gdb: Fix build failure with GCC 7
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
61baf725 3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270 55#include "typeprint.h"
ccefe4c4 56#include "psympriv.h"
53ce3c39 57#include <sys/stat.h>
96d19272 58#include "completer.h"
34eaf542 59#include "vec.h"
98bfdba5 60#include "c-lang.h"
a766d390 61#include "go-lang.h"
98bfdba5 62#include "valprint.h"
3019eac3 63#include "gdbcore.h" /* for gnutarget */
156942c7 64#include "gdb/gdb-index.h"
60d5a603 65#include <ctype.h>
cbb099e8 66#include "gdb_bfd.h"
4357ac6c 67#include "f-lang.h"
05cba821 68#include "source.h"
614c279d 69#include "filestuff.h"
dc294be5 70#include "build-id.h"
22cee43f 71#include "namespace.h"
bef155c3 72#include "common/gdb_unlinker.h"
14bc53a8 73#include "common/function-view.h"
ecfb656c
PA
74#include "common/gdb_optional.h"
75#include "common/underlying.h"
d5722aa2 76#include "common/byte-vector.h"
bbf2f4df 77#include "filename-seen-cache.h"
c906108c 78#include <fcntl.h>
c906108c 79#include <sys/types.h>
325fac50 80#include <algorithm>
bc8f2430
JK
81#include <unordered_set>
82#include <unordered_map>
d8151005 83
34eaf542
TT
84typedef struct symbol *symbolp;
85DEF_VEC_P (symbolp);
86
73be47f5
DE
87/* When == 1, print basic high level tracing messages.
88 When > 1, be more verbose.
b4f54984
DE
89 This is in contrast to the low level DIE reading of dwarf_die_debug. */
90static unsigned int dwarf_read_debug = 0;
45cfd468 91
d97bc12b 92/* When non-zero, dump DIEs after they are read in. */
b4f54984 93static unsigned int dwarf_die_debug = 0;
d97bc12b 94
27e0867f
DE
95/* When non-zero, dump line number entries as they are read in. */
96static unsigned int dwarf_line_debug = 0;
97
900e11f9
JK
98/* When non-zero, cross-check physname against demangler. */
99static int check_physname = 0;
100
481860b3 101/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 102static int use_deprecated_index_sections = 0;
481860b3 103
6502dd73
DJ
104static const struct objfile_data *dwarf2_objfile_data_key;
105
f1e6e072
TT
106/* The "aclass" indices for various kinds of computed DWARF symbols. */
107
108static int dwarf2_locexpr_index;
109static int dwarf2_loclist_index;
110static int dwarf2_locexpr_block_index;
111static int dwarf2_loclist_block_index;
112
73869dc2
DE
113/* A descriptor for dwarf sections.
114
115 S.ASECTION, SIZE are typically initialized when the objfile is first
116 scanned. BUFFER, READIN are filled in later when the section is read.
117 If the section contained compressed data then SIZE is updated to record
118 the uncompressed size of the section.
119
120 DWP file format V2 introduces a wrinkle that is easiest to handle by
121 creating the concept of virtual sections contained within a real section.
122 In DWP V2 the sections of the input DWO files are concatenated together
123 into one section, but section offsets are kept relative to the original
124 input section.
125 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
126 the real section this "virtual" section is contained in, and BUFFER,SIZE
127 describe the virtual section. */
128
dce234bc
PP
129struct dwarf2_section_info
130{
73869dc2
DE
131 union
132 {
e5aa3347 133 /* If this is a real section, the bfd section. */
049412e3 134 asection *section;
73869dc2 135 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 136 section. */
73869dc2
DE
137 struct dwarf2_section_info *containing_section;
138 } s;
19ac8c2e 139 /* Pointer to section data, only valid if readin. */
d521ce57 140 const gdb_byte *buffer;
73869dc2 141 /* The size of the section, real or virtual. */
dce234bc 142 bfd_size_type size;
73869dc2
DE
143 /* If this is a virtual section, the offset in the real section.
144 Only valid if is_virtual. */
145 bfd_size_type virtual_offset;
be391dca 146 /* True if we have tried to read this section. */
73869dc2
DE
147 char readin;
148 /* True if this is a virtual section, False otherwise.
049412e3 149 This specifies which of s.section and s.containing_section to use. */
73869dc2 150 char is_virtual;
dce234bc
PP
151};
152
8b70b953
TT
153typedef struct dwarf2_section_info dwarf2_section_info_def;
154DEF_VEC_O (dwarf2_section_info_def);
155
9291a0cd
TT
156/* All offsets in the index are of this type. It must be
157 architecture-independent. */
158typedef uint32_t offset_type;
159
160DEF_VEC_I (offset_type);
161
156942c7
DE
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((unsigned int) (value) <= 1); \
166 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169/* Ensure only legit values are used. */
170#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
173 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
174 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177/* Ensure we don't use more than the alloted nuber of bits for the CU. */
178#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
179 do { \
180 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
181 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
182 } while (0)
183
9291a0cd
TT
184/* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186struct mapped_index
187{
559a7a62
JK
188 /* Index data format version. */
189 int version;
190
9291a0cd
TT
191 /* The total length of the buffer. */
192 off_t total_size;
b11b1f88 193
9291a0cd
TT
194 /* A pointer to the address table data. */
195 const gdb_byte *address_table;
b11b1f88 196
9291a0cd
TT
197 /* Size of the address table data in bytes. */
198 offset_type address_table_size;
b11b1f88 199
3876f04e
DE
200 /* The symbol table, implemented as a hash table. */
201 const offset_type *symbol_table;
b11b1f88 202
9291a0cd 203 /* Size in slots, each slot is 2 offset_types. */
3876f04e 204 offset_type symbol_table_slots;
b11b1f88 205
9291a0cd
TT
206 /* A pointer to the constant pool. */
207 const char *constant_pool;
208};
209
95554aad
TT
210typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
211DEF_VEC_P (dwarf2_per_cu_ptr);
212
52059ffd
TT
213struct tu_stats
214{
215 int nr_uniq_abbrev_tables;
216 int nr_symtabs;
217 int nr_symtab_sharers;
218 int nr_stmt_less_type_units;
219 int nr_all_type_units_reallocs;
220};
221
9cdd5dbd
DE
222/* Collection of data recorded per objfile.
223 This hangs off of dwarf2_objfile_data_key. */
224
6502dd73
DJ
225struct dwarf2_per_objfile
226{
330cdd98
PA
227 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
228 dwarf2 section names, or is NULL if the standard ELF names are
229 used. */
230 dwarf2_per_objfile (struct objfile *objfile,
231 const dwarf2_debug_sections *names);
ae038cb0 232
330cdd98
PA
233 ~dwarf2_per_objfile ();
234
235 /* Disable copy. */
236 dwarf2_per_objfile (const dwarf2_per_objfile &) = delete;
237 void operator= (const dwarf2_per_objfile &) = delete;
238
239 /* Free all cached compilation units. */
240 void free_cached_comp_units ();
241private:
242 /* This function is mapped across the sections and remembers the
243 offset and size of each of the debugging sections we are
244 interested in. */
245 void locate_sections (bfd *abfd, asection *sectp,
246 const dwarf2_debug_sections &names);
247
248public:
249 dwarf2_section_info info {};
250 dwarf2_section_info abbrev {};
251 dwarf2_section_info line {};
252 dwarf2_section_info loc {};
253 dwarf2_section_info loclists {};
254 dwarf2_section_info macinfo {};
255 dwarf2_section_info macro {};
256 dwarf2_section_info str {};
257 dwarf2_section_info line_str {};
258 dwarf2_section_info ranges {};
259 dwarf2_section_info rnglists {};
260 dwarf2_section_info addr {};
261 dwarf2_section_info frame {};
262 dwarf2_section_info eh_frame {};
263 dwarf2_section_info gdb_index {};
264
265 VEC (dwarf2_section_info_def) *types = NULL;
8b70b953 266
be391dca 267 /* Back link. */
330cdd98 268 struct objfile *objfile = NULL;
be391dca 269
d467dd73 270 /* Table of all the compilation units. This is used to locate
10b3939b 271 the target compilation unit of a particular reference. */
330cdd98 272 struct dwarf2_per_cu_data **all_comp_units = NULL;
ae038cb0
DJ
273
274 /* The number of compilation units in ALL_COMP_UNITS. */
330cdd98 275 int n_comp_units = 0;
ae038cb0 276
1fd400ff 277 /* The number of .debug_types-related CUs. */
330cdd98 278 int n_type_units = 0;
1fd400ff 279
6aa5f3a6
DE
280 /* The number of elements allocated in all_type_units.
281 If there are skeleton-less TUs, we add them to all_type_units lazily. */
330cdd98 282 int n_allocated_type_units = 0;
6aa5f3a6 283
a2ce51a0
DE
284 /* The .debug_types-related CUs (TUs).
285 This is stored in malloc space because we may realloc it. */
330cdd98 286 struct signatured_type **all_type_units = NULL;
1fd400ff 287
f4dc4d17
DE
288 /* Table of struct type_unit_group objects.
289 The hash key is the DW_AT_stmt_list value. */
330cdd98 290 htab_t type_unit_groups {};
72dca2f5 291
348e048f
DE
292 /* A table mapping .debug_types signatures to its signatured_type entry.
293 This is NULL if the .debug_types section hasn't been read in yet. */
330cdd98 294 htab_t signatured_types {};
348e048f 295
f4dc4d17
DE
296 /* Type unit statistics, to see how well the scaling improvements
297 are doing. */
330cdd98 298 struct tu_stats tu_stats {};
f4dc4d17
DE
299
300 /* A chain of compilation units that are currently read in, so that
301 they can be freed later. */
330cdd98 302 dwarf2_per_cu_data *read_in_chain = NULL;
f4dc4d17 303
3019eac3
DE
304 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
305 This is NULL if the table hasn't been allocated yet. */
330cdd98 306 htab_t dwo_files {};
3019eac3 307
330cdd98
PA
308 /* True if we've checked for whether there is a DWP file. */
309 bool dwp_checked = false;
80626a55
DE
310
311 /* The DWP file if there is one, or NULL. */
330cdd98 312 struct dwp_file *dwp_file = NULL;
80626a55 313
36586728
TT
314 /* The shared '.dwz' file, if one exists. This is used when the
315 original data was compressed using 'dwz -m'. */
330cdd98 316 struct dwz_file *dwz_file = NULL;
36586728 317
330cdd98 318 /* A flag indicating whether this objfile has a section loaded at a
72dca2f5 319 VMA of 0. */
330cdd98 320 bool has_section_at_zero = false;
9291a0cd 321
ae2de4f8
DE
322 /* True if we are using the mapped index,
323 or we are faking it for OBJF_READNOW's sake. */
330cdd98 324 bool using_index = false;
9291a0cd 325
ae2de4f8 326 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
330cdd98 327 mapped_index *index_table = NULL;
98bfdba5 328
7b9f3c50 329 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
330 TUs typically share line table entries with a CU, so we maintain a
331 separate table of all line table entries to support the sharing.
332 Note that while there can be way more TUs than CUs, we've already
333 sorted all the TUs into "type unit groups", grouped by their
334 DW_AT_stmt_list value. Therefore the only sharing done here is with a
335 CU and its associated TU group if there is one. */
330cdd98 336 htab_t quick_file_names_table {};
7b9f3c50 337
98bfdba5
PA
338 /* Set during partial symbol reading, to prevent queueing of full
339 symbols. */
330cdd98 340 bool reading_partial_symbols = false;
673bfd45 341
dee91e82 342 /* Table mapping type DIEs to their struct type *.
673bfd45 343 This is NULL if not allocated yet.
02142a6c 344 The mapping is done via (CU/TU + DIE offset) -> type. */
330cdd98 345 htab_t die_type_hash {};
95554aad
TT
346
347 /* The CUs we recently read. */
330cdd98 348 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
527f3840
JK
349
350 /* Table containing line_header indexed by offset and offset_in_dwz. */
330cdd98 351 htab_t line_header_hash {};
bbf2f4df
PA
352
353 /* Table containing all filenames. This is an optional because the
354 table is lazily constructed on first access. */
355 gdb::optional<filename_seen_cache> filenames_cache;
6502dd73
DJ
356};
357
358static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 359
251d32d9 360/* Default names of the debugging sections. */
c906108c 361
233a11ab
CS
362/* Note that if the debugging section has been compressed, it might
363 have a name like .zdebug_info. */
364
9cdd5dbd
DE
365static const struct dwarf2_debug_sections dwarf2_elf_names =
366{
251d32d9
TG
367 { ".debug_info", ".zdebug_info" },
368 { ".debug_abbrev", ".zdebug_abbrev" },
369 { ".debug_line", ".zdebug_line" },
370 { ".debug_loc", ".zdebug_loc" },
43988095 371 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 372 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 373 { ".debug_macro", ".zdebug_macro" },
251d32d9 374 { ".debug_str", ".zdebug_str" },
43988095 375 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 376 { ".debug_ranges", ".zdebug_ranges" },
43988095 377 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 378 { ".debug_types", ".zdebug_types" },
3019eac3 379 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
380 { ".debug_frame", ".zdebug_frame" },
381 { ".eh_frame", NULL },
24d3216f
TT
382 { ".gdb_index", ".zgdb_index" },
383 23
251d32d9 384};
c906108c 385
80626a55 386/* List of DWO/DWP sections. */
3019eac3 387
80626a55 388static const struct dwop_section_names
3019eac3
DE
389{
390 struct dwarf2_section_names abbrev_dwo;
391 struct dwarf2_section_names info_dwo;
392 struct dwarf2_section_names line_dwo;
393 struct dwarf2_section_names loc_dwo;
43988095 394 struct dwarf2_section_names loclists_dwo;
09262596
DE
395 struct dwarf2_section_names macinfo_dwo;
396 struct dwarf2_section_names macro_dwo;
3019eac3
DE
397 struct dwarf2_section_names str_dwo;
398 struct dwarf2_section_names str_offsets_dwo;
399 struct dwarf2_section_names types_dwo;
80626a55
DE
400 struct dwarf2_section_names cu_index;
401 struct dwarf2_section_names tu_index;
3019eac3 402}
80626a55 403dwop_section_names =
3019eac3
DE
404{
405 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
406 { ".debug_info.dwo", ".zdebug_info.dwo" },
407 { ".debug_line.dwo", ".zdebug_line.dwo" },
408 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 409 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
410 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
411 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
412 { ".debug_str.dwo", ".zdebug_str.dwo" },
413 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
414 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
415 { ".debug_cu_index", ".zdebug_cu_index" },
416 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
417};
418
c906108c
SS
419/* local data types */
420
107d2387
AC
421/* The data in a compilation unit header, after target2host
422 translation, looks like this. */
c906108c 423struct comp_unit_head
a738430d 424{
c764a876 425 unsigned int length;
a738430d 426 short version;
a738430d
MK
427 unsigned char addr_size;
428 unsigned char signed_addr_p;
9c541725 429 sect_offset abbrev_sect_off;
57349743 430
a738430d
MK
431 /* Size of file offsets; either 4 or 8. */
432 unsigned int offset_size;
57349743 433
a738430d
MK
434 /* Size of the length field; either 4 or 12. */
435 unsigned int initial_length_size;
57349743 436
43988095
JK
437 enum dwarf_unit_type unit_type;
438
a738430d
MK
439 /* Offset to the first byte of this compilation unit header in the
440 .debug_info section, for resolving relative reference dies. */
9c541725 441 sect_offset sect_off;
57349743 442
d00adf39
DE
443 /* Offset to first die in this cu from the start of the cu.
444 This will be the first byte following the compilation unit header. */
9c541725 445 cu_offset first_die_cu_offset;
43988095
JK
446
447 /* 64-bit signature of this type unit - it is valid only for
448 UNIT_TYPE DW_UT_type. */
449 ULONGEST signature;
450
451 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 452 cu_offset type_cu_offset_in_tu;
a738430d 453};
c906108c 454
3da10d80
KS
455/* Type used for delaying computation of method physnames.
456 See comments for compute_delayed_physnames. */
457struct delayed_method_info
458{
459 /* The type to which the method is attached, i.e., its parent class. */
460 struct type *type;
461
462 /* The index of the method in the type's function fieldlists. */
463 int fnfield_index;
464
465 /* The index of the method in the fieldlist. */
466 int index;
467
468 /* The name of the DIE. */
469 const char *name;
470
471 /* The DIE associated with this method. */
472 struct die_info *die;
473};
474
475typedef struct delayed_method_info delayed_method_info;
476DEF_VEC_O (delayed_method_info);
477
e7c27a73
DJ
478/* Internal state when decoding a particular compilation unit. */
479struct dwarf2_cu
480{
481 /* The objfile containing this compilation unit. */
482 struct objfile *objfile;
483
d00adf39 484 /* The header of the compilation unit. */
e7c27a73 485 struct comp_unit_head header;
e142c38c 486
d00adf39
DE
487 /* Base address of this compilation unit. */
488 CORE_ADDR base_address;
489
490 /* Non-zero if base_address has been set. */
491 int base_known;
492
e142c38c
DJ
493 /* The language we are debugging. */
494 enum language language;
495 const struct language_defn *language_defn;
496
b0f35d58
DL
497 const char *producer;
498
e142c38c
DJ
499 /* The generic symbol table building routines have separate lists for
500 file scope symbols and all all other scopes (local scopes). So
501 we need to select the right one to pass to add_symbol_to_list().
502 We do it by keeping a pointer to the correct list in list_in_scope.
503
504 FIXME: The original dwarf code just treated the file scope as the
505 first local scope, and all other local scopes as nested local
506 scopes, and worked fine. Check to see if we really need to
507 distinguish these in buildsym.c. */
508 struct pending **list_in_scope;
509
433df2d4
DE
510 /* The abbrev table for this CU.
511 Normally this points to the abbrev table in the objfile.
512 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
513 struct abbrev_table *abbrev_table;
72bf9492 514
b64f50a1
JK
515 /* Hash table holding all the loaded partial DIEs
516 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
517 htab_t partial_dies;
518
519 /* Storage for things with the same lifetime as this read-in compilation
520 unit, including partial DIEs. */
521 struct obstack comp_unit_obstack;
522
ae038cb0
DJ
523 /* When multiple dwarf2_cu structures are living in memory, this field
524 chains them all together, so that they can be released efficiently.
525 We will probably also want a generation counter so that most-recently-used
526 compilation units are cached... */
527 struct dwarf2_per_cu_data *read_in_chain;
528
69d751e3 529 /* Backlink to our per_cu entry. */
ae038cb0
DJ
530 struct dwarf2_per_cu_data *per_cu;
531
532 /* How many compilation units ago was this CU last referenced? */
533 int last_used;
534
b64f50a1
JK
535 /* A hash table of DIE cu_offset for following references with
536 die_info->offset.sect_off as hash. */
51545339 537 htab_t die_hash;
10b3939b
DJ
538
539 /* Full DIEs if read in. */
540 struct die_info *dies;
541
542 /* A set of pointers to dwarf2_per_cu_data objects for compilation
543 units referenced by this one. Only set during full symbol processing;
544 partial symbol tables do not have dependencies. */
545 htab_t dependencies;
546
cb1df416
DJ
547 /* Header data from the line table, during full symbol processing. */
548 struct line_header *line_header;
549
3da10d80
KS
550 /* A list of methods which need to have physnames computed
551 after all type information has been read. */
552 VEC (delayed_method_info) *method_list;
553
96408a79
SA
554 /* To be copied to symtab->call_site_htab. */
555 htab_t call_site_htab;
556
034e5797
DE
557 /* Non-NULL if this CU came from a DWO file.
558 There is an invariant here that is important to remember:
559 Except for attributes copied from the top level DIE in the "main"
560 (or "stub") file in preparation for reading the DWO file
561 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
562 Either there isn't a DWO file (in which case this is NULL and the point
563 is moot), or there is and either we're not going to read it (in which
564 case this is NULL) or there is and we are reading it (in which case this
565 is non-NULL). */
3019eac3
DE
566 struct dwo_unit *dwo_unit;
567
568 /* The DW_AT_addr_base attribute if present, zero otherwise
569 (zero is a valid value though).
1dbab08b 570 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
571 ULONGEST addr_base;
572
2e3cf129
DE
573 /* The DW_AT_ranges_base attribute if present, zero otherwise
574 (zero is a valid value though).
1dbab08b 575 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 576 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
577 be used without needing to know whether DWO files are in use or not.
578 N.B. This does not apply to DW_AT_ranges appearing in
579 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
580 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
581 DW_AT_ranges_base *would* have to be applied, and we'd have to care
582 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
583 ULONGEST ranges_base;
584
ae038cb0
DJ
585 /* Mark used when releasing cached dies. */
586 unsigned int mark : 1;
587
8be455d7
JK
588 /* This CU references .debug_loc. See the symtab->locations_valid field.
589 This test is imperfect as there may exist optimized debug code not using
590 any location list and still facing inlining issues if handled as
591 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 592 unsigned int has_loclist : 1;
ba919b58 593
1b80a9fa
JK
594 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
595 if all the producer_is_* fields are valid. This information is cached
596 because profiling CU expansion showed excessive time spent in
597 producer_is_gxx_lt_4_6. */
ba919b58
TT
598 unsigned int checked_producer : 1;
599 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 600 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 601 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
602
603 /* When set, the file that we're processing is known to have
604 debugging info for C++ namespaces. GCC 3.3.x did not produce
605 this information, but later versions do. */
606
607 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
608};
609
10b3939b
DJ
610/* Persistent data held for a compilation unit, even when not
611 processing it. We put a pointer to this structure in the
28dee7f5 612 read_symtab_private field of the psymtab. */
10b3939b 613
ae038cb0
DJ
614struct dwarf2_per_cu_data
615{
36586728 616 /* The start offset and length of this compilation unit.
45452591 617 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
618 initial_length_size.
619 If the DIE refers to a DWO file, this is always of the original die,
620 not the DWO file. */
9c541725 621 sect_offset sect_off;
36586728 622 unsigned int length;
ae038cb0 623
43988095
JK
624 /* DWARF standard version this data has been read from (such as 4 or 5). */
625 short dwarf_version;
626
ae038cb0
DJ
627 /* Flag indicating this compilation unit will be read in before
628 any of the current compilation units are processed. */
c764a876 629 unsigned int queued : 1;
ae038cb0 630
0d99eb77
DE
631 /* This flag will be set when reading partial DIEs if we need to load
632 absolutely all DIEs for this compilation unit, instead of just the ones
633 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
634 hash table and don't find it. */
635 unsigned int load_all_dies : 1;
636
0186c6a7
DE
637 /* Non-zero if this CU is from .debug_types.
638 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
639 this is non-zero. */
3019eac3
DE
640 unsigned int is_debug_types : 1;
641
36586728
TT
642 /* Non-zero if this CU is from the .dwz file. */
643 unsigned int is_dwz : 1;
644
a2ce51a0
DE
645 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
646 This flag is only valid if is_debug_types is true.
647 We can't read a CU directly from a DWO file: There are required
648 attributes in the stub. */
649 unsigned int reading_dwo_directly : 1;
650
7ee85ab1
DE
651 /* Non-zero if the TU has been read.
652 This is used to assist the "Stay in DWO Optimization" for Fission:
653 When reading a DWO, it's faster to read TUs from the DWO instead of
654 fetching them from random other DWOs (due to comdat folding).
655 If the TU has already been read, the optimization is unnecessary
656 (and unwise - we don't want to change where gdb thinks the TU lives
657 "midflight").
658 This flag is only valid if is_debug_types is true. */
659 unsigned int tu_read : 1;
660
3019eac3
DE
661 /* The section this CU/TU lives in.
662 If the DIE refers to a DWO file, this is always the original die,
663 not the DWO file. */
8a0459fd 664 struct dwarf2_section_info *section;
348e048f 665
17ea53c3 666 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
667 of the CU cache it gets reset to NULL again. This is left as NULL for
668 dummy CUs (a CU header, but nothing else). */
ae038cb0 669 struct dwarf2_cu *cu;
1c379e20 670
9cdd5dbd
DE
671 /* The corresponding objfile.
672 Normally we can get the objfile from dwarf2_per_objfile.
673 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
674 struct objfile *objfile;
675
fffbe6a8
YQ
676 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
677 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
678 union
679 {
680 /* The partial symbol table associated with this compilation unit,
95554aad 681 or NULL for unread partial units. */
9291a0cd
TT
682 struct partial_symtab *psymtab;
683
684 /* Data needed by the "quick" functions. */
685 struct dwarf2_per_cu_quick_data *quick;
686 } v;
95554aad 687
796a7ff8
DE
688 /* The CUs we import using DW_TAG_imported_unit. This is filled in
689 while reading psymtabs, used to compute the psymtab dependencies,
690 and then cleared. Then it is filled in again while reading full
691 symbols, and only deleted when the objfile is destroyed.
692
693 This is also used to work around a difference between the way gold
694 generates .gdb_index version <=7 and the way gdb does. Arguably this
695 is a gold bug. For symbols coming from TUs, gold records in the index
696 the CU that includes the TU instead of the TU itself. This breaks
697 dw2_lookup_symbol: It assumes that if the index says symbol X lives
698 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
699 will find X. Alas TUs live in their own symtab, so after expanding CU Y
700 we need to look in TU Z to find X. Fortunately, this is akin to
701 DW_TAG_imported_unit, so we just use the same mechanism: For
702 .gdb_index version <=7 this also records the TUs that the CU referred
703 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
704 indices so we only pay a price for gold generated indices.
705 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 706 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
707};
708
348e048f
DE
709/* Entry in the signatured_types hash table. */
710
711struct signatured_type
712{
42e7ad6c 713 /* The "per_cu" object of this type.
ac9ec31b 714 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
715 N.B.: This is the first member so that it's easy to convert pointers
716 between them. */
717 struct dwarf2_per_cu_data per_cu;
718
3019eac3 719 /* The type's signature. */
348e048f
DE
720 ULONGEST signature;
721
3019eac3 722 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
723 If this TU is a DWO stub and the definition lives in a DWO file
724 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
725 cu_offset type_offset_in_tu;
726
727 /* Offset in the section of the type's DIE.
728 If the definition lives in a DWO file, this is the offset in the
729 .debug_types.dwo section.
730 The value is zero until the actual value is known.
731 Zero is otherwise not a valid section offset. */
732 sect_offset type_offset_in_section;
0186c6a7
DE
733
734 /* Type units are grouped by their DW_AT_stmt_list entry so that they
735 can share them. This points to the containing symtab. */
736 struct type_unit_group *type_unit_group;
ac9ec31b
DE
737
738 /* The type.
739 The first time we encounter this type we fully read it in and install it
740 in the symbol tables. Subsequent times we only need the type. */
741 struct type *type;
a2ce51a0
DE
742
743 /* Containing DWO unit.
744 This field is valid iff per_cu.reading_dwo_directly. */
745 struct dwo_unit *dwo_unit;
348e048f
DE
746};
747
0186c6a7
DE
748typedef struct signatured_type *sig_type_ptr;
749DEF_VEC_P (sig_type_ptr);
750
094b34ac
DE
751/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
752 This includes type_unit_group and quick_file_names. */
753
754struct stmt_list_hash
755{
756 /* The DWO unit this table is from or NULL if there is none. */
757 struct dwo_unit *dwo_unit;
758
759 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 760 sect_offset line_sect_off;
094b34ac
DE
761};
762
f4dc4d17
DE
763/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
764 an object of this type. */
765
766struct type_unit_group
767{
0186c6a7 768 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
769 To simplify things we create an artificial CU that "includes" all the
770 type units using this stmt_list so that the rest of the code still has
771 a "per_cu" handle on the symtab.
772 This PER_CU is recognized by having no section. */
8a0459fd 773#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
774 struct dwarf2_per_cu_data per_cu;
775
0186c6a7
DE
776 /* The TUs that share this DW_AT_stmt_list entry.
777 This is added to while parsing type units to build partial symtabs,
778 and is deleted afterwards and not used again. */
779 VEC (sig_type_ptr) *tus;
f4dc4d17 780
43f3e411 781 /* The compunit symtab.
094b34ac 782 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
783 so we create an essentially anonymous symtab as the compunit symtab. */
784 struct compunit_symtab *compunit_symtab;
f4dc4d17 785
094b34ac
DE
786 /* The data used to construct the hash key. */
787 struct stmt_list_hash hash;
f4dc4d17
DE
788
789 /* The number of symtabs from the line header.
790 The value here must match line_header.num_file_names. */
791 unsigned int num_symtabs;
792
793 /* The symbol tables for this TU (obtained from the files listed in
794 DW_AT_stmt_list).
795 WARNING: The order of entries here must match the order of entries
796 in the line header. After the first TU using this type_unit_group, the
797 line header for the subsequent TUs is recreated from this. This is done
798 because we need to use the same symtabs for each TU using the same
799 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
800 there's no guarantee the line header doesn't have duplicate entries. */
801 struct symtab **symtabs;
802};
803
73869dc2 804/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
805
806struct dwo_sections
807{
808 struct dwarf2_section_info abbrev;
3019eac3
DE
809 struct dwarf2_section_info line;
810 struct dwarf2_section_info loc;
43988095 811 struct dwarf2_section_info loclists;
09262596
DE
812 struct dwarf2_section_info macinfo;
813 struct dwarf2_section_info macro;
3019eac3
DE
814 struct dwarf2_section_info str;
815 struct dwarf2_section_info str_offsets;
80626a55
DE
816 /* In the case of a virtual DWO file, these two are unused. */
817 struct dwarf2_section_info info;
3019eac3
DE
818 VEC (dwarf2_section_info_def) *types;
819};
820
c88ee1f0 821/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
822
823struct dwo_unit
824{
825 /* Backlink to the containing struct dwo_file. */
826 struct dwo_file *dwo_file;
827
828 /* The "id" that distinguishes this CU/TU.
829 .debug_info calls this "dwo_id", .debug_types calls this "signature".
830 Since signatures came first, we stick with it for consistency. */
831 ULONGEST signature;
832
833 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 834 struct dwarf2_section_info *section;
3019eac3 835
9c541725
PA
836 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
837 sect_offset sect_off;
3019eac3
DE
838 unsigned int length;
839
840 /* For types, offset in the type's DIE of the type defined by this TU. */
841 cu_offset type_offset_in_tu;
842};
843
73869dc2
DE
844/* include/dwarf2.h defines the DWP section codes.
845 It defines a max value but it doesn't define a min value, which we
846 use for error checking, so provide one. */
847
848enum dwp_v2_section_ids
849{
850 DW_SECT_MIN = 1
851};
852
80626a55 853/* Data for one DWO file.
57d63ce2
DE
854
855 This includes virtual DWO files (a virtual DWO file is a DWO file as it
856 appears in a DWP file). DWP files don't really have DWO files per se -
857 comdat folding of types "loses" the DWO file they came from, and from
858 a high level view DWP files appear to contain a mass of random types.
859 However, to maintain consistency with the non-DWP case we pretend DWP
860 files contain virtual DWO files, and we assign each TU with one virtual
861 DWO file (generally based on the line and abbrev section offsets -
862 a heuristic that seems to work in practice). */
3019eac3
DE
863
864struct dwo_file
865{
0ac5b59e 866 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
867 For virtual DWO files the name is constructed from the section offsets
868 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
869 from related CU+TUs. */
0ac5b59e
DE
870 const char *dwo_name;
871
872 /* The DW_AT_comp_dir attribute. */
873 const char *comp_dir;
3019eac3 874
80626a55
DE
875 /* The bfd, when the file is open. Otherwise this is NULL.
876 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
877 bfd *dbfd;
3019eac3 878
73869dc2
DE
879 /* The sections that make up this DWO file.
880 Remember that for virtual DWO files in DWP V2, these are virtual
881 sections (for lack of a better name). */
3019eac3
DE
882 struct dwo_sections sections;
883
33c5cd75
DB
884 /* The CUs in the file.
885 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
886 an extension to handle LLVM's Link Time Optimization output (where
887 multiple source files may be compiled into a single object/dwo pair). */
888 htab_t cus;
3019eac3
DE
889
890 /* Table of TUs in the file.
891 Each element is a struct dwo_unit. */
892 htab_t tus;
893};
894
80626a55
DE
895/* These sections are what may appear in a DWP file. */
896
897struct dwp_sections
898{
73869dc2 899 /* These are used by both DWP version 1 and 2. */
80626a55
DE
900 struct dwarf2_section_info str;
901 struct dwarf2_section_info cu_index;
902 struct dwarf2_section_info tu_index;
73869dc2
DE
903
904 /* These are only used by DWP version 2 files.
905 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
906 sections are referenced by section number, and are not recorded here.
907 In DWP version 2 there is at most one copy of all these sections, each
908 section being (effectively) comprised of the concatenation of all of the
909 individual sections that exist in the version 1 format.
910 To keep the code simple we treat each of these concatenated pieces as a
911 section itself (a virtual section?). */
912 struct dwarf2_section_info abbrev;
913 struct dwarf2_section_info info;
914 struct dwarf2_section_info line;
915 struct dwarf2_section_info loc;
916 struct dwarf2_section_info macinfo;
917 struct dwarf2_section_info macro;
918 struct dwarf2_section_info str_offsets;
919 struct dwarf2_section_info types;
80626a55
DE
920};
921
73869dc2
DE
922/* These sections are what may appear in a virtual DWO file in DWP version 1.
923 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 924
73869dc2 925struct virtual_v1_dwo_sections
80626a55
DE
926{
927 struct dwarf2_section_info abbrev;
928 struct dwarf2_section_info line;
929 struct dwarf2_section_info loc;
930 struct dwarf2_section_info macinfo;
931 struct dwarf2_section_info macro;
932 struct dwarf2_section_info str_offsets;
933 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 934 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
935 struct dwarf2_section_info info_or_types;
936};
937
73869dc2
DE
938/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
939 In version 2, the sections of the DWO files are concatenated together
940 and stored in one section of that name. Thus each ELF section contains
941 several "virtual" sections. */
942
943struct virtual_v2_dwo_sections
944{
945 bfd_size_type abbrev_offset;
946 bfd_size_type abbrev_size;
947
948 bfd_size_type line_offset;
949 bfd_size_type line_size;
950
951 bfd_size_type loc_offset;
952 bfd_size_type loc_size;
953
954 bfd_size_type macinfo_offset;
955 bfd_size_type macinfo_size;
956
957 bfd_size_type macro_offset;
958 bfd_size_type macro_size;
959
960 bfd_size_type str_offsets_offset;
961 bfd_size_type str_offsets_size;
962
963 /* Each DWP hash table entry records one CU or one TU.
964 That is recorded here, and copied to dwo_unit.section. */
965 bfd_size_type info_or_types_offset;
966 bfd_size_type info_or_types_size;
967};
968
80626a55
DE
969/* Contents of DWP hash tables. */
970
971struct dwp_hash_table
972{
73869dc2 973 uint32_t version, nr_columns;
80626a55 974 uint32_t nr_units, nr_slots;
73869dc2
DE
975 const gdb_byte *hash_table, *unit_table;
976 union
977 {
978 struct
979 {
980 const gdb_byte *indices;
981 } v1;
982 struct
983 {
984 /* This is indexed by column number and gives the id of the section
985 in that column. */
986#define MAX_NR_V2_DWO_SECTIONS \
987 (1 /* .debug_info or .debug_types */ \
988 + 1 /* .debug_abbrev */ \
989 + 1 /* .debug_line */ \
990 + 1 /* .debug_loc */ \
991 + 1 /* .debug_str_offsets */ \
992 + 1 /* .debug_macro or .debug_macinfo */)
993 int section_ids[MAX_NR_V2_DWO_SECTIONS];
994 const gdb_byte *offsets;
995 const gdb_byte *sizes;
996 } v2;
997 } section_pool;
80626a55
DE
998};
999
1000/* Data for one DWP file. */
1001
1002struct dwp_file
1003{
1004 /* Name of the file. */
1005 const char *name;
1006
73869dc2
DE
1007 /* File format version. */
1008 int version;
1009
93417882 1010 /* The bfd. */
80626a55
DE
1011 bfd *dbfd;
1012
1013 /* Section info for this file. */
1014 struct dwp_sections sections;
1015
57d63ce2 1016 /* Table of CUs in the file. */
80626a55
DE
1017 const struct dwp_hash_table *cus;
1018
1019 /* Table of TUs in the file. */
1020 const struct dwp_hash_table *tus;
1021
19ac8c2e
DE
1022 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1023 htab_t loaded_cus;
1024 htab_t loaded_tus;
80626a55 1025
73869dc2
DE
1026 /* Table to map ELF section numbers to their sections.
1027 This is only needed for the DWP V1 file format. */
80626a55
DE
1028 unsigned int num_sections;
1029 asection **elf_sections;
1030};
1031
36586728
TT
1032/* This represents a '.dwz' file. */
1033
1034struct dwz_file
1035{
1036 /* A dwz file can only contain a few sections. */
1037 struct dwarf2_section_info abbrev;
1038 struct dwarf2_section_info info;
1039 struct dwarf2_section_info str;
1040 struct dwarf2_section_info line;
1041 struct dwarf2_section_info macro;
2ec9a5e0 1042 struct dwarf2_section_info gdb_index;
36586728
TT
1043
1044 /* The dwz's BFD. */
1045 bfd *dwz_bfd;
1046};
1047
0963b4bd
MS
1048/* Struct used to pass misc. parameters to read_die_and_children, et
1049 al. which are used for both .debug_info and .debug_types dies.
1050 All parameters here are unchanging for the life of the call. This
dee91e82 1051 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
1052
1053struct die_reader_specs
1054{
a32a8923 1055 /* The bfd of die_section. */
93311388
DE
1056 bfd* abfd;
1057
1058 /* The CU of the DIE we are parsing. */
1059 struct dwarf2_cu *cu;
1060
80626a55 1061 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1062 struct dwo_file *dwo_file;
1063
dee91e82 1064 /* The section the die comes from.
3019eac3 1065 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1066 struct dwarf2_section_info *die_section;
1067
1068 /* die_section->buffer. */
d521ce57 1069 const gdb_byte *buffer;
f664829e
DE
1070
1071 /* The end of the buffer. */
1072 const gdb_byte *buffer_end;
a2ce51a0
DE
1073
1074 /* The value of the DW_AT_comp_dir attribute. */
1075 const char *comp_dir;
93311388
DE
1076};
1077
fd820528 1078/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1079typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1080 const gdb_byte *info_ptr,
dee91e82
DE
1081 struct die_info *comp_unit_die,
1082 int has_children,
1083 void *data);
1084
ecfb656c
PA
1085/* A 1-based directory index. This is a strong typedef to prevent
1086 accidentally using a directory index as a 0-based index into an
1087 array/vector. */
1088enum class dir_index : unsigned int {};
1089
1090/* Likewise, a 1-based file name index. */
1091enum class file_name_index : unsigned int {};
1092
52059ffd
TT
1093struct file_entry
1094{
fff8551c
PA
1095 file_entry () = default;
1096
ecfb656c 1097 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
1098 unsigned int mod_time_, unsigned int length_)
1099 : name (name_),
ecfb656c 1100 d_index (d_index_),
fff8551c
PA
1101 mod_time (mod_time_),
1102 length (length_)
1103 {}
1104
ecfb656c
PA
1105 /* Return the include directory at D_INDEX stored in LH. Returns
1106 NULL if D_INDEX is out of bounds. */
8c43009f
PA
1107 const char *include_dir (const line_header *lh) const;
1108
fff8551c
PA
1109 /* The file name. Note this is an observing pointer. The memory is
1110 owned by debug_line_buffer. */
1111 const char *name {};
1112
8c43009f 1113 /* The directory index (1-based). */
ecfb656c 1114 dir_index d_index {};
fff8551c
PA
1115
1116 unsigned int mod_time {};
1117
1118 unsigned int length {};
1119
1120 /* True if referenced by the Line Number Program. */
1121 bool included_p {};
1122
83769d0b 1123 /* The associated symbol table, if any. */
fff8551c 1124 struct symtab *symtab {};
52059ffd
TT
1125};
1126
debd256d
JB
1127/* The line number information for a compilation unit (found in the
1128 .debug_line section) begins with a "statement program header",
1129 which contains the following information. */
1130struct line_header
1131{
fff8551c
PA
1132 line_header ()
1133 : offset_in_dwz {}
1134 {}
1135
1136 /* Add an entry to the include directory table. */
1137 void add_include_dir (const char *include_dir);
1138
1139 /* Add an entry to the file name table. */
ecfb656c 1140 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
1141 unsigned int mod_time, unsigned int length);
1142
ecfb656c 1143 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
8c43009f 1144 is out of bounds. */
ecfb656c 1145 const char *include_dir_at (dir_index index) const
8c43009f 1146 {
ecfb656c
PA
1147 /* Convert directory index number (1-based) to vector index
1148 (0-based). */
1149 size_t vec_index = to_underlying (index) - 1;
1150
1151 if (vec_index >= include_dirs.size ())
8c43009f 1152 return NULL;
ecfb656c 1153 return include_dirs[vec_index];
8c43009f
PA
1154 }
1155
ecfb656c 1156 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
8c43009f 1157 is out of bounds. */
ecfb656c 1158 file_entry *file_name_at (file_name_index index)
8c43009f 1159 {
ecfb656c
PA
1160 /* Convert file name index number (1-based) to vector index
1161 (0-based). */
1162 size_t vec_index = to_underlying (index) - 1;
1163
1164 if (vec_index >= file_names.size ())
fff8551c 1165 return NULL;
ecfb656c 1166 return &file_names[vec_index];
fff8551c
PA
1167 }
1168
1169 /* Const version of the above. */
1170 const file_entry *file_name_at (unsigned int index) const
1171 {
1172 if (index >= file_names.size ())
8c43009f
PA
1173 return NULL;
1174 return &file_names[index];
1175 }
1176
527f3840 1177 /* Offset of line number information in .debug_line section. */
9c541725 1178 sect_offset sect_off {};
527f3840
JK
1179
1180 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1181 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1182
1183 unsigned int total_length {};
1184 unsigned short version {};
1185 unsigned int header_length {};
1186 unsigned char minimum_instruction_length {};
1187 unsigned char maximum_ops_per_instruction {};
1188 unsigned char default_is_stmt {};
1189 int line_base {};
1190 unsigned char line_range {};
1191 unsigned char opcode_base {};
debd256d
JB
1192
1193 /* standard_opcode_lengths[i] is the number of operands for the
1194 standard opcode whose value is i. This means that
1195 standard_opcode_lengths[0] is unused, and the last meaningful
1196 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1197 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1198
fff8551c
PA
1199 /* The include_directories table. Note these are observing
1200 pointers. The memory is owned by debug_line_buffer. */
1201 std::vector<const char *> include_dirs;
debd256d 1202
fff8551c
PA
1203 /* The file_names table. */
1204 std::vector<file_entry> file_names;
debd256d
JB
1205
1206 /* The start and end of the statement program following this
6502dd73 1207 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1208 const gdb_byte *statement_program_start {}, *statement_program_end {};
debd256d 1209};
c906108c 1210
fff8551c
PA
1211typedef std::unique_ptr<line_header> line_header_up;
1212
8c43009f
PA
1213const char *
1214file_entry::include_dir (const line_header *lh) const
1215{
ecfb656c 1216 return lh->include_dir_at (d_index);
8c43009f
PA
1217}
1218
c906108c 1219/* When we construct a partial symbol table entry we only
0963b4bd 1220 need this much information. */
c906108c
SS
1221struct partial_die_info
1222 {
72bf9492 1223 /* Offset of this DIE. */
9c541725 1224 sect_offset sect_off;
72bf9492
DJ
1225
1226 /* DWARF-2 tag for this DIE. */
1227 ENUM_BITFIELD(dwarf_tag) tag : 16;
1228
72bf9492
DJ
1229 /* Assorted flags describing the data found in this DIE. */
1230 unsigned int has_children : 1;
1231 unsigned int is_external : 1;
1232 unsigned int is_declaration : 1;
1233 unsigned int has_type : 1;
1234 unsigned int has_specification : 1;
1235 unsigned int has_pc_info : 1;
481860b3 1236 unsigned int may_be_inlined : 1;
72bf9492 1237
0c1b455e
TT
1238 /* This DIE has been marked DW_AT_main_subprogram. */
1239 unsigned int main_subprogram : 1;
1240
72bf9492
DJ
1241 /* Flag set if the SCOPE field of this structure has been
1242 computed. */
1243 unsigned int scope_set : 1;
1244
fa4028e9
JB
1245 /* Flag set if the DIE has a byte_size attribute. */
1246 unsigned int has_byte_size : 1;
1247
ff908ebf
AW
1248 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1249 unsigned int has_const_value : 1;
1250
98bfdba5
PA
1251 /* Flag set if any of the DIE's children are template arguments. */
1252 unsigned int has_template_arguments : 1;
1253
abc72ce4
DE
1254 /* Flag set if fixup_partial_die has been called on this die. */
1255 unsigned int fixup_called : 1;
1256
36586728
TT
1257 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1258 unsigned int is_dwz : 1;
1259
1260 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1261 unsigned int spec_is_dwz : 1;
1262
72bf9492 1263 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1264 sometimes a default name for unnamed DIEs. */
15d034d0 1265 const char *name;
72bf9492 1266
abc72ce4
DE
1267 /* The linkage name, if present. */
1268 const char *linkage_name;
1269
72bf9492
DJ
1270 /* The scope to prepend to our children. This is generally
1271 allocated on the comp_unit_obstack, so will disappear
1272 when this compilation unit leaves the cache. */
15d034d0 1273 const char *scope;
72bf9492 1274
95554aad
TT
1275 /* Some data associated with the partial DIE. The tag determines
1276 which field is live. */
1277 union
1278 {
1279 /* The location description associated with this DIE, if any. */
1280 struct dwarf_block *locdesc;
1281 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1282 sect_offset sect_off;
95554aad 1283 } d;
72bf9492
DJ
1284
1285 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1286 CORE_ADDR lowpc;
1287 CORE_ADDR highpc;
72bf9492 1288
93311388 1289 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1290 DW_AT_sibling, if any. */
abc72ce4
DE
1291 /* NOTE: This member isn't strictly necessary, read_partial_die could
1292 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1293 const gdb_byte *sibling;
72bf9492
DJ
1294
1295 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1296 DW_AT_specification (or DW_AT_abstract_origin or
1297 DW_AT_extension). */
b64f50a1 1298 sect_offset spec_offset;
72bf9492
DJ
1299
1300 /* Pointers to this DIE's parent, first child, and next sibling,
1301 if any. */
1302 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1303 };
1304
0963b4bd 1305/* This data structure holds the information of an abbrev. */
c906108c
SS
1306struct abbrev_info
1307 {
1308 unsigned int number; /* number identifying abbrev */
1309 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1310 unsigned short has_children; /* boolean */
1311 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1312 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1313 struct abbrev_info *next; /* next in chain */
1314 };
1315
1316struct attr_abbrev
1317 {
9d25dd43
DE
1318 ENUM_BITFIELD(dwarf_attribute) name : 16;
1319 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1320
1321 /* It is valid only if FORM is DW_FORM_implicit_const. */
1322 LONGEST implicit_const;
c906108c
SS
1323 };
1324
433df2d4
DE
1325/* Size of abbrev_table.abbrev_hash_table. */
1326#define ABBREV_HASH_SIZE 121
1327
1328/* Top level data structure to contain an abbreviation table. */
1329
1330struct abbrev_table
1331{
f4dc4d17
DE
1332 /* Where the abbrev table came from.
1333 This is used as a sanity check when the table is used. */
9c541725 1334 sect_offset sect_off;
433df2d4
DE
1335
1336 /* Storage for the abbrev table. */
1337 struct obstack abbrev_obstack;
1338
1339 /* Hash table of abbrevs.
1340 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1341 It could be statically allocated, but the previous code didn't so we
1342 don't either. */
1343 struct abbrev_info **abbrevs;
1344};
1345
0963b4bd 1346/* Attributes have a name and a value. */
b60c80d6
DJ
1347struct attribute
1348 {
9d25dd43 1349 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1350 ENUM_BITFIELD(dwarf_form) form : 15;
1351
1352 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1353 field should be in u.str (existing only for DW_STRING) but it is kept
1354 here for better struct attribute alignment. */
1355 unsigned int string_is_canonical : 1;
1356
b60c80d6
DJ
1357 union
1358 {
15d034d0 1359 const char *str;
b60c80d6 1360 struct dwarf_block *blk;
43bbcdc2
PH
1361 ULONGEST unsnd;
1362 LONGEST snd;
b60c80d6 1363 CORE_ADDR addr;
ac9ec31b 1364 ULONGEST signature;
b60c80d6
DJ
1365 }
1366 u;
1367 };
1368
0963b4bd 1369/* This data structure holds a complete die structure. */
c906108c
SS
1370struct die_info
1371 {
76815b17
DE
1372 /* DWARF-2 tag for this DIE. */
1373 ENUM_BITFIELD(dwarf_tag) tag : 16;
1374
1375 /* Number of attributes */
98bfdba5
PA
1376 unsigned char num_attrs;
1377
1378 /* True if we're presently building the full type name for the
1379 type derived from this DIE. */
1380 unsigned char building_fullname : 1;
76815b17 1381
adde2bff
DE
1382 /* True if this die is in process. PR 16581. */
1383 unsigned char in_process : 1;
1384
76815b17
DE
1385 /* Abbrev number */
1386 unsigned int abbrev;
1387
93311388 1388 /* Offset in .debug_info or .debug_types section. */
9c541725 1389 sect_offset sect_off;
78ba4af6
JB
1390
1391 /* The dies in a compilation unit form an n-ary tree. PARENT
1392 points to this die's parent; CHILD points to the first child of
1393 this node; and all the children of a given node are chained
4950bc1c 1394 together via their SIBLING fields. */
639d11d3
DC
1395 struct die_info *child; /* Its first child, if any. */
1396 struct die_info *sibling; /* Its next sibling, if any. */
1397 struct die_info *parent; /* Its parent, if any. */
c906108c 1398
b60c80d6
DJ
1399 /* An array of attributes, with NUM_ATTRS elements. There may be
1400 zero, but it's not common and zero-sized arrays are not
1401 sufficiently portable C. */
1402 struct attribute attrs[1];
c906108c
SS
1403 };
1404
0963b4bd 1405/* Get at parts of an attribute structure. */
c906108c
SS
1406
1407#define DW_STRING(attr) ((attr)->u.str)
8285870a 1408#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1409#define DW_UNSND(attr) ((attr)->u.unsnd)
1410#define DW_BLOCK(attr) ((attr)->u.blk)
1411#define DW_SND(attr) ((attr)->u.snd)
1412#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1413#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1414
0963b4bd 1415/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1416struct dwarf_block
1417 {
56eb65bd 1418 size_t size;
1d6edc3c
JK
1419
1420 /* Valid only if SIZE is not zero. */
d521ce57 1421 const gdb_byte *data;
c906108c
SS
1422 };
1423
c906108c
SS
1424#ifndef ATTR_ALLOC_CHUNK
1425#define ATTR_ALLOC_CHUNK 4
1426#endif
1427
c906108c
SS
1428/* Allocate fields for structs, unions and enums in this size. */
1429#ifndef DW_FIELD_ALLOC_CHUNK
1430#define DW_FIELD_ALLOC_CHUNK 4
1431#endif
1432
c906108c
SS
1433/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1434 but this would require a corresponding change in unpack_field_as_long
1435 and friends. */
1436static int bits_per_byte = 8;
1437
52059ffd
TT
1438struct nextfield
1439{
1440 struct nextfield *next;
1441 int accessibility;
1442 int virtuality;
1443 struct field field;
1444};
1445
1446struct nextfnfield
1447{
1448 struct nextfnfield *next;
1449 struct fn_field fnfield;
1450};
1451
1452struct fnfieldlist
1453{
1454 const char *name;
1455 int length;
1456 struct nextfnfield *head;
1457};
1458
1459struct typedef_field_list
1460{
1461 struct typedef_field field;
1462 struct typedef_field_list *next;
1463};
1464
c906108c
SS
1465/* The routines that read and process dies for a C struct or C++ class
1466 pass lists of data member fields and lists of member function fields
1467 in an instance of a field_info structure, as defined below. */
1468struct field_info
c5aa993b 1469 {
0963b4bd 1470 /* List of data member and baseclasses fields. */
52059ffd 1471 struct nextfield *fields, *baseclasses;
c906108c 1472
7d0ccb61 1473 /* Number of fields (including baseclasses). */
c5aa993b 1474 int nfields;
c906108c 1475
c5aa993b
JM
1476 /* Number of baseclasses. */
1477 int nbaseclasses;
c906108c 1478
c5aa993b
JM
1479 /* Set if the accesibility of one of the fields is not public. */
1480 int non_public_fields;
c906108c 1481
c5aa993b
JM
1482 /* Member function fields array, entries are allocated in the order they
1483 are encountered in the object file. */
52059ffd 1484 struct nextfnfield *fnfields;
c906108c 1485
c5aa993b
JM
1486 /* Member function fieldlist array, contains name of possibly overloaded
1487 member function, number of overloaded member functions and a pointer
1488 to the head of the member function field chain. */
52059ffd 1489 struct fnfieldlist *fnfieldlists;
c906108c 1490
c5aa993b
JM
1491 /* Number of entries in the fnfieldlists array. */
1492 int nfnfields;
98751a41
JK
1493
1494 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1495 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1496 struct typedef_field_list *typedef_field_list;
98751a41 1497 unsigned typedef_field_list_count;
c5aa993b 1498 };
c906108c 1499
10b3939b
DJ
1500/* One item on the queue of compilation units to read in full symbols
1501 for. */
1502struct dwarf2_queue_item
1503{
1504 struct dwarf2_per_cu_data *per_cu;
95554aad 1505 enum language pretend_language;
10b3939b
DJ
1506 struct dwarf2_queue_item *next;
1507};
1508
1509/* The current queue. */
1510static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1511
ae038cb0
DJ
1512/* Loaded secondary compilation units are kept in memory until they
1513 have not been referenced for the processing of this many
1514 compilation units. Set this to zero to disable caching. Cache
1515 sizes of up to at least twenty will improve startup time for
1516 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1517static int dwarf_max_cache_age = 5;
920d2a44 1518static void
b4f54984
DE
1519show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1520 struct cmd_list_element *c, const char *value)
920d2a44 1521{
3e43a32a 1522 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1523 "DWARF compilation units is %s.\n"),
920d2a44
AC
1524 value);
1525}
4390d890 1526\f
c906108c
SS
1527/* local function prototypes */
1528
a32a8923
DE
1529static const char *get_section_name (const struct dwarf2_section_info *);
1530
1531static const char *get_section_file_name (const struct dwarf2_section_info *);
1532
918dd910
JK
1533static void dwarf2_find_base_address (struct die_info *die,
1534 struct dwarf2_cu *cu);
1535
0018ea6f
DE
1536static struct partial_symtab *create_partial_symtab
1537 (struct dwarf2_per_cu_data *per_cu, const char *name);
1538
c67a9c90 1539static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1540
72bf9492
DJ
1541static void scan_partial_symbols (struct partial_die_info *,
1542 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1543 int, struct dwarf2_cu *);
c906108c 1544
72bf9492
DJ
1545static void add_partial_symbol (struct partial_die_info *,
1546 struct dwarf2_cu *);
63d06c5c 1547
72bf9492
DJ
1548static void add_partial_namespace (struct partial_die_info *pdi,
1549 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1550 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1551
5d7cb8df 1552static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1553 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1554 struct dwarf2_cu *cu);
1555
72bf9492
DJ
1556static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1557 struct dwarf2_cu *cu);
91c24f0a 1558
bc30ff58
JB
1559static void add_partial_subprogram (struct partial_die_info *pdi,
1560 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1561 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1562
257e7a09
YQ
1563static void dwarf2_read_symtab (struct partial_symtab *,
1564 struct objfile *);
c906108c 1565
a14ed312 1566static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1567
433df2d4
DE
1568static struct abbrev_info *abbrev_table_lookup_abbrev
1569 (const struct abbrev_table *, unsigned int);
1570
1571static struct abbrev_table *abbrev_table_read_table
1572 (struct dwarf2_section_info *, sect_offset);
1573
1574static void abbrev_table_free (struct abbrev_table *);
1575
f4dc4d17
DE
1576static void abbrev_table_free_cleanup (void *);
1577
dee91e82
DE
1578static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1579 struct dwarf2_section_info *);
c906108c 1580
f3dd6933 1581static void dwarf2_free_abbrev_table (void *);
c906108c 1582
d521ce57 1583static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1584
dee91e82 1585static struct partial_die_info *load_partial_dies
d521ce57 1586 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1587
d521ce57
TT
1588static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1589 struct partial_die_info *,
1590 struct abbrev_info *,
1591 unsigned int,
1592 const gdb_byte *);
c906108c 1593
36586728 1594static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1595 struct dwarf2_cu *);
72bf9492
DJ
1596
1597static void fixup_partial_die (struct partial_die_info *,
1598 struct dwarf2_cu *);
1599
d521ce57
TT
1600static const gdb_byte *read_attribute (const struct die_reader_specs *,
1601 struct attribute *, struct attr_abbrev *,
1602 const gdb_byte *);
a8329558 1603
a1855c1d 1604static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1605
a1855c1d 1606static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1607
a1855c1d 1608static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1609
a1855c1d 1610static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1611
a1855c1d 1612static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1613
d521ce57 1614static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1615 unsigned int *);
c906108c 1616
d521ce57 1617static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1618
1619static LONGEST read_checked_initial_length_and_offset
d521ce57 1620 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1621 unsigned int *, unsigned int *);
613e1657 1622
d521ce57
TT
1623static LONGEST read_offset (bfd *, const gdb_byte *,
1624 const struct comp_unit_head *,
c764a876
DE
1625 unsigned int *);
1626
d521ce57 1627static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1628
f4dc4d17
DE
1629static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1630 sect_offset);
1631
d521ce57 1632static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1633
d521ce57 1634static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1635
d521ce57
TT
1636static const char *read_indirect_string (bfd *, const gdb_byte *,
1637 const struct comp_unit_head *,
1638 unsigned int *);
4bdf3d34 1639
43988095
JK
1640static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1641 const struct comp_unit_head *,
1642 unsigned int *);
36586728 1643
43988095 1644static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
c906108c 1645
d521ce57 1646static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1647
d521ce57
TT
1648static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1649 const gdb_byte *,
3019eac3
DE
1650 unsigned int *);
1651
d521ce57 1652static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1653 ULONGEST str_index);
3019eac3 1654
e142c38c 1655static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1656
e142c38c
DJ
1657static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1658 struct dwarf2_cu *);
c906108c 1659
348e048f 1660static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1661 unsigned int);
348e048f 1662
7d45c7c3
KB
1663static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1664 struct dwarf2_cu *cu);
1665
05cf31d1
JB
1666static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1667 struct dwarf2_cu *cu);
1668
e142c38c 1669static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1670
e142c38c 1671static struct die_info *die_specification (struct die_info *die,
f2f0e013 1672 struct dwarf2_cu **);
63d06c5c 1673
9c541725 1674static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1675 struct dwarf2_cu *cu);
debd256d 1676
f3f5162e 1677static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1678 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1679 CORE_ADDR, int decode_mapping);
c906108c 1680
4d663531 1681static void dwarf2_start_subfile (const char *, const char *);
c906108c 1682
43f3e411
DE
1683static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1684 const char *, const char *,
1685 CORE_ADDR);
f4dc4d17 1686
a14ed312 1687static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1688 struct dwarf2_cu *);
c906108c 1689
34eaf542
TT
1690static struct symbol *new_symbol_full (struct die_info *, struct type *,
1691 struct dwarf2_cu *, struct symbol *);
1692
ff39bb5e 1693static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1694 struct dwarf2_cu *);
c906108c 1695
ff39bb5e 1696static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1697 struct type *type,
1698 const char *name,
1699 struct obstack *obstack,
12df843f 1700 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1701 const gdb_byte **bytes,
98bfdba5 1702 struct dwarf2_locexpr_baton **baton);
2df3850c 1703
e7c27a73 1704static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1705
b4ba55a1
JB
1706static int need_gnat_info (struct dwarf2_cu *);
1707
3e43a32a
MS
1708static struct type *die_descriptive_type (struct die_info *,
1709 struct dwarf2_cu *);
b4ba55a1
JB
1710
1711static void set_descriptive_type (struct type *, struct die_info *,
1712 struct dwarf2_cu *);
1713
e7c27a73
DJ
1714static struct type *die_containing_type (struct die_info *,
1715 struct dwarf2_cu *);
c906108c 1716
ff39bb5e 1717static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1718 struct dwarf2_cu *);
c906108c 1719
f792889a 1720static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1721
673bfd45
DE
1722static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1723
0d5cff50 1724static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1725
6e70227d 1726static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1727 const char *suffix, int physname,
1728 struct dwarf2_cu *cu);
63d06c5c 1729
e7c27a73 1730static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1731
348e048f
DE
1732static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1733
e7c27a73 1734static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1735
e7c27a73 1736static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1737
96408a79
SA
1738static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1739
ff013f42
JK
1740static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1741 struct dwarf2_cu *, struct partial_symtab *);
1742
3a2b436a 1743/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1744 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1745enum pc_bounds_kind
1746{
e385593e 1747 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1748 PC_BOUNDS_NOT_PRESENT,
1749
e385593e
JK
1750 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1751 were present but they do not form a valid range of PC addresses. */
1752 PC_BOUNDS_INVALID,
1753
3a2b436a
JK
1754 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1755 PC_BOUNDS_RANGES,
1756
1757 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1758 PC_BOUNDS_HIGH_LOW,
1759};
1760
1761static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1762 CORE_ADDR *, CORE_ADDR *,
1763 struct dwarf2_cu *,
1764 struct partial_symtab *);
c906108c 1765
fae299cd
DC
1766static void get_scope_pc_bounds (struct die_info *,
1767 CORE_ADDR *, CORE_ADDR *,
1768 struct dwarf2_cu *);
1769
801e3a5b
JB
1770static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1771 CORE_ADDR, struct dwarf2_cu *);
1772
a14ed312 1773static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1774 struct dwarf2_cu *);
c906108c 1775
a14ed312 1776static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1777 struct type *, struct dwarf2_cu *);
c906108c 1778
a14ed312 1779static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1780 struct die_info *, struct type *,
e7c27a73 1781 struct dwarf2_cu *);
c906108c 1782
a14ed312 1783static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1784 struct type *,
1785 struct dwarf2_cu *);
c906108c 1786
134d01f1 1787static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1788
e7c27a73 1789static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1790
e7c27a73 1791static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1792
5d7cb8df
JK
1793static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1794
22cee43f
PMR
1795static struct using_direct **using_directives (enum language);
1796
27aa8d6a
SW
1797static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1798
74921315
KS
1799static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1800
f55ee35c
JK
1801static struct type *read_module_type (struct die_info *die,
1802 struct dwarf2_cu *cu);
1803
38d518c9 1804static const char *namespace_name (struct die_info *die,
e142c38c 1805 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1806
134d01f1 1807static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1808
e7c27a73 1809static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1810
6e70227d 1811static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1812 struct dwarf2_cu *);
1813
bf6af496 1814static struct die_info *read_die_and_siblings_1
d521ce57 1815 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1816 struct die_info *);
639d11d3 1817
dee91e82 1818static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1819 const gdb_byte *info_ptr,
1820 const gdb_byte **new_info_ptr,
639d11d3
DC
1821 struct die_info *parent);
1822
d521ce57
TT
1823static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1824 struct die_info **, const gdb_byte *,
1825 int *, int);
3019eac3 1826
d521ce57
TT
1827static const gdb_byte *read_full_die (const struct die_reader_specs *,
1828 struct die_info **, const gdb_byte *,
1829 int *);
93311388 1830
e7c27a73 1831static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1832
15d034d0
TT
1833static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1834 struct obstack *);
71c25dea 1835
15d034d0 1836static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1837
15d034d0 1838static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1839 struct die_info *die,
1840 struct dwarf2_cu *cu);
1841
ca69b9e6
DE
1842static const char *dwarf2_physname (const char *name, struct die_info *die,
1843 struct dwarf2_cu *cu);
1844
e142c38c 1845static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1846 struct dwarf2_cu **);
9219021c 1847
f39c6ffd 1848static const char *dwarf_tag_name (unsigned int);
c906108c 1849
f39c6ffd 1850static const char *dwarf_attr_name (unsigned int);
c906108c 1851
f39c6ffd 1852static const char *dwarf_form_name (unsigned int);
c906108c 1853
a121b7c1 1854static const char *dwarf_bool_name (unsigned int);
c906108c 1855
f39c6ffd 1856static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1857
f9aca02d 1858static struct die_info *sibling_die (struct die_info *);
c906108c 1859
d97bc12b
DE
1860static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1861
1862static void dump_die_for_error (struct die_info *);
1863
1864static void dump_die_1 (struct ui_file *, int level, int max_level,
1865 struct die_info *);
c906108c 1866
d97bc12b 1867/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1868
51545339 1869static void store_in_ref_table (struct die_info *,
10b3939b 1870 struct dwarf2_cu *);
c906108c 1871
ff39bb5e 1872static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1873
ff39bb5e 1874static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1875
348e048f 1876static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1877 const struct attribute *,
348e048f
DE
1878 struct dwarf2_cu **);
1879
10b3939b 1880static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1881 const struct attribute *,
f2f0e013 1882 struct dwarf2_cu **);
c906108c 1883
348e048f 1884static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1885 const struct attribute *,
348e048f
DE
1886 struct dwarf2_cu **);
1887
ac9ec31b
DE
1888static struct type *get_signatured_type (struct die_info *, ULONGEST,
1889 struct dwarf2_cu *);
1890
1891static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1892 const struct attribute *,
ac9ec31b
DE
1893 struct dwarf2_cu *);
1894
e5fe5e75 1895static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1896
52dc124a 1897static void read_signatured_type (struct signatured_type *);
348e048f 1898
63e43d3a
PMR
1899static int attr_to_dynamic_prop (const struct attribute *attr,
1900 struct die_info *die, struct dwarf2_cu *cu,
1901 struct dynamic_prop *prop);
1902
c906108c
SS
1903/* memory allocation interface */
1904
7b5a2f43 1905static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1906
b60c80d6 1907static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1908
43f3e411 1909static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1910
6e5a29e1 1911static int attr_form_is_block (const struct attribute *);
8e19ed76 1912
6e5a29e1 1913static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1914
6e5a29e1 1915static int attr_form_is_constant (const struct attribute *);
3690dd37 1916
6e5a29e1 1917static int attr_form_is_ref (const struct attribute *);
7771576e 1918
8cf6f0b1
TT
1919static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1920 struct dwarf2_loclist_baton *baton,
ff39bb5e 1921 const struct attribute *attr);
8cf6f0b1 1922
ff39bb5e 1923static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1924 struct symbol *sym,
f1e6e072
TT
1925 struct dwarf2_cu *cu,
1926 int is_block);
4c2df51b 1927
d521ce57
TT
1928static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1929 const gdb_byte *info_ptr,
1930 struct abbrev_info *abbrev);
4bb7a0a7 1931
72bf9492
DJ
1932static void free_stack_comp_unit (void *);
1933
72bf9492
DJ
1934static hashval_t partial_die_hash (const void *item);
1935
1936static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1937
ae038cb0 1938static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
9c541725 1939 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1940
9816fde3 1941static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1942 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1943
1944static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1945 struct die_info *comp_unit_die,
1946 enum language pretend_language);
93311388 1947
68dc6402 1948static void free_heap_comp_unit (void *);
ae038cb0
DJ
1949
1950static void free_cached_comp_units (void *);
1951
1952static void age_cached_comp_units (void);
1953
dee91e82 1954static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1955
f792889a
DJ
1956static struct type *set_die_type (struct die_info *, struct type *,
1957 struct dwarf2_cu *);
1c379e20 1958
ae038cb0
DJ
1959static void create_all_comp_units (struct objfile *);
1960
0e50663e 1961static int create_all_type_units (struct objfile *);
1fd400ff 1962
95554aad
TT
1963static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1964 enum language);
10b3939b 1965
95554aad
TT
1966static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1967 enum language);
10b3939b 1968
f4dc4d17
DE
1969static void process_full_type_unit (struct dwarf2_per_cu_data *,
1970 enum language);
1971
10b3939b
DJ
1972static void dwarf2_add_dependence (struct dwarf2_cu *,
1973 struct dwarf2_per_cu_data *);
1974
ae038cb0
DJ
1975static void dwarf2_mark (struct dwarf2_cu *);
1976
1977static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1978
b64f50a1 1979static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1980 struct dwarf2_per_cu_data *);
673bfd45 1981
f792889a 1982static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1983
9291a0cd
TT
1984static void dwarf2_release_queue (void *dummy);
1985
95554aad
TT
1986static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1987 enum language pretend_language);
1988
a0f42c21 1989static void process_queue (void);
9291a0cd 1990
d721ba37
PA
1991/* The return type of find_file_and_directory. Note, the enclosed
1992 string pointers are only valid while this object is valid. */
1993
1994struct file_and_directory
1995{
1996 /* The filename. This is never NULL. */
1997 const char *name;
1998
1999 /* The compilation directory. NULL if not known. If we needed to
2000 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2001 points directly to the DW_AT_comp_dir string attribute owned by
2002 the obstack that owns the DIE. */
2003 const char *comp_dir;
2004
2005 /* If we needed to build a new string for comp_dir, this is what
2006 owns the storage. */
2007 std::string comp_dir_storage;
2008};
2009
2010static file_and_directory find_file_and_directory (struct die_info *die,
2011 struct dwarf2_cu *cu);
9291a0cd
TT
2012
2013static char *file_full_name (int file, struct line_header *lh,
2014 const char *comp_dir);
2015
43988095
JK
2016/* Expected enum dwarf_unit_type for read_comp_unit_head. */
2017enum class rcuh_kind { COMPILE, TYPE };
2018
d521ce57 2019static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
2020 (struct comp_unit_head *header,
2021 struct dwarf2_section_info *section,
d521ce57 2022 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 2023 rcuh_kind section_kind);
36586728 2024
fd820528 2025static void init_cutu_and_read_dies
f4dc4d17
DE
2026 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2027 int use_existing_cu, int keep,
3019eac3
DE
2028 die_reader_func_ftype *die_reader_func, void *data);
2029
dee91e82
DE
2030static void init_cutu_and_read_dies_simple
2031 (struct dwarf2_per_cu_data *this_cu,
2032 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 2033
673bfd45 2034static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 2035
3019eac3
DE
2036static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2037
57d63ce2
DE
2038static struct dwo_unit *lookup_dwo_unit_in_dwp
2039 (struct dwp_file *dwp_file, const char *comp_dir,
2040 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
2041
2042static struct dwp_file *get_dwp_file (void);
2043
3019eac3 2044static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 2045 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
2046
2047static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 2048 (struct signatured_type *, const char *, const char *);
3019eac3 2049
89e63ee4
DE
2050static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2051
3019eac3
DE
2052static void free_dwo_file_cleanup (void *);
2053
95554aad
TT
2054static void process_cu_includes (void);
2055
1b80a9fa 2056static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
2057
2058static void free_line_header_voidp (void *arg);
4390d890
DE
2059\f
2060/* Various complaints about symbol reading that don't abort the process. */
2061
2062static void
2063dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2064{
2065 complaint (&symfile_complaints,
2066 _("statement list doesn't fit in .debug_line section"));
2067}
2068
2069static void
2070dwarf2_debug_line_missing_file_complaint (void)
2071{
2072 complaint (&symfile_complaints,
2073 _(".debug_line section has line data without a file"));
2074}
2075
2076static void
2077dwarf2_debug_line_missing_end_sequence_complaint (void)
2078{
2079 complaint (&symfile_complaints,
2080 _(".debug_line section has line "
2081 "program sequence without an end"));
2082}
2083
2084static void
2085dwarf2_complex_location_expr_complaint (void)
2086{
2087 complaint (&symfile_complaints, _("location expression too complex"));
2088}
2089
2090static void
2091dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2092 int arg3)
2093{
2094 complaint (&symfile_complaints,
2095 _("const value length mismatch for '%s', got %d, expected %d"),
2096 arg1, arg2, arg3);
2097}
2098
2099static void
2100dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2101{
2102 complaint (&symfile_complaints,
2103 _("debug info runs off end of %s section"
2104 " [in module %s]"),
a32a8923
DE
2105 get_section_name (section),
2106 get_section_file_name (section));
4390d890 2107}
1b80a9fa 2108
4390d890
DE
2109static void
2110dwarf2_macro_malformed_definition_complaint (const char *arg1)
2111{
2112 complaint (&symfile_complaints,
2113 _("macro debug info contains a "
2114 "malformed macro definition:\n`%s'"),
2115 arg1);
2116}
2117
2118static void
2119dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2120{
2121 complaint (&symfile_complaints,
2122 _("invalid attribute class or form for '%s' in '%s'"),
2123 arg1, arg2);
2124}
527f3840
JK
2125
2126/* Hash function for line_header_hash. */
2127
2128static hashval_t
2129line_header_hash (const struct line_header *ofs)
2130{
9c541725 2131 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2132}
2133
2134/* Hash function for htab_create_alloc_ex for line_header_hash. */
2135
2136static hashval_t
2137line_header_hash_voidp (const void *item)
2138{
9a3c8263 2139 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2140
2141 return line_header_hash (ofs);
2142}
2143
2144/* Equality function for line_header_hash. */
2145
2146static int
2147line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2148{
9a3c8263
SM
2149 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2150 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2151
9c541725 2152 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2153 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2154}
2155
4390d890 2156\f
9291a0cd
TT
2157#if WORDS_BIGENDIAN
2158
2159/* Convert VALUE between big- and little-endian. */
2160static offset_type
2161byte_swap (offset_type value)
2162{
2163 offset_type result;
2164
2165 result = (value & 0xff) << 24;
2166 result |= (value & 0xff00) << 8;
2167 result |= (value & 0xff0000) >> 8;
2168 result |= (value & 0xff000000) >> 24;
2169 return result;
2170}
2171
2172#define MAYBE_SWAP(V) byte_swap (V)
2173
2174#else
bc8f2430 2175#define MAYBE_SWAP(V) static_cast<offset_type> (V)
9291a0cd
TT
2176#endif /* WORDS_BIGENDIAN */
2177
31aa7e4e
JB
2178/* Read the given attribute value as an address, taking the attribute's
2179 form into account. */
2180
2181static CORE_ADDR
2182attr_value_as_address (struct attribute *attr)
2183{
2184 CORE_ADDR addr;
2185
2186 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2187 {
2188 /* Aside from a few clearly defined exceptions, attributes that
2189 contain an address must always be in DW_FORM_addr form.
2190 Unfortunately, some compilers happen to be violating this
2191 requirement by encoding addresses using other forms, such
2192 as DW_FORM_data4 for example. For those broken compilers,
2193 we try to do our best, without any guarantee of success,
2194 to interpret the address correctly. It would also be nice
2195 to generate a complaint, but that would require us to maintain
2196 a list of legitimate cases where a non-address form is allowed,
2197 as well as update callers to pass in at least the CU's DWARF
2198 version. This is more overhead than what we're willing to
2199 expand for a pretty rare case. */
2200 addr = DW_UNSND (attr);
2201 }
2202 else
2203 addr = DW_ADDR (attr);
2204
2205 return addr;
2206}
2207
9291a0cd
TT
2208/* The suffix for an index file. */
2209#define INDEX_SUFFIX ".gdb-index"
2210
330cdd98
PA
2211/* See declaration. */
2212
2213dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2214 const dwarf2_debug_sections *names)
2215 : objfile (objfile_)
2216{
2217 if (names == NULL)
2218 names = &dwarf2_elf_names;
2219
2220 bfd *obfd = objfile->obfd;
2221
2222 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2223 locate_sections (obfd, sec, *names);
2224}
2225
2226dwarf2_per_objfile::~dwarf2_per_objfile ()
2227{
2228 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2229 free_cached_comp_units ();
2230
2231 if (quick_file_names_table)
2232 htab_delete (quick_file_names_table);
2233
2234 if (line_header_hash)
2235 htab_delete (line_header_hash);
2236
2237 /* Everything else should be on the objfile obstack. */
2238}
2239
2240/* See declaration. */
2241
2242void
2243dwarf2_per_objfile::free_cached_comp_units ()
2244{
2245 dwarf2_per_cu_data *per_cu = read_in_chain;
2246 dwarf2_per_cu_data **last_chain = &read_in_chain;
2247 while (per_cu != NULL)
2248 {
2249 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2250
2251 free_heap_comp_unit (per_cu->cu);
2252 *last_chain = next_cu;
2253 per_cu = next_cu;
2254 }
2255}
2256
c906108c 2257/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2258 information and return true if we have enough to do something.
2259 NAMES points to the dwarf2 section names, or is NULL if the standard
2260 ELF names are used. */
c906108c
SS
2261
2262int
251d32d9
TG
2263dwarf2_has_info (struct objfile *objfile,
2264 const struct dwarf2_debug_sections *names)
c906108c 2265{
9a3c8263
SM
2266 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2267 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2268 if (!dwarf2_per_objfile)
2269 {
2270 /* Initialize per-objfile state. */
2271 struct dwarf2_per_objfile *data
8d749320 2272 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2273
330cdd98
PA
2274 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2275 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
be391dca 2276 }
73869dc2 2277 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2278 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2279 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2280 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2281}
2282
2283/* Return the containing section of virtual section SECTION. */
2284
2285static struct dwarf2_section_info *
2286get_containing_section (const struct dwarf2_section_info *section)
2287{
2288 gdb_assert (section->is_virtual);
2289 return section->s.containing_section;
c906108c
SS
2290}
2291
a32a8923
DE
2292/* Return the bfd owner of SECTION. */
2293
2294static struct bfd *
2295get_section_bfd_owner (const struct dwarf2_section_info *section)
2296{
73869dc2
DE
2297 if (section->is_virtual)
2298 {
2299 section = get_containing_section (section);
2300 gdb_assert (!section->is_virtual);
2301 }
049412e3 2302 return section->s.section->owner;
a32a8923
DE
2303}
2304
2305/* Return the bfd section of SECTION.
2306 Returns NULL if the section is not present. */
2307
2308static asection *
2309get_section_bfd_section (const struct dwarf2_section_info *section)
2310{
73869dc2
DE
2311 if (section->is_virtual)
2312 {
2313 section = get_containing_section (section);
2314 gdb_assert (!section->is_virtual);
2315 }
049412e3 2316 return section->s.section;
a32a8923
DE
2317}
2318
2319/* Return the name of SECTION. */
2320
2321static const char *
2322get_section_name (const struct dwarf2_section_info *section)
2323{
2324 asection *sectp = get_section_bfd_section (section);
2325
2326 gdb_assert (sectp != NULL);
2327 return bfd_section_name (get_section_bfd_owner (section), sectp);
2328}
2329
2330/* Return the name of the file SECTION is in. */
2331
2332static const char *
2333get_section_file_name (const struct dwarf2_section_info *section)
2334{
2335 bfd *abfd = get_section_bfd_owner (section);
2336
2337 return bfd_get_filename (abfd);
2338}
2339
2340/* Return the id of SECTION.
2341 Returns 0 if SECTION doesn't exist. */
2342
2343static int
2344get_section_id (const struct dwarf2_section_info *section)
2345{
2346 asection *sectp = get_section_bfd_section (section);
2347
2348 if (sectp == NULL)
2349 return 0;
2350 return sectp->id;
2351}
2352
2353/* Return the flags of SECTION.
73869dc2 2354 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2355
2356static int
2357get_section_flags (const struct dwarf2_section_info *section)
2358{
2359 asection *sectp = get_section_bfd_section (section);
2360
2361 gdb_assert (sectp != NULL);
2362 return bfd_get_section_flags (sectp->owner, sectp);
2363}
2364
251d32d9
TG
2365/* When loading sections, we look either for uncompressed section or for
2366 compressed section names. */
233a11ab
CS
2367
2368static int
251d32d9
TG
2369section_is_p (const char *section_name,
2370 const struct dwarf2_section_names *names)
233a11ab 2371{
251d32d9
TG
2372 if (names->normal != NULL
2373 && strcmp (section_name, names->normal) == 0)
2374 return 1;
2375 if (names->compressed != NULL
2376 && strcmp (section_name, names->compressed) == 0)
2377 return 1;
2378 return 0;
233a11ab
CS
2379}
2380
330cdd98 2381/* See declaration. */
c906108c 2382
330cdd98
PA
2383void
2384dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2385 const dwarf2_debug_sections &names)
c906108c 2386{
dc7650b8 2387 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9 2388
dc7650b8
JK
2389 if ((aflag & SEC_HAS_CONTENTS) == 0)
2390 {
2391 }
330cdd98 2392 else if (section_is_p (sectp->name, &names.info))
c906108c 2393 {
330cdd98
PA
2394 this->info.s.section = sectp;
2395 this->info.size = bfd_get_section_size (sectp);
c906108c 2396 }
330cdd98 2397 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2398 {
330cdd98
PA
2399 this->abbrev.s.section = sectp;
2400 this->abbrev.size = bfd_get_section_size (sectp);
c906108c 2401 }
330cdd98 2402 else if (section_is_p (sectp->name, &names.line))
c906108c 2403 {
330cdd98
PA
2404 this->line.s.section = sectp;
2405 this->line.size = bfd_get_section_size (sectp);
c906108c 2406 }
330cdd98 2407 else if (section_is_p (sectp->name, &names.loc))
c906108c 2408 {
330cdd98
PA
2409 this->loc.s.section = sectp;
2410 this->loc.size = bfd_get_section_size (sectp);
c906108c 2411 }
330cdd98 2412 else if (section_is_p (sectp->name, &names.loclists))
43988095 2413 {
330cdd98
PA
2414 this->loclists.s.section = sectp;
2415 this->loclists.size = bfd_get_section_size (sectp);
43988095 2416 }
330cdd98 2417 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2418 {
330cdd98
PA
2419 this->macinfo.s.section = sectp;
2420 this->macinfo.size = bfd_get_section_size (sectp);
c906108c 2421 }
330cdd98 2422 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2423 {
330cdd98
PA
2424 this->macro.s.section = sectp;
2425 this->macro.size = bfd_get_section_size (sectp);
cf2c3c16 2426 }
330cdd98 2427 else if (section_is_p (sectp->name, &names.str))
c906108c 2428 {
330cdd98
PA
2429 this->str.s.section = sectp;
2430 this->str.size = bfd_get_section_size (sectp);
c906108c 2431 }
330cdd98 2432 else if (section_is_p (sectp->name, &names.line_str))
43988095 2433 {
330cdd98
PA
2434 this->line_str.s.section = sectp;
2435 this->line_str.size = bfd_get_section_size (sectp);
43988095 2436 }
330cdd98 2437 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2438 {
330cdd98
PA
2439 this->addr.s.section = sectp;
2440 this->addr.size = bfd_get_section_size (sectp);
3019eac3 2441 }
330cdd98 2442 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2443 {
330cdd98
PA
2444 this->frame.s.section = sectp;
2445 this->frame.size = bfd_get_section_size (sectp);
b6af0555 2446 }
330cdd98 2447 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2448 {
330cdd98
PA
2449 this->eh_frame.s.section = sectp;
2450 this->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2451 }
330cdd98 2452 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2453 {
330cdd98
PA
2454 this->ranges.s.section = sectp;
2455 this->ranges.size = bfd_get_section_size (sectp);
af34e669 2456 }
330cdd98 2457 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2458 {
330cdd98
PA
2459 this->rnglists.s.section = sectp;
2460 this->rnglists.size = bfd_get_section_size (sectp);
43988095 2461 }
330cdd98 2462 else if (section_is_p (sectp->name, &names.types))
348e048f 2463 {
8b70b953
TT
2464 struct dwarf2_section_info type_section;
2465
2466 memset (&type_section, 0, sizeof (type_section));
049412e3 2467 type_section.s.section = sectp;
8b70b953
TT
2468 type_section.size = bfd_get_section_size (sectp);
2469
330cdd98 2470 VEC_safe_push (dwarf2_section_info_def, this->types,
8b70b953 2471 &type_section);
348e048f 2472 }
330cdd98 2473 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2474 {
330cdd98
PA
2475 this->gdb_index.s.section = sectp;
2476 this->gdb_index.size = bfd_get_section_size (sectp);
9291a0cd 2477 }
dce234bc 2478
b4e1fd61 2479 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5 2480 && bfd_section_vma (abfd, sectp) == 0)
330cdd98 2481 this->has_section_at_zero = true;
c906108c
SS
2482}
2483
fceca515
DE
2484/* A helper function that decides whether a section is empty,
2485 or not present. */
9e0ac564
TT
2486
2487static int
19ac8c2e 2488dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2489{
73869dc2
DE
2490 if (section->is_virtual)
2491 return section->size == 0;
049412e3 2492 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2493}
2494
3019eac3
DE
2495/* Read the contents of the section INFO.
2496 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2497 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2498 of the DWO file.
dce234bc 2499 If the section is compressed, uncompress it before returning. */
c906108c 2500
dce234bc
PP
2501static void
2502dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2503{
a32a8923 2504 asection *sectp;
3019eac3 2505 bfd *abfd;
dce234bc 2506 gdb_byte *buf, *retbuf;
c906108c 2507
be391dca
TT
2508 if (info->readin)
2509 return;
dce234bc 2510 info->buffer = NULL;
be391dca 2511 info->readin = 1;
188dd5d6 2512
9e0ac564 2513 if (dwarf2_section_empty_p (info))
dce234bc 2514 return;
c906108c 2515
a32a8923 2516 sectp = get_section_bfd_section (info);
3019eac3 2517
73869dc2
DE
2518 /* If this is a virtual section we need to read in the real one first. */
2519 if (info->is_virtual)
2520 {
2521 struct dwarf2_section_info *containing_section =
2522 get_containing_section (info);
2523
2524 gdb_assert (sectp != NULL);
2525 if ((sectp->flags & SEC_RELOC) != 0)
2526 {
2527 error (_("Dwarf Error: DWP format V2 with relocations is not"
2528 " supported in section %s [in module %s]"),
2529 get_section_name (info), get_section_file_name (info));
2530 }
2531 dwarf2_read_section (objfile, containing_section);
2532 /* Other code should have already caught virtual sections that don't
2533 fit. */
2534 gdb_assert (info->virtual_offset + info->size
2535 <= containing_section->size);
2536 /* If the real section is empty or there was a problem reading the
2537 section we shouldn't get here. */
2538 gdb_assert (containing_section->buffer != NULL);
2539 info->buffer = containing_section->buffer + info->virtual_offset;
2540 return;
2541 }
2542
4bf44c1c
TT
2543 /* If the section has relocations, we must read it ourselves.
2544 Otherwise we attach it to the BFD. */
2545 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2546 {
d521ce57 2547 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2548 return;
dce234bc 2549 }
dce234bc 2550
224c3ddb 2551 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2552 info->buffer = buf;
dce234bc
PP
2553
2554 /* When debugging .o files, we may need to apply relocations; see
2555 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2556 We never compress sections in .o files, so we only need to
2557 try this when the section is not compressed. */
ac8035ab 2558 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2559 if (retbuf != NULL)
2560 {
2561 info->buffer = retbuf;
2562 return;
2563 }
2564
a32a8923
DE
2565 abfd = get_section_bfd_owner (info);
2566 gdb_assert (abfd != NULL);
2567
dce234bc
PP
2568 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2569 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2570 {
2571 error (_("Dwarf Error: Can't read DWARF data"
2572 " in section %s [in module %s]"),
2573 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2574 }
dce234bc
PP
2575}
2576
9e0ac564
TT
2577/* A helper function that returns the size of a section in a safe way.
2578 If you are positive that the section has been read before using the
2579 size, then it is safe to refer to the dwarf2_section_info object's
2580 "size" field directly. In other cases, you must call this
2581 function, because for compressed sections the size field is not set
2582 correctly until the section has been read. */
2583
2584static bfd_size_type
2585dwarf2_section_size (struct objfile *objfile,
2586 struct dwarf2_section_info *info)
2587{
2588 if (!info->readin)
2589 dwarf2_read_section (objfile, info);
2590 return info->size;
2591}
2592
dce234bc 2593/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2594 SECTION_NAME. */
af34e669 2595
dce234bc 2596void
3017a003
TG
2597dwarf2_get_section_info (struct objfile *objfile,
2598 enum dwarf2_section_enum sect,
d521ce57 2599 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2600 bfd_size_type *sizep)
2601{
2602 struct dwarf2_per_objfile *data
9a3c8263
SM
2603 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2604 dwarf2_objfile_data_key);
dce234bc 2605 struct dwarf2_section_info *info;
a3b2a86b
TT
2606
2607 /* We may see an objfile without any DWARF, in which case we just
2608 return nothing. */
2609 if (data == NULL)
2610 {
2611 *sectp = NULL;
2612 *bufp = NULL;
2613 *sizep = 0;
2614 return;
2615 }
3017a003
TG
2616 switch (sect)
2617 {
2618 case DWARF2_DEBUG_FRAME:
2619 info = &data->frame;
2620 break;
2621 case DWARF2_EH_FRAME:
2622 info = &data->eh_frame;
2623 break;
2624 default:
2625 gdb_assert_not_reached ("unexpected section");
2626 }
dce234bc 2627
9e0ac564 2628 dwarf2_read_section (objfile, info);
dce234bc 2629
a32a8923 2630 *sectp = get_section_bfd_section (info);
dce234bc
PP
2631 *bufp = info->buffer;
2632 *sizep = info->size;
2633}
2634
36586728
TT
2635/* A helper function to find the sections for a .dwz file. */
2636
2637static void
2638locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2639{
9a3c8263 2640 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2641
2642 /* Note that we only support the standard ELF names, because .dwz
2643 is ELF-only (at the time of writing). */
2644 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2645 {
049412e3 2646 dwz_file->abbrev.s.section = sectp;
36586728
TT
2647 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2650 {
049412e3 2651 dwz_file->info.s.section = sectp;
36586728
TT
2652 dwz_file->info.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2655 {
049412e3 2656 dwz_file->str.s.section = sectp;
36586728
TT
2657 dwz_file->str.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2660 {
049412e3 2661 dwz_file->line.s.section = sectp;
36586728
TT
2662 dwz_file->line.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2665 {
049412e3 2666 dwz_file->macro.s.section = sectp;
36586728
TT
2667 dwz_file->macro.size = bfd_get_section_size (sectp);
2668 }
2ec9a5e0
TT
2669 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2670 {
049412e3 2671 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2672 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2673 }
36586728
TT
2674}
2675
4db1a1dc
TT
2676/* Open the separate '.dwz' debug file, if needed. Return NULL if
2677 there is no .gnu_debugaltlink section in the file. Error if there
2678 is such a section but the file cannot be found. */
36586728
TT
2679
2680static struct dwz_file *
2681dwarf2_get_dwz_file (void)
2682{
4db1a1dc 2683 char *data;
36586728
TT
2684 struct cleanup *cleanup;
2685 const char *filename;
2686 struct dwz_file *result;
acd13123 2687 bfd_size_type buildid_len_arg;
dc294be5
TT
2688 size_t buildid_len;
2689 bfd_byte *buildid;
36586728
TT
2690
2691 if (dwarf2_per_objfile->dwz_file != NULL)
2692 return dwarf2_per_objfile->dwz_file;
2693
4db1a1dc
TT
2694 bfd_set_error (bfd_error_no_error);
2695 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2696 &buildid_len_arg, &buildid);
4db1a1dc
TT
2697 if (data == NULL)
2698 {
2699 if (bfd_get_error () == bfd_error_no_error)
2700 return NULL;
2701 error (_("could not read '.gnu_debugaltlink' section: %s"),
2702 bfd_errmsg (bfd_get_error ()));
2703 }
36586728 2704 cleanup = make_cleanup (xfree, data);
dc294be5 2705 make_cleanup (xfree, buildid);
36586728 2706
acd13123
TT
2707 buildid_len = (size_t) buildid_len_arg;
2708
f9d83a0b 2709 filename = (const char *) data;
d721ba37
PA
2710
2711 std::string abs_storage;
36586728
TT
2712 if (!IS_ABSOLUTE_PATH (filename))
2713 {
4262abfb 2714 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2715
2716 make_cleanup (xfree, abs);
d721ba37
PA
2717 abs_storage = ldirname (abs) + SLASH_STRING + filename;
2718 filename = abs_storage.c_str ();
36586728
TT
2719 }
2720
dc294be5
TT
2721 /* First try the file name given in the section. If that doesn't
2722 work, try to use the build-id instead. */
192b62ce 2723 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2724 if (dwz_bfd != NULL)
36586728 2725 {
192b62ce
TT
2726 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2727 dwz_bfd.release ();
36586728
TT
2728 }
2729
dc294be5
TT
2730 if (dwz_bfd == NULL)
2731 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2732
2733 if (dwz_bfd == NULL)
2734 error (_("could not find '.gnu_debugaltlink' file for %s"),
2735 objfile_name (dwarf2_per_objfile->objfile));
2736
36586728
TT
2737 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2738 struct dwz_file);
192b62ce 2739 result->dwz_bfd = dwz_bfd.release ();
36586728 2740
192b62ce 2741 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
36586728
TT
2742
2743 do_cleanups (cleanup);
2744
192b62ce 2745 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
8d2cc612 2746 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2747 return result;
2748}
9291a0cd 2749\f
7b9f3c50
DE
2750/* DWARF quick_symbols_functions support. */
2751
2752/* TUs can share .debug_line entries, and there can be a lot more TUs than
2753 unique line tables, so we maintain a separate table of all .debug_line
2754 derived entries to support the sharing.
2755 All the quick functions need is the list of file names. We discard the
2756 line_header when we're done and don't need to record it here. */
2757struct quick_file_names
2758{
094b34ac
DE
2759 /* The data used to construct the hash key. */
2760 struct stmt_list_hash hash;
7b9f3c50
DE
2761
2762 /* The number of entries in file_names, real_names. */
2763 unsigned int num_file_names;
2764
2765 /* The file names from the line table, after being run through
2766 file_full_name. */
2767 const char **file_names;
2768
2769 /* The file names from the line table after being run through
2770 gdb_realpath. These are computed lazily. */
2771 const char **real_names;
2772};
2773
2774/* When using the index (and thus not using psymtabs), each CU has an
2775 object of this type. This is used to hold information needed by
2776 the various "quick" methods. */
2777struct dwarf2_per_cu_quick_data
2778{
2779 /* The file table. This can be NULL if there was no file table
2780 or it's currently not read in.
2781 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2782 struct quick_file_names *file_names;
2783
2784 /* The corresponding symbol table. This is NULL if symbols for this
2785 CU have not yet been read. */
43f3e411 2786 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2787
2788 /* A temporary mark bit used when iterating over all CUs in
2789 expand_symtabs_matching. */
2790 unsigned int mark : 1;
2791
2792 /* True if we've tried to read the file table and found there isn't one.
2793 There will be no point in trying to read it again next time. */
2794 unsigned int no_file_data : 1;
2795};
2796
094b34ac
DE
2797/* Utility hash function for a stmt_list_hash. */
2798
2799static hashval_t
2800hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2801{
2802 hashval_t v = 0;
2803
2804 if (stmt_list_hash->dwo_unit != NULL)
2805 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2806 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2807 return v;
2808}
2809
2810/* Utility equality function for a stmt_list_hash. */
2811
2812static int
2813eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2814 const struct stmt_list_hash *rhs)
2815{
2816 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2817 return 0;
2818 if (lhs->dwo_unit != NULL
2819 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2820 return 0;
2821
9c541725 2822 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2823}
2824
7b9f3c50
DE
2825/* Hash function for a quick_file_names. */
2826
2827static hashval_t
2828hash_file_name_entry (const void *e)
2829{
9a3c8263
SM
2830 const struct quick_file_names *file_data
2831 = (const struct quick_file_names *) e;
7b9f3c50 2832
094b34ac 2833 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2834}
2835
2836/* Equality function for a quick_file_names. */
2837
2838static int
2839eq_file_name_entry (const void *a, const void *b)
2840{
9a3c8263
SM
2841 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2842 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2843
094b34ac 2844 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2845}
2846
2847/* Delete function for a quick_file_names. */
2848
2849static void
2850delete_file_name_entry (void *e)
2851{
9a3c8263 2852 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2853 int i;
2854
2855 for (i = 0; i < file_data->num_file_names; ++i)
2856 {
2857 xfree ((void*) file_data->file_names[i]);
2858 if (file_data->real_names)
2859 xfree ((void*) file_data->real_names[i]);
2860 }
2861
2862 /* The space for the struct itself lives on objfile_obstack,
2863 so we don't free it here. */
2864}
2865
2866/* Create a quick_file_names hash table. */
2867
2868static htab_t
2869create_quick_file_names_table (unsigned int nr_initial_entries)
2870{
2871 return htab_create_alloc (nr_initial_entries,
2872 hash_file_name_entry, eq_file_name_entry,
2873 delete_file_name_entry, xcalloc, xfree);
2874}
9291a0cd 2875
918dd910
JK
2876/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2877 have to be created afterwards. You should call age_cached_comp_units after
2878 processing PER_CU->CU. dw2_setup must have been already called. */
2879
2880static void
2881load_cu (struct dwarf2_per_cu_data *per_cu)
2882{
3019eac3 2883 if (per_cu->is_debug_types)
e5fe5e75 2884 load_full_type_unit (per_cu);
918dd910 2885 else
95554aad 2886 load_full_comp_unit (per_cu, language_minimal);
918dd910 2887
cc12ce38
DE
2888 if (per_cu->cu == NULL)
2889 return; /* Dummy CU. */
2dc860c0
DE
2890
2891 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2892}
2893
a0f42c21 2894/* Read in the symbols for PER_CU. */
2fdf6df6 2895
9291a0cd 2896static void
a0f42c21 2897dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2898{
2899 struct cleanup *back_to;
2900
f4dc4d17
DE
2901 /* Skip type_unit_groups, reading the type units they contain
2902 is handled elsewhere. */
2903 if (IS_TYPE_UNIT_GROUP (per_cu))
2904 return;
2905
9291a0cd
TT
2906 back_to = make_cleanup (dwarf2_release_queue, NULL);
2907
95554aad 2908 if (dwarf2_per_objfile->using_index
43f3e411 2909 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2910 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2911 {
2912 queue_comp_unit (per_cu, language_minimal);
2913 load_cu (per_cu);
89e63ee4
DE
2914
2915 /* If we just loaded a CU from a DWO, and we're working with an index
2916 that may badly handle TUs, load all the TUs in that DWO as well.
