)
c906108c 7527 {
d4b96c9a
JK
7528 CORE_ADDR byte_offset = 0;
7529
7530 if (attr_form_is_section_offset (attr))
7531 dwarf2_complex_location_expr_complaint ();
7532 else if (attr_form_is_constant (attr))
7533 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7534 else if (attr_form_is_block (attr))
7535 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7536 else
7537 dwarf2_complex_location_expr_complaint ();
7538
7539 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
c906108c
SS
7540 add_symbol_to_list (sym, &global_symbols);
7541 }
7542 child_die = sibling_die (child_die);
7543 }
7544 }
7545}
7546
0114d602 7547/* Create a type for a C++ namespace. */
d9fa45fe 7548
0114d602
DJ
7549static struct type *
7550read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 7551{
e7c27a73 7552 struct objfile *objfile = cu->objfile;
0114d602 7553 const char *previous_prefix, *name;
9219021c 7554 int is_anonymous;
0114d602
DJ
7555 struct type *type;
7556
7557 /* For extensions, reuse the type of the original namespace. */
7558 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7559 {
7560 struct die_info *ext_die;
7561 struct dwarf2_cu *ext_cu = cu;
9a619af0 7562
0114d602
DJ
7563 ext_die = dwarf2_extension (die, &ext_cu);
7564 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
7565
7566 /* EXT_CU may not be the same as CU.
7567 Ensure TYPE is recorded in CU's type_hash table. */
0114d602
DJ
7568 return set_die_type (die, type, cu);
7569 }
9219021c 7570
e142c38c 7571 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
7572
7573 /* Now build the name of the current namespace. */
7574
0114d602
DJ
7575 previous_prefix = determine_prefix (die, cu);
7576 if (previous_prefix[0] != '\0')
7577 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 7578 previous_prefix, name, 0, cu);
0114d602
DJ
7579
7580 /* Create the type. */
7581 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7582 objfile);
7583 TYPE_NAME (type) = (char *) name;
7584 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7585
60531b24 7586 return set_die_type (die, type, cu);
0114d602
DJ
7587}
7588
7589/* Read a C++ namespace. */
7590
7591static void
7592read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7593{
7594 struct objfile *objfile = cu->objfile;
0114d602 7595 int is_anonymous;
9219021c 7596
5c4e30ca
DC
7597 /* Add a symbol associated to this if we haven't seen the namespace
7598 before. Also, add a using directive if it's an anonymous
7599 namespace. */
9219021c 7600
f2f0e013 7601 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
7602 {
7603 struct type *type;
7604
0114d602 7605 type = read_type_die (die, cu);
e7c27a73 7606 new_symbol (die, type, cu);
5c4e30ca 7607
e8e80198 7608 namespace_name (die, &is_anonymous, cu);
5c4e30ca 7609 if (is_anonymous)
0114d602
DJ
7610 {
7611 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 7612
c0cc3a76 7613 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13387711 7614 NULL, &objfile->objfile_obstack);
0114d602 7615 }
5c4e30ca 7616 }
9219021c 7617
639d11d3 7618 if (die->child != NULL)
d9fa45fe 7619 {
639d11d3 7620 struct die_info *child_die = die->child;
6e70227d 7621
d9fa45fe
DC
7622 while (child_die && child_die->tag)
7623 {
e7c27a73 7624 process_die (child_die, cu);
d9fa45fe
DC
7625 child_die = sibling_die (child_die);
7626 }
7627 }
38d518c9
EZ
7628}
7629
f55ee35c
JK
7630/* Read a Fortran module as type. This DIE can be only a declaration used for
7631 imported module. Still we need that type as local Fortran "use ... only"
7632 declaration imports depend on the created type in determine_prefix. */
7633
7634static struct type *
7635read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7636{
7637 struct objfile *objfile = cu->objfile;
7638 char *module_name;
7639 struct type *type;
7640
7641 module_name = dwarf2_name (die, cu);
7642 if (!module_name)
3e43a32a
MS
7643 complaint (&symfile_complaints,
7644 _("DW_TAG_module has no name, offset 0x%x"),
f55ee35c
JK
7645 die->offset);
7646 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7647
7648 /* determine_prefix uses TYPE_TAG_NAME. */
7649 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7650
7651 return set_die_type (die, type, cu);
7652}
7653
5d7cb8df
JK
7654/* Read a Fortran module. */
7655
7656static void
7657read_module (struct die_info *die, struct dwarf2_cu *cu)
7658{
7659 struct die_info *child_die = die->child;
7660
5d7cb8df
JK
7661 while (child_die && child_die->tag)
7662 {
7663 process_die (child_die, cu);
7664 child_die = sibling_die (child_die);
7665 }
7666}
7667
38d518c9
EZ
7668/* Return the name of the namespace represented by DIE. Set
7669 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7670 namespace. */
7671
7672static const char *
e142c38c 7673namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
7674{
7675 struct die_info *current_die;
7676 const char *name = NULL;
7677
7678 /* Loop through the extensions until we find a name. */
7679
7680 for (current_die = die;
7681 current_die != NULL;
f2f0e013 7682 current_die = dwarf2_extension (die, &cu))
38d518c9 7683 {
e142c38c 7684 name = dwarf2_name (current_die, cu);
38d518c9
EZ
7685 if (name != NULL)
7686 break;
7687 }
7688
7689 /* Is it an anonymous namespace? */
7690
7691 *is_anonymous = (name == NULL);
7692 if (*is_anonymous)
7693 name = "(anonymous namespace)";
7694
7695 return name;
d9fa45fe
DC
7696}
7697
c906108c
SS
7698/* Extract all information from a DW_TAG_pointer_type DIE and add to
7699 the user defined type vector. */
7700
f792889a 7701static struct type *
e7c27a73 7702read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7703{
5e2b427d 7704 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 7705 struct comp_unit_head *cu_header = &cu->header;
c906108c 7706 struct type *type;
8b2dbe47
KB
7707 struct attribute *attr_byte_size;
7708 struct attribute *attr_address_class;
7709 int byte_size, addr_class;
7e314c57
JK
7710 struct type *target_type;
7711
7712 target_type = die_type (die, cu);
c906108c 7713
7e314c57
JK
7714 /* The die_type call above may have already set the type for this DIE. */
7715 type = get_die_type (die, cu);
7716 if (type)
7717 return type;
7718
7719 type = lookup_pointer_type (target_type);
8b2dbe47 7720
e142c38c 7721 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
7722 if (attr_byte_size)
7723 byte_size = DW_UNSND (attr_byte_size);
c906108c 7724 else
8b2dbe47
KB
7725 byte_size = cu_header->addr_size;
7726
e142c38c 7727 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
7728 if (attr_address_class)
7729 addr_class = DW_UNSND (attr_address_class);
7730 else
7731 addr_class = DW_ADDR_none;
7732
7733 /* If the pointer size or address class is different than the
7734 default, create a type variant marked as such and set the
7735 length accordingly. */
7736 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 7737 {
5e2b427d 7738 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
7739 {
7740 int type_flags;
7741
849957d9 7742 type_flags = gdbarch_address_class_type_flags
5e2b427d 7743 (gdbarch, byte_size, addr_class);
876cecd0
TT
7744 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7745 == 0);
8b2dbe47
KB
7746 type = make_type_with_address_space (type, type_flags);
7747 }
7748 else if (TYPE_LENGTH (type) != byte_size)
7749 {
3e43a32a
MS
7750 complaint (&symfile_complaints,
7751 _("invalid pointer size %d"), byte_size);
8b2dbe47 7752 }
6e70227d 7753 else
9a619af0
MS
7754 {
7755 /* Should we also complain about unhandled address classes? */
7756 }
c906108c 7757 }
8b2dbe47
KB
7758
7759 TYPE_LENGTH (type) = byte_size;
f792889a 7760 return set_die_type (die, type, cu);
c906108c
SS
7761}
7762
7763/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7764 the user defined type vector. */
7765
f792889a 7766static struct type *
e7c27a73 7767read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7768{
7769 struct type *type;
7770 struct type *to_type;
7771 struct type *domain;
7772
e7c27a73
DJ
7773 to_type = die_type (die, cu);
7774 domain = die_containing_type (die, cu);
0d5de010 7775
7e314c57
JK
7776 /* The calls above may have already set the type for this DIE. */
7777 type = get_die_type (die, cu);
7778 if (type)
7779 return type;
7780
0d5de010
DJ
7781 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7782 type = lookup_methodptr_type (to_type);
7783 else
7784 type = lookup_memberptr_type (to_type, domain);
c906108c 7785
f792889a 7786 return set_die_type (die, type, cu);
c906108c
SS
7787}
7788
7789/* Extract all information from a DW_TAG_reference_type DIE and add to
7790 the user defined type vector. */
7791
f792889a 7792static struct type *
e7c27a73 7793read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7794{
e7c27a73 7795 struct comp_unit_head *cu_header = &cu->header;
7e314c57 7796 struct type *type, *target_type;
c906108c
SS
7797 struct attribute *attr;
7798
7e314c57
JK
7799 target_type = die_type (die, cu);
7800
7801 /* The die_type call above may have already set the type for this DIE. */
7802 type = get_die_type (die, cu);
7803 if (type)
7804 return type;
7805
7806 type = lookup_reference_type (target_type);
e142c38c 7807 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7808 if (attr)
7809 {
7810 TYPE_LENGTH (type) = DW_UNSND (attr);
7811 }
7812 else
7813 {
107d2387 7814 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 7815 }
f792889a 7816 return set_die_type (die, type, cu);
c906108c
SS
7817}
7818
f792889a 7819static struct type *
e7c27a73 7820read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7821{
f792889a 7822 struct type *base_type, *cv_type;
c906108c 7823
e7c27a73 7824 base_type = die_type (die, cu);
7e314c57
JK
7825
7826 /* The die_type call above may have already set the type for this DIE. */
7827 cv_type = get_die_type (die, cu);
7828 if (cv_type)
7829 return cv_type;
7830
2f608a3a
KW
7831 /* In case the const qualifier is applied to an array type, the element type
7832 is so qualified, not the array type (section 6.7.3 of C99). */
7833 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7834 {
7835 struct type *el_type, *inner_array;
7836
7837 base_type = copy_type (base_type);
7838 inner_array = base_type;
7839
7840 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7841 {
7842 TYPE_TARGET_TYPE (inner_array) =
7843 copy_type (TYPE_TARGET_TYPE (inner_array));
7844 inner_array = TYPE_TARGET_TYPE (inner_array);
7845 }
7846
7847 el_type = TYPE_TARGET_TYPE (inner_array);
7848 TYPE_TARGET_TYPE (inner_array) =
7849 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7850
7851 return set_die_type (die, base_type, cu);
7852 }
7853
f792889a
DJ
7854 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7855 return set_die_type (die, cv_type, cu);
c906108c
SS
7856}
7857
f792889a 7858static struct type *
e7c27a73 7859read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7860{
f792889a 7861 struct type *base_type, *cv_type;
c906108c 7862
e7c27a73 7863 base_type = die_type (die, cu);
7e314c57
JK
7864
7865 /* The die_type call above may have already set the type for this DIE. */
7866 cv_type = get_die_type (die, cu);
7867 if (cv_type)
7868 return cv_type;
7869
f792889a
DJ
7870 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7871 return set_die_type (die, cv_type, cu);
c906108c
SS
7872}
7873
7874/* Extract all information from a DW_TAG_string_type DIE and add to
7875 the user defined type vector. It isn't really a user defined type,
7876 but it behaves like one, with other DIE's using an AT_user_def_type
7877 attribute to reference it. */
7878
f792889a 7879static struct type *
e7c27a73 7880read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7881{
e7c27a73 7882 struct objfile *objfile = cu->objfile;
3b7538c0 7883 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
7884 struct type *type, *range_type, *index_type, *char_type;
7885 struct attribute *attr;
7886 unsigned int length;
7887
e142c38c 7888 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
7889 if (attr)
7890 {
7891 length = DW_UNSND (attr);
7892 }
7893 else
7894 {
0963b4bd 7895 /* Check for the DW_AT_byte_size attribute. */
e142c38c 7896 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
7897 if (attr)
7898 {
7899 length = DW_UNSND (attr);
7900 }
7901 else
7902 {
7903 length = 1;
7904 }
c906108c 7905 }
6ccb9162 7906
46bf5051 7907 index_type = objfile_type (objfile)->builtin_int;
c906108c 7908 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
7909 char_type = language_string_char_type (cu->language_defn, gdbarch);
7910 type = create_string_type (NULL, char_type, range_type);
6ccb9162 7911
f792889a 7912 return set_die_type (die, type, cu);
c906108c
SS
7913}
7914
7915/* Handle DIES due to C code like:
7916
7917 struct foo
c5aa993b
JM
7918 {
7919 int (*funcp)(int a, long l);
7920 int b;
7921 };
c906108c 7922
0963b4bd 7923 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 7924
f792889a 7925static struct type *
e7c27a73 7926read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7927{
0963b4bd
MS
7928 struct type *type; /* Type that this function returns. */
7929 struct type *ftype; /* Function that returns above type. */
c906108c
SS
7930 struct attribute *attr;
7931
e7c27a73 7932 type = die_type (die, cu);
7e314c57
JK
7933
7934 /* The die_type call above may have already set the type for this DIE. */
7935 ftype = get_die_type (die, cu);
7936 if (ftype)
7937 return ftype;
7938
0c8b41f1 7939 ftype = lookup_function_type (type);
c906108c 7940
5b8101ae 7941 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 7942 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 7943 if ((attr && (DW_UNSND (attr) != 0))
987504bb 7944 || cu->language == language_cplus
5b8101ae
PM
7945 || cu->language == language_java
7946 || cu->language == language_pascal)
876cecd0 7947 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
7948 else if (producer_is_realview (cu->producer))
7949 /* RealView does not emit DW_AT_prototyped. We can not
7950 distinguish prototyped and unprototyped functions; default to
7951 prototyped, since that is more common in modern code (and
7952 RealView warns about unprototyped functions). */
7953 TYPE_PROTOTYPED (ftype) = 1;
c906108c 7954
c055b101
CV
7955 /* Store the calling convention in the type if it's available in
7956 the subroutine die. Otherwise set the calling convention to
7957 the default value DW_CC_normal. */
7958 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
7959 if (attr)
7960 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
7961 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
7962 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
7963 else
7964 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
7965
7966 /* We need to add the subroutine type to the die immediately so
7967 we don't infinitely recurse when dealing with parameters
0963b4bd 7968 declared as the same subroutine type. */
76c10ea2 7969 set_die_type (die, ftype, cu);
6e70227d 7970
639d11d3 7971 if (die->child != NULL)
c906108c 7972 {
8072405b 7973 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
c906108c 7974 struct die_info *child_die;
8072405b 7975 int nparams, iparams;
c906108c
SS
7976
7977 /* Count the number of parameters.
7978 FIXME: GDB currently ignores vararg functions, but knows about
7979 vararg member functions. */
8072405b 7980 nparams = 0;
639d11d3 7981 child_die = die->child;
c906108c
SS
7982 while (child_die && child_die->tag)
7983 {
7984 if (child_die->tag == DW_TAG_formal_parameter)
7985 nparams++;
7986 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 7987 TYPE_VARARGS (ftype) = 1;
c906108c
SS
7988 child_die = sibling_die (child_die);
7989 }
7990
7991 /* Allocate storage for parameters and fill them in. */
7992 TYPE_NFIELDS (ftype) = nparams;
7993 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 7994 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 7995
8072405b
JK
7996 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7997 even if we error out during the parameters reading below. */
7998 for (iparams = 0; iparams < nparams; iparams++)
7999 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8000
8001 iparams = 0;
639d11d3 8002 child_die = die->child;
c906108c
SS
8003 while (child_die && child_die->tag)
8004 {
8005 if (child_die->tag == DW_TAG_formal_parameter)
8006 {
3ce3b1ba
PA
8007 struct type *arg_type;
8008
8009 /* DWARF version 2 has no clean way to discern C++
8010 static and non-static member functions. G++ helps
8011 GDB by marking the first parameter for non-static
8012 member functions (which is the this pointer) as
8013 artificial. We pass this information to
8014 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8015
8016 DWARF version 3 added DW_AT_object_pointer, which GCC
8017 4.5 does not yet generate. */
e142c38c 8018 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
8019 if (attr)
8020 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8021 else
418835cc
KS
8022 {
8023 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8024
8025 /* GCC/43521: In java, the formal parameter
8026 "this" is sometimes not marked with DW_AT_artificial. */
8027 if (cu->language == language_java)
8028 {
8029 const char *name = dwarf2_name (child_die, cu);
9a619af0 8030
418835cc
KS
8031 if (name && !strcmp (name, "this"))
8032 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8033 }
8034 }
3ce3b1ba
PA
8035 arg_type = die_type (child_die, cu);
8036
8037 /* RealView does not mark THIS as const, which the testsuite
8038 expects. GCC marks THIS as const in method definitions,
8039 but not in the class specifications (GCC PR 43053). */
8040 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8041 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8042 {
8043 int is_this = 0;
8044 struct dwarf2_cu *arg_cu = cu;
8045 const char *name = dwarf2_name (child_die, cu);
8046
8047 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8048 if (attr)
8049 {
8050 /* If the compiler emits this, use it. */
8051 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8052 is_this = 1;
8053 }
8054 else if (name && strcmp (name, "this") == 0)
8055 /* Function definitions will have the argument names. */
8056 is_this = 1;
8057 else if (name == NULL && iparams == 0)
8058 /* Declarations may not have the names, so like
8059 elsewhere in GDB, assume an artificial first
8060 argument is "this". */
8061 is_this = 1;
8062
8063 if (is_this)
8064 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8065 arg_type, 0);
8066 }
8067
8068 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
8069 iparams++;
8070 }
8071 child_die = sibling_die (child_die);
8072 }
8073 }
8074
76c10ea2 8075 return ftype;
c906108c
SS
8076}
8077
f792889a 8078static struct type *
e7c27a73 8079read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8080{
e7c27a73 8081 struct objfile *objfile = cu->objfile;
0114d602 8082 const char *name = NULL;
f792889a 8083 struct type *this_type;
c906108c 8084
94af9270 8085 name = dwarf2_full_name (NULL, die, cu);
f792889a 8086 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
8087 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8088 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
8089 set_die_type (die, this_type, cu);
8090 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8091 return this_type;
c906108c
SS
8092}
8093
8094/* Find a representation of a given base type and install
8095 it in the TYPE field of the die. */
8096
f792889a 8097static struct type *
e7c27a73 8098read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8099{
e7c27a73 8100 struct objfile *objfile = cu->objfile;
c906108c
SS
8101 struct type *type;
8102 struct attribute *attr;
8103 int encoding = 0, size = 0;
39cbfefa 8104 char *name;
6ccb9162
UW
8105 enum type_code code = TYPE_CODE_INT;
8106 int type_flags = 0;
8107 struct type *target_type = NULL;
c906108c 8108
e142c38c 8109 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
8110 if (attr)
8111 {
8112 encoding = DW_UNSND (attr);
8113 }
e142c38c 8114 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
8115 if (attr)
8116 {
8117 size = DW_UNSND (attr);
8118 }
39cbfefa 8119 name = dwarf2_name (die, cu);
6ccb9162 8120 if (!name)
c906108c 8121 {
6ccb9162
UW
8122 complaint (&symfile_complaints,
8123 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 8124 }
6ccb9162
UW
8125
8126 switch (encoding)
c906108c 8127 {
6ccb9162
UW
8128 case DW_ATE_address:
8129 /* Turn DW_ATE_address into a void * pointer. */
8130 code = TYPE_CODE_PTR;
8131 type_flags |= TYPE_FLAG_UNSIGNED;
8132 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8133 break;
8134 case DW_ATE_boolean:
8135 code = TYPE_CODE_BOOL;
8136 type_flags |= TYPE_FLAG_UNSIGNED;
8137 break;
8138 case DW_ATE_complex_float:
8139 code = TYPE_CODE_COMPLEX;
8140 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8141 break;
8142 case DW_ATE_decimal_float:
8143 code = TYPE_CODE_DECFLOAT;
8144 break;
8145 case DW_ATE_float:
8146 code = TYPE_CODE_FLT;
8147 break;
8148 case DW_ATE_signed:
8149 break;
8150 case DW_ATE_unsigned:
8151 type_flags |= TYPE_FLAG_UNSIGNED;
8152 break;
8153 case DW_ATE_signed_char:
6e70227d 8154 if (cu->language == language_ada || cu->language == language_m2
868a0084 8155 || cu->language == language_pascal)
6ccb9162
UW
8156 code = TYPE_CODE_CHAR;
8157 break;
8158 case DW_ATE_unsigned_char:
868a0084
PM
8159 if (cu->language == language_ada || cu->language == language_m2
8160 || cu->language == language_pascal)
6ccb9162
UW
8161 code = TYPE_CODE_CHAR;
8162 type_flags |= TYPE_FLAG_UNSIGNED;
8163 break;
75079b2b
TT
8164 case DW_ATE_UTF:
8165 /* We just treat this as an integer and then recognize the
8166 type by name elsewhere. */
8167 break;
8168
6ccb9162
UW
8169 default:
8170 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8171 dwarf_type_encoding_name (encoding));
8172 break;
c906108c 8173 }
6ccb9162 8174
0114d602
DJ
8175 type = init_type (code, size, type_flags, NULL, objfile);
8176 TYPE_NAME (type) = name;
6ccb9162
UW
8177 TYPE_TARGET_TYPE (type) = target_type;
8178
0114d602 8179 if (name && strcmp (name, "char") == 0)
876cecd0 8180 TYPE_NOSIGN (type) = 1;
0114d602 8181
f792889a 8182 return set_die_type (die, type, cu);
c906108c
SS
8183}
8184
a02abb62
JB
8185/* Read the given DW_AT_subrange DIE. */
8186
f792889a 8187static struct type *
a02abb62
JB
8188read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8189{
8190 struct type *base_type;
8191 struct type *range_type;
8192 struct attribute *attr;
43bbcdc2
PH
8193 LONGEST low = 0;
8194 LONGEST high = -1;
39cbfefa 8195 char *name;
43bbcdc2 8196 LONGEST negative_mask;
e77813c8 8197
a02abb62 8198 base_type = die_type (die, cu);
953ac07e
JK
8199 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8200 check_typedef (base_type);
a02abb62 8201
7e314c57
JK
8202 /* The die_type call above may have already set the type for this DIE. */
8203 range_type = get_die_type (die, cu);
8204 if (range_type)
8205 return range_type;
8206
e142c38c 8207 if (cu->language == language_fortran)
6e70227d 8208 {
a02abb62
JB
8209 /* FORTRAN implies a lower bound of 1, if not given. */
8210 low = 1;
8211 }
8212
dd5e6932
DJ
8213 /* FIXME: For variable sized arrays either of these could be
8214 a variable rather than a constant value. We'll allow it,
8215 but we don't know how to handle it. */
e142c38c 8216 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
8217 if (attr)
8218 low = dwarf2_get_attr_constant_value (attr, 0);
8219
e142c38c 8220 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 8221 if (attr)
6e70227d 8222 {
e77813c8 8223 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
a02abb62
JB
8224 {
8225 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 8226 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
8227 FIXME: GDB does not yet know how to handle dynamic
8228 arrays properly, treat them as arrays with unspecified
8229 length for now.
8230
8231 FIXME: jimb/2003-09-22: GDB does not really know
8232 how to handle arrays of unspecified length
8233 either; we just represent them as zero-length
8234 arrays. Choose an appropriate upper bound given
8235 the lower bound we've computed above. */
8236 high = low - 1;
8237 }
8238 else
8239 high = dwarf2_get_attr_constant_value (attr, 1);
8240 }
e77813c8
PM
8241 else
8242 {
8243 attr = dwarf2_attr (die, DW_AT_count, cu);
8244 if (attr)
8245 {
8246 int count = dwarf2_get_attr_constant_value (attr, 1);
8247 high = low + count - 1;
8248 }
c2ff108b
JK
8249 else
8250 {
8251 /* Unspecified array length. */
8252 high = low - 1;
8253 }
e77813c8
PM
8254 }
8255
8256 /* Dwarf-2 specifications explicitly allows to create subrange types
8257 without specifying a base type.
8258 In that case, the base type must be set to the type of
8259 the lower bound, upper bound or count, in that order, if any of these
8260 three attributes references an object that has a type.
8261 If no base type is found, the Dwarf-2 specifications say that
8262 a signed integer type of size equal to the size of an address should
8263 be used.
8264 For the following C code: `extern char gdb_int [];'
8265 GCC produces an empty range DIE.
8266 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 8267 high bound or count are not yet handled by this code. */
e77813c8
PM
8268 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8269 {
8270 struct objfile *objfile = cu->objfile;
8271 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8272 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8273 struct type *int_type = objfile_type (objfile)->builtin_int;
8274
8275 /* Test "int", "long int", and "long long int" objfile types,
8276 and select the first one having a size above or equal to the
8277 architecture address size. */
8278 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8279 base_type = int_type;
8280 else
8281 {
8282 int_type = objfile_type (objfile)->builtin_long;
8283 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8284 base_type = int_type;
8285 else
8286 {
8287 int_type = objfile_type (objfile)->builtin_long_long;
8288 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8289 base_type = int_type;
8290 }
8291 }
8292 }
a02abb62 8293
6e70227d 8294 negative_mask =
43bbcdc2
PH
8295 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8296 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8297 low |= negative_mask;
8298 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8299 high |= negative_mask;
8300
a02abb62
JB
8301 range_type = create_range_type (NULL, base_type, low, high);
8302
bbb0eef6
JK
8303 /* Mark arrays with dynamic length at least as an array of unspecified
8304 length. GDB could check the boundary but before it gets implemented at
8305 least allow accessing the array elements. */
8306 if (attr && attr->form == DW_FORM_block1)
8307 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8308
c2ff108b
JK
8309 /* Ada expects an empty array on no boundary attributes. */
8310 if (attr == NULL && cu->language != language_ada)
8311 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8312
39cbfefa
DJ
8313 name = dwarf2_name (die, cu);
8314 if (name)
8315 TYPE_NAME (range_type) = name;
6e70227d 8316
e142c38c 8317 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
8318 if (attr)
8319 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8320
7e314c57
JK
8321 set_die_type (die, range_type, cu);
8322
8323 /* set_die_type should be already done. */
b4ba55a1
JB
8324 set_descriptive_type (range_type, die, cu);
8325
7e314c57 8326 return range_type;
a02abb62 8327}
6e70227d 8328
f792889a 8329static struct type *
81a17f79
JB
8330read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8331{
8332 struct type *type;
81a17f79 8333
81a17f79
JB
8334 /* For now, we only support the C meaning of an unspecified type: void. */
8335
0114d602
DJ
8336 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8337 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 8338
f792889a 8339 return set_die_type (die, type, cu);
81a17f79 8340}
a02abb62 8341
51545339
DJ
8342/* Trivial hash function for die_info: the hash value of a DIE
8343 is its offset in .debug_info for this objfile. */
8344
8345static hashval_t
8346die_hash (const void *item)
8347{
8348 const struct die_info *die = item;
9a619af0 8349
51545339
DJ
8350 return die->offset;
8351}
8352
8353/* Trivial comparison function for die_info structures: two DIEs
8354 are equal if they have the same offset. */
8355
8356static int
8357die_eq (const void *item_lhs, const void *item_rhs)
8358{
8359 const struct die_info *die_lhs = item_lhs;
8360 const struct die_info *die_rhs = item_rhs;
9a619af0 8361
51545339
DJ
8362 return die_lhs->offset == die_rhs->offset;
8363}
8364
c906108c
SS
8365/* Read a whole compilation unit into a linked list of dies. */
8366
f9aca02d 8367static struct die_info *
93311388 8368read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 8369{
93311388 8370 struct die_reader_specs reader_specs;
98bfdba5 8371 int read_abbrevs = 0;
1d9ec526 8372 struct cleanup *back_to = NULL;
98bfdba5
PA
8373 struct die_info *die;
8374
8375 if (cu->dwarf2_abbrevs == NULL)
8376 {
8377 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8378 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8379 read_abbrevs = 1;
8380 }
93311388 8381
348e048f 8382 gdb_assert (cu->die_hash == NULL);
51545339
DJ
8383 cu->die_hash
8384 = htab_create_alloc_ex (cu->header.length / 12,
8385 die_hash,
8386 die_eq,
8387 NULL,
8388 &cu->comp_unit_obstack,
8389 hashtab_obstack_allocate,
8390 dummy_obstack_deallocate);
8391
93311388
DE
8392 init_cu_die_reader (&reader_specs, cu);
8393
98bfdba5
PA
8394 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8395
8396 if (read_abbrevs)
8397 do_cleanups (back_to);
8398
8399 return die;
639d11d3
DC
8400}
8401
d97bc12b
DE
8402/* Main entry point for reading a DIE and all children.
8403 Read the DIE and dump it if requested. */
8404
8405static struct die_info *
93311388
DE
8406read_die_and_children (const struct die_reader_specs *reader,
8407 gdb_byte *info_ptr,
d97bc12b
DE
8408 gdb_byte **new_info_ptr,
8409 struct die_info *parent)
8410{
93311388 8411 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
8412 new_info_ptr, parent);
8413
8414 if (dwarf2_die_debug)
8415 {
348e048f
DE
8416 fprintf_unfiltered (gdb_stdlog,
8417 "\nRead die from %s of %s:\n",
8418 reader->buffer == dwarf2_per_objfile->info.buffer
8419 ? ".debug_info"
8420 : reader->buffer == dwarf2_per_objfile->types.buffer
8421 ? ".debug_types"
8422 : "unknown section",
8423 reader->abfd->filename);
d97bc12b
DE
8424 dump_die (result, dwarf2_die_debug);
8425 }
8426
8427 return result;
8428}
8429
639d11d3
DC
8430/* Read a single die and all its descendents. Set the die's sibling
8431 field to NULL; set other fields in the die correctly, and set all
8432 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8433 location of the info_ptr after reading all of those dies. PARENT
8434 is the parent of the die in question. */
8435
8436static struct die_info *
93311388
DE
8437read_die_and_children_1 (const struct die_reader_specs *reader,
8438 gdb_byte *info_ptr,
d97bc12b
DE
8439 gdb_byte **new_info_ptr,
8440 struct die_info *parent)
639d11d3
DC
8441{
8442 struct die_info *die;
fe1b8b76 8443 gdb_byte *cur_ptr;
639d11d3
DC
8444 int has_children;
8445
93311388 8446 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
8447 if (die == NULL)
8448 {
8449 *new_info_ptr = cur_ptr;
8450 return NULL;
8451 }
93311388 8452 store_in_ref_table (die, reader->cu);
639d11d3
DC
8453
8454 if (has_children)
348e048f 8455 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
8456 else
8457 {
8458 die->child = NULL;
8459 *new_info_ptr = cur_ptr;
8460 }
8461
8462 die->sibling = NULL;
8463 die->parent = parent;
8464 return die;
8465}
8466
8467/* Read a die, all of its descendents, and all of its siblings; set
8468 all of the fields of all of the dies correctly. Arguments are as
8469 in read_die_and_children. */
8470
8471static struct die_info *
93311388
DE
8472read_die_and_siblings (const struct die_reader_specs *reader,
8473 gdb_byte *info_ptr,
fe1b8b76 8474 gdb_byte **new_info_ptr,
639d11d3
DC
8475 struct die_info *parent)
8476{
8477 struct die_info *first_die, *last_sibling;
fe1b8b76 8478 gdb_byte *cur_ptr;
639d11d3 8479
c906108c 8480 cur_ptr = info_ptr;
639d11d3
DC
8481 first_die = last_sibling = NULL;
8482
8483 while (1)
c906108c 8484 {
639d11d3 8485 struct die_info *die
93311388 8486 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 8487
1d325ec1 8488 if (die == NULL)
c906108c 8489 {
639d11d3
DC
8490 *new_info_ptr = cur_ptr;
8491 return first_die;
c906108c 8492 }
1d325ec1
DJ
8493
8494 if (!first_die)
8495 first_die = die;
c906108c 8496 else
1d325ec1
DJ
8497 last_sibling->sibling = die;
8498
8499 last_sibling = die;
c906108c 8500 }
c906108c
SS
8501}
8502
93311388
DE
8503/* Read the die from the .debug_info section buffer. Set DIEP to
8504 point to a newly allocated die with its information, except for its
8505 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8506 whether the die has children or not. */
8507
8508static gdb_byte *
8509read_full_die (const struct die_reader_specs *reader,
8510 struct die_info **diep, gdb_byte *info_ptr,
8511 int *has_children)
8512{
8513 unsigned int abbrev_number, bytes_read, i, offset;
8514 struct abbrev_info *abbrev;
8515 struct die_info *die;
8516 struct dwarf2_cu *cu = reader->cu;
8517 bfd *abfd = reader->abfd;
8518
8519 offset = info_ptr - reader->buffer;
8520 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8521 info_ptr += bytes_read;
8522 if (!abbrev_number)
8523 {
8524 *diep = NULL;
8525 *has_children = 0;
8526 return info_ptr;
8527 }
8528
8529 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8530 if (!abbrev)
348e048f
DE
8531 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8532 abbrev_number,
8533 bfd_get_filename (abfd));
8534
93311388
DE
8535 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8536 die->offset = offset;
8537 die->tag = abbrev->tag;
8538 die->abbrev = abbrev_number;
8539
8540 die->num_attrs = abbrev->num_attrs;
8541
8542 for (i = 0; i < abbrev->num_attrs; ++i)
8543 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8544 abfd, info_ptr, cu);
8545
8546 *diep = die;
8547 *has_children = abbrev->has_children;
8548 return info_ptr;
8549}
8550
c906108c
SS
8551/* In DWARF version 2, the description of the debugging information is
8552 stored in a separate .debug_abbrev section. Before we read any
8553 dies from a section we read in all abbreviations and install them
72bf9492
DJ
8554 in a hash table. This function also sets flags in CU describing
8555 the data found in the abbrev table. */
c906108c
SS
8556
8557static void
e7c27a73 8558dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 8559{
e7c27a73 8560 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 8561 gdb_byte *abbrev_ptr;
c906108c
SS
8562 struct abbrev_info *cur_abbrev;
8563 unsigned int abbrev_number, bytes_read, abbrev_name;
8564 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
8565 struct attr_abbrev *cur_attrs;
8566 unsigned int allocated_attrs;
c906108c 8567
0963b4bd 8568 /* Initialize dwarf2 abbrevs. */
f3dd6933
DJ
8569 obstack_init (&cu->abbrev_obstack);
8570 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8571 (ABBREV_HASH_SIZE
8572 * sizeof (struct abbrev_info *)));
8573 memset (cu->dwarf2_abbrevs, 0,
8574 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 8575
be391dca
TT
8576 dwarf2_read_section (dwarf2_per_objfile->objfile,
8577 &dwarf2_per_objfile->abbrev);
dce234bc 8578 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
8579 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8580 abbrev_ptr += bytes_read;
8581
f3dd6933
DJ
8582 allocated_attrs = ATTR_ALLOC_CHUNK;
8583 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 8584
0963b4bd 8585 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
8586 while (abbrev_number)
8587 {
f3dd6933 8588 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
8589
8590 /* read in abbrev header */
8591 cur_abbrev->number = abbrev_number;
8592 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8593 abbrev_ptr += bytes_read;
8594 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8595 abbrev_ptr += 1;
8596
72bf9492
DJ
8597 if (cur_abbrev->tag == DW_TAG_namespace)
8598 cu->has_namespace_info = 1;
8599
c906108c
SS
8600 /* now read in declarations */
8601 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8602 abbrev_ptr += bytes_read;
8603 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8604 abbrev_ptr += bytes_read;
8605 while (abbrev_name)
8606 {
f3dd6933 8607 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 8608 {
f3dd6933
DJ
8609 allocated_attrs += ATTR_ALLOC_CHUNK;
8610 cur_attrs
8611 = xrealloc (cur_attrs, (allocated_attrs
8612 * sizeof (struct attr_abbrev)));
c906108c 8613 }
ae038cb0
DJ
8614
8615 /* Record whether this compilation unit might have
8616 inter-compilation-unit references. If we don't know what form
8617 this attribute will have, then it might potentially be a
8618 DW_FORM_ref_addr, so we conservatively expect inter-CU
8619 references. */
8620
8621 if (abbrev_form == DW_FORM_ref_addr
8622 || abbrev_form == DW_FORM_indirect)
8623 cu->has_form_ref_addr = 1;
8624
f3dd6933
DJ
8625 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8626 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
8627 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8628 abbrev_ptr += bytes_read;
8629 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8630 abbrev_ptr += bytes_read;
8631 }
8632
f3dd6933
DJ
8633 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8634 (cur_abbrev->num_attrs
8635 * sizeof (struct attr_abbrev)));
8636 memcpy (cur_abbrev->attrs, cur_attrs,
8637 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8638
c906108c 8639 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
8640 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8641 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
8642
8643 /* Get next abbreviation.
8644 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
8645 always properly terminated with an abbrev number of 0.
8646 Exit loop if we encounter an abbreviation which we have
8647 already read (which means we are about to read the abbreviations
8648 for the next compile unit) or if the end of the abbreviation
8649 table is reached. */
dce234bc
PP
8650 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8651 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
8652 break;
8653 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8654 abbrev_ptr += bytes_read;
e7c27a73 8655 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
8656 break;
8657 }
f3dd6933
DJ
8658
8659 xfree (cur_attrs);
c906108c
SS
8660}
8661
f3dd6933 8662/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 8663
c906108c 8664static void
f3dd6933 8665dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 8666{
f3dd6933 8667 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 8668
f3dd6933
DJ
8669 obstack_free (&cu->abbrev_obstack, NULL);
8670 cu->dwarf2_abbrevs = NULL;
c906108c
SS
8671}
8672
8673/* Lookup an abbrev_info structure in the abbrev hash table. */
8674
8675static struct abbrev_info *
e7c27a73 8676dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
8677{
8678 unsigned int hash_number;
8679 struct abbrev_info *abbrev;
8680
8681 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 8682 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
8683
8684 while (abbrev)
8685 {
8686 if (abbrev->number == number)
8687 return abbrev;
8688 else
8689 abbrev = abbrev->next;
8690 }
8691 return NULL;
8692}
8693
72bf9492
DJ
8694/* Returns nonzero if TAG represents a type that we might generate a partial
8695 symbol for. */
8696
8697static int
8698is_type_tag_for_partial (int tag)
8699{
8700 switch (tag)
8701 {
8702#if 0
8703 /* Some types that would be reasonable to generate partial symbols for,
8704 that we don't at present. */
8705 case DW_TAG_array_type:
8706 case DW_TAG_file_type:
8707 case DW_TAG_ptr_to_member_type:
8708 case DW_TAG_set_type:
8709 case DW_TAG_string_type:
8710 case DW_TAG_subroutine_type:
8711#endif
8712 case DW_TAG_base_type:
8713 case DW_TAG_class_type:
680b30c7 8714 case DW_TAG_interface_type:
72bf9492
DJ
8715 case DW_TAG_enumeration_type:
8716 case DW_TAG_structure_type:
8717 case DW_TAG_subrange_type:
8718 case DW_TAG_typedef:
8719 case DW_TAG_union_type:
8720 return 1;
8721 default:
8722 return 0;
8723 }
8724}
8725
8726/* Load all DIEs that are interesting for partial symbols into memory. */
8727
8728static struct partial_die_info *
93311388
DE
8729load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8730 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
8731{
8732 struct partial_die_info *part_die;
8733 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8734 struct abbrev_info *abbrev;
8735 unsigned int bytes_read;
5afb4e99 8736 unsigned int load_all = 0;
72bf9492
DJ
8737
8738 int nesting_level = 1;
8739
8740 parent_die = NULL;
8741 last_die = NULL;
8742
5afb4e99
DJ
8743 if (cu->per_cu && cu->per_cu->load_all_dies)
8744 load_all = 1;
8745
72bf9492
DJ
8746 cu->partial_dies
8747 = htab_create_alloc_ex (cu->header.length / 12,
8748 partial_die_hash,
8749 partial_die_eq,
8750 NULL,
8751 &cu->comp_unit_obstack,
8752 hashtab_obstack_allocate,
8753 dummy_obstack_deallocate);
8754
8755 part_die = obstack_alloc (&cu->comp_unit_obstack,
8756 sizeof (struct partial_die_info));
8757
8758 while (1)
8759 {
8760 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8761
8762 /* A NULL abbrev means the end of a series of children. */
8763 if (abbrev == NULL)
8764 {
8765 if (--nesting_level == 0)
8766 {
8767 /* PART_DIE was probably the last thing allocated on the
8768 comp_unit_obstack, so we could call obstack_free
8769 here. We don't do that because the waste is small,
8770 and will be cleaned up when we're done with this
8771 compilation unit. This way, we're also more robust
8772 against other users of the comp_unit_obstack. */
8773 return first_die;
8774 }
8775 info_ptr += bytes_read;
8776 last_die = parent_die;
8777 parent_die = parent_die->die_parent;
8778 continue;
8779 }
8780
98bfdba5
PA
8781 /* Check for template arguments. We never save these; if
8782 they're seen, we just mark the parent, and go on our way. */
8783 if (parent_die != NULL
8784 && cu->language == language_cplus
8785 && (abbrev->tag == DW_TAG_template_type_param
8786 || abbrev->tag == DW_TAG_template_value_param))
8787 {
8788 parent_die->has_template_arguments = 1;
8789
8790 if (!load_all)
8791 {
8792 /* We don't need a partial DIE for the template argument. */
8793 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8794 cu);
8795 continue;
8796 }
8797 }
8798
8799 /* We only recurse into subprograms looking for template arguments.
8800 Skip their other children. */
8801 if (!load_all
8802 && cu->language == language_cplus
8803 && parent_die != NULL
8804 && parent_die->tag == DW_TAG_subprogram)
8805 {
8806 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8807 continue;
8808 }
8809
5afb4e99
DJ
8810 /* Check whether this DIE is interesting enough to save. Normally
8811 we would not be interested in members here, but there may be
8812 later variables referencing them via DW_AT_specification (for
8813 static members). */
8814 if (!load_all
8815 && !is_type_tag_for_partial (abbrev->tag)
72929c62 8816 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
8817 && abbrev->tag != DW_TAG_enumerator
8818 && abbrev->tag != DW_TAG_subprogram
bc30ff58 8819 && abbrev->tag != DW_TAG_lexical_block
72bf9492 8820 && abbrev->tag != DW_TAG_variable
5afb4e99 8821 && abbrev->tag != DW_TAG_namespace
f55ee35c 8822 && abbrev->tag != DW_TAG_module
5afb4e99 8823 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
8824 {
8825 /* Otherwise we skip to the next sibling, if any. */
93311388 8826 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
8827 continue;
8828 }
8829
93311388
DE
8830 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8831 buffer, info_ptr, cu);
72bf9492
DJ
8832
8833 /* This two-pass algorithm for processing partial symbols has a
8834 high cost in cache pressure. Thus, handle some simple cases
8835 here which cover the majority of C partial symbols. DIEs
8836 which neither have specification tags in them, nor could have
8837 specification tags elsewhere pointing at them, can simply be
8838 processed and discarded.
8839
8840 This segment is also optional; scan_partial_symbols and
8841 add_partial_symbol will handle these DIEs if we chain
8842 them in normally. When compilers which do not emit large
8843 quantities of duplicate debug information are more common,
8844 this code can probably be removed. */
8845
8846 /* Any complete simple types at the top level (pretty much all
8847 of them, for a language without namespaces), can be processed
8848 directly. */
8849 if (parent_die == NULL
8850 && part_die->has_specification == 0
8851 && part_die->is_declaration == 0
8852 && (part_die->tag == DW_TAG_typedef
8853 || part_die->tag == DW_TAG_base_type
8854 || part_die->tag == DW_TAG_subrange_type))
8855 {
8856 if (building_psymtab && part_die->name != NULL)
04a679b8 8857 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
8858 VAR_DOMAIN, LOC_TYPEDEF,
8859 &cu->objfile->static_psymbols,
8860 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 8861 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8862 continue;
8863 }
8864
8865 /* If we're at the second level, and we're an enumerator, and
8866 our parent has no specification (meaning possibly lives in a
8867 namespace elsewhere), then we can add the partial symbol now
8868 instead of queueing it. */
8869 if (part_die->tag == DW_TAG_enumerator
8870 && parent_die != NULL
8871 && parent_die->die_parent == NULL
8872 && parent_die->tag == DW_TAG_enumeration_type
8873 && parent_die->has_specification == 0)
8874 {
8875 if (part_die->name == NULL)
3e43a32a
MS
8876 complaint (&symfile_complaints,
8877 _("malformed enumerator DIE ignored"));
72bf9492 8878 else if (building_psymtab)
04a679b8 8879 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 8880 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
8881 (cu->language == language_cplus
8882 || cu->language == language_java)
72bf9492
DJ
8883 ? &cu->objfile->global_psymbols
8884 : &cu->objfile->static_psymbols,
8885 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8886
93311388 8887 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8888 continue;
8889 }
8890
8891 /* We'll save this DIE so link it in. */
8892 part_die->die_parent = parent_die;
8893 part_die->die_sibling = NULL;
8894 part_die->die_child = NULL;
8895
8896 if (last_die && last_die == parent_die)
8897 last_die->die_child = part_die;
8898 else if (last_die)
8899 last_die->die_sibling = part_die;
8900
8901 last_die = part_die;
8902
8903 if (first_die == NULL)
8904 first_die = part_die;
8905
8906 /* Maybe add the DIE to the hash table. Not all DIEs that we
8907 find interesting need to be in the hash table, because we
8908 also have the parent/sibling/child chains; only those that we
8909 might refer to by offset later during partial symbol reading.
8910
8911 For now this means things that might have be the target of a
8912 DW_AT_specification, DW_AT_abstract_origin, or
8913 DW_AT_extension. DW_AT_extension will refer only to
8914 namespaces; DW_AT_abstract_origin refers to functions (and
8915 many things under the function DIE, but we do not recurse
8916 into function DIEs during partial symbol reading) and
8917 possibly variables as well; DW_AT_specification refers to
8918 declarations. Declarations ought to have the DW_AT_declaration
8919 flag. It happens that GCC forgets to put it in sometimes, but
8920 only for functions, not for types.
8921
8922 Adding more things than necessary to the hash table is harmless
8923 except for the performance cost. Adding too few will result in
5afb4e99
DJ
8924 wasted time in find_partial_die, when we reread the compilation
8925 unit with load_all_dies set. */
72bf9492 8926
5afb4e99 8927 if (load_all
72929c62 8928 || abbrev->tag == DW_TAG_constant
5afb4e99 8929 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
8930 || abbrev->tag == DW_TAG_variable
8931 || abbrev->tag == DW_TAG_namespace
8932 || part_die->is_declaration)
8933 {
8934 void **slot;
8935
8936 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8937 part_die->offset, INSERT);
8938 *slot = part_die;
8939 }
8940
8941 part_die = obstack_alloc (&cu->comp_unit_obstack,
8942 sizeof (struct partial_die_info));
8943
8944 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 8945 we have no reason to follow the children of structures; for other
98bfdba5
PA
8946 languages we have to, so that we can get at method physnames
8947 to infer fully qualified class names, for DW_AT_specification,
8948 and for C++ template arguments. For C++, we also look one level
8949 inside functions to find template arguments (if the name of the
8950 function does not already contain the template arguments).
bc30ff58
JB
8951
8952 For Ada, we need to scan the children of subprograms and lexical
8953 blocks as well because Ada allows the definition of nested
8954 entities that could be interesting for the debugger, such as
8955 nested subprograms for instance. */
72bf9492 8956 if (last_die->has_children
5afb4e99
DJ
8957 && (load_all
8958 || last_die->tag == DW_TAG_namespace
f55ee35c 8959 || last_die->tag == DW_TAG_module
72bf9492 8960 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
8961 || (cu->language == language_cplus
8962 && last_die->tag == DW_TAG_subprogram
8963 && (last_die->name == NULL
8964 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
8965 || (cu->language != language_c
8966 && (last_die->tag == DW_TAG_class_type
680b30c7 8967 || last_die->tag == DW_TAG_interface_type
72bf9492 8968 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
8969 || last_die->tag == DW_TAG_union_type))
8970 || (cu->language == language_ada
8971 && (last_die->tag == DW_TAG_subprogram
8972 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
8973 {
8974 nesting_level++;
8975 parent_die = last_die;
8976 continue;
8977 }
8978
8979 /* Otherwise we skip to the next sibling, if any. */
93311388 8980 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8981
8982 /* Back to the top, do it again. */
8983 }
8984}
8985
c906108c
SS
8986/* Read a minimal amount of information into the minimal die structure. */
8987
fe1b8b76 8988static gdb_byte *
72bf9492
DJ
8989read_partial_die (struct partial_die_info *part_die,
8990 struct abbrev_info *abbrev,
8991 unsigned int abbrev_len, bfd *abfd,
93311388
DE
8992 gdb_byte *buffer, gdb_byte *info_ptr,
8993 struct dwarf2_cu *cu)
c906108c 8994{
fa238c03 8995 unsigned int i;
c906108c 8996 struct attribute attr;
c5aa993b 8997 int has_low_pc_attr = 0;
c906108c
SS
8998 int has_high_pc_attr = 0;
8999
72bf9492 9000 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 9001
93311388 9002 part_die->offset = info_ptr - buffer;
72bf9492
DJ
9003
9004 info_ptr += abbrev_len;
9005
9006 if (abbrev == NULL)
9007 return info_ptr;
9008
c906108c
SS
9009 part_die->tag = abbrev->tag;
9010 part_die->has_children = abbrev->has_children;
c906108c
SS
9011
9012 for (i = 0; i < abbrev->num_attrs; ++i)
9013 {
e7c27a73 9014 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
9015
9016 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 9017 partial symbol table. */
c906108c
SS
9018 switch (attr.name)
9019 {
9020 case DW_AT_name:
71c25dea
TT
9021 switch (part_die->tag)
9022 {
9023 case DW_TAG_compile_unit:
348e048f 9024 case DW_TAG_type_unit:
71c25dea
TT
9025 /* Compilation units have a DW_AT_name that is a filename, not
9026 a source language identifier. */
9027 case DW_TAG_enumeration_type:
9028 case DW_TAG_enumerator:
9029 /* These tags always have simple identifiers already; no need
9030 to canonicalize them. */
9031 part_die->name = DW_STRING (&attr);
9032 break;
9033 default:
9034 part_die->name
9035 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 9036 &cu->objfile->objfile_obstack);
71c25dea
TT
9037 break;
9038 }
c906108c 9039 break;
31ef98ae 9040 case DW_AT_linkage_name:
c906108c 9041 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
9042 /* Note that both forms of linkage name might appear. We
9043 assume they will be the same, and we only store the last
9044 one we see. */
94af9270
KS
9045 if (cu->language == language_ada)
9046 part_die->name = DW_STRING (&attr);
abc72ce4 9047 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
9048 break;
9049 case DW_AT_low_pc:
9050 has_low_pc_attr = 1;
9051 part_die->lowpc = DW_ADDR (&attr);
9052 break;
9053 case DW_AT_high_pc:
9054 has_high_pc_attr = 1;
9055 part_die->highpc = DW_ADDR (&attr);
9056 break;
9057 case DW_AT_location:
0963b4bd 9058 /* Support the .debug_loc offsets. */
8e19ed76
PS
9059 if (attr_form_is_block (&attr))
9060 {
9061 part_die->locdesc = DW_BLOCK (&attr);
9062 }
3690dd37 9063 else if (attr_form_is_section_offset (&attr))
8e19ed76 9064 {
4d3c2250 9065 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
9066 }
9067 else
9068 {
4d3c2250
KB
9069 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9070 "partial symbol information");
8e19ed76 9071 }
c906108c 9072 break;
c906108c
SS
9073 case DW_AT_external:
9074 part_die->is_external = DW_UNSND (&attr);
9075 break;
9076 case DW_AT_declaration:
9077 part_die->is_declaration = DW_UNSND (&attr);
9078 break;
9079 case DW_AT_type:
9080 part_die->has_type = 1;
9081 break;
9082 case DW_AT_abstract_origin:
9083 case DW_AT_specification:
72bf9492
DJ
9084 case DW_AT_extension:
9085 part_die->has_specification = 1;
c764a876 9086 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
9087 break;
9088 case DW_AT_sibling:
9089 /* Ignore absolute siblings, they might point outside of
9090 the current compile unit. */
9091 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
9092 complaint (&symfile_complaints,
9093 _("ignoring absolute DW_AT_sibling"));
c906108c 9094 else
93311388 9095 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 9096 break;
fa4028e9
JB
9097 case DW_AT_byte_size:
9098 part_die->has_byte_size = 1;
9099 break;
68511cec
CES
9100 case DW_AT_calling_convention:
9101 /* DWARF doesn't provide a way to identify a program's source-level
9102 entry point. DW_AT_calling_convention attributes are only meant
9103 to describe functions' calling conventions.
9104
9105 However, because it's a necessary piece of information in
9106 Fortran, and because DW_CC_program is the only piece of debugging
9107 information whose definition refers to a 'main program' at all,
9108 several compilers have begun marking Fortran main programs with
9109 DW_CC_program --- even when those functions use the standard
9110 calling conventions.
9111
9112 So until DWARF specifies a way to provide this information and
9113 compilers pick up the new representation, we'll support this
9114 practice. */
9115 if (DW_UNSND (&attr) == DW_CC_program
9116 && cu->language == language_fortran)
01f8c46d
JK
9117 {
9118 set_main_name (part_die->name);
9119
9120 /* As this DIE has a static linkage the name would be difficult
9121 to look up later. */
9122 language_of_main = language_fortran;
9123 }
68511cec 9124 break;
c906108c
SS
9125 default:
9126 break;
9127 }
9128 }
9129
c906108c
SS
9130 /* When using the GNU linker, .gnu.linkonce. sections are used to
9131 eliminate duplicate copies of functions and vtables and such.
9132 The linker will arbitrarily choose one and discard the others.
9133 The AT_*_pc values for such functions refer to local labels in
9134 these sections. If the section from that file was discarded, the
9135 labels are not in the output, so the relocs get a value of 0.
9136 If this is a discarded function, mark the pc bounds as invalid,
9137 so that GDB will ignore it. */
9138 if (has_low_pc_attr && has_high_pc_attr
9139 && part_die->lowpc < part_die->highpc
9140 && (part_die->lowpc != 0
72dca2f5 9141 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 9142 part_die->has_pc_info = 1;
85cbf3d3 9143
c906108c
SS
9144 return info_ptr;
9145}
9146
72bf9492
DJ
9147/* Find a cached partial DIE at OFFSET in CU. */
9148
9149static struct partial_die_info *
c764a876 9150find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
9151{
9152 struct partial_die_info *lookup_die = NULL;
9153 struct partial_die_info part_die;
9154
9155 part_die.offset = offset;
9156 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9157
72bf9492
DJ
9158 return lookup_die;
9159}
9160
348e048f
DE
9161/* Find a partial DIE at OFFSET, which may or may not be in CU,
9162 except in the case of .debug_types DIEs which do not reference
9163 outside their CU (they do however referencing other types via
9164 DW_FORM_sig8). */
72bf9492
DJ
9165
9166static struct partial_die_info *
c764a876 9167find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 9168{
5afb4e99
DJ
9169 struct dwarf2_per_cu_data *per_cu = NULL;
9170 struct partial_die_info *pd = NULL;
72bf9492 9171
348e048f
DE
9172 if (cu->per_cu->from_debug_types)
9173 {
9174 pd = find_partial_die_in_comp_unit (offset, cu);
9175 if (pd != NULL)
9176 return pd;
9177 goto not_found;
9178 }
9179
45452591 9180 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
9181 {
9182 pd = find_partial_die_in_comp_unit (offset, cu);
9183 if (pd != NULL)
9184 return pd;
9185 }
72bf9492 9186
ae038cb0
DJ
9187 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9188
98bfdba5
PA
9189 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9190 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
9191
9192 per_cu->cu->last_used = 0;
5afb4e99
DJ
9193 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9194
9195 if (pd == NULL && per_cu->load_all_dies == 0)
9196 {
9197 struct cleanup *back_to;
9198 struct partial_die_info comp_unit_die;
9199 struct abbrev_info *abbrev;
9200 unsigned int bytes_read;
9201 char *info_ptr;
9202
9203 per_cu->load_all_dies = 1;
9204
9205 /* Re-read the DIEs. */
9206 back_to = make_cleanup (null_cleanup, 0);
9207 if (per_cu->cu->dwarf2_abbrevs == NULL)
9208 {
9209 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 9210 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 9211 }
dce234bc 9212 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
9213 + per_cu->cu->header.offset
9214 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
9215 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9216 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
9217 per_cu->cu->objfile->obfd,
9218 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
9219 per_cu->cu);
9220 if (comp_unit_die.has_children)
93311388
DE
9221 load_partial_dies (per_cu->cu->objfile->obfd,
9222 dwarf2_per_objfile->info.buffer, info_ptr,
9223 0, per_cu->cu);
5afb4e99
DJ
9224 do_cleanups (back_to);
9225
9226 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9227 }
9228
348e048f
DE
9229 not_found:
9230
5afb4e99
DJ
9231 if (pd == NULL)
9232 internal_error (__FILE__, __LINE__,
3e43a32a
MS
9233 _("could not find partial DIE 0x%x "
9234 "in cache [from module %s]\n"),
5afb4e99
DJ
9235 offset, bfd_get_filename (cu->objfile->obfd));
9236 return pd;
72bf9492
DJ
9237}
9238
abc72ce4
DE
9239/* See if we can figure out if the class lives in a namespace. We do
9240 this by looking for a member function; its demangled name will
9241 contain namespace info, if there is any. */
9242
9243static void
9244guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9245 struct dwarf2_cu *cu)
9246{
9247 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9248 what template types look like, because the demangler
9249 frequently doesn't give the same name as the debug info. We
9250 could fix this by only using the demangled name to get the
9251 prefix (but see comment in read_structure_type). */
9252
9253 struct partial_die_info *real_pdi;
9254 struct partial_die_info *child_pdi;
9255
9256 /* If this DIE (this DIE's specification, if any) has a parent, then
9257 we should not do this. We'll prepend the parent's fully qualified
9258 name when we create the partial symbol. */
9259
9260 real_pdi = struct_pdi;
9261 while (real_pdi->has_specification)
9262 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9263
9264 if (real_pdi->die_parent != NULL)
9265 return;
9266
9267 for (child_pdi = struct_pdi->die_child;
9268 child_pdi != NULL;
9269 child_pdi = child_pdi->die_sibling)
9270 {
9271 if (child_pdi->tag == DW_TAG_subprogram
9272 && child_pdi->linkage_name != NULL)
9273 {
9274 char *actual_class_name
9275 = language_class_name_from_physname (cu->language_defn,
9276 child_pdi->linkage_name);
9277 if (actual_class_name != NULL)
9278 {
9279 struct_pdi->name
9280 = obsavestring (actual_class_name,
9281 strlen (actual_class_name),
9282 &cu->objfile->objfile_obstack);
9283 xfree (actual_class_name);
9284 }
9285 break;
9286 }
9287 }
9288}
9289
72bf9492
DJ
9290/* Adjust PART_DIE before generating a symbol for it. This function
9291 may set the is_external flag or change the DIE's name. */
9292
9293static void
9294fixup_partial_die (struct partial_die_info *part_die,
9295 struct dwarf2_cu *cu)
9296{
abc72ce4
DE
9297 /* Once we've fixed up a die, there's no point in doing so again.
9298 This also avoids a memory leak if we were to call
9299 guess_partial_die_structure_name multiple times. */
9300 if (part_die->fixup_called)
9301 return;
9302
72bf9492
DJ
9303 /* If we found a reference attribute and the DIE has no name, try
9304 to find a name in the referred to DIE. */
9305
9306 if (part_die->name == NULL && part_die->has_specification)
9307 {
9308 struct partial_die_info *spec_die;
72bf9492 9309
10b3939b 9310 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 9311
10b3939b 9312 fixup_partial_die (spec_die, cu);
72bf9492
DJ
9313
9314 if (spec_die->name)
9315 {
9316 part_die->name = spec_die->name;
9317
9318 /* Copy DW_AT_external attribute if it is set. */
9319 if (spec_die->is_external)
9320 part_die->is_external = spec_die->is_external;
9321 }
9322 }
9323
9324 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
9325
9326 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9327 part_die->name = "(anonymous namespace)";
9328
abc72ce4
DE
9329 /* If there is no parent die to provide a namespace, and there are
9330 children, see if we can determine the namespace from their linkage
9331 name.
9332 NOTE: We need to do this even if cu->has_namespace_info != 0.
9333 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9334 if (cu->language == language_cplus
9335 && dwarf2_per_objfile->types.asection != NULL
9336 && part_die->die_parent == NULL
9337 && part_die->has_children
9338 && (part_die->tag == DW_TAG_class_type
9339 || part_die->tag == DW_TAG_structure_type
9340 || part_die->tag == DW_TAG_union_type))
9341 guess_partial_die_structure_name (part_die, cu);
9342
9343 part_die->fixup_called = 1;
72bf9492
DJ
9344}
9345
a8329558 9346/* Read an attribute value described by an attribute form. */
c906108c 9347
fe1b8b76 9348static gdb_byte *
a8329558 9349read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 9350 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 9351 struct dwarf2_cu *cu)
c906108c 9352{
e7c27a73 9353 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9354 unsigned int bytes_read;
9355 struct dwarf_block *blk;
9356
a8329558
KW
9357 attr->form = form;
9358 switch (form)
c906108c 9359 {
c906108c 9360 case DW_FORM_ref_addr:
ae411497
TT
9361 if (cu->header.version == 2)
9362 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9363 else
3e43a32a
MS
9364 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9365 &cu->header, &bytes_read);
ae411497
TT
9366 info_ptr += bytes_read;
9367 break;
9368 case DW_FORM_addr:
e7c27a73 9369 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 9370 info_ptr += bytes_read;
c906108c
SS
9371 break;
9372 case DW_FORM_block2:
7b5a2f43 9373 blk = dwarf_alloc_block (cu);
c906108c
SS
9374 blk->size = read_2_bytes (abfd, info_ptr);
9375 info_ptr += 2;
9376 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9377 info_ptr += blk->size;
9378 DW_BLOCK (attr) = blk;
9379 break;
9380 case DW_FORM_block4:
7b5a2f43 9381 blk = dwarf_alloc_block (cu);
c906108c
SS
9382 blk->size = read_4_bytes (abfd, info_ptr);
9383 info_ptr += 4;
9384 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9385 info_ptr += blk->size;
9386 DW_BLOCK (attr) = blk;
9387 break;
9388 case DW_FORM_data2:
9389 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9390 info_ptr += 2;
9391 break;
9392 case DW_FORM_data4:
9393 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9394 info_ptr += 4;
9395 break;
9396 case DW_FORM_data8:
9397 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9398 info_ptr += 8;
9399 break;
2dc7f7b3
TT
9400 case DW_FORM_sec_offset:
9401 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9402 info_ptr += bytes_read;
9403 break;
c906108c 9404 case DW_FORM_string:
9b1c24c8 9405 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 9406 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
9407 info_ptr += bytes_read;
9408 break;
4bdf3d34
JJ
9409 case DW_FORM_strp:
9410 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9411 &bytes_read);
8285870a 9412 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
9413 info_ptr += bytes_read;
9414 break;
2dc7f7b3 9415 case DW_FORM_exprloc:
c906108c 9416 case DW_FORM_block:
7b5a2f43 9417 blk = dwarf_alloc_block (cu);
c906108c
SS
9418 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9419 info_ptr += bytes_read;
9420 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9421 info_ptr += blk->size;
9422 DW_BLOCK (attr) = blk;
9423 break;
9424 case DW_FORM_block1:
7b5a2f43 9425 blk = dwarf_alloc_block (cu);
c906108c
SS
9426 blk->size = read_1_byte (abfd, info_ptr);
9427 info_ptr += 1;
9428 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9429 info_ptr += blk->size;
9430 DW_BLOCK (attr) = blk;
9431 break;
9432 case DW_FORM_data1:
9433 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9434 info_ptr += 1;
9435 break;
9436 case DW_FORM_flag:
9437 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9438 info_ptr += 1;
9439 break;
2dc7f7b3
TT
9440 case DW_FORM_flag_present:
9441 DW_UNSND (attr) = 1;
9442 break;
c906108c
SS
9443 case DW_FORM_sdata:
9444 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9445 info_ptr += bytes_read;
9446 break;
9447 case DW_FORM_udata:
9448 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9449 info_ptr += bytes_read;
9450 break;
9451 case DW_FORM_ref1:
10b3939b 9452 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
9453 info_ptr += 1;
9454 break;
9455 case DW_FORM_ref2:
10b3939b 9456 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
9457 info_ptr += 2;
9458 break;
9459 case DW_FORM_ref4:
10b3939b 9460 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
9461 info_ptr += 4;
9462 break;
613e1657 9463 case DW_FORM_ref8:
10b3939b 9464 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
9465 info_ptr += 8;
9466 break;
348e048f
DE
9467 case DW_FORM_sig8:
9468 /* Convert the signature to something we can record in DW_UNSND
9469 for later lookup.
9470 NOTE: This is NULL if the type wasn't found. */
9471 DW_SIGNATURED_TYPE (attr) =
9472 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9473 info_ptr += 8;
9474 break;
c906108c 9475 case DW_FORM_ref_udata:
10b3939b
DJ
9476 DW_ADDR (attr) = (cu->header.offset
9477 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
9478 info_ptr += bytes_read;
9479 break;
c906108c 9480 case DW_FORM_indirect:
a8329558
KW
9481 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9482 info_ptr += bytes_read;
e7c27a73 9483 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 9484 break;
c906108c 9485 default:
8a3fe4f8 9486 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
9487 dwarf_form_name (form),
9488 bfd_get_filename (abfd));
c906108c 9489 }
28e94949
JB
9490
9491 /* We have seen instances where the compiler tried to emit a byte
9492 size attribute of -1 which ended up being encoded as an unsigned
9493 0xffffffff. Although 0xffffffff is technically a valid size value,
9494 an object of this size seems pretty unlikely so we can relatively
9495 safely treat these cases as if the size attribute was invalid and
9496 treat them as zero by default. */
9497 if (attr->name == DW_AT_byte_size
9498 && form == DW_FORM_data4
9499 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
9500 {
9501 complaint
9502 (&symfile_complaints,
43bbcdc2
PH
9503 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9504 hex_string (DW_UNSND (attr)));
01c66ae6
JB
9505 DW_UNSND (attr) = 0;
9506 }
28e94949 9507
c906108c
SS
9508 return info_ptr;
9509}
9510
a8329558
KW
9511/* Read an attribute described by an abbreviated attribute. */
9512
fe1b8b76 9513static gdb_byte *
a8329558 9514read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 9515 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
9516{
9517 attr->name = abbrev->name;
e7c27a73 9518 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
9519}
9520
0963b4bd 9521/* Read dwarf information from a buffer. */
c906108c
SS
9522
9523static unsigned int
fe1b8b76 9524read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 9525{
fe1b8b76 9526 return bfd_get_8 (abfd, buf);
c906108c
SS
9527}
9528
9529static int
fe1b8b76 9530read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 9531{
fe1b8b76 9532 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
9533}
9534
9535static unsigned int
fe1b8b76 9536read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9537{
fe1b8b76 9538 return bfd_get_16 (abfd, buf);
c906108c
SS
9539}
9540
9541static int
fe1b8b76 9542read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9543{
fe1b8b76 9544 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
9545}
9546
9547static unsigned int
fe1b8b76 9548read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9549{
fe1b8b76 9550 return bfd_get_32 (abfd, buf);
c906108c
SS
9551}
9552
9553static int
fe1b8b76 9554read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9555{
fe1b8b76 9556 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
9557}
9558
93311388 9559static ULONGEST
fe1b8b76 9560read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9561{
fe1b8b76 9562 return bfd_get_64 (abfd, buf);
c906108c
SS
9563}
9564
9565static CORE_ADDR
fe1b8b76 9566read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 9567 unsigned int *bytes_read)
c906108c 9568{
e7c27a73 9569 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9570 CORE_ADDR retval = 0;
9571
107d2387 9572 if (cu_header->signed_addr_p)
c906108c 9573 {
107d2387
AC
9574 switch (cu_header->addr_size)
9575 {
9576 case 2:
fe1b8b76 9577 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
9578 break;
9579 case 4:
fe1b8b76 9580 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
9581 break;
9582 case 8:
fe1b8b76 9583 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
9584 break;
9585 default:
8e65ff28 9586 internal_error (__FILE__, __LINE__,
e2e0b3e5 9587 _("read_address: bad switch, signed [in module %s]"),
659b0389 9588 bfd_get_filename (abfd));
107d2387
AC
9589 }
9590 }
9591 else
9592 {
9593 switch (cu_header->addr_size)
9594 {
9595 case 2:
fe1b8b76 9596 retval = bfd_get_16 (abfd, buf);
107d2387
AC
9597 break;
9598 case 4:
fe1b8b76 9599 retval = bfd_get_32 (abfd, buf);
107d2387
AC
9600 break;
9601 case 8:
fe1b8b76 9602 retval = bfd_get_64 (abfd, buf);
107d2387
AC
9603 break;
9604 default:
8e65ff28 9605 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
9606 _("read_address: bad switch, "
9607 "unsigned [in module %s]"),
659b0389 9608 bfd_get_filename (abfd));
107d2387 9609 }
c906108c 9610 }
64367e0a 9611
107d2387
AC
9612 *bytes_read = cu_header->addr_size;
9613 return retval;
c906108c
SS
9614}
9615
f7ef9339 9616/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
9617 specification allows the initial length to take up either 4 bytes
9618 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9619 bytes describe the length and all offsets will be 8 bytes in length
9620 instead of 4.
9621
f7ef9339
KB
9622 An older, non-standard 64-bit format is also handled by this
9623 function. The older format in question stores the initial length
9624 as an 8-byte quantity without an escape value. Lengths greater
9625 than 2^32 aren't very common which means that the initial 4 bytes
9626 is almost always zero. Since a length value of zero doesn't make
9627 sense for the 32-bit format, this initial zero can be considered to
9628 be an escape value which indicates the presence of the older 64-bit
9629 format. As written, the code can't detect (old format) lengths
917c78fc
MK
9630 greater than 4GB. If it becomes necessary to handle lengths
9631 somewhat larger than 4GB, we could allow other small values (such
9632 as the non-sensical values of 1, 2, and 3) to also be used as
9633 escape values indicating the presence of the old format.
f7ef9339 9634
917c78fc
MK
9635 The value returned via bytes_read should be used to increment the
9636 relevant pointer after calling read_initial_length().
c764a876 9637
613e1657
KB
9638 [ Note: read_initial_length() and read_offset() are based on the
9639 document entitled "DWARF Debugging Information Format", revision
f7ef9339 9640 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
9641 from:
9642
f7ef9339 9643 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 9644
613e1657
KB
9645 This document is only a draft and is subject to change. (So beware.)
9646
f7ef9339 9647 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
9648 determined empirically by examining 64-bit ELF files produced by
9649 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
9650
9651 - Kevin, July 16, 2002
613e1657
KB
9652 ] */
9653
9654static LONGEST
c764a876 9655read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 9656{
fe1b8b76 9657 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 9658
dd373385 9659 if (length == 0xffffffff)
613e1657 9660 {
fe1b8b76 9661 length = bfd_get_64 (abfd, buf + 4);
613e1657 9662 *bytes_read = 12;
613e1657 9663 }
dd373385 9664 else if (length == 0)
f7ef9339 9665 {
dd373385 9666 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 9667 length = bfd_get_64 (abfd, buf);
f7ef9339 9668 *bytes_read = 8;
f7ef9339 9669 }
613e1657
KB
9670 else
9671 {
9672 *bytes_read = 4;
613e1657
KB
9673 }
9674
c764a876
DE
9675 return length;
9676}
dd373385 9677
c764a876
DE
9678/* Cover function for read_initial_length.
9679 Returns the length of the object at BUF, and stores the size of the
9680 initial length in *BYTES_READ and stores the size that offsets will be in
9681 *OFFSET_SIZE.