2917 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2918 if (!per_cu->is_debug_types
cc12ce38 2919 && per_cu->cu != NULL
89e63ee4
DE
2920 && per_cu->cu->dwo_unit != NULL
2921 && dwarf2_per_objfile->index_table != NULL
2922 && dwarf2_per_objfile->index_table->version <= 7
2923 /* DWP files aren't supported yet. */
2924 && get_dwp_file () == NULL)
2925 queue_and_load_all_dwo_tus (per_cu);
95554aad 2926 }
9291a0cd 2927
a0f42c21 2928 process_queue ();
9291a0cd
TT
2929
2930 /* Age the cache, releasing compilation units that have not
2931 been used recently. */
2932 age_cached_comp_units ();
2933
2934 do_cleanups (back_to);
2935}
2936
2937/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2938 the objfile from which this CU came. Returns the resulting symbol
2939 table. */
2fdf6df6 2940
43f3e411 2941static struct compunit_symtab *
a0f42c21 2942dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2943{
95554aad 2944 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2945 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2946 {
2947 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
c83dd867 2948 scoped_restore decrementer = increment_reading_symtab ();
a0f42c21 2949 dw2_do_instantiate_symtab (per_cu);
95554aad 2950 process_cu_includes ();
9291a0cd
TT
2951 do_cleanups (back_to);
2952 }
f194fefb 2953
43f3e411 2954 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2955}
2956
8832e7e3 2957/* Return the CU/TU given its index.
f4dc4d17
DE
2958
2959 This is intended for loops like:
2960
2961 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2962 + dwarf2_per_objfile->n_type_units); ++i)
2963 {
8832e7e3 2964 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2965
2966 ...;
2967 }
2968*/
2fdf6df6 2969
1fd400ff 2970static struct dwarf2_per_cu_data *
8832e7e3 2971dw2_get_cutu (int index)
1fd400ff
TT
2972{
2973 if (index >= dwarf2_per_objfile->n_comp_units)
2974 {
f4dc4d17 2975 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2976 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2977 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2978 }
2979
2980 return dwarf2_per_objfile->all_comp_units[index];
2981}
2982
8832e7e3
DE
2983/* Return the CU given its index.
2984 This differs from dw2_get_cutu in that it's for when you know INDEX
2985 refers to a CU. */
f4dc4d17
DE
2986
2987static struct dwarf2_per_cu_data *
8832e7e3 2988dw2_get_cu (int index)
f4dc4d17 2989{
8832e7e3 2990 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2991
1fd400ff
TT
2992 return dwarf2_per_objfile->all_comp_units[index];
2993}
2994
2ec9a5e0
TT
2995/* A helper for create_cus_from_index that handles a given list of
2996 CUs. */
2fdf6df6 2997
74a0d9f6 2998static void
2ec9a5e0
TT
2999create_cus_from_index_list (struct objfile *objfile,
3000 const gdb_byte *cu_list, offset_type n_elements,
3001 struct dwarf2_section_info *section,
3002 int is_dwz,
3003 int base_offset)
9291a0cd
TT
3004{
3005 offset_type i;
9291a0cd 3006
2ec9a5e0 3007 for (i = 0; i < n_elements; i += 2)
9291a0cd 3008 {
74a0d9f6 3009 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3010
3011 sect_offset sect_off
3012 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3013 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
3014 cu_list += 2 * 8;
3015
9c541725
PA
3016 dwarf2_per_cu_data *the_cu
3017 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3018 struct dwarf2_per_cu_data);
3019 the_cu->sect_off = sect_off;
9291a0cd
TT
3020 the_cu->length = length;
3021 the_cu->objfile = objfile;
8a0459fd 3022 the_cu->section = section;
9291a0cd
TT
3023 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3024 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
3025 the_cu->is_dwz = is_dwz;
3026 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 3027 }
9291a0cd
TT
3028}
3029
2ec9a5e0 3030/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 3031 the CU objects for this objfile. */
2ec9a5e0 3032
74a0d9f6 3033static void
2ec9a5e0
TT
3034create_cus_from_index (struct objfile *objfile,
3035 const gdb_byte *cu_list, offset_type cu_list_elements,
3036 const gdb_byte *dwz_list, offset_type dwz_elements)
3037{
3038 struct dwz_file *dwz;
3039
3040 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
3041 dwarf2_per_objfile->all_comp_units =
3042 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3043 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 3044
74a0d9f6
JK
3045 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3046 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
3047
3048 if (dwz_elements == 0)
74a0d9f6 3049 return;
2ec9a5e0
TT
3050
3051 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
3052 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3053 cu_list_elements / 2);
2ec9a5e0
TT
3054}
3055
1fd400ff 3056/* Create the signatured type hash table from the index. */
673bfd45 3057
74a0d9f6 3058static void
673bfd45 3059create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 3060 struct dwarf2_section_info *section,
673bfd45
DE
3061 const gdb_byte *bytes,
3062 offset_type elements)
1fd400ff
TT
3063{
3064 offset_type i;
673bfd45 3065 htab_t sig_types_hash;
1fd400ff 3066
6aa5f3a6
DE
3067 dwarf2_per_objfile->n_type_units
3068 = dwarf2_per_objfile->n_allocated_type_units
3069 = elements / 3;
8d749320
SM
3070 dwarf2_per_objfile->all_type_units =
3071 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 3072
673bfd45 3073 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
3074
3075 for (i = 0; i < elements; i += 3)
3076 {
52dc124a 3077 struct signatured_type *sig_type;
9c541725 3078 ULONGEST signature;
1fd400ff 3079 void **slot;
9c541725 3080 cu_offset type_offset_in_tu;
1fd400ff 3081
74a0d9f6 3082 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3083 sect_offset sect_off
3084 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3085 type_offset_in_tu
3086 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3087 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3088 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3089 bytes += 3 * 8;
3090
52dc124a 3091 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3092 struct signatured_type);
52dc124a 3093 sig_type->signature = signature;
9c541725 3094 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3095 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3096 sig_type->per_cu.section = section;
9c541725 3097 sig_type->per_cu.sect_off = sect_off;
52dc124a
DE
3098 sig_type->per_cu.objfile = objfile;
3099 sig_type->per_cu.v.quick
1fd400ff
TT
3100 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3101 struct dwarf2_per_cu_quick_data);
3102
52dc124a
DE
3103 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3104 *slot = sig_type;
1fd400ff 3105
b4dd5633 3106 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
3107 }
3108
673bfd45 3109 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3110}
3111
9291a0cd
TT
3112/* Read the address map data from the mapped index, and use it to
3113 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3114
9291a0cd
TT
3115static void
3116create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3117{
3e29f34a 3118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3119 const gdb_byte *iter, *end;
9291a0cd 3120 struct addrmap *mutable_map;
9291a0cd
TT
3121 CORE_ADDR baseaddr;
3122
8268c778
PA
3123 auto_obstack temp_obstack;
3124
9291a0cd
TT
3125 mutable_map = addrmap_create_mutable (&temp_obstack);
3126
3127 iter = index->address_table;
3128 end = iter + index->address_table_size;
3129
3130 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3131
3132 while (iter < end)
3133 {
3134 ULONGEST hi, lo, cu_index;
3135 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3136 iter += 8;
3137 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3138 iter += 8;
3139 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3140 iter += 4;
f652bce2 3141
24a55014 3142 if (lo > hi)
f652bce2 3143 {
24a55014
DE
3144 complaint (&symfile_complaints,
3145 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3146 hex_string (lo), hex_string (hi));
24a55014 3147 continue;
f652bce2 3148 }
24a55014
DE
3149
3150 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
3151 {
3152 complaint (&symfile_complaints,
3153 _(".gdb_index address table has invalid CU number %u"),
3154 (unsigned) cu_index);
24a55014 3155 continue;
f652bce2 3156 }
24a55014 3157
3e29f34a
MR
3158 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3159 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3160 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
3161 }
3162
3163 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3164 &objfile->objfile_obstack);
9291a0cd
TT
3165}
3166
59d7bcaf
JK
3167/* The hash function for strings in the mapped index. This is the same as
3168 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3169 implementation. This is necessary because the hash function is tied to the
3170 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
3171 SYMBOL_HASH_NEXT.
3172
3173 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 3174
9291a0cd 3175static hashval_t
559a7a62 3176mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
3177{
3178 const unsigned char *str = (const unsigned char *) p;
3179 hashval_t r = 0;
3180 unsigned char c;
3181
3182 while ((c = *str++) != 0)
559a7a62
JK
3183 {
3184 if (index_version >= 5)
3185 c = tolower (c);
3186 r = r * 67 + c - 113;
3187 }
9291a0cd
TT
3188
3189 return r;
3190}
3191
3192/* Find a slot in the mapped index INDEX for the object named NAME.
3193 If NAME is found, set *VEC_OUT to point to the CU vector in the
3194 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 3195
9291a0cd
TT
3196static int
3197find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3198 offset_type **vec_out)
3199{
0cf03b49
JK
3200 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3201 offset_type hash;
9291a0cd 3202 offset_type slot, step;
559a7a62 3203 int (*cmp) (const char *, const char *);
9291a0cd 3204
0cf03b49 3205 if (current_language->la_language == language_cplus
45280282
IB
3206 || current_language->la_language == language_fortran
3207 || current_language->la_language == language_d)
0cf03b49
JK
3208 {
3209 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3210 not contain any. */
a8719064 3211
72998fb3 3212 if (strchr (name, '(') != NULL)
0cf03b49 3213 {
72998fb3 3214 char *without_params = cp_remove_params (name);
0cf03b49 3215
72998fb3
DE
3216 if (without_params != NULL)
3217 {
3218 make_cleanup (xfree, without_params);
3219 name = without_params;
3220 }
0cf03b49
JK
3221 }
3222 }
3223
559a7a62 3224 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3225 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3226 simulate our NAME being searched is also lowercased. */
3227 hash = mapped_index_string_hash ((index->version == 4
3228 && case_sensitivity == case_sensitive_off
3229 ? 5 : index->version),
3230 name);
3231
3876f04e
DE
3232 slot = hash & (index->symbol_table_slots - 1);
3233 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3234 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3235
3236 for (;;)
3237 {
3238 /* Convert a slot number to an offset into the table. */
3239 offset_type i = 2 * slot;
3240 const char *str;
3876f04e 3241 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3242 {
3243 do_cleanups (back_to);
3244 return 0;
3245 }
9291a0cd 3246
3876f04e 3247 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3248 if (!cmp (name, str))
9291a0cd
TT
3249 {
3250 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3251 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3252 do_cleanups (back_to);
9291a0cd
TT
3253 return 1;
3254 }
3255
3876f04e 3256 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3257 }
3258}
3259
2ec9a5e0
TT
3260/* A helper function that reads the .gdb_index from SECTION and fills
3261 in MAP. FILENAME is the name of the file containing the section;
3262 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3263 ok to use deprecated sections.
3264
3265 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3266 out parameters that are filled in with information about the CU and
3267 TU lists in the section.
3268
3269 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3270
9291a0cd 3271static int
2ec9a5e0
TT
3272read_index_from_section (struct objfile *objfile,
3273 const char *filename,
3274 int deprecated_ok,
3275 struct dwarf2_section_info *section,
3276 struct mapped_index *map,
3277 const gdb_byte **cu_list,
3278 offset_type *cu_list_elements,
3279 const gdb_byte **types_list,
3280 offset_type *types_list_elements)
9291a0cd 3281{
948f8e3d 3282 const gdb_byte *addr;
2ec9a5e0 3283 offset_type version;
b3b272e1 3284 offset_type *metadata;
1fd400ff 3285 int i;
9291a0cd 3286
2ec9a5e0 3287 if (dwarf2_section_empty_p (section))
9291a0cd 3288 return 0;
82430852
JK
3289
3290 /* Older elfutils strip versions could keep the section in the main
3291 executable while splitting it for the separate debug info file. */
a32a8923 3292 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3293 return 0;
3294
2ec9a5e0 3295 dwarf2_read_section (objfile, section);
9291a0cd 3296
2ec9a5e0 3297 addr = section->buffer;
9291a0cd 3298 /* Version check. */
1fd400ff 3299 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3300 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3301 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3302 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3303 indices. */
831adc1f 3304 if (version < 4)
481860b3
GB
3305 {
3306 static int warning_printed = 0;
3307 if (!warning_printed)
3308 {
3309 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3310 filename);
481860b3
GB
3311 warning_printed = 1;
3312 }
3313 return 0;
3314 }
3315 /* Index version 4 uses a different hash function than index version
3316 5 and later.
3317
3318 Versions earlier than 6 did not emit psymbols for inlined
3319 functions. Using these files will cause GDB not to be able to
3320 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3321 indices unless the user has done
3322 "set use-deprecated-index-sections on". */
2ec9a5e0 3323 if (version < 6 && !deprecated_ok)
481860b3
GB
3324 {
3325 static int warning_printed = 0;
3326 if (!warning_printed)
3327 {
e615022a
DE
3328 warning (_("\
3329Skipping deprecated .gdb_index section in %s.\n\
3330Do \"set use-deprecated-index-sections on\" before the file is read\n\
3331to use the section anyway."),
2ec9a5e0 3332 filename);
481860b3
GB
3333 warning_printed = 1;
3334 }
3335 return 0;
3336 }
796a7ff8 3337 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3338 of the TU (for symbols coming from TUs),
3339 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3340 Plus gold-generated indices can have duplicate entries for global symbols,
3341 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3342 These are just performance bugs, and we can't distinguish gdb-generated
3343 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3344
481860b3 3345 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3346 longer backward compatible. */
796a7ff8 3347 if (version > 8)
594e8718 3348 return 0;
9291a0cd 3349
559a7a62 3350 map->version = version;
2ec9a5e0 3351 map->total_size = section->size;
9291a0cd
TT
3352
3353 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3354
3355 i = 0;
2ec9a5e0
TT
3356 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3357 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3358 / 8);
1fd400ff
TT
3359 ++i;
3360
2ec9a5e0
TT
3361 *types_list = addr + MAYBE_SWAP (metadata[i]);
3362 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3363 - MAYBE_SWAP (metadata[i]))
3364 / 8);
987d643c 3365 ++i;
1fd400ff
TT
3366
3367 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3368 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3369 - MAYBE_SWAP (metadata[i]));
3370 ++i;
3371
3876f04e
DE
3372 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3373 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3374 - MAYBE_SWAP (metadata[i]))
3375 / (2 * sizeof (offset_type)));
1fd400ff 3376 ++i;
9291a0cd 3377
f9d83a0b 3378 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3379
2ec9a5e0
TT
3380 return 1;
3381}
3382
3383
3384/* Read the index file. If everything went ok, initialize the "quick"
3385 elements of all the CUs and return 1. Otherwise, return 0. */
3386
3387static int
3388dwarf2_read_index (struct objfile *objfile)
3389{
3390 struct mapped_index local_map, *map;
3391 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3392 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3393 struct dwz_file *dwz;
2ec9a5e0 3394
4262abfb 3395 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3396 use_deprecated_index_sections,
3397 &dwarf2_per_objfile->gdb_index, &local_map,
3398 &cu_list, &cu_list_elements,
3399 &types_list, &types_list_elements))
3400 return 0;
3401
0fefef59 3402 /* Don't use the index if it's empty. */
2ec9a5e0 3403 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3404 return 0;
3405
2ec9a5e0
TT
3406 /* If there is a .dwz file, read it so we can get its CU list as
3407 well. */
4db1a1dc
TT
3408 dwz = dwarf2_get_dwz_file ();
3409 if (dwz != NULL)
2ec9a5e0 3410 {
2ec9a5e0
TT
3411 struct mapped_index dwz_map;
3412 const gdb_byte *dwz_types_ignore;
3413 offset_type dwz_types_elements_ignore;
3414
3415 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3416 1,
3417 &dwz->gdb_index, &dwz_map,
3418 &dwz_list, &dwz_list_elements,
3419 &dwz_types_ignore,
3420 &dwz_types_elements_ignore))
3421 {
3422 warning (_("could not read '.gdb_index' section from %s; skipping"),
3423 bfd_get_filename (dwz->dwz_bfd));
3424 return 0;
3425 }
3426 }
3427
74a0d9f6
JK
3428 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3429 dwz_list_elements);
1fd400ff 3430
8b70b953
TT
3431 if (types_list_elements)
3432 {
3433 struct dwarf2_section_info *section;
3434
3435 /* We can only handle a single .debug_types when we have an
3436 index. */
3437 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3438 return 0;
3439
3440 section = VEC_index (dwarf2_section_info_def,
3441 dwarf2_per_objfile->types, 0);
3442
74a0d9f6
JK
3443 create_signatured_type_table_from_index (objfile, section, types_list,
3444 types_list_elements);
8b70b953 3445 }
9291a0cd 3446
2ec9a5e0
TT
3447 create_addrmap_from_index (objfile, &local_map);
3448
8d749320 3449 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3450 *map = local_map;
9291a0cd
TT
3451
3452 dwarf2_per_objfile->index_table = map;
3453 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3454 dwarf2_per_objfile->quick_file_names_table =
3455 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3456
3457 return 1;
3458}
3459
3460/* A helper for the "quick" functions which sets the global
3461 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3462
9291a0cd
TT
3463static void
3464dw2_setup (struct objfile *objfile)
3465{
9a3c8263
SM
3466 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3467 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3468 gdb_assert (dwarf2_per_objfile);
3469}
3470
dee91e82 3471/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3472
dee91e82
DE
3473static void
3474dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3475 const gdb_byte *info_ptr,
dee91e82
DE
3476 struct die_info *comp_unit_die,
3477 int has_children,
3478 void *data)
9291a0cd 3479{
dee91e82
DE
3480 struct dwarf2_cu *cu = reader->cu;
3481 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3482 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3483 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3484 struct attribute *attr;
dee91e82 3485 int i;
7b9f3c50
DE
3486 void **slot;
3487 struct quick_file_names *qfn;
9291a0cd 3488
0186c6a7
DE
3489 gdb_assert (! this_cu->is_debug_types);
3490
07261596
TT
3491 /* Our callers never want to match partial units -- instead they
3492 will match the enclosing full CU. */
3493 if (comp_unit_die->tag == DW_TAG_partial_unit)
3494 {
3495 this_cu->v.quick->no_file_data = 1;
3496 return;
3497 }
3498
0186c6a7 3499 lh_cu = this_cu;
7b9f3c50 3500 slot = NULL;
dee91e82 3501
fff8551c 3502 line_header_up lh;
9c541725 3503 sect_offset line_offset {};
fff8551c 3504
dee91e82 3505 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3506 if (attr)
3507 {
7b9f3c50
DE
3508 struct quick_file_names find_entry;
3509
9c541725 3510 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3511
3512 /* We may have already read in this line header (TU line header sharing).
3513 If we have we're done. */
094b34ac 3514 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3515 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3516 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3517 &find_entry, INSERT);
3518 if (*slot != NULL)
3519 {
9a3c8263 3520 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3521 return;
7b9f3c50
DE
3522 }
3523
3019eac3 3524 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3525 }
3526 if (lh == NULL)
3527 {
094b34ac 3528 lh_cu->v.quick->no_file_data = 1;
dee91e82 3529 return;
9291a0cd
TT
3530 }
3531
8d749320 3532 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3533 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3534 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3535 gdb_assert (slot != NULL);
3536 *slot = qfn;
9291a0cd 3537
d721ba37 3538 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3539
fff8551c 3540 qfn->num_file_names = lh->file_names.size ();
8d749320 3541 qfn->file_names =
fff8551c
PA
3542 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3543 for (i = 0; i < lh->file_names.size (); ++i)
3544 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3545 qfn->real_names = NULL;
9291a0cd 3546
094b34ac 3547 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3548}
3549
3550/* A helper for the "quick" functions which attempts to read the line
3551 table for THIS_CU. */
3552
3553static struct quick_file_names *
e4a48d9d 3554dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3555{
0186c6a7
DE
3556 /* This should never be called for TUs. */
3557 gdb_assert (! this_cu->is_debug_types);
3558 /* Nor type unit groups. */
3559 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3560
dee91e82
DE
3561 if (this_cu->v.quick->file_names != NULL)
3562 return this_cu->v.quick->file_names;
3563 /* If we know there is no line data, no point in looking again. */
3564 if (this_cu->v.quick->no_file_data)
3565 return NULL;
3566
0186c6a7 3567 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3568
3569 if (this_cu->v.quick->no_file_data)
3570 return NULL;
3571 return this_cu->v.quick->file_names;
9291a0cd
TT
3572}
3573
3574/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3575 real path for a given file name from the line table. */
2fdf6df6 3576
9291a0cd 3577static const char *
7b9f3c50
DE
3578dw2_get_real_path (struct objfile *objfile,
3579 struct quick_file_names *qfn, int index)
9291a0cd 3580{
7b9f3c50
DE
3581 if (qfn->real_names == NULL)
3582 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3583 qfn->num_file_names, const char *);
9291a0cd 3584
7b9f3c50
DE
3585 if (qfn->real_names[index] == NULL)
3586 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3587
7b9f3c50 3588 return qfn->real_names[index];
9291a0cd
TT
3589}
3590
3591static struct symtab *
3592dw2_find_last_source_symtab (struct objfile *objfile)
3593{
43f3e411 3594 struct compunit_symtab *cust;
9291a0cd 3595 int index;
ae2de4f8 3596
9291a0cd
TT
3597 dw2_setup (objfile);
3598 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3599 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3600 if (cust == NULL)
3601 return NULL;
3602 return compunit_primary_filetab (cust);
9291a0cd
TT
3603}
3604
7b9f3c50
DE
3605/* Traversal function for dw2_forget_cached_source_info. */
3606
3607static int
3608dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3609{
7b9f3c50 3610 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3611
7b9f3c50 3612 if (file_data->real_names)
9291a0cd 3613 {
7b9f3c50 3614 int i;
9291a0cd 3615
7b9f3c50 3616 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3617 {
7b9f3c50
DE
3618 xfree ((void*) file_data->real_names[i]);
3619 file_data->real_names[i] = NULL;
9291a0cd
TT
3620 }
3621 }
7b9f3c50
DE
3622
3623 return 1;
3624}
3625
3626static void
3627dw2_forget_cached_source_info (struct objfile *objfile)
3628{
3629 dw2_setup (objfile);
3630
3631 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3632 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3633}
3634
f8eba3c6
TT
3635/* Helper function for dw2_map_symtabs_matching_filename that expands
3636 the symtabs and calls the iterator. */
3637
3638static int
3639dw2_map_expand_apply (struct objfile *objfile,
3640 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3641 const char *name, const char *real_path,
14bc53a8 3642 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3643{
43f3e411 3644 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3645
3646 /* Don't visit already-expanded CUs. */
43f3e411 3647 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3648 return 0;
3649
3650 /* This may expand more than one symtab, and we want to iterate over
3651 all of them. */
a0f42c21 3652 dw2_instantiate_symtab (per_cu);
f8eba3c6 3653
14bc53a8
PA
3654 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3655 last_made, callback);
f8eba3c6
TT
3656}
3657
3658/* Implementation of the map_symtabs_matching_filename method. */
3659
14bc53a8
PA
3660static bool
3661dw2_map_symtabs_matching_filename
3662 (struct objfile *objfile, const char *name, const char *real_path,
3663 gdb::function_view<bool (symtab *)> callback)
9291a0cd
TT
3664{
3665 int i;
c011a4f4 3666 const char *name_basename = lbasename (name);
9291a0cd
TT
3667
3668 dw2_setup (objfile);
ae2de4f8 3669
848e3e78
DE
3670 /* The rule is CUs specify all the files, including those used by
3671 any TU, so there's no need to scan TUs here. */
f4dc4d17 3672
848e3e78 3673 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3674 {
3675 int j;
8832e7e3 3676 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3677 struct quick_file_names *file_data;
9291a0cd 3678
3d7bb9d9 3679 /* We only need to look at symtabs not already expanded. */
43f3e411 3680 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3681 continue;
3682
e4a48d9d 3683 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3684 if (file_data == NULL)
9291a0cd
TT
3685 continue;
3686
7b9f3c50 3687 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3688 {
7b9f3c50 3689 const char *this_name = file_data->file_names[j];
da235a7c 3690 const char *this_real_name;
9291a0cd 3691
af529f8f 3692 if (compare_filenames_for_search (this_name, name))
9291a0cd 3693 {
f5b95b50 3694 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3695 callback))
3696 return true;
288e77a7 3697 continue;
4aac40c8 3698 }
9291a0cd 3699
c011a4f4
DE
3700 /* Before we invoke realpath, which can get expensive when many
3701 files are involved, do a quick comparison of the basenames. */
3702 if (! basenames_may_differ
3703 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3704 continue;
3705
da235a7c
JK
3706 this_real_name = dw2_get_real_path (objfile, file_data, j);
3707 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3708 {
da235a7c 3709 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3710 callback))
3711 return true;
288e77a7 3712 continue;
da235a7c 3713 }
9291a0cd 3714
da235a7c
JK
3715 if (real_path != NULL)
3716 {
af529f8f
JK
3717 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3718 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3719 if (this_real_name != NULL
af529f8f 3720 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3721 {
f5b95b50 3722 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3723 callback))
3724 return true;
288e77a7 3725 continue;
9291a0cd
TT
3726 }
3727 }
3728 }
3729 }
3730
14bc53a8 3731 return false;
9291a0cd
TT
3732}
3733
da51c347
DE
3734/* Struct used to manage iterating over all CUs looking for a symbol. */
3735
3736struct dw2_symtab_iterator
9291a0cd 3737{
da51c347
DE
3738 /* The internalized form of .gdb_index. */
3739 struct mapped_index *index;
3740 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3741 int want_specific_block;
3742 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3743 Unused if !WANT_SPECIFIC_BLOCK. */
3744 int block_index;
3745 /* The kind of symbol we're looking for. */
3746 domain_enum domain;
3747 /* The list of CUs from the index entry of the symbol,
3748 or NULL if not found. */
3749 offset_type *vec;
3750 /* The next element in VEC to look at. */
3751 int next;
3752 /* The number of elements in VEC, or zero if there is no match. */
3753 int length;
8943b874
DE
3754 /* Have we seen a global version of the symbol?
3755 If so we can ignore all further global instances.
3756 This is to work around gold/15646, inefficient gold-generated
3757 indices. */
3758 int global_seen;
da51c347 3759};
9291a0cd 3760
da51c347
DE
3761/* Initialize the index symtab iterator ITER.
3762 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3763 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3764
9291a0cd 3765static void
da51c347
DE
3766dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3767 struct mapped_index *index,
3768 int want_specific_block,
3769 int block_index,
3770 domain_enum domain,
3771 const char *name)
3772{
3773 iter->index = index;
3774 iter->want_specific_block = want_specific_block;
3775 iter->block_index = block_index;
3776 iter->domain = domain;
3777 iter->next = 0;
8943b874 3778 iter->global_seen = 0;
da51c347
DE
3779
3780 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3781 iter->length = MAYBE_SWAP (*iter->vec);
3782 else
3783 {
3784 iter->vec = NULL;
3785 iter->length = 0;
3786 }
3787}
3788
3789/* Return the next matching CU or NULL if there are no more. */
3790
3791static struct dwarf2_per_cu_data *
3792dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3793{
3794 for ( ; iter->next < iter->length; ++iter->next)
3795 {
3796 offset_type cu_index_and_attrs =
3797 MAYBE_SWAP (iter->vec[iter->next + 1]);
3798 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3799 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3800 int want_static = iter->block_index != GLOBAL_BLOCK;
3801 /* This value is only valid for index versions >= 7. */
3802 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3803 gdb_index_symbol_kind symbol_kind =
3804 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3805 /* Only check the symbol attributes if they're present.
3806 Indices prior to version 7 don't record them,
3807 and indices >= 7 may elide them for certain symbols
3808 (gold does this). */
3809 int attrs_valid =
3810 (iter->index->version >= 7
3811 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3812
3190f0c6
DE
3813 /* Don't crash on bad data. */
3814 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3815 + dwarf2_per_objfile->n_type_units))
3816 {
3817 complaint (&symfile_complaints,
3818 _(".gdb_index entry has bad CU index"
4262abfb
JK
3819 " [in module %s]"),
3820 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3821 continue;
3822 }
3823
8832e7e3 3824 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3825
da51c347 3826 /* Skip if already read in. */
43f3e411 3827 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3828 continue;
3829
8943b874
DE
3830 /* Check static vs global. */
3831 if (attrs_valid)
3832 {
3833 if (iter->want_specific_block
3834 && want_static != is_static)
3835 continue;
3836 /* Work around gold/15646. */
3837 if (!is_static && iter->global_seen)
3838 continue;
3839 if (!is_static)
3840 iter->global_seen = 1;
3841 }
da51c347
DE
3842
3843 /* Only check the symbol's kind if it has one. */
3844 if (attrs_valid)
3845 {
3846 switch (iter->domain)
3847 {
3848 case VAR_DOMAIN:
3849 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3850 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3851 /* Some types are also in VAR_DOMAIN. */
3852 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3853 continue;
3854 break;
3855 case STRUCT_DOMAIN:
3856 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3857 continue;
3858 break;
3859 case LABEL_DOMAIN:
3860 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3861 continue;
3862 break;
3863 default:
3864 break;
3865 }
3866 }
3867
3868 ++iter->next;
3869 return per_cu;
3870 }
3871
3872 return NULL;
3873}
3874
43f3e411 3875static struct compunit_symtab *
da51c347
DE
3876dw2_lookup_symbol (struct objfile *objfile, int block_index,
3877 const char *name, domain_enum domain)
9291a0cd 3878{
43f3e411 3879 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3880 struct mapped_index *index;
3881
9291a0cd
TT
3882 dw2_setup (objfile);
3883
156942c7
DE
3884 index = dwarf2_per_objfile->index_table;
3885
da51c347 3886 /* index is NULL if OBJF_READNOW. */
156942c7 3887 if (index)
9291a0cd 3888 {
da51c347
DE
3889 struct dw2_symtab_iterator iter;
3890 struct dwarf2_per_cu_data *per_cu;
3891
3892 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3893
da51c347 3894 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3895 {
b2e2f908 3896 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3897 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3898 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3899 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3900
b2e2f908
DE
3901 sym = block_find_symbol (block, name, domain,
3902 block_find_non_opaque_type_preferred,
3903 &with_opaque);
3904
da51c347
DE
3905 /* Some caution must be observed with overloaded functions
3906 and methods, since the index will not contain any overload
3907 information (but NAME might contain it). */
da51c347 3908
b2e2f908 3909 if (sym != NULL
a778f165 3910 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
b2e2f908
DE
3911 return stab;
3912 if (with_opaque != NULL
a778f165 3913 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
b2e2f908 3914 stab_best = stab;
da51c347
DE
3915
3916 /* Keep looking through other CUs. */
9291a0cd
TT
3917 }
3918 }
9291a0cd 3919
da51c347 3920 return stab_best;
9291a0cd
TT
3921}
3922
3923static void
3924dw2_print_stats (struct objfile *objfile)
3925{
e4a48d9d 3926 int i, total, count;
9291a0cd
TT
3927
3928 dw2_setup (objfile);
e4a48d9d 3929 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3930 count = 0;
e4a48d9d 3931 for (i = 0; i < total; ++i)
9291a0cd 3932 {
8832e7e3 3933 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3934
43f3e411 3935 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3936 ++count;
3937 }
e4a48d9d 3938 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3939 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3940}
3941
779bd270
DE
3942/* This dumps minimal information about the index.
3943 It is called via "mt print objfiles".
3944 One use is to verify .gdb_index has been loaded by the
3945 gdb.dwarf2/gdb-index.exp testcase. */
3946
9291a0cd
TT
3947static void
3948dw2_dump (struct objfile *objfile)
3949{
779bd270
DE
3950 dw2_setup (objfile);
3951 gdb_assert (dwarf2_per_objfile->using_index);
3952 printf_filtered (".gdb_index:");
3953 if (dwarf2_per_objfile->index_table != NULL)
3954 {
3955 printf_filtered (" version %d\n",
3956 dwarf2_per_objfile->index_table->version);
3957 }
3958 else
3959 printf_filtered (" faked for \"readnow\"\n");
3960 printf_filtered ("\n");
9291a0cd
TT
3961}
3962
3963static void
3189cb12
DE
3964dw2_relocate (struct objfile *objfile,
3965 const struct section_offsets *new_offsets,
3966 const struct section_offsets *delta)
9291a0cd
TT
3967{
3968 /* There's nothing to relocate here. */
3969}
3970
3971static void
3972dw2_expand_symtabs_for_function (struct objfile *objfile,
3973 const char *func_name)
3974{
da51c347
DE
3975 struct mapped_index *index;
3976
3977 dw2_setup (objfile);
3978
3979 index = dwarf2_per_objfile->index_table;
3980
3981 /* index is NULL if OBJF_READNOW. */
3982 if (index)
3983 {
3984 struct dw2_symtab_iterator iter;
3985 struct dwarf2_per_cu_data *per_cu;
3986
3987 /* Note: It doesn't matter what we pass for block_index here. */
3988 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3989 func_name);
3990
3991 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3992 dw2_instantiate_symtab (per_cu);
3993 }
9291a0cd
TT
3994}
3995
3996static void
3997dw2_expand_all_symtabs (struct objfile *objfile)
3998{
3999 int i;
4000
4001 dw2_setup (objfile);
1fd400ff
TT
4002
4003 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4004 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4005 {
8832e7e3 4006 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4007
a0f42c21 4008 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4009 }
4010}
4011
4012static void
652a8996
JK
4013dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4014 const char *fullname)
9291a0cd
TT
4015{
4016 int i;
4017
4018 dw2_setup (objfile);
d4637a04
DE
4019
4020 /* We don't need to consider type units here.
4021 This is only called for examining code, e.g. expand_line_sal.
4022 There can be an order of magnitude (or more) more type units
4023 than comp units, and we avoid them if we can. */
4024
4025 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4026 {
4027 int j;
8832e7e3 4028 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 4029 struct quick_file_names *file_data;
9291a0cd 4030
3d7bb9d9 4031 /* We only need to look at symtabs not already expanded. */
43f3e411 4032 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4033 continue;
4034
e4a48d9d 4035 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4036 if (file_data == NULL)
9291a0cd
TT
4037 continue;
4038
7b9f3c50 4039 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4040 {
652a8996
JK
4041 const char *this_fullname = file_data->file_names[j];
4042
4043 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4044 {
a0f42c21 4045 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4046 break;
4047 }
4048 }
4049 }
4050}
4051
9291a0cd 4052static void
ade7ed9e 4053dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 4054 const char * name, domain_enum domain,
ade7ed9e 4055 int global,
40658b94
PH
4056 int (*callback) (struct block *,
4057 struct symbol *, void *),
2edb89d3
JK
4058 void *data, symbol_compare_ftype *match,
4059 symbol_compare_ftype *ordered_compare)
9291a0cd 4060{
40658b94 4061 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4062 current language is Ada for a non-Ada objfile using GNU index. As Ada
4063 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4064}
4065
4066static void
f8eba3c6
TT
4067dw2_expand_symtabs_matching
4068 (struct objfile *objfile,
14bc53a8
PA
4069 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4070 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4071 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4072 enum search_domain kind)
9291a0cd
TT
4073{
4074 int i;
4075 offset_type iter;
4b5246aa 4076 struct mapped_index *index;
9291a0cd
TT
4077
4078 dw2_setup (objfile);
ae2de4f8
DE
4079
4080 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
4081 if (!dwarf2_per_objfile->index_table)
4082 return;
4b5246aa 4083 index = dwarf2_per_objfile->index_table;
9291a0cd 4084
7b08b9eb 4085 if (file_matcher != NULL)
24c79950 4086 {
fc4007c9
TT
4087 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4088 htab_eq_pointer,
4089 NULL, xcalloc, xfree));
4090 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4091 htab_eq_pointer,
4092 NULL, xcalloc, xfree));
24c79950 4093
848e3e78
DE
4094 /* The rule is CUs specify all the files, including those used by
4095 any TU, so there's no need to scan TUs here. */
4096
4097 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
4098 {
4099 int j;
8832e7e3 4100 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
4101 struct quick_file_names *file_data;
4102 void **slot;
7b08b9eb 4103
61d96d7e
DE
4104 QUIT;
4105
24c79950 4106 per_cu->v.quick->mark = 0;
3d7bb9d9 4107
24c79950 4108 /* We only need to look at symtabs not already expanded. */
43f3e411 4109 if (per_cu->v.quick->compunit_symtab)
24c79950 4110 continue;
7b08b9eb 4111
e4a48d9d 4112 file_data = dw2_get_file_names (per_cu);
24c79950
TT
4113 if (file_data == NULL)
4114 continue;
7b08b9eb 4115
fc4007c9 4116 if (htab_find (visited_not_found.get (), file_data) != NULL)
24c79950 4117 continue;
fc4007c9 4118 else if (htab_find (visited_found.get (), file_data) != NULL)
24c79950
TT
4119 {
4120 per_cu->v.quick->mark = 1;
4121 continue;
4122 }
4123
4124 for (j = 0; j < file_data->num_file_names; ++j)
4125 {
da235a7c
JK
4126 const char *this_real_name;
4127
14bc53a8 4128 if (file_matcher (file_data->file_names[j], false))
24c79950
TT
4129 {
4130 per_cu->v.quick->mark = 1;
4131 break;
4132 }
da235a7c
JK
4133
4134 /* Before we invoke realpath, which can get expensive when many
4135 files are involved, do a quick comparison of the basenames. */
4136 if (!basenames_may_differ
4137 && !file_matcher (lbasename (file_data->file_names[j]),
14bc53a8 4138 true))
da235a7c
JK
4139 continue;
4140
4141 this_real_name = dw2_get_real_path (objfile, file_data, j);
14bc53a8 4142 if (file_matcher (this_real_name, false))
da235a7c
JK
4143 {
4144 per_cu->v.quick->mark = 1;
4145 break;
4146 }
24c79950
TT
4147 }
4148
4149 slot = htab_find_slot (per_cu->v.quick->mark
fc4007c9
TT
4150 ? visited_found.get ()
4151 : visited_not_found.get (),
24c79950
TT
4152 file_data, INSERT);
4153 *slot = file_data;
4154 }
24c79950 4155 }
9291a0cd 4156
3876f04e 4157 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
4158 {
4159 offset_type idx = 2 * iter;
4160 const char *name;
4161 offset_type *vec, vec_len, vec_idx;
8943b874 4162 int global_seen = 0;
9291a0cd 4163
61d96d7e
DE
4164 QUIT;
4165
3876f04e 4166 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
4167 continue;
4168
3876f04e 4169 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 4170
14bc53a8 4171 if (!symbol_matcher (name))
9291a0cd
TT
4172 continue;
4173
4174 /* The name was matched, now expand corresponding CUs that were
4175 marked. */
4b5246aa 4176 vec = (offset_type *) (index->constant_pool
3876f04e 4177 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
4178 vec_len = MAYBE_SWAP (vec[0]);
4179 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4180 {
e254ef6a 4181 struct dwarf2_per_cu_data *per_cu;
156942c7 4182 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4183 /* This value is only valid for index versions >= 7. */
4184 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4185 gdb_index_symbol_kind symbol_kind =
4186 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4187 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4188 /* Only check the symbol attributes if they're present.
4189 Indices prior to version 7 don't record them,
4190 and indices >= 7 may elide them for certain symbols
4191 (gold does this). */
4192 int attrs_valid =
4193 (index->version >= 7
4194 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4195
8943b874
DE
4196 /* Work around gold/15646. */
4197 if (attrs_valid)
4198 {
4199 if (!is_static && global_seen)
4200 continue;
4201 if (!is_static)
4202 global_seen = 1;
4203 }
4204
3190f0c6
DE
4205 /* Only check the symbol's kind if it has one. */
4206 if (attrs_valid)
156942c7
DE
4207 {
4208 switch (kind)
4209 {
4210 case VARIABLES_DOMAIN:
4211 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4212 continue;
4213 break;
4214 case FUNCTIONS_DOMAIN:
4215 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4216 continue;
4217 break;
4218 case TYPES_DOMAIN:
4219 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4220 continue;
4221 break;
4222 default:
4223 break;
4224 }
4225 }
4226
3190f0c6
DE
4227 /* Don't crash on bad data. */
4228 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4229 + dwarf2_per_objfile->n_type_units))
4230 {
4231 complaint (&symfile_complaints,
4232 _(".gdb_index entry has bad CU index"
4262abfb 4233 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4234 continue;
4235 }
4236
8832e7e3 4237 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4238 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4239 {
4240 int symtab_was_null =
4241 (per_cu->v.quick->compunit_symtab == NULL);
4242
4243 dw2_instantiate_symtab (per_cu);
4244
4245 if (expansion_notify != NULL
4246 && symtab_was_null
4247 && per_cu->v.quick->compunit_symtab != NULL)
4248 {
14bc53a8 4249 expansion_notify (per_cu->v.quick->compunit_symtab);
276d885b
GB
4250 }
4251 }
9291a0cd
TT
4252 }
4253 }
4254}
4255
43f3e411 4256/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4257 symtab. */
4258
43f3e411
DE
4259static struct compunit_symtab *
4260recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4261 CORE_ADDR pc)
9703b513
TT
4262{
4263 int i;
4264
43f3e411
DE
4265 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4266 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4267 return cust;
9703b513 4268
43f3e411 4269 if (cust->includes == NULL)
a3ec0bb1
DE
4270 return NULL;
4271
43f3e411 4272 for (i = 0; cust->includes[i]; ++i)
9703b513 4273 {
43f3e411 4274 struct compunit_symtab *s = cust->includes[i];
9703b513 4275
43f3e411 4276 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4277 if (s != NULL)
4278 return s;
4279 }
4280
4281 return NULL;
4282}
4283
43f3e411
DE
4284static struct compunit_symtab *
4285dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4286 struct bound_minimal_symbol msymbol,
4287 CORE_ADDR pc,
4288 struct obj_section *section,
4289 int warn_if_readin)
9291a0cd
TT
4290{
4291 struct dwarf2_per_cu_data *data;
43f3e411 4292 struct compunit_symtab *result;
9291a0cd
TT
4293
4294 dw2_setup (objfile);
4295
4296 if (!objfile->psymtabs_addrmap)
4297 return NULL;
4298
9a3c8263
SM
4299 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4300 pc);
9291a0cd
TT
4301 if (!data)
4302 return NULL;
4303
43f3e411 4304 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4305 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4306 paddress (get_objfile_arch (objfile), pc));
4307
43f3e411
DE
4308 result
4309 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4310 pc);
9703b513
TT
4311 gdb_assert (result != NULL);
4312 return result;
9291a0cd
TT
4313}
4314
9291a0cd 4315static void
44b13c5a 4316dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4317 void *data, int need_fullname)
9291a0cd 4318{
9291a0cd 4319 dw2_setup (objfile);
ae2de4f8 4320
bbf2f4df 4321 if (!dwarf2_per_objfile->filenames_cache)
24c79950 4322 {
bbf2f4df 4323 dwarf2_per_objfile->filenames_cache.emplace ();
24c79950 4324
bbf2f4df
PA
4325 htab_up visited (htab_create_alloc (10,
4326 htab_hash_pointer, htab_eq_pointer,
4327 NULL, xcalloc, xfree));
24c79950 4328
bbf2f4df
PA
4329 /* The rule is CUs specify all the files, including those used
4330 by any TU, so there's no need to scan TUs here. We can
4331 ignore file names coming from already-expanded CUs. */
24c79950 4332
bbf2f4df
PA
4333 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4334 {
4335 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4336
bbf2f4df
PA
4337 if (per_cu->v.quick->compunit_symtab)
4338 {
4339 void **slot = htab_find_slot (visited.get (),
4340 per_cu->v.quick->file_names,
4341 INSERT);
9291a0cd 4342
bbf2f4df
PA
4343 *slot = per_cu->v.quick->file_names;
4344 }
24c79950 4345 }
24c79950 4346
bbf2f4df 4347 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 4348 {
bbf2f4df
PA
4349 int j;
4350 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4351 struct quick_file_names *file_data;
4352 void **slot;
4353
4354 /* We only need to look at symtabs not already expanded. */
4355 if (per_cu->v.quick->compunit_symtab)
4356 continue;
74e2f255 4357
bbf2f4df
PA
4358 file_data = dw2_get_file_names (per_cu);
4359 if (file_data == NULL)
4360 continue;
4361
4362 slot = htab_find_slot (visited.get (), file_data, INSERT);
4363 if (*slot)
4364 {
4365 /* Already visited. */
4366 continue;
4367 }
4368 *slot = file_data;
4369
4370 for (int j = 0; j < file_data->num_file_names; ++j)
4371 {
4372 const char *filename = file_data->file_names[j];
4373 dwarf2_per_objfile->filenames_cache->seen (filename);
4374 }
9291a0cd
TT
4375 }
4376 }
bbf2f4df
PA
4377
4378 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4379 {
4380 const char *this_real_name;
4381
4382 if (need_fullname)
4383 this_real_name = gdb_realpath (filename);
4384 else
4385 this_real_name = NULL;
4386 (*fun) (filename, this_real_name, data);
4387 });
9291a0cd
TT
4388}
4389
4390static int
4391dw2_has_symbols (struct objfile *objfile)
4392{
4393 return 1;
4394}
4395
4396const struct quick_symbol_functions dwarf2_gdb_index_functions =
4397{
4398 dw2_has_symbols,
4399 dw2_find_last_source_symtab,
4400 dw2_forget_cached_source_info,
f8eba3c6 4401 dw2_map_symtabs_matching_filename,
9291a0cd 4402 dw2_lookup_symbol,
9291a0cd
TT
4403 dw2_print_stats,
4404 dw2_dump,
4405 dw2_relocate,
4406 dw2_expand_symtabs_for_function,
4407 dw2_expand_all_symtabs,
652a8996 4408 dw2_expand_symtabs_with_fullname,
40658b94 4409 dw2_map_matching_symbols,
9291a0cd 4410 dw2_expand_symtabs_matching,
43f3e411 4411 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4412 dw2_map_symbol_filenames
4413};
4414
4415/* Initialize for reading DWARF for this objfile. Return 0 if this
4416 file will use psymtabs, or 1 if using the GNU index. */
4417
4418int
4419dwarf2_initialize_objfile (struct objfile *objfile)
4420{
4421 /* If we're about to read full symbols, don't bother with the
4422 indices. In this case we also don't care if some other debug
4423 format is making psymtabs, because they are all about to be
4424 expanded anyway. */
4425 if ((objfile->flags & OBJF_READNOW))
4426 {
4427 int i;
4428
4429 dwarf2_per_objfile->using_index = 1;
4430 create_all_comp_units (objfile);
0e50663e 4431 create_all_type_units (objfile);
7b9f3c50
DE
4432 dwarf2_per_objfile->quick_file_names_table =
4433 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4434
1fd400ff 4435 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4436 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4437 {
8832e7e3 4438 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4439
e254ef6a
DE
4440 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4441 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4442 }
4443
4444 /* Return 1 so that gdb sees the "quick" functions. However,
4445 these functions will be no-ops because we will have expanded
4446 all symtabs. */
4447 return 1;
4448 }
4449
4450 if (dwarf2_read_index (objfile))
4451 return 1;
4452
9291a0cd
TT
4453 return 0;
4454}
4455
4456\f
4457
dce234bc
PP
4458/* Build a partial symbol table. */
4459
4460void
f29dff0a 4461dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4462{
c9bf0622 4463
f29dff0a 4464 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4465 {
4466 init_psymbol_list (objfile, 1024);
4467 }
4468
492d29ea 4469 TRY
c9bf0622
TT
4470 {
4471 /* This isn't really ideal: all the data we allocate on the
4472 objfile's obstack is still uselessly kept around. However,
4473 freeing it seems unsafe. */
906768f9 4474 psymtab_discarder psymtabs (objfile);
c9bf0622 4475 dwarf2_build_psymtabs_hard (objfile);
906768f9 4476 psymtabs.keep ();
c9bf0622 4477 }
492d29ea
PA
4478 CATCH (except, RETURN_MASK_ERROR)
4479 {
4480 exception_print (gdb_stderr, except);
4481 }
4482 END_CATCH
c906108c 4483}
c906108c 4484
1ce1cefd
DE
4485/* Return the total length of the CU described by HEADER. */
4486
4487static unsigned int
4488get_cu_length (const struct comp_unit_head *header)
4489{
4490 return header->initial_length_size + header->length;
4491}
4492
9c541725 4493/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 4494
9c541725
PA
4495static inline bool
4496offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 4497{
9c541725
PA
4498 sect_offset bottom = cu_header->sect_off;
4499 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 4500
9c541725 4501 return sect_off >= bottom && sect_off < top;
45452591
DE
4502}
4503
3b80fe9b
DE
4504/* Find the base address of the compilation unit for range lists and
4505 location lists. It will normally be specified by DW_AT_low_pc.
4506 In DWARF-3 draft 4, the base address could be overridden by
4507 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4508 compilation units with discontinuous ranges. */
4509
4510static void
4511dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4512{
4513 struct attribute *attr;
4514
4515 cu->base_known = 0;
4516 cu->base_address = 0;
4517
4518 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4519 if (attr)
4520 {
31aa7e4e 4521 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4522 cu->base_known = 1;
4523 }
4524 else
4525 {
4526 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4527 if (attr)
4528 {
31aa7e4e 4529 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4530 cu->base_known = 1;
4531 }
4532 }
4533}
4534
93311388 4535/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 4536 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
4537 NOTE: This leaves members offset, first_die_offset to be filled in
4538 by the caller. */
107d2387 4539
d521ce57 4540static const gdb_byte *
107d2387 4541read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
4542 const gdb_byte *info_ptr,
4543 struct dwarf2_section_info *section,
4544 rcuh_kind section_kind)
107d2387
AC
4545{
4546 int signed_addr;
891d2f0b 4547 unsigned int bytes_read;
43988095
JK
4548 const char *filename = get_section_file_name (section);
4549 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
4550
4551 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4552 cu_header->initial_length_size = bytes_read;
4553 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4554 info_ptr += bytes_read;
107d2387
AC
4555 cu_header->version = read_2_bytes (abfd, info_ptr);
4556 info_ptr += 2;
43988095
JK
4557 if (cu_header->version < 5)
4558 switch (section_kind)
4559 {
4560 case rcuh_kind::COMPILE:
4561 cu_header->unit_type = DW_UT_compile;
4562 break;
4563 case rcuh_kind::TYPE:
4564 cu_header->unit_type = DW_UT_type;
4565 break;
4566 default:
4567 internal_error (__FILE__, __LINE__,
4568 _("read_comp_unit_head: invalid section_kind"));
4569 }
4570 else
4571 {
4572 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4573 (read_1_byte (abfd, info_ptr));
4574 info_ptr += 1;
4575 switch (cu_header->unit_type)
4576 {
4577 case DW_UT_compile:
4578 if (section_kind != rcuh_kind::COMPILE)
4579 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4580 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4581 filename);
4582 break;
4583 case DW_UT_type:
4584 section_kind = rcuh_kind::TYPE;
4585 break;
4586 default:
4587 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4588 "(is %d, should be %d or %d) [in module %s]"),
4589 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4590 }
4591
4592 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4593 info_ptr += 1;
4594 }
9c541725
PA
4595 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4596 cu_header,
4597 &bytes_read);
613e1657 4598 info_ptr += bytes_read;
43988095
JK
4599 if (cu_header->version < 5)
4600 {
4601 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4602 info_ptr += 1;
4603 }
107d2387
AC
4604 signed_addr = bfd_get_sign_extend_vma (abfd);
4605 if (signed_addr < 0)
8e65ff28 4606 internal_error (__FILE__, __LINE__,
e2e0b3e5 4607 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4608 cu_header->signed_addr_p = signed_addr;
c764a876 4609
43988095
JK
4610 if (section_kind == rcuh_kind::TYPE)
4611 {
4612 LONGEST type_offset;
4613
4614 cu_header->signature = read_8_bytes (abfd, info_ptr);
4615 info_ptr += 8;
4616
4617 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4618 info_ptr += bytes_read;
9c541725
PA
4619 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4620 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
4621 error (_("Dwarf Error: Too big type_offset in compilation unit "
4622 "header (is %s) [in module %s]"), plongest (type_offset),
4623 filename);
4624 }
4625
107d2387
AC
4626 return info_ptr;
4627}
4628
36586728
TT
4629/* Helper function that returns the proper abbrev section for
4630 THIS_CU. */
4631
4632static struct dwarf2_section_info *
4633get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4634{
4635 struct dwarf2_section_info *abbrev;
4636
4637 if (this_cu->is_dwz)
4638 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4639 else
4640 abbrev = &dwarf2_per_objfile->abbrev;
4641
4642 return abbrev;
4643}
4644
9ff913ba
DE
4645/* Subroutine of read_and_check_comp_unit_head and
4646 read_and_check_type_unit_head to simplify them.
4647 Perform various error checking on the header. */
4648
4649static void
4650error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4651 struct dwarf2_section_info *section,
4652 struct dwarf2_section_info *abbrev_section)
9ff913ba 4653{
a32a8923 4654 const char *filename = get_section_file_name (section);
9ff913ba 4655
43988095 4656 if (header->version < 2 || header->version > 5)
9ff913ba 4657 error (_("Dwarf Error: wrong version in compilation unit header "
43988095 4658 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
9ff913ba
DE
4659 filename);
4660
9c541725 4661 if (to_underlying (header->abbrev_sect_off)
36586728 4662 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9c541725
PA
4663 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4664 "(offset 0x%x + 6) [in module %s]"),
4665 to_underlying (header->abbrev_sect_off),
4666 to_underlying (header->sect_off),
9ff913ba
DE
4667 filename);
4668
9c541725 4669 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 4670 avoid potential 32-bit overflow. */
9c541725 4671 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 4672 > section->size)
9c541725
PA
4673 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4674 "(offset 0x%x + 0) [in module %s]"),
4675 header->length, to_underlying (header->sect_off),
9ff913ba
DE
4676 filename);
4677}
4678
4679/* Read in a CU/TU header and perform some basic error checking.
4680 The contents of the header are stored in HEADER.
4681 The result is a pointer to the start of the first DIE. */
adabb602 4682
d521ce57 4683static const gdb_byte *
9ff913ba
DE
4684read_and_check_comp_unit_head (struct comp_unit_head *header,
4685 struct dwarf2_section_info *section,
4bdcc0c1 4686 struct dwarf2_section_info *abbrev_section,
d521ce57 4687 const gdb_byte *info_ptr,
43988095 4688 rcuh_kind section_kind)
72bf9492 4689{
d521ce57 4690 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4691 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4692
9c541725 4693 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 4694
43988095 4695 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 4696
9c541725 4697 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 4698
4bdcc0c1 4699 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4700
4701 return info_ptr;
348e048f
DE
4702}
4703
f4dc4d17
DE
4704/* Fetch the abbreviation table offset from a comp or type unit header. */
4705
4706static sect_offset
4707read_abbrev_offset (struct dwarf2_section_info *section,
9c541725 4708 sect_offset sect_off)
f4dc4d17 4709{
a32a8923 4710 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4711 const gdb_byte *info_ptr;
ac298888 4712 unsigned int initial_length_size, offset_size;
43988095 4713 uint16_t version;
f4dc4d17
DE
4714
4715 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 4716 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 4717 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 4718 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
4719 info_ptr += initial_length_size;
4720
4721 version = read_2_bytes (abfd, info_ptr);
4722 info_ptr += 2;
4723 if (version >= 5)
4724 {
4725 /* Skip unit type and address size. */
4726 info_ptr += 2;
4727 }
4728
9c541725 4729 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
4730}
4731
aaa75496
JB
4732/* Allocate a new partial symtab for file named NAME and mark this new
4733 partial symtab as being an include of PST. */
4734
4735static void
d521ce57 4736dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4737 struct objfile *objfile)
4738{
4739 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4740
fbd9ab74
JK
4741 if (!IS_ABSOLUTE_PATH (subpst->filename))
4742 {
4743 /* It shares objfile->objfile_obstack. */
4744 subpst->dirname = pst->dirname;
4745 }
4746
aaa75496
JB
4747 subpst->textlow = 0;
4748 subpst->texthigh = 0;
4749
8d749320
SM
4750 subpst->dependencies
4751 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4752 subpst->dependencies[0] = pst;
4753 subpst->number_of_dependencies = 1;
4754
4755 subpst->globals_offset = 0;
4756 subpst->n_global_syms = 0;
4757 subpst->statics_offset = 0;
4758 subpst->n_static_syms = 0;
43f3e411 4759 subpst->compunit_symtab = NULL;
aaa75496
JB
4760 subpst->read_symtab = pst->read_symtab;
4761 subpst->readin = 0;
4762
4763 /* No private part is necessary for include psymtabs. This property
4764 can be used to differentiate between such include psymtabs and
10b3939b 4765 the regular ones. */
58a9656e 4766 subpst->read_symtab_private = NULL;
aaa75496
JB
4767}
4768
4769/* Read the Line Number Program data and extract the list of files
4770 included by the source file represented by PST. Build an include
d85a05f0 4771 partial symtab for each of these included files. */
aaa75496
JB
4772
4773static void
4774dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4775 struct die_info *die,
4776 struct partial_symtab *pst)
aaa75496 4777{
fff8551c 4778 line_header_up lh;
d85a05f0 4779 struct attribute *attr;
aaa75496 4780
d85a05f0
DJ
4781 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4782 if (attr)
9c541725 4783 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
4784 if (lh == NULL)
4785 return; /* No linetable, so no includes. */
4786
c6da4cef 4787 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
fff8551c 4788 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4789}
4790
348e048f 4791static hashval_t
52dc124a 4792hash_signatured_type (const void *item)
348e048f 4793{
9a3c8263
SM
4794 const struct signatured_type *sig_type
4795 = (const struct signatured_type *) item;
9a619af0 4796
348e048f 4797 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4798 return sig_type->signature;
348e048f
DE
4799}
4800
4801static int
52dc124a 4802eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4803{
9a3c8263
SM
4804 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4805 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4806
348e048f
DE
4807 return lhs->signature == rhs->signature;
4808}
4809
1fd400ff
TT
4810/* Allocate a hash table for signatured types. */
4811
4812static htab_t
673bfd45 4813allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4814{
4815 return htab_create_alloc_ex (41,
52dc124a
DE
4816 hash_signatured_type,
4817 eq_signatured_type,
1fd400ff
TT
4818 NULL,
4819 &objfile->objfile_obstack,
4820 hashtab_obstack_allocate,
4821 dummy_obstack_deallocate);
4822}
4823
d467dd73 4824/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4825
4826static int
d467dd73 4827add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4828{
9a3c8263
SM
4829 struct signatured_type *sigt = (struct signatured_type *) *slot;
4830 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4831
b4dd5633 4832 **datap = sigt;
1fd400ff
TT
4833 ++*datap;
4834
4835 return 1;
4836}
4837
78d4d2c5 4838/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
4839 and fill them into TYPES_HTAB. It will process only type units,
4840 therefore DW_UT_type. */
c88ee1f0 4841
78d4d2c5
JK
4842static void
4843create_debug_type_hash_table (struct dwo_file *dwo_file,
43988095
JK
4844 dwarf2_section_info *section, htab_t &types_htab,
4845 rcuh_kind section_kind)
348e048f 4846{
3019eac3 4847 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 4848 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
4849 bfd *abfd;
4850 const gdb_byte *info_ptr, *end_ptr;
348e048f 4851
4bdcc0c1
DE
4852 abbrev_section = (dwo_file != NULL
4853 ? &dwo_file->sections.abbrev
4854 : &dwarf2_per_objfile->abbrev);
4855
b4f54984 4856 if (dwarf_read_debug)
43988095
JK
4857 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4858 get_section_name (section),
a32a8923 4859 get_section_file_name (abbrev_section));
09406207 4860
78d4d2c5
JK
4861 dwarf2_read_section (objfile, section);
4862 info_ptr = section->buffer;
348e048f 4863
78d4d2c5
JK
4864 if (info_ptr == NULL)
4865 return;
348e048f 4866
78d4d2c5
JK
4867 /* We can't set abfd until now because the section may be empty or
4868 not present, in which case the bfd is unknown. */
4869 abfd = get_section_bfd_owner (section);
348e048f 4870
78d4d2c5
JK
4871 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4872 because we don't need to read any dies: the signature is in the
4873 header. */
3019eac3 4874
78d4d2c5
JK
4875 end_ptr = info_ptr + section->size;
4876 while (info_ptr < end_ptr)
4877 {
78d4d2c5
JK
4878 struct signatured_type *sig_type;
4879 struct dwo_unit *dwo_tu;
4880 void **slot;
4881 const gdb_byte *ptr = info_ptr;
4882 struct comp_unit_head header;
4883 unsigned int length;
8b70b953 4884
9c541725 4885 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 4886
a49dd8dd
JK
4887 /* Initialize it due to a false compiler warning. */
4888 header.signature = -1;
9c541725 4889 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 4890
78d4d2c5
JK
4891 /* We need to read the type's signature in order to build the hash
4892 table, but we don't need anything else just yet. */
348e048f 4893
43988095
JK
4894 ptr = read_and_check_comp_unit_head (&header, section,
4895 abbrev_section, ptr, section_kind);
348e048f 4896
78d4d2c5 4897 length = get_cu_length (&header);
6caca83c 4898
78d4d2c5
JK
4899 /* Skip dummy type units. */
4900 if (ptr >= info_ptr + length
43988095
JK
4901 || peek_abbrev_code (abfd, ptr) == 0
4902 || header.unit_type != DW_UT_type)
78d4d2c5
JK
4903 {
4904 info_ptr += length;
4905 continue;
4906 }
dee91e82 4907
78d4d2c5
JK
4908 if (types_htab == NULL)
4909 {
4910 if (dwo_file)
4911 types_htab = allocate_dwo_unit_table (objfile);
4912 else
4913 types_htab = allocate_signatured_type_table (objfile);
4914 }
8b70b953 4915
78d4d2c5
JK
4916 if (dwo_file)
4917 {
4918 sig_type = NULL;
4919 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4920 struct dwo_unit);
4921 dwo_tu->dwo_file = dwo_file;
43988095 4922 dwo_tu->signature = header.signature;
9c541725 4923 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 4924 dwo_tu->section = section;
9c541725 4925 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
4926 dwo_tu->length = length;
4927 }
4928 else
4929 {
4930 /* N.B.: type_offset is not usable if this type uses a DWO file.
4931 The real type_offset is in the DWO file. */
4932 dwo_tu = NULL;
4933 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4934 struct signatured_type);
43988095 4935 sig_type->signature = header.signature;
9c541725 4936 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5
JK
4937 sig_type->per_cu.objfile = objfile;
4938 sig_type->per_cu.is_debug_types = 1;
4939 sig_type->per_cu.section = section;
9c541725 4940 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
4941 sig_type->per_cu.length = length;
4942 }
4943
4944 slot = htab_find_slot (types_htab,
4945 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4946 INSERT);
4947 gdb_assert (slot != NULL);
4948 if (*slot != NULL)
4949 {
9c541725 4950 sect_offset dup_sect_off;
0349ea22 4951
3019eac3
DE
4952 if (dwo_file)
4953 {
78d4d2c5
JK
4954 const struct dwo_unit *dup_tu
4955 = (const struct dwo_unit *) *slot;
4956
9c541725 4957 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
4958 }
4959 else
4960 {
78d4d2c5
JK
4961 const struct signatured_type *dup_tu
4962 = (const struct signatured_type *) *slot;
4963
9c541725 4964 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 4965 }
8b70b953 4966
78d4d2c5
JK
4967 complaint (&symfile_complaints,
4968 _("debug type entry at offset 0x%x is duplicate to"
4969 " the entry at offset 0x%x, signature %s"),
9c541725 4970 to_underlying (sect_off), to_underlying (dup_sect_off),
43988095 4971 hex_string (header.signature));
78d4d2c5
JK
4972 }
4973 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 4974
78d4d2c5
JK
4975 if (dwarf_read_debug > 1)
4976 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
9c541725 4977 to_underlying (sect_off),
43988095 4978 hex_string (header.signature));
3019eac3 4979
78d4d2c5
JK
4980 info_ptr += length;
4981 }
4982}
3019eac3 4983
78d4d2c5
JK
4984/* Create the hash table of all entries in the .debug_types
4985 (or .debug_types.dwo) section(s).
4986 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4987 otherwise it is NULL.
b3c8eb43 4988
78d4d2c5 4989 The result is a pointer to the hash table or NULL if there are no types.
348e048f 4990
78d4d2c5 4991 Note: This function processes DWO files only, not DWP files. */
348e048f 4992
78d4d2c5
JK
4993static void
4994create_debug_types_hash_table (struct dwo_file *dwo_file,
4995 VEC (dwarf2_section_info_def) *types,
4996 htab_t &types_htab)
4997{
4998 int ix;
4999 struct dwarf2_section_info *section;
5000
5001 if (VEC_empty (dwarf2_section_info_def, types))
5002 return;
348e048f 5003
78d4d2c5
JK
5004 for (ix = 0;
5005 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5006 ++ix)
43988095
JK
5007 create_debug_type_hash_table (dwo_file, section, types_htab,
5008 rcuh_kind::TYPE);
3019eac3
DE
5009}
5010
5011/* Create the hash table of all entries in the .debug_types section,
5012 and initialize all_type_units.
5013 The result is zero if there is an error (e.g. missing .debug_types section),
5014 otherwise non-zero. */
5015
5016static int
5017create_all_type_units (struct objfile *objfile)
5018{
78d4d2c5 5019 htab_t types_htab = NULL;
b4dd5633 5020 struct signatured_type **iter;
3019eac3 5021
43988095
JK
5022 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5023 rcuh_kind::COMPILE);
78d4d2c5 5024 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
3019eac3
DE
5025 if (types_htab == NULL)
5026 {
5027 dwarf2_per_objfile->signatured_types = NULL;
5028 return 0;
5029 }
5030
348e048f
DE
5031 dwarf2_per_objfile->signatured_types = types_htab;
5032
6aa5f3a6
DE
5033 dwarf2_per_objfile->n_type_units
5034 = dwarf2_per_objfile->n_allocated_type_units
5035 = htab_elements (types_htab);
8d749320
SM
5036 dwarf2_per_objfile->all_type_units =
5037 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
5038 iter = &dwarf2_per_objfile->all_type_units[0];
5039 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5040 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5041 == dwarf2_per_objfile->n_type_units);
1fd400ff 5042
348e048f
DE
5043 return 1;
5044}
5045
6aa5f3a6
DE
5046/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5047 If SLOT is non-NULL, it is the entry to use in the hash table.
5048 Otherwise we find one. */
5049
5050static struct signatured_type *
5051add_type_unit (ULONGEST sig, void **slot)
5052{
5053 struct objfile *objfile = dwarf2_per_objfile->objfile;
5054 int n_type_units = dwarf2_per_objfile->n_type_units;
5055 struct signatured_type *sig_type;
5056
5057 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5058 ++n_type_units;
5059 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5060 {
5061 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5062 dwarf2_per_objfile->n_allocated_type_units = 1;
5063 dwarf2_per_objfile->n_allocated_type_units *= 2;
5064 dwarf2_per_objfile->all_type_units
224c3ddb
SM
5065 = XRESIZEVEC (struct signatured_type *,
5066 dwarf2_per_objfile->all_type_units,
5067 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
5068 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5069 }
5070 dwarf2_per_objfile->n_type_units = n_type_units;
5071
5072 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5073 struct signatured_type);
5074 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5075 sig_type->signature = sig;
5076 sig_type->per_cu.is_debug_types = 1;
5077 if (dwarf2_per_objfile->using_index)
5078 {
5079 sig_type->per_cu.v.quick =
5080 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5081 struct dwarf2_per_cu_quick_data);
5082 }
5083
5084 if (slot == NULL)
5085 {
5086 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5087 sig_type, INSERT);
5088 }
5089 gdb_assert (*slot == NULL);
5090 *slot = sig_type;
5091 /* The rest of sig_type must be filled in by the caller. */
5092 return sig_type;
5093}
5094
a2ce51a0
DE
5095/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5096 Fill in SIG_ENTRY with DWO_ENTRY. */
5097
5098static void
5099fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5100 struct signatured_type *sig_entry,
5101 struct dwo_unit *dwo_entry)
5102{
7ee85ab1 5103 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
5104 gdb_assert (! sig_entry->per_cu.queued);
5105 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
5106 if (dwarf2_per_objfile->using_index)
5107 {
5108 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 5109 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
5110 }
5111 else
5112 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 5113 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 5114 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 5115 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
5116 gdb_assert (sig_entry->dwo_unit == NULL);
5117
5118 sig_entry->per_cu.section = dwo_entry->section;
9c541725 5119 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
5120 sig_entry->per_cu.length = dwo_entry->length;
5121 sig_entry->per_cu.reading_dwo_directly = 1;
5122 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
5123 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5124 sig_entry->dwo_unit = dwo_entry;
5125}
5126
5127/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
5128 If we haven't read the TU yet, create the signatured_type data structure
5129 for a TU to be read in directly from a DWO file, bypassing the stub.
5130 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5131 using .gdb_index, then when reading a CU we want to stay in the DWO file
5132 containing that CU. Otherwise we could end up reading several other DWO
5133 files (due to comdat folding) to process the transitive closure of all the
5134 mentioned TUs, and that can be slow. The current DWO file will have every
5135 type signature that it needs.
a2ce51a0
DE
5136 We only do this for .gdb_index because in the psymtab case we already have
5137 to read all the DWOs to build the type unit groups. */
5138
5139static struct signatured_type *
5140lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5141{
5142 struct objfile *objfile = dwarf2_per_objfile->objfile;
5143 struct dwo_file *dwo_file;
5144 struct dwo_unit find_dwo_entry, *dwo_entry;
5145 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5146 void **slot;
a2ce51a0
DE
5147
5148 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5149
6aa5f3a6
DE
5150 /* If TU skeletons have been removed then we may not have read in any
5151 TUs yet. */
5152 if (dwarf2_per_objfile->signatured_types == NULL)
5153 {
5154 dwarf2_per_objfile->signatured_types
5155 = allocate_signatured_type_table (objfile);
5156 }
a2ce51a0
DE
5157
5158 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
5159 Use the global signatured_types array to do our own comdat-folding
5160 of types. If this is the first time we're reading this TU, and
5161 the TU has an entry in .gdb_index, replace the recorded data from
5162 .gdb_index with this TU. */
a2ce51a0 5163
a2ce51a0 5164 find_sig_entry.signature = sig;
6aa5f3a6
DE
5165 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5166 &find_sig_entry, INSERT);
9a3c8263 5167 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
5168
5169 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
5170 read. Don't reassign the global entry to point to this DWO if that's
5171 the case. Also note that if the TU is already being read, it may not
5172 have come from a DWO, the program may be a mix of Fission-compiled
5173 code and non-Fission-compiled code. */
5174
5175 /* Have we already tried to read this TU?
5176 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5177 needn't exist in the global table yet). */
5178 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
5179 return sig_entry;
5180
6aa5f3a6
DE
5181 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5182 dwo_unit of the TU itself. */
5183 dwo_file = cu->dwo_unit->dwo_file;
5184
a2ce51a0
DE
5185 /* Ok, this is the first time we're reading this TU. */
5186 if (dwo_file->tus == NULL)
5187 return NULL;
5188 find_dwo_entry.signature = sig;
9a3c8263 5189 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
5190 if (dwo_entry == NULL)
5191 return NULL;
5192
6aa5f3a6
DE
5193 /* If the global table doesn't have an entry for this TU, add one. */
5194 if (sig_entry == NULL)
5195 sig_entry = add_type_unit (sig, slot);
5196
a2ce51a0 5197 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 5198 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
5199 return sig_entry;
5200}
5201
a2ce51a0
DE
5202/* Subroutine of lookup_signatured_type.
5203 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
5204 then try the DWP file. If the TU stub (skeleton) has been removed then
5205 it won't be in .gdb_index. */
a2ce51a0
DE
5206
5207static struct signatured_type *
5208lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5209{
5210 struct objfile *objfile = dwarf2_per_objfile->objfile;
5211 struct dwp_file *dwp_file = get_dwp_file ();
5212 struct dwo_unit *dwo_entry;
5213 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5214 void **slot;
a2ce51a0
DE
5215
5216 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5217 gdb_assert (dwp_file != NULL);
5218
6aa5f3a6
DE
5219 /* If TU skeletons have been removed then we may not have read in any
5220 TUs yet. */
5221 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 5222 {
6aa5f3a6
DE
5223 dwarf2_per_objfile->signatured_types
5224 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
5225 }
5226
6aa5f3a6
DE
5227 find_sig_entry.signature = sig;
5228 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5229 &find_sig_entry, INSERT);
9a3c8263 5230 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5231
5232 /* Have we already tried to read this TU?
5233 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5234 needn't exist in the global table yet). */
5235 if (sig_entry != NULL)
5236 return sig_entry;
5237
a2ce51a0
DE
5238 if (dwp_file->tus == NULL)
5239 return NULL;
57d63ce2
DE
5240 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5241 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5242 if (dwo_entry == NULL)
5243 return NULL;
5244
6aa5f3a6 5245 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5246 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5247
a2ce51a0
DE
5248 return sig_entry;
5249}
5250
380bca97 5251/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5252 Returns NULL if signature SIG is not present in the table.
5253 It is up to the caller to complain about this. */
348e048f
DE
5254
5255static struct signatured_type *
a2ce51a0 5256lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5257{
a2ce51a0
DE
5258 if (cu->dwo_unit
5259 && dwarf2_per_objfile->using_index)
5260 {
5261 /* We're in a DWO/DWP file, and we're using .gdb_index.
5262 These cases require special processing. */
5263 if (get_dwp_file () == NULL)
5264 return lookup_dwo_signatured_type (cu, sig);
5265 else
5266 return lookup_dwp_signatured_type (cu, sig);
5267 }
5268 else
5269 {
5270 struct signatured_type find_entry, *entry;
348e048f 5271
a2ce51a0
DE
5272 if (dwarf2_per_objfile->signatured_types == NULL)
5273 return NULL;
5274 find_entry.signature = sig;
9a3c8263
SM
5275 entry = ((struct signatured_type *)
5276 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5277 return entry;
5278 }
348e048f 5279}
42e7ad6c
DE
5280\f
5281/* Low level DIE reading support. */
348e048f 5282
d85a05f0
DJ
5283/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5284
5285static void
5286init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5287 struct dwarf2_cu *cu,
3019eac3
DE
5288 struct dwarf2_section_info *section,
5289 struct dwo_file *dwo_file)
d85a05f0 5290{
fceca515 5291 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5292 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5293 reader->cu = cu;
3019eac3 5294 reader->dwo_file = dwo_file;
dee91e82
DE
5295 reader->die_section = section;
5296 reader->buffer = section->buffer;
f664829e 5297 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5298 reader->comp_dir = NULL;
d85a05f0
DJ
5299}
5300
b0c7bfa9
DE
5301/* Subroutine of init_cutu_and_read_dies to simplify it.
5302 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5303 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5304 already.
5305
5306 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5307 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5308 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5309 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5310 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5311 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5312 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5313 are filled in with the info of the DIE from the DWO file.
5314 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5315 provided an abbrev table to use.
5316 The result is non-zero if a valid (non-dummy) DIE was found. */
5317
5318static int
5319read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5320 struct dwo_unit *dwo_unit,
5321 int abbrev_table_provided,
5322 struct die_info *stub_comp_unit_die,
a2ce51a0 5323 const char *stub_comp_dir,
b0c7bfa9 5324 struct die_reader_specs *result_reader,
d521ce57 5325 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5326 struct die_info **result_comp_unit_die,
5327 int *result_has_children)
5328{
5329 struct objfile *objfile = dwarf2_per_objfile->objfile;
5330 struct dwarf2_cu *cu = this_cu->cu;
5331 struct dwarf2_section_info *section;
5332 bfd *abfd;
d521ce57 5333 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5334 ULONGEST signature; /* Or dwo_id. */
5335 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5336 int i,num_extra_attrs;
5337 struct dwarf2_section_info *dwo_abbrev_section;
5338 struct attribute *attr;
5339 struct die_info *comp_unit_die;
5340
b0aeadb3
DE
5341 /* At most one of these may be provided. */
5342 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5343
b0c7bfa9
DE
5344 /* These attributes aren't processed until later:
5345 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5346 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5347 referenced later. However, these attributes are found in the stub
5348 which we won't have later. In order to not impose this complication
5349 on the rest of the code, we read them here and copy them to the
5350 DWO CU/TU die. */
b0c7bfa9
DE
5351
5352 stmt_list = NULL;
5353 low_pc = NULL;
5354 high_pc = NULL;
5355 ranges = NULL;
5356 comp_dir = NULL;
5357
5358 if (stub_comp_unit_die != NULL)
5359 {
5360 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5361 DWO file. */
5362 if (! this_cu->is_debug_types)
5363 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5364 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5365 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5366 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5367 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5368
5369 /* There should be a DW_AT_addr_base attribute here (if needed).
5370 We need the value before we can process DW_FORM_GNU_addr_index. */
5371 cu->addr_base = 0;
5372 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5373 if (attr)
5374 cu->addr_base = DW_UNSND (attr);
5375
5376 /* There should be a DW_AT_ranges_base attribute here (if needed).
5377 We need the value before we can process DW_AT_ranges. */
5378 cu->ranges_base = 0;
5379 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5380 if (attr)
5381 cu->ranges_base = DW_UNSND (attr);
5382 }
a2ce51a0
DE
5383 else if (stub_comp_dir != NULL)
5384 {
5385 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5386 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5387 comp_dir->name = DW_AT_comp_dir;
5388 comp_dir->form = DW_FORM_string;
5389 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5390 DW_STRING (comp_dir) = stub_comp_dir;
5391 }
b0c7bfa9
DE
5392
5393 /* Set up for reading the DWO CU/TU. */
5394 cu->dwo_unit = dwo_unit;
5395 section = dwo_unit->section;
5396 dwarf2_read_section (objfile, section);
a32a8923 5397 abfd = get_section_bfd_owner (section);
9c541725
PA
5398 begin_info_ptr = info_ptr = (section->buffer
5399 + to_underlying (dwo_unit->sect_off));
b0c7bfa9
DE
5400 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5401 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5402
5403 if (this_cu->is_debug_types)
5404 {
b0c7bfa9
DE
5405 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5406
43988095 5407 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
b0c7bfa9 5408 dwo_abbrev_section,
43988095 5409 info_ptr, rcuh_kind::TYPE);
a2ce51a0 5410 /* This is not an assert because it can be caused by bad debug info. */
43988095 5411 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
5412 {
5413 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5414 " TU at offset 0x%x [in module %s]"),
5415 hex_string (sig_type->signature),
43988095 5416 hex_string (cu->header.signature),
9c541725 5417 to_underlying (dwo_unit->sect_off),
a2ce51a0
DE
5418 bfd_get_filename (abfd));
5419 }
9c541725 5420 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5421 /* For DWOs coming from DWP files, we don't know the CU length
5422 nor the type's offset in the TU until now. */
5423 dwo_unit->length = get_cu_length (&cu->header);
9c541725 5424 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
5425
5426 /* Establish the type offset that can be used to lookup the type.
5427 For DWO files, we don't know it until now. */
9c541725
PA
5428 sig_type->type_offset_in_section
5429 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
5430 }
5431 else
5432 {
5433 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5434 dwo_abbrev_section,
43988095 5435 info_ptr, rcuh_kind::COMPILE);
9c541725 5436 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5437 /* For DWOs coming from DWP files, we don't know the CU length
5438 until now. */
5439 dwo_unit->length = get_cu_length (&cu->header);
5440 }
5441
02142a6c
DE
5442 /* Replace the CU's original abbrev table with the DWO's.
5443 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5444 if (abbrev_table_provided)
5445 {
5446 /* Don't free the provided abbrev table, the caller of
5447 init_cutu_and_read_dies owns it. */
5448 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5449 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5450 make_cleanup (dwarf2_free_abbrev_table, cu);
5451 }
5452 else
5453 {
5454 dwarf2_free_abbrev_table (cu);
5455 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5456 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5457 }
5458
5459 /* Read in the die, but leave space to copy over the attributes
5460 from the stub. This has the benefit of simplifying the rest of
5461 the code - all the work to maintain the illusion of a single
5462 DW_TAG_{compile,type}_unit DIE is done here. */
5463 num_extra_attrs = ((stmt_list != NULL)
5464 + (low_pc != NULL)
5465 + (high_pc != NULL)
5466 + (ranges != NULL)
5467 + (comp_dir != NULL));
5468 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5469 result_has_children, num_extra_attrs);
5470
5471 /* Copy over the attributes from the stub to the DIE we just read in. */
5472 comp_unit_die = *result_comp_unit_die;
5473 i = comp_unit_die->num_attrs;
5474 if (stmt_list != NULL)
5475 comp_unit_die->attrs[i++] = *stmt_list;
5476 if (low_pc != NULL)
5477 comp_unit_die->attrs[i++] = *low_pc;
5478 if (high_pc != NULL)
5479 comp_unit_die->attrs[i++] = *high_pc;
5480 if (ranges != NULL)
5481 comp_unit_die->attrs[i++] = *ranges;
5482 if (comp_dir != NULL)
5483 comp_unit_die->attrs[i++] = *comp_dir;
5484 comp_unit_die->num_attrs += num_extra_attrs;
5485
b4f54984 5486 if (dwarf_die_debug)
bf6af496
DE
5487 {
5488 fprintf_unfiltered (gdb_stdlog,
5489 "Read die from %s@0x%x of %s:\n",
a32a8923 5490 get_section_name (section),
bf6af496
DE
5491 (unsigned) (begin_info_ptr - section->buffer),
5492 bfd_get_filename (abfd));
b4f54984 5493 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5494 }
5495
a2ce51a0
DE
5496 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5497 TUs by skipping the stub and going directly to the entry in the DWO file.
5498 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5499 to get it via circuitous means. Blech. */
5500 if (comp_dir != NULL)
5501 result_reader->comp_dir = DW_STRING (comp_dir);
5502
b0c7bfa9
DE
5503 /* Skip dummy compilation units. */
5504 if (info_ptr >= begin_info_ptr + dwo_unit->length
5505 || peek_abbrev_code (abfd, info_ptr) == 0)
5506 return 0;
5507
5508 *result_info_ptr = info_ptr;
5509 return 1;
5510}
5511
5512/* Subroutine of init_cutu_and_read_dies to simplify it.
5513 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5514 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5515
5516static struct dwo_unit *
5517lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5518 struct die_info *comp_unit_die)
5519{
5520 struct dwarf2_cu *cu = this_cu->cu;
5521 struct attribute *attr;
5522 ULONGEST signature;
5523 struct dwo_unit *dwo_unit;
5524 const char *comp_dir, *dwo_name;
5525
a2ce51a0
DE
5526 gdb_assert (cu != NULL);
5527
b0c7bfa9 5528 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5529 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5530 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5531
5532 if (this_cu->is_debug_types)
5533 {
5534 struct signatured_type *sig_type;
5535
5536 /* Since this_cu is the first member of struct signatured_type,
5537 we can go from a pointer to one to a pointer to the other. */
5538 sig_type = (struct signatured_type *) this_cu;
5539 signature = sig_type->signature;
5540 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5541 }
5542 else
5543 {
5544 struct attribute *attr;
5545
5546 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5547 if (! attr)
5548 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5549 " [in module %s]"),
4262abfb 5550 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5551 signature = DW_UNSND (attr);
5552 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5553 signature);
5554 }
5555
b0c7bfa9
DE
5556 return dwo_unit;
5557}
5558
a2ce51a0 5559/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5560 See it for a description of the parameters.
5561 Read a TU directly from a DWO file, bypassing the stub.
5562
5563 Note: This function could be a little bit simpler if we shared cleanups
5564 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5565 to do, so we keep this function self-contained. Or we could move this
5566 into our caller, but it's complex enough already. */
a2ce51a0
DE
5567
5568static void
6aa5f3a6
DE
5569init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5570 int use_existing_cu, int keep,
a2ce51a0
DE
5571 die_reader_func_ftype *die_reader_func,
5572 void *data)
5573{
5574 struct dwarf2_cu *cu;
5575 struct signatured_type *sig_type;
6aa5f3a6 5576 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5577 struct die_reader_specs reader;
5578 const gdb_byte *info_ptr;
5579 struct die_info *comp_unit_die;
5580 int has_children;
5581
5582 /* Verify we can do the following downcast, and that we have the
5583 data we need. */
5584 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5585 sig_type = (struct signatured_type *) this_cu;
5586 gdb_assert (sig_type->dwo_unit != NULL);
5587
5588 cleanups = make_cleanup (null_cleanup, NULL);
5589
6aa5f3a6
DE
5590 if (use_existing_cu && this_cu->cu != NULL)
5591 {
5592 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5593 cu = this_cu->cu;
5594 /* There's no need to do the rereading_dwo_cu handling that
5595 init_cutu_and_read_dies does since we don't read the stub. */
5596 }
5597 else
5598 {
5599 /* If !use_existing_cu, this_cu->cu must be NULL. */
5600 gdb_assert (this_cu->cu == NULL);
8d749320 5601 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5602 init_one_comp_unit (cu, this_cu);
5603 /* If an error occurs while loading, release our storage. */
5604 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5605 }
5606
5607 /* A future optimization, if needed, would be to use an existing
5608 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5609 could share abbrev tables. */
a2ce51a0
DE
5610
5611 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5612 0 /* abbrev_table_provided */,
5613 NULL /* stub_comp_unit_die */,
5614 sig_type->dwo_unit->dwo_file->comp_dir,
5615 &reader, &info_ptr,
5616 &comp_unit_die, &has_children) == 0)
5617 {
5618 /* Dummy die. */
5619 do_cleanups (cleanups);
5620 return;
5621 }
5622
5623 /* All the "real" work is done here. */
5624 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5625
6aa5f3a6 5626 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5627 but the alternative is making the latter more complex.
5628 This function is only for the special case of using DWO files directly:
5629 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5630 if (free_cu_cleanup != NULL)
a2ce51a0 5631 {
6aa5f3a6
DE
5632 if (keep)
5633 {
5634 /* We've successfully allocated this compilation unit. Let our
5635 caller clean it up when finished with it. */
5636 discard_cleanups (free_cu_cleanup);
a2ce51a0 5637
6aa5f3a6
DE
5638 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5639 So we have to manually free the abbrev table. */
5640 dwarf2_free_abbrev_table (cu);
a2ce51a0 5641
6aa5f3a6
DE
5642 /* Link this CU into read_in_chain. */
5643 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5644 dwarf2_per_objfile->read_in_chain = this_cu;
5645 }
5646 else
5647 do_cleanups (free_cu_cleanup);
a2ce51a0 5648 }
a2ce51a0
DE
5649
5650 do_cleanups (cleanups);
5651}
5652
fd820528 5653/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5654 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5655
f4dc4d17
DE
5656 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5657 Otherwise the table specified in the comp unit header is read in and used.
5658 This is an optimization for when we already have the abbrev table.
5659
dee91e82
DE
5660 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5661 Otherwise, a new CU is allocated with xmalloc.
5662
5663 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5664 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5665
5666 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5667 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5668
70221824 5669static void
fd820528 5670init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5671 struct abbrev_table *abbrev_table,
fd820528
DE
5672 int use_existing_cu, int keep,
5673 die_reader_func_ftype *die_reader_func,
5674 void *data)
c906108c 5675{
dee91e82 5676 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5677 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5678 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5679 struct dwarf2_cu *cu;
d521ce57 5680 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5681 struct die_reader_specs reader;
d85a05f0 5682 struct die_info *comp_unit_die;
dee91e82 5683 int has_children;
d85a05f0 5684 struct attribute *attr;
365156ad 5685 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5686 struct signatured_type *sig_type = NULL;
4bdcc0c1 5687 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5688 /* Non-zero if CU currently points to a DWO file and we need to
5689 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5690 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5691 int rereading_dwo_cu = 0;
c906108c 5692
b4f54984 5693 if (dwarf_die_debug)
09406207
DE
5694 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5695 this_cu->is_debug_types ? "type" : "comp",
9c541725 5696 to_underlying (this_cu->sect_off));
09406207 5697
dee91e82
DE
5698 if (use_existing_cu)
5699 gdb_assert (keep);
23745b47 5700
a2ce51a0
DE
5701 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5702 file (instead of going through the stub), short-circuit all of this. */
5703 if (this_cu->reading_dwo_directly)
5704 {
5705 /* Narrow down the scope of possibilities to have to understand. */
5706 gdb_assert (this_cu->is_debug_types);
5707 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5708 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5709 die_reader_func, data);
a2ce51a0
DE
5710 return;
5711 }
5712
dee91e82
DE
5713 cleanups = make_cleanup (null_cleanup, NULL);
5714
5715 /* This is cheap if the section is already read in. */
5716 dwarf2_read_section (objfile, section);
5717
9c541725 5718 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
5719
5720 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5721
5722 if (use_existing_cu && this_cu->cu != NULL)
5723 {
5724 cu = this_cu->cu;
42e7ad6c
DE
5725 /* If this CU is from a DWO file we need to start over, we need to
5726 refetch the attributes from the skeleton CU.
5727 This could be optimized by retrieving those attributes from when we
5728 were here the first time: the previous comp_unit_die was stored in
5729 comp_unit_obstack. But there's no data yet that we need this
5730 optimization. */
5731 if (cu->dwo_unit != NULL)
5732 rereading_dwo_cu = 1;
dee91e82
DE
5733 }
5734 else
5735 {
5736 /* If !use_existing_cu, this_cu->cu must be NULL. */
5737 gdb_assert (this_cu->cu == NULL);
8d749320 5738 cu = XNEW (struct dwarf2_cu);
dee91e82 5739 init_one_comp_unit (cu, this_cu);
dee91e82 5740 /* If an error occurs while loading, release our storage. */
365156ad 5741 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5742 }
dee91e82 5743
b0c7bfa9 5744 /* Get the header. */
9c541725 5745 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
5746 {
5747 /* We already have the header, there's no need to read it in again. */
9c541725 5748 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
5749 }
5750 else
5751 {
3019eac3 5752 if (this_cu->is_debug_types)
dee91e82 5753 {
43988095 5754 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4bdcc0c1 5755 abbrev_section, info_ptr,
43988095 5756 rcuh_kind::TYPE);
dee91e82 5757
42e7ad6c
DE
5758 /* Since per_cu is the first member of struct signatured_type,
5759 we can go from a pointer to one to a pointer to the other. */
5760 sig_type = (struct signatured_type *) this_cu;
43988095 5761 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
5762 gdb_assert (sig_type->type_offset_in_tu
5763 == cu->header.type_cu_offset_in_tu);
5764 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 5765
42e7ad6c
DE
5766 /* LENGTH has not been set yet for type units if we're
5767 using .gdb_index. */
1ce1cefd 5768 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5769
5770 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
5771 sig_type->type_offset_in_section =
5772 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
5773
5774 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5775 }
5776 else
5777 {
4bdcc0c1
DE
5778 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5779 abbrev_section,
43988095
JK
5780 info_ptr,
5781 rcuh_kind::COMPILE);
dee91e82 5782
9c541725 5783 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 5784 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 5785 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5786 }
5787 }
10b3939b 5788
6caca83c 5789 /* Skip dummy compilation units. */
dee91e82 5790 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5791 || peek_abbrev_code (abfd, info_ptr) == 0)
5792 {
dee91e82 5793 do_cleanups (cleanups);
21b2bd31 5794 return;
6caca83c
CC
5795 }
5796
433df2d4
DE
5797 /* If we don't have them yet, read the abbrevs for this compilation unit.
5798 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5799 done. Note that it's important that if the CU had an abbrev table
5800 on entry we don't free it when we're done: Somewhere up the call stack
5801 it may be in use. */
f4dc4d17
DE
5802 if (abbrev_table != NULL)
5803 {
5804 gdb_assert (cu->abbrev_table == NULL);
9c541725 5805 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
f4dc4d17
DE
5806 cu->abbrev_table = abbrev_table;
5807 }
5808 else if (cu->abbrev_table == NULL)
dee91e82 5809 {
4bdcc0c1 5810 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5811 make_cleanup (dwarf2_free_abbrev_table, cu);
5812 }
42e7ad6c
DE
5813 else if (rereading_dwo_cu)
5814 {
5815 dwarf2_free_abbrev_table (cu);
5816 dwarf2_read_abbrevs (cu, abbrev_section);
5817 }
af703f96 5818
dee91e82 5819 /* Read the top level CU/TU die. */
3019eac3 5820 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5821 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5822
b0c7bfa9
DE
5823 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5824 from the DWO file.
5825 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5826 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5827 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5828 if (attr)
5829 {
3019eac3 5830 struct dwo_unit *dwo_unit;
b0c7bfa9 5831 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5832
5833 if (has_children)
6a506a2d
DE
5834 {
5835 complaint (&symfile_complaints,
5836 _("compilation unit with DW_AT_GNU_dwo_name"
5837 " has children (offset 0x%x) [in module %s]"),
9c541725 5838 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6a506a2d 5839 }
b0c7bfa9 5840 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5841 if (dwo_unit != NULL)
3019eac3 5842 {
6a506a2d
DE
5843 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5844 abbrev_table != NULL,
a2ce51a0 5845 comp_unit_die, NULL,
6a506a2d
DE
5846 &reader, &info_ptr,
5847 &dwo_comp_unit_die, &has_children) == 0)
5848 {
5849 /* Dummy die. */
5850 do_cleanups (cleanups);
5851 return;
5852 }
5853 comp_unit_die = dwo_comp_unit_die;
5854 }
5855 else
5856 {
5857 /* Yikes, we couldn't find the rest of the DIE, we only have
5858 the stub. A complaint has already been logged. There's
5859 not much more we can do except pass on the stub DIE to
5860 die_reader_func. We don't want to throw an error on bad
5861 debug info. */
3019eac3
DE
5862 }
5863 }
5864
b0c7bfa9 5865 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5866 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5867
b0c7bfa9 5868 /* Done, clean up. */
365156ad 5869 if (free_cu_cleanup != NULL)
348e048f 5870 {
365156ad
TT
5871 if (keep)
5872 {
5873 /* We've successfully allocated this compilation unit. Let our
5874 caller clean it up when finished with it. */
5875 discard_cleanups (free_cu_cleanup);
dee91e82 5876
365156ad
TT
5877 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5878 So we have to manually free the abbrev table. */
5879 dwarf2_free_abbrev_table (cu);
dee91e82 5880
365156ad
TT
5881 /* Link this CU into read_in_chain. */
5882 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5883 dwarf2_per_objfile->read_in_chain = this_cu;
5884 }
5885 else
5886 do_cleanups (free_cu_cleanup);
348e048f 5887 }
365156ad
TT
5888
5889 do_cleanups (cleanups);
dee91e82
DE
5890}
5891
33e80786
DE
5892/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5893 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5894 to have already done the lookup to find the DWO file).
dee91e82
DE
5895
5896 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5897 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5898
5899 We fill in THIS_CU->length.
5900
5901 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5902 linker) then DIE_READER_FUNC will not get called.
5903
5904 THIS_CU->cu is always freed when done.
3019eac3
DE
5905 This is done in order to not leave THIS_CU->cu in a state where we have
5906 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5907
5908static void
5909init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5910 struct dwo_file *dwo_file,
dee91e82
DE
5911 die_reader_func_ftype *die_reader_func,
5912 void *data)
5913{
5914 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5915 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5916 bfd *abfd = get_section_bfd_owner (section);
33e80786 5917 struct dwarf2_section_info *abbrev_section;
dee91e82 5918 struct dwarf2_cu cu;
d521ce57 5919 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5920 struct die_reader_specs reader;
5921 struct cleanup *cleanups;
5922 struct die_info *comp_unit_die;
5923 int has_children;
5924
b4f54984 5925 if (dwarf_die_debug)
09406207
DE
5926 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5927 this_cu->is_debug_types ? "type" : "comp",
9c541725 5928 to_underlying (this_cu->sect_off));
09406207 5929
dee91e82
DE
5930 gdb_assert (this_cu->cu == NULL);
5931
33e80786
DE
5932 abbrev_section = (dwo_file != NULL
5933 ? &dwo_file->sections.abbrev
5934 : get_abbrev_section_for_cu (this_cu));
5935
dee91e82
DE
5936 /* This is cheap if the section is already read in. */
5937 dwarf2_read_section (objfile, section);
5938
5939 init_one_comp_unit (&cu, this_cu);
5940
5941 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5942
9c541725 5943 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
4bdcc0c1
DE
5944 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5945 abbrev_section, info_ptr,
43988095
JK
5946 (this_cu->is_debug_types
5947 ? rcuh_kind::TYPE
5948 : rcuh_kind::COMPILE));
dee91e82 5949
1ce1cefd 5950 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5951
5952 /* Skip dummy compilation units. */
5953 if (info_ptr >= begin_info_ptr + this_cu->length
5954 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5955 {
dee91e82 5956 do_cleanups (cleanups);
21b2bd31 5957 return;
93311388 5958 }
72bf9492 5959
dee91e82
DE
5960 dwarf2_read_abbrevs (&cu, abbrev_section);
5961 make_cleanup (dwarf2_free_abbrev_table, &cu);
5962
3019eac3 5963 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5964 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5965
5966 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5967
5968 do_cleanups (cleanups);
5969}
5970
3019eac3
DE
5971/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5972 does not lookup the specified DWO file.
5973 This cannot be used to read DWO files.
dee91e82
DE
5974
5975 THIS_CU->cu is always freed when done.
3019eac3
DE
5976 This is done in order to not leave THIS_CU->cu in a state where we have
5977 to care whether it refers to the "main" CU or the DWO CU.
5978 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5979
5980static void
5981init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5982 die_reader_func_ftype *die_reader_func,
5983 void *data)
5984{
33e80786 5985 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5986}
0018ea6f
DE
5987\f
5988/* Type Unit Groups.
dee91e82 5989
0018ea6f
DE
5990 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5991 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5992 so that all types coming from the same compilation (.o file) are grouped
5993 together. A future step could be to put the types in the same symtab as
5994 the CU the types ultimately came from. */
ff013f42 5995
f4dc4d17
DE
5996static hashval_t
5997hash_type_unit_group (const void *item)
5998{
9a3c8263
SM
5999 const struct type_unit_group *tu_group
6000 = (const struct type_unit_group *) item;
f4dc4d17 6001
094b34ac 6002 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 6003}
348e048f
DE
6004
6005static int
f4dc4d17 6006eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 6007{
9a3c8263
SM
6008 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6009 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 6010
094b34ac 6011 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 6012}
348e048f 6013
f4dc4d17
DE
6014/* Allocate a hash table for type unit groups. */
6015
6016static htab_t
6017allocate_type_unit_groups_table (void)
6018{
6019 return htab_create_alloc_ex (3,
6020 hash_type_unit_group,
6021 eq_type_unit_group,
6022 NULL,
6023 &dwarf2_per_objfile->objfile->objfile_obstack,
6024 hashtab_obstack_allocate,
6025 dummy_obstack_deallocate);
6026}
dee91e82 6027
f4dc4d17
DE
6028/* Type units that don't have DW_AT_stmt_list are grouped into their own
6029 partial symtabs. We combine several TUs per psymtab to not let the size
6030 of any one psymtab grow too big. */
6031#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6032#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 6033
094b34ac 6034/* Helper routine for get_type_unit_group.
f4dc4d17
DE
6035 Create the type_unit_group object used to hold one or more TUs. */
6036
6037static struct type_unit_group *
094b34ac 6038create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
6039{
6040 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 6041 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 6042 struct type_unit_group *tu_group;
f4dc4d17
DE
6043
6044 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6045 struct type_unit_group);
094b34ac 6046 per_cu = &tu_group->per_cu;
f4dc4d17 6047 per_cu->objfile = objfile;
f4dc4d17 6048
094b34ac
DE
6049 if (dwarf2_per_objfile->using_index)
6050 {
6051 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6052 struct dwarf2_per_cu_quick_data);
094b34ac
DE
6053 }
6054 else
6055 {
9c541725 6056 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac
DE
6057 struct partial_symtab *pst;
6058 char *name;
6059
6060 /* Give the symtab a useful name for debug purposes. */
6061 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6062 name = xstrprintf ("<type_units_%d>",
6063 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6064 else
6065 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6066
6067 pst = create_partial_symtab (per_cu, name);
6068 pst->anonymous = 1;
f4dc4d17 6069
094b34ac
DE
6070 xfree (name);
6071 }
f4dc4d17 6072
094b34ac 6073 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 6074 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
6075
6076 return tu_group;
6077}
6078
094b34ac
DE
6079/* Look up the type_unit_group for type unit CU, and create it if necessary.