9682 If the initial length size is not equivalent to that specified in
9683 CU_HEADER then issue a complaint.
9684 This is useful when reading non-comp-unit headers. */
dd373385 9685
c764a876
DE
9686static LONGEST
9687read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9688 const struct comp_unit_head *cu_header,
9689 unsigned int *bytes_read,
9690 unsigned int *offset_size)
9691{
9692 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9693
9694 gdb_assert (cu_header->initial_length_size == 4
9695 || cu_header->initial_length_size == 8
9696 || cu_header->initial_length_size == 12);
9697
9698 if (cu_header->initial_length_size != *bytes_read)
9699 complaint (&symfile_complaints,
9700 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 9701
c764a876 9702 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 9703 return length;
613e1657
KB
9704}
9705
9706/* Read an offset from the data stream. The size of the offset is
917c78fc 9707 given by cu_header->offset_size. */
613e1657
KB
9708
9709static LONGEST
fe1b8b76 9710read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 9711 unsigned int *bytes_read)
c764a876
DE
9712{
9713 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 9714
c764a876
DE
9715 *bytes_read = cu_header->offset_size;
9716 return offset;
9717}
9718
9719/* Read an offset from the data stream. */
9720
9721static LONGEST
9722read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
9723{
9724 LONGEST retval = 0;
9725
c764a876 9726 switch (offset_size)
613e1657
KB
9727 {
9728 case 4:
fe1b8b76 9729 retval = bfd_get_32 (abfd, buf);
613e1657
KB
9730 break;
9731 case 8:
fe1b8b76 9732 retval = bfd_get_64 (abfd, buf);
613e1657
KB
9733 break;
9734 default:
8e65ff28 9735 internal_error (__FILE__, __LINE__,
c764a876 9736 _("read_offset_1: bad switch [in module %s]"),
659b0389 9737 bfd_get_filename (abfd));
613e1657
KB
9738 }
9739
917c78fc 9740 return retval;
613e1657
KB
9741}
9742
fe1b8b76
JB
9743static gdb_byte *
9744read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
9745{
9746 /* If the size of a host char is 8 bits, we can return a pointer
9747 to the buffer, otherwise we have to copy the data to a buffer
9748 allocated on the temporary obstack. */
4bdf3d34 9749 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 9750 return buf;
c906108c
SS
9751}
9752
9753static char *
9b1c24c8 9754read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
9755{
9756 /* If the size of a host char is 8 bits, we can return a pointer
9757 to the string, otherwise we have to copy the string to a buffer
9758 allocated on the temporary obstack. */
4bdf3d34 9759 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
9760 if (*buf == '\0')
9761 {
9762 *bytes_read_ptr = 1;
9763 return NULL;
9764 }
fe1b8b76
JB
9765 *bytes_read_ptr = strlen ((char *) buf) + 1;
9766 return (char *) buf;
4bdf3d34
JJ
9767}
9768
9769static char *
fe1b8b76 9770read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
9771 const struct comp_unit_head *cu_header,
9772 unsigned int *bytes_read_ptr)
9773{
c764a876 9774 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
c906108c 9775
be391dca 9776 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 9777 if (dwarf2_per_objfile->str.buffer == NULL)
c906108c 9778 {
8a3fe4f8 9779 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 9780 bfd_get_filename (abfd));
4bdf3d34 9781 return NULL;
c906108c 9782 }
dce234bc 9783 if (str_offset >= dwarf2_per_objfile->str.size)
c906108c 9784 {
3e43a32a
MS
9785 error (_("DW_FORM_strp pointing outside of "
9786 ".debug_str section [in module %s]"),
9787 bfd_get_filename (abfd));
c906108c
SS
9788 return NULL;
9789 }
4bdf3d34 9790 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 9791 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 9792 return NULL;
dce234bc 9793 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
9794}
9795
ce5d95e1 9796static unsigned long
fe1b8b76 9797read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 9798{
ce5d95e1
JB
9799 unsigned long result;
9800 unsigned int num_read;
c906108c
SS
9801 int i, shift;
9802 unsigned char byte;
9803
9804 result = 0;
9805 shift = 0;
9806 num_read = 0;
9807 i = 0;
9808 while (1)
9809 {
fe1b8b76 9810 byte = bfd_get_8 (abfd, buf);
c906108c
SS
9811 buf++;
9812 num_read++;
ce5d95e1 9813 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
9814 if ((byte & 128) == 0)
9815 {
9816 break;
9817 }
9818 shift += 7;
9819 }
9820 *bytes_read_ptr = num_read;
9821 return result;
9822}
9823
ce5d95e1 9824static long
fe1b8b76 9825read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 9826{
ce5d95e1 9827 long result;
77e0b926 9828 int i, shift, num_read;
c906108c
SS
9829 unsigned char byte;
9830
9831 result = 0;
9832 shift = 0;
c906108c
SS
9833 num_read = 0;
9834 i = 0;
9835 while (1)
9836 {
fe1b8b76 9837 byte = bfd_get_8 (abfd, buf);
c906108c
SS
9838 buf++;
9839 num_read++;
ce5d95e1 9840 result |= ((long)(byte & 127) << shift);
c906108c
SS
9841 shift += 7;
9842 if ((byte & 128) == 0)
9843 {
9844 break;
9845 }
9846 }
77e0b926
DJ
9847 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9848 result |= -(((long)1) << shift);
c906108c
SS
9849 *bytes_read_ptr = num_read;
9850 return result;
9851}
9852
4bb7a0a7
DJ
9853/* Return a pointer to just past the end of an LEB128 number in BUF. */
9854
fe1b8b76
JB
9855static gdb_byte *
9856skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
9857{
9858 int byte;
9859
9860 while (1)
9861 {
fe1b8b76 9862 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
9863 buf++;
9864 if ((byte & 128) == 0)
9865 return buf;
9866 }
9867}
9868
c906108c 9869static void
e142c38c 9870set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
9871{
9872 switch (lang)
9873 {
9874 case DW_LANG_C89:
76bee0cc 9875 case DW_LANG_C99:
c906108c 9876 case DW_LANG_C:
e142c38c 9877 cu->language = language_c;
c906108c
SS
9878 break;
9879 case DW_LANG_C_plus_plus:
e142c38c 9880 cu->language = language_cplus;
c906108c 9881 break;
6aecb9c2
JB
9882 case DW_LANG_D:
9883 cu->language = language_d;
9884 break;
c906108c
SS
9885 case DW_LANG_Fortran77:
9886 case DW_LANG_Fortran90:
b21b22e0 9887 case DW_LANG_Fortran95:
e142c38c 9888 cu->language = language_fortran;
c906108c
SS
9889 break;
9890 case DW_LANG_Mips_Assembler:
e142c38c 9891 cu->language = language_asm;
c906108c 9892 break;
bebd888e 9893 case DW_LANG_Java:
e142c38c 9894 cu->language = language_java;
bebd888e 9895 break;
c906108c 9896 case DW_LANG_Ada83:
8aaf0b47 9897 case DW_LANG_Ada95:
bc5f45f8
JB
9898 cu->language = language_ada;
9899 break;
72019c9c
GM
9900 case DW_LANG_Modula2:
9901 cu->language = language_m2;
9902 break;
fe8e67fd
PM
9903 case DW_LANG_Pascal83:
9904 cu->language = language_pascal;
9905 break;
22566fbd
DJ
9906 case DW_LANG_ObjC:
9907 cu->language = language_objc;
9908 break;
c906108c
SS
9909 case DW_LANG_Cobol74:
9910 case DW_LANG_Cobol85:
c906108c 9911 default:
e142c38c 9912 cu->language = language_minimal;
c906108c
SS
9913 break;
9914 }
e142c38c 9915 cu->language_defn = language_def (cu->language);
c906108c
SS
9916}
9917
9918/* Return the named attribute or NULL if not there. */
9919
9920static struct attribute *
e142c38c 9921dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
9922{
9923 unsigned int i;
9924 struct attribute *spec = NULL;
9925
9926 for (i = 0; i < die->num_attrs; ++i)
9927 {
9928 if (die->attrs[i].name == name)
10b3939b 9929 return &die->attrs[i];
c906108c
SS
9930 if (die->attrs[i].name == DW_AT_specification
9931 || die->attrs[i].name == DW_AT_abstract_origin)
9932 spec = &die->attrs[i];
9933 }
c906108c 9934
10b3939b 9935 if (spec)
f2f0e013
DJ
9936 {
9937 die = follow_die_ref (die, spec, &cu);
9938 return dwarf2_attr (die, name, cu);
9939 }
c5aa993b 9940
c906108c
SS
9941 return NULL;
9942}
9943
348e048f
DE
9944/* Return the named attribute or NULL if not there,
9945 but do not follow DW_AT_specification, etc.
9946 This is for use in contexts where we're reading .debug_types dies.
9947 Following DW_AT_specification, DW_AT_abstract_origin will take us
9948 back up the chain, and we want to go down. */
9949
9950static struct attribute *
9951dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9952 struct dwarf2_cu *cu)
9953{
9954 unsigned int i;
9955
9956 for (i = 0; i < die->num_attrs; ++i)
9957 if (die->attrs[i].name == name)
9958 return &die->attrs[i];
9959
9960 return NULL;
9961}
9962
05cf31d1
JB
9963/* Return non-zero iff the attribute NAME is defined for the given DIE,
9964 and holds a non-zero value. This function should only be used for
2dc7f7b3 9965 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
9966
9967static int
9968dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9969{
9970 struct attribute *attr = dwarf2_attr (die, name, cu);
9971
9972 return (attr && DW_UNSND (attr));
9973}
9974
3ca72b44 9975static int
e142c38c 9976die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 9977{
05cf31d1
JB
9978 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9979 which value is non-zero. However, we have to be careful with
9980 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9981 (via dwarf2_flag_true_p) follows this attribute. So we may
9982 end up accidently finding a declaration attribute that belongs
9983 to a different DIE referenced by the specification attribute,
9984 even though the given DIE does not have a declaration attribute. */
9985 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9986 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
9987}
9988
63d06c5c 9989/* Return the die giving the specification for DIE, if there is
f2f0e013 9990 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
9991 containing the return value on output. If there is no
9992 specification, but there is an abstract origin, that is
9993 returned. */
63d06c5c
DC
9994
9995static struct die_info *
f2f0e013 9996die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 9997{
f2f0e013
DJ
9998 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9999 *spec_cu);
63d06c5c 10000
edb3359d
DJ
10001 if (spec_attr == NULL)
10002 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10003
63d06c5c
DC
10004 if (spec_attr == NULL)
10005 return NULL;
10006 else
f2f0e013 10007 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 10008}
c906108c 10009
debd256d 10010/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
10011 refers to.
10012 NOTE: This is also used as a "cleanup" function. */
10013
debd256d
JB
10014static void
10015free_line_header (struct line_header *lh)
10016{
10017 if (lh->standard_opcode_lengths)
a8bc7b56 10018 xfree (lh->standard_opcode_lengths);
debd256d
JB
10019
10020 /* Remember that all the lh->file_names[i].name pointers are
10021 pointers into debug_line_buffer, and don't need to be freed. */
10022 if (lh->file_names)
a8bc7b56 10023 xfree (lh->file_names);
debd256d
JB
10024
10025 /* Similarly for the include directory names. */
10026 if (lh->include_dirs)
a8bc7b56 10027 xfree (lh->include_dirs);
debd256d 10028
a8bc7b56 10029 xfree (lh);
debd256d
JB
10030}
10031
debd256d 10032/* Add an entry to LH's include directory table. */
ae2de4f8 10033
debd256d
JB
10034static void
10035add_include_dir (struct line_header *lh, char *include_dir)
c906108c 10036{
debd256d
JB
10037 /* Grow the array if necessary. */
10038 if (lh->include_dirs_size == 0)
c5aa993b 10039 {
debd256d
JB
10040 lh->include_dirs_size = 1; /* for testing */
10041 lh->include_dirs = xmalloc (lh->include_dirs_size
10042 * sizeof (*lh->include_dirs));
10043 }
10044 else if (lh->num_include_dirs >= lh->include_dirs_size)
10045 {
10046 lh->include_dirs_size *= 2;
10047 lh->include_dirs = xrealloc (lh->include_dirs,
10048 (lh->include_dirs_size
10049 * sizeof (*lh->include_dirs)));
c5aa993b 10050 }
c906108c 10051
debd256d
JB
10052 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10053}
6e70227d 10054
debd256d 10055/* Add an entry to LH's file name table. */
ae2de4f8 10056
debd256d
JB
10057static void
10058add_file_name (struct line_header *lh,
10059 char *name,
10060 unsigned int dir_index,
10061 unsigned int mod_time,
10062 unsigned int length)
10063{
10064 struct file_entry *fe;
10065
10066 /* Grow the array if necessary. */
10067 if (lh->file_names_size == 0)
10068 {
10069 lh->file_names_size = 1; /* for testing */
10070 lh->file_names = xmalloc (lh->file_names_size
10071 * sizeof (*lh->file_names));
10072 }
10073 else if (lh->num_file_names >= lh->file_names_size)
10074 {
10075 lh->file_names_size *= 2;
10076 lh->file_names = xrealloc (lh->file_names,
10077 (lh->file_names_size
10078 * sizeof (*lh->file_names)));
10079 }
10080
10081 fe = &lh->file_names[lh->num_file_names++];
10082 fe->name = name;
10083 fe->dir_index = dir_index;
10084 fe->mod_time = mod_time;
10085 fe->length = length;
aaa75496 10086 fe->included_p = 0;
cb1df416 10087 fe->symtab = NULL;
debd256d 10088}
6e70227d 10089
debd256d 10090/* Read the statement program header starting at OFFSET in
6502dd73
DJ
10091 .debug_line, according to the endianness of ABFD. Return a pointer
10092 to a struct line_header, allocated using xmalloc.
debd256d
JB
10093
10094 NOTE: the strings in the include directory and file name tables of
10095 the returned object point into debug_line_buffer, and must not be
10096 freed. */
ae2de4f8 10097
debd256d
JB
10098static struct line_header *
10099dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 10100 struct dwarf2_cu *cu)
debd256d
JB
10101{
10102 struct cleanup *back_to;
10103 struct line_header *lh;
fe1b8b76 10104 gdb_byte *line_ptr;
c764a876 10105 unsigned int bytes_read, offset_size;
debd256d
JB
10106 int i;
10107 char *cur_dir, *cur_file;
10108
be391dca 10109 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 10110 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 10111 {
e2e0b3e5 10112 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
10113 return 0;
10114 }
10115
a738430d
MK
10116 /* Make sure that at least there's room for the total_length field.
10117 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 10118 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 10119 {
4d3c2250 10120 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10121 return 0;
10122 }
10123
10124 lh = xmalloc (sizeof (*lh));
10125 memset (lh, 0, sizeof (*lh));
10126 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10127 (void *) lh);
10128
dce234bc 10129 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 10130
a738430d 10131 /* Read in the header. */
6e70227d 10132 lh->total_length =
c764a876
DE
10133 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10134 &bytes_read, &offset_size);
debd256d 10135 line_ptr += bytes_read;
dce234bc
PP
10136 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10137 + dwarf2_per_objfile->line.size))
debd256d 10138 {
4d3c2250 10139 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10140 return 0;
10141 }
10142 lh->statement_program_end = line_ptr + lh->total_length;
10143 lh->version = read_2_bytes (abfd, line_ptr);
10144 line_ptr += 2;
c764a876
DE
10145 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10146 line_ptr += offset_size;
debd256d
JB
10147 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10148 line_ptr += 1;
2dc7f7b3
TT
10149 if (lh->version >= 4)
10150 {
10151 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10152 line_ptr += 1;
10153 }
10154 else
10155 lh->maximum_ops_per_instruction = 1;
10156
10157 if (lh->maximum_ops_per_instruction == 0)
10158 {
10159 lh->maximum_ops_per_instruction = 1;
10160 complaint (&symfile_complaints,
3e43a32a
MS
10161 _("invalid maximum_ops_per_instruction "
10162 "in `.debug_line' section"));
2dc7f7b3
TT
10163 }
10164
debd256d
JB
10165 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10166 line_ptr += 1;
10167 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10168 line_ptr += 1;
10169 lh->line_range = read_1_byte (abfd, line_ptr);
10170 line_ptr += 1;
10171 lh->opcode_base = read_1_byte (abfd, line_ptr);
10172 line_ptr += 1;
10173 lh->standard_opcode_lengths
fe1b8b76 10174 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
10175
10176 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10177 for (i = 1; i < lh->opcode_base; ++i)
10178 {
10179 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10180 line_ptr += 1;
10181 }
10182
a738430d 10183 /* Read directory table. */
9b1c24c8 10184 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10185 {
10186 line_ptr += bytes_read;
10187 add_include_dir (lh, cur_dir);
10188 }
10189 line_ptr += bytes_read;
10190
a738430d 10191 /* Read file name table. */
9b1c24c8 10192 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10193 {
10194 unsigned int dir_index, mod_time, length;
10195
10196 line_ptr += bytes_read;
10197 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10198 line_ptr += bytes_read;
10199 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10200 line_ptr += bytes_read;
10201 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10202 line_ptr += bytes_read;
10203
10204 add_file_name (lh, cur_file, dir_index, mod_time, length);
10205 }
10206 line_ptr += bytes_read;
6e70227d 10207 lh->statement_program_start = line_ptr;
debd256d 10208
dce234bc
PP
10209 if (line_ptr > (dwarf2_per_objfile->line.buffer
10210 + dwarf2_per_objfile->line.size))
4d3c2250 10211 complaint (&symfile_complaints,
3e43a32a
MS
10212 _("line number info header doesn't "
10213 "fit in `.debug_line' section"));
debd256d
JB
10214
10215 discard_cleanups (back_to);
10216 return lh;
10217}
c906108c 10218
5fb290d7
DJ
10219/* This function exists to work around a bug in certain compilers
10220 (particularly GCC 2.95), in which the first line number marker of a
10221 function does not show up until after the prologue, right before
10222 the second line number marker. This function shifts ADDRESS down
10223 to the beginning of the function if necessary, and is called on
10224 addresses passed to record_line. */
10225
10226static CORE_ADDR
e142c38c 10227check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
10228{
10229 struct function_range *fn;
10230
10231 /* Find the function_range containing address. */
e142c38c 10232 if (!cu->first_fn)
5fb290d7
DJ
10233 return address;
10234
e142c38c
DJ
10235 if (!cu->cached_fn)
10236 cu->cached_fn = cu->first_fn;
5fb290d7 10237
e142c38c 10238 fn = cu->cached_fn;
5fb290d7
DJ
10239 while (fn)
10240 if (fn->lowpc <= address && fn->highpc > address)
10241 goto found;
10242 else
10243 fn = fn->next;
10244
e142c38c
DJ
10245 fn = cu->first_fn;
10246 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
10247 if (fn->lowpc <= address && fn->highpc > address)
10248 goto found;
10249 else
10250 fn = fn->next;
10251
10252 return address;
10253
10254 found:
10255 if (fn->seen_line)
10256 return address;
10257 if (address != fn->lowpc)
4d3c2250 10258 complaint (&symfile_complaints,
e2e0b3e5 10259 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 10260 (unsigned long) address, fn->name);
5fb290d7
DJ
10261 fn->seen_line = 1;
10262 return fn->lowpc;
10263}
10264
c6da4cef
DE
10265/* Subroutine of dwarf_decode_lines to simplify it.
10266 Return the file name of the psymtab for included file FILE_INDEX
10267 in line header LH of PST.
10268 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10269 If space for the result is malloc'd, it will be freed by a cleanup.
10270 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10271
10272static char *
10273psymtab_include_file_name (const struct line_header *lh, int file_index,
10274 const struct partial_symtab *pst,
10275 const char *comp_dir)
10276{
10277 const struct file_entry fe = lh->file_names [file_index];
10278 char *include_name = fe.name;
10279 char *include_name_to_compare = include_name;
10280 char *dir_name = NULL;
72b9f47f
TT
10281 const char *pst_filename;
10282 char *copied_name = NULL;
c6da4cef
DE
10283 int file_is_pst;
10284
10285 if (fe.dir_index)
10286 dir_name = lh->include_dirs[fe.dir_index - 1];
10287
10288 if (!IS_ABSOLUTE_PATH (include_name)
10289 && (dir_name != NULL || comp_dir != NULL))
10290 {
10291 /* Avoid creating a duplicate psymtab for PST.
10292 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10293 Before we do the comparison, however, we need to account
10294 for DIR_NAME and COMP_DIR.
10295 First prepend dir_name (if non-NULL). If we still don't
10296 have an absolute path prepend comp_dir (if non-NULL).
10297 However, the directory we record in the include-file's
10298 psymtab does not contain COMP_DIR (to match the
10299 corresponding symtab(s)).
10300
10301 Example:
10302
10303 bash$ cd /tmp
10304 bash$ gcc -g ./hello.c
10305 include_name = "hello.c"
10306 dir_name = "."
10307 DW_AT_comp_dir = comp_dir = "/tmp"
10308 DW_AT_name = "./hello.c" */
10309
10310 if (dir_name != NULL)
10311 {
10312 include_name = concat (dir_name, SLASH_STRING,
10313 include_name, (char *)NULL);
10314 include_name_to_compare = include_name;
10315 make_cleanup (xfree, include_name);
10316 }
10317 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10318 {
10319 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10320 include_name, (char *)NULL);
10321 }
10322 }
10323
10324 pst_filename = pst->filename;
10325 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10326 {
72b9f47f
TT
10327 copied_name = concat (pst->dirname, SLASH_STRING,
10328 pst_filename, (char *)NULL);
10329 pst_filename = copied_name;
c6da4cef
DE
10330 }
10331
1e3fad37 10332 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef
DE
10333
10334 if (include_name_to_compare != include_name)
10335 xfree (include_name_to_compare);
72b9f47f
TT
10336 if (copied_name != NULL)
10337 xfree (copied_name);
c6da4cef
DE
10338
10339 if (file_is_pst)
10340 return NULL;
10341 return include_name;
10342}
10343
aaa75496
JB
10344/* Decode the Line Number Program (LNP) for the given line_header
10345 structure and CU. The actual information extracted and the type
10346 of structures created from the LNP depends on the value of PST.
10347
10348 1. If PST is NULL, then this procedure uses the data from the program
10349 to create all necessary symbol tables, and their linetables.
6e70227d 10350
aaa75496
JB
10351 2. If PST is not NULL, this procedure reads the program to determine
10352 the list of files included by the unit represented by PST, and
c6da4cef
DE
10353 builds all the associated partial symbol tables.
10354
10355 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10356 It is used for relative paths in the line table.
10357 NOTE: When processing partial symtabs (pst != NULL),
10358 comp_dir == pst->dirname.
10359
10360 NOTE: It is important that psymtabs have the same file name (via strcmp)
10361 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10362 symtab we don't use it in the name of the psymtabs we create.
10363 E.g. expand_line_sal requires this when finding psymtabs to expand.
10364 A good testcase for this is mb-inline.exp. */
debd256d 10365
c906108c 10366static void
72b9f47f 10367dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
aaa75496 10368 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 10369{
a8c50c1f 10370 gdb_byte *line_ptr, *extended_end;
fe1b8b76 10371 gdb_byte *line_end;
a8c50c1f 10372 unsigned int bytes_read, extended_len;
c906108c 10373 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
10374 CORE_ADDR baseaddr;
10375 struct objfile *objfile = cu->objfile;
fbf65064 10376 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 10377 const int decode_for_pst_p = (pst != NULL);
cb1df416 10378 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
10379
10380 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10381
debd256d
JB
10382 line_ptr = lh->statement_program_start;
10383 line_end = lh->statement_program_end;
c906108c
SS
10384
10385 /* Read the statement sequences until there's nothing left. */
10386 while (line_ptr < line_end)
10387 {
10388 /* state machine registers */
10389 CORE_ADDR address = 0;
10390 unsigned int file = 1;
10391 unsigned int line = 1;
10392 unsigned int column = 0;
debd256d 10393 int is_stmt = lh->default_is_stmt;
c906108c
SS
10394 int basic_block = 0;
10395 int end_sequence = 0;
fbf65064 10396 CORE_ADDR addr;
2dc7f7b3 10397 unsigned char op_index = 0;
c906108c 10398
aaa75496 10399 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 10400 {
aaa75496 10401 /* Start a subfile for the current file of the state machine. */
debd256d
JB
10402 /* lh->include_dirs and lh->file_names are 0-based, but the
10403 directory and file name numbers in the statement program
10404 are 1-based. */
10405 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 10406 char *dir = NULL;
a738430d 10407
debd256d
JB
10408 if (fe->dir_index)
10409 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
10410
10411 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
10412 }
10413
a738430d 10414 /* Decode the table. */
c5aa993b 10415 while (!end_sequence)
c906108c
SS
10416 {
10417 op_code = read_1_byte (abfd, line_ptr);
10418 line_ptr += 1;
59205f5a
JB
10419 if (line_ptr > line_end)
10420 {
10421 dwarf2_debug_line_missing_end_sequence_complaint ();
10422 break;
10423 }
9aa1fe7e 10424
debd256d 10425 if (op_code >= lh->opcode_base)
6e70227d 10426 {
a738430d 10427 /* Special operand. */
debd256d 10428 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
10429 address += (((op_index + (adj_opcode / lh->line_range))
10430 / lh->maximum_ops_per_instruction)
10431 * lh->minimum_instruction_length);
10432 op_index = ((op_index + (adj_opcode / lh->line_range))
10433 % lh->maximum_ops_per_instruction);
debd256d 10434 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 10435 if (lh->num_file_names < file || file == 0)
25e43795 10436 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
10437 /* For now we ignore lines not starting on an
10438 instruction boundary. */
10439 else if (op_index == 0)
25e43795
DJ
10440 {
10441 lh->file_names[file - 1].included_p = 1;
ca5f395d 10442 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10443 {
10444 if (last_subfile != current_subfile)
10445 {
10446 addr = gdbarch_addr_bits_remove (gdbarch, address);
10447 if (last_subfile)
10448 record_line (last_subfile, 0, addr);
10449 last_subfile = current_subfile;
10450 }
25e43795 10451 /* Append row to matrix using current values. */
fbf65064
UW
10452 addr = check_cu_functions (address, cu);
10453 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10454 record_line (current_subfile, line, addr);
366da635 10455 }
25e43795 10456 }
ca5f395d 10457 basic_block = 0;
9aa1fe7e
GK
10458 }
10459 else switch (op_code)
c906108c
SS
10460 {
10461 case DW_LNS_extended_op:
3e43a32a
MS
10462 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10463 &bytes_read);
473b7be6 10464 line_ptr += bytes_read;
a8c50c1f 10465 extended_end = line_ptr + extended_len;
c906108c
SS
10466 extended_op = read_1_byte (abfd, line_ptr);
10467 line_ptr += 1;
10468 switch (extended_op)
10469 {
10470 case DW_LNE_end_sequence:
10471 end_sequence = 1;
c906108c
SS
10472 break;
10473 case DW_LNE_set_address:
e7c27a73 10474 address = read_address (abfd, line_ptr, cu, &bytes_read);
2dc7f7b3 10475 op_index = 0;
107d2387
AC
10476 line_ptr += bytes_read;
10477 address += baseaddr;
c906108c
SS
10478 break;
10479 case DW_LNE_define_file:
debd256d
JB
10480 {
10481 char *cur_file;
10482 unsigned int dir_index, mod_time, length;
6e70227d 10483
3e43a32a
MS
10484 cur_file = read_direct_string (abfd, line_ptr,
10485 &bytes_read);
debd256d
JB
10486 line_ptr += bytes_read;
10487 dir_index =
10488 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10489 line_ptr += bytes_read;
10490 mod_time =
10491 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10492 line_ptr += bytes_read;
10493 length =
10494 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10495 line_ptr += bytes_read;
10496 add_file_name (lh, cur_file, dir_index, mod_time, length);
10497 }
c906108c 10498 break;
d0c6ba3d
CC
10499 case DW_LNE_set_discriminator:
10500 /* The discriminator is not interesting to the debugger;
10501 just ignore it. */
10502 line_ptr = extended_end;
10503 break;
c906108c 10504 default:
4d3c2250 10505 complaint (&symfile_complaints,
e2e0b3e5 10506 _("mangled .debug_line section"));
debd256d 10507 return;
c906108c 10508 }
a8c50c1f
DJ
10509 /* Make sure that we parsed the extended op correctly. If e.g.
10510 we expected a different address size than the producer used,
10511 we may have read the wrong number of bytes. */
10512 if (line_ptr != extended_end)
10513 {
10514 complaint (&symfile_complaints,
10515 _("mangled .debug_line section"));
10516 return;
10517 }
c906108c
SS
10518 break;
10519 case DW_LNS_copy:
59205f5a 10520 if (lh->num_file_names < file || file == 0)
25e43795
DJ
10521 dwarf2_debug_line_missing_file_complaint ();
10522 else
366da635 10523 {
25e43795 10524 lh->file_names[file - 1].included_p = 1;
ca5f395d 10525 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10526 {
10527 if (last_subfile != current_subfile)
10528 {
10529 addr = gdbarch_addr_bits_remove (gdbarch, address);
10530 if (last_subfile)
10531 record_line (last_subfile, 0, addr);
10532 last_subfile = current_subfile;
10533 }
10534 addr = check_cu_functions (address, cu);
10535 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10536 record_line (current_subfile, line, addr);
10537 }
366da635 10538 }
c906108c
SS
10539 basic_block = 0;
10540 break;
10541 case DW_LNS_advance_pc:
2dc7f7b3
TT
10542 {
10543 CORE_ADDR adjust
10544 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10545
10546 address += (((op_index + adjust)
10547 / lh->maximum_ops_per_instruction)
10548 * lh->minimum_instruction_length);
10549 op_index = ((op_index + adjust)
10550 % lh->maximum_ops_per_instruction);
10551 line_ptr += bytes_read;
10552 }
c906108c
SS
10553 break;
10554 case DW_LNS_advance_line:
10555 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10556 line_ptr += bytes_read;
10557 break;
10558 case DW_LNS_set_file:
debd256d 10559 {
a738430d
MK
10560 /* The arrays lh->include_dirs and lh->file_names are
10561 0-based, but the directory and file name numbers in
10562 the statement program are 1-based. */
debd256d 10563 struct file_entry *fe;
4f1520fb 10564 char *dir = NULL;
a738430d 10565
debd256d
JB
10566 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10567 line_ptr += bytes_read;
59205f5a 10568 if (lh->num_file_names < file || file == 0)
25e43795
DJ
10569 dwarf2_debug_line_missing_file_complaint ();
10570 else
10571 {
10572 fe = &lh->file_names[file - 1];
10573 if (fe->dir_index)
10574 dir = lh->include_dirs[fe->dir_index - 1];
10575 if (!decode_for_pst_p)
10576 {
10577 last_subfile = current_subfile;
10578 dwarf2_start_subfile (fe->name, dir, comp_dir);
10579 }
10580 }
debd256d 10581 }
c906108c
SS
10582 break;
10583 case DW_LNS_set_column:
10584 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10585 line_ptr += bytes_read;
10586 break;
10587 case DW_LNS_negate_stmt:
10588 is_stmt = (!is_stmt);
10589 break;
10590 case DW_LNS_set_basic_block:
10591 basic_block = 1;
10592 break;
c2c6d25f
JM
10593 /* Add to the address register of the state machine the
10594 address increment value corresponding to special opcode
a738430d
MK
10595 255. I.e., this value is scaled by the minimum
10596 instruction length since special opcode 255 would have
b021a221 10597 scaled the increment. */
c906108c 10598 case DW_LNS_const_add_pc:
2dc7f7b3
TT
10599 {
10600 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10601
10602 address += (((op_index + adjust)
10603 / lh->maximum_ops_per_instruction)
10604 * lh->minimum_instruction_length);
10605 op_index = ((op_index + adjust)
10606 % lh->maximum_ops_per_instruction);
10607 }
c906108c
SS
10608 break;
10609 case DW_LNS_fixed_advance_pc:
10610 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 10611 op_index = 0;
c906108c
SS
10612 line_ptr += 2;
10613 break;
9aa1fe7e 10614 default:
a738430d
MK
10615 {
10616 /* Unknown standard opcode, ignore it. */
9aa1fe7e 10617 int i;
a738430d 10618
debd256d 10619 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
10620 {
10621 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10622 line_ptr += bytes_read;
10623 }
10624 }
c906108c
SS
10625 }
10626 }
59205f5a
JB
10627 if (lh->num_file_names < file || file == 0)
10628 dwarf2_debug_line_missing_file_complaint ();
10629 else
10630 {
10631 lh->file_names[file - 1].included_p = 1;
10632 if (!decode_for_pst_p)
fbf65064
UW
10633 {
10634 addr = gdbarch_addr_bits_remove (gdbarch, address);
10635 record_line (current_subfile, 0, addr);
10636 }
59205f5a 10637 }
c906108c 10638 }
aaa75496
JB
10639
10640 if (decode_for_pst_p)
10641 {
10642 int file_index;
10643
10644 /* Now that we're done scanning the Line Header Program, we can
10645 create the psymtab of each included file. */
10646 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10647 if (lh->file_names[file_index].included_p == 1)
10648 {
c6da4cef
DE
10649 char *include_name =
10650 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10651 if (include_name != NULL)
aaa75496
JB
10652 dwarf2_create_include_psymtab (include_name, pst, objfile);
10653 }
10654 }
cb1df416
DJ
10655 else
10656 {
10657 /* Make sure a symtab is created for every file, even files
10658 which contain only variables (i.e. no code with associated
10659 line numbers). */
10660
10661 int i;
10662 struct file_entry *fe;
10663
10664 for (i = 0; i < lh->num_file_names; i++)
10665 {
10666 char *dir = NULL;
9a619af0 10667
cb1df416
DJ
10668 fe = &lh->file_names[i];
10669 if (fe->dir_index)
10670 dir = lh->include_dirs[fe->dir_index - 1];
10671 dwarf2_start_subfile (fe->name, dir, comp_dir);
10672
10673 /* Skip the main file; we don't need it, and it must be
10674 allocated last, so that it will show up before the
10675 non-primary symtabs in the objfile's symtab list. */
10676 if (current_subfile == first_subfile)
10677 continue;
10678
10679 if (current_subfile->symtab == NULL)
10680 current_subfile->symtab = allocate_symtab (current_subfile->name,
10681 cu->objfile);
10682 fe->symtab = current_subfile->symtab;
10683 }
10684 }
c906108c
SS
10685}
10686
10687/* Start a subfile for DWARF. FILENAME is the name of the file and
10688 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
10689 or NULL if not known. COMP_DIR is the compilation directory for the
10690 linetable's compilation unit or NULL if not known.
c906108c
SS
10691 This routine tries to keep line numbers from identical absolute and
10692 relative file names in a common subfile.
10693
10694 Using the `list' example from the GDB testsuite, which resides in
10695 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10696 of /srcdir/list0.c yields the following debugging information for list0.c:
10697
c5aa993b
JM
10698 DW_AT_name: /srcdir/list0.c
10699 DW_AT_comp_dir: /compdir
357e46e7 10700 files.files[0].name: list0.h
c5aa993b 10701 files.files[0].dir: /srcdir
357e46e7 10702 files.files[1].name: list0.c
c5aa993b 10703 files.files[1].dir: /srcdir
c906108c
SS
10704
10705 The line number information for list0.c has to end up in a single
4f1520fb
FR
10706 subfile, so that `break /srcdir/list0.c:1' works as expected.
10707 start_subfile will ensure that this happens provided that we pass the
10708 concatenation of files.files[1].dir and files.files[1].name as the
10709 subfile's name. */
c906108c
SS
10710
10711static void
3e43a32a
MS
10712dwarf2_start_subfile (char *filename, const char *dirname,
10713 const char *comp_dir)
c906108c 10714{
4f1520fb
FR
10715 char *fullname;
10716
10717 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10718 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10719 second argument to start_subfile. To be consistent, we do the
10720 same here. In order not to lose the line information directory,
10721 we concatenate it to the filename when it makes sense.
10722 Note that the Dwarf3 standard says (speaking of filenames in line
10723 information): ``The directory index is ignored for file names
10724 that represent full path names''. Thus ignoring dirname in the
10725 `else' branch below isn't an issue. */
c906108c 10726
d5166ae1 10727 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
10728 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10729 else
10730 fullname = filename;
c906108c 10731
4f1520fb
FR
10732 start_subfile (fullname, comp_dir);
10733
10734 if (fullname != filename)
10735 xfree (fullname);
c906108c
SS
10736}
10737
4c2df51b
DJ
10738static void
10739var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 10740 struct dwarf2_cu *cu)
4c2df51b 10741{
e7c27a73
DJ
10742 struct objfile *objfile = cu->objfile;
10743 struct comp_unit_head *cu_header = &cu->header;
10744
4c2df51b
DJ
10745 /* NOTE drow/2003-01-30: There used to be a comment and some special
10746 code here to turn a symbol with DW_AT_external and a
10747 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10748 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10749 with some versions of binutils) where shared libraries could have
10750 relocations against symbols in their debug information - the
10751 minimal symbol would have the right address, but the debug info
10752 would not. It's no longer necessary, because we will explicitly
10753 apply relocations when we read in the debug information now. */
10754
10755 /* A DW_AT_location attribute with no contents indicates that a
10756 variable has been optimized away. */
10757 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10758 {
10759 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10760 return;
10761 }
10762
10763 /* Handle one degenerate form of location expression specially, to
10764 preserve GDB's previous behavior when section offsets are
10765 specified. If this is just a DW_OP_addr then mark this symbol
10766 as LOC_STATIC. */
10767
10768 if (attr_form_is_block (attr)
10769 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10770 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10771 {
891d2f0b 10772 unsigned int dummy;
4c2df51b
DJ
10773
10774 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 10775 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 10776 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
10777 fixup_symbol_section (sym, objfile);
10778 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10779 SYMBOL_SECTION (sym));
4c2df51b
DJ
10780 return;
10781 }
10782
10783 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10784 expression evaluator, and use LOC_COMPUTED only when necessary
10785 (i.e. when the value of a register or memory location is
10786 referenced, or a thread-local block, etc.). Then again, it might
10787 not be worthwhile. I'm assuming that it isn't unless performance
10788 or memory numbers show me otherwise. */
10789
e7c27a73 10790 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
10791 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10792}
10793
c906108c
SS
10794/* Given a pointer to a DWARF information entry, figure out if we need
10795 to make a symbol table entry for it, and if so, create a new entry
10796 and return a pointer to it.
10797 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
10798 used the passed type.
10799 If SPACE is not NULL, use it to hold the new symbol. If it is
10800 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
10801
10802static struct symbol *
34eaf542
TT
10803new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10804 struct symbol *space)
c906108c 10805{
e7c27a73 10806 struct objfile *objfile = cu->objfile;
c906108c
SS
10807 struct symbol *sym = NULL;
10808 char *name;
10809 struct attribute *attr = NULL;
10810 struct attribute *attr2 = NULL;
e142c38c 10811 CORE_ADDR baseaddr;
e37fd15a
SW
10812 struct pending **list_to_add = NULL;
10813
edb3359d 10814 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
10815
10816 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10817
94af9270 10818 name = dwarf2_name (die, cu);
c906108c
SS
10819 if (name)
10820 {
94af9270 10821 const char *linkagename;
34eaf542 10822 int suppress_add = 0;
94af9270 10823
34eaf542
TT
10824 if (space)
10825 sym = space;
10826 else
10827 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
c906108c 10828 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
10829
10830 /* Cache this symbol's name and the name's demangled form (if any). */
33e5013e 10831 SYMBOL_SET_LANGUAGE (sym, cu->language);
94af9270
KS
10832 linkagename = dwarf2_physname (name, die, cu);
10833 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 10834
f55ee35c
JK
10835 /* Fortran does not have mangling standard and the mangling does differ
10836 between gfortran, iFort etc. */
10837 if (cu->language == language_fortran
b250c185 10838 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d
SW
10839 symbol_set_demangled_name (&(sym->ginfo),
10840 (char *) dwarf2_full_name (name, die, cu),
10841 NULL);
f55ee35c 10842
c906108c 10843 /* Default assumptions.
c5aa993b 10844 Use the passed type or decode it from the die. */
176620f1 10845 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 10846 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
10847 if (type != NULL)
10848 SYMBOL_TYPE (sym) = type;
10849 else
e7c27a73 10850 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
10851 attr = dwarf2_attr (die,
10852 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10853 cu);
c906108c
SS
10854 if (attr)
10855 {
10856 SYMBOL_LINE (sym) = DW_UNSND (attr);
10857 }
cb1df416 10858
edb3359d
DJ
10859 attr = dwarf2_attr (die,
10860 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10861 cu);
cb1df416
DJ
10862 if (attr)
10863 {
10864 int file_index = DW_UNSND (attr);
9a619af0 10865
cb1df416
DJ
10866 if (cu->line_header == NULL
10867 || file_index > cu->line_header->num_file_names)
10868 complaint (&symfile_complaints,
10869 _("file index out of range"));
1c3d648d 10870 else if (file_index > 0)
cb1df416
DJ
10871 {
10872 struct file_entry *fe;
9a619af0 10873
cb1df416
DJ
10874 fe = &cu->line_header->file_names[file_index - 1];
10875 SYMBOL_SYMTAB (sym) = fe->symtab;
10876 }
10877 }
10878
c906108c
SS
10879 switch (die->tag)
10880 {
10881 case DW_TAG_label:
e142c38c 10882 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
10883 if (attr)
10884 {
10885 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10886 }
0f5238ed
TT
10887 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10888 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
c906108c 10889 SYMBOL_CLASS (sym) = LOC_LABEL;
0f5238ed 10890 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
10891 break;
10892 case DW_TAG_subprogram:
10893 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10894 finish_block. */
10895 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 10896 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
10897 if ((attr2 && (DW_UNSND (attr2) != 0))
10898 || cu->language == language_ada)
c906108c 10899 {
2cfa0c8d
JB
10900 /* Subprograms marked external are stored as a global symbol.
10901 Ada subprograms, whether marked external or not, are always
10902 stored as a global symbol, because we want to be able to
10903 access them globally. For instance, we want to be able
10904 to break on a nested subprogram without having to
10905 specify the context. */
e37fd15a 10906 list_to_add = &global_symbols;
c906108c
SS
10907 }
10908 else
10909 {
e37fd15a 10910 list_to_add = cu->list_in_scope;
c906108c
SS
10911 }
10912 break;
edb3359d
DJ
10913 case DW_TAG_inlined_subroutine:
10914 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10915 finish_block. */
10916 SYMBOL_CLASS (sym) = LOC_BLOCK;
10917 SYMBOL_INLINED (sym) = 1;
10918 /* Do not add the symbol to any lists. It will be found via
10919 BLOCK_FUNCTION from the blockvector. */
10920 break;
34eaf542
TT
10921 case DW_TAG_template_value_param:
10922 suppress_add = 1;
10923 /* Fall through. */
72929c62 10924 case DW_TAG_constant:
c906108c 10925 case DW_TAG_variable:
254e6b9e 10926 case DW_TAG_member:
0963b4bd
MS
10927 /* Compilation with minimal debug info may result in
10928 variables with missing type entries. Change the
10929 misleading `void' type to something sensible. */
c906108c 10930 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 10931 SYMBOL_TYPE (sym)
46bf5051 10932 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 10933
e142c38c 10934 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
10935 /* In the case of DW_TAG_member, we should only be called for
10936 static const members. */
10937 if (die->tag == DW_TAG_member)
10938 {
3863f96c
DE
10939 /* dwarf2_add_field uses die_is_declaration,
10940 so we do the same. */
254e6b9e
DE
10941 gdb_assert (die_is_declaration (die, cu));
10942 gdb_assert (attr);
10943 }
c906108c
SS
10944 if (attr)
10945 {
e7c27a73 10946 dwarf2_const_value (attr, sym, cu);
e142c38c 10947 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 10948 if (!suppress_add)
34eaf542
TT
10949 {
10950 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 10951 list_to_add = &global_symbols;
34eaf542 10952 else
e37fd15a 10953 list_to_add = cu->list_in_scope;
34eaf542 10954 }
c906108c
SS
10955 break;
10956 }
e142c38c 10957 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
10958 if (attr)
10959 {
e7c27a73 10960 var_decode_location (attr, sym, cu);
e142c38c 10961 attr2 = dwarf2_attr (die, DW_AT_external, cu);
caac4577
JG
10962 if (SYMBOL_CLASS (sym) == LOC_STATIC
10963 && SYMBOL_VALUE_ADDRESS (sym) == 0
10964 && !dwarf2_per_objfile->has_section_at_zero)
10965 {
10966 /* When a static variable is eliminated by the linker,
10967 the corresponding debug information is not stripped
10968 out, but the variable address is set to null;
10969 do not add such variables into symbol table. */
10970 }
10971 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 10972 {
f55ee35c
JK
10973 /* Workaround gfortran PR debug/40040 - it uses
10974 DW_AT_location for variables in -fPIC libraries which may
10975 get overriden by other libraries/executable and get
10976 a different address. Resolve it by the minimal symbol
10977 which may come from inferior's executable using copy
10978 relocation. Make this workaround only for gfortran as for
10979 other compilers GDB cannot guess the minimal symbol
10980 Fortran mangling kind. */
10981 if (cu->language == language_fortran && die->parent
10982 && die->parent->tag == DW_TAG_module
10983 && cu->producer
10984 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10985 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10986
1c809c68
TT
10987 /* A variable with DW_AT_external is never static,
10988 but it may be block-scoped. */
10989 list_to_add = (cu->list_in_scope == &file_symbols
10990 ? &global_symbols : cu->list_in_scope);
1c809c68 10991 }
c906108c 10992 else
e37fd15a 10993 list_to_add = cu->list_in_scope;
c906108c
SS
10994 }
10995 else
10996 {
10997 /* We do not know the address of this symbol.
c5aa993b
JM
10998 If it is an external symbol and we have type information
10999 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11000 The address of the variable will then be determined from
11001 the minimal symbol table whenever the variable is
11002 referenced. */
e142c38c 11003 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 11004 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 11005 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 11006 {
0fe7935b
DJ
11007 /* A variable with DW_AT_external is never static, but it
11008 may be block-scoped. */
11009 list_to_add = (cu->list_in_scope == &file_symbols
11010 ? &global_symbols : cu->list_in_scope);
11011
c906108c 11012 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
c906108c 11013 }
442ddf59
JK
11014 else if (!die_is_declaration (die, cu))
11015 {
11016 /* Use the default LOC_OPTIMIZED_OUT class. */
11017 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
11018 if (!suppress_add)
11019 list_to_add = cu->list_in_scope;
442ddf59 11020 }
c906108c
SS
11021 }
11022 break;
11023 case DW_TAG_formal_parameter:
edb3359d
DJ
11024 /* If we are inside a function, mark this as an argument. If
11025 not, we might be looking at an argument to an inlined function
11026 when we do not have enough information to show inlined frames;
11027 pretend it's a local variable in that case so that the user can
11028 still see it. */
11029 if (context_stack_depth > 0
11030 && context_stack[context_stack_depth - 1].name != NULL)
11031 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 11032 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
11033 if (attr)
11034 {
e7c27a73 11035 var_decode_location (attr, sym, cu);
c906108c 11036 }
e142c38c 11037 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
11038 if (attr)
11039 {
e7c27a73 11040 dwarf2_const_value (attr, sym, cu);
c906108c 11041 }
f346a30d
PM
11042 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
11043 if (attr && DW_UNSND (attr))
11044 {
11045 struct type *ref_type;
11046
11047 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
11048 SYMBOL_TYPE (sym) = ref_type;
11049 }
11050
e37fd15a 11051 list_to_add = cu->list_in_scope;
c906108c
SS
11052 break;
11053 case DW_TAG_unspecified_parameters:
11054 /* From varargs functions; gdb doesn't seem to have any
11055 interest in this information, so just ignore it for now.
11056 (FIXME?) */
11057 break;
34eaf542
TT
11058 case DW_TAG_template_type_param:
11059 suppress_add = 1;
11060 /* Fall through. */
c906108c 11061 case DW_TAG_class_type:
680b30c7 11062 case DW_TAG_interface_type:
c906108c
SS
11063 case DW_TAG_structure_type:
11064 case DW_TAG_union_type:
72019c9c 11065 case DW_TAG_set_type:
c906108c
SS
11066 case DW_TAG_enumeration_type:
11067 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11068 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 11069
63d06c5c 11070 {
987504bb 11071 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
11072 really ever be static objects: otherwise, if you try
11073 to, say, break of a class's method and you're in a file
11074 which doesn't mention that class, it won't work unless
11075 the check for all static symbols in lookup_symbol_aux
11076 saves you. See the OtherFileClass tests in
11077 gdb.c++/namespace.exp. */
11078
e37fd15a 11079 if (!suppress_add)
34eaf542 11080 {
34eaf542
TT
11081 list_to_add = (cu->list_in_scope == &file_symbols
11082 && (cu->language == language_cplus
11083 || cu->language == language_java)
11084 ? &global_symbols : cu->list_in_scope);
63d06c5c 11085
64382290
TT
11086 /* The semantics of C++ state that "struct foo {
11087 ... }" also defines a typedef for "foo". A Java
11088 class declaration also defines a typedef for the
11089 class. */
11090 if (cu->language == language_cplus
11091 || cu->language == language_java
11092 || cu->language == language_ada)
11093 {
11094 /* The symbol's name is already allocated along
11095 with this objfile, so we don't need to
11096 duplicate it for the type. */
11097 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11098 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11099 }
63d06c5c
DC
11100 }
11101 }
c906108c
SS
11102 break;
11103 case DW_TAG_typedef:
63d06c5c
DC
11104 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11105 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11106 list_to_add = cu->list_in_scope;
63d06c5c 11107 break;
c906108c 11108 case DW_TAG_base_type:
a02abb62 11109 case DW_TAG_subrange_type:
c906108c 11110 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11111 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11112 list_to_add = cu->list_in_scope;
c906108c
SS
11113 break;
11114 case DW_TAG_enumerator:
e142c38c 11115 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
11116 if (attr)
11117 {
e7c27a73 11118 dwarf2_const_value (attr, sym, cu);
c906108c 11119 }
63d06c5c
DC
11120 {
11121 /* NOTE: carlton/2003-11-10: See comment above in the
11122 DW_TAG_class_type, etc. block. */
11123
e142c38c 11124 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
11125 && (cu->language == language_cplus
11126 || cu->language == language_java)
e142c38c 11127 ? &global_symbols : cu->list_in_scope);
63d06c5c 11128 }
c906108c 11129 break;
5c4e30ca
DC
11130 case DW_TAG_namespace:
11131 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
e37fd15a 11132 list_to_add = &global_symbols;
5c4e30ca 11133 break;
c906108c
SS
11134 default:
11135 /* Not a tag we recognize. Hopefully we aren't processing
11136 trash data, but since we must specifically ignore things
11137 we don't recognize, there is nothing else we should do at
0963b4bd 11138 this point. */
e2e0b3e5 11139 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 11140 dwarf_tag_name (die->tag));
c906108c
SS
11141 break;
11142 }
df8a16a1 11143
e37fd15a
SW
11144 if (suppress_add)
11145 {
11146 sym->hash_next = objfile->template_symbols;
11147 objfile->template_symbols = sym;
11148 list_to_add = NULL;
11149 }
11150
11151 if (list_to_add != NULL)
11152 add_symbol_to_list (sym, list_to_add);
11153
df8a16a1
DJ
11154 /* For the benefit of old versions of GCC, check for anonymous
11155 namespaces based on the demangled name. */
11156 if (!processing_has_namespace_info
94af9270 11157 && cu->language == language_cplus)
df8a16a1 11158 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
11159 }
11160 return (sym);
11161}
11162
34eaf542
TT
11163/* A wrapper for new_symbol_full that always allocates a new symbol. */
11164
11165static struct symbol *
11166new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11167{
11168 return new_symbol_full (die, type, cu, NULL);
11169}
11170
98bfdba5
PA
11171/* Given an attr with a DW_FORM_dataN value in host byte order,
11172 zero-extend it as appropriate for the symbol's type. The DWARF
11173 standard (v4) is not entirely clear about the meaning of using
11174 DW_FORM_dataN for a constant with a signed type, where the type is
11175 wider than the data. The conclusion of a discussion on the DWARF
11176 list was that this is unspecified. We choose to always zero-extend
11177 because that is the interpretation long in use by GCC. */
c906108c 11178
98bfdba5
PA
11179static gdb_byte *
11180dwarf2_const_value_data (struct attribute *attr, struct type *type,
11181 const char *name, struct obstack *obstack,
11182 struct dwarf2_cu *cu, long *value, int bits)
c906108c 11183{
e7c27a73 11184 struct objfile *objfile = cu->objfile;
e17a4113
UW
11185 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11186 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
11187 LONGEST l = DW_UNSND (attr);
11188
11189 if (bits < sizeof (*value) * 8)
11190 {
11191 l &= ((LONGEST) 1 << bits) - 1;
11192 *value = l;
11193 }
11194 else if (bits == sizeof (*value) * 8)
11195 *value = l;
11196 else
11197 {
11198 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11199 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11200 return bytes;
11201 }
11202
11203 return NULL;
11204}
11205
11206/* Read a constant value from an attribute. Either set *VALUE, or if
11207 the value does not fit in *VALUE, set *BYTES - either already
11208 allocated on the objfile obstack, or newly allocated on OBSTACK,
11209 or, set *BATON, if we translated the constant to a location
11210 expression. */
11211
11212static void
11213dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11214 const char *name, struct obstack *obstack,
11215 struct dwarf2_cu *cu,
11216 long *value, gdb_byte **bytes,
11217 struct dwarf2_locexpr_baton **baton)
11218{
11219 struct objfile *objfile = cu->objfile;
11220 struct comp_unit_head *cu_header = &cu->header;
c906108c 11221 struct dwarf_block *blk;
98bfdba5
PA
11222 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11223 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11224
11225 *value = 0;
11226 *bytes = NULL;
11227 *baton = NULL;
c906108c
SS
11228
11229 switch (attr->form)
11230 {
11231 case DW_FORM_addr:
ac56253d 11232 {
ac56253d
TT
11233 gdb_byte *data;
11234
98bfdba5
PA
11235 if (TYPE_LENGTH (type) != cu_header->addr_size)
11236 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 11237 cu_header->addr_size,
98bfdba5 11238 TYPE_LENGTH (type));
ac56253d
TT
11239 /* Symbols of this form are reasonably rare, so we just
11240 piggyback on the existing location code rather than writing
11241 a new implementation of symbol_computed_ops. */
98bfdba5
PA
11242 *baton = obstack_alloc (&objfile->objfile_obstack,
11243 sizeof (struct dwarf2_locexpr_baton));
11244 (*baton)->per_cu = cu->per_cu;
11245 gdb_assert ((*baton)->per_cu);
ac56253d 11246
98bfdba5
PA
11247 (*baton)->size = 2 + cu_header->addr_size;
11248 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11249 (*baton)->data = data;
ac56253d
TT
11250
11251 data[0] = DW_OP_addr;
11252 store_unsigned_integer (&data[1], cu_header->addr_size,
11253 byte_order, DW_ADDR (attr));
11254 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 11255 }
c906108c 11256 break;
4ac36638 11257 case DW_FORM_string:
93b5768b 11258 case DW_FORM_strp:
98bfdba5
PA
11259 /* DW_STRING is already allocated on the objfile obstack, point
11260 directly to it. */
11261 *bytes = (gdb_byte *) DW_STRING (attr);
93b5768b 11262 break;
c906108c
SS
11263 case DW_FORM_block1:
11264 case DW_FORM_block2:
11265 case DW_FORM_block4:
11266 case DW_FORM_block:
2dc7f7b3 11267 case DW_FORM_exprloc:
c906108c 11268 blk = DW_BLOCK (attr);
98bfdba5
PA
11269 if (TYPE_LENGTH (type) != blk->size)
11270 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11271 TYPE_LENGTH (type));
11272 *bytes = blk->data;
c906108c 11273 break;
2df3850c
JM
11274
11275 /* The DW_AT_const_value attributes are supposed to carry the
11276 symbol's value "represented as it would be on the target
11277 architecture." By the time we get here, it's already been
11278 converted to host endianness, so we just need to sign- or
11279 zero-extend it as appropriate. */
11280 case DW_FORM_data1:
3e43a32a
MS
11281 *bytes = dwarf2_const_value_data (attr, type, name,
11282 obstack, cu, value, 8);
2df3850c 11283 break;
c906108c 11284 case DW_FORM_data2:
3e43a32a
MS
11285 *bytes = dwarf2_const_value_data (attr, type, name,
11286 obstack, cu, value, 16);
2df3850c 11287 break;
c906108c 11288 case DW_FORM_data4:
3e43a32a
MS
11289 *bytes = dwarf2_const_value_data (attr, type, name,
11290 obstack, cu, value, 32);
2df3850c 11291 break;
c906108c 11292 case DW_FORM_data8:
3e43a32a
MS
11293 *bytes = dwarf2_const_value_data (attr, type, name,
11294 obstack, cu, value, 64);
2df3850c
JM
11295 break;
11296
c906108c 11297 case DW_FORM_sdata:
98bfdba5 11298 *value = DW_SND (attr);
2df3850c
JM
11299 break;
11300
c906108c 11301 case DW_FORM_udata:
98bfdba5 11302 *value = DW_UNSND (attr);
c906108c 11303 break;
2df3850c 11304
c906108c 11305 default:
4d3c2250 11306 complaint (&symfile_complaints,
e2e0b3e5 11307 _("unsupported const value attribute form: '%s'"),
4d3c2250 11308 dwarf_form_name (attr->form));
98bfdba5 11309 *value = 0;
c906108c
SS
11310 break;
11311 }
11312}
11313
2df3850c 11314
98bfdba5
PA
11315/* Copy constant value from an attribute to a symbol. */
11316
2df3850c 11317static void
98bfdba5
PA
11318dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11319 struct dwarf2_cu *cu)
2df3850c 11320{
98bfdba5
PA
11321 struct objfile *objfile = cu->objfile;
11322 struct comp_unit_head *cu_header = &cu->header;
11323 long value;
11324 gdb_byte *bytes;
11325 struct dwarf2_locexpr_baton *baton;
2df3850c 11326
98bfdba5
PA
11327 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11328 SYMBOL_PRINT_NAME (sym),
11329 &objfile->objfile_obstack, cu,
11330 &value, &bytes, &baton);
2df3850c 11331
98bfdba5
PA
11332 if (baton != NULL)
11333 {
11334 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11335 SYMBOL_LOCATION_BATON (sym) = baton;
11336 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11337 }
11338 else if (bytes != NULL)
11339 {
11340 SYMBOL_VALUE_BYTES (sym) = bytes;
11341 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11342 }
11343 else
11344 {
11345 SYMBOL_VALUE (sym) = value;
11346 SYMBOL_CLASS (sym) = LOC_CONST;
11347 }
2df3850c
JM
11348}
11349
c906108c
SS
11350/* Return the type of the die in question using its DW_AT_type attribute. */
11351
11352static struct type *
e7c27a73 11353die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11354{
c906108c 11355 struct attribute *type_attr;
c906108c 11356
e142c38c 11357 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
11358 if (!type_attr)
11359 {
11360 /* A missing DW_AT_type represents a void type. */
46bf5051 11361 return objfile_type (cu->objfile)->builtin_void;
c906108c 11362 }
348e048f 11363
673bfd45 11364 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11365}
11366
b4ba55a1
JB
11367/* True iff CU's producer generates GNAT Ada auxiliary information
11368 that allows to find parallel types through that information instead
11369 of having to do expensive parallel lookups by type name. */
11370
11371static int
11372need_gnat_info (struct dwarf2_cu *cu)
11373{
11374 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11375 of GNAT produces this auxiliary information, without any indication
11376 that it is produced. Part of enhancing the FSF version of GNAT
11377 to produce that information will be to put in place an indicator
11378 that we can use in order to determine whether the descriptive type
11379 info is available or not. One suggestion that has been made is
11380 to use a new attribute, attached to the CU die. For now, assume
11381 that the descriptive type info is not available. */
11382 return 0;
11383}
11384
b4ba55a1
JB
11385/* Return the auxiliary type of the die in question using its
11386 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11387 attribute is not present. */
11388
11389static struct type *
11390die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11391{
b4ba55a1 11392 struct attribute *type_attr;
b4ba55a1
JB
11393
11394 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11395 if (!type_attr)
11396 return NULL;
11397
673bfd45 11398 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
11399}
11400
11401/* If DIE has a descriptive_type attribute, then set the TYPE's
11402 descriptive type accordingly. */
11403
11404static void
11405set_descriptive_type (struct type *type, struct die_info *die,
11406 struct dwarf2_cu *cu)
11407{
11408 struct type *descriptive_type = die_descriptive_type (die, cu);
11409
11410 if (descriptive_type)
11411 {
11412 ALLOCATE_GNAT_AUX_TYPE (type);
11413 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11414 }
11415}
11416
c906108c
SS
11417/* Return the containing type of the die in question using its
11418 DW_AT_containing_type attribute. */
11419
11420static struct type *
e7c27a73 11421die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11422{
c906108c 11423 struct attribute *type_attr;
c906108c 11424
e142c38c 11425 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
11426 if (!type_attr)
11427 error (_("Dwarf Error: Problem turning containing type into gdb type "
11428 "[in module %s]"), cu->objfile->name);
11429
673bfd45 11430 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11431}
11432
673bfd45
DE
11433/* Look up the type of DIE in CU using its type attribute ATTR.
11434 If there is no type substitute an error marker. */
11435
c906108c 11436static struct type *
673bfd45
DE
11437lookup_die_type (struct die_info *die, struct attribute *attr,
11438 struct dwarf2_cu *cu)
c906108c 11439{
f792889a
DJ
11440 struct type *this_type;
11441
673bfd45
DE
11442 /* First see if we have it cached. */
11443
11444 if (is_ref_attr (attr))
11445 {
11446 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11447
11448 this_type = get_die_type_at_offset (offset, cu->per_cu);
11449 }
11450 else if (attr->form == DW_FORM_sig8)
11451 {
11452 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11453 struct dwarf2_cu *sig_cu;
11454 unsigned int offset;
11455
11456 /* sig_type will be NULL if the signatured type is missing from
11457 the debug info. */
11458 if (sig_type == NULL)
11459 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11460 "at 0x%x [in module %s]"),
11461 die->offset, cu->objfile->name);
11462
11463 gdb_assert (sig_type->per_cu.from_debug_types);
11464 offset = sig_type->offset + sig_type->type_offset;
11465 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11466 }
11467 else
11468 {
11469 dump_die_for_error (die);
11470 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11471 dwarf_attr_name (attr->name), cu->objfile->name);
11472 }
11473
11474 /* If not cached we need to read it in. */
11475
11476 if (this_type == NULL)
11477 {
11478 struct die_info *type_die;
11479 struct dwarf2_cu *type_cu = cu;
11480
11481 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11482 /* If the type is cached, we should have found it above. */
11483 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11484 this_type = read_type_die_1 (type_die, type_cu);
11485 }
11486
11487 /* If we still don't have a type use an error marker. */
11488
11489 if (this_type == NULL)
c906108c 11490 {
b00fdb78
TT
11491 char *message, *saved;
11492
11493 /* read_type_die already issued a complaint. */
11494 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11495 cu->objfile->name,
11496 cu->header.offset,
11497 die->offset);
11498 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11499 message, strlen (message));
11500 xfree (message);
11501
11502 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
c906108c 11503 }
673bfd45 11504
f792889a 11505 return this_type;
c906108c
SS
11506}
11507
673bfd45
DE
11508/* Return the type in DIE, CU.
11509 Returns NULL for invalid types.
11510
11511 This first does a lookup in the appropriate type_hash table,
11512 and only reads the die in if necessary.
11513
11514 NOTE: This can be called when reading in partial or full symbols. */
11515
f792889a 11516static struct type *
e7c27a73 11517read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11518{
f792889a
DJ
11519 struct type *this_type;
11520
11521 this_type = get_die_type (die, cu);
11522 if (this_type)
11523 return this_type;
11524
673bfd45
DE
11525 return read_type_die_1 (die, cu);
11526}
11527
11528/* Read the type in DIE, CU.
11529 Returns NULL for invalid types. */
11530
11531static struct type *
11532read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11533{
11534 struct type *this_type = NULL;
11535
c906108c
SS
11536 switch (die->tag)
11537 {
11538 case DW_TAG_class_type:
680b30c7 11539 case DW_TAG_interface_type:
c906108c
SS
11540 case DW_TAG_structure_type:
11541 case DW_TAG_union_type:
f792889a 11542 this_type = read_structure_type (die, cu);
c906108c
SS
11543 break;
11544 case DW_TAG_enumeration_type:
f792889a 11545 this_type = read_enumeration_type (die, cu);
c906108c
SS
11546 break;
11547 case DW_TAG_subprogram:
11548 case DW_TAG_subroutine_type:
edb3359d 11549 case DW_TAG_inlined_subroutine:
f792889a 11550 this_type = read_subroutine_type (die, cu);
c906108c
SS
11551 break;
11552 case DW_TAG_array_type:
f792889a 11553 this_type = read_array_type (die, cu);
c906108c 11554 break;
72019c9c 11555 case DW_TAG_set_type:
f792889a 11556 this_type = read_set_type (die, cu);
72019c9c 11557 break;
c906108c 11558 case DW_TAG_pointer_type:
f792889a 11559 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
11560 break;
11561 case DW_TAG_ptr_to_member_type:
f792889a 11562 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
11563 break;
11564 case DW_TAG_reference_type:
f792889a 11565 this_type = read_tag_reference_type (die, cu);
c906108c
SS
11566 break;
11567 case DW_TAG_const_type:
f792889a 11568 this_type = read_tag_const_type (die, cu);
c906108c
SS
11569 break;
11570 case DW_TAG_volatile_type:
f792889a 11571 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
11572 break;
11573 case DW_TAG_string_type:
f792889a 11574 this_type = read_tag_string_type (die, cu);
c906108c
SS
11575 break;
11576 case DW_TAG_typedef:
f792889a 11577 this_type = read_typedef (die, cu);
c906108c 11578 break;
a02abb62 11579 case DW_TAG_subrange_type:
f792889a 11580 this_type = read_subrange_type (die, cu);
a02abb62 11581 break;
c906108c 11582 case DW_TAG_base_type:
f792889a 11583 this_type = read_base_type (die, cu);
c906108c 11584 break;
81a17f79 11585 case DW_TAG_unspecified_type:
f792889a 11586 this_type = read_unspecified_type (die, cu);
81a17f79 11587 break;
0114d602
DJ
11588 case DW_TAG_namespace:
11589 this_type = read_namespace_type (die, cu);
11590 break;
f55ee35c
JK
11591 case DW_TAG_module:
11592 this_type = read_module_type (die, cu);
11593 break;
c906108c 11594 default:
3e43a32a
MS
11595 complaint (&symfile_complaints,
11596 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 11597 dwarf_tag_name (die->tag));
c906108c
SS
11598 break;
11599 }
63d06c5c 11600
f792889a 11601 return this_type;
63d06c5c
DC
11602}
11603
abc72ce4
DE
11604/* See if we can figure out if the class lives in a namespace. We do
11605 this by looking for a member function; its demangled name will
11606 contain namespace info, if there is any.
11607 Return the computed name or NULL.
11608 Space for the result is allocated on the objfile's obstack.
11609 This is the full-die version of guess_partial_die_structure_name.
11610 In this case we know DIE has no useful parent. */
11611
11612static char *
11613guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11614{
11615 struct die_info *spec_die;
11616 struct dwarf2_cu *spec_cu;
11617 struct die_info *child;
11618
11619 spec_cu = cu;
11620 spec_die = die_specification (die, &spec_cu);
11621 if (spec_die != NULL)
11622 {
11623 die = spec_die;
11624 cu = spec_cu;
11625 }
11626
11627 for (child = die->child;
11628 child != NULL;
11629 child = child->sibling)
11630 {
11631 if (child->tag == DW_TAG_subprogram)
11632 {
11633 struct attribute *attr;
11634
11635 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11636 if (attr == NULL)
11637 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11638 if (attr != NULL)
11639 {
11640 char *actual_name
11641 = language_class_name_from_physname (cu->language_defn,
11642 DW_STRING (attr));
11643 char *name = NULL;
11644
11645 if (actual_name != NULL)
11646 {
11647 char *die_name = dwarf2_name (die, cu);
11648
11649 if (die_name != NULL
11650 && strcmp (die_name, actual_name) != 0)
11651 {
11652 /* Strip off the class name from the full name.
11653 We want the prefix. */
11654 int die_name_len = strlen (die_name);
11655 int actual_name_len = strlen (actual_name);
11656
11657 /* Test for '::' as a sanity check. */
11658 if (actual_name_len > die_name_len + 2
3e43a32a
MS
11659 && actual_name[actual_name_len
11660 - die_name_len - 1] == ':')
abc72ce4
DE
11661 name =
11662 obsavestring (actual_name,
11663 actual_name_len - die_name_len - 2,
11664 &cu->objfile->objfile_obstack);
11665 }
11666 }
11667 xfree (actual_name);
11668 return name;
11669 }
11670 }
11671 }
11672
11673 return NULL;
11674}
11675
fdde2d81 11676/* Return the name of the namespace/class that DIE is defined within,
0114d602 11677 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 11678
0114d602
DJ
11679 For example, if we're within the method foo() in the following
11680 code:
11681
11682 namespace N {
11683 class C {
11684 void foo () {
11685 }
11686 };
11687 }
11688
11689 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
11690
11691static char *
e142c38c 11692determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 11693{
0114d602
DJ
11694 struct die_info *parent, *spec_die;
11695 struct dwarf2_cu *spec_cu;
11696 struct type *parent_type;
63d06c5c 11697
f55ee35c
JK
11698 if (cu->language != language_cplus && cu->language != language_java
11699 && cu->language != language_fortran)
0114d602
DJ
11700 return "";
11701
11702 /* We have to be careful in the presence of DW_AT_specification.
11703 For example, with GCC 3.4, given the code
11704
11705 namespace N {
11706 void foo() {
11707 // Definition of N::foo.
11708 }
11709 }
11710
11711 then we'll have a tree of DIEs like this:
11712
11713 1: DW_TAG_compile_unit
11714 2: DW_TAG_namespace // N
11715 3: DW_TAG_subprogram // declaration of N::foo
11716 4: DW_TAG_subprogram // definition of N::foo
11717 DW_AT_specification // refers to die #3
11718
11719 Thus, when processing die #4, we have to pretend that we're in
11720 the context of its DW_AT_specification, namely the contex of die
11721 #3. */
11722 spec_cu = cu;
11723 spec_die = die_specification (die, &spec_cu);
11724 if (spec_die == NULL)
11725 parent = die->parent;
11726 else
63d06c5c 11727 {
0114d602
DJ
11728 parent = spec_die->parent;
11729 cu = spec_cu;
63d06c5c 11730 }
0114d602
DJ
11731
11732 if (parent == NULL)
11733 return "";
98bfdba5
PA
11734 else if (parent->building_fullname)
11735 {
11736 const char *name;
11737 const char *parent_name;
11738
11739 /* It has been seen on RealView 2.2 built binaries,
11740 DW_TAG_template_type_param types actually _defined_ as
11741 children of the parent class:
11742
11743 enum E {};
11744 template class <class Enum> Class{};
11745 Class<enum E> class_e;
11746
11747 1: DW_TAG_class_type (Class)
11748 2: DW_TAG_enumeration_type (E)
11749 3: DW_TAG_enumerator (enum1:0)
11750 3: DW_TAG_enumerator (enum2:1)
11751 ...
11752 2: DW_TAG_template_type_param
11753 DW_AT_type DW_FORM_ref_udata (E)
11754
11755 Besides being broken debug info, it can put GDB into an
11756 infinite loop. Consider:
11757
11758 When we're building the full name for Class<E>, we'll start
11759 at Class, and go look over its template type parameters,
11760 finding E. We'll then try to build the full name of E, and
11761 reach here. We're now trying to build the full name of E,
11762 and look over the parent DIE for containing scope. In the
11763 broken case, if we followed the parent DIE of E, we'd again
11764 find Class, and once again go look at its template type
11765 arguments, etc., etc. Simply don't consider such parent die
11766 as source-level parent of this die (it can't be, the language
11767 doesn't allow it), and break the loop here. */
11768 name = dwarf2_name (die, cu);
11769 parent_name = dwarf2_name (parent, cu);
11770 complaint (&symfile_complaints,
11771 _("template param type '%s' defined within parent '%s'"),
11772 name ? name : "<unknown>",
11773 parent_name ? parent_name : "<unknown>");
11774 return "";
11775 }
63d06c5c 11776 else
0114d602
DJ
11777 switch (parent->tag)
11778 {
63d06c5c 11779 case DW_TAG_namespace:
0114d602 11780 parent_type = read_type_die (parent, cu);
acebe513
UW
11781 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11782 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11783 Work around this problem here. */
11784 if (cu->language == language_cplus
11785 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11786 return "";
0114d602
DJ
11787 /* We give a name to even anonymous namespaces. */
11788 return TYPE_TAG_NAME (parent_type);
63d06c5c 11789 case DW_TAG_class_type:
680b30c7 11790 case DW_TAG_interface_type:
63d06c5c 11791 case DW_TAG_structure_type:
0114d602 11792 case DW_TAG_union_type:
f55ee35c 11793 case DW_TAG_module:
0114d602
DJ
11794 parent_type = read_type_die (parent, cu);
11795 if (TYPE_TAG_NAME (parent_type) != NULL)
11796 return TYPE_TAG_NAME (parent_type);
11797 else
11798 /* An anonymous structure is only allowed non-static data
11799 members; no typedefs, no member functions, et cetera.