6080 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
6081
6082static struct type_unit_group *
ff39bb5e 6083get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
6084{
6085 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6086 struct type_unit_group *tu_group;
6087 void **slot;
6088 unsigned int line_offset;
6089 struct type_unit_group type_unit_group_for_lookup;
6090
6091 if (dwarf2_per_objfile->type_unit_groups == NULL)
6092 {
6093 dwarf2_per_objfile->type_unit_groups =
6094 allocate_type_unit_groups_table ();
6095 }
6096
6097 /* Do we need to create a new group, or can we use an existing one? */
6098
6099 if (stmt_list)
6100 {
6101 line_offset = DW_UNSND (stmt_list);
6102 ++tu_stats->nr_symtab_sharers;
6103 }
6104 else
6105 {
6106 /* Ugh, no stmt_list. Rare, but we have to handle it.
6107 We can do various things here like create one group per TU or
6108 spread them over multiple groups to split up the expansion work.
6109 To avoid worst case scenarios (too many groups or too large groups)
6110 we, umm, group them in bunches. */
6111 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6112 | (tu_stats->nr_stmt_less_type_units
6113 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6114 ++tu_stats->nr_stmt_less_type_units;
6115 }
6116
094b34ac 6117 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 6118 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
6119 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6120 &type_unit_group_for_lookup, INSERT);
6121 if (*slot != NULL)
6122 {
9a3c8263 6123 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
6124 gdb_assert (tu_group != NULL);
6125 }
6126 else
6127 {
9c541725 6128 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 6129 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
6130 *slot = tu_group;
6131 ++tu_stats->nr_symtabs;
6132 }
6133
6134 return tu_group;
6135}
0018ea6f
DE
6136\f
6137/* Partial symbol tables. */
6138
6139/* Create a psymtab named NAME and assign it to PER_CU.
6140
6141 The caller must fill in the following details:
6142 dirname, textlow, texthigh. */
6143
6144static struct partial_symtab *
6145create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6146{
6147 struct objfile *objfile = per_cu->objfile;
6148 struct partial_symtab *pst;
6149
18a94d75 6150 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
6151 objfile->global_psymbols.next,
6152 objfile->static_psymbols.next);
6153
6154 pst->psymtabs_addrmap_supported = 1;
6155
6156 /* This is the glue that links PST into GDB's symbol API. */
6157 pst->read_symtab_private = per_cu;
6158 pst->read_symtab = dwarf2_read_symtab;
6159 per_cu->v.psymtab = pst;
6160
6161 return pst;
6162}
6163
b93601f3
TT
6164/* The DATA object passed to process_psymtab_comp_unit_reader has this
6165 type. */
6166
6167struct process_psymtab_comp_unit_data
6168{
6169 /* True if we are reading a DW_TAG_partial_unit. */
6170
6171 int want_partial_unit;
6172
6173 /* The "pretend" language that is used if the CU doesn't declare a
6174 language. */
6175
6176 enum language pretend_language;
6177};
6178
0018ea6f
DE
6179/* die_reader_func for process_psymtab_comp_unit. */
6180
6181static void
6182process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6183 const gdb_byte *info_ptr,
0018ea6f
DE
6184 struct die_info *comp_unit_die,
6185 int has_children,
6186 void *data)
6187{
6188 struct dwarf2_cu *cu = reader->cu;
6189 struct objfile *objfile = cu->objfile;
3e29f34a 6190 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 6191 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
6192 CORE_ADDR baseaddr;
6193 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6194 struct partial_symtab *pst;
3a2b436a 6195 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 6196 const char *filename;
9a3c8263
SM
6197 struct process_psymtab_comp_unit_data *info
6198 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 6199
b93601f3 6200 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
6201 return;
6202
6203 gdb_assert (! per_cu->is_debug_types);
6204
b93601f3 6205 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
6206
6207 cu->list_in_scope = &file_symbols;
6208
6209 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
6210 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6211 if (filename == NULL)
0018ea6f 6212 filename = "";
0018ea6f
DE
6213
6214 pst = create_partial_symtab (per_cu, filename);
6215
6216 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 6217 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
6218
6219 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6220
6221 dwarf2_find_base_address (comp_unit_die, cu);
6222
6223 /* Possibly set the default values of LOWPC and HIGHPC from
6224 `DW_AT_ranges'. */
3a2b436a
JK
6225 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6226 &best_highpc, cu, pst);
6227 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6228 /* Store the contiguous range if it is not empty; it can be empty for
6229 CUs with no code. */
6230 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6231 gdbarch_adjust_dwarf2_addr (gdbarch,
6232 best_lowpc + baseaddr),
6233 gdbarch_adjust_dwarf2_addr (gdbarch,
6234 best_highpc + baseaddr) - 1,
6235 pst);
0018ea6f
DE
6236
6237 /* Check if comp unit has_children.
6238 If so, read the rest of the partial symbols from this comp unit.
6239 If not, there's no more debug_info for this comp unit. */
6240 if (has_children)
6241 {
6242 struct partial_die_info *first_die;
6243 CORE_ADDR lowpc, highpc;
6244
6245 lowpc = ((CORE_ADDR) -1);
6246 highpc = ((CORE_ADDR) 0);
6247
6248 first_die = load_partial_dies (reader, info_ptr, 1);
6249
6250 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6251 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6252
6253 /* If we didn't find a lowpc, set it to highpc to avoid
6254 complaints from `maint check'. */
6255 if (lowpc == ((CORE_ADDR) -1))
6256 lowpc = highpc;
6257
6258 /* If the compilation unit didn't have an explicit address range,
6259 then use the information extracted from its child dies. */
e385593e 6260 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6261 {
6262 best_lowpc = lowpc;
6263 best_highpc = highpc;
6264 }
6265 }
3e29f34a
MR
6266 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6267 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6268
8763cede 6269 end_psymtab_common (objfile, pst);
0018ea6f
DE
6270
6271 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6272 {
6273 int i;
6274 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6275 struct dwarf2_per_cu_data *iter;
6276
6277 /* Fill in 'dependencies' here; we fill in 'users' in a
6278 post-pass. */
6279 pst->number_of_dependencies = len;
8d749320
SM
6280 pst->dependencies =
6281 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6282 for (i = 0;
6283 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6284 i, iter);
6285 ++i)
6286 pst->dependencies[i] = iter->v.psymtab;
6287
6288 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6289 }
6290
6291 /* Get the list of files included in the current compilation unit,
6292 and build a psymtab for each of them. */
6293 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6294
b4f54984 6295 if (dwarf_read_debug)
0018ea6f
DE
6296 {
6297 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6298
6299 fprintf_unfiltered (gdb_stdlog,
6300 "Psymtab for %s unit @0x%x: %s - %s"
6301 ", %d global, %d static syms\n",
6302 per_cu->is_debug_types ? "type" : "comp",
9c541725 6303 to_underlying (per_cu->sect_off),
0018ea6f
DE
6304 paddress (gdbarch, pst->textlow),
6305 paddress (gdbarch, pst->texthigh),
6306 pst->n_global_syms, pst->n_static_syms);
6307 }
6308}
6309
6310/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6311 Process compilation unit THIS_CU for a psymtab. */
6312
6313static void
6314process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6315 int want_partial_unit,
6316 enum language pretend_language)
0018ea6f 6317{
b93601f3
TT
6318 struct process_psymtab_comp_unit_data info;
6319
0018ea6f
DE
6320 /* If this compilation unit was already read in, free the
6321 cached copy in order to read it in again. This is
6322 necessary because we skipped some symbols when we first
6323 read in the compilation unit (see load_partial_dies).
6324 This problem could be avoided, but the benefit is unclear. */
6325 if (this_cu->cu != NULL)
6326 free_one_cached_comp_unit (this_cu);
6327
6328 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6329 info.want_partial_unit = want_partial_unit;
6330 info.pretend_language = pretend_language;
0018ea6f
DE
6331 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6332 process_psymtab_comp_unit_reader,
b93601f3 6333 &info);
0018ea6f
DE
6334
6335 /* Age out any secondary CUs. */
6336 age_cached_comp_units ();
6337}
f4dc4d17
DE
6338
6339/* Reader function for build_type_psymtabs. */
6340
6341static void
6342build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6343 const gdb_byte *info_ptr,
f4dc4d17
DE
6344 struct die_info *type_unit_die,
6345 int has_children,
6346 void *data)
6347{
6348 struct objfile *objfile = dwarf2_per_objfile->objfile;
6349 struct dwarf2_cu *cu = reader->cu;
6350 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6351 struct signatured_type *sig_type;
f4dc4d17
DE
6352 struct type_unit_group *tu_group;
6353 struct attribute *attr;
6354 struct partial_die_info *first_die;
6355 CORE_ADDR lowpc, highpc;
6356 struct partial_symtab *pst;
6357
6358 gdb_assert (data == NULL);
0186c6a7
DE
6359 gdb_assert (per_cu->is_debug_types);
6360 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6361
6362 if (! has_children)
6363 return;
6364
6365 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6366 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6367
0186c6a7 6368 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6369
6370 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6371 cu->list_in_scope = &file_symbols;
6372 pst = create_partial_symtab (per_cu, "");
6373 pst->anonymous = 1;
6374
6375 first_die = load_partial_dies (reader, info_ptr, 1);
6376
6377 lowpc = (CORE_ADDR) -1;
6378 highpc = (CORE_ADDR) 0;
6379 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6380
8763cede 6381 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6382}
6383
73051182
DE
6384/* Struct used to sort TUs by their abbreviation table offset. */
6385
6386struct tu_abbrev_offset
6387{
6388 struct signatured_type *sig_type;
6389 sect_offset abbrev_offset;
6390};
6391
6392/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6393
6394static int
6395sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6396{
9a3c8263
SM
6397 const struct tu_abbrev_offset * const *a
6398 = (const struct tu_abbrev_offset * const*) ap;
6399 const struct tu_abbrev_offset * const *b
6400 = (const struct tu_abbrev_offset * const*) bp;
9c541725
PA
6401 sect_offset aoff = (*a)->abbrev_offset;
6402 sect_offset boff = (*b)->abbrev_offset;
73051182
DE
6403
6404 return (aoff > boff) - (aoff < boff);
6405}
6406
6407/* Efficiently read all the type units.
6408 This does the bulk of the work for build_type_psymtabs.
6409
6410 The efficiency is because we sort TUs by the abbrev table they use and
6411 only read each abbrev table once. In one program there are 200K TUs
6412 sharing 8K abbrev tables.
6413
6414 The main purpose of this function is to support building the
6415 dwarf2_per_objfile->type_unit_groups table.
6416 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6417 can collapse the search space by grouping them by stmt_list.
6418 The savings can be significant, in the same program from above the 200K TUs
6419 share 8K stmt_list tables.
6420
6421 FUNC is expected to call get_type_unit_group, which will create the
6422 struct type_unit_group if necessary and add it to
6423 dwarf2_per_objfile->type_unit_groups. */
6424
6425static void
6426build_type_psymtabs_1 (void)
6427{
73051182
DE
6428 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6429 struct cleanup *cleanups;
6430 struct abbrev_table *abbrev_table;
6431 sect_offset abbrev_offset;
6432 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6433 int i;
6434
6435 /* It's up to the caller to not call us multiple times. */
6436 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6437
6438 if (dwarf2_per_objfile->n_type_units == 0)
6439 return;
6440
6441 /* TUs typically share abbrev tables, and there can be way more TUs than
6442 abbrev tables. Sort by abbrev table to reduce the number of times we
6443 read each abbrev table in.
6444 Alternatives are to punt or to maintain a cache of abbrev tables.
6445 This is simpler and efficient enough for now.
6446
6447 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6448 symtab to use). Typically TUs with the same abbrev offset have the same
6449 stmt_list value too so in practice this should work well.
6450
6451 The basic algorithm here is:
6452
6453 sort TUs by abbrev table
6454 for each TU with same abbrev table:
6455 read abbrev table if first user
6456 read TU top level DIE
6457 [IWBN if DWO skeletons had DW_AT_stmt_list]
6458 call FUNC */
6459
b4f54984 6460 if (dwarf_read_debug)
73051182
DE
6461 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6462
6463 /* Sort in a separate table to maintain the order of all_type_units
6464 for .gdb_index: TU indices directly index all_type_units. */
6465 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6466 dwarf2_per_objfile->n_type_units);
6467 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6468 {
6469 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6470
6471 sorted_by_abbrev[i].sig_type = sig_type;
6472 sorted_by_abbrev[i].abbrev_offset =
6473 read_abbrev_offset (sig_type->per_cu.section,
9c541725 6474 sig_type->per_cu.sect_off);
73051182
DE
6475 }
6476 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6477 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6478 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6479
9c541725 6480 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182
DE
6481 abbrev_table = NULL;
6482 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6483
6484 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6485 {
6486 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6487
6488 /* Switch to the next abbrev table if necessary. */
6489 if (abbrev_table == NULL
9c541725 6490 || tu->abbrev_offset != abbrev_offset)
73051182
DE
6491 {
6492 if (abbrev_table != NULL)
6493 {
6494 abbrev_table_free (abbrev_table);
6495 /* Reset to NULL in case abbrev_table_read_table throws
6496 an error: abbrev_table_free_cleanup will get called. */
6497 abbrev_table = NULL;
6498 }
6499 abbrev_offset = tu->abbrev_offset;
6500 abbrev_table =
6501 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6502 abbrev_offset);
6503 ++tu_stats->nr_uniq_abbrev_tables;
6504 }
6505
6506 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6507 build_type_psymtabs_reader, NULL);
6508 }
6509
73051182 6510 do_cleanups (cleanups);
6aa5f3a6 6511}
73051182 6512
6aa5f3a6
DE
6513/* Print collected type unit statistics. */
6514
6515static void
6516print_tu_stats (void)
6517{
6518 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6519
6520 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6521 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6522 dwarf2_per_objfile->n_type_units);
6523 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6524 tu_stats->nr_uniq_abbrev_tables);
6525 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6526 tu_stats->nr_symtabs);
6527 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6528 tu_stats->nr_symtab_sharers);
6529 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6530 tu_stats->nr_stmt_less_type_units);
6531 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6532 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6533}
6534
f4dc4d17
DE
6535/* Traversal function for build_type_psymtabs. */
6536
6537static int
6538build_type_psymtab_dependencies (void **slot, void *info)
6539{
6540 struct objfile *objfile = dwarf2_per_objfile->objfile;
6541 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6542 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6543 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6544 int len = VEC_length (sig_type_ptr, tu_group->tus);
6545 struct signatured_type *iter;
f4dc4d17
DE
6546 int i;
6547
6548 gdb_assert (len > 0);
0186c6a7 6549 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6550
6551 pst->number_of_dependencies = len;
8d749320
SM
6552 pst->dependencies =
6553 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6554 for (i = 0;
0186c6a7 6555 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6556 ++i)
6557 {
0186c6a7
DE
6558 gdb_assert (iter->per_cu.is_debug_types);
6559 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6560 iter->type_unit_group = tu_group;
f4dc4d17
DE
6561 }
6562
0186c6a7 6563 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6564
6565 return 1;
6566}
6567
6568/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6569 Build partial symbol tables for the .debug_types comp-units. */
6570
6571static void
6572build_type_psymtabs (struct objfile *objfile)
6573{
0e50663e 6574 if (! create_all_type_units (objfile))
348e048f
DE
6575 return;
6576
73051182 6577 build_type_psymtabs_1 ();
6aa5f3a6 6578}
f4dc4d17 6579
6aa5f3a6
DE
6580/* Traversal function for process_skeletonless_type_unit.
6581 Read a TU in a DWO file and build partial symbols for it. */
6582
6583static int
6584process_skeletonless_type_unit (void **slot, void *info)
6585{
6586 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6587 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6588 struct signatured_type find_entry, *entry;
6589
6590 /* If this TU doesn't exist in the global table, add it and read it in. */
6591
6592 if (dwarf2_per_objfile->signatured_types == NULL)
6593 {
6594 dwarf2_per_objfile->signatured_types
6595 = allocate_signatured_type_table (objfile);
6596 }
6597
6598 find_entry.signature = dwo_unit->signature;
6599 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6600 INSERT);
6601 /* If we've already seen this type there's nothing to do. What's happening
6602 is we're doing our own version of comdat-folding here. */
6603 if (*slot != NULL)
6604 return 1;
6605
6606 /* This does the job that create_all_type_units would have done for
6607 this TU. */
6608 entry = add_type_unit (dwo_unit->signature, slot);
6609 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6610 *slot = entry;
6611
6612 /* This does the job that build_type_psymtabs_1 would have done. */
6613 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6614 build_type_psymtabs_reader, NULL);
6615
6616 return 1;
6617}
6618
6619/* Traversal function for process_skeletonless_type_units. */
6620
6621static int
6622process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6623{
6624 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6625
6626 if (dwo_file->tus != NULL)
6627 {
6628 htab_traverse_noresize (dwo_file->tus,
6629 process_skeletonless_type_unit, info);
6630 }
6631
6632 return 1;
6633}
6634
6635/* Scan all TUs of DWO files, verifying we've processed them.
6636 This is needed in case a TU was emitted without its skeleton.
6637 Note: This can't be done until we know what all the DWO files are. */
6638
6639static void
6640process_skeletonless_type_units (struct objfile *objfile)
6641{
6642 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6643 if (get_dwp_file () == NULL
6644 && dwarf2_per_objfile->dwo_files != NULL)
6645 {
6646 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6647 process_dwo_file_for_skeletonless_type_units,
6648 objfile);
6649 }
348e048f
DE
6650}
6651
60606b2c
TT
6652/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6653
6654static void
6655psymtabs_addrmap_cleanup (void *o)
6656{
9a3c8263 6657 struct objfile *objfile = (struct objfile *) o;
ec61707d 6658
60606b2c
TT
6659 objfile->psymtabs_addrmap = NULL;
6660}
6661
95554aad
TT
6662/* Compute the 'user' field for each psymtab in OBJFILE. */
6663
6664static void
6665set_partial_user (struct objfile *objfile)
6666{
6667 int i;
6668
6669 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6670 {
8832e7e3 6671 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6672 struct partial_symtab *pst = per_cu->v.psymtab;
6673 int j;
6674
36586728
TT
6675 if (pst == NULL)
6676 continue;
6677
95554aad
TT
6678 for (j = 0; j < pst->number_of_dependencies; ++j)
6679 {
6680 /* Set the 'user' field only if it is not already set. */
6681 if (pst->dependencies[j]->user == NULL)
6682 pst->dependencies[j]->user = pst;
6683 }
6684 }
6685}
6686
93311388
DE
6687/* Build the partial symbol table by doing a quick pass through the
6688 .debug_info and .debug_abbrev sections. */
72bf9492 6689
93311388 6690static void
c67a9c90 6691dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6692{
60606b2c 6693 struct cleanup *back_to, *addrmap_cleanup;
21b2bd31 6694 int i;
93311388 6695
b4f54984 6696 if (dwarf_read_debug)
45cfd468
DE
6697 {
6698 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6699 objfile_name (objfile));
45cfd468
DE
6700 }
6701
98bfdba5
PA
6702 dwarf2_per_objfile->reading_partial_symbols = 1;
6703
be391dca 6704 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6705
93311388
DE
6706 /* Any cached compilation units will be linked by the per-objfile
6707 read_in_chain. Make sure to free them when we're done. */
6708 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6709
348e048f
DE
6710 build_type_psymtabs (objfile);
6711
93311388 6712 create_all_comp_units (objfile);
c906108c 6713
60606b2c
TT
6714 /* Create a temporary address map on a temporary obstack. We later
6715 copy this to the final obstack. */
8268c778 6716 auto_obstack temp_obstack;
60606b2c
TT
6717 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6718 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6719
21b2bd31 6720 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6721 {
8832e7e3 6722 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6723
b93601f3 6724 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6725 }
ff013f42 6726
6aa5f3a6
DE
6727 /* This has to wait until we read the CUs, we need the list of DWOs. */
6728 process_skeletonless_type_units (objfile);
6729
6730 /* Now that all TUs have been processed we can fill in the dependencies. */
6731 if (dwarf2_per_objfile->type_unit_groups != NULL)
6732 {
6733 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6734 build_type_psymtab_dependencies, NULL);
6735 }
6736
b4f54984 6737 if (dwarf_read_debug)
6aa5f3a6
DE
6738 print_tu_stats ();
6739
95554aad
TT
6740 set_partial_user (objfile);
6741
ff013f42
JK
6742 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6743 &objfile->objfile_obstack);
60606b2c 6744 discard_cleanups (addrmap_cleanup);
ff013f42 6745
ae038cb0 6746 do_cleanups (back_to);
45cfd468 6747
b4f54984 6748 if (dwarf_read_debug)
45cfd468 6749 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6750 objfile_name (objfile));
ae038cb0
DJ
6751}
6752
3019eac3 6753/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6754
6755static void
dee91e82 6756load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6757 const gdb_byte *info_ptr,
dee91e82
DE
6758 struct die_info *comp_unit_die,
6759 int has_children,
6760 void *data)
ae038cb0 6761{
dee91e82 6762 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6763
95554aad 6764 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6765
ae038cb0
DJ
6766 /* Check if comp unit has_children.
6767 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6768 If not, there's no more debug_info for this comp unit. */
d85a05f0 6769 if (has_children)
dee91e82
DE
6770 load_partial_dies (reader, info_ptr, 0);
6771}
98bfdba5 6772
dee91e82
DE
6773/* Load the partial DIEs for a secondary CU into memory.
6774 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6775
dee91e82
DE
6776static void
6777load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6778{
f4dc4d17
DE
6779 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6780 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6781}
6782
ae038cb0 6783static void
36586728
TT
6784read_comp_units_from_section (struct objfile *objfile,
6785 struct dwarf2_section_info *section,
6786 unsigned int is_dwz,
6787 int *n_allocated,
6788 int *n_comp_units,
6789 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6790{
d521ce57 6791 const gdb_byte *info_ptr;
a32a8923 6792 bfd *abfd = get_section_bfd_owner (section);
be391dca 6793
b4f54984 6794 if (dwarf_read_debug)
bf6af496 6795 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6796 get_section_name (section),
6797 get_section_file_name (section));
bf6af496 6798
36586728 6799 dwarf2_read_section (objfile, section);
ae038cb0 6800
36586728 6801 info_ptr = section->buffer;
6e70227d 6802
36586728 6803 while (info_ptr < section->buffer + section->size)
ae038cb0 6804 {
c764a876 6805 unsigned int length, initial_length_size;
ae038cb0 6806 struct dwarf2_per_cu_data *this_cu;
ae038cb0 6807
9c541725 6808 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0
DJ
6809
6810 /* Read just enough information to find out where the next
6811 compilation unit is. */
36586728 6812 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6813
6814 /* Save the compilation unit for later lookup. */
8d749320 6815 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0 6816 memset (this_cu, 0, sizeof (*this_cu));
9c541725 6817 this_cu->sect_off = sect_off;
c764a876 6818 this_cu->length = length + initial_length_size;
36586728 6819 this_cu->is_dwz = is_dwz;
9291a0cd 6820 this_cu->objfile = objfile;
8a0459fd 6821 this_cu->section = section;
ae038cb0 6822
36586728 6823 if (*n_comp_units == *n_allocated)
ae038cb0 6824 {
36586728 6825 *n_allocated *= 2;
224c3ddb
SM
6826 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6827 *all_comp_units, *n_allocated);
ae038cb0 6828 }
36586728
TT
6829 (*all_comp_units)[*n_comp_units] = this_cu;
6830 ++*n_comp_units;
ae038cb0
DJ
6831
6832 info_ptr = info_ptr + this_cu->length;
6833 }
36586728
TT
6834}
6835
6836/* Create a list of all compilation units in OBJFILE.
6837 This is only done for -readnow and building partial symtabs. */
6838
6839static void
6840create_all_comp_units (struct objfile *objfile)
6841{
6842 int n_allocated;
6843 int n_comp_units;
6844 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6845 struct dwz_file *dwz;
36586728
TT
6846
6847 n_comp_units = 0;
6848 n_allocated = 10;
8d749320 6849 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6850
6851 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6852 &n_allocated, &n_comp_units, &all_comp_units);
6853
4db1a1dc
TT
6854 dwz = dwarf2_get_dwz_file ();
6855 if (dwz != NULL)
6856 read_comp_units_from_section (objfile, &dwz->info, 1,
6857 &n_allocated, &n_comp_units,
6858 &all_comp_units);
ae038cb0 6859
8d749320
SM
6860 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6861 struct dwarf2_per_cu_data *,
6862 n_comp_units);
ae038cb0
DJ
6863 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6864 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6865 xfree (all_comp_units);
6866 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6867}
6868
5734ee8b 6869/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6870 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6871 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6872 DW_AT_ranges). See the comments of add_partial_subprogram on how
6873 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6874
72bf9492
DJ
6875static void
6876scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6877 CORE_ADDR *highpc, int set_addrmap,
6878 struct dwarf2_cu *cu)
c906108c 6879{
72bf9492 6880 struct partial_die_info *pdi;
c906108c 6881
91c24f0a
DC
6882 /* Now, march along the PDI's, descending into ones which have
6883 interesting children but skipping the children of the other ones,
6884 until we reach the end of the compilation unit. */
c906108c 6885
72bf9492 6886 pdi = first_die;
91c24f0a 6887
72bf9492
DJ
6888 while (pdi != NULL)
6889 {
6890 fixup_partial_die (pdi, cu);
c906108c 6891
f55ee35c 6892 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6893 children, so we need to look at them. Ditto for anonymous
6894 enums. */
933c6fe4 6895
72bf9492 6896 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6897 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6898 || pdi->tag == DW_TAG_imported_unit)
c906108c 6899 {
72bf9492 6900 switch (pdi->tag)
c906108c
SS
6901 {
6902 case DW_TAG_subprogram:
cdc07690 6903 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6904 break;
72929c62 6905 case DW_TAG_constant:
c906108c
SS
6906 case DW_TAG_variable:
6907 case DW_TAG_typedef:
91c24f0a 6908 case DW_TAG_union_type:
72bf9492 6909 if (!pdi->is_declaration)
63d06c5c 6910 {
72bf9492 6911 add_partial_symbol (pdi, cu);
63d06c5c
DC
6912 }
6913 break;
c906108c 6914 case DW_TAG_class_type:
680b30c7 6915 case DW_TAG_interface_type:
c906108c 6916 case DW_TAG_structure_type:
72bf9492 6917 if (!pdi->is_declaration)
c906108c 6918 {
72bf9492 6919 add_partial_symbol (pdi, cu);
c906108c 6920 }
e98c9e7c
TT
6921 if (cu->language == language_rust && pdi->has_children)
6922 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6923 set_addrmap, cu);
c906108c 6924 break;
91c24f0a 6925 case DW_TAG_enumeration_type:
72bf9492
DJ
6926 if (!pdi->is_declaration)
6927 add_partial_enumeration (pdi, cu);
c906108c
SS
6928 break;
6929 case DW_TAG_base_type:
a02abb62 6930 case DW_TAG_subrange_type:
c906108c 6931 /* File scope base type definitions are added to the partial
c5aa993b 6932 symbol table. */
72bf9492 6933 add_partial_symbol (pdi, cu);
c906108c 6934 break;
d9fa45fe 6935 case DW_TAG_namespace:
cdc07690 6936 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6937 break;
5d7cb8df 6938 case DW_TAG_module:
cdc07690 6939 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6940 break;
95554aad
TT
6941 case DW_TAG_imported_unit:
6942 {
6943 struct dwarf2_per_cu_data *per_cu;
6944
f4dc4d17
DE
6945 /* For now we don't handle imported units in type units. */
6946 if (cu->per_cu->is_debug_types)
6947 {
6948 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6949 " supported in type units [in module %s]"),
4262abfb 6950 objfile_name (cu->objfile));
f4dc4d17
DE
6951 }
6952
9c541725 6953 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
36586728 6954 pdi->is_dwz,
95554aad
TT
6955 cu->objfile);
6956
6957 /* Go read the partial unit, if needed. */
6958 if (per_cu->v.psymtab == NULL)
b93601f3 6959 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6960
f4dc4d17 6961 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6962 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6963 }
6964 break;
74921315
KS
6965 case DW_TAG_imported_declaration:
6966 add_partial_symbol (pdi, cu);
6967 break;
c906108c
SS
6968 default:
6969 break;
6970 }
6971 }
6972
72bf9492
DJ
6973 /* If the die has a sibling, skip to the sibling. */
6974
6975 pdi = pdi->die_sibling;
6976 }
6977}
6978
6979/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6980
72bf9492 6981 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 6982 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
6983 Enumerators are an exception; they use the scope of their parent
6984 enumeration type, i.e. the name of the enumeration type is not
6985 prepended to the enumerator.
91c24f0a 6986
72bf9492
DJ
6987 There are two complexities. One is DW_AT_specification; in this
6988 case "parent" means the parent of the target of the specification,
6989 instead of the direct parent of the DIE. The other is compilers
6990 which do not emit DW_TAG_namespace; in this case we try to guess
6991 the fully qualified name of structure types from their members'
6992 linkage names. This must be done using the DIE's children rather
6993 than the children of any DW_AT_specification target. We only need
6994 to do this for structures at the top level, i.e. if the target of
6995 any DW_AT_specification (if any; otherwise the DIE itself) does not
6996 have a parent. */
6997
6998/* Compute the scope prefix associated with PDI's parent, in
6999 compilation unit CU. The result will be allocated on CU's
7000 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7001 field. NULL is returned if no prefix is necessary. */
15d034d0 7002static const char *
72bf9492
DJ
7003partial_die_parent_scope (struct partial_die_info *pdi,
7004 struct dwarf2_cu *cu)
7005{
15d034d0 7006 const char *grandparent_scope;
72bf9492 7007 struct partial_die_info *parent, *real_pdi;
91c24f0a 7008
72bf9492
DJ
7009 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7010 then this means the parent of the specification DIE. */
7011
7012 real_pdi = pdi;
72bf9492 7013 while (real_pdi->has_specification)
36586728
TT
7014 real_pdi = find_partial_die (real_pdi->spec_offset,
7015 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
7016
7017 parent = real_pdi->die_parent;
7018 if (parent == NULL)
7019 return NULL;
7020
7021 if (parent->scope_set)
7022 return parent->scope;
7023
7024 fixup_partial_die (parent, cu);
7025
10b3939b 7026 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 7027
acebe513
UW
7028 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7029 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7030 Work around this problem here. */
7031 if (cu->language == language_cplus
6e70227d 7032 && parent->tag == DW_TAG_namespace
acebe513
UW
7033 && strcmp (parent->name, "::") == 0
7034 && grandparent_scope == NULL)
7035 {
7036 parent->scope = NULL;
7037 parent->scope_set = 1;
7038 return NULL;
7039 }
7040
9c6c53f7
SA
7041 if (pdi->tag == DW_TAG_enumerator)
7042 /* Enumerators should not get the name of the enumeration as a prefix. */
7043 parent->scope = grandparent_scope;
7044 else if (parent->tag == DW_TAG_namespace
f55ee35c 7045 || parent->tag == DW_TAG_module
72bf9492
DJ
7046 || parent->tag == DW_TAG_structure_type
7047 || parent->tag == DW_TAG_class_type
680b30c7 7048 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
7049 || parent->tag == DW_TAG_union_type
7050 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
7051 {
7052 if (grandparent_scope == NULL)
7053 parent->scope = parent->name;
7054 else
3e43a32a
MS
7055 parent->scope = typename_concat (&cu->comp_unit_obstack,
7056 grandparent_scope,
f55ee35c 7057 parent->name, 0, cu);
72bf9492 7058 }
72bf9492
DJ
7059 else
7060 {
7061 /* FIXME drow/2004-04-01: What should we be doing with
7062 function-local names? For partial symbols, we should probably be
7063 ignoring them. */
7064 complaint (&symfile_complaints,
e2e0b3e5 7065 _("unhandled containing DIE tag %d for DIE at %d"),
9c541725 7066 parent->tag, to_underlying (pdi->sect_off));
72bf9492 7067 parent->scope = grandparent_scope;
c906108c
SS
7068 }
7069
72bf9492
DJ
7070 parent->scope_set = 1;
7071 return parent->scope;
7072}
7073
7074/* Return the fully scoped name associated with PDI, from compilation unit
7075 CU. The result will be allocated with malloc. */
4568ecf9 7076
72bf9492
DJ
7077static char *
7078partial_die_full_name (struct partial_die_info *pdi,
7079 struct dwarf2_cu *cu)
7080{
15d034d0 7081 const char *parent_scope;
72bf9492 7082
98bfdba5
PA
7083 /* If this is a template instantiation, we can not work out the
7084 template arguments from partial DIEs. So, unfortunately, we have
7085 to go through the full DIEs. At least any work we do building
7086 types here will be reused if full symbols are loaded later. */
7087 if (pdi->has_template_arguments)
7088 {
7089 fixup_partial_die (pdi, cu);
7090
7091 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7092 {
7093 struct die_info *die;
7094 struct attribute attr;
7095 struct dwarf2_cu *ref_cu = cu;
7096
b64f50a1 7097 /* DW_FORM_ref_addr is using section offset. */
b4069958 7098 attr.name = (enum dwarf_attribute) 0;
98bfdba5 7099 attr.form = DW_FORM_ref_addr;
9c541725 7100 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
7101 die = follow_die_ref (NULL, &attr, &ref_cu);
7102
7103 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7104 }
7105 }
7106
72bf9492
DJ
7107 parent_scope = partial_die_parent_scope (pdi, cu);
7108 if (parent_scope == NULL)
7109 return NULL;
7110 else
f55ee35c 7111 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
7112}
7113
7114static void
72bf9492 7115add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 7116{
e7c27a73 7117 struct objfile *objfile = cu->objfile;
3e29f34a 7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 7119 CORE_ADDR addr = 0;
15d034d0 7120 const char *actual_name = NULL;
e142c38c 7121 CORE_ADDR baseaddr;
15d034d0 7122 char *built_actual_name;
e142c38c
DJ
7123
7124 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7125
15d034d0
TT
7126 built_actual_name = partial_die_full_name (pdi, cu);
7127 if (built_actual_name != NULL)
7128 actual_name = built_actual_name;
63d06c5c 7129
72bf9492
DJ
7130 if (actual_name == NULL)
7131 actual_name = pdi->name;
7132
c906108c
SS
7133 switch (pdi->tag)
7134 {
7135 case DW_TAG_subprogram:
3e29f34a 7136 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 7137 if (pdi->is_external || cu->language == language_ada)
c906108c 7138 {
2cfa0c8d
JB
7139 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7140 of the global scope. But in Ada, we want to be able to access
7141 nested procedures globally. So all Ada subprograms are stored
7142 in the global scope. */
f47fb265 7143 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7144 built_actual_name != NULL,
f47fb265
MS
7145 VAR_DOMAIN, LOC_BLOCK,
7146 &objfile->global_psymbols,
1762568f 7147 addr, cu->language, objfile);
c906108c
SS
7148 }
7149 else
7150 {
f47fb265 7151 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7152 built_actual_name != NULL,
f47fb265
MS
7153 VAR_DOMAIN, LOC_BLOCK,
7154 &objfile->static_psymbols,
1762568f 7155 addr, cu->language, objfile);
c906108c 7156 }
0c1b455e
TT
7157
7158 if (pdi->main_subprogram && actual_name != NULL)
7159 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 7160 break;
72929c62
JB
7161 case DW_TAG_constant:
7162 {
7163 struct psymbol_allocation_list *list;
7164
7165 if (pdi->is_external)
7166 list = &objfile->global_psymbols;
7167 else
7168 list = &objfile->static_psymbols;
f47fb265 7169 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7170 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 7171 list, 0, cu->language, objfile);
72929c62
JB
7172 }
7173 break;
c906108c 7174 case DW_TAG_variable:
95554aad
TT
7175 if (pdi->d.locdesc)
7176 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 7177
95554aad 7178 if (pdi->d.locdesc
caac4577
JG
7179 && addr == 0
7180 && !dwarf2_per_objfile->has_section_at_zero)
7181 {
7182 /* A global or static variable may also have been stripped
7183 out by the linker if unused, in which case its address
7184 will be nullified; do not add such variables into partial
7185 symbol table then. */
7186 }
7187 else if (pdi->is_external)
c906108c
SS
7188 {
7189 /* Global Variable.
7190 Don't enter into the minimal symbol tables as there is
7191 a minimal symbol table entry from the ELF symbols already.
7192 Enter into partial symbol table if it has a location
7193 descriptor or a type.
7194 If the location descriptor is missing, new_symbol will create
7195 a LOC_UNRESOLVED symbol, the address of the variable will then
7196 be determined from the minimal symbol table whenever the variable
7197 is referenced.
7198 The address for the partial symbol table entry is not
7199 used by GDB, but it comes in handy for debugging partial symbol
7200 table building. */
7201
95554aad 7202 if (pdi->d.locdesc || pdi->has_type)
f47fb265 7203 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7204 built_actual_name != NULL,
f47fb265
MS
7205 VAR_DOMAIN, LOC_STATIC,
7206 &objfile->global_psymbols,
1762568f 7207 addr + baseaddr,
f47fb265 7208 cu->language, objfile);
c906108c
SS
7209 }
7210 else
7211 {
ff908ebf
AW
7212 int has_loc = pdi->d.locdesc != NULL;
7213
7214 /* Static Variable. Skip symbols whose value we cannot know (those
7215 without location descriptors or constant values). */
7216 if (!has_loc && !pdi->has_const_value)
decbce07 7217 {
15d034d0 7218 xfree (built_actual_name);
decbce07
MS
7219 return;
7220 }
ff908ebf 7221
f47fb265 7222 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7223 built_actual_name != NULL,
f47fb265
MS
7224 VAR_DOMAIN, LOC_STATIC,
7225 &objfile->static_psymbols,
ff908ebf 7226 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7227 cu->language, objfile);
c906108c
SS
7228 }
7229 break;
7230 case DW_TAG_typedef:
7231 case DW_TAG_base_type:
a02abb62 7232 case DW_TAG_subrange_type:
38d518c9 7233 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7234 built_actual_name != NULL,
176620f1 7235 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7236 &objfile->static_psymbols,
1762568f 7237 0, cu->language, objfile);
c906108c 7238 break;
74921315 7239 case DW_TAG_imported_declaration:
72bf9492
DJ
7240 case DW_TAG_namespace:
7241 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7242 built_actual_name != NULL,
72bf9492
DJ
7243 VAR_DOMAIN, LOC_TYPEDEF,
7244 &objfile->global_psymbols,
1762568f 7245 0, cu->language, objfile);
72bf9492 7246 break;
530e8392
KB
7247 case DW_TAG_module:
7248 add_psymbol_to_list (actual_name, strlen (actual_name),
7249 built_actual_name != NULL,
7250 MODULE_DOMAIN, LOC_TYPEDEF,
7251 &objfile->global_psymbols,
1762568f 7252 0, cu->language, objfile);
530e8392 7253 break;
c906108c 7254 case DW_TAG_class_type:
680b30c7 7255 case DW_TAG_interface_type:
c906108c
SS
7256 case DW_TAG_structure_type:
7257 case DW_TAG_union_type:
7258 case DW_TAG_enumeration_type:
fa4028e9
JB
7259 /* Skip external references. The DWARF standard says in the section
7260 about "Structure, Union, and Class Type Entries": "An incomplete
7261 structure, union or class type is represented by a structure,
7262 union or class entry that does not have a byte size attribute
7263 and that has a DW_AT_declaration attribute." */
7264 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7265 {
15d034d0 7266 xfree (built_actual_name);
decbce07
MS
7267 return;
7268 }
fa4028e9 7269
63d06c5c
DC
7270 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7271 static vs. global. */
38d518c9 7272 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7273 built_actual_name != NULL,
176620f1 7274 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 7275 cu->language == language_cplus
63d06c5c
DC
7276 ? &objfile->global_psymbols
7277 : &objfile->static_psymbols,
1762568f 7278 0, cu->language, objfile);
c906108c 7279
c906108c
SS
7280 break;
7281 case DW_TAG_enumerator:
38d518c9 7282 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7283 built_actual_name != NULL,
176620f1 7284 VAR_DOMAIN, LOC_CONST,
9c37b5ae 7285 cu->language == language_cplus
f6fe98ef
DJ
7286 ? &objfile->global_psymbols
7287 : &objfile->static_psymbols,
1762568f 7288 0, cu->language, objfile);
c906108c
SS
7289 break;
7290 default:
7291 break;
7292 }
5c4e30ca 7293
15d034d0 7294 xfree (built_actual_name);
c906108c
SS
7295}
7296
5c4e30ca
DC
7297/* Read a partial die corresponding to a namespace; also, add a symbol
7298 corresponding to that namespace to the symbol table. NAMESPACE is
7299 the name of the enclosing namespace. */
91c24f0a 7300
72bf9492
DJ
7301static void
7302add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7303 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7304 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7305{
72bf9492 7306 /* Add a symbol for the namespace. */
e7c27a73 7307
72bf9492 7308 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7309
7310 /* Now scan partial symbols in that namespace. */
7311
91c24f0a 7312 if (pdi->has_children)
cdc07690 7313 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7314}
7315
5d7cb8df
JK
7316/* Read a partial die corresponding to a Fortran module. */
7317
7318static void
7319add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7320 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7321{
530e8392
KB
7322 /* Add a symbol for the namespace. */
7323
7324 add_partial_symbol (pdi, cu);
7325
f55ee35c 7326 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7327
7328 if (pdi->has_children)
cdc07690 7329 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7330}
7331
bc30ff58
JB
7332/* Read a partial die corresponding to a subprogram and create a partial
7333 symbol for that subprogram. When the CU language allows it, this
7334 routine also defines a partial symbol for each nested subprogram
cdc07690 7335 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7336 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7337 and highest PC values found in PDI.
6e70227d 7338
cdc07690
YQ
7339 PDI may also be a lexical block, in which case we simply search
7340 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7341 Again, this is only performed when the CU language allows this
7342 type of definitions. */
7343
7344static void
7345add_partial_subprogram (struct partial_die_info *pdi,
7346 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7347 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7348{
7349 if (pdi->tag == DW_TAG_subprogram)
7350 {
7351 if (pdi->has_pc_info)
7352 {
7353 if (pdi->lowpc < *lowpc)
7354 *lowpc = pdi->lowpc;
7355 if (pdi->highpc > *highpc)
7356 *highpc = pdi->highpc;
cdc07690 7357 if (set_addrmap)
5734ee8b 7358 {
5734ee8b 7359 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7360 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7361 CORE_ADDR baseaddr;
7362 CORE_ADDR highpc;
7363 CORE_ADDR lowpc;
5734ee8b
DJ
7364
7365 baseaddr = ANOFFSET (objfile->section_offsets,
7366 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7367 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7368 pdi->lowpc + baseaddr);
7369 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7370 pdi->highpc + baseaddr);
7371 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7372 cu->per_cu->v.psymtab);
5734ee8b 7373 }
481860b3
GB
7374 }
7375
7376 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7377 {
bc30ff58 7378 if (!pdi->is_declaration)
e8d05480
JB
7379 /* Ignore subprogram DIEs that do not have a name, they are
7380 illegal. Do not emit a complaint at this point, we will
7381 do so when we convert this psymtab into a symtab. */
7382 if (pdi->name)
7383 add_partial_symbol (pdi, cu);
bc30ff58
JB
7384 }
7385 }
6e70227d 7386
bc30ff58
JB
7387 if (! pdi->has_children)
7388 return;
7389
7390 if (cu->language == language_ada)
7391 {
7392 pdi = pdi->die_child;
7393 while (pdi != NULL)
7394 {
7395 fixup_partial_die (pdi, cu);
7396 if (pdi->tag == DW_TAG_subprogram
7397 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7398 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7399 pdi = pdi->die_sibling;
7400 }
7401 }
7402}
7403
91c24f0a
DC
7404/* Read a partial die corresponding to an enumeration type. */
7405
72bf9492
DJ
7406static void
7407add_partial_enumeration (struct partial_die_info *enum_pdi,
7408 struct dwarf2_cu *cu)
91c24f0a 7409{
72bf9492 7410 struct partial_die_info *pdi;
91c24f0a
DC
7411
7412 if (enum_pdi->name != NULL)
72bf9492
DJ
7413 add_partial_symbol (enum_pdi, cu);
7414
7415 pdi = enum_pdi->die_child;
7416 while (pdi)
91c24f0a 7417 {
72bf9492 7418 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7419 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7420 else
72bf9492
DJ
7421 add_partial_symbol (pdi, cu);
7422 pdi = pdi->die_sibling;
91c24f0a 7423 }
91c24f0a
DC
7424}
7425
6caca83c
CC
7426/* Return the initial uleb128 in the die at INFO_PTR. */
7427
7428static unsigned int
d521ce57 7429peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7430{
7431 unsigned int bytes_read;
7432
7433 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7434}
7435
4bb7a0a7
DJ
7436/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7437 Return the corresponding abbrev, or NULL if the number is zero (indicating
7438 an empty DIE). In either case *BYTES_READ will be set to the length of
7439 the initial number. */
7440
7441static struct abbrev_info *
d521ce57 7442peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7443 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7444{
7445 bfd *abfd = cu->objfile->obfd;
7446 unsigned int abbrev_number;
7447 struct abbrev_info *abbrev;
7448
7449 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7450
7451 if (abbrev_number == 0)
7452 return NULL;
7453
433df2d4 7454 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7455 if (!abbrev)
7456 {
422b9917
DE
7457 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7458 " at offset 0x%x [in module %s]"),
7459 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9c541725 7460 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
7461 }
7462
7463 return abbrev;
7464}
7465
93311388
DE
7466/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7467 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7468 DIE. Any children of the skipped DIEs will also be skipped. */
7469
d521ce57
TT
7470static const gdb_byte *
7471skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7472{
dee91e82 7473 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7474 struct abbrev_info *abbrev;
7475 unsigned int bytes_read;
7476
7477 while (1)
7478 {
7479 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7480 if (abbrev == NULL)
7481 return info_ptr + bytes_read;
7482 else
dee91e82 7483 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7484 }
7485}
7486
93311388
DE
7487/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7488 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7489 abbrev corresponding to that skipped uleb128 should be passed in
7490 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7491 children. */
7492
d521ce57
TT
7493static const gdb_byte *
7494skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7495 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7496{
7497 unsigned int bytes_read;
7498 struct attribute attr;
dee91e82
DE
7499 bfd *abfd = reader->abfd;
7500 struct dwarf2_cu *cu = reader->cu;
d521ce57 7501 const gdb_byte *buffer = reader->buffer;
f664829e 7502 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7503 unsigned int form, i;
7504
7505 for (i = 0; i < abbrev->num_attrs; i++)
7506 {
7507 /* The only abbrev we care about is DW_AT_sibling. */
7508 if (abbrev->attrs[i].name == DW_AT_sibling)
7509 {
dee91e82 7510 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7511 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7512 complaint (&symfile_complaints,
7513 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7514 else
b9502d3f 7515 {
9c541725
PA
7516 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7517 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
7518
7519 if (sibling_ptr < info_ptr)
7520 complaint (&symfile_complaints,
7521 _("DW_AT_sibling points backwards"));
22869d73
KS
7522 else if (sibling_ptr > reader->buffer_end)
7523 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7524 else
7525 return sibling_ptr;
7526 }
4bb7a0a7
DJ
7527 }
7528
7529 /* If it isn't DW_AT_sibling, skip this attribute. */
7530 form = abbrev->attrs[i].form;
7531 skip_attribute:
7532 switch (form)
7533 {
4bb7a0a7 7534 case DW_FORM_ref_addr:
ae411497
TT
7535 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7536 and later it is offset sized. */
7537 if (cu->header.version == 2)
7538 info_ptr += cu->header.addr_size;
7539 else
7540 info_ptr += cu->header.offset_size;
7541 break;
36586728
TT
7542 case DW_FORM_GNU_ref_alt:
7543 info_ptr += cu->header.offset_size;
7544 break;
ae411497 7545 case DW_FORM_addr:
4bb7a0a7
DJ
7546 info_ptr += cu->header.addr_size;
7547 break;
7548 case DW_FORM_data1:
7549 case DW_FORM_ref1:
7550 case DW_FORM_flag:
7551 info_ptr += 1;
7552 break;
2dc7f7b3 7553 case DW_FORM_flag_present:
43988095 7554 case DW_FORM_implicit_const:
2dc7f7b3 7555 break;
4bb7a0a7
DJ
7556 case DW_FORM_data2:
7557 case DW_FORM_ref2:
7558 info_ptr += 2;
7559 break;
7560 case DW_FORM_data4:
7561 case DW_FORM_ref4:
7562 info_ptr += 4;
7563 break;
7564 case DW_FORM_data8:
7565 case DW_FORM_ref8:
55f1336d 7566 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7567 info_ptr += 8;
7568 break;
0224619f
JK
7569 case DW_FORM_data16:
7570 info_ptr += 16;
7571 break;
4bb7a0a7 7572 case DW_FORM_string:
9b1c24c8 7573 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7574 info_ptr += bytes_read;
7575 break;
2dc7f7b3 7576 case DW_FORM_sec_offset:
4bb7a0a7 7577 case DW_FORM_strp:
36586728 7578 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7579 info_ptr += cu->header.offset_size;
7580 break;
2dc7f7b3 7581 case DW_FORM_exprloc:
4bb7a0a7
DJ
7582 case DW_FORM_block:
7583 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7584 info_ptr += bytes_read;
7585 break;
7586 case DW_FORM_block1:
7587 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7588 break;
7589 case DW_FORM_block2:
7590 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7591 break;
7592 case DW_FORM_block4:
7593 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7594 break;
7595 case DW_FORM_sdata:
7596 case DW_FORM_udata:
7597 case DW_FORM_ref_udata:
3019eac3
DE
7598 case DW_FORM_GNU_addr_index:
7599 case DW_FORM_GNU_str_index:
d521ce57 7600 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7601 break;
7602 case DW_FORM_indirect:
7603 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7604 info_ptr += bytes_read;
7605 /* We need to continue parsing from here, so just go back to
7606 the top. */
7607 goto skip_attribute;
7608
7609 default:
3e43a32a
MS
7610 error (_("Dwarf Error: Cannot handle %s "
7611 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7612 dwarf_form_name (form),
7613 bfd_get_filename (abfd));
7614 }
7615 }
7616
7617 if (abbrev->has_children)
dee91e82 7618 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7619 else
7620 return info_ptr;
7621}
7622
93311388 7623/* Locate ORIG_PDI's sibling.
dee91e82 7624 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7625
d521ce57 7626static const gdb_byte *
dee91e82
DE
7627locate_pdi_sibling (const struct die_reader_specs *reader,
7628 struct partial_die_info *orig_pdi,
d521ce57 7629 const gdb_byte *info_ptr)
91c24f0a
DC
7630{
7631 /* Do we know the sibling already? */
72bf9492 7632
91c24f0a
DC
7633 if (orig_pdi->sibling)
7634 return orig_pdi->sibling;
7635
7636 /* Are there any children to deal with? */
7637
7638 if (!orig_pdi->has_children)
7639 return info_ptr;
7640
4bb7a0a7 7641 /* Skip the children the long way. */
91c24f0a 7642
dee91e82 7643 return skip_children (reader, info_ptr);
91c24f0a
DC
7644}
7645
257e7a09 7646/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7647 not NULL. */
c906108c
SS
7648
7649static void
257e7a09
YQ
7650dwarf2_read_symtab (struct partial_symtab *self,
7651 struct objfile *objfile)
c906108c 7652{
257e7a09 7653 if (self->readin)
c906108c 7654 {
442e4d9c 7655 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7656 self->filename);
442e4d9c
YQ
7657 }
7658 else
7659 {
7660 if (info_verbose)
c906108c 7661 {
442e4d9c 7662 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7663 self->filename);
442e4d9c 7664 gdb_flush (gdb_stdout);
c906108c 7665 }
c906108c 7666
442e4d9c 7667 /* Restore our global data. */
9a3c8263
SM
7668 dwarf2_per_objfile
7669 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7670 dwarf2_objfile_data_key);
10b3939b 7671
442e4d9c
YQ
7672 /* If this psymtab is constructed from a debug-only objfile, the
7673 has_section_at_zero flag will not necessarily be correct. We
7674 can get the correct value for this flag by looking at the data
7675 associated with the (presumably stripped) associated objfile. */
7676 if (objfile->separate_debug_objfile_backlink)
7677 {
7678 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7679 = ((struct dwarf2_per_objfile *)
7680 objfile_data (objfile->separate_debug_objfile_backlink,
7681 dwarf2_objfile_data_key));
9a619af0 7682
442e4d9c
YQ
7683 dwarf2_per_objfile->has_section_at_zero
7684 = dpo_backlink->has_section_at_zero;
7685 }
b2ab525c 7686
442e4d9c 7687 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7688
257e7a09 7689 psymtab_to_symtab_1 (self);
c906108c 7690
442e4d9c
YQ
7691 /* Finish up the debug error message. */
7692 if (info_verbose)
7693 printf_filtered (_("done.\n"));
c906108c 7694 }
95554aad
TT
7695
7696 process_cu_includes ();
c906108c 7697}
9cdd5dbd
DE
7698\f
7699/* Reading in full CUs. */
c906108c 7700
10b3939b
DJ
7701/* Add PER_CU to the queue. */
7702
7703static void
95554aad
TT
7704queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7705 enum language pretend_language)
10b3939b
DJ
7706{
7707 struct dwarf2_queue_item *item;
7708
7709 per_cu->queued = 1;
8d749320 7710 item = XNEW (struct dwarf2_queue_item);
10b3939b 7711 item->per_cu = per_cu;
95554aad 7712 item->pretend_language = pretend_language;
10b3939b
DJ
7713 item->next = NULL;
7714
7715 if (dwarf2_queue == NULL)
7716 dwarf2_queue = item;
7717 else
7718 dwarf2_queue_tail->next = item;
7719
7720 dwarf2_queue_tail = item;
7721}
7722
89e63ee4
DE
7723/* If PER_CU is not yet queued, add it to the queue.
7724 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7725 dependency.
0907af0c 7726 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7727 meaning either PER_CU is already queued or it is already loaded.
7728
7729 N.B. There is an invariant here that if a CU is queued then it is loaded.
7730 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7731
7732static int
89e63ee4 7733maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7734 struct dwarf2_per_cu_data *per_cu,
7735 enum language pretend_language)
7736{
7737 /* We may arrive here during partial symbol reading, if we need full
7738 DIEs to process an unusual case (e.g. template arguments). Do
7739 not queue PER_CU, just tell our caller to load its DIEs. */
7740 if (dwarf2_per_objfile->reading_partial_symbols)
7741 {
7742 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7743 return 1;
7744 return 0;
7745 }
7746
7747 /* Mark the dependence relation so that we don't flush PER_CU
7748 too early. */
89e63ee4
DE
7749 if (dependent_cu != NULL)
7750 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7751
7752 /* If it's already on the queue, we have nothing to do. */
7753 if (per_cu->queued)
7754 return 0;
7755
7756 /* If the compilation unit is already loaded, just mark it as
7757 used. */
7758 if (per_cu->cu != NULL)
7759 {
7760 per_cu->cu->last_used = 0;
7761 return 0;
7762 }
7763
7764 /* Add it to the queue. */
7765 queue_comp_unit (per_cu, pretend_language);
7766
7767 return 1;
7768}
7769
10b3939b
DJ
7770/* Process the queue. */
7771
7772static void
a0f42c21 7773process_queue (void)
10b3939b
DJ
7774{
7775 struct dwarf2_queue_item *item, *next_item;
7776
b4f54984 7777 if (dwarf_read_debug)
45cfd468
DE
7778 {
7779 fprintf_unfiltered (gdb_stdlog,
7780 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7781 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7782 }
7783
03dd20cc
DJ
7784 /* The queue starts out with one item, but following a DIE reference
7785 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7786 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7787 {
cc12ce38
DE
7788 if ((dwarf2_per_objfile->using_index
7789 ? !item->per_cu->v.quick->compunit_symtab
7790 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7791 /* Skip dummy CUs. */
7792 && item->per_cu->cu != NULL)
f4dc4d17
DE
7793 {
7794 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7795 unsigned int debug_print_threshold;
247f5c4f 7796 char buf[100];
f4dc4d17 7797
247f5c4f 7798 if (per_cu->is_debug_types)
f4dc4d17 7799 {
247f5c4f
DE
7800 struct signatured_type *sig_type =
7801 (struct signatured_type *) per_cu;
7802
7803 sprintf (buf, "TU %s at offset 0x%x",
73be47f5 7804 hex_string (sig_type->signature),
9c541725 7805 to_underlying (per_cu->sect_off));
73be47f5
DE
7806 /* There can be 100s of TUs.
7807 Only print them in verbose mode. */
7808 debug_print_threshold = 2;
f4dc4d17 7809 }
247f5c4f 7810 else
73be47f5 7811 {
9c541725
PA
7812 sprintf (buf, "CU at offset 0x%x",
7813 to_underlying (per_cu->sect_off));
73be47f5
DE
7814 debug_print_threshold = 1;
7815 }
247f5c4f 7816
b4f54984 7817 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7818 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7819
7820 if (per_cu->is_debug_types)
7821 process_full_type_unit (per_cu, item->pretend_language);
7822 else
7823 process_full_comp_unit (per_cu, item->pretend_language);
7824
b4f54984 7825 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7826 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7827 }
10b3939b
DJ
7828
7829 item->per_cu->queued = 0;
7830 next_item = item->next;
7831 xfree (item);
7832 }
7833
7834 dwarf2_queue_tail = NULL;
45cfd468 7835
b4f54984 7836 if (dwarf_read_debug)
45cfd468
DE
7837 {
7838 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7839 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7840 }
10b3939b
DJ
7841}
7842
7843/* Free all allocated queue entries. This function only releases anything if
7844 an error was thrown; if the queue was processed then it would have been
7845 freed as we went along. */
7846
7847static void
7848dwarf2_release_queue (void *dummy)
7849{
7850 struct dwarf2_queue_item *item, *last;
7851
7852 item = dwarf2_queue;
7853 while (item)
7854 {
7855 /* Anything still marked queued is likely to be in an
7856 inconsistent state, so discard it. */
7857 if (item->per_cu->queued)
7858 {
7859 if (item->per_cu->cu != NULL)
dee91e82 7860 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7861 item->per_cu->queued = 0;
7862 }
7863
7864 last = item;
7865 item = item->next;
7866 xfree (last);
7867 }
7868
7869 dwarf2_queue = dwarf2_queue_tail = NULL;
7870}
7871
7872/* Read in full symbols for PST, and anything it depends on. */
7873
c906108c 7874static void
fba45db2 7875psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7876{
10b3939b 7877 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7878 int i;
7879
95554aad
TT
7880 if (pst->readin)
7881 return;
7882
aaa75496 7883 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7884 if (!pst->dependencies[i]->readin
7885 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7886 {
7887 /* Inform about additional files that need to be read in. */
7888 if (info_verbose)
7889 {
a3f17187 7890 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7891 fputs_filtered (" ", gdb_stdout);
7892 wrap_here ("");
7893 fputs_filtered ("and ", gdb_stdout);
7894 wrap_here ("");
7895 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7896 wrap_here (""); /* Flush output. */
aaa75496
JB
7897 gdb_flush (gdb_stdout);
7898 }
7899 psymtab_to_symtab_1 (pst->dependencies[i]);
7900 }
7901
9a3c8263 7902 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7903
7904 if (per_cu == NULL)
aaa75496
JB
7905 {
7906 /* It's an include file, no symbols to read for it.
7907 Everything is in the parent symtab. */
7908 pst->readin = 1;
7909 return;
7910 }
c906108c 7911
a0f42c21 7912 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7913}
7914
dee91e82
DE
7915/* Trivial hash function for die_info: the hash value of a DIE
7916 is its offset in .debug_info for this objfile. */
10b3939b 7917
dee91e82
DE
7918static hashval_t
7919die_hash (const void *item)
10b3939b 7920{
9a3c8263 7921 const struct die_info *die = (const struct die_info *) item;
6502dd73 7922
9c541725 7923 return to_underlying (die->sect_off);
dee91e82 7924}
63d06c5c 7925
dee91e82
DE
7926/* Trivial comparison function for die_info structures: two DIEs
7927 are equal if they have the same offset. */
98bfdba5 7928
dee91e82
DE
7929static int
7930die_eq (const void *item_lhs, const void *item_rhs)
7931{
9a3c8263
SM
7932 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7933 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7934
9c541725 7935 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 7936}
c906108c 7937
dee91e82
DE
7938/* die_reader_func for load_full_comp_unit.
7939 This is identical to read_signatured_type_reader,
7940 but is kept separate for now. */
c906108c 7941
dee91e82
DE
7942static void
7943load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7944 const gdb_byte *info_ptr,
dee91e82
DE
7945 struct die_info *comp_unit_die,
7946 int has_children,
7947 void *data)
7948{
7949 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7950 enum language *language_ptr = (enum language *) data;
6caca83c 7951
dee91e82
DE
7952 gdb_assert (cu->die_hash == NULL);
7953 cu->die_hash =
7954 htab_create_alloc_ex (cu->header.length / 12,
7955 die_hash,
7956 die_eq,
7957 NULL,
7958 &cu->comp_unit_obstack,
7959 hashtab_obstack_allocate,
7960 dummy_obstack_deallocate);
e142c38c 7961
dee91e82
DE
7962 if (has_children)
7963 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7964 &info_ptr, comp_unit_die);
7965 cu->dies = comp_unit_die;
7966 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7967
7968 /* We try not to read any attributes in this function, because not
9cdd5dbd 7969 all CUs needed for references have been loaded yet, and symbol
10b3939b 7970 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7971 or we won't be able to build types correctly.
7972 Similarly, if we do not read the producer, we can not apply
7973 producer-specific interpretation. */
95554aad 7974 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7975}
10b3939b 7976
dee91e82 7977/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7978
dee91e82 7979static void
95554aad
TT
7980load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7981 enum language pretend_language)
dee91e82 7982{
3019eac3 7983 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7984
f4dc4d17
DE
7985 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7986 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7987}
7988
3da10d80
KS
7989/* Add a DIE to the delayed physname list. */
7990
7991static void
7992add_to_method_list (struct type *type, int fnfield_index, int index,
7993 const char *name, struct die_info *die,
7994 struct dwarf2_cu *cu)
7995{
7996 struct delayed_method_info mi;
7997 mi.type = type;
7998 mi.fnfield_index = fnfield_index;
7999 mi.index = index;
8000 mi.name = name;
8001 mi.die = die;
8002 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8003}
8004
8005/* A cleanup for freeing the delayed method list. */
8006
8007static void
8008free_delayed_list (void *ptr)
8009{
8010 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8011 if (cu->method_list != NULL)
8012 {
8013 VEC_free (delayed_method_info, cu->method_list);
8014 cu->method_list = NULL;
8015 }
8016}
8017
8018/* Compute the physnames of any methods on the CU's method list.
8019
8020 The computation of method physnames is delayed in order to avoid the
8021 (bad) condition that one of the method's formal parameters is of an as yet
8022 incomplete type. */
8023
8024static void
8025compute_delayed_physnames (struct dwarf2_cu *cu)
8026{
8027 int i;
8028 struct delayed_method_info *mi;
8029 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8030 {
1d06ead6 8031 const char *physname;
3da10d80
KS
8032 struct fn_fieldlist *fn_flp
8033 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 8034 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
8035 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8036 = physname ? physname : "";
3da10d80
KS
8037 }
8038}
8039
a766d390
DE
8040/* Go objects should be embedded in a DW_TAG_module DIE,
8041 and it's not clear if/how imported objects will appear.
8042 To keep Go support simple until that's worked out,
8043 go back through what we've read and create something usable.
8044 We could do this while processing each DIE, and feels kinda cleaner,
8045 but that way is more invasive.
8046 This is to, for example, allow the user to type "p var" or "b main"
8047 without having to specify the package name, and allow lookups
8048 of module.object to work in contexts that use the expression
8049 parser. */
8050
8051static void
8052fixup_go_packaging (struct dwarf2_cu *cu)
8053{
8054 char *package_name = NULL;
8055 struct pending *list;
8056 int i;
8057
8058 for (list = global_symbols; list != NULL; list = list->next)
8059 {
8060 for (i = 0; i < list->nsyms; ++i)
8061 {
8062 struct symbol *sym = list->symbol[i];
8063
8064 if (SYMBOL_LANGUAGE (sym) == language_go
8065 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8066 {
8067 char *this_package_name = go_symbol_package_name (sym);
8068
8069 if (this_package_name == NULL)
8070 continue;
8071 if (package_name == NULL)
8072 package_name = this_package_name;
8073 else
8074 {
8075 if (strcmp (package_name, this_package_name) != 0)
8076 complaint (&symfile_complaints,
8077 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
8078 (symbol_symtab (sym) != NULL
8079 ? symtab_to_filename_for_display
8080 (symbol_symtab (sym))
4262abfb 8081 : objfile_name (cu->objfile)),
a766d390
DE
8082 this_package_name, package_name);
8083 xfree (this_package_name);
8084 }
8085 }
8086 }
8087 }
8088
8089 if (package_name != NULL)
8090 {
8091 struct objfile *objfile = cu->objfile;
34a68019 8092 const char *saved_package_name
224c3ddb
SM
8093 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8094 package_name,
8095 strlen (package_name));
19f392bc
UW
8096 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8097 saved_package_name);
a766d390
DE
8098 struct symbol *sym;
8099
8100 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8101
e623cf5d 8102 sym = allocate_symbol (objfile);
f85f34ed 8103 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
8104 SYMBOL_SET_NAMES (sym, saved_package_name,
8105 strlen (saved_package_name), 0, objfile);
a766d390
DE
8106 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8107 e.g., "main" finds the "main" module and not C's main(). */
8108 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 8109 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
8110 SYMBOL_TYPE (sym) = type;
8111
8112 add_symbol_to_list (sym, &global_symbols);
8113
8114 xfree (package_name);
8115 }
8116}
8117
95554aad
TT
8118/* Return the symtab for PER_CU. This works properly regardless of
8119 whether we're using the index or psymtabs. */
8120
43f3e411
DE
8121static struct compunit_symtab *
8122get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
8123{
8124 return (dwarf2_per_objfile->using_index
43f3e411
DE
8125 ? per_cu->v.quick->compunit_symtab
8126 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
8127}
8128
8129/* A helper function for computing the list of all symbol tables
8130 included by PER_CU. */
8131
8132static void
43f3e411 8133recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 8134 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 8135 struct dwarf2_per_cu_data *per_cu,
43f3e411 8136 struct compunit_symtab *immediate_parent)
95554aad
TT
8137{
8138 void **slot;
8139 int ix;
43f3e411 8140 struct compunit_symtab *cust;
95554aad
TT
8141 struct dwarf2_per_cu_data *iter;
8142
8143 slot = htab_find_slot (all_children, per_cu, INSERT);
8144 if (*slot != NULL)
8145 {
8146 /* This inclusion and its children have been processed. */
8147 return;
8148 }
8149
8150 *slot = per_cu;
8151 /* Only add a CU if it has a symbol table. */
43f3e411
DE
8152 cust = get_compunit_symtab (per_cu);
8153 if (cust != NULL)
ec94af83
DE
8154 {
8155 /* If this is a type unit only add its symbol table if we haven't
8156 seen it yet (type unit per_cu's can share symtabs). */
8157 if (per_cu->is_debug_types)
8158 {
43f3e411 8159 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
8160 if (*slot == NULL)
8161 {
43f3e411
DE
8162 *slot = cust;
8163 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8164 if (cust->user == NULL)
8165 cust->user = immediate_parent;
ec94af83
DE
8166 }
8167 }
8168 else
f9125b6c 8169 {
43f3e411
DE
8170 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8171 if (cust->user == NULL)
8172 cust->user = immediate_parent;
f9125b6c 8173 }
ec94af83 8174 }
95554aad
TT
8175
8176 for (ix = 0;
796a7ff8 8177 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 8178 ++ix)
ec94af83
DE
8179 {
8180 recursively_compute_inclusions (result, all_children,
43f3e411 8181 all_type_symtabs, iter, cust);
ec94af83 8182 }
95554aad
TT
8183}
8184
43f3e411 8185/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
8186 PER_CU. */
8187
8188static void
43f3e411 8189compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 8190{
f4dc4d17
DE
8191 gdb_assert (! per_cu->is_debug_types);
8192
796a7ff8 8193 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
8194 {
8195 int ix, len;
ec94af83 8196 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
8197 struct compunit_symtab *compunit_symtab_iter;
8198 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 8199 htab_t all_children, all_type_symtabs;
43f3e411 8200 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
8201
8202 /* If we don't have a symtab, we can just skip this case. */
43f3e411 8203 if (cust == NULL)
95554aad
TT
8204 return;
8205
8206 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8207 NULL, xcalloc, xfree);
ec94af83
DE
8208 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8209 NULL, xcalloc, xfree);
95554aad
TT
8210
8211 for (ix = 0;
796a7ff8 8212 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 8213 ix, per_cu_iter);
95554aad 8214 ++ix)
ec94af83
DE
8215 {
8216 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 8217 all_type_symtabs, per_cu_iter,
43f3e411 8218 cust);
ec94af83 8219 }
95554aad 8220
ec94af83 8221 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
8222 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8223 cust->includes
8d749320
SM
8224 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8225 struct compunit_symtab *, len + 1);
95554aad 8226 for (ix = 0;
43f3e411
DE
8227 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8228 compunit_symtab_iter);
95554aad 8229 ++ix)
43f3e411
DE
8230 cust->includes[ix] = compunit_symtab_iter;
8231 cust->includes[len] = NULL;
95554aad 8232
43f3e411 8233 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8234 htab_delete (all_children);
ec94af83 8235 htab_delete (all_type_symtabs);
95554aad
TT
8236 }
8237}
8238
8239/* Compute the 'includes' field for the symtabs of all the CUs we just
8240 read. */
8241
8242static void
8243process_cu_includes (void)
8244{
8245 int ix;
8246 struct dwarf2_per_cu_data *iter;
8247
8248 for (ix = 0;
8249 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8250 ix, iter);
8251 ++ix)
f4dc4d17
DE
8252 {
8253 if (! iter->is_debug_types)
43f3e411 8254 compute_compunit_symtab_includes (iter);
f4dc4d17 8255 }
95554aad
TT
8256
8257 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8258}
8259
9cdd5dbd 8260/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8261 already been loaded into memory. */
8262
8263static void
95554aad
TT
8264process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8265 enum language pretend_language)
10b3939b 8266{
10b3939b 8267 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8268 struct objfile *objfile = per_cu->objfile;
3e29f34a 8269 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8270 CORE_ADDR lowpc, highpc;
43f3e411 8271 struct compunit_symtab *cust;
3da10d80 8272 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8273 CORE_ADDR baseaddr;
4359dff1 8274 struct block *static_block;
3e29f34a 8275 CORE_ADDR addr;
10b3939b
DJ
8276
8277 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8278
10b3939b
DJ
8279 buildsym_init ();
8280 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8281 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8282
8283 cu->list_in_scope = &file_symbols;
c906108c 8284
95554aad
TT
8285 cu->language = pretend_language;
8286 cu->language_defn = language_def (cu->language);
8287
c906108c 8288 /* Do line number decoding in read_file_scope () */
10b3939b 8289 process_die (cu->dies, cu);
c906108c 8290
a766d390
DE
8291 /* For now fudge the Go package. */
8292 if (cu->language == language_go)
8293 fixup_go_packaging (cu);
8294
3da10d80
KS
8295 /* Now that we have processed all the DIEs in the CU, all the types
8296 should be complete, and it should now be safe to compute all of the
8297 physnames. */
8298 compute_delayed_physnames (cu);
8299 do_cleanups (delayed_list_cleanup);
8300
fae299cd
DC
8301 /* Some compilers don't define a DW_AT_high_pc attribute for the
8302 compilation unit. If the DW_AT_high_pc is missing, synthesize
8303 it, by scanning the DIE's below the compilation unit. */
10b3939b 8304 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8305
3e29f34a
MR
8306 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8307 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8308
8309 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8310 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8311 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8312 addrmap to help ensure it has an accurate map of pc values belonging to
8313 this comp unit. */
8314 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8315
43f3e411
DE
8316 cust = end_symtab_from_static_block (static_block,
8317 SECT_OFF_TEXT (objfile), 0);
c906108c 8318
43f3e411 8319 if (cust != NULL)
c906108c 8320 {
df15bd07 8321 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8322
8be455d7
JK
8323 /* Set symtab language to language from DW_AT_language. If the
8324 compilation is from a C file generated by language preprocessors, do
8325 not set the language if it was already deduced by start_subfile. */
43f3e411 8326 if (!(cu->language == language_c
40e3ad0e 8327 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8328 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8329
8330 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8331 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8332 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8333 there were bugs in prologue debug info, fixed later in GCC-4.5
8334 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8335
8336 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8337 needed, it would be wrong due to missing DW_AT_producer there.
8338
8339 Still one can confuse GDB by using non-standard GCC compilation
8340 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8341 */
ab260dad 8342 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8343 cust->locations_valid = 1;
e0d00bc7
JK
8344
8345 if (gcc_4_minor >= 5)
43f3e411 8346 cust->epilogue_unwind_valid = 1;
96408a79 8347
43f3e411 8348 cust->call_site_htab = cu->call_site_htab;
c906108c 8349 }
9291a0cd
TT
8350
8351 if (dwarf2_per_objfile->using_index)
43f3e411 8352 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8353 else
8354 {
8355 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8356 pst->compunit_symtab = cust;
9291a0cd
TT
8357 pst->readin = 1;
8358 }
c906108c 8359
95554aad
TT
8360 /* Push it for inclusion processing later. */
8361 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8362
c906108c 8363 do_cleanups (back_to);
f4dc4d17 8364}
45cfd468 8365
f4dc4d17
DE
8366/* Generate full symbol information for type unit PER_CU, whose DIEs have
8367 already been loaded into memory. */
8368
8369static void
8370process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8371 enum language pretend_language)
8372{
8373 struct dwarf2_cu *cu = per_cu->cu;
8374 struct objfile *objfile = per_cu->objfile;
43f3e411 8375 struct compunit_symtab *cust;
f4dc4d17 8376 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8377 struct signatured_type *sig_type;
8378
8379 gdb_assert (per_cu->is_debug_types);
8380 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8381
8382 buildsym_init ();
8383 back_to = make_cleanup (really_free_pendings, NULL);
8384 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8385
8386 cu->list_in_scope = &file_symbols;
8387
8388 cu->language = pretend_language;
8389 cu->language_defn = language_def (cu->language);
8390
8391 /* The symbol tables are set up in read_type_unit_scope. */
8392 process_die (cu->dies, cu);
8393
8394 /* For now fudge the Go package. */
8395 if (cu->language == language_go)
8396 fixup_go_packaging (cu);
8397
8398 /* Now that we have processed all the DIEs in the CU, all the types
8399 should be complete, and it should now be safe to compute all of the
8400 physnames. */
8401 compute_delayed_physnames (cu);
8402 do_cleanups (delayed_list_cleanup);
8403
8404 /* TUs share symbol tables.
8405 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8406 of it with end_expandable_symtab. Otherwise, complete the addition of
8407 this TU's symbols to the existing symtab. */
43f3e411 8408 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8409 {
43f3e411
DE
8410 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8411 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8412
43f3e411 8413 if (cust != NULL)
f4dc4d17
DE
8414 {
8415 /* Set symtab language to language from DW_AT_language. If the
8416 compilation is from a C file generated by language preprocessors,
8417 do not set the language if it was already deduced by
8418 start_subfile. */
43f3e411
DE
8419 if (!(cu->language == language_c
8420 && COMPUNIT_FILETABS (cust)->language != language_c))
8421 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8422 }
8423 }
8424 else
8425 {
0ab9ce85 8426 augment_type_symtab ();
43f3e411 8427 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8428 }
8429
8430 if (dwarf2_per_objfile->using_index)
43f3e411 8431 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8432 else
8433 {
8434 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8435 pst->compunit_symtab = cust;
f4dc4d17 8436 pst->readin = 1;
45cfd468 8437 }
f4dc4d17
DE
8438
8439 do_cleanups (back_to);
c906108c
SS
8440}
8441
95554aad
TT
8442/* Process an imported unit DIE. */
8443
8444static void
8445process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8446{
8447 struct attribute *attr;
8448
f4dc4d17
DE
8449 /* For now we don't handle imported units in type units. */
8450 if (cu->per_cu->is_debug_types)
8451 {
8452 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8453 " supported in type units [in module %s]"),
4262abfb 8454 objfile_name (cu->objfile));
f4dc4d17
DE
8455 }
8456
95554aad
TT
8457 attr = dwarf2_attr (die, DW_AT_import, cu);
8458 if (attr != NULL)
8459 {
9c541725
PA
8460 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8461 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8462 dwarf2_per_cu_data *per_cu
8463 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
95554aad 8464
69d751e3 8465 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8466 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8467 load_full_comp_unit (per_cu, cu->language);
8468
796a7ff8 8469 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8470 per_cu);
8471 }
8472}
8473
adde2bff
DE
8474/* Reset the in_process bit of a die. */
8475
8476static void
8477reset_die_in_process (void *arg)
8478{
9a3c8263 8479 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8480
adde2bff
DE
8481 die->in_process = 0;
8482}
8483
c906108c
SS
8484/* Process a die and its children. */
8485
8486static void
e7c27a73 8487process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8488{
adde2bff
DE
8489 struct cleanup *in_process;
8490
8491 /* We should only be processing those not already in process. */
8492 gdb_assert (!die->in_process);
8493
8494 die->in_process = 1;
8495 in_process = make_cleanup (reset_die_in_process,die);
8496
c906108c
SS
8497 switch (die->tag)
8498 {
8499 case DW_TAG_padding:
8500 break;
8501 case DW_TAG_compile_unit:
95554aad 8502 case DW_TAG_partial_unit:
e7c27a73 8503 read_file_scope (die, cu);
c906108c 8504 break;
348e048f
DE
8505 case DW_TAG_type_unit:
8506 read_type_unit_scope (die, cu);
8507 break;
c906108c 8508 case DW_TAG_subprogram:
c906108c 8509 case DW_TAG_inlined_subroutine:
edb3359d 8510 read_func_scope (die, cu);
c906108c
SS
8511 break;
8512 case DW_TAG_lexical_block:
14898363
L
8513 case DW_TAG_try_block:
8514 case DW_TAG_catch_block:
e7c27a73 8515 read_lexical_block_scope (die, cu);
c906108c 8516 break;
216f72a1 8517 case DW_TAG_call_site:
96408a79
SA
8518 case DW_TAG_GNU_call_site:
8519 read_call_site_scope (die, cu);
8520 break;
c906108c 8521 case DW_TAG_class_type:
680b30c7 8522 case DW_TAG_interface_type:
c906108c
SS
8523 case DW_TAG_structure_type:
8524 case DW_TAG_union_type:
134d01f1 8525 process_structure_scope (die, cu);
c906108c
SS
8526 break;
8527 case DW_TAG_enumeration_type:
134d01f1 8528 process_enumeration_scope (die, cu);
c906108c 8529 break;
134d01f1 8530
f792889a
DJ
8531 /* These dies have a type, but processing them does not create
8532 a symbol or recurse to process the children. Therefore we can
8533 read them on-demand through read_type_die. */
c906108c 8534 case DW_TAG_subroutine_type:
72019c9c 8535 case DW_TAG_set_type:
c906108c 8536 case DW_TAG_array_type:
c906108c 8537 case DW_TAG_pointer_type:
c906108c 8538 case DW_TAG_ptr_to_member_type:
c906108c 8539 case DW_TAG_reference_type:
4297a3f0 8540 case DW_TAG_rvalue_reference_type:
c906108c 8541 case DW_TAG_string_type:
c906108c 8542 break;
134d01f1 8543
c906108c 8544 case DW_TAG_base_type:
a02abb62 8545 case DW_TAG_subrange_type:
cb249c71 8546 case DW_TAG_typedef:
134d01f1
DJ
8547 /* Add a typedef symbol for the type definition, if it has a
8548 DW_AT_name. */
f792889a 8549 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8550 break;
c906108c 8551 case DW_TAG_common_block:
e7c27a73 8552 read_common_block (die, cu);
c906108c
SS
8553 break;
8554 case DW_TAG_common_inclusion:
8555 break;
d9fa45fe 8556 case DW_TAG_namespace:
4d4ec4e5 8557 cu->processing_has_namespace_info = 1;
e7c27a73 8558 read_namespace (die, cu);
d9fa45fe 8559 break;
5d7cb8df 8560 case DW_TAG_module:
4d4ec4e5 8561 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8562 read_module (die, cu);
8563 break;
d9fa45fe 8564 case DW_TAG_imported_declaration:
74921315
KS
8565 cu->processing_has_namespace_info = 1;
8566 if (read_namespace_alias (die, cu))
8567 break;
8568 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8569 case DW_TAG_imported_module:
4d4ec4e5 8570 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8571 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8572 || cu->language != language_fortran))
8573 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8574 dwarf_tag_name (die->tag));
8575 read_import_statement (die, cu);
d9fa45fe 8576 break;
95554aad
TT
8577
8578 case DW_TAG_imported_unit:
8579 process_imported_unit_die (die, cu);
8580 break;
8581
c906108c 8582 default:
e7c27a73 8583 new_symbol (die, NULL, cu);
c906108c
SS
8584 break;
8585 }
adde2bff
DE
8586
8587 do_cleanups (in_process);
c906108c 8588}
ca69b9e6
DE
8589\f
8590/* DWARF name computation. */
c906108c 8591
94af9270
KS
8592/* A helper function for dwarf2_compute_name which determines whether DIE
8593 needs to have the name of the scope prepended to the name listed in the
8594 die. */
8595
8596static int
8597die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8598{
1c809c68
TT
8599 struct attribute *attr;
8600
94af9270
KS
8601 switch (die->tag)
8602 {
8603 case DW_TAG_namespace:
8604 case DW_TAG_typedef:
8605 case DW_TAG_class_type:
8606 case DW_TAG_interface_type:
8607 case DW_TAG_structure_type:
8608 case DW_TAG_union_type:
8609 case DW_TAG_enumeration_type:
8610 case DW_TAG_enumerator:
8611 case DW_TAG_subprogram:
08a76f8a 8612 case DW_TAG_inlined_subroutine:
94af9270 8613 case DW_TAG_member:
74921315 8614 case DW_TAG_imported_declaration:
94af9270
KS
8615 return 1;
8616
8617 case DW_TAG_variable:
c2b0a229 8618 case DW_TAG_constant:
94af9270
KS
8619 /* We only need to prefix "globally" visible variables. These include
8620 any variable marked with DW_AT_external or any variable that
8621 lives in a namespace. [Variables in anonymous namespaces
8622 require prefixing, but they are not DW_AT_external.] */
8623
8624 if (dwarf2_attr (die, DW_AT_specification, cu))
8625 {
8626 struct dwarf2_cu *spec_cu = cu;
9a619af0 8627
94af9270
KS
8628 return die_needs_namespace (die_specification (die, &spec_cu),
8629 spec_cu);
8630 }
8631
1c809c68 8632 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8633 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8634 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8635 return 0;
8636 /* A variable in a lexical block of some kind does not need a
8637 namespace, even though in C++ such variables may be external
8638 and have a mangled name. */
8639 if (die->parent->tag == DW_TAG_lexical_block
8640 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8641 || die->parent->tag == DW_TAG_catch_block
8642 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8643 return 0;
8644 return 1;
94af9270
KS
8645
8646 default:
8647 return 0;
8648 }
8649}
8650
8651/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 8652 compute the physname for the object, which include a method's:
9c37b5ae 8653 - formal parameters (C++),
a766d390 8654 - receiver type (Go),
a766d390
DE
8655
8656 The term "physname" is a bit confusing.
8657 For C++, for example, it is the demangled name.
8658 For Go, for example, it's the mangled name.
94af9270 8659
af6b7be1
JB
8660 For Ada, return the DIE's linkage name rather than the fully qualified
8661 name. PHYSNAME is ignored..
8662
94af9270
KS
8663 The result is allocated on the objfile_obstack and canonicalized. */
8664
8665static const char *
15d034d0
TT
8666dwarf2_compute_name (const char *name,
8667 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8668 int physname)
8669{
bb5ed363
DE
8670 struct objfile *objfile = cu->objfile;
8671
94af9270
KS
8672 if (name == NULL)
8673 name = dwarf2_name (die, cu);
8674
2ee7123e
DE
8675 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8676 but otherwise compute it by typename_concat inside GDB.
8677 FIXME: Actually this is not really true, or at least not always true.
8678 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8679 Fortran names because there is no mangling standard. So new_symbol_full
8680 will set the demangled name to the result of dwarf2_full_name, and it is
8681 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8682 if (cu->language == language_ada
8683 || (cu->language == language_fortran && physname))
8684 {
8685 /* For Ada unit, we prefer the linkage name over the name, as
8686 the former contains the exported name, which the user expects
8687 to be able to reference. Ideally, we want the user to be able
8688 to reference this entity using either natural or linkage name,
8689 but we haven't started looking at this enhancement yet. */
2ee7123e 8690 const char *linkage_name;
f55ee35c 8691
2ee7123e
DE
8692 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8693 if (linkage_name == NULL)
8694 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8695 if (linkage_name != NULL)
8696 return linkage_name;
f55ee35c
JK
8697 }
8698
94af9270
KS
8699 /* These are the only languages we know how to qualify names in. */
8700 if (name != NULL
9c37b5ae 8701 && (cu->language == language_cplus
c44af4eb
TT
8702 || cu->language == language_fortran || cu->language == language_d
8703 || cu->language == language_rust))
94af9270
KS
8704 {
8705 if (die_needs_namespace (die, cu))
8706 {
8707 long length;
0d5cff50 8708 const char *prefix;
34a68019 8709 const char *canonical_name = NULL;
94af9270 8710
d7e74731
PA
8711 string_file buf;
8712
94af9270 8713 prefix = determine_prefix (die, cu);
94af9270
KS
8714 if (*prefix != '\0')
8715 {
f55ee35c
JK
8716 char *prefixed_name = typename_concat (NULL, prefix, name,
8717 physname, cu);
9a619af0 8718
d7e74731 8719 buf.puts (prefixed_name);
94af9270
KS
8720 xfree (prefixed_name);
8721 }
8722 else
d7e74731 8723 buf.puts (name);
94af9270 8724
98bfdba5
PA
8725 /* Template parameters may be specified in the DIE's DW_AT_name, or
8726 as children with DW_TAG_template_type_param or
8727 DW_TAG_value_type_param. If the latter, add them to the name
8728 here. If the name already has template parameters, then
8729 skip this step; some versions of GCC emit both, and
8730 it is more efficient to use the pre-computed name.
8731
8732 Something to keep in mind about this process: it is very
8733 unlikely, or in some cases downright impossible, to produce
8734 something that will match the mangled name of a function.
8735 If the definition of the function has the same debug info,
8736 we should be able to match up with it anyway. But fallbacks
8737 using the minimal symbol, for instance to find a method
8738 implemented in a stripped copy of libstdc++, will not work.
8739 If we do not have debug info for the definition, we will have to
8740 match them up some other way.
8741
8742 When we do name matching there is a related problem with function
8743 templates; two instantiated function templates are allowed to
8744 differ only by their return types, which we do not add here. */
8745
8746 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8747 {
8748 struct attribute *attr;
8749 struct die_info *child;
8750 int first = 1;
8751
8752 die->building_fullname = 1;
8753
8754 for (child = die->child; child != NULL; child = child->sibling)
8755 {
8756 struct type *type;
12df843f 8757 LONGEST value;
d521ce57 8758 const gdb_byte *bytes;
98bfdba5
PA
8759 struct dwarf2_locexpr_baton *baton;
8760 struct value *v;
8761
8762 if (child->tag != DW_TAG_template_type_param
8763 && child->tag != DW_TAG_template_value_param)
8764 continue;
8765
8766 if (first)
8767 {
d7e74731 8768 buf.puts ("<");
98bfdba5
PA
8769 first = 0;
8770 }
8771 else
d7e74731 8772 buf.puts (", ");
98bfdba5
PA
8773
8774 attr = dwarf2_attr (child, DW_AT_type, cu);
8775 if (attr == NULL)
8776 {
8777 complaint (&symfile_complaints,
8778 _("template parameter missing DW_AT_type"));
d7e74731 8779 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
8780 continue;
8781 }
8782 type = die_type (child, cu);
8783
8784 if (child->tag == DW_TAG_template_type_param)
8785 {
d7e74731 8786 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8787 continue;
8788 }
8789
8790 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8791 if (attr == NULL)
8792 {
8793 complaint (&symfile_complaints,
3e43a32a
MS
8794 _("template parameter missing "
8795 "DW_AT_const_value"));
d7e74731 8796 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
8797 continue;
8798 }
8799
8800 dwarf2_const_value_attr (attr, type, name,
8801 &cu->comp_unit_obstack, cu,
8802 &value, &bytes, &baton);
8803
8804 if (TYPE_NOSIGN (type))
8805 /* GDB prints characters as NUMBER 'CHAR'. If that's
8806 changed, this can use value_print instead. */
d7e74731 8807 c_printchar (value, type, &buf);
98bfdba5
PA
8808 else
8809 {
8810 struct value_print_options opts;
8811
8812 if (baton != NULL)
8813 v = dwarf2_evaluate_loc_desc (type, NULL,
8814 baton->data,
8815 baton->size,
8816 baton->per_cu);
8817 else if (bytes != NULL)
8818 {
8819 v = allocate_value (type);
8820 memcpy (value_contents_writeable (v), bytes,
8821 TYPE_LENGTH (type));
8822 }
8823 else
8824 v = value_from_longest (type, value);
8825
3e43a32a
MS
8826 /* Specify decimal so that we do not depend on
8827 the radix. */
98bfdba5
PA
8828 get_formatted_print_options (&opts, 'd');
8829 opts.raw = 1;
d7e74731 8830 value_print (v, &buf, &opts);
98bfdba5
PA
8831 release_value (v);
8832 value_free (v);
8833 }
8834 }
8835
8836 die->building_fullname = 0;
8837
8838 if (!first)
8839 {
8840 /* Close the argument list, with a space if necessary
8841 (nested templates). */
d7e74731
PA
8842 if (!buf.empty () && buf.string ().back () == '>')
8843 buf.puts (" >");
98bfdba5 8844 else
d7e74731 8845 buf.puts (">");
98bfdba5
PA
8846 }
8847 }
8848
9c37b5ae 8849 /* For C++ methods, append formal parameter type
94af9270 8850 information, if PHYSNAME. */
6e70227d 8851
94af9270 8852 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 8853 && cu->language == language_cplus)
94af9270
KS
8854 {
8855 struct type *type = read_type_die (die, cu);
8856
d7e74731 8857 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 8858 &type_print_raw_options);
94af9270 8859
9c37b5ae 8860 if (cu->language == language_cplus)
94af9270 8861 {
60430eff
DJ
8862 /* Assume that an artificial first parameter is
8863 "this", but do not crash if it is not. RealView
8864 marks unnamed (and thus unused) parameters as
8865 artificial; there is no way to differentiate
8866 the two cases. */
94af9270
KS
8867 if (TYPE_NFIELDS (type) > 0
8868 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8869 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8870 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8871 0))))
d7e74731 8872 buf.puts (" const");
94af9270
KS
8873 }
8874 }
8875
d7e74731 8876 const std::string &intermediate_name = buf.string ();
94af9270
KS
8877
8878 if (cu->language == language_cplus)
34a68019 8879 canonical_name
322a8516 8880 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
8881 &objfile->per_bfd->storage_obstack);
8882
8883 /* If we only computed INTERMEDIATE_NAME, or if
8884 INTERMEDIATE_NAME is already canonical, then we need to
8885 copy it to the appropriate obstack. */
322a8516 8886 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
8887 name = ((const char *)
8888 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
8889 intermediate_name.c_str (),
8890 intermediate_name.length ()));
34a68019
TT
8891 else
8892 name = canonical_name;
94af9270
KS
8893 }
8894 }
8895
8896 return name;
8897}
8898
0114d602
DJ
8899/* Return the fully qualified name of DIE, based on its DW_AT_name.
8900 If scope qualifiers are appropriate they will be added. The result
34a68019 8901 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8902 not have a name. NAME may either be from a previous call to
8903 dwarf2_name or NULL.
8904
9c37b5ae 8905 The output string will be canonicalized (if C++). */
0114d602
DJ
8906
8907static const char *
15d034d0 8908dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8909{
94af9270
KS
8910 return dwarf2_compute_name (name, die, cu, 0);
8911}
0114d602 8912
94af9270
KS
8913/* Construct a physname for the given DIE in CU. NAME may either be
8914 from a previous call to dwarf2_name or NULL. The result will be
8915 allocated on the objfile_objstack or NULL if the DIE does not have a
8916 name.
0114d602 8917
9c37b5ae 8918 The output string will be canonicalized (if C++). */
0114d602 8919
94af9270 8920static const char *
15d034d0 8921dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8922{
bb5ed363 8923 struct objfile *objfile = cu->objfile;
900e11f9
JK
8924 const char *retval, *mangled = NULL, *canon = NULL;
8925 struct cleanup *back_to;
8926 int need_copy = 1;
8927
8928 /* In this case dwarf2_compute_name is just a shortcut not building anything
8929 on its own. */
8930 if (!die_needs_namespace (die, cu))
8931 return dwarf2_compute_name (name, die, cu, 1);
8932
8933 back_to = make_cleanup (null_cleanup, NULL);
8934
7d45c7c3
KB
8935 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8936 if (mangled == NULL)
8937 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9 8938
e98c9e7c
TT
8939 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8940 See https://github.com/rust-lang/rust/issues/32925. */
8941 if (cu->language == language_rust && mangled != NULL
8942 && strchr (mangled, '{') != NULL)
8943 mangled = NULL;
8944
900e11f9
JK
8945 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8946 has computed. */
7d45c7c3 8947 if (mangled != NULL)
900e11f9
JK
8948 {
8949 char *demangled;
8950
900e11f9
JK
8951 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8952 type. It is easier for GDB users to search for such functions as
8953 `name(params)' than `long name(params)'. In such case the minimal
8954 symbol names do not match the full symbol names but for template
8955 functions there is never a need to look up their definition from their
8956 declaration so the only disadvantage remains the minimal symbol
8957 variant `long name(params)' does not have the proper inferior type.
8958 */
8959
a766d390
DE
8960 if (cu->language == language_go)
8961 {
8962 /* This is a lie, but we already lie to the caller new_symbol_full.
8963 new_symbol_full assumes we return the mangled name.
8964 This just undoes that lie until things are cleaned up. */
8965 demangled = NULL;
8966 }
8967 else
8968 {
8de20a37 8969 demangled = gdb_demangle (mangled,
9c37b5ae 8970 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
a766d390 8971 }
900e11f9
JK
8972 if (demangled)
8973 {
8974 make_cleanup (xfree, demangled);
8975 canon = demangled;
8976 }
8977 else
8978 {
8979 canon = mangled;
8980 need_copy = 0;
8981 }
8982 }
8983
8984 if (canon == NULL || check_physname)
8985 {
8986 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8987
8988 if (canon != NULL && strcmp (physname, canon) != 0)
8989 {
8990 /* It may not mean a bug in GDB. The compiler could also
8991 compute DW_AT_linkage_name incorrectly. But in such case
8992 GDB would need to be bug-to-bug compatible. */
8993
8994 complaint (&symfile_complaints,
8995 _("Computed physname <%s> does not match demangled <%s> "
8996 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9c541725 8997 physname, canon, mangled, to_underlying (die->sect_off),
4262abfb 8998 objfile_name (objfile));
900e11f9
JK
8999
9000 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9001 is available here - over computed PHYSNAME. It is safer
9002 against both buggy GDB and buggy compilers. */
9003
9004 retval = canon;
9005 }
9006 else
9007 {
9008 retval = physname;
9009 need_copy = 0;
9010 }
9011 }
9012 else
9013 retval = canon;
9014
9015 if (need_copy)
224c3ddb
SM
9016 retval = ((const char *)
9017 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9018 retval, strlen (retval)));
900e11f9
JK
9019
9020 do_cleanups (back_to);
9021 return retval;
0114d602
DJ
9022}
9023
74921315
KS
9024/* Inspect DIE in CU for a namespace alias. If one exists, record
9025 a new symbol for it.
9026
9027 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9028
9029static int
9030read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9031{
9032 struct attribute *attr;
9033
9034 /* If the die does not have a name, this is not a namespace
9035 alias. */
9036 attr = dwarf2_attr (die, DW_AT_name, cu);
9037 if (attr != NULL)
9038 {
9039 int num;
9040 struct die_info *d = die;
9041 struct dwarf2_cu *imported_cu = cu;
9042
9043 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9044 keep inspecting DIEs until we hit the underlying import. */
9045#define MAX_NESTED_IMPORTED_DECLARATIONS 100
9046 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9047 {
9048 attr = dwarf2_attr (d, DW_AT_import, cu);
9049 if (attr == NULL)
9050 break;
9051
9052 d = follow_die_ref (d, attr, &imported_cu);
9053 if (d->tag != DW_TAG_imported_declaration)
9054 break;
9055 }
9056
9057 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9058 {
9059 complaint (&symfile_complaints,
9060 _("DIE at 0x%x has too many recursively imported "
9c541725 9061 "declarations"), to_underlying (d->sect_off));
74921315
KS
9062 return 0;
9063 }
9064
9065 if (attr != NULL)
9066 {
9067 struct type *type;
9c541725 9068 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 9069
9c541725 9070 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
9071 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9072 {
9073 /* This declaration is a global namespace alias. Add
9074 a symbol for it whose type is the aliased namespace. */
9075 new_symbol (die, type, cu);
9076 return 1;
9077 }
9078 }
9079 }
9080
9081 return 0;
9082}
9083
22cee43f
PMR
9084/* Return the using directives repository (global or local?) to use in the
9085 current context for LANGUAGE.