11800 So it does not need a prefix. */
11801 return "";
abc72ce4
DE
11802 case DW_TAG_compile_unit:
11803 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11804 if (cu->language == language_cplus
11805 && dwarf2_per_objfile->types.asection != NULL
11806 && die->child != NULL
11807 && (die->tag == DW_TAG_class_type
11808 || die->tag == DW_TAG_structure_type
11809 || die->tag == DW_TAG_union_type))
11810 {
11811 char *name = guess_full_die_structure_name (die, cu);
11812 if (name != NULL)
11813 return name;
11814 }
11815 return "";
63d06c5c 11816 default:
8176b9b8 11817 return determine_prefix (parent, cu);
63d06c5c 11818 }
63d06c5c
DC
11819}
11820
3e43a32a
MS
11821/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
11822 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11823 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
11824 an obconcat, otherwise allocate storage for the result. The CU argument is
11825 used to determine the language and hence, the appropriate separator. */
987504bb 11826
f55ee35c 11827#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
11828
11829static char *
f55ee35c
JK
11830typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11831 int physname, struct dwarf2_cu *cu)
63d06c5c 11832{
f55ee35c 11833 const char *lead = "";
5c315b68 11834 const char *sep;
63d06c5c 11835
3e43a32a
MS
11836 if (suffix == NULL || suffix[0] == '\0'
11837 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
11838 sep = "";
11839 else if (cu->language == language_java)
11840 sep = ".";
f55ee35c
JK
11841 else if (cu->language == language_fortran && physname)
11842 {
11843 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11844 DW_AT_MIPS_linkage_name is preferred and used instead. */
11845
11846 lead = "__";
11847 sep = "_MOD_";
11848 }
987504bb
JJ
11849 else
11850 sep = "::";
63d06c5c 11851
6dd47d34
DE
11852 if (prefix == NULL)
11853 prefix = "";
11854 if (suffix == NULL)
11855 suffix = "";
11856
987504bb
JJ
11857 if (obs == NULL)
11858 {
3e43a32a
MS
11859 char *retval
11860 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 11861
f55ee35c
JK
11862 strcpy (retval, lead);
11863 strcat (retval, prefix);
6dd47d34
DE
11864 strcat (retval, sep);
11865 strcat (retval, suffix);
63d06c5c
DC
11866 return retval;
11867 }
987504bb
JJ
11868 else
11869 {
11870 /* We have an obstack. */
f55ee35c 11871 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 11872 }
63d06c5c
DC
11873}
11874
c906108c
SS
11875/* Return sibling of die, NULL if no sibling. */
11876
f9aca02d 11877static struct die_info *
fba45db2 11878sibling_die (struct die_info *die)
c906108c 11879{
639d11d3 11880 return die->sibling;
c906108c
SS
11881}
11882
71c25dea
TT
11883/* Get name of a die, return NULL if not found. */
11884
11885static char *
11886dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11887 struct obstack *obstack)
11888{
11889 if (name && cu->language == language_cplus)
11890 {
11891 char *canon_name = cp_canonicalize_string (name);
11892
11893 if (canon_name != NULL)
11894 {
11895 if (strcmp (canon_name, name) != 0)
11896 name = obsavestring (canon_name, strlen (canon_name),
11897 obstack);
11898 xfree (canon_name);
11899 }
11900 }
11901
11902 return name;
c906108c
SS
11903}
11904
9219021c
DC
11905/* Get name of a die, return NULL if not found. */
11906
11907static char *
e142c38c 11908dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
11909{
11910 struct attribute *attr;
11911
e142c38c 11912 attr = dwarf2_attr (die, DW_AT_name, cu);
71c25dea
TT
11913 if (!attr || !DW_STRING (attr))
11914 return NULL;
11915
11916 switch (die->tag)
11917 {
11918 case DW_TAG_compile_unit:
11919 /* Compilation units have a DW_AT_name that is a filename, not
11920 a source language identifier. */
11921 case DW_TAG_enumeration_type:
11922 case DW_TAG_enumerator:
11923 /* These tags always have simple identifiers already; no need
11924 to canonicalize them. */
11925 return DW_STRING (attr);
907af001 11926
418835cc
KS
11927 case DW_TAG_subprogram:
11928 /* Java constructors will all be named "<init>", so return
11929 the class name when we see this special case. */
11930 if (cu->language == language_java
11931 && DW_STRING (attr) != NULL
11932 && strcmp (DW_STRING (attr), "<init>") == 0)
11933 {
11934 struct dwarf2_cu *spec_cu = cu;
11935 struct die_info *spec_die;
11936
11937 /* GCJ will output '<init>' for Java constructor names.
11938 For this special case, return the name of the parent class. */
11939
11940 /* GCJ may output suprogram DIEs with AT_specification set.
11941 If so, use the name of the specified DIE. */
11942 spec_die = die_specification (die, &spec_cu);
11943 if (spec_die != NULL)
11944 return dwarf2_name (spec_die, spec_cu);
11945
11946 do
11947 {
11948 die = die->parent;
11949 if (die->tag == DW_TAG_class_type)
11950 return dwarf2_name (die, cu);
11951 }
11952 while (die->tag != DW_TAG_compile_unit);
11953 }
907af001
UW
11954 break;
11955
11956 case DW_TAG_class_type:
11957 case DW_TAG_interface_type:
11958 case DW_TAG_structure_type:
11959 case DW_TAG_union_type:
11960 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11961 structures or unions. These were of the form "._%d" in GCC 4.1,
11962 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11963 and GCC 4.4. We work around this problem by ignoring these. */
11964 if (strncmp (DW_STRING (attr), "._", 2) == 0
11965 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11966 return NULL;
11967 break;
11968
71c25dea 11969 default:
907af001
UW
11970 break;
11971 }
11972
11973 if (!DW_STRING_IS_CANONICAL (attr))
11974 {
11975 DW_STRING (attr)
11976 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11977 &cu->objfile->objfile_obstack);
11978 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 11979 }
907af001 11980 return DW_STRING (attr);
9219021c
DC
11981}
11982
11983/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
11984 is none. *EXT_CU is the CU containing DIE on input, and the CU
11985 containing the return value on output. */
9219021c
DC
11986
11987static struct die_info *
f2f0e013 11988dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
11989{
11990 struct attribute *attr;
9219021c 11991
f2f0e013 11992 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
11993 if (attr == NULL)
11994 return NULL;
11995
f2f0e013 11996 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
11997}
11998
c906108c
SS
11999/* Convert a DIE tag into its string name. */
12000
12001static char *
aa1ee363 12002dwarf_tag_name (unsigned tag)
c906108c
SS
12003{
12004 switch (tag)
12005 {
12006 case DW_TAG_padding:
12007 return "DW_TAG_padding";
12008 case DW_TAG_array_type:
12009 return "DW_TAG_array_type";
12010 case DW_TAG_class_type:
12011 return "DW_TAG_class_type";
12012 case DW_TAG_entry_point:
12013 return "DW_TAG_entry_point";
12014 case DW_TAG_enumeration_type:
12015 return "DW_TAG_enumeration_type";
12016 case DW_TAG_formal_parameter:
12017 return "DW_TAG_formal_parameter";
12018 case DW_TAG_imported_declaration:
12019 return "DW_TAG_imported_declaration";
12020 case DW_TAG_label:
12021 return "DW_TAG_label";
12022 case DW_TAG_lexical_block:
12023 return "DW_TAG_lexical_block";
12024 case DW_TAG_member:
12025 return "DW_TAG_member";
12026 case DW_TAG_pointer_type:
12027 return "DW_TAG_pointer_type";
12028 case DW_TAG_reference_type:
12029 return "DW_TAG_reference_type";
12030 case DW_TAG_compile_unit:
12031 return "DW_TAG_compile_unit";
12032 case DW_TAG_string_type:
12033 return "DW_TAG_string_type";
12034 case DW_TAG_structure_type:
12035 return "DW_TAG_structure_type";
12036 case DW_TAG_subroutine_type:
12037 return "DW_TAG_subroutine_type";
12038 case DW_TAG_typedef:
12039 return "DW_TAG_typedef";
12040 case DW_TAG_union_type:
12041 return "DW_TAG_union_type";
12042 case DW_TAG_unspecified_parameters:
12043 return "DW_TAG_unspecified_parameters";
12044 case DW_TAG_variant:
12045 return "DW_TAG_variant";
12046 case DW_TAG_common_block:
12047 return "DW_TAG_common_block";
12048 case DW_TAG_common_inclusion:
12049 return "DW_TAG_common_inclusion";
12050 case DW_TAG_inheritance:
12051 return "DW_TAG_inheritance";
12052 case DW_TAG_inlined_subroutine:
12053 return "DW_TAG_inlined_subroutine";
12054 case DW_TAG_module:
12055 return "DW_TAG_module";
12056 case DW_TAG_ptr_to_member_type:
12057 return "DW_TAG_ptr_to_member_type";
12058 case DW_TAG_set_type:
12059 return "DW_TAG_set_type";
12060 case DW_TAG_subrange_type:
12061 return "DW_TAG_subrange_type";
12062 case DW_TAG_with_stmt:
12063 return "DW_TAG_with_stmt";
12064 case DW_TAG_access_declaration:
12065 return "DW_TAG_access_declaration";
12066 case DW_TAG_base_type:
12067 return "DW_TAG_base_type";
12068 case DW_TAG_catch_block:
12069 return "DW_TAG_catch_block";
12070 case DW_TAG_const_type:
12071 return "DW_TAG_const_type";
12072 case DW_TAG_constant:
12073 return "DW_TAG_constant";
12074 case DW_TAG_enumerator:
12075 return "DW_TAG_enumerator";
12076 case DW_TAG_file_type:
12077 return "DW_TAG_file_type";
12078 case DW_TAG_friend:
12079 return "DW_TAG_friend";
12080 case DW_TAG_namelist:
12081 return "DW_TAG_namelist";
12082 case DW_TAG_namelist_item:
12083 return "DW_TAG_namelist_item";
12084 case DW_TAG_packed_type:
12085 return "DW_TAG_packed_type";
12086 case DW_TAG_subprogram:
12087 return "DW_TAG_subprogram";
12088 case DW_TAG_template_type_param:
12089 return "DW_TAG_template_type_param";
12090 case DW_TAG_template_value_param:
12091 return "DW_TAG_template_value_param";
12092 case DW_TAG_thrown_type:
12093 return "DW_TAG_thrown_type";
12094 case DW_TAG_try_block:
12095 return "DW_TAG_try_block";
12096 case DW_TAG_variant_part:
12097 return "DW_TAG_variant_part";
12098 case DW_TAG_variable:
12099 return "DW_TAG_variable";
12100 case DW_TAG_volatile_type:
12101 return "DW_TAG_volatile_type";
d9fa45fe
DC
12102 case DW_TAG_dwarf_procedure:
12103 return "DW_TAG_dwarf_procedure";
12104 case DW_TAG_restrict_type:
12105 return "DW_TAG_restrict_type";
12106 case DW_TAG_interface_type:
12107 return "DW_TAG_interface_type";
12108 case DW_TAG_namespace:
12109 return "DW_TAG_namespace";
12110 case DW_TAG_imported_module:
12111 return "DW_TAG_imported_module";
12112 case DW_TAG_unspecified_type:
12113 return "DW_TAG_unspecified_type";
12114 case DW_TAG_partial_unit:
12115 return "DW_TAG_partial_unit";
12116 case DW_TAG_imported_unit:
12117 return "DW_TAG_imported_unit";
b7619582
GF
12118 case DW_TAG_condition:
12119 return "DW_TAG_condition";
12120 case DW_TAG_shared_type:
12121 return "DW_TAG_shared_type";
348e048f
DE
12122 case DW_TAG_type_unit:
12123 return "DW_TAG_type_unit";
c906108c
SS
12124 case DW_TAG_MIPS_loop:
12125 return "DW_TAG_MIPS_loop";
b7619582
GF
12126 case DW_TAG_HP_array_descriptor:
12127 return "DW_TAG_HP_array_descriptor";
c906108c
SS
12128 case DW_TAG_format_label:
12129 return "DW_TAG_format_label";
12130 case DW_TAG_function_template:
12131 return "DW_TAG_function_template";
12132 case DW_TAG_class_template:
12133 return "DW_TAG_class_template";
b7619582
GF
12134 case DW_TAG_GNU_BINCL:
12135 return "DW_TAG_GNU_BINCL";
12136 case DW_TAG_GNU_EINCL:
12137 return "DW_TAG_GNU_EINCL";
12138 case DW_TAG_upc_shared_type:
12139 return "DW_TAG_upc_shared_type";
12140 case DW_TAG_upc_strict_type:
12141 return "DW_TAG_upc_strict_type";
12142 case DW_TAG_upc_relaxed_type:
12143 return "DW_TAG_upc_relaxed_type";
12144 case DW_TAG_PGI_kanji_type:
12145 return "DW_TAG_PGI_kanji_type";
12146 case DW_TAG_PGI_interface_block:
12147 return "DW_TAG_PGI_interface_block";
c906108c
SS
12148 default:
12149 return "DW_TAG_<unknown>";
12150 }
12151}
12152
12153/* Convert a DWARF attribute code into its string name. */
12154
12155static char *
aa1ee363 12156dwarf_attr_name (unsigned attr)
c906108c
SS
12157{
12158 switch (attr)
12159 {
12160 case DW_AT_sibling:
12161 return "DW_AT_sibling";
12162 case DW_AT_location:
12163 return "DW_AT_location";
12164 case DW_AT_name:
12165 return "DW_AT_name";
12166 case DW_AT_ordering:
12167 return "DW_AT_ordering";
12168 case DW_AT_subscr_data:
12169 return "DW_AT_subscr_data";
12170 case DW_AT_byte_size:
12171 return "DW_AT_byte_size";
12172 case DW_AT_bit_offset:
12173 return "DW_AT_bit_offset";
12174 case DW_AT_bit_size:
12175 return "DW_AT_bit_size";
12176 case DW_AT_element_list:
12177 return "DW_AT_element_list";
12178 case DW_AT_stmt_list:
12179 return "DW_AT_stmt_list";
12180 case DW_AT_low_pc:
12181 return "DW_AT_low_pc";
12182 case DW_AT_high_pc:
12183 return "DW_AT_high_pc";
12184 case DW_AT_language:
12185 return "DW_AT_language";
12186 case DW_AT_member:
12187 return "DW_AT_member";
12188 case DW_AT_discr:
12189 return "DW_AT_discr";
12190 case DW_AT_discr_value:
12191 return "DW_AT_discr_value";
12192 case DW_AT_visibility:
12193 return "DW_AT_visibility";
12194 case DW_AT_import:
12195 return "DW_AT_import";
12196 case DW_AT_string_length:
12197 return "DW_AT_string_length";
12198 case DW_AT_common_reference:
12199 return "DW_AT_common_reference";
12200 case DW_AT_comp_dir:
12201 return "DW_AT_comp_dir";
12202 case DW_AT_const_value:
12203 return "DW_AT_const_value";
12204 case DW_AT_containing_type:
12205 return "DW_AT_containing_type";
12206 case DW_AT_default_value:
12207 return "DW_AT_default_value";
12208 case DW_AT_inline:
12209 return "DW_AT_inline";
12210 case DW_AT_is_optional:
12211 return "DW_AT_is_optional";
12212 case DW_AT_lower_bound:
12213 return "DW_AT_lower_bound";
12214 case DW_AT_producer:
12215 return "DW_AT_producer";
12216 case DW_AT_prototyped:
12217 return "DW_AT_prototyped";
12218 case DW_AT_return_addr:
12219 return "DW_AT_return_addr";
12220 case DW_AT_start_scope:
12221 return "DW_AT_start_scope";
09fa0d7c
JK
12222 case DW_AT_bit_stride:
12223 return "DW_AT_bit_stride";
c906108c
SS
12224 case DW_AT_upper_bound:
12225 return "DW_AT_upper_bound";
12226 case DW_AT_abstract_origin:
12227 return "DW_AT_abstract_origin";
12228 case DW_AT_accessibility:
12229 return "DW_AT_accessibility";
12230 case DW_AT_address_class:
12231 return "DW_AT_address_class";
12232 case DW_AT_artificial:
12233 return "DW_AT_artificial";
12234 case DW_AT_base_types:
12235 return "DW_AT_base_types";
12236 case DW_AT_calling_convention:
12237 return "DW_AT_calling_convention";
12238 case DW_AT_count:
12239 return "DW_AT_count";
12240 case DW_AT_data_member_location:
12241 return "DW_AT_data_member_location";
12242 case DW_AT_decl_column:
12243 return "DW_AT_decl_column";
12244 case DW_AT_decl_file:
12245 return "DW_AT_decl_file";
12246 case DW_AT_decl_line:
12247 return "DW_AT_decl_line";
12248 case DW_AT_declaration:
12249 return "DW_AT_declaration";
12250 case DW_AT_discr_list:
12251 return "DW_AT_discr_list";
12252 case DW_AT_encoding:
12253 return "DW_AT_encoding";
12254 case DW_AT_external:
12255 return "DW_AT_external";
12256 case DW_AT_frame_base:
12257 return "DW_AT_frame_base";
12258 case DW_AT_friend:
12259 return "DW_AT_friend";
12260 case DW_AT_identifier_case:
12261 return "DW_AT_identifier_case";
12262 case DW_AT_macro_info:
12263 return "DW_AT_macro_info";
12264 case DW_AT_namelist_items:
12265 return "DW_AT_namelist_items";
12266 case DW_AT_priority:
12267 return "DW_AT_priority";
12268 case DW_AT_segment:
12269 return "DW_AT_segment";
12270 case DW_AT_specification:
12271 return "DW_AT_specification";
12272 case DW_AT_static_link:
12273 return "DW_AT_static_link";
12274 case DW_AT_type:
12275 return "DW_AT_type";
12276 case DW_AT_use_location:
12277 return "DW_AT_use_location";
12278 case DW_AT_variable_parameter:
12279 return "DW_AT_variable_parameter";
12280 case DW_AT_virtuality:
12281 return "DW_AT_virtuality";
12282 case DW_AT_vtable_elem_location:
12283 return "DW_AT_vtable_elem_location";
b7619582 12284 /* DWARF 3 values. */
d9fa45fe
DC
12285 case DW_AT_allocated:
12286 return "DW_AT_allocated";
12287 case DW_AT_associated:
12288 return "DW_AT_associated";
12289 case DW_AT_data_location:
12290 return "DW_AT_data_location";
09fa0d7c
JK
12291 case DW_AT_byte_stride:
12292 return "DW_AT_byte_stride";
d9fa45fe
DC
12293 case DW_AT_entry_pc:
12294 return "DW_AT_entry_pc";
12295 case DW_AT_use_UTF8:
12296 return "DW_AT_use_UTF8";
12297 case DW_AT_extension:
12298 return "DW_AT_extension";
12299 case DW_AT_ranges:
12300 return "DW_AT_ranges";
12301 case DW_AT_trampoline:
12302 return "DW_AT_trampoline";
12303 case DW_AT_call_column:
12304 return "DW_AT_call_column";
12305 case DW_AT_call_file:
12306 return "DW_AT_call_file";
12307 case DW_AT_call_line:
12308 return "DW_AT_call_line";
b7619582
GF
12309 case DW_AT_description:
12310 return "DW_AT_description";
12311 case DW_AT_binary_scale:
12312 return "DW_AT_binary_scale";
12313 case DW_AT_decimal_scale:
12314 return "DW_AT_decimal_scale";
12315 case DW_AT_small:
12316 return "DW_AT_small";
12317 case DW_AT_decimal_sign:
12318 return "DW_AT_decimal_sign";
12319 case DW_AT_digit_count:
12320 return "DW_AT_digit_count";
12321 case DW_AT_picture_string:
12322 return "DW_AT_picture_string";
12323 case DW_AT_mutable:
12324 return "DW_AT_mutable";
12325 case DW_AT_threads_scaled:
12326 return "DW_AT_threads_scaled";
12327 case DW_AT_explicit:
12328 return "DW_AT_explicit";
12329 case DW_AT_object_pointer:
12330 return "DW_AT_object_pointer";
12331 case DW_AT_endianity:
12332 return "DW_AT_endianity";
12333 case DW_AT_elemental:
12334 return "DW_AT_elemental";
12335 case DW_AT_pure:
12336 return "DW_AT_pure";
12337 case DW_AT_recursive:
12338 return "DW_AT_recursive";
348e048f
DE
12339 /* DWARF 4 values. */
12340 case DW_AT_signature:
12341 return "DW_AT_signature";
31ef98ae
TT
12342 case DW_AT_linkage_name:
12343 return "DW_AT_linkage_name";
b7619582 12344 /* SGI/MIPS extensions. */
c764a876 12345#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
12346 case DW_AT_MIPS_fde:
12347 return "DW_AT_MIPS_fde";
c764a876 12348#endif
c906108c
SS
12349 case DW_AT_MIPS_loop_begin:
12350 return "DW_AT_MIPS_loop_begin";
12351 case DW_AT_MIPS_tail_loop_begin:
12352 return "DW_AT_MIPS_tail_loop_begin";
12353 case DW_AT_MIPS_epilog_begin:
12354 return "DW_AT_MIPS_epilog_begin";
12355 case DW_AT_MIPS_loop_unroll_factor:
12356 return "DW_AT_MIPS_loop_unroll_factor";
12357 case DW_AT_MIPS_software_pipeline_depth:
12358 return "DW_AT_MIPS_software_pipeline_depth";
12359 case DW_AT_MIPS_linkage_name:
12360 return "DW_AT_MIPS_linkage_name";
b7619582
GF
12361 case DW_AT_MIPS_stride:
12362 return "DW_AT_MIPS_stride";
12363 case DW_AT_MIPS_abstract_name:
12364 return "DW_AT_MIPS_abstract_name";
12365 case DW_AT_MIPS_clone_origin:
12366 return "DW_AT_MIPS_clone_origin";
12367 case DW_AT_MIPS_has_inlines:
12368 return "DW_AT_MIPS_has_inlines";
b7619582 12369 /* HP extensions. */
c764a876 12370#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
12371 case DW_AT_HP_block_index:
12372 return "DW_AT_HP_block_index";
c764a876 12373#endif
b7619582
GF
12374 case DW_AT_HP_unmodifiable:
12375 return "DW_AT_HP_unmodifiable";
12376 case DW_AT_HP_actuals_stmt_list:
12377 return "DW_AT_HP_actuals_stmt_list";
12378 case DW_AT_HP_proc_per_section:
12379 return "DW_AT_HP_proc_per_section";
12380 case DW_AT_HP_raw_data_ptr:
12381 return "DW_AT_HP_raw_data_ptr";
12382 case DW_AT_HP_pass_by_reference:
12383 return "DW_AT_HP_pass_by_reference";
12384 case DW_AT_HP_opt_level:
12385 return "DW_AT_HP_opt_level";
12386 case DW_AT_HP_prof_version_id:
12387 return "DW_AT_HP_prof_version_id";
12388 case DW_AT_HP_opt_flags:
12389 return "DW_AT_HP_opt_flags";
12390 case DW_AT_HP_cold_region_low_pc:
12391 return "DW_AT_HP_cold_region_low_pc";
12392 case DW_AT_HP_cold_region_high_pc:
12393 return "DW_AT_HP_cold_region_high_pc";
12394 case DW_AT_HP_all_variables_modifiable:
12395 return "DW_AT_HP_all_variables_modifiable";
12396 case DW_AT_HP_linkage_name:
12397 return "DW_AT_HP_linkage_name";
12398 case DW_AT_HP_prof_flags:
12399 return "DW_AT_HP_prof_flags";
12400 /* GNU extensions. */
c906108c
SS
12401 case DW_AT_sf_names:
12402 return "DW_AT_sf_names";
12403 case DW_AT_src_info:
12404 return "DW_AT_src_info";
12405 case DW_AT_mac_info:
12406 return "DW_AT_mac_info";
12407 case DW_AT_src_coords:
12408 return "DW_AT_src_coords";
12409 case DW_AT_body_begin:
12410 return "DW_AT_body_begin";
12411 case DW_AT_body_end:
12412 return "DW_AT_body_end";
f5f8a009
EZ
12413 case DW_AT_GNU_vector:
12414 return "DW_AT_GNU_vector";
2de00c64
DE
12415 case DW_AT_GNU_odr_signature:
12416 return "DW_AT_GNU_odr_signature";
b7619582
GF
12417 /* VMS extensions. */
12418 case DW_AT_VMS_rtnbeg_pd_address:
12419 return "DW_AT_VMS_rtnbeg_pd_address";
12420 /* UPC extension. */
12421 case DW_AT_upc_threads_scaled:
12422 return "DW_AT_upc_threads_scaled";
12423 /* PGI (STMicroelectronics) extensions. */
12424 case DW_AT_PGI_lbase:
12425 return "DW_AT_PGI_lbase";
12426 case DW_AT_PGI_soffset:
12427 return "DW_AT_PGI_soffset";
12428 case DW_AT_PGI_lstride:
12429 return "DW_AT_PGI_lstride";
c906108c
SS
12430 default:
12431 return "DW_AT_<unknown>";
12432 }
12433}
12434
12435/* Convert a DWARF value form code into its string name. */
12436
12437static char *
aa1ee363 12438dwarf_form_name (unsigned form)
c906108c
SS
12439{
12440 switch (form)
12441 {
12442 case DW_FORM_addr:
12443 return "DW_FORM_addr";
12444 case DW_FORM_block2:
12445 return "DW_FORM_block2";
12446 case DW_FORM_block4:
12447 return "DW_FORM_block4";
12448 case DW_FORM_data2:
12449 return "DW_FORM_data2";
12450 case DW_FORM_data4:
12451 return "DW_FORM_data4";
12452 case DW_FORM_data8:
12453 return "DW_FORM_data8";
12454 case DW_FORM_string:
12455 return "DW_FORM_string";
12456 case DW_FORM_block:
12457 return "DW_FORM_block";
12458 case DW_FORM_block1:
12459 return "DW_FORM_block1";
12460 case DW_FORM_data1:
12461 return "DW_FORM_data1";
12462 case DW_FORM_flag:
12463 return "DW_FORM_flag";
12464 case DW_FORM_sdata:
12465 return "DW_FORM_sdata";
12466 case DW_FORM_strp:
12467 return "DW_FORM_strp";
12468 case DW_FORM_udata:
12469 return "DW_FORM_udata";
12470 case DW_FORM_ref_addr:
12471 return "DW_FORM_ref_addr";
12472 case DW_FORM_ref1:
12473 return "DW_FORM_ref1";
12474 case DW_FORM_ref2:
12475 return "DW_FORM_ref2";
12476 case DW_FORM_ref4:
12477 return "DW_FORM_ref4";
12478 case DW_FORM_ref8:
12479 return "DW_FORM_ref8";
12480 case DW_FORM_ref_udata:
12481 return "DW_FORM_ref_udata";
12482 case DW_FORM_indirect:
12483 return "DW_FORM_indirect";
348e048f
DE
12484 case DW_FORM_sec_offset:
12485 return "DW_FORM_sec_offset";
12486 case DW_FORM_exprloc:
12487 return "DW_FORM_exprloc";
12488 case DW_FORM_flag_present:
12489 return "DW_FORM_flag_present";
12490 case DW_FORM_sig8:
12491 return "DW_FORM_sig8";
c906108c
SS
12492 default:
12493 return "DW_FORM_<unknown>";
12494 }
12495}
12496
12497/* Convert a DWARF stack opcode into its string name. */
12498
9eae7c52 12499const char *
b1bfef65 12500dwarf_stack_op_name (unsigned op)
c906108c
SS
12501{
12502 switch (op)
12503 {
12504 case DW_OP_addr:
12505 return "DW_OP_addr";
12506 case DW_OP_deref:
12507 return "DW_OP_deref";
12508 case DW_OP_const1u:
12509 return "DW_OP_const1u";
12510 case DW_OP_const1s:
12511 return "DW_OP_const1s";
12512 case DW_OP_const2u:
12513 return "DW_OP_const2u";
12514 case DW_OP_const2s:
12515 return "DW_OP_const2s";
12516 case DW_OP_const4u:
12517 return "DW_OP_const4u";
12518 case DW_OP_const4s:
12519 return "DW_OP_const4s";
12520 case DW_OP_const8u:
12521 return "DW_OP_const8u";
12522 case DW_OP_const8s:
12523 return "DW_OP_const8s";
12524 case DW_OP_constu:
12525 return "DW_OP_constu";
12526 case DW_OP_consts:
12527 return "DW_OP_consts";
12528 case DW_OP_dup:
12529 return "DW_OP_dup";
12530 case DW_OP_drop:
12531 return "DW_OP_drop";
12532 case DW_OP_over:
12533 return "DW_OP_over";
12534 case DW_OP_pick:
12535 return "DW_OP_pick";
12536 case DW_OP_swap:
12537 return "DW_OP_swap";
12538 case DW_OP_rot:
12539 return "DW_OP_rot";
12540 case DW_OP_xderef:
12541 return "DW_OP_xderef";
12542 case DW_OP_abs:
12543 return "DW_OP_abs";
12544 case DW_OP_and:
12545 return "DW_OP_and";
12546 case DW_OP_div:
12547 return "DW_OP_div";
12548 case DW_OP_minus:
12549 return "DW_OP_minus";
12550 case DW_OP_mod:
12551 return "DW_OP_mod";
12552 case DW_OP_mul:
12553 return "DW_OP_mul";
12554 case DW_OP_neg:
12555 return "DW_OP_neg";
12556 case DW_OP_not:
12557 return "DW_OP_not";
12558 case DW_OP_or:
12559 return "DW_OP_or";
12560 case DW_OP_plus:
12561 return "DW_OP_plus";
12562 case DW_OP_plus_uconst:
12563 return "DW_OP_plus_uconst";
12564 case DW_OP_shl:
12565 return "DW_OP_shl";
12566 case DW_OP_shr:
12567 return "DW_OP_shr";
12568 case DW_OP_shra:
12569 return "DW_OP_shra";
12570 case DW_OP_xor:
12571 return "DW_OP_xor";
12572 case DW_OP_bra:
12573 return "DW_OP_bra";
12574 case DW_OP_eq:
12575 return "DW_OP_eq";
12576 case DW_OP_ge:
12577 return "DW_OP_ge";
12578 case DW_OP_gt:
12579 return "DW_OP_gt";
12580 case DW_OP_le:
12581 return "DW_OP_le";
12582 case DW_OP_lt:
12583 return "DW_OP_lt";
12584 case DW_OP_ne:
12585 return "DW_OP_ne";
12586 case DW_OP_skip:
12587 return "DW_OP_skip";
12588 case DW_OP_lit0:
12589 return "DW_OP_lit0";
12590 case DW_OP_lit1:
12591 return "DW_OP_lit1";
12592 case DW_OP_lit2:
12593 return "DW_OP_lit2";
12594 case DW_OP_lit3:
12595 return "DW_OP_lit3";
12596 case DW_OP_lit4:
12597 return "DW_OP_lit4";
12598 case DW_OP_lit5:
12599 return "DW_OP_lit5";
12600 case DW_OP_lit6:
12601 return "DW_OP_lit6";
12602 case DW_OP_lit7:
12603 return "DW_OP_lit7";
12604 case DW_OP_lit8:
12605 return "DW_OP_lit8";
12606 case DW_OP_lit9:
12607 return "DW_OP_lit9";
12608 case DW_OP_lit10:
12609 return "DW_OP_lit10";
12610 case DW_OP_lit11:
12611 return "DW_OP_lit11";
12612 case DW_OP_lit12:
12613 return "DW_OP_lit12";
12614 case DW_OP_lit13:
12615 return "DW_OP_lit13";
12616 case DW_OP_lit14:
12617 return "DW_OP_lit14";
12618 case DW_OP_lit15:
12619 return "DW_OP_lit15";
12620 case DW_OP_lit16:
12621 return "DW_OP_lit16";
12622 case DW_OP_lit17:
12623 return "DW_OP_lit17";
12624 case DW_OP_lit18:
12625 return "DW_OP_lit18";
12626 case DW_OP_lit19:
12627 return "DW_OP_lit19";
12628 case DW_OP_lit20:
12629 return "DW_OP_lit20";
12630 case DW_OP_lit21:
12631 return "DW_OP_lit21";
12632 case DW_OP_lit22:
12633 return "DW_OP_lit22";
12634 case DW_OP_lit23:
12635 return "DW_OP_lit23";
12636 case DW_OP_lit24:
12637 return "DW_OP_lit24";
12638 case DW_OP_lit25:
12639 return "DW_OP_lit25";
12640 case DW_OP_lit26:
12641 return "DW_OP_lit26";
12642 case DW_OP_lit27:
12643 return "DW_OP_lit27";
12644 case DW_OP_lit28:
12645 return "DW_OP_lit28";
12646 case DW_OP_lit29:
12647 return "DW_OP_lit29";
12648 case DW_OP_lit30:
12649 return "DW_OP_lit30";
12650 case DW_OP_lit31:
12651 return "DW_OP_lit31";
12652 case DW_OP_reg0:
12653 return "DW_OP_reg0";
12654 case DW_OP_reg1:
12655 return "DW_OP_reg1";
12656 case DW_OP_reg2:
12657 return "DW_OP_reg2";
12658 case DW_OP_reg3:
12659 return "DW_OP_reg3";
12660 case DW_OP_reg4:
12661 return "DW_OP_reg4";
12662 case DW_OP_reg5:
12663 return "DW_OP_reg5";
12664 case DW_OP_reg6:
12665 return "DW_OP_reg6";
12666 case DW_OP_reg7:
12667 return "DW_OP_reg7";
12668 case DW_OP_reg8:
12669 return "DW_OP_reg8";
12670 case DW_OP_reg9:
12671 return "DW_OP_reg9";
12672 case DW_OP_reg10:
12673 return "DW_OP_reg10";
12674 case DW_OP_reg11:
12675 return "DW_OP_reg11";
12676 case DW_OP_reg12:
12677 return "DW_OP_reg12";
12678 case DW_OP_reg13:
12679 return "DW_OP_reg13";
12680 case DW_OP_reg14:
12681 return "DW_OP_reg14";
12682 case DW_OP_reg15:
12683 return "DW_OP_reg15";
12684 case DW_OP_reg16:
12685 return "DW_OP_reg16";
12686 case DW_OP_reg17:
12687 return "DW_OP_reg17";
12688 case DW_OP_reg18:
12689 return "DW_OP_reg18";
12690 case DW_OP_reg19:
12691 return "DW_OP_reg19";
12692 case DW_OP_reg20:
12693 return "DW_OP_reg20";
12694 case DW_OP_reg21:
12695 return "DW_OP_reg21";
12696 case DW_OP_reg22:
12697 return "DW_OP_reg22";
12698 case DW_OP_reg23:
12699 return "DW_OP_reg23";
12700 case DW_OP_reg24:
12701 return "DW_OP_reg24";
12702 case DW_OP_reg25:
12703 return "DW_OP_reg25";
12704 case DW_OP_reg26:
12705 return "DW_OP_reg26";
12706 case DW_OP_reg27:
12707 return "DW_OP_reg27";
12708 case DW_OP_reg28:
12709 return "DW_OP_reg28";
12710 case DW_OP_reg29:
12711 return "DW_OP_reg29";
12712 case DW_OP_reg30:
12713 return "DW_OP_reg30";
12714 case DW_OP_reg31:
12715 return "DW_OP_reg31";
12716 case DW_OP_breg0:
12717 return "DW_OP_breg0";
12718 case DW_OP_breg1:
12719 return "DW_OP_breg1";
12720 case DW_OP_breg2:
12721 return "DW_OP_breg2";
12722 case DW_OP_breg3:
12723 return "DW_OP_breg3";
12724 case DW_OP_breg4:
12725 return "DW_OP_breg4";
12726 case DW_OP_breg5:
12727 return "DW_OP_breg5";
12728 case DW_OP_breg6:
12729 return "DW_OP_breg6";
12730 case DW_OP_breg7:
12731 return "DW_OP_breg7";
12732 case DW_OP_breg8:
12733 return "DW_OP_breg8";
12734 case DW_OP_breg9:
12735 return "DW_OP_breg9";
12736 case DW_OP_breg10:
12737 return "DW_OP_breg10";
12738 case DW_OP_breg11:
12739 return "DW_OP_breg11";
12740 case DW_OP_breg12:
12741 return "DW_OP_breg12";
12742 case DW_OP_breg13:
12743 return "DW_OP_breg13";
12744 case DW_OP_breg14:
12745 return "DW_OP_breg14";
12746 case DW_OP_breg15:
12747 return "DW_OP_breg15";
12748 case DW_OP_breg16:
12749 return "DW_OP_breg16";
12750 case DW_OP_breg17:
12751 return "DW_OP_breg17";
12752 case DW_OP_breg18:
12753 return "DW_OP_breg18";
12754 case DW_OP_breg19:
12755 return "DW_OP_breg19";
12756 case DW_OP_breg20:
12757 return "DW_OP_breg20";
12758 case DW_OP_breg21:
12759 return "DW_OP_breg21";
12760 case DW_OP_breg22:
12761 return "DW_OP_breg22";
12762 case DW_OP_breg23:
12763 return "DW_OP_breg23";
12764 case DW_OP_breg24:
12765 return "DW_OP_breg24";
12766 case DW_OP_breg25:
12767 return "DW_OP_breg25";
12768 case DW_OP_breg26:
12769 return "DW_OP_breg26";
12770 case DW_OP_breg27:
12771 return "DW_OP_breg27";
12772 case DW_OP_breg28:
12773 return "DW_OP_breg28";
12774 case DW_OP_breg29:
12775 return "DW_OP_breg29";
12776 case DW_OP_breg30:
12777 return "DW_OP_breg30";
12778 case DW_OP_breg31:
12779 return "DW_OP_breg31";
12780 case DW_OP_regx:
12781 return "DW_OP_regx";
12782 case DW_OP_fbreg:
12783 return "DW_OP_fbreg";
12784 case DW_OP_bregx:
12785 return "DW_OP_bregx";
12786 case DW_OP_piece:
12787 return "DW_OP_piece";
12788 case DW_OP_deref_size:
12789 return "DW_OP_deref_size";
12790 case DW_OP_xderef_size:
12791 return "DW_OP_xderef_size";
12792 case DW_OP_nop:
12793 return "DW_OP_nop";
b7619582 12794 /* DWARF 3 extensions. */
ed348acc
EZ
12795 case DW_OP_push_object_address:
12796 return "DW_OP_push_object_address";
12797 case DW_OP_call2:
12798 return "DW_OP_call2";
12799 case DW_OP_call4:
12800 return "DW_OP_call4";
12801 case DW_OP_call_ref:
12802 return "DW_OP_call_ref";
b7619582
GF
12803 case DW_OP_form_tls_address:
12804 return "DW_OP_form_tls_address";
12805 case DW_OP_call_frame_cfa:
12806 return "DW_OP_call_frame_cfa";
12807 case DW_OP_bit_piece:
12808 return "DW_OP_bit_piece";
9eae7c52
TT
12809 /* DWARF 4 extensions. */
12810 case DW_OP_implicit_value:
12811 return "DW_OP_implicit_value";
12812 case DW_OP_stack_value:
12813 return "DW_OP_stack_value";
12814 /* GNU extensions. */
ed348acc
EZ
12815 case DW_OP_GNU_push_tls_address:
12816 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
12817 case DW_OP_GNU_uninit:
12818 return "DW_OP_GNU_uninit";
8cf6f0b1
TT
12819 case DW_OP_GNU_implicit_pointer:
12820 return "DW_OP_GNU_implicit_pointer";
c906108c 12821 default:
b1bfef65 12822 return NULL;
c906108c
SS
12823 }
12824}
12825
12826static char *
fba45db2 12827dwarf_bool_name (unsigned mybool)
c906108c
SS
12828{
12829 if (mybool)
12830 return "TRUE";
12831 else