9086
9087 For Ada, imported declarations can materialize renamings, which *may* be
9088 global. However it is impossible (for now?) in DWARF to distinguish
9089 "external" imported declarations and "static" ones. As all imported
9090 declarations seem to be static in all other languages, make them all CU-wide
9091 global only in Ada. */
9092
9093static struct using_direct **
9094using_directives (enum language language)
9095{
9096 if (language == language_ada && context_stack_depth == 0)
9097 return &global_using_directives;
9098 else
9099 return &local_using_directives;
9100}
9101
27aa8d6a
SW
9102/* Read the import statement specified by the given die and record it. */
9103
9104static void
9105read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9106{
bb5ed363 9107 struct objfile *objfile = cu->objfile;
27aa8d6a 9108 struct attribute *import_attr;
32019081 9109 struct die_info *imported_die, *child_die;
de4affc9 9110 struct dwarf2_cu *imported_cu;
27aa8d6a 9111 const char *imported_name;
794684b6 9112 const char *imported_name_prefix;
13387711
SW
9113 const char *canonical_name;
9114 const char *import_alias;
9115 const char *imported_declaration = NULL;
794684b6 9116 const char *import_prefix;
32019081
JK
9117 VEC (const_char_ptr) *excludes = NULL;
9118 struct cleanup *cleanups;
13387711 9119
27aa8d6a
SW
9120 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9121 if (import_attr == NULL)
9122 {
9123 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9124 dwarf_tag_name (die->tag));
9125 return;
9126 }
9127
de4affc9
CC
9128 imported_cu = cu;
9129 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9130 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
9131 if (imported_name == NULL)
9132 {
9133 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9134
9135 The import in the following code:
9136 namespace A
9137 {
9138 typedef int B;
9139 }
9140
9141 int main ()
9142 {
9143 using A::B;
9144 B b;
9145 return b;
9146 }
9147
9148 ...
9149 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9150 <52> DW_AT_decl_file : 1
9151 <53> DW_AT_decl_line : 6
9152 <54> DW_AT_import : <0x75>
9153 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9154 <59> DW_AT_name : B
9155 <5b> DW_AT_decl_file : 1
9156 <5c> DW_AT_decl_line : 2
9157 <5d> DW_AT_type : <0x6e>
9158 ...
9159 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9160 <76> DW_AT_byte_size : 4
9161 <77> DW_AT_encoding : 5 (signed)
9162
9163 imports the wrong die ( 0x75 instead of 0x58 ).
9164 This case will be ignored until the gcc bug is fixed. */
9165 return;
9166 }
9167
82856980
SW
9168 /* Figure out the local name after import. */
9169 import_alias = dwarf2_name (die, cu);
27aa8d6a 9170
794684b6
SW
9171 /* Figure out where the statement is being imported to. */
9172 import_prefix = determine_prefix (die, cu);
9173
9174 /* Figure out what the scope of the imported die is and prepend it
9175 to the name of the imported die. */
de4affc9 9176 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 9177
f55ee35c
JK
9178 if (imported_die->tag != DW_TAG_namespace
9179 && imported_die->tag != DW_TAG_module)
794684b6 9180 {
13387711
SW
9181 imported_declaration = imported_name;
9182 canonical_name = imported_name_prefix;
794684b6 9183 }
13387711 9184 else if (strlen (imported_name_prefix) > 0)
12aaed36 9185 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
9186 imported_name_prefix,
9187 (cu->language == language_d ? "." : "::"),
9188 imported_name, (char *) NULL);
13387711
SW
9189 else
9190 canonical_name = imported_name;
794684b6 9191
32019081
JK
9192 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9193
9194 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9195 for (child_die = die->child; child_die && child_die->tag;
9196 child_die = sibling_die (child_die))
9197 {
9198 /* DWARF-4: A Fortran use statement with a “rename list” may be
9199 represented by an imported module entry with an import attribute
9200 referring to the module and owned entries corresponding to those
9201 entities that are renamed as part of being imported. */
9202
9203 if (child_die->tag != DW_TAG_imported_declaration)
9204 {
9205 complaint (&symfile_complaints,
9206 _("child DW_TAG_imported_declaration expected "
9207 "- DIE at 0x%x [in module %s]"),
9c541725 9208 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9209 continue;
9210 }
9211
9212 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9213 if (import_attr == NULL)
9214 {
9215 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9216 dwarf_tag_name (child_die->tag));
9217 continue;
9218 }
9219
9220 imported_cu = cu;
9221 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9222 &imported_cu);
9223 imported_name = dwarf2_name (imported_die, imported_cu);
9224 if (imported_name == NULL)
9225 {
9226 complaint (&symfile_complaints,
9227 _("child DW_TAG_imported_declaration has unknown "
9228 "imported name - DIE at 0x%x [in module %s]"),
9c541725 9229 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9230 continue;
9231 }
9232
9233 VEC_safe_push (const_char_ptr, excludes, imported_name);
9234
9235 process_die (child_die, cu);
9236 }
9237
22cee43f
PMR
9238 add_using_directive (using_directives (cu->language),
9239 import_prefix,
9240 canonical_name,
9241 import_alias,
9242 imported_declaration,
9243 excludes,
9244 0,
9245 &objfile->objfile_obstack);
32019081
JK
9246
9247 do_cleanups (cleanups);
27aa8d6a
SW
9248}
9249
1b80a9fa
JK
9250/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9251 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9252 this, it was first present in GCC release 4.3.0. */
9253
9254static int
9255producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9256{
9257 if (!cu->checked_producer)
9258 check_producer (cu);
9259
9260 return cu->producer_is_gcc_lt_4_3;
9261}
9262
d721ba37
PA
9263static file_and_directory
9264find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 9265{
d721ba37
PA
9266 file_and_directory res;
9267
9291a0cd
TT
9268 /* Find the filename. Do not use dwarf2_name here, since the filename
9269 is not a source language identifier. */
d721ba37
PA
9270 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9271 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9272
d721ba37
PA
9273 if (res.comp_dir == NULL
9274 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9275 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 9276 {
d721ba37
PA
9277 res.comp_dir_storage = ldirname (res.name);
9278 if (!res.comp_dir_storage.empty ())
9279 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 9280 }
d721ba37 9281 if (res.comp_dir != NULL)
9291a0cd
TT
9282 {
9283 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9284 directory, get rid of it. */
d721ba37 9285 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 9286
d721ba37
PA
9287 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9288 res.comp_dir = cp + 1;
9291a0cd
TT
9289 }
9290
d721ba37
PA
9291 if (res.name == NULL)
9292 res.name = "<unknown>";
9293
9294 return res;
9291a0cd
TT
9295}
9296
f4dc4d17
DE
9297/* Handle DW_AT_stmt_list for a compilation unit.
9298 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9299 COMP_DIR is the compilation directory. LOWPC is passed to
9300 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9301
9302static void
9303handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9304 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9305{
527f3840 9306 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9307 struct attribute *attr;
527f3840
JK
9308 struct line_header line_header_local;
9309 hashval_t line_header_local_hash;
9310 unsigned u;
9311 void **slot;
9312 int decode_mapping;
2ab95328 9313
f4dc4d17
DE
9314 gdb_assert (! cu->per_cu->is_debug_types);
9315
2ab95328 9316 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9317 if (attr == NULL)
9318 return;
9319
9c541725 9320 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
9321
9322 /* The line header hash table is only created if needed (it exists to
9323 prevent redundant reading of the line table for partial_units).
9324 If we're given a partial_unit, we'll need it. If we're given a
9325 compile_unit, then use the line header hash table if it's already
9326 created, but don't create one just yet. */
9327
9328 if (dwarf2_per_objfile->line_header_hash == NULL
9329 && die->tag == DW_TAG_partial_unit)
2ab95328 9330 {
527f3840
JK
9331 dwarf2_per_objfile->line_header_hash
9332 = htab_create_alloc_ex (127, line_header_hash_voidp,
9333 line_header_eq_voidp,
9334 free_line_header_voidp,
9335 &objfile->objfile_obstack,
9336 hashtab_obstack_allocate,
9337 dummy_obstack_deallocate);
9338 }
2ab95328 9339
9c541725 9340 line_header_local.sect_off = line_offset;
527f3840
JK
9341 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9342 line_header_local_hash = line_header_hash (&line_header_local);
9343 if (dwarf2_per_objfile->line_header_hash != NULL)
9344 {
9345 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9346 &line_header_local,
9347 line_header_local_hash, NO_INSERT);
9348
9349 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9350 is not present in *SLOT (since if there is something in *SLOT then
9351 it will be for a partial_unit). */
9352 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9353 {
527f3840 9354 gdb_assert (*slot != NULL);
9a3c8263 9355 cu->line_header = (struct line_header *) *slot;
527f3840 9356 return;
dee91e82 9357 }
2ab95328 9358 }
527f3840
JK
9359
9360 /* dwarf_decode_line_header does not yet provide sufficient information.
9361 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
9362 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9363 if (lh == NULL)
527f3840 9364 return;
fff8551c 9365 cu->line_header = lh.get ();
527f3840
JK
9366
9367 if (dwarf2_per_objfile->line_header_hash == NULL)
9368 slot = NULL;
9369 else
9370 {
9371 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9372 &line_header_local,
9373 line_header_local_hash, INSERT);
9374 gdb_assert (slot != NULL);
9375 }
9376 if (slot != NULL && *slot == NULL)
9377 {
9378 /* This newly decoded line number information unit will be owned
9379 by line_header_hash hash table. */
9380 *slot = cu->line_header;
9381 }
9382 else
9383 {
9384 /* We cannot free any current entry in (*slot) as that struct line_header
9385 may be already used by multiple CUs. Create only temporary decoded
9386 line_header for this CU - it may happen at most once for each line
9387 number information unit. And if we're not using line_header_hash
9388 then this is what we want as well. */
9389 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
9390 }
9391 decode_mapping = (die->tag != DW_TAG_partial_unit);
9392 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9393 decode_mapping);
fff8551c
PA
9394
9395 lh.release ();
2ab95328
TT
9396}
9397
95554aad 9398/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9399
c906108c 9400static void
e7c27a73 9401read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9402{
dee91e82 9403 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9404 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 9405 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9406 CORE_ADDR highpc = ((CORE_ADDR) 0);
9407 struct attribute *attr;
c906108c 9408 struct die_info *child_die;
e142c38c 9409 CORE_ADDR baseaddr;
6e70227d 9410
e142c38c 9411 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9412
fae299cd 9413 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9414
9415 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9416 from finish_block. */
2acceee2 9417 if (lowpc == ((CORE_ADDR) -1))
c906108c 9418 lowpc = highpc;
3e29f34a 9419 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9420
d721ba37 9421 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 9422
95554aad 9423 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9424
f4b8a18d
KW
9425 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9426 standardised yet. As a workaround for the language detection we fall
9427 back to the DW_AT_producer string. */
9428 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9429 cu->language = language_opencl;
9430
3019eac3
DE
9431 /* Similar hack for Go. */
9432 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9433 set_cu_language (DW_LANG_Go, cu);
9434
d721ba37 9435 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
9436
9437 /* Decode line number information if present. We do this before
9438 processing child DIEs, so that the line header table is available
9439 for DW_AT_decl_file. */
d721ba37 9440 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
9441
9442 /* Process all dies in compilation unit. */
9443 if (die->child != NULL)
9444 {
9445 child_die = die->child;
9446 while (child_die && child_die->tag)
9447 {
9448 process_die (child_die, cu);
9449 child_die = sibling_die (child_die);
9450 }
9451 }
9452
9453 /* Decode macro information, if present. Dwarf 2 macro information
9454 refers to information in the line number info statement program
9455 header, so we can only read it if we've read the header
9456 successfully. */
0af92d60
JK
9457 attr = dwarf2_attr (die, DW_AT_macros, cu);
9458 if (attr == NULL)
9459 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
9460 if (attr && cu->line_header)
9461 {
9462 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9463 complaint (&symfile_complaints,
0af92d60 9464 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 9465
43f3e411 9466 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9467 }
9468 else
9469 {
9470 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9471 if (attr && cu->line_header)
9472 {
9473 unsigned int macro_offset = DW_UNSND (attr);
9474
43f3e411 9475 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9476 }
9477 }
3019eac3
DE
9478}
9479
f4dc4d17
DE
9480/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9481 Create the set of symtabs used by this TU, or if this TU is sharing
9482 symtabs with another TU and the symtabs have already been created
9483 then restore those symtabs in the line header.
9484 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9485
9486static void
f4dc4d17 9487setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9488{
f4dc4d17
DE
9489 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9490 struct type_unit_group *tu_group;
9491 int first_time;
3019eac3 9492 struct attribute *attr;
9c541725 9493 unsigned int i;
0186c6a7 9494 struct signatured_type *sig_type;
3019eac3 9495
f4dc4d17 9496 gdb_assert (per_cu->is_debug_types);
0186c6a7 9497 sig_type = (struct signatured_type *) per_cu;
3019eac3 9498
f4dc4d17 9499 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9500
f4dc4d17 9501 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9502 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9503 if (sig_type->type_unit_group == NULL)
9504 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9505 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9506
9507 /* If we've already processed this stmt_list there's no real need to
9508 do it again, we could fake it and just recreate the part we need
9509 (file name,index -> symtab mapping). If data shows this optimization
9510 is useful we can do it then. */
43f3e411 9511 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9512
9513 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9514 debug info. */
fff8551c 9515 line_header_up lh;
f4dc4d17 9516 if (attr != NULL)
3019eac3 9517 {
9c541725 9518 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
f4dc4d17
DE
9519 lh = dwarf_decode_line_header (line_offset, cu);
9520 }
9521 if (lh == NULL)
9522 {
9523 if (first_time)
9524 dwarf2_start_symtab (cu, "", NULL, 0);
9525 else
9526 {
9527 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9528 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9529 }
f4dc4d17 9530 return;
3019eac3
DE
9531 }
9532
fff8551c 9533 cu->line_header = lh.get ();
3019eac3 9534
f4dc4d17
DE
9535 if (first_time)
9536 {
43f3e411 9537 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9538
1fd60fc0
DE
9539 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9540 still initializing it, and our caller (a few levels up)
9541 process_full_type_unit still needs to know if this is the first
9542 time. */
9543
fff8551c
PA
9544 tu_group->num_symtabs = lh->file_names.size ();
9545 tu_group->symtabs = XNEWVEC (struct symtab *, lh->file_names.size ());
3019eac3 9546
fff8551c 9547 for (i = 0; i < lh->file_names.size (); ++i)
f4dc4d17 9548 {
8c43009f 9549 file_entry &fe = lh->file_names[i];
3019eac3 9550
fff8551c 9551 dwarf2_start_subfile (fe.name, fe.include_dir (lh.get ()));
3019eac3 9552
f4dc4d17
DE
9553 if (current_subfile->symtab == NULL)
9554 {
9555 /* NOTE: start_subfile will recognize when it's been passed
9556 a file it has already seen. So we can't assume there's a
43f3e411 9557 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9558 lh->file_names may contain dups. */
43f3e411
DE
9559 current_subfile->symtab
9560 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9561 }
9562
8c43009f
PA
9563 fe.symtab = current_subfile->symtab;
9564 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
9565 }
9566 }
9567 else
3019eac3 9568 {
0ab9ce85 9569 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9570
fff8551c 9571 for (i = 0; i < lh->file_names.size (); ++i)
f4dc4d17
DE
9572 {
9573 struct file_entry *fe = &lh->file_names[i];
9574
9575 fe->symtab = tu_group->symtabs[i];
9576 }
3019eac3
DE
9577 }
9578
fff8551c
PA
9579 lh.release ();
9580
f4dc4d17
DE
9581 /* The main symtab is allocated last. Type units don't have DW_AT_name
9582 so they don't have a "real" (so to speak) symtab anyway.
9583 There is later code that will assign the main symtab to all symbols
9584 that don't have one. We need to handle the case of a symbol with a
9585 missing symtab (DW_AT_decl_file) anyway. */
9586}
3019eac3 9587
f4dc4d17
DE
9588/* Process DW_TAG_type_unit.
9589 For TUs we want to skip the first top level sibling if it's not the
9590 actual type being defined by this TU. In this case the first top
9591 level sibling is there to provide context only. */
3019eac3 9592
f4dc4d17
DE
9593static void
9594read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9595{
9596 struct die_info *child_die;
3019eac3 9597
f4dc4d17
DE
9598 prepare_one_comp_unit (cu, die, language_minimal);
9599
9600 /* Initialize (or reinitialize) the machinery for building symtabs.
9601 We do this before processing child DIEs, so that the line header table
9602 is available for DW_AT_decl_file. */
9603 setup_type_unit_groups (die, cu);
9604
9605 if (die->child != NULL)
9606 {
9607 child_die = die->child;
9608 while (child_die && child_die->tag)
9609 {
9610 process_die (child_die, cu);
9611 child_die = sibling_die (child_die);
9612 }
9613 }
3019eac3
DE
9614}
9615\f
80626a55
DE
9616/* DWO/DWP files.
9617
9618 http://gcc.gnu.org/wiki/DebugFission
9619 http://gcc.gnu.org/wiki/DebugFissionDWP
9620
9621 To simplify handling of both DWO files ("object" files with the DWARF info)
9622 and DWP files (a file with the DWOs packaged up into one file), we treat
9623 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9624
9625static hashval_t
9626hash_dwo_file (const void *item)
9627{
9a3c8263 9628 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9629 hashval_t hash;
3019eac3 9630
a2ce51a0
DE
9631 hash = htab_hash_string (dwo_file->dwo_name);
9632 if (dwo_file->comp_dir != NULL)
9633 hash += htab_hash_string (dwo_file->comp_dir);
9634 return hash;
3019eac3
DE
9635}
9636
9637static int
9638eq_dwo_file (const void *item_lhs, const void *item_rhs)
9639{
9a3c8263
SM
9640 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9641 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9642
a2ce51a0
DE
9643 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9644 return 0;
9645 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9646 return lhs->comp_dir == rhs->comp_dir;
9647 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9648}
9649
9650/* Allocate a hash table for DWO files. */
9651
9652static htab_t
9653allocate_dwo_file_hash_table (void)
9654{
9655 struct objfile *objfile = dwarf2_per_objfile->objfile;
9656
9657 return htab_create_alloc_ex (41,
9658 hash_dwo_file,
9659 eq_dwo_file,
9660 NULL,
9661 &objfile->objfile_obstack,
9662 hashtab_obstack_allocate,
9663 dummy_obstack_deallocate);
9664}
9665
80626a55
DE
9666/* Lookup DWO file DWO_NAME. */
9667
9668static void **
0ac5b59e 9669lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9670{
9671 struct dwo_file find_entry;
9672 void **slot;
9673
9674 if (dwarf2_per_objfile->dwo_files == NULL)
9675 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9676
9677 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9678 find_entry.dwo_name = dwo_name;
9679 find_entry.comp_dir = comp_dir;
80626a55
DE
9680 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9681
9682 return slot;
9683}
9684
3019eac3
DE
9685static hashval_t
9686hash_dwo_unit (const void *item)
9687{
9a3c8263 9688 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9689
9690 /* This drops the top 32 bits of the id, but is ok for a hash. */
9691 return dwo_unit->signature;
9692}
9693
9694static int
9695eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9696{
9a3c8263
SM
9697 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9698 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9699
9700 /* The signature is assumed to be unique within the DWO file.
9701 So while object file CU dwo_id's always have the value zero,
9702 that's OK, assuming each object file DWO file has only one CU,
9703 and that's the rule for now. */
9704 return lhs->signature == rhs->signature;
9705}
9706
9707/* Allocate a hash table for DWO CUs,TUs.
9708 There is one of these tables for each of CUs,TUs for each DWO file. */
9709
9710static htab_t
9711allocate_dwo_unit_table (struct objfile *objfile)
9712{
9713 /* Start out with a pretty small number.
9714 Generally DWO files contain only one CU and maybe some TUs. */
9715 return htab_create_alloc_ex (3,
9716 hash_dwo_unit,
9717 eq_dwo_unit,
9718 NULL,
9719 &objfile->objfile_obstack,
9720 hashtab_obstack_allocate,
9721 dummy_obstack_deallocate);
9722}
9723
80626a55 9724/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9725
19c3d4c9 9726struct create_dwo_cu_data
3019eac3
DE
9727{
9728 struct dwo_file *dwo_file;
19c3d4c9 9729 struct dwo_unit dwo_unit;
3019eac3
DE
9730};
9731
19c3d4c9 9732/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9733
9734static void
19c3d4c9
DE
9735create_dwo_cu_reader (const struct die_reader_specs *reader,
9736 const gdb_byte *info_ptr,
9737 struct die_info *comp_unit_die,
9738 int has_children,
9739 void *datap)
3019eac3
DE
9740{
9741 struct dwarf2_cu *cu = reader->cu;
9c541725 9742 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 9743 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9744 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9745 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9746 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9747 struct attribute *attr;
3019eac3
DE
9748
9749 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9750 if (attr == NULL)
9751 {
19c3d4c9
DE
9752 complaint (&symfile_complaints,
9753 _("Dwarf Error: debug entry at offset 0x%x is missing"
9754 " its dwo_id [in module %s]"),
9c541725 9755 to_underlying (sect_off), dwo_file->dwo_name);
3019eac3
DE
9756 return;
9757 }
9758
3019eac3
DE
9759 dwo_unit->dwo_file = dwo_file;
9760 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9761 dwo_unit->section = section;
9c541725 9762 dwo_unit->sect_off = sect_off;
3019eac3
DE
9763 dwo_unit->length = cu->per_cu->length;
9764
b4f54984 9765 if (dwarf_read_debug)
4031ecc5 9766 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9c541725
PA
9767 to_underlying (sect_off),
9768 hex_string (dwo_unit->signature));
3019eac3
DE
9769}
9770
33c5cd75 9771/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 9772 Note: This function processes DWO files only, not DWP files. */
3019eac3 9773
33c5cd75
DB
9774static void
9775create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9776 htab_t &cus_htab)
3019eac3
DE
9777{
9778 struct objfile *objfile = dwarf2_per_objfile->objfile;
33c5cd75 9779 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
d521ce57 9780 const gdb_byte *info_ptr, *end_ptr;
3019eac3 9781
33c5cd75
DB
9782 dwarf2_read_section (objfile, &section);
9783 info_ptr = section.buffer;
3019eac3
DE
9784
9785 if (info_ptr == NULL)
33c5cd75 9786 return;
3019eac3 9787
b4f54984 9788 if (dwarf_read_debug)
19c3d4c9
DE
9789 {
9790 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
9791 get_section_name (&section),
9792 get_section_file_name (&section));
19c3d4c9 9793 }
3019eac3 9794
33c5cd75 9795 end_ptr = info_ptr + section.size;
3019eac3
DE
9796 while (info_ptr < end_ptr)
9797 {
9798 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
9799 struct create_dwo_cu_data create_dwo_cu_data;
9800 struct dwo_unit *dwo_unit;
9801 void **slot;
9802 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 9803
19c3d4c9
DE
9804 memset (&create_dwo_cu_data.dwo_unit, 0,
9805 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9806 memset (&per_cu, 0, sizeof (per_cu));
9807 per_cu.objfile = objfile;
9808 per_cu.is_debug_types = 0;
33c5cd75
DB
9809 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9810 per_cu.section = &section;
c5ed0576 9811 create_dwo_cu_data.dwo_file = &dwo_file;
33c5cd75
DB
9812
9813 init_cutu_and_read_dies_no_follow (
9814 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9815 info_ptr += per_cu.length;
9816
9817 // If the unit could not be parsed, skip it.
9818 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9819 continue;
3019eac3 9820
33c5cd75
DB
9821 if (cus_htab == NULL)
9822 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 9823
33c5cd75
DB
9824 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9825 *dwo_unit = create_dwo_cu_data.dwo_unit;
9826 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9827 gdb_assert (slot != NULL);
9828 if (*slot != NULL)
19c3d4c9 9829 {
33c5cd75
DB
9830 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9831 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 9832
33c5cd75
DB
9833 complaint (&symfile_complaints,
9834 _("debug cu entry at offset 0x%x is duplicate to"
9835 " the entry at offset 0x%x, signature %s"),
9836 to_underlying (sect_off), to_underlying (dup_sect_off),
9837 hex_string (dwo_unit->signature));
19c3d4c9 9838 }
33c5cd75 9839 *slot = (void *)dwo_unit;
3019eac3 9840 }
3019eac3
DE
9841}
9842
80626a55
DE
9843/* DWP file .debug_{cu,tu}_index section format:
9844 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9845
d2415c6c
DE
9846 DWP Version 1:
9847
80626a55
DE
9848 Both index sections have the same format, and serve to map a 64-bit
9849 signature to a set of section numbers. Each section begins with a header,
9850 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9851 indexes, and a pool of 32-bit section numbers. The index sections will be
9852 aligned at 8-byte boundaries in the file.
9853
d2415c6c
DE
9854 The index section header consists of:
9855
9856 V, 32 bit version number
9857 -, 32 bits unused
9858 N, 32 bit number of compilation units or type units in the index
9859 M, 32 bit number of slots in the hash table
80626a55 9860
d2415c6c 9861 Numbers are recorded using the byte order of the application binary.
80626a55 9862
d2415c6c
DE
9863 The hash table begins at offset 16 in the section, and consists of an array
9864 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9865 order of the application binary). Unused slots in the hash table are 0.
9866 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9867
d2415c6c
DE
9868 The parallel table begins immediately after the hash table
9869 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9870 array of 32-bit indexes (using the byte order of the application binary),
9871 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9872 table contains a 32-bit index into the pool of section numbers. For unused
9873 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9874
73869dc2
DE
9875 The pool of section numbers begins immediately following the hash table
9876 (at offset 16 + 12 * M from the beginning of the section). The pool of
9877 section numbers consists of an array of 32-bit words (using the byte order
9878 of the application binary). Each item in the array is indexed starting
9879 from 0. The hash table entry provides the index of the first section
9880 number in the set. Additional section numbers in the set follow, and the
9881 set is terminated by a 0 entry (section number 0 is not used in ELF).
9882
9883 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9884 section must be the first entry in the set, and the .debug_abbrev.dwo must
9885 be the second entry. Other members of the set may follow in any order.
9886
9887 ---
9888
9889 DWP Version 2:
9890
9891 DWP Version 2 combines all the .debug_info, etc. sections into one,
9892 and the entries in the index tables are now offsets into these sections.
9893 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9894 section.
9895
9896 Index Section Contents:
9897 Header
9898 Hash Table of Signatures dwp_hash_table.hash_table
9899 Parallel Table of Indices dwp_hash_table.unit_table
9900 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9901 Table of Section Sizes dwp_hash_table.v2.sizes
9902
9903 The index section header consists of:
9904
9905 V, 32 bit version number
9906 L, 32 bit number of columns in the table of section offsets
9907 N, 32 bit number of compilation units or type units in the index
9908 M, 32 bit number of slots in the hash table
9909
9910 Numbers are recorded using the byte order of the application binary.
9911
9912 The hash table has the same format as version 1.
9913 The parallel table of indices has the same format as version 1,
9914 except that the entries are origin-1 indices into the table of sections
9915 offsets and the table of section sizes.
9916
9917 The table of offsets begins immediately following the parallel table
9918 (at offset 16 + 12 * M from the beginning of the section). The table is
9919 a two-dimensional array of 32-bit words (using the byte order of the
9920 application binary), with L columns and N+1 rows, in row-major order.
9921 Each row in the array is indexed starting from 0. The first row provides
9922 a key to the remaining rows: each column in this row provides an identifier
9923 for a debug section, and the offsets in the same column of subsequent rows
9924 refer to that section. The section identifiers are:
9925
9926 DW_SECT_INFO 1 .debug_info.dwo
9927 DW_SECT_TYPES 2 .debug_types.dwo
9928 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9929 DW_SECT_LINE 4 .debug_line.dwo
9930 DW_SECT_LOC 5 .debug_loc.dwo
9931 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9932 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9933 DW_SECT_MACRO 8 .debug_macro.dwo
9934
9935 The offsets provided by the CU and TU index sections are the base offsets
9936 for the contributions made by each CU or TU to the corresponding section
9937 in the package file. Each CU and TU header contains an abbrev_offset
9938 field, used to find the abbreviations table for that CU or TU within the
9939 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9940 be interpreted as relative to the base offset given in the index section.
9941 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9942 should be interpreted as relative to the base offset for .debug_line.dwo,
9943 and offsets into other debug sections obtained from DWARF attributes should
9944 also be interpreted as relative to the corresponding base offset.
9945
9946 The table of sizes begins immediately following the table of offsets.
9947 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9948 with L columns and N rows, in row-major order. Each row in the array is
9949 indexed starting from 1 (row 0 is shared by the two tables).
9950
9951 ---
9952
9953 Hash table lookup is handled the same in version 1 and 2:
9954
9955 We assume that N and M will not exceed 2^32 - 1.
9956 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9957
d2415c6c
DE
9958 Given a 64-bit compilation unit signature or a type signature S, an entry
9959 in the hash table is located as follows:
80626a55 9960
d2415c6c
DE
9961 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9962 the low-order k bits all set to 1.
80626a55 9963
d2415c6c 9964 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9965
d2415c6c
DE
9966 3) If the hash table entry at index H matches the signature, use that
9967 entry. If the hash table entry at index H is unused (all zeroes),
9968 terminate the search: the signature is not present in the table.
80626a55 9969
d2415c6c 9970 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9971
d2415c6c 9972 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9973 to stop at an unused slot or find the match. */
80626a55
DE
9974
9975/* Create a hash table to map DWO IDs to their CU/TU entry in
9976 .debug_{info,types}.dwo in DWP_FILE.
9977 Returns NULL if there isn't one.
9978 Note: This function processes DWP files only, not DWO files. */
9979
9980static struct dwp_hash_table *
9981create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9982{
9983 struct objfile *objfile = dwarf2_per_objfile->objfile;
9984 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9985 const gdb_byte *index_ptr, *index_end;
80626a55 9986 struct dwarf2_section_info *index;
73869dc2 9987 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9988 struct dwp_hash_table *htab;
9989
9990 if (is_debug_types)
9991 index = &dwp_file->sections.tu_index;
9992 else
9993 index = &dwp_file->sections.cu_index;
9994
9995 if (dwarf2_section_empty_p (index))
9996 return NULL;
9997 dwarf2_read_section (objfile, index);
9998
9999 index_ptr = index->buffer;
10000 index_end = index_ptr + index->size;
10001
10002 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
10003 index_ptr += 4;
10004 if (version == 2)
10005 nr_columns = read_4_bytes (dbfd, index_ptr);
10006 else
10007 nr_columns = 0;
10008 index_ptr += 4;
80626a55
DE
10009 nr_units = read_4_bytes (dbfd, index_ptr);
10010 index_ptr += 4;
10011 nr_slots = read_4_bytes (dbfd, index_ptr);
10012 index_ptr += 4;
10013
73869dc2 10014 if (version != 1 && version != 2)
80626a55 10015 {
21aa081e 10016 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 10017 " [in module %s]"),
21aa081e 10018 pulongest (version), dwp_file->name);
80626a55
DE
10019 }
10020 if (nr_slots != (nr_slots & -nr_slots))
10021 {
21aa081e 10022 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 10023 " is not power of 2 [in module %s]"),
21aa081e 10024 pulongest (nr_slots), dwp_file->name);
80626a55
DE
10025 }
10026
10027 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
10028 htab->version = version;
10029 htab->nr_columns = nr_columns;
80626a55
DE
10030 htab->nr_units = nr_units;
10031 htab->nr_slots = nr_slots;
10032 htab->hash_table = index_ptr;
10033 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
10034
10035 /* Exit early if the table is empty. */
10036 if (nr_slots == 0 || nr_units == 0
10037 || (version == 2 && nr_columns == 0))
10038 {
10039 /* All must be zero. */
10040 if (nr_slots != 0 || nr_units != 0
10041 || (version == 2 && nr_columns != 0))
10042 {
10043 complaint (&symfile_complaints,
10044 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10045 " all zero [in modules %s]"),
10046 dwp_file->name);
10047 }
10048 return htab;
10049 }
10050
10051 if (version == 1)
10052 {
10053 htab->section_pool.v1.indices =
10054 htab->unit_table + sizeof (uint32_t) * nr_slots;
10055 /* It's harder to decide whether the section is too small in v1.
10056 V1 is deprecated anyway so we punt. */
10057 }
10058 else
10059 {
10060 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10061 int *ids = htab->section_pool.v2.section_ids;
10062 /* Reverse map for error checking. */
10063 int ids_seen[DW_SECT_MAX + 1];
10064 int i;
10065
10066 if (nr_columns < 2)
10067 {
10068 error (_("Dwarf Error: bad DWP hash table, too few columns"
10069 " in section table [in module %s]"),
10070 dwp_file->name);
10071 }
10072 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10073 {
10074 error (_("Dwarf Error: bad DWP hash table, too many columns"
10075 " in section table [in module %s]"),
10076 dwp_file->name);
10077 }
10078 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10079 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10080 for (i = 0; i < nr_columns; ++i)
10081 {
10082 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10083
10084 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10085 {
10086 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10087 " in section table [in module %s]"),
10088 id, dwp_file->name);
10089 }
10090 if (ids_seen[id] != -1)
10091 {
10092 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10093 " id %d in section table [in module %s]"),
10094 id, dwp_file->name);
10095 }
10096 ids_seen[id] = i;
10097 ids[i] = id;
10098 }
10099 /* Must have exactly one info or types section. */
10100 if (((ids_seen[DW_SECT_INFO] != -1)
10101 + (ids_seen[DW_SECT_TYPES] != -1))
10102 != 1)
10103 {
10104 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10105 " DWO info/types section [in module %s]"),
10106 dwp_file->name);
10107 }
10108 /* Must have an abbrev section. */
10109 if (ids_seen[DW_SECT_ABBREV] == -1)
10110 {
10111 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10112 " section [in module %s]"),
10113 dwp_file->name);
10114 }
10115 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10116 htab->section_pool.v2.sizes =
10117 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10118 * nr_units * nr_columns);
10119 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10120 * nr_units * nr_columns))
10121 > index_end)
10122 {
10123 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10124 " [in module %s]"),
10125 dwp_file->name);
10126 }
10127 }
80626a55
DE
10128
10129 return htab;
10130}
10131
10132/* Update SECTIONS with the data from SECTP.
10133
10134 This function is like the other "locate" section routines that are
10135 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 10136 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
10137
10138 The result is non-zero for success, or zero if an error was found. */
10139
10140static int
73869dc2
DE
10141locate_v1_virtual_dwo_sections (asection *sectp,
10142 struct virtual_v1_dwo_sections *sections)
80626a55
DE
10143{
10144 const struct dwop_section_names *names = &dwop_section_names;
10145
10146 if (section_is_p (sectp->name, &names->abbrev_dwo))
10147 {
10148 /* There can be only one. */
049412e3 10149 if (sections->abbrev.s.section != NULL)
80626a55 10150 return 0;
049412e3 10151 sections->abbrev.s.section = sectp;
80626a55
DE
10152 sections->abbrev.size = bfd_get_section_size (sectp);
10153 }
10154 else if (section_is_p (sectp->name, &names->info_dwo)
10155 || section_is_p (sectp->name, &names->types_dwo))
10156 {
10157 /* There can be only one. */
049412e3 10158 if (sections->info_or_types.s.section != NULL)
80626a55 10159 return 0;
049412e3 10160 sections->info_or_types.s.section = sectp;
80626a55
DE
10161 sections->info_or_types.size = bfd_get_section_size (sectp);
10162 }
10163 else if (section_is_p (sectp->name, &names->line_dwo))
10164 {
10165 /* There can be only one. */
049412e3 10166 if (sections->line.s.section != NULL)
80626a55 10167 return 0;
049412e3 10168 sections->line.s.section = sectp;
80626a55
DE
10169 sections->line.size = bfd_get_section_size (sectp);
10170 }
10171 else if (section_is_p (sectp->name, &names->loc_dwo))
10172 {
10173 /* There can be only one. */
049412e3 10174 if (sections->loc.s.section != NULL)
80626a55 10175 return 0;
049412e3 10176 sections->loc.s.section = sectp;
80626a55
DE
10177 sections->loc.size = bfd_get_section_size (sectp);
10178 }
10179 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10180 {
10181 /* There can be only one. */
049412e3 10182 if (sections->macinfo.s.section != NULL)
80626a55 10183 return 0;
049412e3 10184 sections->macinfo.s.section = sectp;
80626a55
DE
10185 sections->macinfo.size = bfd_get_section_size (sectp);
10186 }
10187 else if (section_is_p (sectp->name, &names->macro_dwo))
10188 {
10189 /* There can be only one. */
049412e3 10190 if (sections->macro.s.section != NULL)
80626a55 10191 return 0;
049412e3 10192 sections->macro.s.section = sectp;
80626a55
DE
10193 sections->macro.size = bfd_get_section_size (sectp);
10194 }
10195 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10196 {
10197 /* There can be only one. */
049412e3 10198 if (sections->str_offsets.s.section != NULL)
80626a55 10199 return 0;
049412e3 10200 sections->str_offsets.s.section = sectp;
80626a55
DE
10201 sections->str_offsets.size = bfd_get_section_size (sectp);
10202 }
10203 else
10204 {
10205 /* No other kind of section is valid. */
10206 return 0;
10207 }
10208
10209 return 1;
10210}
10211
73869dc2
DE
10212/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10213 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10214 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10215 This is for DWP version 1 files. */
80626a55
DE
10216
10217static struct dwo_unit *
73869dc2
DE
10218create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10219 uint32_t unit_index,
10220 const char *comp_dir,
10221 ULONGEST signature, int is_debug_types)
80626a55
DE
10222{
10223 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10224 const struct dwp_hash_table *dwp_htab =
10225 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10226 bfd *dbfd = dwp_file->dbfd;
10227 const char *kind = is_debug_types ? "TU" : "CU";
10228 struct dwo_file *dwo_file;
10229 struct dwo_unit *dwo_unit;
73869dc2 10230 struct virtual_v1_dwo_sections sections;
80626a55
DE
10231 void **dwo_file_slot;
10232 char *virtual_dwo_name;
80626a55
DE
10233 struct cleanup *cleanups;
10234 int i;
10235
73869dc2
DE
10236 gdb_assert (dwp_file->version == 1);
10237
b4f54984 10238 if (dwarf_read_debug)
80626a55 10239 {
73869dc2 10240 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10241 kind,
73869dc2 10242 pulongest (unit_index), hex_string (signature),
80626a55
DE
10243 dwp_file->name);
10244 }
10245
19ac8c2e 10246 /* Fetch the sections of this DWO unit.
80626a55
DE
10247 Put a limit on the number of sections we look for so that bad data
10248 doesn't cause us to loop forever. */
10249
73869dc2 10250#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10251 (1 /* .debug_info or .debug_types */ \
10252 + 1 /* .debug_abbrev */ \
10253 + 1 /* .debug_line */ \
10254 + 1 /* .debug_loc */ \
10255 + 1 /* .debug_str_offsets */ \
19ac8c2e 10256 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10257 + 1 /* trailing zero */)
10258
10259 memset (&sections, 0, sizeof (sections));
10260 cleanups = make_cleanup (null_cleanup, 0);
10261
73869dc2 10262 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10263 {
10264 asection *sectp;
10265 uint32_t section_nr =
10266 read_4_bytes (dbfd,
73869dc2
DE
10267 dwp_htab->section_pool.v1.indices
10268 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10269
10270 if (section_nr == 0)
10271 break;
10272 if (section_nr >= dwp_file->num_sections)
10273 {
10274 error (_("Dwarf Error: bad DWP hash table, section number too large"
10275 " [in module %s]"),
10276 dwp_file->name);
10277 }
10278
10279 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10280 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10281 {
10282 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10283 " [in module %s]"),
10284 dwp_file->name);
10285 }
10286 }
10287
10288 if (i < 2
a32a8923
DE
10289 || dwarf2_section_empty_p (&sections.info_or_types)
10290 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10291 {
10292 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10293 " [in module %s]"),
10294 dwp_file->name);
10295 }
73869dc2 10296 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10297 {
10298 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10299 " [in module %s]"),
10300 dwp_file->name);
10301 }
10302
10303 /* It's easier for the rest of the code if we fake a struct dwo_file and
10304 have dwo_unit "live" in that. At least for now.
10305
10306 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10307 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10308 file, we can combine them back into a virtual DWO file to save space
10309 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10310 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10311
2792b94d
PM
10312 virtual_dwo_name =
10313 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10314 get_section_id (&sections.abbrev),
10315 get_section_id (&sections.line),
10316 get_section_id (&sections.loc),
10317 get_section_id (&sections.str_offsets));
80626a55
DE
10318 make_cleanup (xfree, virtual_dwo_name);
10319 /* Can we use an existing virtual DWO file? */
0ac5b59e 10320 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10321 /* Create one if necessary. */
10322 if (*dwo_file_slot == NULL)
10323 {
b4f54984 10324 if (dwarf_read_debug)
80626a55
DE
10325 {
10326 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10327 virtual_dwo_name);
10328 }
10329 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10330 dwo_file->dwo_name
10331 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10332 virtual_dwo_name,
10333 strlen (virtual_dwo_name));
0ac5b59e 10334 dwo_file->comp_dir = comp_dir;
80626a55
DE
10335 dwo_file->sections.abbrev = sections.abbrev;
10336 dwo_file->sections.line = sections.line;
10337 dwo_file->sections.loc = sections.loc;
10338 dwo_file->sections.macinfo = sections.macinfo;
10339 dwo_file->sections.macro = sections.macro;
10340 dwo_file->sections.str_offsets = sections.str_offsets;
10341 /* The "str" section is global to the entire DWP file. */
10342 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10343 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10344 there's no need to record it in dwo_file.
10345 Also, we can't simply record type sections in dwo_file because
10346 we record a pointer into the vector in dwo_unit. As we collect more
10347 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10348 for it, invalidating all copies of pointers into the previous
10349 contents. */
80626a55
DE
10350 *dwo_file_slot = dwo_file;
10351 }
10352 else
10353 {
b4f54984 10354 if (dwarf_read_debug)
80626a55
DE
10355 {
10356 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10357 virtual_dwo_name);
10358 }
9a3c8263 10359 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10360 }
10361 do_cleanups (cleanups);
10362
10363 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10364 dwo_unit->dwo_file = dwo_file;
10365 dwo_unit->signature = signature;
8d749320
SM
10366 dwo_unit->section =
10367 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10368 *dwo_unit->section = sections.info_or_types;
57d63ce2 10369 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10370
10371 return dwo_unit;
10372}
10373
73869dc2
DE
10374/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10375 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10376 piece within that section used by a TU/CU, return a virtual section
10377 of just that piece. */
10378
10379static struct dwarf2_section_info
10380create_dwp_v2_section (struct dwarf2_section_info *section,
10381 bfd_size_type offset, bfd_size_type size)
10382{
10383 struct dwarf2_section_info result;
10384 asection *sectp;
10385
10386 gdb_assert (section != NULL);
10387 gdb_assert (!section->is_virtual);
10388
10389 memset (&result, 0, sizeof (result));
10390 result.s.containing_section = section;
10391 result.is_virtual = 1;
10392
10393 if (size == 0)
10394 return result;
10395
10396 sectp = get_section_bfd_section (section);
10397
10398 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10399 bounds of the real section. This is a pretty-rare event, so just
10400 flag an error (easier) instead of a warning and trying to cope. */
10401 if (sectp == NULL
10402 || offset + size > bfd_get_section_size (sectp))
10403 {
10404 bfd *abfd = sectp->owner;
10405
10406 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10407 " in section %s [in module %s]"),
10408 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10409 objfile_name (dwarf2_per_objfile->objfile));
10410 }
10411
10412 result.virtual_offset = offset;
10413 result.size = size;
10414 return result;
10415}
10416
10417/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10418 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10419 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10420 This is for DWP version 2 files. */
10421
10422static struct dwo_unit *
10423create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10424 uint32_t unit_index,
10425 const char *comp_dir,
10426 ULONGEST signature, int is_debug_types)
10427{
10428 struct objfile *objfile = dwarf2_per_objfile->objfile;
10429 const struct dwp_hash_table *dwp_htab =
10430 is_debug_types ? dwp_file->tus : dwp_file->cus;
10431 bfd *dbfd = dwp_file->dbfd;
10432 const char *kind = is_debug_types ? "TU" : "CU";
10433 struct dwo_file *dwo_file;
10434 struct dwo_unit *dwo_unit;
10435 struct virtual_v2_dwo_sections sections;
10436 void **dwo_file_slot;
10437 char *virtual_dwo_name;
73869dc2
DE
10438 struct cleanup *cleanups;
10439 int i;
10440
10441 gdb_assert (dwp_file->version == 2);
10442
b4f54984 10443 if (dwarf_read_debug)
73869dc2
DE
10444 {
10445 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10446 kind,
10447 pulongest (unit_index), hex_string (signature),
10448 dwp_file->name);
10449 }
10450
10451 /* Fetch the section offsets of this DWO unit. */
10452
10453 memset (&sections, 0, sizeof (sections));
10454 cleanups = make_cleanup (null_cleanup, 0);
10455
10456 for (i = 0; i < dwp_htab->nr_columns; ++i)
10457 {
10458 uint32_t offset = read_4_bytes (dbfd,
10459 dwp_htab->section_pool.v2.offsets
10460 + (((unit_index - 1) * dwp_htab->nr_columns
10461 + i)
10462 * sizeof (uint32_t)));
10463 uint32_t size = read_4_bytes (dbfd,
10464 dwp_htab->section_pool.v2.sizes
10465 + (((unit_index - 1) * dwp_htab->nr_columns
10466 + i)
10467 * sizeof (uint32_t)));
10468
10469 switch (dwp_htab->section_pool.v2.section_ids[i])
10470 {
10471 case DW_SECT_INFO:
10472 case DW_SECT_TYPES:
10473 sections.info_or_types_offset = offset;
10474 sections.info_or_types_size = size;
10475 break;
10476 case DW_SECT_ABBREV:
10477 sections.abbrev_offset = offset;
10478 sections.abbrev_size = size;
10479 break;
10480 case DW_SECT_LINE:
10481 sections.line_offset = offset;
10482 sections.line_size = size;
10483 break;
10484 case DW_SECT_LOC:
10485 sections.loc_offset = offset;
10486 sections.loc_size = size;
10487 break;
10488 case DW_SECT_STR_OFFSETS:
10489 sections.str_offsets_offset = offset;
10490 sections.str_offsets_size = size;
10491 break;
10492 case DW_SECT_MACINFO:
10493 sections.macinfo_offset = offset;
10494 sections.macinfo_size = size;
10495 break;
10496 case DW_SECT_MACRO:
10497 sections.macro_offset = offset;
10498 sections.macro_size = size;
10499 break;
10500 }
10501 }
10502
10503 /* It's easier for the rest of the code if we fake a struct dwo_file and
10504 have dwo_unit "live" in that. At least for now.
10505
10506 The DWP file can be made up of a random collection of CUs and TUs.
10507 However, for each CU + set of TUs that came from the same original DWO
10508 file, we can combine them back into a virtual DWO file to save space
10509 (fewer struct dwo_file objects to allocate). Remember that for really
10510 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10511
10512 virtual_dwo_name =
10513 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10514 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10515 (long) (sections.line_size ? sections.line_offset : 0),
10516 (long) (sections.loc_size ? sections.loc_offset : 0),
10517 (long) (sections.str_offsets_size
10518 ? sections.str_offsets_offset : 0));
10519 make_cleanup (xfree, virtual_dwo_name);
10520 /* Can we use an existing virtual DWO file? */
10521 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10522 /* Create one if necessary. */
10523 if (*dwo_file_slot == NULL)
10524 {
b4f54984 10525 if (dwarf_read_debug)
73869dc2
DE
10526 {
10527 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10528 virtual_dwo_name);
10529 }
10530 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10531 dwo_file->dwo_name
10532 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10533 virtual_dwo_name,
10534 strlen (virtual_dwo_name));
73869dc2
DE
10535 dwo_file->comp_dir = comp_dir;
10536 dwo_file->sections.abbrev =
10537 create_dwp_v2_section (&dwp_file->sections.abbrev,
10538 sections.abbrev_offset, sections.abbrev_size);
10539 dwo_file->sections.line =
10540 create_dwp_v2_section (&dwp_file->sections.line,
10541 sections.line_offset, sections.line_size);
10542 dwo_file->sections.loc =
10543 create_dwp_v2_section (&dwp_file->sections.loc,
10544 sections.loc_offset, sections.loc_size);
10545 dwo_file->sections.macinfo =
10546 create_dwp_v2_section (&dwp_file->sections.macinfo,
10547 sections.macinfo_offset, sections.macinfo_size);
10548 dwo_file->sections.macro =
10549 create_dwp_v2_section (&dwp_file->sections.macro,
10550 sections.macro_offset, sections.macro_size);
10551 dwo_file->sections.str_offsets =
10552 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10553 sections.str_offsets_offset,
10554 sections.str_offsets_size);
10555 /* The "str" section is global to the entire DWP file. */
10556 dwo_file->sections.str = dwp_file->sections.str;
10557 /* The info or types section is assigned below to dwo_unit,
10558 there's no need to record it in dwo_file.
10559 Also, we can't simply record type sections in dwo_file because
10560 we record a pointer into the vector in dwo_unit. As we collect more
10561 types we'll grow the vector and eventually have to reallocate space
10562 for it, invalidating all copies of pointers into the previous
10563 contents. */
10564 *dwo_file_slot = dwo_file;
10565 }
10566 else
10567 {
b4f54984 10568 if (dwarf_read_debug)
73869dc2
DE
10569 {
10570 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10571 virtual_dwo_name);
10572 }
9a3c8263 10573 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10574 }
10575 do_cleanups (cleanups);
10576
10577 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10578 dwo_unit->dwo_file = dwo_file;
10579 dwo_unit->signature = signature;
8d749320
SM
10580 dwo_unit->section =
10581 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10582 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10583 ? &dwp_file->sections.types
10584 : &dwp_file->sections.info,
10585 sections.info_or_types_offset,
10586 sections.info_or_types_size);
10587 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10588
10589 return dwo_unit;
10590}
10591
57d63ce2
DE
10592/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10593 Returns NULL if the signature isn't found. */
80626a55
DE
10594
10595static struct dwo_unit *
57d63ce2
DE
10596lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10597 ULONGEST signature, int is_debug_types)
80626a55 10598{
57d63ce2
DE
10599 const struct dwp_hash_table *dwp_htab =
10600 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10601 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10602 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10603 uint32_t hash = signature & mask;
10604 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10605 unsigned int i;
10606 void **slot;
870f88f7 10607 struct dwo_unit find_dwo_cu;
80626a55
DE
10608
10609 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10610 find_dwo_cu.signature = signature;
19ac8c2e
DE
10611 slot = htab_find_slot (is_debug_types
10612 ? dwp_file->loaded_tus
10613 : dwp_file->loaded_cus,
10614 &find_dwo_cu, INSERT);
80626a55
DE
10615
10616 if (*slot != NULL)
9a3c8263 10617 return (struct dwo_unit *) *slot;
80626a55
DE
10618
10619 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10620 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10621 {
10622 ULONGEST signature_in_table;
10623
10624 signature_in_table =
57d63ce2 10625 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10626 if (signature_in_table == signature)
10627 {
57d63ce2
DE
10628 uint32_t unit_index =
10629 read_4_bytes (dbfd,
10630 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10631
73869dc2
DE
10632 if (dwp_file->version == 1)
10633 {
10634 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10635 comp_dir, signature,
10636 is_debug_types);
10637 }
10638 else
10639 {
10640 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10641 comp_dir, signature,
10642 is_debug_types);
10643 }
9a3c8263 10644 return (struct dwo_unit *) *slot;
80626a55
DE
10645 }
10646 if (signature_in_table == 0)
10647 return NULL;
10648 hash = (hash + hash2) & mask;
10649 }
10650
10651 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10652 " [in module %s]"),
10653 dwp_file->name);
10654}
10655
ab5088bf 10656/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10657 Open the file specified by FILE_NAME and hand it off to BFD for
10658 preliminary analysis. Return a newly initialized bfd *, which
10659 includes a canonicalized copy of FILE_NAME.
80626a55 10660 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10661 SEARCH_CWD is true if the current directory is to be searched.
10662 It will be searched before debug-file-directory.
13aaf454
DE
10663 If successful, the file is added to the bfd include table of the
10664 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10665 If unable to find/open the file, return NULL.
3019eac3
DE
10666 NOTE: This function is derived from symfile_bfd_open. */
10667
192b62ce 10668static gdb_bfd_ref_ptr
6ac97d4c 10669try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3 10670{
80626a55 10671 int desc, flags;
3019eac3 10672 char *absolute_name;
9c02c129
DE
10673 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10674 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10675 to debug_file_directory. */
10676 char *search_path;
10677 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10678
6ac97d4c
DE
10679 if (search_cwd)
10680 {
10681 if (*debug_file_directory != '\0')
10682 search_path = concat (".", dirname_separator_string,
b36cec19 10683 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10684 else
10685 search_path = xstrdup (".");
10686 }
9c02c129 10687 else
6ac97d4c 10688 search_path = xstrdup (debug_file_directory);
3019eac3 10689
492c0ab7 10690 flags = OPF_RETURN_REALPATH;
80626a55
DE
10691 if (is_dwp)
10692 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10693 desc = openp (search_path, flags, file_name,
3019eac3 10694 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10695 xfree (search_path);
3019eac3
DE
10696 if (desc < 0)
10697 return NULL;
10698
192b62ce 10699 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
a4453b7e 10700 xfree (absolute_name);
9c02c129
DE
10701 if (sym_bfd == NULL)
10702 return NULL;
192b62ce 10703 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 10704
192b62ce
TT
10705 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10706 return NULL;
3019eac3 10707
13aaf454
DE
10708 /* Success. Record the bfd as having been included by the objfile's bfd.
10709 This is important because things like demangled_names_hash lives in the
10710 objfile's per_bfd space and may have references to things like symbol
10711 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 10712 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 10713
3019eac3
DE
10714 return sym_bfd;
10715}
10716
ab5088bf 10717/* Try to open DWO file FILE_NAME.
3019eac3
DE
10718 COMP_DIR is the DW_AT_comp_dir attribute.
10719 The result is the bfd handle of the file.
10720 If there is a problem finding or opening the file, return NULL.
10721 Upon success, the canonicalized path of the file is stored in the bfd,
10722 same as symfile_bfd_open. */
10723
192b62ce 10724static gdb_bfd_ref_ptr
ab5088bf 10725open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3 10726{
80626a55 10727 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10728 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10729
10730 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10731
10732 if (comp_dir != NULL)
10733 {
b36cec19
PA
10734 char *path_to_try = concat (comp_dir, SLASH_STRING,
10735 file_name, (char *) NULL);
3019eac3
DE
10736
10737 /* NOTE: If comp_dir is a relative path, this will also try the
10738 search path, which seems useful. */
192b62ce
TT
10739 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10740 1 /*search_cwd*/));
3019eac3
DE
10741 xfree (path_to_try);
10742 if (abfd != NULL)
10743 return abfd;
10744 }
10745
10746 /* That didn't work, try debug-file-directory, which, despite its name,
10747 is a list of paths. */
10748
10749 if (*debug_file_directory == '\0')
10750 return NULL;
10751
6ac97d4c 10752 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10753}
10754
80626a55
DE
10755/* This function is mapped across the sections and remembers the offset and
10756 size of each of the DWO debugging sections we are interested in. */
10757
10758static void
10759dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10760{
9a3c8263 10761 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10762 const struct dwop_section_names *names = &dwop_section_names;
10763
10764 if (section_is_p (sectp->name, &names->abbrev_dwo))
10765 {
049412e3 10766 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10767 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10768 }
10769 else if (section_is_p (sectp->name, &names->info_dwo))
10770 {
049412e3 10771 dwo_sections->info.s.section = sectp;
80626a55
DE
10772 dwo_sections->info.size = bfd_get_section_size (sectp);
10773 }
10774 else if (section_is_p (sectp->name, &names->line_dwo))
10775 {
049412e3 10776 dwo_sections->line.s.section = sectp;
80626a55
DE
10777 dwo_sections->line.size = bfd_get_section_size (sectp);
10778 }
10779 else if (section_is_p (sectp->name, &names->loc_dwo))
10780 {
049412e3 10781 dwo_sections->loc.s.section = sectp;
80626a55
DE
10782 dwo_sections->loc.size = bfd_get_section_size (sectp);
10783 }
10784 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10785 {
049412e3 10786 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10787 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10788 }
10789 else if (section_is_p (sectp->name, &names->macro_dwo))
10790 {
049412e3 10791 dwo_sections->macro.s.section = sectp;
80626a55
DE
10792 dwo_sections->macro.size = bfd_get_section_size (sectp);
10793 }
10794 else if (section_is_p (sectp->name, &names->str_dwo))
10795 {
049412e3 10796 dwo_sections->str.s.section = sectp;
80626a55
DE
10797 dwo_sections->str.size = bfd_get_section_size (sectp);
10798 }
10799 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10800 {
049412e3 10801 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10802 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10803 }
10804 else if (section_is_p (sectp->name, &names->types_dwo))
10805 {
10806 struct dwarf2_section_info type_section;
10807
10808 memset (&type_section, 0, sizeof (type_section));
049412e3 10809 type_section.s.section = sectp;
80626a55
DE
10810 type_section.size = bfd_get_section_size (sectp);
10811 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10812 &type_section);
10813 }
10814}
10815
ab5088bf 10816/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10817 by PER_CU. This is for the non-DWP case.
80626a55 10818 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10819
10820static struct dwo_file *
0ac5b59e
DE
10821open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10822 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10823{
10824 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 10825 struct dwo_file *dwo_file;
3019eac3
DE
10826 struct cleanup *cleanups;
10827
192b62ce 10828 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
80626a55
DE
10829 if (dbfd == NULL)
10830 {
b4f54984 10831 if (dwarf_read_debug)
80626a55
DE
10832 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10833 return NULL;
10834 }
10835 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10836 dwo_file->dwo_name = dwo_name;
10837 dwo_file->comp_dir = comp_dir;
192b62ce 10838 dwo_file->dbfd = dbfd.release ();
3019eac3
DE
10839
10840 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10841
192b62ce
TT
10842 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10843 &dwo_file->sections);
3019eac3 10844
33c5cd75 10845 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
3019eac3 10846
78d4d2c5
JK
10847 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10848 dwo_file->tus);
3019eac3
DE
10849
10850 discard_cleanups (cleanups);
10851
b4f54984 10852 if (dwarf_read_debug)
80626a55
DE
10853 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10854
3019eac3
DE
10855 return dwo_file;
10856}
10857
80626a55 10858/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10859 size of each of the DWP debugging sections common to version 1 and 2 that
10860 we are interested in. */
3019eac3 10861
80626a55 10862static void
73869dc2
DE
10863dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10864 void *dwp_file_ptr)
3019eac3 10865{
9a3c8263 10866 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10867 const struct dwop_section_names *names = &dwop_section_names;
10868 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10869
80626a55 10870 /* Record the ELF section number for later lookup: this is what the
73869dc2 10871 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10872 gdb_assert (elf_section_nr < dwp_file->num_sections);
10873 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10874
80626a55
DE
10875 /* Look for specific sections that we need. */
10876 if (section_is_p (sectp->name, &names->str_dwo))
10877 {
049412e3 10878 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10879 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10880 }
10881 else if (section_is_p (sectp->name, &names->cu_index))
10882 {
049412e3 10883 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10884 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10885 }
10886 else if (section_is_p (sectp->name, &names->tu_index))
10887 {
049412e3 10888 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10889 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10890 }
10891}
3019eac3 10892
73869dc2
DE
10893/* This function is mapped across the sections and remembers the offset and
10894 size of each of the DWP version 2 debugging sections that we are interested
10895 in. This is split into a separate function because we don't know if we
10896 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10897
10898static void
10899dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10900{
9a3c8263 10901 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10902 const struct dwop_section_names *names = &dwop_section_names;
10903 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10904
10905 /* Record the ELF section number for later lookup: this is what the
10906 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10907 gdb_assert (elf_section_nr < dwp_file->num_sections);
10908 dwp_file->elf_sections[elf_section_nr] = sectp;
10909
10910 /* Look for specific sections that we need. */
10911 if (section_is_p (sectp->name, &names->abbrev_dwo))
10912 {
049412e3 10913 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10914 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10915 }
10916 else if (section_is_p (sectp->name, &names->info_dwo))
10917 {
049412e3 10918 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10919 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10920 }
10921 else if (section_is_p (sectp->name, &names->line_dwo))
10922 {
049412e3 10923 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10924 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10925 }
10926 else if (section_is_p (sectp->name, &names->loc_dwo))
10927 {
049412e3 10928 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10929 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10930 }
10931 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10932 {
049412e3 10933 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10934 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10935 }
10936 else if (section_is_p (sectp->name, &names->macro_dwo))
10937 {
049412e3 10938 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10939 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10940 }
10941 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10942 {
049412e3 10943 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10944 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10945 }
10946 else if (section_is_p (sectp->name, &names->types_dwo))
10947 {
049412e3 10948 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10949 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10950 }
10951}
10952
80626a55 10953/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10954
80626a55
DE
10955static hashval_t
10956hash_dwp_loaded_cutus (const void *item)
10957{
9a3c8263 10958 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10959
80626a55
DE
10960 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10961 return dwo_unit->signature;
3019eac3
DE
10962}
10963
80626a55 10964/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10965
80626a55
DE
10966static int
10967eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10968{
9a3c8263
SM
10969 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10970 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10971
80626a55
DE
10972 return dua->signature == dub->signature;
10973}
3019eac3 10974
80626a55 10975/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10976
80626a55
DE
10977static htab_t
10978allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10979{
10980 return htab_create_alloc_ex (3,
10981 hash_dwp_loaded_cutus,
10982 eq_dwp_loaded_cutus,
10983 NULL,
10984 &objfile->objfile_obstack,
10985 hashtab_obstack_allocate,
10986 dummy_obstack_deallocate);
10987}
3019eac3 10988
ab5088bf
DE
10989/* Try to open DWP file FILE_NAME.
10990 The result is the bfd handle of the file.
10991 If there is a problem finding or opening the file, return NULL.
10992 Upon success, the canonicalized path of the file is stored in the bfd,
10993 same as symfile_bfd_open. */
10994
192b62ce 10995static gdb_bfd_ref_ptr
ab5088bf
DE
10996open_dwp_file (const char *file_name)
10997{
192b62ce
TT
10998 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10999 1 /*search_cwd*/));
6ac97d4c
DE
11000 if (abfd != NULL)
11001 return abfd;
11002
11003 /* Work around upstream bug 15652.
11004 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11005 [Whether that's a "bug" is debatable, but it is getting in our way.]
11006 We have no real idea where the dwp file is, because gdb's realpath-ing
11007 of the executable's path may have discarded the needed info.
11008 [IWBN if the dwp file name was recorded in the executable, akin to
11009 .gnu_debuglink, but that doesn't exist yet.]
11010 Strip the directory from FILE_NAME and search again. */
11011 if (*debug_file_directory != '\0')
11012 {
11013 /* Don't implicitly search the current directory here.
11014 If the user wants to search "." to handle this case,
11015 it must be added to debug-file-directory. */
11016 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11017 0 /*search_cwd*/);
11018 }
11019
11020 return NULL;
ab5088bf
DE
11021}
11022
80626a55
DE
11023/* Initialize the use of the DWP file for the current objfile.
11024 By convention the name of the DWP file is ${objfile}.dwp.
11025 The result is NULL if it can't be found. */
a766d390 11026
80626a55 11027static struct dwp_file *
ab5088bf 11028open_and_init_dwp_file (void)
80626a55
DE
11029{
11030 struct objfile *objfile = dwarf2_per_objfile->objfile;
11031 struct dwp_file *dwp_file;
80626a55 11032
82bf32bc
JK
11033 /* Try to find first .dwp for the binary file before any symbolic links
11034 resolving. */
6c447423
DE
11035
11036 /* If the objfile is a debug file, find the name of the real binary
11037 file and get the name of dwp file from there. */
d721ba37 11038 std::string dwp_name;
6c447423
DE
11039 if (objfile->separate_debug_objfile_backlink != NULL)
11040 {
11041 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11042 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 11043
d721ba37 11044 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
11045 }
11046 else
d721ba37
PA
11047 dwp_name = objfile->original_name;
11048
11049 dwp_name += ".dwp";
80626a55 11050
d721ba37 11051 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
82bf32bc
JK
11052 if (dbfd == NULL
11053 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11054 {
11055 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
11056 dwp_name = objfile_name (objfile);
11057 dwp_name += ".dwp";
11058 dbfd = open_dwp_file (dwp_name.c_str ());
82bf32bc
JK
11059 }
11060
80626a55
DE
11061 if (dbfd == NULL)
11062 {
b4f54984 11063 if (dwarf_read_debug)
d721ba37 11064 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
80626a55 11065 return NULL;
3019eac3 11066 }
80626a55 11067 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
192b62ce
TT
11068 dwp_file->name = bfd_get_filename (dbfd.get ());
11069 dwp_file->dbfd = dbfd.release ();
c906108c 11070
80626a55 11071 /* +1: section 0 is unused */
192b62ce 11072 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
11073 dwp_file->elf_sections =
11074 OBSTACK_CALLOC (&objfile->objfile_obstack,
11075 dwp_file->num_sections, asection *);
11076
192b62ce
TT
11077 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11078 dwp_file);
80626a55
DE
11079
11080 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11081
11082 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11083
73869dc2
DE
11084 /* The DWP file version is stored in the hash table. Oh well. */
11085 if (dwp_file->cus->version != dwp_file->tus->version)
11086 {
11087 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 11088 pretty bizarre. We use pulongest here because that's the established
4d65956b 11089 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
11090 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11091 " TU version %s [in DWP file %s]"),
11092 pulongest (dwp_file->cus->version),
d721ba37 11093 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2
DE
11094 }
11095 dwp_file->version = dwp_file->cus->version;
11096
11097 if (dwp_file->version == 2)
192b62ce
TT
11098 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11099 dwp_file);
73869dc2 11100
19ac8c2e
DE
11101 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11102 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 11103
b4f54984 11104 if (dwarf_read_debug)
80626a55
DE
11105 {
11106 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11107 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
11108 " %s CUs, %s TUs\n",
11109 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11110 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
11111 }
11112
11113 return dwp_file;
3019eac3 11114}
c906108c 11115
ab5088bf
DE
11116/* Wrapper around open_and_init_dwp_file, only open it once. */
11117
11118static struct dwp_file *
11119get_dwp_file (void)
11120{
11121 if (! dwarf2_per_objfile->dwp_checked)
11122 {
11123 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11124 dwarf2_per_objfile->dwp_checked = 1;
11125 }
11126 return dwarf2_per_objfile->dwp_file;
11127}
11128
80626a55
DE
11129/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11130 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11131 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 11132 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
11133 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11134
11135 This is called, for example, when wanting to read a variable with a
11136 complex location. Therefore we don't want to do file i/o for every call.
11137 Therefore we don't want to look for a DWO file on every call.
11138 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11139 then we check if we've already seen DWO_NAME, and only THEN do we check
11140 for a DWO file.
11141
1c658ad5 11142 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 11143 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 11144
3019eac3 11145static struct dwo_unit *
80626a55
DE
11146lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11147 const char *dwo_name, const char *comp_dir,
11148 ULONGEST signature, int is_debug_types)
3019eac3
DE
11149{
11150 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
11151 const char *kind = is_debug_types ? "TU" : "CU";
11152 void **dwo_file_slot;
3019eac3 11153 struct dwo_file *dwo_file;
80626a55 11154 struct dwp_file *dwp_file;
cb1df416 11155
6a506a2d
DE
11156 /* First see if there's a DWP file.
11157 If we have a DWP file but didn't find the DWO inside it, don't
11158 look for the original DWO file. It makes gdb behave differently
11159 depending on whether one is debugging in the build tree. */
cf2c3c16 11160
ab5088bf 11161 dwp_file = get_dwp_file ();
80626a55 11162 if (dwp_file != NULL)
cf2c3c16 11163 {
80626a55
DE
11164 const struct dwp_hash_table *dwp_htab =
11165 is_debug_types ? dwp_file->tus : dwp_file->cus;
11166
11167 if (dwp_htab != NULL)
11168 {
11169 struct dwo_unit *dwo_cutu =
57d63ce2
DE
11170 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11171 signature, is_debug_types);
80626a55
DE
11172
11173 if (dwo_cutu != NULL)
11174 {
b4f54984 11175 if (dwarf_read_debug)
80626a55
DE
11176 {
11177 fprintf_unfiltered (gdb_stdlog,
11178 "Virtual DWO %s %s found: @%s\n",
11179 kind, hex_string (signature),
11180 host_address_to_string (dwo_cutu));
11181 }
11182 return dwo_cutu;
11183 }
11184 }
11185 }
6a506a2d 11186 else
80626a55 11187 {
6a506a2d 11188 /* No DWP file, look for the DWO file. */
80626a55 11189
6a506a2d
DE
11190 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11191 if (*dwo_file_slot == NULL)
80626a55 11192 {
6a506a2d
DE
11193 /* Read in the file and build a table of the CUs/TUs it contains. */
11194 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11195 }
6a506a2d 11196 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11197 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11198
6a506a2d 11199 if (dwo_file != NULL)
19c3d4c9 11200 {
6a506a2d
DE
11201 struct dwo_unit *dwo_cutu = NULL;
11202
11203 if (is_debug_types && dwo_file->tus)
11204 {
11205 struct dwo_unit find_dwo_cutu;
11206
11207 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11208 find_dwo_cutu.signature = signature;
9a3c8263
SM
11209 dwo_cutu
11210 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 11211 }
33c5cd75 11212 else if (!is_debug_types && dwo_file->cus)
80626a55 11213 {
33c5cd75
DB
11214 struct dwo_unit find_dwo_cutu;
11215
11216 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11217 find_dwo_cutu.signature = signature;
11218 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11219 &find_dwo_cutu);
6a506a2d
DE
11220 }
11221
11222 if (dwo_cutu != NULL)
11223 {
b4f54984 11224 if (dwarf_read_debug)
6a506a2d
DE
11225 {
11226 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11227 kind, dwo_name, hex_string (signature),
11228 host_address_to_string (dwo_cutu));
11229 }
11230 return dwo_cutu;
80626a55
DE
11231 }
11232 }
2e276125 11233 }
9cdd5dbd 11234
80626a55
DE
11235 /* We didn't find it. This could mean a dwo_id mismatch, or
11236 someone deleted the DWO/DWP file, or the search path isn't set up
11237 correctly to find the file. */
11238
b4f54984 11239 if (dwarf_read_debug)
80626a55
DE
11240 {
11241 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11242 kind, dwo_name, hex_string (signature));
11243 }
3019eac3 11244
6656a72d
DE
11245 /* This is a warning and not a complaint because it can be caused by
11246 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11247 {
11248 /* Print the name of the DWP file if we looked there, helps the user
11249 better diagnose the problem. */
11250 char *dwp_text = NULL;
11251 struct cleanup *cleanups;
11252
11253 if (dwp_file != NULL)
11254 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11255 cleanups = make_cleanup (xfree, dwp_text);
11256
11257 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11258 " [in module %s]"),
11259 kind, dwo_name, hex_string (signature),
11260 dwp_text != NULL ? dwp_text : "",
11261 this_unit->is_debug_types ? "TU" : "CU",
9c541725 11262 to_underlying (this_unit->sect_off), objfile_name (objfile));
43942612
DE
11263
11264 do_cleanups (cleanups);
11265 }
3019eac3 11266 return NULL;
5fb290d7
DJ
11267}
11268
80626a55
DE
11269/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11270 See lookup_dwo_cutu_unit for details. */
11271
11272static struct dwo_unit *
11273lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11274 const char *dwo_name, const char *comp_dir,
11275 ULONGEST signature)
11276{
11277 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11278}
11279
11280/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11281 See lookup_dwo_cutu_unit for details. */
11282
11283static struct dwo_unit *
11284lookup_dwo_type_unit (struct signatured_type *this_tu,
11285 const char *dwo_name, const char *comp_dir)
11286{
11287 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11288}
11289
89e63ee4
DE
11290/* Traversal function for queue_and_load_all_dwo_tus. */
11291
11292static int
11293queue_and_load_dwo_tu (void **slot, void *info)
11294{
11295 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11296 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11297 ULONGEST signature = dwo_unit->signature;
11298 struct signatured_type *sig_type =
11299 lookup_dwo_signatured_type (per_cu->cu, signature);
11300
11301 if (sig_type != NULL)
11302 {
11303 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11304
11305 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11306 a real dependency of PER_CU on SIG_TYPE. That is detected later
11307 while processing PER_CU. */
11308 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11309 load_full_type_unit (sig_cu);
11310 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11311 }
11312
11313 return 1;
11314}
11315
11316/* Queue all TUs contained in the DWO of PER_CU to be read in.
11317 The DWO may have the only definition of the type, though it may not be
11318 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11319 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11320
11321static void
11322queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11323{
11324 struct dwo_unit *dwo_unit;
11325 struct dwo_file *dwo_file;
11326
11327 gdb_assert (!per_cu->is_debug_types);
11328 gdb_assert (get_dwp_file () == NULL);
11329 gdb_assert (per_cu->cu != NULL);
11330
11331 dwo_unit = per_cu->cu->dwo_unit;
11332 gdb_assert (dwo_unit != NULL);
11333
11334 dwo_file = dwo_unit->dwo_file;
11335 if (dwo_file->tus != NULL)
11336 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11337}
11338
3019eac3
DE
11339/* Free all resources associated with DWO_FILE.
11340 Close the DWO file and munmap the sections.
11341 All memory should be on the objfile obstack. */
348e048f
DE
11342
11343static void
3019eac3 11344free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11345{
348e048f 11346
5c6fa7ab 11347 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11348 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11349
3019eac3
DE
11350 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11351}
348e048f 11352
3019eac3 11353/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11354
3019eac3
DE
11355static void
11356free_dwo_file_cleanup (void *arg)
11357{
11358 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11359 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11360
3019eac3
DE
11361 free_dwo_file (dwo_file, objfile);
11362}
348e048f 11363
3019eac3 11364/* Traversal function for free_dwo_files. */
2ab95328 11365
3019eac3
DE
11366static int
11367free_dwo_file_from_slot (void **slot, void *info)
11368{
11369 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11370 struct objfile *objfile = (struct objfile *) info;
348e048f 11371
3019eac3 11372 free_dwo_file (dwo_file, objfile);
348e048f 11373
3019eac3
DE
11374 return 1;
11375}
348e048f 11376
3019eac3 11377/* Free all resources associated with DWO_FILES. */
348e048f 11378
3019eac3
DE
11379static void
11380free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11381{
11382 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11383}
3019eac3
DE
11384\f
11385/* Read in various DIEs. */
348e048f 11386
d389af10
JK
11387/* qsort helper for inherit_abstract_dies. */
11388
11389static int
11390unsigned_int_compar (const void *ap, const void *bp)
11391{
11392 unsigned int a = *(unsigned int *) ap;
11393 unsigned int b = *(unsigned int *) bp;
11394
11395 return (a > b) - (b > a);
11396}
11397
11398/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11399 Inherit only the children of the DW_AT_abstract_origin DIE not being
11400 already referenced by DW_AT_abstract_origin from the children of the
11401 current DIE. */
d389af10
JK
11402
11403static void
11404inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11405{
11406 struct die_info *child_die;
11407 unsigned die_children_count;
11408 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11409 sect_offset *offsets;
11410 sect_offset *offsets_end, *offsetp;
d389af10
JK
11411 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11412 struct die_info *origin_die;
11413 /* Iterator of the ORIGIN_DIE children. */
11414 struct die_info *origin_child_die;
11415 struct cleanup *cleanups;
11416 struct attribute *attr;
cd02d79d
PA
11417 struct dwarf2_cu *origin_cu;
11418 struct pending **origin_previous_list_in_scope;
d389af10
JK
11419
11420 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11421 if (!attr)
11422 return;
11423
cd02d79d
PA
11424 /* Note that following die references may follow to a die in a
11425 different cu. */
11426
11427 origin_cu = cu;
11428 origin_die = follow_die_ref (die, attr, &origin_cu);
11429
11430 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11431 symbols in. */
11432 origin_previous_list_in_scope = origin_cu->list_in_scope;
11433 origin_cu->list_in_scope = cu->list_in_scope;
11434
edb3359d
DJ
11435 if (die->tag != origin_die->tag
11436 && !(die->tag == DW_TAG_inlined_subroutine
11437 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11438 complaint (&symfile_complaints,
11439 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9c541725
PA
11440 to_underlying (die->sect_off),
11441 to_underlying (origin_die->sect_off));
d389af10
JK
11442
11443 child_die = die->child;
11444 die_children_count = 0;
11445 while (child_die && child_die->tag)
11446 {
11447 child_die = sibling_die (child_die);
11448 die_children_count++;
11449 }
8d749320 11450 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11451 cleanups = make_cleanup (xfree, offsets);
11452
11453 offsets_end = offsets;
3ea89b92
PMR
11454 for (child_die = die->child;
11455 child_die && child_die->tag;
11456 child_die = sibling_die (child_die))
11457 {
11458 struct die_info *child_origin_die;
11459 struct dwarf2_cu *child_origin_cu;
11460
11461 /* We are trying to process concrete instance entries:
216f72a1 11462 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
11463 it's not relevant to our analysis here. i.e. detecting DIEs that are
11464 present in the abstract instance but not referenced in the concrete
11465 one. */
216f72a1
JK
11466 if (child_die->tag == DW_TAG_call_site
11467 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
11468 continue;
11469
c38f313d
DJ
11470 /* For each CHILD_DIE, find the corresponding child of
11471 ORIGIN_DIE. If there is more than one layer of
11472 DW_AT_abstract_origin, follow them all; there shouldn't be,
11473 but GCC versions at least through 4.4 generate this (GCC PR
11474 40573). */
3ea89b92
PMR
11475 child_origin_die = child_die;
11476 child_origin_cu = cu;
c38f313d
DJ
11477 while (1)
11478 {
cd02d79d
PA
11479 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11480 child_origin_cu);
c38f313d
DJ
11481 if (attr == NULL)
11482 break;
cd02d79d
PA
11483 child_origin_die = follow_die_ref (child_origin_die, attr,
11484 &child_origin_cu);
c38f313d
DJ
11485 }
11486
d389af10
JK
11487 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11488 counterpart may exist. */
c38f313d 11489 if (child_origin_die != child_die)
d389af10 11490 {
edb3359d
DJ
11491 if (child_die->tag != child_origin_die->tag
11492 && !(child_die->tag == DW_TAG_inlined_subroutine
11493 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11494 complaint (&symfile_complaints,
11495 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11496 "different tags"),
11497 to_underlying (child_die->sect_off),
11498 to_underlying (child_origin_die->sect_off));
c38f313d
DJ
11499 if (child_origin_die->parent != origin_die)
11500 complaint (&symfile_complaints,
11501 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11502 "different parents"),
11503 to_underlying (child_die->sect_off),
11504 to_underlying (child_origin_die->sect_off));
c38f313d 11505 else
9c541725 11506 *offsets_end++ = child_origin_die->sect_off;
d389af10 11507 }
d389af10
JK
11508 }
11509 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11510 unsigned_int_compar);
11511 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9c541725 11512 if (offsetp[-1] == *offsetp)
3e43a32a
MS
11513 complaint (&symfile_complaints,
11514 _("Multiple children of DIE 0x%x refer "
11515 "to DIE 0x%x as their abstract origin"),
9c541725 11516 to_underlying (die->sect_off), to_underlying (*offsetp));
d389af10
JK
11517
11518 offsetp = offsets;
11519 origin_child_die = origin_die->child;
11520 while (origin_child_die && origin_child_die->tag)
11521 {
11522 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 11523 while (offsetp < offsets_end
9c541725 11524 && *offsetp < origin_child_die->sect_off)
d389af10 11525 offsetp++;
b64f50a1 11526 if (offsetp >= offsets_end
9c541725 11527 || *offsetp > origin_child_die->sect_off)
d389af10 11528 {
adde2bff
DE
11529 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11530 Check whether we're already processing ORIGIN_CHILD_DIE.
11531 This can happen with mutually referenced abstract_origins.
11532 PR 16581. */
11533 if (!origin_child_die->in_process)
11534 process_die (origin_child_die, origin_cu);
d389af10
JK
11535 }
11536 origin_child_die = sibling_die (origin_child_die);
11537 }
cd02d79d 11538 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11539
11540 do_cleanups (cleanups);
11541}
11542
c906108c 11543static void
e7c27a73 11544read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11545{
e7c27a73 11546 struct objfile *objfile = cu->objfile;
3e29f34a 11547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11548 struct context_stack *newobj;
c906108c
SS
11549 CORE_ADDR lowpc;
11550 CORE_ADDR highpc;
11551 struct die_info *child_die;
edb3359d 11552 struct attribute *attr, *call_line, *call_file;
15d034d0 11553 const char *name;
e142c38c 11554 CORE_ADDR baseaddr;
801e3a5b 11555 struct block *block;
edb3359d 11556 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11557 VEC (symbolp) *template_args = NULL;
11558 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11559
11560 if (inlined_func)
11561 {
11562 /* If we do not have call site information, we can't show the
11563 caller of this inlined function. That's too confusing, so
11564 only use the scope for local variables. */
11565 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11566 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11567 if (call_line == NULL || call_file == NULL)
11568 {
11569 read_lexical_block_scope (die, cu);
11570 return;
11571 }
11572 }
c906108c 11573
e142c38c
DJ
11574 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11575
94af9270 11576 name = dwarf2_name (die, cu);
c906108c 11577
e8d05480
JB
11578 /* Ignore functions with missing or empty names. These are actually
11579 illegal according to the DWARF standard. */
11580 if (name == NULL)
11581 {
11582 complaint (&symfile_complaints,
b64f50a1 11583 _("missing name for subprogram DIE at %d"),
9c541725 11584 to_underlying (die->sect_off));
e8d05480
JB
11585 return;
11586 }
11587
11588 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11589 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11590 <= PC_BOUNDS_INVALID)
e8d05480 11591 {
ae4d0c03
PM
11592 attr = dwarf2_attr (die, DW_AT_external, cu);
11593 if (!attr || !DW_UNSND (attr))
11594 complaint (&symfile_complaints,
3e43a32a
MS
11595 _("cannot get low and high bounds "
11596 "for subprogram DIE at %d"),
9c541725 11597 to_underlying (die->sect_off));
e8d05480
JB
11598 return;
11599 }
c906108c 11600
3e29f34a
MR
11601 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11602 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11603
34eaf542
TT
11604 /* If we have any template arguments, then we must allocate a
11605 different sort of symbol. */
11606 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11607 {
11608 if (child_die->tag == DW_TAG_template_type_param
11609 || child_die->tag == DW_TAG_template_value_param)
11610 {
e623cf5d 11611 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11612 templ_func->base.is_cplus_template_function = 1;
11613 break;
11614 }
11615 }
11616
fe978cb0
PA
11617 newobj = push_context (0, lowpc);
11618 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11619 (struct symbol *) templ_func);
4c2df51b 11620
4cecd739
DJ
11621 /* If there is a location expression for DW_AT_frame_base, record
11622 it. */
e142c38c 11623 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11624 if (attr)
fe978cb0 11625 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11626
63e43d3a
PMR
11627 /* If there is a location for the static link, record it. */
11628 newobj->static_link = NULL;
11629 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11630 if (attr)
11631 {
224c3ddb
SM
11632 newobj->static_link
11633 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11634 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11635 }
11636
e142c38c 11637 cu->list_in_scope = &local_symbols;
c906108c 11638
639d11d3 11639 if (die->child != NULL)
c906108c 11640 {
639d11d3 11641 child_die = die->child;
c906108c
SS
11642 while (child_die && child_die->tag)
11643 {
34eaf542
TT
11644 if (child_die->tag == DW_TAG_template_type_param
11645 || child_die->tag == DW_TAG_template_value_param)
11646 {
11647 struct symbol *arg = new_symbol (child_die, NULL, cu);
11648
f1078f66
DJ
11649 if (arg != NULL)
11650 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11651 }
11652 else
11653 process_die (child_die, cu);
c906108c
SS
11654 child_die = sibling_die (child_die);
11655 }
11656 }
11657
d389af10
JK
11658 inherit_abstract_dies (die, cu);
11659
4a811a97
UW
11660 /* If we have a DW_AT_specification, we might need to import using
11661 directives from the context of the specification DIE. See the
11662 comment in determine_prefix. */
11663 if (cu->language == language_cplus
11664 && dwarf2_attr (die, DW_AT_specification, cu))
11665 {
11666 struct dwarf2_cu *spec_cu = cu;
11667 struct die_info *spec_die = die_specification (die, &spec_cu);
11668
11669 while (spec_die)
11670 {
11671 child_die = spec_die->child;
11672 while (child_die && child_die->tag)
11673 {
11674 if (child_die->tag == DW_TAG_imported_module)
11675 process_die (child_die, spec_cu);
11676 child_die = sibling_die (child_die);
11677 }
11678
11679 /* In some cases, GCC generates specification DIEs that
11680 themselves contain DW_AT_specification attributes. */
11681 spec_die = die_specification (spec_die, &spec_cu);
11682 }
11683 }
11684
fe978cb0 11685 newobj = pop_context ();
c906108c 11686 /* Make a block for the local symbols within. */
fe978cb0 11687 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11688 newobj->static_link, lowpc, highpc);
801e3a5b 11689
df8a16a1 11690 /* For C++, set the block's scope. */
45280282
IB
11691 if ((cu->language == language_cplus
11692 || cu->language == language_fortran
c44af4eb
TT
11693 || cu->language == language_d
11694 || cu->language == language_rust)
4d4ec4e5 11695 && cu->processing_has_namespace_info)
195a3f6c
TT
11696 block_set_scope (block, determine_prefix (die, cu),
11697 &objfile->objfile_obstack);
df8a16a1 11698
801e3a5b
JB
11699 /* If we have address ranges, record them. */
11700 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11701
fe978cb0 11702 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11703
34eaf542
TT
11704 /* Attach template arguments to function. */
11705 if (! VEC_empty (symbolp, template_args))
11706 {
11707 gdb_assert (templ_func != NULL);
11708
11709 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11710 templ_func->template_arguments
8d749320
SM
11711 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11712 templ_func->n_template_arguments);
34eaf542
TT
11713 memcpy (templ_func->template_arguments,
11714 VEC_address (symbolp, template_args),
11715 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11716 VEC_free (symbolp, template_args);
11717 }
11718
208d8187
JB
11719 /* In C++, we can have functions nested inside functions (e.g., when
11720 a function declares a class that has methods). This means that
11721 when we finish processing a function scope, we may need to go
11722 back to building a containing block's symbol lists. */
fe978cb0 11723 local_symbols = newobj->locals;
22cee43f 11724 local_using_directives = newobj->local_using_directives;
208d8187 11725
921e78cf
JB
11726 /* If we've finished processing a top-level function, subsequent
11727 symbols go in the file symbol list. */
11728 if (outermost_context_p ())
e142c38c 11729 cu->list_in_scope = &file_symbols;
c906108c
SS
11730}
11731
11732/* Process all the DIES contained within a lexical block scope. Start
11733 a new scope, process the dies, and then close the scope. */
11734
11735static void
e7c27a73 11736read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11737{
e7c27a73 11738 struct objfile *objfile = cu->objfile;
3e29f34a 11739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11740 struct context_stack *newobj;
c906108c
SS
11741 CORE_ADDR lowpc, highpc;
11742 struct die_info *child_die;
e142c38c
DJ
11743 CORE_ADDR baseaddr;
11744
11745 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11746
11747 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11748 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11749 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11750 be nasty. Might be easier to properly extend generic blocks to
af34e669 11751 describe ranges. */
e385593e
JK
11752 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11753 {
11754 case PC_BOUNDS_NOT_PRESENT:
11755 /* DW_TAG_lexical_block has no attributes, process its children as if
11756 there was no wrapping by that DW_TAG_lexical_block.
11757 GCC does no longer produces such DWARF since GCC r224161. */
11758 for (child_die = die->child;
11759 child_die != NULL && child_die->tag;
11760 child_die = sibling_die (child_die))
11761 process_die (child_die, cu);
11762 return;
11763 case PC_BOUNDS_INVALID:
11764 return;
11765 }
3e29f34a
MR
11766 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11767 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11768
11769 push_context (0, lowpc);
639d11d3 11770 if (die->child != NULL)
c906108c 11771 {
639d11d3 11772 child_die = die->child;
c906108c
SS
11773 while (child_die && child_die->tag)
11774 {
e7c27a73 11775 process_die (child_die, cu);
c906108c
SS
11776 child_die = sibling_die (child_die);
11777 }
11778 }
3ea89b92 11779 inherit_abstract_dies (die, cu);
fe978cb0 11780 newobj = pop_context ();
c906108c 11781
22cee43f 11782 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11783 {
801e3a5b 11784 struct block *block
63e43d3a 11785 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11786 newobj->start_addr, highpc);
801e3a5b
JB
11787
11788 /* Note that recording ranges after traversing children, as we
11789 do here, means that recording a parent's ranges entails
11790 walking across all its children's ranges as they appear in
11791 the address map, which is quadratic behavior.
11792
11793 It would be nicer to record the parent's ranges before
11794 traversing its children, simply overriding whatever you find
11795 there. But since we don't even decide whether to create a
11796 block until after we've traversed its children, that's hard
11797 to do. */
11798 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11799 }
fe978cb0 11800 local_symbols = newobj->locals;
22cee43f 11801 local_using_directives = newobj->local_using_directives;
c906108c
SS
11802}
11803
216f72a1 11804/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
11805
11806static void
11807read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11808{
11809 struct objfile *objfile = cu->objfile;
11810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11811 CORE_ADDR pc, baseaddr;
11812 struct attribute *attr;
11813 struct call_site *call_site, call_site_local;
11814 void **slot;
11815 int nparams;
11816 struct die_info *child_die;
11817
11818 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11819
216f72a1
JK
11820 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11821 if (attr == NULL)
11822 {
11823 /* This was a pre-DWARF-5 GNU extension alias
11824 for DW_AT_call_return_pc. */
11825 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11826 }
96408a79
SA
11827 if (!attr)
11828 {
11829 complaint (&symfile_complaints,
216f72a1 11830 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
96408a79 11831 "DIE 0x%x [in module %s]"),
9c541725 11832 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
11833 return;
11834 }
31aa7e4e 11835 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11836 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11837
11838 if (cu->call_site_htab == NULL)
11839 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11840 NULL, &objfile->objfile_obstack,
11841 hashtab_obstack_allocate, NULL);
11842 call_site_local.pc = pc;
11843 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11844 if (*slot != NULL)
11845 {
11846 complaint (&symfile_complaints,
216f72a1 11847 _("Duplicate PC %s for DW_TAG_call_site "
96408a79 11848 "DIE 0x%x [in module %s]"),
9c541725 11849 paddress (gdbarch, pc), to_underlying (die->sect_off),
4262abfb 11850 objfile_name (objfile));
96408a79
SA
11851 return;
11852 }
11853
11854 /* Count parameters at the caller. */
11855
11856 nparams = 0;
11857 for (child_die = die->child; child_die && child_die->tag;
11858 child_die = sibling_die (child_die))
11859 {
216f72a1
JK
11860 if (child_die->tag != DW_TAG_call_site_parameter
11861 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
11862 {
11863 complaint (&symfile_complaints,
216f72a1
JK
11864 _("Tag %d is not DW_TAG_call_site_parameter in "
11865 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 11866 child_die->tag, to_underlying (child_die->sect_off),
4262abfb 11867 objfile_name (objfile));
96408a79
SA
11868 continue;
11869 }
11870
11871 nparams++;
11872 }
11873
224c3ddb
SM
11874 call_site
11875 = ((struct call_site *)
11876 obstack_alloc (&objfile->objfile_obstack,
11877 sizeof (*call_site)
11878 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11879 *slot = call_site;
11880 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11881 call_site->pc = pc;
11882
216f72a1
JK
11883 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11884 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
11885 {
11886 struct die_info *func_die;
11887
11888 /* Skip also over DW_TAG_inlined_subroutine. */
11889 for (func_die = die->parent;
11890 func_die && func_die->tag != DW_TAG_subprogram
11891 && func_die->tag != DW_TAG_subroutine_type;
11892 func_die = func_die->parent);
11893
216f72a1
JK
11894 /* DW_AT_call_all_calls is a superset
11895 of DW_AT_call_all_tail_calls. */
96408a79 11896 if (func_die
216f72a1 11897 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 11898 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 11899 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
11900 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11901 {
11902 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11903 not complete. But keep CALL_SITE for look ups via call_site_htab,
11904 both the initial caller containing the real return address PC and
11905 the final callee containing the current PC of a chain of tail
11906 calls do not need to have the tail call list complete. But any
11907 function candidate for a virtual tail call frame searched via
11908 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11909 determined unambiguously. */
11910 }
11911 else
11912 {
11913 struct type *func_type = NULL;
11914
11915 if (func_die)
11916 func_type = get_die_type (func_die, cu);
11917 if (func_type != NULL)
11918 {
11919 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11920
11921 /* Enlist this call site to the function. */
11922 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11923 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11924 }
11925 else
11926 complaint (&symfile_complaints,
216f72a1 11927 _("Cannot find function owning DW_TAG_call_site "
96408a79 11928 "DIE 0x%x [in module %s]"),
9c541725 11929 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
11930 }
11931 }
11932
216f72a1
JK
11933 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11934 if (attr == NULL)
11935 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11936 if (attr == NULL)
11937 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 11938 if (attr == NULL)
216f72a1
JK
11939 {
11940 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11941 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11942 }
96408a79
SA
11943 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11944 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11945 /* Keep NULL DWARF_BLOCK. */;
11946 else if (attr_form_is_block (attr))
11947 {
11948 struct dwarf2_locexpr_baton *dlbaton;
11949
8d749320 11950 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11951 dlbaton->data = DW_BLOCK (attr)->data;
11952 dlbaton->size = DW_BLOCK (attr)->size;
11953 dlbaton->per_cu = cu->per_cu;
11954
11955 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11956 }
7771576e 11957 else if (attr_form_is_ref (attr))
96408a79 11958 {
96408a79
SA
11959 struct dwarf2_cu *target_cu = cu;
11960 struct die_info *target_die;
11961
ac9ec31b 11962 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11963 gdb_assert (target_cu->objfile == objfile);
11964 if (die_is_declaration (target_die, target_cu))
11965 {
7d45c7c3 11966 const char *target_physname;
9112db09
JK
11967
11968 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11969 target_physname = dwarf2_string_attr (target_die,
11970 DW_AT_linkage_name,
11971 target_cu);
11972 if (target_physname == NULL)
11973 target_physname = dwarf2_string_attr (target_die,
11974 DW_AT_MIPS_linkage_name,
11975 target_cu);
11976 if (target_physname == NULL)
9112db09 11977 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11978 if (target_physname == NULL)
11979 complaint (&symfile_complaints,
216f72a1 11980 _("DW_AT_call_target target DIE has invalid "
96408a79 11981 "physname, for referencing DIE 0x%x [in module %s]"),
9c541725 11982 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 11983 else
7d455152 11984 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11985 }
11986 else
11987 {
11988 CORE_ADDR lowpc;
11989
11990 /* DW_AT_entry_pc should be preferred. */
3a2b436a 11991 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 11992 <= PC_BOUNDS_INVALID)
96408a79 11993 complaint (&symfile_complaints,
216f72a1 11994 _("DW_AT_call_target target DIE has invalid "
96408a79 11995 "low pc, for referencing DIE 0x%x [in module %s]"),
9c541725 11996 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 11997 else
3e29f34a
MR
11998 {
11999 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12000 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12001 }
96408a79
SA
12002 }
12003 }
12004 else
12005 complaint (&symfile_complaints,
216f72a1 12006 _("DW_TAG_call_site DW_AT_call_target is neither "
96408a79 12007 "block nor reference, for DIE 0x%x [in module %s]"),
9c541725 12008 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
12009
12010 call_site->per_cu = cu->per_cu;
12011
12012 for (child_die = die->child;
12013 child_die && child_die->tag;
12014 child_die = sibling_die (child_die))
12015 {
96408a79 12016 struct call_site_parameter *parameter;
1788b2d3 12017 struct attribute *loc, *origin;
96408a79 12018
216f72a1
JK
12019 if (child_die->tag != DW_TAG_call_site_parameter
12020 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
12021 {
12022 /* Already printed the complaint above. */
12023 continue;
12024 }
12025
12026 gdb_assert (call_site->parameter_count < nparams);
12027 parameter = &call_site->parameter[call_site->parameter_count];
12028
1788b2d3
JK
12029 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12030 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 12031 register is contained in DW_AT_call_value. */
96408a79 12032
24c5c679 12033 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
12034 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12035 if (origin == NULL)
12036 {
12037 /* This was a pre-DWARF-5 GNU extension alias
12038 for DW_AT_call_parameter. */
12039 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12040 }
7771576e 12041 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 12042 {
1788b2d3 12043 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
12044
12045 sect_offset sect_off
12046 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12047 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
12048 {
12049 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12050 binding can be done only inside one CU. Such referenced DIE
12051 therefore cannot be even moved to DW_TAG_partial_unit. */
12052 complaint (&symfile_complaints,
216f72a1
JK
12053 _("DW_AT_call_parameter offset is not in CU for "
12054 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12055 to_underlying (child_die->sect_off),
12056 objfile_name (objfile));
d76b7dbc
JK
12057 continue;
12058 }
9c541725
PA
12059 parameter->u.param_cu_off
12060 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
12061 }
12062 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
12063 {
12064 complaint (&symfile_complaints,
12065 _("No DW_FORM_block* DW_AT_location for "
216f72a1 12066 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 12067 to_underlying (child_die->sect_off), objfile_name (objfile));
96408a79
SA
12068 continue;
12069 }
24c5c679 12070 else
96408a79 12071 {
24c5c679
JK
12072 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12073 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12074 if (parameter->u.dwarf_reg != -1)
12075 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12076 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12077 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12078 &parameter->u.fb_offset))
12079 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12080 else
12081 {
12082 complaint (&symfile_complaints,
12083 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12084 "for DW_FORM_block* DW_AT_location is supported for "
216f72a1 12085 "DW_TAG_call_site child DIE 0x%x "
24c5c679 12086 "[in module %s]"),
9c541725
PA
12087 to_underlying (child_die->sect_off),
12088 objfile_name (objfile));
24c5c679
JK
12089 continue;
12090 }
96408a79
SA
12091 }
12092
216f72a1
JK
12093 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12094 if (attr == NULL)
12095 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
12096 if (!attr_form_is_block (attr))
12097 {
12098 complaint (&symfile_complaints,
216f72a1
JK
12099 _("No DW_FORM_block* DW_AT_call_value for "
12100 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12101 to_underlying (child_die->sect_off),
12102 objfile_name (objfile));
96408a79
SA
12103 continue;
12104 }
12105 parameter->value = DW_BLOCK (attr)->data;
12106 parameter->value_size = DW_BLOCK (attr)->size;
12107
12108 /* Parameters are not pre-cleared by memset above. */
12109 parameter->data_value = NULL;
12110 parameter->data_value_size = 0;
12111 call_site->parameter_count++;
12112
216f72a1
JK
12113 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12114 if (attr == NULL)
12115 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
12116 if (attr)
12117 {
12118 if (!attr_form_is_block (attr))
12119 complaint (&symfile_complaints,
216f72a1
JK
12120 _("No DW_FORM_block* DW_AT_call_data_value for "
12121 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12122 to_underlying (child_die->sect_off),
12123 objfile_name (objfile));
96408a79
SA
12124 else
12125 {
12126 parameter->data_value = DW_BLOCK (attr)->data;
12127 parameter->data_value_size = DW_BLOCK (attr)->size;
12128 }
12129 }
12130 }
12131}
12132
43988095
JK
12133/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12134 reading .debug_rnglists.