12832 return "FALSE";
12833}
12834
12835/* Convert a DWARF type code into its string name. */
12836
12837static char *
aa1ee363 12838dwarf_type_encoding_name (unsigned enc)
c906108c
SS
12839{
12840 switch (enc)
12841 {
b7619582
GF
12842 case DW_ATE_void:
12843 return "DW_ATE_void";
c906108c
SS
12844 case DW_ATE_address:
12845 return "DW_ATE_address";
12846 case DW_ATE_boolean:
12847 return "DW_ATE_boolean";
12848 case DW_ATE_complex_float:
12849 return "DW_ATE_complex_float";
12850 case DW_ATE_float:
12851 return "DW_ATE_float";
12852 case DW_ATE_signed:
12853 return "DW_ATE_signed";
12854 case DW_ATE_signed_char:
12855 return "DW_ATE_signed_char";
12856 case DW_ATE_unsigned:
12857 return "DW_ATE_unsigned";
12858 case DW_ATE_unsigned_char:
12859 return "DW_ATE_unsigned_char";
b7619582 12860 /* DWARF 3. */
d9fa45fe
DC
12861 case DW_ATE_imaginary_float:
12862 return "DW_ATE_imaginary_float";
b7619582
GF
12863 case DW_ATE_packed_decimal:
12864 return "DW_ATE_packed_decimal";
12865 case DW_ATE_numeric_string:
12866 return "DW_ATE_numeric_string";
12867 case DW_ATE_edited:
12868 return "DW_ATE_edited";
12869 case DW_ATE_signed_fixed:
12870 return "DW_ATE_signed_fixed";
12871 case DW_ATE_unsigned_fixed:
12872 return "DW_ATE_unsigned_fixed";
12873 case DW_ATE_decimal_float:
12874 return "DW_ATE_decimal_float";
75079b2b
TT
12875 /* DWARF 4. */
12876 case DW_ATE_UTF:
12877 return "DW_ATE_UTF";
b7619582
GF
12878 /* HP extensions. */
12879 case DW_ATE_HP_float80:
12880 return "DW_ATE_HP_float80";
12881 case DW_ATE_HP_complex_float80:
12882 return "DW_ATE_HP_complex_float80";
12883 case DW_ATE_HP_float128:
12884 return "DW_ATE_HP_float128";
12885 case DW_ATE_HP_complex_float128:
12886 return "DW_ATE_HP_complex_float128";
12887 case DW_ATE_HP_floathpintel:
12888 return "DW_ATE_HP_floathpintel";
12889 case DW_ATE_HP_imaginary_float80:
12890 return "DW_ATE_HP_imaginary_float80";
12891 case DW_ATE_HP_imaginary_float128:
12892 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
12893 default:
12894 return "DW_ATE_<unknown>";
12895 }
12896}
12897
0963b4bd 12898/* Convert a DWARF call frame info operation to its string name. */
c906108c
SS
12899
12900#if 0
12901static char *
aa1ee363 12902dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
12903{
12904 switch (cfi_opc)
12905 {
12906 case DW_CFA_advance_loc:
12907 return "DW_CFA_advance_loc";
12908 case DW_CFA_offset:
12909 return "DW_CFA_offset";
12910 case DW_CFA_restore:
12911 return "DW_CFA_restore";
12912 case DW_CFA_nop:
12913 return "DW_CFA_nop";
12914 case DW_CFA_set_loc:
12915 return "DW_CFA_set_loc";
12916 case DW_CFA_advance_loc1:
12917 return "DW_CFA_advance_loc1";
12918 case DW_CFA_advance_loc2:
12919 return "DW_CFA_advance_loc2";
12920 case DW_CFA_advance_loc4:
12921 return "DW_CFA_advance_loc4";
12922 case DW_CFA_offset_extended:
12923 return "DW_CFA_offset_extended";
12924 case DW_CFA_restore_extended:
12925 return "DW_CFA_restore_extended";
12926 case DW_CFA_undefined:
12927 return "DW_CFA_undefined";
12928 case DW_CFA_same_value:
12929 return "DW_CFA_same_value";
12930 case DW_CFA_register:
12931 return "DW_CFA_register";
12932 case DW_CFA_remember_state:
12933 return "DW_CFA_remember_state";
12934 case DW_CFA_restore_state:
12935 return "DW_CFA_restore_state";
12936 case DW_CFA_def_cfa:
12937 return "DW_CFA_def_cfa";
12938 case DW_CFA_def_cfa_register:
12939 return "DW_CFA_def_cfa_register";
12940 case DW_CFA_def_cfa_offset:
12941 return "DW_CFA_def_cfa_offset";
b7619582 12942 /* DWARF 3. */
985cb1a3
JM
12943 case DW_CFA_def_cfa_expression:
12944 return "DW_CFA_def_cfa_expression";
12945 case DW_CFA_expression:
12946 return "DW_CFA_expression";
12947 case DW_CFA_offset_extended_sf:
12948 return "DW_CFA_offset_extended_sf";
12949 case DW_CFA_def_cfa_sf:
12950 return "DW_CFA_def_cfa_sf";
12951 case DW_CFA_def_cfa_offset_sf:
12952 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
12953 case DW_CFA_val_offset:
12954 return "DW_CFA_val_offset";
12955 case DW_CFA_val_offset_sf:
12956 return "DW_CFA_val_offset_sf";
12957 case DW_CFA_val_expression:
12958 return "DW_CFA_val_expression";
12959 /* SGI/MIPS specific. */
c906108c
SS
12960 case DW_CFA_MIPS_advance_loc8:
12961 return "DW_CFA_MIPS_advance_loc8";
b7619582 12962 /* GNU extensions. */
985cb1a3
JM
12963 case DW_CFA_GNU_window_save:
12964 return "DW_CFA_GNU_window_save";
12965 case DW_CFA_GNU_args_size:
12966 return "DW_CFA_GNU_args_size";
12967 case DW_CFA_GNU_negative_offset_extended:
12968 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
12969 default:
12970 return "DW_CFA_<unknown>";
12971 }
12972}
12973#endif
12974
f9aca02d 12975static void
d97bc12b 12976dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
12977{
12978 unsigned int i;
12979
d97bc12b
DE
12980 print_spaces (indent, f);
12981 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 12982 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
12983
12984 if (die->parent != NULL)
12985 {
12986 print_spaces (indent, f);
12987 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12988 die->parent->offset);
12989 }
12990
12991 print_spaces (indent, f);
12992 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 12993 dwarf_bool_name (die->child != NULL));
c906108c 12994
d97bc12b
DE
12995 print_spaces (indent, f);
12996 fprintf_unfiltered (f, " attributes:\n");
12997
c906108c
SS
12998 for (i = 0; i < die->num_attrs; ++i)
12999 {
d97bc12b
DE
13000 print_spaces (indent, f);
13001 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
13002 dwarf_attr_name (die->attrs[i].name),
13003 dwarf_form_name (die->attrs[i].form));
d97bc12b 13004
c906108c
SS
13005 switch (die->attrs[i].form)
13006 {
13007 case DW_FORM_ref_addr:
13008 case DW_FORM_addr:
d97bc12b 13009 fprintf_unfiltered (f, "address: ");
5af949e3 13010 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
13011 break;
13012 case DW_FORM_block2:
13013 case DW_FORM_block4:
13014 case DW_FORM_block:
13015 case DW_FORM_block1:
3e43a32a
MS
13016 fprintf_unfiltered (f, "block: size %d",
13017 DW_BLOCK (&die->attrs[i])->size);
c906108c 13018 break;
2dc7f7b3
TT
13019 case DW_FORM_exprloc:
13020 fprintf_unfiltered (f, "expression: size %u",
13021 DW_BLOCK (&die->attrs[i])->size);
13022 break;
10b3939b
DJ
13023 case DW_FORM_ref1:
13024 case DW_FORM_ref2:
13025 case DW_FORM_ref4:
d97bc12b 13026 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
13027 (long) (DW_ADDR (&die->attrs[i])));
13028 break;
c906108c
SS
13029 case DW_FORM_data1:
13030 case DW_FORM_data2:
13031 case DW_FORM_data4:
ce5d95e1 13032 case DW_FORM_data8:
c906108c
SS
13033 case DW_FORM_udata:
13034 case DW_FORM_sdata:
43bbcdc2
PH
13035 fprintf_unfiltered (f, "constant: %s",
13036 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 13037 break;
2dc7f7b3
TT
13038 case DW_FORM_sec_offset:
13039 fprintf_unfiltered (f, "section offset: %s",
13040 pulongest (DW_UNSND (&die->attrs[i])));
13041 break;
348e048f
DE
13042 case DW_FORM_sig8:
13043 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13044 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13045 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
13046 else
13047 fprintf_unfiltered (f, "signatured type, offset: unknown");
13048 break;
c906108c 13049 case DW_FORM_string:
4bdf3d34 13050 case DW_FORM_strp:
8285870a 13051 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 13052 DW_STRING (&die->attrs[i])
8285870a
JK
13053 ? DW_STRING (&die->attrs[i]) : "",
13054 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
13055 break;
13056 case DW_FORM_flag:
13057 if (DW_UNSND (&die->attrs[i]))
d97bc12b 13058 fprintf_unfiltered (f, "flag: TRUE");
c906108c 13059 else
d97bc12b 13060 fprintf_unfiltered (f, "flag: FALSE");
c906108c 13061 break;
2dc7f7b3
TT
13062 case DW_FORM_flag_present:
13063 fprintf_unfiltered (f, "flag: TRUE");
13064 break;
a8329558 13065 case DW_FORM_indirect:
0963b4bd
MS
13066 /* The reader will have reduced the indirect form to
13067 the "base form" so this form should not occur. */
3e43a32a
MS
13068 fprintf_unfiltered (f,
13069 "unexpected attribute form: DW_FORM_indirect");
a8329558 13070 break;
c906108c 13071 default:
d97bc12b 13072 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 13073 die->attrs[i].form);
d97bc12b 13074 break;
c906108c 13075 }
d97bc12b 13076 fprintf_unfiltered (f, "\n");
c906108c
SS
13077 }
13078}
13079
f9aca02d 13080static void
d97bc12b 13081dump_die_for_error (struct die_info *die)
c906108c 13082{
d97bc12b
DE
13083 dump_die_shallow (gdb_stderr, 0, die);
13084}
13085
13086static void
13087dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13088{
13089 int indent = level * 4;
13090
13091 gdb_assert (die != NULL);
13092
13093 if (level >= max_level)
13094 return;
13095
13096 dump_die_shallow (f, indent, die);
13097
13098 if (die->child != NULL)
c906108c 13099 {
d97bc12b
DE
13100 print_spaces (indent, f);
13101 fprintf_unfiltered (f, " Children:");
13102 if (level + 1 < max_level)
13103 {
13104 fprintf_unfiltered (f, "\n");
13105 dump_die_1 (f, level + 1, max_level, die->child);
13106 }
13107 else
13108 {
3e43a32a
MS
13109 fprintf_unfiltered (f,
13110 " [not printed, max nesting level reached]\n");
d97bc12b
DE
13111 }
13112 }
13113
13114 if (die->sibling != NULL && level > 0)
13115 {
13116 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
13117 }
13118}
13119
d97bc12b
DE
13120/* This is called from the pdie macro in gdbinit.in.
13121 It's not static so gcc will keep a copy callable from gdb. */
13122
13123void
13124dump_die (struct die_info *die, int max_level)
13125{
13126 dump_die_1 (gdb_stdlog, 0, max_level, die);
13127}
13128
f9aca02d 13129static void
51545339 13130store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13131{
51545339 13132 void **slot;
c906108c 13133
51545339
DJ
13134 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13135
13136 *slot = die;
c906108c
SS
13137}
13138
93311388
DE
13139static int
13140is_ref_attr (struct attribute *attr)
c906108c 13141{
c906108c
SS
13142 switch (attr->form)
13143 {
13144 case DW_FORM_ref_addr:
c906108c
SS
13145 case DW_FORM_ref1:
13146 case DW_FORM_ref2:
13147 case DW_FORM_ref4:
613e1657 13148 case DW_FORM_ref8:
c906108c 13149 case DW_FORM_ref_udata:
93311388 13150 return 1;
c906108c 13151 default:
93311388 13152 return 0;
c906108c 13153 }
93311388
DE
13154}
13155
13156static unsigned int
13157dwarf2_get_ref_die_offset (struct attribute *attr)
13158{
13159 if (is_ref_attr (attr))
13160 return DW_ADDR (attr);
13161
13162 complaint (&symfile_complaints,
13163 _("unsupported die ref attribute form: '%s'"),
13164 dwarf_form_name (attr->form));
13165 return 0;
c906108c
SS
13166}
13167
43bbcdc2
PH
13168/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13169 * the value held by the attribute is not constant. */
a02abb62 13170
43bbcdc2 13171static LONGEST
a02abb62
JB
13172dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13173{
13174 if (attr->form == DW_FORM_sdata)
13175 return DW_SND (attr);
13176 else if (attr->form == DW_FORM_udata
13177 || attr->form == DW_FORM_data1
13178 || attr->form == DW_FORM_data2
13179 || attr->form == DW_FORM_data4
13180 || attr->form == DW_FORM_data8)
13181 return DW_UNSND (attr);
13182 else
13183 {
3e43a32a
MS
13184 complaint (&symfile_complaints,
13185 _("Attribute value is not a constant (%s)"),
a02abb62
JB
13186 dwarf_form_name (attr->form));
13187 return default_value;
13188 }
13189}
13190
03dd20cc 13191/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
13192 unit and add it to our queue.
13193 The result is non-zero if PER_CU was queued, otherwise the result is zero
13194 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 13195
348e048f 13196static int
03dd20cc
DJ
13197maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13198 struct dwarf2_per_cu_data *per_cu)
13199{
98bfdba5
PA
13200 /* We may arrive here during partial symbol reading, if we need full
13201 DIEs to process an unusual case (e.g. template arguments). Do
13202 not queue PER_CU, just tell our caller to load its DIEs. */
13203 if (dwarf2_per_objfile->reading_partial_symbols)
13204 {
13205 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13206 return 1;
13207 return 0;
13208 }
13209
03dd20cc
DJ
13210 /* Mark the dependence relation so that we don't flush PER_CU
13211 too early. */
13212 dwarf2_add_dependence (this_cu, per_cu);
13213
13214 /* If it's already on the queue, we have nothing to do. */
13215 if (per_cu->queued)
348e048f 13216 return 0;
03dd20cc
DJ
13217
13218 /* If the compilation unit is already loaded, just mark it as
13219 used. */
13220 if (per_cu->cu != NULL)
13221 {
13222 per_cu->cu->last_used = 0;
348e048f 13223 return 0;
03dd20cc
DJ
13224 }
13225
13226 /* Add it to the queue. */
13227 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
13228
13229 return 1;
13230}
13231
13232/* Follow reference or signature attribute ATTR of SRC_DIE.
13233 On entry *REF_CU is the CU of SRC_DIE.
13234 On exit *REF_CU is the CU of the result. */
13235
13236static struct die_info *
13237follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13238 struct dwarf2_cu **ref_cu)
13239{
13240 struct die_info *die;
13241
13242 if (is_ref_attr (attr))
13243 die = follow_die_ref (src_die, attr, ref_cu);
13244 else if (attr->form == DW_FORM_sig8)
13245 die = follow_die_sig (src_die, attr, ref_cu);
13246 else
13247 {
13248 dump_die_for_error (src_die);
13249 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13250 (*ref_cu)->objfile->name);
13251 }
13252
13253 return die;
03dd20cc
DJ
13254}
13255
5c631832 13256/* Follow reference OFFSET.
673bfd45
DE
13257 On entry *REF_CU is the CU of the source die referencing OFFSET.
13258 On exit *REF_CU is the CU of the result.
13259 Returns NULL if OFFSET is invalid. */
f504f079 13260
f9aca02d 13261static struct die_info *
5c631832 13262follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
c906108c 13263{
10b3939b 13264 struct die_info temp_die;
f2f0e013 13265 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 13266
348e048f
DE
13267 gdb_assert (cu->per_cu != NULL);
13268
98bfdba5
PA
13269 target_cu = cu;
13270
348e048f
DE
13271 if (cu->per_cu->from_debug_types)
13272 {
13273 /* .debug_types CUs cannot reference anything outside their CU.
13274 If they need to, they have to reference a signatured type via
13275 DW_FORM_sig8. */
13276 if (! offset_in_cu_p (&cu->header, offset))
5c631832 13277 return NULL;
348e048f
DE
13278 }
13279 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
13280 {
13281 struct dwarf2_per_cu_data *per_cu;
9a619af0 13282
45452591 13283 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
13284
13285 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
13286 if (maybe_queue_comp_unit (cu, per_cu))
13287 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 13288
10b3939b
DJ
13289 target_cu = per_cu->cu;
13290 }
98bfdba5
PA
13291 else if (cu->dies == NULL)
13292 {
13293 /* We're loading full DIEs during partial symbol reading. */
13294 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13295 load_full_comp_unit (cu->per_cu, cu->objfile);
13296 }
c906108c 13297
f2f0e013 13298 *ref_cu = target_cu;
51545339 13299 temp_die.offset = offset;
5c631832
JK
13300 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13301}
10b3939b 13302
5c631832
JK
13303/* Follow reference attribute ATTR of SRC_DIE.
13304 On entry *REF_CU is the CU of SRC_DIE.
13305 On exit *REF_CU is the CU of the result. */
13306
13307static struct die_info *
13308follow_die_ref (struct die_info *src_die, struct attribute *attr,
13309 struct dwarf2_cu **ref_cu)
13310{
13311 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13312 struct dwarf2_cu *cu = *ref_cu;
13313 struct die_info *die;
13314
13315 die = follow_die_offset (offset, ref_cu);
13316 if (!die)
13317 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13318 "at 0x%x [in module %s]"),
13319 offset, src_die->offset, cu->objfile->name);
348e048f 13320
5c631832
JK
13321 return die;
13322}
13323
13324/* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13325 value is intended for DW_OP_call*. */
13326
13327struct dwarf2_locexpr_baton
13328dwarf2_fetch_die_location_block (unsigned int offset,
8cf6f0b1
TT
13329 struct dwarf2_per_cu_data *per_cu,
13330 CORE_ADDR (*get_frame_pc) (void *baton),
13331 void *baton)
5c631832
JK
13332{
13333 struct dwarf2_cu *cu = per_cu->cu;
13334 struct die_info *die;
13335 struct attribute *attr;
13336 struct dwarf2_locexpr_baton retval;
13337
8cf6f0b1
TT
13338 dw2_setup (per_cu->objfile);
13339
5c631832
JK
13340 die = follow_die_offset (offset, &cu);
13341 if (!die)
13342 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13343 offset, per_cu->cu->objfile->name);
13344
13345 attr = dwarf2_attr (die, DW_AT_location, cu);
13346 if (!attr)
13347 {
13348 /* DWARF: "If there is no such attribute, then there is no effect.". */
13349
13350 retval.data = NULL;
13351 retval.size = 0;
13352 }
8cf6f0b1
TT
13353 else if (attr_form_is_section_offset (attr))
13354 {
13355 struct dwarf2_loclist_baton loclist_baton;
13356 CORE_ADDR pc = (*get_frame_pc) (baton);
13357 size_t size;
13358
13359 fill_in_loclist_baton (cu, &loclist_baton, attr);
13360
13361 retval.data = dwarf2_find_location_expression (&loclist_baton,
13362 &size, pc);
13363 retval.size = size;
13364 }
5c631832
JK
13365 else
13366 {
13367 if (!attr_form_is_block (attr))
13368 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13369 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13370 offset, per_cu->cu->objfile->name);
13371
13372 retval.data = DW_BLOCK (attr)->data;
13373 retval.size = DW_BLOCK (attr)->size;
13374 }
13375 retval.per_cu = cu->per_cu;
13376 return retval;
348e048f
DE
13377}
13378
13379/* Follow the signature attribute ATTR in SRC_DIE.
13380 On entry *REF_CU is the CU of SRC_DIE.
13381 On exit *REF_CU is the CU of the result. */
13382
13383static struct die_info *
13384follow_die_sig (struct die_info *src_die, struct attribute *attr,
13385 struct dwarf2_cu **ref_cu)
13386{
13387 struct objfile *objfile = (*ref_cu)->objfile;
13388 struct die_info temp_die;
13389 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13390 struct dwarf2_cu *sig_cu;
13391 struct die_info *die;
13392
13393 /* sig_type will be NULL if the signatured type is missing from
13394 the debug info. */
13395 if (sig_type == NULL)
13396 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13397 "at 0x%x [in module %s]"),
13398 src_die->offset, objfile->name);
13399
13400 /* If necessary, add it to the queue and load its DIEs. */
13401
13402 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13403 read_signatured_type (objfile, sig_type);
13404
13405 gdb_assert (sig_type->per_cu.cu != NULL);
13406
13407 sig_cu = sig_type->per_cu.cu;
13408 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13409 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13410 if (die)
13411 {
13412 *ref_cu = sig_cu;
13413 return die;
13414 }
13415
3e43a32a
MS
13416 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13417 "from DIE at 0x%x [in module %s]"),
348e048f
DE
13418 sig_type->type_offset, src_die->offset, objfile->name);
13419}
13420
13421/* Given an offset of a signatured type, return its signatured_type. */
13422
13423static struct signatured_type *
13424lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13425{
13426 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13427 unsigned int length, initial_length_size;
13428 unsigned int sig_offset;
13429 struct signatured_type find_entry, *type_sig;
13430
13431 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13432 sig_offset = (initial_length_size
13433 + 2 /*version*/
13434 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13435 + 1 /*address_size*/);
13436 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13437 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13438
13439 /* This is only used to lookup previously recorded types.
13440 If we didn't find it, it's our bug. */
13441 gdb_assert (type_sig != NULL);
13442 gdb_assert (offset == type_sig->offset);
13443
13444 return type_sig;
13445}
13446
13447/* Read in signatured type at OFFSET and build its CU and die(s). */
13448
13449static void
13450read_signatured_type_at_offset (struct objfile *objfile,
13451 unsigned int offset)
13452{
13453 struct signatured_type *type_sig;
13454
be391dca
TT
13455 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13456
348e048f
DE
13457 /* We have the section offset, but we need the signature to do the
13458 hash table lookup. */
13459 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13460
13461 gdb_assert (type_sig->per_cu.cu == NULL);
13462
13463 read_signatured_type (objfile, type_sig);
13464
13465 gdb_assert (type_sig->per_cu.cu != NULL);
13466}
13467
13468/* Read in a signatured type and build its CU and DIEs. */
13469
13470static void
13471read_signatured_type (struct objfile *objfile,
13472 struct signatured_type *type_sig)
13473{
1fd400ff 13474 gdb_byte *types_ptr;
348e048f
DE
13475 struct die_reader_specs reader_specs;
13476 struct dwarf2_cu *cu;
13477 ULONGEST signature;
13478 struct cleanup *back_to, *free_cu_cleanup;
348e048f 13479
1fd400ff
TT
13480 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13481 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13482
348e048f
DE
13483 gdb_assert (type_sig->per_cu.cu == NULL);
13484
9816fde3
JK
13485 cu = xmalloc (sizeof (*cu));
13486 init_one_comp_unit (cu, objfile);
13487
348e048f
DE
13488 type_sig->per_cu.cu = cu;
13489 cu->per_cu = &type_sig->per_cu;
13490
13491 /* If an error occurs while loading, release our storage. */
13492 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13493
13494 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13495 types_ptr, objfile->obfd);
13496 gdb_assert (signature == type_sig->signature);
13497
13498 cu->die_hash
13499 = htab_create_alloc_ex (cu->header.length / 12,
13500 die_hash,
13501 die_eq,
13502 NULL,
13503 &cu->comp_unit_obstack,
13504 hashtab_obstack_allocate,
13505 dummy_obstack_deallocate);
13506
13507 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13508 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13509
13510 init_cu_die_reader (&reader_specs, cu);
13511
13512 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13513 NULL /*parent*/);
13514
13515 /* We try not to read any attributes in this function, because not
13516 all objfiles needed for references have been loaded yet, and symbol
13517 table processing isn't initialized. But we have to set the CU language,
13518 or we won't be able to build types correctly. */
9816fde3 13519 prepare_one_comp_unit (cu, cu->dies);
348e048f
DE
13520
13521 do_cleanups (back_to);
13522
13523 /* We've successfully allocated this compilation unit. Let our caller
13524 clean it up when finished with it. */
13525 discard_cleanups (free_cu_cleanup);
13526
13527 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13528 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
13529}
13530
c906108c
SS
13531/* Decode simple location descriptions.
13532 Given a pointer to a dwarf block that defines a location, compute
13533 the location and return the value.
13534
4cecd739
DJ
13535 NOTE drow/2003-11-18: This function is called in two situations
13536 now: for the address of static or global variables (partial symbols
13537 only) and for offsets into structures which are expected to be
13538 (more or less) constant. The partial symbol case should go away,
13539 and only the constant case should remain. That will let this
13540 function complain more accurately. A few special modes are allowed
13541 without complaint for global variables (for instance, global
13542 register values and thread-local values).
c906108c
SS
13543
13544 A location description containing no operations indicates that the
4cecd739 13545 object is optimized out. The return value is 0 for that case.
6b992462
DJ
13546 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13547 callers will only want a very basic result and this can become a
13548 complaint.
c906108c 13549
d53d4ac5 13550 Note that stack[0] is unused except as a default error return. */
c906108c
SS
13551
13552static CORE_ADDR
e7c27a73 13553decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 13554{
e7c27a73 13555 struct objfile *objfile = cu->objfile;
c906108c
SS
13556 int i;
13557 int size = blk->size;
fe1b8b76 13558 gdb_byte *data = blk->data;
c906108c
SS
13559 CORE_ADDR stack[64];
13560 int stacki;
13561 unsigned int bytes_read, unsnd;
fe1b8b76 13562 gdb_byte op;
c906108c
SS
13563
13564 i = 0;
13565 stacki = 0;
13566 stack[stacki] = 0;
d53d4ac5 13567 stack[++stacki] = 0;
c906108c
SS
13568
13569 while (i < size)
13570 {
c906108c
SS
13571 op = data[i++];
13572 switch (op)
13573 {
f1bea926
JM
13574 case DW_OP_lit0:
13575 case DW_OP_lit1:
13576 case DW_OP_lit2:
13577 case DW_OP_lit3:
13578 case DW_OP_lit4:
13579 case DW_OP_lit5:
13580 case DW_OP_lit6:
13581 case DW_OP_lit7:
13582 case DW_OP_lit8:
13583 case DW_OP_lit9:
13584 case DW_OP_lit10:
13585 case DW_OP_lit11:
13586 case DW_OP_lit12:
13587 case DW_OP_lit13:
13588 case DW_OP_lit14:
13589 case DW_OP_lit15:
13590 case DW_OP_lit16:
13591 case DW_OP_lit17:
13592 case DW_OP_lit18:
13593 case DW_OP_lit19:
13594 case DW_OP_lit20:
13595 case DW_OP_lit21:
13596 case DW_OP_lit22:
13597 case DW_OP_lit23:
13598 case DW_OP_lit24:
13599 case DW_OP_lit25:
13600 case DW_OP_lit26:
13601 case DW_OP_lit27:
13602 case DW_OP_lit28:
13603 case DW_OP_lit29:
13604 case DW_OP_lit30:
13605 case DW_OP_lit31:
13606 stack[++stacki] = op - DW_OP_lit0;
13607 break;
13608
c906108c
SS
13609 case DW_OP_reg0:
13610 case DW_OP_reg1:
13611 case DW_OP_reg2:
13612 case DW_OP_reg3:
13613 case DW_OP_reg4:
13614 case DW_OP_reg5:
13615 case DW_OP_reg6:
13616 case DW_OP_reg7:
13617 case DW_OP_reg8:
13618 case DW_OP_reg9:
13619 case DW_OP_reg10:
13620 case DW_OP_reg11:
13621 case DW_OP_reg12:
13622 case DW_OP_reg13:
13623 case DW_OP_reg14:
13624 case DW_OP_reg15:
13625 case DW_OP_reg16:
13626 case DW_OP_reg17:
13627 case DW_OP_reg18:
13628 case DW_OP_reg19:
13629 case DW_OP_reg20:
13630 case DW_OP_reg21:
13631 case DW_OP_reg22:
13632 case DW_OP_reg23:
13633 case DW_OP_reg24:
13634 case DW_OP_reg25:
13635 case DW_OP_reg26:
13636 case DW_OP_reg27:
13637 case DW_OP_reg28:
13638 case DW_OP_reg29:
13639 case DW_OP_reg30:
13640 case DW_OP_reg31:
c906108c 13641 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
13642 if (i < size)
13643 dwarf2_complex_location_expr_complaint ();
c906108c
SS
13644 break;
13645
13646 case DW_OP_regx:
c906108c
SS
13647 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13648 i += bytes_read;
c906108c 13649 stack[++stacki] = unsnd;
4cecd739
DJ
13650 if (i < size)
13651 dwarf2_complex_location_expr_complaint ();
c906108c
SS
13652 break;
13653
13654 case DW_OP_addr:
107d2387 13655 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 13656 cu, &bytes_read);
107d2387 13657 i += bytes_read;
c906108c
SS
13658 break;
13659
13660 case DW_OP_const1u:
13661 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13662 i += 1;
13663 break;
13664
13665 case DW_OP_const1s:
13666 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13667 i += 1;
13668 break;
13669
13670 case DW_OP_const2u:
13671 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13672 i += 2;
13673 break;
13674
13675 case DW_OP_const2s:
13676 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13677 i += 2;
13678 break;
13679
13680 case DW_OP_const4u:
13681 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13682 i += 4;
13683 break;
13684
13685 case DW_OP_const4s:
13686 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13687 i += 4;
13688 break;
13689
13690 case DW_OP_constu:
13691 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 13692 &bytes_read);
c906108c
SS
13693 i += bytes_read;
13694 break;
13695
13696 case DW_OP_consts:
13697 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13698 i += bytes_read;
13699 break;
13700
f1bea926
JM
13701 case DW_OP_dup:
13702 stack[stacki + 1] = stack[stacki];
13703 stacki++;
13704 break;
13705
c906108c
SS
13706 case DW_OP_plus:
13707 stack[stacki - 1] += stack[stacki];
13708 stacki--;
13709 break;
13710
13711 case DW_OP_plus_uconst:
3e43a32a
MS
13712 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
13713 &bytes_read);
c906108c
SS
13714 i += bytes_read;
13715 break;
13716
13717 case DW_OP_minus:
f1bea926 13718 stack[stacki - 1] -= stack[stacki];
c906108c
SS
13719 stacki--;
13720 break;
13721
7a292a7a 13722 case DW_OP_deref:
7a292a7a 13723 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
13724 this using GDB's address_class enum. This is valid for partial
13725 global symbols, although the variable's address will be bogus
13726 in the psymtab. */
7a292a7a 13727 if (i < size)
4d3c2250 13728 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
13729 break;
13730
9d774e44 13731 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
13732 /* The top of the stack has the offset from the beginning
13733 of the thread control block at which the variable is located. */
13734 /* Nothing should follow this operator, so the top of stack would
13735 be returned. */
4cecd739
DJ
13736 /* This is valid for partial global symbols, but the variable's
13737 address will be bogus in the psymtab. */
9d774e44 13738 if (i < size)
4d3c2250 13739 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
13740 break;
13741
42be36b3
CT
13742 case DW_OP_GNU_uninit:
13743 break;
13744
c906108c 13745 default:
b1bfef65
TT
13746 {
13747 const char *name = dwarf_stack_op_name (op);
13748
13749 if (name)
13750 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13751 name);
13752 else
13753 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
13754 op);
13755 }
13756
c906108c
SS
13757 return (stack[stacki]);
13758 }
d53d4ac5
TT
13759
13760 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13761 outside of the allocated space. Also enforce minimum>0. */
13762 if (stacki >= ARRAY_SIZE (stack) - 1)
13763 {
13764 complaint (&symfile_complaints,
13765 _("location description stack overflow"));
13766 return 0;
13767 }
13768
13769 if (stacki <= 0)
13770 {
13771 complaint (&symfile_complaints,
13772 _("location description stack underflow"));
13773 return 0;
13774 }
c906108c
SS
13775 }
13776 return (stack[stacki]);
13777}
13778
13779/* memory allocation interface */
13780
c906108c 13781static struct dwarf_block *
7b5a2f43 13782dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
13783{
13784 struct dwarf_block *blk;
13785
13786 blk = (struct dwarf_block *)
7b5a2f43 13787 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
13788 return (blk);
13789}
13790
13791static struct abbrev_info *
f3dd6933 13792dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
13793{
13794 struct abbrev_info *abbrev;
13795
f3dd6933
DJ
13796 abbrev = (struct abbrev_info *)
13797 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
13798 memset (abbrev, 0, sizeof (struct abbrev_info));
13799 return (abbrev);
13800}
13801
13802static struct die_info *
b60c80d6 13803dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
13804{
13805 struct die_info *die;
b60c80d6
DJ
13806 size_t size = sizeof (struct die_info);
13807
13808 if (num_attrs > 1)
13809 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 13810
b60c80d6 13811 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
13812 memset (die, 0, sizeof (struct die_info));
13813 return (die);
13814}
2e276125
JB
13815
13816\f
13817/* Macro support. */
13818
2e276125
JB
13819/* Return the full name of file number I in *LH's file name table.