12135 Callback's type should be:
12136 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12137 Return true if the attributes are present and valid, otherwise,
12138 return false. */
12139
12140template <typename Callback>
12141static bool
12142dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12143 Callback &&callback)
12144{
12145 struct objfile *objfile = cu->objfile;
12146 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12147 struct comp_unit_head *cu_header = &cu->header;
12148 bfd *obfd = objfile->obfd;
12149 unsigned int addr_size = cu_header->addr_size;
12150 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12151 /* Base address selection entry. */
12152 CORE_ADDR base;
12153 int found_base;
12154 unsigned int dummy;
12155 const gdb_byte *buffer;
12156 CORE_ADDR low = 0;
12157 CORE_ADDR high = 0;
12158 CORE_ADDR baseaddr;
12159 bool overflow = false;
12160
12161 found_base = cu->base_known;
12162 base = cu->base_address;
12163
12164 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12165 if (offset >= dwarf2_per_objfile->rnglists.size)
12166 {
12167 complaint (&symfile_complaints,
12168 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12169 offset);
12170 return false;
12171 }
12172 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12173
12174 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12175
12176 while (1)
12177 {
7814882a
JK
12178 /* Initialize it due to a false compiler warning. */
12179 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
12180 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12181 + dwarf2_per_objfile->rnglists.size);
12182 unsigned int bytes_read;
12183
12184 if (buffer == buf_end)
12185 {
12186 overflow = true;
12187 break;
12188 }
12189 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12190 switch (rlet)
12191 {
12192 case DW_RLE_end_of_list:
12193 break;
12194 case DW_RLE_base_address:
12195 if (buffer + cu->header.addr_size > buf_end)
12196 {
12197 overflow = true;
12198 break;
12199 }
12200 base = read_address (obfd, buffer, cu, &bytes_read);
12201 found_base = 1;
12202 buffer += bytes_read;
12203 break;
12204 case DW_RLE_start_length:
12205 if (buffer + cu->header.addr_size > buf_end)
12206 {
12207 overflow = true;
12208 break;
12209 }
12210 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12211 buffer += bytes_read;
12212 range_end = (range_beginning
12213 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12214 buffer += bytes_read;
12215 if (buffer > buf_end)
12216 {
12217 overflow = true;
12218 break;
12219 }
12220 break;
12221 case DW_RLE_offset_pair:
12222 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12223 buffer += bytes_read;
12224 if (buffer > buf_end)
12225 {
12226 overflow = true;
12227 break;
12228 }
12229 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12230 buffer += bytes_read;
12231 if (buffer > buf_end)
12232 {
12233 overflow = true;
12234 break;
12235 }
12236 break;
12237 case DW_RLE_start_end:
12238 if (buffer + 2 * cu->header.addr_size > buf_end)
12239 {
12240 overflow = true;
12241 break;
12242 }
12243 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12244 buffer += bytes_read;
12245 range_end = read_address (obfd, buffer, cu, &bytes_read);
12246 buffer += bytes_read;
12247 break;
12248 default:
12249 complaint (&symfile_complaints,
12250 _("Invalid .debug_rnglists data (no base address)"));
12251 return false;
12252 }
12253 if (rlet == DW_RLE_end_of_list || overflow)
12254 break;
12255 if (rlet == DW_RLE_base_address)
12256 continue;
12257
12258 if (!found_base)
12259 {
12260 /* We have no valid base address for the ranges
12261 data. */
12262 complaint (&symfile_complaints,
12263 _("Invalid .debug_rnglists data (no base address)"));
12264 return false;
12265 }
12266
12267 if (range_beginning > range_end)
12268 {
12269 /* Inverted range entries are invalid. */
12270 complaint (&symfile_complaints,
12271 _("Invalid .debug_rnglists data (inverted range)"));
12272 return false;
12273 }
12274
12275 /* Empty range entries have no effect. */
12276 if (range_beginning == range_end)
12277 continue;
12278
12279 range_beginning += base;
12280 range_end += base;
12281
12282 /* A not-uncommon case of bad debug info.
12283 Don't pollute the addrmap with bad data. */
12284 if (range_beginning + baseaddr == 0
12285 && !dwarf2_per_objfile->has_section_at_zero)
12286 {
12287 complaint (&symfile_complaints,
12288 _(".debug_rnglists entry has start address of zero"
12289 " [in module %s]"), objfile_name (objfile));
12290 continue;
12291 }
12292
12293 callback (range_beginning, range_end);
12294 }
12295
12296 if (overflow)
12297 {
12298 complaint (&symfile_complaints,
12299 _("Offset %d is not terminated "
12300 "for DW_AT_ranges attribute"),
12301 offset);
12302 return false;
12303 }
12304
12305 return true;
12306}
12307
12308/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12309 Callback's type should be:
12310 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 12311 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 12312
43988095 12313template <typename Callback>
43039443 12314static int
5f46c5a5 12315dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 12316 Callback &&callback)
43039443
JK
12317{
12318 struct objfile *objfile = cu->objfile;
3e29f34a 12319 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
12320 struct comp_unit_head *cu_header = &cu->header;
12321 bfd *obfd = objfile->obfd;
12322 unsigned int addr_size = cu_header->addr_size;
12323 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12324 /* Base address selection entry. */
12325 CORE_ADDR base;
12326 int found_base;
12327 unsigned int dummy;
d521ce57 12328 const gdb_byte *buffer;
ff013f42 12329 CORE_ADDR baseaddr;
43039443 12330
43988095
JK
12331 if (cu_header->version >= 5)
12332 return dwarf2_rnglists_process (offset, cu, callback);
12333
d00adf39
DE
12334 found_base = cu->base_known;
12335 base = cu->base_address;
43039443 12336
be391dca 12337 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12338 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
12339 {
12340 complaint (&symfile_complaints,
12341 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12342 offset);
12343 return 0;
12344 }
dce234bc 12345 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 12346
e7030f15 12347 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 12348
43039443
JK
12349 while (1)
12350 {
12351 CORE_ADDR range_beginning, range_end;
12352
12353 range_beginning = read_address (obfd, buffer, cu, &dummy);
12354 buffer += addr_size;
12355 range_end = read_address (obfd, buffer, cu, &dummy);
12356 buffer += addr_size;
12357 offset += 2 * addr_size;
12358
12359 /* An end of list marker is a pair of zero addresses. */
12360 if (range_beginning == 0 && range_end == 0)
12361 /* Found the end of list entry. */
12362 break;
12363
12364 /* Each base address selection entry is a pair of 2 values.
12365 The first is the largest possible address, the second is
12366 the base address. Check for a base address here. */
12367 if ((range_beginning & mask) == mask)
12368 {
28d2bfb9
AB
12369 /* If we found the largest possible address, then we already
12370 have the base address in range_end. */
12371 base = range_end;
43039443
JK
12372 found_base = 1;
12373 continue;
12374 }
12375
12376 if (!found_base)
12377 {
12378 /* We have no valid base address for the ranges
12379 data. */
12380 complaint (&symfile_complaints,
12381 _("Invalid .debug_ranges data (no base address)"));
12382 return 0;
12383 }
12384
9277c30c
UW
12385 if (range_beginning > range_end)
12386 {
12387 /* Inverted range entries are invalid. */
12388 complaint (&symfile_complaints,
12389 _("Invalid .debug_ranges data (inverted range)"));
12390 return 0;
12391 }
12392
12393 /* Empty range entries have no effect. */
12394 if (range_beginning == range_end)
12395 continue;
12396
43039443
JK
12397 range_beginning += base;
12398 range_end += base;
12399
01093045
DE
12400 /* A not-uncommon case of bad debug info.
12401 Don't pollute the addrmap with bad data. */
12402 if (range_beginning + baseaddr == 0
12403 && !dwarf2_per_objfile->has_section_at_zero)
12404 {
12405 complaint (&symfile_complaints,
12406 _(".debug_ranges entry has start address of zero"
4262abfb 12407 " [in module %s]"), objfile_name (objfile));
01093045
DE
12408 continue;
12409 }
12410
5f46c5a5
JK
12411 callback (range_beginning, range_end);
12412 }
12413
12414 return 1;
12415}
12416
12417/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12418 Return 1 if the attributes are present and valid, otherwise, return 0.
12419 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12420
12421static int
12422dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12423 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12424 struct partial_symtab *ranges_pst)
12425{
12426 struct objfile *objfile = cu->objfile;
12427 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12428 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12429 SECT_OFF_TEXT (objfile));
12430 int low_set = 0;
12431 CORE_ADDR low = 0;
12432 CORE_ADDR high = 0;
12433 int retval;
12434
12435 retval = dwarf2_ranges_process (offset, cu,
12436 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12437 {
9277c30c 12438 if (ranges_pst != NULL)
3e29f34a
MR
12439 {
12440 CORE_ADDR lowpc;
12441 CORE_ADDR highpc;
12442
12443 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12444 range_beginning + baseaddr);
12445 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12446 range_end + baseaddr);
12447 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12448 ranges_pst);
12449 }
ff013f42 12450
43039443
JK
12451 /* FIXME: This is recording everything as a low-high
12452 segment of consecutive addresses. We should have a
12453 data structure for discontiguous block ranges
12454 instead. */
12455 if (! low_set)
12456 {
12457 low = range_beginning;
12458 high = range_end;
12459 low_set = 1;
12460 }
12461 else
12462 {
12463 if (range_beginning < low)
12464 low = range_beginning;
12465 if (range_end > high)
12466 high = range_end;
12467 }
5f46c5a5
JK
12468 });
12469 if (!retval)
12470 return 0;
43039443
JK
12471
12472 if (! low_set)
12473 /* If the first entry is an end-of-list marker, the range
12474 describes an empty scope, i.e. no instructions. */
12475 return 0;
12476
12477 if (low_return)
12478 *low_return = low;
12479 if (high_return)
12480 *high_return = high;
12481 return 1;
12482}
12483
3a2b436a
JK
12484/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12485 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12486 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12487
3a2b436a 12488static enum pc_bounds_kind
af34e669 12489dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12490 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12491 struct partial_symtab *pst)
c906108c
SS
12492{
12493 struct attribute *attr;
91da1414 12494 struct attribute *attr_high;
af34e669
DJ
12495 CORE_ADDR low = 0;
12496 CORE_ADDR high = 0;
e385593e 12497 enum pc_bounds_kind ret;
c906108c 12498
91da1414
MW
12499 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12500 if (attr_high)
af34e669 12501 {
e142c38c 12502 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12503 if (attr)
91da1414 12504 {
31aa7e4e
JB
12505 low = attr_value_as_address (attr);
12506 high = attr_value_as_address (attr_high);
12507 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12508 high += low;
91da1414 12509 }
af34e669
DJ
12510 else
12511 /* Found high w/o low attribute. */
e385593e 12512 return PC_BOUNDS_INVALID;
af34e669
DJ
12513
12514 /* Found consecutive range of addresses. */
3a2b436a 12515 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12516 }
c906108c 12517 else
af34e669 12518 {
e142c38c 12519 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12520 if (attr != NULL)
12521 {
ab435259
DE
12522 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12523 We take advantage of the fact that DW_AT_ranges does not appear
12524 in DW_TAG_compile_unit of DWO files. */
12525 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12526 unsigned int ranges_offset = (DW_UNSND (attr)
12527 + (need_ranges_base
12528 ? cu->ranges_base
12529 : 0));
2e3cf129 12530
af34e669 12531 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12532 .debug_ranges section. */
2e3cf129 12533 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12534 return PC_BOUNDS_INVALID;
43039443 12535 /* Found discontinuous range of addresses. */
3a2b436a 12536 ret = PC_BOUNDS_RANGES;
af34e669 12537 }
e385593e
JK
12538 else
12539 return PC_BOUNDS_NOT_PRESENT;
af34e669 12540 }
c906108c 12541
9373cf26
JK
12542 /* read_partial_die has also the strict LOW < HIGH requirement. */
12543 if (high <= low)
e385593e 12544 return PC_BOUNDS_INVALID;
c906108c
SS
12545
12546 /* When using the GNU linker, .gnu.linkonce. sections are used to
12547 eliminate duplicate copies of functions and vtables and such.
12548 The linker will arbitrarily choose one and discard the others.
12549 The AT_*_pc values for such functions refer to local labels in
12550 these sections. If the section from that file was discarded, the
12551 labels are not in the output, so the relocs get a value of 0.
12552 If this is a discarded function, mark the pc bounds as invalid,
12553 so that GDB will ignore it. */
72dca2f5 12554 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12555 return PC_BOUNDS_INVALID;
c906108c
SS
12556
12557 *lowpc = low;
96408a79
SA
12558 if (highpc)
12559 *highpc = high;
af34e669 12560 return ret;
c906108c
SS
12561}
12562
b084d499
JB
12563/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12564 its low and high PC addresses. Do nothing if these addresses could not
12565 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12566 and HIGHPC to the high address if greater than HIGHPC. */
12567
12568static void
12569dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12570 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12571 struct dwarf2_cu *cu)
12572{
12573 CORE_ADDR low, high;
12574 struct die_info *child = die->child;
12575
e385593e 12576 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 12577 {
325fac50
PA
12578 *lowpc = std::min (*lowpc, low);
12579 *highpc = std::max (*highpc, high);
b084d499
JB
12580 }
12581
12582 /* If the language does not allow nested subprograms (either inside
12583 subprograms or lexical blocks), we're done. */
12584 if (cu->language != language_ada)
12585 return;
6e70227d 12586
b084d499
JB
12587 /* Check all the children of the given DIE. If it contains nested
12588 subprograms, then check their pc bounds. Likewise, we need to
12589 check lexical blocks as well, as they may also contain subprogram
12590 definitions. */
12591 while (child && child->tag)
12592 {
12593 if (child->tag == DW_TAG_subprogram
12594 || child->tag == DW_TAG_lexical_block)
12595 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12596 child = sibling_die (child);
12597 }
12598}
12599
fae299cd
DC
12600/* Get the low and high pc's represented by the scope DIE, and store
12601 them in *LOWPC and *HIGHPC. If the correct values can't be
12602 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12603
12604static void
12605get_scope_pc_bounds (struct die_info *die,
12606 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12607 struct dwarf2_cu *cu)
12608{
12609 CORE_ADDR best_low = (CORE_ADDR) -1;
12610 CORE_ADDR best_high = (CORE_ADDR) 0;
12611 CORE_ADDR current_low, current_high;
12612
3a2b436a 12613 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12614 >= PC_BOUNDS_RANGES)
fae299cd
DC
12615 {
12616 best_low = current_low;
12617 best_high = current_high;
12618 }
12619 else
12620 {
12621 struct die_info *child = die->child;
12622
12623 while (child && child->tag)
12624 {
12625 switch (child->tag) {
12626 case DW_TAG_subprogram:
b084d499 12627 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12628 break;
12629 case DW_TAG_namespace:
f55ee35c 12630 case DW_TAG_module:
fae299cd
DC
12631 /* FIXME: carlton/2004-01-16: Should we do this for
12632 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12633 that current GCC's always emit the DIEs corresponding
12634 to definitions of methods of classes as children of a
12635 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12636 the DIEs giving the declarations, which could be
12637 anywhere). But I don't see any reason why the
12638 standards says that they have to be there. */
12639 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12640
12641 if (current_low != ((CORE_ADDR) -1))
12642 {
325fac50
PA
12643 best_low = std::min (best_low, current_low);
12644 best_high = std::max (best_high, current_high);
fae299cd
DC
12645 }
12646 break;
12647 default:
0963b4bd 12648 /* Ignore. */
fae299cd
DC
12649 break;
12650 }
12651
12652 child = sibling_die (child);
12653 }
12654 }
12655
12656 *lowpc = best_low;
12657 *highpc = best_high;
12658}
12659
801e3a5b
JB
12660/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12661 in DIE. */
380bca97 12662
801e3a5b
JB
12663static void
12664dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12665 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12666{
bb5ed363 12667 struct objfile *objfile = cu->objfile;
3e29f34a 12668 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12669 struct attribute *attr;
91da1414 12670 struct attribute *attr_high;
801e3a5b 12671
91da1414
MW
12672 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12673 if (attr_high)
801e3a5b 12674 {
801e3a5b
JB
12675 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12676 if (attr)
12677 {
31aa7e4e
JB
12678 CORE_ADDR low = attr_value_as_address (attr);
12679 CORE_ADDR high = attr_value_as_address (attr_high);
12680
12681 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12682 high += low;
9a619af0 12683
3e29f34a
MR
12684 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12685 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12686 record_block_range (block, low, high - 1);
801e3a5b
JB
12687 }
12688 }
12689
12690 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12691 if (attr)
12692 {
bb5ed363 12693 bfd *obfd = objfile->obfd;
ab435259
DE
12694 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12695 We take advantage of the fact that DW_AT_ranges does not appear
12696 in DW_TAG_compile_unit of DWO files. */
12697 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12698
12699 /* The value of the DW_AT_ranges attribute is the offset of the
12700 address range list in the .debug_ranges section. */
ab435259
DE
12701 unsigned long offset = (DW_UNSND (attr)
12702 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12703 const gdb_byte *buffer;
801e3a5b
JB
12704
12705 /* For some target architectures, but not others, the
12706 read_address function sign-extends the addresses it returns.
12707 To recognize base address selection entries, we need a
12708 mask. */
12709 unsigned int addr_size = cu->header.addr_size;
12710 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12711
12712 /* The base address, to which the next pair is relative. Note
12713 that this 'base' is a DWARF concept: most entries in a range
12714 list are relative, to reduce the number of relocs against the
12715 debugging information. This is separate from this function's
12716 'baseaddr' argument, which GDB uses to relocate debugging
12717 information from a shared library based on the address at
12718 which the library was loaded. */
d00adf39
DE
12719 CORE_ADDR base = cu->base_address;
12720 int base_known = cu->base_known;
801e3a5b 12721
5f46c5a5
JK
12722 dwarf2_ranges_process (offset, cu,
12723 [&] (CORE_ADDR start, CORE_ADDR end)
12724 {
58fdfd2c
JK
12725 start += baseaddr;
12726 end += baseaddr;
5f46c5a5
JK
12727 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12728 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12729 record_block_range (block, start, end - 1);
12730 });
801e3a5b
JB
12731 }
12732}
12733
685b1105
JK
12734/* Check whether the producer field indicates either of GCC < 4.6, or the
12735 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12736
685b1105
JK
12737static void
12738check_producer (struct dwarf2_cu *cu)
60d5a603 12739{
38360086 12740 int major, minor;
60d5a603
JK
12741
12742 if (cu->producer == NULL)
12743 {
12744 /* For unknown compilers expect their behavior is DWARF version
12745 compliant.
12746
12747 GCC started to support .debug_types sections by -gdwarf-4 since
12748 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12749 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12750 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12751 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12752 }
b1ffba5a 12753 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12754 {
38360086
MW
12755 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12756 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12757 }
61012eef 12758 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12759 cu->producer_is_icc = 1;
12760 else
12761 {
12762 /* For other non-GCC compilers, expect their behavior is DWARF version
12763 compliant. */
60d5a603
JK
12764 }
12765
ba919b58 12766 cu->checked_producer = 1;
685b1105 12767}
ba919b58 12768
685b1105
JK
12769/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12770 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12771 during 4.6.0 experimental. */
12772
12773static int
12774producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12775{
12776 if (!cu->checked_producer)
12777 check_producer (cu);
12778
12779 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12780}
12781
12782/* Return the default accessibility type if it is not overriden by
12783 DW_AT_accessibility. */
12784
12785static enum dwarf_access_attribute
12786dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12787{
12788 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12789 {
12790 /* The default DWARF 2 accessibility for members is public, the default
12791 accessibility for inheritance is private. */
12792
12793 if (die->tag != DW_TAG_inheritance)
12794 return DW_ACCESS_public;
12795 else
12796 return DW_ACCESS_private;
12797 }
12798 else
12799 {
12800 /* DWARF 3+ defines the default accessibility a different way. The same
12801 rules apply now for DW_TAG_inheritance as for the members and it only
12802 depends on the container kind. */
12803
12804 if (die->parent->tag == DW_TAG_class_type)
12805 return DW_ACCESS_private;
12806 else
12807 return DW_ACCESS_public;
12808 }
12809}
12810
74ac6d43
TT
12811/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12812 offset. If the attribute was not found return 0, otherwise return
12813 1. If it was found but could not properly be handled, set *OFFSET
12814 to 0. */
12815
12816static int
12817handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12818 LONGEST *offset)
12819{
12820 struct attribute *attr;
12821
12822 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12823 if (attr != NULL)
12824 {
12825 *offset = 0;
12826
12827 /* Note that we do not check for a section offset first here.
12828 This is because DW_AT_data_member_location is new in DWARF 4,
12829 so if we see it, we can assume that a constant form is really
12830 a constant and not a section offset. */
12831 if (attr_form_is_constant (attr))
12832 *offset = dwarf2_get_attr_constant_value (attr, 0);
12833 else if (attr_form_is_section_offset (attr))
12834 dwarf2_complex_location_expr_complaint ();
12835 else if (attr_form_is_block (attr))
12836 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12837 else
12838 dwarf2_complex_location_expr_complaint ();
12839
12840 return 1;
12841 }
12842
12843 return 0;
12844}
12845
c906108c
SS
12846/* Add an aggregate field to the field list. */
12847
12848static void
107d2387 12849dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12850 struct dwarf2_cu *cu)
6e70227d 12851{
e7c27a73 12852 struct objfile *objfile = cu->objfile;
5e2b427d 12853 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12854 struct nextfield *new_field;
12855 struct attribute *attr;
12856 struct field *fp;
15d034d0 12857 const char *fieldname = "";
c906108c
SS
12858
12859 /* Allocate a new field list entry and link it in. */
8d749320 12860 new_field = XNEW (struct nextfield);
b8c9b27d 12861 make_cleanup (xfree, new_field);
c906108c 12862 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12863
12864 if (die->tag == DW_TAG_inheritance)
12865 {
12866 new_field->next = fip->baseclasses;
12867 fip->baseclasses = new_field;
12868 }
12869 else
12870 {
12871 new_field->next = fip->fields;
12872 fip->fields = new_field;
12873 }
c906108c
SS
12874 fip->nfields++;
12875
e142c38c 12876 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12877 if (attr)
12878 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12879 else
12880 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12881 if (new_field->accessibility != DW_ACCESS_public)
12882 fip->non_public_fields = 1;
60d5a603 12883
e142c38c 12884 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12885 if (attr)
12886 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12887 else
12888 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12889
12890 fp = &new_field->field;
a9a9bd0f 12891
e142c38c 12892 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12893 {
74ac6d43
TT
12894 LONGEST offset;
12895
a9a9bd0f 12896 /* Data member other than a C++ static data member. */
6e70227d 12897
c906108c 12898 /* Get type of field. */
e7c27a73 12899 fp->type = die_type (die, cu);
c906108c 12900
d6a843b5 12901 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12902
c906108c 12903 /* Get bit size of field (zero if none). */
e142c38c 12904 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12905 if (attr)
12906 {
12907 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12908 }
12909 else
12910 {
12911 FIELD_BITSIZE (*fp) = 0;
12912 }
12913
12914 /* Get bit offset of field. */
74ac6d43
TT
12915 if (handle_data_member_location (die, cu, &offset))
12916 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12917 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12918 if (attr)
12919 {
5e2b427d 12920 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12921 {
12922 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12923 additional bit offset from the MSB of the containing
12924 anonymous object to the MSB of the field. We don't
12925 have to do anything special since we don't need to
12926 know the size of the anonymous object. */
f41f5e61 12927 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12928 }
12929 else
12930 {
12931 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12932 MSB of the anonymous object, subtract off the number of
12933 bits from the MSB of the field to the MSB of the
12934 object, and then subtract off the number of bits of
12935 the field itself. The result is the bit offset of
12936 the LSB of the field. */
c906108c
SS
12937 int anonymous_size;
12938 int bit_offset = DW_UNSND (attr);
12939
e142c38c 12940 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12941 if (attr)
12942 {
12943 /* The size of the anonymous object containing
12944 the bit field is explicit, so use the
12945 indicated size (in bytes). */
12946 anonymous_size = DW_UNSND (attr);
12947 }
12948 else
12949 {
12950 /* The size of the anonymous object containing
12951 the bit field must be inferred from the type
12952 attribute of the data member containing the
12953 bit field. */
12954 anonymous_size = TYPE_LENGTH (fp->type);
12955 }
f41f5e61
PA
12956 SET_FIELD_BITPOS (*fp,
12957 (FIELD_BITPOS (*fp)
12958 + anonymous_size * bits_per_byte
12959 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12960 }
12961 }
da5b30da
AA
12962 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12963 if (attr != NULL)
12964 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12965 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
12966
12967 /* Get name of field. */
39cbfefa
DJ
12968 fieldname = dwarf2_name (die, cu);
12969 if (fieldname == NULL)
12970 fieldname = "";
d8151005
DJ
12971
12972 /* The name is already allocated along with this objfile, so we don't
12973 need to duplicate it for the type. */
12974 fp->name = fieldname;
c906108c
SS
12975
12976 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12977 pointer or virtual base class pointer) to private. */
e142c38c 12978 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12979 {
d48cc9dd 12980 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12981 new_field->accessibility = DW_ACCESS_private;
12982 fip->non_public_fields = 1;
12983 }
12984 }
a9a9bd0f 12985 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12986 {
a9a9bd0f
DC
12987 /* C++ static member. */
12988
12989 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12990 is a declaration, but all versions of G++ as of this writing
12991 (so through at least 3.2.1) incorrectly generate
12992 DW_TAG_variable tags. */
6e70227d 12993
ff355380 12994 const char *physname;
c906108c 12995
a9a9bd0f 12996 /* Get name of field. */
39cbfefa
DJ
12997 fieldname = dwarf2_name (die, cu);
12998 if (fieldname == NULL)
c906108c
SS
12999 return;
13000
254e6b9e 13001 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
13002 if (attr
13003 /* Only create a symbol if this is an external value.
13004 new_symbol checks this and puts the value in the global symbol
13005 table, which we want. If it is not external, new_symbol
13006 will try to put the value in cu->list_in_scope which is wrong. */
13007 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
13008 {
13009 /* A static const member, not much different than an enum as far as
13010 we're concerned, except that we can support more types. */
13011 new_symbol (die, NULL, cu);
13012 }
13013
2df3850c 13014 /* Get physical name. */
ff355380 13015 physname = dwarf2_physname (fieldname, die, cu);
c906108c 13016
d8151005
DJ
13017 /* The name is already allocated along with this objfile, so we don't
13018 need to duplicate it for the type. */
13019 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 13020 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 13021 FIELD_NAME (*fp) = fieldname;
c906108c
SS
13022 }
13023 else if (die->tag == DW_TAG_inheritance)
13024 {
74ac6d43 13025 LONGEST offset;
d4b96c9a 13026
74ac6d43
TT
13027 /* C++ base class field. */
13028 if (handle_data_member_location (die, cu, &offset))
13029 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 13030 FIELD_BITSIZE (*fp) = 0;
e7c27a73 13031 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
13032 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13033 fip->nbaseclasses++;
13034 }
13035}
13036
98751a41
JK
13037/* Add a typedef defined in the scope of the FIP's class. */
13038
13039static void
13040dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13041 struct dwarf2_cu *cu)
6e70227d 13042{
98751a41 13043 struct typedef_field_list *new_field;
98751a41 13044 struct typedef_field *fp;
98751a41
JK
13045
13046 /* Allocate a new field list entry and link it in. */
8d749320 13047 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
13048 make_cleanup (xfree, new_field);
13049
13050 gdb_assert (die->tag == DW_TAG_typedef);
13051
13052 fp = &new_field->field;
13053
13054 /* Get name of field. */
13055 fp->name = dwarf2_name (die, cu);
13056 if (fp->name == NULL)
13057 return;
13058
13059 fp->type = read_type_die (die, cu);
13060
13061 new_field->next = fip->typedef_field_list;
13062 fip->typedef_field_list = new_field;
13063 fip->typedef_field_list_count++;
13064}
13065
c906108c
SS
13066/* Create the vector of fields, and attach it to the type. */
13067
13068static void
fba45db2 13069dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13070 struct dwarf2_cu *cu)
c906108c
SS
13071{
13072 int nfields = fip->nfields;
13073
13074 /* Record the field count, allocate space for the array of fields,
13075 and create blank accessibility bitfields if necessary. */
13076 TYPE_NFIELDS (type) = nfields;
13077 TYPE_FIELDS (type) = (struct field *)
13078 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13079 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13080
b4ba55a1 13081 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
13082 {
13083 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13084
13085 TYPE_FIELD_PRIVATE_BITS (type) =
13086 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13087 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13088
13089 TYPE_FIELD_PROTECTED_BITS (type) =
13090 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13091 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13092
774b6a14
TT
13093 TYPE_FIELD_IGNORE_BITS (type) =
13094 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13095 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
13096 }
13097
13098 /* If the type has baseclasses, allocate and clear a bit vector for
13099 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 13100 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
13101 {
13102 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 13103 unsigned char *pointer;
c906108c
SS
13104
13105 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 13106 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 13107 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
13108 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13109 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13110 }
13111
3e43a32a
MS
13112 /* Copy the saved-up fields into the field vector. Start from the head of
13113 the list, adding to the tail of the field array, so that they end up in
13114 the same order in the array in which they were added to the list. */
c906108c
SS
13115 while (nfields-- > 0)
13116 {
7d0ccb61
DJ
13117 struct nextfield *fieldp;
13118
13119 if (fip->fields)
13120 {
13121 fieldp = fip->fields;
13122 fip->fields = fieldp->next;
13123 }
13124 else
13125 {
13126 fieldp = fip->baseclasses;
13127 fip->baseclasses = fieldp->next;
13128 }
13129
13130 TYPE_FIELD (type, nfields) = fieldp->field;
13131 switch (fieldp->accessibility)
c906108c 13132 {
c5aa993b 13133 case DW_ACCESS_private:
b4ba55a1
JB
13134 if (cu->language != language_ada)
13135 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 13136 break;
c906108c 13137
c5aa993b 13138 case DW_ACCESS_protected:
b4ba55a1
JB
13139 if (cu->language != language_ada)
13140 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 13141 break;
c906108c 13142
c5aa993b
JM
13143 case DW_ACCESS_public:
13144 break;
c906108c 13145
c5aa993b
JM
13146 default:
13147 /* Unknown accessibility. Complain and treat it as public. */
13148 {
e2e0b3e5 13149 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 13150 fieldp->accessibility);
c5aa993b
JM
13151 }
13152 break;
c906108c
SS
13153 }
13154 if (nfields < fip->nbaseclasses)
13155 {
7d0ccb61 13156 switch (fieldp->virtuality)
c906108c 13157 {
c5aa993b
JM
13158 case DW_VIRTUALITY_virtual:
13159 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 13160 if (cu->language == language_ada)
a73c6dcd 13161 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
13162 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13163 break;
c906108c
SS
13164 }
13165 }
c906108c
SS
13166 }
13167}
13168
7d27a96d
TT
13169/* Return true if this member function is a constructor, false
13170 otherwise. */
13171
13172static int
13173dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13174{
13175 const char *fieldname;
fe978cb0 13176 const char *type_name;
7d27a96d
TT
13177 int len;
13178
13179 if (die->parent == NULL)
13180 return 0;
13181
13182 if (die->parent->tag != DW_TAG_structure_type
13183 && die->parent->tag != DW_TAG_union_type
13184 && die->parent->tag != DW_TAG_class_type)
13185 return 0;
13186
13187 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
13188 type_name = dwarf2_name (die->parent, cu);
13189 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
13190 return 0;
13191
13192 len = strlen (fieldname);
fe978cb0
PA
13193 return (strncmp (fieldname, type_name, len) == 0
13194 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
13195}
13196
c906108c
SS
13197/* Add a member function to the proper fieldlist. */
13198
13199static void
107d2387 13200dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 13201 struct type *type, struct dwarf2_cu *cu)
c906108c 13202{
e7c27a73 13203 struct objfile *objfile = cu->objfile;
c906108c
SS
13204 struct attribute *attr;
13205 struct fnfieldlist *flp;
13206 int i;
13207 struct fn_field *fnp;
15d034d0 13208 const char *fieldname;
c906108c 13209 struct nextfnfield *new_fnfield;
f792889a 13210 struct type *this_type;
60d5a603 13211 enum dwarf_access_attribute accessibility;
c906108c 13212
b4ba55a1 13213 if (cu->language == language_ada)
a73c6dcd 13214 error (_("unexpected member function in Ada type"));
b4ba55a1 13215
2df3850c 13216 /* Get name of member function. */
39cbfefa
DJ
13217 fieldname = dwarf2_name (die, cu);
13218 if (fieldname == NULL)
2df3850c 13219 return;
c906108c 13220
c906108c
SS
13221 /* Look up member function name in fieldlist. */
13222 for (i = 0; i < fip->nfnfields; i++)
13223 {
27bfe10e 13224 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
13225 break;
13226 }
13227
13228 /* Create new list element if necessary. */
13229 if (i < fip->nfnfields)
13230 flp = &fip->fnfieldlists[i];
13231 else
13232 {
13233 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13234 {
13235 fip->fnfieldlists = (struct fnfieldlist *)
13236 xrealloc (fip->fnfieldlists,
13237 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13238 * sizeof (struct fnfieldlist));
c906108c 13239 if (fip->nfnfields == 0)
c13c43fd 13240 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
13241 }
13242 flp = &fip->fnfieldlists[fip->nfnfields];
13243 flp->name = fieldname;
13244 flp->length = 0;
13245 flp->head = NULL;
3da10d80 13246 i = fip->nfnfields++;
c906108c
SS
13247 }
13248
13249 /* Create a new member function field and chain it to the field list
0963b4bd 13250 entry. */
8d749320 13251 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 13252 make_cleanup (xfree, new_fnfield);
c906108c
SS
13253 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13254 new_fnfield->next = flp->head;
13255 flp->head = new_fnfield;
13256 flp->length++;
13257
13258 /* Fill in the member function field info. */
13259 fnp = &new_fnfield->fnfield;
3da10d80
KS
13260
13261 /* Delay processing of the physname until later. */
9c37b5ae 13262 if (cu->language == language_cplus)
3da10d80
KS
13263 {
13264 add_to_method_list (type, i, flp->length - 1, fieldname,
13265 die, cu);
13266 }
13267 else
13268 {
1d06ead6 13269 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
13270 fnp->physname = physname ? physname : "";
13271 }
13272
c906108c 13273 fnp->type = alloc_type (objfile);
f792889a
DJ
13274 this_type = read_type_die (die, cu);
13275 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 13276 {
f792889a 13277 int nparams = TYPE_NFIELDS (this_type);
c906108c 13278
f792889a 13279 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
13280 of the method itself (TYPE_CODE_METHOD). */
13281 smash_to_method_type (fnp->type, type,
f792889a
DJ
13282 TYPE_TARGET_TYPE (this_type),
13283 TYPE_FIELDS (this_type),
13284 TYPE_NFIELDS (this_type),
13285 TYPE_VARARGS (this_type));
c906108c
SS
13286
13287 /* Handle static member functions.
c5aa993b 13288 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
13289 member functions. G++ helps GDB by marking the first
13290 parameter for non-static member functions (which is the this
13291 pointer) as artificial. We obtain this information from
13292 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 13293 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
13294 fnp->voffset = VOFFSET_STATIC;
13295 }
13296 else
e2e0b3e5 13297 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 13298 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
13299
13300 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 13301 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 13302 fnp->fcontext = die_containing_type (die, cu);
c906108c 13303
3e43a32a
MS
13304 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13305 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
13306
13307 /* Get accessibility. */
e142c38c 13308 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 13309 if (attr)
aead7601 13310 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
13311 else
13312 accessibility = dwarf2_default_access_attribute (die, cu);
13313 switch (accessibility)
c906108c 13314 {
60d5a603
JK
13315 case DW_ACCESS_private:
13316 fnp->is_private = 1;
13317 break;
13318 case DW_ACCESS_protected:
13319 fnp->is_protected = 1;
13320 break;
c906108c
SS
13321 }
13322
b02dede2 13323 /* Check for artificial methods. */
e142c38c 13324 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
13325 if (attr && DW_UNSND (attr) != 0)
13326 fnp->is_artificial = 1;
13327
7d27a96d
TT
13328 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13329
0d564a31 13330 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
13331 function. For older versions of GCC, this is an offset in the
13332 appropriate virtual table, as specified by DW_AT_containing_type.
13333 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
13334 to the object address. */
13335
e142c38c 13336 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 13337 if (attr)
8e19ed76 13338 {
aec5aa8b 13339 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 13340 {
aec5aa8b
TT
13341 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13342 {
13343 /* Old-style GCC. */
13344 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13345 }
13346 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13347 || (DW_BLOCK (attr)->size > 1
13348 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13349 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13350 {
aec5aa8b
TT
13351 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13352 if ((fnp->voffset % cu->header.addr_size) != 0)
13353 dwarf2_complex_location_expr_complaint ();
13354 else
13355 fnp->voffset /= cu->header.addr_size;
13356 fnp->voffset += 2;
13357 }
13358 else
13359 dwarf2_complex_location_expr_complaint ();
13360
13361 if (!fnp->fcontext)
7e993ebf
KS
13362 {
13363 /* If there is no `this' field and no DW_AT_containing_type,
13364 we cannot actually find a base class context for the
13365 vtable! */
13366 if (TYPE_NFIELDS (this_type) == 0
13367 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13368 {
13369 complaint (&symfile_complaints,
13370 _("cannot determine context for virtual member "
13371 "function \"%s\" (offset %d)"),
9c541725 13372 fieldname, to_underlying (die->sect_off));
7e993ebf
KS
13373 }
13374 else
13375 {
13376 fnp->fcontext
13377 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13378 }
13379 }
aec5aa8b 13380 }
3690dd37 13381 else if (attr_form_is_section_offset (attr))
8e19ed76 13382 {
4d3c2250 13383 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13384 }
13385 else
13386 {
4d3c2250
KB
13387 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13388 fieldname);
8e19ed76 13389 }
0d564a31 13390 }
d48cc9dd
DJ
13391 else
13392 {
13393 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13394 if (attr && DW_UNSND (attr))
13395 {
13396 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13397 complaint (&symfile_complaints,
3e43a32a
MS
13398 _("Member function \"%s\" (offset %d) is virtual "
13399 "but the vtable offset is not specified"),
9c541725 13400 fieldname, to_underlying (die->sect_off));
9655fd1a 13401 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13402 TYPE_CPLUS_DYNAMIC (type) = 1;
13403 }
13404 }
c906108c
SS
13405}
13406
13407/* Create the vector of member function fields, and attach it to the type. */
13408
13409static void
fba45db2 13410dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13411 struct dwarf2_cu *cu)
c906108c
SS
13412{
13413 struct fnfieldlist *flp;
c906108c
SS
13414 int i;
13415
b4ba55a1 13416 if (cu->language == language_ada)
a73c6dcd 13417 error (_("unexpected member functions in Ada type"));
b4ba55a1 13418
c906108c
SS
13419 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13420 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13421 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13422
13423 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13424 {
13425 struct nextfnfield *nfp = flp->head;
13426 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13427 int k;
13428
13429 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13430 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13431 fn_flp->fn_fields = (struct fn_field *)
13432 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13433 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13434 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13435 }
13436
13437 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13438}
13439
1168df01
JB
13440/* Returns non-zero if NAME is the name of a vtable member in CU's
13441 language, zero otherwise. */
13442static int
13443is_vtable_name (const char *name, struct dwarf2_cu *cu)
13444{
13445 static const char vptr[] = "_vptr";
987504bb 13446 static const char vtable[] = "vtable";
1168df01 13447
9c37b5ae
TT
13448 /* Look for the C++ form of the vtable. */
13449 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
13450 return 1;
13451
13452 return 0;
13453}
13454
c0dd20ea 13455/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13456 functions, with the ABI-specified layout. If TYPE describes
13457 such a structure, smash it into a member function type.
61049d3b
DJ
13458
13459 GCC shouldn't do this; it should just output pointer to member DIEs.
13460 This is GCC PR debug/28767. */
c0dd20ea 13461
0b92b5bb
TT
13462static void
13463quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13464{
09e2d7c7 13465 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13466
13467 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13468 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13469 return;
c0dd20ea
DJ
13470
13471 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13472 if (TYPE_FIELD_NAME (type, 0) == NULL
13473 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13474 || TYPE_FIELD_NAME (type, 1) == NULL
13475 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13476 return;
c0dd20ea
DJ
13477
13478 /* Find the type of the method. */
0b92b5bb 13479 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13480 if (pfn_type == NULL
13481 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13482 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13483 return;
c0dd20ea
DJ
13484
13485 /* Look for the "this" argument. */
13486 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13487 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13488 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13489 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13490 return;
c0dd20ea 13491
09e2d7c7 13492 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13493 new_type = alloc_type (objfile);
09e2d7c7 13494 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13495 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13496 TYPE_VARARGS (pfn_type));
0b92b5bb 13497 smash_to_methodptr_type (type, new_type);
c0dd20ea 13498}
1168df01 13499
685b1105
JK
13500/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13501 (icc). */
13502
13503static int
13504producer_is_icc (struct dwarf2_cu *cu)
13505{
13506 if (!cu->checked_producer)
13507 check_producer (cu);
13508
13509 return cu->producer_is_icc;
13510}
13511
c906108c 13512/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13513 (definition) to create a type for the structure or union. Fill in
13514 the type's name and general properties; the members will not be
83655187
DE
13515 processed until process_structure_scope. A symbol table entry for
13516 the type will also not be done until process_structure_scope (assuming
13517 the type has a name).
c906108c 13518
c767944b
DJ
13519 NOTE: we need to call these functions regardless of whether or not the
13520 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13521 structure or union. This gets the type entered into our set of
83655187 13522 user defined types. */
c906108c 13523
f792889a 13524static struct type *
134d01f1 13525read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13526{
e7c27a73 13527 struct objfile *objfile = cu->objfile;
c906108c
SS
13528 struct type *type;
13529 struct attribute *attr;
15d034d0 13530 const char *name;
c906108c 13531
348e048f
DE
13532 /* If the definition of this type lives in .debug_types, read that type.
13533 Don't follow DW_AT_specification though, that will take us back up
13534 the chain and we want to go down. */
45e58e77 13535 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13536 if (attr)
13537 {
ac9ec31b 13538 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13539
ac9ec31b 13540 /* The type's CU may not be the same as CU.
02142a6c 13541 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13542 return set_die_type (die, type, cu);
13543 }
13544
c0dd20ea 13545 type = alloc_type (objfile);
c906108c 13546 INIT_CPLUS_SPECIFIC (type);
93311388 13547
39cbfefa
DJ
13548 name = dwarf2_name (die, cu);
13549 if (name != NULL)
c906108c 13550 {
987504bb 13551 if (cu->language == language_cplus
c44af4eb
TT
13552 || cu->language == language_d
13553 || cu->language == language_rust)
63d06c5c 13554 {
15d034d0 13555 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13556
13557 /* dwarf2_full_name might have already finished building the DIE's
13558 type. If so, there is no need to continue. */
13559 if (get_die_type (die, cu) != NULL)
13560 return get_die_type (die, cu);
13561
13562 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13563 if (die->tag == DW_TAG_structure_type
13564 || die->tag == DW_TAG_class_type)
13565 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13566 }
13567 else
13568 {
d8151005
DJ
13569 /* The name is already allocated along with this objfile, so
13570 we don't need to duplicate it for the type. */
7d455152 13571 TYPE_TAG_NAME (type) = name;
94af9270
KS
13572 if (die->tag == DW_TAG_class_type)
13573 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13574 }
c906108c
SS
13575 }
13576
13577 if (die->tag == DW_TAG_structure_type)
13578 {
13579 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13580 }
13581 else if (die->tag == DW_TAG_union_type)
13582 {
13583 TYPE_CODE (type) = TYPE_CODE_UNION;
13584 }
13585 else
13586 {
4753d33b 13587 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13588 }
13589
0cc2414c
TT
13590 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13591 TYPE_DECLARED_CLASS (type) = 1;
13592
e142c38c 13593 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13594 if (attr)
13595 {
155bfbd3
JB
13596 if (attr_form_is_constant (attr))
13597 TYPE_LENGTH (type) = DW_UNSND (attr);
13598 else
13599 {
13600 /* For the moment, dynamic type sizes are not supported
13601 by GDB's struct type. The actual size is determined
13602 on-demand when resolving the type of a given object,
13603 so set the type's length to zero for now. Otherwise,
13604 we record an expression as the length, and that expression
13605 could lead to a very large value, which could eventually
13606 lead to us trying to allocate that much memory when creating
13607 a value of that type. */
13608 TYPE_LENGTH (type) = 0;
13609 }
c906108c
SS
13610 }
13611 else
13612 {
13613 TYPE_LENGTH (type) = 0;
13614 }
13615
422b1cb0 13616 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13617 {
13618 /* ICC does not output the required DW_AT_declaration
13619 on incomplete types, but gives them a size of zero. */
422b1cb0 13620 TYPE_STUB (type) = 1;
685b1105
JK
13621 }
13622 else
13623 TYPE_STUB_SUPPORTED (type) = 1;
13624
dc718098 13625 if (die_is_declaration (die, cu))
876cecd0 13626 TYPE_STUB (type) = 1;
a6c727b2
DJ
13627 else if (attr == NULL && die->child == NULL
13628 && producer_is_realview (cu->producer))
13629 /* RealView does not output the required DW_AT_declaration
13630 on incomplete types. */
13631 TYPE_STUB (type) = 1;
dc718098 13632
c906108c
SS
13633 /* We need to add the type field to the die immediately so we don't
13634 infinitely recurse when dealing with pointers to the structure
0963b4bd 13635 type within the structure itself. */
1c379e20 13636 set_die_type (die, type, cu);
c906108c 13637
7e314c57
JK
13638 /* set_die_type should be already done. */
13639 set_descriptive_type (type, die, cu);
13640
c767944b
DJ
13641 return type;
13642}
13643
13644/* Finish creating a structure or union type, including filling in
13645 its members and creating a symbol for it. */
13646
13647static void
13648process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13649{
13650 struct objfile *objfile = cu->objfile;
ca040673 13651 struct die_info *child_die;
c767944b
DJ
13652 struct type *type;
13653
13654 type = get_die_type (die, cu);
13655 if (type == NULL)
13656 type = read_structure_type (die, cu);
13657
e142c38c 13658 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13659 {
13660 struct field_info fi;
34eaf542 13661 VEC (symbolp) *template_args = NULL;
c767944b 13662 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13663
13664 memset (&fi, 0, sizeof (struct field_info));
13665
639d11d3 13666 child_die = die->child;
c906108c
SS
13667
13668 while (child_die && child_die->tag)
13669 {
a9a9bd0f
DC
13670 if (child_die->tag == DW_TAG_member
13671 || child_die->tag == DW_TAG_variable)
c906108c 13672 {
a9a9bd0f
DC
13673 /* NOTE: carlton/2002-11-05: A C++ static data member
13674 should be a DW_TAG_member that is a declaration, but
13675 all versions of G++ as of this writing (so through at
13676 least 3.2.1) incorrectly generate DW_TAG_variable
13677 tags for them instead. */
e7c27a73 13678 dwarf2_add_field (&fi, child_die, cu);
c906108c 13679 }
8713b1b1 13680 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13681 {
e98c9e7c
TT
13682 /* Rust doesn't have member functions in the C++ sense.
13683 However, it does emit ordinary functions as children
13684 of a struct DIE. */
13685 if (cu->language == language_rust)
13686 read_func_scope (child_die, cu);
13687 else
13688 {
13689 /* C++ member function. */
13690 dwarf2_add_member_fn (&fi, child_die, type, cu);
13691 }
c906108c
SS
13692 }
13693 else if (child_die->tag == DW_TAG_inheritance)
13694 {
13695 /* C++ base class field. */
e7c27a73 13696 dwarf2_add_field (&fi, child_die, cu);
c906108c 13697 }
98751a41
JK
13698 else if (child_die->tag == DW_TAG_typedef)
13699 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13700 else if (child_die->tag == DW_TAG_template_type_param
13701 || child_die->tag == DW_TAG_template_value_param)
13702 {
13703 struct symbol *arg = new_symbol (child_die, NULL, cu);
13704
f1078f66
DJ
13705 if (arg != NULL)
13706 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13707 }
13708
c906108c
SS
13709 child_die = sibling_die (child_die);
13710 }
13711
34eaf542
TT
13712 /* Attach template arguments to type. */
13713 if (! VEC_empty (symbolp, template_args))
13714 {
13715 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13716 TYPE_N_TEMPLATE_ARGUMENTS (type)
13717 = VEC_length (symbolp, template_args);
13718 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13719 = XOBNEWVEC (&objfile->objfile_obstack,
13720 struct symbol *,
13721 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13722 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13723 VEC_address (symbolp, template_args),
13724 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13725 * sizeof (struct symbol *)));
13726 VEC_free (symbolp, template_args);
13727 }
13728
c906108c
SS
13729 /* Attach fields and member functions to the type. */
13730 if (fi.nfields)
e7c27a73 13731 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13732 if (fi.nfnfields)
13733 {
e7c27a73 13734 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13735
c5aa993b 13736 /* Get the type which refers to the base class (possibly this
c906108c 13737 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13738 class from the DW_AT_containing_type attribute. This use of
13739 DW_AT_containing_type is a GNU extension. */
c906108c 13740
e142c38c 13741 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13742 {
e7c27a73 13743 struct type *t = die_containing_type (die, cu);
c906108c 13744
ae6ae975 13745 set_type_vptr_basetype (type, t);
c906108c
SS
13746 if (type == t)
13747 {
c906108c
SS
13748 int i;
13749
13750 /* Our own class provides vtbl ptr. */
13751 for (i = TYPE_NFIELDS (t) - 1;
13752 i >= TYPE_N_BASECLASSES (t);
13753 --i)
13754 {
0d5cff50 13755 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13756
1168df01 13757 if (is_vtable_name (fieldname, cu))
c906108c 13758 {
ae6ae975 13759 set_type_vptr_fieldno (type, i);
c906108c
SS
13760 break;
13761 }
13762 }
13763
13764 /* Complain if virtual function table field not found. */
13765 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13766 complaint (&symfile_complaints,
3e43a32a
MS
13767 _("virtual function table pointer "
13768 "not found when defining class '%s'"),
4d3c2250
KB
13769 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13770 "");
c906108c
SS
13771 }
13772 else
13773 {
ae6ae975 13774 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13775 }
13776 }
f6235d4c 13777 else if (cu->producer
61012eef 13778 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13779 {
13780 /* The IBM XLC compiler does not provide direct indication
13781 of the containing type, but the vtable pointer is
13782 always named __vfp. */
13783
13784 int i;
13785
13786 for (i = TYPE_NFIELDS (type) - 1;
13787 i >= TYPE_N_BASECLASSES (type);
13788 --i)
13789 {
13790 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13791 {
ae6ae975
DE
13792 set_type_vptr_fieldno (type, i);
13793 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13794 break;
13795 }
13796 }
13797 }
c906108c 13798 }
98751a41
JK
13799
13800 /* Copy fi.typedef_field_list linked list elements content into the
13801 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13802 if (fi.typedef_field_list)
13803 {
13804 int i = fi.typedef_field_list_count;
13805
a0d7a4ff 13806 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13807 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13808 = ((struct typedef_field *)
13809 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13810 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13811
13812 /* Reverse the list order to keep the debug info elements order. */
13813 while (--i >= 0)
13814 {
13815 struct typedef_field *dest, *src;
6e70227d 13816
98751a41
JK
13817 dest = &TYPE_TYPEDEF_FIELD (type, i);
13818 src = &fi.typedef_field_list->field;
13819 fi.typedef_field_list = fi.typedef_field_list->next;
13820 *dest = *src;
13821 }
13822 }
c767944b
DJ
13823
13824 do_cleanups (back_to);
c906108c 13825 }
63d06c5c 13826
bb5ed363 13827 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13828
90aeadfc
DC
13829 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13830 snapshots) has been known to create a die giving a declaration
13831 for a class that has, as a child, a die giving a definition for a
13832 nested class. So we have to process our children even if the
13833 current die is a declaration. Normally, of course, a declaration
13834 won't have any children at all. */
134d01f1 13835
ca040673
DE
13836 child_die = die->child;
13837
90aeadfc
DC
13838 while (child_die != NULL && child_die->tag)
13839 {
13840 if (child_die->tag == DW_TAG_member
13841 || child_die->tag == DW_TAG_variable
34eaf542
TT
13842 || child_die->tag == DW_TAG_inheritance
13843 || child_die->tag == DW_TAG_template_value_param
13844 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13845 {
90aeadfc 13846 /* Do nothing. */
134d01f1 13847 }
90aeadfc
DC
13848 else
13849 process_die (child_die, cu);
134d01f1 13850
90aeadfc 13851 child_die = sibling_die (child_die);
134d01f1
DJ
13852 }
13853
fa4028e9
JB
13854 /* Do not consider external references. According to the DWARF standard,
13855 these DIEs are identified by the fact that they have no byte_size
13856 attribute, and a declaration attribute. */
13857 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13858 || !die_is_declaration (die, cu))
c767944b 13859 new_symbol (die, type, cu);
134d01f1
DJ
13860}
13861
55426c9d
JB
13862/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13863 update TYPE using some information only available in DIE's children. */
13864
13865static void
13866update_enumeration_type_from_children (struct die_info *die,
13867 struct type *type,
13868 struct dwarf2_cu *cu)
13869{
60f7655a 13870 struct die_info *child_die;
55426c9d
JB
13871 int unsigned_enum = 1;
13872 int flag_enum = 1;
13873 ULONGEST mask = 0;
55426c9d 13874
8268c778 13875 auto_obstack obstack;
55426c9d 13876
60f7655a
DE
13877 for (child_die = die->child;
13878 child_die != NULL && child_die->tag;
13879 child_die = sibling_die (child_die))
55426c9d
JB
13880 {
13881 struct attribute *attr;
13882 LONGEST value;
13883 const gdb_byte *bytes;
13884 struct dwarf2_locexpr_baton *baton;
13885 const char *name;
60f7655a 13886
55426c9d
JB
13887 if (child_die->tag != DW_TAG_enumerator)
13888 continue;
13889
13890 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13891 if (attr == NULL)
13892 continue;
13893
13894 name = dwarf2_name (child_die, cu);
13895 if (name == NULL)
13896 name = "<anonymous enumerator>";
13897
13898 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13899 &value, &bytes, &baton);
13900 if (value < 0)
13901 {
13902 unsigned_enum = 0;
13903 flag_enum = 0;
13904 }
13905 else if ((mask & value) != 0)
13906 flag_enum = 0;
13907 else
13908 mask |= value;
13909
13910 /* If we already know that the enum type is neither unsigned, nor
13911 a flag type, no need to look at the rest of the enumerates. */
13912 if (!unsigned_enum && !flag_enum)
13913 break;
55426c9d
JB
13914 }
13915
13916 if (unsigned_enum)
13917 TYPE_UNSIGNED (type) = 1;
13918 if (flag_enum)
13919 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
13920}
13921
134d01f1
DJ
13922/* Given a DW_AT_enumeration_type die, set its type. We do not
13923 complete the type's fields yet, or create any symbols. */
c906108c 13924
f792889a 13925static struct type *
134d01f1 13926read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13927{
e7c27a73 13928 struct objfile *objfile = cu->objfile;
c906108c 13929 struct type *type;
c906108c 13930 struct attribute *attr;
0114d602 13931 const char *name;
134d01f1 13932
348e048f
DE
13933 /* If the definition of this type lives in .debug_types, read that type.
13934 Don't follow DW_AT_specification though, that will take us back up
13935 the chain and we want to go down. */
45e58e77 13936 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13937 if (attr)
13938 {
ac9ec31b 13939 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13940
ac9ec31b 13941 /* The type's CU may not be the same as CU.
02142a6c 13942 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13943 return set_die_type (die, type, cu);
13944 }
13945
c906108c
SS
13946 type = alloc_type (objfile);
13947
13948 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13949 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13950 if (name != NULL)
7d455152 13951 TYPE_TAG_NAME (type) = name;
c906108c 13952
0626fc76
TT
13953 attr = dwarf2_attr (die, DW_AT_type, cu);
13954 if (attr != NULL)
13955 {
13956 struct type *underlying_type = die_type (die, cu);
13957
13958 TYPE_TARGET_TYPE (type) = underlying_type;
13959 }
13960
e142c38c 13961 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13962 if (attr)
13963 {
13964 TYPE_LENGTH (type) = DW_UNSND (attr);
13965 }
13966 else
13967 {
13968 TYPE_LENGTH (type) = 0;
13969 }
13970
137033e9
JB
13971 /* The enumeration DIE can be incomplete. In Ada, any type can be
13972 declared as private in the package spec, and then defined only
13973 inside the package body. Such types are known as Taft Amendment
13974 Types. When another package uses such a type, an incomplete DIE
13975 may be generated by the compiler. */
02eb380e 13976 if (die_is_declaration (die, cu))
876cecd0 13977 TYPE_STUB (type) = 1;
02eb380e 13978
0626fc76
TT
13979 /* Finish the creation of this type by using the enum's children.
13980 We must call this even when the underlying type has been provided
13981 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13982 update_enumeration_type_from_children (die, type, cu);
13983
0626fc76
TT
13984 /* If this type has an underlying type that is not a stub, then we
13985 may use its attributes. We always use the "unsigned" attribute
13986 in this situation, because ordinarily we guess whether the type
13987 is unsigned -- but the guess can be wrong and the underlying type
13988 can tell us the reality. However, we defer to a local size
13989 attribute if one exists, because this lets the compiler override
13990 the underlying type if needed. */
13991 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13992 {
13993 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13994 if (TYPE_LENGTH (type) == 0)
13995 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13996 }
13997
3d567982
TT
13998 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13999
f792889a 14000 return set_die_type (die, type, cu);
134d01f1
DJ
14001}
14002
14003/* Given a pointer to a die which begins an enumeration, process all
14004 the dies that define the members of the enumeration, and create the
14005 symbol for the enumeration type.
14006
14007 NOTE: We reverse the order of the element list. */
14008
14009static void
14010process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14011{
f792889a 14012 struct type *this_type;
134d01f1 14013
f792889a
DJ
14014 this_type = get_die_type (die, cu);
14015 if (this_type == NULL)
14016 this_type = read_enumeration_type (die, cu);
9dc481d3 14017
639d11d3 14018 if (die->child != NULL)
c906108c 14019 {
9dc481d3
DE
14020 struct die_info *child_die;
14021 struct symbol *sym;
14022 struct field *fields = NULL;
14023 int num_fields = 0;
15d034d0 14024 const char *name;
9dc481d3 14025
639d11d3 14026 child_die = die->child;
c906108c
SS
14027 while (child_die && child_die->tag)
14028 {
14029 if (child_die->tag != DW_TAG_enumerator)
14030 {
e7c27a73 14031 process_die (child_die, cu);
c906108c
SS
14032 }
14033 else
14034 {
39cbfefa
DJ
14035 name = dwarf2_name (child_die, cu);
14036 if (name)
c906108c 14037 {
f792889a 14038 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
14039
14040 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14041 {
14042 fields = (struct field *)
14043 xrealloc (fields,
14044 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 14045 * sizeof (struct field));
c906108c
SS
14046 }
14047
3567439c 14048 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 14049 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 14050 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
14051 FIELD_BITSIZE (fields[num_fields]) = 0;
14052
14053 num_fields++;
14054 }
14055 }
14056
14057 child_die = sibling_die (child_die);
14058 }
14059
14060 if (num_fields)
14061 {
f792889a
DJ
14062 TYPE_NFIELDS (this_type) = num_fields;
14063 TYPE_FIELDS (this_type) = (struct field *)
14064 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14065 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 14066 sizeof (struct field) * num_fields);
b8c9b27d 14067 xfree (fields);
c906108c 14068 }
c906108c 14069 }
134d01f1 14070
6c83ed52
TT
14071 /* If we are reading an enum from a .debug_types unit, and the enum
14072 is a declaration, and the enum is not the signatured type in the
14073 unit, then we do not want to add a symbol for it. Adding a
14074 symbol would in some cases obscure the true definition of the
14075 enum, giving users an incomplete type when the definition is
14076 actually available. Note that we do not want to do this for all
14077 enums which are just declarations, because C++0x allows forward
14078 enum declarations. */
3019eac3 14079 if (cu->per_cu->is_debug_types
6c83ed52
TT
14080 && die_is_declaration (die, cu))
14081 {
52dc124a 14082 struct signatured_type *sig_type;
6c83ed52 14083
c0f78cd4 14084 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
14085 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14086 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
14087 return;
14088 }
14089
f792889a 14090 new_symbol (die, this_type, cu);
c906108c
SS
14091}
14092
14093/* Extract all information from a DW_TAG_array_type DIE and put it in
14094 the DIE's type field. For now, this only handles one dimensional
14095 arrays. */
14096
f792889a 14097static struct type *
e7c27a73 14098read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14099{
e7c27a73 14100 struct objfile *objfile = cu->objfile;
c906108c 14101 struct die_info *child_die;
7e314c57 14102 struct type *type;
c906108c
SS
14103 struct type *element_type, *range_type, *index_type;
14104 struct type **range_types = NULL;
14105 struct attribute *attr;
14106 int ndim = 0;
14107 struct cleanup *back_to;
15d034d0 14108 const char *name;
dc53a7ad 14109 unsigned int bit_stride = 0;
c906108c 14110
e7c27a73 14111 element_type = die_type (die, cu);
c906108c 14112
7e314c57
JK
14113 /* The die_type call above may have already set the type for this DIE. */
14114 type = get_die_type (die, cu);
14115 if (type)
14116 return type;
14117
dc53a7ad
JB
14118 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14119 if (attr != NULL)
14120 bit_stride = DW_UNSND (attr) * 8;
14121
14122 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14123 if (attr != NULL)
14124 bit_stride = DW_UNSND (attr);
14125
c906108c
SS
14126 /* Irix 6.2 native cc creates array types without children for
14127 arrays with unspecified length. */
639d11d3 14128 if (die->child == NULL)
c906108c 14129 {
46bf5051 14130 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14131 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
14132 type = create_array_type_with_stride (NULL, element_type, range_type,
14133 bit_stride);
f792889a 14134 return set_die_type (die, type, cu);
c906108c
SS
14135 }
14136
14137 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 14138 child_die = die->child;
c906108c
SS
14139 while (child_die && child_die->tag)
14140 {
14141 if (child_die->tag == DW_TAG_subrange_type)
14142 {
f792889a 14143 struct type *child_type = read_type_die (child_die, cu);
9a619af0 14144
f792889a 14145 if (child_type != NULL)
a02abb62 14146 {
0963b4bd
MS
14147 /* The range type was succesfully read. Save it for the
14148 array type creation. */
a02abb62
JB
14149 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14150 {
14151 range_types = (struct type **)
14152 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14153 * sizeof (struct type *));
14154 if (ndim == 0)
14155 make_cleanup (free_current_contents, &range_types);
14156 }
f792889a 14157 range_types[ndim++] = child_type;
a02abb62 14158 }
c906108c
SS
14159 }
14160 child_die = sibling_die (child_die);
14161 }
14162
14163 /* Dwarf2 dimensions are output from left to right, create the
14164 necessary array types in backwards order. */
7ca2d3a3 14165
c906108c 14166 type = element_type;
7ca2d3a3
DL
14167
14168 if (read_array_order (die, cu) == DW_ORD_col_major)
14169 {
14170 int i = 0;
9a619af0 14171
7ca2d3a3 14172 while (i < ndim)
dc53a7ad
JB
14173 type = create_array_type_with_stride (NULL, type, range_types[i++],
14174 bit_stride);
7ca2d3a3
DL
14175 }
14176 else
14177 {
14178 while (ndim-- > 0)
dc53a7ad
JB
14179 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14180 bit_stride);
7ca2d3a3 14181 }
c906108c 14182
f5f8a009
EZ
14183 /* Understand Dwarf2 support for vector types (like they occur on
14184 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14185 array type. This is not part of the Dwarf2/3 standard yet, but a
14186 custom vendor extension. The main difference between a regular
14187 array and the vector variant is that vectors are passed by value
14188 to functions. */
e142c38c 14189 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 14190 if (attr)
ea37ba09 14191 make_vector_type (type);
f5f8a009 14192
dbc98a8b
KW
14193 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14194 implementation may choose to implement triple vectors using this
14195 attribute. */
14196 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14197 if (attr)
14198 {
14199 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14200 TYPE_LENGTH (type) = DW_UNSND (attr);
14201 else
3e43a32a
MS
14202 complaint (&symfile_complaints,
14203 _("DW_AT_byte_size for array type smaller "
14204 "than the total size of elements"));
dbc98a8b
KW
14205 }
14206
39cbfefa
DJ
14207 name = dwarf2_name (die, cu);
14208 if (name)
14209 TYPE_NAME (type) = name;
6e70227d 14210
0963b4bd 14211 /* Install the type in the die. */
7e314c57
JK
14212 set_die_type (die, type, cu);
14213
14214 /* set_die_type should be already done. */
b4ba55a1
JB
14215 set_descriptive_type (type, die, cu);
14216
c906108c
SS
14217 do_cleanups (back_to);
14218
7e314c57 14219 return type;
c906108c
SS
14220}
14221
7ca2d3a3 14222static enum dwarf_array_dim_ordering
6e70227d 14223read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
14224{
14225 struct attribute *attr;
14226
14227 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14228
aead7601
SM
14229 if (attr)
14230 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 14231
0963b4bd
MS
14232 /* GNU F77 is a special case, as at 08/2004 array type info is the
14233 opposite order to the dwarf2 specification, but data is still
14234 laid out as per normal fortran.
7ca2d3a3 14235
0963b4bd
MS
14236 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14237 version checking. */
7ca2d3a3 14238
905e0470
PM
14239 if (cu->language == language_fortran
14240 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
14241 {
14242 return DW_ORD_row_major;
14243 }
14244
6e70227d 14245 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
14246 {
14247 case array_column_major:
14248 return DW_ORD_col_major;
14249 case array_row_major:
14250 default:
14251 return DW_ORD_row_major;
14252 };
14253}
14254
72019c9c 14255/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 14256 the DIE's type field. */
72019c9c 14257
f792889a 14258static struct type *
72019c9c
GM
14259read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14260{
7e314c57
JK
14261 struct type *domain_type, *set_type;
14262 struct attribute *attr;
f792889a 14263
7e314c57
JK
14264 domain_type = die_type (die, cu);
14265
14266 /* The die_type call above may have already set the type for this DIE. */
14267 set_type = get_die_type (die, cu);
14268 if (set_type)
14269 return set_type;
14270
14271 set_type = create_set_type (NULL, domain_type);
14272
14273 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
14274 if (attr)
14275 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 14276
f792889a 14277 return set_die_type (die, set_type, cu);
72019c9c 14278}
7ca2d3a3 14279
0971de02
TT
14280/* A helper for read_common_block that creates a locexpr baton.
14281 SYM is the symbol which we are marking as computed.
14282 COMMON_DIE is the DIE for the common block.
14283 COMMON_LOC is the location expression attribute for the common
14284 block itself.
14285 MEMBER_LOC is the location expression attribute for the particular
14286 member of the common block that we are processing.
14287 CU is the CU from which the above come. */
14288
14289static void
14290mark_common_block_symbol_computed (struct symbol *sym,
14291 struct die_info *common_die,
14292 struct attribute *common_loc,
14293 struct attribute *member_loc,
14294 struct dwarf2_cu *cu)
14295{
14296 struct objfile *objfile = dwarf2_per_objfile->objfile;
14297 struct dwarf2_locexpr_baton *baton;
14298 gdb_byte *ptr;
14299 unsigned int cu_off;
14300 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14301 LONGEST offset = 0;
14302
14303 gdb_assert (common_loc && member_loc);
14304 gdb_assert (attr_form_is_block (common_loc));
14305 gdb_assert (attr_form_is_block (member_loc)
14306 || attr_form_is_constant (member_loc));
14307
8d749320 14308 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
14309 baton->per_cu = cu->per_cu;
14310 gdb_assert (baton->per_cu);
14311
14312 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14313
14314 if (attr_form_is_constant (member_loc))
14315 {
14316 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14317 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14318 }
14319 else
14320 baton->size += DW_BLOCK (member_loc)->size;
14321
224c3ddb 14322 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
14323 baton->data = ptr;
14324
14325 *ptr++ = DW_OP_call4;
9c541725 14326 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
14327 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14328 ptr += 4;
14329
14330 if (attr_form_is_constant (member_loc))
14331 {
14332 *ptr++ = DW_OP_addr;
14333 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14334 ptr += cu->header.addr_size;
14335 }
14336 else
14337 {
14338 /* We have to copy the data here, because DW_OP_call4 will only
14339 use a DW_AT_location attribute. */
14340 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14341 ptr += DW_BLOCK (member_loc)->size;
14342 }
14343
14344 *ptr++ = DW_OP_plus;
14345 gdb_assert (ptr - baton->data == baton->size);
14346
0971de02 14347 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 14348 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
14349}
14350
4357ac6c
TT
14351/* Create appropriate locally-scoped variables for all the
14352 DW_TAG_common_block entries. Also create a struct common_block
14353 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14354 is used to sepate the common blocks name namespace from regular
14355 variable names. */
c906108c
SS
14356
14357static void
e7c27a73 14358read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14359{
0971de02
TT
14360 struct attribute *attr;
14361
14362 attr = dwarf2_attr (die, DW_AT_location, cu);
14363 if (attr)
14364 {
14365 /* Support the .debug_loc offsets. */
14366 if (attr_form_is_block (attr))
14367 {
14368 /* Ok. */
14369 }
14370 else if (attr_form_is_section_offset (attr))
14371 {
14372 dwarf2_complex_location_expr_complaint ();
14373 attr = NULL;
14374 }
14375 else
14376 {
14377 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14378 "common block member");
14379 attr = NULL;
14380 }
14381 }
14382
639d11d3 14383 if (die->child != NULL)
c906108c 14384 {
4357ac6c
TT
14385 struct objfile *objfile = cu->objfile;
14386 struct die_info *child_die;
14387 size_t n_entries = 0, size;
14388 struct common_block *common_block;
14389 struct symbol *sym;
74ac6d43 14390
4357ac6c
TT
14391 for (child_die = die->child;
14392 child_die && child_die->tag;
14393 child_die = sibling_die (child_die))
14394 ++n_entries;
14395
14396 size = (sizeof (struct common_block)
14397 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14398 common_block
14399 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14400 size);
4357ac6c
TT
14401 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14402 common_block->n_entries = 0;
14403
14404 for (child_die = die->child;
14405 child_die && child_die->tag;
14406 child_die = sibling_die (child_die))
14407 {
14408 /* Create the symbol in the DW_TAG_common_block block in the current
14409 symbol scope. */
e7c27a73 14410 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14411 if (sym != NULL)
14412 {
14413 struct attribute *member_loc;
14414
14415 common_block->contents[common_block->n_entries++] = sym;
14416
14417 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14418 cu);
14419 if (member_loc)
14420 {
14421 /* GDB has handled this for a long time, but it is
14422 not specified by DWARF. It seems to have been
14423 emitted by gfortran at least as recently as:
14424 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14425 complaint (&symfile_complaints,
14426 _("Variable in common block has "
14427 "DW_AT_data_member_location "
14428 "- DIE at 0x%x [in module %s]"),
9c541725 14429 to_underlying (child_die->sect_off),
4262abfb 14430 objfile_name (cu->objfile));
0971de02
TT
14431
14432 if (attr_form_is_section_offset (member_loc))
14433 dwarf2_complex_location_expr_complaint ();
14434 else if (attr_form_is_constant (member_loc)
14435 || attr_form_is_block (member_loc))
14436 {
14437 if (attr)
14438 mark_common_block_symbol_computed (sym, die, attr,
14439 member_loc, cu);
14440 }
14441 else
14442 dwarf2_complex_location_expr_complaint ();
14443 }
14444 }
c906108c 14445 }
4357ac6c
TT
14446
14447 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14448 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14449 }
14450}
14451
0114d602 14452/* Create a type for a C++ namespace. */
d9fa45fe 14453
0114d602
DJ
14454static struct type *
14455read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14456{
e7c27a73 14457 struct objfile *objfile = cu->objfile;
0114d602 14458 const char *previous_prefix, *name;
9219021c 14459 int is_anonymous;
0114d602
DJ
14460 struct type *type;
14461
14462 /* For extensions, reuse the type of the original namespace. */
14463 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14464 {
14465 struct die_info *ext_die;
14466 struct dwarf2_cu *ext_cu = cu;
9a619af0 14467
0114d602
DJ
14468 ext_die = dwarf2_extension (die, &ext_cu);
14469 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14470
14471 /* EXT_CU may not be the same as CU.
02142a6c 14472 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14473 return set_die_type (die, type, cu);
14474 }
9219021c 14475
e142c38c 14476 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14477
14478 /* Now build the name of the current namespace. */
14479
0114d602
DJ
14480 previous_prefix = determine_prefix (die, cu);
14481 if (previous_prefix[0] != '\0')
14482 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14483 previous_prefix, name, 0, cu);
0114d602
DJ
14484
14485 /* Create the type. */
19f392bc 14486 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14487 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14488
60531b24 14489 return set_die_type (die, type, cu);
0114d602
DJ
14490}
14491
22cee43f 14492/* Read a namespace scope. */
0114d602
DJ
14493
14494static void
14495read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14496{
14497 struct objfile *objfile = cu->objfile;
0114d602 14498 int is_anonymous;
9219021c 14499
5c4e30ca
DC
14500 /* Add a symbol associated to this if we haven't seen the namespace
14501 before. Also, add a using directive if it's an anonymous
14502 namespace. */
9219021c 14503
f2f0e013 14504 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14505 {
14506 struct type *type;
14507
0114d602 14508 type = read_type_die (die, cu);
e7c27a73 14509 new_symbol (die, type, cu);
5c4e30ca 14510
e8e80198 14511 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14512 if (is_anonymous)
0114d602
DJ
14513 {
14514 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14515
22cee43f
PMR
14516 add_using_directive (using_directives (cu->language),
14517 previous_prefix, TYPE_NAME (type), NULL,
14518 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14519 }
5c4e30ca 14520 }
9219021c 14521
639d11d3 14522 if (die->child != NULL)
d9fa45fe 14523 {
639d11d3 14524 struct die_info *child_die = die->child;
6e70227d 14525
d9fa45fe
DC
14526 while (child_die && child_die->tag)
14527 {
e7c27a73 14528 process_die (child_die, cu);
d9fa45fe
DC
14529 child_die = sibling_die (child_die);
14530 }
14531 }
38d518c9
EZ
14532}
14533
f55ee35c
JK
14534/* Read a Fortran module as type. This DIE can be only a declaration used for
14535 imported module. Still we need that type as local Fortran "use ... only"
14536 declaration imports depend on the created type in determine_prefix. */
14537
14538static struct type *
14539read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14540{
14541 struct objfile *objfile = cu->objfile;
15d034d0 14542 const char *module_name;
f55ee35c
JK
14543 struct type *type;
14544
14545 module_name = dwarf2_name (die, cu);
14546 if (!module_name)
3e43a32a
MS
14547 complaint (&symfile_complaints,
14548 _("DW_TAG_module has no name, offset 0x%x"),
9c541725 14549 to_underlying (die->sect_off));
19f392bc 14550 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14551
14552 /* determine_prefix uses TYPE_TAG_NAME. */
14553 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14554
14555 return set_die_type (die, type, cu);
14556}
14557
5d7cb8df
JK
14558/* Read a Fortran module. */
14559
14560static void
14561read_module (struct die_info *die, struct dwarf2_cu *cu)
14562{
14563 struct die_info *child_die = die->child;
530e8392
KB
14564 struct type *type;
14565
14566 type = read_type_die (die, cu);
14567 new_symbol (die, type, cu);
5d7cb8df 14568
5d7cb8df
JK
14569 while (child_die && child_die->tag)
14570 {
14571 process_die (child_die, cu);
14572 child_die = sibling_die (child_die);
14573 }
14574}
14575
38d518c9
EZ
14576/* Return the name of the namespace represented by DIE. Set
14577 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14578 namespace. */
14579
14580static const char *
e142c38c 14581namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14582{
14583 struct die_info *current_die;
14584 const char *name = NULL;
14585
14586 /* Loop through the extensions until we find a name. */
14587
14588 for (current_die = die;
14589 current_die != NULL;
f2f0e013 14590 current_die = dwarf2_extension (die, &cu))
38d518c9 14591 {
96553a0c
DE
14592 /* We don't use dwarf2_name here so that we can detect the absence
14593 of a name -> anonymous namespace. */
7d45c7c3 14594 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14595
38d518c9
EZ
14596 if (name != NULL)
14597 break;
14598 }
14599
14600 /* Is it an anonymous namespace? */
14601
14602 *is_anonymous = (name == NULL);
14603 if (*is_anonymous)
2b1dbab0 14604 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14605
14606 return name;
d9fa45fe
DC
14607}
14608
c906108c
SS
14609/* Extract all information from a DW_TAG_pointer_type DIE and add to
14610 the user defined type vector. */
14611
f792889a 14612static struct type *
e7c27a73 14613read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14614{
5e2b427d 14615 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14616 struct comp_unit_head *cu_header = &cu->header;
c906108c 14617 struct type *type;
8b2dbe47
KB
14618 struct attribute *attr_byte_size;
14619 struct attribute *attr_address_class;
14620 int byte_size, addr_class;
7e314c57
JK
14621 struct type *target_type;
14622
14623 target_type = die_type (die, cu);
c906108c 14624
7e314c57
JK
14625 /* The die_type call above may have already set the type for this DIE. */
14626 type = get_die_type (die, cu);
14627 if (type)
14628 return type;
14629
14630 type = lookup_pointer_type (target_type);
8b2dbe47 14631
e142c38c 14632 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14633 if (attr_byte_size)
14634 byte_size = DW_UNSND (attr_byte_size);
c906108c 14635 else
8b2dbe47
KB
14636 byte_size = cu_header->addr_size;
14637
e142c38c 14638 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14639 if (attr_address_class)
14640 addr_class = DW_UNSND (attr_address_class);
14641 else
14642 addr_class = DW_ADDR_none;
14643
14644 /* If the pointer size or address class is different than the
14645 default, create a type variant marked as such and set the
14646 length accordingly. */
14647 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14648 {
5e2b427d 14649 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14650 {
14651 int type_flags;
14652
849957d9 14653 type_flags = gdbarch_address_class_type_flags
5e2b427d 14654 (gdbarch, byte_size, addr_class);
876cecd0
TT
14655 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14656 == 0);
8b2dbe47
KB
14657 type = make_type_with_address_space (type, type_flags);
14658 }
14659 else if (TYPE_LENGTH (type) != byte_size)
14660 {
3e43a32a
MS
14661 complaint (&symfile_complaints,
14662 _("invalid pointer size %d"), byte_size);
8b2dbe47 14663 }
6e70227d 14664 else
9a619af0
MS
14665 {
14666 /* Should we also complain about unhandled address classes? */
14667 }
c906108c 14668 }
8b2dbe47
KB
14669
14670 TYPE_LENGTH (type) = byte_size;
f792889a 14671 return set_die_type (die, type, cu);
c906108c
SS
14672}
14673
14674/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14675 the user defined type vector. */
14676
f792889a 14677static struct type *
e7c27a73 14678read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14679{
14680 struct type *type;
14681 struct type *to_type;
14682 struct type *domain;
14683
e7c27a73
DJ
14684 to_type = die_type (die, cu);
14685 domain = die_containing_type (die, cu);
0d5de010 14686
7e314c57
JK
14687 /* The calls above may have already set the type for this DIE. */
14688 type = get_die_type (die, cu);
14689 if (type)
14690 return type;
14691
0d5de010
DJ
14692 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14693 type = lookup_methodptr_type (to_type);
7078baeb
TT
14694 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14695 {
14696 struct type *new_type = alloc_type (cu->objfile);
14697
14698 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14699 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14700 TYPE_VARARGS (to_type));
14701 type = lookup_methodptr_type (new_type);
14702 }
0d5de010
DJ
14703 else
14704 type = lookup_memberptr_type (to_type, domain);
c906108c 14705
f792889a 14706 return set_die_type (die, type, cu);
c906108c
SS
14707}
14708
4297a3f0 14709/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
14710 the user defined type vector. */
14711
f792889a 14712static struct type *
4297a3f0
AV
14713read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14714 enum type_code refcode)
c906108c 14715{
e7c27a73 14716 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14717 struct type *type, *target_type;
c906108c
SS
14718 struct attribute *attr;
14719
4297a3f0
AV
14720 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14721
7e314c57
JK
14722 target_type = die_type (die, cu);
14723
14724 /* The die_type call above may have already set the type for this DIE. */
14725 type = get_die_type (die, cu);
14726 if (type)
14727 return type;
14728
4297a3f0 14729 type = lookup_reference_type (target_type, refcode);
e142c38c 14730 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14731 if (attr)
14732 {
14733 TYPE_LENGTH (type) = DW_UNSND (attr);
14734 }
14735 else
14736 {
107d2387 14737 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14738 }
f792889a 14739 return set_die_type (die, type, cu);
c906108c
SS
14740}
14741
cf363f18
MW
14742/* Add the given cv-qualifiers to the element type of the array. GCC
14743 outputs DWARF type qualifiers that apply to an array, not the
14744 element type. But GDB relies on the array element type to carry
14745 the cv-qualifiers. This mimics section 6.7.3 of the C99
14746 specification. */
14747
14748static struct type *
14749add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14750 struct type *base_type, int cnst, int voltl)
14751{
14752 struct type *el_type, *inner_array;
14753
14754 base_type = copy_type (base_type);
14755 inner_array = base_type;
14756
14757 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14758 {
14759 TYPE_TARGET_TYPE (inner_array) =
14760 copy_type (TYPE_TARGET_TYPE (inner_array));
14761 inner_array = TYPE_TARGET_TYPE (inner_array);
14762 }
14763
14764 el_type = TYPE_TARGET_TYPE (inner_array);
14765 cnst |= TYPE_CONST (el_type);
14766 voltl |= TYPE_VOLATILE (el_type);
14767 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14768
14769 return set_die_type (die, base_type, cu);
14770}
14771
f792889a 14772static struct type *
e7c27a73 14773read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14774{
f792889a 14775 struct type *base_type, *cv_type;
c906108c 14776
e7c27a73 14777 base_type = die_type (die, cu);
7e314c57
JK
14778
14779 /* The die_type call above may have already set the type for this DIE. */
14780 cv_type = get_die_type (die, cu);
14781 if (cv_type)
14782 return cv_type;
14783
2f608a3a
KW
14784 /* In case the const qualifier is applied to an array type, the element type
14785 is so qualified, not the array type (section 6.7.3 of C99). */
14786 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14787 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14788
f792889a
DJ
14789 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14790 return set_die_type (die, cv_type, cu);
c906108c
SS
14791}
14792
f792889a 14793static struct type *
e7c27a73 14794read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14795{
f792889a 14796 struct type *base_type, *cv_type;
c906108c 14797
e7c27a73 14798 base_type = die_type (die, cu);
7e314c57
JK
14799
14800 /* The die_type call above may have already set the type for this DIE. */
14801 cv_type = get_die_type (die, cu);
14802 if (cv_type)
14803 return cv_type;
14804
cf363f18
MW
14805 /* In case the volatile qualifier is applied to an array type, the
14806 element type is so qualified, not the array type (section 6.7.3
14807 of C99). */
14808 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14809 return add_array_cv_type (die, cu, base_type, 0, 1);
14810
f792889a
DJ
14811 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14812 return set_die_type (die, cv_type, cu);
c906108c
SS
14813}
14814
06d66ee9
TT
14815/* Handle DW_TAG_restrict_type. */
14816
14817static struct type *
14818read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14819{
14820 struct type *base_type, *cv_type;
14821
14822 base_type = die_type (die, cu);
14823
14824 /* The die_type call above may have already set the type for this DIE. */
14825 cv_type = get_die_type (die, cu);
14826 if (cv_type)
14827 return cv_type;
14828
14829 cv_type = make_restrict_type (base_type);
14830 return set_die_type (die, cv_type, cu);
14831}
14832
a2c2acaf
MW
14833/* Handle DW_TAG_atomic_type. */
14834
14835static struct type *
14836read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14837{
14838 struct type *base_type, *cv_type;
14839
14840 base_type = die_type (die, cu);
14841
14842 /* The die_type call above may have already set the type for this DIE. */
14843 cv_type = get_die_type (die, cu);
14844 if (cv_type)
14845 return cv_type;
14846
14847 cv_type = make_atomic_type (base_type);
14848 return set_die_type (die, cv_type, cu);
14849}
14850
c906108c
SS
14851/* Extract all information from a DW_TAG_string_type DIE and add to
14852 the user defined type vector. It isn't really a user defined type,
14853 but it behaves like one, with other DIE's using an AT_user_def_type
14854 attribute to reference it. */
14855
f792889a 14856static struct type *
e7c27a73 14857read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14858{
e7c27a73 14859 struct objfile *objfile = cu->objfile;
3b7538c0 14860 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14861 struct type *type, *range_type, *index_type, *char_type;
14862 struct attribute *attr;
14863 unsigned int length;
14864
e142c38c 14865 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14866 if (attr)
14867 {
14868 length = DW_UNSND (attr);
14869 }
14870 else
14871 {
0963b4bd 14872 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14873 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14874 if (attr)
14875 {
14876 length = DW_UNSND (attr);
14877 }
14878 else
14879 {
14880 length = 1;
14881 }
c906108c 14882 }
6ccb9162 14883
46bf5051 14884 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14885 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14886 char_type = language_string_char_type (cu->language_defn, gdbarch);
14887 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14888
f792889a 14889 return set_die_type (die, type, cu);
c906108c
SS
14890}
14891
4d804846
JB
14892/* Assuming that DIE corresponds to a function, returns nonzero
14893 if the function is prototyped. */
14894
14895static int
14896prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14897{
14898 struct attribute *attr;
14899
14900 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14901 if (attr && (DW_UNSND (attr) != 0))
14902 return 1;
14903
14904 /* The DWARF standard implies that the DW_AT_prototyped attribute
14905 is only meaninful for C, but the concept also extends to other
14906 languages that allow unprototyped functions (Eg: Objective C).
14907 For all other languages, assume that functions are always
14908 prototyped. */
14909 if (cu->language != language_c
14910 && cu->language != language_objc
14911 && cu->language != language_opencl)
14912 return 1;
14913
14914 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14915 prototyped and unprototyped functions; default to prototyped,
14916 since that is more common in modern code (and RealView warns
14917 about unprototyped functions). */
14918 if (producer_is_realview (cu->producer))
14919 return 1;
14920
14921 return 0;
14922}
14923
c906108c
SS
14924/* Handle DIES due to C code like:
14925
14926 struct foo
c5aa993b
JM
14927 {
14928 int (*funcp)(int a, long l);
14929 int b;
14930 };
c906108c 14931
0963b4bd 14932 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14933
f792889a 14934static struct type *
e7c27a73 14935read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14936{
bb5ed363 14937 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14938 struct type *type; /* Type that this function returns. */
14939 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14940 struct attribute *attr;
14941
e7c27a73 14942 type = die_type (die, cu);
7e314c57
JK
14943
14944 /* The die_type call above may have already set the type for this DIE. */
14945 ftype = get_die_type (die, cu);
14946 if (ftype)
14947 return ftype;
14948
0c8b41f1 14949 ftype = lookup_function_type (type);
c906108c 14950
4d804846 14951 if (prototyped_function_p (die, cu))
a6c727b2 14952 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14953
c055b101
CV
14954 /* Store the calling convention in the type if it's available in
14955 the subroutine die. Otherwise set the calling convention to
14956 the default value DW_CC_normal. */
14957 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14958 if (attr)
14959 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14960 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14961 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14962 else
14963 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14964
743649fd
MW
14965 /* Record whether the function returns normally to its caller or not
14966 if the DWARF producer set that information. */
14967 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14968 if (attr && (DW_UNSND (attr) != 0))
14969 TYPE_NO_RETURN (ftype) = 1;
14970
76c10ea2
GM
14971 /* We need to add the subroutine type to the die immediately so
14972 we don't infinitely recurse when dealing with parameters
0963b4bd 14973 declared as the same subroutine type. */
76c10ea2 14974 set_die_type (die, ftype, cu);
6e70227d 14975
639d11d3 14976 if (die->child != NULL)
c906108c 14977 {
bb5ed363 14978 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14979 struct die_info *child_die;
8072405b 14980 int nparams, iparams;
c906108c
SS
14981
14982 /* Count the number of parameters.
14983 FIXME: GDB currently ignores vararg functions, but knows about
14984 vararg member functions. */
8072405b 14985 nparams = 0;
639d11d3 14986 child_die = die->child;
c906108c
SS
14987 while (child_die && child_die->tag)
14988 {
14989 if (child_die->tag == DW_TAG_formal_parameter)
14990 nparams++;
14991 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14992 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14993 child_die = sibling_die (child_die);
14994 }
14995
14996 /* Allocate storage for parameters and fill them in. */
14997 TYPE_NFIELDS (ftype) = nparams;
14998 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14999 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 15000
8072405b
JK
15001 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15002 even if we error out during the parameters reading below. */
15003 for (iparams = 0; iparams < nparams; iparams++)
15004 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15005
15006 iparams = 0;
639d11d3 15007 child_die = die->child;
c906108c
SS
15008 while (child_die && child_die->tag)
15009 {
15010 if (child_die->tag == DW_TAG_formal_parameter)
15011 {
3ce3b1ba
PA
15012 struct type *arg_type;
15013
15014 /* DWARF version 2 has no clean way to discern C++
15015 static and non-static member functions. G++ helps
15016 GDB by marking the first parameter for non-static
15017 member functions (which is the this pointer) as
15018 artificial. We pass this information to
15019 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15020
15021 DWARF version 3 added DW_AT_object_pointer, which GCC
15022 4.5 does not yet generate. */
e142c38c 15023 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
15024 if (attr)
15025 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15026 else
9c37b5ae 15027 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
15028 arg_type = die_type (child_die, cu);
15029
15030 /* RealView does not mark THIS as const, which the testsuite
15031 expects. GCC marks THIS as const in method definitions,
15032 but not in the class specifications (GCC PR 43053). */
15033 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15034 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15035 {
15036 int is_this = 0;
15037 struct dwarf2_cu *arg_cu = cu;
15038 const char *name = dwarf2_name (child_die, cu);
15039
15040 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15041 if (attr)
15042 {
15043 /* If the compiler emits this, use it. */
15044 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15045 is_this = 1;
15046 }
15047 else if (name && strcmp (name, "this") == 0)
15048 /* Function definitions will have the argument names. */
15049 is_this = 1;
15050 else if (name == NULL && iparams == 0)
15051 /* Declarations may not have the names, so like
15052 elsewhere in GDB, assume an artificial first
15053 argument is "this". */
15054 is_this = 1;
15055
15056 if (is_this)
15057 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15058 arg_type, 0);
15059 }
15060
15061 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
15062 iparams++;
15063 }
15064 child_die = sibling_die (child_die);
15065 }
15066 }
15067
76c10ea2 15068 return ftype;
c906108c
SS
15069}
15070
f792889a 15071static struct type *
e7c27a73 15072read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15073{
e7c27a73 15074 struct objfile *objfile = cu->objfile;
0114d602 15075 const char *name = NULL;
3c8e0968 15076 struct type *this_type, *target_type;
c906108c 15077
94af9270 15078 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
15079 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15080 TYPE_TARGET_STUB (this_type) = 1;
f792889a 15081 set_die_type (die, this_type, cu);
3c8e0968
DE
15082 target_type = die_type (die, cu);
15083 if (target_type != this_type)
15084 TYPE_TARGET_TYPE (this_type) = target_type;
15085 else
15086 {
15087 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15088 spec and cause infinite loops in GDB. */
15089 complaint (&symfile_complaints,
15090 _("Self-referential DW_TAG_typedef "
15091 "- DIE at 0x%x [in module %s]"),
9c541725 15092 to_underlying (die->sect_off), objfile_name (objfile));
3c8e0968
DE
15093 TYPE_TARGET_TYPE (this_type) = NULL;
15094 }
f792889a 15095 return this_type;
c906108c
SS
15096}
15097
9b790ce7
UW
15098/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15099 (which may be different from NAME) to the architecture back-end to allow
15100 it to guess the correct format if necessary. */
15101
15102static struct type *
15103dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15104 const char *name_hint)
15105{
15106 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15107 const struct floatformat **format;
15108 struct type *type;
15109
15110 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15111 if (format)
15112 type = init_float_type (objfile, bits, name, format);
15113 else
15114 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15115
15116 return type;
15117}
15118
c906108c
SS
15119/* Find a representation of a given base type and install
15120 it in the TYPE field of the die. */
15121
f792889a 15122static struct type *
e7c27a73 15123read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15124{
e7c27a73 15125 struct objfile *objfile = cu->objfile;
c906108c
SS
15126 struct type *type;
15127 struct attribute *attr;
19f392bc 15128 int encoding = 0, bits = 0;
15d034d0 15129 const char *name;
c906108c 15130
e142c38c 15131 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
15132 if (attr)
15133 {
15134 encoding = DW_UNSND (attr);
15135 }
e142c38c 15136 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15137 if (attr)
15138 {
19f392bc 15139 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 15140 }
39cbfefa 15141 name = dwarf2_name (die, cu);
6ccb9162 15142 if (!name)
c906108c 15143 {
6ccb9162
UW
15144 complaint (&symfile_complaints,
15145 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 15146 }
6ccb9162
UW
15147
15148 switch (encoding)
c906108c 15149 {
6ccb9162
UW
15150 case DW_ATE_address:
15151 /* Turn DW_ATE_address into a void * pointer. */
19f392bc
UW
15152 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15153 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
15154 break;
15155 case DW_ATE_boolean:
19f392bc 15156 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
15157 break;
15158 case DW_ATE_complex_float:
9b790ce7 15159 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 15160 type = init_complex_type (objfile, name, type);
6ccb9162
UW
15161 break;
15162 case DW_ATE_decimal_float:
19f392bc 15163 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
15164 break;
15165 case DW_ATE_float:
9b790ce7 15166 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
15167 break;
15168 case DW_ATE_signed:
19f392bc 15169 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15170 break;
15171 case DW_ATE_unsigned:
3b2b8fea
TT
15172 if (cu->language == language_fortran
15173 && name
61012eef 15174 && startswith (name, "character("))
19f392bc
UW
15175 type = init_character_type (objfile, bits, 1, name);
15176 else
15177 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
15178 break;
15179 case DW_ATE_signed_char:
6e70227d 15180 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
15181 || cu->language == language_pascal
15182 || cu->language == language_fortran)
19f392bc
UW
15183 type = init_character_type (objfile, bits, 0, name);
15184 else
15185 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15186 break;
15187 case DW_ATE_unsigned_char:
868a0084 15188 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 15189 || cu->language == language_pascal
c44af4eb
TT
15190 || cu->language == language_fortran
15191 || cu->language == language_rust)
19f392bc
UW
15192 type = init_character_type (objfile, bits, 1, name);
15193 else
15194 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 15195 break;
75079b2b 15196 case DW_ATE_UTF:
53e710ac
PA
15197 {
15198 gdbarch *arch = get_objfile_arch (objfile);
15199
15200 if (bits == 16)
15201 type = builtin_type (arch)->builtin_char16;
15202 else if (bits == 32)
15203 type = builtin_type (arch)->builtin_char32;
15204 else
15205 {
15206 complaint (&symfile_complaints,
15207 _("unsupported DW_ATE_UTF bit size: '%d'"),
15208 bits);
15209 type = init_integer_type (objfile, bits, 1, name);
15210 }
15211 return set_die_type (die, type, cu);
15212 }
75079b2b
TT
15213 break;
15214
6ccb9162
UW
15215 default:
15216 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15217 dwarf_type_encoding_name (encoding));
19f392bc
UW
15218 type = init_type (objfile, TYPE_CODE_ERROR,
15219 bits / TARGET_CHAR_BIT, name);
6ccb9162 15220 break;
c906108c 15221 }
6ccb9162 15222
0114d602 15223 if (name && strcmp (name, "char") == 0)
876cecd0 15224 TYPE_NOSIGN (type) = 1;
0114d602 15225
f792889a 15226 return set_die_type (die, type, cu);
c906108c
SS
15227}
15228
80180f79
SA
15229/* Parse dwarf attribute if it's a block, reference or constant and put the
15230 resulting value of the attribute into struct bound_prop.
15231 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15232
15233static int
15234attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15235 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15236{
15237 struct dwarf2_property_baton *baton;
15238 struct obstack *obstack = &cu->objfile->objfile_obstack;
15239
15240 if (attr == NULL || prop == NULL)
15241 return 0;
15242
15243 if (attr_form_is_block (attr))
15244 {
8d749320 15245 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
15246 baton->referenced_type = NULL;
15247 baton->locexpr.per_cu = cu->per_cu;
15248 baton->locexpr.size = DW_BLOCK (attr)->size;
15249 baton->locexpr.data = DW_BLOCK (attr)->data;
15250 prop->data.baton = baton;
15251 prop->kind = PROP_LOCEXPR;
15252 gdb_assert (prop->data.baton != NULL);
15253 }
15254 else if (attr_form_is_ref (attr))
15255 {
15256 struct dwarf2_cu *target_cu = cu;
15257 struct die_info *target_die;
15258 struct attribute *target_attr;
15259
15260 target_die = follow_die_ref (die, attr, &target_cu);
15261 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
15262 if (target_attr == NULL)
15263 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15264 target_cu);
80180f79
SA
15265 if (target_attr == NULL)
15266 return 0;
15267
df25ebbd 15268 switch (target_attr->name)
80180f79 15269 {
df25ebbd
JB
15270 case DW_AT_location:
15271 if (attr_form_is_section_offset (target_attr))
15272 {
8d749320 15273 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15274 baton->referenced_type = die_type (target_die, target_cu);
15275 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15276 prop->data.baton = baton;
15277 prop->kind = PROP_LOCLIST;
15278 gdb_assert (prop->data.baton != NULL);
15279 }
15280 else if (attr_form_is_block (target_attr))
15281 {
8d749320 15282 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15283 baton->referenced_type = die_type (target_die, target_cu);
15284 baton->locexpr.per_cu = cu->per_cu;
15285 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15286 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15287 prop->data.baton = baton;
15288 prop->kind = PROP_LOCEXPR;
15289 gdb_assert (prop->data.baton != NULL);
15290 }
15291 else
15292 {
15293 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15294 "dynamic property");
15295 return 0;
15296 }
15297 break;
15298 case DW_AT_data_member_location:
15299 {
15300 LONGEST offset;
15301
15302 if (!handle_data_member_location (target_die, target_cu,
15303 &offset))
15304 return 0;
15305
8d749320 15306 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
15307 baton->referenced_type = read_type_die (target_die->parent,
15308 target_cu);
df25ebbd
JB
15309 baton->offset_info.offset = offset;
15310 baton->offset_info.type = die_type (target_die, target_cu);
15311 prop->data.baton = baton;
15312 prop->kind = PROP_ADDR_OFFSET;
15313 break;
15314 }
80180f79
SA
15315 }
15316 }
15317 else if (attr_form_is_constant (attr))
15318 {
15319 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15320 prop->kind = PROP_CONST;
15321 }
15322 else
15323 {
15324 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15325 dwarf2_name (die, cu));
15326 return 0;
15327 }
15328
15329 return 1;
15330}
15331
a02abb62
JB
15332/* Read the given DW_AT_subrange DIE. */
15333
f792889a 15334static struct type *
a02abb62
JB
15335read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15336{
4c9ad8c2 15337 struct type *base_type, *orig_base_type;
a02abb62
JB
15338 struct type *range_type;
15339 struct attribute *attr;
729efb13 15340 struct dynamic_prop low, high;
4fae6e18 15341 int low_default_is_valid;
c451ebe5 15342 int high_bound_is_count = 0;
15d034d0 15343 const char *name;
43bbcdc2 15344 LONGEST negative_mask;
e77813c8 15345
4c9ad8c2
TT
15346 orig_base_type = die_type (die, cu);
15347 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15348 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15349 creating the range type, but we use the result of check_typedef
15350 when examining properties of the type. */
15351 base_type = check_typedef (orig_base_type);
a02abb62 15352
7e314c57
JK
15353 /* The die_type call above may have already set the type for this DIE. */
15354 range_type = get_die_type (die, cu);
15355 if (range_type)
15356 return range_type;
15357
729efb13
SA
15358 low.kind = PROP_CONST;
15359 high.kind = PROP_CONST;
15360 high.data.const_val = 0;
15361
4fae6e18
JK
15362 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15363 omitting DW_AT_lower_bound. */
15364 switch (cu->language)
6e70227d 15365 {
4fae6e18
JK
15366 case language_c:
15367 case language_cplus:
729efb13 15368 low.data.const_val = 0;
4fae6e18
JK
15369 low_default_is_valid = 1;
15370 break;
15371 case language_fortran:
729efb13 15372 low.data.const_val = 1;
4fae6e18
JK
15373 low_default_is_valid = 1;
15374 break;
15375 case language_d:
4fae6e18 15376 case language_objc:
c44af4eb 15377 case language_rust:
729efb13 15378 low.data.const_val = 0;
4fae6e18
JK
15379 low_default_is_valid = (cu->header.version >= 4);
15380 break;
15381 case language_ada:
15382 case language_m2:
15383 case language_pascal:
729efb13 15384 low.data.const_val = 1;
4fae6e18
JK
15385 low_default_is_valid = (cu->header.version >= 4);
15386 break;
15387 default:
729efb13 15388 low.data.const_val = 0;
4fae6e18
JK
15389 low_default_is_valid = 0;
15390 break;
a02abb62
JB
15391 }
15392
e142c38c 15393 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15394 if (attr)
11c1ba78 15395 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15396 else if (!low_default_is_valid)
15397 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15398 "- DIE at 0x%x [in module %s]"),
9c541725 15399 to_underlying (die->sect_off), objfile_name (cu->objfile));
a02abb62 15400
e142c38c 15401 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15402 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15403 {
15404 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15405 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15406 {
c451ebe5
SA
15407 /* If bounds are constant do the final calculation here. */
15408 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15409 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15410 else
15411 high_bound_is_count = 1;
c2ff108b 15412 }
e77813c8
PM
15413 }
15414
15415 /* Dwarf-2 specifications explicitly allows to create subrange types
15416 without specifying a base type.
15417 In that case, the base type must be set to the type of
15418 the lower bound, upper bound or count, in that order, if any of these
15419 three attributes references an object that has a type.
15420 If no base type is found, the Dwarf-2 specifications say that
15421 a signed integer type of size equal to the size of an address should
15422 be used.
15423 For the following C code: `extern char gdb_int [];'
15424 GCC produces an empty range DIE.
15425 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15426 high bound or count are not yet handled by this code. */
e77813c8
PM
15427 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15428 {
15429 struct objfile *objfile = cu->objfile;
15430 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15431 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15432 struct type *int_type = objfile_type (objfile)->builtin_int;
15433
15434 /* Test "int", "long int", and "long long int" objfile types,
15435 and select the first one having a size above or equal to the
15436 architecture address size. */
15437 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15438 base_type = int_type;
15439 else
15440 {
15441 int_type = objfile_type (objfile)->builtin_long;
15442 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15443 base_type = int_type;
15444 else
15445 {
15446 int_type = objfile_type (objfile)->builtin_long_long;
15447 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15448 base_type = int_type;
15449 }
15450 }
15451 }
a02abb62 15452
dbb9c2b1
JB
15453 /* Normally, the DWARF producers are expected to use a signed
15454 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15455 But this is unfortunately not always the case, as witnessed
15456 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15457 is used instead. To work around that ambiguity, we treat
15458 the bounds as signed, and thus sign-extend their values, when
15459 the base type is signed. */
6e70227d 15460 negative_mask =
66c6502d 15461 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15462 if (low.kind == PROP_CONST
15463 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15464 low.data.const_val |= negative_mask;
15465 if (high.kind == PROP_CONST
15466 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15467 high.data.const_val |= negative_mask;
43bbcdc2 15468
729efb13 15469 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15470
c451ebe5
SA
15471 if (high_bound_is_count)
15472 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15473
c2ff108b
JK
15474 /* Ada expects an empty array on no boundary attributes. */
15475 if (attr == NULL && cu->language != language_ada)
729efb13 15476 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15477
39cbfefa
DJ
15478 name = dwarf2_name (die, cu);
15479 if (name)
15480 TYPE_NAME (range_type) = name;
6e70227d 15481
e142c38c 15482 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15483 if (attr)
15484 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15485
7e314c57
JK
15486 set_die_type (die, range_type, cu);
15487
15488 /* set_die_type should be already done. */
b4ba55a1
JB
15489 set_descriptive_type (range_type, die, cu);
15490
7e314c57 15491 return range_type;
a02abb62 15492}
6e70227d 15493
f792889a 15494static struct type *
81a17f79
JB
15495read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15496{
15497 struct type *type;
81a17f79 15498
81a17f79
JB
15499 /* For now, we only support the C meaning of an unspecified type: void. */
15500
19f392bc 15501 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15502 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15503
f792889a 15504 return set_die_type (die, type, cu);
81a17f79 15505}
a02abb62 15506
639d11d3
DC
15507/* Read a single die and all its descendents. Set the die's sibling
15508 field to NULL; set other fields in the die correctly, and set all
15509 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15510 location of the info_ptr after reading all of those dies. PARENT
15511 is the parent of the die in question. */
15512
15513static struct die_info *
dee91e82 15514read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15515 const gdb_byte *info_ptr,
15516 const gdb_byte **new_info_ptr,
dee91e82 15517 struct die_info *parent)
639d11d3
DC
15518{
15519 struct die_info *die;
d521ce57 15520 const gdb_byte *cur_ptr;
639d11d3
DC
15521 int has_children;
15522
bf6af496 15523 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15524 if (die == NULL)
15525 {
15526 *new_info_ptr = cur_ptr;
15527 return NULL;
15528 }
93311388 15529 store_in_ref_table (die, reader->cu);
639d11d3
DC
15530
15531 if (has_children)
bf6af496 15532 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15533 else
15534 {
15535 die->child = NULL;
15536 *new_info_ptr = cur_ptr;
15537 }
15538
15539 die->sibling = NULL;
15540 die->parent = parent;
15541 return die;
15542}
15543
15544/* Read a die, all of its descendents, and all of its siblings; set
15545 all of the fields of all of the dies correctly. Arguments are as
15546 in read_die_and_children. */
15547
15548static struct die_info *
bf6af496 15549read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15550 const gdb_byte *info_ptr,
15551 const gdb_byte **new_info_ptr,
bf6af496 15552 struct die_info *parent)
639d11d3
DC
15553{
15554 struct die_info *first_die, *last_sibling;
d521ce57 15555 const gdb_byte *cur_ptr;
639d11d3 15556
c906108c 15557 cur_ptr = info_ptr;
639d11d3
DC
15558 first_die = last_sibling = NULL;
15559
15560 while (1)
c906108c 15561 {
639d11d3 15562 struct die_info *die
dee91e82 15563 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15564
1d325ec1 15565 if (die == NULL)
c906108c 15566 {
639d11d3
DC
15567 *new_info_ptr = cur_ptr;
15568 return first_die;
c906108c 15569 }
1d325ec1
DJ
15570
15571 if (!first_die)
15572 first_die = die;
c906108c 15573 else
1d325ec1
DJ
15574 last_sibling->sibling = die;
15575
15576 last_sibling = die;
c906108c 15577 }
c906108c
SS
15578}
15579
bf6af496
DE
15580/* Read a die, all of its descendents, and all of its siblings; set
15581 all of the fields of all of the dies correctly. Arguments are as
15582 in read_die_and_children.
15583 This the main entry point for reading a DIE and all its children. */
15584
15585static struct die_info *
15586read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15587 const gdb_byte *info_ptr,
15588 const gdb_byte **new_info_ptr,
bf6af496
DE
15589 struct die_info *parent)
15590{
15591 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15592 new_info_ptr, parent);
15593
b4f54984 15594 if (dwarf_die_debug)
bf6af496
DE
15595 {
15596 fprintf_unfiltered (gdb_stdlog,
15597 "Read die from %s@0x%x of %s:\n",
a32a8923 15598 get_section_name (reader->die_section),
bf6af496
DE
15599 (unsigned) (info_ptr - reader->die_section->buffer),
15600 bfd_get_filename (reader->abfd));
b4f54984 15601 dump_die (die, dwarf_die_debug);
bf6af496
DE
15602 }
15603
15604 return die;
15605}
15606
3019eac3
DE
15607/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15608 attributes.
15609 The caller is responsible for filling in the extra attributes
15610 and updating (*DIEP)->num_attrs.
15611 Set DIEP to point to a newly allocated die with its information,
15612 except for its child, sibling, and parent fields.
15613 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15614
d521ce57 15615static const gdb_byte *
3019eac3 15616read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15617 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15618 int *has_children, int num_extra_attrs)
93311388 15619{
b64f50a1 15620 unsigned int abbrev_number, bytes_read, i;
93311388
DE
15621 struct abbrev_info *abbrev;
15622 struct die_info *die;
15623 struct dwarf2_cu *cu = reader->cu;
15624 bfd *abfd = reader->abfd;
15625
9c541725 15626 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
15627 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15628 info_ptr += bytes_read;
15629 if (!abbrev_number)
15630 {
15631 *diep = NULL;
15632 *has_children = 0;
15633 return info_ptr;
15634 }
15635
433df2d4 15636 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15637 if (!abbrev)
348e048f
DE
15638 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15639 abbrev_number,
15640 bfd_get_filename (abfd));
15641
3019eac3 15642 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 15643 die->sect_off = sect_off;
93311388
DE
15644 die->tag = abbrev->tag;
15645 die->abbrev = abbrev_number;
15646
3019eac3
DE
15647 /* Make the result usable.
15648 The caller needs to update num_attrs after adding the extra
15649 attributes. */
93311388
DE
15650 die->num_attrs = abbrev->num_attrs;
15651
15652 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15653 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15654 info_ptr);
93311388
DE
15655
15656 *diep = die;
15657 *has_children = abbrev->has_children;
15658 return info_ptr;
15659}
15660
3019eac3
DE
15661/* Read a die and all its attributes.
15662 Set DIEP to point to a newly allocated die with its information,
15663 except for its child, sibling, and parent fields.
15664 Set HAS_CHILDREN to tell whether the die has children or not. */
15665
d521ce57 15666static const gdb_byte *
3019eac3 15667read_full_die (const struct die_reader_specs *reader,
d521ce57 15668 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15669 int *has_children)
15670{
d521ce57 15671 const gdb_byte *result;
bf6af496
DE
15672
15673 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15674
b4f54984 15675 if (dwarf_die_debug)
bf6af496
DE
15676 {
15677 fprintf_unfiltered (gdb_stdlog,
15678 "Read die from %s@0x%x of %s:\n",
a32a8923 15679 get_section_name (reader->die_section),
bf6af496
DE
15680 (unsigned) (info_ptr - reader->die_section->buffer),
15681 bfd_get_filename (reader->abfd));
b4f54984 15682 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15683 }
15684
15685 return result;
3019eac3 15686}
433df2d4
DE
15687\f
15688/* Abbreviation tables.
3019eac3 15689
433df2d4 15690 In DWARF version 2, the description of the debugging information is
c906108c
SS
15691 stored in a separate .debug_abbrev section. Before we read any
15692 dies from a section we read in all abbreviations and install them
433df2d4
DE
15693 in a hash table. */
15694
15695/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15696
15697static struct abbrev_info *
15698abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15699{
15700 struct abbrev_info *abbrev;
15701
8d749320 15702 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15703 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15704
433df2d4
DE
15705 return abbrev;
15706}
15707
15708/* Add an abbreviation to the table. */
c906108c
SS
15709
15710static void
433df2d4
DE
15711abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15712 unsigned int abbrev_number,
15713 struct abbrev_info *abbrev)
15714{
15715 unsigned int hash_number;
15716
15717 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15718 abbrev->next = abbrev_table->abbrevs[hash_number];
15719 abbrev_table->abbrevs[hash_number] = abbrev;
15720}
dee91e82 15721
433df2d4
DE
15722/* Look up an abbrev in the table.
15723 Returns NULL if the abbrev is not found. */
15724
15725static struct abbrev_info *
15726abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15727 unsigned int abbrev_number)
c906108c 15728{
433df2d4
DE
15729 unsigned int hash_number;
15730 struct abbrev_info *abbrev;
15731
15732 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15733 abbrev = abbrev_table->abbrevs[hash_number];
15734
15735 while (abbrev)
15736 {
15737 if (abbrev->number == abbrev_number)
15738 return abbrev;
15739 abbrev = abbrev->next;
15740 }
15741 return NULL;
15742}
15743
15744/* Read in an abbrev table. */
15745
15746static struct abbrev_table *
15747abbrev_table_read_table (struct dwarf2_section_info *section,
9c541725 15748 sect_offset sect_off)
433df2d4
DE
15749{
15750 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15751 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15752 struct abbrev_table *abbrev_table;
d521ce57 15753 const gdb_byte *abbrev_ptr;
c906108c
SS
15754 struct abbrev_info *cur_abbrev;
15755 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15756 unsigned int abbrev_form;
f3dd6933
DJ
15757 struct attr_abbrev *cur_attrs;
15758 unsigned int allocated_attrs;
c906108c 15759
70ba0933 15760 abbrev_table = XNEW (struct abbrev_table);
9c541725 15761 abbrev_table->sect_off = sect_off;
433df2d4 15762 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15763 abbrev_table->abbrevs =
15764 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15765 ABBREV_HASH_SIZE);
433df2d4
DE
15766 memset (abbrev_table->abbrevs, 0,
15767 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15768
433df2d4 15769 dwarf2_read_section (objfile, section);
9c541725 15770 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
15771 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15772 abbrev_ptr += bytes_read;
15773
f3dd6933 15774 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15775 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15776
0963b4bd 15777 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15778 while (abbrev_number)
15779 {
433df2d4 15780 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15781
15782 /* read in abbrev header */
15783 cur_abbrev->number = abbrev_number;
aead7601
SM
15784 cur_abbrev->tag
15785 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15786 abbrev_ptr += bytes_read;
15787 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15788 abbrev_ptr += 1;
15789
15790 /* now read in declarations */
22d2f3ab 15791 for (;;)
c906108c 15792 {
43988095
JK
15793 LONGEST implicit_const;
15794
22d2f3ab
JK
15795 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15796 abbrev_ptr += bytes_read;
15797 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15798 abbrev_ptr += bytes_read;
43988095
JK
15799 if (abbrev_form == DW_FORM_implicit_const)
15800 {
15801 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15802 &bytes_read);
15803 abbrev_ptr += bytes_read;
15804 }
15805 else
15806 {
15807 /* Initialize it due to a false compiler warning. */
15808 implicit_const = -1;
15809 }
22d2f3ab
JK
15810
15811 if (abbrev_name == 0)
15812 break;
15813
f3dd6933 15814 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15815 {
f3dd6933
DJ
15816 allocated_attrs += ATTR_ALLOC_CHUNK;
15817 cur_attrs
224c3ddb 15818 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15819 }
ae038cb0 15820
aead7601
SM
15821 cur_attrs[cur_abbrev->num_attrs].name
15822 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 15823 cur_attrs[cur_abbrev->num_attrs].form
aead7601 15824 = (enum dwarf_form) abbrev_form;
43988095 15825 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 15826 ++cur_abbrev->num_attrs;
c906108c
SS
15827 }
15828
8d749320
SM
15829 cur_abbrev->attrs =
15830 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15831 cur_abbrev->num_attrs);
f3dd6933
DJ
15832 memcpy (cur_abbrev->attrs, cur_attrs,
15833 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15834
433df2d4 15835 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15836
15837 /* Get next abbreviation.
15838 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15839 always properly terminated with an abbrev number of 0.
15840 Exit loop if we encounter an abbreviation which we have
15841 already read (which means we are about to read the abbreviations
15842 for the next compile unit) or if the end of the abbreviation
15843 table is reached. */
433df2d4 15844 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15845 break;
15846 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15847 abbrev_ptr += bytes_read;
433df2d4 15848 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15849 break;
15850 }
f3dd6933
DJ
15851
15852 xfree (cur_attrs);
433df2d4 15853 return abbrev_table;
c906108c
SS
15854}
15855
433df2d4 15856/* Free the resources held by ABBREV_TABLE. */
c906108c 15857
c906108c 15858static void
433df2d4 15859abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15860{
433df2d4
DE
15861 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15862 xfree (abbrev_table);
c906108c
SS
15863}
15864
f4dc4d17
DE
15865/* Same as abbrev_table_free but as a cleanup.
15866 We pass in a pointer to the pointer to the table so that we can
15867 set the pointer to NULL when we're done. It also simplifies
73051182 15868 build_type_psymtabs_1. */
f4dc4d17
DE
15869
15870static void
15871abbrev_table_free_cleanup (void *table_ptr)
15872{
9a3c8263 15873 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15874
15875 if (*abbrev_table_ptr != NULL)
15876 abbrev_table_free (*abbrev_table_ptr);
15877 *abbrev_table_ptr = NULL;
15878}
15879
433df2d4
DE
15880/* Read the abbrev table for CU from ABBREV_SECTION. */
15881
15882static void
15883dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15884 struct dwarf2_section_info *abbrev_section)
c906108c 15885{
433df2d4 15886 cu->abbrev_table =
9c541725 15887 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
433df2d4 15888}
c906108c 15889
433df2d4 15890/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15891
433df2d4
DE
15892static void
15893dwarf2_free_abbrev_table (void *ptr_to_cu)
15894{
9a3c8263 15895 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15896
a2ce51a0
DE
15897 if (cu->abbrev_table != NULL)
15898 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15899 /* Set this to NULL so that we SEGV if we try to read it later,
15900 and also because free_comp_unit verifies this is NULL. */
15901 cu->abbrev_table = NULL;
15902}
15903\f
72bf9492
DJ
15904/* Returns nonzero if TAG represents a type that we might generate a partial
15905 symbol for. */
15906
15907static int
15908is_type_tag_for_partial (int tag)
15909{
15910 switch (tag)
15911 {
15912#if 0
15913 /* Some types that would be reasonable to generate partial symbols for,
15914 that we don't at present. */
15915 case DW_TAG_array_type:
15916 case DW_TAG_file_type:
15917 case DW_TAG_ptr_to_member_type:
15918 case DW_TAG_set_type:
15919 case DW_TAG_string_type:
15920 case DW_TAG_subroutine_type:
15921#endif
15922 case DW_TAG_base_type:
15923 case DW_TAG_class_type:
680b30c7 15924 case DW_TAG_interface_type:
72bf9492
DJ
15925 case DW_TAG_enumeration_type:
15926 case DW_TAG_structure_type:
15927 case DW_TAG_subrange_type:
15928 case DW_TAG_typedef:
15929 case DW_TAG_union_type:
15930 return 1;
15931 default:
15932 return 0;
15933 }
15934}
15935
15936/* Load all DIEs that are interesting for partial symbols into memory. */
15937
15938static struct partial_die_info *
dee91e82 15939load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15940 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15941{
dee91e82 15942 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15943 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15944 struct partial_die_info *part_die;
15945 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15946 struct abbrev_info *abbrev;
15947 unsigned int bytes_read;
5afb4e99 15948 unsigned int load_all = 0;
72bf9492
DJ
15949 int nesting_level = 1;
15950
15951 parent_die = NULL;
15952 last_die = NULL;
15953
7adf1e79
DE
15954 gdb_assert (cu->per_cu != NULL);
15955 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15956 load_all = 1;
15957
72bf9492
DJ
15958 cu->partial_dies
15959 = htab_create_alloc_ex (cu->header.length / 12,
15960 partial_die_hash,
15961 partial_die_eq,
15962 NULL,
15963 &cu->comp_unit_obstack,
15964 hashtab_obstack_allocate,
15965 dummy_obstack_deallocate);
15966
8d749320 15967 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15968
15969 while (1)
15970 {
15971 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15972
15973 /* A NULL abbrev means the end of a series of children. */
15974 if (abbrev == NULL)
15975 {
15976 if (--nesting_level == 0)
15977 {
15978 /* PART_DIE was probably the last thing allocated on the
15979 comp_unit_obstack, so we could call obstack_free
15980 here. We don't do that because the waste is small,
15981 and will be cleaned up when we're done with this
15982 compilation unit. This way, we're also more robust
15983 against other users of the comp_unit_obstack. */
15984 return first_die;
15985 }
15986 info_ptr += bytes_read;
15987 last_die = parent_die;
15988 parent_die = parent_die->die_parent;
15989 continue;
15990 }
15991
98bfdba5
PA
15992 /* Check for template arguments. We never save these; if
15993 they're seen, we just mark the parent, and go on our way. */
15994 if (parent_die != NULL
15995 && cu->language == language_cplus
15996 && (abbrev->tag == DW_TAG_template_type_param
15997 || abbrev->tag == DW_TAG_template_value_param))
15998 {
15999 parent_die->has_template_arguments = 1;
16000
16001 if (!load_all)
16002 {
16003 /* We don't need a partial DIE for the template argument. */
dee91e82 16004 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16005 continue;
16006 }
16007 }
16008
0d99eb77 16009 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
16010 Skip their other children. */
16011 if (!load_all
16012 && cu->language == language_cplus
16013 && parent_die != NULL
16014 && parent_die->tag == DW_TAG_subprogram)
16015 {
dee91e82 16016 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16017 continue;
16018 }
16019
5afb4e99
DJ
16020 /* Check whether this DIE is interesting enough to save. Normally
16021 we would not be interested in members here, but there may be
16022 later variables referencing them via DW_AT_specification (for
16023 static members). */
16024 if (!load_all
16025 && !is_type_tag_for_partial (abbrev->tag)
72929c62 16026 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
16027 && abbrev->tag != DW_TAG_enumerator
16028 && abbrev->tag != DW_TAG_subprogram
bc30ff58 16029 && abbrev->tag != DW_TAG_lexical_block
72bf9492 16030 && abbrev->tag != DW_TAG_variable
5afb4e99 16031 && abbrev->tag != DW_TAG_namespace
f55ee35c 16032 && abbrev->tag != DW_TAG_module
95554aad 16033 && abbrev->tag != DW_TAG_member
74921315
KS
16034 && abbrev->tag != DW_TAG_imported_unit
16035 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
16036 {
16037 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16038 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
16039 continue;
16040 }
16041
dee91e82
DE
16042 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16043 info_ptr);
72bf9492
DJ
16044
16045 /* This two-pass algorithm for processing partial symbols has a
16046 high cost in cache pressure. Thus, handle some simple cases
16047 here which cover the majority of C partial symbols. DIEs
16048 which neither have specification tags in them, nor could have
16049 specification tags elsewhere pointing at them, can simply be
16050 processed and discarded.
16051
16052 This segment is also optional; scan_partial_symbols and
16053 add_partial_symbol will handle these DIEs if we chain
16054 them in normally. When compilers which do not emit large
16055 quantities of duplicate debug information are more common,
16056 this code can probably be removed. */
16057
16058 /* Any complete simple types at the top level (pretty much all
16059 of them, for a language without namespaces), can be processed
16060 directly. */
16061 if (parent_die == NULL
16062 && part_die->has_specification == 0
16063 && part_die->is_declaration == 0
d8228535 16064 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
16065 || part_die->tag == DW_TAG_base_type
16066 || part_die->tag == DW_TAG_subrange_type))
16067 {
16068 if (building_psymtab && part_die->name != NULL)
04a679b8 16069 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16070 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 16071 &objfile->static_psymbols,
1762568f 16072 0, cu->language, objfile);
dee91e82 16073 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16074 continue;
16075 }
16076
d8228535
JK
16077 /* The exception for DW_TAG_typedef with has_children above is
16078 a workaround of GCC PR debug/47510. In the case of this complaint
16079 type_name_no_tag_or_error will error on such types later.
16080
16081 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16082 it could not find the child DIEs referenced later, this is checked
16083 above. In correct DWARF DW_TAG_typedef should have no children. */
16084
16085 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16086 complaint (&symfile_complaints,
16087 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16088 "- DIE at 0x%x [in module %s]"),
9c541725 16089 to_underlying (part_die->sect_off), objfile_name (objfile));
d8228535 16090
72bf9492
DJ
16091 /* If we're at the second level, and we're an enumerator, and
16092 our parent has no specification (meaning possibly lives in a
16093 namespace elsewhere), then we can add the partial symbol now
16094 instead of queueing it. */
16095 if (part_die->tag == DW_TAG_enumerator
16096 && parent_die != NULL
16097 && parent_die->die_parent == NULL
16098 && parent_die->tag == DW_TAG_enumeration_type
16099 && parent_die->has_specification == 0)
16100 {
16101 if (part_die->name == NULL)
3e43a32a
MS
16102 complaint (&symfile_complaints,
16103 _("malformed enumerator DIE ignored"));
72bf9492 16104 else if (building_psymtab)
04a679b8 16105 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16106 VAR_DOMAIN, LOC_CONST,
9c37b5ae 16107 cu->language == language_cplus
bb5ed363
DE
16108 ? &objfile->global_psymbols
16109 : &objfile->static_psymbols,
1762568f 16110 0, cu->language, objfile);
72bf9492 16111
dee91e82 16112 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16113 continue;
16114 }
16115
16116 /* We'll save this DIE so link it in. */
16117 part_die->die_parent = parent_die;
16118 part_die->die_sibling = NULL;
16119 part_die->die_child = NULL;
16120
16121 if (last_die && last_die == parent_die)
16122 last_die->die_child = part_die;
16123 else if (last_die)
16124 last_die->die_sibling = part_die;
16125
16126 last_die = part_die;
16127
16128 if (first_die == NULL)
16129 first_die = part_die;
16130
16131 /* Maybe add the DIE to the hash table. Not all DIEs that we
16132 find interesting need to be in the hash table, because we
16133 also have the parent/sibling/child chains; only those that we
16134 might refer to by offset later during partial symbol reading.
16135
16136 For now this means things that might have be the target of a
16137 DW_AT_specification, DW_AT_abstract_origin, or
16138 DW_AT_extension. DW_AT_extension will refer only to
16139 namespaces; DW_AT_abstract_origin refers to functions (and
16140 many things under the function DIE, but we do not recurse
16141 into function DIEs during partial symbol reading) and
16142 possibly variables as well; DW_AT_specification refers to
16143 declarations. Declarations ought to have the DW_AT_declaration
16144 flag. It happens that GCC forgets to put it in sometimes, but
16145 only for functions, not for types.
16146
16147 Adding more things than necessary to the hash table is harmless
16148 except for the performance cost. Adding too few will result in
5afb4e99
DJ
16149 wasted time in find_partial_die, when we reread the compilation
16150 unit with load_all_dies set. */
72bf9492 16151
5afb4e99 16152 if (load_all
72929c62 16153 || abbrev->tag == DW_TAG_constant
5afb4e99 16154 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
16155 || abbrev->tag == DW_TAG_variable
16156 || abbrev->tag == DW_TAG_namespace
16157 || part_die->is_declaration)
16158 {
16159 void **slot;
16160
16161 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
16162 to_underlying (part_die->sect_off),
16163 INSERT);
72bf9492
DJ
16164 *slot = part_die;
16165 }
16166
8d749320 16167 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16168
16169 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 16170 we have no reason to follow the children of structures; for other
98bfdba5
PA
16171 languages we have to, so that we can get at method physnames
16172 to infer fully qualified class names, for DW_AT_specification,
16173 and for C++ template arguments. For C++, we also look one level
16174 inside functions to find template arguments (if the name of the
16175 function does not already contain the template arguments).
bc30ff58
JB
16176
16177 For Ada, we need to scan the children of subprograms and lexical
16178 blocks as well because Ada allows the definition of nested
16179 entities that could be interesting for the debugger, such as
16180 nested subprograms for instance. */
72bf9492 16181 if (last_die->has_children
5afb4e99
DJ
16182 && (load_all
16183 || last_die->tag == DW_TAG_namespace
f55ee35c 16184 || last_die->tag == DW_TAG_module
72bf9492 16185 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
16186 || (cu->language == language_cplus
16187 && last_die->tag == DW_TAG_subprogram
16188 && (last_die->name == NULL
16189 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
16190 || (cu->language != language_c
16191 && (last_die->tag == DW_TAG_class_type
680b30c7 16192 || last_die->tag == DW_TAG_interface_type
72bf9492 16193 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
16194 || last_die->tag == DW_TAG_union_type))
16195 || (cu->language == language_ada
16196 && (last_die->tag == DW_TAG_subprogram
16197 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
16198 {
16199 nesting_level++;
16200 parent_die = last_die;
16201 continue;
16202 }
16203
16204 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16205 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
16206
16207 /* Back to the top, do it again. */
16208 }
16209}
16210
c906108c
SS
16211/* Read a minimal amount of information into the minimal die structure. */
16212
d521ce57 16213static const gdb_byte *
dee91e82
DE
16214read_partial_die (const struct die_reader_specs *reader,
16215 struct partial_die_info *part_die,
16216 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 16217 const gdb_byte *info_ptr)
c906108c 16218{
dee91e82 16219 struct dwarf2_cu *cu = reader->cu;
bb5ed363 16220 struct objfile *objfile = cu->objfile;
d521ce57 16221 const gdb_byte *buffer = reader->buffer;
fa238c03 16222 unsigned int i;
c906108c 16223 struct attribute attr;
c5aa993b 16224 int has_low_pc_attr = 0;
c906108c 16225 int has_high_pc_attr = 0;
91da1414 16226 int high_pc_relative = 0;
c906108c 16227
72bf9492 16228 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 16229
9c541725 16230 part_die->sect_off = (sect_offset) (info_ptr - buffer);
72bf9492
DJ
16231
16232 info_ptr += abbrev_len;
16233
16234 if (abbrev == NULL)
16235 return info_ptr;
16236
c906108c
SS
16237 part_die->tag = abbrev->tag;
16238 part_die->has_children = abbrev->has_children;
c906108c
SS
16239
16240 for (i = 0; i < abbrev->num_attrs; ++i)
16241 {
dee91e82 16242 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
16243
16244 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 16245 partial symbol table. */
c906108c
SS
16246 switch (attr.name)
16247 {
16248 case DW_AT_name:
71c25dea
TT
16249 switch (part_die->tag)
16250 {
16251 case DW_TAG_compile_unit:
95554aad 16252 case DW_TAG_partial_unit:
348e048f 16253 case DW_TAG_type_unit:
71c25dea
TT
16254 /* Compilation units have a DW_AT_name that is a filename, not
16255 a source language identifier. */
16256 case DW_TAG_enumeration_type:
16257 case DW_TAG_enumerator:
16258 /* These tags always have simple identifiers already; no need
16259 to canonicalize them. */
16260 part_die->name = DW_STRING (&attr);
16261 break;
16262 default:
16263 part_die->name
16264 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 16265 &objfile->per_bfd->storage_obstack);
71c25dea
TT
16266 break;
16267 }
c906108c 16268 break;
31ef98ae 16269 case DW_AT_linkage_name:
c906108c 16270 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
16271 /* Note that both forms of linkage name might appear. We
16272 assume they will be the same, and we only store the last
16273 one we see. */
94af9270
KS
16274 if (cu->language == language_ada)
16275 part_die->name = DW_STRING (&attr);
abc72ce4 16276 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
16277 break;
16278 case DW_AT_low_pc:
16279 has_low_pc_attr = 1;
31aa7e4e 16280 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
16281 break;
16282 case DW_AT_high_pc:
16283 has_high_pc_attr = 1;
31aa7e4e
JB
16284 part_die->highpc = attr_value_as_address (&attr);
16285 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16286 high_pc_relative = 1;
c906108c
SS
16287 break;
16288 case DW_AT_location:
0963b4bd 16289 /* Support the .debug_loc offsets. */
8e19ed76
PS
16290 if (attr_form_is_block (&attr))
16291 {
95554aad 16292 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 16293 }
3690dd37 16294 else if (attr_form_is_section_offset (&attr))
8e19ed76 16295 {
4d3c2250 16296 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
16297 }
16298 else
16299 {
4d3c2250
KB
16300 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16301 "partial symbol information");
8e19ed76 16302 }
c906108c 16303 break;
c906108c
SS
16304 case DW_AT_external:
16305 part_die->is_external = DW_UNSND (&attr);
16306 break;
16307 case DW_AT_declaration:
16308 part_die->is_declaration = DW_UNSND (&attr);
16309 break;
16310 case DW_AT_type:
16311 part_die->has_type = 1;
16312 break;
16313 case DW_AT_abstract_origin:
16314 case DW_AT_specification:
72bf9492
DJ
16315 case DW_AT_extension:
16316 part_die->has_specification = 1;
c764a876 16317 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16318 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16319 || cu->per_cu->is_dwz);
c906108c
SS
16320 break;
16321 case DW_AT_sibling:
16322 /* Ignore absolute siblings, they might point outside of
16323 the current compile unit. */
16324 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
16325 complaint (&symfile_complaints,
16326 _("ignoring absolute DW_AT_sibling"));
c906108c 16327 else
b9502d3f 16328 {
9c541725
PA
16329 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16330 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
16331
16332 if (sibling_ptr < info_ptr)
16333 complaint (&symfile_complaints,
16334 _("DW_AT_sibling points backwards"));
22869d73
KS
16335 else if (sibling_ptr > reader->buffer_end)
16336 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
16337 else
16338 part_die->sibling = sibling_ptr;
16339 }
c906108c 16340 break;
fa4028e9
JB
16341 case DW_AT_byte_size:
16342 part_die->has_byte_size = 1;
16343 break;
ff908ebf
AW
16344 case DW_AT_const_value:
16345 part_die->has_const_value = 1;
16346 break;
68511cec
CES
16347 case DW_AT_calling_convention:
16348 /* DWARF doesn't provide a way to identify a program's source-level
16349 entry point. DW_AT_calling_convention attributes are only meant
16350 to describe functions' calling conventions.
16351
16352 However, because it's a necessary piece of information in
0c1b455e
TT
16353 Fortran, and before DWARF 4 DW_CC_program was the only
16354 piece of debugging information whose definition refers to
16355 a 'main program' at all, several compilers marked Fortran
16356 main programs with DW_CC_program --- even when those
16357 functions use the standard calling conventions.
16358
16359 Although DWARF now specifies a way to provide this
16360 information, we support this practice for backward
16361 compatibility. */
68511cec 16362 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e
TT
16363 && cu->language == language_fortran)
16364 part_die->main_subprogram = 1;
68511cec 16365 break;
481860b3
GB
16366 case DW_AT_inline:
16367 if (DW_UNSND (&attr) == DW_INL_inlined
16368 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16369 part_die->may_be_inlined = 1;
16370 break;
95554aad
TT
16371
16372 case DW_AT_import:
16373 if (part_die->tag == DW_TAG_imported_unit)
36586728 16374 {
9c541725 16375 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16376 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16377 || cu->per_cu->is_dwz);
16378 }
95554aad
TT
16379 break;
16380
0c1b455e
TT
16381 case DW_AT_main_subprogram:
16382 part_die->main_subprogram = DW_UNSND (&attr);
16383 break;
16384
c906108c
SS
16385 default:
16386 break;
16387 }
16388 }
16389
91da1414
MW
16390 if (high_pc_relative)
16391 part_die->highpc += part_die->lowpc;
16392
9373cf26
JK
16393 if (has_low_pc_attr && has_high_pc_attr)
16394 {
16395 /* When using the GNU linker, .gnu.linkonce. sections are used to
16396 eliminate duplicate copies of functions and vtables and such.
16397 The linker will arbitrarily choose one and discard the others.
16398 The AT_*_pc values for such functions refer to local labels in
16399 these sections. If the section from that file was discarded, the
16400 labels are not in the output, so the relocs get a value of 0.
16401 If this is a discarded function, mark the pc bounds as invalid,
16402 so that GDB will ignore it. */
16403 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16404 {
bb5ed363 16405 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16406
16407 complaint (&symfile_complaints,
16408 _("DW_AT_low_pc %s is zero "
16409 "for DIE at 0x%x [in module %s]"),
16410 paddress (gdbarch, part_die->lowpc),
9c541725 16411 to_underlying (part_die->sect_off), objfile_name (objfile));
9373cf26
JK
16412 }
16413 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16414 else if (part_die->lowpc >= part_die->highpc)
16415 {
bb5ed363 16416 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16417
16418 complaint (&symfile_complaints,
16419 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16420 "for DIE at 0x%x [in module %s]"),
16421 paddress (gdbarch, part_die->lowpc),
16422 paddress (gdbarch, part_die->highpc),
9c541725
PA
16423 to_underlying (part_die->sect_off),
16424 objfile_name (objfile));
9373cf26
JK
16425 }
16426 else
16427 part_die->has_pc_info = 1;
16428 }
85cbf3d3 16429
c906108c
SS
16430 return info_ptr;
16431}
16432
72bf9492
DJ
16433/* Find a cached partial DIE at OFFSET in CU. */
16434
16435static struct partial_die_info *
9c541725 16436find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
72bf9492
DJ
16437{
16438 struct partial_die_info *lookup_die = NULL;
16439 struct partial_die_info part_die;
16440
9c541725 16441 part_die.sect_off = sect_off;
9a3c8263
SM
16442 lookup_die = ((struct partial_die_info *)
16443 htab_find_with_hash (cu->partial_dies, &part_die,
9c541725 16444 to_underlying (sect_off)));
72bf9492 16445
72bf9492
DJ
16446 return lookup_die;
16447}
16448
348e048f
DE
16449/* Find a partial DIE at OFFSET, which may or may not be in CU,
16450 except in the case of .debug_types DIEs which do not reference
16451 outside their CU (they do however referencing other types via
55f1336d 16452 DW_FORM_ref_sig8). */
72bf9492
DJ
16453
16454static struct partial_die_info *
9c541725 16455find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16456{
bb5ed363 16457 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16458 struct dwarf2_per_cu_data *per_cu = NULL;
16459 struct partial_die_info *pd = NULL;
72bf9492 16460
36586728 16461 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 16462 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 16463 {
9c541725 16464 pd = find_partial_die_in_comp_unit (sect_off, cu);
5afb4e99
DJ
16465 if (pd != NULL)
16466 return pd;
0d99eb77
DE
16467 /* We missed recording what we needed.
16468 Load all dies and try again. */
16469 per_cu = cu->per_cu;
5afb4e99 16470 }
0d99eb77
DE
16471 else
16472 {
16473 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16474 if (cu->per_cu->is_debug_types)
0d99eb77 16475 {
9c541725
PA
16476 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16477 " external reference to offset 0x%x [in module %s].\n"),
16478 to_underlying (cu->header.sect_off), to_underlying (sect_off),
0d99eb77
DE
16479 bfd_get_filename (objfile->obfd));
16480 }
9c541725 16481 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 16482 objfile);
72bf9492 16483
0d99eb77
DE
16484 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16485 load_partial_comp_unit (per_cu);
ae038cb0 16486
0d99eb77 16487 per_cu->cu->last_used = 0;
9c541725 16488 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
0d99eb77 16489 }
5afb4e99 16490
dee91e82
DE
16491 /* If we didn't find it, and not all dies have been loaded,
16492 load them all and try again. */
16493
5afb4e99
DJ
16494 if (pd == NULL && per_cu->load_all_dies == 0)
16495 {
5afb4e99 16496 per_cu->load_all_dies = 1;
fd820528
DE
16497
16498 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16499 THIS_CU->cu may already be in use. So we can't just free it and
16500 replace its DIEs with the ones we read in. Instead, we leave those
16501 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16502 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16503 set. */
dee91e82 16504 load_partial_comp_unit (per_cu);
5afb4e99 16505
9c541725 16506 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
5afb4e99
DJ
16507 }
16508
16509 if (pd == NULL)
16510 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16511 _("could not find partial DIE 0x%x "
16512 "in cache [from module %s]\n"),
9c541725 16513 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
5afb4e99 16514 return pd;
72bf9492
DJ
16515}
16516
abc72ce4
DE
16517/* See if we can figure out if the class lives in a namespace. We do
16518 this by looking for a member function; its demangled name will
16519 contain namespace info, if there is any. */
16520
16521static void
16522guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16523 struct dwarf2_cu *cu)
16524{
16525 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16526 what template types look like, because the demangler
16527 frequently doesn't give the same name as the debug info. We
16528 could fix this by only using the demangled name to get the
16529 prefix (but see comment in read_structure_type). */
16530
16531 struct partial_die_info *real_pdi;
16532 struct partial_die_info *child_pdi;
16533
16534 /* If this DIE (this DIE's specification, if any) has a parent, then
16535 we should not do this. We'll prepend the parent's fully qualified
16536 name when we create the partial symbol. */
16537
16538 real_pdi = struct_pdi;
16539 while (real_pdi->has_specification)
36586728
TT
16540 real_pdi = find_partial_die (real_pdi->spec_offset,
16541 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16542
16543 if (real_pdi->die_parent != NULL)
16544 return;
16545
16546 for (child_pdi = struct_pdi->die_child;
16547 child_pdi != NULL;
16548 child_pdi = child_pdi->die_sibling)
16549 {
16550 if (child_pdi->tag == DW_TAG_subprogram
16551 && child_pdi->linkage_name != NULL)
16552 {
16553 char *actual_class_name
16554 = language_class_name_from_physname (cu->language_defn,
16555 child_pdi->linkage_name);
16556 if (actual_class_name != NULL)
16557 {
16558 struct_pdi->name
224c3ddb
SM
16559 = ((const char *)
16560 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16561 actual_class_name,
16562 strlen (actual_class_name)));
abc72ce4
DE
16563 xfree (actual_class_name);
16564 }
16565 break;
16566 }
16567 }
16568}
16569
72bf9492
DJ
16570/* Adjust PART_DIE before generating a symbol for it. This function
16571 may set the is_external flag or change the DIE's name. */
16572
16573static void
16574fixup_partial_die (struct partial_die_info *part_die,
16575 struct dwarf2_cu *cu)
16576{
abc72ce4
DE
16577 /* Once we've fixed up a die, there's no point in doing so again.
16578 This also avoids a memory leak if we were to call
16579 guess_partial_die_structure_name multiple times. */
16580 if (part_die->fixup_called)
16581 return;
16582
72bf9492
DJ
16583 /* If we found a reference attribute and the DIE has no name, try
16584 to find a name in the referred to DIE. */
16585
16586 if (part_die->name == NULL && part_die->has_specification)
16587 {
16588 struct partial_die_info *spec_die;
72bf9492 16589
36586728
TT
16590 spec_die = find_partial_die (part_die->spec_offset,
16591 part_die->spec_is_dwz, cu);
72bf9492 16592
10b3939b 16593 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16594
16595 if (spec_die->name)
16596 {
16597 part_die->name = spec_die->name;
16598
16599 /* Copy DW_AT_external attribute if it is set. */
16600 if (spec_die->is_external)
16601 part_die->is_external = spec_die->is_external;
16602 }
16603 }
16604
16605 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16606
16607 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16608 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16609
abc72ce4
DE
16610 /* If there is no parent die to provide a namespace, and there are
16611 children, see if we can determine the namespace from their linkage
122d1940 16612 name. */
abc72ce4 16613 if (cu->language == language_cplus
8b70b953 16614 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16615 && part_die->die_parent == NULL
16616 && part_die->has_children
16617 && (part_die->tag == DW_TAG_class_type
16618 || part_die->tag == DW_TAG_structure_type
16619 || part_die->tag == DW_TAG_union_type))
16620 guess_partial_die_structure_name (part_die, cu);
16621
53832f31
TT
16622 /* GCC might emit a nameless struct or union that has a linkage
16623 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16624 if (part_die->name == NULL
96408a79
SA
16625 && (part_die->tag == DW_TAG_class_type
16626 || part_die->tag == DW_TAG_interface_type
16627 || part_die->tag == DW_TAG_structure_type
16628 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16629 && part_die->linkage_name != NULL)
16630 {
16631 char *demangled;
16632
8de20a37 16633 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16634 if (demangled)
16635 {
96408a79
SA
16636 const char *base;
16637
16638 /* Strip any leading namespaces/classes, keep only the base name.
16639 DW_AT_name for named DIEs does not contain the prefixes. */
16640 base = strrchr (demangled, ':');
16641 if (base && base > demangled && base[-1] == ':')
16642 base++;
16643 else
16644 base = demangled;
16645
34a68019 16646 part_die->name
224c3ddb
SM
16647 = ((const char *)
16648 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16649 base, strlen (base)));
53832f31
TT
16650 xfree (demangled);
16651 }
16652 }
16653
abc72ce4 16654 part_die->fixup_called = 1;
72bf9492
DJ
16655}
16656
a8329558 16657/* Read an attribute value described by an attribute form. */
c906108c 16658
d521ce57 16659static const gdb_byte *
dee91e82
DE
16660read_attribute_value (const struct die_reader_specs *reader,
16661 struct attribute *attr, unsigned form,
43988095 16662 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 16663{
dee91e82 16664 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16665 struct objfile *objfile = cu->objfile;
16666 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16667 bfd *abfd = reader->abfd;
e7c27a73 16668 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16669 unsigned int bytes_read;
16670 struct dwarf_block *blk;
16671
aead7601 16672 attr->form = (enum dwarf_form) form;
a8329558 16673 switch (form)
c906108c 16674 {
c906108c 16675 case DW_FORM_ref_addr:
ae411497 16676 if (cu->header.version == 2)
4568ecf9 16677 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16678 else
4568ecf9
DE
16679 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16680 &cu->header, &bytes_read);
ae411497
TT
16681 info_ptr += bytes_read;
16682 break;
36586728
TT
16683 case DW_FORM_GNU_ref_alt:
16684 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16685 info_ptr += bytes_read;
16686 break;
ae411497 16687 case DW_FORM_addr:
e7c27a73 16688 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16689 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16690 info_ptr += bytes_read;
c906108c
SS
16691 break;
16692 case DW_FORM_block2:
7b5a2f43 16693 blk = dwarf_alloc_block (cu);
c906108c
SS
16694 blk->size = read_2_bytes (abfd, info_ptr);
16695 info_ptr += 2;
16696 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16697 info_ptr += blk->size;
16698 DW_BLOCK (attr) = blk;
16699 break;
16700 case DW_FORM_block4:
7b5a2f43 16701 blk = dwarf_alloc_block (cu);
c906108c
SS
16702 blk->size = read_4_bytes (abfd, info_ptr);
16703 info_ptr += 4;
16704 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16705 info_ptr += blk->size;
16706 DW_BLOCK (attr) = blk;
16707 break;
16708 case DW_FORM_data2:
16709 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16710 info_ptr += 2;
16711 break;
16712 case DW_FORM_data4:
16713 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16714 info_ptr += 4;
16715 break;
16716 case DW_FORM_data8:
16717 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16718 info_ptr += 8;
16719 break;
0224619f
JK
16720 case DW_FORM_data16:
16721 blk = dwarf_alloc_block (cu);
16722 blk->size = 16;
16723 blk->data = read_n_bytes (abfd, info_ptr, 16);
16724 info_ptr += 16;
16725 DW_BLOCK (attr) = blk;
16726 break;
2dc7f7b3
TT
16727 case DW_FORM_sec_offset:
16728 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16729 info_ptr += bytes_read;
16730 break;
c906108c 16731 case DW_FORM_string:
9b1c24c8 16732 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16733 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16734 info_ptr += bytes_read;
16735 break;
4bdf3d34 16736 case DW_FORM_strp:
36586728
TT
16737 if (!cu->per_cu->is_dwz)
16738 {
16739 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16740 &bytes_read);
16741 DW_STRING_IS_CANONICAL (attr) = 0;
16742 info_ptr += bytes_read;
16743 break;
16744 }
16745 /* FALLTHROUGH */
43988095
JK
16746 case DW_FORM_line_strp:
16747 if (!cu->per_cu->is_dwz)
16748 {
16749 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16750 cu_header, &bytes_read);
16751 DW_STRING_IS_CANONICAL (attr) = 0;
16752 info_ptr += bytes_read;
16753 break;
16754 }
16755 /* FALLTHROUGH */
36586728
TT
16756 case DW_FORM_GNU_strp_alt:
16757 {
16758 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16759 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16760 &bytes_read);
16761
16762 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16763 DW_STRING_IS_CANONICAL (attr) = 0;
16764 info_ptr += bytes_read;
16765 }
4bdf3d34 16766 break;
2dc7f7b3 16767 case DW_FORM_exprloc:
c906108c 16768 case DW_FORM_block:
7b5a2f43 16769 blk = dwarf_alloc_block (cu);
c906108c
SS
16770 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16771 info_ptr += bytes_read;
16772 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16773 info_ptr += blk->size;
16774 DW_BLOCK (attr) = blk;
16775 break;
16776 case DW_FORM_block1:
7b5a2f43 16777 blk = dwarf_alloc_block (cu);
c906108c
SS
16778 blk->size = read_1_byte (abfd, info_ptr);
16779 info_ptr += 1;
16780 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16781 info_ptr += blk->size;
16782 DW_BLOCK (attr) = blk;
16783 break;
16784 case DW_FORM_data1:
16785 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16786 info_ptr += 1;
16787 break;
16788 case DW_FORM_flag:
16789 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16790 info_ptr += 1;
16791 break;
2dc7f7b3
TT
16792 case DW_FORM_flag_present:
16793 DW_UNSND (attr) = 1;
16794 break;
c906108c
SS
16795 case DW_FORM_sdata:
16796 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16797 info_ptr += bytes_read;
16798 break;
16799 case DW_FORM_udata:
16800 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16801 info_ptr += bytes_read;
16802 break;
16803 case DW_FORM_ref1:
9c541725 16804 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16805 + read_1_byte (abfd, info_ptr));
c906108c
SS
16806 info_ptr += 1;
16807 break;
16808 case DW_FORM_ref2:
9c541725 16809 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16810 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16811 info_ptr += 2;
16812 break;
16813 case DW_FORM_ref4:
9c541725 16814 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16815 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16816 info_ptr += 4;
16817 break;
613e1657 16818 case DW_FORM_ref8:
9c541725 16819 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16820 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16821 info_ptr += 8;
16822 break;
55f1336d 16823 case DW_FORM_ref_sig8:
ac9ec31b 16824 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16825 info_ptr += 8;
16826 break;
c906108c 16827 case DW_FORM_ref_udata:
9c541725 16828 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16829 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16830 info_ptr += bytes_read;
16831 break;
c906108c 16832 case DW_FORM_indirect:
a8329558
KW
16833 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16834 info_ptr += bytes_read;
43988095
JK
16835 if (form == DW_FORM_implicit_const)
16836 {
16837 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16838 info_ptr += bytes_read;
16839 }
16840 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16841 info_ptr);
16842 break;
16843 case DW_FORM_implicit_const:
16844 DW_SND (attr) = implicit_const;
a8329558 16845 break;
3019eac3
DE
16846 case DW_FORM_GNU_addr_index:
16847 if (reader->dwo_file == NULL)
16848 {
16849 /* For now flag a hard error.
16850 Later we can turn this into a complaint. */
16851 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16852 dwarf_form_name (form),
16853 bfd_get_filename (abfd));
16854 }
16855 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16856 info_ptr += bytes_read;
16857 break;
16858 case DW_FORM_GNU_str_index:
16859 if (reader->dwo_file == NULL)
16860 {
16861 /* For now flag a hard error.
16862 Later we can turn this into a complaint if warranted. */
16863 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16864 dwarf_form_name (form),
16865 bfd_get_filename (abfd));
16866 }
16867 {
16868 ULONGEST str_index =
16869 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16870
342587c4 16871 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16872 DW_STRING_IS_CANONICAL (attr) = 0;
16873 info_ptr += bytes_read;
16874 }
16875 break;
c906108c 16876 default:
8a3fe4f8 16877 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16878 dwarf_form_name (form),
16879 bfd_get_filename (abfd));
c906108c 16880 }
28e94949 16881
36586728 16882 /* Super hack. */
7771576e 16883 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16884 attr->form = DW_FORM_GNU_ref_alt;
16885
28e94949
JB
16886 /* We have seen instances where the compiler tried to emit a byte
16887 size attribute of -1 which ended up being encoded as an unsigned
16888 0xffffffff. Although 0xffffffff is technically a valid size value,
16889 an object of this size seems pretty unlikely so we can relatively
16890 safely treat these cases as if the size attribute was invalid and
16891 treat them as zero by default. */
16892 if (attr->name == DW_AT_byte_size
16893 && form == DW_FORM_data4
16894 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16895 {
16896 complaint
16897 (&symfile_complaints,
43bbcdc2
PH
16898 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16899 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16900 DW_UNSND (attr) = 0;
16901 }
28e94949 16902
c906108c
SS
16903 return info_ptr;
16904}
16905
a8329558
KW
16906/* Read an attribute described by an abbreviated attribute. */
16907
d521ce57 16908static const gdb_byte *
dee91e82
DE
16909read_attribute (const struct die_reader_specs *reader,
16910 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16911 const gdb_byte *info_ptr)
a8329558
KW
16912{
16913 attr->name = abbrev->name;
43988095
JK
16914 return read_attribute_value (reader, attr, abbrev->form,
16915 abbrev->implicit_const, info_ptr);
a8329558
KW
16916}
16917
0963b4bd 16918/* Read dwarf information from a buffer. */
c906108c
SS
16919
16920static unsigned int
a1855c1d 16921read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16922{
fe1b8b76 16923 return bfd_get_8 (abfd, buf);
c906108c
SS
16924}
16925
16926static int
a1855c1d 16927read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16928{
fe1b8b76 16929 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16930}
16931
16932static unsigned int
a1855c1d 16933read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16934{
fe1b8b76 16935 return bfd_get_16 (abfd, buf);
c906108c
SS
16936}
16937
21ae7a4d 16938static int
a1855c1d 16939read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16940{
16941 return bfd_get_signed_16 (abfd, buf);
16942}
16943
c906108c 16944static unsigned int
a1855c1d 16945read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16946{
fe1b8b76 16947 return bfd_get_32 (abfd, buf);
c906108c
SS
16948}
16949
21ae7a4d 16950static int
a1855c1d 16951read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16952{
16953 return bfd_get_signed_32 (abfd, buf);
16954}
16955
93311388 16956static ULONGEST
a1855c1d 16957read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16958{
fe1b8b76 16959 return bfd_get_64 (abfd, buf);
c906108c
SS
16960}
16961
16962static CORE_ADDR
d521ce57 16963read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16964 unsigned int *bytes_read)
c906108c 16965{
e7c27a73 16966 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16967 CORE_ADDR retval = 0;
16968
107d2387 16969 if (cu_header->signed_addr_p)
c906108c 16970 {
107d2387
AC
16971 switch (cu_header->addr_size)
16972 {
16973 case 2:
fe1b8b76 16974 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16975 break;
16976 case 4:
fe1b8b76 16977 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16978 break;
16979 case 8:
fe1b8b76 16980 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16981 break;
16982 default:
8e65ff28 16983 internal_error (__FILE__, __LINE__,
e2e0b3e5 16984 _("read_address: bad switch, signed [in module %s]"),
659b0389 16985 bfd_get_filename (abfd));
107d2387
AC
16986 }
16987 }
16988 else
16989 {
16990 switch (cu_header->addr_size)
16991 {
16992 case 2:
fe1b8b76 16993 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16994 break;
16995 case 4:
fe1b8b76 16996 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16997 break;
16998 case 8:
fe1b8b76 16999 retval = bfd_get_64 (abfd, buf);
107d2387
AC
17000 break;
17001 default:
8e65ff28 17002 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
17003 _("read_address: bad switch, "
17004 "unsigned [in module %s]"),
659b0389 17005 bfd_get_filename (abfd));
107d2387 17006 }
c906108c 17007 }
64367e0a 17008
107d2387
AC
17009 *bytes_read = cu_header->addr_size;
17010 return retval;
c906108c
SS
17011}
17012
f7ef9339 17013/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
17014 specification allows the initial length to take up either 4 bytes
17015 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17016 bytes describe the length and all offsets will be 8 bytes in length
17017 instead of 4.
17018
f7ef9339
KB
17019 An older, non-standard 64-bit format is also handled by this
17020 function. The older format in question stores the initial length
17021 as an 8-byte quantity without an escape value. Lengths greater
17022 than 2^32 aren't very common which means that the initial 4 bytes
17023 is almost always zero. Since a length value of zero doesn't make
17024 sense for the 32-bit format, this initial zero can be considered to
17025 be an escape value which indicates the presence of the older 64-bit
17026 format. As written, the code can't detect (old format) lengths
917c78fc
MK
17027 greater than 4GB. If it becomes necessary to handle lengths
17028 somewhat larger than 4GB, we could allow other small values (such
17029 as the non-sensical values of 1, 2, and 3) to also be used as
17030 escape values indicating the presence of the old format.
f7ef9339 17031
917c78fc
MK
17032 The value returned via bytes_read should be used to increment the
17033 relevant pointer after calling read_initial_length().
c764a876 17034
613e1657
KB
17035 [ Note: read_initial_length() and read_offset() are based on the
17036 document entitled "DWARF Debugging Information Format", revision
f7ef9339 17037 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
17038 from:
17039
f7ef9339 17040 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 17041
613e1657
KB
17042 This document is only a draft and is subject to change. (So beware.)
17043
f7ef9339 17044 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
17045 determined empirically by examining 64-bit ELF files produced by
17046 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
17047
17048 - Kevin, July 16, 2002
613e1657
KB
17049 ] */
17050
17051static LONGEST
d521ce57 17052read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 17053{
fe1b8b76 17054 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 17055
dd373385 17056 if (length == 0xffffffff)
613e1657 17057 {
fe1b8b76 17058 length = bfd_get_64 (abfd, buf + 4);
613e1657 17059 *bytes_read = 12;
613e1657 17060 }
dd373385 17061 else if (length == 0)
f7ef9339 17062 {
dd373385 17063 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 17064 length = bfd_get_64 (abfd, buf);
f7ef9339 17065 *bytes_read = 8;
f7ef9339 17066 }
613e1657
KB
17067 else
17068 {
17069 *bytes_read = 4;
613e1657
KB
17070 }
17071
c764a876
DE
17072 return length;
17073}
dd373385 17074
c764a876
DE
17075/* Cover function for read_initial_length.
17076 Returns the length of the object at BUF, and stores the size of the
17077 initial length in *BYTES_READ and stores the size that offsets will be in
17078 *OFFSET_SIZE.
17079 If the initial length size is not equivalent to that specified in
17080 CU_HEADER then issue a complaint.
17081 This is useful when reading non-comp-unit headers. */
dd373385 17082
c764a876 17083static LONGEST
d521ce57 17084read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
17085 const struct comp_unit_head *cu_header,
17086 unsigned int *bytes_read,
17087 unsigned int *offset_size)
17088{
17089 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17090
17091 gdb_assert (cu_header->initial_length_size == 4
17092 || cu_header->initial_length_size == 8
17093 || cu_header->initial_length_size == 12);
17094
17095 if (cu_header->initial_length_size != *bytes_read)
17096 complaint (&symfile_complaints,
17097 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 17098
c764a876 17099 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 17100 return length;
613e1657
KB
17101}
17102
17103/* Read an offset from the data stream. The size of the offset is
917c78fc 17104 given by cu_header->offset_size. */
613e1657
KB
17105
17106static LONGEST
d521ce57
TT
17107read_offset (bfd *abfd, const gdb_byte *buf,
17108 const struct comp_unit_head *cu_header,
891d2f0b 17109 unsigned int *bytes_read)
c764a876
DE
17110{
17111 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 17112
c764a876
DE
17113 *bytes_read = cu_header->offset_size;
17114 return offset;
17115}
17116
17117/* Read an offset from the data stream. */
17118
17119static LONGEST
d521ce57 17120read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
17121{
17122 LONGEST retval = 0;
17123
c764a876 17124 switch (offset_size)
613e1657
KB
17125 {
17126 case 4:
fe1b8b76 17127 retval = bfd_get_32 (abfd, buf);
613e1657
KB
17128 break;
17129 case 8:
fe1b8b76 17130 retval = bfd_get_64 (abfd, buf);
613e1657
KB
17131 break;
17132 default:
8e65ff28 17133 internal_error (__FILE__, __LINE__,
c764a876 17134 _("read_offset_1: bad switch [in module %s]"),
659b0389 17135 bfd_get_filename (abfd));
613e1657
KB
17136 }
17137
917c78fc 17138 return retval;
613e1657
KB
17139}
17140
d521ce57
TT
17141static const gdb_byte *
17142read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
17143{
17144 /* If the size of a host char is 8 bits, we can return a pointer
17145 to the buffer, otherwise we have to copy the data to a buffer
17146 allocated on the temporary obstack. */
4bdf3d34 17147 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 17148 return buf;
c906108c
SS
17149}
17150
d521ce57
TT
17151static const char *
17152read_direct_string (bfd *abfd, const gdb_byte *buf,
17153 unsigned int *bytes_read_ptr)
c906108c
SS
17154{
17155 /* If the size of a host char is 8 bits, we can return a pointer
17156 to the string, otherwise we have to copy the string to a buffer
17157 allocated on the temporary obstack. */
4bdf3d34 17158 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
17159 if (*buf == '\0')
17160 {
17161 *bytes_read_ptr = 1;
17162 return NULL;
17163 }
d521ce57
TT
17164 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17165 return (const char *) buf;
4bdf3d34
JJ
17166}
17167
43988095
JK
17168/* Return pointer to string at section SECT offset STR_OFFSET with error
17169 reporting strings FORM_NAME and SECT_NAME. */
17170
d521ce57 17171static const char *
43988095
JK
17172read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17173 struct dwarf2_section_info *sect,
17174 const char *form_name,
17175 const char *sect_name)
17176{
17177 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17178 if (sect->buffer == NULL)
17179 error (_("%s used without %s section [in module %s]"),
17180 form_name, sect_name, bfd_get_filename (abfd));
17181 if (str_offset >= sect->size)
17182 error (_("%s pointing outside of %s section [in module %s]"),
17183 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 17184 gdb_assert (HOST_CHAR_BIT == 8);
43988095 17185 if (sect->buffer[str_offset] == '\0')
4bdf3d34 17186 return NULL;
43988095
JK
17187 return (const char *) (sect->buffer + str_offset);
17188}
17189
17190/* Return pointer to string at .debug_str offset STR_OFFSET. */
17191
17192static const char *
17193read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17194{
17195 return read_indirect_string_at_offset_from (abfd, str_offset,
17196 &dwarf2_per_objfile->str,
17197 "DW_FORM_strp", ".debug_str");
17198}
17199
17200/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17201
17202static const char *
17203read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17204{
17205 return read_indirect_string_at_offset_from (abfd, str_offset,
17206 &dwarf2_per_objfile->line_str,
17207 "DW_FORM_line_strp",
17208 ".debug_line_str");
c906108c
SS
17209}
17210
36586728
TT
17211/* Read a string at offset STR_OFFSET in the .debug_str section from
17212 the .dwz file DWZ. Throw an error if the offset is too large. If
17213 the string consists of a single NUL byte, return NULL; otherwise
17214 return a pointer to the string. */
17215
d521ce57 17216static const char *
36586728
TT
17217read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17218{
17219 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17220
17221 if (dwz->str.buffer == NULL)
17222 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17223 "section [in module %s]"),
17224 bfd_get_filename (dwz->dwz_bfd));
17225 if (str_offset >= dwz->str.size)
17226 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17227 ".debug_str section [in module %s]"),
17228 bfd_get_filename (dwz->dwz_bfd));
17229 gdb_assert (HOST_CHAR_BIT == 8);
17230 if (dwz->str.buffer[str_offset] == '\0')
17231 return NULL;
d521ce57 17232 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
17233}
17234
43988095
JK
17235/* Return pointer to string at .debug_str offset as read from BUF.
17236 BUF is assumed to be in a compilation unit described by CU_HEADER.
17237 Return *BYTES_READ_PTR count of bytes read from BUF. */
17238
d521ce57
TT
17239static const char *
17240read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
17241 const struct comp_unit_head *cu_header,
17242 unsigned int *bytes_read_ptr)
17243{
17244 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17245
17246 return read_indirect_string_at_offset (abfd, str_offset);
17247}
17248
43988095
JK
17249/* Return pointer to string at .debug_line_str offset as read from BUF.
17250 BUF is assumed to be in a compilation unit described by CU_HEADER.
17251 Return *BYTES_READ_PTR count of bytes read from BUF. */
17252
17253static const char *
17254read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17255 const struct comp_unit_head *cu_header,
17256 unsigned int *bytes_read_ptr)
17257{
17258 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17259
17260 return read_indirect_line_string_at_offset (abfd, str_offset);
17261}
17262
17263ULONGEST
d521ce57 17264read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 17265 unsigned int *bytes_read_ptr)
c906108c 17266{
12df843f 17267 ULONGEST result;
ce5d95e1 17268 unsigned int num_read;
870f88f7 17269 int shift;
c906108c
SS
17270 unsigned char byte;
17271
17272 result = 0;
17273 shift = 0;
17274 num_read = 0;
c906108c
SS
17275 while (1)
17276 {
fe1b8b76 17277 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17278 buf++;
17279 num_read++;
12df843f 17280 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
17281 if ((byte & 128) == 0)
17282 {
17283 break;
17284 }
17285 shift += 7;
17286 }
17287 *bytes_read_ptr = num_read;
17288 return result;
17289}
17290
12df843f 17291static LONGEST
d521ce57
TT
17292read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17293 unsigned int *bytes_read_ptr)
c906108c 17294{
12df843f 17295 LONGEST result;
870f88f7 17296 int shift, num_read;
c906108c
SS
17297 unsigned char byte;
17298
17299 result = 0;
17300 shift = 0;
c906108c 17301 num_read = 0;
c906108c
SS
17302 while (1)
17303 {
fe1b8b76 17304 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17305 buf++;
17306 num_read++;
12df843f 17307 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
17308 shift += 7;
17309 if ((byte & 128) == 0)
17310 {
17311 break;
17312 }
17313 }
77e0b926 17314 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 17315 result |= -(((LONGEST) 1) << shift);
c906108c
SS
17316 *bytes_read_ptr = num_read;
17317 return result;
17318}
17319
3019eac3
DE
17320/* Given index ADDR_INDEX in .debug_addr, fetch the value.
17321 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17322 ADDR_SIZE is the size of addresses from the CU header. */
17323
17324static CORE_ADDR
17325read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17326{
17327 struct objfile *objfile = dwarf2_per_objfile->objfile;
17328 bfd *abfd = objfile->obfd;
17329 const gdb_byte *info_ptr;
17330
17331 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17332 if (dwarf2_per_objfile->addr.buffer == NULL)
17333 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 17334 objfile_name (objfile));
3019eac3
DE
17335 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17336 error (_("DW_FORM_addr_index pointing outside of "
17337 ".debug_addr section [in module %s]"),
4262abfb 17338 objfile_name (objfile));
3019eac3
DE
17339 info_ptr = (dwarf2_per_objfile->addr.buffer
17340 + addr_base + addr_index * addr_size);
17341 if (addr_size == 4)
17342 return bfd_get_32 (abfd, info_ptr);
17343 else
17344 return bfd_get_64 (abfd, info_ptr);
17345}
17346
17347/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17348
17349static CORE_ADDR
17350read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17351{
17352 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17353}
17354
17355/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17356
17357static CORE_ADDR
d521ce57 17358read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
17359 unsigned int *bytes_read)
17360{
17361 bfd *abfd = cu->objfile->obfd;
17362 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17363
17364 return read_addr_index (cu, addr_index);
17365}
17366
17367/* Data structure to pass results from dwarf2_read_addr_index_reader
17368 back to dwarf2_read_addr_index. */
17369
17370struct dwarf2_read_addr_index_data
17371{
17372 ULONGEST addr_base;
17373 int addr_size;
17374};
17375
17376/* die_reader_func for dwarf2_read_addr_index. */
17377
17378static void
17379dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 17380 const gdb_byte *info_ptr,
3019eac3
DE
17381 struct die_info *comp_unit_die,
17382 int has_children,
17383 void *data)
17384{
17385 struct dwarf2_cu *cu = reader->cu;
17386 struct dwarf2_read_addr_index_data *aidata =
17387 (struct dwarf2_read_addr_index_data *) data;
17388
17389 aidata->addr_base = cu->addr_base;
17390 aidata->addr_size = cu->header.addr_size;
17391}
17392
17393/* Given an index in .debug_addr, fetch the value.
17394 NOTE: This can be called during dwarf expression evaluation,
17395 long after the debug information has been read, and thus per_cu->cu
17396 may no longer exist. */
17397
17398CORE_ADDR
17399dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17400 unsigned int addr_index)
17401{
17402 struct objfile *objfile = per_cu->objfile;
17403 struct dwarf2_cu *cu = per_cu->cu;
17404 ULONGEST addr_base;
17405 int addr_size;
17406
17407 /* This is intended to be called from outside this file. */
17408 dw2_setup (objfile);
17409
17410 /* We need addr_base and addr_size.
17411 If we don't have PER_CU->cu, we have to get it.
17412 Nasty, but the alternative is storing the needed info in PER_CU,
17413 which at this point doesn't seem justified: it's not clear how frequently
17414 it would get used and it would increase the size of every PER_CU.
17415 Entry points like dwarf2_per_cu_addr_size do a similar thing
17416 so we're not in uncharted territory here.
17417 Alas we need to be a bit more complicated as addr_base is contained
17418 in the DIE.
17419
17420 We don't need to read the entire CU(/TU).
17421 We just need the header and top level die.
a1b64ce1 17422
3019eac3 17423 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 17424 For now we skip this optimization. */
3019eac3
DE
17425
17426 if (cu != NULL)
17427 {
17428 addr_base = cu->addr_base;
17429 addr_size = cu->header.addr_size;
17430 }
17431 else
17432 {
17433 struct dwarf2_read_addr_index_data aidata;
17434
a1b64ce1
DE
17435 /* Note: We can't use init_cutu_and_read_dies_simple here,
17436 we need addr_base. */
17437 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17438 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
17439 addr_base = aidata.addr_base;
17440 addr_size = aidata.addr_size;
17441 }
17442
17443 return read_addr_index_1 (addr_index, addr_base, addr_size);
17444}
17445
57d63ce2
DE
17446/* Given a DW_FORM_GNU_str_index, fetch the string.
17447 This is only used by the Fission support. */
3019eac3 17448
d521ce57 17449static const char *
342587c4 17450read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
17451{
17452 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 17453 const char *objf_name = objfile_name (objfile);
3019eac3 17454 bfd *abfd = objfile->obfd;
342587c4 17455 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
17456 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17457 struct dwarf2_section_info *str_offsets_section =
17458 &reader->dwo_file->sections.str_offsets;
d521ce57 17459 const gdb_byte *info_ptr;
3019eac3 17460 ULONGEST str_offset;
57d63ce2 17461 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 17462
73869dc2
DE
17463 dwarf2_read_section (objfile, str_section);
17464 dwarf2_read_section (objfile, str_offsets_section);
17465 if (str_section->buffer == NULL)
57d63ce2 17466 error (_("%s used without .debug_str.dwo section"
9c541725
PA
17467 " in CU at offset 0x%x [in module %s]"),
17468 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17469 if (str_offsets_section->buffer == NULL)
57d63ce2 17470 error (_("%s used without .debug_str_offsets.dwo section"
9c541725
PA
17471 " in CU at offset 0x%x [in module %s]"),
17472 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17473 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17474 error (_("%s pointing outside of .debug_str_offsets.dwo"
9c541725
PA
17475 " section in CU at offset 0x%x [in module %s]"),
17476 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17477 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17478 + str_index * cu->header.offset_size);
17479 if (cu->header.offset_size == 4)
17480 str_offset = bfd_get_32 (abfd, info_ptr);
17481 else
17482 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17483 if (str_offset >= str_section->size)
57d63ce2 17484 error (_("Offset from %s pointing outside of"
9c541725
PA
17485 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17486 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17487 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17488}
17489
3019eac3
DE
17490/* Return the length of an LEB128 number in BUF. */
17491
17492static int
17493leb128_size (const gdb_byte *buf)
17494{
17495 const gdb_byte *begin = buf;
17496 gdb_byte byte;
17497
17498 while (1)
17499 {
17500 byte = *buf++;
17501 if ((byte & 128) == 0)
17502 return buf - begin;
17503 }
17504}
17505
c906108c 17506static void
e142c38c 17507set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17508{
17509 switch (lang)
17510 {
17511 case DW_LANG_C89:
76bee0cc 17512 case DW_LANG_C99:
0cfd832f 17513 case DW_LANG_C11:
c906108c 17514 case DW_LANG_C:
d1be3247 17515 case DW_LANG_UPC:
e142c38c 17516 cu->language = language_c;
c906108c 17517 break;
9c37b5ae 17518 case DW_LANG_Java:
c906108c 17519 case DW_LANG_C_plus_plus:
0cfd832f
MW
17520 case DW_LANG_C_plus_plus_11:
17521 case DW_LANG_C_plus_plus_14:
e142c38c 17522 cu->language = language_cplus;
c906108c 17523 break;
6aecb9c2
JB
17524 case DW_LANG_D:
17525 cu->language = language_d;
17526 break;
c906108c
SS
17527 case DW_LANG_Fortran77:
17528 case DW_LANG_Fortran90:
b21b22e0 17529 case DW_LANG_Fortran95:
f7de9aab
MW
17530 case DW_LANG_Fortran03:
17531 case DW_LANG_Fortran08:
e142c38c 17532 cu->language = language_fortran;
c906108c 17533 break;
a766d390
DE
17534 case DW_LANG_Go:
17535 cu->language = language_go;
17536 break;
c906108c 17537 case DW_LANG_Mips_Assembler:
e142c38c 17538 cu->language = language_asm;
c906108c
SS
17539 break;
17540 case DW_LANG_Ada83:
8aaf0b47 17541 case DW_LANG_Ada95:
bc5f45f8
JB
17542 cu->language = language_ada;
17543 break;
72019c9c
GM
17544 case DW_LANG_Modula2:
17545 cu->language = language_m2;
17546 break;
fe8e67fd
PM
17547 case DW_LANG_Pascal83:
17548 cu->language = language_pascal;
17549 break;
22566fbd
DJ
17550 case DW_LANG_ObjC:
17551 cu->language = language_objc;
17552 break;
c44af4eb
TT
17553 case DW_LANG_Rust:
17554 case DW_LANG_Rust_old:
17555 cu->language = language_rust;
17556 break;
c906108c
SS
17557 case DW_LANG_Cobol74:
17558 case DW_LANG_Cobol85:
c906108c 17559 default:
e142c38c 17560 cu->language = language_minimal;
c906108c
SS
17561 break;
17562 }
e142c38c 17563 cu->language_defn = language_def (cu->language);
c906108c
SS
17564}
17565
17566/* Return the named attribute or NULL if not there. */
17567
17568static struct attribute *
e142c38c 17569dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17570{
a48e046c 17571 for (;;)
c906108c 17572 {
a48e046c
TT
17573 unsigned int i;
17574 struct attribute *spec = NULL;
17575
17576 for (i = 0; i < die->num_attrs; ++i)
17577 {
17578 if (die->attrs[i].name == name)
17579 return &die->attrs[i];
17580 if (die->attrs[i].name == DW_AT_specification
17581 || die->attrs[i].name == DW_AT_abstract_origin)
17582 spec = &die->attrs[i];
17583 }
17584
17585 if (!spec)
17586 break;
c906108c 17587
f2f0e013 17588 die = follow_die_ref (die, spec, &cu);
f2f0e013 17589 }
c5aa993b 17590
c906108c
SS
17591 return NULL;
17592}
17593
348e048f
DE
17594/* Return the named attribute or NULL if not there,
17595 but do not follow DW_AT_specification, etc.
17596 This is for use in contexts where we're reading .debug_types dies.
17597 Following DW_AT_specification, DW_AT_abstract_origin will take us
17598 back up the chain, and we want to go down. */
17599
17600static struct attribute *
45e58e77 17601dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17602{
17603 unsigned int i;
17604
17605 for (i = 0; i < die->num_attrs; ++i)
17606 if (die->attrs[i].name == name)
17607 return &die->attrs[i];
17608
17609 return NULL;
17610}
17611
7d45c7c3
KB
17612/* Return the string associated with a string-typed attribute, or NULL if it
17613 is either not found or is of an incorrect type. */
17614
17615static const char *
17616dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17617{
17618 struct attribute *attr;
17619 const char *str = NULL;
17620
17621 attr = dwarf2_attr (die, name, cu);
17622
17623 if (attr != NULL)
17624 {
43988095 17625 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
b3340438
L
17626 || attr->form == DW_FORM_string
17627 || attr->form == DW_FORM_GNU_str_index
16eb6b2d 17628 || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
17629 str = DW_STRING (attr);
17630 else
17631 complaint (&symfile_complaints,
17632 _("string type expected for attribute %s for "
17633 "DIE at 0x%x in module %s"),
9c541725 17634 dwarf_attr_name (name), to_underlying (die->sect_off),
7d45c7c3
KB
17635 objfile_name (cu->objfile));
17636 }
17637
17638 return str;
17639}
17640
05cf31d1
JB
17641/* Return non-zero iff the attribute NAME is defined for the given DIE,
17642 and holds a non-zero value. This function should only be used for
2dc7f7b3 17643 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17644
17645static int
17646dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17647{
17648 struct attribute *attr = dwarf2_attr (die, name, cu);
17649
17650 return (attr && DW_UNSND (attr));
17651}
17652
3ca72b44 17653static int
e142c38c 17654die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17655{
05cf31d1
JB
17656 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17657 which value is non-zero. However, we have to be careful with
17658 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17659 (via dwarf2_flag_true_p) follows this attribute. So we may
17660 end up accidently finding a declaration attribute that belongs
17661 to a different DIE referenced by the specification attribute,
17662 even though the given DIE does not have a declaration attribute. */
17663 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17664 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17665}
17666
63d06c5c 17667/* Return the die giving the specification for DIE, if there is
f2f0e013 17668 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17669 containing the return value on output. If there is no
17670 specification, but there is an abstract origin, that is
17671 returned. */
63d06c5c
DC
17672
17673static struct die_info *
f2f0e013 17674die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17675{
f2f0e013
DJ
17676 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17677 *spec_cu);
63d06c5c 17678
edb3359d
DJ
17679 if (spec_attr == NULL)
17680 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17681
63d06c5c
DC
17682 if (spec_attr == NULL)
17683 return NULL;
17684 else
f2f0e013 17685 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17686}
c906108c 17687
527f3840
JK
17688/* Stub for free_line_header to match void * callback types. */
17689
17690static void
17691free_line_header_voidp (void *arg)
17692{
9a3c8263 17693 struct line_header *lh = (struct line_header *) arg;
527f3840 17694
fff8551c 17695 delete lh;
527f3840
JK
17696}
17697
fff8551c
PA
17698void
17699line_header::add_include_dir (const char *include_dir)
c906108c 17700{
27e0867f 17701 if (dwarf_line_debug >= 2)
fff8551c
PA
17702 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17703 include_dirs.size () + 1, include_dir);
27e0867f 17704
fff8551c 17705 include_dirs.push_back (include_dir);
debd256d 17706}
6e70227d 17707
fff8551c
PA
17708void
17709line_header::add_file_name (const char *name,
ecfb656c 17710 dir_index d_index,
fff8551c
PA
17711 unsigned int mod_time,
17712 unsigned int length)
debd256d 17713{
27e0867f
DE
17714 if (dwarf_line_debug >= 2)
17715 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
fff8551c 17716 (unsigned) file_names.size () + 1, name);
27e0867f 17717
ecfb656c 17718 file_names.emplace_back (name, d_index, mod_time, length);
debd256d 17719}
6e70227d 17720
83769d0b 17721/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17722
17723static struct dwarf2_section_info *
17724get_debug_line_section (struct dwarf2_cu *cu)
17725{
17726 struct dwarf2_section_info *section;
17727
17728 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17729 DWO file. */
17730 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17731 section = &cu->dwo_unit->dwo_file->sections.line;
17732 else if (cu->per_cu->is_dwz)
17733 {
17734 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17735
17736 section = &dwz->line;
17737 }
17738 else
17739 section = &dwarf2_per_objfile->line;
17740
17741 return section;
17742}
17743
43988095
JK
17744/* Read directory or file name entry format, starting with byte of
17745 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17746 entries count and the entries themselves in the described entry
17747 format. */
17748
17749static void
17750read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17751 struct line_header *lh,
17752 const struct comp_unit_head *cu_header,
17753 void (*callback) (struct line_header *lh,
17754 const char *name,
ecfb656c 17755 dir_index d_index,
43988095
JK
17756 unsigned int mod_time,
17757 unsigned int length))
17758{
17759 gdb_byte format_count, formati;
17760 ULONGEST data_count, datai;
17761 const gdb_byte *buf = *bufp;
17762 const gdb_byte *format_header_data;
17763 int i;
17764 unsigned int bytes_read;
17765
17766 format_count = read_1_byte (abfd, buf);
17767 buf += 1;
17768 format_header_data = buf;
17769 for (formati = 0; formati < format_count; formati++)
17770 {
17771 read_unsigned_leb128 (abfd, buf, &bytes_read);
17772 buf += bytes_read;
17773 read_unsigned_leb128 (abfd, buf, &bytes_read);
17774 buf += bytes_read;
17775 }
17776
17777 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17778 buf += bytes_read;
17779 for (datai = 0; datai < data_count; datai++)
17780 {
17781 const gdb_byte *format = format_header_data;
17782 struct file_entry fe;
17783
43988095
JK
17784 for (formati = 0; formati < format_count; formati++)
17785 {
ecfb656c 17786 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17787 format += bytes_read;
43988095 17788
ecfb656c 17789 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17790 format += bytes_read;
ecfb656c
PA
17791
17792 gdb::optional<const char *> string;
17793 gdb::optional<unsigned int> uint;
17794
43988095
JK
17795 switch (form)
17796 {
17797 case DW_FORM_string:
ecfb656c 17798 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
17799 buf += bytes_read;
17800 break;
17801
17802 case DW_FORM_line_strp:
ecfb656c
PA
17803 string.emplace (read_indirect_line_string (abfd, buf,
17804 cu_header,
17805 &bytes_read));
43988095
JK
17806 buf += bytes_read;
17807 break;
17808
17809 case DW_FORM_data1:
ecfb656c 17810 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
17811 buf += 1;
17812 break;
17813
17814 case DW_FORM_data2:
ecfb656c 17815 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
17816 buf += 2;
17817 break;
17818
17819 case DW_FORM_data4:
ecfb656c 17820 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
17821 buf += 4;
17822 break;
17823
17824 case DW_FORM_data8:
ecfb656c 17825 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
17826 buf += 8;
17827 break;
17828
17829 case DW_FORM_udata:
ecfb656c 17830 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
17831 buf += bytes_read;
17832 break;
17833
17834 case DW_FORM_block:
17835 /* It is valid only for DW_LNCT_timestamp which is ignored by
17836 current GDB. */
17837 break;
17838 }
ecfb656c
PA
17839
17840 switch (content_type)
17841 {
17842 case DW_LNCT_path:
17843 if (string.has_value ())
17844 fe.name = *string;
17845 break;
17846 case DW_LNCT_directory_index:
17847 if (uint.has_value ())
17848 fe.d_index = (dir_index) *uint;
17849 break;
17850 case DW_LNCT_timestamp:
17851 if (uint.has_value ())
17852 fe.mod_time = *uint;
17853 break;
17854 case DW_LNCT_size:
17855 if (uint.has_value ())
17856 fe.length = *uint;
17857 break;
17858 case DW_LNCT_MD5:
17859 break;
17860 default:
17861 complaint (&symfile_complaints,
17862 _("Unknown format content type %s"),
17863 pulongest (content_type));
17864 }
43988095
JK
17865 }
17866
ecfb656c 17867 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
17868 }
17869
17870 *bufp = buf;
17871}
17872
debd256d 17873/* Read the statement program header starting at OFFSET in
3019eac3 17874 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17875 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17876 Returns NULL if there is a problem reading the header, e.g., if it
17877 has a version we don't understand.
debd256d
JB
17878
17879 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17880 the returned object point into the dwarf line section buffer,
17881 and must not be freed. */
ae2de4f8 17882
fff8551c 17883static line_header_up
9c541725 17884dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 17885{
d521ce57 17886 const gdb_byte *line_ptr;
c764a876 17887 unsigned int bytes_read, offset_size;
debd256d 17888 int i;
d521ce57 17889 const char *cur_dir, *cur_file;
3019eac3
DE
17890 struct dwarf2_section_info *section;
17891 bfd *abfd;
17892
36586728 17893 section = get_debug_line_section (cu);
3019eac3
DE
17894 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17895 if (section->buffer == NULL)
debd256d 17896 {
3019eac3
DE
17897 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17898 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17899 else
17900 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17901 return 0;
17902 }
17903
fceca515
DE
17904 /* We can't do this until we know the section is non-empty.
17905 Only then do we know we have such a section. */
a32a8923 17906 abfd = get_section_bfd_owner (section);
fceca515 17907
a738430d
MK
17908 /* Make sure that at least there's room for the total_length field.
17909 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 17910 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 17911 {
4d3c2250 17912 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17913 return 0;
17914 }
17915
fff8551c 17916 line_header_up lh (new line_header ());
debd256d 17917
9c541725 17918 lh->sect_off = sect_off;
527f3840
JK
17919 lh->offset_in_dwz = cu->per_cu->is_dwz;
17920
9c541725 17921 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 17922
a738430d 17923 /* Read in the header. */
6e70227d 17924 lh->total_length =
c764a876
DE
17925 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17926 &bytes_read, &offset_size);
debd256d 17927 line_ptr += bytes_read;
3019eac3 17928 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17929 {
4d3c2250 17930 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17931 return 0;
17932 }
17933 lh->statement_program_end = line_ptr + lh->total_length;
17934 lh->version = read_2_bytes (abfd, line_ptr);
17935 line_ptr += 2;
43988095 17936 if (lh->version > 5)
cd366ee8
DE
17937 {
17938 /* This is a version we don't understand. The format could have
17939 changed in ways we don't handle properly so just punt. */
17940 complaint (&symfile_complaints,
17941 _("unsupported version in .debug_line section"));
17942 return NULL;
17943 }
43988095
JK
17944 if (lh->version >= 5)
17945 {
17946 gdb_byte segment_selector_size;
17947
17948 /* Skip address size. */
17949 read_1_byte (abfd, line_ptr);
17950 line_ptr += 1;
17951
17952 segment_selector_size = read_1_byte (abfd, line_ptr);
17953 line_ptr += 1;
17954 if (segment_selector_size != 0)
17955 {
17956 complaint (&symfile_complaints,
17957 _("unsupported segment selector size %u "
17958 "in .debug_line section"),
17959 segment_selector_size);
17960 return NULL;
17961 }
17962 }
c764a876
DE
17963 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17964 line_ptr += offset_size;
debd256d
JB
17965 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17966 line_ptr += 1;
2dc7f7b3
TT
17967 if (lh->version >= 4)
17968 {
17969 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17970 line_ptr += 1;
17971 }
17972 else
17973 lh->maximum_ops_per_instruction = 1;
17974
17975 if (lh->maximum_ops_per_instruction == 0)
17976 {
17977 lh->maximum_ops_per_instruction = 1;
17978 complaint (&symfile_complaints,
3e43a32a
MS
17979 _("invalid maximum_ops_per_instruction "
17980 "in `.debug_line' section"));
2dc7f7b3
TT
17981 }
17982
debd256d
JB
17983 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17984 line_ptr += 1;
17985 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17986 line_ptr += 1;
17987 lh->line_range = read_1_byte (abfd, line_ptr);
17988 line_ptr += 1;
17989 lh->opcode_base = read_1_byte (abfd, line_ptr);
17990 line_ptr += 1;
fff8551c 17991 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
17992
17993 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17994 for (i = 1; i < lh->opcode_base; ++i)
17995 {
17996 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17997 line_ptr += 1;
17998 }
17999
43988095 18000 if (lh->version >= 5)
debd256d 18001 {
43988095 18002 /* Read directory table. */
fff8551c
PA
18003 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18004 [] (struct line_header *lh, const char *name,
ecfb656c 18005 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18006 unsigned int length)
18007 {
18008 lh->add_include_dir (name);
18009 });
debd256d 18010
43988095 18011 /* Read file name table. */
fff8551c
PA
18012 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18013 [] (struct line_header *lh, const char *name,
ecfb656c 18014 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18015 unsigned int length)
18016 {
ecfb656c 18017 lh->add_file_name (name, d_index, mod_time, length);
fff8551c 18018 });
43988095
JK
18019 }
18020 else
debd256d 18021 {
43988095
JK
18022 /* Read directory table. */
18023 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18024 {
18025 line_ptr += bytes_read;
fff8551c 18026 lh->add_include_dir (cur_dir);
43988095 18027 }
debd256d
JB
18028 line_ptr += bytes_read;
18029
43988095
JK
18030 /* Read file name table. */
18031 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18032 {
ecfb656c
PA
18033 unsigned int mod_time, length;
18034 dir_index d_index;
43988095
JK
18035
18036 line_ptr += bytes_read;
ecfb656c 18037 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
18038 line_ptr += bytes_read;
18039 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18040 line_ptr += bytes_read;
18041 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18042 line_ptr += bytes_read;
18043
ecfb656c 18044 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
18045 }
18046 line_ptr += bytes_read;
debd256d 18047 }
6e70227d 18048 lh->statement_program_start = line_ptr;
debd256d 18049
3019eac3 18050 if (line_ptr > (section->buffer + section->size))
4d3c2250 18051 complaint (&symfile_complaints,
3e43a32a
MS
18052 _("line number info header doesn't "
18053 "fit in `.debug_line' section"));
debd256d 18054
debd256d
JB
18055 return lh;
18056}
c906108c 18057
c6da4cef
DE
18058/* Subroutine of dwarf_decode_lines to simplify it.
18059 Return the file name of the psymtab for included file FILE_INDEX
18060 in line header LH of PST.
18061 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18062 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
18063 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18064
18065 The function creates dangling cleanup registration. */
c6da4cef 18066
d521ce57 18067static const char *
c6da4cef
DE
18068psymtab_include_file_name (const struct line_header *lh, int file_index,
18069 const struct partial_symtab *pst,
18070 const char *comp_dir)
18071{
8c43009f 18072 const file_entry &fe = lh->file_names[file_index];
d521ce57
TT
18073 const char *include_name = fe.name;
18074 const char *include_name_to_compare = include_name;
72b9f47f
TT
18075 const char *pst_filename;
18076 char *copied_name = NULL;
c6da4cef
DE
18077 int file_is_pst;
18078
8c43009f 18079 const char *dir_name = fe.include_dir (lh);
c6da4cef
DE
18080
18081 if (!IS_ABSOLUTE_PATH (include_name)
18082 && (dir_name != NULL || comp_dir != NULL))
18083 {
18084 /* Avoid creating a duplicate psymtab for PST.
18085 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18086 Before we do the comparison, however, we need to account
18087 for DIR_NAME and COMP_DIR.
18088 First prepend dir_name (if non-NULL). If we still don't
18089 have an absolute path prepend comp_dir (if non-NULL).
18090 However, the directory we record in the include-file's
18091 psymtab does not contain COMP_DIR (to match the
18092 corresponding symtab(s)).
18093
18094 Example:
18095
18096 bash$ cd /tmp
18097 bash$ gcc -g ./hello.c
18098 include_name = "hello.c"
18099 dir_name = "."
18100 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
18101 DW_AT_name = "./hello.c"
18102
18103 */
c6da4cef
DE
18104
18105 if (dir_name != NULL)
18106 {
d521ce57
TT
18107 char *tem = concat (dir_name, SLASH_STRING,
18108 include_name, (char *)NULL);
18109
18110 make_cleanup (xfree, tem);
18111 include_name = tem;
c6da4cef 18112 include_name_to_compare = include_name;
c6da4cef
DE
18113 }
18114 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18115 {
d521ce57
TT
18116 char *tem = concat (comp_dir, SLASH_STRING,
18117 include_name, (char *)NULL);
18118
18119 make_cleanup (xfree, tem);
18120 include_name_to_compare = tem;
c6da4cef
DE
18121 }
18122 }
18123
18124 pst_filename = pst->filename;
18125 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18126 {
72b9f47f
TT
18127 copied_name = concat (pst->dirname, SLASH_STRING,
18128 pst_filename, (char *)NULL);
18129 pst_filename = copied_name;
c6da4cef
DE
18130 }
18131
1e3fad37 18132 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 18133
72b9f47f
TT
18134 if (copied_name != NULL)
18135 xfree (copied_name);
c6da4cef
DE
18136
18137 if (file_is_pst)
18138 return NULL;
18139 return include_name;
18140}
18141
d9b3de22
DE
18142/* State machine to track the state of the line number program. */
18143
6f77053d 18144class lnp_state_machine
d9b3de22 18145{
6f77053d
PA
18146public:
18147 /* Initialize a machine state for the start of a line number
18148 program. */
18149 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18150
8c43009f
PA
18151 file_entry *current_file ()
18152 {
18153 /* lh->file_names is 0-based, but the file name numbers in the
18154 statement program are 1-based. */
6f77053d
PA
18155 return m_line_header->file_name_at (m_file);
18156 }
18157
18158 /* Record the line in the state machine. END_SEQUENCE is true if
18159 we're processing the end of a sequence. */
18160 void record_line (bool end_sequence);
18161
18162 /* Check address and if invalid nop-out the rest of the lines in this
18163 sequence. */
18164 void check_line_address (struct dwarf2_cu *cu,
18165 const gdb_byte *line_ptr,
18166 CORE_ADDR lowpc, CORE_ADDR address);
18167
18168 void handle_set_discriminator (unsigned int discriminator)
18169 {
18170 m_discriminator = discriminator;
18171 m_line_has_non_zero_discriminator |= discriminator != 0;
18172 }
18173
18174 /* Handle DW_LNE_set_address. */
18175 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18176 {
18177 m_op_index = 0;
18178 address += baseaddr;
18179 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18180 }
18181
18182 /* Handle DW_LNS_advance_pc. */
18183 void handle_advance_pc (CORE_ADDR adjust);
18184
18185 /* Handle a special opcode. */
18186 void handle_special_opcode (unsigned char op_code);
18187
18188 /* Handle DW_LNS_advance_line. */
18189 void handle_advance_line (int line_delta)
18190 {
18191 advance_line (line_delta);
18192 }
18193
18194 /* Handle DW_LNS_set_file. */
18195 void handle_set_file (file_name_index file);
18196
18197 /* Handle DW_LNS_negate_stmt. */
18198 void handle_negate_stmt ()
18199 {
18200 m_is_stmt = !m_is_stmt;
18201 }
18202
18203 /* Handle DW_LNS_const_add_pc. */
18204 void handle_const_add_pc ();
18205
18206 /* Handle DW_LNS_fixed_advance_pc. */
18207 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18208 {
18209 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18210 m_op_index = 0;
18211 }
18212
18213 /* Handle DW_LNS_copy. */
18214 void handle_copy ()
18215 {
18216 record_line (false);
18217 m_discriminator = 0;
18218 }
18219
18220 /* Handle DW_LNE_end_sequence. */
18221 void handle_end_sequence ()
18222 {
18223 m_record_line_callback = ::record_line;
18224 }
18225
18226private:
18227 /* Advance the line by LINE_DELTA. */
18228 void advance_line (int line_delta)
18229 {
18230 m_line += line_delta;
18231
18232 if (line_delta != 0)
18233 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
18234 }
18235
6f77053d
PA
18236 gdbarch *m_gdbarch;
18237
18238 /* True if we're recording lines.