13820 Use COMP_DIR as the name of the current directory of the
13821 compilation. The result is allocated using xmalloc; the caller is
13822 responsible for freeing it. */
13823static char *
13824file_full_name (int file, struct line_header *lh, const char *comp_dir)
13825{
6a83a1e6
EZ
13826 /* Is the file number a valid index into the line header's file name
13827 table? Remember that file numbers start with one, not zero. */
13828 if (1 <= file && file <= lh->num_file_names)
13829 {
13830 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 13831
6a83a1e6
EZ
13832 if (IS_ABSOLUTE_PATH (fe->name))
13833 return xstrdup (fe->name);
13834 else
13835 {
13836 const char *dir;
13837 int dir_len;
13838 char *full_name;
13839
13840 if (fe->dir_index)
13841 dir = lh->include_dirs[fe->dir_index - 1];
13842 else
13843 dir = comp_dir;
13844
13845 if (dir)
13846 {
13847 dir_len = strlen (dir);
13848 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13849 strcpy (full_name, dir);
13850 full_name[dir_len] = '/';
13851 strcpy (full_name + dir_len + 1, fe->name);
13852 return full_name;
13853 }
13854 else
13855 return xstrdup (fe->name);
13856 }
13857 }
2e276125
JB
13858 else
13859 {
6a83a1e6
EZ
13860 /* The compiler produced a bogus file number. We can at least
13861 record the macro definitions made in the file, even if we
13862 won't be able to find the file by name. */
13863 char fake_name[80];
9a619af0 13864
6a83a1e6 13865 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 13866
6e70227d 13867 complaint (&symfile_complaints,
6a83a1e6
EZ
13868 _("bad file number in macro information (%d)"),
13869 file);
2e276125 13870
6a83a1e6 13871 return xstrdup (fake_name);
2e276125
JB
13872 }
13873}
13874
13875
13876static struct macro_source_file *
13877macro_start_file (int file, int line,
13878 struct macro_source_file *current_file,
13879 const char *comp_dir,
13880 struct line_header *lh, struct objfile *objfile)
13881{
13882 /* The full name of this source file. */
13883 char *full_name = file_full_name (file, lh, comp_dir);
13884
13885 /* We don't create a macro table for this compilation unit
13886 at all until we actually get a filename. */
13887 if (! pending_macros)
4a146b47 13888 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 13889 objfile->macro_cache);
2e276125
JB
13890
13891 if (! current_file)
13892 /* If we have no current file, then this must be the start_file
13893 directive for the compilation unit's main source file. */
13894 current_file = macro_set_main (pending_macros, full_name);
13895 else
13896 current_file = macro_include (current_file, line, full_name);
13897
13898 xfree (full_name);
6e70227d 13899
2e276125
JB
13900 return current_file;
13901}
13902
13903
13904/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13905 followed by a null byte. */
13906static char *
13907copy_string (const char *buf, int len)
13908{
13909 char *s = xmalloc (len + 1);
9a619af0 13910
2e276125
JB
13911 memcpy (s, buf, len);
13912 s[len] = '\0';
2e276125
JB
13913 return s;
13914}
13915
13916
13917static const char *
13918consume_improper_spaces (const char *p, const char *body)
13919{
13920 if (*p == ' ')
13921 {
4d3c2250 13922 complaint (&symfile_complaints,
3e43a32a
MS
13923 _("macro definition contains spaces "
13924 "in formal argument list:\n`%s'"),
4d3c2250 13925 body);
2e276125
JB
13926
13927 while (*p == ' ')
13928 p++;
13929 }
13930
13931 return p;
13932}
13933
13934
13935static void
13936parse_macro_definition (struct macro_source_file *file, int line,
13937 const char *body)
13938{
13939 const char *p;
13940
13941 /* The body string takes one of two forms. For object-like macro
13942 definitions, it should be:
13943
13944 <macro name> " " <definition>
13945
13946 For function-like macro definitions, it should be:
13947
13948 <macro name> "() " <definition>
13949 or
13950 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13951
13952 Spaces may appear only where explicitly indicated, and in the
13953 <definition>.
13954
13955 The Dwarf 2 spec says that an object-like macro's name is always
13956 followed by a space, but versions of GCC around March 2002 omit
6e70227d 13957 the space when the macro's definition is the empty string.
2e276125
JB
13958
13959 The Dwarf 2 spec says that there should be no spaces between the
13960 formal arguments in a function-like macro's formal argument list,
13961 but versions of GCC around March 2002 include spaces after the
13962 commas. */
13963
13964
13965 /* Find the extent of the macro name. The macro name is terminated
13966 by either a space or null character (for an object-like macro) or
13967 an opening paren (for a function-like macro). */
13968 for (p = body; *p; p++)
13969 if (*p == ' ' || *p == '(')
13970 break;
13971
13972 if (*p == ' ' || *p == '\0')
13973 {
13974 /* It's an object-like macro. */
13975 int name_len = p - body;
13976 char *name = copy_string (body, name_len);
13977 const char *replacement;
13978
13979 if (*p == ' ')
13980 replacement = body + name_len + 1;
13981 else
13982 {
4d3c2250 13983 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13984 replacement = body + name_len;
13985 }
6e70227d 13986
2e276125
JB
13987 macro_define_object (file, line, name, replacement);
13988
13989 xfree (name);
13990 }
13991 else if (*p == '(')
13992 {
13993 /* It's a function-like macro. */
13994 char *name = copy_string (body, p - body);
13995 int argc = 0;
13996 int argv_size = 1;
13997 char **argv = xmalloc (argv_size * sizeof (*argv));
13998
13999 p++;
14000
14001 p = consume_improper_spaces (p, body);
14002
14003 /* Parse the formal argument list. */
14004 while (*p && *p != ')')
14005 {
14006 /* Find the extent of the current argument name. */
14007 const char *arg_start = p;
14008
14009 while (*p && *p != ',' && *p != ')' && *p != ' ')
14010 p++;
14011
14012 if (! *p || p == arg_start)
4d3c2250 14013 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14014 else
14015 {
14016 /* Make sure argv has room for the new argument. */
14017 if (argc >= argv_size)
14018 {
14019 argv_size *= 2;
14020 argv = xrealloc (argv, argv_size * sizeof (*argv));
14021 }
14022
14023 argv[argc++] = copy_string (arg_start, p - arg_start);
14024 }
14025
14026 p = consume_improper_spaces (p, body);
14027
14028 /* Consume the comma, if present. */
14029 if (*p == ',')
14030 {
14031 p++;
14032
14033 p = consume_improper_spaces (p, body);
14034 }
14035 }
14036
14037 if (*p == ')')
14038 {
14039 p++;
14040
14041 if (*p == ' ')
14042 /* Perfectly formed definition, no complaints. */
14043 macro_define_function (file, line, name,
6e70227d 14044 argc, (const char **) argv,
2e276125
JB
14045 p + 1);
14046 else if (*p == '\0')
14047 {
14048 /* Complain, but do define it. */
4d3c2250 14049 dwarf2_macro_malformed_definition_complaint (body);
2e276125 14050 macro_define_function (file, line, name,
6e70227d 14051 argc, (const char **) argv,
2e276125
JB
14052 p);
14053 }
14054 else
14055 /* Just complain. */
4d3c2250 14056 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14057 }
14058 else
14059 /* Just complain. */
4d3c2250 14060 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14061
14062 xfree (name);
14063 {
14064 int i;
14065
14066 for (i = 0; i < argc; i++)
14067 xfree (argv[i]);
14068 }
14069 xfree (argv);
14070 }
14071 else
4d3c2250 14072 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14073}
14074
14075
14076static void
14077dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14078 char *comp_dir, bfd *abfd,
e7c27a73 14079 struct dwarf2_cu *cu)
2e276125 14080{
fe1b8b76 14081 gdb_byte *mac_ptr, *mac_end;
2e276125 14082 struct macro_source_file *current_file = 0;
757a13d0
JK
14083 enum dwarf_macinfo_record_type macinfo_type;
14084 int at_commandline;
2e276125 14085
be391dca
TT
14086 dwarf2_read_section (dwarf2_per_objfile->objfile,
14087 &dwarf2_per_objfile->macinfo);
dce234bc 14088 if (dwarf2_per_objfile->macinfo.buffer == NULL)
2e276125 14089 {
e2e0b3e5 14090 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
14091 return;
14092 }
14093
757a13d0
JK
14094 /* First pass: Find the name of the base filename.
14095 This filename is needed in order to process all macros whose definition
14096 (or undefinition) comes from the command line. These macros are defined
14097 before the first DW_MACINFO_start_file entry, and yet still need to be
14098 associated to the base file.
14099
14100 To determine the base file name, we scan the macro definitions until we
14101 reach the first DW_MACINFO_start_file entry. We then initialize
14102 CURRENT_FILE accordingly so that any macro definition found before the
14103 first DW_MACINFO_start_file can still be associated to the base file. */
14104
dce234bc
PP
14105 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14106 mac_end = dwarf2_per_objfile->macinfo.buffer
14107 + dwarf2_per_objfile->macinfo.size;
2e276125 14108
757a13d0 14109 do
2e276125 14110 {
2e276125
JB
14111 /* Do we at least have room for a macinfo type byte? */
14112 if (mac_ptr >= mac_end)
14113 {
757a13d0 14114 /* Complaint is printed during the second pass as GDB will probably
3e43a32a
MS
14115 stop the first pass earlier upon finding
14116 DW_MACINFO_start_file. */
757a13d0 14117 break;
2e276125
JB
14118 }
14119
14120 macinfo_type = read_1_byte (abfd, mac_ptr);
14121 mac_ptr++;
14122
14123 switch (macinfo_type)
14124 {
14125 /* A zero macinfo type indicates the end of the macro
14126 information. */
14127 case 0:
757a13d0
JK
14128 break;
14129
14130 case DW_MACINFO_define:
14131 case DW_MACINFO_undef:
14132 /* Only skip the data by MAC_PTR. */
14133 {
14134 unsigned int bytes_read;
14135
14136 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14137 mac_ptr += bytes_read;
9b1c24c8 14138 read_direct_string (abfd, mac_ptr, &bytes_read);
757a13d0
JK
14139 mac_ptr += bytes_read;
14140 }
14141 break;
14142
14143 case DW_MACINFO_start_file:
14144 {
14145 unsigned int bytes_read;
14146 int line, file;
14147
14148 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14149 mac_ptr += bytes_read;
14150 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14151 mac_ptr += bytes_read;
14152
3e43a32a
MS
14153 current_file = macro_start_file (file, line, current_file,
14154 comp_dir, lh, cu->objfile);
757a13d0
JK
14155 }
14156 break;
14157
14158 case DW_MACINFO_end_file:
14159 /* No data to skip by MAC_PTR. */
14160 break;
14161
14162 case DW_MACINFO_vendor_ext:
14163 /* Only skip the data by MAC_PTR. */
14164 {
14165 unsigned int bytes_read;
14166
14167 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14168 mac_ptr += bytes_read;
9b1c24c8 14169 read_direct_string (abfd, mac_ptr, &bytes_read);
757a13d0
JK
14170 mac_ptr += bytes_read;
14171 }
14172 break;
14173
14174 default:
14175 break;
14176 }
14177 } while (macinfo_type != 0 && current_file == NULL);
14178
14179 /* Second pass: Process all entries.
14180
14181 Use the AT_COMMAND_LINE flag to determine whether we are still processing
14182 command-line macro definitions/undefinitions. This flag is unset when we
14183 reach the first DW_MACINFO_start_file entry. */
14184
dce234bc 14185 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
757a13d0
JK
14186
14187 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14188 GDB is still reading the definitions from command line. First
14189 DW_MACINFO_start_file will need to be ignored as it was already executed
14190 to create CURRENT_FILE for the main source holding also the command line
14191 definitions. On first met DW_MACINFO_start_file this flag is reset to
14192 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14193
14194 at_commandline = 1;
14195
14196 do
14197 {
14198 /* Do we at least have room for a macinfo type byte? */
14199 if (mac_ptr >= mac_end)
14200 {
14201 dwarf2_macros_too_long_complaint ();
14202 break;
14203 }
14204
14205 macinfo_type = read_1_byte (abfd, mac_ptr);
14206 mac_ptr++;
14207
14208 switch (macinfo_type)
14209 {
14210 /* A zero macinfo type indicates the end of the macro
14211 information. */
14212 case 0:
14213 break;
2e276125
JB
14214
14215 case DW_MACINFO_define:
14216 case DW_MACINFO_undef:
14217 {
891d2f0b 14218 unsigned int bytes_read;
2e276125
JB
14219 int line;
14220 char *body;
14221
14222 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14223 mac_ptr += bytes_read;
9b1c24c8 14224 body = read_direct_string (abfd, mac_ptr, &bytes_read);
2e276125
JB
14225 mac_ptr += bytes_read;
14226
14227 if (! current_file)
757a13d0
JK
14228 {
14229 /* DWARF violation as no main source is present. */
14230 complaint (&symfile_complaints,
14231 _("debug info with no main source gives macro %s "
14232 "on line %d: %s"),
6e70227d
DE
14233 macinfo_type == DW_MACINFO_define ?
14234 _("definition") :
905e0470
PM
14235 macinfo_type == DW_MACINFO_undef ?
14236 _("undefinition") :
14237 _("something-or-other"), line, body);
757a13d0
JK
14238 break;
14239 }
3e43a32a
MS
14240 if ((line == 0 && !at_commandline)
14241 || (line != 0 && at_commandline))
4d3c2250 14242 complaint (&symfile_complaints,
757a13d0
JK
14243 _("debug info gives %s macro %s with %s line %d: %s"),
14244 at_commandline ? _("command-line") : _("in-file"),
905e0470 14245 macinfo_type == DW_MACINFO_define ?
6e70227d 14246 _("definition") :
905e0470
PM
14247 macinfo_type == DW_MACINFO_undef ?
14248 _("undefinition") :
14249 _("something-or-other"),
757a13d0
JK
14250 line == 0 ? _("zero") : _("non-zero"), line, body);
14251
14252 if (macinfo_type == DW_MACINFO_define)
14253 parse_macro_definition (current_file, line, body);
14254 else if (macinfo_type == DW_MACINFO_undef)
14255 macro_undef (current_file, line, body);
2e276125
JB
14256 }
14257 break;
14258
14259 case DW_MACINFO_start_file:
14260 {
891d2f0b 14261 unsigned int bytes_read;
2e276125
JB
14262 int line, file;
14263
14264 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14265 mac_ptr += bytes_read;
14266 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14267 mac_ptr += bytes_read;
14268
3e43a32a
MS
14269 if ((line == 0 && !at_commandline)
14270 || (line != 0 && at_commandline))
757a13d0
JK
14271 complaint (&symfile_complaints,
14272 _("debug info gives source %d included "
14273 "from %s at %s line %d"),
14274 file, at_commandline ? _("command-line") : _("file"),
14275 line == 0 ? _("zero") : _("non-zero"), line);
14276
14277 if (at_commandline)
14278 {
14279 /* This DW_MACINFO_start_file was executed in the pass one. */
14280 at_commandline = 0;
14281 }
14282 else
14283 current_file = macro_start_file (file, line,
14284 current_file, comp_dir,
14285 lh, cu->objfile);
2e276125
JB
14286 }
14287 break;
14288
14289 case DW_MACINFO_end_file:
14290 if (! current_file)
4d3c2250 14291 complaint (&symfile_complaints,
3e43a32a
MS
14292 _("macro debug info has an unmatched "
14293 "`close_file' directive"));
2e276125
JB
14294 else
14295 {
14296 current_file = current_file->included_by;
14297 if (! current_file)
14298 {
14299 enum dwarf_macinfo_record_type next_type;
14300
14301 /* GCC circa March 2002 doesn't produce the zero
14302 type byte marking the end of the compilation
14303 unit. Complain if it's not there, but exit no
14304 matter what. */
14305
14306 /* Do we at least have room for a macinfo type byte? */
14307 if (mac_ptr >= mac_end)
14308 {
4d3c2250 14309 dwarf2_macros_too_long_complaint ();
2e276125
JB
14310 return;
14311 }
14312
14313 /* We don't increment mac_ptr here, so this is just
14314 a look-ahead. */
14315 next_type = read_1_byte (abfd, mac_ptr);
14316 if (next_type != 0)
4d3c2250 14317 complaint (&symfile_complaints,
3e43a32a
MS
14318 _("no terminating 0-type entry for "
14319 "macros in `.debug_macinfo' section"));
2e276125
JB
14320
14321 return;
14322 }
14323 }
14324 break;
14325
14326 case DW_MACINFO_vendor_ext:
14327 {
891d2f0b 14328 unsigned int bytes_read;
2e276125 14329 int constant;
2e276125
JB
14330
14331 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14332 mac_ptr += bytes_read;
e8e80198 14333 read_direct_string (abfd, mac_ptr, &bytes_read);
2e276125
JB
14334 mac_ptr += bytes_read;
14335
14336 /* We don't recognize any vendor extensions. */
14337 }
14338 break;
14339 }
757a13d0 14340 } while (macinfo_type != 0);
2e276125 14341}
8e19ed76
PS
14342
14343/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 14344 if so return true else false. */
8e19ed76
PS
14345static int
14346attr_form_is_block (struct attribute *attr)
14347{
14348 return (attr == NULL ? 0 :
14349 attr->form == DW_FORM_block1
14350 || attr->form == DW_FORM_block2
14351 || attr->form == DW_FORM_block4
2dc7f7b3
TT
14352 || attr->form == DW_FORM_block
14353 || attr->form == DW_FORM_exprloc);
8e19ed76 14354}
4c2df51b 14355
c6a0999f
JB
14356/* Return non-zero if ATTR's value is a section offset --- classes
14357 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14358 You may use DW_UNSND (attr) to retrieve such offsets.
14359
14360 Section 7.5.4, "Attribute Encodings", explains that no attribute
14361 may have a value that belongs to more than one of these classes; it
14362 would be ambiguous if we did, because we use the same forms for all
14363 of them. */
3690dd37
JB
14364static int
14365attr_form_is_section_offset (struct attribute *attr)
14366{
14367 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
14368 || attr->form == DW_FORM_data8
14369 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
14370}
14371
14372
14373/* Return non-zero if ATTR's value falls in the 'constant' class, or
14374 zero otherwise. When this function returns true, you can apply
14375 dwarf2_get_attr_constant_value to it.
14376
14377 However, note that for some attributes you must check
14378 attr_form_is_section_offset before using this test. DW_FORM_data4
14379 and DW_FORM_data8 are members of both the constant class, and of
14380 the classes that contain offsets into other debug sections
14381 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14382 that, if an attribute's can be either a constant or one of the
14383 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14384 taken as section offsets, not constants. */
14385static int
14386attr_form_is_constant (struct attribute *attr)
14387{
14388 switch (attr->form)
14389 {
14390 case DW_FORM_sdata:
14391 case DW_FORM_udata:
14392 case DW_FORM_data1:
14393 case DW_FORM_data2:
14394 case DW_FORM_data4:
14395 case DW_FORM_data8:
14396 return 1;
14397 default:
14398 return 0;
14399 }
14400}
14401
8cf6f0b1
TT
14402/* A helper function that fills in a dwarf2_loclist_baton. */
14403
14404static void
14405fill_in_loclist_baton (struct dwarf2_cu *cu,
14406 struct dwarf2_loclist_baton *baton,
14407 struct attribute *attr)
14408{
14409 dwarf2_read_section (dwarf2_per_objfile->objfile,
14410 &dwarf2_per_objfile->loc);
14411
14412 baton->per_cu = cu->per_cu;
14413 gdb_assert (baton->per_cu);
14414 /* We don't know how long the location list is, but make sure we
14415 don't run off the edge of the section. */
14416 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14417 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14418 baton->base_address = cu->base_address;
14419}
14420
4c2df51b
DJ
14421static void
14422dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 14423 struct dwarf2_cu *cu)
4c2df51b 14424{
3690dd37 14425 if (attr_form_is_section_offset (attr)
99bcc461
DJ
14426 /* ".debug_loc" may not exist at all, or the offset may be outside
14427 the section. If so, fall through to the complaint in the
14428 other branch. */
9e0ac564
TT
14429 && DW_UNSND (attr) < dwarf2_section_size (dwarf2_per_objfile->objfile,
14430 &dwarf2_per_objfile->loc))
4c2df51b 14431 {
0d53c4c4 14432 struct dwarf2_loclist_baton *baton;
4c2df51b 14433
4a146b47 14434 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 14435 sizeof (struct dwarf2_loclist_baton));
4c2df51b 14436
8cf6f0b1 14437 fill_in_loclist_baton (cu, baton, attr);
be391dca 14438
d00adf39 14439 if (cu->base_known == 0)
0d53c4c4 14440 complaint (&symfile_complaints,
3e43a32a
MS
14441 _("Location list used without "
14442 "specifying the CU base address."));
4c2df51b 14443
768a979c 14444 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
14445 SYMBOL_LOCATION_BATON (sym) = baton;
14446 }
14447 else
14448 {
14449 struct dwarf2_locexpr_baton *baton;
14450
4a146b47 14451 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 14452 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
14453 baton->per_cu = cu->per_cu;
14454 gdb_assert (baton->per_cu);
0d53c4c4
DJ
14455
14456 if (attr_form_is_block (attr))
14457 {
14458 /* Note that we're just copying the block's data pointer
14459 here, not the actual data. We're still pointing into the
6502dd73
DJ
14460 info_buffer for SYM's objfile; right now we never release
14461 that buffer, but when we do clean up properly this may
14462 need to change. */
0d53c4c4
DJ
14463 baton->size = DW_BLOCK (attr)->size;
14464 baton->data = DW_BLOCK (attr)->data;
14465 }
14466 else
14467 {
14468 dwarf2_invalid_attrib_class_complaint ("location description",
14469 SYMBOL_NATURAL_NAME (sym));
14470 baton->size = 0;
14471 baton->data = NULL;
14472 }
6e70227d 14473
768a979c 14474 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
14475 SYMBOL_LOCATION_BATON (sym) = baton;
14476 }
4c2df51b 14477}
6502dd73 14478
9aa1f1e3
TT
14479/* Return the OBJFILE associated with the compilation unit CU. If CU
14480 came from a separate debuginfo file, then the master objfile is
14481 returned. */
ae0d2f24
UW
14482
14483struct objfile *
14484dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14485{
9291a0cd 14486 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
14487
14488 /* Return the master objfile, so that we can report and look up the
14489 correct file containing this variable. */
14490 if (objfile->separate_debug_objfile_backlink)
14491 objfile = objfile->separate_debug_objfile_backlink;
14492
14493 return objfile;
14494}
14495
14496/* Return the address size given in the compilation unit header for CU. */
14497
14498CORE_ADDR
14499dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14500{
14501 if (per_cu->cu)
14502 return per_cu->cu->header.addr_size;
14503 else
14504 {
14505 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 14506 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
14507 struct dwarf2_per_objfile *per_objfile
14508 = objfile_data (objfile, dwarf2_objfile_data_key);
dce234bc 14509 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
ae0d2f24 14510 struct comp_unit_head cu_header;
9a619af0 14511
ae0d2f24
UW
14512 memset (&cu_header, 0, sizeof cu_header);
14513 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14514 return cu_header.addr_size;
14515 }
14516}
14517
9eae7c52
TT
14518/* Return the offset size given in the compilation unit header for CU. */
14519
14520int
14521dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14522{
14523 if (per_cu->cu)
14524 return per_cu->cu->header.offset_size;
14525 else
14526 {
14527 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 14528 struct objfile *objfile = per_cu->objfile;
9eae7c52
TT
14529 struct dwarf2_per_objfile *per_objfile
14530 = objfile_data (objfile, dwarf2_objfile_data_key);
14531 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14532 struct comp_unit_head cu_header;
14533
14534 memset (&cu_header, 0, sizeof cu_header);
14535 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14536 return cu_header.offset_size;
14537 }
14538}
14539
9aa1f1e3
TT
14540/* Return the text offset of the CU. The returned offset comes from
14541 this CU's objfile. If this objfile came from a separate debuginfo
14542 file, then the offset may be different from the corresponding
14543 offset in the parent objfile. */
14544
14545CORE_ADDR
14546dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14547{
bb3fa9d0 14548 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
14549
14550 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14551}
14552
348e048f
DE
14553/* Locate the .debug_info compilation unit from CU's objfile which contains
14554 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
14555
14556static struct dwarf2_per_cu_data *
c764a876 14557dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
14558 struct objfile *objfile)
14559{
14560 struct dwarf2_per_cu_data *this_cu;
14561 int low, high;
14562
ae038cb0
DJ
14563 low = 0;
14564 high = dwarf2_per_objfile->n_comp_units - 1;
14565 while (high > low)
14566 {
14567 int mid = low + (high - low) / 2;
9a619af0 14568
ae038cb0
DJ
14569 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14570 high = mid;
14571 else
14572 low = mid + 1;
14573 }
14574 gdb_assert (low == high);
14575 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14576 {
10b3939b 14577 if (low == 0)
8a3fe4f8
AC
14578 error (_("Dwarf Error: could not find partial DIE containing "
14579 "offset 0x%lx [in module %s]"),
10b3939b
DJ
14580 (long) offset, bfd_get_filename (objfile->obfd));
14581
ae038cb0
DJ
14582 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14583 return dwarf2_per_objfile->all_comp_units[low-1];
14584 }
14585 else
14586 {
14587 this_cu = dwarf2_per_objfile->all_comp_units[low];
14588 if (low == dwarf2_per_objfile->n_comp_units - 1
14589 && offset >= this_cu->offset + this_cu->length)
c764a876 14590 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
14591 gdb_assert (offset < this_cu->offset + this_cu->length);
14592 return this_cu;
14593 }
14594}
14595
10b3939b
DJ
14596/* Locate the compilation unit from OBJFILE which is located at exactly
14597 OFFSET. Raises an error on failure. */
14598
ae038cb0 14599static struct dwarf2_per_cu_data *
c764a876 14600dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
14601{
14602 struct dwarf2_per_cu_data *this_cu;
9a619af0 14603
ae038cb0
DJ
14604 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14605 if (this_cu->offset != offset)
c764a876 14606 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
14607 return this_cu;
14608}
14609
9816fde3 14610/* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
93311388 14611
9816fde3
JK
14612static void
14613init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
93311388 14614{
9816fde3 14615 memset (cu, 0, sizeof (*cu));
93311388
DE
14616 cu->objfile = objfile;
14617 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
14618}
14619
14620/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14621
14622static void
14623prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14624{
14625 struct attribute *attr;
14626
14627 /* Set the language we're debugging. */
14628 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14629 if (attr)
14630 set_cu_language (DW_UNSND (attr), cu);
14631 else
14632 set_cu_language (language_minimal, cu);
93311388
DE
14633}
14634
ae038cb0
DJ
14635/* Release one cached compilation unit, CU. We unlink it from the tree
14636 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
14637 the caller is responsible for that.
14638 NOTE: DATA is a void * because this function is also used as a
14639 cleanup routine. */
ae038cb0
DJ
14640
14641static void
14642free_one_comp_unit (void *data)
14643{
14644 struct dwarf2_cu *cu = data;
14645
14646 if (cu->per_cu != NULL)
14647 cu->per_cu->cu = NULL;
14648 cu->per_cu = NULL;
14649
14650 obstack_free (&cu->comp_unit_obstack, NULL);
14651
14652 xfree (cu);
14653}
14654
72bf9492 14655/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
14656 when we're finished with it. We can't free the pointer itself, but be
14657 sure to unlink it from the cache. Also release any associated storage
14658 and perform cache maintenance.
72bf9492
DJ
14659
14660 Only used during partial symbol parsing. */
14661
14662static void
14663free_stack_comp_unit (void *data)
14664{
14665 struct dwarf2_cu *cu = data;
14666
14667 obstack_free (&cu->comp_unit_obstack, NULL);
14668 cu->partial_dies = NULL;
ae038cb0
DJ
14669
14670 if (cu->per_cu != NULL)
14671 {
14672 /* This compilation unit is on the stack in our caller, so we
14673 should not xfree it. Just unlink it. */
14674 cu->per_cu->cu = NULL;
14675 cu->per_cu = NULL;
14676
14677 /* If we had a per-cu pointer, then we may have other compilation
14678 units loaded, so age them now. */
14679 age_cached_comp_units ();
14680 }
14681}
14682
14683/* Free all cached compilation units. */
14684
14685static void
14686free_cached_comp_units (void *data)
14687{
14688 struct dwarf2_per_cu_data *per_cu, **last_chain;
14689
14690 per_cu = dwarf2_per_objfile->read_in_chain;
14691 last_chain = &dwarf2_per_objfile->read_in_chain;
14692 while (per_cu != NULL)
14693 {
14694 struct dwarf2_per_cu_data *next_cu;
14695
14696 next_cu = per_cu->cu->read_in_chain;
14697
14698 free_one_comp_unit (per_cu->cu);
14699 *last_chain = next_cu;
14700
14701 per_cu = next_cu;
14702 }
14703}
14704
14705/* Increase the age counter on each cached compilation unit, and free
14706 any that are too old. */
14707
14708static void
14709age_cached_comp_units (void)
14710{
14711 struct dwarf2_per_cu_data *per_cu, **last_chain;
14712
14713 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14714 per_cu = dwarf2_per_objfile->read_in_chain;
14715 while (per_cu != NULL)
14716 {
14717 per_cu->cu->last_used ++;
14718 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14719 dwarf2_mark (per_cu->cu);
14720 per_cu = per_cu->cu->read_in_chain;
14721 }
14722
14723 per_cu = dwarf2_per_objfile->read_in_chain;
14724 last_chain = &dwarf2_per_objfile->read_in_chain;
14725 while (per_cu != NULL)
14726 {
14727 struct dwarf2_per_cu_data *next_cu;
14728
14729 next_cu = per_cu->cu->read_in_chain;
14730
14731 if (!per_cu->cu->mark)
14732 {
14733 free_one_comp_unit (per_cu->cu);
14734 *last_chain = next_cu;
14735 }
14736 else
14737 last_chain = &per_cu->cu->read_in_chain;
14738
14739 per_cu = next_cu;
14740 }
14741}
14742
14743/* Remove a single compilation unit from the cache. */
14744
14745static void
14746free_one_cached_comp_unit (void *target_cu)
14747{
14748 struct dwarf2_per_cu_data *per_cu, **last_chain;
14749
14750 per_cu = dwarf2_per_objfile->read_in_chain;
14751 last_chain = &dwarf2_per_objfile->read_in_chain;
14752 while (per_cu != NULL)
14753 {
14754 struct dwarf2_per_cu_data *next_cu;
14755
14756 next_cu = per_cu->cu->read_in_chain;
14757
14758 if (per_cu->cu == target_cu)
14759 {
14760 free_one_comp_unit (per_cu->cu);
14761 *last_chain = next_cu;
14762 break;
14763 }
14764 else
14765 last_chain = &per_cu->cu->read_in_chain;
14766
14767 per_cu = next_cu;
14768 }
14769}
14770
fe3e1990
DJ
14771/* Release all extra memory associated with OBJFILE. */
14772
14773void
14774dwarf2_free_objfile (struct objfile *objfile)
14775{
14776 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14777
14778 if (dwarf2_per_objfile == NULL)
14779 return;
14780
14781 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14782 free_cached_comp_units (NULL);
14783
7b9f3c50
DE
14784 if (dwarf2_per_objfile->quick_file_names_table)
14785 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 14786
fe3e1990
DJ
14787 /* Everything else should be on the objfile obstack. */
14788}
14789
1c379e20
DJ
14790/* A pair of DIE offset and GDB type pointer. We store these
14791 in a hash table separate from the DIEs, and preserve them
14792 when the DIEs are flushed out of cache. */
14793
14794struct dwarf2_offset_and_type
14795{
14796 unsigned int offset;
14797 struct type *type;
14798};
14799
14800/* Hash function for a dwarf2_offset_and_type. */
14801
14802static hashval_t
14803offset_and_type_hash (const void *item)
14804{
14805 const struct dwarf2_offset_and_type *ofs = item;
9a619af0 14806
1c379e20
DJ
14807 return ofs->offset;
14808}
14809
14810/* Equality function for a dwarf2_offset_and_type. */
14811
14812static int
14813offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14814{
14815 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14816 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9a619af0 14817
1c379e20
DJ
14818 return ofs_lhs->offset == ofs_rhs->offset;
14819}
14820
14821/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
14822 table if necessary. For convenience, return TYPE.
14823
14824 The DIEs reading must have careful ordering to:
14825 * Not cause infite loops trying to read in DIEs as a prerequisite for
14826 reading current DIE.
14827 * Not trying to dereference contents of still incompletely read in types
14828 while reading in other DIEs.
14829 * Enable referencing still incompletely read in types just by a pointer to
14830 the type without accessing its fields.
14831
14832 Therefore caller should follow these rules:
14833 * Try to fetch any prerequisite types we may need to build this DIE type
14834 before building the type and calling set_die_type.
e71ec853 14835 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
14836 possible before fetching more types to complete the current type.
14837 * Make the type as complete as possible before fetching more types. */
1c379e20 14838
f792889a 14839static struct type *
1c379e20
DJ
14840set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14841{
14842 struct dwarf2_offset_and_type **slot, ofs;
673bfd45
DE
14843 struct objfile *objfile = cu->objfile;
14844 htab_t *type_hash_ptr;
1c379e20 14845
b4ba55a1
JB
14846 /* For Ada types, make sure that the gnat-specific data is always
14847 initialized (if not already set). There are a few types where
14848 we should not be doing so, because the type-specific area is
14849 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14850 where the type-specific area is used to store the floatformat).
14851 But this is not a problem, because the gnat-specific information
14852 is actually not needed for these types. */
14853 if (need_gnat_info (cu)
14854 && TYPE_CODE (type) != TYPE_CODE_FUNC
14855 && TYPE_CODE (type) != TYPE_CODE_FLT
14856 && !HAVE_GNAT_AUX_INFO (type))
14857 INIT_GNAT_SPECIFIC (type);
14858
673bfd45
DE
14859 if (cu->per_cu->from_debug_types)
14860 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14861 else
14862 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14863
14864 if (*type_hash_ptr == NULL)
f792889a 14865 {
673bfd45
DE
14866 *type_hash_ptr
14867 = htab_create_alloc_ex (127,
f792889a
DJ
14868 offset_and_type_hash,
14869 offset_and_type_eq,
14870 NULL,
673bfd45 14871 &objfile->objfile_obstack,
f792889a
DJ
14872 hashtab_obstack_allocate,
14873 dummy_obstack_deallocate);
f792889a 14874 }
1c379e20
DJ
14875
14876 ofs.offset = die->offset;
14877 ofs.type = type;
14878 slot = (struct dwarf2_offset_and_type **)
673bfd45 14879 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
7e314c57
JK
14880 if (*slot)
14881 complaint (&symfile_complaints,
14882 _("A problem internal to GDB: DIE 0x%x has type already set"),
14883 die->offset);
673bfd45 14884 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 14885 **slot = ofs;
f792889a 14886 return type;
1c379e20
DJ
14887}
14888
673bfd45
DE
14889/* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14890 table, or return NULL if the die does not have a saved type. */
1c379e20
DJ
14891
14892static struct type *
673bfd45
DE
14893get_die_type_at_offset (unsigned int offset,
14894 struct dwarf2_per_cu_data *per_cu)
1c379e20
DJ
14895{
14896 struct dwarf2_offset_and_type *slot, ofs;
673bfd45 14897 htab_t type_hash;
f792889a 14898
673bfd45
DE
14899 if (per_cu->from_debug_types)
14900 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14901 else
14902 type_hash = dwarf2_per_objfile->debug_info_type_hash;
f792889a
DJ
14903 if (type_hash == NULL)
14904 return NULL;
1c379e20 14905
673bfd45 14906 ofs.offset = offset;
1c379e20
DJ
14907 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14908 if (slot)
14909 return slot->type;
14910 else
14911 return NULL;
14912}
14913
673bfd45
DE
14914/* Look up the type for DIE in the appropriate type_hash table,
14915 or return NULL if DIE does not have a saved type. */
14916
14917static struct type *
14918get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14919{
14920 return get_die_type_at_offset (die->offset, cu->per_cu);
14921}
14922
10b3939b
DJ
14923/* Add a dependence relationship from CU to REF_PER_CU. */
14924
14925static void
14926dwarf2_add_dependence (struct dwarf2_cu *cu,
14927 struct dwarf2_per_cu_data *ref_per_cu)
14928{
14929 void **slot;
14930
14931 if (cu->dependencies == NULL)
14932 cu->dependencies
14933 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14934 NULL, &cu->comp_unit_obstack,
14935 hashtab_obstack_allocate,
14936 dummy_obstack_deallocate);
14937
14938 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14939 if (*slot == NULL)
14940 *slot = ref_per_cu;
14941}
1c379e20 14942
f504f079
DE
14943/* Subroutine of dwarf2_mark to pass to htab_traverse.
14944 Set the mark field in every compilation unit in the
ae038cb0
DJ
14945 cache that we must keep because we are keeping CU. */
14946
10b3939b
DJ
14947static int
14948dwarf2_mark_helper (void **slot, void *data)
14949{
14950 struct dwarf2_per_cu_data *per_cu;
14951
14952 per_cu = (struct dwarf2_per_cu_data *) *slot;
14953 if (per_cu->cu->mark)
14954 return 1;
14955 per_cu->cu->mark = 1;
14956
14957 if (per_cu->cu->dependencies != NULL)
14958 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14959
14960 return 1;
14961}
14962
f504f079
DE
14963/* Set the mark field in CU and in every other compilation unit in the
14964 cache that we must keep because we are keeping CU. */
14965
ae038cb0
DJ
14966static void
14967dwarf2_mark (struct dwarf2_cu *cu)
14968{
14969 if (cu->mark)
14970 return;
14971 cu->mark = 1;
10b3939b
DJ
14972 if (cu->dependencies != NULL)
14973 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
14974}
14975
14976static void
14977dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14978{
14979 while (per_cu)
14980 {
14981 per_cu->cu->mark = 0;
14982 per_cu = per_cu->cu->read_in_chain;
14983 }
72bf9492
DJ
14984}
14985
72bf9492
DJ
14986/* Trivial hash function for partial_die_info: the hash value of a DIE
14987 is its offset in .debug_info for this objfile. */
14988
14989static hashval_t
14990partial_die_hash (const void *item)
14991{
14992 const struct partial_die_info *part_die = item;
9a619af0 14993
72bf9492
DJ
14994 return part_die->offset;
14995}
14996
14997/* Trivial comparison function for partial_die_info structures: two DIEs
14998 are equal if they have the same offset. */
14999
15000static int
15001partial_die_eq (const void *item_lhs, const void *item_rhs)
15002{
15003 const struct partial_die_info *part_die_lhs = item_lhs;
15004 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 15005
72bf9492
DJ
15006 return part_die_lhs->offset == part_die_rhs->offset;
15007}
15008
ae038cb0
DJ
15009static struct cmd_list_element *set_dwarf2_cmdlist;
15010static struct cmd_list_element *show_dwarf2_cmdlist;
15011
15012static void
15013set_dwarf2_cmd (char *args, int from_tty)
15014{
15015 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
15016}
15017
15018static void
15019show_dwarf2_cmd (char *args, int from_tty)
6e70227d 15020{
ae038cb0
DJ
15021 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
15022}
15023
dce234bc
PP
15024/* If section described by INFO was mmapped, munmap it now. */
15025
15026static void
15027munmap_section_buffer (struct dwarf2_section_info *info)
15028{
15029 if (info->was_mmapped)
15030 {
15031#ifdef HAVE_MMAP
15032 intptr_t begin = (intptr_t) info->buffer;
15033 intptr_t map_begin = begin & ~(pagesize - 1);
15034 size_t map_length = info->size + begin - map_begin;
9a619af0 15035
dce234bc
PP
15036 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
15037#else
15038 /* Without HAVE_MMAP, we should never be here to begin with. */
f3574227 15039 gdb_assert_not_reached ("no mmap support");
dce234bc
PP
15040#endif
15041 }
15042}
15043
15044/* munmap debug sections for OBJFILE, if necessary. */
15045
15046static void
c1bd65d0 15047dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
15048{
15049 struct dwarf2_per_objfile *data = d;
9a619af0 15050
16be1145
DE
15051 /* This is sorted according to the order they're defined in to make it easier
15052 to keep in sync. */
dce234bc
PP
15053 munmap_section_buffer (&data->info);
15054 munmap_section_buffer (&data->abbrev);
15055 munmap_section_buffer (&data->line);
16be1145 15056 munmap_section_buffer (&data->loc);
dce234bc 15057 munmap_section_buffer (&data->macinfo);
16be1145 15058 munmap_section_buffer (&data->str);
dce234bc 15059 munmap_section_buffer (&data->ranges);
16be1145 15060 munmap_section_buffer (&data->types);
dce234bc
PP
15061 munmap_section_buffer (&data->frame);
15062 munmap_section_buffer (&data->eh_frame);
9291a0cd
TT
15063 munmap_section_buffer (&data->gdb_index);
15064}
15065
15066\f
ae2de4f8 15067/* The "save gdb-index" command. */
9291a0cd
TT
15068
15069/* The contents of the hash table we create when building the string
15070 table. */
15071struct strtab_entry
15072{
15073 offset_type offset;
15074 const char *str;
15075};
15076
15077/* Hash function for a strtab_entry. */
b89be57b 15078
9291a0cd
TT
15079static hashval_t
15080hash_strtab_entry (const void *e)
15081{
15082 const struct strtab_entry *entry = e;
15083 return mapped_index_string_hash (entry->str);
15084}
15085
15086/* Equality function for a strtab_entry. */
b89be57b 15087
9291a0cd
TT
15088static int
15089eq_strtab_entry (const void *a, const void *b)
15090{
15091 const struct strtab_entry *ea = a;
15092 const struct strtab_entry *eb = b;
15093 return !strcmp (ea->str, eb->str);
15094}
15095
15096/* Create a strtab_entry hash table. */
b89be57b 15097
9291a0cd
TT
15098static htab_t
15099create_strtab (void)
15100{
15101 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15102 xfree, xcalloc, xfree);
15103}
15104
15105/* Add a string to the constant pool. Return the string's offset in
15106 host order. */
b89be57b 15107
9291a0cd
TT
15108static offset_type
15109add_string (htab_t table, struct obstack *cpool, const char *str)
15110{
15111 void **slot;
15112 struct strtab_entry entry;
15113 struct strtab_entry *result;
15114
15115 entry.str = str;
15116 slot = htab_find_slot (table, &entry, INSERT);
15117 if (*slot)
15118 result = *slot;
15119 else
15120 {
15121 result = XNEW (struct strtab_entry);
15122 result->offset = obstack_object_size (cpool);
15123 result->str = str;
15124 obstack_grow_str0 (cpool, str);
15125 *slot = result;
15126 }
15127 return result->offset;
15128}
15129
15130/* An entry in the symbol table. */
15131struct symtab_index_entry
15132{
15133 /* The name of the symbol. */
15134 const char *name;
15135 /* The offset of the name in the constant pool. */
15136 offset_type index_offset;
15137 /* A sorted vector of the indices of all the CUs that hold an object
15138 of this name. */
15139 VEC (offset_type) *cu_indices;
15140};
15141
15142/* The symbol table. This is a power-of-2-sized hash table. */
15143struct mapped_symtab
15144{
15145 offset_type n_elements;
15146 offset_type size;
15147 struct symtab_index_entry **data;
15148};
15149
15150/* Hash function for a symtab_index_entry. */
b89be57b 15151
9291a0cd
TT
15152static hashval_t
15153hash_symtab_entry (const void *e)
15154{
15155 const struct symtab_index_entry *entry = e;
15156 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15157 sizeof (offset_type) * VEC_length (offset_type,
15158 entry->cu_indices),
15159 0);
15160}
15161
15162/* Equality function for a symtab_index_entry. */
b89be57b 15163
9291a0cd
TT
15164static int
15165eq_symtab_entry (const void *a, const void *b)
15166{
15167 const struct symtab_index_entry *ea = a;
15168 const struct symtab_index_entry *eb = b;
15169 int len = VEC_length (offset_type, ea->cu_indices);
15170 if (len != VEC_length (offset_type, eb->cu_indices))
15171 return 0;
15172 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15173 VEC_address (offset_type, eb->cu_indices),
15174 sizeof (offset_type) * len);
15175}
15176
15177/* Destroy a symtab_index_entry. */
b89be57b 15178
9291a0cd
TT
15179static void
15180delete_symtab_entry (void *p)
15181{
15182 struct symtab_index_entry *entry = p;
15183 VEC_free (offset_type, entry->cu_indices);
15184 xfree (entry);
15185}
15186
15187/* Create a hash table holding symtab_index_entry objects. */
b89be57b 15188
9291a0cd 15189static htab_t
3876f04e 15190create_symbol_hash_table (void)
9291a0cd
TT
15191{
15192 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15193 delete_symtab_entry, xcalloc, xfree);
15194}
15195
15196/* Create a new mapped symtab object. */
b89be57b 15197
9291a0cd
TT
15198static struct mapped_symtab *
15199create_mapped_symtab (void)
15200{
15201 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15202 symtab->n_elements = 0;
15203 symtab->size = 1024;
15204 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15205 return symtab;
15206}
15207
15208/* Destroy a mapped_symtab. */
b89be57b 15209
9291a0cd
TT
15210static void
15211cleanup_mapped_symtab (void *p)
15212{
15213 struct mapped_symtab *symtab = p;
15214 /* The contents of the array are freed when the other hash table is
15215 destroyed. */
15216 xfree (symtab->data);
15217 xfree (symtab);
15218}
15219
15220/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
15221 the slot. */
b89be57b 15222
9291a0cd
TT
15223static struct symtab_index_entry **
15224find_slot (struct mapped_symtab *symtab, const char *name)
15225{
15226 offset_type index, step, hash = mapped_index_string_hash (name);
15227
15228 index = hash & (symtab->size - 1);
15229 step = ((hash * 17) & (symtab->size - 1)) | 1;
15230
15231 for (;;)
15232 {
15233 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15234 return &symtab->data[index];
15235 index = (index + step) & (symtab->size - 1);
15236 }
15237}
15238
15239/* Expand SYMTAB's hash table. */
b89be57b 15240
9291a0cd
TT
15241static void
15242hash_expand (struct mapped_symtab *symtab)
15243{
15244 offset_type old_size = symtab->size;
15245 offset_type i;
15246 struct symtab_index_entry **old_entries = symtab->data;
15247
15248 symtab->size *= 2;
15249 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15250
15251 for (i = 0; i < old_size; ++i)
15252 {
15253 if (old_entries[i])
15254 {
15255 struct symtab_index_entry **slot = find_slot (symtab,
15256 old_entries[i]->name);
15257 *slot = old_entries[i];
15258 }
15259 }
15260
15261 xfree (old_entries);
15262}
15263
15264/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15265 is the index of the CU in which the symbol appears. */
b89be57b 15266
9291a0cd
TT
15267static void
15268add_index_entry (struct mapped_symtab *symtab, const char *name,
15269 offset_type cu_index)
15270{
15271 struct symtab_index_entry **slot;
15272
15273 ++symtab->n_elements;
15274 if (4 * symtab->n_elements / 3 >= symtab->size)
15275 hash_expand (symtab);
15276
15277 slot = find_slot (symtab, name);
15278 if (!*slot)
15279 {
15280 *slot = XNEW (struct symtab_index_entry);
15281 (*slot)->name = name;
15282 (*slot)->cu_indices = NULL;
15283 }
15284 /* Don't push an index twice. Due to how we add entries we only
15285 have to check the last one. */
15286 if (VEC_empty (offset_type, (*slot)->cu_indices)
15287 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15288 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15289}
15290
15291/* Add a vector of indices to the constant pool. */
b89be57b 15292
9291a0cd 15293static offset_type
3876f04e 15294add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
15295 struct symtab_index_entry *entry)
15296{
15297 void **slot;
15298
3876f04e 15299 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
15300 if (!*slot)
15301 {
15302 offset_type len = VEC_length (offset_type, entry->cu_indices);
15303 offset_type val = MAYBE_SWAP (len);
15304 offset_type iter;
15305 int i;
15306
15307 *slot = entry;
15308 entry->index_offset = obstack_object_size (cpool);
15309
15310 obstack_grow (cpool, &val, sizeof (val));
15311 for (i = 0;
15312 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15313 ++i)
15314 {
15315 val = MAYBE_SWAP (iter);
15316 obstack_grow (cpool, &val, sizeof (val));
15317 }
15318 }
15319 else
15320 {
15321 struct symtab_index_entry *old_entry = *slot;
15322 entry->index_offset = old_entry->index_offset;
15323 entry = old_entry;
15324 }
15325 return entry->index_offset;
15326}
15327
15328/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15329 constant pool entries going into the obstack CPOOL. */
b89be57b 15330
9291a0cd
TT
15331static void
15332write_hash_table (struct mapped_symtab *symtab,
15333 struct obstack *output, struct obstack *cpool)
15334{
15335 offset_type i;
3876f04e 15336 htab_t symbol_hash_table;
9291a0cd
TT
15337 htab_t str_table;
15338
3876f04e 15339 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 15340 str_table = create_strtab ();
3876f04e 15341
9291a0cd
TT
15342 /* We add all the index vectors to the constant pool first, to
15343 ensure alignment is ok. */
15344 for (i = 0; i < symtab->size; ++i)
15345 {
15346 if (symtab->data[i])
3876f04e 15347 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
15348 }
15349
15350 /* Now write out the hash table. */
15351 for (i = 0; i < symtab->size; ++i)
15352 {
15353 offset_type str_off, vec_off;
15354
15355 if (symtab->data[i])
15356 {
15357 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15358 vec_off = symtab->data[i]->index_offset;
15359 }
15360 else
15361 {
15362 /* While 0 is a valid constant pool index, it is not valid
15363 to have 0 for both offsets. */
15364 str_off = 0;
15365 vec_off = 0;
15366 }
15367
15368 str_off = MAYBE_SWAP (str_off);
15369 vec_off = MAYBE_SWAP (vec_off);
15370
15371 obstack_grow (output, &str_off, sizeof (str_off));
15372 obstack_grow (output, &vec_off, sizeof (vec_off));
15373 }
15374
15375 htab_delete (str_table);
3876f04e 15376 htab_delete (symbol_hash_table);
9291a0cd
TT
15377}
15378
0a5429f6
DE
15379/* Struct to map psymtab to CU index in the index file. */
15380struct psymtab_cu_index_map
15381{
15382 struct partial_symtab *psymtab;
15383 unsigned int cu_index;
15384};
15385
15386static hashval_t
15387hash_psymtab_cu_index (const void *item)
15388{
15389 const struct psymtab_cu_index_map *map = item;
15390
15391 return htab_hash_pointer (map->psymtab);
15392}
15393
15394static int
15395eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
15396{
15397 const struct psymtab_cu_index_map *lhs = item_lhs;
15398 const struct psymtab_cu_index_map *rhs = item_rhs;
15399
15400 return lhs->psymtab == rhs->psymtab;
15401}
15402
15403/* Helper struct for building the address table. */
15404struct addrmap_index_data
15405{
15406 struct objfile *objfile;
15407 struct obstack *addr_obstack;
15408 htab_t cu_index_htab;
15409
15410 /* Non-zero if the previous_* fields are valid.
15411 We can't write an entry until we see the next entry (since it is only then
15412 that we know the end of the entry). */
15413 int previous_valid;
15414 /* Index of the CU in the table of all CUs in the index file. */
15415 unsigned int previous_cu_index;
0963b4bd 15416 /* Start address of the CU. */
0a5429f6
DE
15417 CORE_ADDR previous_cu_start;
15418};
15419
15420/* Write an address entry to OBSTACK. */
b89be57b 15421
9291a0cd 15422static void
0a5429f6
DE
15423add_address_entry (struct objfile *objfile, struct obstack *obstack,
15424 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 15425{
0a5429f6 15426 offset_type cu_index_to_write;
9291a0cd
TT
15427 char addr[8];
15428 CORE_ADDR baseaddr;
15429
15430 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15431
0a5429f6
DE
15432 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
15433 obstack_grow (obstack, addr, 8);
15434 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
15435 obstack_grow (obstack, addr, 8);
15436 cu_index_to_write = MAYBE_SWAP (cu_index);
15437 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
15438}
15439
15440/* Worker function for traversing an addrmap to build the address table. */
15441
15442static int
15443add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
15444{
15445 struct addrmap_index_data *data = datap;
15446 struct partial_symtab *pst = obj;
15447 offset_type cu_index;
15448 void **slot;
15449
15450 if (data->previous_valid)
15451 add_address_entry (data->objfile, data->addr_obstack,
15452 data->previous_cu_start, start_addr,
15453 data->previous_cu_index);
15454
15455 data->previous_cu_start = start_addr;
15456 if (pst != NULL)
15457 {
15458 struct psymtab_cu_index_map find_map, *map;
15459 find_map.psymtab = pst;
15460 map = htab_find (data->cu_index_htab, &find_map);
15461 gdb_assert (map != NULL);
15462 data->previous_cu_index = map->cu_index;
15463 data->previous_valid = 1;
15464 }
15465 else
15466 data->previous_valid = 0;
15467
15468 return 0;
15469}
15470
15471/* Write OBJFILE's address map to OBSTACK.
15472 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
15473 in the index file. */
15474
15475static void
15476write_address_map (struct objfile *objfile, struct obstack *obstack,
15477 htab_t cu_index_htab)
15478{
15479 struct addrmap_index_data addrmap_index_data;
15480
15481 /* When writing the address table, we have to cope with the fact that
15482 the addrmap iterator only provides the start of a region; we have to
15483 wait until the next invocation to get the start of the next region. */
15484
15485 addrmap_index_data.objfile = objfile;
15486 addrmap_index_data.addr_obstack = obstack;
15487 addrmap_index_data.cu_index_htab = cu_index_htab;
15488 addrmap_index_data.previous_valid = 0;
15489
15490 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
15491 &addrmap_index_data);
15492
15493 /* It's highly unlikely the last entry (end address = 0xff...ff)
15494 is valid, but we should still handle it.
15495 The end address is recorded as the start of the next region, but that
15496 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
15497 anyway. */
15498 if (addrmap_index_data.previous_valid)
15499 add_address_entry (objfile, obstack,
15500 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
15501 addrmap_index_data.previous_cu_index);
9291a0cd
TT
15502}
15503
15504/* Add a list of partial symbols to SYMTAB. */
b89be57b 15505
9291a0cd
TT
15506static void
15507write_psymbols (struct mapped_symtab *symtab,
987d643c 15508 htab_t psyms_seen,
9291a0cd
TT
15509 struct partial_symbol **psymp,
15510 int count,
987d643c
TT
15511 offset_type cu_index,
15512 int is_static)
9291a0cd
TT
15513{
15514 for (; count-- > 0; ++psymp)
15515 {
987d643c
TT
15516 void **slot, *lookup;
15517
9291a0cd
TT
15518 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15519 error (_("Ada is not currently supported by the index"));
987d643c
TT
15520
15521 /* We only want to add a given psymbol once. However, we also
15522 want to account for whether it is global or static. So, we
15523 may add it twice, using slightly different values. */
15524 if (is_static)
15525 {
15526 uintptr_t val = 1 | (uintptr_t) *psymp;
15527
15528 lookup = (void *) val;
15529 }
15530 else
15531 lookup = *psymp;
15532
15533 /* Only add a given psymbol once. */
15534 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15535 if (!*slot)
15536 {
15537 *slot = lookup;
15538 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15539 }
9291a0cd
TT
15540 }
15541}
15542
15543/* Write the contents of an ("unfinished") obstack to FILE. Throw an
15544 exception if there is an error. */
b89be57b 15545
9291a0cd
TT
15546static void
15547write_obstack (FILE *file, struct obstack *obstack)
15548{
15549 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15550 file)
15551 != obstack_object_size (obstack))
15552 error (_("couldn't data write to file"));
15553}
15554
15555/* Unlink a file if the argument is not NULL. */
b89be57b 15556
9291a0cd
TT
15557static void
15558unlink_if_set (void *p)
15559{
15560 char **filename = p;
15561 if (*filename)
15562 unlink (*filename);
15563}
15564
1fd400ff
TT
15565/* A helper struct used when iterating over debug_types. */
15566struct signatured_type_index_data
15567{
15568 struct objfile *objfile;
15569 struct mapped_symtab *symtab;
15570 struct obstack *types_list;
987d643c 15571 htab_t psyms_seen;
1fd400ff
TT
15572 int cu_index;
15573};
15574
15575/* A helper function that writes a single signatured_type to an
15576 obstack. */
b89be57b 15577
1fd400ff
TT
15578static int
15579write_one_signatured_type (void **slot, void *d)
15580{
15581 struct signatured_type_index_data *info = d;
15582 struct signatured_type *entry = (struct signatured_type *) *slot;
e254ef6a
DE
15583 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15584 struct partial_symtab *psymtab = per_cu->v.psymtab;
1fd400ff
TT
15585 gdb_byte val[8];
15586
15587 write_psymbols (info->symtab,
987d643c 15588 info->psyms_seen,
3e43a32a
MS
15589 info->objfile->global_psymbols.list
15590 + psymtab->globals_offset,
987d643c
TT
15591 psymtab->n_global_syms, info->cu_index,
15592 0);
1fd400ff 15593 write_psymbols (info->symtab,
987d643c 15594 info->psyms_seen,
3e43a32a
MS
15595 info->objfile->static_psymbols.list
15596 + psymtab->statics_offset,
987d643c
TT
15597 psymtab->n_static_syms, info->cu_index,
15598 1);
1fd400ff
TT
15599
15600 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15601 obstack_grow (info->types_list, val, 8);
15602 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15603 obstack_grow (info->types_list, val, 8);
15604 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15605 obstack_grow (info->types_list, val, 8);
15606
15607 ++info->cu_index;
15608
15609 return 1;
15610}
15611
987d643c
TT
15612/* A cleanup function for an htab_t. */
15613
15614static void
15615cleanup_htab (void *arg)
15616{
15617 htab_delete (arg);
15618}
15619
9291a0cd 15620/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 15621
9291a0cd
TT
15622static void
15623write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15624{
15625 struct cleanup *cleanup;
15626 char *filename, *cleanup_filename;
1fd400ff
TT
15627 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15628 struct obstack cu_list, types_cu_list;
9291a0cd
TT
15629 int i;
15630 FILE *out_file;
15631 struct mapped_symtab *symtab;
15632 offset_type val, size_of_contents, total_len;
15633 struct stat st;
15634 char buf[8];
987d643c 15635 htab_t psyms_seen;
0a5429f6
DE
15636 htab_t cu_index_htab;
15637 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd
TT
15638
15639 if (!objfile->psymtabs)
15640 return;
15641 if (dwarf2_per_objfile->using_index)
15642 error (_("Cannot use an index to create the index"));
15643
15644 if (stat (objfile->name, &st) < 0)
7e17e088 15645 perror_with_name (objfile->name);
9291a0cd
TT
15646
15647 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15648 INDEX_SUFFIX, (char *) NULL);
15649 cleanup = make_cleanup (xfree, filename);
15650
15651 out_file = fopen (filename, "wb");
15652 if (!out_file)
15653 error (_("Can't open `%s' for writing"), filename);
15654
15655 cleanup_filename = filename;
15656 make_cleanup (unlink_if_set, &cleanup_filename);
15657
15658 symtab = create_mapped_symtab ();
15659 make_cleanup (cleanup_mapped_symtab, symtab);
15660
15661 obstack_init (&addr_obstack);
15662 make_cleanup_obstack_free (&addr_obstack);
15663
15664 obstack_init (&cu_list);
15665 make_cleanup_obstack_free (&cu_list);
15666
1fd400ff
TT
15667 obstack_init (&types_cu_list);
15668 make_cleanup_obstack_free (&types_cu_list);
15669
987d643c
TT
15670 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15671 NULL, xcalloc, xfree);
15672 make_cleanup (cleanup_htab, psyms_seen);
15673
0a5429f6
DE
15674 /* While we're scanning CU's create a table that maps a psymtab pointer
15675 (which is what addrmap records) to its index (which is what is recorded
15676 in the index file). This will later be needed to write the address
15677 table. */
15678 cu_index_htab = htab_create_alloc (100,
15679 hash_psymtab_cu_index,
15680 eq_psymtab_cu_index,
15681 NULL, xcalloc, xfree);
15682 make_cleanup (cleanup_htab, cu_index_htab);
15683 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
15684 xmalloc (sizeof (struct psymtab_cu_index_map)
15685 * dwarf2_per_objfile->n_comp_units);
15686 make_cleanup (xfree, psymtab_cu_index_map);
15687
15688 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
15689 work here. Also, the debug_types entries do not appear in
15690 all_comp_units, but only in their own hash table. */
9291a0cd
TT
15691 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15692 {
3e43a32a
MS
15693 struct dwarf2_per_cu_data *per_cu
15694 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 15695 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 15696 gdb_byte val[8];
0a5429f6
DE
15697 struct psymtab_cu_index_map *map;
15698 void **slot;
9291a0cd
TT
15699
15700 write_psymbols (symtab,
987d643c 15701 psyms_seen,
9291a0cd 15702 objfile->global_psymbols.list + psymtab->globals_offset,
987d643c
TT
15703 psymtab->n_global_syms, i,
15704 0);
9291a0cd 15705 write_psymbols (symtab,
987d643c 15706 psyms_seen,
9291a0cd 15707 objfile->static_psymbols.list + psymtab->statics_offset,
987d643c
TT
15708 psymtab->n_static_syms, i,
15709 1);
9291a0cd 15710
0a5429f6
DE
15711 map = &psymtab_cu_index_map[i];
15712 map->psymtab = psymtab;
15713 map->cu_index = i;
15714 slot = htab_find_slot (cu_index_htab, map, INSERT);
15715 gdb_assert (slot != NULL);
15716 gdb_assert (*slot == NULL);
15717 *slot = map;
9291a0cd 15718
e254ef6a 15719 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
9291a0cd 15720 obstack_grow (&cu_list, val, 8);
e254ef6a 15721 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
15722 obstack_grow (&cu_list, val, 8);
15723 }
15724
0a5429f6
DE
15725 /* Dump the address map. */
15726 write_address_map (objfile, &addr_obstack, cu_index_htab);
15727
1fd400ff
TT
15728 /* Write out the .debug_type entries, if any. */
15729 if (dwarf2_per_objfile->signatured_types)
15730 {
15731 struct signatured_type_index_data sig_data;
15732
15733 sig_data.objfile = objfile;
15734 sig_data.symtab = symtab;
15735 sig_data.types_list = &types_cu_list;
987d643c 15736 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
15737 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15738 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15739 write_one_signatured_type, &sig_data);
15740 }
15741
9291a0cd
TT
15742 obstack_init (&constant_pool);
15743 make_cleanup_obstack_free (&constant_pool);
15744 obstack_init (&symtab_obstack);
15745 make_cleanup_obstack_free (&symtab_obstack);
15746 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15747
15748 obstack_init (&contents);
15749 make_cleanup_obstack_free (&contents);
1fd400ff 15750 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
15751 total_len = size_of_contents;
15752
15753 /* The version number. */
831adc1f 15754 val = MAYBE_SWAP (4);
9291a0cd
TT
15755 obstack_grow (&contents, &val, sizeof (val));
15756
15757 /* The offset of the CU list from the start of the file. */
15758 val = MAYBE_SWAP (total_len);
15759 obstack_grow (&contents, &val, sizeof (val));
15760 total_len += obstack_object_size (&cu_list);
15761
1fd400ff
TT
15762 /* The offset of the types CU list from the start of the file. */
15763 val = MAYBE_SWAP (total_len);
15764 obstack_grow (&contents, &val, sizeof (val));
15765 total_len += obstack_object_size (&types_cu_list);
15766
9291a0cd
TT
15767 /* The offset of the address table from the start of the file. */
15768 val = MAYBE_SWAP (total_len);
15769 obstack_grow (&contents, &val, sizeof (val));
15770 total_len += obstack_object_size (&addr_obstack);
15771
15772 /* The offset of the symbol table from the start of the file. */
15773 val = MAYBE_SWAP (total_len);
15774 obstack_grow (&contents, &val, sizeof (val));
15775 total_len += obstack_object_size (&symtab_obstack);
15776
15777 /* The offset of the constant pool from the start of the file. */
15778 val = MAYBE_SWAP (total_len);
15779 obstack_grow (&contents, &val, sizeof (val));
15780 total_len += obstack_object_size (&constant_pool);
15781
15782 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15783
15784 write_obstack (out_file, &contents);
15785 write_obstack (out_file, &cu_list);
1fd400ff 15786 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
15787 write_obstack (out_file, &addr_obstack);
15788 write_obstack (out_file, &symtab_obstack);
15789 write_obstack (out_file, &constant_pool);
15790
15791 fclose (out_file);
15792
15793 /* We want to keep the file, so we set cleanup_filename to NULL
15794 here. See unlink_if_set. */
15795 cleanup_filename = NULL;
15796
15797 do_cleanups (cleanup);
15798}
15799
15800/* The mapped index file format is designed to be directly mmap()able
15801 on any architecture. In most cases, a datum is represented using a
15802 little-endian 32-bit integer value, called an offset_type. Big
15803 endian machines must byte-swap the values before using them.
15804 Exceptions to this rule are noted. The data is laid out such that
15805 alignment is always respected.
15806
15807 A mapped index consists of several sections.
15808
15809 1. The file header. This is a sequence of values, of offset_type
15810 unless otherwise noted:
987d643c 15811
831adc1f 15812 [0] The version number, currently 4. Versions 1, 2 and 3 are
987d643c 15813 obsolete.
9291a0cd 15814 [1] The offset, from the start of the file, of the CU list.
987d643c
TT
15815 [2] The offset, from the start of the file, of the types CU list.
15816 Note that this section can be empty, in which case this offset will
15817 be equal to the next offset.
15818 [3] The offset, from the start of the file, of the address section.
15819 [4] The offset, from the start of the file, of the symbol table.
15820 [5] The offset, from the start of the file, of the constant pool.
9291a0cd
TT
15821
15822 2. The CU list. This is a sequence of pairs of 64-bit
1fd400ff
TT
15823 little-endian values, sorted by the CU offset. The first element
15824 in each pair is the offset of a CU in the .debug_info section. The
15825 second element in each pair is the length of that CU. References
15826 to a CU elsewhere in the map are done using a CU index, which is
15827 just the 0-based index into this table. Note that if there are
15828 type CUs, then conceptually CUs and type CUs form a single list for
15829 the purposes of CU indices.
15830
987d643c
TT
15831 3. The types CU list. This is a sequence of triplets of 64-bit
15832 little-endian values. In a triplet, the first value is the CU
15833 offset, the second value is the type offset in the CU, and the
15834 third value is the type signature. The types CU list is not
15835 sorted.
9291a0cd 15836
987d643c 15837 4. The address section. The address section consists of a sequence
9291a0cd
TT
15838 of address entries. Each address entry has three elements.
15839 [0] The low address. This is a 64-bit little-endian value.
15840 [1] The high address. This is a 64-bit little-endian value.
148c11bf 15841 Like DW_AT_high_pc, the value is one byte beyond the end.
9291a0cd
TT
15842 [2] The CU index. This is an offset_type value.
15843
987d643c 15844 5. The symbol table. This is a hash table. The size of the hash
9291a0cd
TT
15845 table is always a power of 2. The initial hash and the step are
15846 currently defined by the `find_slot' function.
15847
15848 Each slot in the hash table consists of a pair of offset_type
15849 values. The first value is the offset of the symbol's name in the
15850 constant pool. The second value is the offset of the CU vector in
15851 the constant pool.
15852
15853 If both values are 0, then this slot in the hash table is empty.
15854 This is ok because while 0 is a valid constant pool index, it
15855 cannot be a valid index for both a string and a CU vector.
15856
15857 A string in the constant pool is stored as a \0-terminated string,
15858 as you'd expect.
15859
15860 A CU vector in the constant pool is a sequence of offset_type
15861 values. The first value is the number of CU indices in the vector.
15862 Each subsequent value is the index of a CU in the CU list. This
15863 element in the hash table is used to indicate which CUs define the
15864 symbol.
15865
987d643c 15866 6. The constant pool. This is simply a bunch of bytes. It is
9291a0cd
TT
15867 organized so that alignment is correct: CU vectors are stored
15868 first, followed by strings. */
11570e71 15869
9291a0cd
TT
15870static void
15871save_gdb_index_command (char *arg, int from_tty)
15872{
15873 struct objfile *objfile;
15874
15875 if (!arg || !*arg)
96d19272 15876 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
15877
15878 ALL_OBJFILES (objfile)
15879 {
15880 struct stat st;
15881
15882 /* If the objfile does not correspond to an actual file, skip it. */
15883 if (stat (objfile->name, &st) < 0)
15884 continue;
15885
15886 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15887 if (dwarf2_per_objfile)
15888 {
15889 volatile struct gdb_exception except;
15890
15891 TRY_CATCH (except, RETURN_MASK_ERROR)
15892 {
15893 write_psymtabs_to_index (objfile, arg);
15894 }
15895 if (except.reason < 0)
15896 exception_fprintf (gdb_stderr, except,
15897 _("Error while writing index for `%s': "),
15898 objfile->name);
15899 }
15900 }
dce234bc
PP
15901}
15902
9291a0cd
TT
15903\f
15904
9eae7c52
TT
15905int dwarf2_always_disassemble;
15906
15907static void
15908show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15909 struct cmd_list_element *c, const char *value)
15910{
3e43a32a
MS
15911 fprintf_filtered (file,
15912 _("Whether to always disassemble "
15913 "DWARF expressions is %s.\n"),
9eae7c52
TT
15914 value);
15915}
15916
6502dd73
DJ
15917void _initialize_dwarf2_read (void);
15918
15919void
15920_initialize_dwarf2_read (void)
15921{
96d19272
JK
15922 struct cmd_list_element *c;
15923
dce234bc 15924 dwarf2_objfile_data_key
c1bd65d0 15925 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 15926
1bedd215
AC
15927 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15928Set DWARF 2 specific variables.\n\
15929Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
15930 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15931 0/*allow-unknown*/, &maintenance_set_cmdlist);
15932
1bedd215
AC
15933 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15934Show DWARF 2 specific variables\n\
15935Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
15936 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15937 0/*allow-unknown*/, &maintenance_show_cmdlist);
15938
15939 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
15940 &dwarf2_max_cache_age, _("\
15941Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15942Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15943A higher limit means that cached compilation units will be stored\n\
15944in memory longer, and more total memory will be used. Zero disables\n\
15945caching, which can slow down startup."),
2c5b56ce 15946 NULL,
920d2a44 15947 show_dwarf2_max_cache_age,
2c5b56ce 15948 &set_dwarf2_cmdlist,
ae038cb0 15949 &show_dwarf2_cmdlist);
d97bc12b 15950
9eae7c52
TT
15951 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15952 &dwarf2_always_disassemble, _("\
15953Set whether `info address' always disassembles DWARF expressions."), _("\
15954Show whether `info address' always disassembles DWARF expressions."), _("\
15955When enabled, DWARF expressions are always printed in an assembly-like\n\
15956syntax. When disabled, expressions will be printed in a more\n\
15957conversational style, when possible."),
15958 NULL,
15959 show_dwarf2_always_disassemble,
15960 &set_dwarf2_cmdlist,
15961 &show_dwarf2_cmdlist);
15962
d97bc12b
DE
15963 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15964Set debugging of the dwarf2 DIE reader."), _("\
15965Show debugging of the dwarf2 DIE reader."), _("\
15966When enabled (non-zero), DIEs are dumped after they are read in.\n\
15967The value is the maximum depth to print."),
15968 NULL,
15969 NULL,
15970 &setdebuglist, &showdebuglist);
9291a0cd 15971
96d19272 15972 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 15973 _("\
fc1a9d6e 15974Save a gdb-index file.\n\
11570e71 15975Usage: save gdb-index DIRECTORY"),
96d19272
JK
15976 &save_cmdlist);
15977 set_cmd_completer (c, filename_completer);
6502dd73 15978}
This page took 2.223455 seconds and 4 git commands to generate.