18239 Otherwise we're building partial symtabs and are just interested in
18240 finding include files mentioned by the line number program. */
18241 bool m_record_lines_p;
18242
8c43009f 18243 /* The line number header. */
6f77053d 18244 line_header *m_line_header;
8c43009f 18245
6f77053d
PA
18246 /* These are part of the standard DWARF line number state machine,
18247 and initialized according to the DWARF spec. */
d9b3de22 18248
6f77053d 18249 unsigned char m_op_index = 0;
8c43009f 18250 /* The line table index (1-based) of the current file. */
6f77053d
PA
18251 file_name_index m_file = (file_name_index) 1;
18252 unsigned int m_line = 1;
18253
18254 /* These are initialized in the constructor. */
18255
18256 CORE_ADDR m_address;
18257 bool m_is_stmt;
18258 unsigned int m_discriminator;
d9b3de22
DE
18259
18260 /* Additional bits of state we need to track. */
18261
18262 /* The last file that we called dwarf2_start_subfile for.
18263 This is only used for TLLs. */
6f77053d 18264 unsigned int m_last_file = 0;
d9b3de22 18265 /* The last file a line number was recorded for. */
6f77053d 18266 struct subfile *m_last_subfile = NULL;
d9b3de22
DE
18267
18268 /* The function to call to record a line. */
6f77053d 18269 record_line_ftype *m_record_line_callback = NULL;
d9b3de22
DE
18270
18271 /* The last line number that was recorded, used to coalesce
18272 consecutive entries for the same line. This can happen, for
18273 example, when discriminators are present. PR 17276. */
6f77053d
PA
18274 unsigned int m_last_line = 0;
18275 bool m_line_has_non_zero_discriminator = false;
8c43009f 18276};
d9b3de22 18277
6f77053d
PA
18278void
18279lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18280{
18281 CORE_ADDR addr_adj = (((m_op_index + adjust)
18282 / m_line_header->maximum_ops_per_instruction)
18283 * m_line_header->minimum_instruction_length);
18284 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18285 m_op_index = ((m_op_index + adjust)
18286 % m_line_header->maximum_ops_per_instruction);
18287}
d9b3de22 18288
6f77053d
PA
18289void
18290lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 18291{
6f77053d
PA
18292 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18293 CORE_ADDR addr_adj = (((m_op_index
18294 + (adj_opcode / m_line_header->line_range))
18295 / m_line_header->maximum_ops_per_instruction)
18296 * m_line_header->minimum_instruction_length);
18297 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18298 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18299 % m_line_header->maximum_ops_per_instruction);
d9b3de22 18300
6f77053d
PA
18301 int line_delta = (m_line_header->line_base
18302 + (adj_opcode % m_line_header->line_range));
18303 advance_line (line_delta);
18304 record_line (false);
18305 m_discriminator = 0;
18306}
d9b3de22 18307
6f77053d
PA
18308void
18309lnp_state_machine::handle_set_file (file_name_index file)
18310{
18311 m_file = file;
18312
18313 const file_entry *fe = current_file ();
18314 if (fe == NULL)
18315 dwarf2_debug_line_missing_file_complaint ();
18316 else if (m_record_lines_p)
18317 {
18318 const char *dir = fe->include_dir (m_line_header);
18319
18320 m_last_subfile = current_subfile;
18321 m_line_has_non_zero_discriminator = m_discriminator != 0;
18322 dwarf2_start_subfile (fe->name, dir);
18323 }
18324}
18325
18326void
18327lnp_state_machine::handle_const_add_pc ()
18328{
18329 CORE_ADDR adjust
18330 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18331
18332 CORE_ADDR addr_adj
18333 = (((m_op_index + adjust)
18334 / m_line_header->maximum_ops_per_instruction)
18335 * m_line_header->minimum_instruction_length);
18336
18337 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18338 m_op_index = ((m_op_index + adjust)
18339 % m_line_header->maximum_ops_per_instruction);
18340}
d9b3de22 18341
c91513d8
PP
18342/* Ignore this record_line request. */
18343
18344static void
18345noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18346{
18347 return;
18348}
18349
a05a36a5
DE
18350/* Return non-zero if we should add LINE to the line number table.
18351 LINE is the line to add, LAST_LINE is the last line that was added,
18352 LAST_SUBFILE is the subfile for LAST_LINE.
18353 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18354 had a non-zero discriminator.
18355
18356 We have to be careful in the presence of discriminators.
18357 E.g., for this line:
18358
18359 for (i = 0; i < 100000; i++);
18360
18361 clang can emit four line number entries for that one line,
18362 each with a different discriminator.
18363 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18364
18365 However, we want gdb to coalesce all four entries into one.
18366 Otherwise the user could stepi into the middle of the line and
18367 gdb would get confused about whether the pc really was in the
18368 middle of the line.
18369
18370 Things are further complicated by the fact that two consecutive
18371 line number entries for the same line is a heuristic used by gcc
18372 to denote the end of the prologue. So we can't just discard duplicate
18373 entries, we have to be selective about it. The heuristic we use is
18374 that we only collapse consecutive entries for the same line if at least
18375 one of those entries has a non-zero discriminator. PR 17276.
18376
18377 Note: Addresses in the line number state machine can never go backwards
18378 within one sequence, thus this coalescing is ok. */
18379
18380static int
18381dwarf_record_line_p (unsigned int line, unsigned int last_line,
18382 int line_has_non_zero_discriminator,
18383 struct subfile *last_subfile)
18384{
18385 if (current_subfile != last_subfile)
18386 return 1;
18387 if (line != last_line)
18388 return 1;
18389 /* Same line for the same file that we've seen already.
18390 As a last check, for pr 17276, only record the line if the line
18391 has never had a non-zero discriminator. */
18392 if (!line_has_non_zero_discriminator)
18393 return 1;
18394 return 0;
18395}
18396
252a6764
DE
18397/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18398 in the line table of subfile SUBFILE. */
18399
18400static void
d9b3de22
DE
18401dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18402 unsigned int line, CORE_ADDR address,
18403 record_line_ftype p_record_line)
252a6764
DE
18404{
18405 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18406
27e0867f
DE
18407 if (dwarf_line_debug)
18408 {
18409 fprintf_unfiltered (gdb_stdlog,
18410 "Recording line %u, file %s, address %s\n",
18411 line, lbasename (subfile->name),
18412 paddress (gdbarch, address));
18413 }
18414
d5962de5 18415 (*p_record_line) (subfile, line, addr);
252a6764
DE
18416}
18417
18418/* Subroutine of dwarf_decode_lines_1 to simplify it.
18419 Mark the end of a set of line number records.
d9b3de22 18420 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
18421 If SUBFILE is NULL the request is ignored. */
18422
18423static void
18424dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18425 CORE_ADDR address, record_line_ftype p_record_line)
18426{
27e0867f
DE
18427 if (subfile == NULL)
18428 return;
18429
18430 if (dwarf_line_debug)
18431 {
18432 fprintf_unfiltered (gdb_stdlog,
18433 "Finishing current line, file %s, address %s\n",
18434 lbasename (subfile->name),
18435 paddress (gdbarch, address));
18436 }
18437
d9b3de22
DE
18438 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18439}
18440
6f77053d
PA
18441void
18442lnp_state_machine::record_line (bool end_sequence)
d9b3de22 18443{
d9b3de22
DE
18444 if (dwarf_line_debug)
18445 {
18446 fprintf_unfiltered (gdb_stdlog,
18447 "Processing actual line %u: file %u,"
18448 " address %s, is_stmt %u, discrim %u\n",
6f77053d
PA
18449 m_line, to_underlying (m_file),
18450 paddress (m_gdbarch, m_address),
18451 m_is_stmt, m_discriminator);
d9b3de22
DE
18452 }
18453
6f77053d 18454 file_entry *fe = current_file ();
8c43009f
PA
18455
18456 if (fe == NULL)
d9b3de22
DE
18457 dwarf2_debug_line_missing_file_complaint ();
18458 /* For now we ignore lines not starting on an instruction boundary.
18459 But not when processing end_sequence for compatibility with the
18460 previous version of the code. */
6f77053d 18461 else if (m_op_index == 0 || end_sequence)
d9b3de22 18462 {
8c43009f 18463 fe->included_p = 1;
6f77053d 18464 if (m_record_lines_p && m_is_stmt)
d9b3de22 18465 {
6f77053d 18466 if (m_last_subfile != current_subfile || end_sequence)
d9b3de22 18467 {
6f77053d
PA
18468 dwarf_finish_line (m_gdbarch, m_last_subfile,
18469 m_address, m_record_line_callback);
d9b3de22
DE
18470 }
18471
18472 if (!end_sequence)
18473 {
6f77053d
PA
18474 if (dwarf_record_line_p (m_line, m_last_line,
18475 m_line_has_non_zero_discriminator,
18476 m_last_subfile))
d9b3de22 18477 {
6f77053d
PA
18478 dwarf_record_line_1 (m_gdbarch, current_subfile,
18479 m_line, m_address,
18480 m_record_line_callback);
d9b3de22 18481 }
6f77053d
PA
18482 m_last_subfile = current_subfile;
18483 m_last_line = m_line;
d9b3de22
DE
18484 }
18485 }
18486 }
18487}
18488
6f77053d
PA
18489lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18490 bool record_lines_p)
d9b3de22 18491{
6f77053d
PA
18492 m_gdbarch = arch;
18493 m_record_lines_p = record_lines_p;
18494 m_line_header = lh;
d9b3de22 18495
6f77053d 18496 m_record_line_callback = ::record_line;
d9b3de22 18497
d9b3de22
DE
18498 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18499 was a line entry for it so that the backend has a chance to adjust it
18500 and also record it in case it needs it. This is currently used by MIPS
18501 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
18502 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18503 m_is_stmt = lh->default_is_stmt;
18504 m_discriminator = 0;
252a6764
DE
18505}
18506
6f77053d
PA
18507void
18508lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18509 const gdb_byte *line_ptr,
18510 CORE_ADDR lowpc, CORE_ADDR address)
924c2928
DE
18511{
18512 /* If address < lowpc then it's not a usable value, it's outside the
18513 pc range of the CU. However, we restrict the test to only address
18514 values of zero to preserve GDB's previous behaviour which is to
18515 handle the specific case of a function being GC'd by the linker. */
18516
18517 if (address == 0 && address < lowpc)
18518 {
18519 /* This line table is for a function which has been
18520 GCd by the linker. Ignore it. PR gdb/12528 */
18521
18522 struct objfile *objfile = cu->objfile;
18523 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18524
18525 complaint (&symfile_complaints,
18526 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18527 line_offset, objfile_name (objfile));
6f77053d
PA
18528 m_record_line_callback = noop_record_line;
18529 /* Note: record_line_callback is left as noop_record_line until
18530 we see DW_LNE_end_sequence. */
924c2928
DE
18531 }
18532}
18533
f3f5162e 18534/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
18535 Process the line number information in LH.
18536 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18537 program in order to set included_p for every referenced header. */
debd256d 18538
c906108c 18539static void
43f3e411
DE
18540dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18541 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 18542{
d521ce57
TT
18543 const gdb_byte *line_ptr, *extended_end;
18544 const gdb_byte *line_end;
a8c50c1f 18545 unsigned int bytes_read, extended_len;
699ca60a 18546 unsigned char op_code, extended_op;
e142c38c
DJ
18547 CORE_ADDR baseaddr;
18548 struct objfile *objfile = cu->objfile;
f3f5162e 18549 bfd *abfd = objfile->obfd;
fbf65064 18550 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
18551 /* True if we're recording line info (as opposed to building partial
18552 symtabs and just interested in finding include files mentioned by
18553 the line number program). */
18554 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
18555
18556 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18557
debd256d
JB
18558 line_ptr = lh->statement_program_start;
18559 line_end = lh->statement_program_end;
c906108c
SS
18560
18561 /* Read the statement sequences until there's nothing left. */
18562 while (line_ptr < line_end)
18563 {
6f77053d
PA
18564 /* The DWARF line number program state machine. Reset the state
18565 machine at the start of each sequence. */
18566 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18567 bool end_sequence = false;
d9b3de22 18568
8c43009f 18569 if (record_lines_p)
c906108c 18570 {
8c43009f
PA
18571 /* Start a subfile for the current file of the state
18572 machine. */
18573 const file_entry *fe = state_machine.current_file ();
18574
18575 if (fe != NULL)
18576 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
c906108c
SS
18577 }
18578
a738430d 18579 /* Decode the table. */
d9b3de22 18580 while (line_ptr < line_end && !end_sequence)
c906108c
SS
18581 {
18582 op_code = read_1_byte (abfd, line_ptr);
18583 line_ptr += 1;
9aa1fe7e 18584
debd256d 18585 if (op_code >= lh->opcode_base)
6e70227d 18586 {
8e07a239 18587 /* Special opcode. */
6f77053d 18588 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
18589 }
18590 else switch (op_code)
c906108c
SS
18591 {
18592 case DW_LNS_extended_op:
3e43a32a
MS
18593 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18594 &bytes_read);
473b7be6 18595 line_ptr += bytes_read;
a8c50c1f 18596 extended_end = line_ptr + extended_len;
c906108c
SS
18597 extended_op = read_1_byte (abfd, line_ptr);
18598 line_ptr += 1;
18599 switch (extended_op)
18600 {
18601 case DW_LNE_end_sequence:
6f77053d
PA
18602 state_machine.handle_end_sequence ();
18603 end_sequence = true;
c906108c
SS
18604 break;
18605 case DW_LNE_set_address:
d9b3de22
DE
18606 {
18607 CORE_ADDR address
18608 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 18609 line_ptr += bytes_read;
6f77053d
PA
18610
18611 state_machine.check_line_address (cu, line_ptr,
18612 lowpc, address);
18613 state_machine.handle_set_address (baseaddr, address);
d9b3de22 18614 }
c906108c
SS
18615 break;
18616 case DW_LNE_define_file:
debd256d 18617 {
d521ce57 18618 const char *cur_file;
ecfb656c
PA
18619 unsigned int mod_time, length;
18620 dir_index dindex;
6e70227d 18621
3e43a32a
MS
18622 cur_file = read_direct_string (abfd, line_ptr,
18623 &bytes_read);
debd256d 18624 line_ptr += bytes_read;
ecfb656c 18625 dindex = (dir_index)
debd256d
JB
18626 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18627 line_ptr += bytes_read;
18628 mod_time =
18629 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18630 line_ptr += bytes_read;
18631 length =
18632 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18633 line_ptr += bytes_read;
ecfb656c 18634 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 18635 }
c906108c 18636 break;
d0c6ba3d 18637 case DW_LNE_set_discriminator:
6f77053d
PA
18638 {
18639 /* The discriminator is not interesting to the
18640 debugger; just ignore it. We still need to
18641 check its value though:
18642 if there are consecutive entries for the same
18643 (non-prologue) line we want to coalesce them.
18644 PR 17276. */
18645 unsigned int discr
18646 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18647 line_ptr += bytes_read;
18648
18649 state_machine.handle_set_discriminator (discr);
18650 }
d0c6ba3d 18651 break;
c906108c 18652 default:
4d3c2250 18653 complaint (&symfile_complaints,
e2e0b3e5 18654 _("mangled .debug_line section"));
debd256d 18655 return;
c906108c 18656 }
a8c50c1f
DJ
18657 /* Make sure that we parsed the extended op correctly. If e.g.
18658 we expected a different address size than the producer used,
18659 we may have read the wrong number of bytes. */
18660 if (line_ptr != extended_end)
18661 {
18662 complaint (&symfile_complaints,
18663 _("mangled .debug_line section"));
18664 return;
18665 }
c906108c
SS
18666 break;
18667 case DW_LNS_copy:
6f77053d 18668 state_machine.handle_copy ();
c906108c
SS
18669 break;
18670 case DW_LNS_advance_pc:
2dc7f7b3
TT
18671 {
18672 CORE_ADDR adjust
18673 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 18674 line_ptr += bytes_read;
6f77053d
PA
18675
18676 state_machine.handle_advance_pc (adjust);
2dc7f7b3 18677 }
c906108c
SS
18678 break;
18679 case DW_LNS_advance_line:
a05a36a5
DE
18680 {
18681 int line_delta
18682 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 18683 line_ptr += bytes_read;
6f77053d
PA
18684
18685 state_machine.handle_advance_line (line_delta);
a05a36a5 18686 }
c906108c
SS
18687 break;
18688 case DW_LNS_set_file:
d9b3de22 18689 {
6f77053d 18690 file_name_index file
ecfb656c
PA
18691 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18692 &bytes_read);
d9b3de22 18693 line_ptr += bytes_read;
8c43009f 18694
6f77053d 18695 state_machine.handle_set_file (file);
d9b3de22 18696 }
c906108c
SS
18697 break;
18698 case DW_LNS_set_column:
0ad93d4f 18699 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18700 line_ptr += bytes_read;
18701 break;
18702 case DW_LNS_negate_stmt:
6f77053d 18703 state_machine.handle_negate_stmt ();
c906108c
SS
18704 break;
18705 case DW_LNS_set_basic_block:
c906108c 18706 break;
c2c6d25f
JM
18707 /* Add to the address register of the state machine the
18708 address increment value corresponding to special opcode
a738430d
MK
18709 255. I.e., this value is scaled by the minimum
18710 instruction length since special opcode 255 would have
b021a221 18711 scaled the increment. */
c906108c 18712 case DW_LNS_const_add_pc:
6f77053d 18713 state_machine.handle_const_add_pc ();
c906108c
SS
18714 break;
18715 case DW_LNS_fixed_advance_pc:
3e29f34a 18716 {
6f77053d 18717 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 18718 line_ptr += 2;
6f77053d
PA
18719
18720 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 18721 }
c906108c 18722 break;
9aa1fe7e 18723 default:
a738430d
MK
18724 {
18725 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18726 int i;
a738430d 18727
debd256d 18728 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18729 {
18730 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18731 line_ptr += bytes_read;
18732 }
18733 }
c906108c
SS
18734 }
18735 }
d9b3de22
DE
18736
18737 if (!end_sequence)
18738 dwarf2_debug_line_missing_end_sequence_complaint ();
18739
18740 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18741 in which case we still finish recording the last line). */
6f77053d 18742 state_machine.record_line (true);
c906108c 18743 }
f3f5162e
DE
18744}
18745
18746/* Decode the Line Number Program (LNP) for the given line_header
18747 structure and CU. The actual information extracted and the type
18748 of structures created from the LNP depends on the value of PST.
18749
18750 1. If PST is NULL, then this procedure uses the data from the program
18751 to create all necessary symbol tables, and their linetables.
18752
18753 2. If PST is not NULL, this procedure reads the program to determine
18754 the list of files included by the unit represented by PST, and
18755 builds all the associated partial symbol tables.
18756
18757 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18758 It is used for relative paths in the line table.
18759 NOTE: When processing partial symtabs (pst != NULL),
18760 comp_dir == pst->dirname.
18761
18762 NOTE: It is important that psymtabs have the same file name (via strcmp)
18763 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18764 symtab we don't use it in the name of the psymtabs we create.
18765 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18766 A good testcase for this is mb-inline.exp.
18767
527f3840
JK
18768 LOWPC is the lowest address in CU (or 0 if not known).
18769
18770 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18771 for its PC<->lines mapping information. Otherwise only the filename
18772 table is read in. */
f3f5162e
DE
18773
18774static void
18775dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18776 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18777 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18778{
18779 struct objfile *objfile = cu->objfile;
18780 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18781
527f3840
JK
18782 if (decode_mapping)
18783 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18784
18785 if (decode_for_pst_p)
18786 {
18787 int file_index;
18788
18789 /* Now that we're done scanning the Line Header Program, we can
18790 create the psymtab of each included file. */
fff8551c 18791 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
aaa75496
JB
18792 if (lh->file_names[file_index].included_p == 1)
18793 {
d521ce57 18794 const char *include_name =
c6da4cef
DE
18795 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18796 if (include_name != NULL)
aaa75496
JB
18797 dwarf2_create_include_psymtab (include_name, pst, objfile);
18798 }
18799 }
cb1df416
DJ
18800 else
18801 {
18802 /* Make sure a symtab is created for every file, even files
18803 which contain only variables (i.e. no code with associated
18804 line numbers). */
43f3e411 18805 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18806 int i;
cb1df416 18807
fff8551c 18808 for (i = 0; i < lh->file_names.size (); i++)
cb1df416 18809 {
8c43009f 18810 file_entry &fe = lh->file_names[i];
9a619af0 18811
8c43009f 18812 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
cb1df416 18813
cb1df416 18814 if (current_subfile->symtab == NULL)
43f3e411
DE
18815 {
18816 current_subfile->symtab
18817 = allocate_symtab (cust, current_subfile->name);
18818 }
8c43009f 18819 fe.symtab = current_subfile->symtab;
cb1df416
DJ
18820 }
18821 }
c906108c
SS
18822}
18823
18824/* Start a subfile for DWARF. FILENAME is the name of the file and
18825 DIRNAME the name of the source directory which contains FILENAME
4d663531 18826 or NULL if not known.
c906108c
SS
18827 This routine tries to keep line numbers from identical absolute and
18828 relative file names in a common subfile.
18829
18830 Using the `list' example from the GDB testsuite, which resides in
18831 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18832 of /srcdir/list0.c yields the following debugging information for list0.c:
18833
c5aa993b 18834 DW_AT_name: /srcdir/list0.c
4d663531 18835 DW_AT_comp_dir: /compdir
357e46e7 18836 files.files[0].name: list0.h
c5aa993b 18837 files.files[0].dir: /srcdir
357e46e7 18838 files.files[1].name: list0.c
c5aa993b 18839 files.files[1].dir: /srcdir
c906108c
SS
18840
18841 The line number information for list0.c has to end up in a single
4f1520fb
FR
18842 subfile, so that `break /srcdir/list0.c:1' works as expected.
18843 start_subfile will ensure that this happens provided that we pass the
18844 concatenation of files.files[1].dir and files.files[1].name as the
18845 subfile's name. */
c906108c
SS
18846
18847static void
4d663531 18848dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18849{
d521ce57 18850 char *copy = NULL;
4f1520fb 18851
4d663531 18852 /* In order not to lose the line information directory,
4f1520fb
FR
18853 we concatenate it to the filename when it makes sense.
18854 Note that the Dwarf3 standard says (speaking of filenames in line
18855 information): ``The directory index is ignored for file names
18856 that represent full path names''. Thus ignoring dirname in the
18857 `else' branch below isn't an issue. */
c906108c 18858
d5166ae1 18859 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18860 {
18861 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18862 filename = copy;
18863 }
c906108c 18864
4d663531 18865 start_subfile (filename);
4f1520fb 18866
d521ce57
TT
18867 if (copy != NULL)
18868 xfree (copy);
c906108c
SS
18869}
18870
f4dc4d17
DE
18871/* Start a symtab for DWARF.
18872 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18873
43f3e411 18874static struct compunit_symtab *
f4dc4d17 18875dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18876 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18877{
43f3e411
DE
18878 struct compunit_symtab *cust
18879 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18880
f4dc4d17
DE
18881 record_debugformat ("DWARF 2");
18882 record_producer (cu->producer);
18883
18884 /* We assume that we're processing GCC output. */
18885 processing_gcc_compilation = 2;
18886
4d4ec4e5 18887 cu->processing_has_namespace_info = 0;
43f3e411
DE
18888
18889 return cust;
f4dc4d17
DE
18890}
18891
4c2df51b
DJ
18892static void
18893var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18894 struct dwarf2_cu *cu)
4c2df51b 18895{
e7c27a73
DJ
18896 struct objfile *objfile = cu->objfile;
18897 struct comp_unit_head *cu_header = &cu->header;
18898
4c2df51b
DJ
18899 /* NOTE drow/2003-01-30: There used to be a comment and some special
18900 code here to turn a symbol with DW_AT_external and a
18901 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18902 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18903 with some versions of binutils) where shared libraries could have
18904 relocations against symbols in their debug information - the
18905 minimal symbol would have the right address, but the debug info
18906 would not. It's no longer necessary, because we will explicitly
18907 apply relocations when we read in the debug information now. */
18908
18909 /* A DW_AT_location attribute with no contents indicates that a
18910 variable has been optimized away. */
18911 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18912 {
f1e6e072 18913 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18914 return;
18915 }
18916
18917 /* Handle one degenerate form of location expression specially, to
18918 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18919 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18920 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18921
18922 if (attr_form_is_block (attr)
3019eac3
DE
18923 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18924 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18925 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18926 && (DW_BLOCK (attr)->size
18927 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18928 {
891d2f0b 18929 unsigned int dummy;
4c2df51b 18930
3019eac3
DE
18931 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18932 SYMBOL_VALUE_ADDRESS (sym) =
18933 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18934 else
18935 SYMBOL_VALUE_ADDRESS (sym) =
18936 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18937 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18938 fixup_symbol_section (sym, objfile);
18939 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18940 SYMBOL_SECTION (sym));
4c2df51b
DJ
18941 return;
18942 }
18943
18944 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18945 expression evaluator, and use LOC_COMPUTED only when necessary
18946 (i.e. when the value of a register or memory location is
18947 referenced, or a thread-local block, etc.). Then again, it might
18948 not be worthwhile. I'm assuming that it isn't unless performance
18949 or memory numbers show me otherwise. */
18950
f1e6e072 18951 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18952
f1e6e072 18953 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18954 cu->has_loclist = 1;
4c2df51b
DJ
18955}
18956
c906108c
SS
18957/* Given a pointer to a DWARF information entry, figure out if we need
18958 to make a symbol table entry for it, and if so, create a new entry
18959 and return a pointer to it.
18960 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18961 used the passed type.
18962 If SPACE is not NULL, use it to hold the new symbol. If it is
18963 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18964
18965static struct symbol *
34eaf542
TT
18966new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18967 struct symbol *space)
c906108c 18968{
e7c27a73 18969 struct objfile *objfile = cu->objfile;
3e29f34a 18970 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18971 struct symbol *sym = NULL;
15d034d0 18972 const char *name;
c906108c
SS
18973 struct attribute *attr = NULL;
18974 struct attribute *attr2 = NULL;
e142c38c 18975 CORE_ADDR baseaddr;
e37fd15a
SW
18976 struct pending **list_to_add = NULL;
18977
edb3359d 18978 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18979
18980 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18981
94af9270 18982 name = dwarf2_name (die, cu);
c906108c
SS
18983 if (name)
18984 {
94af9270 18985 const char *linkagename;
34eaf542 18986 int suppress_add = 0;
94af9270 18987
34eaf542
TT
18988 if (space)
18989 sym = space;
18990 else
e623cf5d 18991 sym = allocate_symbol (objfile);
c906108c 18992 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18993
18994 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18995 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18996 linkagename = dwarf2_physname (name, die, cu);
18997 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18998
f55ee35c
JK
18999 /* Fortran does not have mangling standard and the mangling does differ
19000 between gfortran, iFort etc. */
19001 if (cu->language == language_fortran
b250c185 19002 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 19003 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 19004 dwarf2_full_name (name, die, cu),
29df156d 19005 NULL);
f55ee35c 19006
c906108c 19007 /* Default assumptions.
c5aa993b 19008 Use the passed type or decode it from the die. */
176620f1 19009 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 19010 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
19011 if (type != NULL)
19012 SYMBOL_TYPE (sym) = type;
19013 else
e7c27a73 19014 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
19015 attr = dwarf2_attr (die,
19016 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19017 cu);
c906108c
SS
19018 if (attr)
19019 {
19020 SYMBOL_LINE (sym) = DW_UNSND (attr);
19021 }
cb1df416 19022
edb3359d
DJ
19023 attr = dwarf2_attr (die,
19024 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19025 cu);
cb1df416
DJ
19026 if (attr)
19027 {
ecfb656c 19028 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 19029 struct file_entry *fe;
9a619af0 19030
ecfb656c
PA
19031 if (cu->line_header != NULL)
19032 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
19033 else
19034 fe = NULL;
19035
19036 if (fe == NULL)
cb1df416
DJ
19037 complaint (&symfile_complaints,
19038 _("file index out of range"));
8c43009f
PA
19039 else
19040 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
19041 }
19042
c906108c
SS
19043 switch (die->tag)
19044 {
19045 case DW_TAG_label:
e142c38c 19046 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 19047 if (attr)
3e29f34a
MR
19048 {
19049 CORE_ADDR addr;
19050
19051 addr = attr_value_as_address (attr);
19052 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19053 SYMBOL_VALUE_ADDRESS (sym) = addr;
19054 }
0f5238ed
TT
19055 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19056 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 19057 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 19058 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
19059 break;
19060 case DW_TAG_subprogram:
19061 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19062 finish_block. */
f1e6e072 19063 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 19064 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
19065 if ((attr2 && (DW_UNSND (attr2) != 0))
19066 || cu->language == language_ada)
c906108c 19067 {
2cfa0c8d
JB
19068 /* Subprograms marked external are stored as a global symbol.
19069 Ada subprograms, whether marked external or not, are always
19070 stored as a global symbol, because we want to be able to
19071 access them globally. For instance, we want to be able
19072 to break on a nested subprogram without having to
19073 specify the context. */
e37fd15a 19074 list_to_add = &global_symbols;
c906108c
SS
19075 }
19076 else
19077 {
e37fd15a 19078 list_to_add = cu->list_in_scope;
c906108c
SS
19079 }
19080 break;
edb3359d
DJ
19081 case DW_TAG_inlined_subroutine:
19082 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19083 finish_block. */
f1e6e072 19084 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 19085 SYMBOL_INLINED (sym) = 1;
481860b3 19086 list_to_add = cu->list_in_scope;
edb3359d 19087 break;
34eaf542
TT
19088 case DW_TAG_template_value_param:
19089 suppress_add = 1;
19090 /* Fall through. */
72929c62 19091 case DW_TAG_constant:
c906108c 19092 case DW_TAG_variable:
254e6b9e 19093 case DW_TAG_member:
0963b4bd
MS
19094 /* Compilation with minimal debug info may result in
19095 variables with missing type entries. Change the
19096 misleading `void' type to something sensible. */
c906108c 19097 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 19098 SYMBOL_TYPE (sym)
46bf5051 19099 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 19100
e142c38c 19101 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
19102 /* In the case of DW_TAG_member, we should only be called for
19103 static const members. */
19104 if (die->tag == DW_TAG_member)
19105 {
3863f96c
DE
19106 /* dwarf2_add_field uses die_is_declaration,
19107 so we do the same. */
254e6b9e
DE
19108 gdb_assert (die_is_declaration (die, cu));
19109 gdb_assert (attr);
19110 }
c906108c
SS
19111 if (attr)
19112 {
e7c27a73 19113 dwarf2_const_value (attr, sym, cu);
e142c38c 19114 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 19115 if (!suppress_add)
34eaf542
TT
19116 {
19117 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 19118 list_to_add = &global_symbols;
34eaf542 19119 else
e37fd15a 19120 list_to_add = cu->list_in_scope;
34eaf542 19121 }
c906108c
SS
19122 break;
19123 }
e142c38c 19124 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19125 if (attr)
19126 {
e7c27a73 19127 var_decode_location (attr, sym, cu);
e142c38c 19128 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
19129
19130 /* Fortran explicitly imports any global symbols to the local
19131 scope by DW_TAG_common_block. */
19132 if (cu->language == language_fortran && die->parent
19133 && die->parent->tag == DW_TAG_common_block)
19134 attr2 = NULL;
19135
caac4577
JG
19136 if (SYMBOL_CLASS (sym) == LOC_STATIC
19137 && SYMBOL_VALUE_ADDRESS (sym) == 0
19138 && !dwarf2_per_objfile->has_section_at_zero)
19139 {
19140 /* When a static variable is eliminated by the linker,
19141 the corresponding debug information is not stripped
19142 out, but the variable address is set to null;
19143 do not add such variables into symbol table. */
19144 }
19145 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 19146 {
f55ee35c
JK
19147 /* Workaround gfortran PR debug/40040 - it uses
19148 DW_AT_location for variables in -fPIC libraries which may
19149 get overriden by other libraries/executable and get
19150 a different address. Resolve it by the minimal symbol
19151 which may come from inferior's executable using copy
19152 relocation. Make this workaround only for gfortran as for
19153 other compilers GDB cannot guess the minimal symbol
19154 Fortran mangling kind. */
19155 if (cu->language == language_fortran && die->parent
19156 && die->parent->tag == DW_TAG_module
19157 && cu->producer
28586665 19158 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 19159 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 19160
1c809c68
TT
19161 /* A variable with DW_AT_external is never static,
19162 but it may be block-scoped. */
19163 list_to_add = (cu->list_in_scope == &file_symbols
19164 ? &global_symbols : cu->list_in_scope);
1c809c68 19165 }
c906108c 19166 else
e37fd15a 19167 list_to_add = cu->list_in_scope;
c906108c
SS
19168 }
19169 else
19170 {
19171 /* We do not know the address of this symbol.
c5aa993b
JM
19172 If it is an external symbol and we have type information
19173 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19174 The address of the variable will then be determined from
19175 the minimal symbol table whenever the variable is
19176 referenced. */
e142c38c 19177 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
19178
19179 /* Fortran explicitly imports any global symbols to the local
19180 scope by DW_TAG_common_block. */
19181 if (cu->language == language_fortran && die->parent
19182 && die->parent->tag == DW_TAG_common_block)
19183 {
19184 /* SYMBOL_CLASS doesn't matter here because
19185 read_common_block is going to reset it. */
19186 if (!suppress_add)
19187 list_to_add = cu->list_in_scope;
19188 }
19189 else if (attr2 && (DW_UNSND (attr2) != 0)
19190 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 19191 {
0fe7935b
DJ
19192 /* A variable with DW_AT_external is never static, but it
19193 may be block-scoped. */
19194 list_to_add = (cu->list_in_scope == &file_symbols
19195 ? &global_symbols : cu->list_in_scope);
19196
f1e6e072 19197 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 19198 }
442ddf59
JK
19199 else if (!die_is_declaration (die, cu))
19200 {
19201 /* Use the default LOC_OPTIMIZED_OUT class. */
19202 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
19203 if (!suppress_add)
19204 list_to_add = cu->list_in_scope;
442ddf59 19205 }
c906108c
SS
19206 }
19207 break;
19208 case DW_TAG_formal_parameter:
edb3359d
DJ
19209 /* If we are inside a function, mark this as an argument. If
19210 not, we might be looking at an argument to an inlined function
19211 when we do not have enough information to show inlined frames;
19212 pretend it's a local variable in that case so that the user can
19213 still see it. */
19214 if (context_stack_depth > 0
19215 && context_stack[context_stack_depth - 1].name != NULL)
19216 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 19217 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19218 if (attr)
19219 {
e7c27a73 19220 var_decode_location (attr, sym, cu);
c906108c 19221 }
e142c38c 19222 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19223 if (attr)
19224 {
e7c27a73 19225 dwarf2_const_value (attr, sym, cu);
c906108c 19226 }
f346a30d 19227
e37fd15a 19228 list_to_add = cu->list_in_scope;
c906108c
SS
19229 break;
19230 case DW_TAG_unspecified_parameters:
19231 /* From varargs functions; gdb doesn't seem to have any
19232 interest in this information, so just ignore it for now.
19233 (FIXME?) */
19234 break;
34eaf542
TT
19235 case DW_TAG_template_type_param:
19236 suppress_add = 1;
19237 /* Fall through. */
c906108c 19238 case DW_TAG_class_type:
680b30c7 19239 case DW_TAG_interface_type:
c906108c
SS
19240 case DW_TAG_structure_type:
19241 case DW_TAG_union_type:
72019c9c 19242 case DW_TAG_set_type:
c906108c 19243 case DW_TAG_enumeration_type:
f1e6e072 19244 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19245 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 19246
63d06c5c 19247 {
9c37b5ae 19248 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
19249 really ever be static objects: otherwise, if you try
19250 to, say, break of a class's method and you're in a file
19251 which doesn't mention that class, it won't work unless
19252 the check for all static symbols in lookup_symbol_aux
19253 saves you. See the OtherFileClass tests in
19254 gdb.c++/namespace.exp. */
19255
e37fd15a 19256 if (!suppress_add)
34eaf542 19257 {
34eaf542 19258 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19259 && cu->language == language_cplus
34eaf542 19260 ? &global_symbols : cu->list_in_scope);
63d06c5c 19261
64382290 19262 /* The semantics of C++ state that "struct foo {
9c37b5ae 19263 ... }" also defines a typedef for "foo". */
64382290 19264 if (cu->language == language_cplus
45280282 19265 || cu->language == language_ada
c44af4eb
TT
19266 || cu->language == language_d
19267 || cu->language == language_rust)
64382290
TT
19268 {
19269 /* The symbol's name is already allocated along
19270 with this objfile, so we don't need to
19271 duplicate it for the type. */
19272 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19273 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19274 }
63d06c5c
DC
19275 }
19276 }
c906108c
SS
19277 break;
19278 case DW_TAG_typedef:
f1e6e072 19279 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 19280 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19281 list_to_add = cu->list_in_scope;
63d06c5c 19282 break;
c906108c 19283 case DW_TAG_base_type:
a02abb62 19284 case DW_TAG_subrange_type:
f1e6e072 19285 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19286 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19287 list_to_add = cu->list_in_scope;
c906108c
SS
19288 break;
19289 case DW_TAG_enumerator:
e142c38c 19290 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19291 if (attr)
19292 {
e7c27a73 19293 dwarf2_const_value (attr, sym, cu);
c906108c 19294 }
63d06c5c
DC
19295 {
19296 /* NOTE: carlton/2003-11-10: See comment above in the
19297 DW_TAG_class_type, etc. block. */
19298
e142c38c 19299 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19300 && cu->language == language_cplus
e142c38c 19301 ? &global_symbols : cu->list_in_scope);
63d06c5c 19302 }
c906108c 19303 break;
74921315 19304 case DW_TAG_imported_declaration:
5c4e30ca 19305 case DW_TAG_namespace:
f1e6e072 19306 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 19307 list_to_add = &global_symbols;
5c4e30ca 19308 break;
530e8392
KB
19309 case DW_TAG_module:
19310 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19311 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19312 list_to_add = &global_symbols;
19313 break;
4357ac6c 19314 case DW_TAG_common_block:
f1e6e072 19315 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
19316 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19317 add_symbol_to_list (sym, cu->list_in_scope);
19318 break;
c906108c
SS
19319 default:
19320 /* Not a tag we recognize. Hopefully we aren't processing
19321 trash data, but since we must specifically ignore things
19322 we don't recognize, there is nothing else we should do at
0963b4bd 19323 this point. */
e2e0b3e5 19324 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 19325 dwarf_tag_name (die->tag));
c906108c
SS
19326 break;
19327 }
df8a16a1 19328
e37fd15a
SW
19329 if (suppress_add)
19330 {
19331 sym->hash_next = objfile->template_symbols;
19332 objfile->template_symbols = sym;
19333 list_to_add = NULL;
19334 }
19335
19336 if (list_to_add != NULL)
19337 add_symbol_to_list (sym, list_to_add);
19338
df8a16a1
DJ
19339 /* For the benefit of old versions of GCC, check for anonymous
19340 namespaces based on the demangled name. */
4d4ec4e5 19341 if (!cu->processing_has_namespace_info
94af9270 19342 && cu->language == language_cplus)
a10964d1 19343 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
19344 }
19345 return (sym);
19346}
19347
34eaf542
TT
19348/* A wrapper for new_symbol_full that always allocates a new symbol. */
19349
19350static struct symbol *
19351new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19352{
19353 return new_symbol_full (die, type, cu, NULL);
19354}
19355
98bfdba5
PA
19356/* Given an attr with a DW_FORM_dataN value in host byte order,
19357 zero-extend it as appropriate for the symbol's type. The DWARF
19358 standard (v4) is not entirely clear about the meaning of using
19359 DW_FORM_dataN for a constant with a signed type, where the type is
19360 wider than the data. The conclusion of a discussion on the DWARF
19361 list was that this is unspecified. We choose to always zero-extend
19362 because that is the interpretation long in use by GCC. */
c906108c 19363
98bfdba5 19364static gdb_byte *
ff39bb5e 19365dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 19366 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 19367{
e7c27a73 19368 struct objfile *objfile = cu->objfile;
e17a4113
UW
19369 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19370 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
19371 LONGEST l = DW_UNSND (attr);
19372
19373 if (bits < sizeof (*value) * 8)
19374 {
19375 l &= ((LONGEST) 1 << bits) - 1;
19376 *value = l;
19377 }
19378 else if (bits == sizeof (*value) * 8)
19379 *value = l;
19380 else
19381 {
224c3ddb 19382 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
19383 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19384 return bytes;
19385 }
19386
19387 return NULL;
19388}
19389
19390/* Read a constant value from an attribute. Either set *VALUE, or if
19391 the value does not fit in *VALUE, set *BYTES - either already
19392 allocated on the objfile obstack, or newly allocated on OBSTACK,
19393 or, set *BATON, if we translated the constant to a location
19394 expression. */
19395
19396static void
ff39bb5e 19397dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
19398 const char *name, struct obstack *obstack,
19399 struct dwarf2_cu *cu,
d521ce57 19400 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
19401 struct dwarf2_locexpr_baton **baton)
19402{
19403 struct objfile *objfile = cu->objfile;
19404 struct comp_unit_head *cu_header = &cu->header;
c906108c 19405 struct dwarf_block *blk;
98bfdba5
PA
19406 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19407 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19408
19409 *value = 0;
19410 *bytes = NULL;
19411 *baton = NULL;
c906108c
SS
19412
19413 switch (attr->form)
19414 {
19415 case DW_FORM_addr:
3019eac3 19416 case DW_FORM_GNU_addr_index:
ac56253d 19417 {
ac56253d
TT
19418 gdb_byte *data;
19419
98bfdba5
PA
19420 if (TYPE_LENGTH (type) != cu_header->addr_size)
19421 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 19422 cu_header->addr_size,
98bfdba5 19423 TYPE_LENGTH (type));
ac56253d
TT
19424 /* Symbols of this form are reasonably rare, so we just
19425 piggyback on the existing location code rather than writing
19426 a new implementation of symbol_computed_ops. */
8d749320 19427 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
19428 (*baton)->per_cu = cu->per_cu;
19429 gdb_assert ((*baton)->per_cu);
ac56253d 19430
98bfdba5 19431 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 19432 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 19433 (*baton)->data = data;
ac56253d
TT
19434
19435 data[0] = DW_OP_addr;
19436 store_unsigned_integer (&data[1], cu_header->addr_size,
19437 byte_order, DW_ADDR (attr));
19438 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 19439 }
c906108c 19440 break;
4ac36638 19441 case DW_FORM_string:
93b5768b 19442 case DW_FORM_strp:
3019eac3 19443 case DW_FORM_GNU_str_index:
36586728 19444 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
19445 /* DW_STRING is already allocated on the objfile obstack, point
19446 directly to it. */
d521ce57 19447 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 19448 break;
c906108c
SS
19449 case DW_FORM_block1:
19450 case DW_FORM_block2:
19451 case DW_FORM_block4:
19452 case DW_FORM_block:
2dc7f7b3 19453 case DW_FORM_exprloc:
0224619f 19454 case DW_FORM_data16:
c906108c 19455 blk = DW_BLOCK (attr);
98bfdba5
PA
19456 if (TYPE_LENGTH (type) != blk->size)
19457 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19458 TYPE_LENGTH (type));
19459 *bytes = blk->data;
c906108c 19460 break;
2df3850c
JM
19461
19462 /* The DW_AT_const_value attributes are supposed to carry the
19463 symbol's value "represented as it would be on the target
19464 architecture." By the time we get here, it's already been
19465 converted to host endianness, so we just need to sign- or
19466 zero-extend it as appropriate. */
19467 case DW_FORM_data1:
3aef2284 19468 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 19469 break;
c906108c 19470 case DW_FORM_data2:
3aef2284 19471 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 19472 break;
c906108c 19473 case DW_FORM_data4:
3aef2284 19474 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 19475 break;
c906108c 19476 case DW_FORM_data8:
3aef2284 19477 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
19478 break;
19479
c906108c 19480 case DW_FORM_sdata:
98bfdba5 19481 *value = DW_SND (attr);
2df3850c
JM
19482 break;
19483
c906108c 19484 case DW_FORM_udata:
98bfdba5 19485 *value = DW_UNSND (attr);
c906108c 19486 break;
2df3850c 19487
c906108c 19488 default:
4d3c2250 19489 complaint (&symfile_complaints,
e2e0b3e5 19490 _("unsupported const value attribute form: '%s'"),
4d3c2250 19491 dwarf_form_name (attr->form));
98bfdba5 19492 *value = 0;
c906108c
SS
19493 break;
19494 }
19495}
19496
2df3850c 19497
98bfdba5
PA
19498/* Copy constant value from an attribute to a symbol. */
19499
2df3850c 19500static void
ff39bb5e 19501dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 19502 struct dwarf2_cu *cu)
2df3850c 19503{
98bfdba5 19504 struct objfile *objfile = cu->objfile;
12df843f 19505 LONGEST value;
d521ce57 19506 const gdb_byte *bytes;
98bfdba5 19507 struct dwarf2_locexpr_baton *baton;
2df3850c 19508
98bfdba5
PA
19509 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19510 SYMBOL_PRINT_NAME (sym),
19511 &objfile->objfile_obstack, cu,
19512 &value, &bytes, &baton);
2df3850c 19513
98bfdba5
PA
19514 if (baton != NULL)
19515 {
98bfdba5 19516 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 19517 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
19518 }
19519 else if (bytes != NULL)
19520 {
19521 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 19522 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
19523 }
19524 else
19525 {
19526 SYMBOL_VALUE (sym) = value;
f1e6e072 19527 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 19528 }
2df3850c
JM
19529}
19530
c906108c
SS
19531/* Return the type of the die in question using its DW_AT_type attribute. */
19532
19533static struct type *
e7c27a73 19534die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19535{
c906108c 19536 struct attribute *type_attr;
c906108c 19537
e142c38c 19538 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
19539 if (!type_attr)
19540 {
19541 /* A missing DW_AT_type represents a void type. */
46bf5051 19542 return objfile_type (cu->objfile)->builtin_void;
c906108c 19543 }
348e048f 19544
673bfd45 19545 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19546}
19547
b4ba55a1
JB
19548/* True iff CU's producer generates GNAT Ada auxiliary information
19549 that allows to find parallel types through that information instead
19550 of having to do expensive parallel lookups by type name. */
19551
19552static int
19553need_gnat_info (struct dwarf2_cu *cu)
19554{
19555 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19556 of GNAT produces this auxiliary information, without any indication
19557 that it is produced. Part of enhancing the FSF version of GNAT
19558 to produce that information will be to put in place an indicator
19559 that we can use in order to determine whether the descriptive type
19560 info is available or not. One suggestion that has been made is
19561 to use a new attribute, attached to the CU die. For now, assume
19562 that the descriptive type info is not available. */
19563 return 0;
19564}
19565
b4ba55a1
JB
19566/* Return the auxiliary type of the die in question using its
19567 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19568 attribute is not present. */
19569
19570static struct type *
19571die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19572{
b4ba55a1 19573 struct attribute *type_attr;
b4ba55a1
JB
19574
19575 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19576 if (!type_attr)
19577 return NULL;
19578
673bfd45 19579 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
19580}
19581
19582/* If DIE has a descriptive_type attribute, then set the TYPE's
19583 descriptive type accordingly. */
19584
19585static void
19586set_descriptive_type (struct type *type, struct die_info *die,
19587 struct dwarf2_cu *cu)
19588{
19589 struct type *descriptive_type = die_descriptive_type (die, cu);
19590
19591 if (descriptive_type)
19592 {
19593 ALLOCATE_GNAT_AUX_TYPE (type);
19594 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19595 }
19596}
19597
c906108c
SS
19598/* Return the containing type of the die in question using its
19599 DW_AT_containing_type attribute. */
19600
19601static struct type *
e7c27a73 19602die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19603{
c906108c 19604 struct attribute *type_attr;
c906108c 19605
e142c38c 19606 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
19607 if (!type_attr)
19608 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 19609 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 19610
673bfd45 19611 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19612}
19613
ac9ec31b
DE
19614/* Return an error marker type to use for the ill formed type in DIE/CU. */
19615
19616static struct type *
19617build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19618{
19619 struct objfile *objfile = dwarf2_per_objfile->objfile;
19620 char *message, *saved;
19621
19622 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19623 objfile_name (objfile),
9c541725
PA
19624 to_underlying (cu->header.sect_off),
19625 to_underlying (die->sect_off));
224c3ddb
SM
19626 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19627 message, strlen (message));
ac9ec31b
DE
19628 xfree (message);
19629
19f392bc 19630 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19631}
19632
673bfd45 19633/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19634 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19635 DW_AT_containing_type.
673bfd45
DE
19636 If there is no type substitute an error marker. */
19637
c906108c 19638static struct type *
ff39bb5e 19639lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19640 struct dwarf2_cu *cu)
c906108c 19641{
bb5ed363 19642 struct objfile *objfile = cu->objfile;
f792889a
DJ
19643 struct type *this_type;
19644
ac9ec31b
DE
19645 gdb_assert (attr->name == DW_AT_type
19646 || attr->name == DW_AT_GNAT_descriptive_type
19647 || attr->name == DW_AT_containing_type);
19648
673bfd45
DE
19649 /* First see if we have it cached. */
19650
36586728
TT
19651 if (attr->form == DW_FORM_GNU_ref_alt)
19652 {
19653 struct dwarf2_per_cu_data *per_cu;
9c541725 19654 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 19655
9c541725
PA
19656 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19657 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 19658 }
7771576e 19659 else if (attr_form_is_ref (attr))
673bfd45 19660 {
9c541725 19661 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 19662
9c541725 19663 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 19664 }
55f1336d 19665 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19666 {
ac9ec31b 19667 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19668
ac9ec31b 19669 return get_signatured_type (die, signature, cu);
673bfd45
DE
19670 }
19671 else
19672 {
ac9ec31b
DE
19673 complaint (&symfile_complaints,
19674 _("Dwarf Error: Bad type attribute %s in DIE"
19675 " at 0x%x [in module %s]"),
9c541725 19676 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
4262abfb 19677 objfile_name (objfile));
ac9ec31b 19678 return build_error_marker_type (cu, die);
673bfd45
DE
19679 }
19680
19681 /* If not cached we need to read it in. */
19682
19683 if (this_type == NULL)
19684 {
ac9ec31b 19685 struct die_info *type_die = NULL;
673bfd45
DE
19686 struct dwarf2_cu *type_cu = cu;
19687
7771576e 19688 if (attr_form_is_ref (attr))
ac9ec31b
DE
19689 type_die = follow_die_ref (die, attr, &type_cu);
19690 if (type_die == NULL)
19691 return build_error_marker_type (cu, die);
19692 /* If we find the type now, it's probably because the type came
3019eac3
DE
19693 from an inter-CU reference and the type's CU got expanded before
19694 ours. */
ac9ec31b 19695 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19696 }
19697
19698 /* If we still don't have a type use an error marker. */
19699
19700 if (this_type == NULL)
ac9ec31b 19701 return build_error_marker_type (cu, die);
673bfd45 19702
f792889a 19703 return this_type;
c906108c
SS
19704}
19705
673bfd45
DE
19706/* Return the type in DIE, CU.
19707 Returns NULL for invalid types.
19708
02142a6c 19709 This first does a lookup in die_type_hash,
673bfd45
DE
19710 and only reads the die in if necessary.
19711
19712 NOTE: This can be called when reading in partial or full symbols. */
19713
f792889a 19714static struct type *
e7c27a73 19715read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19716{
f792889a
DJ
19717 struct type *this_type;
19718
19719 this_type = get_die_type (die, cu);
19720 if (this_type)
19721 return this_type;
19722
673bfd45
DE
19723 return read_type_die_1 (die, cu);
19724}
19725
19726/* Read the type in DIE, CU.
19727 Returns NULL for invalid types. */
19728
19729static struct type *
19730read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19731{
19732 struct type *this_type = NULL;
19733
c906108c
SS
19734 switch (die->tag)
19735 {
19736 case DW_TAG_class_type:
680b30c7 19737 case DW_TAG_interface_type:
c906108c
SS
19738 case DW_TAG_structure_type:
19739 case DW_TAG_union_type:
f792889a 19740 this_type = read_structure_type (die, cu);
c906108c
SS
19741 break;
19742 case DW_TAG_enumeration_type:
f792889a 19743 this_type = read_enumeration_type (die, cu);
c906108c
SS
19744 break;
19745 case DW_TAG_subprogram:
19746 case DW_TAG_subroutine_type:
edb3359d 19747 case DW_TAG_inlined_subroutine:
f792889a 19748 this_type = read_subroutine_type (die, cu);
c906108c
SS
19749 break;
19750 case DW_TAG_array_type:
f792889a 19751 this_type = read_array_type (die, cu);
c906108c 19752 break;
72019c9c 19753 case DW_TAG_set_type:
f792889a 19754 this_type = read_set_type (die, cu);
72019c9c 19755 break;
c906108c 19756 case DW_TAG_pointer_type:
f792889a 19757 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19758 break;
19759 case DW_TAG_ptr_to_member_type:
f792889a 19760 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19761 break;
19762 case DW_TAG_reference_type:
4297a3f0
AV
19763 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19764 break;
19765 case DW_TAG_rvalue_reference_type:
19766 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
19767 break;
19768 case DW_TAG_const_type:
f792889a 19769 this_type = read_tag_const_type (die, cu);
c906108c
SS
19770 break;
19771 case DW_TAG_volatile_type:
f792889a 19772 this_type = read_tag_volatile_type (die, cu);
c906108c 19773 break;
06d66ee9
TT
19774 case DW_TAG_restrict_type:
19775 this_type = read_tag_restrict_type (die, cu);
19776 break;
c906108c 19777 case DW_TAG_string_type:
f792889a 19778 this_type = read_tag_string_type (die, cu);
c906108c
SS
19779 break;
19780 case DW_TAG_typedef:
f792889a 19781 this_type = read_typedef (die, cu);
c906108c 19782 break;
a02abb62 19783 case DW_TAG_subrange_type:
f792889a 19784 this_type = read_subrange_type (die, cu);
a02abb62 19785 break;
c906108c 19786 case DW_TAG_base_type:
f792889a 19787 this_type = read_base_type (die, cu);
c906108c 19788 break;
81a17f79 19789 case DW_TAG_unspecified_type:
f792889a 19790 this_type = read_unspecified_type (die, cu);
81a17f79 19791 break;
0114d602
DJ
19792 case DW_TAG_namespace:
19793 this_type = read_namespace_type (die, cu);
19794 break;
f55ee35c
JK
19795 case DW_TAG_module:
19796 this_type = read_module_type (die, cu);
19797 break;
a2c2acaf
MW
19798 case DW_TAG_atomic_type:
19799 this_type = read_tag_atomic_type (die, cu);
19800 break;
c906108c 19801 default:
3e43a32a
MS
19802 complaint (&symfile_complaints,
19803 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19804 dwarf_tag_name (die->tag));
c906108c
SS
19805 break;
19806 }
63d06c5c 19807
f792889a 19808 return this_type;
63d06c5c
DC
19809}
19810
abc72ce4
DE
19811/* See if we can figure out if the class lives in a namespace. We do
19812 this by looking for a member function; its demangled name will
19813 contain namespace info, if there is any.
19814 Return the computed name or NULL.
19815 Space for the result is allocated on the objfile's obstack.
19816 This is the full-die version of guess_partial_die_structure_name.
19817 In this case we know DIE has no useful parent. */
19818
19819static char *
19820guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19821{
19822 struct die_info *spec_die;
19823 struct dwarf2_cu *spec_cu;
19824 struct die_info *child;
19825
19826 spec_cu = cu;
19827 spec_die = die_specification (die, &spec_cu);
19828 if (spec_die != NULL)
19829 {
19830 die = spec_die;
19831 cu = spec_cu;
19832 }
19833
19834 for (child = die->child;
19835 child != NULL;
19836 child = child->sibling)
19837 {
19838 if (child->tag == DW_TAG_subprogram)
19839 {
7d45c7c3 19840 const char *linkage_name;
abc72ce4 19841
7d45c7c3
KB
19842 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19843 if (linkage_name == NULL)
19844 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19845 cu);
19846 if (linkage_name != NULL)
abc72ce4
DE
19847 {
19848 char *actual_name
19849 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19850 linkage_name);
abc72ce4
DE
19851 char *name = NULL;
19852
19853 if (actual_name != NULL)
19854 {
15d034d0 19855 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19856
19857 if (die_name != NULL
19858 && strcmp (die_name, actual_name) != 0)
19859 {
19860 /* Strip off the class name from the full name.
19861 We want the prefix. */
19862 int die_name_len = strlen (die_name);
19863 int actual_name_len = strlen (actual_name);
19864
19865 /* Test for '::' as a sanity check. */
19866 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19867 && actual_name[actual_name_len
19868 - die_name_len - 1] == ':')
224c3ddb
SM
19869 name = (char *) obstack_copy0 (
19870 &cu->objfile->per_bfd->storage_obstack,
19871 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19872 }
19873 }
19874 xfree (actual_name);
19875 return name;
19876 }
19877 }
19878 }
19879
19880 return NULL;
19881}
19882
96408a79
SA
19883/* GCC might emit a nameless typedef that has a linkage name. Determine the
19884 prefix part in such case. See
19885 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19886
a121b7c1 19887static const char *
96408a79
SA
19888anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19889{
19890 struct attribute *attr;
e6a959d6 19891 const char *base;
96408a79
SA
19892
19893 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19894 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19895 return NULL;
19896
7d45c7c3 19897 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19898 return NULL;
19899
19900 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19901 if (attr == NULL)
19902 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19903 if (attr == NULL || DW_STRING (attr) == NULL)
19904 return NULL;
19905
19906 /* dwarf2_name had to be already called. */
19907 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19908
19909 /* Strip the base name, keep any leading namespaces/classes. */
19910 base = strrchr (DW_STRING (attr), ':');
19911 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19912 return "";
19913
224c3ddb
SM
19914 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19915 DW_STRING (attr),
19916 &base[-1] - DW_STRING (attr));
96408a79
SA
19917}
19918
fdde2d81 19919/* Return the name of the namespace/class that DIE is defined within,
0114d602 19920 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19921
0114d602
DJ
19922 For example, if we're within the method foo() in the following
19923 code:
19924
19925 namespace N {
19926 class C {
19927 void foo () {
19928 }
19929 };
19930 }
19931
19932 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19933
0d5cff50 19934static const char *
e142c38c 19935determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19936{
0114d602
DJ
19937 struct die_info *parent, *spec_die;
19938 struct dwarf2_cu *spec_cu;
19939 struct type *parent_type;
a121b7c1 19940 const char *retval;
63d06c5c 19941
9c37b5ae 19942 if (cu->language != language_cplus
c44af4eb
TT
19943 && cu->language != language_fortran && cu->language != language_d
19944 && cu->language != language_rust)
0114d602
DJ
19945 return "";
19946
96408a79
SA
19947 retval = anonymous_struct_prefix (die, cu);
19948 if (retval)
19949 return retval;
19950
0114d602
DJ
19951 /* We have to be careful in the presence of DW_AT_specification.
19952 For example, with GCC 3.4, given the code
19953
19954 namespace N {
19955 void foo() {
19956 // Definition of N::foo.
19957 }
19958 }
19959
19960 then we'll have a tree of DIEs like this:
19961
19962 1: DW_TAG_compile_unit
19963 2: DW_TAG_namespace // N
19964 3: DW_TAG_subprogram // declaration of N::foo
19965 4: DW_TAG_subprogram // definition of N::foo
19966 DW_AT_specification // refers to die #3
19967
19968 Thus, when processing die #4, we have to pretend that we're in
19969 the context of its DW_AT_specification, namely the contex of die
19970 #3. */
19971 spec_cu = cu;
19972 spec_die = die_specification (die, &spec_cu);
19973 if (spec_die == NULL)
19974 parent = die->parent;
19975 else
63d06c5c 19976 {
0114d602
DJ
19977 parent = spec_die->parent;
19978 cu = spec_cu;
63d06c5c 19979 }
0114d602
DJ
19980
19981 if (parent == NULL)
19982 return "";
98bfdba5
PA
19983 else if (parent->building_fullname)
19984 {
19985 const char *name;
19986 const char *parent_name;
19987
19988 /* It has been seen on RealView 2.2 built binaries,
19989 DW_TAG_template_type_param types actually _defined_ as
19990 children of the parent class:
19991
19992 enum E {};
19993 template class <class Enum> Class{};
19994 Class<enum E> class_e;
19995
19996 1: DW_TAG_class_type (Class)
19997 2: DW_TAG_enumeration_type (E)
19998 3: DW_TAG_enumerator (enum1:0)
19999 3: DW_TAG_enumerator (enum2:1)
20000 ...
20001 2: DW_TAG_template_type_param
20002 DW_AT_type DW_FORM_ref_udata (E)
20003
20004 Besides being broken debug info, it can put GDB into an
20005 infinite loop. Consider:
20006
20007 When we're building the full name for Class<E>, we'll start
20008 at Class, and go look over its template type parameters,
20009 finding E. We'll then try to build the full name of E, and
20010 reach here. We're now trying to build the full name of E,
20011 and look over the parent DIE for containing scope. In the
20012 broken case, if we followed the parent DIE of E, we'd again
20013 find Class, and once again go look at its template type
20014 arguments, etc., etc. Simply don't consider such parent die
20015 as source-level parent of this die (it can't be, the language
20016 doesn't allow it), and break the loop here. */
20017 name = dwarf2_name (die, cu);
20018 parent_name = dwarf2_name (parent, cu);
20019 complaint (&symfile_complaints,
20020 _("template param type '%s' defined within parent '%s'"),
20021 name ? name : "<unknown>",
20022 parent_name ? parent_name : "<unknown>");
20023 return "";
20024 }
63d06c5c 20025 else
0114d602
DJ
20026 switch (parent->tag)
20027 {
63d06c5c 20028 case DW_TAG_namespace:
0114d602 20029 parent_type = read_type_die (parent, cu);
acebe513
UW
20030 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20031 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20032 Work around this problem here. */
20033 if (cu->language == language_cplus
20034 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20035 return "";
0114d602
DJ
20036 /* We give a name to even anonymous namespaces. */
20037 return TYPE_TAG_NAME (parent_type);
63d06c5c 20038 case DW_TAG_class_type:
680b30c7 20039 case DW_TAG_interface_type:
63d06c5c 20040 case DW_TAG_structure_type:
0114d602 20041 case DW_TAG_union_type:
f55ee35c 20042 case DW_TAG_module:
0114d602
DJ
20043 parent_type = read_type_die (parent, cu);
20044 if (TYPE_TAG_NAME (parent_type) != NULL)
20045 return TYPE_TAG_NAME (parent_type);
20046 else
20047 /* An anonymous structure is only allowed non-static data
20048 members; no typedefs, no member functions, et cetera.
20049 So it does not need a prefix. */
20050 return "";
abc72ce4 20051 case DW_TAG_compile_unit:
95554aad 20052 case DW_TAG_partial_unit:
abc72ce4
DE
20053 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20054 if (cu->language == language_cplus
8b70b953 20055 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
20056 && die->child != NULL
20057 && (die->tag == DW_TAG_class_type
20058 || die->tag == DW_TAG_structure_type
20059 || die->tag == DW_TAG_union_type))
20060 {
20061 char *name = guess_full_die_structure_name (die, cu);
20062 if (name != NULL)
20063 return name;
20064 }
20065 return "";
3d567982
TT
20066 case DW_TAG_enumeration_type:
20067 parent_type = read_type_die (parent, cu);
20068 if (TYPE_DECLARED_CLASS (parent_type))
20069 {
20070 if (TYPE_TAG_NAME (parent_type) != NULL)
20071 return TYPE_TAG_NAME (parent_type);
20072 return "";
20073 }
20074 /* Fall through. */
63d06c5c 20075 default:
8176b9b8 20076 return determine_prefix (parent, cu);
63d06c5c 20077 }
63d06c5c
DC
20078}
20079
3e43a32a
MS
20080/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20081 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20082 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20083 an obconcat, otherwise allocate storage for the result. The CU argument is
20084 used to determine the language and hence, the appropriate separator. */
987504bb 20085
f55ee35c 20086#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
20087
20088static char *
f55ee35c
JK
20089typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20090 int physname, struct dwarf2_cu *cu)
63d06c5c 20091{
f55ee35c 20092 const char *lead = "";
5c315b68 20093 const char *sep;
63d06c5c 20094
3e43a32a
MS
20095 if (suffix == NULL || suffix[0] == '\0'
20096 || prefix == NULL || prefix[0] == '\0')
987504bb 20097 sep = "";
45280282
IB
20098 else if (cu->language == language_d)
20099 {
20100 /* For D, the 'main' function could be defined in any module, but it
20101 should never be prefixed. */
20102 if (strcmp (suffix, "D main") == 0)
20103 {
20104 prefix = "";
20105 sep = "";
20106 }
20107 else
20108 sep = ".";
20109 }
f55ee35c
JK
20110 else if (cu->language == language_fortran && physname)
20111 {
20112 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20113 DW_AT_MIPS_linkage_name is preferred and used instead. */
20114
20115 lead = "__";
20116 sep = "_MOD_";
20117 }
987504bb
JJ
20118 else
20119 sep = "::";
63d06c5c 20120
6dd47d34
DE
20121 if (prefix == NULL)
20122 prefix = "";
20123 if (suffix == NULL)
20124 suffix = "";
20125
987504bb
JJ
20126 if (obs == NULL)
20127 {
3e43a32a 20128 char *retval
224c3ddb
SM
20129 = ((char *)
20130 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 20131
f55ee35c
JK
20132 strcpy (retval, lead);
20133 strcat (retval, prefix);
6dd47d34
DE
20134 strcat (retval, sep);
20135 strcat (retval, suffix);
63d06c5c
DC
20136 return retval;
20137 }
987504bb
JJ
20138 else
20139 {
20140 /* We have an obstack. */
f55ee35c 20141 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 20142 }
63d06c5c
DC
20143}
20144
c906108c
SS
20145/* Return sibling of die, NULL if no sibling. */
20146
f9aca02d 20147static struct die_info *
fba45db2 20148sibling_die (struct die_info *die)
c906108c 20149{
639d11d3 20150 return die->sibling;
c906108c
SS
20151}
20152
71c25dea
TT
20153/* Get name of a die, return NULL if not found. */
20154
15d034d0
TT
20155static const char *
20156dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
20157 struct obstack *obstack)
20158{
20159 if (name && cu->language == language_cplus)
20160 {
2f408ecb 20161 std::string canon_name = cp_canonicalize_string (name);
71c25dea 20162
2f408ecb 20163 if (!canon_name.empty ())
71c25dea 20164 {
2f408ecb
PA
20165 if (canon_name != name)
20166 name = (const char *) obstack_copy0 (obstack,
20167 canon_name.c_str (),
20168 canon_name.length ());
71c25dea
TT
20169 }
20170 }
20171
20172 return name;
c906108c
SS
20173}
20174
96553a0c
DE
20175/* Get name of a die, return NULL if not found.
20176 Anonymous namespaces are converted to their magic string. */
9219021c 20177
15d034d0 20178static const char *
e142c38c 20179dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
20180{
20181 struct attribute *attr;
20182
e142c38c 20183 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 20184 if ((!attr || !DW_STRING (attr))
96553a0c 20185 && die->tag != DW_TAG_namespace
53832f31
TT
20186 && die->tag != DW_TAG_class_type
20187 && die->tag != DW_TAG_interface_type
20188 && die->tag != DW_TAG_structure_type
20189 && die->tag != DW_TAG_union_type)
71c25dea
TT
20190 return NULL;
20191
20192 switch (die->tag)
20193 {
20194 case DW_TAG_compile_unit:
95554aad 20195 case DW_TAG_partial_unit:
71c25dea
TT
20196 /* Compilation units have a DW_AT_name that is a filename, not
20197 a source language identifier. */
20198 case DW_TAG_enumeration_type:
20199 case DW_TAG_enumerator:
20200 /* These tags always have simple identifiers already; no need
20201 to canonicalize them. */
20202 return DW_STRING (attr);
907af001 20203
96553a0c
DE
20204 case DW_TAG_namespace:
20205 if (attr != NULL && DW_STRING (attr) != NULL)
20206 return DW_STRING (attr);
20207 return CP_ANONYMOUS_NAMESPACE_STR;
20208
907af001
UW
20209 case DW_TAG_class_type:
20210 case DW_TAG_interface_type:
20211 case DW_TAG_structure_type:
20212 case DW_TAG_union_type:
20213 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20214 structures or unions. These were of the form "._%d" in GCC 4.1,
20215 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20216 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 20217 if (attr && DW_STRING (attr)
61012eef
GB
20218 && (startswith (DW_STRING (attr), "._")
20219 || startswith (DW_STRING (attr), "<anonymous")))
907af001 20220 return NULL;
53832f31
TT
20221
20222 /* GCC might emit a nameless typedef that has a linkage name. See
20223 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20224 if (!attr || DW_STRING (attr) == NULL)
20225 {
df5c6c50 20226 char *demangled = NULL;
53832f31
TT
20227
20228 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20229 if (attr == NULL)
20230 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20231
20232 if (attr == NULL || DW_STRING (attr) == NULL)
20233 return NULL;
20234
df5c6c50
JK
20235 /* Avoid demangling DW_STRING (attr) the second time on a second
20236 call for the same DIE. */
20237 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 20238 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
20239
20240 if (demangled)
20241 {
e6a959d6 20242 const char *base;
96408a79 20243
53832f31 20244 /* FIXME: we already did this for the partial symbol... */
34a68019 20245 DW_STRING (attr)
224c3ddb
SM
20246 = ((const char *)
20247 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20248 demangled, strlen (demangled)));
53832f31
TT
20249 DW_STRING_IS_CANONICAL (attr) = 1;
20250 xfree (demangled);
96408a79
SA
20251
20252 /* Strip any leading namespaces/classes, keep only the base name.
20253 DW_AT_name for named DIEs does not contain the prefixes. */
20254 base = strrchr (DW_STRING (attr), ':');
20255 if (base && base > DW_STRING (attr) && base[-1] == ':')
20256 return &base[1];
20257 else
20258 return DW_STRING (attr);
53832f31
TT
20259 }
20260 }
907af001
UW
20261 break;
20262
71c25dea 20263 default:
907af001
UW
20264 break;
20265 }
20266
20267 if (!DW_STRING_IS_CANONICAL (attr))
20268 {
20269 DW_STRING (attr)
20270 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 20271 &cu->objfile->per_bfd->storage_obstack);
907af001 20272 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 20273 }
907af001 20274 return DW_STRING (attr);
9219021c
DC
20275}
20276
20277/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
20278 is none. *EXT_CU is the CU containing DIE on input, and the CU
20279 containing the return value on output. */
9219021c
DC
20280
20281static struct die_info *
f2f0e013 20282dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
20283{
20284 struct attribute *attr;
9219021c 20285
f2f0e013 20286 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
20287 if (attr == NULL)
20288 return NULL;
20289
f2f0e013 20290 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
20291}
20292
c906108c
SS
20293/* Convert a DIE tag into its string name. */
20294
f39c6ffd 20295static const char *
aa1ee363 20296dwarf_tag_name (unsigned tag)
c906108c 20297{
f39c6ffd
TT
20298 const char *name = get_DW_TAG_name (tag);
20299
20300 if (name == NULL)
20301 return "DW_TAG_<unknown>";
20302
20303 return name;
c906108c
SS
20304}
20305
20306/* Convert a DWARF attribute code into its string name. */
20307
f39c6ffd 20308static const char *
aa1ee363 20309dwarf_attr_name (unsigned attr)
c906108c 20310{
f39c6ffd
TT
20311 const char *name;
20312
c764a876 20313#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
20314 if (attr == DW_AT_MIPS_fde)
20315 return "DW_AT_MIPS_fde";
20316#else
20317 if (attr == DW_AT_HP_block_index)
20318 return "DW_AT_HP_block_index";
c764a876 20319#endif
f39c6ffd
TT
20320
20321 name = get_DW_AT_name (attr);
20322
20323 if (name == NULL)
20324 return "DW_AT_<unknown>";
20325
20326 return name;
c906108c
SS
20327}
20328
20329/* Convert a DWARF value form code into its string name. */
20330
f39c6ffd 20331static const char *
aa1ee363 20332dwarf_form_name (unsigned form)
c906108c 20333{
f39c6ffd
TT
20334 const char *name = get_DW_FORM_name (form);
20335
20336 if (name == NULL)
20337 return "DW_FORM_<unknown>";
20338
20339 return name;
c906108c
SS
20340}
20341
a121b7c1 20342static const char *
fba45db2 20343dwarf_bool_name (unsigned mybool)
c906108c
SS
20344{
20345 if (mybool)
20346 return "TRUE";
20347 else
20348 return "FALSE";
20349}
20350
20351/* Convert a DWARF type code into its string name. */
20352
f39c6ffd 20353static const char *
aa1ee363 20354dwarf_type_encoding_name (unsigned enc)
c906108c 20355{
f39c6ffd 20356 const char *name = get_DW_ATE_name (enc);
c906108c 20357
f39c6ffd
TT
20358 if (name == NULL)
20359 return "DW_ATE_<unknown>";
c906108c 20360
f39c6ffd 20361 return name;
c906108c 20362}
c906108c 20363
f9aca02d 20364static void
d97bc12b 20365dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
20366{
20367 unsigned int i;
20368
d97bc12b
DE
20369 print_spaces (indent, f);
20370 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
9c541725
PA
20371 dwarf_tag_name (die->tag), die->abbrev,
20372 to_underlying (die->sect_off));
d97bc12b
DE
20373
20374 if (die->parent != NULL)
20375 {
20376 print_spaces (indent, f);
20377 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
9c541725 20378 to_underlying (die->parent->sect_off));
d97bc12b
DE
20379 }
20380
20381 print_spaces (indent, f);
20382 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 20383 dwarf_bool_name (die->child != NULL));
c906108c 20384
d97bc12b
DE
20385 print_spaces (indent, f);
20386 fprintf_unfiltered (f, " attributes:\n");
20387
c906108c
SS
20388 for (i = 0; i < die->num_attrs; ++i)
20389 {
d97bc12b
DE
20390 print_spaces (indent, f);
20391 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
20392 dwarf_attr_name (die->attrs[i].name),
20393 dwarf_form_name (die->attrs[i].form));
d97bc12b 20394
c906108c
SS
20395 switch (die->attrs[i].form)
20396 {
c906108c 20397 case DW_FORM_addr:
3019eac3 20398 case DW_FORM_GNU_addr_index:
d97bc12b 20399 fprintf_unfiltered (f, "address: ");
5af949e3 20400 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
20401 break;
20402 case DW_FORM_block2:
20403 case DW_FORM_block4:
20404 case DW_FORM_block:
20405 case DW_FORM_block1:
56eb65bd
SP
20406 fprintf_unfiltered (f, "block: size %s",
20407 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 20408 break;
2dc7f7b3 20409 case DW_FORM_exprloc:
56eb65bd
SP
20410 fprintf_unfiltered (f, "expression: size %s",
20411 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 20412 break;
0224619f
JK
20413 case DW_FORM_data16:
20414 fprintf_unfiltered (f, "constant of 16 bytes");
20415 break;
4568ecf9
DE
20416 case DW_FORM_ref_addr:
20417 fprintf_unfiltered (f, "ref address: ");
20418 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20419 break;
36586728
TT
20420 case DW_FORM_GNU_ref_alt:
20421 fprintf_unfiltered (f, "alt ref address: ");
20422 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20423 break;
10b3939b
DJ
20424 case DW_FORM_ref1:
20425 case DW_FORM_ref2:
20426 case DW_FORM_ref4:
4568ecf9
DE
20427 case DW_FORM_ref8:
20428 case DW_FORM_ref_udata:
d97bc12b 20429 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 20430 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 20431 break;
c906108c
SS
20432 case DW_FORM_data1:
20433 case DW_FORM_data2:
20434 case DW_FORM_data4:
ce5d95e1 20435 case DW_FORM_data8:
c906108c
SS
20436 case DW_FORM_udata:
20437 case DW_FORM_sdata:
43bbcdc2
PH
20438 fprintf_unfiltered (f, "constant: %s",
20439 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 20440 break;
2dc7f7b3
TT
20441 case DW_FORM_sec_offset:
20442 fprintf_unfiltered (f, "section offset: %s",
20443 pulongest (DW_UNSND (&die->attrs[i])));
20444 break;
55f1336d 20445 case DW_FORM_ref_sig8:
ac9ec31b
DE
20446 fprintf_unfiltered (f, "signature: %s",
20447 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 20448 break;
c906108c 20449 case DW_FORM_string:
4bdf3d34 20450 case DW_FORM_strp:
43988095 20451 case DW_FORM_line_strp:
3019eac3 20452 case DW_FORM_GNU_str_index:
36586728 20453 case DW_FORM_GNU_strp_alt:
8285870a 20454 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 20455 DW_STRING (&die->attrs[i])
8285870a
JK
20456 ? DW_STRING (&die->attrs[i]) : "",
20457 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
20458 break;
20459 case DW_FORM_flag:
20460 if (DW_UNSND (&die->attrs[i]))
d97bc12b 20461 fprintf_unfiltered (f, "flag: TRUE");
c906108c 20462 else
d97bc12b 20463 fprintf_unfiltered (f, "flag: FALSE");
c906108c 20464 break;
2dc7f7b3
TT
20465 case DW_FORM_flag_present:
20466 fprintf_unfiltered (f, "flag: TRUE");
20467 break;
a8329558 20468 case DW_FORM_indirect:
0963b4bd
MS
20469 /* The reader will have reduced the indirect form to
20470 the "base form" so this form should not occur. */
3e43a32a
MS
20471 fprintf_unfiltered (f,
20472 "unexpected attribute form: DW_FORM_indirect");
a8329558 20473 break;
c906108c 20474 default:
d97bc12b 20475 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 20476 die->attrs[i].form);
d97bc12b 20477 break;
c906108c 20478 }
d97bc12b 20479 fprintf_unfiltered (f, "\n");
c906108c
SS
20480 }
20481}
20482
f9aca02d 20483static void
d97bc12b 20484dump_die_for_error (struct die_info *die)
c906108c 20485{
d97bc12b
DE
20486 dump_die_shallow (gdb_stderr, 0, die);
20487}
20488
20489static void
20490dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20491{
20492 int indent = level * 4;
20493
20494 gdb_assert (die != NULL);
20495
20496 if (level >= max_level)
20497 return;
20498
20499 dump_die_shallow (f, indent, die);
20500
20501 if (die->child != NULL)
c906108c 20502 {
d97bc12b
DE
20503 print_spaces (indent, f);
20504 fprintf_unfiltered (f, " Children:");
20505 if (level + 1 < max_level)
20506 {
20507 fprintf_unfiltered (f, "\n");
20508 dump_die_1 (f, level + 1, max_level, die->child);
20509 }
20510 else
20511 {
3e43a32a
MS
20512 fprintf_unfiltered (f,
20513 " [not printed, max nesting level reached]\n");
d97bc12b
DE
20514 }
20515 }
20516
20517 if (die->sibling != NULL && level > 0)
20518 {
20519 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
20520 }
20521}
20522
d97bc12b
DE
20523/* This is called from the pdie macro in gdbinit.in.
20524 It's not static so gcc will keep a copy callable from gdb. */
20525
20526void
20527dump_die (struct die_info *die, int max_level)
20528{
20529 dump_die_1 (gdb_stdlog, 0, max_level, die);
20530}
20531
f9aca02d 20532static void
51545339 20533store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 20534{
51545339 20535 void **slot;
c906108c 20536
9c541725
PA
20537 slot = htab_find_slot_with_hash (cu->die_hash, die,
20538 to_underlying (die->sect_off),
b64f50a1 20539 INSERT);
51545339
DJ
20540
20541 *slot = die;
c906108c
SS
20542}
20543
b64f50a1
JK
20544/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20545 required kind. */
20546
20547static sect_offset
ff39bb5e 20548dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 20549{
7771576e 20550 if (attr_form_is_ref (attr))
9c541725 20551 return (sect_offset) DW_UNSND (attr);
93311388
DE
20552
20553 complaint (&symfile_complaints,
20554 _("unsupported die ref attribute form: '%s'"),
20555 dwarf_form_name (attr->form));
9c541725 20556 return {};
c906108c
SS
20557}
20558
43bbcdc2
PH
20559/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20560 * the value held by the attribute is not constant. */
a02abb62 20561
43bbcdc2 20562static LONGEST
ff39bb5e 20563dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
20564{
20565 if (attr->form == DW_FORM_sdata)
20566 return DW_SND (attr);
20567 else if (attr->form == DW_FORM_udata
20568 || attr->form == DW_FORM_data1
20569 || attr->form == DW_FORM_data2
20570 || attr->form == DW_FORM_data4
20571 || attr->form == DW_FORM_data8)
20572 return DW_UNSND (attr);
20573 else
20574 {
0224619f 20575 /* For DW_FORM_data16 see attr_form_is_constant. */
3e43a32a
MS
20576 complaint (&symfile_complaints,
20577 _("Attribute value is not a constant (%s)"),
a02abb62
JB
20578 dwarf_form_name (attr->form));
20579 return default_value;
20580 }
20581}
20582
348e048f
DE
20583/* Follow reference or signature attribute ATTR of SRC_DIE.
20584 On entry *REF_CU is the CU of SRC_DIE.
20585 On exit *REF_CU is the CU of the result. */
20586
20587static struct die_info *
ff39bb5e 20588follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
20589 struct dwarf2_cu **ref_cu)
20590{
20591 struct die_info *die;
20592
7771576e 20593 if (attr_form_is_ref (attr))
348e048f 20594 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20595 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20596 die = follow_die_sig (src_die, attr, ref_cu);
20597 else
20598 {
20599 dump_die_for_error (src_die);
20600 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20601 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20602 }
20603
20604 return die;
03dd20cc
DJ
20605}
20606
5c631832 20607/* Follow reference OFFSET.
673bfd45
DE
20608 On entry *REF_CU is the CU of the source die referencing OFFSET.
20609 On exit *REF_CU is the CU of the result.
20610 Returns NULL if OFFSET is invalid. */
f504f079 20611
f9aca02d 20612static struct die_info *
9c541725 20613follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 20614 struct dwarf2_cu **ref_cu)
c906108c 20615{
10b3939b 20616 struct die_info temp_die;
f2f0e013 20617 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20618
348e048f
DE
20619 gdb_assert (cu->per_cu != NULL);
20620
98bfdba5
PA
20621 target_cu = cu;
20622
3019eac3 20623 if (cu->per_cu->is_debug_types)
348e048f
DE
20624 {
20625 /* .debug_types CUs cannot reference anything outside their CU.
20626 If they need to, they have to reference a signatured type via
55f1336d 20627 DW_FORM_ref_sig8. */
9c541725 20628 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 20629 return NULL;
348e048f 20630 }
36586728 20631 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 20632 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
20633 {
20634 struct dwarf2_per_cu_data *per_cu;
9a619af0 20635
9c541725 20636 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 20637 cu->objfile);
03dd20cc
DJ
20638
20639 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20640 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20641 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20642
10b3939b
DJ
20643 target_cu = per_cu->cu;
20644 }
98bfdba5
PA
20645 else if (cu->dies == NULL)
20646 {
20647 /* We're loading full DIEs during partial symbol reading. */
20648 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20649 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20650 }
c906108c 20651
f2f0e013 20652 *ref_cu = target_cu;
9c541725 20653 temp_die.sect_off = sect_off;
9a3c8263 20654 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
20655 &temp_die,
20656 to_underlying (sect_off));
5c631832 20657}
10b3939b 20658
5c631832
JK
20659/* Follow reference attribute ATTR of SRC_DIE.
20660 On entry *REF_CU is the CU of SRC_DIE.
20661 On exit *REF_CU is the CU of the result. */
20662
20663static struct die_info *
ff39bb5e 20664follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20665 struct dwarf2_cu **ref_cu)
20666{
9c541725 20667 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20668 struct dwarf2_cu *cu = *ref_cu;
20669 struct die_info *die;
20670
9c541725 20671 die = follow_die_offset (sect_off,
36586728
TT
20672 (attr->form == DW_FORM_GNU_ref_alt
20673 || cu->per_cu->is_dwz),
20674 ref_cu);
5c631832
JK
20675 if (!die)
20676 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20677 "at 0x%x [in module %s]"),
9c541725 20678 to_underlying (sect_off), to_underlying (src_die->sect_off),
4262abfb 20679 objfile_name (cu->objfile));
348e048f 20680
5c631832
JK
20681 return die;
20682}
20683
9c541725 20684/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b
JK
20685 Returned value is intended for DW_OP_call*. Returned
20686 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20687
20688struct dwarf2_locexpr_baton
9c541725 20689dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
20690 struct dwarf2_per_cu_data *per_cu,
20691 CORE_ADDR (*get_frame_pc) (void *baton),
20692 void *baton)
5c631832 20693{
918dd910 20694 struct dwarf2_cu *cu;
5c631832
JK
20695 struct die_info *die;
20696 struct attribute *attr;
20697 struct dwarf2_locexpr_baton retval;
20698
8cf6f0b1
TT
20699 dw2_setup (per_cu->objfile);
20700
918dd910
JK
20701 if (per_cu->cu == NULL)
20702 load_cu (per_cu);
20703 cu = per_cu->cu;
cc12ce38
DE
20704 if (cu == NULL)
20705 {
20706 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20707 Instead just throw an error, not much else we can do. */
20708 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20709 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20710 }
918dd910 20711
9c541725 20712 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832
JK
20713 if (!die)
20714 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20715 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20716
20717 attr = dwarf2_attr (die, DW_AT_location, cu);
20718 if (!attr)
20719 {
e103e986
JK
20720 /* DWARF: "If there is no such attribute, then there is no effect.".
20721 DATA is ignored if SIZE is 0. */
5c631832 20722
e103e986 20723 retval.data = NULL;
5c631832
JK
20724 retval.size = 0;
20725 }
8cf6f0b1
TT
20726 else if (attr_form_is_section_offset (attr))
20727 {
20728 struct dwarf2_loclist_baton loclist_baton;
20729 CORE_ADDR pc = (*get_frame_pc) (baton);
20730 size_t size;
20731
20732 fill_in_loclist_baton (cu, &loclist_baton, attr);
20733
20734 retval.data = dwarf2_find_location_expression (&loclist_baton,
20735 &size, pc);
20736 retval.size = size;
20737 }
5c631832
JK
20738 else
20739 {
20740 if (!attr_form_is_block (attr))
20741 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20742 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9c541725 20743 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20744
20745 retval.data = DW_BLOCK (attr)->data;
20746 retval.size = DW_BLOCK (attr)->size;
20747 }
20748 retval.per_cu = cu->per_cu;
918dd910 20749
918dd910
JK
20750 age_cached_comp_units ();
20751
5c631832 20752 return retval;
348e048f
DE
20753}
20754
8b9737bf
TT
20755/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20756 offset. */
20757
20758struct dwarf2_locexpr_baton
20759dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20760 struct dwarf2_per_cu_data *per_cu,
20761 CORE_ADDR (*get_frame_pc) (void *baton),
20762 void *baton)
20763{
9c541725 20764 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 20765
9c541725 20766 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
20767}
20768
b6807d98
TT
20769/* Write a constant of a given type as target-ordered bytes into
20770 OBSTACK. */
20771
20772static const gdb_byte *
20773write_constant_as_bytes (struct obstack *obstack,
20774 enum bfd_endian byte_order,
20775 struct type *type,
20776 ULONGEST value,
20777 LONGEST *len)
20778{
20779 gdb_byte *result;
20780
20781 *len = TYPE_LENGTH (type);
224c3ddb 20782 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20783 store_unsigned_integer (result, *len, byte_order, value);
20784
20785 return result;
20786}
20787
20788/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20789 pointer to the constant bytes and set LEN to the length of the
20790 data. If memory is needed, allocate it on OBSTACK. If the DIE
20791 does not have a DW_AT_const_value, return NULL. */
20792
20793const gdb_byte *
9c541725 20794dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
20795 struct dwarf2_per_cu_data *per_cu,
20796 struct obstack *obstack,
20797 LONGEST *len)
20798{
20799 struct dwarf2_cu *cu;
20800 struct die_info *die;
20801 struct attribute *attr;
20802 const gdb_byte *result = NULL;
20803 struct type *type;
20804 LONGEST value;
20805 enum bfd_endian byte_order;
20806
20807 dw2_setup (per_cu->objfile);
20808
20809 if (per_cu->cu == NULL)
20810 load_cu (per_cu);
20811 cu = per_cu->cu;
cc12ce38
DE
20812 if (cu == NULL)
20813 {
20814 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20815 Instead just throw an error, not much else we can do. */
20816 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20817 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20818 }
b6807d98 20819
9c541725 20820 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98
TT
20821 if (!die)
20822 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20823 to_underlying (sect_off), objfile_name (per_cu->objfile));
b6807d98
TT
20824
20825
20826 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20827 if (attr == NULL)
20828 return NULL;
20829
20830 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20831 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20832
20833 switch (attr->form)
20834 {
20835 case DW_FORM_addr:
20836 case DW_FORM_GNU_addr_index:
20837 {
20838 gdb_byte *tem;
20839
20840 *len = cu->header.addr_size;
224c3ddb 20841 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20842 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20843 result = tem;
20844 }
20845 break;
20846 case DW_FORM_string:
20847 case DW_FORM_strp:
20848 case DW_FORM_GNU_str_index:
20849 case DW_FORM_GNU_strp_alt:
20850 /* DW_STRING is already allocated on the objfile obstack, point
20851 directly to it. */
20852 result = (const gdb_byte *) DW_STRING (attr);
20853 *len = strlen (DW_STRING (attr));
20854 break;
20855 case DW_FORM_block1:
20856 case DW_FORM_block2:
20857 case DW_FORM_block4:
20858 case DW_FORM_block:
20859 case DW_FORM_exprloc:
0224619f 20860 case DW_FORM_data16:
b6807d98
TT
20861 result = DW_BLOCK (attr)->data;
20862 *len = DW_BLOCK (attr)->size;
20863 break;
20864
20865 /* The DW_AT_const_value attributes are supposed to carry the
20866 symbol's value "represented as it would be on the target
20867 architecture." By the time we get here, it's already been
20868 converted to host endianness, so we just need to sign- or
20869 zero-extend it as appropriate. */
20870 case DW_FORM_data1:
20871 type = die_type (die, cu);
20872 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20873 if (result == NULL)
20874 result = write_constant_as_bytes (obstack, byte_order,
20875 type, value, len);
20876 break;
20877 case DW_FORM_data2:
20878 type = die_type (die, cu);
20879 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20880 if (result == NULL)
20881 result = write_constant_as_bytes (obstack, byte_order,
20882 type, value, len);
20883 break;
20884 case DW_FORM_data4:
20885 type = die_type (die, cu);
20886 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20887 if (result == NULL)
20888 result = write_constant_as_bytes (obstack, byte_order,
20889 type, value, len);
20890 break;
20891 case DW_FORM_data8:
20892 type = die_type (die, cu);
20893 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20894 if (result == NULL)
20895 result = write_constant_as_bytes (obstack, byte_order,
20896 type, value, len);
20897 break;
20898
20899 case DW_FORM_sdata:
20900 type = die_type (die, cu);
20901 result = write_constant_as_bytes (obstack, byte_order,
20902 type, DW_SND (attr), len);
20903 break;
20904
20905 case DW_FORM_udata:
20906 type = die_type (die, cu);
20907 result = write_constant_as_bytes (obstack, byte_order,
20908 type, DW_UNSND (attr), len);
20909 break;
20910
20911 default:
20912 complaint (&symfile_complaints,
20913 _("unsupported const value attribute form: '%s'"),
20914 dwarf_form_name (attr->form));
20915 break;
20916 }
20917
20918 return result;
20919}
20920
7942e96e
AA
20921/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20922 valid type for this die is found. */
20923
20924struct type *
9c541725 20925dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
20926 struct dwarf2_per_cu_data *per_cu)
20927{
20928 struct dwarf2_cu *cu;
20929 struct die_info *die;
20930
20931 dw2_setup (per_cu->objfile);
20932
20933 if (per_cu->cu == NULL)
20934 load_cu (per_cu);
20935 cu = per_cu->cu;
20936 if (!cu)
20937 return NULL;
20938
9c541725 20939 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
20940 if (!die)
20941 return NULL;
20942
20943 return die_type (die, cu);
20944}
20945
8a9b8146
TT
20946/* Return the type of the DIE at DIE_OFFSET in the CU named by
20947 PER_CU. */
20948
20949struct type *
b64f50a1 20950dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20951 struct dwarf2_per_cu_data *per_cu)
20952{
8a9b8146 20953 dw2_setup (per_cu->objfile);
b64f50a1 20954
9c541725 20955 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 20956 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20957}
20958
ac9ec31b 20959/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20960 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20961 On exit *REF_CU is the CU of the result.
20962 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20963
20964static struct die_info *
ac9ec31b
DE
20965follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20966 struct dwarf2_cu **ref_cu)
348e048f 20967{
348e048f 20968 struct die_info temp_die;
348e048f
DE
20969 struct dwarf2_cu *sig_cu;
20970 struct die_info *die;
20971
ac9ec31b
DE
20972 /* While it might be nice to assert sig_type->type == NULL here,
20973 we can get here for DW_AT_imported_declaration where we need
20974 the DIE not the type. */
348e048f
DE
20975
20976 /* If necessary, add it to the queue and load its DIEs. */
20977
95554aad 20978 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20979 read_signatured_type (sig_type);
348e048f 20980
348e048f 20981 sig_cu = sig_type->per_cu.cu;
69d751e3 20982 gdb_assert (sig_cu != NULL);
9c541725
PA
20983 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
20984 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 20985 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 20986 to_underlying (temp_die.sect_off));
348e048f
DE
20987 if (die)
20988 {
796a7ff8
DE
20989 /* For .gdb_index version 7 keep track of included TUs.
20990 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20991 if (dwarf2_per_objfile->index_table != NULL
20992 && dwarf2_per_objfile->index_table->version <= 7)
20993 {
20994 VEC_safe_push (dwarf2_per_cu_ptr,
20995 (*ref_cu)->per_cu->imported_symtabs,
20996 sig_cu->per_cu);
20997 }
20998
348e048f
DE
20999 *ref_cu = sig_cu;
21000 return die;
21001 }
21002
ac9ec31b
DE
21003 return NULL;
21004}
21005
21006/* Follow signatured type referenced by ATTR in SRC_DIE.
21007 On entry *REF_CU is the CU of SRC_DIE.
21008 On exit *REF_CU is the CU of the result.
21009 The result is the DIE of the type.
21010 If the referenced type cannot be found an error is thrown. */
21011
21012static struct die_info *
ff39bb5e 21013follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
21014 struct dwarf2_cu **ref_cu)
21015{
21016 ULONGEST signature = DW_SIGNATURE (attr);
21017 struct signatured_type *sig_type;
21018 struct die_info *die;
21019
21020 gdb_assert (attr->form == DW_FORM_ref_sig8);
21021
a2ce51a0 21022 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
21023 /* sig_type will be NULL if the signatured type is missing from
21024 the debug info. */
21025 if (sig_type == NULL)
21026 {
21027 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21028 " from DIE at 0x%x [in module %s]"),
9c541725 21029 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21030 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21031 }
21032
21033 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21034 if (die == NULL)
21035 {
21036 dump_die_for_error (src_die);
21037 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21038 " from DIE at 0x%x [in module %s]"),
9c541725 21039 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21040 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21041 }
21042
21043 return die;
21044}
21045
21046/* Get the type specified by SIGNATURE referenced in DIE/CU,
21047 reading in and processing the type unit if necessary. */
21048
21049static struct type *
21050get_signatured_type (struct die_info *die, ULONGEST signature,
21051 struct dwarf2_cu *cu)
21052{
21053 struct signatured_type *sig_type;
21054 struct dwarf2_cu *type_cu;
21055 struct die_info *type_die;
21056 struct type *type;
21057
a2ce51a0 21058 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
21059 /* sig_type will be NULL if the signatured type is missing from
21060 the debug info. */
21061 if (sig_type == NULL)
21062 {
21063 complaint (&symfile_complaints,
21064 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21065 " from DIE at 0x%x [in module %s]"),
9c541725 21066 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21067 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21068 return build_error_marker_type (cu, die);
21069 }
21070
21071 /* If we already know the type we're done. */
21072 if (sig_type->type != NULL)
21073 return sig_type->type;
21074
21075 type_cu = cu;
21076 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21077 if (type_die != NULL)
21078 {
21079 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21080 is created. This is important, for example, because for c++ classes
21081 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21082 type = read_type_die (type_die, type_cu);
21083 if (type == NULL)
21084 {
21085 complaint (&symfile_complaints,
21086 _("Dwarf Error: Cannot build signatured type %s"
21087 " referenced from DIE at 0x%x [in module %s]"),
9c541725 21088 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21089 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21090 type = build_error_marker_type (cu, die);
21091 }
21092 }
21093 else
21094 {
21095 complaint (&symfile_complaints,
21096 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21097 " from DIE at 0x%x [in module %s]"),
9c541725 21098 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21099 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21100 type = build_error_marker_type (cu, die);
21101 }
21102 sig_type->type = type;
21103
21104 return type;
21105}
21106
21107/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21108 reading in and processing the type unit if necessary. */
21109
21110static struct type *
ff39bb5e 21111get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 21112 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
21113{
21114 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 21115 if (attr_form_is_ref (attr))
ac9ec31b
DE
21116 {
21117 struct dwarf2_cu *type_cu = cu;
21118 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21119
21120 return read_type_die (type_die, type_cu);
21121 }
21122 else if (attr->form == DW_FORM_ref_sig8)
21123 {
21124 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21125 }
21126 else
21127 {
21128 complaint (&symfile_complaints,
21129 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21130 " at 0x%x [in module %s]"),
9c541725 21131 dwarf_form_name (attr->form), to_underlying (die->sect_off),
4262abfb 21132 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21133 return build_error_marker_type (cu, die);
21134 }
348e048f
DE
21135}
21136
e5fe5e75 21137/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
21138
21139static void
e5fe5e75 21140load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 21141{
52dc124a 21142 struct signatured_type *sig_type;
348e048f 21143
f4dc4d17
DE
21144 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21145 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21146
6721b2ec
DE
21147 /* We have the per_cu, but we need the signatured_type.
21148 Fortunately this is an easy translation. */
21149 gdb_assert (per_cu->is_debug_types);
21150 sig_type = (struct signatured_type *) per_cu;
348e048f 21151
6721b2ec 21152 gdb_assert (per_cu->cu == NULL);
348e048f 21153
52dc124a 21154 read_signatured_type (sig_type);
348e048f 21155
6721b2ec 21156 gdb_assert (per_cu->cu != NULL);
348e048f
DE
21157}
21158
dee91e82
DE
21159/* die_reader_func for read_signatured_type.
21160 This is identical to load_full_comp_unit_reader,
21161 but is kept separate for now. */
348e048f
DE
21162
21163static void
dee91e82 21164read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 21165 const gdb_byte *info_ptr,
dee91e82
DE
21166 struct die_info *comp_unit_die,
21167 int has_children,
21168 void *data)
348e048f 21169{
dee91e82 21170 struct dwarf2_cu *cu = reader->cu;
348e048f 21171
dee91e82
DE
21172 gdb_assert (cu->die_hash == NULL);
21173 cu->die_hash =
21174 htab_create_alloc_ex (cu->header.length / 12,
21175 die_hash,
21176 die_eq,
21177 NULL,
21178 &cu->comp_unit_obstack,
21179 hashtab_obstack_allocate,
21180 dummy_obstack_deallocate);
348e048f 21181
dee91e82
DE
21182 if (has_children)
21183 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21184 &info_ptr, comp_unit_die);
21185 cu->dies = comp_unit_die;
21186 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
21187
21188 /* We try not to read any attributes in this function, because not
9cdd5dbd 21189 all CUs needed for references have been loaded yet, and symbol
348e048f 21190 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
21191 or we won't be able to build types correctly.
21192 Similarly, if we do not read the producer, we can not apply
21193 producer-specific interpretation. */
95554aad 21194 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 21195}
348e048f 21196
3019eac3
DE
21197/* Read in a signatured type and build its CU and DIEs.
21198 If the type is a stub for the real type in a DWO file,
21199 read in the real type from the DWO file as well. */
dee91e82
DE
21200
21201static void
21202read_signatured_type (struct signatured_type *sig_type)
21203{
21204 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 21205
3019eac3 21206 gdb_assert (per_cu->is_debug_types);
dee91e82 21207 gdb_assert (per_cu->cu == NULL);
348e048f 21208
f4dc4d17
DE
21209 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21210 read_signatured_type_reader, NULL);
7ee85ab1 21211 sig_type->per_cu.tu_read = 1;
c906108c
SS
21212}
21213
c906108c
SS
21214/* Decode simple location descriptions.
21215 Given a pointer to a dwarf block that defines a location, compute
21216 the location and return the value.
21217
4cecd739
DJ
21218 NOTE drow/2003-11-18: This function is called in two situations
21219 now: for the address of static or global variables (partial symbols
21220 only) and for offsets into structures which are expected to be
21221 (more or less) constant. The partial symbol case should go away,
21222 and only the constant case should remain. That will let this
21223 function complain more accurately. A few special modes are allowed
21224 without complaint for global variables (for instance, global
21225 register values and thread-local values).
c906108c
SS
21226
21227 A location description containing no operations indicates that the
4cecd739 21228 object is optimized out. The return value is 0 for that case.
6b992462
DJ
21229 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21230 callers will only want a very basic result and this can become a
21ae7a4d
JK
21231 complaint.
21232
21233 Note that stack[0] is unused except as a default error return. */
c906108c
SS
21234
21235static CORE_ADDR
e7c27a73 21236decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 21237{
e7c27a73 21238 struct objfile *objfile = cu->objfile;
56eb65bd
SP
21239 size_t i;
21240 size_t size = blk->size;
d521ce57 21241 const gdb_byte *data = blk->data;
21ae7a4d
JK
21242 CORE_ADDR stack[64];
21243 int stacki;
21244 unsigned int bytes_read, unsnd;
21245 gdb_byte op;
c906108c 21246
21ae7a4d
JK
21247 i = 0;
21248 stacki = 0;
21249 stack[stacki] = 0;
21250 stack[++stacki] = 0;
21251
21252 while (i < size)
21253 {
21254 op = data[i++];
21255 switch (op)
21256 {
21257 case DW_OP_lit0:
21258 case DW_OP_lit1:
21259 case DW_OP_lit2:
21260 case DW_OP_lit3:
21261 case DW_OP_lit4:
21262 case DW_OP_lit5:
21263 case DW_OP_lit6:
21264 case DW_OP_lit7:
21265 case DW_OP_lit8:
21266 case DW_OP_lit9:
21267 case DW_OP_lit10:
21268 case DW_OP_lit11:
21269 case DW_OP_lit12:
21270 case DW_OP_lit13:
21271 case DW_OP_lit14:
21272 case DW_OP_lit15:
21273 case DW_OP_lit16:
21274 case DW_OP_lit17:
21275 case DW_OP_lit18:
21276 case DW_OP_lit19:
21277 case DW_OP_lit20:
21278 case DW_OP_lit21:
21279 case DW_OP_lit22:
21280 case DW_OP_lit23:
21281 case DW_OP_lit24:
21282 case DW_OP_lit25:
21283 case DW_OP_lit26:
21284 case DW_OP_lit27:
21285 case DW_OP_lit28:
21286 case DW_OP_lit29:
21287 case DW_OP_lit30:
21288 case DW_OP_lit31:
21289 stack[++stacki] = op - DW_OP_lit0;
21290 break;
f1bea926 21291
21ae7a4d
JK
21292 case DW_OP_reg0:
21293 case DW_OP_reg1:
21294 case DW_OP_reg2:
21295 case DW_OP_reg3:
21296 case DW_OP_reg4:
21297 case DW_OP_reg5:
21298 case DW_OP_reg6:
21299 case DW_OP_reg7:
21300 case DW_OP_reg8:
21301 case DW_OP_reg9:
21302 case DW_OP_reg10:
21303 case DW_OP_reg11:
21304 case DW_OP_reg12:
21305 case DW_OP_reg13:
21306 case DW_OP_reg14:
21307 case DW_OP_reg15:
21308 case DW_OP_reg16:
21309 case DW_OP_reg17:
21310 case DW_OP_reg18:
21311 case DW_OP_reg19:
21312 case DW_OP_reg20:
21313 case DW_OP_reg21:
21314 case DW_OP_reg22:
21315 case DW_OP_reg23:
21316 case DW_OP_reg24:
21317 case DW_OP_reg25:
21318 case DW_OP_reg26:
21319 case DW_OP_reg27:
21320 case DW_OP_reg28:
21321 case DW_OP_reg29:
21322 case DW_OP_reg30:
21323 case DW_OP_reg31:
21324 stack[++stacki] = op - DW_OP_reg0;
21325 if (i < size)
21326 dwarf2_complex_location_expr_complaint ();
21327 break;
c906108c 21328
21ae7a4d
JK
21329 case DW_OP_regx:
21330 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21331 i += bytes_read;
21332 stack[++stacki] = unsnd;
21333 if (i < size)
21334 dwarf2_complex_location_expr_complaint ();
21335 break;
c906108c 21336
21ae7a4d
JK
21337 case DW_OP_addr:
21338 stack[++stacki] = read_address (objfile->obfd, &data[i],
21339 cu, &bytes_read);
21340 i += bytes_read;
21341 break;
d53d4ac5 21342
21ae7a4d
JK
21343 case DW_OP_const1u:
21344 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21345 i += 1;
21346 break;
21347
21348 case DW_OP_const1s:
21349 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21350 i += 1;
21351 break;
21352
21353 case DW_OP_const2u:
21354 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21355 i += 2;
21356 break;
21357
21358 case DW_OP_const2s:
21359 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21360 i += 2;
21361 break;
d53d4ac5 21362
21ae7a4d
JK
21363 case DW_OP_const4u:
21364 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21365 i += 4;
21366 break;
21367
21368 case DW_OP_const4s:
21369 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21370 i += 4;
21371 break;
21372
585861ea
JK
21373 case DW_OP_const8u:
21374 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21375 i += 8;
21376 break;
21377
21ae7a4d
JK
21378 case DW_OP_constu:
21379 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21380 &bytes_read);
21381 i += bytes_read;
21382 break;
21383
21384 case DW_OP_consts:
21385 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21386 i += bytes_read;
21387 break;
21388
21389 case DW_OP_dup:
21390 stack[stacki + 1] = stack[stacki];
21391 stacki++;
21392 break;
21393
21394 case DW_OP_plus:
21395 stack[stacki - 1] += stack[stacki];
21396 stacki--;
21397 break;
21398
21399 case DW_OP_plus_uconst:
21400 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21401 &bytes_read);
21402 i += bytes_read;
21403 break;
21404
21405 case DW_OP_minus:
21406 stack[stacki - 1] -= stack[stacki];
21407 stacki--;
21408 break;
21409
21410 case DW_OP_deref:
21411 /* If we're not the last op, then we definitely can't encode
21412 this using GDB's address_class enum. This is valid for partial
21413 global symbols, although the variable's address will be bogus
21414 in the psymtab. */
21415 if (i < size)
21416 dwarf2_complex_location_expr_complaint ();
21417 break;
21418
21419 case DW_OP_GNU_push_tls_address:
4aa4e28b 21420 case DW_OP_form_tls_address:
21ae7a4d
JK
21421 /* The top of the stack has the offset from the beginning
21422 of the thread control block at which the variable is located. */
21423 /* Nothing should follow this operator, so the top of stack would
21424 be returned. */
21425 /* This is valid for partial global symbols, but the variable's
585861ea
JK
21426 address will be bogus in the psymtab. Make it always at least
21427 non-zero to not look as a variable garbage collected by linker
21428 which have DW_OP_addr 0. */
21ae7a4d
JK
21429 if (i < size)
21430 dwarf2_complex_location_expr_complaint ();
585861ea 21431 stack[stacki]++;
21ae7a4d
JK
21432 break;
21433
21434 case DW_OP_GNU_uninit:
21435 break;
21436
3019eac3 21437 case DW_OP_GNU_addr_index:
49f6c839 21438 case DW_OP_GNU_const_index:
3019eac3
DE
21439 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21440 &bytes_read);
21441 i += bytes_read;
21442 break;
21443
21ae7a4d
JK
21444 default:
21445 {
f39c6ffd 21446 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
21447
21448 if (name)
21449 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21450 name);
21451 else
21452 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21453 op);
21454 }
21455
21456 return (stack[stacki]);
d53d4ac5 21457 }
3c6e0cb3 21458
21ae7a4d
JK
21459 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21460 outside of the allocated space. Also enforce minimum>0. */
21461 if (stacki >= ARRAY_SIZE (stack) - 1)
21462 {
21463 complaint (&symfile_complaints,
21464 _("location description stack overflow"));
21465 return 0;
21466 }
21467
21468 if (stacki <= 0)
21469 {
21470 complaint (&symfile_complaints,
21471 _("location description stack underflow"));
21472 return 0;
21473 }
21474 }
21475 return (stack[stacki]);
c906108c
SS
21476}
21477
21478/* memory allocation interface */
21479
c906108c 21480static struct dwarf_block *
7b5a2f43 21481dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 21482{
8d749320 21483 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
21484}
21485
c906108c 21486static struct die_info *
b60c80d6 21487dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
21488{
21489 struct die_info *die;
b60c80d6
DJ
21490 size_t size = sizeof (struct die_info);
21491
21492 if (num_attrs > 1)
21493 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 21494
b60c80d6 21495 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
21496 memset (die, 0, sizeof (struct die_info));
21497 return (die);
21498}
2e276125
JB
21499
21500\f
21501/* Macro support. */
21502
233d95b5
JK
21503/* Return file name relative to the compilation directory of file number I in
21504 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 21505 responsible for freeing it. */
233d95b5 21506
2e276125 21507static char *
233d95b5 21508file_file_name (int file, struct line_header *lh)
2e276125 21509{
6a83a1e6
EZ
21510 /* Is the file number a valid index into the line header's file name
21511 table? Remember that file numbers start with one, not zero. */
fff8551c 21512 if (1 <= file && file <= lh->file_names.size ())
6a83a1e6 21513 {
8c43009f 21514 const file_entry &fe = lh->file_names[file - 1];
6e70227d 21515
8c43009f
PA
21516 if (!IS_ABSOLUTE_PATH (fe.name))
21517 {
21518 const char *dir = fe.include_dir (lh);
21519 if (dir != NULL)
21520 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21521 }
21522 return xstrdup (fe.name);
6a83a1e6 21523 }
2e276125
JB
21524 else
21525 {
6a83a1e6
EZ
21526 /* The compiler produced a bogus file number. We can at least
21527 record the macro definitions made in the file, even if we
21528 won't be able to find the file by name. */
21529 char fake_name[80];
9a619af0 21530
8c042590
PM
21531 xsnprintf (fake_name, sizeof (fake_name),
21532 "<bad macro file number %d>", file);
2e276125 21533
6e70227d 21534 complaint (&symfile_complaints,
6a83a1e6
EZ
21535 _("bad file number in macro information (%d)"),
21536 file);
2e276125 21537
6a83a1e6 21538 return xstrdup (fake_name);
2e276125
JB
21539 }
21540}
21541
233d95b5
JK
21542/* Return the full name of file number I in *LH's file name table.
21543 Use COMP_DIR as the name of the current directory of the
21544 compilation. The result is allocated using xmalloc; the caller is
21545 responsible for freeing it. */
21546static char *
21547file_full_name (int file, struct line_header *lh, const char *comp_dir)
21548{
21549 /* Is the file number a valid index into the line header's file name
21550 table? Remember that file numbers start with one, not zero. */
fff8551c 21551 if (1 <= file && file <= lh->file_names.size ())
233d95b5
JK
21552 {
21553 char *relative = file_file_name (file, lh);
21554
21555 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21556 return relative;
b36cec19
PA
21557 return reconcat (relative, comp_dir, SLASH_STRING,
21558 relative, (char *) NULL);
233d95b5
JK
21559 }
21560 else
21561 return file_file_name (file, lh);
21562}
21563
2e276125
JB
21564
21565static struct macro_source_file *
21566macro_start_file (int file, int line,
21567 struct macro_source_file *current_file,
43f3e411 21568 struct line_header *lh)
2e276125 21569{
233d95b5
JK
21570 /* File name relative to the compilation directory of this source file. */
21571 char *file_name = file_file_name (file, lh);
2e276125 21572
2e276125 21573 if (! current_file)
abc9d0dc 21574 {
fc474241
DE
21575 /* Note: We don't create a macro table for this compilation unit
21576 at all until we actually get a filename. */
43f3e411 21577 struct macro_table *macro_table = get_macro_table ();
fc474241 21578
abc9d0dc
TT
21579 /* If we have no current file, then this must be the start_file
21580 directive for the compilation unit's main source file. */
fc474241
DE
21581 current_file = macro_set_main (macro_table, file_name);
21582 macro_define_special (macro_table);
abc9d0dc 21583 }
2e276125 21584 else
233d95b5 21585 current_file = macro_include (current_file, line, file_name);
2e276125 21586
233d95b5 21587 xfree (file_name);
6e70227d 21588
2e276125
JB
21589 return current_file;
21590}
21591
21592
21593/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21594 followed by a null byte. */
21595static char *
21596copy_string (const char *buf, int len)
21597{
224c3ddb 21598 char *s = (char *) xmalloc (len + 1);
9a619af0 21599
2e276125
JB
21600 memcpy (s, buf, len);
21601 s[len] = '\0';
2e276125
JB
21602 return s;
21603}
21604
21605
21606static const char *
21607consume_improper_spaces (const char *p, const char *body)
21608{
21609 if (*p == ' ')
21610 {
4d3c2250 21611 complaint (&symfile_complaints,
3e43a32a
MS
21612 _("macro definition contains spaces "
21613 "in formal argument list:\n`%s'"),
4d3c2250 21614 body);
2e276125
JB
21615
21616 while (*p == ' ')
21617 p++;
21618 }
21619
21620 return p;
21621}
21622
21623
21624static void
21625parse_macro_definition (struct macro_source_file *file, int line,
21626 const char *body)
21627{
21628 const char *p;
21629
21630 /* The body string takes one of two forms. For object-like macro
21631 definitions, it should be:
21632
21633 <macro name> " " <definition>
21634
21635 For function-like macro definitions, it should be:
21636
21637 <macro name> "() " <definition>
21638 or
21639 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21640
21641 Spaces may appear only where explicitly indicated, and in the
21642 <definition>.
21643
21644 The Dwarf 2 spec says that an object-like macro's name is always
21645 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21646 the space when the macro's definition is the empty string.
2e276125
JB
21647
21648 The Dwarf 2 spec says that there should be no spaces between the
21649 formal arguments in a function-like macro's formal argument list,
21650 but versions of GCC around March 2002 include spaces after the
21651 commas. */
21652
21653
21654 /* Find the extent of the macro name. The macro name is terminated
21655 by either a space or null character (for an object-like macro) or
21656 an opening paren (for a function-like macro). */
21657 for (p = body; *p; p++)
21658 if (*p == ' ' || *p == '(')
21659 break;
21660
21661 if (*p == ' ' || *p == '\0')
21662 {
21663 /* It's an object-like macro. */
21664 int name_len = p - body;
21665 char *name = copy_string (body, name_len);
21666 const char *replacement;
21667
21668 if (*p == ' ')
21669 replacement = body + name_len + 1;
21670 else
21671 {
4d3c2250 21672 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21673 replacement = body + name_len;
21674 }
6e70227d 21675
2e276125
JB
21676 macro_define_object (file, line, name, replacement);
21677
21678 xfree (name);
21679 }
21680 else if (*p == '(')
21681 {
21682 /* It's a function-like macro. */
21683 char *name = copy_string (body, p - body);
21684 int argc = 0;
21685 int argv_size = 1;
8d749320 21686 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21687
21688 p++;
21689
21690 p = consume_improper_spaces (p, body);
21691
21692 /* Parse the formal argument list. */
21693 while (*p && *p != ')')
21694 {
21695 /* Find the extent of the current argument name. */
21696 const char *arg_start = p;
21697
21698 while (*p && *p != ',' && *p != ')' && *p != ' ')
21699 p++;
21700
21701 if (! *p || p == arg_start)
4d3c2250 21702 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21703 else
21704 {
21705 /* Make sure argv has room for the new argument. */
21706 if (argc >= argv_size)
21707 {
21708 argv_size *= 2;
224c3ddb 21709 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21710 }
21711
21712 argv[argc++] = copy_string (arg_start, p - arg_start);
21713 }
21714
21715 p = consume_improper_spaces (p, body);
21716
21717 /* Consume the comma, if present. */
21718 if (*p == ',')
21719 {
21720 p++;
21721
21722 p = consume_improper_spaces (p, body);
21723 }
21724 }
21725
21726 if (*p == ')')
21727 {
21728 p++;
21729
21730 if (*p == ' ')
21731 /* Perfectly formed definition, no complaints. */
21732 macro_define_function (file, line, name,
6e70227d 21733 argc, (const char **) argv,
2e276125
JB
21734 p + 1);
21735 else if (*p == '\0')
21736 {
21737 /* Complain, but do define it. */
4d3c2250 21738 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21739 macro_define_function (file, line, name,
6e70227d 21740 argc, (const char **) argv,
2e276125
JB
21741 p);
21742 }
21743 else
21744 /* Just complain. */
4d3c2250 21745 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21746 }
21747 else
21748 /* Just complain. */
4d3c2250 21749 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21750
21751 xfree (name);
21752 {
21753 int i;
21754
21755 for (i = 0; i < argc; i++)
21756 xfree (argv[i]);
21757 }
21758 xfree (argv);
21759 }
21760 else
4d3c2250 21761 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21762}
21763
cf2c3c16
TT
21764/* Skip some bytes from BYTES according to the form given in FORM.
21765 Returns the new pointer. */
2e276125 21766
d521ce57
TT
21767static const gdb_byte *
21768skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21769 enum dwarf_form form,
21770 unsigned int offset_size,
21771 struct dwarf2_section_info *section)
2e276125 21772{
cf2c3c16 21773 unsigned int bytes_read;
2e276125 21774
cf2c3c16 21775 switch (form)
2e276125 21776 {
cf2c3c16
TT
21777 case DW_FORM_data1:
21778 case DW_FORM_flag:
21779 ++bytes;
21780 break;
21781
21782 case DW_FORM_data2:
21783 bytes += 2;
21784 break;
21785
21786 case DW_FORM_data4:
21787 bytes += 4;
21788 break;
21789
21790 case DW_FORM_data8:
21791 bytes += 8;
21792 break;
21793
0224619f
JK
21794 case DW_FORM_data16:
21795 bytes += 16;
21796 break;
21797
cf2c3c16
TT
21798 case DW_FORM_string:
21799 read_direct_string (abfd, bytes, &bytes_read);
21800 bytes += bytes_read;
21801 break;
21802
21803 case DW_FORM_sec_offset:
21804 case DW_FORM_strp:
36586728 21805 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21806 bytes += offset_size;
21807 break;
21808
21809 case DW_FORM_block:
21810 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21811 bytes += bytes_read;
21812 break;
21813
21814 case DW_FORM_block1:
21815 bytes += 1 + read_1_byte (abfd, bytes);
21816 break;
21817 case DW_FORM_block2:
21818 bytes += 2 + read_2_bytes (abfd, bytes);
21819 break;
21820 case DW_FORM_block4:
21821 bytes += 4 + read_4_bytes (abfd, bytes);
21822 break;
21823
21824 case DW_FORM_sdata:
21825 case DW_FORM_udata:
3019eac3
DE
21826 case DW_FORM_GNU_addr_index:
21827 case DW_FORM_GNU_str_index:
d521ce57 21828 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21829 if (bytes == NULL)
21830 {
21831 dwarf2_section_buffer_overflow_complaint (section);
21832 return NULL;
21833 }
cf2c3c16
TT
21834 break;
21835
21836 default:
21837 {
21838 complain:
21839 complaint (&symfile_complaints,
21840 _("invalid form 0x%x in `%s'"),
a32a8923 21841 form, get_section_name (section));
cf2c3c16
TT
21842 return NULL;
21843 }
2e276125
JB
21844 }
21845
cf2c3c16
TT
21846 return bytes;
21847}
757a13d0 21848
cf2c3c16
TT
21849/* A helper for dwarf_decode_macros that handles skipping an unknown
21850 opcode. Returns an updated pointer to the macro data buffer; or,
21851 on error, issues a complaint and returns NULL. */
757a13d0 21852
d521ce57 21853static const gdb_byte *
cf2c3c16 21854skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21855 const gdb_byte **opcode_definitions,
21856 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21857 bfd *abfd,
21858 unsigned int offset_size,
21859 struct dwarf2_section_info *section)
21860{
21861 unsigned int bytes_read, i;
21862 unsigned long arg;
d521ce57 21863 const gdb_byte *defn;
2e276125 21864
cf2c3c16 21865 if (opcode_definitions[opcode] == NULL)
2e276125 21866 {
cf2c3c16
TT
21867 complaint (&symfile_complaints,
21868 _("unrecognized DW_MACFINO opcode 0x%x"),
21869 opcode);
21870 return NULL;
21871 }
2e276125 21872
cf2c3c16
TT
21873 defn = opcode_definitions[opcode];
21874 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21875 defn += bytes_read;
2e276125 21876
cf2c3c16
TT
21877 for (i = 0; i < arg; ++i)
21878 {
aead7601
SM
21879 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21880 (enum dwarf_form) defn[i], offset_size,
f664829e 21881 section);
cf2c3c16
TT
21882 if (mac_ptr == NULL)
21883 {
21884 /* skip_form_bytes already issued the complaint. */
21885 return NULL;
21886 }
21887 }
757a13d0 21888
cf2c3c16
TT
21889 return mac_ptr;
21890}
757a13d0 21891
cf2c3c16
TT
21892/* A helper function which parses the header of a macro section.
21893 If the macro section is the extended (for now called "GNU") type,
21894 then this updates *OFFSET_SIZE. Returns a pointer to just after
21895 the header, or issues a complaint and returns NULL on error. */
757a13d0 21896
d521ce57
TT
21897static const gdb_byte *
21898dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21899 bfd *abfd,
d521ce57 21900 const gdb_byte *mac_ptr,
cf2c3c16
TT
21901 unsigned int *offset_size,
21902 int section_is_gnu)
21903{
21904 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21905
cf2c3c16
TT
21906 if (section_is_gnu)
21907 {
21908 unsigned int version, flags;
757a13d0 21909
cf2c3c16 21910 version = read_2_bytes (abfd, mac_ptr);
0af92d60 21911 if (version != 4 && version != 5)
cf2c3c16
TT
21912 {
21913 complaint (&symfile_complaints,
21914 _("unrecognized version `%d' in .debug_macro section"),
21915 version);
21916 return NULL;
21917 }
21918 mac_ptr += 2;
757a13d0 21919
cf2c3c16
TT
21920 flags = read_1_byte (abfd, mac_ptr);
21921 ++mac_ptr;
21922 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21923
cf2c3c16
TT
21924 if ((flags & 2) != 0)
21925 /* We don't need the line table offset. */
21926 mac_ptr += *offset_size;
757a13d0 21927
cf2c3c16
TT
21928 /* Vendor opcode descriptions. */
21929 if ((flags & 4) != 0)
21930 {
21931 unsigned int i, count;
757a13d0 21932
cf2c3c16
TT
21933 count = read_1_byte (abfd, mac_ptr);
21934 ++mac_ptr;
21935 for (i = 0; i < count; ++i)
21936 {
21937 unsigned int opcode, bytes_read;
21938 unsigned long arg;
21939
21940 opcode = read_1_byte (abfd, mac_ptr);
21941 ++mac_ptr;
21942 opcode_definitions[opcode] = mac_ptr;
21943 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21944 mac_ptr += bytes_read;
21945 mac_ptr += arg;
21946 }
757a13d0 21947 }
cf2c3c16 21948 }
757a13d0 21949
cf2c3c16
TT
21950 return mac_ptr;
21951}
757a13d0 21952
cf2c3c16 21953/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 21954 including DW_MACRO_import. */
cf2c3c16
TT
21955
21956static void
d521ce57
TT
21957dwarf_decode_macro_bytes (bfd *abfd,
21958 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21959 struct macro_source_file *current_file,
43f3e411 21960 struct line_header *lh,
cf2c3c16 21961 struct dwarf2_section_info *section,
36586728 21962 int section_is_gnu, int section_is_dwz,
cf2c3c16 21963 unsigned int offset_size,
8fc3fc34 21964 htab_t include_hash)
cf2c3c16 21965{
4d663531 21966 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21967 enum dwarf_macro_record_type macinfo_type;
21968 int at_commandline;
d521ce57 21969 const gdb_byte *opcode_definitions[256];
757a13d0 21970
cf2c3c16
TT
21971 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21972 &offset_size, section_is_gnu);
21973 if (mac_ptr == NULL)
21974 {
21975 /* We already issued a complaint. */
21976 return;
21977 }
757a13d0
JK
21978
21979 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21980 GDB is still reading the definitions from command line. First
21981 DW_MACINFO_start_file will need to be ignored as it was already executed
21982 to create CURRENT_FILE for the main source holding also the command line
21983 definitions. On first met DW_MACINFO_start_file this flag is reset to
21984 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21985
21986 at_commandline = 1;
21987
21988 do
21989 {
21990 /* Do we at least have room for a macinfo type byte? */
21991 if (mac_ptr >= mac_end)
21992 {
f664829e 21993 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21994 break;
21995 }
21996
aead7601 21997 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21998 mac_ptr++;
21999
cf2c3c16
TT
22000 /* Note that we rely on the fact that the corresponding GNU and
22001 DWARF constants are the same. */
757a13d0
JK
22002 switch (macinfo_type)
22003 {
22004 /* A zero macinfo type indicates the end of the macro
22005 information. */
22006 case 0:
22007 break;
2e276125 22008
0af92d60
JK
22009 case DW_MACRO_define:
22010 case DW_MACRO_undef:
22011 case DW_MACRO_define_strp:
22012 case DW_MACRO_undef_strp:
22013 case DW_MACRO_define_sup:
22014 case DW_MACRO_undef_sup:
2e276125 22015 {
891d2f0b 22016 unsigned int bytes_read;
2e276125 22017 int line;
d521ce57 22018 const char *body;
cf2c3c16 22019 int is_define;
2e276125 22020
cf2c3c16
TT
22021 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22022 mac_ptr += bytes_read;
22023
0af92d60
JK
22024 if (macinfo_type == DW_MACRO_define
22025 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
22026 {
22027 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22028 mac_ptr += bytes_read;
22029 }
22030 else
22031 {
22032 LONGEST str_offset;
22033
22034 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22035 mac_ptr += offset_size;
2e276125 22036
0af92d60
JK
22037 if (macinfo_type == DW_MACRO_define_sup
22038 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 22039 || section_is_dwz)
36586728
TT
22040 {
22041 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22042
22043 body = read_indirect_string_from_dwz (dwz, str_offset);
22044 }
22045 else
22046 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
22047 }
22048
0af92d60
JK
22049 is_define = (macinfo_type == DW_MACRO_define
22050 || macinfo_type == DW_MACRO_define_strp
22051 || macinfo_type == DW_MACRO_define_sup);
2e276125 22052 if (! current_file)
757a13d0
JK
22053 {
22054 /* DWARF violation as no main source is present. */
22055 complaint (&symfile_complaints,
22056 _("debug info with no main source gives macro %s "
22057 "on line %d: %s"),
cf2c3c16
TT
22058 is_define ? _("definition") : _("undefinition"),
22059 line, body);
757a13d0
JK
22060 break;
22061 }
3e43a32a
MS
22062 if ((line == 0 && !at_commandline)
22063 || (line != 0 && at_commandline))
4d3c2250 22064 complaint (&symfile_complaints,
757a13d0
JK
22065 _("debug info gives %s macro %s with %s line %d: %s"),
22066 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 22067 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
22068 line == 0 ? _("zero") : _("non-zero"), line, body);
22069
cf2c3c16 22070 if (is_define)
757a13d0 22071 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
22072 else
22073 {
0af92d60
JK
22074 gdb_assert (macinfo_type == DW_MACRO_undef
22075 || macinfo_type == DW_MACRO_undef_strp
22076 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
22077 macro_undef (current_file, line, body);
22078 }
2e276125
JB
22079 }
22080 break;
22081
0af92d60 22082 case DW_MACRO_start_file:
2e276125 22083 {
891d2f0b 22084 unsigned int bytes_read;
2e276125
JB
22085 int line, file;
22086
22087 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22088 mac_ptr += bytes_read;
22089 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22090 mac_ptr += bytes_read;
22091
3e43a32a
MS
22092 if ((line == 0 && !at_commandline)
22093 || (line != 0 && at_commandline))
757a13d0
JK
22094 complaint (&symfile_complaints,
22095 _("debug info gives source %d included "
22096 "from %s at %s line %d"),
22097 file, at_commandline ? _("command-line") : _("file"),
22098 line == 0 ? _("zero") : _("non-zero"), line);
22099
22100 if (at_commandline)
22101 {
0af92d60 22102 /* This DW_MACRO_start_file was executed in the
cf2c3c16 22103 pass one. */
757a13d0
JK
22104 at_commandline = 0;
22105 }
22106 else
43f3e411 22107 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
22108 }
22109 break;
22110
0af92d60 22111 case DW_MACRO_end_file:
2e276125 22112 if (! current_file)
4d3c2250 22113 complaint (&symfile_complaints,
3e43a32a
MS
22114 _("macro debug info has an unmatched "
22115 "`close_file' directive"));
2e276125
JB
22116 else
22117 {
22118 current_file = current_file->included_by;
22119 if (! current_file)
22120 {
cf2c3c16 22121 enum dwarf_macro_record_type next_type;
2e276125
JB
22122
22123 /* GCC circa March 2002 doesn't produce the zero
22124 type byte marking the end of the compilation
22125 unit. Complain if it's not there, but exit no
22126 matter what. */
22127
22128 /* Do we at least have room for a macinfo type byte? */
22129 if (mac_ptr >= mac_end)
22130 {
f664829e 22131 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
22132 return;
22133 }
22134
22135 /* We don't increment mac_ptr here, so this is just
22136 a look-ahead. */
aead7601
SM
22137 next_type
22138 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22139 mac_ptr);
2e276125 22140 if (next_type != 0)
4d3c2250 22141 complaint (&symfile_complaints,
3e43a32a
MS
22142 _("no terminating 0-type entry for "
22143 "macros in `.debug_macinfo' section"));
2e276125
JB
22144
22145 return;
22146 }
22147 }
22148 break;
22149
0af92d60
JK
22150 case DW_MACRO_import:
22151 case DW_MACRO_import_sup:
cf2c3c16
TT
22152 {
22153 LONGEST offset;
8fc3fc34 22154 void **slot;
a036ba48
TT
22155 bfd *include_bfd = abfd;
22156 struct dwarf2_section_info *include_section = section;
d521ce57 22157 const gdb_byte *include_mac_end = mac_end;
a036ba48 22158 int is_dwz = section_is_dwz;
d521ce57 22159 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
22160
22161 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22162 mac_ptr += offset_size;
22163
0af92d60 22164 if (macinfo_type == DW_MACRO_import_sup)
a036ba48
TT
22165 {
22166 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22167
4d663531 22168 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 22169
a036ba48 22170 include_section = &dwz->macro;
a32a8923 22171 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
22172 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22173 is_dwz = 1;
22174 }
22175
22176 new_mac_ptr = include_section->buffer + offset;
22177 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22178
8fc3fc34
TT
22179 if (*slot != NULL)
22180 {
22181 /* This has actually happened; see
22182 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22183 complaint (&symfile_complaints,
0af92d60 22184 _("recursive DW_MACRO_import in "
8fc3fc34
TT
22185 ".debug_macro section"));
22186 }
22187 else
22188 {
d521ce57 22189 *slot = (void *) new_mac_ptr;
36586728 22190
a036ba48 22191 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 22192 include_mac_end, current_file, lh,
36586728 22193 section, section_is_gnu, is_dwz,
4d663531 22194 offset_size, include_hash);
8fc3fc34 22195
d521ce57 22196 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 22197 }
cf2c3c16
TT
22198 }
22199 break;
22200
2e276125 22201 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
22202 if (!section_is_gnu)
22203 {
22204 unsigned int bytes_read;
2e276125 22205
ac298888
TT
22206 /* This reads the constant, but since we don't recognize
22207 any vendor extensions, we ignore it. */
22208 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
22209 mac_ptr += bytes_read;
22210 read_direct_string (abfd, mac_ptr, &bytes_read);
22211 mac_ptr += bytes_read;
2e276125 22212
cf2c3c16
TT
22213 /* We don't recognize any vendor extensions. */
22214 break;
22215 }
22216 /* FALLTHROUGH */
22217
22218 default:
22219 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22220 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22221 section);
22222 if (mac_ptr == NULL)
22223 return;
22224 break;
2e276125 22225 }
757a13d0 22226 } while (macinfo_type != 0);
2e276125 22227}
8e19ed76 22228
cf2c3c16 22229static void
09262596 22230dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 22231 int section_is_gnu)
cf2c3c16 22232{
bb5ed363 22233 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
22234 struct line_header *lh = cu->line_header;
22235 bfd *abfd;
d521ce57 22236 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
22237 struct macro_source_file *current_file = 0;
22238 enum dwarf_macro_record_type macinfo_type;
22239 unsigned int offset_size = cu->header.offset_size;
d521ce57 22240 const gdb_byte *opcode_definitions[256];
8fc3fc34 22241 struct cleanup *cleanup;
8fc3fc34 22242 void **slot;
09262596
DE
22243 struct dwarf2_section_info *section;
22244 const char *section_name;
22245
22246 if (cu->dwo_unit != NULL)
22247 {
22248 if (section_is_gnu)
22249 {
22250 section = &cu->dwo_unit->dwo_file->sections.macro;
22251 section_name = ".debug_macro.dwo";
22252 }
22253 else
22254 {
22255 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22256 section_name = ".debug_macinfo.dwo";
22257 }
22258 }
22259 else
22260 {
22261 if (section_is_gnu)
22262 {
22263 section = &dwarf2_per_objfile->macro;
22264 section_name = ".debug_macro";
22265 }
22266 else
22267 {
22268 section = &dwarf2_per_objfile->macinfo;
22269 section_name = ".debug_macinfo";
22270 }
22271 }
cf2c3c16 22272
bb5ed363 22273 dwarf2_read_section (objfile, section);
cf2c3c16
TT
22274 if (section->buffer == NULL)
22275 {
fceca515 22276 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
22277 return;
22278 }
a32a8923 22279 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
22280
22281 /* First pass: Find the name of the base filename.
22282 This filename is needed in order to process all macros whose definition
22283 (or undefinition) comes from the command line. These macros are defined
22284 before the first DW_MACINFO_start_file entry, and yet still need to be
22285 associated to the base file.
22286
22287 To determine the base file name, we scan the macro definitions until we
22288 reach the first DW_MACINFO_start_file entry. We then initialize
22289 CURRENT_FILE accordingly so that any macro definition found before the
22290 first DW_MACINFO_start_file can still be associated to the base file. */
22291
22292 mac_ptr = section->buffer + offset;
22293 mac_end = section->buffer + section->size;
22294
22295 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22296 &offset_size, section_is_gnu);
22297 if (mac_ptr == NULL)
22298 {
22299 /* We already issued a complaint. */
22300 return;
22301 }
22302
22303 do
22304 {
22305 /* Do we at least have room for a macinfo type byte? */
22306 if (mac_ptr >= mac_end)
22307 {
22308 /* Complaint is printed during the second pass as GDB will probably
22309 stop the first pass earlier upon finding
22310 DW_MACINFO_start_file. */
22311 break;
22312 }
22313
aead7601 22314 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
22315 mac_ptr++;
22316
22317 /* Note that we rely on the fact that the corresponding GNU and
22318 DWARF constants are the same. */
22319 switch (macinfo_type)
22320 {
22321 /* A zero macinfo type indicates the end of the macro
22322 information. */
22323 case 0:
22324 break;
22325
0af92d60
JK
22326 case DW_MACRO_define:
22327 case DW_MACRO_undef:
cf2c3c16
TT
22328 /* Only skip the data by MAC_PTR. */
22329 {
22330 unsigned int bytes_read;
22331
22332 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22333 mac_ptr += bytes_read;
22334 read_direct_string (abfd, mac_ptr, &bytes_read);
22335 mac_ptr += bytes_read;
22336 }
22337 break;
22338
0af92d60 22339 case DW_MACRO_start_file:
cf2c3c16
TT
22340 {
22341 unsigned int bytes_read;
22342 int line, file;
22343
22344 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22345 mac_ptr += bytes_read;
22346 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22347 mac_ptr += bytes_read;
22348
43f3e411 22349 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
22350 }
22351 break;
22352
0af92d60 22353 case DW_MACRO_end_file:
cf2c3c16
TT
22354 /* No data to skip by MAC_PTR. */
22355 break;
22356
0af92d60
JK
22357 case DW_MACRO_define_strp:
22358 case DW_MACRO_undef_strp:
22359 case DW_MACRO_define_sup:
22360 case DW_MACRO_undef_sup:
cf2c3c16
TT
22361 {
22362 unsigned int bytes_read;
22363
22364 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22365 mac_ptr += bytes_read;
22366 mac_ptr += offset_size;
22367 }
22368 break;
22369
0af92d60
JK
22370 case DW_MACRO_import:
22371 case DW_MACRO_import_sup:
cf2c3c16 22372 /* Note that, according to the spec, a transparent include
0af92d60 22373 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
22374 skip this opcode. */
22375 mac_ptr += offset_size;
22376 break;
22377
22378 case DW_MACINFO_vendor_ext:
22379 /* Only skip the data by MAC_PTR. */
22380 if (!section_is_gnu)
22381 {
22382 unsigned int bytes_read;
22383
22384 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22385 mac_ptr += bytes_read;
22386 read_direct_string (abfd, mac_ptr, &bytes_read);
22387 mac_ptr += bytes_read;
22388 }
22389 /* FALLTHROUGH */
22390
22391 default:
22392 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22393 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22394 section);
22395 if (mac_ptr == NULL)
22396 return;
22397 break;
22398 }
22399 } while (macinfo_type != 0 && current_file == NULL);
22400
22401 /* Second pass: Process all entries.
22402
22403 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22404 command-line macro definitions/undefinitions. This flag is unset when we
22405 reach the first DW_MACINFO_start_file entry. */
22406
fc4007c9
TT
22407 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22408 htab_eq_pointer,
22409 NULL, xcalloc, xfree));
8fc3fc34 22410 mac_ptr = section->buffer + offset;
fc4007c9 22411 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 22412 *slot = (void *) mac_ptr;
8fc3fc34 22413 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 22414 current_file, lh, section,
fc4007c9
TT
22415 section_is_gnu, 0, offset_size,
22416 include_hash.get ());
cf2c3c16
TT
22417}
22418
8e19ed76 22419/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 22420 if so return true else false. */
380bca97 22421
8e19ed76 22422static int
6e5a29e1 22423attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
22424{
22425 return (attr == NULL ? 0 :
22426 attr->form == DW_FORM_block1
22427 || attr->form == DW_FORM_block2
22428 || attr->form == DW_FORM_block4
2dc7f7b3
TT
22429 || attr->form == DW_FORM_block
22430 || attr->form == DW_FORM_exprloc);
8e19ed76 22431}
4c2df51b 22432
c6a0999f
JB
22433/* Return non-zero if ATTR's value is a section offset --- classes
22434 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22435 You may use DW_UNSND (attr) to retrieve such offsets.
22436
22437 Section 7.5.4, "Attribute Encodings", explains that no attribute
22438 may have a value that belongs to more than one of these classes; it
22439 would be ambiguous if we did, because we use the same forms for all
22440 of them. */
380bca97 22441
3690dd37 22442static int
6e5a29e1 22443attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
22444{
22445 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
22446 || attr->form == DW_FORM_data8
22447 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
22448}
22449
3690dd37
JB
22450/* Return non-zero if ATTR's value falls in the 'constant' class, or
22451 zero otherwise. When this function returns true, you can apply
22452 dwarf2_get_attr_constant_value to it.
22453
22454 However, note that for some attributes you must check
22455 attr_form_is_section_offset before using this test. DW_FORM_data4
22456 and DW_FORM_data8 are members of both the constant class, and of
22457 the classes that contain offsets into other debug sections
22458 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22459 that, if an attribute's can be either a constant or one of the
22460 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
22461 taken as section offsets, not constants.
22462
22463 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22464 cannot handle that. */
380bca97 22465
3690dd37 22466static int
6e5a29e1 22467attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
22468{
22469 switch (attr->form)
22470 {
22471 case DW_FORM_sdata:
22472 case DW_FORM_udata:
22473 case DW_FORM_data1:
22474 case DW_FORM_data2:
22475 case DW_FORM_data4:
22476 case DW_FORM_data8:
22477 return 1;
22478 default:
22479 return 0;
22480 }
22481}
22482
7771576e
SA
22483
22484/* DW_ADDR is always stored already as sect_offset; despite for the forms
22485 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22486
22487static int
6e5a29e1 22488attr_form_is_ref (const struct attribute *attr)
7771576e
SA
22489{
22490 switch (attr->form)
22491 {
22492 case DW_FORM_ref_addr:
22493 case DW_FORM_ref1:
22494 case DW_FORM_ref2:
22495 case DW_FORM_ref4:
22496 case DW_FORM_ref8:
22497 case DW_FORM_ref_udata:
22498 case DW_FORM_GNU_ref_alt:
22499 return 1;
22500 default:
22501 return 0;
22502 }
22503}
22504
3019eac3
DE
22505/* Return the .debug_loc section to use for CU.
22506 For DWO files use .debug_loc.dwo. */
22507
22508static struct dwarf2_section_info *
22509cu_debug_loc_section (struct dwarf2_cu *cu)
22510{
22511 if (cu->dwo_unit)
43988095
JK
22512 {
22513 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22514
22515 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22516 }
22517 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22518 : &dwarf2_per_objfile->loc);
3019eac3
DE
22519}
22520
8cf6f0b1
TT
22521/* A helper function that fills in a dwarf2_loclist_baton. */
22522
22523static void
22524fill_in_loclist_baton (struct dwarf2_cu *cu,
22525 struct dwarf2_loclist_baton *baton,
ff39bb5e 22526 const struct attribute *attr)
8cf6f0b1 22527{
3019eac3
DE
22528 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22529
22530 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
22531
22532 baton->per_cu = cu->per_cu;
22533 gdb_assert (baton->per_cu);
22534 /* We don't know how long the location list is, but make sure we
22535 don't run off the edge of the section. */
3019eac3
DE
22536 baton->size = section->size - DW_UNSND (attr);
22537 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 22538 baton->base_address = cu->base_address;
f664829e 22539 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
22540}
22541
4c2df51b 22542static void
ff39bb5e 22543dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 22544 struct dwarf2_cu *cu, int is_block)
4c2df51b 22545{
bb5ed363 22546 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 22547 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 22548
3690dd37 22549 if (attr_form_is_section_offset (attr)
3019eac3 22550 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
22551 the section. If so, fall through to the complaint in the
22552 other branch. */
3019eac3 22553 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 22554 {
0d53c4c4 22555 struct dwarf2_loclist_baton *baton;
4c2df51b 22556
8d749320 22557 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 22558
8cf6f0b1 22559 fill_in_loclist_baton (cu, baton, attr);
be391dca 22560
d00adf39 22561 if (cu->base_known == 0)
0d53c4c4 22562 complaint (&symfile_complaints,
3e43a32a
MS
22563 _("Location list used without "
22564 "specifying the CU base address."));
4c2df51b 22565
f1e6e072
TT
22566 SYMBOL_ACLASS_INDEX (sym) = (is_block
22567 ? dwarf2_loclist_block_index
22568 : dwarf2_loclist_index);
0d53c4c4
DJ
22569 SYMBOL_LOCATION_BATON (sym) = baton;
22570 }
22571 else
22572 {
22573 struct dwarf2_locexpr_baton *baton;
22574
8d749320 22575 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
22576 baton->per_cu = cu->per_cu;
22577 gdb_assert (baton->per_cu);
0d53c4c4
DJ
22578
22579 if (attr_form_is_block (attr))
22580 {
22581 /* Note that we're just copying the block's data pointer
22582 here, not the actual data. We're still pointing into the
6502dd73
DJ
22583 info_buffer for SYM's objfile; right now we never release
22584 that buffer, but when we do clean up properly this may
22585 need to change. */
0d53c4c4
DJ
22586 baton->size = DW_BLOCK (attr)->size;
22587 baton->data = DW_BLOCK (attr)->data;
22588 }
22589 else
22590 {
22591 dwarf2_invalid_attrib_class_complaint ("location description",
22592 SYMBOL_NATURAL_NAME (sym));
22593 baton->size = 0;
0d53c4c4 22594 }
6e70227d 22595
f1e6e072
TT
22596 SYMBOL_ACLASS_INDEX (sym) = (is_block
22597 ? dwarf2_locexpr_block_index
22598 : dwarf2_locexpr_index);
0d53c4c4
DJ
22599 SYMBOL_LOCATION_BATON (sym) = baton;
22600 }
4c2df51b 22601}
6502dd73 22602
9aa1f1e3
TT
22603/* Return the OBJFILE associated with the compilation unit CU. If CU
22604 came from a separate debuginfo file, then the master objfile is
22605 returned. */
ae0d2f24
UW
22606
22607struct objfile *
22608dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22609{
9291a0cd 22610 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
22611
22612 /* Return the master objfile, so that we can report and look up the
22613 correct file containing this variable. */
22614 if (objfile->separate_debug_objfile_backlink)
22615 objfile = objfile->separate_debug_objfile_backlink;
22616
22617 return objfile;
22618}
22619
96408a79
SA
22620/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22621 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22622 CU_HEADERP first. */
22623
22624static const struct comp_unit_head *
22625per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22626 struct dwarf2_per_cu_data *per_cu)
22627{
d521ce57 22628 const gdb_byte *info_ptr;
96408a79
SA
22629
22630 if (per_cu->cu)
22631 return &per_cu->cu->header;
22632
9c541725 22633 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
22634
22635 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
22636 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22637 rcuh_kind::COMPILE);
96408a79
SA
22638
22639 return cu_headerp;
22640}
22641
ae0d2f24
UW
22642/* Return the address size given in the compilation unit header for CU. */
22643
98714339 22644int
ae0d2f24
UW
22645dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22646{
96408a79
SA
22647 struct comp_unit_head cu_header_local;
22648 const struct comp_unit_head *cu_headerp;
c471e790 22649
96408a79
SA
22650 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22651
22652 return cu_headerp->addr_size;
ae0d2f24
UW
22653}
22654
9eae7c52
TT
22655/* Return the offset size given in the compilation unit header for CU. */
22656
22657int
22658dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22659{
96408a79
SA
22660 struct comp_unit_head cu_header_local;
22661 const struct comp_unit_head *cu_headerp;
9c6c53f7 22662
96408a79
SA
22663 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22664
22665 return cu_headerp->offset_size;
22666}
22667
22668/* See its dwarf2loc.h declaration. */
22669
22670int
22671dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22672{
22673 struct comp_unit_head cu_header_local;
22674 const struct comp_unit_head *cu_headerp;
22675
22676 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22677
22678 if (cu_headerp->version == 2)
22679 return cu_headerp->addr_size;
22680 else
22681 return cu_headerp->offset_size;
181cebd4
JK
22682}
22683
9aa1f1e3
TT
22684/* Return the text offset of the CU. The returned offset comes from
22685 this CU's objfile. If this objfile came from a separate debuginfo
22686 file, then the offset may be different from the corresponding
22687 offset in the parent objfile. */
22688
22689CORE_ADDR
22690dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22691{
bb3fa9d0 22692 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22693
22694 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22695}
22696
43988095
JK
22697/* Return DWARF version number of PER_CU. */
22698
22699short
22700dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22701{
22702 return per_cu->dwarf_version;
22703}
22704
348e048f
DE
22705/* Locate the .debug_info compilation unit from CU's objfile which contains
22706 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22707
22708static struct dwarf2_per_cu_data *
9c541725 22709dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 22710 unsigned int offset_in_dwz,
ae038cb0
DJ
22711 struct objfile *objfile)
22712{
22713 struct dwarf2_per_cu_data *this_cu;
22714 int low, high;
36586728 22715 const sect_offset *cu_off;
ae038cb0 22716
ae038cb0
DJ
22717 low = 0;
22718 high = dwarf2_per_objfile->n_comp_units - 1;
22719 while (high > low)
22720 {
36586728 22721 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22722 int mid = low + (high - low) / 2;
9a619af0 22723
36586728 22724 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
9c541725 22725 cu_off = &mid_cu->sect_off;
36586728 22726 if (mid_cu->is_dwz > offset_in_dwz
9c541725 22727 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
ae038cb0
DJ
22728 high = mid;
22729 else
22730 low = mid + 1;
22731 }
22732 gdb_assert (low == high);
36586728 22733 this_cu = dwarf2_per_objfile->all_comp_units[low];
9c541725
PA
22734 cu_off = &this_cu->sect_off;
22735 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
ae038cb0 22736 {
36586728 22737 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 22738 error (_("Dwarf Error: could not find partial DIE containing "
9c541725
PA
22739 "offset 0x%x [in module %s]"),
22740 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
10b3939b 22741
9c541725
PA
22742 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22743 <= sect_off);
ae038cb0
DJ
22744 return dwarf2_per_objfile->all_comp_units[low-1];
22745 }
22746 else
22747 {
22748 this_cu = dwarf2_per_objfile->all_comp_units[low];
22749 if (low == dwarf2_per_objfile->n_comp_units - 1
9c541725
PA
22750 && sect_off >= this_cu->sect_off + this_cu->length)
22751 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22752 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
22753 return this_cu;
22754 }
22755}
22756
23745b47 22757/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22758
9816fde3 22759static void
23745b47 22760init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22761{
9816fde3 22762 memset (cu, 0, sizeof (*cu));
23745b47
DE
22763 per_cu->cu = cu;
22764 cu->per_cu = per_cu;
22765 cu->objfile = per_cu->objfile;
93311388 22766 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22767}
22768
22769/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22770
22771static void
95554aad
TT
22772prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22773 enum language pretend_language)
9816fde3
JK
22774{
22775 struct attribute *attr;
22776
22777 /* Set the language we're debugging. */
22778 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22779 if (attr)
22780 set_cu_language (DW_UNSND (attr), cu);
22781 else
9cded63f 22782 {
95554aad 22783 cu->language = pretend_language;
9cded63f
TT
22784 cu->language_defn = language_def (cu->language);
22785 }
dee91e82 22786
7d45c7c3 22787 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22788}
22789
ae038cb0
DJ
22790/* Release one cached compilation unit, CU. We unlink it from the tree
22791 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22792 the caller is responsible for that.
22793 NOTE: DATA is a void * because this function is also used as a
22794 cleanup routine. */
ae038cb0
DJ
22795
22796static void
68dc6402 22797free_heap_comp_unit (void *data)
ae038cb0 22798{
9a3c8263 22799 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22800
23745b47
DE
22801 gdb_assert (cu->per_cu != NULL);
22802 cu->per_cu->cu = NULL;
ae038cb0
DJ
22803 cu->per_cu = NULL;
22804
22805 obstack_free (&cu->comp_unit_obstack, NULL);
22806
22807 xfree (cu);
22808}
22809
72bf9492 22810/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22811 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22812 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22813
22814static void
22815free_stack_comp_unit (void *data)
22816{
9a3c8263 22817 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22818
23745b47
DE
22819 gdb_assert (cu->per_cu != NULL);
22820 cu->per_cu->cu = NULL;
22821 cu->per_cu = NULL;
22822
72bf9492
DJ
22823 obstack_free (&cu->comp_unit_obstack, NULL);
22824 cu->partial_dies = NULL;
ae038cb0
DJ
22825}
22826
22827/* Free all cached compilation units. */
22828
22829static void
22830free_cached_comp_units (void *data)
22831{
330cdd98 22832 dwarf2_per_objfile->free_cached_comp_units ();
ae038cb0
DJ
22833}
22834
22835/* Increase the age counter on each cached compilation unit, and free
22836 any that are too old. */
22837
22838static void
22839age_cached_comp_units (void)
22840{
22841 struct dwarf2_per_cu_data *per_cu, **last_chain;
22842
22843 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22844 per_cu = dwarf2_per_objfile->read_in_chain;
22845 while (per_cu != NULL)
22846 {
22847 per_cu->cu->last_used ++;
b4f54984 22848 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22849 dwarf2_mark (per_cu->cu);
22850 per_cu = per_cu->cu->read_in_chain;
22851 }
22852
22853 per_cu = dwarf2_per_objfile->read_in_chain;
22854 last_chain = &dwarf2_per_objfile->read_in_chain;
22855 while (per_cu != NULL)
22856 {
22857 struct dwarf2_per_cu_data *next_cu;
22858
22859 next_cu = per_cu->cu->read_in_chain;
22860
22861 if (!per_cu->cu->mark)
22862 {
68dc6402 22863 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22864 *last_chain = next_cu;
22865 }
22866 else
22867 last_chain = &per_cu->cu->read_in_chain;
22868
22869 per_cu = next_cu;
22870 }
22871}
22872
22873/* Remove a single compilation unit from the cache. */
22874
22875static void
dee91e82 22876free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22877{
22878 struct dwarf2_per_cu_data *per_cu, **last_chain;
22879
22880 per_cu = dwarf2_per_objfile->read_in_chain;
22881 last_chain = &dwarf2_per_objfile->read_in_chain;
22882 while (per_cu != NULL)
22883 {
22884 struct dwarf2_per_cu_data *next_cu;
22885
22886 next_cu = per_cu->cu->read_in_chain;
22887
dee91e82 22888 if (per_cu == target_per_cu)
ae038cb0 22889 {
68dc6402 22890 free_heap_comp_unit (per_cu->cu);
dee91e82 22891 per_cu->cu = NULL;
ae038cb0
DJ
22892 *last_chain = next_cu;
22893 break;
22894 }
22895 else
22896 last_chain = &per_cu->cu->read_in_chain;
22897
22898 per_cu = next_cu;
22899 }
22900}
22901
fe3e1990
DJ
22902/* Release all extra memory associated with OBJFILE. */
22903
22904void
22905dwarf2_free_objfile (struct objfile *objfile)
22906{
9a3c8263
SM
22907 dwarf2_per_objfile
22908 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22909 dwarf2_objfile_data_key);
fe3e1990
DJ
22910
22911 if (dwarf2_per_objfile == NULL)
22912 return;
22913
330cdd98 22914 dwarf2_per_objfile->~dwarf2_per_objfile ();
fe3e1990
DJ
22915}
22916
dee91e82
DE
22917/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22918 We store these in a hash table separate from the DIEs, and preserve them
22919 when the DIEs are flushed out of cache.
22920
22921 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22922 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22923 or the type may come from a DWO file. Furthermore, while it's more logical
22924 to use per_cu->section+offset, with Fission the section with the data is in
22925 the DWO file but we don't know that section at the point we need it.
22926 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22927 because we can enter the lookup routine, get_die_type_at_offset, from
22928 outside this file, and thus won't necessarily have PER_CU->cu.
22929 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22930
dee91e82 22931struct dwarf2_per_cu_offset_and_type
1c379e20 22932{
dee91e82 22933 const struct dwarf2_per_cu_data *per_cu;
9c541725 22934 sect_offset sect_off;
1c379e20
DJ
22935 struct type *type;
22936};
22937
dee91e82 22938/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22939
22940static hashval_t
dee91e82 22941per_cu_offset_and_type_hash (const void *item)
1c379e20 22942{
9a3c8263
SM
22943 const struct dwarf2_per_cu_offset_and_type *ofs
22944 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22945
9c541725 22946 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
22947}
22948
dee91e82 22949/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22950
22951static int
dee91e82 22952per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22953{
9a3c8263
SM
22954 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22955 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22956 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22957 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22958
dee91e82 22959 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 22960 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
22961}
22962
22963/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22964 table if necessary. For convenience, return TYPE.
22965
22966 The DIEs reading must have careful ordering to:
22967 * Not cause infite loops trying to read in DIEs as a prerequisite for
22968 reading current DIE.
22969 * Not trying to dereference contents of still incompletely read in types
22970 while reading in other DIEs.
22971 * Enable referencing still incompletely read in types just by a pointer to
22972 the type without accessing its fields.
22973
22974 Therefore caller should follow these rules:
22975 * Try to fetch any prerequisite types we may need to build this DIE type
22976 before building the type and calling set_die_type.
e71ec853 22977 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22978 possible before fetching more types to complete the current type.
22979 * Make the type as complete as possible before fetching more types. */
1c379e20 22980
f792889a 22981static struct type *
1c379e20
DJ
22982set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22983{
dee91e82 22984 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22985 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22986 struct attribute *attr;
22987 struct dynamic_prop prop;
1c379e20 22988
b4ba55a1
JB
22989 /* For Ada types, make sure that the gnat-specific data is always
22990 initialized (if not already set). There are a few types where
22991 we should not be doing so, because the type-specific area is
22992 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22993 where the type-specific area is used to store the floatformat).
22994 But this is not a problem, because the gnat-specific information
22995 is actually not needed for these types. */
22996 if (need_gnat_info (cu)
22997 && TYPE_CODE (type) != TYPE_CODE_FUNC
22998 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22999 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23000 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23001 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
23002 && !HAVE_GNAT_AUX_INFO (type))
23003 INIT_GNAT_SPECIFIC (type);
23004
3f2f83dd
KB
23005 /* Read DW_AT_allocated and set in type. */
23006 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23007 if (attr_form_is_block (attr))
23008 {
23009 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23010 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23011 }
23012 else if (attr != NULL)
23013 {
23014 complaint (&symfile_complaints,
9c541725
PA
23015 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23016 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23017 to_underlying (die->sect_off));
3f2f83dd
KB
23018 }
23019
23020 /* Read DW_AT_associated and set in type. */
23021 attr = dwarf2_attr (die, DW_AT_associated, cu);
23022 if (attr_form_is_block (attr))
23023 {
23024 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23025 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23026 }
23027 else if (attr != NULL)
23028 {
23029 complaint (&symfile_complaints,
9c541725
PA
23030 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23031 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23032 to_underlying (die->sect_off));
3f2f83dd
KB
23033 }
23034
3cdcd0ce
JB
23035 /* Read DW_AT_data_location and set in type. */
23036 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23037 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 23038 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 23039
dee91e82 23040 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23041 {
dee91e82
DE
23042 dwarf2_per_objfile->die_type_hash =
23043 htab_create_alloc_ex (127,
23044 per_cu_offset_and_type_hash,
23045 per_cu_offset_and_type_eq,
23046 NULL,
23047 &objfile->objfile_obstack,
23048 hashtab_obstack_allocate,
23049 dummy_obstack_deallocate);
f792889a 23050 }
1c379e20 23051
dee91e82 23052 ofs.per_cu = cu->per_cu;
9c541725 23053 ofs.sect_off = die->sect_off;
1c379e20 23054 ofs.type = type;
dee91e82
DE
23055 slot = (struct dwarf2_per_cu_offset_and_type **)
23056 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
23057 if (*slot)
23058 complaint (&symfile_complaints,
23059 _("A problem internal to GDB: DIE 0x%x has type already set"),
9c541725 23060 to_underlying (die->sect_off));
8d749320
SM
23061 *slot = XOBNEW (&objfile->objfile_obstack,
23062 struct dwarf2_per_cu_offset_and_type);
1c379e20 23063 **slot = ofs;
f792889a 23064 return type;
1c379e20
DJ
23065}
23066
9c541725 23067/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 23068 or return NULL if the die does not have a saved type. */
1c379e20
DJ
23069
23070static struct type *
9c541725 23071get_die_type_at_offset (sect_offset sect_off,
673bfd45 23072 struct dwarf2_per_cu_data *per_cu)
1c379e20 23073{
dee91e82 23074 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 23075
dee91e82 23076 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23077 return NULL;
1c379e20 23078
dee91e82 23079 ofs.per_cu = per_cu;
9c541725 23080 ofs.sect_off = sect_off;
9a3c8263
SM
23081 slot = ((struct dwarf2_per_cu_offset_and_type *)
23082 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
23083 if (slot)
23084 return slot->type;
23085 else
23086 return NULL;
23087}
23088
02142a6c 23089/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
23090 or return NULL if DIE does not have a saved type. */
23091
23092static struct type *
23093get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23094{
9c541725 23095 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
23096}
23097
10b3939b
DJ
23098/* Add a dependence relationship from CU to REF_PER_CU. */
23099
23100static void
23101dwarf2_add_dependence (struct dwarf2_cu *cu,
23102 struct dwarf2_per_cu_data *ref_per_cu)
23103{
23104 void **slot;
23105
23106 if (cu->dependencies == NULL)
23107 cu->dependencies
23108 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23109 NULL, &cu->comp_unit_obstack,
23110 hashtab_obstack_allocate,
23111 dummy_obstack_deallocate);
23112
23113 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23114 if (*slot == NULL)
23115 *slot = ref_per_cu;
23116}
1c379e20 23117
f504f079
DE
23118/* Subroutine of dwarf2_mark to pass to htab_traverse.
23119 Set the mark field in every compilation unit in the
ae038cb0
DJ
23120 cache that we must keep because we are keeping CU. */
23121
10b3939b
DJ
23122static int
23123dwarf2_mark_helper (void **slot, void *data)
23124{
23125 struct dwarf2_per_cu_data *per_cu;
23126
23127 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
23128
23129 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23130 reading of the chain. As such dependencies remain valid it is not much
23131 useful to track and undo them during QUIT cleanups. */
23132 if (per_cu->cu == NULL)
23133 return 1;
23134
10b3939b
DJ
23135 if (per_cu->cu->mark)
23136 return 1;
23137 per_cu->cu->mark = 1;
23138
23139 if (per_cu->cu->dependencies != NULL)
23140 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23141
23142 return 1;
23143}
23144
f504f079
DE
23145/* Set the mark field in CU and in every other compilation unit in the
23146 cache that we must keep because we are keeping CU. */
23147
ae038cb0
DJ
23148static void
23149dwarf2_mark (struct dwarf2_cu *cu)
23150{
23151 if (cu->mark)
23152 return;
23153 cu->mark = 1;
10b3939b
DJ
23154 if (cu->dependencies != NULL)
23155 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
23156}
23157
23158static void
23159dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23160{
23161 while (per_cu)
23162 {
23163 per_cu->cu->mark = 0;
23164 per_cu = per_cu->cu->read_in_chain;
23165 }
72bf9492
DJ
23166}
23167
72bf9492
DJ
23168/* Trivial hash function for partial_die_info: the hash value of a DIE
23169 is its offset in .debug_info for this objfile. */
23170
23171static hashval_t
23172partial_die_hash (const void *item)
23173{
9a3c8263
SM
23174 const struct partial_die_info *part_die
23175 = (const struct partial_die_info *) item;
9a619af0 23176
9c541725 23177 return to_underlying (part_die->sect_off);
72bf9492
DJ
23178}
23179
23180/* Trivial comparison function for partial_die_info structures: two DIEs
23181 are equal if they have the same offset. */
23182
23183static int
23184partial_die_eq (const void *item_lhs, const void *item_rhs)
23185{
9a3c8263
SM
23186 const struct partial_die_info *part_die_lhs
23187 = (const struct partial_die_info *) item_lhs;
23188 const struct partial_die_info *part_die_rhs
23189 = (const struct partial_die_info *) item_rhs;
9a619af0 23190
9c541725 23191 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
23192}
23193
b4f54984
DE
23194static struct cmd_list_element *set_dwarf_cmdlist;
23195static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
23196
23197static void
b4f54984 23198set_dwarf_cmd (char *args, int from_tty)
ae038cb0 23199{
b4f54984 23200 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 23201 gdb_stdout);
ae038cb0
DJ
23202}
23203
23204static void
b4f54984 23205show_dwarf_cmd (char *args, int from_tty)
6e70227d 23206{
b4f54984 23207 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
23208}
23209
4bf44c1c 23210/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
23211
23212static void
c1bd65d0 23213dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 23214{
9a3c8263 23215 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 23216 int ix;
8b70b953 23217
626f2d1c
TT
23218 /* Make sure we don't accidentally use dwarf2_per_objfile while
23219 cleaning up. */
23220 dwarf2_per_objfile = NULL;
23221
59b0c7c1
JB
23222 for (ix = 0; ix < data->n_comp_units; ++ix)
23223 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 23224
59b0c7c1 23225 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 23226 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
23227 data->all_type_units[ix]->per_cu.imported_symtabs);
23228 xfree (data->all_type_units);
95554aad 23229
8b70b953 23230 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
23231
23232 if (data->dwo_files)
23233 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
23234 if (data->dwp_file)
23235 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
23236
23237 if (data->dwz_file && data->dwz_file->dwz_bfd)
23238 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
23239}
23240
23241\f
ae2de4f8 23242/* The "save gdb-index" command. */
9291a0cd 23243
bc8f2430
JK
23244/* In-memory buffer to prepare data to be written later to a file. */
23245class data_buf
9291a0cd 23246{
bc8f2430 23247public:
bc8f2430
JK
23248 /* Copy DATA to the end of the buffer. */
23249 template<typename T>
23250 void append_data (const T &data)
23251 {
23252 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23253 reinterpret_cast<const gdb_byte *> (&data + 1),
c2f134ac 23254 grow (sizeof (data)));
bc8f2430 23255 }
b89be57b 23256
c2f134ac
PA
23257 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23258 terminating zero is appended too. */
bc8f2430
JK
23259 void append_cstr0 (const char *cstr)
23260 {
23261 const size_t size = strlen (cstr) + 1;
c2f134ac
PA
23262 std::copy (cstr, cstr + size, grow (size));
23263 }
23264
23265 /* Accept a host-format integer in VAL and append it to the buffer
23266 as a target-format integer which is LEN bytes long. */
23267 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23268 {
23269 ::store_unsigned_integer (grow (len), len, byte_order, val);
bc8f2430 23270 }
9291a0cd 23271
bc8f2430
JK
23272 /* Return the size of the buffer. */
23273 size_t size () const
23274 {
23275 return m_vec.size ();
23276 }
23277
23278 /* Write the buffer to FILE. */
23279 void file_write (FILE *file) const
23280 {
a81e6d4d
PA
23281 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23282 error (_("couldn't write data to file"));
bc8f2430
JK
23283 }
23284
23285private:
c2f134ac
PA
23286 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23287 the start of the new block. */
23288 gdb_byte *grow (size_t size)
23289 {
23290 m_vec.resize (m_vec.size () + size);
23291 return &*m_vec.end () - size;
23292 }
23293
d5722aa2 23294 gdb::byte_vector m_vec;
bc8f2430 23295};
9291a0cd
TT
23296
23297/* An entry in the symbol table. */
23298struct symtab_index_entry
23299{
23300 /* The name of the symbol. */
23301 const char *name;
23302 /* The offset of the name in the constant pool. */
23303 offset_type index_offset;
23304 /* A sorted vector of the indices of all the CUs that hold an object
23305 of this name. */
bc8f2430 23306 std::vector<offset_type> cu_indices;
9291a0cd
TT
23307};
23308
23309/* The symbol table. This is a power-of-2-sized hash table. */
23310struct mapped_symtab
23311{
bc8f2430
JK
23312 mapped_symtab ()
23313 {
23314 data.resize (1024);
23315 }
b89be57b 23316
bc8f2430 23317 offset_type n_elements = 0;
4b76cda9 23318 std::vector<symtab_index_entry> data;
bc8f2430 23319};
9291a0cd 23320
bc8f2430 23321/* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
559a7a62
JK
23322 the slot.
23323
23324 Function is used only during write_hash_table so no index format backward
23325 compatibility is needed. */
b89be57b 23326
4b76cda9 23327static symtab_index_entry &
9291a0cd
TT
23328find_slot (struct mapped_symtab *symtab, const char *name)
23329{
559a7a62 23330 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd 23331
bc8f2430
JK
23332 index = hash & (symtab->data.size () - 1);
23333 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
9291a0cd
TT
23334
23335 for (;;)
23336 {
4b76cda9
PA
23337 if (symtab->data[index].name == NULL
23338 || strcmp (name, symtab->data[index].name) == 0)
bc8f2430
JK
23339 return symtab->data[index];
23340 index = (index + step) & (symtab->data.size () - 1);
9291a0cd
TT
23341 }
23342}
23343
23344/* Expand SYMTAB's hash table. */
b89be57b 23345
9291a0cd
TT
23346static void
23347hash_expand (struct mapped_symtab *symtab)
23348{
bc8f2430 23349 auto old_entries = std::move (symtab->data);
9291a0cd 23350
bc8f2430
JK
23351 symtab->data.clear ();
23352 symtab->data.resize (old_entries.size () * 2);
9291a0cd 23353
bc8f2430 23354 for (auto &it : old_entries)
4b76cda9 23355 if (it.name != NULL)
bc8f2430 23356 {
4b76cda9 23357 auto &ref = find_slot (symtab, it.name);
bc8f2430
JK
23358 ref = std::move (it);
23359 }
9291a0cd
TT
23360}
23361
156942c7
DE
23362/* Add an entry to SYMTAB. NAME is the name of the symbol.
23363 CU_INDEX is the index of the CU in which the symbol appears.
23364 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 23365
9291a0cd
TT
23366static void
23367add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 23368 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
23369 offset_type cu_index)
23370{
156942c7 23371 offset_type cu_index_and_attrs;
9291a0cd
TT
23372
23373 ++symtab->n_elements;
bc8f2430 23374 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
9291a0cd
TT
23375 hash_expand (symtab);
23376
4b76cda9
PA
23377 symtab_index_entry &slot = find_slot (symtab, name);
23378 if (slot.name == NULL)
9291a0cd 23379 {
4b76cda9 23380 slot.name = name;
156942c7 23381 /* index_offset is set later. */
9291a0cd 23382 }
156942c7
DE
23383
23384 cu_index_and_attrs = 0;
23385 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23386 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23387 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23388
23389 /* We don't want to record an index value twice as we want to avoid the
23390 duplication.
23391 We process all global symbols and then all static symbols
23392 (which would allow us to avoid the duplication by only having to check
23393 the last entry pushed), but a symbol could have multiple kinds in one CU.
23394 To keep things simple we don't worry about the duplication here and
23395 sort and uniqufy the list after we've processed all symbols. */
4b76cda9 23396 slot.cu_indices.push_back (cu_index_and_attrs);
156942c7
DE
23397}
23398
23399/* Sort and remove duplicates of all symbols' cu_indices lists. */
23400
23401static void
23402uniquify_cu_indices (struct mapped_symtab *symtab)
23403{
4b76cda9 23404 for (auto &entry : symtab->data)
156942c7 23405 {
4b76cda9 23406 if (entry.name != NULL && !entry.cu_indices.empty ())
156942c7 23407 {
4b76cda9 23408 auto &cu_indices = entry.cu_indices;
6fd931f2
PA
23409 std::sort (cu_indices.begin (), cu_indices.end ());
23410 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23411 cu_indices.erase (from, cu_indices.end ());
156942c7
DE
23412 }
23413 }
9291a0cd
TT
23414}
23415
bc8f2430
JK
23416/* A form of 'const char *' suitable for container keys. Only the
23417 pointer is stored. The strings themselves are compared, not the
23418 pointers. */
23419class c_str_view
9291a0cd 23420{
bc8f2430
JK
23421public:
23422 c_str_view (const char *cstr)
23423 : m_cstr (cstr)
23424 {}
9291a0cd 23425
bc8f2430
JK
23426 bool operator== (const c_str_view &other) const
23427 {
23428 return strcmp (m_cstr, other.m_cstr) == 0;
23429 }
9291a0cd 23430
bc8f2430
JK
23431private:
23432 friend class c_str_view_hasher;
23433 const char *const m_cstr;
23434};
9291a0cd 23435
bc8f2430
JK
23436/* A std::unordered_map::hasher for c_str_view that uses the right
23437 hash function for strings in a mapped index. */
23438class c_str_view_hasher
23439{
23440public:
23441 size_t operator () (const c_str_view &x) const
23442 {
23443 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23444 }
23445};
b89be57b 23446
bc8f2430
JK
23447/* A std::unordered_map::hasher for std::vector<>. */
23448template<typename T>
23449class vector_hasher
9291a0cd 23450{
bc8f2430
JK
23451public:
23452 size_t operator () (const std::vector<T> &key) const
23453 {
23454 return iterative_hash (key.data (),
23455 sizeof (key.front ()) * key.size (), 0);
23456 }
23457};
9291a0cd 23458
bc8f2430
JK
23459/* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23460 constant pool entries going into the data buffer CPOOL. */
3876f04e 23461
bc8f2430
JK
23462static void
23463write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23464{
23465 {
23466 /* Elements are sorted vectors of the indices of all the CUs that
23467 hold an object of this name. */
23468 std::unordered_map<std::vector<offset_type>, offset_type,
23469 vector_hasher<offset_type>>
23470 symbol_hash_table;
23471
23472 /* We add all the index vectors to the constant pool first, to
23473 ensure alignment is ok. */
4b76cda9 23474 for (symtab_index_entry &entry : symtab->data)
bc8f2430 23475 {
4b76cda9 23476 if (entry.name == NULL)
bc8f2430 23477 continue;
4b76cda9 23478 gdb_assert (entry.index_offset == 0);
70a1152b
PA
23479
23480 /* Finding before inserting is faster than always trying to
23481 insert, because inserting always allocates a node, does the
23482 lookup, and then destroys the new node if another node
23483 already had the same key. C++17 try_emplace will avoid
23484 this. */
23485 const auto found
4b76cda9 23486 = symbol_hash_table.find (entry.cu_indices);
70a1152b
PA
23487 if (found != symbol_hash_table.end ())
23488 {
4b76cda9 23489 entry.index_offset = found->second;
70a1152b
PA
23490 continue;
23491 }
23492
4b76cda9
PA
23493 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23494 entry.index_offset = cpool.size ();
23495 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23496 for (const auto index : entry.cu_indices)
23497 cpool.append_data (MAYBE_SWAP (index));
bc8f2430
JK
23498 }
23499 }
9291a0cd
TT
23500
23501 /* Now write out the hash table. */
bc8f2430 23502 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
4b76cda9 23503 for (const auto &entry : symtab->data)
9291a0cd
TT
23504 {
23505 offset_type str_off, vec_off;
23506
4b76cda9 23507 if (entry.name != NULL)
9291a0cd 23508 {
4b76cda9 23509 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
bc8f2430 23510 if (insertpair.second)
4b76cda9 23511 cpool.append_cstr0 (entry.name);
bc8f2430 23512 str_off = insertpair.first->second;
4b76cda9 23513 vec_off = entry.index_offset;
9291a0cd
TT
23514 }
23515 else
23516 {
23517 /* While 0 is a valid constant pool index, it is not valid
23518 to have 0 for both offsets. */
23519 str_off = 0;
23520 vec_off = 0;
23521 }
23522
bc8f2430
JK
23523 output.append_data (MAYBE_SWAP (str_off));
23524 output.append_data (MAYBE_SWAP (vec_off));
9291a0cd 23525 }
9291a0cd
TT
23526}
23527
bc8f2430 23528typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
0a5429f6
DE
23529
23530/* Helper struct for building the address table. */
23531struct addrmap_index_data
23532{
bc8f2430
JK
23533 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23534 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23535 {}
23536
0a5429f6 23537 struct objfile *objfile;
bc8f2430
JK
23538 data_buf &addr_vec;
23539 psym_index_map &cu_index_htab;
0a5429f6
DE
23540
23541 /* Non-zero if the previous_* fields are valid.
23542 We can't write an entry until we see the next entry (since it is only then
23543 that we know the end of the entry). */
23544 int previous_valid;
23545 /* Index of the CU in the table of all CUs in the index file. */
23546 unsigned int previous_cu_index;
0963b4bd 23547 /* Start address of the CU. */
0a5429f6
DE
23548 CORE_ADDR previous_cu_start;
23549};
23550
bc8f2430 23551/* Write an address entry to ADDR_VEC. */
b89be57b 23552
9291a0cd 23553static void
bc8f2430 23554add_address_entry (struct objfile *objfile, data_buf &addr_vec,
0a5429f6 23555 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23556{
9291a0cd
TT
23557 CORE_ADDR baseaddr;
23558
23559 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23560
c2f134ac
PA
23561 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23562 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
bc8f2430 23563 addr_vec.append_data (MAYBE_SWAP (cu_index));
0a5429f6
DE
23564}
23565
23566/* Worker function for traversing an addrmap to build the address table. */
23567
23568static int
23569add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23570{
9a3c8263
SM
23571 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23572 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23573
23574 if (data->previous_valid)
bc8f2430 23575 add_address_entry (data->objfile, data->addr_vec,
0a5429f6
DE
23576 data->previous_cu_start, start_addr,
23577 data->previous_cu_index);
23578
23579 data->previous_cu_start = start_addr;
23580 if (pst != NULL)
23581 {
bc8f2430
JK
23582 const auto it = data->cu_index_htab.find (pst);
23583 gdb_assert (it != data->cu_index_htab.cend ());
23584 data->previous_cu_index = it->second;
0a5429f6
DE
23585 data->previous_valid = 1;
23586 }
23587 else
bc8f2430 23588 data->previous_valid = 0;
0a5429f6
DE
23589
23590 return 0;
23591}
23592
bc8f2430 23593/* Write OBJFILE's address map to ADDR_VEC.
0a5429f6
DE
23594 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23595 in the index file. */
23596
23597static void
bc8f2430
JK
23598write_address_map (struct objfile *objfile, data_buf &addr_vec,
23599 psym_index_map &cu_index_htab)
0a5429f6 23600{
bc8f2430 23601 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
0a5429f6
DE
23602
23603 /* When writing the address table, we have to cope with the fact that
23604 the addrmap iterator only provides the start of a region; we have to
23605 wait until the next invocation to get the start of the next region. */
23606
23607 addrmap_index_data.objfile = objfile;
0a5429f6
DE
23608 addrmap_index_data.previous_valid = 0;
23609
23610 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23611 &addrmap_index_data);
23612
23613 /* It's highly unlikely the last entry (end address = 0xff...ff)
23614 is valid, but we should still handle it.
23615 The end address is recorded as the start of the next region, but that
23616 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23617 anyway. */
23618 if (addrmap_index_data.previous_valid)
bc8f2430 23619 add_address_entry (objfile, addr_vec,
0a5429f6
DE
23620 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23621 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23622}
23623
156942c7
DE
23624/* Return the symbol kind of PSYM. */
23625
23626static gdb_index_symbol_kind
23627symbol_kind (struct partial_symbol *psym)
23628{
23629 domain_enum domain = PSYMBOL_DOMAIN (psym);
23630 enum address_class aclass = PSYMBOL_CLASS (psym);
23631
23632 switch (domain)
23633 {
23634 case VAR_DOMAIN:
23635 switch (aclass)
23636 {
23637 case LOC_BLOCK:
23638 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23639 case LOC_TYPEDEF:
23640 return GDB_INDEX_SYMBOL_KIND_TYPE;
23641 case LOC_COMPUTED:
23642 case LOC_CONST_BYTES:
23643 case LOC_OPTIMIZED_OUT:
23644 case LOC_STATIC:
23645 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23646 case LOC_CONST:
23647 /* Note: It's currently impossible to recognize psyms as enum values
23648 short of reading the type info. For now punt. */
23649 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23650 default:
23651 /* There are other LOC_FOO values that one might want to classify
23652 as variables, but dwarf2read.c doesn't currently use them. */
23653 return GDB_INDEX_SYMBOL_KIND_OTHER;
23654 }
23655 case STRUCT_DOMAIN:
23656 return GDB_INDEX_SYMBOL_KIND_TYPE;
23657 default:
23658 return GDB_INDEX_SYMBOL_KIND_OTHER;
23659 }
23660}
23661
9291a0cd 23662/* Add a list of partial symbols to SYMTAB. */
b89be57b 23663
9291a0cd
TT
23664static void
23665write_psymbols (struct mapped_symtab *symtab,
bc8f2430 23666 std::unordered_set<partial_symbol *> &psyms_seen,
9291a0cd
TT
23667 struct partial_symbol **psymp,
23668 int count,
987d643c
TT
23669 offset_type cu_index,
23670 int is_static)
9291a0cd
TT
23671{
23672 for (; count-- > 0; ++psymp)
23673 {
156942c7 23674 struct partial_symbol *psym = *psymp;
987d643c 23675
156942c7 23676 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23677 error (_("Ada is not currently supported by the index"));
987d643c 23678
987d643c 23679 /* Only add a given psymbol once. */
bc8f2430 23680 if (psyms_seen.insert (psym).second)
987d643c 23681 {
156942c7
DE
23682 gdb_index_symbol_kind kind = symbol_kind (psym);
23683
156942c7
DE
23684 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23685 is_static, kind, cu_index);
987d643c 23686 }
9291a0cd
TT
23687 }
23688}
23689
1fd400ff
TT
23690/* A helper struct used when iterating over debug_types. */
23691struct signatured_type_index_data
23692{
bc8f2430
JK
23693 signatured_type_index_data (data_buf &types_list_,
23694 std::unordered_set<partial_symbol *> &psyms_seen_)
23695 : types_list (types_list_), psyms_seen (psyms_seen_)
23696 {}
23697
1fd400ff
TT
23698 struct objfile *objfile;
23699 struct mapped_symtab *symtab;
bc8f2430
JK
23700 data_buf &types_list;
23701 std::unordered_set<partial_symbol *> &psyms_seen;
1fd400ff
TT
23702 int cu_index;
23703};
23704
23705/* A helper function that writes a single signatured_type to an
23706 obstack. */
b89be57b 23707
1fd400ff
TT
23708static int
23709write_one_signatured_type (void **slot, void *d)
23710{
9a3c8263
SM
23711 struct signatured_type_index_data *info
23712 = (struct signatured_type_index_data *) d;
1fd400ff 23713 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23714 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23715
23716 write_psymbols (info->symtab,
987d643c 23717 info->psyms_seen,
3e43a32a
MS
23718 info->objfile->global_psymbols.list
23719 + psymtab->globals_offset,
987d643c
TT
23720 psymtab->n_global_syms, info->cu_index,
23721 0);
1fd400ff 23722 write_psymbols (info->symtab,
987d643c 23723 info->psyms_seen,
3e43a32a
MS
23724 info->objfile->static_psymbols.list
23725 + psymtab->statics_offset,
987d643c
TT
23726 psymtab->n_static_syms, info->cu_index,
23727 1);
1fd400ff 23728
c2f134ac
PA
23729 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23730 to_underlying (entry->per_cu.sect_off));
23731 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23732 to_underlying (entry->type_offset_in_tu));
23733 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
1fd400ff
TT
23734
23735 ++info->cu_index;
23736
23737 return 1;
23738}
23739
e8f8bcb3
PA
23740/* Recurse into all "included" dependencies and count their symbols as
23741 if they appeared in this psymtab. */
23742
23743static void
23744recursively_count_psymbols (struct partial_symtab *psymtab,
23745 size_t &psyms_seen)
23746{
23747 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23748 if (psymtab->dependencies[i]->user != NULL)
23749 recursively_count_psymbols (psymtab->dependencies[i],
23750 psyms_seen);
23751
23752 psyms_seen += psymtab->n_global_syms;
23753 psyms_seen += psymtab->n_static_syms;
23754}
23755
95554aad
TT
23756/* Recurse into all "included" dependencies and write their symbols as
23757 if they appeared in this psymtab. */
23758
23759static void
23760recursively_write_psymbols (struct objfile *objfile,
23761 struct partial_symtab *psymtab,
23762 struct mapped_symtab *symtab,
bc8f2430 23763 std::unordered_set<partial_symbol *> &psyms_seen,
95554aad
TT
23764 offset_type cu_index)
23765{
23766 int i;
23767
23768 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23769 if (psymtab->dependencies[i]->user != NULL)
23770 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23771 symtab, psyms_seen, cu_index);
23772
23773 write_psymbols (symtab,
23774 psyms_seen,
23775 objfile->global_psymbols.list + psymtab->globals_offset,
23776 psymtab->n_global_syms, cu_index,
23777 0);
23778 write_psymbols (symtab,
23779 psyms_seen,
23780 objfile->static_psymbols.list + psymtab->statics_offset,
23781 psymtab->n_static_syms, cu_index,
23782 1);
23783}
23784
9291a0cd 23785/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23786
9291a0cd
TT
23787static void
23788write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23789{
9291a0cd
TT
23790 if (dwarf2_per_objfile->using_index)
23791 error (_("Cannot use an index to create the index"));
23792
8b70b953
TT
23793 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23794 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23795
260b681b
DE
23796 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23797 return;
23798
bc8f2430 23799 struct stat st;
4262abfb
JK
23800 if (stat (objfile_name (objfile), &st) < 0)
23801 perror_with_name (objfile_name (objfile));
9291a0cd 23802
bc8f2430
JK
23803 std::string filename (std::string (dir) + SLASH_STRING
23804 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
9291a0cd 23805
d419f42d 23806 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
9291a0cd 23807 if (!out_file)
bc8f2430 23808 error (_("Can't open `%s' for writing"), filename.c_str ());
9291a0cd 23809
16b7a719
PA
23810 /* Order matters here; we want FILE to be closed before FILENAME is
23811 unlinked, because on MS-Windows one cannot delete a file that is
23812 still open. (Don't call anything here that might throw until
23813 file_closer is created.) */
bc8f2430 23814 gdb::unlinker unlink_file (filename.c_str ());
d419f42d 23815 gdb_file_up close_out_file (out_file);
9291a0cd 23816
bc8f2430
JK
23817 mapped_symtab symtab;
23818 data_buf cu_list;
987d643c 23819
0a5429f6
DE
23820 /* While we're scanning CU's create a table that maps a psymtab pointer
23821 (which is what addrmap records) to its index (which is what is recorded
23822 in the index file). This will later be needed to write the address
23823 table. */
bc8f2430
JK
23824 psym_index_map cu_index_htab;
23825 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23826
23827 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23828 work here. Also, the debug_types entries do not appear in
23829 all_comp_units, but only in their own hash table. */
e8f8bcb3
PA
23830
23831 /* The psyms_seen set is potentially going to be largish (~40k
23832 elements when indexing a -g3 build of GDB itself). Estimate the
23833 number of elements in order to avoid too many rehashes, which
23834 require rebuilding buckets and thus many trips to
23835 malloc/free. */
23836 size_t psyms_count = 0;
23837 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23838 {
23839 struct dwarf2_per_cu_data *per_cu
23840 = dwarf2_per_objfile->all_comp_units[i];
23841 struct partial_symtab *psymtab = per_cu->v.psymtab;
23842
23843 if (psymtab != NULL && psymtab->user == NULL)
23844 recursively_count_psymbols (psymtab, psyms_count);
23845 }
23846 /* Generating an index for gdb itself shows a ratio of
23847 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23848 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
bc8f2430 23849 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 23850 {
3e43a32a
MS
23851 struct dwarf2_per_cu_data *per_cu
23852 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23853 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23854
92fac807
JK
23855 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23856 It may be referenced from a local scope but in such case it does not
23857 need to be present in .gdb_index. */
23858 if (psymtab == NULL)
23859 continue;
23860
95554aad 23861 if (psymtab->user == NULL)
bc8f2430
JK
23862 recursively_write_psymbols (objfile, psymtab, &symtab,
23863 psyms_seen, i);
9291a0cd 23864
bc8f2430
JK
23865 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23866 gdb_assert (insertpair.second);
9291a0cd 23867
c2f134ac
PA
23868 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23869 to_underlying (per_cu->sect_off));
23870 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23871 }
23872
0a5429f6 23873 /* Dump the address map. */
bc8f2430
JK
23874 data_buf addr_vec;
23875 write_address_map (objfile, addr_vec, cu_index_htab);
0a5429f6 23876
1fd400ff 23877 /* Write out the .debug_type entries, if any. */
bc8f2430 23878 data_buf types_cu_list;
1fd400ff
TT
23879 if (dwarf2_per_objfile->signatured_types)
23880 {
bc8f2430
JK
23881 signatured_type_index_data sig_data (types_cu_list,
23882 psyms_seen);
1fd400ff
TT
23883
23884 sig_data.objfile = objfile;
bc8f2430 23885 sig_data.symtab = &symtab;
1fd400ff
TT
23886 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23887 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23888 write_one_signatured_type, &sig_data);
23889 }
23890
156942c7
DE
23891 /* Now that we've processed all symbols we can shrink their cu_indices
23892 lists. */
bc8f2430 23893 uniquify_cu_indices (&symtab);
156942c7 23894
bc8f2430
JK
23895 data_buf symtab_vec, constant_pool;
23896 write_hash_table (&symtab, symtab_vec, constant_pool);
9291a0cd 23897
bc8f2430
JK
23898 data_buf contents;
23899 const offset_type size_of_contents = 6 * sizeof (offset_type);
23900 offset_type total_len = size_of_contents;
9291a0cd
TT
23901
23902 /* The version number. */
bc8f2430 23903 contents.append_data (MAYBE_SWAP (8));
9291a0cd
TT
23904
23905 /* The offset of the CU list from the start of the file. */
bc8f2430
JK
23906 contents.append_data (MAYBE_SWAP (total_len));
23907 total_len += cu_list.size ();
9291a0cd 23908
1fd400ff 23909 /* The offset of the types CU list from the start of the file. */
bc8f2430
JK
23910 contents.append_data (MAYBE_SWAP (total_len));
23911 total_len += types_cu_list.size ();
1fd400ff 23912
9291a0cd 23913 /* The offset of the address table from the start of the file. */
bc8f2430
JK
23914 contents.append_data (MAYBE_SWAP (total_len));
23915 total_len += addr_vec.size ();
9291a0cd
TT
23916
23917 /* The offset of the symbol table from the start of the file. */
bc8f2430
JK
23918 contents.append_data (MAYBE_SWAP (total_len));
23919 total_len += symtab_vec.size ();
9291a0cd
TT
23920
23921 /* The offset of the constant pool from the start of the file. */
bc8f2430
JK
23922 contents.append_data (MAYBE_SWAP (total_len));
23923 total_len += constant_pool.size ();
9291a0cd 23924
bc8f2430 23925 gdb_assert (contents.size () == size_of_contents);
9291a0cd 23926
bc8f2430
JK
23927 contents.file_write (out_file);
23928 cu_list.file_write (out_file);
23929 types_cu_list.file_write (out_file);
23930 addr_vec.file_write (out_file);
23931 symtab_vec.file_write (out_file);
23932 constant_pool.file_write (out_file);
9291a0cd 23933
bef155c3
TT
23934 /* We want to keep the file. */
23935 unlink_file.keep ();
9291a0cd
TT
23936}
23937
90476074
TT
23938/* Implementation of the `save gdb-index' command.
23939
23940 Note that the file format used by this command is documented in the
23941 GDB manual. Any changes here must be documented there. */
11570e71 23942
9291a0cd
TT
23943static void
23944save_gdb_index_command (char *arg, int from_tty)
23945{
23946 struct objfile *objfile;
23947
23948 if (!arg || !*arg)
96d19272 23949 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23950
23951 ALL_OBJFILES (objfile)
23952 {
23953 struct stat st;
23954
23955 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23956 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23957 continue;
23958
9a3c8263
SM
23959 dwarf2_per_objfile
23960 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23961 dwarf2_objfile_data_key);
9291a0cd
TT
23962 if (dwarf2_per_objfile)
23963 {
9291a0cd 23964
492d29ea 23965 TRY
9291a0cd
TT
23966 {
23967 write_psymtabs_to_index (objfile, arg);
23968 }
492d29ea
PA
23969 CATCH (except, RETURN_MASK_ERROR)
23970 {
23971 exception_fprintf (gdb_stderr, except,
23972 _("Error while writing index for `%s': "),
23973 objfile_name (objfile));
23974 }
23975 END_CATCH
9291a0cd
TT
23976 }
23977 }
dce234bc
PP
23978}
23979
9291a0cd
TT
23980\f
23981
b4f54984 23982int dwarf_always_disassemble;
9eae7c52
TT
23983
23984static void
b4f54984
DE
23985show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23986 struct cmd_list_element *c, const char *value)
9eae7c52 23987{
3e43a32a
MS
23988 fprintf_filtered (file,
23989 _("Whether to always disassemble "
23990 "DWARF expressions is %s.\n"),
9eae7c52
TT
23991 value);
23992}
23993
900e11f9
JK
23994static void
23995show_check_physname (struct ui_file *file, int from_tty,
23996 struct cmd_list_element *c, const char *value)
23997{
23998 fprintf_filtered (file,
23999 _("Whether to check \"physname\" is %s.\n"),
24000 value);
24001}
24002
6502dd73
DJ
24003void _initialize_dwarf2_read (void);
24004
24005void
24006_initialize_dwarf2_read (void)
24007{
96d19272
JK
24008 struct cmd_list_element *c;
24009
dce234bc 24010 dwarf2_objfile_data_key
c1bd65d0 24011 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 24012
b4f54984
DE
24013 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24014Set DWARF specific variables.\n\
24015Configure DWARF variables such as the cache size"),
24016 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
24017 0/*allow-unknown*/, &maintenance_set_cmdlist);
24018
b4f54984
DE
24019 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24020Show DWARF specific variables\n\
24021Show DWARF variables such as the cache size"),
24022 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
24023 0/*allow-unknown*/, &maintenance_show_cmdlist);
24024
24025 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
24026 &dwarf_max_cache_age, _("\
24027Set the upper bound on the age of cached DWARF compilation units."), _("\
24028Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
24029A higher limit means that cached compilation units will be stored\n\
24030in memory longer, and more total memory will be used. Zero disables\n\
24031caching, which can slow down startup."),
2c5b56ce 24032 NULL,
b4f54984
DE
24033 show_dwarf_max_cache_age,
24034 &set_dwarf_cmdlist,
24035 &show_dwarf_cmdlist);
d97bc12b 24036
9eae7c52 24037 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 24038 &dwarf_always_disassemble, _("\
9eae7c52
TT
24039Set whether `info address' always disassembles DWARF expressions."), _("\
24040Show whether `info address' always disassembles DWARF expressions."), _("\
24041When enabled, DWARF expressions are always printed in an assembly-like\n\
24042syntax. When disabled, expressions will be printed in a more\n\
24043conversational style, when possible."),
24044 NULL,
b4f54984
DE
24045 show_dwarf_always_disassemble,
24046 &set_dwarf_cmdlist,
24047 &show_dwarf_cmdlist);
24048
24049 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24050Set debugging of the DWARF reader."), _("\
24051Show debugging of the DWARF reader."), _("\
24052When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
24053reading and symtab expansion. A value of 1 (one) provides basic\n\
24054information. A value greater than 1 provides more verbose information."),
45cfd468
DE
24055 NULL,
24056 NULL,
24057 &setdebuglist, &showdebuglist);
24058
b4f54984
DE
24059 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24060Set debugging of the DWARF DIE reader."), _("\
24061Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
24062When enabled (non-zero), DIEs are dumped after they are read in.\n\
24063The value is the maximum depth to print."),
ccce17b0
YQ
24064 NULL,
24065 NULL,
24066 &setdebuglist, &showdebuglist);
9291a0cd 24067
27e0867f
DE
24068 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24069Set debugging of the dwarf line reader."), _("\
24070Show debugging of the dwarf line reader."), _("\
24071When enabled (non-zero), line number entries are dumped as they are read in.\n\
24072A value of 1 (one) provides basic information.\n\
24073A value greater than 1 provides more verbose information."),
24074 NULL,
24075 NULL,
24076 &setdebuglist, &showdebuglist);
24077
900e11f9
JK
24078 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24079Set cross-checking of \"physname\" code against demangler."), _("\
24080Show cross-checking of \"physname\" code against demangler."), _("\
24081When enabled, GDB's internal \"physname\" code is checked against\n\
24082the demangler."),
24083 NULL, show_check_physname,
24084 &setdebuglist, &showdebuglist);
24085
e615022a
DE
24086 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24087 no_class, &use_deprecated_index_sections, _("\
24088Set whether to use deprecated gdb_index sections."), _("\
24089Show whether to use deprecated gdb_index sections."), _("\
24090When enabled, deprecated .gdb_index sections are used anyway.\n\
24091Normally they are ignored either because of a missing feature or\n\
24092performance issue.\n\
24093Warning: This option must be enabled before gdb reads the file."),
24094 NULL,
24095 NULL,
24096 &setlist, &showlist);
24097
96d19272 24098 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 24099 _("\
fc1a9d6e 24100Save a gdb-index file.\n\
11570e71 24101Usage: save gdb-index DIRECTORY"),
96d19272
JK
24102 &save_cmdlist);
24103 set_cmd_completer (c, filename_completer);
f1e6e072
TT
24104
24105 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24106 &dwarf2_locexpr_funcs);
24107 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24108 &dwarf2_loclist_funcs);
24109
24110 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24111 &dwarf2_block_frame_base_locexpr_funcs);
24112 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24113 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 24114}
This page took 5.093116 seconds and 4 git commands to generate.